SECTION 7 SPECTROSCOPY

7.1	X-RAY ME	THODS	7.2
	Table 7.1	Wavelengths of X-Ray Emission Spectra in Angstroms	7.3
	Table 7.2	Wavelengths of Absorption Edges in Angstroms	7.5
	Table 7.3	Critical X-Ray Absorption Energies in keV	7.8
	Table 7.4	X-Ray Emission Energies in keV	7.10
	Table 7.5	β Filters for Common Target Elements	7.14
	Table 7.6	Interplanar Spacings for $K\alpha_1$ Radiation, d versus 2θ	7.14
	Table 7.7	Analyzing Crystals for X-Ray Spectroscopy	7.15
	Table 7.8	Mass Absorption Coefficients for $K\alpha_1$ Lines and $W L\alpha_1$ Line	7.16
7.2	ULTRAVIO	DLET-VISIBLE SPECTROSCOPY	7.18
	Table 7.9	Electronic Absorption Bands for Representative Chromophores	7.19
	Table 7.10	Ultraviolet Cutoffs of Spectrograde Solvents	7.20
	Table 7.11	Absorption Wavelength of Dienes	7.21
	Table 7.12	Absorption Wavelength of Enones and Dienones	7.22
	Table 7.13	Solvent Correction for Ultraviolet-Visible Spectroscopy	7.23
	Table 7.14	Primary Bands of Substituted Benzene and Heteroaromatics	7.23
	Table 7.15	Wavelength Calculation of the Principal Band of Substituted	
		Benzene Derivatives	7.24
7.3	FLUORES	CENCE	7.25
	Table 7.16	Fluorescence Spectroscopy of Some Organic Compounds	7.25
	Table 7.17	Fluorescence Quantum Yield Values	7.28
7.4	FLAME A	TOMIC EMISSION, FLAME ATOMIC ABSORPTION,	
	ELECTR	OTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON	
	INDUCT	ION COUPLED PLASMA, AND PLASMA ATOMIC	
	FLUORE	SCENCE	7.28
	Table 7.18	Detection Limits in ng/mL	7.29
	Table 7.19	Sensitive Lines of the Elements	7.34
7.4.	1 Some Co	ommon Spectroscopic Relationships	7.38
7.5	INFRARED	SPECTROSCOPY	7.41
	Table 7.20	Absorption Frequencies of Single Bonds to Hydrogen	7.41
	Table 7.21	Absorption Frequencies of Triple Bonds	7.47
	Table 7.22	Absorption Frequencies of Cumulated Double Bonds	7.49
	Table 7.23	Absorption Frequencies of Carbonyl Bands	7.50
7.5.	1 Intensition	es of Carbonyl Bands	7.53
7.5.	2 Position	of Carbonyl Absorption	7.53
	Table 7.24	Absorption Frequencies of Other Double Bonds	7.54
	Table 7.25	Absorption Frequencies of Aromatic Bands	7.57
	Table 7.26	Absorption Frequencies of Miscellaneous Bands	7.58
	Table 7.27	Absorption Frequencies in the Near Infrared	7.64
	Table 7.28	Infrared Transmitting Materials	7.67
	Table 7.29	Infrared Transmission Characteristics of Selected Solvents	7.68
7.6	RAMAN S	PECTROSCOPY	7.71
	Table 7.30	Raman Frequencies of Single Bonds to Hydrogen and Carbon	7.71
	Table 7.31	Raman Frequencies of Triple Bonds	7.76
	Table 7.32	Raman Frequencies of Cumulated Double Bonds	7.77
	Table 7.33	Raman Frequencies of Carbonyl Bands	7.78
	Table 7.34	Raman Frequencies of Other Double Bonds	7.79
	Table 7.35	Raman Frequencies of Aromatic Compounds	7.82
	Table 7.36	Raman Frequencies of Sulfur Compounds	7.84
	Table 7.37	Raman Frequencies of Ethers	7.85

	Table 7.38	Raman Frequencies of Halogen Compounds	7.86
	Table 7.39	Raman Frequencies of Miscellaneous Compounds	7,87
	Table 7.40	Principal Argon-Ion Laser Plasma Lines	7.88
7.7	NUCLEAR	MAGNETIC RESONANCE	7.89
	Table 7.41	Nuclear Properties of the Elements	7.89
	Table 7.42	Proton Chemical Shifts	7.92
	Table 7.43	Estimation of Chemical Shift for Protons of $-CH_2$ and Methine	
		Groups	7.94
	Table 7.44	Estimation of Chemical Shift of Proton Attached to a Double Bond	7.95
	Table 7.45	Chemical Shifts in Monosubstituted Benzene	7.96
	Table 7.46	Proton Spin Coupling Constants	7.97
	Table 7.47	Proton Chemical Shifts of Reference Compounds	7.98
	Table 7.48	Solvent Positions of Residual Protons in Incompletely Deuterated	
		Solvents	7.98
	Table 7.49	Carbon-13 Chemical Shifts	7.99
	Table 7.50	Estimation of Chemical Shifts of Alkane Carbons	7.102
	Table 7.51	Effect of Substituent Groups on Alkyl Chemical Shifts	7.102
	Table 7.52	Estimation of Chemical Shifts of Carbon Attached to a Double Bond	7.103
	Table 7.53	Carbon-13 Chemical Shifts in Substituted Benzenes	7.104
	Table 7.54	Carbon-13 Chemical Shifts in Substituted Pyridines	7.105
	Table 7.55	Carbon-13 Chemical Shifts of Carbonyl Group	7.106
	Table 7.56	One-Bond Carbon-Hydrogen Spin Coupling Constants	7.107
	Table 7.57	Two-Bond Carbon-Hydrogen Spin Coupling Constants	7.108
	Table 7.58	Carbon-Carbon Spin Coupling Constants	7.108
	Table 7.59	Carbon-Fluorine Spin Coupling Constants	7.109
	Table 7.60	Carbon-13 Chemical Shifts of Deuterated Solvents	7.110
	Table 7.61	Carbon-13 Coupling Constants with Various Nuclei	7.110
	Table 7.62	Boron-11 Chemical Shifts	7,111
	Table 7.63	Nitrogen-15 (or Nitrogen-14) Chemical Shifts	7.112
	Table 7.64	Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine	7.115
	Table 7.65	Nitrogen-15 Chemical Shifts for Standards	7.115
	Table 7.66	Nitrogen-15 to Hydrogen-1 Spin Coupling Constants	7.115
	Table 7.67	Nitrogen-15 to Carbon-13 Spin Coupling Constants	7.116
	Table 7.68	Nitrogen-15 to Fluorine-19 Spin Coupling Constants	7.116
	Table 7.69	Fluorine-19 Chemical Shifts	7.117
	Table 7.70	Fluorine-19 Chemical Shifts for Standards	7.118
	Table 7.71	Fluorine-19 to Fluorine-19 Spin Coupling Constants	7.118
	Table 7.72	Silicon-29 Chemical Shifts	7.118
	Table 7.73	Phosphorus-31 Chemical Shifts	7.119
	Table 7.74	Phosphorus-31 Spin Coupling Constants	7.122
7.8	MASS SPE	ECTROMETRY	7.123
7.8.	1 Correlati	on of Mass Spectra with Molecular Structure	7.123
	Table 7.75	Isotopic Abundances and Masses of Selected Elements	7.124
7.8.	2 Mass Sp	ectra and Structure	7.126
	Table 7.76	Condensed Table of Mass Spectra	7.128

7.1 X-RAY METHODS

An X-ray tube operating at a voltage V (in keV) emits a continuous X-ray spectrum, the minimum wavelength of which is given by $\lambda_{\min} = 12.398/V$ with the wavelength expressed in angstroms. For expressing the wavelength in kX units, divide by the factor 1.00202. Tables 7.1 and 7.2 are based

Atomic No.	Element	$K\alpha_2$	$K \alpha_1$	$Keta_1$	$L lpha_1$	$Leta_1$
3	Li	240				
4	Be	113				
5	В	67				
6	С	44				
7	N	31.	60			
8	0	23.	/1			
10	F Ne	18.	616	14.464		
11	Na	11	000	11 617	407.6	
12	Mg	9	889	9.558	251.0	
13	Al	8.3392	8.3367	7.981	169.8	
14	Si	7.1277	7.1253	6.7681	123	
15	Р	6.	1549	5.8038		
16	S	5.3747	5.3720	5.0317		
17	Cl	4.7305	4.7276	4.4031		
18	Ar	4.1946	4.1916	3.8848		
19	K	3.7446	3.7412	3.4538	42.7	
20	Са	3.3616	3.3583	3.0896	36.32	35.95
21	Sc	3.0345	3.0311	2.7795	31.33	31.01
22	Ti	2.75207	2.7484	2.5138	27.39	27.02
23	V Cr	2.50/3	2.5035	2.2843	24.26	23.85
24 25	Mn	2.1057	2.1018	1.9102	19.45	19.12
26	Fe	1 93991	1 93597	1 75653	17 567	17 255
20	Co	1.79278	1.78892	1.62075	15.968	15.667
28	Ni	1.66169	1.65784	1.50010	14.566	14.279
29	Cu	1.54433	1.54051	1.39217	13.330	13.053
30	Zn	1.4389	1.4351	1.2952	12.257	11.985
31	Ga	1.3439	1.3400	1.20784	11.290	11.023
32	Ge	1.2580	1.2540	1.1289	10.435	10.174
33	As	1.1798	1.1758	1.0573	9.671	9.414
34	Se	1.1088	1.1047	0.9921	8.990	8.736
35	Br	1.0438	1.0397	0.9327	8.375	8.125
36	Kr	0.9841	0.9801	0.8785	7.822	7.574
37	Rb	0.9296	0.9255	0.8286	7.3181	7.076
38	Sr	0.8794	0.8752	0.7829	6.8625	6.6237
39 40	Y Zr	0.8330	0.8279	0.7407 0.7017	6.4485 6.0702	6.2117 5.8358
41	A.1	0.7504	0.7452	0.007	5 70 10	5 4001
41	Nb M-	0.7504	0.7462	0.6657	5.7240	5.4921
42		0.713543	0.70926	0.032233	5.4003	J.1/08
44	Ru	0.6474	0.6430	0.5725	4,8455	4.0782
45	Rh	0.6176	0.6132	0.5456	4.5973	4.3739
	1.11	0.0170	0.0102	0.0100		1.3737

TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms

Atomic No.	Element	Ka2	$K\alpha_1$	$K\beta_1$	$L\alpha_1$	$Leta_1$
46	Pd	0.5898	0.5854	0.5205	4.3676	4.1460
47	Ag	0.563775	0.559363	0.49701	4.1541	3.9344
48	Cď	0.5394	0.5350	0.4751	3,9563	3.7381
49	In	0.5165	0.5121	0.4545	3.7719	3.5552
50	Sn	0.4950	0.4906	0.4352	3.5999	3.3848
51	Sb	0.4748	0.4703	0.4171	3.4392	3.2256
52	Те	0.4558	0.4513	0.4000	3.2891	3.0767
53	Ι	0.4378	0.4333	0.3839	3.1485	2.9373
54	Xe	0.4204	0.4160	0.3685	3.016	2.807
55	Cs	0.4048	0.4003	0.3543	2.9016	2.8920
56	Ва	0.3896	0.3851	0.3408	2.7752	2.5674
57	La	0.3753	0.3707	0.3280	2.6651	2.4583
58	Ce	0.3617	0.3571	0.3158	2.5612	2.3558
59	Pr	0.3487	0.3441	0.3042	2.4627	2.2584
60	Nd	0.3565	0.3318	0.2933	2.3701	2.1666
61	Pm	0.3249	0.3207	0.2821	2.282	2.0796
62	Sm	0.3137	0.3190	0.2731	2.1994	1.9976
63	Eu	0.3133	0.2985	0.2636	2.1206	1.9202
64	Gd	0.2932	0.2884	0.2544	2.0460	1.8462
65	Tb	0.2834	0.2788	0.2460	1.9755	1.7763
66	Dy	0.2743	0.2696	0.2376	1.9088	1.7100
67	Ho	0.2655	0.2608	0.2302	1.8447	1.6468
68	Er	0.2572	0.2525	0.2226	1.7843	1.5873
69	Tm	0.2491	0.2444	0.2153	1.7263	1.5299
70	Yb	0.2415	0.2368	0.2088	1.6719	1.4756
71	Lu	0.2341	0.2293	0.2021	1.6194	1.4235
72	Hf	0.2270	0.2222	0.1955	1.5696	1.3740
73	Та	0.2203	0.2155	0.1901	1.5219	1.3270
74	W	0.213813	0.208992	0.184363	1.4764	1.2818
75	Re	0.2076	0.2028	0.1789	1.4329	1.2385
76	Os	0.2016	0.1968	0.1736	1.3911	1.1972
77	Ir	0.1959	0.1910	0.1685	1.3513	1.1578
78	Pt	0.1904	0.1855	0.1637	1.3130	1.1198
79	Au	0.1851	0.1802	0.1590	1.2764	1.0836
80	Hg	0.1799	0.1750	0.1544	1.2411	1.0486
81	Tl	0.1750	0.1701	0.1501	1.2074	1.0152
82	Pb	0.1703	0.1654	0.1460	1.1750	0.9822
83	Bi	0.1657	0.1608	0.1419	1.1439	0.9520
84	Ро	0.1608	0.1559	0.1382	1.1138	0.9222
85	At	0.1570	0.1521	0.1343	1.0850	0.8936
86	Rn	0.1529	0.1479	0.1307	1.0572	0.8659
87	Fr	0.1489	0.1440	0.1272	1.030	0.840
88	Ra	0.1450	0.1401	0.1237	1.0047	0.8137
89	Ac	0.1414	0.1364	0.1205	0.9799	0.7890
90	Th	0.1378	0.1328	0.1174	0.9560	0.7652

TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued)

Atomic No.	Element	$K\alpha_2$	$K\alpha_1$	$K\beta_1$	$L\alpha_1$	$Leta_1$
91	Pa	0.1344	0.1294	0.1143	0.9328	0.7422
92	U	0.1310	0.1259	0.1114	0.9105	0.7200
93	Np	0.1278	0.1226	0.1085	0.8893	0.6984
94	Pu	0.1246	0.1195	0.1058	0.8682	0.6777
95	Am	0.1215	0.1165	0.1031	0.8481	0.6576
96	Cm	0.1186	0.1135	0.1005	0.8287	0.6388
97	Bk	0.1157	0.1107	0.0980	0.8098	0.6203
98	Cf	0.1130	0.1079	0.0956	0.7917	0.6023
99	Es	0.1103	0.1052	0.0933	0.7740	0.5850
100	Fm	0.1077	0.1026	0.0910	0.7570	0.5682

TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued)

TABLE 7.2 Wavelengths of Absorption Edges in Angstroms

Atomic No.	Element	K	L_{I}	L_{II}	$L_{ m III}$
3 4 5	Li Be B	226.5 110.68 66.289			
6 7 8 9 10	C N O F Ne	43.68 30.99 23.32 17.913 14.183			
11 12 13 14 15	Na Mg Al Si P	11.478 9.512 7.951 6.745 5.787	197.4 142.5 105.1 81.0	400 247 170 126 96	.92 5.48 5.84
16 17 18 19 20	S Cl Ar K Ca	5.018 4.397 3.871 3.436 3.070	64.23 52.08 43.19 36.35 31.07	76 61.37 50.39 42.02 35.20	6.05 62.93 50.60 42.17 35.49
21 22 23 24 25	Sc Ti V Cr Mn	2.757 2.497 2.269 2.07012 1.896	26.83 23.39 20.52 16.7 16.27	30.16 26.83 23.70 17.9 18.90	30.53 27.37 24.26 20.7 19.40
26 27 28 29 30	Fe Co Ni Cu Zn	1.74334 1.60811 1.48802 1.38043 1.283	14.60 13.34 12.27 11.27 10.33	17.17 15.53 14.13 13.01 11.86	17.53 15.93 14.58 13.29 12.13

Atomic No.	Element	K	L_{I}	L_{II}	$L_{ m III}$
31	Ga	1.195	9.54	10.61	11.15
32	Ge	1.116	8.73	9.97	10.23
33	As	1.044	8.108	9.124	9.367
34	Se	0.9800	7 505	8 417	8 646
35	Br	0.9100	6.925	7 752	7 989
55	Di	0.9199	0.925	1.152	1.909
36	Kr	0.8655	6.456	7.165	7.395
37	Rb	0.8155	5.997	6.643	6.863
38	Sr	0.7697	5.582	6.172	6.387
39	Y	0.7276	5.233	5.756	5.962
40	Zr	0.6888	4.867	5.378	5.583
41	Nb	0.6529	4 581	5.025	5 223
42	Mo	0.61977	4 299	4 719	4 912
42	Tc	0.5888	4.064	4.717	4.629
43	Ru	0.5605	3 841	4.179	4 369
45	Rh	0.5338	3 626	3 942	4.30
15	i di	0.5550	5.020	5.712	1.150
46	Pd	0.5092	3.428	3.724	3.908
47	Ag	0.48582	3.254	3.514	3.698
48	Cd	0.4641	3.084	3.326	3.504
49	In	0.4439	2.926	3.147	3.324
50	Sn	0.4247	2.778	2.982	3.156
51	Sh	0 4066	2 639	2 830	3 000
52	Te	0.3897	2.510	2.687	2 855
53	I	0.3738	2.310	2 553	2 719
54	Xe	0.3585	2.376	2.333	2 592
55	Cs	0.3447	2.167	2.314	2.474
56	Ba	0.3314	2.068	2.204	2.363
57	La	0.3184	1.973	2.103	2.258
58	Ce	0.3065	1.891	2.009	2.164
59	Pr	0.2952	1.811	1.924	2.077
60	Nd	0.2845	1.735	1.843	1.995
61	Pm	0.2743	1.668	1.766	1.918
62	Sm	0.2646	1.598	1.702	1.845
63	Eu	0.2555	1.536	1.626	1.775
64	Gd	0.2468	1 477	1.561	1.709
65	Tb	0.2384	1.421	1.501	1.649
66	Dy	0.2305	1.365	1.438	1.579
67	Но	0.2229	1.319	1.390	1.535
68	Er	0.2157	1.269	1.339	1.483
69	Tm	0.2089	1.222	1.288	1.433
70	Yb	0.2022	1.181	1.243	1.386
71	Lu	0.1958	1.140	1.198	1.341
72	Hf	0.1898	1.099	1.154	1.297
73	Ta	0.1839	1.061	1.113	1.255
				-	

TABLE 7.2 Wavelengths of Absorption Edges in Angstroms (Continued)

Atomic No.	Element	K	L_{I}	L_{II}	$L_{ m III}$
74	W	0 17837	1.025	1.074	1.215
75	Re	0.1731	0.9901	1.036	1.177
76	Os	0.1678	0.9557	1.001	1.140
77	Ir	0.1629	0.9243	0.9670	1.106
78	Pt	0.1582	0.8914	0.9348	1.072
79	Au	0.1534	0.8638	0.9028	1.040
80	Hg	0.1492	0.8353	0.8779	1.009
81	Tl	0.1447	0.8079	0.8436	0.9793
82	Pb	0.1408	0.7815	0.8155	0.9503
83	Bi	0.1371	0.7565	0.7891	0.9234
84	Ро	0.1332	0.7322	0.7638	0.8970
85	At	0.1295	0.7092	0.7387	0.8720
86	Rn	0.1260	0.6868	0.7153	0.8479
87	Fr	0.1225	0.6654	0.6929	0.8248
88	Ra	0.1192	0.6446	0.6711	0.8027
89	Ac	0.1161	0.6248	0.6500	0.7813
90	Th	0.1129	0.6061	0.6301	0.7606
91	Pa	0.1101	0.5875	0.6106	0.7411
92	U	0.1068	0.5697	0.5919	0.7233
93	Np	0.1045	0.5531	0.5742	0.7042
94	Pu	0.1018	0.5366	0.5571	0.6867
95	Am	0.0992	0.5208	0.5404	0.6700
96	Cm	0.0967	0.5060	0.5246	0.6532
97	Bk	0.0943	0.4913	0.5093	0.6375
98	Cf	0.0920	0.4771	0.4945	0.6223
99	Es	0.0897	0.4636	0.4801	0.6076
100	Fm	0.0875	0.4506	0.4665	0.5935

TABLE 7.2 Wavelengths of Absorption Edges in Angstroms (Continued)

on the *K* and *L* wavelength values as published by Y. Cauchois and H. Hulubei (*Tables de Constantes et Données Numériques*, I. *Longueurs d'Onde des Émissions X et des Discontinuités d'Absorption X*, Hermann, Paris, 1947) and by the International Union of Crystallography (*International Tables for X-Ray Crystallography*, Kynoch Press, Birmingham, England, 1962). Wavelength accuracy is only to about 1 in 25 000 except for the lines employed in X-ray diffraction work.

Use of energy-proportional detectors for X-rays creates a need for energy values of K and L absorption edges (Table 7.3) and emission series (Table 7.4). These values were obtained by a conversion to keV of tabulated experimental wavelength values and smoothed by a fit to Moseley's law. Although values are listed to 1 eV, chemical form may shift absorption edges and emission lines as much as 10 to 20 eV. S. Fine and C. F. Hendee [*Nucelonics*, **13**(3):36 (1955)] also give values for $K\beta_2$, $L\gamma_1$, and $L\beta_2$ lines.

The relative intensities of X-ray emission lines from targets varies for different elements. However, one can assume a ratio of $K\alpha_1/K\alpha_2 = 2$ for the commonly used targets. The ratio of $K\alpha_2/K\beta_1$ from these targets varies from 6 to 3.5. The intensities of $K\beta_2$ radiations amount to about 1 percent

Atomic No.	Element	K	L_{I}	L_{II}	$L_{ m III}$
1 2 3 4 5	H He Li Be B	0.0136 0.0246 0.0547 0.112 0.187			
6 7 8 9 10	C N O F Ne	0.284 0.400 0.532 0.692 0.874	0.048	0.0	22
11	Na	1.08	0.055	0.0	34
12	Mg	1.30	0.0628	0.0	502
13	Al	1.559	0.0870	0.0	720
14	Si	1.838	0.118	0.0	977
15	P	2.142	0.153	0.1	28
16	S	2.469	0.193	0.163	0.162
17	Cl	2.822	0.238	0.202	0.201
18	Ar	3.200	0.287	0.246	0.244
19	K	3.606	0.341	0.295	0.292
20	Ca	4.038	0.399	0.350	0.346
21	Sc	4.496	0.462	0.411	0.407
22	Ti	4.966	0.530	0.462	0.456
23	V	5.467	0.604	0.523	0.515
24	Cr	5.988	0.679	0.584	0.574
25	Mn	6.542	0.762	0.656	0.644
26	Fe	7.113	0.849	0.722	0.709
27	Co	7.713	0.929	0.798	0.783
28	Ni	8.337	1.02	0.877	0.858
29	Cu	8.982	1.10	0.954	0.935
30	Zn	9.662	1.20	1.05	1.02
31	Ga	10.39	1.30	1.17	1.14
32	Ge	11.10	1.42	1.24	1.21
33	As	11.87	1.529	1.358	1.32
34	Se	12.65	1.66	1.472	1.431
35	Br	13.48	1.791	1.599	1.552
36	Kr	14.32	1.92	1.729	1.674
37	Rb	15.197	2.064	1.863	1.803
38	Sr	16.101	2.212	2.004	1.937
39	Y	17.053	2.387	2.171	2.096
40	Zr	17.998	2.533	2.308	2.224
41	Nb	18.986	2.700	2.467	2.372
42	Mo	20.003	2.869	2.630	2.525
43	Tc	21.050	3.045	2.796	2.680

TABLE 7.3 Critical X-Ray Absorption Energies in keV

Atomic No.	Element	K	L_{I}	$L_{ m II}$	$L_{ m III}$
44	Pu	22 117	3 227	2.068	2 830
44	Rh	23.210	3.404	3.139	2.839
46	Pd	24.356	3.614	3.338	3.181
47	Ag	25.535	3.828	3.547	3.375
48	Cd	26.712	4.019	3.731	3.541
49	In	27.929	4.226	3.929	3.732
50	Sn	29.182	4.445	4.139	3.911
51	Sb	30.497	4.708	4.391	4.137
52	Te	31.817	4.953	4.621	4.347
53	I	33.164	5.187	4.855	4.559
54	Xe	34.551	5.448	5.103	4.783
55	Cs	35.974	5.706	5.360	5.014
56	Ba	37.432	5.995	5.629	5.250
57	La	38.923	6.264	5.902	5.490
58	Ce	40.43	6.556	6.169	5.728
59	Pr	41.99	6.837	6.446	5.968
60	Nd	43.57	7.134	6.728	6.215
61	Pm	45.19	7.431	7.022	6.462
62	Sm	46.85	7.742	7.316	6.720
63	Eu	48.51	8.059	7.624	6.984
64	Gd	50.23	8.383	7.942	7.251
65	Tb	52.00	8.713	8.258	7.520
66	Dy	53.77	9.053	8.587	7.795
67	Но	55.61	9.395	8.918	8.074
68	Er	57.47	9.754	9.270	8.362
69	Tm	59.38	10.12	9.622	8.656
70	Yb	61.31	10.49	9.985	8.949
71	Lu	63.32	10.87	10.35	9.248
72	Hf	65.37	11.28	10.75	9.567
73	Та	67.46	11.68	11.14	9.883
74	W	69.51	12.09	11.54	10.20
75	Re	71.67	12.52	11.96	10.53
76	Os	73.87	12.97	12.38	10.86
77	Ir	76.11	13.41	12.82	11.21
78	Pt	78.35	13.865	13.26	11.55
79	Au	80.67	14.351	13.731	11.92
80	Hg	83.08	14.838	14.205	12.278
81	Tl	85.52	15.344	14.695	12.65
82	Pb	87.95	15.861	15.200	13.03
83	Bi	90.54	16.386	15.709	13.42
84	Ро	93.16	16.925	16.233	13.81
85	At	95.73	17.481	16.777	14.21

TABLE 7.3 Critical X-Ray Absorption Energies in keV (Continued)

Atomic					
No.	Element	K	L_{I}	L_{II}	L_{III}
86	Rn	98.45	18.054	17.331	14.61
87	Fa	101.1	18.628	17.893	15.02
88	Ra	103.9	19.228	18.473	15.44
89	Ac	107.7	19.829	19.071	15.86
90	Th	109.8	20.452	19.673	16.278
91	Ра	112.4	21.096	20.295	16.720
92	U	115.0	21.757	20.944	17.163
93	Np	118.2	22.411	21.585	17.606
94	Pu	121.2	23.117	22.250	18.062
95	Am	124.3	23.795	22.935	18.524
96	Cm	127.2	24.502	23.629	18.992
97	Bk	131.3	25.231	24.344	19.466
98	Cf	133.6	26.010	25.070	19.954
99	Es	138.1	26.729	25.824	20.422
100	Fm	141.5	27.503	26.584	20.912

TABLE 7.3 Critical X-Ray Absorption Energies in keV (Continued)

TABLE 7.4X-Ray Emission Energies in keV

Atomic No.	Element	$K\beta_1$	$K lpha_1$	$Leta_1$	$L \alpha_1$
3	Li		0.052		
4	Be		0.110		
5	B		0.185		
6	С		0.282		
7	Ν		0.392		
8	0		0.523		
9	F		0.677		
10	Ne		0.851		
11	Na	1.067	1.041		
12	Mg	1.297	1.254		
13	Al	1.553	1.487		
14	Si	1.832	1.740		
15	Р	2.136	2.015		
16	S	2.464	2.308		
17	Cl	2.815	2.622		
18	Ar	3.192	2.957		
19	К	3.589	3.313		
20	Ca	4.012	3.691	0.344	0.341
21	Sc	4.460	4.090	0.399	0.395
22	Ti	4.931	4.510	0.458	0.452
23	V	5.427	4.952	0.519	0.512

