§8.6

Oxides and carbonates

Property	COF ₂	COCl ₂	COBr ₂
MP/°C	-114°	-127.8°	
BP/°C	-83.1°	7.6°	64.5°
Density $(T^{\circ}C)/g \text{ cm}^{-3}$	1.139(-144°)	1.392(19°)	
Distance (C-O)/pm	117.4	116.6	113
Distance $(C-X)/pm$	131.2	174.6	(205)
Angle X–C–X	108.0°	111.3°	$110 \pm 5^{\circ}$
Angle X–C–O	126.0°	124.3°	$\sim 125^{\circ}$

Table 8.5 Some physical properties and molecular dimensions of COX₂

parent species, e.g. COFCl (bp -42°), COFBr (bp -20.6°). COI₂ is unknown but COFI has been prepared (mp -90° , bp 23.4°). Synthetic routes are as follows: COFCl from COCl₂/HF; COFBr from CO/BrF₃; COFI from CO/IF₃; and COClBr from CCl₃Br/H₂SO₄.

 COF_2 can be made by fluorinating $COCl_2$ with standard fluorinating agents such as NaF/MeCN or SbF₅/SbF₃; direct fluorination of CO with AgF₂ affords an alternative route. COF_2 is rapidly hydrolysed by water to CO_2 and HX, as are all the other COX_2 . It is a useful laboratory reagent for producing a wide range of fluoroorganic compounds and the heavier alkali metal fluorides react in MeCN to give trifluoromethoxides MOCF₃.

 $COCl_2$ (phosgene) is highly toxic and should be handled with great caution. It was first made in 1812 by John Davy (Sir Humphry Davy's brother) by the action of sunlight on $CO + Cl_2$, whence its otherwise surprising name (Greek $\phi \omega \zeta$ phos, light; - $\gamma \epsilon \nu \eta' \zeta$, -genes, born of). It is now a major industrial chemical and is made on the kilotonne scale by combining the two gases catalytically over activated C (p. 274). It was used briefly and rather ineffectively as a chemical warfare gas in 1916 but is now principally used to prepare isocyanates as intermediates to polyurethanes. It also acts as a ligand (Lewis base) towards AlCl₃, SnCl₄, SbCl₅, etc., forming adducts $Cl_2CO \rightarrow MCl_n$, and is a useful chlorinating agent, converting metal oxides into highly pure chlorides. It reacts with NH₃ to form mainly urea, $CO(NH_2)_2$, together with more highly condensed products such as guanidine, $C(NH)(NH_2)_2$; biuret, $NH_2CONHCONH_2$; and cyanuric acid, i.e. *cyclo*- $[CO(NH)]_3$ (p. 323).

COBr₂ has recently been shown to be a useful general brominating reagent for the preparation of d- and f-block bromides and oxide bromides.⁽¹⁰¹⁾ Thus, when V_2O_5 is heated with an excess of COBr₂ in a sealed Carius tube at 125°C for 10 days, a quantitative yield of VOBr₂ is obtained by a reaction that is driven thermodynamically by the formation of CO₂: [$V_2O_5 + 3COBr_2 \longrightarrow$ $2VOBr_2 + 3CO_2 + Br_2$]. Similarly, MoO₂, Re₂O₇, Sm₂O₃ and UO₃ were smoothly converted to MoO₂Br₂, ReOBr₄, SmBr₃ and UOBr₃, respectively.

8.6 Oxides and Carbonates

Carbon forms 2 extremely stable oxides, CO and CO_2 , 3 oxides of considerably lower stability, C_3O_2 , C_5O_2 and $C_{12}O_9$, and a number of unstable or poorly characterized oxides including C_2O , C_2O_3 and the nonstoichiometric graphite oxide (p. 289). Of these, CO and CO_2 are of outstanding importance and their chemistry will be discussed in subsequent paragraphs after a few brief remarks about some of the others.

Tricarbon dioxide, C_3O_2 , often called "carbon suboxide" and ponderously referred to in *Chemical Abstracts* as 1,2-propadiene-1,3-dione, is a foul-smelling gas obtained by dehydrating malonic acid, $CH_2(CO_2H)_2$, at

¹⁰¹ J. S. YADAV and V. R. GADGIL, J. Chem. Soc., Chem. Commun., 1824-5 (1989).

Property	СО	CO ₂	C ₃ O ₂
MP/°C	-205.1	-56.6(5.2 atm)	-112.5
BP/°C	-191.5	78.5 (subl)	6.7
$\Delta H_{\rm f}^{\circ}/{\rm kJ} {\rm mol}^{-1}$	-110.5	-393.7	+97.8
Distance (C-O)/pm	112.8	116.3	116
Distance (C-C)/pm			128
$D(C-O)/kJ \text{ mol}^{-1}$	1070.3	531.4	

Table 8.6 Some properties of CO, CO_2 and C_3O_2

reduced pressure over P_4O_{10} at 140°, or by thermolysis of bis(trimethylsilyl) malonate, $CH_2(CO_2SiMe_3)_2$.⁽¹⁰²⁾ It has mp -112.5°, bp 6.7°, is stable at -78° , and polymerizes at room temperature to a yellow solid. C₃O₂ forms linear molecules ($D_{\infty h}$ symmetry) which can be written as O = C = C = C = O, consistent with the short interatomic distances C-C 128 pm and C-O 116 pm. Above 100°, polymerization yields a ruby-red solid; at 400° the product is violet and at 500° the polymer decomposes to C. The basic structure of all the polymers appears to be a polycyclic 6-membered lactone. C₃O₂ readilv rehydrates to malonic acid, and reacts with NH₃ and HCl to give respectively the corresponding amide and acid chloride: CH₂(CONH₂)₂ and $CH_2(COCl)_2$. Thermolysis of C_3O_2 in a flow system has been reported to give a liquid product C_5O_2 though a better preparation is the photolysis or thermolysis of the tris(diazo)ketone, cyclo- $1,3,5-C_6O_3(N_2)_3$.⁽¹⁰³⁾ C₅O₂ is a yellow solid which decomposes above -90° ; in solution it apparently remains unchanged for several days even at room temperature. Note that C_5O_2 is the next member after CO_2 and C_3O_2 of the linear catenated series OC_nO with *n* odd as required by simple π -bond theory. The other moderately stable lower oxide is $C_{12}O_9$, a white sublimable solid which is the anhydride of mellitic acid, $C_6(COOH)_6$.

Direct oxidation of C in a limited supply of oxygen or air yields CO; in a free supply CO_2

results. Some properties of these familiar gases and of C_3O_2 are in Table 8.6. The great strength of the C-O bond confers considerable thermal stability on these molecules but the compounds are also quite reactive chemically, and many of the reactions are of major industrial importance. Some of these are discussed more fully in the Panel.

The nature of the bonding, particularly in CO, has excited much attention because of the unusual coordination number (1) and oxidation state (+2) of carbon: it is discussed on p. 926 in connection with the formation of metal-carbonyl complexes.

Pure CO can be made on a laboratory scale by dehydrating formic acid (HCOOH) with conc H_2SO_4 at ~140°. CO is a colourless, odourless, flammable gas; it has a relatively high toxicity due to its ability to form a complex with haemoglobin that is some 300 times more stable than the oxygen-haemoglobin complex (p. 1099): the oxygen-transport function of the red corpuscles in the blood is thereby impeded. This can result in unconsciousness or death, though recovery from mild poisoning is rapid and complete in fresh air and the effects are not cumulative. CO can be detected by its ability to reduce an aqueous solution of PdCl₂ to metallic Pd:

 $CO + PdCl_2 + H_2O \longrightarrow Pd + CO_2 + 2HCl$

Quantitative estimation relies on the liberation of I_2 from I_2O_5 or (in the absence of C_2H_2) on absorption in an acid solution of CuCl to form the adduct [Cu(CO)Cl(H₂O)₂].

¹⁰² L. BIRKOFER and P. SOMMER, *Chem. Ber.* **109**, 1701-7 (1976).

¹⁰³ G. MAIER, H. P. REISENAUER, U. SCHÄFER and H. BALLI, Angew. Chem. Int. Edn. Engl. 27, 566-8 (1988).

Industrially Important Reactions of Oxygen and Oxides with Carbon

Carbon monoxide is widely used as a fuel in the form of producer gas or water gas and is also formed during the isolation of many metals from their oxides by reduction with coke. Producer gas is obtained by blowing air through incandescent coke and consists of about 25% CO, 4% CO₂ and 70% N₂, together with traces of H₂, CH₄ and O₂. The reactions occurring during production are:

$$2C + O_2 \longrightarrow 2CO; \ \Delta H^\circ = -221.0 \text{ kJ/mol } O_2; \ \Delta S^\circ + 179.4 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$
$$C + O_2 \longrightarrow CO_2; \ \Delta H^\circ = -393.5 \text{ kJ mol}^{-1}; \ \Delta S^\circ + 2.89 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$

Water gas is made by blowing steam through incandescent coke: it consists of about 50% H₂, 40% CO, 5% CO₂ and 5% N₂ + CH₄. The oxidation of C by H₂O is strongly endothermic:

$$C + H_2O \longrightarrow CO + H_2$$
; $\Delta H^\circ = +131.3 \text{ kJ mol}^{-1}$; $\Delta S^\circ + 133.7 \text{ J K}^{-1} \text{ mol}^{-1}$

Consequently, the coke cools down and the steam must be intermittently replaced by a flow of air to reheat the coke.

At high temperatures, particularly in the presence of metal catalysts, CO undergoes reversible disproportionation:[†]

$$2CO \implies C + CO_2$$
; $\Delta H^\circ = -172.5 \text{ kJ/mol } CO_2$; $\Delta S^\circ = -176.5 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$

The equilibrium concentration of CO is 10% at 550°C and 99% at 1000°. As the forward reaction involves a reduction in the number of gaseous molecules it is accompanied by a large decrease in entropy. Remembering that $\Delta G = \Delta H - T\Delta S$ this implies that the reverse reaction becomes progressively more favoured at higher temperatures. The thermodynamic data for the formation of CO and CO₂ can be represented diagramatically on an Ellingham diagram (Fig. 19) which plots standard free energy changes per mol of O₂ as a function of the absolute temperature. The oxidation of C to CO results in an increase in the number of gaseous molecules; it is therefore accompanied by a large increase in entropy and is favoured at high temperature. By contrast, oxidation to CO₂ leaves the number of gaseous molecules unchanged; there is little change in entropy ($\Delta S^\circ 2.93 \text{ J K}^{-1} \text{ mol}^{-1}$), and the free energy is almost independent of temperature. The two lines (and that for the oxidation of CO to CO₂) intersect at 983 K; it follows that ΔG for the disproportionation reaction is zero at this temperature. The diagram (at T = 0 K) $\Delta G = \Delta H$ and the sequence of elements is approximately that of the electrochemical series. The slope of most of the lines is similar and corresponds to the loss of 1 mol of gaseous O₂; small changes of slope occur at the temperature of phase changes or the mp of the metal, and a more dramatic increase in slope signals the bp of the metal. For example, for MgO(s), the slope increases about three-fold at the bp of Mg since, above this temperature, reaction removes three gaseous species (2Mg + O₂) rather than one (O₂).

