§17.2.8

853

In addition to the stable I_2O_5 and moderately stable I_4O_9 and I_2O_4 , several short-lived radicals have been detected and characterized during γ radiolysis and flash photolysis of iodates in aqueous alkali:

$$IO_{3}^{-} \xrightarrow{h\nu} IO_{2} + O^{-}$$
$$IO_{3}^{-} + O^{-} \xrightarrow{H_{2}O} IO_{3} + 2OH^{-}$$
$$IO_{3}^{-} + IO_{2} \longrightarrow IO + IO_{4}^{-}$$

The endothermic radical IO has also been studied in the gas phase: the interatomic distance is 186.7 pm and the bond dissociation energy $\sim 175 \pm 20 \text{ kJ mol}^{-1}$. It thus appears that, although the higher oxides of iodine are much more stable than any oxide of Cl or Br, nevertheless, IO is much less stable than ClO (p. 849) or BrO (p. 851). Its enthalpy of formation and other thermodynamic properties are: $\Delta H_{\rm f}^{\circ}(298 \text{ K}) \ 175.1 \text{ kJ mol}^{-1}, \ \Delta G_{\rm f}^{\circ}(298 \text{ K}) \ 149.8 \text{ kJ mol}^{-1}, S^{\circ}(298 \text{ K}) \ 245.5 \text{ J K}^{-1} \text{mol}^{-1}$.

17.2.8 Oxoacids and oxoacid salts

General considerations (115)

The preparative chemistry and technical applications of the halogen oxoacids and their salts have been actively pursued and developed for over two centuries (p. 790) and can now be very satisfactorily systematized in terms of general thermodynamic principles. The thermodynamic data are codified in the form of reduction potentials and equilibrium constants and these, coupled with the relative rates of competing reactions, allow a vast range of aqueous solution chemistry of the halogens to be interrelated. Thus, although all the halogens are to some extent soluble in water, extensive disproportionation reactions and/or mutual redox reactions with the solvent can occur to an extent that depends crucially on conditions such as pH and concentration (which influence the thermodynamic variables) and the presence of catalysts or light quanta (which can overcome kinetic activation barriers). Fluorine is again exceptional and, because of its very high standard reduction potential, $E^{\circ}(\frac{1}{2}F_2/F^-) + 2.866$ V, reacts very strongly with water at all values of pH (p. 629). Its inability to achieve formal oxidation states higher than +1also limits the available oxoacids to hypofluorous acid HOF (p. 856). Numerous other oxoacids are known for the heavier halogens (Table 17.20) though most cannot be isolated pure and are stable only in aqueous solution or in the form of their salts. Anhydrous perchloric acid (HClO₄), iodic acid (HIO₃), paraperiodic acid (H_5IO_6) and metaperiodic acid (HIO₄) have been isolated as pure compounds.

The standard reduction potentials for Cl, Br and I species in acid and in alkaline aqueous solutions are summarized in Fig. 17.18. The couples $\frac{1}{2}X_2/X^-$ are independent of pH and, together with the value for F₂, indicate a steadily decreasing oxidizing power of the halogens in the sequence F₂(+2.866 V) > Cl₂(+1.358 V) > Br₂(+1.066 V) > I₂(+0.536V). Remembering

	14010 11120	onouclus of m	e maiogenis	
Generic name	Chlorine	Bromine	Iodine	Salts
Hypohalous acids ^(b)	HOCl ^(a)	HOBr ^(a)	HOI ^(a)	Hypohalites
Halous acids	HOClO ^(a)	(HOBrO?) ^(a)		Halites
Halic acids	HOClO ₂ ^(a)	HOBrO ₂ ^(a)	HOIO ₂	Halates
Perhalic acids	HOClO ₃	HOBrO ₃ ^(a)	HOIO ₃ , (HO) ₅ IO,	Perhalates
			$H_4I_2O_7$	

Table 17.20 Oxoacids of the halogens

^(a)Stable only in aqueous solution.

^(b)HOF also known (p. 856).

¹¹⁵ Ref. 23, Chemical properties of the halogens – redox properties: aqueous solutions, pp. 1188–95; Oxoacids and oxoacid salts of the halogens, pp. 1396–1465.

Figure 17.18 Standard reduction potentials for Cl, Br and I species in acid and alkaline solutions. For At see p. 886.

that $E^{\circ}(\frac{1}{2}O_2/H_2O) = 1.229 V$ these values indicate that the potentials for the reaction.

$$X_2 + H_2O \longrightarrow \frac{1}{2}O_2 + 2H^+ + 2X^-$$

decrease in the sequence $F_2(+1.637 V) > Cl_2(+0.129 V) > Br_2(-0.163 V) > I_2(-0.693 V)$. As already mentioned, this implies that F_2 will oxidize water to O_2 and the same should happen with chlorine in the absence of sluggish kinetic factors. In fact, were it not for the further fortunate circumstance of an appreciably higher overvoltage for oxygen, chlorine would not be evolved during the electrolysis of aqueous chloride solutions at low current densities: the phenomenon is clearly of great technical importance for the industrial preparation of chlorine by electrolysis of brines (p. 798).

For all other couples in Fig. 17.18 (i.e. for all couples involving oxygenated species) an increase in pH causes a dramatic reduction in E° as expected (p. 435). For example, in acid solution the couple $\text{BrO}_3^{-}/\frac{1}{2}\text{Br}_2(1)$ refers to the

equilibrium reaction

$$BrO_3^- + 6H^+ + 5e^- \iff \frac{1}{2}Br_2 + 3H_2O;$$

$$(E^\circ \ 1.478 \ V)$$

The equilibrium constant clearly depends on the sixth power of the hydrogen-ion concentration and, when this is reduced (say to 10^{-14} in 1 M alkali), the potential is likewise diminished by an amount $\sim (RT/nF) \log_{10}[H^+]^6$, i.e. by *ca.* (0.0592/5) × 14 × 6 \simeq 0.99V. In agreement with this (Fig. 17.18) the potential at pH 14 is 0.485 V (calc \sim 0.49 V) for the reaction

$$BrO_3^- + 3H_2O + 5e^- \Longrightarrow \frac{1}{2}Br_2(1) + 6OH^-$$

The data in Fig. 17.18 are presented in graphical form in Fig. 17.19 which shows the volt-equivalent diagrams (p. 436) for acid and alkaline solutions. It is clear from these that Cl_2 and Br_2 are much more stable towards disproportionation in acid solution (concave angle at X_2) than in alkaline solutions (convex angle). In terms of

Figure 17.19 Volt-equivalent diagrams for Cl, Br and I.

equilibrium constants:

acid solution :

$$X_2 + H_2O \iff HOX + H^+ + X^-;$$
$$K_{ac} = \frac{[HOX][H^+][X^-]}{[X_2]}$$

alkaline solution :

$$X_2 + 2OH^- \iff OX^- + H_2O + X^-;$$

 $K_{alk} = \frac{[OX^-][X^-]}{[X_2][OH^-]^2}$

For Cl₂, Br₂ and I₂, $K_{\rm ac}$ is 4.2×10^{-4} , 7.2×10^{-9} and 2.0×10^{-13} mol² l⁻² respectively, thereby favouring the free halogens, whereas $K_{\rm alk}$ is 7.5×10^{15} , 2×10^8 and $30 \, {\rm mol}^{-1}$ l respectively, indicating a tendency to disproportionation which is overwhelming for Cl₂ but progressively less pronounced for Br₂ and I₂. In actuality the situation is somewhat more complicated because of the tendency of the hypohalite ions themselves to disproportionate further to produce the corresponding halite ions:

$$3XO^- \Longrightarrow 2X^- + XO_3^-$$

The equilibrium constant for this reaction is very favourable in each case: 10^{27} for ClO⁻, 10^{15} for BrO⁻, and 10^{20} for IO⁻. However, particularly in the case of ClO⁻, the rate of disproportionation is slow at room temperature and only becomes appreciable above 70°. Similarly, the disproportionation

$$4\text{ClO}_3^- \rightleftharpoons \text{Cl}^- + 3\text{ClO}_4^-$$

has an equilibrium constant of 10^{20} but the reaction is very slow even at 100° . By contrast, as indicated by the concavity of the volt-equivalent curve at BrO₃⁻ and IO₃⁻ (Fig. 17.19), the bromate and iodate ions are stable with respect to disproportionation (in both acid and alkaline solutions), e.g.:

$$7IO_3^- + 9H_2O + 7H^+ \implies I_2 + 5H_5IO_6;$$

 $K = 10^{-85} \text{ mol}^{-8} I^8$
 $4IO_3^- + 3OH^- + 3H_2O \implies I^- + 3H_3IO_6^{2-};$
 $K = 10^{-44} \text{ mol}^{-3} I^3$

More detailed consideration of these various equilibria and other redox reactions of the halogen oxoacids will be found under the separate headings below. As expected, the *rates* of redox reactions of the halogen oxyanions will depend, sometimes crucially, on the precise conditions used. However, as a very broad generalization, they tend to become progressively faster as the oxidation state of the halogen decreases, i.e.:

$$ClO_4^- < ClO_3^- < ClO_2^- \ll ClO^- \approx Cl_2;$$

BrO_4^- < BrO_3^- \ll BrO^- \approx Br₂;
IO₄⁻ < IO₃⁻ < I₂; and ClO₄⁻ < BrO₄⁻ < IO₄⁻.

The strengths of the monobasic acids increase rapidly with increase in oxidation state of the halogen in accordance with Pauling's rules (p. 50). For example, approximate values of pK_a are: HOC1 7.52, HOC10 1.94, HOC10₂ - 3, HOC10₃ - 10. The pK_a values of related acids increase in the sequence Cl < Br < I.