Atomic No.	Element	$K\beta_1$	$K \alpha_1$	$Leta_1$	$L \alpha_1$
24	Cr	5.946	5.414	0.581	0.571
25	Mn	6.490	5.898	0.647	0.636
26	Fe	7.057	6.403	0.717	0.704
27	Co	7.649	6.930	0.790	0.775
28	Ni	8.264	7.477	0.866	0.849
29	Cu	8.904	8.047	0.948	0.928
30	Zn	9.571	8.638	1.032	1.009
31	Ga	10.263	9.251	1.122	1.096
32	Ge	10.981	9.885	1.216	1.186
33	As	11.725	10.543	1.317	1.282
34	Se	12.495	11.221	1.419	1.379
35	Br	13.290	11.923	1.526	1.480
36	Kr	14.112	12.649	1.638	1.587
37	Rb	14.960	13.394	1.752	1.694
38	Sr	15.834	14.164	1.872	1.806
39	Y	16.736	14.957	1.996	1.922
40	Zr	17.666	15.774	2.124	2.042
41	Nb	18.621	16.614	2.257	2.166
42	Mo	19.607	17.478	2.395	2.293
43	Tc	20.612	18.370	2.538	2.424
44	Ru	21.655	19.278	2.683	2.558
45	Rh	22.721	20.214	2.834	2.696
46	Pd	23.816	21.175	2.990	2.838
47	Ag	24.942	22.162	3.151	2.984
48	Cd	26.093	23.172	3.316	3.133
49	In	27.274	24.207	3.487	3.287
50	Sn	28.483	25.270	3.662	3.444
51	Sb	29.723	26.357	3.843	3.605
52	Te	30.993	27.471	4.029	3.769
53	Ι	32.292	28.610	4.220	3.937
54	Xe	33.644	29.779	4.422	4.111
55	Cs	34.984	30.970	4.620	4.286
56	Ba	36.376	32.191	4.828	4.467
57	La	37.799	33.440	5.043	4.651
58	Ce	39.255	34.717	5.262	4.840
59	Pr	40.746	36.023	5.489	5.034
60	Nd	42.269	37.359	5.722	5.230
61	Pm	43.811	38.726	5.956	5.431
62	Sm	45.400	40.124	6.206	5.636
63	Eu	47.027	41.529	6.456	5.846
64	Gd	48.718	42.983	6.714	6.059
65	Tb	50.391	44.470	6.979	6.275

TABLE 7.4 X-Ray Emission Energies in keV (Continued)

Atomic					
No.	Element	$K\beta_1$	$K\alpha_1$	$L\beta_1$	$L\alpha_1$
66	Dy	52.178	45.985	7.249	6.495
67	Ho	53.934	47.528	7.528	6.720
68	Er	55.690	49.099	7.810	6.948
69	Tm	57.487	50.730	8.103	7.181
70	Yb	59.352	52.360	8.401	7.414
71	Lu	61.282	54.063	8.708	7.654
72	Hf	63.209	55.757	9.021	7.898
73	Та	65.210	57.524	9.341	8.145
74	W	67.233	59.310	9.670	8.396
75	Re	69.298	61.131	10.008	8.651
76	Os	71.404	62.991	10.354	8.910
77	Ir	73.549	64.886	10.706	9.173
78	Pt	75.736	66.820	11.069	9.441
79	Au	77.968	68.794	11.439	9.711
80	Hg	80.258	70.821	11.823	9.987
81	Tl	82.558	72.860	12.210	10.266
82	Pb	84.922	74.957	12.611	10.549
83	Bi	87.335	77.097	13.021	10.836
84	Ро	89.809	79.296	13.441	11.128
85	At	92.319	81.525	13.873	11.424
86	Rn	94.877	83.800	14.316	11.724
87	Fr	97.483	86.119	14.770	12.029
88	Ra	100.136	88.485	15.233	12.338
89	Ac	102.846	90.894	15.712	12.650
90	Th	105.592	93.334	16.200	12.966
91	Ра	108.408	95.851	16.700	13.291
92	U	111.289	98.428	17.218	13.613
93	Np	114.181	101.005	17.740	13.945
94	Pu	117.146	103.653	18.278	14.279
95	Am	120.163	106.351	18.829	14.618
96	Cm	123.235	109.098	19.393	14.961
97	Bk	126.362	111.896	19.971	15.309
98	Cf	129.544	114.745	20.562	15.661
99	Es	132.781	117.646	21.166	16.018
100	Fm	136.075	120.598	21.785	16.379

TABLE 7.4 X-Ray Emission Energies in keV (Continued)

of that of the corresponding $K\alpha_1$ radiation. In practical applications these ratios have to be corrected for differential absorption in the window of the tube and air path, the ratio of scattering factors for and differential absorption in the crystal, and for sensitivity characteristics of the detector. Generalizing, the intensities of radiations from the *K* and *L* series are as follows:

Emission line	$K\alpha_1$	$K\alpha_2$	$Keta_1$	$K\beta_2$	$L\alpha_1$	$L\alpha_2$	$Leta_1$	$L\beta_2$	$L\gamma_1$
Relative intensity	500	250	80-150	5	100	10	30	60	40

For angles at which the $K\alpha_1$, $K\alpha_2$ doublet is not resolved, a mean wavelength $[K\bar{\alpha} = (2K\alpha_1 + K\alpha_2)/3]$ can be used.

Filters. The *K* spectra of the light metals, often used as target material in the production of X-rays for diffraction studies, contain three strong lines, α_1 , α_2 and β_1 , of which the α lines form a doublet with a narrow wavelength separation. The *K* β radiation can be eliminated by using a thin foil filter, usually of the element of next lower atomic number to that of the target element: the *K* α lines are transmitted with a relatively small loss of intensity. Table 7.5, restricted to the *K* wavelengths of target elements in common use, lists the calculated thicknesses of β filters required to reduce the *K* $\beta_1/K\alpha_1$ integrated intensity ratio to $\frac{1}{100}$.

Interplanar Spacings. Diffractometer alignment procedures require the use of a well-prepared polycrystalline specimen. Two standard samples found to be suitable are silicon and α -quartz (including Novaculite). The 2 θ values of several of the most intense reflections for these materials are listed in Table 7.6 (*Tables of Interplanar Spacings d vs. Diffraction Angle 2\theta for Selected Targets*, Picker Nuclear, White Plains, N.Y., 1966). To convert to *d* for $K\bar{\alpha}$ or to *d* for $K\alpha_2$, multiply the tabulated *d* value (Table 7.6) for $K\alpha_1$ by the factor given below:

Element	Kā	$K\alpha_2$		
W Ag Mo Cu Ni Co Fe Cr	$\begin{array}{c} 1.007 \ 69 \\ 1.002 \ 63 \\ 1.002 \ 02 \\ 1.000 \ 82 \\ 1.000 \ 77 \\ 1.000 \ 72 \\ 1.000 \ 67 \\ 1.000 \ 57 \end{array}$	1.023 07 1.007 89 1.006 04 1.002 48 1.002 32 1.002 16 1.002 04 1.001 70		

Analyzing Crystals. The range of wavelengths usable with various analyzing crystals are governed by the *d* spacings of the crystal planes and by the geometric limits to which the goniometer can be rotated. The *d* value should be small enough to make the angle 2θ greater than approximately 10 or 15 deg, even at the shortest wavelength used: otherwise excessively long analyzing crystals would be needed to prevent the direct fluorescent beam from entering the detector. A small *d* value is also favorable for producing a large dispersion of the spectrum to give good separation of adjacent lines. On the other hand, a small *d* value imposes an upper limit to the range of wavelengths that can be analyzed. Actually the goniometer is limited mechanically to about 150 deg for a 2θ value. A final requirement is the reflection efficiency and minimization of higher-order reflections. Table 7.7 gives a list of crystals commonly used for X-ray spectroscopy.

Target Element	$K\bar{lpha},{ m \AA}$	Excitation Voltage, keV	Absorber	Thickness, mm	g/cm ²	% Loss $K\alpha_1$
Ag	0.560834	25.52	Pd	0.062	0.074	60
Mo	0.71069	20.00	Zr	0.081	0.053	57
Cu	1.54178	8.981	Ni	0.015	0.013	45
Ni	1.65912	8.331	Co	0.013	0.011	42
Co	1.79021	7.709	Fe	0.012	0.009	39
Fe	1.93728	7.111	Mn	0.011	0.008	38
			MnO_2	0.026	0.013	45
Cr	2.29092	5.989	V	0.011	0.007	37
			V_2O_5	0.036	0.012	48
	$L \alpha_1$			$L\beta_1 L\alpha_1 = \frac{1}{100}$		% Loss $L\alpha_1$
W	1.4763	10.200	Cu	0.035		77

TABLE 7.5 β Filters for Common Target Elements

TABLE 7.6 Interplanar Spacings for $K\alpha_1$ Radiation, *d* versus 2θ

	α -quartz (Including Novaculite)									
hkl	100	101	110	102	200	112	202	211	203	301
d(Å)	4.260	3.343	2.458	2.282	2.128	1.817	1.672	1.541	1.375	1.372
W $K\alpha_1$: 26	2.81	3.58	4.87	5.25	5.63	6.59	7.17	7.78	8.72	8.74
Ag $K\alpha_1$: 26	7.53	9.60	13.07	14.08	15.10	17.71	19.26	20.91	23.47	23.52
Mo $K\alpha_1$: 26	9.55	12.18	16.59	17.88	19.19	22.51	24.49	26.61	29.89	29.96
Cu $K\alpha_1$: 26	20.83	26.64	36.52	39.45	42.44	50.16	54.86	59.98	68.14	68.31
Ni $K\alpha_1$: 26	22.44	28.71	39.42	42.60	45.85	54.28	59.44	65.08	74.15	74.34
Co $K\alpha_1$: 26	24.24	31.04	42.68	46.15	49.71	58.98	64.68	70.96	81.16	81.38
Fe $K\alpha_1$: 26	26.27	33.66	46.38	50.20	54.11	64.38	70.75	77.83	89.50	89.74
Cr $K\alpha_1$: 26	31.18	40.05	55.52	60.22	65.09	78.11	86.42	95.96	112.73	113.11
	1		1	L	Silicon	I	L	L	1	L
hkl	111	220	311	400	331	422	511,333	440	531	620
d(Å)	3.1353	1.91997	1.63736	1.357630	1.24584	1.1085	1.0451	0.959986	0.917922	0.858637
	3.82 10.24 12.99 28.44 30.66 33.15 35.97 42.83	6.24 16.75 21.29 47.30 51.16 55.53 60.55 73.21	7.32 19.67 25.02 56.12 60.83 66.22 72.48 88.72	8.83 23.78 30.28 69.13 75.26 82.42 90.96 114.97	9.62 25.95 33.08 76.38 83.42 91.77 101.97 133.53	10.82 29.23 37.32 88.03 96.80 107.59 121.67	11.48 31.04 39.67 94.96 104.96 117.71 135.70	12.50 33.88 43.36 106.71 119.42 137.42	13.07 35.48 45.45 114.10 129.12 154.04	13.98 38.02 48.79 127.55 149.76

Crystal	Reflecting Plane	2d Spacing, Å	Reflectivity
Quartz	5052	1.624	Low
Aluminum	111	2.338	High
Topaz	303	2.712	Medium
Quartz	2023	2.750	Low
Lithium fluoride	220	2.848	High
Silicon	111	3.135	High
Quartz	112	3.636	Medium
Lithium fluoride	200	4.028	High
Sodium chloride	200	5.639	High
Calcium fluoride	111	6.32	High
Quartz	1011	6.686	High
Quartz	1010	8.50	Medium
Pentaerythritol (PET)	002	8.742	High
Ethylenediamine tartrate (EDT)	020	8.808	Medium
Ammonium dihydrogen phosphate (ADP)	110	10.648	Low
Gypsum	020	15.185	Medium
Mica	002	19.92	Low
Potassium hydrogen phthalate (KAP)	1011	26.4	Medium
Lead palmitate		45.6	
Strontium behenate		61.3	
Lead stearate		100.4	Medium

TABLE 7.7 Analyzing Crystals for X-Ray Spectroscopy

The long-wavelength analyzers are prepared by dipping an optical flat into the film of the metal fatty acid about 50 times to produce a layer 180 molecules in thickness.

Lithium fluoride is the optimum crystal for all wavelengths less than 3 Å. Pentaerythritol (PET) and potassium hydrogen phthalate (KAP) are usually the crystals of choice for wavelengths from 3 to 20 Å. Two crystals suppress even-ordered reflections: silicon (111) and calcium fluoride (111).

Mass Absorption Coefficients. Radiation traversing a layer of substance is diminished in intensity by a constant fraction per centimeter thickness x of material. The emergent radiant power P, in terms of incident radiant power P_0 , is given by

$$P = P_0 \exp\left(-\mu x\right)$$

which defines the total linear absorption coefficient μ . Since the reduction of intensity is determined by the quantity of matter traversed by the primary beam, the absorber thickness is best expressed on a mass basis, in g/cm². The mass absorption coefficient μ/ρ , expressed in units cm²/g, where ρ is the density of the material, is approximately independent of the physical state of the material and, to a good approximation, is additive with respect to the elements composing a substance.

Table 7.8 contains values of μ/ρ for the common target elements employed in X-ray work. A more extensive set of mass absorption coefficients for *K*, *L*, and *M* emission lines within the wavelength range from 0.7 to 12 Å is contained in Heinrich's paper in T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), *The Electron Microprobe*, Wiley, New York, 1966, pp. 351–377. This article should be consulted to ascertain the probable accuracy of the values and for a compilation of coefficients and exponents employed in the computations.

Emitter wavelength, Å	Ag <i>Kα</i> ₁ 0.559	Mo <i>Kα</i> ₁ 0.709	Cu <i>Kα</i> ₁ 1.541	Ni <i>Kα</i> ₁ 1.658	Co <i>Kα</i> ₁ 1.789	Fe <i>K</i> α ₁ 1.936	Cr <i>K</i> α ₁ 2.290	W <i>Lα</i> ₁ 1.476
Absorber								
1 H	0.37	0.38	0.43	0.4	0.4	0.5	0.5	0.4
2 He	0.16	0.18	0.37	0.4	0.4	0.5	0.7	0.3
3 Li	0.18	0.22	0.50	0.6	0.7	0.9	1.5	0.4
4 Be	0.22	0.30	1.2	1.5	1.9	2.3	3.7	1.1
5 B	0.30	0.45	2.5	3.1	3.9	4.9	7.9	2.2
6 C	0.42	0.50	4.6	5.7	7.1	8.8	14.2	4.1
7 N	0.60	0.83	7.5	9.3	11.5	14.4	23.1	6.7
8 O	0.80	1.45	12.9	15.8	19.5	24.5	39.4	11.4
9 F	1.00	1.9	16.5	20.3	25.2	31.4	50.3	14.6
10 Ne	1.41	2.6	22.8	27.9	34.6	43.1	69.0	20.1
11 Na	1.75	3.5	30.3	37.2	45.9	57.2	91.4	26.8
12 Mg	2.27	4.6	39.5	48.4	59.8	74.6	119.1	34.9
13 Al	2.74	5.8	49.6	60.7	75.0	93.4	149.0	43.9
14 Si	3.44	7.3	61.4	75.2	92.8	115.5	183.8	54.4
15 P	4.20	8.8	74.7	91.4	112.9	140.5	223.6	66.2
16 S	5.15	10.6	89.2	109.2	134.7	167.4	266.1	79.1
17 Cl	5.86	12.4	104.8	128.2	158.1	196.6	312.4	92.8
18 Ar	6.40	14.5	121.4	148.5	183.0	227.3	360.7	107.6
19 K	8.0	16.7	139.8	171	211	262	415	124
20 Ca	9.7	18.9	158.6	194	239	296	469	141
21 Sc	10.5	21.8	180.5	221	272	337	534	160
22 Ti	11.8	25.3	203	247	304	378	597	180
23 V	13.3	27.7	228	278	342	424	77	202
24 Cr	15.7	31.0	254	311	382	474	88	226
25 Mn	17.4	34.5	282	344	423	63.5	101	250
26 Fe	19.9	38.1	311	380	57.6	71.4	113	276
27 Co	21.8	42.1	K341	52.8	64.9	80.6	127	303
28 Ni	25.0	46.4	48.3	58.9	72.5	90.0	142	$-\frac{333}{K}$
29 Cu	26.4	50.7	53.7	65.5	80.6	100.0	158	47.6
30 Zn	28.2	55.4	59.5	72.7	89.4	110.9	175	52.8
31 Ga	30.8	60.1	65.9	80.5	99.0	122.8	194	58.5
32 Ge	33.5	65.2	72.3	88.2	108.6	134.7	213	64.1
33 As	36.5	70.5	79.1	96.6	118.9	147	233	70.2
34 Se	38.5	76.0	86.1	105.1	129.4	161	254	76.4
35 Br	42.3	82.5	93.9	114.7	141.2	175	277	83.4
36 Kr	45.0	88.3	101.9	124.5	153.2	190	300	90.5
37 Rb	48	95	84	103	127	158	252	98
38 Sr	52	102	90	110	137	170	271	106

TABLE 7.8 Mass Absorption Coefficients for $K\alpha_1$ Lines and W $L\alpha_1$ Line

Emitter	Ag <i>Kα</i> ₁	Mo <i>Kα</i> ₁	Cu <i>Kα</i> ₁	Ni <i>Kα</i> ₁	Co <i>Kα</i> ₁	Fe <i>K</i> α ₁	Cr <i>K</i> α ₁	W <i>Lα</i> ₁
wavelength, Å	0.559	0.709	1.541	1.658	1.789	1.936	2.290	1.476
Absorber								
39 Y	56	109	97	119	147	183	292	114
40 Zr	61	17	104	128	158	197	314	122
41 Nb 42 Mo	66 71 76	18 19 20	112 119	138 146	170 180	212 225	338 358 284	132 140
45 Rh 45 Rh	K 12 13	20 22 23	128 137 146	168 179	207 221	241 258 275	410 438	160 171
46 Pd	14	24	155	190	235	292	466	182
47 Ag	15	26	165	202	249	310	493	193
48 Cd	15	28	174	213	263	327	520	204
49 In	16	30	185	227	280	347	553	217
50 Sn	17	32	195	239	295	367	583	229
51 Sb	19	34	206	252	310	386	612	241
52 Te	19	36	216	265	326	405	644	253
53 I	21	37	230	281	346	431	684	269
54 Xe	22	39	239	293	361	448	710	280
55 Cs	24	42	332	404	495	612	822	295
56 Ba	25	44	349	425	522	645	622	311
57 La	26	46	365	444	545	673	647	325
58 Ce	28	48	383	466	571	603	216	341
59 Pr	29	51	401	487	597	453	229	356
60 Nd	31	54	420	510	534	473	241	373
61 Pm 62 Sm 63 Eu 64 Gd 65 Tb	32 33 35 36 38	56 59 61 64 67	$ \begin{array}{r} 440 \\ L_{1} \underline{456} \\ 405 \\ L_{II} \underline{424} \\ 316 \end{array} $	535 473 354 370 135	417 148 156 164	164 173 182 191 201	254 268 282 296 311	$ 392 406 423 \overline{393} L_{I} $
66 Dy 67 Ho 68 Er 69 Tm 70 Yb	39 41 43 45 46	70 72 75 79 82	$L_{\rm III} \frac{329}{123} \\ 129 \\ 135 \\ 141$	141 148 156 163 171	172 181 189 199 208	211 222 233 244 256	327 343 360 377 395	$\frac{\overline{293}}{304} L_{\rm II} \\ \frac{316}{120} L_{\rm III} \\ 126$
71 Lu	48	84	148	179	218	267	414	132
72 Hf	51	88	155	187	228	280	433	138
73 Ta	52	91	162	196	238	293	453	144
74 W	55	95	169	204	249	306	473	151
75 Re	57	98	176	213	260	319	494	157
76 Os	59	102	184	223	271	333	515	164
77 Ir	61	106	192	232	283	347	538	171
78 Pt	64	109	200	242	295	362	560	179

TABLE 7.8 Mass Absorption Coefficients for $K\alpha_1$ Lines and W $L\alpha_1$ Line (*Continued*)

Emitter wavelength, Å	Ag <i>Kα</i> ₁ 0.559	Mo <i>Kα</i> ₁ 0.709	Cu <i>Kα</i> ₁ 1.541	Ni <i>Kα</i> ₁ 1.658	Co <i>Kα</i> ₁ 1.789	Fe <i>Kα</i> ₁ 1.936	Cr <i>Kα</i> ₁ 2.290	W <i>Lα</i> ₁ 1.476
Absorber								
79 Au 80 Hg	67 69	113 117	209 218	252 263	307 321	377 394	584 609	186 194
81 Tl 82 Pb 83 Bi 84 Po 85 At	72 74 78	121 125 129 131	227 236 247 258 269	275 286 298 311 325	334 348 363 380 397	411 428 446 466 487	635 662 690 721 753	203 211 220 230 240
86 Rn 87 Fr 88 Ra 89 Ac 90 Th	85 91 97	89	281 294 307 322 337	340 356 372 389 408	414 433 453 474 497	509 532 556 582 610	787 823 861 900 944	251 262 274 287 301
91 Pa 92 U 93 Np 94 Pu	104	54	353 372 392 418	427 450 474 505	520 548 578 615	639 673 709 755	988 898 945 835	315 332 350 373

TABLE 7.8 Mass Absorption Coefficients for $K\alpha_1$ Lines and W $L\alpha_1$ Line (*Continued*)

7.2 ULTRAVIOLET-VISIBLE SPECTROSCOPY

Molecules with two or more isolated chromophores (absorbing groups) absorb light of nearly the same wavelength as does a molecule containing only a single chromophore of a particular type. The intensity of the absorption is proportional to the number of that type of chromophore present in the molecule. Representative chromophores are given in Table 7.9.

The solvent chosen must dissolve the sample, yet be relatively transparent in the spectral region of interest. In order to avoid poor resolution and difficulties in spectrum interpretation, a solvent should not be employed for measurements that are near the wavelength of or are shorter than the wavelength of its ultraviolet cutoff, that is, the wavelength at which absorbance for the solvent alone approaches one absorbance unit. Ultraviolet cutoffs for solvents commonly used are given in Table 7.10.

Appreciable interaction between chromophores does not occur unless they are linked directly to each other, or forced into close proximity as a result of molecular stereochemical configuration. Interposition of a single methylene group, or *meta* orientation about an aromatic ring, is sufficient to insulate chromophores almost completely from each other. Certain combinations of functional groups afford chromophoric systems which give rise to characteristic absorption bands.

Sets of empirical rules, often referred to as Woodward's rules or the Woodward-Fieser rules, enable the absorption maxima of dienes (Table 7.11) and enones and dienones (Table 7.12) to be predicted. To the respective base values (absorption wavelength of parent compound) are added the increments for the structural features or substituent groups present. When necessary, a solvent correction is also applied (Table 7.13).

Chromophore	System	$\lambda_{ m max}$	$\epsilon_{ m max}$
Acetylide Aldehyde	-C≡C- -CHO	175–180 210	6 000 strong
Amine Azido Azo Bromide Carbonyl Carboxyl Disulfide Ester Ether Ether Ethylene Iodide	$-NH_{2}$ $>C=N-$ $-N=N-$ $-Br$ $>C=O$ $-COOH$ $-S-S-$ $-COOR$ $-O-$ $-C=C-$ $-I$	$\begin{array}{c} 280 - 300 \\ 195 \\ 190 \\ 285 - 400 \\ 208 \\ 195 \\ 270 - 285 \\ 200 - 210 \\ 194 \\ 255 \\ 205 \\ 185 \\ 190 \\ 260 \end{array}$	11-182 8005 0003-253001 00018-3050-705 500400501 0008 000400
Nitrate Nitrile Nitrite	$-ONO_2$ $-C \equiv N$ -ONO	270 (shoulder) 160 220–230	12 1 000-2 000
Nitro Nitroso Oxime Sulfone Sulfoxide Thiocarbonyl Thioether Thiol	$-NO_{2} -NO -NOH -SO_{2} -S=0 >C=S -S - S - S - (acyclic) -(C=C)_{3} - (C=C)_{4} - (C=C)_{5} - (C=C)_{5} - (C=C)_{2} - (alicyclic) C=C-C=C C C C=C-C=N C=C-C=O - C=O -$	$\begin{array}{c} 300-400\\ 210\\ 302\\ 190\\ 180\\ 210\\ 205\\ 194\\ 215\\ 195\\ 210-230\\ 260\\ 300\\ 330\\ 230-260\\ 219\\ 220\\ 210-250\\ 300-350\\ \end{array}$	10 strong 100 5 000 1 500 strong 4 600 1 600 1 400 21 000 35 000 52 000 118 000 3 000-8 000 6 500 23 000 10 000-20 000 weak 0 500
Benzene	$C = C - NO_2$	229 184 204 255	9 500 46 700 6 900
Diphenyl Naphthalene		233 246 222 275 312	20 000 112 000 5 600 175
Anthracene		252 375	199 000 7 900
Phenanthrene		251 292	66 000 14 000
Naphthacene		272 473	180 000 12 500

TABLE 7.9 Electronic Absorption Bands for Representative Chromophores

Chromophore	System	$\lambda_{ m max}$	$\epsilon_{ m max}$
Pentacene		310	300,000
		585	12 000
Pvridine		174	80 000
		195	6 000
		257	1 700
Quinoline		227	37 000
		270	3 600
		314	2 750
Isoquinoline		218	80 000
*		266	4 000
		317	3 500
		1	

TABLE 7.9 Electronic Absorption Bands for Representative Chromophores (Continued)

TABLE 7.10 Ultraviolet Cutoffs of Spectrograde Solvents

Absorbance of 1.00 in a 10.0 mm cell vs. distilled water.

	Wavelength,		Wavelength,
Solvent	nm	Solvent	nm
Acetic acid	260	Hexadecane	200
Acetone	330	Hexane	210
Acetonitrile	190	Isobutyl alcohol	230
Benzene	280	Methanol	210
1-Butanol	210	2-Methoxyethanol	210
2-Butanol	260	Methylcyclohexane	210
Butyl acetate	254	Methylene chloride	235
Carbon disulfide	380	Methyl ethyl ketone	330
Carbon tetrachloride	265	Methyl isobutyl ketone	335
1-Chlorobutane	220	2-Methyl-1-propanol	230
Chloroform (stabilized	245	N-Methylpyrrolidone	285
with ethanol)		Nitromethane	380
Cyclohexane	210	Pentane	210
1,2-Dichloroethane	226	Pentyl acetate	212
Diethyl ether	218	1-Propanol	210
1,2-Dimethoxyethane	240	2-Propanol	210
N,N-Dimethylacetamide	268	Pyridine	330
N,N-Dimethylformamide	270	Tetrachloroethylene	290
Dimethylsulfoxide	265	(stabilized with thymol)	
1,4-Dioxane	215	Tetrahydrofuran	220
Ethanol	210	Toluene	286
2-Ethoxyethanol	210	1,1,2-Trichloro-1,2,2-	231
Ethyl acetate	255	trifluoroethane	
Ethylene chloride	228	2,2,4-Trimethylpentane	215
Glycerol	207	o-Xylene	290
Heptane	197	Water	191

TABLE 7.11 Absorption Wavelength of Dienes

Heteroannular and acyclic dienes usually display molar absorptivities in the 8000 to 20 000 range, whereas homoannular dienes are in the 5000 to 8000 range.

Poor correlations are obtained for cross-conjugated polyene systems such as

The correlations presented here are sometimes referred to as Woodward's rules or the Woodward-Fieser rules.

Base value for heteroannular or open chain diene, nm	214
Base value for homoannular diene, nm	253
Increment (in nm) for	
double bond extending conjugation	30
Alkyl substituent or ring residue	5
Exocyclic double bond	5
Polar groupings:	
-O-acyl	0
- <i>O</i> -alkyl	6
-S-alkyl	30
-Cl, -Br	5
$-N (alkyl)_2$	60
Solvent correction (see Table 7.13)	
Calculated wavelength =	total

Ring substitution on the benzene ring affords shifts to longer wavelengths (Table 7.14) and intensification of the spectrum. With electron-withdrawing substituents, practically no change in the maximum position is observed. The spectra of heteroaromatics are related to their isocyclic analogs, but only in the crudest way. As with benzene, the magnitude of substituent shifts can be estimated, but tautomeric possibilities may invalidate the empirical method.