Such diagrams are of great value in codefying a mass of information of use in extractive metallurgy.⁽¹⁰⁵⁾ For example, it is clear that below 710°C (983 K) carbon is a stronger reducing agent when it is converted into CO₂ rather than CO, whereas above this temperature the reverse is true. Again, as reduction of metal oxides with C will occur when the accompanying ΔG is negative, such reduction becomes progressively more feasible the higher the temperature: Zn (and Cd) can be reduced at relatively low temperatures but MgO can only be reduced at temperatures approaching 2000 K. Caution should be exercised, however, in predicting the outcome of such reactions since a number of otherwise reasonable reductions cannot be used because the metal forms a carbide (e.g. Cr, Ti). The temperature at which the oxygen dissociation pressure of the various metal oxides reaches a given value can also be obtained from the diagram: as $-\Delta G = RT \ln K_p [= 2.303RT \log\{p(O_2)/atm\}$ for the reactions considered] it follows that the line drawn from the point $\textcircled{O}(\Delta G = 0, T = 0)$ to the appropriate scale mark on the right-hand side of the diagram intercepts the free-energy line for the element concerned at the required temperature. (Establish to your own satisfaction that this statement is approximately true — what assumptions does it embody?)

 $CO_2 \implies CO + \frac{1}{2}O_2$

[†] Note however that, at all pressures, there is a fairly wide range of temperatures in which CO₂ dissociates directly into CO and O₂ without precipitation of carbon:⁽¹⁰⁴⁾

For example, the temperature range is $250-370^{\circ}$ C at 10^{-2} atm. $320-480^{\circ}$ C at 1 atm. and $405-630^{\circ}$ C at 100 atm. At higher temperatures in each case, C is also formed, but always in the presence of some O₂.

¹⁰⁴M. H. LIETZKE and C. MULLINS, J. Inorg. Nucl. Chem. 43, 1769-71 (1981).

¹⁰⁵C. B. ALCOCK, Principles of Pyrometallurgy, Academic Press, London, 1976, 348 pp.

Figure 8.19 Ellingham diagram for the free energy of formation of metallic oxides. (After F. D. Richardson and J. H. E. Jeffes, *J. Iron Steel Inst.* 160, 261 (1948).) The oxygen dissociation pressure of a given M-MO system at a given temperature is obtained by joining \odot on the top left hand to the appropriate point on the M-MO free-energy line, and extrapolating to the scale on the right hand ordinate for p_{O_2} (atm).

CO reacts at elevated temperatures to give formates with alkali hydroxides, and acetates with methoxides:

> $CO + NaOH \longrightarrow HCO_2Na;$ $CO + MeONa \longrightarrow MeCO_2Na$

Reaction with alkali metals in liquid NH₃ leads to reductive coupling to give colourless crystals of the salt Na₂C₂O₂ which contains linear groups NaOC=CONa packed in chains. CO reacts with Cl₂ and Br₂ to give COX₂ (p. 305) and with liquid S to give COS. It cleaves B_2H_6 at high pressures to give the "symmetrical" adduct BH₃CO (p. 165), but in the presence of NaBH₄/thf the reaction takes a different course to yield the cyclic *B*-trimethylboroxine:

$$\frac{3}{2}B_2H_6 + 3CO \xrightarrow{\text{NaBH}_4/} \text{MeBOB(Me)OB(Me)OB}$$

With BR₃, CO inserts in successive stages to give, ultimately, the corresponding trialkylmethylboroxine (R₃CBO)₃. Alternative products are obtained in the presence of other reagents, e.g. aqueous alkali yields R₃COH; water followed by alkaline peroxide yields R₂CO; and alkaline NaBH₄ yields RCH₂OH (p. 167). CO can also insert into M–C bonds (M = Mo, W; Mn, Fe, Co; Ni, Pd, Pt):

$$MeMn(CO)_5 + CO \longrightarrow MeC(O)Mn(CO)_5$$

A detailed discussion of CO as a ligand and the chemistry of metal carbonyls is on pp. 926–9. CO is a key intermediate in the catalytic production of a wide variety of organic compounds on an industrial scale. These include:^(106,107)

1. Catalytic reduction to methanol (230–400°C, 50–100 atm):

$$CO + 2H_2 \longrightarrow CH_3OH$$

 Homogeneous methanol carboxylation with I⁻/Rh catalyst (175–195°C, 30 atm), this is now a leading route to acetic acid:

 $MeOH + CO \longrightarrow MeCO_2H$

3. Hydroformylation of olefins to alcohols (the oxo process):⁽¹⁰⁸⁾

$$RCH = CH_2 + CO + H_2$$

$$\longrightarrow RCH_2CH_2CHO \xrightarrow{H_2O} R(CH_2)_3OH$$

 The Reppe synthesis of methyl acrylate and acrylic acid (100–190°C, 30 atm, Ni catalyst: or 40°C and 1 atm using Ni(CO)₄ as both the source of CO and the catalyst):

 $HC \equiv CH + MeOH + CO \longrightarrow$ $CH_2 = CHCO_2Me \xrightarrow{H_2O} CH_2 = CHCO_2H$

5. Sabatier methanation (230–450°C, 1–100 atm, Ni catalyst):

$$CO + 3H_2 \longrightarrow CH_4 + H_2O$$

6. Fischer-Tropsch hydrogenation to a mixture of straight chain aliphatic, olefinic and oxygenated hydrocarbons.⁽¹⁰⁹⁾ Despite an enormous amount of research during the past two decades, this is still not an economically viable process except in special circumstances, such as in South Africa.⁽¹¹⁰⁾

Most industrial CO is produced and used on site. Prices for commercial supplies vary enormously depending on volume and purity required.⁽¹⁰⁶⁾ For large volumes (\sim 28 000 m³/day), "over the fence" prices can be as low as \$0.30/m³ whereas for tube-trailer loads (1500–3000 m³) prices are nearer \$1.40/m³. For CO supplied in high-pressure cylinders current prices (1993) are \$15.00–35.00/m³ for commercial grade (98–99% purity), \$63/m³ for ultra high purity grade (99.8%) and \$68–1580/m³ for research grades (99.97–99.98%).

Further reactions of CO of potential industrial or research significance are continually being explored. Recent examples include:

1. Amination with ammonia over zeolite catalysts at 350-400°C to give methylamine (and some dimethylamine):⁽¹¹¹⁾

¹⁰⁶ Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Wiley, New York, **5**, 97-122 (1993).

¹⁰⁷ W. KEIM, in H. GRÜNEWALD (ed.), *Chemistry for the Future* (Proc. 29th IUPAC Congress, Cologne, Germany, 5–10 June 1983) Pergamon Press, Oxford, 1984, pp. 53–62.

¹⁰⁸ R. L. PRUETT, Adv. Organometallic Chem. **17**, 1–60 (1979). See also G. P. COOLES and R. DAVIS, Educ. in Chem., 48–50, March 1982.

 ¹⁰⁹ C. MASTERS, Adv. Organometallic Chem. 17, 61–103 (1979).
 R. B. ANDERSON, The Fischer-Tropsch Synthesis, Academic Press, London, 1984, 320 pp.

¹¹⁰ R. C. EVERSON and D. T. THOMPSON, *Platinum Metals Review* **25**, 50–6 (1981).

¹¹¹ M. SUBRAHMANYAM, S. J. KULKARNI and A. V. RAMA RAO, J. Chem. Soc., Chem. Commun., 607-8 (1992).

2. Reductive coupling of two CO ligands to form a coordinated alkyne derivative, e.g. treatment of the Ta^I complex $[Ta(CO)_2-(dmpe)_2Cl]$ with activated Zn dust in thf and then with Me₃SiCl gave a 25% yield of $[Ta(Me_3SiOC \equiv COSiMe_3)(dmpe)_2Cl]$ which can in turn be hydrolysed to the corresponding complex of the novel dihydroxyacetylene, HOC = COH.⁽¹¹²⁾

 CO_2 is much less volatile than CO (p. 306). It is a major industrial chemical but its uses, though occasionally chemical, more frequently depend on its properties as a refrigerant, as an inert atmosphere, or as a carbonating (gasifying) agent in drinks and foam plastic (see Panel).⁽¹¹³⁾ Of more chemical interest is the synthesis of radioactive ¹⁴C compounds from ¹⁴CO₂ which is conveniently stored as a carbonate. ¹⁴C is generated by an (n,p) reaction on a nitride or nitrate in a nuclear reactor (see p. 1256). More than 500 compounds specifically labelled with ¹⁴C are now available commercially, the starting point of many of the syntheses being one of the following reactions:

1. NaH¹⁴CO₃ + H₂/Pd/C
$$\longrightarrow$$
 H¹⁴CO₂H
2. ¹⁴CO₂ + RMgX \longrightarrow R¹⁴CO₂H
3. ¹⁴CO₂ + LiAlH₄ \longrightarrow ¹⁴CH₃OH
4. Ba¹⁴CO₃ + Ba \longrightarrow Ba¹⁴C₂ $\xrightarrow{H_2O}$ ¹⁴C₂H₂
5. Ba¹⁴CO₃ + NH₃ \longrightarrow Ba¹⁴CN₂ \longrightarrow ¹⁴C/N compounds

When CO_2 dissolves in water at 25° it is only partly hydrated to carbonic acid according to the

equilibrium

$$H_2CO_3 \Longrightarrow CO_2 + H_2O;$$

 $K = [CO_2]/[H_2CO_3] \approx 600$

Interpretation of acid-base behaviour in this system is further complicated by the slowness of some of the reactions and their dependence on pH. The main reactions are:

$$\begin{array}{c} \mathrm{CO}_{2} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{H}_{2}\mathrm{CO}_{3} \ (\mathrm{slow}) \\ \mathrm{H}_{2}\mathrm{CO}_{3} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{HCO}_{3}^{-} + \mathrm{H}_{2}\mathrm{O} \ (\mathrm{fast}) \end{array} \right\} \mathrm{pH} < 8 \\ \\ \mathrm{CO}_{2} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{HCO}_{3}^{-} \ (\mathrm{slow}) \\ \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{CO}_{3}^{2-} + \mathrm{H}_{2}\mathrm{O} \ (\mathrm{fast}) \end{array} \right\} \mathrm{pH} > 10 \\ \end{array}$$