Hypohalous acids, HOX, and hypohalites, $XO^{-(98,115)}$

Hypofluorous acid is the most recent of the halogen oxoacids to be prepared.⁽¹¹⁶⁾ Traces were obtained in 1968 by photolysis of a mixture of F_2 and H_2O in a matrix of solid N_2 at 14-20 K but weighable amounts of the compound were first obtained by M. H. Studier and E. H. Appelman in 1971 by the fluorination of ice:

$$F_2 + H_2O \rightleftharpoons HOF + HF$$

The isolation of HOF depends on removing it rapidly from the reaction zone so that it is prevented from reacting further with HF, F_2 or H_2O (see below). The method used was to recirculate F_2 at ~100 mmHg through a Kel-F U-tube filled with moistened Räschig rings cut from Teflon "spaghetti" tubing (Kel-F is polymerized chlorotrifluoroethene; Teflon is polymerized tetrafluoroethene). The U-tube was held at about -40°C and the effluent was passed through U-tubes cooled to -50° and -79° to

¹¹⁶ E. H. APPELMAN, Acc. Chem. Res. 6, 113-7 (1973).

remove water and HF, and, finally, through a U-tube at -183° to trap the HOF. The use of the -50° trap was found to be critical because without it all of the HOF was caught in the -79° with the H₂O, from which it could not be isolated because of subsequent reaction.

HOF is a white solid which melts at -117° to a pale-yellow liquid. Its bp (extrap) is somewhat below room temperature and its volatility is thus comparable to that of HF with which it is always slightly contaminated. Spectroscopic data establish a nonlinear structure with H-O 96.4 pm, O-F 144.2 pm, and bond angle H-O-F 97.2°: this is the smallest known bond angle at an unrestricted O atom (cf. H-O-H 104.7°, F-O-F 103.2°). It has been suggested that this arises in part from electrostatic attraction of the 2 terminal atoms, since nmr data lead to a charge of $\sim +0.5e$ on H and $\sim -0.5e$ on F. The negative charge on F is intermediate between those estimated for F in HF and OF_2 and this emphasizes the strictly formal nature of the +1 oxidation state for F in HOF. Subsequently, the crystal structure of HOF was determined at -160° in an experimental tour de force.⁽¹¹⁷⁾ The dimensions were similar to those found for the gaseous molecule except for the expected artefact of a slightly shorter H-O distance due to the X-ray method (H-O 0.78 pm, O-F 144.2 pm, angle HOF 101°). The molecules are arranged in chains along a screw axis parallel to the b axis of the crystal as a result of almost linear $O-H\cdots O$ bonds (angle 163°, O···O 289.5 pm).

The most prominent chemical property of HOF is its instability. It decomposes spontaneously (sometimes explosively) to HF and O_2 with a half-life of *ca.* 30 min in a Teflon apparatus at room temperature and 100 mmHg. It reacts rapidly with water to produce HF, H₂O₂ and O₂; in dilute aqueous acid H₂O₂ is the predominant product whereas in alkaline solution O₂ is the principal O-containing product. The kinetics of these processes have been studied and, by use of ¹⁸O-enriched H₂O₂, it has been shown, uniquely, that the O_2 formed in the reaction, [HOF + H₂O₂ \rightarrow O₂ + HF + H₂O], contains a substantial amount of oxygen from the HOF.⁽¹¹⁸⁾

HOF reacts with HF to reverse the equilibrium used in its preparation. It does not dehydrate to its formal anhydride OF_2 but in the presence of H_2O it reacts with F_2 to form this species.

$$F_2 + HOF \xrightarrow{H_2O} OF_2 + HF$$

This reaction does not occur in the gas phase, however, in the absence of H_2O .

By contrast with the elusive though isolable HOF, the history of HOCl goes back over two centuries to the earliest experiments of C. W. Scheele with Cl_2 in 1774 (p. 792), and the bleaching and sterilizing action of hypochlorites have long been used both industrially and domestically. HOCl, HOBr and HOI are all highly reactive, relatively unstable compounds that are known primarily in aqueous solutions. The most convenient preparation of such solutions is by perturbing the hydrolytic disproportionation equilibrium (p. 856):

$$X_2 + H_2O \Longrightarrow H^+ + X^- + HOX$$

by addition of HgO or Ag_2O so as to remove the halide ions. On an industrial scale, aqueous solutions of HOCl (containing Cl⁻) are readily prepared by reacting Cl₂ with aqueous alkali. With strong bases {NaOH, Ca(OH)₂} the reaction proceeds via the intermediate formation of hypochlorite, but this intermediate product is not formed with weaker bases such as NaHCO₃ or CaCO₃:

$$\begin{array}{c} Cl_2 + 2OH^- \xrightarrow{aq} \{ClO^- + Cl^- + H_2O\} \\ & \xrightarrow{Cl_2} 2HOCl + 2Cl^- \end{array}$$

Chloride-free solutions (up to 5 M concentration) can be made by treating Cl_2O with water at 0° or industrially by passing Cl_2O gas into water. In fact, concentrated solutions of HOCl also contain appreciable amounts of Cl_2O which can form a

¹¹⁷ W. POLL, G. PAWELKE, D. MOOTZ and E. H. APPELMAN, Angew. Chem. Int. Edn. Engl. **27**, 392-3 (1988).

¹¹⁸ E. H. APPELMAN and R. C. THOMPSON, J. Am. Chem. Soc., **106**, 4167–72 (1984).

separate layer and which is probably the source of the yellow colour of such solutions:

2HOCl(aq)
$$\iff$$
 Cl₂O(aq) + H₂O(l);
 $K(0^{\circ}C) = 3.55 \times 10^{-3} \text{mol}^{-1} \text{ l}$

Organic solutions can be obtained in high yield by extracting HOCl from Cl⁻-containing aqueous solutions into polar solvents such as ketones, nitriles or esters. Electrodialysis using semipermeable membranes affords an alternative route.

Solutions of the corresponding hypohalites can be made by the rapid disproportionation of the individual halogens in cold alkaline solutions (p. 856):

$$X_2 + 2OH^- \Longrightarrow X^- + OX^- + H_2O$$

Such solutions are necessarily contaminated with halide ions and with the products of any subsequent decomposition of the hypohalite anions themselves. Alternative routes are the electrochemical oxidation of halides in cold dilute solutions or the chemical oxidation of bromides and iodides:

 $\begin{array}{ll} X^- + OCl^- & \longrightarrow & OX^- + Cl^- & (X = Br, I) \\ I^- + OBr^- & \longrightarrow & OI^- + Br^- \end{array}$

Hypochlorites can also be made by careful neutralization of aqueous solutions of hypochlorous acid or Cl_2O .

The most stable solid hypochlorites are those of Li, Ca, Sr and Ba (see below). NaOCl has only poor stability and cannot be isolated pure; KOCl is known only in solution, Mg yields a basic hypochlorite and impure Ag and Zn hypochlorites have been reported. Hydrated salts are also known. Solid, yellow, hydrated hypobromites NaOBr. xH_2O (x = 5, 7) and KOBr. $3H_2O$ can be crystallized from solutions obtained by adding Br₂ to cold conc solutions of MOH but the compounds decompose above 0°C. No solid metal hypoiodites have yet been isolated.

HOCl is more stable than HOBr and HOI and its microwave spectrum in the gas phase confirms the expected nonlinear geometry with H–O 97 pm, O–Cl 169.3 pm, and angle H–O–Cl $103 \pm 3^{\circ}$ (cf. HOF, p. 857). All three

hypohalous acids are weak and solutions of their salts are therefore alkaline since the equilibrium

$$OX^- + H_2O \Longrightarrow HOX + OH^-$$

lies well to the right. Except at high pH, hypohalite solutions contain significant amounts of the undissociated acid. Approximate values for the acid dissociation constants K_a at room temperature are HOCl 2.9×10^{-8} , HOBr 5×10^{-9} , HOI $\sim 10^{-11}$: these values are close to those of many α -aminoacids and may also be compared with carbonic acid K_a 4.3×10^{-7} , which is some 10 times stronger than HOCl, and phenol, which has K_a 1.3×10^{-10} .

The manner and rate of decomposition of hypohalous acids (and hypohalite ions) in solution are much influenced by the concentration, pH and temperature of the solutions, by the presence or absence of salts which can act as catalysts, promotors or activators, and by light quanta. The main competing modes of decomposition are:

$$2HOX \longrightarrow 2H^{+} + 2X^{-} + O_{2}$$
(or $2OX^{-} \longrightarrow 2X^{-} + O_{2}$)
and $3HOX \longrightarrow 3H^{+} + 2X^{-} + XO_{3}^{-}$
(or $3OX^{-} \longrightarrow 2X^{-} + XO_{3}^{-}$)

The acids decompose more readily than the anions so hypohalites are stabilized in basic solutions. The stability of the anions diminishes in the sequence $ClO^- > BrO^- > IO^-$.

Hypochlorites are amongst the strongest of the more common oxidizing agents and they react with inorganic species, usually by the net transfer of an O atom. Kinetic studies suggest that the oxidizing agent can be either HOCl or OCl⁻ in a given reaction, but rarely both simultaneously. Some typical examples are in Table 17.21. Hypochlorites react with ammonia and organic amino compounds to form chloramines. The characteristic "chlorine" odour of water that has been sterilized with hypochlorite is, in fact, due to chloramines produced from attack on bacteria. By contrast, hypobromites

HOCI		OC1-		
Substrate	Products	Substrate	Products	
HCO ₂ ⁻	CO3 ²⁻	C10-	ClO ₂ -	
$HC_2O_4^-$	CO_2	ClO_2^-	ClO ₃ ⁻	
OCN-	CO_3^{2-} , N ₂ , NO ₃ ⁻	CN ⁻	OCN-	
NH ₃	NCl ₃	NH_3	NH ₂ Cl	
NO_2^-	NO_3^-	SO_3^{2-}	SO4 ²⁻	
H_2O_2	O ₂	IO_3^-	IO ₄ -	
S	SO_4^{2-}	Mn ²⁺	MnO ₄ -	
Br	Br_2 (acid)	Br ⁻	OBr^{-} , BrO_3^{-} (alkaline)	
I-	I ₂ (acid)	I-	OI ⁻ , IO ₃ ⁻ (alkaline)	

Table 17.21 Oxidation of inorganic substrates with HOCl or OCl-

oxidize amines quantitatively to N_2 , a reaction that is exploited in the analysis of urea:

$$(NH_2)_2CO + 3OBr^- + 2OH^- \longrightarrow N_2 + CO_3^{2-}$$
$$+ 3Br^- + 3H_2O$$

Other uses of hypohalous acids and hypohalites are described in the Panel.

