§16.2.1

#### Selenides, tellurides and polonides



Figure 16.10 Structures of some metal-polytelluride complexes.

in [NEt<sub>4</sub>]<sub>3</sub>[Fe<sub>4</sub>( $\mu_3$ -Te)<sub>4</sub>(TePh)<sub>4</sub>].2MeCN<sup>(68)</sup> and, perhaps surprisingly, in NaTe<sub>3</sub> which has cubanelike interlinked clusters of Te<sub>12</sub><sup>6-</sup>.<sup>(69)</sup> The trinuclear anion [Cr<sub>3</sub>Te<sub>24</sub>]<sup>3-</sup> has the same structure as its Se analogue (p. 763).<sup>(51)</sup> Mention could also be made of the planar ion [TeS<sub>3</sub>]<sup>2-</sup> and the spiro-bicyclic [Te( $\eta^2$ -S<sub>5</sub>)<sub>2</sub>]<sup>2-</sup> in which the Te atom is also planar<sup>(70)</sup> (cf. Se<sub>11</sub><sup>2-</sup> in Fig. 16.8).

# 16.2 Compounds of selenium, tellurium and polonium

## 16.2.1 Selenides, tellurides and polonides

All three elements combine readily with most metals and many non-metals to form binary chalcogenides. Indeed, selenides and tellurides are the most common mineral forms of these elements (p. 748). Nonstoichiometry abounds, particularly for compounds with the transition elements (where electronegativity differences are minimal and variable valency is favoured), and many of the chalcogenides can be considered

<sup>&</sup>lt;sup>68</sup> W. SIMON, A. WILK, B. KREBS and G. HENKEL, Angew. Chem. Int. Edn. Engl. 26, 1009-10 (1987).

<sup>&</sup>lt;sup>69</sup> P. BÖTTCHER and R. KELLER, Z. anorg. allg. Chem. **542**, 144-52 (1986).

<sup>&</sup>lt;sup>70</sup> W. BUBENHEIM G. FRENZEN and U. MÜLLER, Z. anorg. allg. Chem. **620** 1046-50 (1994).

as metallic alloys. Many such compounds have important technological potentialities for solidstate optical, electrical and thermoelectric devices and have been extensively studied. For the more electropositive elements (e.g. Groups 1 and 2), the chalcogenides can be considered as "salts" of the acids,  $H_2Se$ ,  $H_2Te$ , and  $H_2Po$  (see next subsection).

The alkali metal selenides and tellurides can be prepared by direct reaction of the elements at moderate temperatures in the absence of air, or more conveniently in liquid ammonia solution. They are colourless, water soluble, and readily oxidized by air to the element. The structures adopted are not unexpected from general crystallochemical principles. Thus Li<sub>2</sub>Se, Na<sub>2</sub>Se and K<sub>2</sub>Se have the antifluorite structure (p. 118); MgSe, CaSe, SrSe, BaSe, ScSe, YSe, LuSe, etc., have the rock-salt structure (p. 242); BeSe, ZnSe and HgSe have the zinc-blende structure (p. 1210); and CdSe has the wurtzite structure (p. 1210). The corresponding tellurides are similar, though there is not a complete 1:1 correspondence. Polonides can also be prepared by direct reaction and are amongst the stablest compounds of this element: Na<sub>2</sub>Po has the antifluorite structure; the NaCl structure is adopted by the polonides of Ca, Ba, Hg, Pb and the lanthanide elements; BePo and CdPo have the ZnS structure and MgPo the nickel arsenide structure (p. 556). Decomposition temperatures of these polonides are about  $600 \pm 50^{\circ}$ C except for the less-stable HgPo (decomp 300°) and the extremely stable lanthanide derivatives which do not decompose even at 1000° (e.g. PrPo mp 1253°, TmPo mp 2200°C).

Transition-element chalcogenides are also best prepared by direct reaction of the elements at 400-1000°C in the absence of air. They tend to be metallic nonstoichiometric alloys though intermetallic compounds also occur, e.g.  $Ti_{2}Se$ ,  $Ti_{3}Se$ ,  $TiSe_{0.95}$ ,  $TiSe_{1.05}$ ,  $Ti_{0.9}Se$ ,  $Ti_{3}Se_{4}$ ,  $Ti_{0.7}Se$ ,  $Ti_{5}Se_{8}$ ,  $TiSe_{2}$ ,  $TiSe_{3}$ , etc.<sup>(71,72)</sup> Fuller details of these many compounds are in the references cited.

Most selenides and tellurides are decomposed by water or dilute acid to form  $H_2Se$  or  $H_2Te$  but the yields, particularly of the latter, are poor.

Polychalcogenides are less stable than polysulfides (p. 681). Reaction of alkali metals with Se in liquid ammonia affords  $M_2Se_2$ ,  $M_2Se_3$  and  $M_2Se_4$ , and analogous polytellurides have also been reported (see preceding section). However many of these compounds are rather unstable thermally and tend to be oxidized in air.

## 16.2.2 Hydrides

 $H_2Se$  (like  $H_2O$  and  $H_2S$ ) can be made by direct combination of the elements (above 350°), but  $H_2Te$  and  $H_2Po$  cannot be made in this way because of their thermal instability.  $H_2Se$ is a colourless, offensive-smelling poisonous gas which can be made by hydrolysis of  $Al_2Se_3$ , the action of dilute mineral acids on FeSe or the surface-catalysed reaction of gaseous Se and  $H_2$ :

$$Al_2Se_3 + 6H_2O \longrightarrow 3H_2Se + 2Al(OH)_3$$
  
FeSe + 2HCl  $\longrightarrow$  H\_2Se + FeCl<sub>2</sub>  
Se + H<sub>2</sub>  $\Longrightarrow$  H\_2Se

In this last reaction, conversion at first rises with increase in temperature and then falls because of increasing thermolysis of the product: conversion exceeds  $\sim 40\%$  between  $350-650^{\circ}$  and is optimum (64%) at  $520^{\circ}$ .

H<sub>2</sub>Te is also a colourless, foul-smelling toxic gas which is best made by electrolysis of 15-50% aqueous H<sub>2</sub>SO<sub>4</sub> at a Te cathode at  $-20^{\circ}$ , 4.5 A and 75-110 V. It can also be made by hydrolysis of Al<sub>2</sub>Te<sub>3</sub>, the action of hydrochloric acid on the tellurides of Mg, Zn or Al, or by reduction of Na<sub>2</sub>TeO<sub>3</sub> with TiCl<sub>3</sub> in a buffered solution. The compound is unstable above 0° and decomposes in moist air and on exposure to light. H<sub>2</sub>Po is even less stable and has only been made in trace amounts ( $\sim 10^{-10}$  g scale) by reduction of Po using Mg foil/dilute HCl and the reaction followed by radioactive tracer techniques.

<sup>&</sup>lt;sup>71</sup> D. M. CHIZHIKOV and V. P. SHCHASTLIVYI, *Selenium and Selenides*, Collet's, London, 1968, 403 pp.

<sup>&</sup>lt;sup>72</sup> F. HULLIGER, Struct. Bonding (Berlin), 4, 83-229 (1968).