In the range pH 8-10 both sets of equilibria are important. The apparent dissociation constant of carbonic acid is

$$K_1 = [H^+][HCO_3^-]/[CO_2 + H_2CO_3]$$

= 4.45 × 10⁻⁷ mol 1⁻¹

As $[CO_2]/[H_2CO_3] = K \approx 600$, it follows that the true dissociation constant is:

$$K_a = [\mathrm{H}^+][\mathrm{HCO}_3^-]/[\mathrm{H}_2\mathrm{CO}_3]$$

= $K_1(1+K) \approx 2.5 \times 10^{-4} \mathrm{mol} \mathrm{l}^{-1}$

This value is in the range expected from an acid of structure $(HO)_2CO$ (p. 50). The second dissociation constant is given by

$$K_2 = [\text{H}^+][\text{CO}_3^{2^-}]/[\text{HCO}_3^-]$$

= 4.84 × 10⁻¹¹ mol l⁻¹

A hydrate $CO_2.8H_2O$ can be crystallized from aqueous solutions at 0° and $p(CO_2) \sim$ 45 atm. There is also evidence for a hydrogenbonded sesquicarbonate ion, $H_3C_2O_6^-$; this was originally suggested to have the sandwich

 ¹¹² P. A. BIANCONI, I. D. WILLIAMS, M. P. ENGELER and
 S. J. LIPPARD, J. Am. Chem. Soc. 108, 311–3 (1986).
 R. N. VRTIS, C. P. RAO, S. G. BOTT and S. J. LIPPARD, J. Am. Chem. Soc. 110, 7564–6 (1988).

¹¹³ Ref. 106, pp. 35–53. See also W. M. AYERS, (ed.) *Catalytic Activation of Carbon Dioxide*, ACS Symposium 363, Washington, DC (1988), 212 pp.

Production and Uses of CO₂

 CO_2 can be readily obtained in small amounts by the action of acids on carbonates. On an industrial scale the main source is as a byproduct of the synthetic ammonia process in which the H₂ required is generated either by the catalytic reaction (a) or by the water-gas shift reaction (b):

(a)
$$CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$$
; (b) $CO + H_2O \implies CO_2 + H_2$

 CO_2 is also recovered economically from the flue gases resulting from combustion of carbonaceous fuels, from fermentation of sugars and from the calcination of limestone: recovery is by reversible absorption either in aqueous Na₂CO₃ or aqueous ethanolamine (Girbotol process).

$$Na_{2}CO_{3} + H_{2}O + CO_{2} \xrightarrow[heat]{cool} 2NaHCO_{3}$$
$$2HOC_{2}H_{4}NH_{2} + H_{2}O + CO_{2} \xrightarrow[100-150^{\circ}]{cool} (HOC_{2}H_{4}NH_{3})_{2}CO_{3}$$

In certain places CO_2 can be obtained from natural gas wells. H_2S impurity is removed by oxidation using a buffered alkaline solution saturated with KMnO₄:

$$3H_2S + 2KMnO_4 + 2CO_2 \longrightarrow 3S + 2MnO_2 + 2KHCO_3 + 2H_2O_3$$

The scale of production has increased rapidly in recent years and in 1980 exceeded 33 million tonnes in the USA alone though much of this is used in integrated plants, on site.

The most extensive application of CO₂ is as a refrigerant, some 52% of production being consumed in this way. CO₂ can be liquefied at any temperature between its triple point -56.6° (5.11 atm) and its critical point $+31.1^{\circ}$ (72.9 atm). The gas can either be pressurized to 75 atm and then water-cooled to room temperature, or precooled to about -15° ($\pm 5^{\circ}$) and then pressurized to 15.25 atm. Solid CO₂ is obtained by expanding liquid CO₂ from cylinders to give a "snow" which is then mechanically compressed into blocks of convenient size. Until about 40 y ago the bulk of CO₂ refrigerant was in the form of solid CO₂, but since 1960 production of liquid CO₂ has overtaken the solid form because of lower production costs and ease of transporting and metering the material. Some typical production figures are shown in the Table. Supercritical CO₂ is also finding increasing use as a versatile solvent for chemical reactions.^(113a)

Con production of CO ₂						
CO ₂ production/kilotonnes	1955	1960	1962	1977	1987	
Solid	520	426	406	340	310	
Liquid and gas	185	432	522	1660	7310	
Total	705	858	928	2000	7620	

USA production of CO₂

Solid CO_2 is used as a refrigerant for ice-cream, meat and frozen foods, and as a convenient laboratory cooling agent and refrigerant. Liquid CO_2 is extensively used to improve the grindability of low-melting metals (and hamburger meat), and for the rapid cooling of loaded trucks and rail cars; it is also used for inflating life rafts, in fire extinguishers, and in blasting shells for coal mining. A related application of growing importance is as a replacement for chlorofluorocarbon aerosol propellants (p. 304) though this application will never consume large amounts of the gas since the amount in each tin is extremely small.

Gaseous CO_2 is extensively used to carbonate soft drinks and this use alone accounts for 20% of production. Other quasi-chemical applications are its use as a gas purge, as an inert protective gas for welding, and for the neutralization of caustic and alkaline waste waters. Small amounts are also used in the manufacture of sodium salicylate, basic lead carbonate ("white lead"), and various carbonates such as $M_2^1CO_3$ and M^1HCO_3 ($M^1 = Na, K, NH_4$, etc.). One of the most important uses of CO_2 is to manufacture urea via ammonium carbamate:

$$CO_2 + 2NH_3 \xrightarrow{185^{\circ}} NH_2CO_2NH_4 \xrightarrow{-H_2O} CO(NH_2)_2$$

Urea is used to make urea-formaldehyde plastics and resins and, increasingly, as a nitrogenous fertilizer (46.7% N). World production of urea was 23 million tonnes in 1984.

^{113a}M. POLIAKOFF and S. HOWDLE, Chem in Brit., February 1995, pp. 118-21, and references cited therein.

structure (1)⁽¹¹⁴⁾ though later *ab initio* calculations favour the all-planar structure (2).⁽¹¹⁵⁾ Solid alkali-metal peroxocarbonates Li₂CO₄, MHCO₄ and $M_2C_2O_6$ (M = Na, K, Rb, Cs) are known and the anion HCO_4^- (CO_4^{2-} at high pH) can be prepared in solution by reaction of HCO₃⁻ with aqueous H_2O_2 .⁽¹¹⁶⁾ The peroxodianion, $C_2O_6^{2-}$ (3), can be prepared in aprotic solvents such as MeCN, dmf and dmso, via nucleophilic oxidation of CO₂ by the superoxide ion O_2^{\bullet} : [2CO₂ + $2O_2^{\bullet} \rightarrow C_2O_6^{2-} + O_2$.⁽¹¹⁷⁾ The amusing allplanar squarate ion, $C_4O_4^{2-}$ (4), although chemically unrelated to the preceding species, may be mentioned here as a further well-characterized binary C/O anion.^(118,119) The short C-C and C-O distances have been interpreted in terms of π -electron delocalization.

The coordination chemistry of CO_2 is by no means as extensive as that of CO (p. 926) but some exciting developments have recently been published.⁽¹²⁰⁾ The first transition metal complexes with CO_2 were claimed by

¹¹⁶ J. FLANAGAN, D. P. JONES, W. P. GRIFFITH, A. C. SKAPSKI and A. P. WEST, *J. Chem. Soc., Chem. Commun.*, 20–1 (1986). M. E. Volpin's group in 1969: tertiary phosphine or N₂ ligands were displaced from Rh and Ni complexes to give binuclear products whose definitive structure has not yet been established. CO_2 also displaced N_2 from $[Co(N_2)(PPh_3)_3]$ to give $[Co(CO_2)(PPh_3)_3]$. The Ni⁰ complexes $[Ni(PEt_3)_4]$ (violet) and $[Ni(PBu_3^n)_4]$ (red) react in toluene at room temperature with CO_2 (1 atm) to give the yellow complexes $[Ni(CO_2)L_3]$. The structure of the analogous complex with $P(C_6H_{11})_3$ was established by X-ray diffraction analysis; it features a pseudo-3-coordinate Ni atom μ -bonded to a bent CO₂ ligand as in Fig. 8.20a. The isoelectronic Rh¹ appears to form two types of complex: an orange-red series $[Rh(CO_2)ClL_2]$ (L = tertiary phosphine) with a μ -bonded bent CO₂ as in Fig. 8.20a and a somewhat less-stable yellow series $[Rh(CO_2)ClL_3]$ which is thought to contain

the ligand configuration
$$Rh - C$$
. A Pt

compound which had earlier (1965) been thought to contain CO_2 as a ligand was subsequently found to require the presence of O_2 for its formation and to be, in fact, a novel bidentate carbonato complex (Fig. 8.20b).

$$[Pt(PPh_3)_3] + CO_2 + O_2 \xrightarrow{C_6H_6/25^{\circ}} [Pt(CO_3)(PPh_3)_2] + Ph_3PO$$

If the starting material contains M–H or M–C bonds a further complication can arise due to the possibility of a CO₂ insertion reaction. Thus, both [Ru(H)₂(N₂)(PPh₃)₃] and [Ru(H)₂(PPh₃)₄] react to give the formate [Ru(H)(OOCH)(PPh₃)₃], and similar CO₂ insertions into M–H are known for M = Co, Fe, Os, Ir, Pt. These "normal" insertion reactions are consistent with the expected bond polarities $M^{\delta+}-H^{\delta-}$ and $O^{\delta-}=C^{\delta+}=O$, but occasionally "abnormal" insertion occurs to give metal carboxylic acids

¹¹⁴ A. K. COVINGTON, Chem. Soc. Rev. 14, 265-81 (1985).

¹¹⁵ N. V. RIGGS, J. Chem. Soc., Chem. Commun., 137–8 (1987).

¹¹⁷ J. L. ROBERTS, T. S. CALDERWOOD and D. T. SAWYER, J. Am. Chem. Soc. **106**, 4667–70 (1984).

