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Abstract

The developments in the molecular biosciences have made possible a shift to combined mo-
lecular and system-level approaches to biological research under the name of Systems Biology.
It integrates many types of molecular knowledge, which can best be achieved by the synergis-
tic use of models and experimental data. Many different types of modeling approaches are 
useful depending on the amount and  quality of the molecular data available and the purpose of 
the model. Analysis of such  models and the structure of molecular networks have led to the 
 discovery of principles of cell functioning overarching single species. Two main approaches 
of  systems biology can be distinguished. Top-down systems biology is a method to character-
ize cells using system-wide data originating from the Omics in combination with 
modeling. Those models are often phenomenological but serve to discover new insights into 
the molecular network under study. Bottom-up systems biology does not start with data but 
with a detailed model of a molecular network on the basis of its molecular properties. In this 
approach, molecular networks can be quantitatively  studied leading to predictive models that 
can be applied in drug  design and optimization of product formation in bioengineering. In this 
chapter we introduce analysis of molecular network by use of models, the two approaches to 
systems biology, and we shall discuss a number of examples of recent successes in systems 
biology. 

From a molecular to a systems perspective in biology

In the last century many of the molecular details of living organisms have been de-
ciphered. The identifi cation of molecular constituents was greatly speeded up by 
genome sequencing. Many of the processes occurring in cells have been character-
ized. For simple organisms, such as Escherichia coli or yeast, large parts of the 
metabolic network structure, the operon structure and their transcriptional regula-
tors are now known [1–3].
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This knowledge allows for combined molecular and system-level studies 
 applying a synergistic approach involving modeling, theory, and experiment 
under the name of Systems Biology. Dynamics of entire cells cannot yet be mod-
eled with  detailed kinetic models but we anticipate that this may happen within 
a decade or two. Detailed stoichiometric models of entire organisms have already 
been studied [1, 4–6]. Those cannot deal with the dynamics of cells for they do not 
contain any kinetic data; they focus on distributions of steady-state fl ux or study 
network organization. However, the dynamics of a number of subsystems of 
cells have already been modeled in great detail (e.g., [7–12]). Such models  describe 
the molecular mechanisms operative in cells. They contain all the molecular 
knowledge available of the systems under study; they are near replica of the real 
system. We term such models silicon-cell models. They allow for a ‘completeness’ 
test of our knowledge (e.g., [7, 9, 10]). This form of scientifi c rigidity is unprece-
dented in biology. In addition, those models allow for analysis of the system 
in silico in ways not (yet) achievable in the laboratory (e.g., [13, 14]). More impor-
tantly, they may allow for rational strategies of drug design in medicine and opti-
mization of product formation in bioengineering (e.g., [11, 15, 16]). Also more 
qualitative models are of importance in systems biological approaches to illustrate 
principles (re-) occurring in molecular networks [17, 18]. Such models may be 
model reductions of complicated silicon-cell models to facilitate explanation of 
phenomena by focusing on the core mechanism responsible for some phenomenon 
of interest. In other cases, such  models may be approximations of the real system 
to describe phenomena too complicated to grasp without usage of mathematical 
modeling [14, 18, 19]. 

Systems biology aims to provide a fi rm link between the molecular disciplines 
in biology, such as genetics, molecular biology, biochemistry, enzymology, and 
 biophysics, and the disciplines within biology that study entire organisms, i.e., cell 
biology and physiology [20, 21]. It does so by quantitatively characterizing the 
molecular mechanisms in organisms on a molecular and system level. Such com-
bined molecular and system-level studies are therefore a sort of unifi cation; they 
‘unify’ the molecular characterization of organisms with their physiological – be-
havioral or functional – characterization. That is, they indicate how the properties of 
organisms are brought about by the properties of their molecular constitution and 
organization and how the system can be altered molecularly to have it behave as 
desired.