When electronically complementary groups are situated *para* to each other in disubstituted benzenes, there is a more pronounced shift to a longer wavelength than would be expected from the additive effect due to the extension of the chromophore from the electron-donating group through the ring to the electron-withdrawing group. When the *para* groups are not complementary, or when the groups are situated *ortho* or *meta* to each other, disubstituted benzenes show a more or less additive effect of the two substituents on the wavelength maximum. Calculation of the principal band of selected substituted benzenes is illustrated in Table 7.15.

TABLE	7.12	Absorption	Wavelength of	Enones and	Dienones
			0		

$O=C-C=C \begin{pmatrix} \beta \\ \beta \end{pmatrix} O=C-C=C-C=C \begin{pmatrix} \delta \\ 0 \end{pmatrix} \begin{pmatrix} \delta \\ \delta \end{pmatrix}$		
Base values, nm		
Acyclic α,β -unsaturated ketones	215	
Acyclic α, β -unsaturated aldehyde	210	
Six-membered cyclic α,β -unsaturated ketones	215	
Five-membered cyclic α,β -unsaturated ketones	214	
α,β -Unsaturated carboxylic acids and esters	195	
Increments (in nm) for		
Double bond extending conjugation:		
Heteroannular	30	
Homoannular	69	
Alkyl group or ring residue:		
α	10	
β	12	
γ, δ	18	
Polar groups:		
-OH		
α	35	
β	30	
γ	50	
$-O$ -CO-CH ₃ and $-O$ -CO-C ₆ H ₅ : α , β , γ , δ	6	
-OCH ₃		
α	35	
β	30	
γ	17	
δ	31	
$-S$ —alkyl, β	85	
-Cl		
α	15	
ß	12	
—Br		
α	25	
β	30	
$-N(alkyl)_{2}, \beta$	95	
Exocyclic double bond	5	
Solvent correction (see Table 7.13)	-	
Calculated wavelength =	total	

Solvent	Correction, nm
Chloroform	+1
Cyclohexane	
Diethyl ether	+11
1,4-Dioxane	+5
Ethanol	0
Hexane	+11
Methanol	0
Water	-8

 TABLE 7.13
 Solvent Correction for Ultraviolet-Visible Spectroscopy

TABLE 7.14 Primary Bands of Substituted Benzene and Heteroaromatics

 In methanol.

Base value: 203.5 nm.

Substituent	Wavelength shift, nm	Substituent	Wavelength shift, nm
		—СООН	25.5
-CH=CH ₂	44.5		20.5
−C≡CH ²	44	—CN	20.5
$-C_6H_5$	48	-NH ₂	26.5
—F	0		-0.5
-Cl	6.0	$-N(CH_3)_2$	47.0
—Br	6.5	-NH-CO-CH ₃	38.5
—I	3.5	-NO ₂	57
—ОН	7.0	—SH	32
-0-	31.5	-SO-C ₆ H ₅	28
-OCH ₃	13.5	-SO ₂ CH ₃	13
-OC ₆ H ₅	51.5	$-SO_2NH_2$	14.0
—СНО	46.0	-CH=CH-C ₆ H ₅	
-CO-CH ₃	42.0	cis	79
$-CO-C_6H_5$	48	trans	92.0
		-CH=CH-COOH, trans	69.5
	Base value,		Base value,
Heteroaromatic	nm	Heteroaromatic	nm
Furan	200	Pvridine	257
Pyrazine	257	Pyrimidine	ca 235
Pyrazole	214	Pyrrole	209
Pyridazine	ca 240	Thiophene	231

Base value of parent chromophore nm	
C ₂ H ₂ COOH or C ₂ H ₂ COO—alkyl	230
$C_{\epsilon}H_{\epsilon}$ —CO—alkyl (or aryl)	246
C ₄ H ₄ CHO	250
Increment (in nm) for each substituent on phenyl ring	
—Alkyl or ring residue	
<i>o</i> -, <i>m</i> -	3
<i>p</i> -	10
—OH and —O— alkyl	
0-, <i>m</i> -	7
<i>p</i> -	25
-0-	
0-	11
<i>m</i> -	20
<i>p</i> -	78*
—Cl	
0-, <i>m</i> -	0
<i>p</i> -	10
—Br	
0-, <i>m</i> -	2
<i>p</i> -	15
-NH ₂	
0-, <i>m</i> -	13
<i>p</i> -	58
-NHCO-CH ₃	
0-, <i>m</i> -	20
<i>p</i> -	45
-NHCH ₃	
<i>p</i> -	73
$-N(CH_3)_2$	
0-, <i>m</i> -	20
<i>p</i> -	85
1.	

TABLE 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene DerivativesIn ethanol.

* Value may be decreased markedly by steric hindrance to coplanarity.

7.3 FLUORESCENCE

TABLE 7.16	Fluorescence Spectroscop	by of Some	e Organic	Compounds
------------	--------------------------	------------	-----------	-----------

			Excitation wavelength,	Emission wavelength,
Compound	Solvent	рн	nm	nm
Acenaphthene	Pentane		291	341
Acridine	CF ₃ COOH		358	475
Adenine	Water	1	280	375
Adenosine	Water	1	285	395
Adenosine triphosphate	Water	1	285	395
Adrenalin			295	335
p-Aminobenzoic acid	Water	8	295	345
Aminopterin	Water	7	280, 370	460
1-Aminopyrene	CF ₃ COOH		330, 342	415
<i>p</i> -Aminosalicyclic acid	Water	11	300	405
Amobarbital	Water	14	265	410
Anilines	Water	7	280, 291	344, 361
Anthracene	Pentane		420	430
Anthranilic acid	Water	7	300	405
Azaindoles	Water	10	290, 299	310, 347
Benz[<i>c</i>]acridine	CF ₃ COOH		295, 380	480
Benz[a]anthracene	Pentane		284	382
1,2-Benzanthracene			280, 340	390, 410
Benzanthrone	CF ₃ COOH		370, 420	550
Benzo[b]chrysene	Pentane		283	398
11- <i>H</i> -Benzo[<i>a</i>]fluorene	Pentane		317	340
Benzoic acid	70% H ₂ SO ₄		285	385
3,4-Benzopyrene	Benzene		365	390, 480
Benzo[<i>e</i>]pyrene	Pentane		329	389
Benzoquinoline	CF ₃ COOH		280	425
Benzoxanthane	Pentane		363	418
Bromolysergic acid diethyl	WZ-4-	1	215	460
amide	water	1	313	400
Brucine	water	/	305	500
Cardazole	formamide		291	339
Chlortetracycline			355	445
Chrysene	Pentane		250, 300,	260, 380
			310	
Cinchonine	Water	1	320	420
Coumarin	Ethanol		280	352
Dibenzo[a,c]anthracene	Pentane		280	381
Dibenzo[b,k]chrysene	Pentane		308	428
Dibenzo[a,e]pyrene	Pentane		370	401
3,4,8,9-Dibenzopyrene			370, 335,	480, 510
			390, 410	
5,12-Dihydronaphthacene	Pentane		282	340
1,4-Diphenylbutadiene	Pentane		328	370
Epinephrine	Water	7	295	335
Ethacridine	Water	2	370, 425	515
Fluoranthrene	Pentane		354	464
Fluorene	Pentane		300	321
Fluorescein	Water	7-11	490	515

7.26

Compound	Solvent	рН	Excitation wavelength,	Emission wavelength,
Compound	Solvent	рп	11111	11111
Folic acid	Water	7	365	450
Gentisic acid	Water	7	315	440
Griseofulvin	Water	7	295, 335	450
Guanine	Water	1	285	365
Harmine	Water	1	300, 365	400
Hippuric acid	70% H ₂ SO ₄		270	370
Homovanillic acid	Water	7	270	315
<i>m</i> -Hydroxybenzoic acid	Water	12	314	430
<i>p</i> -Hydroxycinnamic acid	Water	7	350	440
7-Hydroxycoumarin	Ethanol		325	441
5-Hydroxyindole	Water	1	290	355
5-Hydroxyindoleacetic acid	Water	7	300	355
3-Hydroxykynurenine	Water	11	365	460
<i>p</i> -Hydroxymandelic acid	Water	7	300	380
<i>p</i> -Hydroxyphenylacetic acid	Water	7	280	310
<i>p</i> -Hydroxyphenylpyruvic acid	Water	7	290	345
<i>p</i> -Hydroxyphenylserine	Water	1	290	320
5-Hydroxytryptophan	Water	7	295	340
Imipramine	Water	14	295	415
Indoleacetic acid	Water	8	285	360
Indoles	Water	7	269, 315	355
Indomethacin	Water	13	300	410
Kynurenic acid	Water	7	325	405
5		11	325	440
Lysergic acid diethylamide	Water	1	325	445
Menadione	Ethanol		335	480
9-Methylanthracene	Pentane		382	410
3-Methylcholanthrene	Pentane		297	392
7-Methyldibenzopyrene	Pentane		460	467
2-Methylphenanthrene	Pentane		257	357
3-Methylphenanthrene	Pentane		292	368
1-Methylpyrene	Pentane		336	394
4-Methylpyrene	Pentane		338	386
Naphthacene			290, 310	480, 515
1-Naphthol	0.1 <i>M</i> NaOH		365	480
2-Naphthol	0.1 <i>M</i> NaOH 20% ethanol		365	426
Oxytetracycline			390	520
Phenanthrene	Pentane		252	362
Phenylalanine	Water		215, 260	282
<i>o</i> -Phenylenepyrene	Pentane		360	506
Phenylephrine	1 Unitario		270	305
Picene	Pentane		281	398
Procaine	Water	11	275	345
Pyrene	Pentane	11	330	382
Pyridoxal	Water	12	310	365
Ouinacrine	Water	11	285	420
Ouinidine	Water	1	350	450
Quinine	Water	1	250 350	450
Reservine	Water	1	300	375
rr			200	2.2

TABLE 7.16 Fluorescence Spectroscopy of Some Organic Compounds (Continued)

TABLE 7.16	Fluorescence Spe	ectroscopy of Some	Organic Con	pounds (<i>Continued</i>)

Compound	Solvent	рН	Excitation wavelength, nm	Emission wavelength, nm
Resorcinol	Water		265	315
Riboflavin	Water	7	270, 370,	520
Rutin	Water	1	430	520
Salicyclic acid	Water	11	310	435
Scoparone	Water	10	350, 365	430
Scopoletin	Water	10	365, 390	460
Serotonin	3M HCl		295	550
Skatole	Water		290	370
Streptomycin	Water	13	366	445
<i>p</i> -Terphenyl	Pentane	_	284	338
Thiopental			315	530
Thymol	Water	7	265	300
Tocopherol	Hexane-ethanol		295	340
Tribenzo[a,e,i]pyrene	Pentane		384	448
Triphenylene	Pentane		288	357
Tryptamine	Water	7	290	360
Tryptophan	Water	11	285	365
Tyramine	Water	1	275	310
Tyrosine	Water	7	275	310
Uric acid	Water	1	325	370
Vitamin A	1-Butanol		340	490
Vitamin B ₁₂	Water	7	275	305
Warfarin	Methanol		290, 342	385
Xanthine	Water	1	315	435
2,6-Xylenol			275	305
3,4-Xylenol			280	310
Yohimbine	Water	1	270	360
Zoxazolamine	Water	11	280	320

Compound	Solvent	Q_F value vs. Q_F standard	
	Q_F standard		
9-Aminoacridine	Water	0.99	
Anthracene	Ethanol	0.30	
POPOP*	Toluene	0.85	
Quinine sulfate dihydrate	$1N H_2 SO_4$	0.55	
	Secondary standards		
Acridine orange hydrochloride	Ethanol	0.54 Quinine sulfate	
		0.58 Anthracene	
1,8-ANS [†] (free acid)	Ethanol	0.38 Anthracene	
		0.39 POPOP	
1,8-ANS (magnesium salt)	Ethanol	0.29 Anthracene	
		0.31 POPOP	
Fluorescein	0.1N NaOH	0.91 Quinine sulfate	
		0.94 POPOP	
Fluorescein, ethyl ester	0.1N NaOH	0.99 Quinine sulfate	
		0.99 POPOP	
Rhodamine B	Ethanol	0.69 Quinine sulfate	
		0.70 Anthracene	
2,6-TNS [‡] (potassium salt)	Ethanol	0.48 Anthracene	
		0.51 POPOP	

TABLE 7.17 Fluorescence Quantum Yield Values

* POPOP p-bis[2-(5-phenyloxazoyl)]benzene.

† ANS, anilino-8-naphthalene sulfonic acid.

‡ TNS, 2-p-toluidinylnaphthalene-6-sulfonate.

7.4 FLAME ATOMIC EMISSION, FLAME ATOMIC ABSORPTION, ELECTROTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA, AND PLASMA ATOMIC FLUORESCENCE

The tables of atomic emission and atomic absorption lines are presented in two parts. In Table 7.18 the data are arranged in alphabetic order by name of the element, whereas in Table 7.19 the sensitive lines of the elements are arranged in order of decreasing wavelengths. For additional lines and their relative intensities consult W. F. Meggers, C. H. Corliss, and B. F. Scribner, *Tables of Spectral-Line Intensities, Part I*, National Bureau of Standards Monograph 32, U.S. Government Printing Office, Washington, D.C., 1961.

The detection limits in the table correspond generally to the concentration of an element required to give a net signal equal to three times the standard deviation of the noise (background) in accordance with IUPAC recommendations. Detection limits can be confusing when steady-state techniques such as flame atomic emission or absorption, and plasma atomic emission or fluorescence, which

TABLE 7.18 Detection Limits in ng/mL

The detection limits in the table correspond generally to the concentration of analyte required to give a net signal equal to three times the standard deviation of the background in accordance with IUPAC recommendations.

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Aluminum	308.22		40		10	
	309.28		20	0.05	11	4
	394.40	3.6	45		36	
	396.15	7.5	30	0.01	20	5
Antimony	206.83				50	
	217.58		30		50	
	231.15	70			30	10
	259.81	200		0.08	20	0.1
Arsenic	189.04		160		35	
111001110	193.76		120	1	50	
	197.20		240	1	50	
	228.81	455	210			
	234.90	250				10
Barium	455.36	3			0.9	10
Darium	493.50	4			1	
	553 55	15	9	0.04	1	2
Beryllium	234.86	1.5	1	0.05	0.4	2
Derymum	313.04		2	0.003	1	
	313.04	100	2	0.005	1	0.2
Biemuth	223.06	100	18	0.35	30	0.2
Disiliuuli	223.00		10	0.55	50	
	227.00	60		0.5	30	2
Poron	182.50	00		0.5	0	2
DOIOII	162.39		700	15	0	60
$(ac \mathbf{PO})$	249.77	50	700	15	3	00
$(as BO_2)$	547.6	50				
$(as DO_2)$	347.0	30			50	
Bromine	154.07				50	
Cadimum	214.44				1.0	
	220.50	6	1	0.008	228	
	220.00	0	1	0.008	220	0.001
Calaina	320.11	3	0.5	0.014	20	0.001
Calcium	313.89				20	
	393.37				0.0	
	390.83	1.5	1	0.2	1.2	0.00
Carlan	422.07	1.5	1	0.5	4.4	0.08
Carbon	195.09				44	
Continue	247.80				1000	
Cerium	415.58				30	
	418.66	150			30	
a :	569.92	150	0	0.04		
Cesium	852.11	0.02	8	0.04		
CI.I. .	894.35	0.04	130		50	
Chlorine	134.72				50	
Chromium	267.72				3	
	283.58				20	
	284.98				30	
	357.87	6	2	0.05		0.4
	359.35	7				

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Chromium	360.53	13				
(cont.)	425.44	3	6		66	
(******)	427.48	4	-			
	428.97	5				
Cobalt	228.62	5			3	
coour	238.89				28	
	240.73	5	8	0.01	20	0.4
	345 35	30	0	0.01	,	0.1
Conner	324 75	15	1	0.01	2	0.2
copper	327.40	3	2	0.02	4	0.2
Dysprosium	353 17	5	2	0.02	3	
Dyspiosium	340.78				6	
	404.60	30	50		0	300
	404.00	50	50			500
	418.08		60			
Erhium	421.17		00		15	
EIDIUIII	240.81				10	
	400.80	20	40	0.3	10	500
	400.80	30	40	0.5		500
Europium	406.77		40		2	
Europium	561.97				2	
	412.97	0.45	20	0.5	3	20
Calalining	459.40	0.45	20	0.5	10	20
Gadolinium	335.05		1000		10	
	368.41	70	4000	0		000
G 111	440.19	12	1000	8		800
Gallium	287.42		70		20	
	294.36	-	20		30	
	404.30	5	50		10	0.0
a .	417.21	3	30	1	40	0.9
Germanium	209.43				50	
	219.87	100	10		100	50
~	265.12	400	40	7.5	_	50
Gold	242.80		10	0.5	5	
	267.60	500	8	0.5	10	0.3
Hafnium	263.87				10	
	277.34				10	
	307.29		2000			
Holmium	339.90				3	
	345.60				8	
	405.39	15	40	0.7		100
	410.38		30			
Indium	230.61				40	
	303.94	100	7	0.01		
	325.61	22	8			
	410.18	14	20			
	451.13	0.7	22		2	0.2
Iodine	178.38				20	
	183.0			3		
Iridium	208.88	400	500	0.5		
	212.68				20	
	224.27				20	

TABLE 7.18 Detection Limits in ng/mL (Continued)

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Iron	238.20				4	
	248.33		3	0.01		
	259.94				3	
	302.06	18	5			
	371.99	15	10			0.3
	385.99	12	21			
Lanthanum	379.48				15	
	392.76		8000			
	408.67				2	
	550.13	20				
	579.13	5	2000	0.5		
(as LaO)	441.82	100				
(as LaO)	560.25	300				
Lead	217.10		20	0.4		
	220.35				20	
	283.31	60	10	1		5
	368.35	30	10	•		U
	405.78	20				
Lithium	460.29	0.06	30		50	
Littinum	610.36	0.001	50		50	
	670.78	0.001	0.3	15	5	0.4
Lutetium	261 54	0.005	0.5	1.5	1	0.4
Euterium	307.76				6	
Magnesium	279.08				30	
Magnesium	279.08				15	
	279.55	4.5	0.1	0.018	3.6	0.4
Manganasa	256.37	4.5	0.1	0.018	2.0	0.4
Manganese	250.57				2.7	
	257.01		60		0.5	
	239.37		00		5	
	200.37	1	1	0.05	0	0.4
	279.40	1	1	0.03	24	0.4
	295.50				24	
	294.92	1.5	20		24	
M	405.08	1.5	30		20	
Mercury	194.23	150	0.001	(50	5
	255.05	150	0.001	0	50	5
Molybdenum	202.03				2	
	203.84				8	
	281.62	220	20	0.00	1.2	10
	313.26	220	30	0.06		12
NT 1 ·	390.30	/5	50			
Neodymium	292.45	200			10	
	401.23				10	
	430.36	1.50	<00		30	
	492.45	150	600		,	2000
Nickel	231.60	2		0.5	6	
	232.00	8	4	0.5	10	
	341.48	15	2			<i>c</i>
	352.45	8	2			2
Niobium	316.34				20	
	405.89	250	1000			1000

TABLE 7.18	Detection	Limits	in ng/mL	(Continued)
-------------------	-----------	--------	----------	-------------

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Osmium	225.58				20	
	228.23				40	
	263.71	2000	80			
	290.91		110			
Palladium	244.8	20	20	0.5		40
	340.46	25	80		40	
	363.47	50			60	
Phosphorus	178.28				50	
1	213.62				50	
(as HPO)	524.9	100				
Platinum	214.42				20	
	265.95	2000	100	0.2	40	300
Potassium	404.41	1.3	100			
r otdoordin	404.72	2.6	100			
	766.49	0.15	1	0.004	200	0.6
	769.90	0.3	2	01001	200	010
Praseodymium	390.84	012	-		20	
1 luseou y linium	414 31				30	
	493.97	300			50	1000
Rhenium	197.31	500			8	1000
Richard	345 19	690			0	
	346.05	200	200	10		
	346.47	275	200	10		
Rhodium	3/13/10	10	2	0.1	20	100
Kiloululli	360.24	20	2	0.1	20	100
Pubidium	780.02	0.0065	0.3		500	3
Kubialulli	704.76	0.0005	0.5		500	5
Duthonium	240.27	0.015			50	
Kuulelliulli	240.27	80	70	10	150	500
Comorium	349.09	80	70	10	10	500
Samanum	442.43	20	500		100	
Coondium	470.03	30	500		21	
Scandium	255.24				21	
	357.24				1	
	301.38	21	20	(1.0	10
	391.18	21	20	0	120	10
	402.04	30				
0.1	402.34	30	00	2.5		10
Selenium	196.03		90	2.5	0	10
Silicon	251.61		80	0.5	10	50
a 11	283.16			0.001	15	<u></u>
Silver	328.07	2	0.9	0.001	4.5	0.1
a 11	338.29	4			3	
Sodium	330.23	125		0.7	15	
	330.30	250			• •	
	589.00	0.01	0.2	0.004	20	0.2
	589.59	0.02				
Strontium	407.78				1	
	421.55				0.5	
	460.73	0.1	2	0.01		0.3
Sulfur	180.73		10		70	
$(as S_2)$	394.0	1600				

TABLE 7.18 Detection Limits in ng/mL (Continued)

Element	Wavelength, nm	Flame emission	Flame atomic absorption	Electrothermal atomic absorption	Argon ICP	Plasma atomic fluorescence
Tantalum	240.06				20	
Tellurium	271.47 214.27	150	800 15	0.5		2
Terbium	238.58 350.92 384.87				60 10 40	
Thallium	431.89 190.86	150	600		50	500
	276.78 351.92 377.57	3	9	0.15 0.5	150	4
Thorium	535.0 283.73 401 91	1.5			30 30	
Thulium	313.13 371.79	4	10		3	100
Tin	384.80 189.99 224.60		110	1	15 30	
Titanium	284.00 286.33 334.19	100	200 160	1.5		10
Thainum	334.19 334.94 337.28	400	60	2.5	6 8	20
	364.27 365.35 399.86	210 180 150	60	2.5		30
Tungsten	207.91 209.48 400.87	450	1000		30 50	2000
Uranium	358.49 385.96	100	1000	30	70	2000
Vanadium	292.40 310.23 318 34	18			7.8 10	
	318.54 437.92	25 15	50	1		30
Ytterbium	328.94 369.42 398.80	0.45	5	0.1	1 2	10
Yttrium	360.07 362.09	40	50	10	3	50
Zinc	3/1.03 410.24 202.55	30	50		1	
Zirconium	213.86 339.20 343.82	1000	0.8	0.005	2 5 7	0.0003
	349.62 360.12	1000	350		45	

TABLE 7.18 Detection Limits in ng/mL (Continued)

TABLE 7.19 Sensitive Lines of the Elements

In this table the sensitive lines of the elements are arranged in order of decreasing wavelengths. A Roman numeral II following an element designation indicates a line classified as being emitted by the singly ionized atom. In the column headed Sensitivity, the most sensitive line of the non-ionized atom is indicated by U1, and other lines by U2, U3, and so on, in order of decreasing sensitivity. For the singly ionized atom the corresponding designations are V1, V2, V3, and so on.

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
894.35	Cs	U2	492.45	Nd	U1
852.11	Cs	U1	488.91	Re	U4
819.48	Na	U4	487.25	Sr	U3
818.33	Na	U3	483.21	Sr	U2
811.53	Ar	U2	482.59	Ra	U1
794.76	Rb	U2	481.95	Cl II	V4
780.02	Rb	U1	481.67	Br II	V3
769.90	K	U2	481.05	Zn	U3
766.49	Κ	U1	481.01	Cl II	V3
750.04	Ar	U4	479.45	Cl II	V2
706.72	Ar	U3	478.55	Br II	V2
696.53	Ar	U3	476.03	Sm	U1
690.24	F	U3	470.09	Br II	V1
685.60	F	U2	467.12	Xe	U2
670.78	Li	U1	462.43	Xe	U3
656.28	Н	U2	460.73	Sr	U1
649.69	Ba II	V4	460.29	Li	U4
624.99	La	U3	459.40	Eu	U1
614.17	Ba II	V3	459.32	Cs	U4
610.36	Li	U2	455.54	Cs	U3
593.06	La	U4	455.40	Ba II	V1
589.59	Na	U2	451.13	In	U1
589.00	Na	U1	450.10	Xe	U4
587.76	He	U3	445.48	Ca	U2
587.09	Kr	U2	442.43	Sm II	V4
579.13	La	U1	440.85	V	U4
569.92	Ce	U1	440.19	Gd	U1
567.96	N II	V2	439.00	V	U3
567.60	N II	V4	437.49	ΥII	V4
566.66	N II	V3	437.92	V	U1
557.02	Kr	U3	435.84	Hg	U3
553.55	Ba	U1	431.89	Th	U1
550.13	La	U2	430.36	Nd II	V2
546.55	Ag	U4	430.21	W	U1
546.07	Hg	U2	429.67	Sm	U1
545.52	La	U3	428.97	Cr	U3
535.84	Hg	U3	427.48	Cr	U2
535.05	TI	U1	425.43	Cr	U1
521.82	Cu	U3	422.67	Ca	U1
520.91	Ασ	U3	421.56	Rb	U4
520.84	Cr	U8	421.55	Sr II	V1
520.60	Cr	U7	421.17	Dv	U2
515.32	Cu	U4	420.19	Rb	U3
498.18	Ti	U1	418.68	Dv	U2
496.23	Sr	U2	418.66	Ce II	V1
493.97	Pr	U1	417.21	Ga	U1
493.41	Ba II	V2	414 31	Pr II	V2
T/J.T1	Du 11	• 2	717,21	11 11	• 2

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
414.29	Y	U4	386.41	Мо	U2
413.38	Ce II	V1	385.99	Fe	U2
413.07	Ba II	V5	385.96	U II	V1
412.97	Eu II	V2	384.87	Tb II	V2
412.83	Y	U3	384.80	Tm II	V2
412.38	Nb	U4	383.83	Mg	U2
412.32	La II	V4	383.82	Mo	U2
411.00	Ν	U2	382.23	Mg	U3
410.38	Но	U1	382.94	Mg	U4
410.24	Y	U1	381.97	Eu II	V1
410.18	In	U2	379.94	Ru	U3
410.09	Nb	U3	379.63	Mo	U1
409.99	Ν	U3	379.48	La II	V2
409.01	U II	V2	379.08	La II	V3
408.77	Er	U1	377.57	Tl	U3
408.67	La II	V1	377.43	Y II	V3
407.97	Nb	U2	374.83	Fe	U4
407.77	Sr II	V2	373.49	Fe	U2
407.74	Y	U2	372.80	Ru	U1
407.74	La II	V2	371.99	Fe	U1
407.43	W	U2	371.79	Tm	U1
405.89	Nb	U1	371.03	Y II	V1
405.78	Pb	U1	369.42	Yb II	V2
405.39	Но	U2	369.24	Rh	U2
404.72	K	U4	368.41	Gd	U2
404.66	Hg	U5	368.35	Pb	U2
404.60	Dv	U1	365.48	Hg	U4
404.41	ĸ	U3	365.35	Ti	U2
403.45	Mn	U3	365.01	Hg	U3
403.31	Mn	U2	364.28	Sc II	V3
403.30	Ga	U2	364.27	Sn	U3
403.08	Mn	U1	363.47	Pd	U2
402.37	Sc	U3	363.07	Sc II	V2
402.04	Sc	U3	362.09	Y	U2
401.91	Th II	V1	361.38	Sc II	V1
401.23	Nd II	V1	360.96	Pd	U2
400.87	W	U1	360.12	Zr	U1
400.80	Er	U1	360.07	Y II	V2
399.86	Cr	U1	360.05	Cr	U6
399.86	Ti	U1	359.62	Ru	U3
398.80	Yb	U1	359.34	Cr	U5
396.85	Ca II	V2	359.26	Sm II	V1
396.15	Al	U1	358.49	U	V1
394.91	La II	V2	357.87	Cr	U4
394.40	Al	U2	357.25	Zr II	V4
393.37	Ca II	V1	357.24	Sc II	V1
391.18	Sc	U1	356.83	Sn II	V1
390.84	Pr II	V1	355.31	Pd	U3
390.75	Sc	U2	354.77	Zr	U3
390.30	Мо	U1	353.17	Dy II	V1
389.18	Ba	V4	352.98	Co	U3
388.86	He	U2	352.94	Tl	U4
388.63	Fe	U5	352.69	Со	U4