¹¹⁸ C. ROBL, V. GNUTZMANN and A. WEISS, Z. anorg. allg. Chem. **549**, 187–94 (1987), and references cited therein.

¹¹⁹ R. SOULIS, F. DAHAN, J.-P. LAURENT and P. CASTAN, J. Chem. Soc., Dalton Trans., 587–90 (1988).

 $^{^{120}}$ M. E. VOLPIN and I. S. KOLOMNIKOV, *Organometallic Reactions* 5, 313-86 (1975). Further references to isolable CO₂-transition metal adducts are given in R. L. HARLOW,

J. B. KINNEY, and T. HERSKOVITZ, J. Chem. Soc., Chem. Commun., 813-4. (1980). G. S. BRISTOW, P. B. HITCHCOCK and M. F. LAPPERT, J. Chem. Soc., Chem. Commun., 1145-6 (1981).

Figure 8.20 (a) Coordination about the Ni atom in the complex $[Ni(CO_2){P(C_6H_{11})_3}_2].0.75C_6H_5Me.$ (b) Coordination about the Pt atom in the complex $[Pt(CO_3)(PPh_3)_2].C_6H_6.$

M-COOH. Likewise, normal insertion into M-C yields alkyl carboxylates M-OOCR, though metalloacid esters M-COOR are sometimes obtained. The reactions have obvious catalytic implications and are being actively studied at the present time by several groups.⁽¹²¹⁾

 CO_2 insertion into M-C bonds has, of course, been known since the first papers of V. Grignard in 1901 (p. 134). Organo-Li (and other M¹ and M^{II}) also react extremely vigorously to give salts of carboxylic acids, RCO₂Li, (RCO₂)₂Be, etc. Zinc dialkyls are much less reactive towards CO₂, e.g.

$$ZnEt_2 + 2CO_2 \xrightarrow{150^\circ} (EtCOO)_2Zn$$
,

and organo-Cd and -Hg compounds are even less reactive. With AlR₃, one CO₂ inserts at room temperature and a second at 220° under pressure to give R₂Al(OOCR) and RAl(OOCR)₂ respectively. B-C, Si-C, Ge-C, and Sn-C are rather inert to CO₂ but insertion readily occurs into bonds between these elements and N. A few examples are:

 $PhB(NHEt)_2 + CO_2 \xrightarrow{25^\circ} PhB(OCONHEt)_2$

$Me_{3}SiNEt_{2} + CO_{2} \xrightarrow{Et_{2}NH/25^{\circ}} Me_{3}SiOCONEt_{2}$
$Me_{3}SnNMe_{2} + CO_{2} \xrightarrow{20^{\circ}} Me_{3}SnOCONMe_{2}$
As(NMe ₂) ₃ + 1(3)CO ₂ $\xrightarrow{20^{\circ} - 40^{\circ}}$
$(Me_2N)_2AsOCONMe_2, As(OCONMe_2)_3$
$Ti(NMe_2)_{\ell} + CO_2 \xrightarrow{20^{\circ}} Ti(OCONMe_2)_{\ell}$ etc

Returning briefly to CO₂ as a ligand: in addition to the various mono-CO₂ complexes referred to above, several bis(η^2 -CO₂) transition-metal adducts are known, e.g. *trans*-[Mo(η^2 -CO₂)₂(PMe₃)₄] (5) and *trans,mer*-[Mo(η^2 -CO₂)₂(PMe₃)₃(CNPrⁱ)].⁽¹²²⁾ The first homo-bimetallic bridging-CO₂ complex has also been structurally characterized by Xray analysis, *viz.* [(dppp)(CO)₂Re(μ , η^2 -O,O': η' -C)Re(CO)₃(dppp)] (6) [dppp = 1,3-bis(diphenylphosphino)propane].⁽¹²³⁾

The carbonate ion, CO_3^{2-} , by contrast, is a classic Werner ligand which forms innumerable complexes as a monohapto, dihapto or bridging donor. Examples of this latter mode

¹²¹ A. BEHR, Carbon Dioxide Activation by Metal Complexes, VCH, Weinheim, 1988, 161 pp. See also J. D. MILLER in P. S. BRATERMAN (ed.), *Reactions of Coordinated Ligands*, Vol. 2., Plenum Press, New York, pp. 1-52 (1989) and J. L. GRANT, K. GOSWAMI, L. O. SPREER, J. W. OTVOS and M. CALVIN, J. Chem. Soc., Dalton Trans., 2105-9 (1987) and references cited therein.

¹²² R. ALVAREZ, E. CARMONA, M. L. POVEDA and R. SÁN-CHEZ-DELGARDO, J. Am. Chem. Soc. **106**, 2731-2 (1984). R. ALVAREZ, E. CARMONA, E. GUTIERREZ-PUEBLA, J. M. MARIN, A. MONGE and M. L. POVEDA, J. Chem. Soc., Chem. Commun., 1326-7 (1984).

¹²³ S. K. MANDAL, J. A. KRAUSE and M. ORCHIN, *Polyhedron* **12**, 1423 5 (1993).

Figure 8.21 (a) The complex cation $[Cu(L_2)_2(\mu-\eta^2,\eta^2-CO_3)]^{2+}$. (b) The binuclear complex $[{CuCl(Me_2N-CH_2CH_2CH_2NMe_2)}_2(\mu-\eta^2,\eta^2-CO_3)]$.

are the complex cation $[(CuL_2)_2(\mu-CO_3)]^{2+}$, where L is a tridentate macrocylic triaza ligand (Fig. 8.21a),⁽¹²⁴⁾ and in the binuclear molecular complex molecule [{CuCl(Me₂NCH₂CH₂ – CH₂NMe₂}₂(μ -CO₃)] (Fig. 8.21b).⁽¹²⁵⁾ This mode of coordination confers some unusual propertics including diamagnetism on these Cu^{II} complexes. Even more extensive ligation occurs in the deep violet hexanuclear vanadium (IV) complex (NH₄)₅[(VO)₆(CO₃)₄(OH)₉].10H₂O which was made by reacting VOCl₂ with aqucous NH₄HCO₃ under CO₂.⁽¹²⁶⁾ The novel anion (Fig. 8.22) features a unique tris(bidentate) sextuply bridging carbonato ligand as well as three bidentate μ_2 -carbonato ligands. Other chelating and bridging coordination modes are also known.^(126a)

8.7 Chalcogenides and Related Compounds

Carbon forms a great many sulfides in addition to the well known CS₂. CS (unlike CO) is an unstable reactive radical even at -196° : it reacts with the other chalcogens and with halogens to give CSSe, CSTe, and CSX₂. It is formed by action of a high-frequency discharge on CS₂ vapour. (See p. 319 for complexes of CS.) Passage of an electric discharge or arc through liquid or gaseous CS₂ yields C₃S₂, a red liquid mp -5° ; it has a linear molecular structure, S=C=C=C=S, which polymerizes slowly at room temperature (cf. C₃O₂).⁽¹²⁷⁾

¹²⁴ A. R. DAVIS, F. W. P. EINSTEIN, N. F. CURTIS and J. W. L. MARTIN, *J. Am. Chem. Soc.* **100**, 6258–60 (1978).

¹²⁵ M. R. CHURCHILL, G. DAVIES, M. A. EL-SAYED, M. F. EL-SHAZLY, J. P. HUTCHINSON, M. RUPICH and K. O. WATKINS, *Inorg. Chem.* **18**, 2296–300 (1979).

¹²⁶ T. C. W. MAK, P. LI, C. ZHENG and K. HUANG, J. Chem. Soc., Chem. Commun., 1597-8 (1986).

^{126a} F. W. B. EINSTEIN and A. C. WILLIS, *Inorg. Chem.* 20, 609–14 (1981). A. J. LINDSAY, M. MOTEVALLI, M. B. HURST-HOUSE and G. WILKINSON, *J. Chem. Soc., Chem. Commun.*, 433–4 (1986).

¹²⁷ M. T. BECH and G. B. KAUFFMAN, *Polyhedron* 5, 775–81 (1985) and references cited therein. (This paper also gives an accessible account of the history of the discovery and applications of COS, i.e. O = C = S.)

Figure 8.22 Perspective view of the hexanuclear anion $[(VO)_6(\mu_6-\eta^2,\eta^2,\eta^2-CO_3)(\mu-CO_3)_3-(\mu-OH)_9]^5$. Averaged interatomic distances: vanadyl V=O 161.6 pm, V-OH(syn) 195.6 pm, V-OH(anti) 201.2 pm, V-O (μ_2 -CO₃) 200.2 pm, V-O (μ_6 -CO₃) 228.7 pm, C-O μ) 129.1 pm, C-O(exo) 126.6 pm.⁽¹²⁶⁾

During the past decade there has been an astonishing proliferation of further binary carbonsulfur species, both anionic and neutral.⁽¹²⁸⁾ Of the anions, the beige coloured dianion $C_3S_3^{2^-}$ (made from tetrachlorocyclopropene) has the D_{3h} structure (1) and the yellow $C_4S_4^{2^-}$ (made from squaric acid, p. 312) has the D_{4h} structure (2). The off-white $C_6S_6^{6^-}$, (3), (made from C_6Cl_6) is air-sensitive but can readily be protonated to give the more stable hexathiol $C_6(SH)_6$. Reduction of CS_2 either electrochemically or by alkali metals yields $C_3S_5^{2-}$ which can exist in two isomeric forms, (4) and (5):

Treatment of the primary product with a zinc salt leads to separation of α -C₃S₅²⁻ from its coproduct CS₃²⁻, and multigram amounts of its complexes [NR₄]₂[Zn(α -C₃S₅)₂] and of the corresponding β -isomer's complexes afford convenient starting points for the synthesis of *molecular* binary sulfides as indicated below.