Halides

| Property                                        | H <sub>2</sub> O      | H <sub>2</sub> S      | H <sub>2</sub> Se    | H <sub>2</sub> Te     | H <sub>2</sub> Po |
|-------------------------------------------------|-----------------------|-----------------------|----------------------|-----------------------|-------------------|
| MP/°C                                           | 0.0                   | -85.6                 | -65.7                | -51                   | -36(?)            |
| BP/°C                                           | 100.0                 | -60.3                 | -41.3                | -4                    | +37(?)            |
| $\Delta H_f^{\circ}/\text{kJ} \text{ mol}^{-1}$ | -285.9                | +20.1                 | +73.0                | +99.6                 |                   |
| Bond length (M-H)/pm                            | 95.7                  | 133.6                 | 146                  | 169                   |                   |
| Bond angle (H-M-H) (g)                          | 104.5°                | 92.1°                 | 91°                  | 90°                   |                   |
| Dissociation constant:                          |                       |                       |                      |                       |                   |
| $HM^{-}, K_{1}$                                 | $1.8 \times 10^{-16}$ | $1.3 \times 10^{-7}$  | $1.3 \times 10^{-4}$ | $2.3 \times 10^{-3}$  |                   |
| $M^{2-}, K_2$                                   |                       | $7.1 \times 10^{-15}$ | $\sim 10^{-11}$      | $1.6 \times 10^{-11}$ |                   |

**Table 16.4** Some physical properties of  $H_2O$ ,  $H_2S$ ,  $H_2Se$ ,  $H_2Te$  and  $H_2Po$ 

Physical properties of the three gases are compared with those of H<sub>2</sub>O and H<sub>2</sub>S in Table 16.4. The trends are obvious, as is the "anomalous" position of water (p. 623). The densities of liquid and solid H<sub>2</sub>Se are 2.12 and 2.45 g cm<sup>-3</sup>. H<sub>2</sub>Te condenses to a colourless liquid (d 4.4 g cm<sup>-3</sup>) and then to lemon-yellow crystals. Both gases are soluble in water to about the same extent as H<sub>2</sub>S, yielding increasingly acidic solutions (cf. acetic acid  $K_1 \sim 2 \times 10^{-5}$ ). Such solutions precipitate the selenides and tellurides of many metals from aqueous solutions of their salts but, since both H<sub>2</sub>Se and H<sub>2</sub>Te are readily oxidized (e.g. by air), elementary Se and Te are often formed simultaneously.

 $H_2Se$  and  $H_2Te$  burn in air with a blue flame to give the dioxide (p. 779). Halogens and other oxidizing agents (e.g. HNO<sub>3</sub>, KMnO<sub>4</sub>) also rapidly react with aqueous solutions to precipitate the elements. Reaction of  $H_2Se$  with aqueous SO<sub>2</sub> is complex, the products formed depending critically on conditions (cf. Wackenroder's solution, p. 716): addition of the selenide to aqueous SO<sub>2</sub> yields a 2:1 mixture of S and Se together with oxoacids of sulfur, whereas addition of SO<sub>2</sub> to aqueous  $H_2Se$  yields mainly Se:

$$+ 2H_2SO_4$$

H<sub>2</sub>Te undergoes oxidative addition to certain organometallic compounds, e.g. [Re( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)-

(CO)<sub>2</sub>(thf)] reacts in thf solution at 25°C to give [HRe( $\eta^5$ -C<sub>5</sub>Me<sub>5</sub>)(CO)<sub>2</sub>(TeH)] and related dinuclear complexes.<sup>(73)</sup> The Te analogue of the hydroxide ion, TeH<sup>-</sup>, has been reported from time to time but has only recently been properly characterized crystallographically, in [PPh<sub>4</sub>]<sup>+</sup>[TeH]<sup>- (74)</sup>

## 16.2.3 Halides

As with sulfur, there is a definite pattern to the stoichiometries of the known halides of the heavier chalcogens. Selenium forms no binary iodides whereas the more electropositive Te and Po do. Numerous chlorides and bromides are known for all 3 elements, particularly in oxidation states +1, +2 and +4. In the highest oxidation state, +6, only the fluorides MF<sub>6</sub> are known for the 3 elements; in addition SeF<sub>4</sub> and TeF<sub>4</sub> have been characterized but no fluorides of lower oxidation states except the fugitive FSeSeF,  $Se=SeF_2$  and  $SeF_2$  which can be trapped out at low temperature.<sup>(75,76)</sup> The compound previously thought to be  $Te_2F_{10}$  is now known to be  $O(TeF_5)_2^{(76,77)}$  (p. 778). Finally, Te forms a range of curious lower halides which

<sup>&</sup>lt;sup>73</sup> W. A. HERRMANN, C. HECHT, E. HERDTWECK and H.-J. KNEUPER, Angew. Chem. Int. Edn. Engl. **26**, 132-4 (1987).

<sup>&</sup>lt;sup>74</sup> J. C. HUFFMAN and R. C. HAUSHALTER, *Polyhedron* **8**, 531–2 (1989).

<sup>&</sup>lt;sup>75</sup> B. COHEN and R. D. PEACOCK, *Adv. Fluorine Chem.* 6, 343–85 (1970).

<sup>&</sup>lt;sup>76</sup> E. ENGELBRECHT and F. SLADKY, *Adv. Inorg. Chem. Radiochem.* 24, 189–223 (1981). This review also includes oxofluorides of Se and Te, and related anions.

<sup>&</sup>lt;sup>77</sup> P. M. WATKINS, J. Chem. Educ., **51**, 520-1 (1974).

are structurally related to the  $Te_x$  chains in elementary tellurium.

The known compounds are summarized in Table 16.5 which also lists their colour, mp, bp and decomposition temperature where these have been reported. It will be convenient to discuss the preparation, structure and chemical properties of these various compounds approximately in ascending order of formal oxidation state. For comparable information on the halides of S, see pp. 683–93.

#### Lower halides

The phase relations in the tellurium-halogen systems have only recently been elucidated