This section concludes with a reminder that, in addition to the hypohalous acids HOX and metal hypohalites $M(OX)_n$, various covalent (molecular) hypohalites are known. Hypochlorites are summarized in Table 17.22. All are volatile liquids or gases at room temperature and are discussed elsewhere (see Index). Organic hypohalites are unstable and rapidly expel HX or RX to form the corresponding aldehyde or ketone:

 $ROH + HOX \longrightarrow ROX + H_2O$ $RCH_2OX \longrightarrow RCHO + HX$ $RR'CHOX \longrightarrow RR'C=O + HX$ $RR'R''COX \xrightarrow{hv} RR'C=O + R''X$

Halous acids, HOXO, and halites, XO₂^{-(98,115,119,120)}

Chlorous acid is the least stable of the oxoacids of chlorine; it cannot be isolated but is known in dilute aqueous solution. HOBrO and HOIO are even less stable, and, if they exist at all, have only a fleeting presence in aqueous solutions. Several chlorites have been isolated and NaClO₂ is sufficiently stable to be manufactured as an article of commerce on the kilotonne pa scale. Little reliable information is available on bromites and still less is established for iodites which are essentially non-existent.

 $HClO_2$ is formed (together with $HClO_3$) during the decomposition of aqueous solutions of ClO_2 (p. 847) but the best laboratory preparation is to treat an aqueous suspension of $Ba(ClO_2)_2$ with

Compound	MP/°C	BP/°C	Compound	MP/°C	BP/°C
CIONO ₂	-107	18	ClOSeF ₅	-115	31.5
ClOClO ₃	-117	44.5	ClOTeF ₅	-121	38.5
ClOSO ₂ F	-84.3	45.1	ClOOSF ₅	-130	26.4
ClOSF ₅		8.9	ClOOCF ₃	-132	-22

 Table 17.22
 Physical properties of some molecular hypochlorites

 $^{^{119}}$ G. GORDON, R. G. KIEFFER and D. H. ROSENBLATT, *Progr. Inorg. Chem.* **15**, 201–86 (1972). The first half of this review deals with the aqueous solution chemistry of chlorous acid and chlorites.

¹²⁰ F. SOLYMOSI, Structure and Stability of Salts of the Halogen Oxyacids in the Solid Phase, Wiley, UK, 1978, 468 pp.

Some Uses of Hypohalous Acids and Hypohalites

In addition to the applications indicated on p. 858, hypohalous acids are useful halogenating agents for both aromatic and aliphatic compounds. HOBr and HOI are usually generated *in situ*. The ease of aromatic halogenation increases in the sequence $OCI^- < OBr^- < OI^-$ and is facilitated by salts of Pb or Ag. Another well-known reaction of hypohalites is their cleavage of methyl ketones to form carboxylates and haloform:

 $RCOCH_3 + 3OX^- \longrightarrow RCO_2^- + 2OH^- + CHX_3$

This is the basis of the iodoform test for the CH₃CO group. In addition to these reactions there is considerable industrial use for HOCl and hypochlorites in the manufacture of hydrazine (p. 427), chlorhydrins and α -glycols:

By far the largest tonnage of hypochlorites is used for bleaching and sterilizing. "Liquid bleach" is an alkaline solution of NaOC1 ($pH \ge 11$); domestic bleaches have about 5% "available chlorine" content[†] whereas small-scale commercial installations such as laundries use ~12% concentration. Chlorinated trisodium phosphate, which is a crystalline efflorescent product of approximate empirical composition (Na₃PO₄.11H₂O)₄.NaOCl, has 3.5-4.5% available Cl and is used in automatic dishwasher detergents, scouring powders, and acid metal cleaners for dairy equipment. Paper and pulp bleaching is effected by "bleach liquor", a solution of Ca(OCl)₂ and CaCl₂, yielding ~85 g 1⁻¹ of "available chlorine". Powdered calcium hypochlorite, Ca(OCl)₂.2H₂O (70% available Cl), is used for swimming-pool sanitation whereas "bleaching powder", Ca(OCl)₂.CaCl₂.Ca(OH)₂.2H₂O (obtained by the action of Cl₂ gas on slaked lime) contains 35% available Cl and is used for general bleaching and sanitation:

$$3Ca(OH)_2 + 2Cl_2 \longrightarrow Ca(OCl)_2.CaCl_2.Ca(OH)_2.2H_2O$$

The speciality chemical LiOCI (40% "Cl") is used when calcium is contra-indicated, such as in the sanitation of hard water and in some dairy applications. Some idea of the scale of these applications can be gained from the following production figures which relate to the USA:⁽⁹⁸⁾

LiOCl ~ 2500 tonnes pa. Price (1993) ~\$ 2.80/kg.

NaOCl $\sim 250\,000$ tpa (on a dry basis) used mainly for household liquid bleach, laundries, disinfection of swimming pools, municipal water supplies and sewage, and the industrial manufacture of N₂H₄ and organic chemicals.

- NaOCI.(Na₃PO₄.11H₂O)₄ was commercialized in 1930 and demand rose to 81 000 tonnes in 1973. Use has dropped sharply since about 1980 (37 000 tonnes in 1988, price \$0.70/kg).
- Ca(OCl)₂ ~ 85 000 tpa plus production facilities in numerous other countries (e.g. the USSR, Japan, South Africa and Canada).

Bleaching power is now much less used than formerly in highly industrialized countries but is still manufactured on a large scale in less-developed regions. In the USA its production peaked at 133 000 tonnes in 1923 but had fallen to 23 600 tonnes by 1955 and has not been reported since, though \sim 1160 tonnes per annum were imported during the 1980s.

[†]"Available chlorine" content is defined as the weight of Cl_2 which liberates the same amount of I_2 from HI as does a given weight of the compound; it is often expressed as a percentage. For example, from the two (possibly hypothetical) stoichiometric equations $Cl_2 + 2HI \rightarrow I_2 + 2HCI$ and $LiOCI + 2HI \rightarrow I_2 + LiCI + H_2O$ it can be seen that 1 mol of I_2 is liberated by 70.92 g Cl_2 or by 58.4 g LiOCI. Whence the "available chlorine" content of pure LiOCI is (70.92/58.4) × 100 = 121%. The commercial product is usually diluted by sulfates to about one-third of this strength (see below).

dilute sulfuric acid:

$$Ba(OH)_{2}(aq) + H_{2}O_{2} + ClO_{2} \longrightarrow$$
$$Ba(ClO_{2})_{2} + 2H_{2}O + O_{2}$$

 $Ba(ClO_2)_2(suspension) + dil H_2SO_4 \longrightarrow$

 $BaSO_4 \downarrow + 2HClO_2$

Evidence for the undissociated acid comes from spectroscopic data but the solutions cannot be concentrated without decomposition. HClO₂ is a moderately strong acid $K_a(25^{\circ}\text{C}) \ 1.1 \times 10^{-2}$ (cf H₂SeO₄ $K_a \ 1.2 \times 10^{-2}$, H₄P₂O₇ $K_a \ 2.6 \times 10^{-2}$).

The decomposition of chlorous acid depends sensitively on its concentration, pH and the presence of catalytically active ions such as Cl^- which is itself produced during the decomposition. The main mode of decomposition (particularly if Cl^- is present) is to form ClO_2 :

5HClO₂
$$\longrightarrow$$
 4ClO₂ + Cl⁻ + H⁺ + 2H₂O;
$$\Delta G^{\circ} - 144 \text{ kJ mol}^{-1}$$

Competing modes produce ClO_3^- or evolve O_2 :

 $3\text{HClO}_2 \longrightarrow 2\text{ClO}_3^- + \text{Cl}^- + 3\text{H}^+;$ $\Delta G^\circ - 139 \text{ kJ mol}^{-1}$ $\text{HClO}_2 \longrightarrow \text{Cl}^- + \text{O}_2 + \text{H}^+;$

 ΔG° -123 kJ mol⁻¹

Metal chlorites are normally made by reduction of aqueous solutions of ClO_2 in the presence of the metal hydroxide or carbonate. As with the preparation of $Ba(ClO_2)_2$ above, the reducing agent is usually a peroxide since this adds no contaminant to the resulting chlorite solution:

$$2\text{ClO}_2 + \text{O}_2^{2-} \longrightarrow 2\text{ClO}_2^{-} + \text{O}_2$$

The ClO_2^{-} ion is nonlinear, as expected, and Xray studies of NH₄ClO₂ (at -35°) and of AgClO₂ lead to the dimensions Cl-O 156 pm, angle O-Cl-O 111°. The chlorites of the alkali metals and alkaline earth metals are colourless or pale yellow. Heavy metal chlorites tend to explode or detonate when heated or struck (e.g. those of Ag⁺, Hg⁺, Tl⁺, Pb²⁺ and also those of Cu²⁺ and NH₄⁺). Sodium chlorite is the only one to have sufficient stability and to be sufficiently inexpensive to be a major article of commerce (see below).