Many associate this kind of strategy with reduction, i.e., that properties of or-
ganisms are reduced to properties of molecules; that properties of organisms are just
properties of molecules. We disagree with such kinds of statements [22]. Rather, the 
type of reduction achieved here is that of mechanistic explanation [23, 24]. Proper-
ties of organisms that are unique to organisms – not found on the level of single 
molecules or simpler systems thereof – are explained in terms of the molecular 
mechanisms that manifest those properties. Accordingly, organisms display emer-
gent behaviors not displayed by any of their molecules in isolation, such as adapta-
tion, growth, robustness, and natural selection [22, 25]. Those emergent system 
properties do depend on the properties of the molecular constituents but even more 



3Introduction to systems biology

so on how they interact in the organism to function in mechanisms. Without the  latter 
knowledge the emergent properties are not understood.

From a nested-level-of-organization point of view, systems biology is an inter-
level approach to biology rather than an intralevel approach, which is more charac-
teristic of molecular biology and genetics [22]. Comparing to physics, systems biol-
ogy shares more similarities with statistical thermodynamics than with macroscopic 
thermodynamics, which is more a mirror image of physiology or molecular biology. 
Contrast the temperature of a system of particles, perceived in statistical thermody-
namics as the average kinetic energy of the particles, which is an intrinsically inter-
level concept, with the interpretation of the ideal gas law (pV=nRT) in macroscopic 
thermodynamics that merely expresses a relation among system properties and is 
therefore intralevel. Interlevel approaches are not so common in science [26] but are 
central to studies of complex systems [23, 27].

Organismal properties are not properties of molecules but of networks 
of molecules

A characterization of a (resting) bag of billiard balls leads to a list of many proper-
ties. None of them depend on how the billiard balls are organized within the bag. 
Many of them are retrievable by superposition of the properties of isolated indi-
vidual billiard balls. Actually, according to any reasonable sense of organization, 
the billiard balls in the bag cannot be considered organized relative to each other. 
Even if all blue ones are on top it does not matter, for many of the characterizing 
properties of a bag of billiard balls do not depend on the color of the balls. This 
example, simple as it may be, indicates a number of interesting points. For instance, 
not all systems have properties that depend on the organization of their constituents. 
One could then argue that this is obviously so since the billiard balls are all the 
same; therefore one cannot speak of organization in this case. But changing their 
color does not have an effect, indicating that only some properties of parts matter 
for the systems characterization in terms of its organization – or in terms of its 
mechanisms.

Obviously, cells are not comparable to a bag of billiards balls in any meaningful 
biological sense. Cells do display behaviors that depend on their molecular organi-
zation. They consist of molecules of different types that occur in different abun-
dances depending on conditions and history. Those molecules engage in  interactions 
of high specifi city; not all molecules interact and if some of them do interact then 
often by varying degree. The interactions and their effects are not retrievable from 
the isolated molecules without considering cells as molecular networks; that is, 
without integrating all the molecular properties, for instance by using mathematical 
models [22, 25]. This does not mean that all properties of cells depend on their 
 molecular organization. For instance, their mass, total energy and the number of 
molecular constituents do not.

Let’s consider a simple molecular network to make the dominant role of mo-
lecular organization in determining the properties of cells more transparent. Along 
the way, we shall introduce a number of general characteristics of cells perceived as 
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molecular networks. The network we consider consists of enzyme 1 and 2. Enzyme 
1 produces X out of S whereas enzyme 2 has X as a substrate and produces P:

S X Penzyme 1 enzyme 2← →⎯⎯⎯ ← →⎯⎯⎯

We shall describe it in terms of a kinetic model (e.g., [28]); a type of modeling 
used often in systems biology; for examples see JWS online at www.jjj.bio.vu.nl 
[29, 30]. The system properties of interest are the concentration of X and the fl ux J
through the pathway at steady state. Steady state is defi ned as the state where X
remains constant while a net fl ux runs through the pathway. In contrast, an 
 equilibrium state is defi ned as a net fl ux of zero while X is constant. Both enzymes 
have many different properties but only their kinetic properties matter for X and J
at steady state; that is, their 3D-structure, gene sequence, or weight do not 
matter.