| Oxidation<br>state                                                         | Fluorides                                                                                                                                                                                                        | Chlorides                                                                                                                                                                                                               | Bromides                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iodides                                                                                              |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| < 1                                                                        |                                                                                                                                                                                                                  | Te <sub>2</sub> Cl<br>Te <sub>3</sub> Cl <sub>2</sub><br>silver grey<br>mp 238° (peritectic)                                                                                                                            | Te <sub>2</sub> Br<br>grey needles<br>mp 224 (peritectic)                                                                                                                                                                                                                                                                                                                                                                                        | Te <sub>2</sub> I<br>silver grey<br>$[Te_2)_2(I_2)_x](X \leq_i$<br>metallic black                    |  |
| +1<br>(FSeSeF) and (Se=SeF <sub>2</sub> )<br>trapped at low<br>temperature |                                                                                                                                                                                                                  | Se <sub>2</sub> Cl <sub>2</sub><br>yellow-brown liquid<br>mp -85°, bp 130° (d)                                                                                                                                          | $(\beta$ -)Se <sub>2</sub> Br <sub>2</sub><br>blood-red liquid<br>bp 225° (d)<br>$(\alpha$ -SeBr,<br>mp +5°)                                                                                                                                                                                                                                                                                                                                     | $\alpha$ -Te <sub>4</sub> I <sub>4</sub><br>black<br>mp 185°(peritectic)<br>$\beta$ -TeI<br>black    |  |
| +2                                                                         | (SeF <sub>2</sub> )<br>trapped at low<br>temperature                                                                                                                                                             | (SeCl <sub>2</sub> )<br>d in vapour<br>("TeCl <sub>2</sub> ")<br>black eutectic<br>PoCl <sub>2</sub><br>dark ruby red<br>mp 355°, subl 130°                                                                             | (SeBr <sub>2</sub> )<br>d in vapour<br>("TeBr <sub>2</sub> ")<br>brown d (see text)<br>PoBr <sub>2</sub><br>purple-brown<br>mp 270° (d)                                                                                                                                                                                                                                                                                                          | (PoI <sub>2</sub> )<br>impure (from<br>decomp of PoI <sub>4</sub><br>at 200°)                        |  |
| +4                                                                         | SeF <sub>4</sub><br>colourless liquid<br>mp $-10^\circ$ , bp $101^\circ$<br>TeF <sub>4</sub><br>colourless<br>mp $129^\circ$ d > $194^\circ$<br>PoF <sub>4</sub> (?)<br>solid from decomp<br>of PoF <sub>6</sub> | $Se_4Cl_{16}$ colourless<br>mp 305°, subl 196° $Te_4Cl_{16}$ pale-yellow solid.<br>maroon liquid<br>mp 223°, bp 390° PoCl <sub>4</sub><br>yellow<br>d > 200° to PoCl <sub>2</sub><br>mp 300°, bp ~ 390°<br>extrapolated | $\begin{array}{c} \alpha \text{-} \text{Se}_4 \text{Br}_{16} \\ \text{orange-red} \\ \text{mp } 123^\circ \\ (\text{also } \beta \text{-} \text{Se}_4 \text{Br}_{16}) \\ \text{Te}_4 \text{Br}_{16} \\ \text{yellow} \\ \text{mp } 388^\circ (\text{under } \text{Br}_2) \\ \text{bp } 414^\circ (\text{under } \text{Br}_2) \\ \text{PoBr}_4 \\ \text{bright red} \\ \text{mp } 330^\circ, \text{bp} \\ 360^\circ/200 \text{ mmHg} \end{array}$ | Te <sub>4</sub> I <sub>16</sub><br>black<br>mp 280°, d 100°<br>PoI <sub>4</sub><br>black<br>d > 200° |  |
| +6                                                                         | SeF <sub>6</sub><br>colourless gas<br>mp $-35^{\circ}$ (2 atm),<br>subl $-47^{\circ}$<br>TeF <sub>6</sub><br>colourless gas<br>mp $-38^{\circ}$ ,<br>subl $-39^{\circ}$                                          | ~                                                                                                                                                                                                                       | $\begin{array}{l} \textit{Mixed halides} \\ \text{TeBr}_2\text{Cl}_2  \text{yellow solid} \\ \text{mp } 292^\circ, \text{ bj} \\ \text{TeBr}_2\text{I}_2  \text{garnet-red cr} \\ \text{mp } 325^\circ, \text{ d} \\ \text{PoBr}_2\text{Cl}_2  \text{salmon pinl} \end{array}$                                                                                                                                                                   | d, ruby-red liquid<br>p 415°<br>ystals<br>420°<br>k (PoCl <sub>2</sub> + Br <sub>2</sub> vap)        |  |

 Table 16.5
 Halides of selenium, tellurium and polonium

and the results show a series of subhalides with various structural motifs based on the helical-chain structure of Te itself.<sup>(78)</sup> These are summarized in Fig. 16.11. Thus, reaction of Te and Cl<sub>2</sub> under carefully controlled conditions in a sealed tube<sup>(79)</sup> results in Te<sub>3</sub>Cl<sub>2</sub> (Fig. 16.11b) in which every third Te atom in the chain is oxidized by addition of 2 Cl atoms, thereby forming a series of 4coordinate pseudo-trigonal-bipyramidal groups with axial Cl atoms linked by pairs of unmodified Te atoms -Te-Te-TeCl<sub>2</sub>-Te-Te-TeCl<sub>2</sub>-.<sup>(80)</sup> Te<sub>2</sub>Br and Te<sub>2</sub>I consist of zigzag chains of Te in planar arrangement (Fig. 16.11c); along the chain is an alternation of trigonal pyramidal (pseudo-tetrahedral) and square-planar (pseudooctahedral) Te atoms. These chains are joined in pairs by cross-linking at the trigonal pyramidal Te atoms, thereby forming a ribbon of fused 6membered Te rings in the boat configuration.<sup>(80)</sup> A similar motif occurs in  $\beta$ -TeI (Fig. 16.11d) which is formed by rapidly cooling partially melted  $\alpha$ -TeI (see below) from 190°: in this case the third bond from the trigonal pyramidal Te atoms carries an I atom instead of being crosslinked to a similar chain.<sup>(81)</sup> The second, more stable modification,  $\alpha$ -TeI, features tetrameric molecules Te<sub>4</sub>I<sub>4</sub> which are themselves very loosely associated into chains by Te-I... Te links (Fig. 16.11e); the non-planar Te<sub>4</sub> ring comprises two non-adjacent 3-coordinate trigonal pyramidal Te atoms bridged on one side by a single 2-coordinate Te atom and on the other by a 4-coordinate planar >TeI<sub>2</sub> group. An unrelated structure motif is found in the

unusual intercalation compound,  $[(Te_2)_2(I_2)_x]$ (x = 0.42 - 1.0),<sup>(82)</sup> which is obtained as shiny, metallic-black air-stable crystals by hydrothermal reaction of 67% HI (aq.) on a 1:1 mixture of Te and GeTe at ca. 170° followed by slow cooling (18h). The structure comprises planar double layers of Te2 units intercalated by  $I_2$  up to the limiting formula [(Te<sub>2</sub>)<sub>2</sub>I<sub>2</sub>]. The Te atoms within the double layers exhibit distorted tetragonal pyramidal coordination with one short and four longer Te-Te distances (271.3 and 332.3 pm, respectively; cf. distances in Fig. 16.11). The I-I distance within the  $I_2$  molecules is 286.6 pm (cf. 271.5 pm in solid iodine, p. 803). The semiconductivity and nonlinear optical properties of these various tellurium subhalides have been much studied for possible electronic applications.