Anhydrous NaClO₂ crystallizes from aqueous solutions above 37.4° but below this temperature the trihydrate is obtained. The commercial product contains about 80% NaClO₂. The anhydrous salt forms colourless deliquescent crystals which decompose when heated to 175-200°: the reaction is predominantly a disproportionation to ClO_3^- and Cl^- but about 5% of molecular O_2 is also released (based on the ClO_2^- consumed). Neutral and alkaline aqueous solutions of NaClO₂ are stable at room temperature (despite their thermodynamic instability towards disproportionation as evidenced by the reduction potentials on p. 854). This is a kinetic activation-energy effect and, when the solutions are heated near to boiling, slow disproportionation occurs:

$$3ClO_2^- \longrightarrow 2ClO_3^- + Cl^-$$

Photochemical decomposition is rapid and the products obtained depend on the pH of the solution;

at pH 8.4:
$$6\text{ClO}_2^- \xrightarrow{h\nu} 2\text{ClO}_3^- + 4\text{Cl}^- + 3\text{O}_2$$

at pH 4.0: $10\text{ClO}_2^- \xrightarrow{h\nu} 2\text{ClO}_3^- + 6\text{Cl}^- + 2\text{ClO}_4^- + 3\text{O}_2$

The stoichiometry in acid solution implies that, in addition to the more usual disproportionation into ClO_3^- and Cl^- , the following disproportionation also occurs:

$$2\text{ClO}_2^- \longrightarrow \text{Cl}^- + \text{ClO}_4^-$$

The mechanisms of these various reactions have been the object of many studies.^(98,115,119)

The main commercial applications of $NaClO_2$ are in the bleaching and stripping of textiles, and as a source of ClO_2 where required volumes are comparatively small. It is also used as an oxidant for removal of nitrogen oxide pollutants from industrial off-gases. The specific oxidizing properties of $NaClO_2$ towards certain malodorous or toxic compounds such as unsaturated aldehydes, mercaptans, thioethers, H_2S and HCN have likewise led to its use for scrubbing the off-gases of processes where these noxious pollutants are formed. Production statistics are rather sparse but the main production plants are in Europe, which produced some 11 000 tonnes pa in 1990 and the USA, where production is expected to exceed 10 000 tpa in 1995. Other major producers are in Japan (~5000 tpa) and Canada (2700 tpa in 1990). The 1991 price for technical grade NaClO₂ in the USA was \$2.65/kg.

Crystalline barium bromite $Ba(BrO_2)_2.H_2O$ was first isolated in 1959; it can be made by treating the hypobromite with Br_2 at pH 11.2 and 0°C, followed by slow evaporation. $Sr(BrO_2)_2.2H_2O$ was obtained similarly.

Halic acids, HOXO₂, and halates, $XO_3^{-(121,122)}$

Disproportionation of X_2 in hot alkaline solution has long been used to synthesize chlorates and bromates (see oxidation state diagrams, p. 855):

$$3X_2 + 6OH^- \longrightarrow XO_3^- + 5X^- + 3H_2O$$

For example, J. von Liebig developed the technical preparation of KClO₃ by passing Cl_2 into a warm suspension of $Ca(OH)_2$ and then adding KCl to enable the less-soluble chlorate to crystallize on cooling:

$$6Ca(OH)_{2} + 6Cl_{2} \longrightarrow Ca(ClO_{3})_{2} + 5CaCl_{2} + 6H_{2}O$$
$$Ca(ClO_{3})_{2} + 2KCl \longrightarrow 2KClO_{3} + CaCl_{2}$$

However, only one-sixth of the halogen present is oxidized and alternative routes are more generally preferred for large-scale manufacture. Thus, the most important halate, NaClO₃, is manufactured on a huge scale[†] by the electrolysis of brine in a diaphragmless cell which promotes efficient mixing. Under these conditions, the Cl₂ produced by anodic oxidation of Cl⁻ reacts with cathodic OH⁻ to give hypochlorite which then either disproportionates or is itself further anodically oxidized to ClO₃⁻:

anode:
$$Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$$
;
cathode: $H_2O + e^- \rightarrow \frac{1}{2}H_2 + OH^-$
mixing: $Cl_2 + 2OH^- \rightarrow Cl^- + OCl^- + H_2O$
further disproportionation:

$$3OCl^- \rightarrow ClO_3^- + 2Cl^-$$

further anodic oxidation:

 $OCl^- + 2H_2O \rightarrow ClO_3^- + 2H_2$

Modern cells employ arrays of anodes $(TiO_2 coated with a noble metal)$ and cathodes (mild steel) spaced 3 mm apart and carrying current at 2700 A m⁻² into brine $(80-100 g l^{-1})$ at $60-80^{\circ}$ C. Under these conditions current efficiency can reach 93% and 1 tonne of NaClO₃ can be obtained from 565 kg NaCl and 4535 kWh of electricity. The off-gas H₂ is also collected.

Bromates and iodates are prepared on a much smaller scale, usually by chemical oxidation. For example, Br^- is oxidized to BrO_3^- by aqueous hypochlorite (conveniently effected by passing

¹²¹ Ref. 23, pp. 1418-35, Halic acids and halates.

¹²² S. K. MENDIRATTA and B. L. DUNCAN, Chloric acid and chlorates, *Kirk-Othmer Encyclopedia of Chemical Technology*, 4th edn., Vol. 5, pp. 998–1016, Wiley, New York, 1993.

[†]World production of NaClO₃ (1989-91) exceeds 2 billion tonnes pa, Canada alone producing some 872 000 tpa, USA 630 000 tpa and Europe 421 000 tpa. Consumption in the USA exceeds production by some 50%, the rest being imported. The 1991 price (~\$480/tonne) was similar in both North America and Europe where, interestingly, the main consumers are Finland (156 800 tpa) and Sweden (109 700 tpa). The overwhelming use of NaClO₃ (95% in the USA) is in the manufacture of ClO₂, mainly for bleaching paper pulp (p. 846). Other uses are to make perchlorates and other chlorates (3%), in uranium production (1% but declining sharply) and for agricultural uses (0.7%) such as herbicides, cotton defoliants and soya-bean desiccants. The use of NaClO3 in pyrotechnic formulations is hampered by its hygroscopicity. KClO3 does not suffer this disadvantage and is unexcelled as an oxidizer in fireworks and flares, the colours being obtained by admixture with salts of Sr (red), Ba (green), Cu (blue), etc. In addition KClO3 is a crucial component in the head of "safety matches" (KClO₃, S, Sb₂S₃, powdered glass and dextrin paste). Its price in very similar to that of NaClO₃.

 Cl_2 into alkaline solutions of Br⁻). Iodates can be prepared either by direct high-pressure oxidation of alkali metal iodides with oxygen at 600° or by oxidation of I₂ with chlorates:

 $I_2 + NaClO_3 \longrightarrow 2NaIO_3 + Cl_2$

Salts of other metals are obtained by metathesis, and aqueous solutions of the corresponding acids are obtained by controlled addition of sulfuric acid to the barium salts:

$$Ba(XO_3)_2 + H_2SO_4 \longrightarrow 2HXO_3 + BaSO_4$$

Chloric acid, HClO₃, is fairly stable in cold water up to about 30% concentration but, on being warmed, such solutions evolve Cl_2 and ClO_2 . Evaporation under reduced pressure can increase the concentration up to about 40% (~HClO₃.7H₂O) but thereafter it is accompanied by decomposition to HClO₄ and the evolution of Cl_2 , O_2 and ClO_2 :

 $8\text{HClO}_3 \longrightarrow 4\text{HClO}_4 + 2\text{H}_2\text{O} + 2\text{Cl}_2 + 3\text{O}_2$ $3\text{HClO}_3 \longrightarrow \text{HClO}_4 + \text{H}_2\text{O} + 2\text{ClO}_2$

Likewise, aqueous $HBrO_3$ can be concentrated under reduced pressure to about 50% concentration (~ $HBrO_3.7H_2O$) before decomposition obtrudes:

 $4HBrO_3 \longrightarrow 2H_2O + 2Br_2 + 5O_2$

Both chloric and bromic acids are strong acids in aqueous solution ($pK_a \leq 0$) whereas iodic acid is slightly weaker, with pK_a 0.804, i.e. K_a 0.157.

Iodic acid is more conveniently synthesized by oxidation of an aqueous suspension of I₂ either electrolytically or with fuming HNO₃. Crystallization from acid solution yields colourless, orthorhombic crystals of α -HIO₃ which feature H-bonded pyramidal molecules of HOIO₂: r(I-O) 181 pm, r(I-OH) 189 pm, angle O–I–O 101.4°, angle O–I–(OH) 97°. When heated to ~100°C iodic acid partly dehydrates to HI₃O₈ (p. 852); this comprises an H-bonded array of composition HOIO₂.I₂O₅ in which the HIO₃ has almost identical dimensions to those in α -HIO₃. Further heating to 200° results in complete dehydration to I₂O₅. In concentrated aqueous solutions of HIO₃, the iodate ions formed by deprotonation react with undissociated acid according to the equilibrium

$$IO_3^- + HIO_3 \iff [H(IO_3)_2]^-; K \approx 4 \ 1 \ mol^{-1}$$

Accordingly, crystallization of iodates from solutions containing an excess of HIO₃ sometimes results in the formation of hydrogen biiodates, $M^{I}H(IO_{3})_{2}$, or even dihydrogen triiodates, $M^{I}H_{2}(IO_{3})_{3}$.

Chlorates and bromates feature the expected pyramidal ions XO_3^- with angles close to the tetrahedral (106–107°). With iodates the interatomic angles at iodine are rather less (97–105°) and there are three short I–O distances (177–190 pm) and three somewhat longer distances (251–300 pm) leading to distorted perovskite structures (p. 963) with pseudo-sixfold coordination of iodine and piezoelectric properties (p. 58). In Sr(IO₃)₂.H₂O the coordination number of iodine rises to 7 and this increases still further to 8 (square antiprism) in Ce(IO₃)₄ and Zr(IO₃)₄.