In terms of kinetic properties, the rate with which enzyme 1 produces X and 
enzyme 2 consumes X is described by the following reversible Michaelis-Menten 
rate equations [31]:
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The maximal rates of the enzymes are denoted by VMAX,1 and VMAX,2, respectively. 
The affi nity of the two enzymes for their substrates and products are given by 
Michaelis-Menten constants: K1,S, K1,X, K2,X, and K2,P. K1,S indicates that in the ab-
sence of X, the fi rst enzyme operates at half-maximal rate if S = K1,S whereas if 
S >>K1,S the rate of the fi rst enzyme is maximal. Both reactions are inhibited by 
their products: by a thermodynamic term, involving an equilibrium constant, Keq,1
for enzyme 1 or Keq,2 for enzyme 2, and by a kinetic term involving a Michaelis-
Menten constant. The equilibrium constants are determined by the standard free 
energies of the substrates and products of a reaction and do not depend on the prop-
erties of an enzyme (e.g., [32]).

The rate of change in the concentration of X is described by an ordinary differ-
ential equation: 

dX
dt

v v= −1 2  (2)

The concentration of X increases, i.e., dX/dt > 0, if v1 > v2 and vice versa. This is a 
kinetic model of the simple network we are studying. To determine the dynamics of 
the concentration of X as function of time, given some initial concentration of X, a 
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computer is most helpful. This type of kinetic modeling approach, using experimen-
tally determined kinetic parameters and network structure, has proven very promis-
ing. Many of such type of models can be found on the JWS online website (at www.
jjj.bio.vu.nl) [29, 30].

In thermodynamic equilibrium (v1 = v2 = 0), one fi nds that: X = S · Keq,1 = P / Keq,2.
Apparently, the kinetic properties of the enzyme do not matter! This is a general 
result for systems in thermodynamic equilibrium irrespective of the complexity of 
the network [33]. This changes in a steady state. To attain a steady state, the concen-
trations of S and P should remain fi xed (set by the experimentalist) and their ratio 
(P/S) should not be chosen equal to the product of the equilibrium constants of the 
two reactions. In the steady state, v1 = v2 0 and the concentration of X, i.e., X , is a 
solution from the algebraic equation v1 – v2 = 0. We will not give the analytical solu-
tion here as it is given by a rather complicated equation that depends on all the 
 kinetic properties. Graphically, the steady-state concentration of X and the fl ux J can 
be found by determining the intersection of the rate functions v1 and v2 as function 
of X for a given set of kinetic parameters. It is not hard to imagine that all kinetic 
parameters now effect X  and J, for the shape of the rate curves of enzyme 1 and 
enzyme 2, and therefore their intersection, depends on them. The steady-state fl ux J
now equals v X1( ).

For illustrative purposes, let us consider a biologically unrealistic form of rate 
equations for enzyme 1 and 2; that is, mass-action kinetics:

v k S k X v k X k P1 1 1 2 2 2= − = −+ − + −,  (3)

The ‘k’ coeffi cients are referred to as elementary rate constants. The steady-state 
concentration of X now equals:
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1 2

1 2
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Already in this simple example, with unrealistic kinetics and over-simplifi ed net-
work structure, we fi nd that all the kinetic parameters of the reactions and a charac-
terization of the environment, the fi xed concentrations of S and P, determine the 
steady state concentration of X. The mathematical function describing the depend-
ency of the steady state concentration of X on those parameters, i.e., Eq. 4, is also 
dependent on the network structure. This illustrates that only by integration of all 
those pieces of information, i.e., characterization of the environment, properties of 
reactions, and network structure, the steady-state system properties can be retrieved. 
Examples of such studies can be found on the online modeling website JWS online 
(www.jjj.bio.vu.nl).