The only other "monohalides" of these chalcogens are the highly coloured heavy liquids  $Se_2Cl_2$  ( $d_{25}$  2.774 g cm<sup>-3</sup>) and  $Se_2Br_2$  ( $d_{15}$  $3.604 \,\mathrm{g}\,\mathrm{cm}^{-3}$ ). Both can be made by reaction of the stoichiometric amounts of the elements or better, by adding the halogen to a suspension of powdered Se in CS<sub>2</sub>. Reduction of SeX<sub>4</sub> with 3Se in a sealed tube at  $120^{\circ}$  is also effective.  $Se_2Br_2$  has a structure similar to that of  $S_2Cl_2$ and  $S_2F_2$  (pp. 689, 684) with a dihedral angle of 94°, angle Br-Se-Se 104° and a rather short Se-Se bond (224 pm, cf. 233.5 pm in monoclinic Se<sub>8</sub> and 237.3 pm in hexagonal Se<sub> $\infty$ </sub>).<sup>(83)</sup> The structure of Se<sub>2</sub>Cl<sub>2</sub> has not been determined but is probably similar. Se<sub>2</sub>Br<sub>2</sub> is, in fact, the metastable molecular form (also known as  $\beta$ -SeBr); the structure of the more stable  $\alpha$ -SeBr is as yet unknown.

Several mixed species have been identified in nonaqueous solutions by  $^{77}$ Se nmr spectroscopy. These include BrSeSeCl. Se<sub>3</sub>X<sub>2</sub> and Se<sub>4</sub>X<sub>2</sub>;<sup>(84)</sup> and ClSeSCl, BrSeSCl, ClSeSBr and

<sup>&</sup>lt;sup>78</sup> R. KNIEP and A. RABENAU, *Topics in Current Chemistry* **111**, 145–92 (1983).

<sup>&</sup>lt;sup>79</sup> A. RABENAU and H. RAU, Z. anorg. allg. Chem. **395**, 273–9 (1973).

<sup>&</sup>lt;sup>80</sup> R. KNIEP, D. MOOTZ and A. RABENAU, Angew. Chem. Int. Edn. Engl. **12**, 499–500 (1973). M. TAKEDA and N. N. GREENWOOD, J. Chem. Soc., Dalton Trans., 631–6 (1976).

<sup>&</sup>lt;sup>81</sup> R. KNIEP, D. MOOTZ and A. RABENAU, Angew. Chem. Int. Edn. Engl. **13**, 403-4 (1973). More complex chain and ribbon structures are observed for the ternary compounds  $\alpha$ -AsSeI,  $\beta$ -AsSeI,  $\alpha$ -AsTeI and  $\beta$ -AsTeI, all of which are isoelectronic with Se<sub> $\infty$ </sub> and Te<sub> $\infty$ </sub> (R. KNIEP and H. D. RESKI, Angew. Chem. Int. Edn. Engl. **20**, 212-4 (1981)).

<sup>&</sup>lt;sup>82</sup> R. KNIEP and H.-J. BEISTER, *Angew. Chem. Int. Edn. Engl.* **24**, 393–4 (1985).

<sup>&</sup>lt;sup>83</sup> D. KATRYNIOK and R. KNIEP, Angew. Chem. Int. Edn. Engl. **19**, 645 (1980).

<sup>&</sup>lt;sup>84</sup> M. LAMOUREUX and J. MILNE, *Polyhedron* **9**, 589–95 (1990).



Figure 16.11 Structural relations between tellurium and its subhalides: (a) tellurium, (b) Te<sub>3</sub>Cl<sub>2</sub>, (c) Te<sub>2</sub>Br and Te<sub>2</sub>I, (d)  $\beta$ -TeI, and (e)  $\alpha$ -TeI.



(a) [Se<sub>9</sub>Cl]<sup>\*</sup>

(d)  $[Se_2I_4]^{2+}$ 

(f) [Se<sub>6</sub>I]<sup>+</sup><sub>∞</sub> (schematic)

Figure 16.12 Structures of some selenium subhalide cations.

(e)  $[Se_6I_2]^{2+}$ 

BrSeSBr.<sup>(85)</sup> ClSeSCl, formed by mixing solutions of  $S_2Cl_2$  and  $Se_2Cl_2$ , has been reacted with titanocene pentasulfide (p. 672) to give mainly  $S_7$ , SeS<sub>6</sub> and 1,2-Se<sub>2</sub>S<sub>5</sub>, plus smaller amounts of 6-, 8-, 9- and 12-membered Se/S ring molecules.<sup>(86)</sup> The related reaction with SeBr<sub>2</sub> (SeBr<sub>4</sub> + Se) in MeCN yields similar Se/S heterocycles.<sup>(87)</sup>

(c) [SeI3]+

It is also convenient to mention here several cationic subhalide species that have recently been synthesized. Reaction of Se with [NO][SbCl<sub>6</sub>] in liquid SO<sub>2</sub> yields lustrous dark red crystals of  $[Se_9Cl]^+[SbCl_6]^-$  which is the first example of a 7-membered Se ring,  $[cyclo-Se_7-SeSeCl]^+$  (Fig. 16.12a).<sup>(88)</sup> Again, reaction of stoichiometric amounts of Se (or S), Br<sub>2</sub>

and AsF<sub>5</sub> in liquid SO<sub>2</sub> yields dark red crystals or [Br<sub>2</sub>Se–SeSeBr]<sup>+</sup>[AsF<sub>6</sub>]<sup>-</sup> (Fig. 16.12b)<sup>(89)</sup> or its S analogue. The first known binary Se/I species (albeit cationic rather than neutral) have been prepared<sup>(90)</sup> by reaction of Se<sub>4</sub><sup>2+</sup> and I<sub>2</sub> in SO<sub>2</sub>: The species SeI<sub>3</sub><sup>+</sup>, Se<sub>2</sub>I<sub>4</sub><sup>2+</sup>, Se<sub>6</sub>I<sub>2</sub><sup>2+</sup> were identified by <sup>77</sup>Se nmr spectroscopy and subsequently assigned the definitive structures shown in Fig. 16.12c,d,e after X-ray diffraction analysis.<sup>(91)</sup> The polymeric cation [Se<sub>6</sub>I]<sub>∞</sub><sup>+</sup> is also shown, (f).

Paradoxically, the most firmly established dihalides of the heavier chalcogens are the dark ruby-red PoCl<sub>2</sub> and the purple-brown PoBr<sub>2</sub> (Table 16.5). Both are formed by direct reaction of the elements or more conveniently by reducing PoCl<sub>4</sub> with SO<sub>2</sub> and PoBr<sub>4</sub> with H<sub>2</sub>S at 25°.

 <sup>&</sup>lt;sup>85</sup> J. MILNE, J. Chem. Soc., Chem. Commun., 1048-9 (1991).
 <sup>86</sup> R. STEUDEL, B. PLINKE, D. JENSEN and F. BAUMGART, Polyhedron, 10, 1037-48 (1991).

<sup>&</sup>lt;sup>87</sup> R. STEUDEL, D. JENSEN and F. BAUMGART, *Polyhedron* 9, 1199–208 (1990).

<sup>&</sup>lt;sup>88</sup> R. FAGGIANI, R. J. GILLESPIE, J. W. KOLIS and K. C. MALHOTRA, J. Chem. Soc., Chem. Commun., 591-2 (1987).

<sup>&</sup>lt;sup>89</sup> J. PASSMORE, M. TAJIK and P. S. WHITE, J. Chem. Soc., Chem. Commun., 175-7 (1988).

<sup>&</sup>lt;sup>90</sup> M. M. CARNELL, F. GREIN, M. MURCHIE, J. PASSMORE and C.-M. WONG, J. Chem. Soc., Chem. Commun., 225-7 (1986).