The modes of thermal decomposition of the halates and their complex oxidationreduction chemistry reflect the interplay of both thermodynamic and kinetic factors. On the one hand, thermodynamically feasible reactions may be sluggish, whilst, on the other, traces of catalyst may radically alter the course of the reaction. In general, for a given cation, thermal stability decreases in the sequence iodate > chlorate > bromate, but the mode and ease of decomposition can be substantially modified. For example, alkali metal chlorates decompose by disproportionation when fused:

 $4\text{ClO}_3^- \longrightarrow \text{Cl}^- + 3\text{ClO}_4^-$

e.g. LiClO₃, mp 125° (d 270°); NaClO₃, mp 248° (d 265°); KClO₃, mp 368° (d 400°).[†] However, in

[†] Note, however, that thermal decomposition of NH_4ClO_3 begins at 50°C and the compound explodes on further heating; this much lower decomposition temperature may result from prior proton transfer to give the less-stable acid: [$NH_4ClO_3 \longrightarrow NH_3 + HClO_3$].

A similar thermal instability afflicts $NH_4BrO_3~(d~-5^\circ)$ and $NH_4IO_3~(d~\sim100^\circ).$

the presence of a transition-metal catalyst such as MnO_2 decomposition of KClO₃ to KCl and oxygen begins at about 70° and is vigorous at 100°

$$2ClO_3^- \longrightarrow 2Cl^- + 3O_2$$

This is, indeed, a classic laboratory method for preparing small amounts of oxygen (p. 603). For bromates and iodates, disproportionation to halide and perhalate is not thermodynamically feasible and decomposition occurs either with formation of halide and liberation of O_2 (as in the catalysed decomposition of ClO_3^- just considered), or by formation of the oxide:

$$4XO_3^- \longrightarrow 2O^{2-} + 2X_2 + 5O_2$$

For all three halates (in the absence of disproportionation) the preferred mode of decomposition depends, again, on both thermodynamic and kinetic considerations. Oxide formation tends to be favoured by the presence of a strongly polarizing cation (e.g. magnesium, transition-metal and lanthanide halates), whereas halide formation is observed for alkali-metal, alkaline- earth and silver halates.

The oxidizing power of the halate ions in aqueous solution, as measured by their standard reduction potentials (p. 854), decreases in the sequence bromate \gtrsim chlorate > iodate but the rates of reaction follow the sequence iodate > bromate > chlorate. In addition, both the thermodynamic oxidizing power and the rate of reaction depend markedly on the hydrogen-ion concentration of the solution, being substantially greater in acid than in alkaline conditions (p. 855).

An important series of reactions, which illustrates the diversity of behaviour to be expected, is the comproportionation of halates and halides. Bromides are oxidized quantitatively to bromine and iodides to iodine, this latter reaction being much used in volumetric analysis:

$$XO_3^- + 5X^- + 6H^+ \longrightarrow 3X_2 + 3H_2O$$

(X = Cl, Br, I)

Numerous variants are possible, e.g.:

$$ClO_{3}^{-} + 6Br^{-}(or I^{-}) + 6H^{+} \longrightarrow Cl^{-} + 3Br_{2}(or I_{2}) + 3H_{2}O$$

$$BrO_{3}^{-} + 6I^{-} + 6H^{+} \longrightarrow Br^{-} + 3I_{2} + 3H_{2}O$$

$$IO_{3}^{-} + 5Br^{-} + 6H^{+} \longrightarrow 2Br_{2} + IBr + 3H_{2}O$$

$$2ClO_{3}^{-} + 2Cl^{-} + 4H^{+} \longrightarrow Cl_{2} + 2ClO_{2} + 2H_{2}O \quad (p. 846)$$

$$2BrO_{3}^{-} + 2Cl^{-} + 12H^{+} \longrightarrow Br_{2} + Cl_{2} + 6H_{2}O$$

$$IO_{3}^{-} + 3Cl^{-} + 6H^{+} \longrightarrow ICl + Cl_{2} + 3H_{2}O$$

The greater thermodynamic stability of iodates enables iodine to displace Cl_2 and Br_2 from their halates:

$$I_2 + 2XO_3^- \longrightarrow X_2 + 2IO_3^-$$
 (X = Cl, Br)

With bromate at pH 1.5-2.5 the reaction occurs in four stages:

(1) an induction period in which a catalyst (probably HOBr) is produced;

(2)
$$I_2 + BrO_3^- \longrightarrow IBr + IO_3^-;$$

$$(3) \ 3IBr + 2BrO_3^- + 3H_2O \longrightarrow 5Br^-$$

 $+ 3IO_3^- + 6H^+;$

 $(4) \quad 5Br^- + BrO_3^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O.$

The dependence of reaction rates on pH and on the relative and absolute concentrations of reacting species, coupled with the possibility of autocatalysis and induction periods, has led to the discovery of some spectacular kinetic effects such as H. Landolt's "chemical clock" (1885): an acidified solution of Na₂SO₃ is reacted with an excess of iodic acid solution in the presence of starch indicator — the induction period before the appearance of the deep-blue starch-iodine colour can be increased systematically from seconds to minutes by appropriate dilution of the solutions before mixing. With an excess of sulfite, free iodine may appear and then disappear as a single pulse due to the following sequence of reactions:

$$IO_{3}^{-} + 3SO_{3}^{2-} \longrightarrow I^{-} + 3SO_{4}^{2-}$$

$$5I^{-} + IO_{3}^{-} + 6H^{+} \longrightarrow 3I_{2} + 3H_{2}O$$

$$3I_{2} + 3SO_{3}^{2-} + 3H_{2}O \longrightarrow 6I^{-} + 6H^{+} + 3SO_{4}^{2-}$$

A true periodic reaction was discovered by W. C. Bray in 1921 and involves the reduction of iodic acid to I_2 by H_2O_2 followed by the reoxidation of I_2 to HIO₃:

 $\begin{array}{l} 2HIO_3+5H_2O_2 \longrightarrow 5O_2+I_2+6H_2O\\ \\ I_2+5H_2O_2 \longrightarrow 2HIO_3+4H_2O \end{array}$

The net reaction is the disproportionation of H_2O_2 to $H_2O + \frac{1}{2}O_2$ and the starch indicator oscillates between deep blue and colourless as the iodine concentration pulsates.

Even more intriguing is the Belousov-Zhabotinskii class of oscillating reactions some of which can continue for hours. Such a reaction was first observed in 1959 by B. P. Belousov who noticed that, in stirred sulfuric acid solutions containing initially KBrO3, cerium(IV) sulfate and malonic acid, CH₂(CO₂H)₂, the concentrations of Br⁻ and Ce⁴⁺ underwent repeated oscillations of major proportions (e.g. tenfold changes on a time-scale which was constant but which could be varied from a few seconds to a few minutes depending on concentrations and temperature). These observations were extended by A. M. Zhabotinskii in 1964 to the bromate oxidation of several other organic substrates containing a reactive methylene group catalysed either by Ce^{IV}/Ce^{III} or Mn^{III}/Mn^{II}. Not surprisingly these reactions have attracted considerable attention, but detailed studies of their mechanisms are beyond the scope of this chapter.⁽¹²³⁻¹²⁵⁾

The various reactions of bromates and iodates are summarized in the schemes on p. 866.⁽¹²¹⁾

The oxidation of halates to perhalates is considered further in the next section.

Perhalic acid and perhalates

Because of their differing structures, chemical reactions and applications, perchloric acid and

the perchlorates are best considered separately from the various periodic acids and their salts; the curious history of perbromates also argues for their individual treatment.

Perchloric acid and perchlorates (126-128)

The most stable compounds of chlorine are those in which the element is in either its lowest oxidation state (-I) or its highest (VII): accordingly perchlorates are the most stable oxo-compounds of chlorine (see oxidationstate diagram, (p. 855) and most are extremely stable both as solids and as solutions at room temperature. When heated they tend to decompose by loss of O₂ (e.g. KClO₄ above 400°). Aqueous solutions of perchloric acid and perchlorates are not notable oxidizing agents at room temperature but when heated they become vigorous, even violent, oxidants. Considerable CAUTION should therefore be exercised when handling these materials, and it is crucial to avoid the presence of readily oxidizable organic (or inorganic) matter since this can initiate reactions of explosive intensity.

On an industrial scale, perchlorates are now invariably produced by the electrolytic oxidation of NaClO₃ (see Panel, p. 867). Alternative routes have historical importance but are now only rarely used, even for small-scale laboratory syntheses.

Perchloric acid is best made by treating anhydrous NaClO₄ or Ba(ClO₄)₂ with concentrated HCl, filtering off the precipitated chloride and concentrating the filtrate by distillation. The azeotrope (p. 815) boils at 203°C and contains 71.6% HClO₄ (i.e. HClO₄.2H₂O). The anhydrous acid is obtained by low-pressure distillation of the azeotrope (p < 1 mmHg = 0.13 kPa) in an all-glass apparatus in the presence of fuming sulfuric acid. Commercially available perchloric acid is usually 60–62% (~3.5H₂O) or 70–72%

¹²³ R. J. FIELD, E. KÖRÖS and R. M. NOYES, J. Am. Chem. Soc. 94, 8649-64 (1972).

¹²⁴ R. M. NOYES, J. Phys. Chem. 94, 4404-12 (1990).

¹²⁵ S. K. SCOTT, Oscillations, Waves and Chaos in Chemical Kinetics, Oxford Univ. Press, Oxford, 1994, 96 pp.

¹²⁶ Ref. 23, pp. 1435-60, Perhalic acids and perhalates.

¹²⁷ F. SOLYMOSI, Structure and Stability of Salts of Halogen Oxyacids in the Solid Phase, Wiley, New York, 1978, 468 pp. ¹²⁸ A. A. SCHILT, Perchloric Acid and Perchlorates, Northern Illinois University Press, 1979, 189 pp.

Some reactions of aqueous bromates.

Some reactions of iodates.

 $(\sim 2H_2O)$; more concentrated solutions are hygroscopic and are also unstable towards loss of Cl_2O_7 or violent decomposition by accidental impurities.