To investigate whether all molecular properties of the network are equally im-
portant we return to the description of the system having biologically relevant kinet-
ics. Suppose we want to determine whether enzyme 1 and 2 are as important for 
controlling the steady-state concentration of X by investigating the fractional change 
in X  upon a fractional in the enzyme amount of enzyme 1 and 2 by changing their 
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VMAX’s. This we accomplish for enzyme 1 by taking the total fractional derivative of 
the steady-state condition for X, i.e., v X V v XMAX1 1 2 0, , − =�        �    �  � :
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In terms of metabolic control analysis (MCA) [32, 34–36], those differentials are 
identifi ed as control coeffi cients (‘C’ with proper subscript and superscript) and 
elasticity coeffi cients (‘ ’ with proper subscript and superscript):
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This gives an expression for the dependence of the concentration control coeffi cient 
of the fi rst enzyme on the steady-state concentration of X in terms of elasticity coef-
fi cients (note that: ∂ ∂ =ln / ln ,v VMAX1 1 1):
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Typically, the elasticity coeffi cient of the fi rst enzyme for X shall be negative: X
inhibits the rate of its producing enzyme. It activates the rate of the second enzyme. 
This leads to a positive control coeffi cient for enzyme 1, which can be intuitively 
understood: a higher activity of the fi rst enzyme should lead to a higher concentra-
tion of X to allow for a higher rate of enzyme 2. For the second enzyme, we obtain 
(after the same operation as in Eq. 6 with respect to VMAX,2):

C CX X
2 1= −  (8)

Interestingly, the sum of the concentration control coeffi cients equals zero! This can 
be understood by considering that, if in steady state, v X v X1 2 0( ) ( )− = , both rates 
are changed by the same factor , the value of X  shall remain unchanged. The 
steady-state fl ux will change with factor , however; illustrating that the fl ux control 
coeffi cients of the two enzymes obey the following law:
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The fl ux control coeffi cient of enzyme 1, i.e., C J
1 , is defi ned as:
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Interestingly, it has been proven mathematically that those two summation theo-
rems (Eq. 8 and 9) hold irrespectively of the complexity of the network (having r
reactions) and for all concentrations and fl uxes [34, 35, 37]:
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0 1,  (11)

This can be understood by the same kind of reasoning as was given above. Net-
works with a level-structure or cascade-structure have additional summation theo-
rems [38, 39]. 

Within the network studied so far two other theorems exist. They are referred to 
as connectivity theorems and relate control coeffi cients and elasticity coeffi cients:
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Those relationships can be easily verifi ed using Eq. 7, 8, 9 and 10. Those two equa-
tions can be easily understood by considering one of the assumptions of MCA: it 
assumes that the steady state is (asymptotically) stable with respect to fl uctuations 
[32]. This stability means that the time-averaged concentration X in steady state, 
despite of thermally fl uctuating reaction rates, equals X  (and that the time-averaged 
fl ux equals J) with a variance depending on the distance from thermodynamic equi-
librium and the non-linearity of the system at steady state [32, 40, 41]. The connec-
tivity theorems express exactly this stability property for they indicate the outcome 
of the dissipating response of the system to restore any change in X  and J upon a 
perturbation in X  induced by thermally fl uctuating reaction rates. In contrast to the 
summation theorems, the connectivity theorems do depend on the structure of the 
network [37, 42–44]. Together the summation and connectivity theorems allow one 
to derive control coeffi cients in terms of elasticity coeffi cients [42].

This section illustrated that many of the interesting properties of cells studied in 
cell biology and physiology are related to the properties of the molecules, the envi-
ronment, and the network structure in a complicated nonlinear fashion. The exact 
dependency only becomes evident by integrating all those properties using models. 
This we illustrated using metabolic control analysis. Models then may indicate the 
existence of general relationships reminiscent of laws in physics [45].