<sup>&</sup>lt;sup>91</sup> T. KLAPÖTKE and J. PASSMORE Acc Chem. Res. 22, 234–40 (1989).

Doubt has been cast on "TeCl2" and "TeBr2" mentioned in the older literature since no sign of these was found in the phase diagrams.<sup>(79)</sup> However, this is not an entirely reliable method of establishing the existence of relatively unstable compounds between covalently bonded elements (cf. P/S, p. 506, and S/I, p. 691). It has been claimed that TeCl<sub>2</sub> and TeBr<sub>2</sub> are formed when fused Te reacts with  $CCl_2F_2$  or  $CBrF_3$ ,<sup>(92)</sup> though these materials certainly disproportionate to  $TeX_4$ and Te on being heated and may indeed be eutectic-type phases in the system. SeCl<sub>2</sub> and SeBr<sub>2</sub> are unknown in the solid state but are thought to be present as unstable species in the vapour above SeX<sub>4</sub> and have been identified in equilibrium mixtures in nonaqueous solutions (see preceding paragraph).

## Tetrahalides

All 12 tetrahalides of Se, Te and Po are known except, perhaps, for SeI<sub>4</sub>. As with  $PX_5$  (p. 498) and SX<sub>4</sub> (p. 691) these span the "covalent-ionic" border and numerous structural types are known; the stereochemical influence of the lone-pair of electrons (p. 377) is also prominent. SeF<sub>4</sub> is a colourless reactive liquid which fumes in air and crystallizes to a white hygroscopic solid (Table 16.5). It can be made by the controlled fluorination of Se (using F<sub>2</sub> at 0°, or AgF) or by reaction of SF<sub>4</sub> with SeO<sub>2</sub> above 100°. SeF<sub>4</sub> can be handled in scrupulously dried borosilicate glassware and is a useful fluorinating agent. Its structure in the gas phase, like that of  $SF_4$ (p. 684), is pseudo-trigonal-bipyramidal with  $C_{2v}$ symmetry; the dimensions shown in Fig. 16.13a were obtained by microwave spectroscopy. The same structure persists in solution but, with increasing concentration there is an increasing tendency to association via intermolecular Fbridges. The structure in the crystalline phase also has Se bonded to 4F atoms in a distorted pseudotrigonal bipyramidal configuration as shown in Fig. 16.13b (Se– $F_{ax}$  180 pm, Se– $F_{eq}$  167 pm, with axial and equatorial angles subtended at Se of 169.3° and 96.9°, respectively).<sup>(93)</sup> However, these pseudo-tbp molecules are arranged in layers by weaker intermolecular interactions to neighbouring molecules so as to form an overall distorted octahedral environment with two further Se····F at 266 pm (Fig. 16.13b) somewhat reminiscent of the structure found earlier for TeF<sub>4</sub> (see Fig. 16.13c and below).

TeF<sub>4</sub> can be obtained as colourless, hygroscopic, sublimable crystals by controlled fluorination of Te or TeX<sub>2</sub> with  $F_2/N_2$  at 0°, or more conveniently by reaction of SeF<sub>4</sub> with TeO<sub>2</sub> at 80°. It decomposes above 190° with formation of  $TeF_6$  and is much more reactive than  $SeF_4$ . For example, it readily fluorinates SiO<sub>2</sub> above room temperature and reacts with Cu, Ag, Au and Ni at 185° to give the metal tellurides and fluorides. Adducts with BF<sub>3</sub>, AsF<sub>5</sub> and SbF<sub>5</sub> are known (see also p. 776). Although probably monomeric in the gas phase, crystalline TeF<sub>4</sub> comprises chains of cis-linked square-pyramidal TeF<sub>5</sub> groups (Fig. 16.13c) similar to those in the isoelectronic  $(SbF_4)_n$  ions (p. 565). The lonepair is alternately above and below the mean basal plane and each Te atom is displaced some 30 pm in the same direction. However, the local Te environment is somewhat less symmetrical than implied by this idealized description, and the Te-F distances span the range 183-228 pm.<sup>(93)</sup>

The other tetrahalides can all readily be made by direct reactions of the elements. Crystalline SeCl<sub>4</sub>, TeCl<sub>4</sub> and  $\beta$ -SeBr<sub>4</sub> are isotypic and the structural unit is a cubane-like tetramer of the same general type as [Me<sub>3</sub>Pt( $\mu_3$ -Cl)]<sub>4</sub> (p. 1168). This is illustrated schematically for TeCl<sub>4</sub> in Fig. 16.13d: each Te is displaced outwards along a threefold axis and thus has a distorted octahedral environment. This can be visualized as resulting from repulsions due to the Te lonepairs directed towards the cube centre and, in the limit, would result in the separation into

<sup>&</sup>lt;sup>92</sup> E. E. AYNSLEY, *J. Chem. Soc.* 3016-9 (1953). E. E. AYNSLEY and R. H. WATSON, *J. Chem. Soc.* 2603-6 (1955).

<sup>&</sup>lt;sup>93</sup> R. KNIEP, L. KORTE, R. KRYSCHI and W. POLL, Angew. Chem. Int. Edn. Engl. 23, 388-9 (1984).



Figure 16.13 Structures of some tetrahalides of Se and Te: (a) SeF<sub>4</sub> (gas), (b) crystalline SeF<sub>4</sub>, and schematic representation of the association of the pseudo-tbp molecules (see text), (c) coordination environment of Te in crystalline TeF<sub>4</sub> and schematic representation of the polymerized square pyramidal units, (d) the tetrameric unit in crystalline (TeCl<sub>4</sub>)<sub>4</sub>, and (e) two representations of the tetrameric molecules in Te<sub>4</sub>I<sub>16</sub> showing the shared edges of the {TeI<sub>6</sub>} octahedral subunits.

TeCl<sub>3</sub><sup>+</sup> and Cl<sup>-</sup> ions. Accordingly, the 3 tetrahalides are good electrical conductors in the fused state, and salts of  $SeX_3^+$  and  $TeCl_3^+$  can be isolated in the presence of strong halide ion acceptors, e.g.  $[SeCl_3]^+[GaCl_4]^-$ ,  $[SeBr_3]^+[AlBr_4]^-$ ,  $[TeCl_3]^+[AlCl_4]^-$ . In solution, however, the structure depends on the donor properties of the solvent:<sup>(94)</sup> in donor solvents such as MeCN, Me<sub>2</sub>CO and EtOH the electrical conductivity and vibrational spectra indicate the structure  $[L_2 \text{TeCl}_3]^+ \text{Cl}^-$ , where L is a molecule of solvent, whereas in benzene and toluene the compound dissolves as a non-conducting molecular oligomer which is tetrameric at a concentration of 0.1 molar but which is in equilibrium with smaller oligomeric units at lower concentrations. Removal of one TeCl<sub>3</sub><sup>+</sup> unit from the cubane-like structure of Te<sub>4</sub>Cl<sub>16</sub> leaves the trinuclear anion Te<sub>3</sub>Cl<sub>13</sub><sup>--</sup> which can be isolated from benzene solutions as the salt of the large counter-cation Ph<sub>3</sub>C<sup>+</sup>; the anion has the expected  $C_{3v}$  structure

<sup>&</sup>lt;sup>94</sup> N. N. GREENWOOD, B. P. STRAUGHAN and A. E. WILSON, J. Chem. Soc. (A) 2209–12 (1968).



comprising three edge-shared octahedra with a central triply bridging Cl atom.<sup>(95)</sup> Removal of a further TeCl<sub>3</sub><sup>+</sup> unit yields the edge-shared bi-octahedral dianion Te<sub>2</sub>Cl<sub>10</sub><sup>2-</sup> which was isolated as the crystalline salt [AsPh<sub>4</sub>]<sup>+</sup><sub>2</sub>[Te<sub>2</sub>Cl<sub>10</sub>]<sup>2-</sup>. Notional removal of a final {TeCl<sub>4</sub>} unit leaves the octahedral anion TeCl<sub>6</sub><sup>2-</sup> (p. 776) as in the scheme above.