TABLE 7.19 Sensitive Lines of the Elements (*Continued*)

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
352.45	Ni	U2	324.75	Cu	U1
351.96	Zr	U3	324.27	Pd	U4
351.92	Tl	U2	323.45	Cr	V3
351.69	Pd	U3	323.26	Li	U3
351.36	Ir	U2	323.06	Er II	V2
350.92	Tb II	V1	322.08	Ir	U1
350.63	Co	U3	318.54	V	U3
350.23	Co	U2	318.40	V	U2
349.89	Ru	U2	317.93	Ca II	V3
349.62	Zr II	V3	316.34	Nb II	V1
349.41	Er II	V1	315.89	Ca II	V4
348.11	Pd	U5	313.26	Mo	U2
347.40	Ni	U3	313.13	Tm II	V1
346.47	Re	U2	313.11	Be	U1
346.05	Re	U1	313.04	Be	U2
345.60	Ho II	V2	311.84	V II	V4
345.58	Co	U5	311.07	V II	V3
345.19	Re	U3	310.23	V II	V2
345.14	B II	V2	309.42	Nb II	V1
344.36	Co	U2	309.31	V II	V1
344.06	Fe	U2	309.27	Al	U3
343.82	Zr II	V2	308.22	Al	U4
343.67	Ru	U2	307.76	Lu II	V2
343.49	Rh	U1	307.29	Hf	U1
342.83	Ru	U4	306.77	Bi	U3
342.12	Pd	U3	306.47	Pt	U1
341.48	Ni	U3	303.94	In	U4
341.23	Со	U4	303.90	Ge	U2
340.78	Dy II	V2	303.41	Sn	U3
340.51	Со	U2	302.06	Fe	U3
340.46	Pd	U2	300.91	Sn	U4
339.90	Ho II	VI	294.91	Mn II	V4
339.20	Zr II	V1	294.44	W	05
338.29	Ag	U2	294.36	Ga	U3
337.28		V3	294.02	Ta H	U3
336.12		V2	293.30	Mn II	V4
335.05	Ga II	V I	292.98	Pt	U3
334.94		V1	292.45	Nd	U2
334.50	Zn	U2	292.40	V II	V I
334.19	11 D-	U4	290.91	Us D:	U2
332.11	ве	03	289.80	B1	U2
331.12	la N-	U3	289.10	Mo II	V4
330.03	INa Zn	U0 112	288.10	51 Co	
220.22	ZII	U5 115	207.42	Ga Mo II	U4 1/2
228.04	INA Nh II	U3 V1	207.13	MO II Sm	V 3
320.94	10 II 7n	V 1 115	200.33	511	U2 112
320.23		U3 111	200.04	/18 Μα	U2 111
320.07	Ag Cu	U1 U2	203.21	Mo II	V1 V2
327.40	Ge	U2 113	204.02	Sn	V∠ 111
320.75	Sn	U3 U2	204.00	зн ть п	V1
320.25	Cd	U3 []1	203.15	$Cr \Pi$	V I V2
325.61	In	113	203.30	Ph	v∠ 113
525.01	111	05	203.31	10	05

TABLE 7.19 Sensitive Lines of the Elements (Continued)
Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
283.16	Si II	V1	239.56	Fe II	V2
283.03	Pt	U3	238.89	Co II	V2
281.62	Al II	V2	238.58	Те	U2
281.61	Mo II	V1	238.32	Те	U3
280.27	Mg II	V2	238.20	Fe II	V1
280.20	Pb	U4	234.90	As	U4
279.83	Mn	U3	234.86	Be	U1
279.55	Mg II	V1	232.00	Ni	U2
279.48	Mn	U3	231.60	Ni II	V1
279.08	Mg II	V2	231.15	Sb	U1
278.02	As	U1	230.61	In II	V1
277.34	Hf II	V1	228.81	As	U5
276.78	Tl	U4	228.80	Cd	U2
272.44	W	U4	228.71	Ni II	V1
271.90	Fe	U5	228.62	Co II	V1
271.47	Та	U1	228.23	Os II	V2
270.65	Sn	U4	227.66	Bi	U3
267.72	Cr II	V1	227.02	Ni II	V2
267.60	Au	U2	226.50	Cd II	V2
266.92	Al II	V1	226.45	Ni II	V3
265.95	Pt	U1	225.58	Os II	V1
265.12	Ge	U1	225.39	Ni II	V4
265.05	Ba	U2	224.70	Cu II	V3
264.75	Та	U2	224.64	Ag II	V3
263.87	Hf II	V1	224.60	Sn	U1
263.71	Os	U1	224.27	Ir II	V1
260.57	Mn II	V3	223.06	Bi	U1
259.94	Fe II	V1	220.35	Pb II	V1
259.81	Sb	U2	219.87	Ge II	V2
259.37	Mn	U2	219.23	Cu II	V2
257.61	Mn II	V1	217.58	Sb	U2
256.37	Mn II	V2	217.00	Pb II	V1
255.33	Р	U3	214.44	Cd II	V1
255.24	Sc II	V3	214.42	Pt II	V1
253.65	Hg	U1	214.27	Те	U1
253.57	Р	U1	213.86	Zn	U1
252.85	Si	U2	213.62	Р	U1
252.29	Fe	U3	213.60	Cu II	V1
251.61	Si	U3	212.68	Ir II	V1
250.69	Si	U4	209.48	W II	V2
250.20	Zn II	V4	209.43	Ge II	V1
249.77	В	U1	208.88	Ir	U1
249.68	В	U2	207.91	W II	V1
248.33	Fe	U3	207.48	Se	U4
247.86	С	U2	206.83	Sb	U1
245.65	As	U4	206.28	Se	U3
243.78	Ag II	V2	206.19	Zn II	V2
242.80	Au	U1	203.99	Se	U1
241.05	Fe II	V4	203.84	Mo II	V3
240.73	Co	U1	202.55	Zn II	V1
240.49	Fe	V3	202.03	Mo II	V2
240.27	Ru	V1	197.31	Re II	V1
240.06	Ta II	V1	197.20	As	U3

TABLE 7.19 Sensitive Lines of the Elements (*Continued*)

Wavelength, nm	Element	Sensitivity	Wavelength, nm	Element	Sensitivity
196.03	Se	U2	183.00	Ι	U2
194.23	Hg II	V1	182.59	B II	V2
193.76	As	U1	180.73	S	U1
193.09	С	U1	178.38	Ι	U1
190.86	Tl II	V1	178.28	Р	U1
189.99	Sn II	V1	154.07	Br II	V4
189.04	As	U2	134.72	Cl II	V1

TABLE 7.19 Sensitive Lines of the Elements (Continued)

are steady-state techniques, are compared with the electrothermal or furnace technique which uses the entire sample and detects an absolute amount of the analyte element. To compare the several methods on the basis of concentration, the furnace detection limits assume a $20-\mu L$ sample.

Data for the several flame methods assume an acetylene–nitrous oxide flame residing on a 5- or 10-cm slot burner. The sample is nebulized into a spray chamber placed immediately ahead of the burner. Detection limits are quite dependent on instrument and operating variables, particularly the detector, the fuel and oxidant gases, the slit width, and the method used for background correction and data smoothing.

7.4.1 Some Common Spectroscopic Relationships

7.4.1.1 Electromagnetic Radiation. Electromagnetic radiation travels in straight lines in a uniform medium, has a velocity of 299 792 500 m \cdot s⁻¹ in a vacuum, and possesses properties of both a wave motion and a particle (photon). Wavelength λ is the distance from crest to crest; *frequency* v is the number of waves passing a fixed point in a unit length of time. Wavelength and frequency are related by the relation

$$c = \lambda v$$

where c is the velocity of light (in a vacuum). In any material medium the speed of propagation is smaller than this and is given by the product nc, where n is the refractive index of the medium.

Radiation is absorbed or emitted only in discrete packets called photons and quanta:

$$E = hv$$

where E is the energy of the quantum and h is Planck's constant.

The relation between energy and mass is given by the Einstein equation:

$$\Delta E = \Delta m c^2$$

where ΔE is the energy release and Δm is the loss of mass. Strictly, the mass of a particle depends on its velocity, but here the masses are equated to their rest masses (at zero velocity).

The *Wien displacement law* states that the wavelength of maximum emission, λ_m , of a blackbody varies inversely with absolute temperature; the product $\lambda_m T$ remains constant. When λ_m is expressed in micrometers, the law becomes

$$\lambda_m T = 2898$$

In terms of σ_m , the wavenumber of maximum emission:

$$\sigma_m = 3.487$$

Another useful version is $hv_m = 5kT$, where k is the Boltzmann constant.

Stefan's law states that the total energy J radiated by a blackbody per unit time and area (power per unit area) varies as the fourth power of the absolute temperature:

$$J = aT^{-4}$$

where a is a constant whose value is $5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$.

The relationship between the voltage of an X-ray tube (or other energy source), in volts, and the wavelength is given by the *Duane-Hunt equation*:

$$\lambda = \frac{hc}{eV} = \frac{12\ 398}{V}$$

where the wavelength is expressed in angstrom units.

7.4.1.2 Laws of Photometry. The time rate at which energy is transported in a beam of radiant energy is denoted by the symbol P_0 for the incident beam, and by P for the quantity remaining unabsorbed after passage through a sample or container. The ratio of radiant power transmitted by the sample to the radiant power incident on the sample is the *transmittance T*:

$$T = \frac{P}{P_0}$$

The logarithm (base 10) of the reciprocal of the transmittance is the *absorbance A*:

$$A = -\log T = \log \left(\frac{1}{T}\right)$$

When a beam of monochromatic light, previously rendered plane parallel, enters an absorbing medium at right angles to the plane-parallel surfaces of the medium, the rate of decrease in radiant power with the length of light path (cuvette interior) b, or with the concentration of absorbing material C (in grams per liter) will follow the exponential progression, often referred to as *Beer's law*:

$$T = 10^{-abC}$$
 or $A = abC$

where a is the absorptivity of the component of interest in the solution. When C is expressed in moles per liter,

$$T = 10^{-\epsilon bC}$$
 or $A = \epsilon bC$

where ϵ is the molar absorptivity.

The total fluorescence (or phosphorescence) intensity is proportional to the quanta of light absorbed, $P_0 - P$, and to the efficiency ϕ , which is the ratio of quanta absorbed to quanta emitted:

$$F = (P_0 - P)\phi = P_0\phi(1 - e^{-\epsilon bC})$$

When the terms ϵbC is not greater than 0.05 (or 0.01 in phosphorescence),

$$F = k\phi P_0\epsilon bC$$

where the term k has been introduced to handle instrumental artifacts and the geometry factor because fluorescence (and phosphorescence) is emitted in all directions but is viewed only through a limited aperture.

The thickness of a transparent film or the path length of infrared absorption cells b, in centimeters, is given by

$$b = \frac{1}{2n_{\rm D}} \left(\frac{n}{\bar{v}_1 - \bar{v}_2} \right)$$

where *n* is the number of fringes (peaks or troughs) between two wavenumbers \bar{v}_1 and \bar{v}_2 , and n_D is the refractive index of the sample material (unity for the air path of an empty cuvette). If measurements are made in wavelength, as micrometers, the expression is

$$b = \frac{1}{2n_{\rm D}} \left(\frac{n\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \right)$$

7.4.1.3 Grating Equation. The light incident on each groove is diffracted or spread out over a range of angles, and in certain directions reinforcement or constructive interference occurs, as stated in the grating formula:

$$m\lambda = b(\sin i \pm \sin r)$$

where b is the distance between adjacent grooves, i is the angle of incidence, r is the angle of reflection (both angles relative to the grating normal), and m is the order number. A positive sign applies where incoming and emergent beams are on the same side of the grating normal.

The *blaze wavelength* is that wavelength for which the angle of reflectance from the groove face and the angle of reflection (usually the angle of incidence) from the grating are identical.

The Bragg equation

$$m\lambda = 2d\sin\theta$$

states the condition for reinforcement of reflection from a crystal lattice, where d is the distance between each set of atomic planes and θ is the angle of reflection.

7.4.1.4 Ionization of Metals in a Plasma. A loss in spectrochemical sensitivity results when a free metal atom is split into a positive ion and an electron:

$$M = M^{+} + e^{-}$$

The degree of ionization, α_i , is defined as

$$\alpha_i = \frac{[\mathrm{M}^+]}{[\mathrm{M}^+] + [\mathrm{M}]}$$

At equilibrium, when the ionization and recombination rates are balanced, the ionization constant K_i (in atm) is given by

$$K_i = \frac{[\mathrm{M}^+][e^-]}{[\mathrm{M}]} = \left(\frac{\alpha_i^2}{1 - \alpha_i^2}\right) p_{\mathrm{SM}}$$

where $p_{\Sigma M}$ (in atm) is the total atom concentration of metal in all forms in the plasma.

The ionization constant can be calculated from the Saha equation:

$$\log K_i = -5040 \frac{E_i}{T} + \frac{5}{2} \log T - 6.49 + \log \frac{g_{\rm M} + g_{e^-}}{g_{\rm M}}$$

where E_i is the ionization potential of the metal in eV (Table 4.2), *T* is the absolute temperature of the plasma (in kelvins), and the *g* terms are the statistical weights of the ionized atom, the electron, and the neutral atom. For the alkali metals the final term is zero; for the alkaline earth metals, it is 0.6.

To suppress the ionization of a metal, another easily ionized metal (denoted a *deionizer* or *radiation buffer*) is added to the sample. To ensure that ionization is suppressed for the test element, the product $(K_i)_M p_M$ of the deionizer must exceed the similar product for the test element one hundred-fold (for 1 percent residual ionization of the test element).

7.5 INFRARED SPECTROSCOPY

Abbreviations Used in the Table				
m, moderately strong var, of variable strength				
m-s, moderate to strong w, weak				
s, strong	w-m, we	ak to moderately strong		
Group	Band, cm^{-1}	Remarks		
	Saturated C—H			
Н —С—Н Н	2975-2950 (s) 2885-2865 (w)	Two or three bands usually; asymmetrical and symmetrical CH stretching, respec- tively. In presence of double bond adja- cent to CH ₃ group symmetrical band splits into two.		
	2020 (iii)			
H = -C - acyclic	ca 2930 (s) 2870–2840 (w)	Symmetrical band splits into two bands when double bond adjacent.		
 H	1480–1440 (m) ca 720 (w)	Scissoring mode Rocking mode		
	Alkane residues attached	to carbon		
Cyclopropane	ca 3050 (w) 540–500	CH stretching		
	470–460 (s)	Aliphatic cyclopropanes		
Cyclobutanes Cyclopentanes	580–490 (s) 595–490 (s)	Alkyl derivatives: $550-530 \text{ cm}^{-1}$ Alkyl derivatives: $585-530 \text{ cm}^{-1}$		

TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen

TABLE	7.20	Absorption Free	uencies of Single	Bonds to Hydrogen	(Continued)
-------	------	-----------------	-------------------	-------------------	-------------

Group	Band, cm ⁻¹	Remarks
Al	kane residues attached to carl	bon (continued)
>C(CH ₃) ₂	ca 1380 (m) 1175–1165 (m) 1150–1130 (m)	A roughly symmetrical doublet If no H on central carbon, then one band at ca 1190 cm ⁻¹
	1395–1385 (m) 1365 (s)	Split into two bands
Aryl-CH ₃ Aryl-C ₂ H ₅ Aryl-C ₃ H ₇ (or C ₄ H ₉)	390–260 (m) 565–540 (m–s) 585–565 (m)	Two bands
$-(CH_2)_n - n = 1$ $n = 1$ $n = 2$ $n = 3$ $n \ge 4$	785–770 (w–m) 745–735 (w–m) 735–725 (w–m) 725–720 (w–m)	Rocking vibrations
All	cane residues attached to misc	ellaneous atoms
Epoxide C—H >C—CH ₂	ca 3050 (m-s) ca 3050 (m-s)	
CH ₂ halogen	ca 3050 (m-s) 1435-1385 (m) 1300-1240 (s)	Halogens except fluorine
—СНО	2900–2800 (w) 2775–2700 (w) 1420–1370 (m)	
	3100-2900 (w) 1450-1400 (s) 1360-1355 (s)	
—O—CH ₃ ethers	2835-2810 (s) 1470-1430 (m-s) ca 1030 (w-m)	Two bands
-0-C(CH ₃) ₃	1200–1155 (s)	
-0-CH ₂ -0-	2790–2770 (m)	
-O-CH ₂ esters	1475–1460 (m-s) 1470–1435 (m-s)	Acyclic esters. Frequency increased ca 30 cm ⁻¹ for cyclic and small ring systems.

TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks			
Alkane residues attached to miscellaneous atoms (continued)					
-0-C0-CH ₃	1450–1400 (s) 1385–1365 (s) 1360–1355 (s)	Acetate esters The high intensity of these bands often dominates this region of the spectrum.			
-CH ₂ -C=C<	1445–1430 (m)				
-CH ₂ -SO ₂ -	ca 1250 (m)				
PCH_3 $SeCH_3$ BCH_3 $SnCH_3$ $PbCH_3$ $AsCH_3$ $GeCH_3$ $SbCH_3$ $BiCH_3$	$\begin{array}{ccccc} 1320-1280 & (s) \\ ca & 1280 & (m) \\ 1460-1405 & (m) \\ 1320-1280 & (m) \\ 1265-1250 & (m-s) \\ 1200-1180 & (m) \\ 1170-1155 & (m) \\ 1265-1240 & (m) \\ 1240-1230 & (m) \\ 1215-1195 & (m) \\ 1165-1145 & (m) \\ 1430-1415 & (m) \\ \end{array}$				
N—CH ₃ and N—CH ₂ — N—CH ₂ —CH ₂ —N N—CH ₃ Amine \cdot HCl Amino acid \cdot HCl Amides N—CH ₂ — amides	2820-2780 (s) 1440-1390 (m) 1480-1450 (s) 1475-1395 (m) 1490-1480 (m) 1420-1405 (s) ca 1440 (m)	Ethylenediamine complexes Ethylenediamine complexes			
S—CH ₃	2990-2955 (m-s) 2900-2865 (m-s) 1440-1415 (m) 1325-1290 (m) 1030-960 (m) 710-685 (w-m)				
s—сн ₂ —	2950–2930 (m) 2880–2845 (m) 1440–1415 (m) 1270–1220 (s)				
−C≡CH	ca 3300 (s) 700–600	Sharp Bending			
C=C H	3040-3010 (m)				

TABLE 7.20	Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks
Alkane re	sidues attached to miscellane	ous atoms (continued)
C=C H	3095–3075 (m) 2985–2970 (m)	CH stretching sometimes obscured by much stronger bands of saturated CH groups
$R_{H}C=C_{H}^{H}$	995–980 (s) 940–900 (s) ca 635 (s) 485–445 (m–s)	
R_{R} C=C H_{H}	895-885 (s) 560-530 (s) 470-435 (m)	
R C = C R	980–955 (s) 455–370 (m–s)	
H_{R} $C = C_{R}$ H_{R}	730–655 (m) 670–455 (s)	
$\begin{array}{c} R \\ R \\ R \\ \end{array} \\ C = C \\ R \\ R \\ \end{array} $	850–790 (m) 570–515 (s) 525–470 (s)	
-0-CH=CH ₂	965–960 (s) 945–940 (m) 820–810 (s)	
-S-CH=CH ₂	ca 965 (s) ca 860 (s)	
$-CO-CH=CH_{2}$ $-CO-OCH=CH_{2}$ $-CO-C=CH_{2}$ $-CO-OC=CH_{2}$ $-O-CH=CH- trans$ $-CO-CH=CH- trans$	995-980 (s) 965-955 (m) 950-935 (s) 870-850 (s) ca 930 (s) 880-865 940-920 (s) ca 990 (s)	
	Hydroxyl group O—H co	ompounds
Primary aliphatic alcohols	3640-3630 (s) 1350-1260 (s) 1085-1030 (s)	Only in very dilute solutions in nonpolar solvents OH bending Also broad band at 700–600 cm ⁻¹

Group	Band, cm^{-1}	Remarks
Н	ydroxyl group O—H compou	inds (continued)
Secondary aliphatic alcohols	3625-3620 (s) 1350-1260 (s) 1125-1085 (s)	See comments under primary aliphatic alcohols Also for α-unsaturated and cyclic tertiary aliphatic alcohols
Tertiary aliphatic alcohols	3620-3610 (s) 1410-1310 (s) 1205-1125 (s)	See comments under primary aliphatic alcohols
Aryl—OH	ca 3610 (s) 1410-1310 (s) 1260-1180 (s) 1085-1030 (s)	See comments under primary aliphatic alcohols Also for unsaturated secondary aliphatic alcohols
Carboxylic acids	3300-2500 (w-m) 995-915 (s)	Broad Broad diffuse band
Enol form of β -diketones	2700-2500 (var)	Broad
Free oximes	3600-3570 (w-m)	Shoulder
Free hydroperoxides	3560-3530 (m)	
Peroxy acids	ca 3280 (m)	
Phosphorus acids	2700–2560 (m)	Broad
Water in solution	3710	When solution is damp
Intermolecular H bond Dimeric	3600-3500	Rather sharp. Absorptions arising from H bond with polar solvents also appear in this region.
Polymeric	3400-3200 (s)	Broad
Intramolecular H bond Polyvalent alcohols Chelation	3600–3500 (s) 3200–2500	Sharper than dimeric band above Broad and occasionally weak; the lower the frequency, the stronger the intramo- lecular bond
Water of crystallation (solid state spectra)	3600-3100 (w)	Usually a weak band at 1640–1615 cm ⁻¹ also. Water in trace amounts in KBr disks shows a broad band at 3450 cm ⁻¹ .

TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (*Continued*)

Group	Band, cm ⁻¹	Remarks				
A	Amine, imine, ammonium, and amide N-H					
Primary amines Aliphatic	3550-3300 (m) 1650-1560 (m) 1090-1020 (w-m) 850-810 (w-m) 495-445 (m-s)	Two bands in this range With α -carbon branching at 795 cm ⁻¹ and strong Broad				
Aromatic Amino acids	$\begin{array}{c} c_{0} & 290 (s) \\ 1350-1260 (s) \\ 445-345 \\ 3100-3030 (m) \\ 2800-2400 (m) \\ 1625-1560 (m) \end{array}$	Broad Broad Also for secondary aryl amines Values for solid states; broad bands also (but not always) near 2500 and 200 cm ⁻¹ Number of sharp bands; dilute solution				
Amino salts	1550-1550 (m) 3550-3100 (m) ca 3380 ca 3280	Values for solid state Dilute solutions				
Secondary amines	3550-3400 (w) 1580-1490 (w) 1190-1170 (m) 1145-1130 (m)	Only one band, whereas primary amines show two bands Often too weak to be noticed				
Salts	455-405 (w-m) ca 2500 ca 2400 1620-1560 (m-s)	Sharp; broad values for solid state Sharp; broad values for solid state				
Tertiary amines $R_1R_2R_3NH^+$	2700-2250	Group of relatively sharp bands; broad bands in solid state				
Ammonium ion	3300–3030 (s) 1430–1390 (s)	Group of bands				
Imines =N=H	3350–3310 (w) 3490 (s) 3490 (s)	Aliphatic Aryl Pyrroles, indoles; band sharp				
Imine salts	2700–2330 (m-s) 2200–1800 (m)	Dilute solutions One or more bands; useful to distinguish from protonated tertiary amines				
Primary amide —CONH ₂	ca 3500 (m) ca 3400 (m)	Lowered ca 150 cm^{-1} in the solid state and on H bonding; often several bands $3200-3050 \text{ cm}^{-1}$				
Secondary amide —CONH—	3460-3400 (m) 3100-3070 (w)	Two bands; lowered on H bonding and in solid state. Only one band with lactams Extra band with bonded and solid-state samples				

TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued)

Group	Band, cm ⁻¹	Remarks
	Miscellaneous R-	-H
—Ѕ—Н	2600–2550 (w)	Weaker than OH and less affected by H bonding
Р—Н	2440-2350 (m)	Sharp
P OH	2700–2560 (m)	Associated OH
R—D	100/137 times the corresponding RH frequency	Useful when assigning RH bands; deutera- tion leads to a known shift to lower fre- quency

TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (*Continued*)

TABLE 7.21	Absorption	Frequencies	of Triple	Bonds
------------	------------	-------------	-----------	-------

Abbreviations Used in the Table

m, moderately strong	var, of variable strength
m-s, moderate to strong	w-m, weak to moderately strong
s, strong	

Group	Band, cm ⁻¹	Remarks
Alkynes		
Terminal	3300 (s)	CH stretching
	2140-2100 (w-m)*	$C \equiv C$ stretching
	1375-1225 (w-m)	
	695-575 (m-s)	Two bands if molecule has axial
		symmetry
	ca 630 (s)	Alkyl monosubstituted
Nonterminal	2260–2150 (var)*	Symmetrical or nearly symmetrical sub- stitution makes the C \equiv C stretching frequency inactive. When more than one C \equiv C linkage is present, and sometimes when there is only one, there are frequently more absorption bands in this region than there are triple bonds to account for them.
$\overline{R_1 - C} \equiv C - R_2$	540-465 (m)	The longer the chain, the lower the fre- quency
Aryl−C≡C−	ca 550 (m) ca 350 (var)	
−C≡C−halogen (Cl, Br, I)	185-160 (var)	

* Conjugation with olefinic or acetylenic groups lowers the frequency and raises the intensity. Conjugation with carbonyl groups usually has little effect on the position of absorption.

Group	Band, cm^{-1}	Remarks
Nitriles —C≡N	2260-2200 (var)	Stronger and toward the lower end of the range when conjugated; occasionally very weak or absent
Aliphatic	580–555 (m–s) 560–525 (m–s) 300–350 (c)	very weak of absent
Aromatic	580–540 (s) 430–380 (m)	
Isonitriles $R - \stackrel{+}{N} \equiv \bar{C}$ or $R - N \equiv C$:	2175–2150 (s) 2150–2115 (s) 1595	Very sensitive to changes in substituents Not found for nitriles
Cyanamides $>N-C\equiv N \rightleftharpoons >N^+-C=\bar{N}$	2225-2210 (s)	
Thiocyanates R−S−C≡N	2175–2140 (s) 404–400 (s) ca 600 (m–s)	Aryl thiocyanates at the upper end of the range, alkyl at the lower end Aliphatic derivatives
Nitrile <i>N</i> -oxides −C≡N→0	2305–2285 (s) 1395–1365 (s)	Aryl derivatives
Diazoniµm salts R−N≡N	2300-2230 (m-s)	
Selenocyanates R—Se—C≡N	ca 2160 (m-s) 545-520 ca 390 ca 350	

TABLE 7.21 Absorption Frequencies of Triple Bonds (Continued)

TABLE 7.22 Absorption Frequencies of Cumulated Double Bonds

Abbreviations Used in the Table

	m-s, moderate to strong vs s, strong w	s, very strong , weak
Group	Band, cm ⁻¹	Remarks
Carbon dioxide 0=C=0	2349 (s)	Appears in many spectra as a result of inequalities in path length
Isocyanates —N=C=0	2275-2250 (vs)	Position unaffected by conjugation
Isoselenocyanates —N=C=Se	2200–2000 (s) 675–605	Broad; usually two bands
$ \overline{ Azides } \\ -N_3 \text{ or } -N = \stackrel{\scriptscriptstyle +}{N} = \bar{N} $	2140–2030 (s) 1340–1180 (w)	Not observed for ionic azides
-N=C=N-	2155–2130 (s)	Split into unsymmetrical doublet by conjugation with aryl groups: 2145–2125 (vs) and 2115–2105 (vs)
Isothiocyanates —N=C=S	2140-1990 (vs) 649-600 (m-s) 565-510 (m-s) 470-440 (m-s)	Broad; usually a doublet
Ketenes >C=C=0	ca 2150 (s)	
Ketenimines C=C=N-	2050–2000 (s)	
Allenes >C=C=C<	2000–1915 (m-s)	Two bands when terminal allene or when bonded to electron-attracting groups
Thionylamines —N=S=0	1300–1230 (s) 1180–1110 (s)	
Diazoalkanes $R_2C = \stackrel{+}{N} = \stackrel{-}{N}_{-}$ $-CH = \stackrel{-}{N} = \stackrel{-}{N}$	2030–2000 (s) 2050–2035 (s)	
Diazoketones —CO—CH=N ⁺ =N	2100-2080 2075-2050	Monosubstituted Disubstituted

TABLE 7.23 Absorption Frequencies of Carbonyl Bands

All bands quoted are strong.