Two approaches to systems biology: top-down and bottom-up

Two approaches to systems biology can be distinguished. Top-down systems biology
starts with data, often generated by system-wide methods, and analyses this data 
using network models of various types and degrees of detail to discover molecular 
mechanisms, modules, and patterns of functional behavior (e.g., [4, 46–50]). Typi-
cally, the data analyzed originate from metabolomics, fl ux analysis, proteomics, 
transcriptomics, or combinations thereof. The following chapters will provide de-
tailed information of how such data are acquired. This approach relies more on in-
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duction than bottom-up system biology. Top-down systems biology extracts infor-
mation from the data rather than deducing it from pre-existing knowledge. In bottom-
up systems biology experimentation is done not on the entire system level but on 
smaller subsystems and typically small quantitative heterogeneous datasets are 
used, containing steady-state and transient metabolite and fl ux data. The  experiments 
are done on the basis of detailed models of the system to both validate and improve 
the model or to investigate hypotheses inspired by model analysis. The models used 
are typically silicon-cell models (e.g., [7–12, 51, 52]). Top-down systems biology is 
an interesting approach for determination of the network structure and the identifi -
cation of the molecular mechanisms operative within cells that have not yet been 
fully characterized [53]. This approach may lead to a more complete picture of the 
molecular network inside cells. In later stages, top-down systems biological studies 
may develop into bottom-up approaches as soon as the network has been more care-
fully characterized. Bottom-up systems biology builds on pre-existing molecular 
data and allows for analysis of their systemic consequences for the cell [20]. 

Examples of systems biology research1

One aspect of systems biology is the analysis of the structure of the molecular net-
works and its consequences for the cell. In much the same way as genome sequenc-
ing has lead to the emergence of the theoretical analysis of genomes  (bioinformatics), 
has the availability of the entire metabolic, signaling, and gene networks of cells led 
to the development of theoretical analyses of networks [6, 54]. Many interesting 
properties of molecular networks haven been discovered [54–56]. Most noticeably 
are small world organization [57, 58], modularity [59, 60], motifs [61–63], fl ux bal-
ance analysis, extreme pathway and elementary mode analysis [6, 64–67]. All these 
methods analyze large-scale molecular networks and induce general information 
regarding their structure and functional consequences. This is one exciting branch 
of systems biology that is anticipated to develop further and discover many new 
insights into the molecular organization of cells. Reviews on this aspect of systems 
biology can be found elsewhere [6, 54].

Another aspect of systems biology is the construction of kinetic models of 
 molecular network functioning as was introduced briefl y in the previous section 
[12, 17, 20]. The history of kinetic model construction and analysis is already long. 
The fi rst models of metabolism were created in the 1960s and 1970s [68, 69]. Those 
models suffered mostly from a lack of suffi cient system data. The introduction of 
desktop computers, the development of theory for the analysis of dynamics of non-
linear systems (e.g., [70]), and the development of non-equilibrium thermodynam-
ics (e.g., [71, 72]) lead to the analysis of simplifi ed models – core models –  illustrating
complex dynamics of molecular networks [19, 73–76]. As understanding pro-
gressed, those core models were interchanged for detailed models describing com-

1 The models mentioned in this section can all be investigated online at the JWS online website 
(www.jjj.bio.vu.nl)
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plex dynamics, e.g., compare core models of glycolysis [74, 75] with detailed 
 models [77, 78]. The more detailed models are of interest in bioengineering as 
they may facilitate rational approaches to optimization of product formation [10, 
11, 51, 79]. 

Hoefnagel et al. [11] developed a kinetic model of pyruvate metabolism in 
Lactococcus lactis to optimize the production rate of acetoin by this organism. All 
the rate equations of enzymes, as they were characterized in the literature, were in-
corporated in a kinetic model. They showed that two enzymes (lactate dehydroge-
nase (LDH) and NADH oxidase (NOX)), previously not identifi ed as important for 
acetoin production, had most control on the acetoin production fl ux. By deleting 
LDH and overexpressing NOX in experiment they were able to redirect carbon fl ux 
to acetoin; 49% of pyruvate consumption fl ux in the mutant versus ~0% in the wild 
type. This result was of importance for industry.