Pure HClO₄ is a colourless mobile, shocksensitive, liquid: $d(25^\circ)$ 1.761 g cm⁻³. At least 6 hydrates are known (Table 17.23). The structure of HClO₄, as determined by electron diffraction in the gas phase, is as shown in Fig. 17.20. This molecular structure persists in the liquid phase, with some H bonding, and also in the crystalline phase, where an X-ray study at -160° found three Cl-O distances of 142 pm and one of 161 pm⁽⁹⁹⁾ (very close to the dimensions of the extremely stable "isoelectronic" molecule, FClO₃ (140.4 and 161.9 pm, p. 879)). The (low) electrical conductivity and other physical properties of anhydrous HClO₄ have been interpreted on the

Production and Uses of Perchlorates

NaClO₄ is made by the electrolytic oxidation of aqueous NaClO₃ using smooth Pt or PbO₂ anodes and a steel cathode which also acts as the container. All other perchlorates, including HClO₄, are made either directly or indirectly from this NaClO₄. In a typical cell NaClO₃ (600 g/l pH 6.5) is oxidized at $30-50^{\circ}$ C with 90% current efficiency at 5000 A and 6.0 V with an anode current density of 3100 Am^{-2} and an electrode separation of $\sim 5 \text{ mm}$. The process can be either batch or continuous and energy consumption is $\sim 2.5 \text{ kWh/kg}$. A small concentration of Na₂Cr₂O₇ (1-5 g/l) is found to be extremely beneficial in inhibiting cathodic reduction of ClO₄⁻.

World production of perchlorates was less than 1800 tonnes pa until 1940 when wartime missile and rocket requirements boosted this tenfold. World production capacity peaked at around 40 000 tpa in 1963 but is now still above 30 000 tpa. More than half of this is converted to NH_4CIO_4 for use as a propellent:

 $NaClO_4 + NH_4Cl \longrightarrow NH_4ClO_4 + NaCl$

US production was severely disrupted by a series of devastating explosions in May 1988 which killed 2 people and injured several hundred.⁽¹²⁹⁾ Ultrapure NH₄ClO₄ for physical measurements and research purposes can be made by direct neutralization of aqueous solutions of NH₃ and HClO₄. One of the main current uses of NH₄ClO₄ is in the Space Shuttle Programme: the two booster rockets use a solid propellent containing 70% by weight of NH₄ClO₄, this being the oxidizer for the "fuel" (powdered Al metal) which comprises most of the rest of the weight. Each shuttle launch requires about 770 tonnes of NH₄ClO₄.

The annual consumption of 70% HClO₄ is about 450 tonnes mainly for making other perchlorates. Most of the NaClO₄ produced is used captively to make NH₄ClO₄ and HClO₄, but about 725 tpa is used for explosives, particularly in slurry blasting formulations.

The two other perchlorates manufactured on a fairly large scale industrially are $Mg(ClO_4)_2$ and $KClO_4$. The former is used as the electrolyte in "dry cells" (batteries), whereas $KClO_4$ is a major constituent in pyrotechnic devices such as fireworks, flares, etc. Thus the white flash and thundering boom in fireworks displays are achieved by incorporating a compartment containing $KClO_4/S/Al$, whereas the flash powder commonly used in rock concerts and theatricals comprises $KClO_4/Mg$. Vivid blues, perhaps the most difficult pyrotechnic colour to achieve, are best obtained from the low temperature (< 1200° C) flame emission of CuCl in the 420–460 nm region: because of the instability of copper chlorate and perchlorate this colour is generated by ignition of a mixture containing 38% $KClO_4$, 29% NH_4ClO_4 , and 14% $CuCO_3$ bound with red gum (14%) and dextrin (5%).

Figure 17.20 Structure of the gaseous molecule $HClO_4$ and of the ClO_4^- anion.

basis of slight dissociation according to the overall equilibrium:

 $3\text{HClO}_4 \Longrightarrow \text{Cl}_2\text{O}_7 + \text{H}_3\text{O}^+ + \text{ClO}_4^-;$ $K(25^\circ) \ 0.68 \times 10^{-6}$

(cf. H₂SO₄, p. 711; H₃PO₄, p. 518, etc.). The monohydrate forms an H-bonded crystalline lattice $[H_3O]^+[ClO_4]^-$ that undergoes a phase transition with rotational disorder above -30° ; it melts to a viscous, highly ionized liquid at 49.9°. The other hydrates also feature hydroxonium ions $[(H_2O)_nH]^+$ as described more fully on p. 630. It is particularly notable that hydration does not increase the coordination number of Cl and in this perchloric acid differs markedly from periodic acid (p. 872). This parallels the difference between sulfuric and telluric acids in the preceding group (p. 782).

Anhydrous $HClO_4$ is an extremely powerful oxidizing agent. It reacts explosively with most organic materials, ignites HI and $SOCl_2$ and rapidly oxidizes Ag and Au. Thermal decomposition in the gas phase yields a mixture of HCl, Cl_2 , Cl_2O , ClO_2 and O_2 depending on the conditions. Above 310° the decomposition is first

¹²⁹ R. J. SELTZER, Chem. & Eng. News, August 8, 7-15 (1988).

<i>n</i> in HClO ₄ . <i>n</i> H ₂ O	Structure	MP/°C	BP/°C	$\Delta H_{\rm f}^{\circ}/{\rm kJmol^{-1}}$
0	HOClO ₃	-112	110 (expl)	-40.6 (lig)
0.25	$(HClO_4)_4.H_2O$	d-73.1		
1	$[H_3O]^+[ClO_4]^-$	49.9	decomp	-382.2 (cryst)
2	$[H_5O_2]^+[ClO_4]^-$	-20.7	203	-688 (lig)
2.5		-33.1	Recting to a	
3	$[H_7O_3]^+[ClO_4]^-$	-40.2		
3.5		-45.9		

 Table 17.23
 Perchloric acid and its hydrates

order and homogeneous, the rate-determining step being homolytic fission of the Cl-OH bond:

$$HOClO_3 \longrightarrow HO^{\bullet} + ClO_3^{\bullet}$$

The hydroxyl radical rapidly abstracts an H atom from a second molecule of HClO₄ to give H₂O plus ClO₄[•] and the 2 radicals ClO₃[•] and ClO₄[•] then decompose to the elements via the intermediate oxides. Above 450° the Cl₂ produced reacts with H₂O to give 2HCl plus $\frac{1}{2}O_2$ whilst in the lowtemperature range (150–310°) the decomposition is heterogeneous and second order in HClO₄.

Aqueous perchloric acid solutions exhibit very little oxidizing power at room temperature, presumably because of kinetic activation barriers, though some strongly reducing species slowly react, e.g. Sn^{II} , Ti^{III} , V^{II} and V^{III} , and dithionite. Others do not, e.g. H_2S , SO_2 , HNO_2 , HI and, surprisingly, Cr^{II} and Eu^{II} . Electropositive metals dissolve with liberation of H_2 and oxides of less basic metals also yield perchlorates. e.g. with 72% acid:

 $\begin{array}{l} Mg + 2HClO_4 \xrightarrow{20^{\circ}} [Mg(H_2O)_6](ClO_4)_2 + H_2 \\ Ag_2O + 2HClO_4 \longrightarrow 2AgClO_4 + H_2O \end{array}$

NO and NO₂ react to give NO⁺ClO₄⁻ and F_2 yields FOClO₃ (p. 639). P₂O₅ dehydrates the acid to Cl₂O₇ (p. 850).

Perchlorates are known for most metals in the periodic table.⁽¹²⁸⁾ The alkali-metal perchlorates are thermally stable to several hundred degrees above room temperature but NH_4ClO_4 deflagrates with a yellow flame when heated to 200°:

$$2NH_4ClO_4 \longrightarrow N_2 + Cl_2 + 2O_2 + 4H_2O$$

 NH_4ClO_4 has a solubility in water of 20.2 g per 100 g solution at 25° and 135 g per 100 g liquid NH₃ at the same temperature. Aqueous solubilities decrease in the sequence $Na > Li > NH_4 >$ K > Rb > Cs; indeed, the low solubility of the last 3 perchlorates in this series has been used for separatory purposes and even for gravimetric analysis (e.g. KClO₄ 1.99 g per 100 g H₂O at 20°). Many of these perchlorates and those of M^{II} can also be obtained as hydrates. AgClO₄ has the astonishing solubility of 557 g per 100 g H₂O at 25° and even in toluene its solubility is 101 g per 100 g PhMe at 25°. This has great advantages in the metathetic preparation of other perchlorates, particularly organic perchlorates, e.g. RI yields ROClO₃, Ph₃CCl yields Ph₃C⁺ClO₄⁻, and CCl₄ affords CCl₃OClO₃.

Oxidation-reduction reactions involving perchlorates have been mentioned in several of the preceding sections and the reactivity of aqueous solutions is similar to that of aqueous solutions of perchloric acid.