The sulfide C_4S_6 is known in three isomeric forms (6), (7) and (8).⁽¹²⁸⁾ The yellow-orange D_{2h} isomer (6) is readily prepared

¹²⁸ C. P. GALLOWAY, T. B. RAUCHFUSS and X. YANG, in R. STEUDEL (ed.) *The Chemistry of Inorganic Ring Systems*, Studiees in Inorganic Chemistry, Vol. 14, Elsevier, Amsterdam, 1992, pp. 25-34. See also X. YANG, T. B. RAUCHFUSS and S. R. WILSON, J. Am. Chem. Soc. 111, 3465-6 (1989) and J. Chem. Soc., Chem. Commun., 34-5 (1990).

by the reaction of CSCl_2 with α - $\text{C}_3\text{S}_5^{2-}$, whilst the C_1 isomer (7) results from the corresponding reaction with β - $\text{C}_3\text{S}_5^{2-}$. The C_{2h} isomer (8) is less well characterized but is said to result from the reaction of hexachlorobutadiene, $\text{CCl}_2=\text{CCl}-\text{CCl}=\text{CCl}_2$, with polysulfide anions. The treatment of S_2Cl_2 with [NBu₄]₂[Zn(α -C₃S₅)₂] yields a mixture of C₃S₈ and C₆S₁₂ which can be separated by fractional crystallization from CS₂:

$$[Zn(C_3S_5)_2]^{2-} + 2S_2Cl_2 \longrightarrow [ZnCl_4]^{2-} + 0.5C_6S_{12} + C_3S_8$$

 C_3S_8 is a bicyclic species composed of the α - C_3S_5 unit capped by a polysulfide linkage (9), whereas C_6S_{12} features two cisoid eclipsed planar α - C_3S_5 units conjoined by further sulfur linkages to form a third ring (10); note that, if each of the two C_2 groups in this 10-membered ring are notionally replaced by an S atom, the conformation of the resulting S_8 ring is reminiscent of the familiar crown

configuration for this species (p. 655). Oxidation of $[NEt_4]_2[Zn(\beta-C_3S_5)_2]$ with SOCl₂ affords small amounts of the yellow C_6S_8 (11) which features an almost planar molecule with $S \cdots S$ fold angles $<3.8^\circ$. By contrast, oxidation of $[NBu_4]_2[Zn(\alpha-C_3S_8)_2]$ with SO₂Cl₂ yields the orange dimer C_6S_{10} (12) in which the two planar C_3S_5 groups are interconnected by a pair of transoid S₂ linkages to give an overall chair configuration. Finally we should mention the two known isomers of C_9S_9 . The simpler, formed by the reaction of $C_6S_6^{6-}$ (3) with CSCl₂, is the tris(trithiocarbonate) (13) which sublimes at 310° and can be recrystallized from 1,2-C₆H₄Cl₂. The second C₉S₉ isomer is synthesized by

(11)

reaction of the benzene derivative $1,3,5-C_6Cl_3-2,4,6-(CH_2NMe_2)_3$ with sulfur and H_2S in boiling quinoline; it forms red crystals of the planar D_{3h} molecule (14) which has a non-classical structure with three 3-coordinate S atoms. Both isomers are formally also oligomeric isomers of the diatomic monomer CS (p. 314).

(14)

By far the most important sulfide is CS_2 , a colourless, volatile, flammable liquid (mp -111.6°, bp 46.25°, flash point -30°, autoignition temperature 100°, explosion limits in air 1.25-50%). Impure samples have a fetid almost nauscating stench due to organic impurities but the purified liquid has a rather pleasant ethereal smell; it is very poisonous and can have disastrous effects on the nervous system and brain. CS_2 was formerly manufactured by direct reaction of S vapour and coke in Fe or steel retorts at 750-1000°C but, since the early 1950s, the preferred synthesis has been the catalysed reaction between sulfur and natural gas:

$$CH_4 + 4S \xrightarrow[SiO_2 gel or Al_2O_3]{\sim} CS_2 + 2H_2S$$

World production in 1991 was about 1 million tonnes the principal industrial uses being in the manufacture of viscose rayon (35-50%), cellophane films (15%) (see below), and CCl₄ (15 30%) depending on country. Indeed the CCl₄ application dropped to zero in USA in 1991 because of environmental concerns (p. 304).

 CS_2 reacts with aqueous alkali to give a mixture of M_2CO_3 and the trithiocarbonate M_2CS_3 . NH₃ gives ammonium dithiocarbamate NH₄[H₂NCS₂]; under more forcing conditions in the presence of Al₂O₃ the product is NH₄CNS and this can be isomerized at 160° to thiourea, (NH₂)₂CS. Water itself reacts only reluctantly, yielding COS at 200° and H₂S + CO₂ at higher temperatures; many other oxocompounds also convert CS₂ to COS, e.g. MgO, SO₃, HSO₃Cl and urea. With aqueous NaOH/EtOH carbon disulfide yields sodium ethyl dithiocarbonate (xanthate):

$$CS_2 + NaOH + EtOH \longrightarrow Na[SC(S)OEt]$$

When ethanol is replaced by cellulose, sodium cellulose xanthate is obtained; this dissolves in aqueous alkali to give a viscous solution (viscose) from which either viscose rayon or cellophane can be obtained by adding acid to regenerate the (reconstituted) cellulose. Trithiocarbonates $(CS_2^{2^-})$, dithiocarbonates $(CS_2^{2^-})$, xanthates (CS_2OR^-) , dithiocarbamates $(CS_2NR_2^-)$ and 1,2-dithiolates have an extensive coordination chemistry which has been reviewed.⁽¹²⁹⁾

Chlorination of CS_2 , when catalysed by Fe/FeCl₃, proceeds in two steps:

$$CS_2 + 3Cl_2 \longrightarrow CCl_4 + S_2Cl_2$$
$$CS_2 + 2S_2Cl_2 \longrightarrow CCl_4 + 6S$$

With I₂ as catalyst the main product is perchloromethylthiol (Cl₃CSCl). Reaction products with F_2 depend on the conditions used, typical products being SF₄, SF₆, S₂F₁₀, F₂C(SF₃)₂, F₂C(SF₅)₂, F₃CSF₅ and F₃SCF₂SF₅.

 CS_2 is rather more reactive than CO_2 in forming complexes and in undergoing insertion reactions. The field was opened up by G. Wilkinson and his group in 1966 when they showed that [Pt(PPh_3)_3] reacts rapidly and

 ¹²⁹ G. D. THORN and R. A. LUDWIG, *The Dithiocarbamates and Related Compounds*, Elsevier 1962, 298 pp. J. A. MCCLEVERTY, *Prog. Inorg. Chem.* 10, 49-221 (1968) (188 refs.). D. COUCOUVANIS, *Prog. Inorg. Chem.* 11, 233-71 (1970) (516 refs.). R. E. EISENBERG, *Prog. Inorg. Chem.* 12, 295-369 (1971) (173 refs.).

quantitatively with CS₂ at room temperature to give orange needles of $[Pt(CS_2)(PPh_3)_2]$, mp 170°. X-ray crystal diffraction analysis revealed the structure shown diagramatically in Fig. 8.23(a). The geometry of the bent CS₂ ligand is similar to that in the first excited state of the molecule and the CS₂ is almost coplanar with PtP_2 (dihedral angle 6°). Bonding is considered to involve a 1-electron transfer via the intermediary of Pt from the highest filled π MO of the ligand to its lowest antibonding MO, and the Pt can be thought of as being oxidized from Pt⁰ to Pt^{II}. However, the substantial difference between the two Pt-P distances and the wide deviation of the angles of Pt from 90° emphasize the inadequacy of describing the bonding of such complicated species in terms of simple localized bonding theory. The orange complex $[Pd(CS_2)(PPh_3)_2]$ is isostructural and further work yielded deep-green $[V(\eta^5-C_5H_5)_2(CS_2)],$ dimeric $[(Ph_3P)Ni(\mu-CS_2)_2Ni(PPh_3)]$ and various CS₂ complexes of Fe, Ru, Rh and Ir. The deep-red complex $[Rh(CS_2)_2Cl(PPh_3)_2]$ probably involves pseudo-octahedral Rh^{III} with one of the CS₂ ligands η^2 -bonded as above and the other one σ -bonded via a single S atom. By contrast, reaction of $[Fe_3(CO)_{12}]$ with an excess of CS₂ in hexane for several hours at 80°C under a 10 atm pressure of CO/Ar gave the orange complex $\{\{Fe_2(CO)_6\}_2(\mu_4-C_2S_4)\}\$ as one of the products (1-2%). As can be seen from Fig. 8.23(b), the structure has two $\{Fe_2(CO)_6\}$ units bridged by a planar $\{S_2C = CS_2\}$ group, which can in turn be regarded as an ethenetetrathiol moiety formed by the C-C coupling of two CS_2 molecules.⁽¹³⁰⁾

The numerous η^1, η^2 , and bridging modes of coordination now known for CS₂ are indicated schematically below:⁽¹³¹⁾

Insertion reactions of CS_2 are known for all the elements which undergo CO_2 insertion

¹³⁰ P. V. BROADHURST, B. F. G. JOHNSON, J. LEWIS and P. R. RAITHBY, J. Chem. Soc., Chem. Commun., 140-1 (1982).

¹³¹ T. G. SOUTHERN, U. OEHMICHEN, J. Y. LE MAROUILLE, H. LE BOZEC, D. GRANDJEAN and P. H. DIXNEUF, *Inorg. Chem.* **19**, 2976-80 (1980). Other key papers in this burgeoning field are: G. FACHINETTI, C. FLORIANI, A. CHIESI-VILLA and C. GUESTINI, J. *Chem. Soc.*, *Dalton Trans.*, 1612-17 (1979). P. CONWAY, S. M. GRANT and A. R. MANNING, J. *Chem. Soc.*, *Dalton Trans.*, 1920-4

^{(1979).} P. J. VERGAMINI and P. G. ELLER, Inorg. Chim. Acta 34, L291-2 (1979). C. BIANCHINI, A. MELI, A. ORLANDINI and L. SACCONI, Inorg. Chim. Acta 35, L375-6 (1979). C. BIANCHINI, C. MEALLI, A. MELI, A. ORLANDINI and L. SACCONI, Angew. Chem. Int. Edn. Engl., 18, 673-4 (1979). C. BIANCHINI, C. MEALLI, A. MELLI, A. ORLANDINI and L. SACCONI, Inorg. Chem. 19, 2968-75 (1980). W. P. FEHLHAMMER and H. STOLZENBERG, Inorg. Chim. Acta 44, L151-2 (1980). C. BIANCHINI, C. A. GHILARDI, A. MELI, S. MIDOLLINI and A. ORLANDINI, J. Chem. Soc., Chem. Commun., 753-4 (1983). D. H. FARRAR, R. R. GUKATHASAN and S. A. MORRIS, Inorg. Chem. 23, 3258-61 (1984).