Glycolysis is a catabolic pathway (Fig. 1A) that is present in all kinds of cells. 
Teusink et al. [80, 81] constructed a kinetic model of yeast glycolysis that was quite 
helpful in solving the puzzle of an unexpected phenotype of a particular mutant 
strain and at the same time lead to a surprising new insight about glycolysis. Sac-
charomyces cerevisiae strains with a lesion in the TPS1 gene, which encodes treha-
lose-6-phosphate (Tre-6-P) synthase, cannot grow with glucose as the sole carbon 
and free energy source. Although this enzyme appeared to have little relevance to 
glycolysis – it was considered to function in the formation of storage carbohydrates 
and the acquisition of stress tolerance – it turned out to be crucial for growth on 
glucose. Using the detailed kinetic model of S. cerevisiae glycolysis it was shown 
that the turbo design of the glycolytic pathway (Fig. 1B), apart from being useful in 
allowing for rapid growth, also represents an inherent risk. A yeast cell investing 
ATP in the fi rst part of glycolysis and producing a surplus of ATP in the downstream 
(lower) part of glycolysis runs the risk of an uncontrolled glycolytic fl ux. In the 
model, this resulted in the accumulation of hexose monophosphate and fructose-
1,6-bisphosphate to levels that are considered toxic when established in the real 
yeast cell. The formation of trehalose-6-phosphate prevented glycolysis from going 
awry by inhibiting hexokinase (Fig. 2A), the fi rst ATP-consuming step of glycolysis 
and thereby restricting the fl ux of glucose into glycolysis [80]. The importance of 
the trehalose branch of glycolysis for growth on glucose could only be discovered 
through the systems biological approach of combining experimental data with 
 kinetic modeling as outlined above. Detailed models can also be used to calculate 
the outcome of experiments that are not yet achievable, too laborious or too costly 
to perform as a pilot experiment. Glycolysis in Trypanosoma brucei takes place in 
a special organel, the glycosome, except for the steps by which 3-phosphoglycerate 
is converted into pyruvate. In contrast to the situation described above for S. cerevi-
siae, the fi rst step catalyzed by hexokinase is not at all regulated in trypanosomes. 
The glycosome is surrounded by a membrane (Fig. 2B). Bakker et al. [13] were able 
to calculate the effect of the removal of the glycosomal membrane in T. brucei. At 
the time, this experiment could not be performed experimentally. However, they 
could remove the membrane in a detailed kinetic model that was validated earlier 
[7]. The removal of the membrane was of interest because the biological advantage 
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of the glycosome was hypothesized by others to enable this organism to have an 
extremely high glycolytic fl ux. Bakker et al. [13] showed that yeast – which does 
not have glycosomes – can have fl uxes as high as T. brucei. In addition, they showed 
that the removal of the glycosomal membrane did not cause a physiologically sig-
nifi cant change in the glycolytic fl ux. Rather, the removal of the glycosome caused 
accumulation of glucose-6-phosphate and fructose-1,6-bisphosphate up to 100 mM. 
This would certainly represent a pathological situation for T. brucei involving phos-
phate depletion and possibly osmotic swelling. As it turned out, the glycosomal 
membrane makes sure that the upper part of glycolysis is not accelerated by the ATP 
produced by the lower part of glycolysis, because the surplus ATP producing step in 
the lower part of glycolysis (by pyruvate kinase) actually resides outside of the 
glycosome. Thus the glycosome is another implementation of a protective device 

Figure 1. The dangerous turbo design of glycolysis. (A) A simplifi ed scheme of glycolysis. 
Solid lines represent reactions catayzed by a single enzyme; dashed lines represent multiple 
sequential reactions. Glc-6P, glucose 6-phosphate; Fru-1,6-BP, fructose 1,6 bisphosphate; 
DHAP, dihydroxyaceton phosphate; GA-3-P, glyceraldehyde 3-phosphate; 1,3-BPGA, 1,3-bis-
phosphoglycerate; 3-PGA, 3-phosphoglycerate. (B) The turbo design of glycolysis. Genera-
lized scheme for glycolysis in which the upper part from substrate S to intermediate I combines 
the ATP-consuming reactions and the lower part from I to product P combines the ATP-produ-
cing reactions. The surplus of ATP produced in the lower part is depicted in bold capitals and 
the boosting effect on the upper part is indicated by thick lines. 
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Figure 2. Two different solutions to the turbo design problem. (A) The trehalose branch in S.
cerevisiae. The scheme is the same as the one shown in Figure 1A, except for the addition of the 
trehalose shunt in bold. Tre-6-P, trehalose 6-phosphate. The inhibition of hexokinase by Tre-6-P 
is indicated by a thick dashed line. (B) The glycosome in trypanosomes. Again, the scheme is 
the same as the one shown in Figure 1A, except for the addition of the glycosomal membrane 
in bold. The conversion of 3-PGA to pyruvate takes place outside of the glycosome.