The perchlorate ion was for long considered to be a non-coordinating ligand and has frequently been used to prepare "inert" ionic solutions of constant ionic strength for physicochemical measurements. Though it is true that ClO_4^- is a weaker ligand than H_2O it is not entirely toothless and, as shown schematically in Fig. 17.21, examples are known in which the perchlorate acts as a monodentate (η^1) , bidentate chelating (η^2) and bidentate bridging (μ, η^2) ligand. The first unambiguous structural evidence for coordinated ClO_4^- was obtained in 1965 for the 5 coordinate cobalt(II)

Figure 17.21 Coordination modes of ClO₄ as determined by X-ray crystallography.

complex $[Co(OAsMePh_2)_4(\eta^1 - OClO_3)_2]^{(130)}$ and this was quickly followed by a second example, the red 6-coordinate *trans* complex $[Co(\eta^2 - MeSCH_2CH_2SMe)_2(\eta^1 - OClO_3)_2]^{(131)}$ The two structures are shown in Fig. 17.22. The perchlorate ion has now been established as a monodentate ligand towards an s-block element (Ba),⁽¹³²⁾ a p-block element (Sn^{II} and Sn^{IV}),⁽¹³³⁾ and an f-block element (Sm^{III})⁽¹³⁴⁾ as well as to the dblock elements Co^{II}, Ni^{II}, Cu^{II} and Ag^I (131.135) It is also known to function as a bidentate ligand towards Na, ⁽¹³⁶⁾ Ba,⁽¹³²⁾ Sn^{IV},⁽¹³³⁾ Sm^{III} , (134) Ti^{IV} in $[Ti(\eta^2 - ClO_4)_4]^{(137)}$ and Ni^{II} in $[Ni(\eta^2-ClO_4)L_2]^+$ where L is a chiral bidentate organic ligand.⁽¹³⁸⁾ Sometimes both η^1 and η^2 modes occur in the same compound. The bidentate bridging mode occurs in the silver complex $[Ag{\mu, \eta^2-OCl(O)_2O-}(m-xylene)_2]$.⁽¹³⁹⁾ The structure of appropriate segments of some of these compounds are in Fig. 17.23. The distinction between coordinated and non-coordinated ("ionic") perchlorate is sometimes hard to make and there is an almost continuous

¹³⁶ H. MILBURN, M. R. TRUTER and B. L. VICKERY, J. Chem. Soc., Dalton Trans., 841-6 (1974).

¹³⁷ M. FOURATI, M. CHAABOUNI, C. H. BELIN, M. CHARBON-NEL, J.-L. PASCAL and J. POTIER, *Inorg. Chem.* 25, 1386–90 (1986).

¹³⁸ D. A. HOUSE, P. J. STEEL and A. A. WATSON, J. Chem. Soc., Chem. Commun., 1575-6 (1987).

¹³⁹ I. F. TAYLOR, E. A. HALL and E. L. AMMA, J. Am. Chem. Soc. 91, 5745-9 (1969).

Figure 17.22 The structures of monodentate perchlorate complexes (see text).

¹³⁰ P. PAULING, G. B. ROBERTSON and G. A. RODLEY, *Nature* **207**, 73–74 (1965).

¹³¹ F. A. COTTON and D. L. WEAVER, J. Am. Chem. Soc. 87, 4189–90 (1965).

¹³² D. L. HUGHES, C. L. MORTIMER and M. R. TRUTER, *Acta* Cryst. **B34**, 800-7 (1978). *Inorg. Chim. Acta* **29**, 43-55 (1978).

 ¹³³ R. C. ELDER, M. J. HEEG and E. DEUTSCH, *Inorg. Chem.* **17**, 427-31 (1978). C. BELIN, M. CHAABOUNI, J.-L. PASCAL,
 J. POTIER and J. ROZIERE, *J. Chem. Soc., Chem. Commun.*, 105-6 (1980).

¹³⁴ M. CIAMPOLINI, N. NARDI, R. CINI, S. MANGANI and P. ORIOLI, J. Chem. Soc., Dalton Trans., 1983-6 (1979).

 ¹³⁵ F. MADAULE-AUBRY and G. M. BROWN, Acta Cryst.
 B24, 745-53 (1968). F. BIGOLI, M. A. PELLINGHELLI and A. TIRIPICCHIO, Cryst. Struct. Comm. 4, 123-6 (1976).
 E. A. HALL GRIFFITH and E. L. AMMA, J. Am. Chem. Soc.
 93, 3167-72 (1971).

Figure 17.23 Examples of monodentate, chelating and bridging perchlorate ligands.

gradation between the two extremes. Similarly it is sometimes difficult to distinguish unambiguously between η^1 and unsymmetrical η^2 and, in the colourless complex [Ag(cyclohexylbenzene)₂(ClO₄)], the η^1 bonding between Ag and OClO₃ (Ag-O 266 pm) is accompanied by a further weak symmetrical η^2 bonding from each ClO₄ to the neighbouring Ag (2Ag-O 284 pm) thereby generating a weaklybridged chain-like structure involving pseudo- η^3 coordination of the perchlorate group:⁽¹³⁵⁾

Because of its generally rather weak coordinating ability quite small changes can determine whether or not a perchlorate group coordinates and if so, in which mode. For example, the barium crownether dihydrate complex illustrated in Fig. 17.23 features 10-coordinate Ba with 6 oxygen atoms from the crown ring (Ba-O 280-285 pm), two H₂O molecules (Ba-O 278 and 284 pm), and one of the perchlorates (Ba-O 294 pm) all on one side of the ring, and the other perchlorate (Ba-O 279 pm) below it. By contrast, the analogous strontium complex is a trihydrate with 9coordinate Sr (six Sr-O from the crown ring at 266-272 pm, plus two H₂O at 257, 259 pm, on one side of the ring, and one H₂O on the other side at 255 pm); the ClO_4^- ions are uncoordinated though they are H-bonded to the water molecules.

An even more dramatic change occurs with nickel(II) perchlorate complexes. Thus, the complex with 4 molecules of 3.5-dimethylpyridine (Fig. 17.23a) is blue, paramagnetic, and 6coordinate with *trans*- $(\eta^1 - OClO_3)$ ligands, whereas the corresponding complex with 3,4dimethylpyridine is yellow and diamagnetic with square-planar Ni^{II} and uncoordinated ClO₄ions.^(135,140) There is no steric feature of the structure which prevents the four 3.4-ligands from adopting the propeller-like configuration of the four 3,5-ligands thereby enabling Ni to accept two n^1 -OClO₃, or vice versa, and one must conclude that subtle differences in secondary valency forces and energies of packing are sufficient to dictate whether the complex that crystallizes is blue, paramagnetic and octahedral, or yellow, diamagnetic and square planar.

Perbromic acid and perbromates

The quest for perbromic acid and perbromates and the various reasons adduced for their apparent non-existence make fascinating and salutary reading.⁽¹¹⁶⁾ The esoteric radiochemical synthesis of BrO_4^- in 1968 using the β -decay of radioactive ⁸³Se, whilst not providing a viable route to macroscopic quantities of perbromate, proved that this previously elusive species could exist:

⁸³SeO₄²⁻
$$\xrightarrow{-\beta^-}_{t_{\frac{1}{2}} 22.5 \text{ min}}$$
 ⁸³BrO₄⁻ $\xrightarrow{-\beta^-}_{t_{\frac{1}{2}} 2.39 \text{ h}}$
{⁸³Kr + 2O₂}

This stimulated the search for a chemical synthesis. Electrolytic oxidation of aqueous LiBrO₃ produced a 1% yield of perbromate, but the first isolation of a solid perbromate salt (RbBrO₄) was achieved by oxidation of BrO_3^- with aqueous XeF_2 :⁽¹⁴¹⁾

$$BrO_3^- + XeF_2 + H_2O \xrightarrow{10\% \text{ yield}} BrO_4^- + Xe + 2HF$$

The best synthesis is now by oxidation of alkaline solutions of BrO_3^- using F_2 gas under rather specific conditions:⁽¹⁴²⁾

$$BrO_3^- + F_2 + 2OH^- \xrightarrow{20\% \text{ yield}} BrO_4^- + 2F^- + H_2O$$

In practice, F_2 is bubbled in until the solution is neutral, at which point excess bromate and fluoride are precipitated as AgBrO₃ and CaF₂; the solution is then passed through a cation exchange column to yield a dilute solution of HBrO₄. Several hundred grams at a time can be made by this route. The acid can be concentrated up to 6 M (55%) without decomposition and such solutions are stable for prolonged periods even at 100° . More concentrated solutions of HBrO₄ can be obtained but they are unstable; a white solid, possibly HBrO₄.2H₂O, can be crystallized.

Pure KBrO₄ is isomorphous with KClO₄ and contains tetrahedral BrO_4^- anions (Br–O 161 pm, cf. Cl–O 144 pm in ClO₄⁻ and I–O 179 pm in IO₄⁻). Oxygen-18 exchange between 0.14 M KBrO₄ and H₂O proceeds to less than 7% completion during 19 days at 94° in either acid or basic solutions and there is no sign of any increase in coordination number of Br; in this BrO₄⁻ resembles ClO₄⁻ rather than IO₄⁻. KBrO₄ is stable to 275–280° at which

¹⁴⁰ F. MADAULE-AUBRY, W. R. BUSING and G. M. BROWN, Acta Cryst. **B24**, 754–60 (1968).

¹⁴¹ E. H. APPELMAN, J. Am. Chem. Soc. 90, 1900-1 (1968); Inorg. Chem. 8, 223-7 (1969).

¹⁴² E. H. APPELMAN, Inorg. Synth. 13, 1-9 (1972).

temperature it begins to dissociate into KBrO₃ and O₂. Even NH₄BrO₄ is stable to 170°. Dilute solutions of BrO₄⁻ show little oxidizing power at 25°; they slowly oxidize I⁻ and Br⁻ but not Cl⁻. More concentrated HBrO₄ (3 M) readily oxidizes stainless steel and 12 M acid rapidly oxidizes Cl⁻. The general inertness of BrO₄⁻ at room temperature stands in sharp contrast to its high thermodynamic oxidizing power, which is greater than that of any other oxohalogen ion that persists in aqueous solution. The oxidation potential is

$$BrO_4^- + 2H^+ + 2e^- \longrightarrow BrO_3^- + H_2O;$$
$$E^\circ + 1.853 V$$

(cf. 1.201 V for CIO_4^- and 1.653 for IO_4^-). Accordingly, only the strongest oxidants would be expected to convert bromates to perbromates. As seen above, F_2/H_2O ($E^{\circ} \sim 2.87 V$) and XeF_2/H_2O ($E^{\circ} \sim 2.64$ V) are effective, but ozone $(E^{\circ} 2.07 \text{ V})$ and $S_2O_8^{2-}$ ($E^{\circ} 2.01 \text{ V}$) are not, presumably for kinetic reasons. Thermochemical measurements⁽¹⁴³⁾ further show that KBrO₄ is thermodynamically stable with respect to its elements, but less so than the corresponding KClO₄ and KIO₄: this is not due to any significant difference in entropy effects or lattice energies and implies that the Br-O bond in BrO_4^- is substantially weaker than the X–O bond in the other perhalates. Some comparative data (298.15 K) are:

	KClO ₄	KBrO ₄	KIO ₄
$\Delta H_{\rm f}^{\circ}/{\rm kJ}~{\rm mol}^{-1}$	-431.9	-287.6	-460.6
$\Delta G_{\rm f}^{\circ}/{ m kJ}~{ m mol}^{-1}$	-302.1	-174.1	-349.3

No entirely satisfactory explanation of these observations has been devised, though they are paralleled by the similar reluctance of other elements following the completion of the 3d subshell to achieve their highest oxidation states — see particularly Se (p. 755) and As (p. 552) immediately preceding Br in the periodic table. The detailed kinetics of several oxidation reactions involving aqueous solutions of BrO_4^-

have been studied.⁽¹⁴⁴⁾ In general, the reactivity of perbromates lies between that of the chlorates and perchlorates which means that, after the perchlorates, perbromates are the least reactive of the known oxohalogen compounds. It has even been suggested⁽¹¹⁶⁾ that earlier investigators may actually have made perbromates, but not realized this because they were expecting a highly reactive product rather than an inert one.