(p. 312) and also for M-N bonds involving Sb^{III}, Zr^{IV}, Nb^V, Ta^V, etc. Reaction of CS₂ with Au₂Cl₆ results in its novel insertion into Au-Cl bonds to form orange crystals of the chlorodithioformate complex $[AuCl_2(\eta^2 S_2CCI$.⁽¹³²⁾ The parent dithioformate ligand, HCS_2^- , has been prepared by insertion of CS_2 into the Ru-H bond of [RuH(CO)Cl(PPh₃)₂(4vinyl pyridine)] to form the yellow complex [Ru(CO)Cl(PPh₃)₂(η^2 -S₂CH)].thf.⁽¹³³⁾ Perhaps even more intriguingly, treatment of the orange nido 11-vertex metallathiaborane cluster [8,8-(PPh₃)₂-8,7-nido-RhSB₉H₁₀] (cf. structure (42), p. 178) with CS_2 under reflux gives a 37% yield of the pale orange nido cluster [8,8-(PPh₃)₂- μ -8,9-(η ²-S₂CH)-8,7-RhSB₉H₉] which features a unique dithioformate bridge between Rh(8)-B(9), perhaps by addition of $B-H_t(9)$ across a C-S bond.⁽¹³⁴⁾

Stable thiocarbonyl complexes containing the elusive CS ligand are also now well established and known coordination modes, which include terminal, bridging and polyhapto, are as shown at the top of the next column.⁽¹³⁵⁾

Likewise complexes of CSe and CTe have been characterized.⁽¹³⁶⁾ The structure and reactivity of

CS complexes has been well reviewed⁽¹³⁷⁾ and exciting work in this area continues.⁽¹³⁸⁾

8.8 Cyanides and Other Carbon-Nitrogen Compounds

The chemistry of compounds containing the CN group is both extensive and varied. The types of compound to be discussed are listed in Table 8.7, which also summarizes some basic structural information. The names cyanide, cyanogen, etc., refer to the property of forming deepblue pigments such as Prussian blue (p. 1094) with iron salts (Greek $\kappa \dot{\nu} \alpha \eta \sigma \varsigma$, cyanos, dark blue).

A useful theme for cohering much of the chemistry of compounds containing the CN group is the concept of pseudohalogens, a term introduced in 1925 for certain strongly bound, univalent radicals such as CN, OCN, SCN, SeCN, (and N₃, etc.). These groups can form anions X^- , hydracids HX, and sometimes neutral species X_2 ,

¹³² D. JENTSCH, P. G. JONES, C. THONE and E. SCHWARZ-MANN, J. Chem. Soc., Chem. Commun., 1495 6 (1989).

¹³³ V. G. PURANIK, S. S. TAVALE and T. N. G. ROW, *Polyhedron* **6**, 1859–61 (1987).

¹³⁴ G. FERGUSON, M. C. JENNINGS, A. L. LOUGH, S. COUGH-LAN, T. R. SPALDING, J. D. KENNEDY, X. L. R. FONTAINE and B. ŠTÍBR, J. Chem. Soc., Chem. Commun., 891 4 (1990).

¹³⁵ I. S. BUTLER, Acc. Chem. Res. 10, 359 65 (1977).
P. V. YANEFF, Coord. Chem. Rev. 23, 183-220 (1977) (includes CS₂ complexes also). H. WERNER and K. LEON HARD, Angew. Chem. Int. Edn. Engl. 18, 627-8 (1979).
H HERBERHOLD and P. H. SMITH, Angew. Chem. Int. Edn. Engl. 18, 631 2 (1979). W. W. GREAVES, R. J. ANGELICI, B. J. HELLAND, R. KLIMA and R. A. JACOBSON, J. Am. Chem. Soc. 101, 7618-20 (1979). F. FARONE, G. TRESOLDI, and G. A. LOPRETE, J. Chem. Soc., Dalton Trans., 933-7 (1979); J. Chem. Soc., Dalton Trans., 1053-6 (1979).
P. V. BROADHURST, B. F. G. JOHNSON, J. LEWIS and P. R. RAITHBY, J. Chem. Soc., Chem. Commun., 812-13 (1980); J. Am. Chem. Soc. 103, 3198-200 (1981).

¹³⁶ G. R. CLARK, K. MARSDEN, W. R. ROPER and L. J. WRIGHT, J. Am. Chem. Soc. **102**, 1206 7 (1981). J.-P. BATTIONI, D. MANSUY and J.-C. CHOTTARD, Inorg. Chem. **19**, 791–2 (1980).

¹³⁷ P. V. BROADHURST, Polyhedron 4, 1801-46 (1985).

¹³⁸ K. J. KLABUNDE, M. P. KRAMER, A. SENNING and E. K. MOLTZEN, J. Am. Chem. Soc. **106**, 263 -4 (1984). L. BUSETIO, V. ZANOTTI, V. G. ALBANO, D. BRAGA and M. MONARI, J. Chem. Soc., Dalton Trans., 1791-4 (1986) and 1133 -3 (1987). S. LOTZ, R. R. PILLE and P. H. VAN ROO-YEN, Inorg. Chem. **25**, 3053-7 (1986). G. GERVASIO, R. ROSS-ETTI, P. L. STANGHELLINI and G. BOR, J. Chem. Soc., Dalton Trans., 1707 - 11 (1987). A. R. MANNING, L. O'DWYER, P. A. MCARDLE and D. CUNNINGHAM, J. Chem. Soc., Chem. Commun., 897-8 (1992).

	Conventional		
Name	formula	r(C-N)/pm	Remarks ^(a)
Cyanogen	N≡C-C≡N	115	Linear; $r(C-C)$ 138 pm (short)
Paracyanogen	$(CN)_x$		Involatile polymer, see text
diisocyanogen	CN-NC	118 (calc.)	Linear, symmetric, unstable ⁽¹⁴⁰⁾
isocyanogen	CN-CN	118&116 (calc.)	Zig-zag, unsymmetric, stable ⁽¹⁴⁰⁾
Hydrogen cyanide	H-C≡N	115.6	Linear; $r(C-H)$ 106.5 pm
Cyanide ion	(C≡N) ⁻	116	$r_{\rm eff}$ 192 pm when "freely rotating" in MCN
Cyanides	M-C≡N	115.8	Linear; $r(C-C)$ 146.0 pm (for MeCN)
(nitriles)	$(R-C \equiv N)$		
Isocyanides	R-N≡C	116.7	Linear, $r(H_3C-N)$ 142.6 pm (for MeNC). Coordinated isocyanides are slightly bent, e.g. $[M(\leftarrow C = N - C_6H_5)_6]$ angle CNC 173°. $r(C = N)$ 117.6 pm: bridging modes are also known, e.g. structure (1), p. 321
Cyanogen halides (halogen cyanides)	$X-C \equiv N$	116	Linear
Cyanamide	$H_2N-C\equiv N$	115	Linear NCN; $r(C-NH_2)$ 131 pm
Dicyandiamide	$N \equiv C - N = C(NH_2)_2$	122-136	See structure (2), p. 321
Cyanuric compounds	$\{-C(X)=N-\}_{3}$	134	Cyclic trimers; $X =$ halogen, OH, NH ₂
Cyanate ion	(O−C≡N) ⁻	~ 121	Linear
Isocyanates	R-N=C=0	120	Linear NCO; $\angle RNC \sim 126^{\circ}$
Fulminate ion	>(C=N-0) ⁻	109	Linear; another form of AgCNO has $r(C-N)$ 112 pm
Thiocyanate ion	$(S-C \equiv N)^{-}$	115	Linear
Thiocyanates	$\begin{array}{c} R-S-C \equiv N \\ (M-S-C \equiv N) \end{array}$	116	Linear NCS; ∠RSC 100° in MeSCN; ∠MSC variable (80–107°)
Isothiocyanates	R-N=C=S	122	Linear NCS; ∠HNC 135° in HNCS; ∠MNC variable (111–180°)
Selenocyanate ion	$(Se-C \equiv N)^{-}$	~112	Linear NCSe

 Table 8.7
 Some compounds containing the CN group

^(a)Several groups can also act as bridging ligands in metal complexes, e.g. -CN-, >NCO, -SCN-

XY, etc. It is also helpful to recognize that $CN^$ is isoelectronic with C_2^{2-} (p. 299) and with several notable ligands such as CO, N₂ and NO⁺. Similarly, the cyanate ion OCN⁻ is isoelectronic with CO₂, N₃⁻, fulminate (CNO⁻), etc.⁽¹³⁹⁾

Cyanogen, $(CN)_2$, is a colourless poisonous gas (like HCN) mp -27.9° , bp -21.2° (cf. Cl₂, Br₂). When pure it possesses considerable

thermal stability $(800^{\circ}C)$ but trace impurities normally facilitate polymerization at $300-500^{\circ}$ to paracyanogen a dark-coloured solid which may have a condensed polycyclic structure (3).

The polymer reverts to $(CN)_2$ above 800° and to CN radicals above 850° . $(CN)_2$ can be prepared in 80% yield by mild oxidation of CN⁻ with aqueous Cu^{II}; the reaction is complex but can be idealized as

$$2\text{CuSO}_4 + 4\text{KCN} \xrightarrow{\text{H}_2\text{O}/60^\circ} (\text{CN})_2$$

 $+ 2CuCN + 2K_2SO_4$

¹³⁹ A. M. GOLUB, H. KÖHLER and V. V. SKOPENKO (eds.), *Chemistry of Pseudohalides*, Elsevier, Amsterdam, 1986, 479 pp., 4217 refs.

¹⁴⁰ L. S. CEDERBAUM, F. TARANTELLI, H. G. WEIKERT, M. SCHELLER and H. KÖPPEL, Angew. Chem. Int. Edn. Engl. 28, 761–2 (1989).