against the potentially dangerous ‘turbo’ design of glycolysis. These two examples 
of models of glycolysis demonstrate the power of (bottom-up systems biological) 
kinetic models; when precise and detailed knowledge of the kinetics of the molecu-
lar components is available, so-called computer experimentation can be carried out 
which serves as an adequate substitute for true experimentation.

Regulation of metabolic fl ux is governed by many different mechanisms. They 
may function at the level of metabolism, transcription, translation, or at the level of 
degradation of mRNA or protein. At the level of metabolism, contributions to the 
regulation of enzymatic conversion rates are made by substrates and products, by 
effectors through allosteric feedback or feedforward loops, or by covalent modifi ca-
tion. Recently a quantitative mathematical tool has been developed in our  laboratory, 
referred to as hierarchical regulation analysis, that allows for the quantitative deter-
mination of the importance of all those mechanisms that contribute to the regulation 
of fl ux, given experimental data [82–84].
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The regulation of the ammonium-assimilation fl ux by Escherichia coli is governed
by a complicated mechanism involving multiple covalent modifi cations, feedback, 
substrate/product effects, gene expression and targeted protein degradation [85, 86]. 
This system has for a long time been a paradigm of fl ux regulation by way of cova-
lent modifi cation. We have recently integrated all molecular data of this network 
into a detailed kinetic model describing the short-term metabolic regulation of am-
monium assimilation [12]. We confi rmed many of the hypotheses postulated in the 
literature on how this system should function. We identifi ed that covalent modifi ca-
tion of glutamine synthetase is the most important determinant of the ammonium 
assimilation fl ux upon sudden changes in ammonium availability using hierarchical 
regulation analysis. Removal of the covalent modifi cation of glutamine synthetase 
caused accumulation of glutamine and severe impairment of growth as was shown 
experimentally by others [87]. It was confi rmed that indeed gene expression of 
glutamine synthetase alone can lead to regulation of ammonium assimilation; the 
ammonium assimilation fl ux was not sensitive to changes made in the level of any 
of the other enzymes. Finally, we predicted that one advantage of all this  complexity 
is to allow E. coli to keep its ammonium assimilation fl ux constant despite of 
changes in the ammonium concentration and to change from an energetically unfa-
vorable mode of ammonium uptake to a more favorable alternative as the  ammonium 
level is increased. 

The analysis and construction of models incorporating signal transduction net-
works at a high level of molecular detail has recently been pioneered because of 
their high potential in drug design [8, 15, 52, 88–90]. We have investigated one of 
the largest and most complete model of a signal transduction network for its control 
properties [90]. We determined the control coeffi cients of all the processes in the 
network on three characteristics of the transient activation profi le of extracellular 
signal regulated kinase (ERK), which is a member of the mitogen activating protein 
kinase (MAPK) family. The model contained 148 reactions and 103 variable con-
centrations and it is an enlarged version of the model published by Schoeberl et al. 
[89]. To our surprise, we found that less than 10% of the reactions had a large con-
trol on ERK activation. We identifi ed RAF as a candidate oncogene and indeed it 
was found frequently mutated in tumors. To cope with the enormous size of signal 
transduction network some systems biologists are presently developing theoretical 
methods for model reduction [91–93]. Such strategies may greatly facilitate under-
standing, analysis, and experimental design.