Numerous crystal structures have been published of compounds containing the pyramidal cations  $Se^{IV}Cl_3^+$ ,  $Se^{IV}Br_3^+$ ,  $Te^{IV}Cl_3^+$ , etc.<sup>(96)</sup> and the anions  $Se^{II}Cl_4^{2-}$ ,  $Se_2^{II}Cl_6^{2-}$ ;<sup>(97)</sup>  $Se_3Cl_{13}^-$ ,  $Se_3Br_{13}^-$ ;<sup>(98)</sup>  $SeCl_5^-$ ,  $TeCl_5^-$ ,  $TeCl_6^{2-}$ , etc.<sup>(99)</sup> The anion structures are much as expected with the  $Se^{II}$  species featuring square planar (pseudo-octahedral) units, and the trinuclear  $Se^{IV}$  anions as in the tellurium analogue above. See also p. 776. There are, in addition, a fascinating series of bromoselenate(II) dianions based on fused planar {SeBr4} units, e.g.  $Se_3Br_8^{2-}$ ,  $Se_4Br_{14}^{2-}$ ,

and  $\text{Se}_5\text{Br}_{12}^{2-}$ , (see Fig. 16.14a,b,c)<sup>(100)</sup>. Access has also been gained to a series of novel mixed-valence bromopolyselenate (II,IV) dianions by exploiting the dissociation equilibria  $\frac{1}{4}\text{Se}_4\text{Br}_{16}$   $\implies$   $\text{SeBr}_4$   $\implies$   $\text{SeBr}_2$  + Br<sub>2</sub> and  $2\text{SeBr}_2$   $\implies$   $\text{Se}_2\text{Br}_2$  + Br<sub>2</sub>. Careful addition of Br<sub>2</sub> to such solutions in weakly polar organic solvents displaces these equilibria and permits the isolation of tetraalkylammonium or tetraphenylphosphonium salts of  $\text{Se}_2\text{Br}_8^{2-}$ ,  $\text{Se}_3\text{Br}_{10}^{2-}$ , and  $\text{Se}_4\text{Br}_{12}^{2-}$ , as dark red crystalline salts featuring fused square planar and octahedral units as illustrated in Fig. 16.15a,b,c.<sup>(101)</sup>

SeBr<sub>4</sub> itself is dimorphic: the  $\alpha$ -form, like  $\beta$ -SeBr<sub>4</sub> mentioned on p. 772, has a cubanelike tetrameric unit (Se-Br<sub>t</sub> 237 pm, Se-Br<sub> $\mu$ </sub> 297 pm) but the two forms differ in the spacial arrangement of the tetramers.<sup>(102)</sup> TeI<sub>4</sub> has yet another structure which involves a tetrameric arrangement of edge-shared {TeI<sub>6</sub>} octahedra not previously encountered in binary inorganic compounds (Fig. 16.13e).<sup>(103)</sup> The molecule is close to idealized  $C_{2h}$  symmetry with each terminal octahedron sharing 2 edges with the 2 neighbouring central octahedra

<sup>&</sup>lt;sup>95</sup> B. KREBS and V. PAULAT, Z. Naturforsch. **34b**, 900-5 (1979), and references therein.

<sup>&</sup>lt;sup>96</sup> B. H. CHRISTIAN, M. J. COLLINS, R. J. GILLESPIE and J. F. SAWYER, *Inorg. Chem.* **25**, 777–88 (1986). B. NEUMÜLLER, C. LAU and K. DEHNICKE, Z. anorg. allg. Chem. **622**, 1847–53 (1996).

<sup>&</sup>lt;sup>97</sup> B. KREBS, E. LÜHRS, R. WILLMER and F.-P. AHLERS, Z. anorg. allg. Chem. **592**, 17–34 (1991). See also H. FOLKERTS, K. DEHNICKE, J. MAGULL, H.GOESMANN and D. FENSKE, Z. anorg. allg. Chem. **620**, 1301–6 (1994).

<sup>&</sup>lt;sup>98</sup> F.-P. AHLERS, E. LÜHRS and B. KREBS, Z. anorg. allg. Chem. **594**, 7-22 (1991).

<sup>&</sup>lt;sup>99</sup> B. BORGSEN, F. WELLER and K. DEHNICKE, Z. anorg. allg. Chem. **596**, 55-61 (1991), and 2nd part of ref. 96.

<sup>&</sup>lt;sup>100</sup> B. KREBS, F.-P. AHLERS and E. LÜHRS, Z. anorg. allg. Chem. **597**, 115–32 (1991).

<sup>&</sup>lt;sup>101</sup> B. KREBS, E. LÜHRS and F.-P. AHLERS, Angew. Chem. Int. Edn. Engl. 28, 187-9 (1989).

<sup>&</sup>lt;sup>102</sup> P. BORN, R. KNIEP and D. MOOTZ, Z. anorg. allg. Chem. **451**, 12–24 (1979).

<sup>&</sup>lt;sup>103</sup> V. PAULAT and B. KREBS, Angew. Chem. Int. Edn. Engl. **15**, 39-40 (1976).



Figure 16.14 Structures of some bromoselenate(II) anions.



Figure 16.15 Structures of some mixed-valence bromopolyselenate(II,IV) anions.

and each central octahedron sharing 3 edges with its 3 neighbours (Te-I<sub>t</sub> 277 pm. Te-I<sub> $\mu_2$ </sub> 311 pm, Te-I<sub> $\mu_3$ </sub> 323 pm). There is no significant intermolecular I···I bonding. Comparison of the structures and bond data for the homologous series TeF<sub>4</sub>, TeCl<sub>4</sub>(TeBr<sub>4</sub>), TeI<sub>4</sub> reveals an increasing delocalization of the Te<sup>IV</sup> lone-pair. This effect is also observed in the compounds of other *ns*<sup>2</sup> elements (e.g. Sn<sup>II</sup>, Pb<sup>II</sup>, As<sup>III</sup>, Sb<sup>III</sup>, Bi<sup>III</sup>, I<sup>V</sup>; see pp. 380, 383, 568) and correlates with the gradation of the halogens.