Groups	Band, cm ⁻¹	Remarks
Acid anhydrides		
Saturated	1850–1800 1790–1740	Two bands usually separated by about 60 cm ⁻¹ . The higher-frequency band is more intense in acyclic anhydrides, and the lower-frequency band is more intense in cyclic anhydrides
Aryl and α,β -unsaturated	1830-1780	cyclic uniyundes.
Saturated five-ring	1870–1820 1800–1750	
All classes	1300-1050	One or two strong bands due to CO stretching
Acid chlorides —COCl		
Saturated	1815-1790	Acid fluorides higher, bromides and iodides lower
Aryl and α , β -unsaturated Acid peroxide	1790-1750	
CO-O-O-CO-		
Saturated	1820–1810 1800–1780	
Aryl and α,β -unsaturated	1805–1780 1785–1755	
Esters and lactones —CO—O—		
Saturated	1750-1735	
Aryl and α , β -unsaturated Aryl and vinyl esters	1730-1715	
C=C-O-CO-alkyl	1800-1750	The C=C stretching band also shifts to higher frequency.
Esters with electronegative α substituents; e.g.,		8 · · · · · · ·
\geq CCl $-$ CO $-$ O $-$	1770-1745	
α -Keto esters	1755–1740	
Six-ring and larger lactones	Similar values to the corresponding open-chain esters	
Five-ring lactone	1780-1760	
α,β -Unsaturated five-ring		
lactone	1770-1740	When α -CH is present, there are two bands, the relative intensity depending on the sol- vent.
β, γ -Unsaturated five-ring		
lactone, vinyl ester type	ca 1800	
Four-ring lactone	ca 1820	
β -Keto ester in H bonding		
enol form	ca 1650	Keto from normal; chelate-type H bond causes shift to lower frequency than the normal ester. The C=C band is strong and is usually goog 1620 cm ⁻¹
All classes	1300-1050	Usually two strong bands due to CO stretch- ing

TABLE 7.23 Absorption Frequencies of Carbonyl Bands (Continued)

Groups	Band, cm ⁻¹	Remarks
Aldehydes —CHO (See also Table 7.49 for C—H.) All values given below are lowered in liq- uid-film or solid-state spectra by about 10–20 cm ⁻¹ . Vapor-phase spec- tra have values raised about 20 cm ⁻¹ . Saturated	1740-1720	
Aryl	1715–1695	<i>o</i> -Hydroxy or amino groups shift this value to 1655–1625 cm ⁻¹ because of intramolecular H bonding.
α,β-Unsaturated α,β,γ,δ-Unsaturated β-Ketoaldehyde in enol	1705–1680 1680–1660	
form	1670-1645	Lowering caused by chelate-type H bonding
Ketones $>C=0$ All values given below are lowered in liquid-film or solid-state spectra by about 10–20 cm ⁻¹ . Va- por-phase spectra have values raised about 20 cm ⁻¹ .		
Saturated	1725-1705	
Aryl α,β -Unsaturated $\alpha,\beta,\alpha',\beta'$ -Unsaturated and	1700–1680 1685–1665	
diaryl	1670-1660	
Cyclopropyl	1705-1685	
Six-ring ketones and larger	Similar values to the corresponding open-chain ke- tones	
Five-ring ketones	1750-1740	α,β Unsaturation, $\alpha,\beta,\alpha',\beta'$ unsaturation, etc., have a similar effect on these values as on those of open-chain ketones.
α -Halo ketones	1745–1725	Affected by conformation; highest values are obtained when both halogens are in the same plane as the C=O.
α, α' -Dihalo ketones	1765-1745	*
1,2-Diketones, syn-trans-		
open chains	1730–1710	Antisymmetrical stretching frequency of both C=O's. The symmetrical stretching is in- active in the infrared but active in the Raman.
<i>syn-cis</i> -1,2-Diketones, six- ring <i>syn-cis</i> -1,2-Diketones, five	1760 and 1730	
ring	1775 and 1760	

Groups	Band, cm ⁻¹	Remarks
Ketones $>$ C = O (<i>continued</i>) <i>o</i> -Amino-aryl or <i>o</i> -hydroxy-		
aryl ketones	1655-1635	Low because of intramolecular H bonding. Other substituents and steric hindrance af-
Quinones	1690-1660	C=C band is strong and is usually near 1600 cm^{-1} .
Extended quinones Tropone	1655–1635 1650	Near 1600 cm ⁻¹ when lowered by H bonding
Carboxylic acids -CO ₂ H		as in ropolones
All types	3000-2500	OH stretching; a characteristic group of small bands due to combination bands
Saturated	1725-1700	The monomer is near 1760 cm ⁻¹ , but is rarely observed. Occasionally both bands, the free monomer, and the H-bonded dimer can be seen in solution spectra. Ether solvents give one band near 1730 cm ⁻¹ .
α,β -Unsaturated	1715-1690	6
Aryl	1700-1680	
α -Halo-	1740-1720	
Carboxylate ions $-CO_{\overline{2}}$	1 < 10 1 5 50	
Most types	1610–1550 1420–1300	Antisymmetrical and symmetrical stretching, respectively
Amides −CO−N< (See also Table 7.49 for NH stretching and bend-		
Ing.) PrimeryCONH		
In solution	ca 1600	Amide I: C=O stretching
Solid state	ca 1650	Annue I, C—O succennig
In solution	ca 1600	Amide II: mostly NH bending
Solid state	ca 1640	Amide I is generally more intense than amide II. (In the solid state, amides I and II may overlap.)
Secondary — CONH—		
In solution	1700-1670	Amide I
Solid state	1680-1630	Amida II. found in anon shain amidaa anku
Solid state	1570–1515	Amide II; found in open-chain amides only Amide I is generally more intense than amide II
Tertiary	1670-1630	Since H bonding is absent, solid and solution spectra are much the same.
Lactams		
Six-ring and larger rings	ca 1670	
Five-ring	ca 1700	Shifted to higher frequency when the N atom
R - CO - N - C = C	ca 1745	Shifted +15 cm ⁻¹ by the additional double
C=C-CO-N		Shifted by up to $+15 \text{ cm}^{-1}$ by the additional double bond. This is an unusual effect by α,β unsaturation. It is said to be due to the inductive effect of the C=C on the well- conjugated CO-N system, the usual con- jugation effect being less important in such
		a system.

TABLE 7.23	Absorption	Frequencies	of Carbonyl	Bands	(Continued)
-------------------	------------	-------------	-------------	-------	-------------

Groups	Band, cm ⁻¹	Remarks
Imides —CO—N—CO—		
Cyclic six-ring	ca 1710 and ca 1700	Shift of +15 cm ⁻¹ with α , β unsaturation
Cyclic five-ring	ca 1770 and ca 1700	
Ureas N-CO-N	u 1700	
RNHCONHR	ca 1660	
Six-ring	ca 1640	
Five-ring	ca 1720	
Urethanes R-O-CO-N	1740-1690	Also shows amide II band when nonsubsti- tuted on N
Thioesters and Acids		
RCO—S—R'		
RCOSH	ca 1720	α,β -Unsaturated or aryl acid or ester shifted about -25 cm^{-1}
RCOS—alkyl	ca 1690	
RCOS—aryl	ca 1710	

TABLE 7.23	Absorption	Frequencies of	Carbonyl Bands	(Continued)
-------------------	------------	----------------	----------------	-------------

7.5.1 Intensities of Carbonyl Bands

Acids generally absorb more strongly than esters, and esters more strongly than ketones or aldehydes. Amide absorption is usually similar in intensity to that of ketones but is subject to much greater variations.

7.5.2 Position of Carbonyl Absorption

The general trends of structural variation on the position of C=O stretching frequencies may be summarized as follows:

- 1. The more electronegative the group X in the system R-CO-X, the higher is the frequency.
- 2. α , β Unsaturation causes a lowering of frequency of 15 to 40 cm⁻¹, except in amides, where little shift is observed and that usually to higher frequency.
- 3. Further conjugation has relatively little effect.
- **4.** Ring strain in cyclic compounds causes a relatively large shift to higher frequency. This phenomenon provides a remarkably reliable test of ring size, distinguishing clearly between four-, five-, and larger-membered-ring ketones, lactones, and lactams. Six-ring and larger ketones, lactones, and lactams show the normal frequency found for the open-chain compounds.
- 5. Hydrogen bonding to a carbonyl group causes a shift to lower frequency of 40 to 60 cm⁻¹. Acids, amides, enolized β -keto carbonyl systems, and *o*-hydroxyphenol and *o*-aminophenyl carbonyl compounds show this effect. All carbonyl compounds tend to give slightly lower values for the carbonyl stretching frequency in the solid state compared with the value for dilute solutions.
- **6.** Where more than one of the structural influences on a particular carbonyl group is operating, the net effect is usually close to additive.

TABLE 7.24 Absorption Frequencies of Other Double Bonds

Abbreviations Used in the Table

m, moderately strong	vs, very strong
m-s, moderate to strong	w, weak
var, of variable strength	

Group	Band, cm ⁻¹	Remarks
	Alkenes >C=C<	
Nonconjugated	1680-1620 (w-m)	May be very weak if symmetrically substituted
Conjugated with aromatic ring	1640–1610 (m)	More intense than with unconju- gated double bonds
Internal (ring) Carbons: $n = 3$ n = 4 n = 5 $n \ge 6$	3060-2995 (m) ca 1665 (w-m) ca 1565 (w-m) ca 1610 (w-m) 1370-1340 (s) 1650-1645 (w-m)	Highest frequencies for smallest ring Characteristic
Exocyclic C==C(CH ₂) _n $n = 2$ n = 3 $n \ge 4$	1780–1730 (m) ca 1680 (m) 1655–1650 (m)	
Fulvene	1645–1630 (m) 1370–1340 (s) 790–765 (s)	
Dienes, trienes, etc.	1650 (s) and 1600 (s)	Lower-frequency band usually more intense and may hide or overlap the higher-frequency band
α,β -Unsaturated carbonyl compounds	1640-1590 (m)	Usually much weaker than the C=O band
Enol esters, enol ethers, and enamines	1700–1650 (s)	

Imines, oximes, and amidines >C=N-

Imines and oximes Aliphatic α,β -Unsaturated and aromatic Conjugated cyclic systems	1690–1640 (w) 1650–1620 (m) 1660–1480 (var) 960–930 (s)	NO stretching of oximes
Imino ethers —O—C=N—	1690–1640 (var)	Usually a strong doublet

TABLE 7.24	Absorption	Frequencies	of Other	Double	Bonds	(Continued)
------------	------------	-------------	----------	--------	-------	------------	---

Group	Band, cm ⁻¹	Remarks	
Imines, oxime	es, and amidines $\geq C=N-$	- (continued)	
Imino thioethers —S—C=N=	1640-1605 (var)		
Imine oxides $>C=N^+-O$	1620–1550 (s)		
Amidines >N-C=N-	1685–1580 (var)		
Benzamidines Aryl—C=N—N	1630-1590		
Guanidine >N-C=N-	1725–1625 (s)		
Azines >C=N-N=C<	1670-1600		
Hydrazoketones —CO—C=N—N	1600–1530 (vs)		
1	Azo compounds —N=N—		
Azo —N=N— Aliphatic Aromatic <i>cis</i> <i>trans</i>	ca 1575 (var) ca 1510 (w) 1440-1410 (w)	Very weak or inactive	
$ Azoxy - \stackrel{+}{N} = N - $			
Airpnatic	1345–1285 (m–s) 1345–1285 (m–s) 1480–1450 (m–s) 1340–1315 (m–s)		
Azothio $-N=\stackrel{+}{N}-\bar{S}-$	1465–1445 (w) 1070–1055 (w)		
	Nitro compounds N=O		
Nitro C—NO ₂ Aliphatic	ca 1560 (s) 1385–1350 (s)	The two bands are due to asymmet- rical and symmetrical stretching of the N=O bond. Electron- withdrawing substituents adjacent to nitro group increase the fre- quency of the asymmetrical band and decrease that of the symmet- rical frequency.	

Group	Band, cm ⁻¹	Remarks	
Nitro	\sim compounds N=O (<i>continu</i>	ied)	
Nitro C—NO ₂ (<i>continued</i>) Aromatic	1570–1485 (s) 1380–1320 (s)	See above remark; also bulky orthosubstituents shift band to higher frequencies. Strong H bonding shifts frequency to lower end of range.	
α,β -Unsaturated Nitroalkenes	865-835 (s) 580-520 (var) 1530-1510 (s) 1360-1335 (s)	Strong and sometimes at ca 750 cm ⁻¹	
Nitrates —O—NO ₂	1650–1625 (vs) 1285–1275 (vs) 870–855 (vs) 760–755 (w–m) 710–695 (w–m)		
Nitramines >N-NO ₂	1630–1550 (s) 1300–1250 (s)		
Nitrates -0-N=0	1680–1610 (vs) 815–750 (s) 850–810 (s) 690–615 (s)	Two bands <i>Trans</i> form <i>Cis</i> form	
Thionitrites —S—N=O	730-685 (m-s)		
Nitroso ≥C−N=0	1600–1500 (s)		
$N - N = \overline{O}$ Aliphatic Aromatic	1530-1495 (m-s) 1480-1450 (m-s) 1335-1315 (m-s)		
Nitrogen oxides N→O Pyridine Pyrazine	1320–1230 (m-s) 1190–1150 (m-s) 1380–1280 (m-s) 1040–990 (m-s) ca 850 (m)	Affected by ring substituents	

TABLE 7.24 Absorption Frequencies of Other Double Bonds (Continued)

TABLE 7.25 Absorption Frequencies of Aromatic Bands

Abbreviations Used in the Table

m, moderately strong m-s, moderate to strong w-m, weak to moderately strong s, strong

var, of variable strength

Group	Band, cm ⁻¹	Remarks
Aromatic rings	ca 1600 (m) ca 1580 (m) ca 1470 (m) ca 1510 (m)	Stronger when ring is further conjugated When substituent on ring is electron acceptor When substituent on ring is electron donor
Five adjacent H	900-860 (w-m) 770-730 (s) 720-680 (s) 625-605 (w-m) ca 550 (w-m)	Substituents: C=C, C=C, C=N
1,2-Substitution	770–735 (s) 555–495 (w–m) 470–415 (m–s)	
1,3-Substitution	810-750 (s) 560-505 (m) 460-415 (m-s)	490–460 cm ⁻¹ when substituents are elec- tron-accepting groups
1,4-Substitution	860-800 (s) 650-615 (w-m) 520-440 (m-s)	520–490 cm ⁻¹ when substituents are elec- tron-donating groups
1,2,3-Trisubstitution	800-760 (s) 720-685 (s) 570-535 (s) ca 485	
1,2,4-Trisubstitution	900-885 (m) 780-760 (s) 475-425 (m-s)	
1,3,5-Trisubstitution	950-925 (var) 865-810 (s) 730-680 (m-s) 535-495 (s) 470-450 (w-m)	
Pentasubstitution	900-860 (m-s) 580-535 (s)	
Hexasubstitution	415-385 (m-s)	

TABLE 7.26 Absorption Frequencies of Miscellaneous Bands

Abbreviations Used in the Table

m, moderately strong
m-s, moderate to strong
s, strong
var. of variable strength

vs, very strong w, weak w-m, weak to moderately strong

Ig

Group	Band, cm ⁻¹	Remarks	
	Ethers		
Saturated aliphatic ≥C−O−C≤	1150–1060 (vs) 1140–900 (s)	Two peaks may be observed for branched chain, usually 1140–1110 cm ⁻¹ . Usually 930–900 cm ⁻¹ ; may be absent for symmetric ethers	
$ \frac{Alkyl-aryl}{=C-0-C \le } $	1270–1230 (vs) 1120–1020 (s)	=CO stretching CO stretching	
Vinyl	1225–1200 (s)	Usually about 1205 cm ⁻¹	
$ \begin{array}{c} \text{Diaryl} \\ = \begin{array}{c} C - 0 - C = \\ \end{array} \end{array} $	1200–1120 (s) 1100–1050 (s)		
Cyclic	1270–1030 (s)		
Epoxides >CC<	1260–1240 (m–s) 880–805 (m) 950–860 (var) 865–785 (m) 770–750 (m)	Monosubstituted <i>Trans</i> form <i>Cis</i> form Trisubstituted	
Ketals and acetals	1190–1140 (s) 1195–1125 (s) 1100–1000 (s) 1060–1035 (s)	Strongest band Sometimes obscured	
Phthalanes	915-895 (s)		
Aromatic methylenedioxy	1265–1235 (s)		
	Peroxides	1	
-0-0-	900-830 (w) 1150-1030 (m-s) ca 1000 (m)	Alkyl Aryl	

TABLE 7.26 Absorption Frequencies of Miscellaneous Ban	ds (Continued)
---	----------------

Group	Band, cm ⁻¹	Remarks
	Sulfur compound	S
Thiols —S—H —CO—SH —CS—SH	2600-2450 (w) 840-830 (m) ca 860 (s)	Broad
Thiocarbonyl >C=S >N-C=S -S-C=S 	1200–1050 (s) 1570–1395 1420–1260 1140–940 ca 580 (s)	Behaves generally in manner similar to carbonyl band
Sulfoxides S=O	1075–1040 (vs) 730–690 (var) 395–360 (var)	Halogen or oxygen atom bonded to sul- fur increases the frequency.
Sulfones SO ₂	1360–1290 (vs) 1170–1120 (vs) 610–545 (m–s) 525–495 (m–s)	Halogen or oxygen atom bonded to sul- fur increases the frequency.
Sulfonamides −SO ₂ −N<	1380–1330 (vs) 1170–1140 (vs) 950–860 (m) 715–700 (w–m)	
Sulfonates —SO ₂ —O—	1420–1330 (s) 1200–1145 (s)	May appear as doublet
Thiosulfonates $-SO_2 - S -$	ca 1340 (vs)	
Sulfates —O—SO ₂ —O— Primary alkyl salts Secondary alkyl salts	1415-1380 (s) 1200-1185 (s) 1315-1220 (s) 1140-1075 (m) 1270-1210 (vs) 1075-1050 (s)	Electronegative substituents increase frequencies. Strongly influenced by metal ion Doublet; both bands strongly influenced by metal ion

TABLE 7.26	Absorption	Frequencies	of Miscellaneous	Bands ((Continued))
-------------------	------------	-------------	------------------	---------	-------------	---

Group Band, cm ⁻¹		Remarks
	Sulfur compounds (cont	tinued)
Stretching frequencies of C-S and S-S bonds -S-CH ₃ -S-CH ₂ -S-CH \leq -S-CE \leq -S-aryl R-S-S-R Aryl-S-S-aryl Polysulfides CH ₂ -S-CH ₂ (R-S) ₂ C=O	710-685 (w-m) 660-630 (w-m) 630-600 (w-m) 600-570 (w-m) 1110-1070 (m) 710-685 (w-m) 705-570 (w) 520-500 (w) 500-430 (w-m) 500-470 (w-m) 695-655 (w-m) 880-825 (s) 570-560 (var)	CSC stretching
-co-s - co-s -	1035–935 (s) ca 580 (s) 1050–900 (m–s) 980–850 (m–s) 900–800 (m–s)	Monoionic Ionic 1,1-dithiolates
	Phosphorus compou	nds
Р—Н	2455-2265 (m) 1150-965 (w-m)	Sharp. Phosphines lie in the region 2285–2265 cm ⁻¹ .
—PH ₂	1100-1085 (m) 1065-1040 (w-m) 940-910 (m)	
P—alkyl	795-650 (m-s)	
P—aryl	1130–1090 (s) 750–680 (s)	
P—O—alkyl	1050–970 (s)	Broad
P—O—aryl	1240–1190 (s)	
Р—О—Р	970–910	Broad
P=0	1350–1150 (s)	May appear as doublet
P OH	2725-2520 (w-m) 2350-2080 (w-m) 1740-1600 (w-m) 1335 (s) 1090-910 (s) 540-450 (w-m)	H-bonded; broad Broad; may be doublet for aryl acids P=O stretching

Group	Band, cm ⁻¹	Remarks	
	Phosphorus compounds (co	ontinued)	
P=S	865–655 (m–s) 595–530 (var)		
Р ОН	3100-3000 (w) 2360-2200 (w) 935-910 (s) 810-750 (m-s) 655585 (var)	PO stretching P=S stretching P=S stretching	
	Silicon compounds	5	
Si—H	2250–2100 (s) 985–800	SiH ₃ has two bands.	
Si—C	860-760	Accompanied by CH ₂ rocking	
Si−C€	1280–1250 (s)	Sharp	
Si-C ₂ H ₅	1250–1220 (m) 1020–1000 (m) 970–945 (m)		
Si—Aryl	1125-1090 (vs)	Splits into two bands when two aryl groups are attached to one silicon atom, but has only one band when three aryl groups attached	
≥Si—OH	870-820	OH deformation band	
≥Si−0−Si≤	1100-1000		
≥Si−N−Si≤	940-870 (s)		
≥Si—Cl	550–470 (s) 250–150		
>SiCl ₂	595–535 (s) 540–460 (m)		
—SiCl ₃	625–570 (s) 535–450 (m)		
	Boron compounds		
Boranes ≥BH or −BH ₂	2640-2450 (m-s) 2640-2570 (m-s) 2535-2485 (m-s) 2380-2315 (s) 2285-2265 (s) 2140-2080 (w-m) 2580-2450 (m)	Free H in BH Free H in BH_2 plus second band In complexes; second band for BH_2 Bridged H Borazoles and borazines	

TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued)

Group	Band, cm ⁻¹	Remarks			
	Boron compounds (conti	inued)			
BH ₄	2310-2195 (s)	Two bands			
B—N	1550–1330 750–635	Borazines and borazoles			
В—О	1390–1310 (s) 1280–1200	BO stretching Metal orthoborates			
B—Cl B—Br	1090-890 (s)	Plus other bands at lower frequencies for BX_2 and BX_3			
B—F	1500-840 (var)	Isotope splitting present			
XBF ₂	1500–1410 (s) 1300–1200 (s)				
X ₂ BF	1360–1300 (s)				
BF ₃ complexes	1260–1125 (s)	Band splitting may be added to isotopic splittings.			
	1030-800 (s)				
BF ₄	ca 1030 (vs)				
	Halogen compound	S			
C—F Aliphatic, mono-F	1110–1000 (vs)				
Aliphatic, di-F Aliphatic, poly-F Aromatic	780–680 (s) 1250–1050 (vs) 1360–1090 (vs) 1270–1100 (m) 680–520 (m–s) 420–375 (var) 340–240 (s)	Two bands Number of bands			
CF ₃ Aliphatic	$\begin{array}{c} 1350 - 1120 \ (vs) \\ 780 - 680 \ (s) \\ 680 - 590 \ (s) \\ 600 - 540 \ (s) \\ 555 - 505 \ (s) \end{array}$				
Aromatic	1330–1310 (m–s) 600–580 (s)				
C—Cl Primary alkanes	730–720 (s) 685–680 (s) 660–650 (s)				

TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued)

TABLE 7.26	Absorption	Frequencies	of Miscellaneous	Bands	(Continued))
------------	------------	-------------	------------------	-------	-------------	---

Group	Band, cm ⁻¹	Remarks
	Halogen compounds (con	tinued)
C—Cl (continued)		
Secondary alkanes	ca 760 (m)	
	675-655 (m-s)	
	615–605 (s)	
Tertiary alkanes	635-610 (m-s)	
	580-560 (m-s)	
Poly-Cl	800-700 (vs)	
Aryl:		
1,2-	1060–1035 (m)	
1,3-	1080–1075 (m)	
1,4-	1100-1090 (m)	
Chloroformates	ca 690 (s)	
	485–470 (s)	
Axial Cl	730-580 (s)	
Equatorial Cl	780–740 (s)	
C—Br		
Primary alkanes	645-635 (s)	
	565–555 (s)	
	440-430 (var)	
Secondary alkanes	620–605 (s)	
	590-575 (m-w)	
	540-530 (s)	
Tertiary alkanes	600-595 (m-s)	
	525-505 (s)	
Axial	690–550 (s)	
Equatorial	750–685 (s)	
Aryl:		
1,2-	1045–1025 (m)	
1,3-; 1,4-	1075–1065 (m)	
Other bands	400–260 (s)	
	325–175 (m–s)	
	290-225 (m-s)	
C—I		
Primary alkanes	600-585 (s) 515-500 (s)	
Secondary alkanes	ca 575 (s)	
	550-520 (s)	
	490 - 480 (s)	
Tertiary alkanes	580-560 (s)	
	510-485 (m)	
	485-465 (s)	
Aromatic	1060 - 1055 (m - s)	
	310-160 (s)	
	265-185	
Axial	ca 640 (s)	
Equatorial	ca 655 (s)	
	1	1

TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Control of Miscellaneous Bands)	tinued)
--	---------

Group	Band, cm ⁻¹	Remarks
Ammonium	3300-3030	Several bands, all strong
Cyanate	2220–2130 (s)	
Cyanide	2200-2000	
Carbonate	1450-1410	
Hydrogen sulfate	1190-1160 (s) 1180-1000 (s) 880-840 (m)	
Nitrate	1410-1350 (vs) 860-800 (m)	
Nitrite	1275–1230 (s) 835–800 (m)	Shoulder
Phosphate	1100-1000	
Sulfate	1130–1080 (s)	
Thiocyanate	ca 2050 (s)	

TABLE 7.27 Absorption Frequencies in the Near InfraredValues in parentheses are molar absorptivity.