In model-driven experimentation, usage of simplifi ed models that illuminate 
principles of system functioning and guide experimentation (experimental design) 
are extremely helpful. This approach is nicely illustrated by a series of papers by the 
group of Ferrell and co-workers [94–97] and Alon and co-workers [98–102]. In 
Pomerening et al. [97], Ferrell and co-workers investigate the core oscillator driving 
the cell cycle in Xenopus laevis. They study the entry into mitosis and the  subsequent 
return to interphase by following the dynamics of the formation and degradation of 
the complex cdc2-cyclinB. The interphase-mitosis transition (mitosis: M-phase) is 
accompanied by synthesis and accumulation of cyclin-B and the subsequent forma-
tion of cdc2-cyclinB complex. The degradation of this complex is mediated by 



13Introduction to systems biology

APC-catalyzed degradation of cyclin-B and signals the exit of the M-phase and 
reentry into interphase. In addition, two net positive feedbacks play a role: via 
Myt1-Wee1 and cdc25. It was shown experimentally [103] that in the absence of the 
degradation of cyclin-B by APC the resulting network is bistable. In the presence of 
cyclin-B degradation, the network displays the oscillations characteristic for the cell 
cycle; more specifi cally, it functioned as a relaxation oscillator. Using a semi-de-
tailed model (based on [18, 103]), the authors modeled the network in the absence 
and the presence of the degradation of cyclin-B and found bistability and  oscillations, 
respectively. Then they investigated the effects of the two net positive feedbacks by 
inhibiting them. This caused the core oscillator to engage in damped oscillations 
rather than prolonged oscillations indicating the essentiality of the positive feedback
for proper functioning of the cell cycle. The model they used was only quasi-de-
tailed at best but still it had suffi cient detail and refl ection of reality facilitating 
model-driven experimentation. In our studies on MAPK signaling, we took a simi-
lar approach [45]. We used a simple core model of the MAPK pathway to investi-
gate the difference between inhibition of phosphatases and kinases on the activation 
profi le of ERK. We found that the core model could qualitatively predict the ex-
perimental data. It showed that phosphatases tend to control both the amplitude and 
duration of signaling whereas kinases tend to control only the amplitude. Those 
results were backed up by theory leading to new theorems in control analysis for 
signal transduction [45]. Another successful application of the use of simple models 
to drive experimentation is found in the work by Alon and co-workers [98–102]. 
They are characterizing the functional properties of motifs, small intracellular 
 networks that occur more frequently in biological networks than in networks of 
similar size with a random structure. So far they focused mostly on gene circuitry 
and their activation by transcription factors. The reasoning behind the search and 
characterization for motifs is that if they occur signifi cantly more frequently in bio-
logical networks their design is predicted to have a functional relevance for the 
cell. They have been successful in showing the functional signifi cance of a number 
of these motifs.  Synthetic biology takes the opposite approach. It tries to design 
new networks using simple models and implement those in cells to facilitate their 
analysis, as biosensors, and to endow them with new properties. One successful ap-
proach of synthetic biology has been the analysis of noise [104–111]. Noise occurs 
naturally in all physical systems. In cells noise, perceived as fl uctuating copy num-
bers of molecules in cells, occurs because of fl uctuating reaction rates due to local 
thermal fl uctuations [40]. The magnitude of the fl uctuations relative to the average 
copy number determines their infl uence and importance on intracellular dynamics. 
The effects of noise are most pronounced when the copy number of molecules are 
small, < 50 molecules/cell, but may become high even in systems with high average 
copy numbers, ~1,000s molecules/cell, if the system is suffi ciently nonlinear [41, 
112]. 
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Conclusion

Systems biology is a rational continuation of successful experimental biology 
 initiated by the molecular biosciences. It represents a combined molecular and 
systems approach to decipher how molecules jointly bring about cell behavior 
by cooperating in mechanisms. Those mechanisms can be studied individually (or 
in a small number) in bottom-up approaches of systems biology using either de-
tailed models or core models. Top-down approaches of systems biology hope to 
identify such mechanisms and characterize them more roughly fi rst before bottom-
up approaches can home in on them in more detail. When the two approaches are 
combined a rational approach to discovery and characterization of molecular 
mechanisms, and therefore of cells, results that supplements pure molecular ap-
proaches.
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