Cyanides and other carbon-nitrogen compounds

 CO_2 which is also formed (20%) can be removed by passage of the product gas over solid NaOH and the byproduct CuCN can be further oxidized with hot aqueous Fe^{III} to complete the conversion:

$$2\text{CuCN} + 2\text{FeCl}_3 \xrightarrow{\text{H}_2\text{O}/\text{heat}} (\text{CN})_2 + 2\text{CuCl} + 2\text{FeCl}_2$$

Industrially it is now made by direct gasphase oxidation of HCN with O_2 (over a silver catalyst), or with Cl_2 (over activated charcoal), or NO_2 (over CaO glass). $(CN)_2$ is fairly stable in H_2O , EtOH and Et₂O but slowly decomposes in solution to give HCN, HNCO, $(H_2N)_2CO$ and $H_2NC(O)C(O)NH_2$ (oxamide). Alkaline solutions yield CN^- and $(OCN)^-$ (cf. halogens).

$$(CN)_2 + 2OH^- \longrightarrow CN^- + OCN^- + H_2O$$

Hydrogen cyanide, mp -13.3° bp 25.7°, is an extremely poisonous compound of very high dielectric constant (p. 55). It is miscible with H₂O, EtOH and Et₂O. In aqueous solution it is an even weaker acid than HF, the dissociation constant K_a being 7.2×10^{-10} at 25°C. It was formerly produced industrially by acidifying NaCN or Ca(CN)₂ but the most modern catalytic processes are based on direct reaction between CH₄ and NH₃, e.g.: $^{(141)}$

Andrussow process:

$$CH_4 + NH_3 + 1\frac{1}{2}O_2 \xrightarrow{Pt/Rh \text{ or } Pt/Ir} HCN + 3H_2O$$

Degussa process:

$$CH_4 + NH_3 \xrightarrow{Pt} HCN + 3H_2$$

Both processes rely on a fast flow system and the rapid quenching of product gases; yields of up to 90% can be attained. It is salutory to note that US production of this highly toxic compound is 600 000 tonnes pa (1992) and world production exceeds one million tonnes pa. Of this, 41% is used to manufacture adiponitrile for nylon and 28% for acrylic plastics:

$$\begin{array}{c} HCN + Me_2CO \longrightarrow \text{ acetone cyanohydrin} \\ \xrightarrow{H_2SO_4} \text{ methacrylamide sulfate } \xrightarrow{MeOH} \end{array}$$

methyl methacrylate

HCN is now also used to make $(ClCN)_3$ for pesticides (9%), NaCN for gold recovery (13%), and chelating agents such as edta (4%), etc.

As noted above, $CN^{-}(aq)$ is fairly easily oxidized to $(CN)_2$ or OCN^{-} ; E° values calculated from free energy data (p. 435) are:

$$\frac{1}{2}(CN)_2 + H^+ + e^- \iff HCN;$$

$$E^\circ + 0.37 V$$

$$OCN^- + 2H^+ + 2e^- \iff CN^- + H_2O;$$

$$E^\circ - 0.14 V$$

HCN can also be reduced to MeNH₂ by powerful reducing agents such as Pd/H₂ at 140° .

The alkali metal cyanides MCN are produced by direct neutralization of HCN; they crystallize

 $^{^{141}}$ Ref. 2, Vol. 7 (1993), Cyanides (including HCN, M^ICN, and M^{II}(CN)₂, pp. 753–82; Cyanamides including CaNCN, H₂NCN, dicyandiamide, and melamine), pp. 736–52; cyanuric and isocyanuric acids, pp. 834–51.

with the NaCl structure (M = Na, K, Rb) or the CsCl structure (M = Cs, Tl) consistent with "free" rotation of the CN⁻ group. The effective radius is $\sim 190 \,\mathrm{pm}$, intermediate between those of Cl⁻ and Br⁻. At lower temperatures the structures transform to lower symmetries as a result of alignment of the CN⁻ ions. LiCN differs in having a loosely packed 4-coordinate arrangement and this explains its low density $(1.025 \text{ g cm}^{-3})$ and unusually low mp (160°, cf. NaCN 564°, KCN 634°C). World production of alkali metal cyanides was \sim 340000 tonnes in 1989. NaCN readily complexes metallic Ag and Au under mildly oxidizing conditions and is much used in the extraction of these metals from their low-grade ores (first patented in 1888 by R. W. Forrest, W. Forrest and J. S. McArthur):

 $8NaCN + 4M + 2H_2O + O_2 \longrightarrow$ $4Na[M(CN)_2] + 4NaOH$

Until the 1960s, when HCN became widely available, NaCN was made by the Castner process via sodamide and sodium cyanamide:

 $2Na + C + 2NH_3 \xrightarrow{750^{\circ}} 2NaCN + 3H_2$

The CN⁻⁻ ion can act either as a monodentate or bidentate ligand.⁽¹⁴²⁾ Because of the similarity of electron density at C and N it is not usually possible to decide from X-ray data whether C or N is the donor atom in monodentate complexes, but in those cases where the matter has been established by neutron diffraction C is always found to be the donor atom (as with CO). Very frequently CN acts as a bridging ligand - CN- as in AgCN, and AuCN (both of which are infinite linear chain polymers), and in Prussian-blue type compounds (p. 1094). The same tendency for a coordinated M CN group to form a further donor-acceptor bond using the lone-pair of electrons on the N atom is illustrated by the mononuclear BF3 complexes with tetracyanonickelates and hexacyanoferrates, e.g. $K_2[Ni(CN.BF_3)_4]$ and $K_4[Fe(CN.BF_3)_6]$.

The complex CuCN.NH₃ provides an unusual example of CN acting as a bridging ligand at C, a mode which is common in μ -CO complexes (p. 928); indeed, the complex is unique in featuring tridentate CN groups which link the metal atoms into plane nets via the Cu grouping C-N-Cu as shown in Fig. 8.24. Other cyanide complexes are discussed under

the appropriate metals. In organic chemistry, both nitriles R-CN and isonitriles (isocyanides) R-NC are known. Isocyanides have been extensively studied as ligands (p. 926).⁽¹⁴³⁾ More

Figure 8.24 Schematic diagram of the layer structure of CuCN.NH₃ showing the tridentate CN groups; each Cu is also bonded to 1 NH₃ molecule at 207 pm. Note also the unusual 5-coordination of Cu including one near neighbour Cu at 242 pm (13 pm closer than Cu-Cu in the metal). The lines in the diagram delineate the geometry and do not represent pairs of electrons.

¹⁴² A. G. SHARPE, The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London, 1976, 302 pp.

¹⁴³ L. MALATESTA and F. BONATI, *Isocyanide Complexes of Metals*, Wiley, London, 1969, 199 pp.

Figure 8.25 The planar structure of various cyanuric compounds: all 6 C-N distances within the ring are equal.

complex coordination modes are now also well documented for $CN\,$, RCN and $RNC.^{(144)}$

Cyanogen halides, X CN, are colourless, volatile, reactive compounds which can be regarded as pseudohalogen analogues of the interhalogen compounds, XY (p. 824) (Table 8.8). All tend to trimerize to give cyclic cyanuric halides (Fig. 8.25) especially in the presence of free HX. FCN is prepared by pyrolysis of (FCN)₃ which in turn is made by fluorinating $(CICN)_3$ with NaF in tetramethylene sulfone. CICN and BrCN are prepared by direct reaction of X₂ on MCN in water or CCl₄, and ICN is prepared by a dry route from Hg(CN)₂ and I₂. Similarly, colourless crystals of cyanamide (H₂NCN mp 46°) result from the reaction of NH₃ on ClCN and trimerize to melamine at 150° (Fig. 8.25). The industrial preparation is by acidifying CaNCN (see Panel). The "dimer",

Table 8.8 Cyanogen halides

Property	FCN	CICN	BrCN	ICN
MP/°C	-82	-6.9	51.3	146
BP/°C	-46	13.0	61.3	146 (subl)

¹⁴⁴ Some typical examples will be found in the following references. M. A. ANDREWS, C. B. KNOBLER and H. D. KAESZ, J. Am. Chem. Soc. 101, 7260-4 (1979). M. I. BRUCE, T. W. HAMBLEY and B. K. NICHOLSON, J. Chem. Soc., Chem. Commun., 353-5 (1982). V. CHEBOLU, R. R. WHITTLE and A. SEN, Inorg. Chem. 24, 3082-5 (1985). T. C. WRIGHT, G. WILKINSON, M. MOTEVALLI and M. B. HURSTHOUSE, J. Chem. Soc., Dalton Trans., 2017 9 (1986). K. S. RATLIFF, P. E. FANWICK and C. P. KUBIAK, Polyhedron 9, 1487-9 (1990).

dicyandiamide, $CNC(NH_2)_2$, can be made by boiling calcium cyanamide with water: the colourless crystals are composed of nonlinear molecules which feature three different C N distances (see Table 8.7).

The hydroxyl derivative of X–CN is cyanic acid HO–CN: it cannot be prepared pure due to rapid decomposition but it is probably present to the extent of about 3% when its tautomer, isocyanic acid (HNCO) is prepared from sodium cyanate and HCl. HNCO rapidly trimerizes to cyanuric acid (Fig. 8.25) from which it can be regenerated by pyrolysis. It is a fairly strong acid (K_a 1.2 × 10⁻⁴ at 0°) freezing at -86.8° and boiling at 23.5°C. Thermolysis of urea is an alternative route to HNCO and (HNCO)₃; the reverse reaction, involving the isomerization of ammonium cyanate, is the classic synthesis of urea by F. Wöhler (1828):⁽¹⁴⁵⁾

¹⁴⁵ J. SHORTER, Chem. Soc. Revs. 7, 1-14 (1978).

Carbon

The Cyanamide Industry⁽¹⁴¹⁾

The basic chemical of the cyanamide industry is calcium cyanamide CaNCN, mp 1340° , obtained by nitrogenation of CaC₂.

$$CaC_2 + N_2 \xrightarrow{1000^\circ} CaNCN + C$$

CaNCN is used as a direct application fertilizer, weed killer, and cotton defoliant; it is also used for producing cyanamide, dicyandiamide and melamine plastics. Production formerly exceeded 1.3 million tonnes pa, but this has fallen considerably in the last few years, particularly in the USA where the use of CaNCN as a nitrogenous fertilizer has been replaced by other materials. In 1990 most of the world's supply was made in Japan, Germany and Canada.

Acidification of CaNCN yields free cyanamide, H_2NCN , which reacts further to give differing products depending on pH: at pH ≤ 2 or >12 urea is formed, but at pH 7–9 dimerization to dicyandiamide NCNC(NH₂)₂ occurs. Solutions are most stable at pH \sim 5; accordingly commercial preparation of H₂NCN is by continuous carbonation of an aqueous slurry of CaNCN in the presence of graphite: the overall reaction can be represented

 $CaNCN + CO_2 + H_2O \longrightarrow H_2NCN + CaCO_3$

Reaction of H_2NCN with H_2S gives thiourea, $SC(NH_2)_2$.

Dicyandiamide forms white, non-hygroscopic crystals which melt with decomposition at 209° . Its most important reaction is conversion to melamine (Fig. 8.25) by pyrolysis above the mp under a pressure of NH₃ to counteract the tendency to deammonation. Melamine is mainly used for melamine-formaldehyde plastics. Total annual production of both H₂NCN and NCNC(NH₂)₂ is on the 30 000 tonne scale.