Class	Band, cm ⁻¹	Remarks
Acetylenes	9800-9430 6580-6400 (1.0)	Overtone of ≡CH stretching
Alcohols (nonhydrogen-bonded)	7140-7010 (2.0)	Overtone of OH stretching
Aldehydes Aliphatic Aromatic	4640-4520 (0.5) ca 8000 ca 4525 ca 4445	Combination of C=O and CH stretchings
Formate	4775-4630 (1.0)	

TABLE 7.27 Absorpt	Absorption Frequencies in the Near Infrared (Continued)						
Class	Band, cm ⁻¹						

Class	Band, cm ⁻¹	Remarks			
Alkanes —CH ₃	9000-8350 (0.02) 5850-5660 (0.1)				
	$\begin{array}{c} 4530 - 4280 \ (0.1) \\ 4510 - 4280 \ (0.3) \\ 9170 - 8475 \ (0.02) \\ 5830 - 6640 \ (0.1) \\ 4420 - 4070 \ (0.25) \end{array}$				
≥CH	8550-8130 7000-6800	All bands very weak			
Cyclopropane	6160-6060 4500-4400				
Alkenes					
C=C_H	6850-6370 (1.0)				
$>C=CH_2$ and $-CH=CH_2$	7580-7300 (0.02) 6140-5980 (0.2) 4760-4700 (1.2)				
Н	4700-4700 (1.2)				
C=C	4760-4660 (0.15)	Trans isomers have no unique bands.			
	6250-6040 (0.3)				
$-co-ch=ch_2$	7580 - 7410(0.02) 6190 - 5990(0.3)				
	4820-4750 (0.2-0.5)				
Amides					
Primary	7400-6540 (0.7)	Two bands; overtone of NH stretch Second evertone of $C = O$ stretch:			
	5040-4990 (0.5)	second overtone of NH deforma-			
	4960-4880 (0.5)	tion; combination of C=O and NH			
Secondary	7330-7140 (0.5)	Overtone of NH stretch			
	3030-4900 (0.4)	bending			
Amines, aliphatic					
Primary	9710-9350	Second overtone of NH stretch			
	6670-6450 (0.5) 5075-4900 (0.7)	Two bands; overtone of NH stretch Two bands: combination of NH			
		stretch and NH bending			
Secondary	9800-9350 6580-6410 (0.5)	Second overtone of NH stretch Overtone of NH stretch			
Amines, aromatic					
Primary	9950 - 9520 (0.4) 7040 - 6850 (0.2)				
	6760-6580 (1.4)				
	5140-5040 (1.5)				
Secondary	$10\ 000-9710$				
	0000-0300 (0.3)				

Class	Band, cm ⁻¹	Remarks		
Aryl-H	7660–7330 (0.1) 6170–5880 (0.1)	Overtone of CH stretch		
Carbonyl	5200-5100			
Carboxylic acids	7000-6800			
Epoxide (terminal)	6135–5960 (0.2) 4665–4520 (1.2)	Cyclopropane bands in same region		
Glycols	7140-7040			
Hydroperoxides Aliphatic Aromatic	6940-6750 (2.0) 4960-4880 (0.8) 7040-6760 (1.0) 4950-4850 (1.3)	Two bands		
Imides	9900-9620 6540-6370			
Nitriles	5350-5200 (0.1)			
Oximes	7140-7050			
Phosphines	5350-5260 (0.2)			
Phenols Nonbonded Intramolecularly bonded	7140-6800 (3.0) 5000-4950 7000-6700			
Thiols	5100-4950 (0.05)			

TABLE 7.27 Absorption Frequencies in the Near Infrared (*Continued*)

Material	Wavelength range, μm	Wavenumber range, cm ⁻¹	Refractive index at 2 μm
NaCl, rock salt	0.25-17	40 000-590	1.52
KBr, potassium bromide	0.25-25	40 000-400	1.53
KCl, potassium chloride	0.30-20	33 000-500	1.5
AgCl, silver chloride*	0.40-23	25 000-435	2.0
AgBr, silver bromide*	0.50-35	20 000-286	2.2
CaF ₂ , calcium fluoride (Irtran-3)	0.15-9	66 700-1 110	1.40
BaF ₂ , barium fluoride	0.20-11.5	50 000-870	1.46
MgO, magnesium oxide (Irtran-5)	0.39-9.4	25 600-1 060	1.71
CsBr, cesium bromide	1-37	10 000-270	1.67
CsI, cesium iodide	1-50	10 000-200	1.74
TlBr-TlI, thallium bromide-iodide (KRS-5)*	0.50-35	20 000-286	2.37
ZnS, zinc sulfide (Irtran-2)	0.57-14.7	17 500-680	2.26
ZnSe, zinc selenide* (vacuum deposited) (Irtran-4)	1-18	10 000-556	2.45
CdTe, cadmium telluride (Irtran-6)	2-28	5 000-360	2.67
Al ₂ O ₃ , sapphire*	0.20-6.5	50 000-1538	1.76
SiO ₂ , fused quartz	0.16-3.7	62 500-2 700	
Ge, germanium*	0.50-16.7	20 000-600	4.0
Si, silicon*	0.20-6.2	50 000-1 613	3.5
Polyethylene	16-300	625-33	1.54

TABLE 7.28 Infrared Transmitting Materials

* Useful for internal reflection work.

TABLE 7.29 Infrared Transmission Characteristics of Selected Solvents

Transmission below 80%, obtained with a 0.10-mm cell path, is shown as shaded area.

							w	aveleng	th, μn	n									
	2.5	:	3 3	3.5	4	4.5	5	5.5		6	6.5	7	8	9	9 10) 1	1 12	14	16
	-		Г	Τ	T	T	1			T	T	Т	1				Τ	Τ	
Diethyl ether																			
			3060		2600	2	000 196	65			1525				1000	8	70 79	0 6	335
															:	960 8	95		
1,4-Dioxane	[8													1	<u></u>
	L		3060	2	650	2	000 196	65			14	60			1075	5		690)
																940	825		
Dedeese	r				N														22
Dodecane			3060	2	N 650						14	60	1290				I	<u>////</u>	<u>889</u> 365
			0000	-									.200				755	695	5
																			-
Hexane	L				8								×			8			
			3060	20	650						1525	1.	330			000	780	720	POF
																300	660		ໂລວ
Tetrachloro-																			
curytene													1	060 1	035		830 7	45	_
															9	60 8	85	680)
1,1-Trichloro-																			
uniuoroetiane											14	115	1345					700	i
													1270)			780)	
2,2,4-Trimethyl-				m											F	3			1
pentane	L		3040	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2550						1520	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1175	1000	975		(لکلہ 645
	r	KIIIIIII																	
Water	L	2650	202	0					1750	15	<u></u>								7773
		3050	293	0					1750	15	80					930			
						, 1				,									
	4000		3000		_ L L		2000	1800	0	1600		1400	12	00	100	0	800	I	 600
			0000				w	avenum	nber, c	:m ⁻¹				-					

TABLE 7.29 Infrared Transmission Characteristics of Selected Solvents (*Continued*)

7.6 RAMAN SPECTROSCOPY

TABLE 7.30	Raman Frequencies of	Single Bonds to	Hydrogen an	d Carbon
		Abbreviations U	sed in the Ta	ble
	m, moderately stro m–s, moderate to m–vs, moderate to s, strong vs, very strong	ong strong o very strong	vw, very we w, weak w–m, weak w–vs, weak	eak to moderately strong t to very strong
Group)	Band, cm ⁻	1	Remarks
		Saturated C—	H and $C-C$	2
-CH ₃		2969–2967 (s) 2884–2883 (s) ca 1205 (s) 1150–1135 1060–1056 975–835 (s) 280–220		In aryl compounds In unbranched alkyls In unbranched alkyls Terminal rocking of methyl group CH_2 — CH_3 torsion
-CH ₂ -		2949–2912 (s) 2861–2849 (s) 1473–1443 (m 1305–1295 (s) 1140–1070 (m 888–837 (w) 425–150 500–490	vs))	Intensity proportional to number of CH_2 groups Often two bands; see above Substituent on aromatic ring
-CH(CH ₃) ₂		1350–1330 (m 835–750 (s))	If attached to C=C bond, 870– 800 cm ⁻¹ . If attached to aryl ring, 740 cm ⁻¹
—C(CH ₃) ₃		1265–1240 (m 1220–1200 (m 760–685 (vs)))	Not seen in <i>tert</i> -butyl bromide Not seen in <i>tert</i> -butyl bromide If attached to C=C or aromatic ring, 760–720 cm ⁻¹
Internal tertiary carbon atom	ý	855–805 (w) 455–410		
Internal quater carbon atom	nary	710–680 (vs) 490–470		

Group	Band, cm ⁻¹	Remarks
	Saturated C—H and C—C (con	tinued)
Two adjacent tertiary carbon atoms	730–920 770–725	Often a band at 530–524 cm ⁻¹ indicates presence of adjacent tertiary and quaternary carbon atoms.
Dialkyl substitution at α -carbon atom	800-700 (m-s) 680-650 (vs) 605-550	
Cyclopropane	3101-3090 3038-3019 1210-1180 (s)	Shifts to 1200 cm ⁻¹ for mono- alkyl or 1,2-dialkyl substitution and to 1320 cm ⁻¹ for <i>gem</i> -1,1- dialkyl substitution
Cyclobutane	1001-960 (vs)	Shifts to 933 cm ⁻¹ for monoalkyl, to 887 cm ⁻¹ for <i>cis</i> -1,3-dialkyl, and to 891 cm ⁻¹ plus 855 cm ⁻¹ (doublet) for <i>trans</i> -1,3,-dialkyl substitution
Cyclopentane	900-800 (s)	
Cyclohexane	825-815 (vs) 810-795 (vs)	Boat configuration Chair configuration
Cycloheptane	ca 733	
Cyclooctane	ca 703	
=C ^{CH₃} CH ₃	1392–1377 450–400 (vw) 270–250 (m)	
CH ₃ C=C ^H _{CH₃}	1380–1379 492–455 (vw) 220–200 (m)	
$\begin{array}{c} \hline CH_3 \\ H \\ \end{array} C = C \\ H \\ \end{array} $	1372–1368 970–952 (m) 592–545 (vw) 420–400 (m) 310–290 (m)	

TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)
SPECTROSCOPY

Group	Band, cm^{-1}	Remarks	
	Saturated C—H and C—C (con	ntinued)	
CH ₃ C=C ^{CH₃} _H	1385–1375 522–488 (w)		
CH ₃ C=C CH ₃ C=C CH ₃ CH ₃ C	1392–1386 690–678 (m–s) 510–485 (m) 424–388 (w)		
>C-C-C≤ 0	1170–1100 (w-m) 600–580 (m-s)		
= C - C -	1120–1090 (m–vs) 600–510 (w–m)	Tertiary or quaternary carbon ad- jacent to carbonyl group low- ers the frequency 300 cm ⁻¹ .	
-CH ₂ -CO-	1420–1410 (s)		
—СНО	2850–2810 (m) 2720–2695 (vs)	Often appears as a shoulder	
	Unsaturated C—H		
−с≡с−н	3340-3270 (w-m)	Alkyl substituents at higher fre- quencies; unsaturated or aryl substituents at lower frequen- cies	
C=C H	3040-2995 (m)		
	3095–3050 (m) 2990–2983 (s)	Asymmetric $=$ CH ₂ stretch Symmetric $=$ CH ₂ stretch	
H c = c H	1419–1415 (m) 1309–1288 (m)	Plus ==CH and ==CH stretching bands	

1413-1399 (m)

909-885 (m) 711-684 (w)

H C=C

R₁

`R₂

Plus = CH_2 stretching bands

Group	Band, cm ⁻¹	Remarks	
	Unsaturated C-H (continue	ed)	
R_1 $C = C$ H	1270–1251 (m)	Plus —CH stretching band	
R_1 C=C R_2	1314–1290 (m)	Plus —CH stretching band	
$R_1 > C = C < R_3 = H$	1360–1322 (w) 830–800 (vw)	Plus = CH stretching band	
	Hydroxy O—H	<u> </u>	
Free —OH Intermolecularly bonded Aromatic —OH	3650-3250 (w) 3400-3300 (w) ca 3160 (s)		
—он	1460–1320 (w) 1276–1205 (w–m) 1260 (w–m)	Common to all OH substituents Primary Secondary	
C—C—OH primary	1070–1050 (m–s) 1030–960 (m–s) 480–430 (w–m)	CCO stretching CCO deformation	
C—C—OH Secondary Tertiary	1135-1120 (m-s) 825-815 (vs) 500-490 (w-m) 1210-1200 (m-s) 755-730 (vs) 360-350 (w-m)		
—со—о—н	1305-1270	CO stretching	
	N—H and C—N bonds	<u>.</u>	
Amine $>N-H$ Associated Nonbonded Salts $-NH_2$	3400-3250 (s) 3550-3250 (s) 2986-2974 1650-1590 (w-vs)	Primary amines show two bands. Often obscured by intense CH stretching bands Bending	

TABLE 7.30 F	Raman Frequencies	of Single Bonds	to Hydrogen and	Carbon (Continued)
---------------------	-------------------	-----------------	-----------------	--------------------

Group	Band, cm ⁻¹	Remarks	
	N—H and C—N Bonds (cont	inued)	
Amides			
Primary	3540-3500 (w) 3400-3380 (w) 1310-1250 (s)	Both bands lowered ca 150 cm ⁻¹ in solid state and H bonding Interaction of NH bending and CN stretching; lowered 50 cm ⁻¹ in nonbonded state	
Secondary	1150-1095 (m) 3491-3404 (m-s) 1190-1130 (m) 931-865 (m-s) 430-395 (w-m)	Rocking of NH ₂ Two bands; lowered in frequency on H bonding and in solid state	
N	607–555 (m)	O=CN bending	
C—N—C I C	1070-1045 (m)	Stretching	
≥C-N<			
Primary carbon Secondary α carbon Tertiary α carbon	1090-1060 (m) 1140-1035 (m) 1240-1020 (m)	CN stretching Two bands but often obscured. Strong band at 800 cm ⁻¹ Two bands. Strong band also at 745 cm ⁻¹	

TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued)

TABLE 7.31 Raman Frequencies of Triple Bonds

Abbreviations Used in the Table

m, moderately strong
m-s, moderate to strong
s, strong

s-vs, strong to very strong vs, very strong

Group	Band, cm ⁻¹	Remarks
R−C≡CH	2160–2100 (vs) 650–600 (m) 356–335 (s)	Monoalkyl substituted; $C \equiv C$ stretch $C \equiv CH$ deformation $C \equiv C - C$ bending of monoalkyls
$R_1 - C \equiv C - R_2$	2300-2190 (vs)	C≡C stretching of disubstituted alkyls; sometimes two bands
	2264-2251 (vs)	
_C≡N	2260–2240 (vs) 2234–2200 (vs) 840–800 (s–vs) 385–350 (m–s) 200–160 (vs)	 Unsaturated nonaryl substituents lower the frequency and enhance the intensity. Lowered ca 30 cm⁻¹ with aryl and conjugated aliphatics CCCN symmetrical stretching Aliphatic nitriles
H−C≡N	2094 (vs)	
$\overline{Azides}_{-\bar{N}-N} \equiv N$	2170–2080 (s) 1258–1206 (s)	Asymmetric NNN stretching Symmetric NNN stretching; HN_3 at 1300 cm ⁻¹
Diazonium salts $R-N \equiv N$	2300-2240 (s)	
Isonitriles $-\mathbf{N} \equiv \mathbf{C}$	2146–2134 2124–2109	Stretching of aliphatics Stretching of aromatics
Thiocyanates −S−C≡N	2260–2240 (vs) 650–600 (s)	Stretching of C≡N Stretching of SC

SPECTROSCOPY

TABLE 7.32 Raman Frequencies of Cumulated Double Bonds

Abbreviations Used in the Table

	s, strong vs, very strong	vw, very weak w, weak
Group	Band, cm^{-1}	Remarks
Allenes C=C=C	2000–1960 (s) 1080–1060 (vs) 356	Pseudo-asymmetric stretching Symmetric stretching C=C=C bending
Carbodiimides (cyanamides) —N=C=N—	2140-2125 (s) 2150-2100 (vs) 1460 1150-1140 (vs)	Asymmetric stretching of aliphatics Asymmetric stretching of aromatics; two bands Symmetrical stretching of aliphatics Symmetric stretching of aryls
Cumulenes (trienes) C=C=C=C	2080–2030 (vs) 878	
Isocyanates —N=C=0	2300–2250 (vw) 1450–1400 (s)	Asymmetric stretching Symmetric stretching
Isothiocyanates —N=C=S	2220-2100 690-650	Two bands Alkyl derivatives
Ketenes C=C=0	2060–2040 (vs) 1130 (s) 1374 (s) 1120 (s)	Pseudo-asymmetric stretching Pseudo-symmetric stretching Alkyl derivatives Aryl derivatives
Sulfinylamines R—N=S=O	1306–1214 (w) 1155–989 (s)	Asymmetric stretching Symmetric stretching

TABLE 7.33 Raman Frequencies of Carbonyl Bands

Abbreviations Used in the Table

m, moderately strong
m-s, moderate to strong
s, strong

s-vs, strong to very strong vs, very strong w, weak

Group	Band, cm ⁻¹	Remarks		
Acid anhydrides —CO—O—CO— Saturated Conjugated, noncyclic	1850–1780 (m) 1771–1770 (m) 1775 1720			
Acid fluorides —CO—F Alkyl Aryl	1840–1835 1812–1800			
Acid chlorides —CO—Cl Alkyl Aryl	1810–1770 (s) 1774 1731			
Acid bromides —CO—Br Alkyl Aryl	1812–1788 1775–1754			
Acid iodides —CO—I Alkyl Aryl	ca 1806 ca 1752			
Lactones	1850–1730 (s)			
Esters Saturated Aryl and α,β -unsaturated Diesters Oxalates Phthalates C \equiv C $-$ CO $-$ O $-$ Carbamates	1741–1725 1727–1714 1763–1761 1738–1728 1716–1708 1694–1688	Alkyl branching on carbon adjacent to C=O lowers frequency by 5–15 cm ⁻¹ .		
Aldehydes	1740–1720 (s–vs)			
KetonesSaturatedArylAlicyclic $n = 4$ $n = 5$ $n \ge 6$	1725–1700 (vs) 1700–1650 (m) 1782 (m) 1744 (m) 1725–1699 (m)			

Group	Band, cm ⁻¹	Remarks		
Carboxylic acids				
Mono-	1686–1625 (s)	These α -substituents increase the frequency: F. Cl. Br. OH.		
Poly-	1782–1645 1750–1710	Solid state; often two bands In solution: very broad band		
Amino acids	1743–1729			
Carboxylate ions	1690–1550 (w) 1440–1340 (vs)			
Amino acid anion	1743–1729 1600–1570 (w)	Often masked by water deformation band near 1630 cm ⁻¹		
Amides (see also Table 7.30)				
Primary				
Associated	1686–1576 (m–s) 1650–1620 (m)			
Nonbonded	1715-1675 (m) 1620-1585 (m)			
Secondary				
Associated	1680–1630 (w) 1570–1510 (w) 1490–1440	Both <i>cis</i> and <i>trans</i> forms <i>Trans</i> form <i>Cis</i> form		
Nonbonded	1700–1650 1550–1500	Both <i>cis</i> and <i>trans</i> forms <i>Trans</i> form (no <i>cis</i> band)		
Tertiary	1670–1630 (m)			
Lactams	1750-1700 (m)			

TABLE 7.33	Raman F	Frequencies of	of Carbonyl	Bands	(Continued)
-------------------	---------	----------------	-------------	-------	-------------

TABLE 7.34 Raman Frequencies of Other Double Bonds

Abbreviations Used in the Table

m, moderately strong	vs, very strong
m-s, moderate to strong	w, weak
s, strong	s-vs, strong to very strong
w-m, weak to moderately strong	

Group	Band, cm ⁻¹	Remarks
	Alkenes >C=C<	
>C=C<	1680–1576 (m–s)	General range
$\begin{array}{c} \\ H \\ H \\ H \end{array} C = C \\ H \\ H \end{array}$	1648–1638 (vs)	C=C stretching
$\begin{array}{c} \\ H \\ H \\ \end{array} C = C \\ R_2 \\ \end{array} $	ca 1650 (vs) 270–252 (w)	C=C stretching C=C-C skeletal deformation

TABLE 7.34	Raman Frequencies	of Other Double Bonds (<i>Continued</i>)
-------------------	-------------------	-------------------------	--------------------

Group		Band, cm ⁻¹		Re	Remarks	
		Alke	enes $>C=C<(continue)$	ued)		
$\overline{\mathbf{R}_{1}}_{\mathbf{H}} \subset = \mathbf{C}_{\mathbf{H}}^{\mathbf{R}_{2}}$			ca 1660 (vs) 970–952 (w)	C=C stretchi Asymmetric C	ng C stretching	
$\begin{array}{c} & \\ R_1 \\ H \end{array} C = C \\ R_2 \end{array}$			1676–1665 (s)	C—C stretchi	C—C stretching	
$\overline{R_1 \atop R_2} C = C \underset{H}{\overset{R_3}{\underset{R_2}{\overset{R_3}{\underset{R_3}{\overset{R_3}{\underset{R_3}{\overset{R_3}{\underset{R_3}{\overset{R_3}{\underset{R_3}{\underset{R_3}{\overset{R_3}{\underset{R_3}{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{\underset{R_3}{R_{R_3}{\underset{R_3}{R_{R_3}{R_{R_{R_3}{R_{R_{R_{R_{R_{R_{R_3}{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{$	R_1 $C = C$ H R_2 R_3 R_2 R_3 R_3 R_4		1678–1664 (vs) 522–488 (w)	C=C stretchi C=C-C ske	ng eletal deformation	
$ \begin{array}{c} \hline R_1 \\ R_2 \\ \hline C = C \\ R_4 \\ \hline R_4 \\ \hline \end{array} $	R_1 $C = C$ R_3 R_2 R_4		1680–1665 (s) 690–678 (m–s) 510–485 (m) 424–388 (w)	C=C stretching Symmetrical CC stretching Skeletal deformation Skeletal deformation		
Haloalkene	X = fluorin	ne	X = chlorine	X = bromine	X-iodine	
		>C:	=C< stretch of haloalk	anes		
$H_{2}C = CHX$ $HXC = CHX$ cis $trans$ $H_{2}C = CX_{2}$ $X_{2}C = CHX$ $X_{2}C = CX_{2}$	1654 1712 1694 1728 1792 1872		1603–1601 1590–1587 1578–1576 1616–1611 1589–1582 1577–1571	1596–1593 1587–1583 1582–1581 1593 1552 1547	1581 1543 1537 1465 (solid)	
Group	Group		Band, cm ⁻¹	Re	emarks	
			>C=N- bonds			
Aldimines (azomethines) H R_1 $C=N-R_2$			1673–1639 1405–1400 (s)	Dialkyl substit frequency; c at lower end	Dialkyl substituents at higher frequency; diaryl substituents at lower end of range	
Aldoximines and K >C=N-OH	etoximes		1680–1617 (vs) 1335–1330 (w)			
Azines >C=N-N=	C<		1625–1608 (s)			

TABLE 7.34 Raman Frequencies of Other Double Bonds (Continued)

Group	Band, cm^{-1}	Remarks
	>C=N- bonds (continued))
Hydrazones H C=N-N R_1 R_2	1660–1610 (s–vs)	
Imido ethers O C=NH	1658–1648	NH stretching at 3360–3327 cm ⁻¹
Semicarbazones and thio- semicarbazones C=N-N H C NH_2 U O (or S)	1665–1642 (vs) 1620–1610 (vs)	Aliphatic. Thiosemicarbazones fall in lower end of range. Aromatic derivatives
	Azo compounds —N=N—	
	1580–1570 (vs) 1442–1380 (vs) 1060–1030 (vs)	Nonconjugated Conjugated to aromatic ring CN stretching in aryl com- pounds
	Nitro compounds N=O	
Alkyl nitrites	1660–1620 (s)	N=O stretching
Alkyl nitrates	1635–1622 (w–m) 1285–1260 (vs) 610–562 (m)	Asymmetric NO_2 stretching Symmetric NO_2 stretching NO_2 deformation
Nitroalkanes Primary	$1560-1548 (m-s) \\ 1395-1370 (s) \\915-898 (m-s) \\894-873 (m-s) \\618-609 (w) \\640-615 (w) \\494-472 (w, m) \\$	Sensitive to substituents attached to CNO_2 group Shoulder Broad: useful to distinguish
Secondary	1553–1547 (m) 1375–1360 (s) 908–868 (m) 863–847 (s) 625–613 (m) 560–516 (s)	from secondary nitroalkanes

TABLE 7.34	Raman Frequencies	of Other Double	Bonds (Continued)
------------	-------------------	-----------------	-------------------

Group	Band, cm ⁻¹	Remarks
	Nitro compounds N=O (continu	ied)
Nitroalkanes (<i>continued</i>) Tertiary	1543–1533 (m) 1355–1345 (s)	
Nitrogen oxides $\Rightarrow \mathbf{N} \rightarrow \mathbf{O}$	1612–1602 (s) 1252 (m) 1049–1017 (s) 835 (s) 541 (w) 469 (w)	

TABLE 7.35 Raman Frequencies of Aromatic Compounds

Abbreviations Used in the Table			
m, moderately strong	var, of variable strength		
m-s, moderate to strong	vs, very strong		
m-vs, moderate to very strong	w, weak		
s, strong	w-m, weak to moderately strong		
s-vs, strong to very strong			

Group	Band, cm ⁻¹	Remarks		
	Common f	features		
Aromatic compounds	3070-3020 (s) 1630-1570 (m-s)	CH stretching C—C stretching		
Substitution patterns of the benzene ring				
Monosubstituted	1180–1170 (w-m) 1035–1015 (s) 1010–990 (vs) 630–605 (w)	Characteristic feature; found also with 1,3- and 1,3,5-substitutions		
1,2-Disubstituted	1230–1215 (m) 1060–1020 (s) 740–715 (m)	Characteristic feature Lowered 60 cm ⁻¹ for halogen substituents		

SPECTROSCOPY

Group	Band, cm^{-1}	Remarks
	Substitution patterns of the	benzene ring (continued)
1,3-Disubstituted	1010–990 (vs) 750–640 (s)	Characteristic feature
1,4-Disubstituted	1230-1200 (s-vs) 1180-1150 (m) 830-750 (vs) 650-630 (m-w)	Lower frequency with Cl substituents
Isolated hydrogen	1379 (s-vs) 1290-1200 (s) 745-670 (m-vs) 580-480 (s)	Characteristic feature
1,2,3-Trisubstituted	1100–1050 (m) 670–500 (vs) 490–430 (w)	The lighter the mass of the substituent, the higher the frequency.
1,2,4-Trisubstituted	750–650 (vs) 580–540 (var) 500–450 (var)	Lighter mass at higher frequencies
1,3,5-Trisubstituted	1010-990 (vs)	
Completely substituted	1296 (s) 550 (vs) 450 (m) 361 (m)	
	Other aromatic	compounds
Naphthalenes	1390-1370 1026-1012 767-762 535-512 519-512	Ring breathing α or β substituents β substituents α substituents β substituents β substituents
Disubstituted naphalenes	773–737 (s) 726–705 (s) 690–634 (s) 608 575–569 544–537	1,2-; 1,3-; 2,3-; 2,6-; 2,7- 1,3-; 1,4-(two bands); 1,6-; 1,7-(two bands) 1,2-; 1,4-(two bands); 1,5-; 1,8-(two bands) 1,3- 1,2-; 1,3-; 1,6- 1,2-; 1,7-; 1,8-
Anthracenes	1415-1385	Ring breathing

TABLE 7.35 Raman Frequencies of Aromatic Compounds (Continued)

Abbreviations Used in the Table

m, moderately strong
m-s, moderate to strong
s, strong

s-vs, strong to very strong vs, very strong

w-m, weak to moderately strong

Group	Band, cm ⁻¹	Remarks
—ѕ—н	2590-2560 (s)	SH stretching for both aliphatic and aromatic
>c=s	1065–1050 (m) 735–690 (vs)	Solid state
> S=0 In (RO ₂) ₂ SO In (R ₂ N) ₂ SO In R ₂ SO SOF ₂ SOCI ₂ SOBr ₂	1209–1198 1108 1070–1010 (w-m) 1308 1233 1121	One or two bands Broad
	1330-1260 (m-s) 1155-1110 (s) 610-540 (m) 512-485 (m)	Asymmetric SO ₂ stretching Symmetric SO ₂ stretching Scissoring mode of aryls Scissoring mode of alkyls
N<	ca 1322 (m) 1163-1138 (s) 524-510 (s)	Asymmetric SO ₂ stretching Symmetric SO ₂ stretching Scissoring mode
0	1363–1338 (w-m) 1192–1165 (vs) 589–517 (w-m)	 SO₂ stretching. Aryl substituents occur at higher range. Scissoring (two bands). Aryl substituents occur at higher range of frequencies.
	1334–1305 (m–s) 1128–1126 (s) 559–553 (m–s)	
x—so ₂ —x	1412–1361 (w-m) (F) (Cl) 1263–1168 (s) (F) (Cl) 596–531 (s)	
-0-SO ₂ -0-	1388–1372 (s) 1196–1188 (vs)	
	670–620 (vs) 480–450 (vs)	C=S stretching CS stretching
≥C—SH	920 (m) 850–820 (m)	C—SH deformation of aryls