Periodic acids and periodates⁽¹²⁶⁾

At least four series of periodates are known, interconnected in aqueous solutions by a complex series of equilibria involving deprotonation, dehydration and aggregation of the parent acid H_5IO_6 – cf. telluric acids (p. 782) and antimonic acids (p. 577) in the immediately preceding groups. Nomenclature is summarized in Table 17.24, though not all of the fully protonated acids have been isolated in the free state. The structural relationship between these acids, obtained mainly from X-ray studies on their salts, are shown in Fig. 17.24. H₅IO₆ itself (mp 128.5° decomp) consists of molecules of (HO)₅IO linked into a three-dimensional array by $O-H\cdots O$ bonds (10 for each molecule, 260-278 pm).

Periodates can be made by oxidation of I^- , I_2 or IO_3^- in aqueous solution. Industrial processes involve oxidation of alkaline NaIO₃ either electrochemically (using a PbO₂ anode) or with Cl₂:

$$IO_3^- + 6OH^- - 2e^- \longrightarrow IO_6^{5-} + 3H_2O$$

Table 17.24 Nomenclature of periodic acids

Formula	Name	Alternative	Formal relation to H ₅ IO ₆
H5IO6 HIO4	Orthoperiodic Periodic	Paraperiodic Metaperiodic	Parent $H_5IO_6 - 2H_2O$ $(2H_2IO_6 - 2H_2O_6)$
"H ₃ IO ₅ " H ₇ I ₃ O ₁₄	<i>Meso</i> periodic Triperiodic	Diperiodic	$\begin{cases} 2H_{5}IO_{6} - 3H_{2}O \\ 3H_{5}IO_{6} - 4H_{2}O \\ \end{cases}$

¹⁴⁴ E. H. APPELMAN, U. K. KLÄNING and R. C. THOMPSON, J. Am. Chem. Soc. 101, 929-34 (1979).

¹⁴³ F. SCHREINER, D. W. OSBORNE, A. V. POCIUS and E. H. APPELMAN, *Inorg. Chem.* 9, 2320-4 (1970).

Figure 17.24 Structures of periodic acids and periodate anions.

$$IO_3^- + 6OH^- + Cl_2 \longrightarrow IO_6^{5-} + 2Cl^+ + 3H_2O$$

The product is the dihydrogen orthoperiodate $Na_3H_2IO_6$, which is a convenient starting point for many further preparations (see Scheme on next page). Paraperiodates of the alkaline earth metals can be made by the thermal disproportionation of the corresponding iodates, e.g.:

$$5Ba(IO_3)_2 \xrightarrow{\Delta} Ba_5(IO_6)_2 + 4I_2 + 9O_2$$

Aqueous solutions of periodic acid are best made by treating this barium salt with concentrated nitric acid. White crystals of H₅IO₆ can be obtained from these solutions. Dehydration of H₅IO₆ at 120° yields H₇I₃O₁₄, whereas heating to 100° under reduced pressure affords HIO₄. Attempts to dehydrate further do not yield the non-existent I₂O₇ (p. 852); oxygen is progressively evolved to form the mixed oxide I₂O₅.I₂O₇ and finally I₂O₅. Protonation of orthoperiodic acid with concentrated HClO₄ yields the cation [I(OH)₆]⁺. Similarly, dissolution of crystalline H₅IO₆ in 95% H₂SO₄ (or H₂SeO₄) at 120° yields colourless crystals of [I(OH)₆][HSO₄] on slow cooling to room temperature and prolonged digestion of these with trichloroacetic acid extracts H₂SO₄ to give the

white, hygroscopic powder $[I(OH)_6]_2SO_4$.⁽¹⁴⁵⁾ These compounds thus complete the series of octahedral hexahydroxo species $[Sn(OH)_6]^{2^-}$, $[Sb(OH)_6]^-$, $[Te(OH)_6]$ and $[I(OH)_6]^+$.

In aqueous solution increase in pH results in progressive deprotonation, dehydration and dimerization, the principal species being $[(HO)_4IO_2]^-$, $[(HO)_3IO_3]^{2-}$, $[(HO)_2IO_4]^{3-}$, $[IO_4]^-$ and $[(HO)_2I_2O_8]^{4-}$. The various equilibrium constants are:

	$K(25^{\circ}C)$	рK
$H_6IO_6^+ = H_5IO_6 + H^+$	6.3	0.80
$H_5IO_6 \iff H_4IO_6^- + H^+$	5.1×10^{-4}	3.29
$H_4IO_6^- \longrightarrow H_3IO_6^{2-} + H^+$	4.9×10^{-9}	8.31
$H_3IO_6^{2-} \iff H_2IO_6^{3-} + H^+$	2.5×10^{-12}	11.60
$H_4IO_6^- = IO_4^- + 2H_2O$	29	-1.46
$2H_4IO_6^{2-}$ \iff $H_2I_2O_{10}^{4-}$ + $2H_2O_{10}^{4-}$	$\sim \! 820$	-2.91

Periodates are both thermodynamically potent and kinetically facile oxidants. The oxidation potential is greatest in acid solution (p. 855) and can be progressively diminished by increasing the pH of the solution. In acid solution it is one of the few reagents that can rapidly and quantitatively convert Mn^{II} to $Mn^{VII}O_4^-$. In organic chemistry it specifically cleaves 1,2-diols (glycols) and related compounds such as α -diketones, α -ketols, α -aminoalcohols, and α -diamines, e.g.:

In rigid systems only *cis*-difunctional groups are oxidized, the specificity arising from the

¹⁴⁵ H. SIEBERT and U. WOERNER, Z. anorg. allgem. Chem. **398**, 193–7 (1973).

Figure 17.25 Structure of anions in $Na_7[H_4Mn(IO_6)_3]$.17H₂O and $Na_3K[H_3Cu(IO_6)_2]$.14H₂O.

formation of the cyclic intermediate. Such reactions have been widely used in carbohydrate and nucleic acid chemistry.

Periodates form numerous complexes with transition metals in which the octahedral IO_6^{5-} unit acts as a bidentate chelate. Examples are:

$$\begin{split} & [Mn^{IV}(IO_6)]^-, [Ni^{IV}(IO_6)]^-, [Fe^{III}(IO_6)]^{2-}, \\ & [Co^{III}(IO_6)]^{2-} \\ & [M^{IV}(IO_6)_2]^{6-} (M^{IV} = Pd, Pd, Ce); \\ & [M^{III}(IO_6)_2]^{7-} (M^{III} = Fe, Co, Cu, Ag, Au) \\ & [Mn^{IV}(IO_6)_3]^{11-}; [Fe_4^{III}(IO_6)_3]^{3-}, \\ & [Co_4^{III}(IO_6)_3]^{3-} \end{split}$$

The stabilization of Ni^{IV}, Cu^{III} and Ag^{III} is notable and many of the complexes have very high formation constants, e.g. $[Cu(IO_6)_2]^{7-} \sim 10^{10}$, $[Co(IO_6)_2]^{7-} \sim 10^{18}$. The high formal charge on the anion is frequently reduced by protonation of the { $I(\mu-O)_2O_4$ } moiety, as in orthoperiodic acid itself. For example H₁₁[Mn(IO_6)_3] is a heptabasic acid with pK₁ and pK₂ < 0, pK₃ 2.75, pK₄ 4.35, pK₅ 5.45, pK₆ 9.55, and pK₇ 10.45. The crystal structure of Na₇[H₄Mn(IO₆)_3].17H₂O features a 6-coordinate paramagnetic Mn^{IV} anion (Fig. 17.25a) whereas the diamagnetic compound $Na_3K[H_3Cu(IO_6)_2]$ -14H₂O has square-planar Cu^{III} (Fig. 17.25b).

17.2.9 Halogen oxide fluorides and related compounds⁽¹⁴⁶⁾

This section considers compounds in which X (Cl, Br or I) is bonded to both O and F, i.e. $F_n XO_m$. Oxofluorides -OF and peroxofluorides -OOF have already been discussed (p. 638) and halogen derivatives of oxoacids, containing -OX bonds are treated in the following section (p. 883).

Chlorine oxide fluorides (147)

Of the 6 possible oxide fluorides of Cl, 5 have been characterized: they range in stability from the thermally unstable FCI^{III}O to the chemically rather inert perchloryl fluoride FCI^{VII}O₃. The others are FCI^VO₂, F_3CI^{VO} and $F_3CI^{VII}O_2$.

 ¹⁴⁶ Ref. 23, pp. 1386-96, The oxyfluorides of the halogens.
 ¹⁴⁷ K. O. CHRISTE and C. J. SCHACK, Adv. Inorg. Chem. Radiochem. 18, 319-98 (1976).