The detailed structures of PoX<sub>4</sub> are unknown. Some properties are in Table 16.5. PoF<sub>4</sub> is not well characterized. PoCl<sub>4</sub> forms bright-yellow monoclinic crystals which can be melted under an atmosphere of chlorine, and PoBr<sub>4</sub> has a fcc lattice with  $a_0 = 560$  pm. These compounds and PoI<sub>4</sub> can be made by direct combination of the elements or indirectly, e.g. by the chlorination of  $PoO_2$  with HCl,  $PCl_5$  or  $SOCl_2$ , or by the reaction of  $PoO_2$  with HI and 200°. Similar methods are used to prepare the tetrahalides of Se and Te, e.g.:

| TeCl <sub>4</sub> : | $Cl_2 + Te;$ SeCl <sub>2</sub> on Te, TeO <sub>2</sub> or TeCl <sub>2</sub> ; |
|---------------------|-------------------------------------------------------------------------------|
|                     | $CCl_4 + TeO_2$ at 500°                                                       |
| TeBr <sub>4</sub> : | Te + Br <sub>2</sub> at room temp; aq HBr on TeO <sub>2</sub>                 |
| TeI <sub>4</sub> :  | Heat $Te + I_2$ ; $Te + MeI$ ; $TeBr_4 + EtI$                                 |
|                     |                                                                               |

The two mixed tellurium(IV) halides listed in Table 16.5 were prepared by the action of liquid  $Br_2$  on TeCl<sub>2</sub> to give the yellow solid TeBr<sub>2</sub>Cl<sub>2</sub>, and by the action of I<sub>2</sub> on TeBr<sub>2</sub> in ether solution to give the red crystalline TeBr<sub>2</sub>I<sub>2</sub>; their structures are as yet unknown.

#### Hexahalides

The only hexahalides known are the colourless gaseous fluorides  $SeF_6$  and  $TeF_6$  and the volatile

liquids TeClF<sub>5</sub> and TeBrF<sub>5</sub>. The hexafluorides are prepared by direct fluorination of the elements or by reaction of BrF<sub>3</sub> on the dioxides. Both are octahedral with Se-F 167-170 pm and Te-F 184 pm. SeF<sub>6</sub> resembles SF<sub>6</sub> in being inert to water but it is decomposed by aqueous solutions of KI or thiosulfate. TeF<sub>6</sub> hydrolyses completely within 1 day at room temperature.

The mixed halides TeClF<sub>5</sub> and TeBrF<sub>5</sub> are made by oxidative fluorination of TeCl<sub>4</sub> or TeBr<sub>4</sub> in a stream of F<sub>2</sub> diluted with N<sub>2</sub> at 25°. Under similar conditions TeI<sub>4</sub> gave only TeF<sub>6</sub> and IF<sub>5</sub>. TeClF<sub>5</sub> can also be made by the action of ClF on TeF<sub>4</sub>, TeCl<sub>4</sub> or TeO<sub>2</sub> below room temperature; it is a colourless liquid, mp  $-28^{\circ}$ , bp 13.5°, which does not react with Hg, dry metals or glass at room temperature.

#### Halide complexes

It is convenient to include halide complexes in this section on the halides of Se. Te and Po and, indeed, some have already been alluded to above. In addition, pentafluoroselenates(IV) can be obtained as rather unstable white solids MSeF5 by dissolving alkali metal fluorides or TlF in SeF<sub>4</sub>. The crystal structure of Me<sub>4</sub>NSeF<sub>5</sub> features square-pyramidal  $SeF_5^-$  ions,<sup>(104)</sup> with  $Se-F_{apex}$ 171 pm Se- $F_{base}$  185 pm and the angle  $F_a$ -Se- $F_b$ 84°, implying that the Se atom and its lone pair of electrons lies some 20 pm below the basal plane (cf. Fig. 16.13b). The tellurium analogues are best prepared by dissolving MF and TeO<sub>2</sub> in aqueous HF or  $SeF_4$ ; they are white crystalline solids. The TeF<sub>5</sub><sup>-</sup> ion (like SeF<sub>5</sub><sup>-</sup>) has a distorted square-based pyramidal structure  $(C_{4n})$  in which the Te atom (and pendant lone-pair of electrons) is about 30 pm below the basal plane with Te- $F_{apex}$  184 pm, Te- $F_{base}$  196 pm and the angle  $F_a-Te-F_b$  81°<sup>(104)</sup> (cf. TeF<sub>4</sub>, Fig. 16.13c). The resemblance to other isoelectronic  $MF_5^{n\pm}$  species is illustrated in Table 16.6; in each case, the fact that the distance  $M-F_{base}$  is greater than  $M-F_{apex}$ and that the angle  $F_{apex}$  - M- $F_{base}$  is less than 90°

 
 Table 16.6
 Dimensions of some isoelectronic squarepyramidal species

| Species            | M-Fapex/pm | M-F <sub>base</sub> /pm | $\angle F_{apex} - M - F_{base}$ |  |  |
|--------------------|------------|-------------------------|----------------------------------|--|--|
| SbF5 <sup>2-</sup> | 200        | 204                     | 83°                              |  |  |
| TeF5-              | 184        | 196                     | 81°                              |  |  |
| BrF5               | 168        | 181                     | 84°                              |  |  |
| XeF <sub>5</sub> + | 181        | 188                     | 79°                              |  |  |

can be ascribed to repulsive interaction of the basal M-F bonds with the lone-pair of electrons.

Attempts to prepare compounds containing the TeF<sub>6</sub><sup>2-</sup> ion have not been successful though numerous routes have been tried. However, reaction of Me<sub>4</sub>NF with TeF<sub>6</sub> in anhydrous MeCN affords the novel 7- and 8-coordinated species TeF<sub>7</sub><sup>-</sup> ( $D_{5h}$ , pentagonal bipyramid)<sup>(105,106)</sup> and TeF<sub>8</sub><sup>2-</sup> ( $D_{4d}$ , square antiprism),<sup>(105)</sup> There is also a remarkable heterolytic reaction of TeF<sub>4</sub> with 4-coordinated rhodium complexes [Rh(CO)X(PEt<sub>3</sub>)<sub>2</sub>], (X = Cl, Br, NCS, NCO) at -78°C to give the unusual ionic complex [Rh(CO)X(PEt<sub>3</sub>)<sub>2</sub>(TeF<sub>3</sub>)]<sup>+</sup>(TeF<sub>5</sub>)]<sup>-</sup>.<sup>(107)</sup> Note that the TeF<sub>3</sub><sup>+</sup> ligand is isoelectronic with PF<sub>3</sub>, SbF<sub>3</sub>, etc.

By contrast to the absence of  $\text{TeF}_6^{2-}$ , compounds of the complex anions  $\text{SeX}_6^{2-}$  and  $\text{TeX}_6^{2-}$  (X = Cl, Br, I) are readily prepared in crystalline form by direct reaction (e.g.  $\text{TeX}_4 + 2\text{MX}$ ) or by precipitating the complex from a solution of  $\text{SeO}_2$  or  $\text{TeO}_2$  in aqueous HX. Their most notable feature is a regular octahedral structure despite the fact that they are formally 14-electron species; it appears that with large monatomic ligands of moderate electronegativity the stereochemistry is dominated by inter-ligand repulsions and the lone-pair then either resides in an  $ns^2$  orbital for isolated ions or is delocalized in a low-energy solid-state band.<sup>(108)</sup> Similar results

<sup>&</sup>lt;sup>104</sup> A. R. MAHJOUB, D. LEOPOLD and K. SEPPELT, Z. anorg. allg. Chem. **618**, 83-8 (1992).