Group	Band, cm ⁻¹	Remarks
= C - S -	752 (vs), 731 (vs) 742-722 (m-s) 698 (w), 678 (s) 693-639 (s) 651-610 (s-vs) 589-585 (vs)	With vinyl group attached With CH ₃ attached With allyl group attached Ethyl or longer alkyl chain Isopropyl group attached <i>tert</i> -Butyl group attached
n = 2 $n = 4$ $n = 5$	688 659	
$\geq C - (S - S)_n - C \leq$ Didi- <i>n</i> -alkyl disulfides Di- <i>tert</i> -butyl disulfide Trisulfides	715-620 (vs) 525-510 (vs) 576 (s) 543 (m) 510-480 (s)	Two bands; CS stretching Two bands; SS stretching CS stretching SS stretching SS stretching

TABLE 7.36 Raman Frequencies of Sulfur Compounds (Continued)

TABLE 7.37 Raman Frequencies of Ethers

Abbreviations Used in the Table

	m, moderately strong s, strong	var, of variable strength vs, very strong		
Group	Band, cm ⁻¹	Remarks		
≥C-0-C≤				
Aliphatic	1200–1070 (m) 930–830 (s) 800–700 (s) 550–400	Asymmetrical COC stretching. Symmetrical substitution gives higher frequencies Symmetrical COC stretching Braching at α carbon gives higher frequencies.		
Aromatic	1310–1210 (m) 1050–1010 (m)			
≥C-0-C-0-C≤	1145–1129 (m) 900–800 (vs) 537–370 (s) 396–295			
>CC<	1280–1240 (s)	Ring breathing		
-0-0-	800-770 (var)			

Group	Band, cm ⁻¹	Remarks
$(CH_2)_n O$ $n = 3$ $n = 4$ $n = 5$	1040–1010 (s) 920–900 (s) 820–800 (s)	

Abbreviations Used in the Table

TABLE 7.37 Raman Frequencies of Ethers (Continued)

TABLE 7.38 Raman Frequencies of Halogen Compounds

	m–s, moderate s, strong	to strong var, of variable strength vs, very strong
Group	Band, cm ⁻¹	Remarks
C—F	1400-870	Correlations of limited applicability because of vibrational coupling with stretching
C—Cl Primary Secondary Tertiary	350–290 (s) 660–650 (vs) 760–605 (s) 620–540 (var)	CCCl bending; general May be one to four bands May be one to three bands
	844–564 438–396 381–170	
=CCl ₂	601–441 300–235	
C—Br	690–490 (s) 305–258 (m–s)	Often several bands; primary at higher range of frequencies. Tertiary has very strong band at ca 520 cm ⁻¹ .
=C-Br	745-565 356-318 240-115	
=CBr ₂	467–265 185–145	
С—І	663–595 309 154–85	
=C-I	ca 180	Solid state
=CI ₂	ca 265 ca 105	Solid state Solid state

SPECTROSCOPY

TABLE 7.39 Raman Frequencies of Miscellaneous Compounds

Abbreviations Used in the Table

m, moderately strong vs, very strong s, strong vvs, very very strong			
Group	Band, cm ⁻¹	Remarks	
C—As	570–550 (vs)	CAs stretching	
	240-220 (vs)	CAsC deformation	
C—Pb	480–420 (s)	CPb stretching	
C—Hg	570-510 (vvs)	CHg stretching	
C—Si	1300–1200 (s)	CSi stretching	
C—Sn	600–450 (s)	CSn stretching	
Р—Н	2350–2240 (m)	PH stretching	
	Heterocyclic rings		
Trimethylene oxide	1029		
Trimethylene imine	1026		
Tetrahydrofuran	914		
Pyrrolidine	899		
1,3-Dioxolane	939		
1,4-Dioxane	834		
Piperidine	815		
Tetrahydropyran	818		
Morpholine	832		
Piperazine	836		
Furan	1515-1460	2-Substituted	
	1140		
Pyrazole	1040-990		
Pyrrole	1420–1360 (vs)		
	1144		
Thiophene	1410 (s)		
1	1365 (s)		
	1085 (vs)		
	1035 (s)		
	832 (vs)		
	610 (s)		
Pvridine	1030 (ys)		
-	990 (vs)		

Wavelength, nm	Wavenumber, cm ⁻¹	Relative intensity	Shift relative to 488.0 nm, cm ⁻¹	Shift relative to 514.5 nm, cm ⁻¹
487.9860	20 486.67	5000	0	
488.9033	20 448.23	200	38.4	
490.4753	20 382.70	130	104.0	
493.3206	20 265.13	970	221.5	
496.5073	20 135.07	960	351.6	
497.2157	20 106.39	330	380.3	
500.9334	19 957.16	1500	529.5	
501.7160	19 926.03	620	560.6	
506.2036	19 749.39	1400	737.3	
514.1790	19 443.06	360	1043.6	
514.5319	19 429.73	1000	1056.9	0
516.5774	19 352.79	38	1133.9	76.9
517.6233	19 313.69	41	1173.0	116.0
521.6816	19 163.44	20	1323.2	266.3
528.6895	18 909.43	150	1577.2	520.3
539.7522	18 521.87	18	1964.8	907.9
545.4307	18 329.04	19	2157.6	1100.7
555.8703	17 984.81	30	2501.9	1444.9
560.6734	17 830.75	48	2655.9	1599.0
565.0705	17 692.00	29	2794.7	1737.7
565.4450	17 680.28	27	2806.4	1749.4
569.1650	17 564.73	27	2921.9	1865.0
577.2326	17 319.24	69	3167.4	2110.5
581.2746	17 198.80	49	3287.9	2230.9
598.5920	16 701.24	23	3785.4	2728.5
610.3546	16 379.38	91	4107.3	3050.4
611.4929	16 348.90	1750	4137.8	3080.8
612.3368	16 326.36	100	4160.3	3103.4
613.8660	16 285.69	97	4201.0	3144.0
617.2290	16 196.96	1400	4289.7	3232.8
624.3125	16 013.19	590	4473.5	3416.5
639.9215	15 622.60	160	4864.1	3807.1
641.6308	15 580.98	50	4905.7	3848.8

TABLE 7.40 Principal Argon-Ion Laser Plasma Lines

TABLE 7.41 Nuclear Properties of the Elements

In the following table the magnetic moment μ is in multiples of the nuclear magneton $\mu_N(eh/4\pi Mc)$ with diamagnetic correction. The spin *I* is in multiples of $h/2\pi$, and the electric quadrupole moment *Q* is in multiples of 10^{-28} square meters. Nuclei with spin l_2 have no quadrupole moment. Sensitivity is for equal numbers of nuclei at constant field. NMR frequency at any magnetic field is the entry for column 5 multiplied by the value of the magnetic field in kilogauss. For example, in a magnetic field of 23.490 kG, protons will process at 4.2576 \times 23.490 kG = 100.0 MHz. Radionuclides are denoted with an asterisk.

The data were extracted from M. Lederer and V. S. Shirley, *Table of Isotopes*, 7th ed., Wiley-Interscience, New York, 1978; A. H. Wapstra and G. Audi, "The 1983 Atomic Mass Evaluation," *Nucl. Phys.* A432:1–54 (1985); V. S. Shirley, ed., *Table of Radioactive Isotopes*, 8th ed., Wiley-Interscience, New York, 1986; and P. Raghavan, "Table of Nuclear Moments," *At. Data Nucl. Data Tables*, 42:189 (1989).

Nuclide	Natural abundance, %	Spin I	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment μ/μ_N , $J \cdot T^{-1}$	Electric quadrupole moment Q , 10^{-28} m ²
¹ n	*	1/2	0.321 39	2.916 39	- 1.913 043	
$^{1}\mathrm{H}$	99.985	1/2	1.000 00	4.257 64	2.792 847	
^{2}H	0.015	1	0.009 65	0.653 57	0.857 438	0.002 860
³ H	*	1/2	1.213 54	4.541 37	2.978 963	
³ He	0.0001	1/2	0.442 12	3.243 52	-2.127 624	
⁶ Li	7.5	1	0.008 50	0.626 60	0.822 047	0.000 82
7Li	92.5	3/2	0.293 55	1.654 78	3.256 427	-0.040 1
⁹ Be	100	3/2	0.013 89	0.598 6	-1.177 9	0.052 88
^{10}B	19.9	3	0.019 85	0.457 51	1.800 645	0.084 59
${}^{11}B$	80.1	3/2	0.165 22	1.366 26	2.688 649	0.040 59
¹³ C	1.10	1/2	0.015 91	1.070 81	0.702 412	
^{14}N	99.634	1	0.001 01	0.307 76	0.403 761	0.020 2
^{15}N	0.366	1/2	0.001 04	0.431 72	-0.283 189	
^{17}O	0.038	5/2	0.029 10	0.577 41	-1.893 80	-0.02558
¹⁹ F	100	1/2	0.834 00	4.007 65	2.628 867	
²¹ Ne	0.27	3/2	0.002 46	0.336 30	-0.661 797	0.101 55
²² Na	*	3	0.018 1	0.443 4	1.745	
²³ Na	100	3/2	0.092 70	1.126 86	2.217 522	0.108 9
²⁵ Mg	10.00	5/2	0.002 68	0.260 82	-0.85546	0.199 4
²⁷ Al	100	5/2	0.206 89	1.110 28	3.641 504	0.140 3
²⁹ Si	4.67	1/2	0.007 86	0.846 53	-0.55529	
³¹ P	100	1/2	0.066 52	1.725 10	1.131 60	
³³ S	0.75	3/2	0.002 27	0.327 16	0.643 821	-0.0678
³⁵ S	*	3/2	0.008 50	0.508	1.00	0.045
35Cl	75.77	3/2	0.004 72	0.417 64	0.821 874	-0.08165
³⁶ Cl	*	2	0.012 1	0.489 3	1.283 8	-0.016 8
³⁷ Cl	24.23	3/2	0.002 72	0.347 64	0.684 124	-0.06435
³⁷ Ar	*	3/2	0.012 76	0.581 8	1.145	
³⁹ K	93.258	3/2	0.000 51	0.198 93	0.391 466	0.060 1
⁴⁰ K	0.0117	4	0.005 23	0.247 37	-1.298 099	-0.0749
⁴¹ K	6.730	3/2	0.000 084	0.109 19	0.214 870	0.073 3
⁴³ Ca	0.135	7/2	0.006 42	0.286 88	-1.317 26	-0.0408
⁴⁵ Sc	100	7/2	0.302 44	1.035 88	4.756 483	-0.22
⁴⁷ Ti	7.3	5/2	0.002 10	0.240 40	-0.78848	0.29
⁴⁹ Ti	5.5	7/2	0.003 78	0.240 47	-1.104 17	0.24
^{50}V	0.250	6	0.055 71	0.425 04	3.345 689	0.21
	1					

Nuclide	Natural abundance, %	Spin I	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment $\mu/\mu_N,$ $J \cdot T^{-1}$	Electric quadrupole moment Q, 10 ⁻²⁸ m ²
⁵¹ V	99.750	7/2	0.383 60	1.121 30	5.148 706	-0.052
⁵³ Cr	9.501	3/2	0.000 91	0.241 14	-0.47454	-0.15
⁵⁵ Mn	100	5/2	0.178 81	1.057 60	3.468 72	0.33
⁵⁷ Fe	2.1	1/2	0.000 03	0.138 15	0.090 623	
⁵⁹ Co	100	7/2	0.278 41	1.007 7	4.627	0.42
⁶¹ Ni	1.140	3/2	0.003 59	0.381 13	-0.75002	0.162
⁶³ Cu	69.17	3/2	0.093 42	1.129 79	2.223 29	-0.220
⁶⁵ Cu	30.83	3/2	0.114 84	1.210 27	2.381 67	-0.204
⁶⁷ Zn	4.1	5/2	0.002 87	0.266 93	0.875 479	0.150
⁶⁹ Ga	60.108	3/2	0.069 71	1.024 75	2.016 59	0.170
⁷¹ Ga	39.892	3/2	0.143 00	1.302 04	2.562 27	0.100
⁷³ Ge	7.73	9/2	0.001 41	0.148 97	-0.879468	-0.173
⁷⁵ As	100	3/2	0.025 36	0.731 48	1.439 475	0.314
⁷⁷ Se	7.63	1/2	0.007 03	0.815 66	0.535 042	
⁷⁹ Br	50.69	3/2	0.079 45	1.070 39	2.106 399	0.331
⁸¹ Br	49.31	3/2	0.099 51	1.153 81	2.270 562	0.276
⁸³ Kr	11.5	9/2	0.001 90	0.164 42	-0.970669	0.253
⁸⁵ Rb	72.165	5/2	0.010 61	0.412 53	1.353 03	0.274
⁸⁷ Rb	27.835	3/2	0.177 03	1.398 07	2.751 24	0.132
⁸⁷ Sr	7.00	9/2	0.002 72	0.185 24	-1.093 603	0.335
⁸⁹ Y	100	1/2	0.000 12	0.209 49	$-0.137\ 415$	
⁹¹ Zr	11.22	5/2	0.009 49	0.397 47	-1.303 62	-0.206
⁹³ Nb	100	9/2	0.488 21	1.045 20	6.170 5	-0.32
⁹⁵ Mo	15.92	5/2	0.003 27	0.278 74	-0.9142	-0.022
⁹⁷ Mo	9.55	5/2	0.003 49	0.284 62	-0.933 5	-0.255
99'Tc	*	9/2	0.381 74	0.963	5.684 7	-0.129
99Ru	12.7	°∕2	0.001 13	0.195 53	-0.641 3	0.079
¹⁰¹ Ru	17.0	⁵ /2	0.001 59	0.219 2	-0.718 8	0.457
¹⁰³ Rh	100	1/2	0.000 03	0.134 76	-0.08840	0.000
¹⁰⁵ Pd	22.33	5/2	0.001 13	0.195 7	-0.642	0.660
107 Ag	51.839	1/2	0.000 066 9	0.1/3 30	-0.113 680	
¹⁰⁹ Ag	48.161	1/2	0.000 101	0.199 24	-0.130 691	
11304	12.80	1/2	0.009 66	0.906 89	-0.594 886	
11310	12.22	1/2 9/	0.011 00	0.946 08	- 0.022 301	0.700
1151m	4.5	1/2 9/	0.551 21	0.950 52	5.540.9	0.799
1158.	93.7	72	0.333 40	1 400 74	-0.18.84	0.01
1175 m	7.69		0.035 01	1.400 74	-9.1004 -1.00105	
119 S n	8.50	16	0.040 03	1.520 00	-1.00103 -1.04728	
121 Sh	57.36	56	0.052 75	1.025 40	3 363 4	-0.36
123 Sh	42.64	76	0.105 02	0 555 30	2 5/0 8	-0.49
123Te	0.908	1/2	0.040 37	1 123 46	-0.736.948	0.47
125Te	7 139	1/2	0.032 20	1 354 51	-0.888505	
127 I	100	5/2	0.095.40	0.857.76	2 813 327	-0.789
¹²⁹ Xe	26.4	1/2	0.021.62	1,186,01	-0.777976	0.702
¹³¹ Xe	21.2	3/2	0.002 82	0.351 58	0.691 862	-0.12
133Cs	100	7/2	0.048 38	0.562 32	2.582 025	-0.0037
135Ba	6.592	3/2	0.005 00	0.425 81	0.837 943	0.160
¹³⁷ Ba	11.23	3/2	0.006 97	0.476 33	0.937 365	0.245
¹³⁸ La	* 0.0902	5	0.094 04	0.566 14	3,713 646	0.45
					220 0.00	

TABLE 7.41 Nuclear Properties of the Elements (Continued)

Nuclide	Natural abundance, %	Spin I	Sensitivity at constant field relative to ¹ H	NMR frequency for a 1-kG field, MHz	Magnetic moment $\mu/\mu_N,$ J · T ⁻¹	Electric quadrupole moment Q , 10^{-28} m ²
¹³⁹ La	99,9098	7/2	0.060.58	0.606 10	2.783 045	0.20
¹³⁷ Ce	*	3/2	0.006.41	0.462	0.91	0120
¹³⁹ Ce	*	3/2	0.006.41	0.462	0.91	
¹⁴¹ Ce	*	7/2	0.003.64	0.237	1.09	
¹⁴¹ Pr	100	5/2	0.334.83	1.303.55	4.275.4	-0.059
¹⁴³ Nd	12.18	7/2	0.003.39	0.231.9	-1.065	-0.63
¹⁴⁵ Nd	8 30	7/2	0.000.79	0.142.9	-0.656	-0.33
143 Pm	*	5/2	0.235.10	1.16	3.8	0.55
¹⁴⁷ Pm	*	7/2	0.049.40	0.57	2.6	0.70
¹⁴⁷ Sm	15.0	7/2	0.001 52	0 177 47	-0.814.9	-0.26
149Sm	13.8	76	0.000.85	0.146.31	-0.671.8	0.094
151Eu	47.8	5/2	0.179.29	1 058 54	3 471 8	0.004
153Eu	52.2	5/2	0.015.44	0.467.44	1 533 1	2 41
155Gd	14.80	3/2	0.000 15	0.131.7	-0.259.1	1.27
157Gd	15.65	36	0.000 13	0.1727	-0.330.0	1.27
159Th	100	3/2	0.060 45	1.023	2 014	1.33
161Dv	18.0	5/2	0.000 48	1.025	-0.480.6	2 47
163Dy	24.9	5/2	0.000 40	0.205.07	0.400 0	2.47
165Ho	100	72	0.001 30	0.008.81	4 173	3.58
167 E r	22.05	72	0.204 23	0.122.81	-0.563.0	3.50
169 T m	100	16	0.000 566	3 531	-0.3039	5.57
171 V b	14.3	72 16	0.000 500	0.752.50	-0.231 0	
173 V b	14.5	72 56	0.003 32	0.732.39	-0.670.80	2.80
1751	10.12	-72	0.001 55	0.207 501	-0.079 89	2.80
176L u	97.41 * 2.50	72	0.031 28	0.460 24	2.232 /	3.49
177LJF	18 606	76	0.039 73	0.343 1	0.702.5	4.97
179LIF	12,620	96	0.001 40	0.172 81	-0.640.0	3.30
180 T a	0.012	72	0.000 55	0.108 50	-0.040 9	5.19
181To	0.012	74	0.102 31	0.404	4.77	2.17
183 W 7	99.900	1/2	0.037 44	0.510 25	2.5705	5.17
185 D o	27.40	72 56	0.000 08	0.179 50	2 1971	2.19
187 D e	\$ 62.60	-72	0.138 70	0.9717	2 210 7	2.10
187Oa	* 02.00	-72	0.145 00	0.981 /	5.2197	2.07
189	1.0	4/2 3/	0.000 01	0.098 30	0.004 032	0.956
1911.	10.1	-72	0.002 44	0.333 33	0.039 933	0.830
1931	57.5	-72	0.000 03	0.070 0	0.150 7	0.810
195Dt	02.7	-72	0.000 04	0.0852	0.103 /	0.751
197 A	33.0	4/2 3/	0.010 39	0.929 20	0.009 32	0.547
1991 I.a	16.97	-72	0.000 05	0.074 00	0.143 /40	0.347
2011L-	10.07	4/2 3/	0.003 94	0.771.21	0.505 885	0.296
203 T 1	13.18	-72	0.001 49	0.284 08	-0.500 220	0.380
205771	29.524	1/2	0.195 981	2.475 10	1.022 258	
205 II 207 DI-	/0.4/0	1/2	0.201 82	2.497 42	1.038 213	
200 PD	22.1	1/2	0.009 55	0.905 38	0.592 58	0.50
-~~B1 229 T I-	100	1/2 5/	0.144 33	0.096 28	4.110.6	-0.50
1 h 231D-	*	-/2	0.000 42	0.140	0.40	4.30
231Pa 235U	* 0 7200	-2/2	0.009 03	1.02	2.01	-1./2
235U 237NI	* 0.7200	1/2	0.000 15	0.083	-0.38	4.936
/1NP 239D	т Ф	-/2	0.132 64	0.957	5.14	3.880
^{2.37} Pu	*	1/2	0.000 38	0.309	0.203	4.01
243Am	*	∛2	0.017 88	0.491	1.61	4.21

TABLE 7.41 Nuclear Properties of the Elements (Continued)

TABLE 7.42 Proton Chemical Shifts

Values are given on the officially approved δ scale; $\tau = 10.00 - \delta$.

Abbreviations Used in the Table

R, alkyl group Ar, aryl group

Substituent group	Methyl protons	Methylene protons	Methine proton
HC—C—CH ₂	0.95	1.20	1.55
HC-C-NR	1.05	1.45	1.70
HC - C - C = C	1.00	1.35	1.70
HC-C-C=0	1.05	1.55	1.95
HC-C-NRAr	1.10	1.50	1.80
HC - C - H(C = O)R	1.10	1.50	1.90
$HC - C - (C = O)NR_{o}$	1.10	1.50	1.80
HC-C-(C=0)Ar	1.15	1.55	1.90
HC - C - (C = 0)OR	1.15	1.70	1.90
HC-C-Ar	1.15	1.55	1.80
HC - C - OH	1.20	1.50	1.75
HC = C = OR	1.20	1.50	1.75
HC - C - C = CB	1 20	1.50	1.80
HC - C - C = N	1.25	1.65	2.00
HC = C = SR	1.25	1.60	1.90
HC = C = OAr	1.20	1.55	2.00
HC - C - O(C = O)R	1.30	1.60	1.80
HC = C = SH	1.30	1.60	1.65
HC - C - (S = O)R	1.30	1.00	1.05
and $HC = C = SO P$	1.55	1.70	
HC - C - NP +	1.40	1.75	2.05
HC = C = O = N = O	1.40	1.75	2.05
HC = C = O(C = O)CE	1.40	1.65	
HC = C = CI	1.40	1.05	1.05
	1.55	1.80	2.15
	1.55	2.05	2.15
$HC - C - NO_2$	1.00	2.05	2.30
HC - C - O(C - O)AI	1.05	1.75	2.10
HC - C - Pr	1.75	1.80	2.10
	1.00	1.00	1.90
HC-CH ₂	0.90	1.30	1.50
HC-C=C	1.60	2.05	• • • •
HC−C≡C	1.70	2.20	2.80
HC - (C = O)OR	2.00	2.25	2.50
$HC - (C = O)NR_2$	2.00	2.25	2.40
HC—SR	2.05	2.55	3.00
HC-0-0	2.10	2.30	2.55
HC - (C = O)R	2.10	2.35	2.65
HC−C≡N	2.15	2.45	2.90
HC-I	2.15	3.15	4.25
нс-сно	2.20	2.40	
HC—Ar	2.25	2.45	2.85
$HC - NR_2$	2.25	2.40	2.80
HC—SSR	2.35	2.70	2.10
HC - (C = O)Ar	2.40	2.70	3.40
HC—SAr	2.40	a · **	
HC—NRAr	2.60	3.10	3.60
$HC - SO_2R$ and $HC - (SO)R$	2.60	3.05	
HC—Br	2.70	3.40	4.10
$HC-NR_3^+$	2.95	3.10	3.60

Substituent group	Methyl protons	Methylene protons	Methine proton
HC—NH(C=O)R HC—SO ₃ R	2.95 2.95	3.35	3.85
HC-Cl	3.05	3.45	4.05
HC—OH and HC—OR	3.20	3.40	3.60
HC—PAr ₃	3.20	3.40	
HC-NH ₂	3.50	3.75	4.05
HC - O(C = O)R	3.65	4.10	4.95
HC—OAr	3.80	4.00	4.60
HC—O(C=O)Ar	3.80	4.20	5.05
$HC - O(C = O)CF_1$	3.95	4.30	
HC—F	4.25	4.50	4.80
HC-NO ₂	4.30	4.35	4.60
Cyclopropane		0.20	0.40
Cyclobutane		2.45	
Cyclopentane		1.65	
Cyclohexane		1.50	1.80
Cycloheptane		1.25	
	Proton		Proton
Substituent group	shift	Substituent group	shift
HC≡CH	2.35	НО-С=О	10-12
HC≡CAr	2.90	HO-SO ₂	11-12
$HC \equiv C - C = C$	2.75	HO—Ar	4.5-6.5
HAr	7.20	HO-R	0.5 - 4.5
HCO-O	8.1	HS—Ar	2.8-3.6
HCO-R	9.4-10.0	HS—R	1-2
HCO—Ar	9.7-10.5	HN—Ar	3-6
HO—N=C (oxime)	9-12	HN-R	0.5-5

TABLE 7.42	Proton Chemic	cal Shifts (Continued)
-------------------	---------------	------------------------

Saturated heterocyclic ring systems

Unsaturated cyclic systems

TABLE 7.43 Estimation of Chemical Shift for Protons of $-CH_2$ and Methine Groups $\delta_{CH_2} = 0.23 + C_1 + C_2$ $\delta_{CH} = 0.23 + C_1 + C_2$

X*	С	X*	С	X*	С
$-CH_{3}$ $-CF_{3} \ge C = C \le$ $-C \equiv C - R$ $-COOR$ $-NR_{2}$ $-CONR_{2}$	$\begin{array}{c} 0.5 \\ 1.1 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.6 \end{array}$	$-SR$ $-C \equiv C - Ar$ $-CN$ $-CO - R$ $-I$ $-Ph$ $-Br$	1.6 1.7 1.7 1.7 1.8 1.8 2.3	-OR $-Cl$ $-OH$ $-N=C=S$ $-OCOR$ $-OPh$	2.4 2.5 2.6 2.9 3.1 3.2

* R, alkyl group; Ar, aryl group; Ph, phenyl group.

Positive Z values indicate a downfield shift, and an arrow indicates the point of attachment of the substituent group to the double bond.

R _{cis} H			
$\delta_{C=C} = 5.25$	$-Z_{\rm gem} + Z_{\rm cis} + Z_{\rm trans}$		
R	Z_{gem} , ppm	Z _{cis} , ppm	Z _{trans} , ppm
→H	0	0	0
→alkyl	0.45	-0.22	-0.28
→alkyl—ring (5- or 6-member)	0.69	-0.25	-0.28
$\rightarrow CH_2O-$	0.64	-0.01	-0.02
$\rightarrow CH_2S$	0.71	-0.13	-0.22
\rightarrow CH ₂ X (X: F, Cl, Br)	0.70	0.11	-0.04
$\rightarrow CH_2N \leq$	0.58	-0.10	-0.08
C = C (isolated)	1.00	-0.09	-0.23
C = C (conjugated)	1.24	0.02	-0.05
$\rightarrow C = N$	0.27	0.75	0.55
$\rightarrow C = C - C$	0.27	0.75	0.55
$\chi = c$	0.47	0.38	0.12
C = 0 (isolated)	1.10	1.12	0.87
C = 0 (conjugated)	1.06	0.91	0.74
\rightarrow COOH (isolated)	0.97	1.41	0.71
→COOH (conjugated)	0.80	0.98	0.32
\rightarrow COOR (isolated)	0.80	1.18	0.55
\rightarrow COOR (conjugated)	0.78	1.01	0.46
H			
$\rightarrow \dot{C} = 0$	1.02	0.95	1.17
N			
$\rightarrow C = 0$	1.37	0.98	0.46
$\rightarrow C = 0$	1.11	1.46	1.01
$\rightarrow OR$ (R: aliphatic)	1.22	-1.07	-1.21
$\rightarrow OR (R: conjugated)$	1.21	-0.60	-1.00
$\rightarrow OCOR$	2.11	-0.35	-0.64
	2.11	0.55	0.01
\rightarrow CH ₂ $-C=0; \rightarrow$ CH ₂ $-C=N$	0.69	-0.08	-0.06
→CH — aromatic ring	1.05	-0.29	-0.32
\rightarrow F	1.57	-0.40	-1.02
\rightarrow Cl	1.04	0.40	0.13
	1.00	0.10	0.15
	1.07	0.43	0.35
$\rightarrow_{\rm I}$	1.14	0.81	0.88
$\rightarrow \mathbf{K}$ (K: anphanc)	0.80	- 1.26	-1.21
\rightarrow N $-$ R (R: conjugated)	1.17	-0.53	-0.99

R	R Z _{gem} , ppm		Z _{trans} , ppm
 $\rightarrow N-C=0$ $\rightarrow \text{aromatic}$ $\rightarrow CF_3$ $\rightarrow \text{aromatic } (o\text{-substituted})$ $\rightarrow SR$ $\rightarrow SO_2$	2.08 1.38 0.66 1.65 1.11 1.55	-0.57 0.36 0.61 0.19 -0.29 1.16	-0.72 -0.07 0.32 0.09 -0.13 0.93

TABLE 7.44 Estimation of Chemical Shift for Proton Attached to a Double Bond (Continued)

TABLE 7.45 Chemical Shifts in Monosubstituted Benz	ene
---	-----

$\delta =$	7.27	+	Δ_i
------------	------	---	------------

Substituent	$\Delta_{ m ortho}$	Δ_{meta}	$\Delta_{ m para}$	
NO ₂	0.94	0.18	0.39	
CHO	0.58	0.20	0.26	
COOH	0.80	0.16	0.25	
COOCH ₃	0.71	0.08	0.20	
COCI	0.82	0.21	0.35	
CCl ₃	0.8	0.2	0.2	
COCH ₃	0.62	0.10	0.25	
CN	0.26	0.18	0.30	
CONH ₂	0.65	0.20	0.22	
NH3	0.4	0.2	0.2	
CH ₂ X*	0.0 - 0.1	0.0 - 0.1	0.0 - 0.1	
CH ₃	-0.16	-0.09	-0.17	
CH ₂ CH ₃	-0.15	-0.06	-0.18	
$CH(CH_3)_2$	-0.14	-0.09	-0.18	
$C(CH_3)_2$	-0.09	0.05	-0.23	
F	-0.30	-0.02	-0.23	
Cl	0.01	-0.06	-0.08	
Br	0.19	-0.12	-0.05	
Ι	0.39	-0.25	-0.02	
NH ₂	-0.76	-0.25	-0.63	
OCH ₃	-0.46	-0.10	-0.41	
OH	-0.49	-0.13	-0.2	
OCOR	-0.2	0.1	-0.2	
NHCH ₃	-0.8	-0.3	-0.6	
$N(CH_3)_2$	-0.60	-0.10	-0.62	

* X = Cl, alkyl, OH, or NH_2 .