Several of these compounds and their derivatives are commercially and industrially important. Urea has already been mentioned on p. 311. Again, world production of chloroisocyanurates, (CINC==O)₃, in 1987 was ca. 80 000 tonnes (50 000 tonnes in USA alone, of which 75% went for swimming pool disinfection and most of the rest for scouring powders, household bleaches and dishwashing powder formulations).⁽¹⁴¹⁾

Alkali metal cyanates are stable and readily obtained by mild oxidation of aqueous cyanide solutions using oxides of Pb^{II} or Pb^{IV} . The commercial preparation of NaNCO is by reaction of urea with Na₂CO₃.

$$Na_{2}CO_{3} + 2OC(NH_{2})_{2} \xrightarrow[(dry)]{heat} 2NaNCO + CO_{2} + 2NH_{3} + H_{2}O$$

The pseudohalogen concept (p. 319) might lead one to expect the existence of a cyanate analogue of cyanogen but there is little evidence for NCO-OCN, consistent with the known reluctance of oxygen to catenate. By contrast, thiocyanogen (SCN)₂ is moderately stable; it can be prepared as white crystals by suspending AgSCN in Et₂O or SO₂ and oxidizing the anion at low temperatures with Br₂ or I₂. (SCN)₂ melts at $\sim -7^{\circ}$ to an unstable orange suspension which rapidly polymerizes to the brick-red solid parathiocyanogen (SCN)_x.⁽¹⁴⁶⁾ This ready polymerization hampers structural studies but it is probable that the molecular structure is N=C-S-S-C=N with a nonlinear central C-S-S-C group. (SeCN)₂ can be prepared similarly as a yellow powder which polymerizes to a red solid.

Thiocyanates and selenocyanates can be made by fusing the corresponding cyanide with S or Se. The SCN⁻ and SeCN⁻ ions are both linear, like OCN⁻. (See p. 779 for TeCN⁻) Treatment of KSCN with dry KHSO₄ produces free isothiocyanic acid HNCS, a white crystalline solid which is stable below 0° but which decomposes rapidly at room temperatures to HCN and a yellow solid $H_2C_2N_2S_3$. Thiocyanic acid, HSCN, (like HOCN) has not been prepared

¹⁴⁶ F. CATALDO, Polyhedron 11, 79-83 (1992).

Cyanides and other carbon-nitrogen compounds

_		Modes of boliding established by X-ray erysta	
_	Mode	Example	Comment
	Ag-NCO	$[AsPh_4] [Ag(NCO)_2]$	Linear anion
	Mo-OCN	$[Mo(OCN)_6]^{3+}$, $[Rh(OCN)(PPh_3)_3]$	Based on infrared data only
	Ag NCO Ag	AgNCO	Cf. fulminate in Table 8.7
	OCN Ni Ni NCO	 [Ni ₂ (NCO) ₂ {N(CH ₂ CH ₂ NH ₂) ₃ } ₂] [BPh ₄] ₂	Note bent Ni…N- C
	Co-NCS	[Co(NH ₃) ₅ (NCS)]Cl ₂	
	Co-SCN	$ C_0(NH_3)_{\leq}(SCN) C _2$	Linkage isomerism
	Pd-NCS	$[Pd(NCS)(SCN) \{Ph_2P(CH_2)_3PPh_2\}]$	Both N and S monodentate in a single crystal
	Pd SCN Pd	$K_2[Pd(SCN)_4]$	Weak S bridging to a second Pd
	SCN Re Re	$[NBu_4^n]_3[Re_2(NCS)_{10}]$	N-bonded bridging (and terminal) ⁽¹⁵⁴⁾
	Co-NCS-Hg	[Co(NCS) ₄ Hg]	Bidentate, different metals
	Pt SCN NCS Pt	$[Pt_2(Cl)_2(PPr_3)_2(SCN)_2]$	Bidentate, same metal
	S-C-N Sb	Ph ₂ SoSCN	Spiral chain polymer ⁽¹⁴⁹⁾
	Hg SCN-Co Hg	$[Co(NCS)_6Hg_2]\cdot C_6H_6$	Tridentate
	Ni–NCSe	 [Ni(HCONMe ₂) ₄ (NCSe) ₂]	N donor
	Co-SeCN	K[Co(Me ₂ glyoxime) ₂ (SeCN) ₂]	Se donor

Table 8.9 Modes of bonding established by X-ray crystallography

pure but compounds such as MeSCN and $Se(SCN)_2$ are known.

The thiocyanate ion has been much studied as an ambidentate ligand (in which either S or N is the donor atom); it can also act as a bidentate bridging ligand -SCN-, and even as a tridentate ligand >SCN-.^(147,148,149) The ligands OCN⁻ and SeCN⁻ have been less studied but appear to be generally similar. A preliminary indication of the mode of coordination can sometimes be obtained from vibrational spectroscopy since N coordination raises both v(CN) and v(CS) relative to the values of the uncoordinated ion, whereas S coordination leaves $\nu(CN)$ unchanged and increases $\nu(CS)$ only somewhat. The bridging mode tends to increase both $\nu(CN)$ and $\nu(CS)$. Similar trends are noted for OCN⁻ and SeCN⁻ complexes. However, these "group vibrations" are in reality appreciably mixed with other modes both in the ligand itself and in the complex as a whole, and vibrational spectroscopy is therefore not always a reliable criterion. Increasing use is being made of ¹⁴N and ¹³C nmr data⁽¹⁵⁰⁾ but the most reliable data, at least for crystalline complexes, come from X-ray diffraction studies.⁽¹⁵¹⁾ The variety of coordination modes so revealed is illustrated in Table 8.9, which is based on one by A. H. Norbury.⁽¹⁴⁷⁾ Phenomenologically it is observed that class a metals tend to be N-bonded whereas class b tend to be Sbonded (see below), though it should be stressed that kinetic and solubility factors as well as relative thermodynamic stability are sometimes

implicated, and so-called 'linkage isomerism" is well established, e.g. [Co(NH₃)₅(NCS)]Cl₂ and [Co(NH₃)₅(SCN)]Cl₂. In terms of the a and b (or "hard" and "soft") classification of ligands and acceptors it is noted that metals in Groups 3-8 together with the lanthanoids and actinoids tend to form -NCS complexes; in the later transition groups Co, Ni, Cu and Zn also tend to form -NCS complexes whereas their heavier congeners Rh, Ir; Pd, Pt; Au; and Hg are predominantly S-bonded. Ag and Cd are intermediate and readily form both types of complex. See also refs. 152, 153. The interpretation to be placed on these observations is less certain. Steric influences have been mentioned (N bonding, which is usually linear, requires less space than the bent M-S-CN mode). Electronic factors also play a role, though the detailed nature of the bonding is still a matter of debate and devotees of the various types of electronic influence have numerous interpretations to select from. Solvent effects (dielectric constant ε , coordinating power, etc.) have also been invoked and it is clear that these various explanations are not mutually exclusive but simply tend to emphasize differing aspects of an extremely complicated and delicately balanced situation. The interrelation of these various interpretations is summarized in Table 8.10.

 Table 8.10
 Mode of bonding in thiocyanate complexes

Metal type ^(a)	σ -Donor ligand	High- <i>ɛ</i> solvent	Low- ε solvent	π -Acceptor ligand
Class a	-NCS	-NCS	-SCN	-SCN
Class b	-SCN	-SCN	-NCS	-NCS

^(a)Sometimes discussed in terms of "hard" and "soft" acids and bases.

Fewer data are available for SeCN⁻ complexes but similar generalizations seem to hold. By contrast, OCN⁻ complexes are not so readily discussed in these terms: in fact, very few cyanato

¹⁴⁷ A. H. NORBURY, Adv. Inorg. Chem. Radiochem. 17, 231–402 (1975) (825 refs.).

¹⁴⁸ A. A. NEWMAN (ed.), Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives, Academic Press, London, 1975, 351 pp.

 ¹⁴⁹ G. E. FORSTER, I. G. SOUTHERINGTON, M. J. BEGLEY and D. B. SOWERBY, *J. Chem. Soc., Chem. Commun.*, 54–5 (1991).
 ¹⁵⁰ J. A. KARGOL, R. W. CRECELY and J. L. BURMEISTER, *Inorg. Chim. Acta* 25, L109–L110 (1977), and references therein.

¹⁵¹ S. J. ANDERSON, D. S. BROWN and K. J. FINNEY, *J. Chem.* Soc., Dalton Trans., 152-4 (1979). (The compounds, originally thought to be O-bonded on the basis of infrared and ¹⁴N nmr spectroscopy, now shown by X-ray analysis to be N-bonded.) See also ref. 154.

¹⁵² W. KELM and W. PREETZ, Z. anorg. allg. Chem. **568**, 106–16 (1989).

¹⁵³ M. KAKOTI, S. CHAUDHURY, A. K. DEB and S. GOSWAMI, *Polyhedron* **12**, 783-9 (1993).

(-OCN) complexes have been characterized and the ligand is usually *N*-bonded (isocyanato).⁽¹⁵¹⁾

8.9 Organometallic Compounds

Compounds which contain direct M-C bonds comprise a vast field which spans the traditional branches of inorganic and organic chemistry. A general overview is given in Section 19.7 (p. 924) and specific aspects are treated separately under the chemistry of each individual element, e.g. alkali metals (pp. 102–6), alkaline earth metals (pp. 127–38), Group 13 metals (pp. 257–67) etc. In addition to the references cited on p. 924, useful general accounts can be found in refs. 155–160.

¹⁵⁴ F. A. COTTON, A. DAVISON, W. H. ISLEY and H. S. TROP, *Inorg. Chem.* **18**, 2719–23 (1979).

¹⁵⁵ A. W. PARKINS and R. C. POLLER, An Introduction to Organometallic Chemistry, Macmillan, Basingstoke, 1986, 252 pp.

¹⁵⁶ J. S. THAYER, Organometallic Chemistry: An Overview, VCH Publishers (UK), 1988, 250 pp.

¹⁵⁷ R. H. CRABTREE *The Organometallic Chemistry of the Transition Metals*, Wiley, New York, 1988, 440 pp.

¹⁵⁸ Ch. ELSCHENBROICH and A. SALZER, Organometallics, VCH Publishers (NY), 1989, 479 pp.

¹⁵⁹ T. J. MARKS (ed.) *Bonding Energetics in Organometallic Compounds*, ACS Symposium Series No. 428, Washington DC, 1990, 320 pp.

¹⁶⁰ E. W. ABEL, F. G. A. STONE and G. WILKINSON (eds.), Comprehensive Organometallic Chemistry II: A review of the literature 1982-1994 in 14 volumes, Pergamon, Oxford, 1995, approx 8750 pp.