<sup>&</sup>lt;sup>105</sup> K. O. CHRISTE, J. P. C. SANDERS, G. J. SCHROBILGEN and W. W. WILSON, *J. Chem. Soc., Chem. Commun.*, 837–40 (1991) and references cited therein.

<sup>&</sup>lt;sup>106</sup> A. R. MAHJOUB and K. SEPPELT, J. Chem. Soc., Chem. Commun., 840-1 (1991).

<sup>&</sup>lt;sup>107</sup> E. A. V. EBSWORTH, J. H. HOLLOWAY and P. G. WATSON, *J. Chem. Soc., Chem. Commun.*, 1443-4 (1991).

<sup>&</sup>lt;sup>108</sup> For experimental results and theoretical discussion see I. D. BROWN, *Can. J. Chem.* **42**, 2758-67 (1964);

| Property                                       | SeOF <sub>2</sub> | SeOCl <sub>2</sub> | SeOBr <sub>2</sub> | SeO <sub>2</sub> F <sub>2</sub> | (SeOF <sub>4</sub> ) <sub>2</sub> | F <sub>5</sub> SeOF | F <sub>5</sub> SeOOSF <sub>5</sub> |
|------------------------------------------------|-------------------|--------------------|--------------------|---------------------------------|-----------------------------------|---------------------|------------------------------------|
| MP/°C<br>BP/°C                                 | 15<br>125         | 10.9<br>177.2      | 41.6<br>~220 (d)   | -99.5<br>-8.4                   | -12<br>65                         | -54 -29             | -62.8<br>76.3                      |
| Density/g cm <sup>-3</sup><br>( $T^{\circ}C$ ) | 2.80 (21.5°)      | 2.445 (16°)        | 3.38 (50°)         |                                 | -                                 |                     |                                    |

 Table 16.7
 Some physical properties of selenium oxohalides

were noted for octahedral  $Sn^{II}$  (p. 380) and  $Sb^{III}$  (p. 568).

## 16.2.4 Oxohalides and pseudohalides<sup>(1)</sup>

Numerous oxohalides of Se<sup>IV</sup> and Se<sup>VI</sup> are known, SeOF<sub>2</sub> and SeOCl<sub>2</sub> are colourless, fuming, volatile liquids, whereas SeOBr<sub>2</sub> is a rather less-stable orange solid which decomposes in air above  $50^{\circ}$  (Table 16.7). The compounds can be conveniently made by reacting SeO<sub>2</sub> with the appropriate tetrahalide and their molecular structure is probably pyramidal (like  $SOX_2$ , p. 694). SeOF<sub>2</sub> is an aggressive reagent which attacks glass, reacts violently with red phosphorus and with powdered SiO<sub>2</sub> and slowly with Si. In the solid state, X-ray studies have revealed that the pyramidal SeOF<sub>2</sub> units are linked by O and F bridges into layers thereby building a distorted octahedral environment around each Se with 3 close contacts (to O and 2F) and 3 (longer) bridging contacts grouped around the lone-pair to neighbouring units.<sup>(109)</sup> This contrasts with the discrete

molecular structure of  $SOF_2$  and affords yet another example of the influence of preferred coordination number on the structure and physical properties of isovalent compounds, e.g. molecular BF<sub>3</sub> and 6-coordinate AlF<sub>3</sub>, molecular GeF<sub>4</sub> and the 6-coordinate layer lattice of SnF<sub>4</sub> and, to a less extent, molecular AsF<sub>3</sub> and F-bridged SbF<sub>3</sub>. (See also the Group 14 dioxides, etc.)

SeOCl<sub>2</sub> (Table 16.7) is a useful solvent: it has a high dielectric constant (46.2 at 20°), a high dipole moment (2.62 D in benzene) and an appreciable electrical conductivity (2 ×  $10^{-5}$  ohm<sup>-1</sup> cm<sup>-1</sup> at 25°). This last has been ascribed to self-ionic dissociation resulting from chloride-ion transfer: 2SeOCl<sub>2</sub>  $\implies$  SeOCl<sup>+</sup> + SeOCl<sub>3</sub><sup>-</sup>.

Oxohalides of Se<sup>VI</sup> are known only for fluorine (Table 16.7). SeO<sub>2</sub>F<sub>2</sub> is a readily hydrolysable colourless gas which can be made by fluorinating SeO<sub>3</sub> with SeF<sub>4</sub> (or KBF<sub>4</sub> at 70°) or by reacting BaSeO<sub>4</sub> with HSO<sub>3</sub>F under reflux at 50°. Its vibrational spectra imply a tetrahedral structure with  $C_{2v}$  symmetry as expected. By contrast, SeOF<sub>4</sub> is a dimer [F<sub>4</sub>Se( $\mu$ -O)<sub>2</sub>SeF<sub>4</sub>] in which each Se achieves octahedral coordination via the 2 bridging O atoms: the planar central Se<sub>2</sub>O<sub>2</sub> ring has Se-O 178 pm and angle Se-O-Se 97.5°, and Se-F<sub>eq</sub> and Se-F<sub>ax</sub> are 167 and 170 pm respectively.<sup>(110)</sup>

Two further oxofluorides of  $Se^{VI}$  can be prepared by reaction of  $SeO_2$  with a mixture of  $F_2/N_2$ : at 80° the main product is the "hypofluorite"  $F_5SeOF$  whereas at 120° the peroxide  $F_5SeOOSeF_5$  predominates. The compounds (Table 16.7) can be purified by

D. S. URCH, J. Chem. Soc. 5775-81 (1964); N. N. GREEN-WOOD and B. P. STRAUGHAN, J. Chem. Soc. (A) 962-4 (1966); T. C. GIBB, R. GREATREX, N. N. GREENWOOD and A. C. SARMA, J. Chem. Soc. (A) 212-17 (1970). J. D. DONALDSON, S. D. ROSS, J. SILVER and P. WATKISS, J. Chem. Soc., Dalton Trans., 1980-3 (1975), and references therein. There is, however, some very recent X-ray crystallographic evidence that the anion in  $[Bu'NH_3]_2^+[TeBr_6]^{2-}$ is trigonally distorted, with 3 long bonds of 276 pm (av.) and 3 shorter bonds of 261 pm, although the corresponding TeCl<sub>6</sub><sup>2-</sup> salt had regular octahedral O<sub>h</sub> symmetry: see L.-J. BAKER, C. E. F. RICKARD and M. J. TAYLOR, Polyhedron 14, 401-5 (1995).

<sup>&</sup>lt;sup>109</sup> J. C. DEWAN and A. J. EDWARDS, J. Chem. Soc., Dalton Trans., 2433-5 (1976).

<sup>&</sup>lt;sup>110</sup> H. OBERHAMMER and K. SEPPELT, *Inorg. Chem.* 18, 2226–9 (1979).