TABLE 7.46	Proton	Spin	Coupling	Constants
------------	--------	------	----------	-----------

Structure	J, Hz	Structure	J, Hz
H CH-CH (free rotation) >CH-OH (no exchange) >CH-NH CH-SH	12-15 6-8 5 4-8 6-8	$\begin{array}{c} & 2-3 \\ 3 & 3-4 \\ 5 & 2 & 2-4 \\ 2-5 \\ \hline & & & \\ & & & & \\ & & &$	5-63.5-5.01.53.46-124-81.5-2.52.51.50
H CH-C=0 H H	1-3	$\begin{array}{c} & H & a-a \\ & H & a-e \\ H & e-e \end{array}$	8-10 2-3 2-3
H H H H H H H H H H H H H H	$\begin{array}{c} 0-3\\ 6-14\\ 11-18\\ 0.5-3\\ 0.5-3\\ 4-10\\ 10-13\\ 6\\ \end{array}$ $\begin{array}{c} 0-3\\ 0-3\\ 0-2\\ 2-4\\ 5-7\\ 6-9\\ 10-13\\ 4-5\\ 3\\ 5-6\\ 0\\ 7\\ 6\\ 2\\ 6\\ 4\\ 1.8\\ 3.5\\ 0-1\\ 1-2\\ \end{array}$	H Cyclopentane cis trans Cyclobutane cis trans Cyclopropane cis trans gem o O H m H p f 2 2-3 3 3-4 6 N 2 2-3 3-4 6 N 2 2-4 3-5 2-5 2-6 4 3 1-2 2-3 3-4 6 N 2 2-3 3-4 3-5 2-5 2-6 4 2-3 3-4 3-5 2-5 2-6 4 2-3 3-4 3-5 2-5 2-6 4 2-3 3-4 3-5 2-5 2-6 4 2-3 3-4 3-5 2-5 2-6 4 2-3 3-4 2-3 3-4 2-3 3-4 2-5 2-6 4 1-2 2-3 3-4 2-5 2-5 2-6 4 1-2 2-3 3-4 2-5 2-5 2-5 2-5 2-6 4 1-2 5 1-2 2-3 3-4 2-3 3-4 2-3 3-4 2-5 2-5 2-5 2-5 2-6 4 1-2 5 1-2 2-5 1-2 3-4 3-4 2-5 -4 H 2-4 2-5 -4 H R R R_{r} R_{r} R_{r} R_{r} R_{r} R_{r} R_{r} R R R R R R R R	$\begin{array}{c} 4-6\\ 4-6\\ 8\\ 8\\ 9-11\\ 6-8\\ 4-6\\ 6-10\\ 1-3\\ 0-1\\ 8-9\\ 6\\ 5-6\\ 7-9\\ 1-2\\ 1-2\\ 0-1\\ 0-1\\ 2-3\\ 2-3\\ 2-3\\ 2-3\\ 2-3\\ 3-4\\ 1-2\\ 1-3\\ 45-52\\ 0-12\\ 10-45\\ 72-90\\ -3\ to\ 20\\ 12-40\\ \end{array}$

Structure	J, Hz	Structure	J, Hz
$C = C CH_3$	2-4 0-6	$HC \equiv CF$ F_{e} $HC = CF$ F_{e} H_{e} F_{e} H_{a} F_{e} H_{a} F_{e}	21 34 12 <5-8

TABLE 7.46 Proton Spin Coupling Constants (Continued)

TABLE 7.47 Proton Chemical Shifts of Reference Compounds

Relative to tetramethylsilane.

	Compound	δ, ppm	Solvent(s)	
S	odium acetate	1.90	D_2O	
1	,2-Dibromoethane	3.63	CDCl ₃	
1	,1,2,2-Tetrachloroethane	5.95	$CDCl_3; CCl_4$	
1	,4-Benzoquinone	6.78	CDCl ₃ ; CCl ₄	
1	,4-Dichlorobenzene	7.23	CCl ₄	
1	,3,5-Trinitrobenzene	9.21	DMSO- d_6^*	
		9.55	CHCl ₃	

* DMSO, dimethyl sulfoxide.

TABLE 7.48	Solvent Positions of Residual Protons in Incompletely Deuterated Solvents
Relative to tetra	amethylsilane.

Solvent	Group	δ , ppm	
Acetic- d_3 acid- d_1	Methyl	2.05	
<i></i>	Hydroxyl	11.5*	
Acetone- d_6	Methyl	2.057	
Acetonitrile- d_3	Methyl	1.95	
Benzene-d ₆	Methine	6.78	
<i>tert</i> -Butanol- d_1 (CH ₃) ₃ COD	Methyl	1.28	
Chloroform- d_1	Methine	7.25	
Cyclohexane- d_{12}	Methylene	1.40	
Deuterium oxide	Hydroxyl	4.7*	
Dimethyl- d_6 -formamide- d_1	Methyl	2.75; 2.95	
• • •	Formyl	8.05	
Dimethyl- d_6 sulfoxide	Methyl	2.51	
• 0	Absorbed water	3.3*	
1,4-Dioxane- d_8	Methylene	3.55	
Hexamethyl- d_{18} -phosphoramide	Methyl	2.60	
Methanol- d_4	Methyl	3.35	
·	Hydroxyl	4.8*	
Dichloromethane- d_2	Methylene	5.35	

* These values may vary greatly, depending upon the solute and its concentration.

Solvent	Group	δ, ppm
Pyridine-d ₅	C-2 Methine	8.5
	C-3 Methine	7.0
	C-4 Methine	7.35
Toluene- d_8	Methyl	2.3
-	Methine	7.2
Trifluoroacetic acid- d_1	Hydroxyl	11.3*

TABLE 7.48 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents (Continued)

* These values may vary greatly, depending upon the solute and its concentration.

TABLE 7.49 Carbon-13 Chemical Shifts

Values given in ppm on the δ scale, relative to tetramethylsilane.

]	Primary carbon		Secondary carbon	Tertiary carbon	Quaternary carbon
	5-30 45-60 13-45 10-30 3-25	$ \begin{array}{c} 25-45 \\ 42-71 \\ 44-58 \\ 22-42 \\ 3-40 \end{array} $		23-58 62-78 50-70 55-67 34-58	28-50 73-86 60-75 53-62 35-75
	δ, ppm		Subst	ituent group	δ, ppm
	$\begin{array}{c} -5-5\\ 5-25\\ 5-70\\ 20-70\\ 128-134\\ 35-55\\ 45-87\\ 57-87\\ 60-78\\ 63-73\\ 72-95\\ 88-112\\ 96-113\\ 100-122\\ 110-156\\ 100-152\\ 142-166\\ 105-120\\ 115-132\\ 115-142\end{array}$	2 8 2 2 0 2 0 0 5 2	Aromatics:Aryl-CAryl-PAryl-NAryl-OAzomethineCarbonatesUreasAnhydridesAmidesOximesEsters:Saturated α,β -UnsaIsocyanidesCarboxylicNonconjuConjugatoSalts (aniKetones: α -HaloNonconju α,β -UnsaImides	s turated R—NC acids: igated ed on) igated turated	$\begin{array}{c} 125-145\\ 119-128\\ 128-138\\ 133-152\\ 145-162\\ 159-162\\ 159-162\\ 159-170\\ 150-170\\ 150-175\\ 154-178\\ 155-165\\ 165-176\\ 162-175\\ 162-165\\ 165-184\\ 175-195\\ 160-200\\ 192-202\\ 202-220\\ 165-180\\ \end{array}$
		Primary carbon 5-30 45-60 13-45 10-30 3-25 δ, ppm -5-5 5-25 5-70 20-70 128-133 35-55 45-87 57-87 60-78 63-73 72-95 88-113 96-113 100-122 110-150 100-155 142-160 105-124 115-143 115-143	$\begin{array}{ c c c c c c } \hline Primary \\ carbon \\ \hline \\ & 5-30 \\ 45-60 \\ 13-45 \\ 10-30 \\ 3-25 \\ \hline \\ \hline \\ & \delta, ppm \\ \hline \\ & -5-5 \\ 5-25 \\ 5-70 \\ 20-70 \\ 128-138 \\ 35-55 \\ 45-87 \\ 57-87 \\ 60-78 \\ 63-73 \\ 72-95 \\ 88-112 \\ 96-118 \\ 100-122 \\ 110-150 \\ 100-152 \\ 142-160 \\ 105-120 \\ 115-135 \\ 115-142 \\ 117-124 \\ \hline \end{array}$	Primary carbon Secondary carbon 5-30 25-45 45-60 42-71 13-45 44-58 10-30 22-42 3-25 3-40 δ , ppm Subst $-5-5$ Aromatics: $5-25$ Aryl-C $5-70$ Aryl-P Aryl-N 20-70 128-138 Azomethine 35-55 Carbonates 45-87 Ureas 57-87 Anhydrides 60-78 Amides 0ximes 63-73 Esters: 72-95 3turated α, β -Unsa 96-118 Isocyanides 100-122 Nonconju 100-152 Ketones: 142-160 α-Halo 105-120 Nonconju 115-135 α, β -Unsa 115-142 Imides	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

TABLE 7.49	Carbon-13 Chemic	cal Shifts (Continued)
------------	------------------	------------------------

Substituent group	δ, ppm	Substituent group	δ, ppm
Thioureas Aldehydes: α-Halo Nonconjugated Conjugated	165–185 170–190 182–192 192–208	Thioketones R — CS — R Carbonyl $M(CO)_n$ Allenes = C =	190–202 190–218 197–205

Saturated heterocyclic ring systems

Unsaturated cyclic systems

Unsaturated cyclic systems (continued)

Saturated alicyclic ring systems

TABLE 7.50 Estimation of Chemical Shifts of Alkane Carbons

Relative to tetramethylsilane.

Positive terms indicate a downfield shift.

$$\delta_C = -2.6 + 9.1n_{\alpha} + 9.4n_{\beta} - 2.5n_{\gamma} + 0.3n_{\delta} + 0.1n_{\epsilon} \qquad \text{(plus any correction factors)}$$

where n_{α} is the number of carbons bonded directly to the *i*th carbon atom and n_{β} , n_{γ} , n_{δ} , and n_{ϵ} are the number of carbon atoms two, three, four, and five bonds removed. The constant is the chemical shift for methane.

Chain branching*	Correction factor	rection Chain actor branching*	
1°(3°)	- 1.1	4°(1°)	- 1.5
$1^{\circ}(4^{\circ})$	-3.4	2°(4°)	-7.2
2°(3°)	-2.5	3°(3°)	-9.5
3°(2°)	- 3.7	4°(2°)	-8.4

* 1° signifies a CH₃— group; 2°, a — CH₂— group; 3°, a \geq CH— group; and 4°, a \geq C \leq group. 1° (3°) signifies a methyl group bound to a \geq CH— group, and so on.

Examples: For 3-methylpentane, CH₃-CH₂-CH_{(CH₃)-CH₂-CH₃,}

$$\delta_{C=2} = -2.6 + 9.1(2) + 9.4(2) - 2.5 - 1(1)[2^{\circ}(3^{\circ})] = 29.4$$

$$\delta_{C=3} = -2.6 + 9.1(3) + 9.4(2) + (2)[3^{\circ}(2^{\circ})] = 36.2$$

TABLE 7.51 Effect of Substituent Groups on Alkyl Chemical Shifts

These increments are added to the shift value of the appropriate carbon atom as calculated from Table 7.50.

Straight: $Y - CH_2 - CH_2 - CH_3$ Branched: $-CH_2 - CH_2 - CH_$

	αα	arbon	βα		
Substituent group Y*	Straight	Branched	Straight	Branched	γ carbon
—со—он	20.9	16	2.5	2	-2.2
-COO ⁻ (anion)	24.4	20	4.1	3	-1.6
-CO-OR	20.5	17	2.5	2	-2
-CO-Cl	33	28		2	
$-CO-NH_2$	22	2.5			-0.5
—СНО	31		0		-2
-CO-R	30	24	1	1	-2
—ОН	48.3	40.8	10.2	7.7	-5.8
—OR	58	51	8	5	-4
$-O-CO-NH_2$	51		8		
-O-CO-R	51	45	6	5	-3
-C-CO-Ar	53				
—F	68	63	9	6	-4
-Cl	31.2	32	10.5	10	-4.6
—Br	20.0	25	10.6	10	-3.1

* R, alkyl group; Ar, aryl group.

	α ε	arbon	βα	arbon	
Substituent group Y*	Straight	Branched	Straight	Branched	γ carbon
—I	- 8	4	11.3	12	-1.0
-NH ₂	29.3	24	11.3	10	-4.6
$-NH_{3}^{+}$	26	24	8	6	-5
-NHR	36.9	31	8.3	6	-3.5
$-NR_2$	42		6		-3
$-NR_{3}^{+}$	31		5		-7
$-NO_2$	63	57	4	4	
-CN	4	1	3	3	-3
—SH	11	11	12	11	-6
—SR	20		7		-3
$-CH=CH_2$	20		6		-0.5
$-C_6H_5$	23	17	9	7	-2
−С≡СН	4.5		5.5		-3.5

TABLE 7.51 Effect of Substituent Groups on Alkyl Chemical Shifts (Continued)

* R, alkyl group; Ar, aryl group.

TABLE 7.52 Estimation of Chemical Shifts of Carbon Attached to a Double Bond

The olefinic carbon chemical shift is calculated from the equation

 $\delta_c = 123.3 + 10.6n_{\alpha} + 7.2n_{\beta} - 7.9n_{\alpha} - 1.8n_{\beta}$ (plus any steric correction terms)

where n is the number of carbon atoms at the particular position, namely,

$$\beta \quad \alpha \quad \alpha' \quad \beta'$$
$$C-C=C-C$$

Substituents on both sides of the double bond are considered separately. Additional vinyl carbons are treated as if they were alkyl carbons. The method is applicable to alicyclic alkenes; in small rings carbons are counted twice, i.e., from both sides of the double bond where applicable. The constant in the equation is the chemical shift for ethylene. The effect of other substituent groups is tabulated below.

Substituent group	β	α	lpha'	eta'
-OR	2	29	- 39	-1
$-0-C0-CH_3$	-3	18 15	-27	4
—СНО —СО—ОН		13.6 5.2	13.2 9.1	
-CO-OR -CN		6 - 15.4	7 14.3	
—F —Cl	-1	24.9 3.3	-34.3 -5.4	2
—Br —I	0	-7.2 -37.4	- 0.7 7.7	2
$-C_6H_5$		12	-11	

Substituent pair		Steric correction term
α, α'	trans	0
α, α'	cis	-1.1
α, α	gem	-4.8
α', α'	Ť	+2.5
β , β		+2.3

TABLE 7.52 Estimation of Chemical Shifts of Carbon Attached to a Double Bond (Continued)

TABLE 7.53 Carbon-13 Chemical Shifts in Substituted Benzenes

$\delta_{C} = 128.5 + \Delta$						
Substituent group	Δ_{C-1}	Δ_{ortho}	Δ_{meta}	Δ_{para}		
-CH ₃	9.3	0.8	-0.1	-2.9		
-CH ₂ CH ₃	15.6	-0.4	0	-2.6		
$-CH(CH_3)_2$	20.2	-2.5	0.1	-2.4		
$-C(CH_3)_3$	22.4	-3.1	-0.1	-2.9		
-CH ₂ O-CO-CH ₃	7.7	0	0	0		
$-C_6\tilde{H_5}$	13.1	-1.1	0.4	-1.2		
$-CH=CH_2$	9.5	-2.0	0.2	-0.5		
−с≡сн	-6.1	3.8	0.4	-0.2		
-CH ₂ OH	12.3	-1.4	-1.4	-1.4		
—со—он	2.1	1.5	0	5.1		
-COO ⁻ (anion)	8	1	0	3		
-CO-OCH ₃	2.1	1.1	0.1	4.5		
-CO-CH ₃	9.1	0.1	0	4.2		
—СНО	8.6	1.3	0.6	5.5		
-co-cl	4.6	2.4	1	6.2		
-CO-CF ₃	-5.6	1.8	0.7	6.7		
$-CO-C_6H_5$	9.4	1.7	-0.2	3.6		
-CN	-15.4	3.6	0.6	3.9		
—ОН	26.9	- 12.7	1.4	-7.3		
-OCH ₃	31.4	- 14.0	1.0	-7.7		
-OC ₆ H ₅	29.2	-9.4	1.6	-5.1		
-0-C0-CH ₃	23.0	-6.4	1.3	-2.3		
-NH ₂	18.0	- 13.3	0.9	-9.8		
$-N(CH_3)_2$	22.4	- 15.7	0.8	-11.5		
$-N(C_6H_5)_2$	19	-4	1	-6		
-NHC ₆ H ₅	14.6	-10.7	0.7	-7.7		
-NH-CO-CH ₃	11.1	-9.9	0.2	-5.6		
$-NO_2$	20.0	-4.8	0.9	5.8		
—F	34.8	- 12.9	1.4	-4.5		
—Cl	6.2	0.4	1.3	- 1.9		
—Br	-5.5	3.4	1.7	-1.6		
—I	-32.2	9.9	2.6	-1.4		
-CF ₃	-9.0	-2.2	0.3	3.2		
-NCO	5.7	-3.6	1.2	-2.8		
—SH	2.3	1.1	1.1	-3.1		
-SCH ₃	10.2	-1.8	0.4	-3.6		
$-SO_2-NH_2$	15.3	-2.9	0.4	3.3		
-Si(CH ₃) ₃	13.4	4.4	-1.1	-1.1		

		0000	$c_k + \underline{a}_i$			
Substituent group	$C_2 = C_6 = \Delta_{C-2} \text{ or } \Delta$	149.6 A _{C-6}	Δ_{23}	Δ_{24}	Δ_{25}	Δ_{26}
$-CH_3$ $-CH_2CH_3$ $-CO-CH_3$ -CHO -OH $-OCH_3$ $-NH_2$ $-NO_2$ -CN -F -CI -Br	9.1 14.0 4.3 3.5 14.9 15.3 11.3 8.0 -15.8 14.4 2.3 -6.7) 5 9 3 3 9 3 9 3 4 3 7	$\begin{array}{c} -1.0\\ -2.1\\ -2.8\\ -2.6\\ -17.2\\ -13.1\\ -14.7\\ -5.1\\ -5.0\\ -14.7\\ 0.7\\ 4.8\end{array}$	$ \begin{array}{r} -0.1 \\ 0.1 \\ 0.7 \\ 1.3 \\ 0.4 \\ 2.1 \\ 2.3 \\ 5.5 \\ -1.7 \\ 5.1 \\ 3.3 \\ 3.3 \end{array} $	$ \begin{array}{r} -3.4 \\ -3.1 \\ 3.0 \\ 4.1 \\ -3.1 \\ -7.5 \\ 10.6 \\ 6.6 \\ 3.6 \\ -2.7 \\ -1.2 \\ -0.5 \\ \end{array} $	$ \begin{array}{c} -0.1\\ 0.2\\ -0.2\\ 0.7\\ -6.8\\ -2.2\\ -0.9\\ 0.4\\ 1.9\\ -1.7\\ 0.6\\ 1.4\end{array} $
Substituent group	Δ_{32}	$C_3 = C$ Δ_{C-3}	$C_5 = 124.2$ or Δ_{C-5}	Δ_{34}	Δ_{35}	
$\begin{array}{c} -CH_{3} \\ -CH_{2}CH_{3} \\ -CO - CH_{3} \\ -CHO \\ -OH \\ -NH_{2} \\ -CN \\ -CI \\ -Br \\ -I \end{array}$	$ \begin{array}{r} 1.3\\ 0.3\\ 0.5\\ 2.4\\ -10.7\\ -11.9\\ 3.6\\ -0.3\\ 2.1\\ 7.1 \end{array} $	-	9.0 15.0 -0.3 7.9 31.4 21.5 13.7 8.2 -2.6 28.4	$\begin{array}{c} 0.2 \\ -1.5 \\ -3.7 \\ 0 \\ -12.2 \\ -14.2 \\ 4.4 \\ -0.2 \\ 2.9 \\ 9.1 \end{array}$	$ \begin{array}{r} -0.8 \\ -0.3 \\ -2.7 \\ 0.6 \\ 1.3 \\ 0.9 \\ 0.6 \\ 0.7 \\ 1.2 \\ 2.4 \\ \end{array} $	$ \begin{array}{r} -2.3 \\ -1.8 \\ 4.2 \\ 5.4 \\ -8.6 \\ -10.8 \\ 4.2 \\ -1.4 \\ -0.9 \\ 0.3 \\ \end{array} $
Substituent group	$\Delta_{42} = \Delta_{46}$			$\Delta_{43}=\Delta_{45}$		$C_4 = 136.2$ Δ_{C-4}
$-CH_{3}$ $-CH_{2}CH_{3}$ $-CH=CH_{2}$ $-CO-CH_{3}$ $-CHO$ $-NH_{2}$ $-CN$ $-Br$	0.5 0 0.3 1.6 1.7 0.9 2.1 3.0			$ \begin{array}{r} 0.8 \\ -0.3 \\ -2.9 \\ -2.6 \\ -0.6 \\ -13.8 \\ 2.2 \\ 3.4 \end{array} $		$10.8 \\ 15.9 \\ 8.6 \\ 6.8 \\ 5.5 \\ 19.6 \\ -15.7 \\ -3.0$

TABLE 7.54 Carbon-13 Chemical Shifts in Substituted Pyridines*

S (1)	_ C		A .
$O_C(K)$	$= C_k$	+	Δ

* May be used for disubstituted, polyheterocyclic, and polynuclear systems if deviations due to steric and mesomeric effects are allowed for.

TABLE 7.55 Carbon-13 Chemical Shifts of Carbonyl Group

7.106

SPECTROSCOPY

TABLE 7.56	One-Bond	Carbon-Hydrogen	Spin	Coupling	Constants
-------------------	----------	-----------------	------	----------	-----------

Structure	$J_{\rm CH},{\rm Hz}$	Structure	$J_{\rm CH},{\rm Hz}$
H—CH ₂	125.0	$H-CH=O: CH_2-CH=O$	172
H-CH ₂ CH ₃	124.9	H ₂ N-CH=0	188.3
CH ₃ -CH ₂ -CH ₃	119.2	$(CH_3)_2N - CH = O$	191
$H - C(\overline{CH}_2)_2$	114.2	H-COOH	222
H-CH ₂ CH ₂ OH	126.9	$H - COO^{-}$ (anion)	195
$H - CH_2 CH = CH_2$	122.4	H-CO-OCH ₂	226
$H - CH_2C_6H_5$	129.4	H-CO-F	267
H−CH ₂ C≡CH	132.0	CH ₂ CH ₂ —O—CHO	225.6
H-CH ₂ CN	136.1	Cl ₂ —CHO	207
$H - CH(CN)_2$	145.2	H−C≡CH	249
H-CH ₂ -halogen	149-152	$H-C \equiv CCH_3$	248
H-CHF ₂	184.5	$H - C \equiv CC_6 H_5$	251
H-CHCl ₂	178.0	H−C≡CCH ₂ OH	241
H-CH ₂ NH ₂	133.0	H—CN	269
$H - CH_2 NH_3^+$	145.0	Cyclopropane	161
$H - CH_2OH$ (or $H - CH_2OR$)	140-141	Cyclobutane	136
H—CH(OR) ₂	161-162	Cyclopentane	131
$H - C(OR)_3$	186	Cyclohexane	123
$H - C(OH)R_2$	143	Tetrahydrofuran 2,5	149
H-CH ₂ NO ₂	146.0	3,4	133
$H - CH(NO_2)_2$	169.4	1,4-Dioxane	145
H-CH ₂ COOH	130.0	Benzene	159
H-CH(COOH) ₂	132.0	Fluorobenzene 2,6	155
H-CH=CH ₂	156.2	3,5	163
$H-C(CH_3)=C(CH_3)_2$	148.4	4	161
$H-CH=C(tert-C_4H_9)_2$	152	Bromobenzene 2,6	171
$H-C(tert-C_4H_9) =$	143	3,5	164
$C(tert-C_4H_9)_2$		4	161
Methylenecycloalkane C ₄ -C ₇	153-155	Benzonitrile 2,6	173
$H-CH=C=CH_2$	168	3,6	166
$H - C(C_6H_5) = CH(C_6H_5)$		4	163
cis	155	Nitrobenzene 2,6	171
trans	151	3,5	167
Cyclopropene	220	4	163
H_{t} H_{g} gem	200	Mesitylene	154
C = C cis	159	2,6	170
H F trans	162	3,5	163
	102	N 4	152
\mathbf{H}_{t} \mathbf{H}_{g} gem	195	2.4.6-Trimethylpyridine	150
C = C cis	163		138
H_c Cl trans	161	25	183
H. H. gem	162	N 34	170
C = C cis	157	H S,I	170
	157		
\mathbf{H}_{c} CHO trans	162	2,5	201
H_{t} H_{g} gem	177	0 3,4	1/5
C = C cis	163		105
H _c CN trans	165		185
H OH cis	163	S 3,4	107
	105		
C—IN trans	1//	∥ Ľ NN 3,5	190
CH ₃		N 4	178
		Н	

Structure	$J_{\rm CH},{\rm Hz}$	Structure	$J_{\rm CH},{\rm Hz}$
N 2 H 4	208 199		216
$ \underbrace{ \bigwedge_{N}^{N}}_{H} $	205		

TABLE 7.56 One-Bond Carbon-Hydrogen Spin Coupling Constants (Continued)

TABLE 7.57 Two-Bond Carbon-Hydrogen Spin Coupling Constants

Structure	${}^{2}J_{\rm CH}$, Hz	Structure	$^{2}J_{\rm CH}$, Hz
$\begin{array}{c} \underline{CH_{3}-CH_{2}-H}\\ \underline{CCl_{3}-CH_{2}-H}\\ \overline{ClCH_{2}-CH_{2}Cl}\\ \underline{Cl_{2}CH-CH_{2}Cl}\\ \underline{Cl_{3}-CHO}\\ \underline{CH_{3}-CHO}\\ \underline{CH_{2}=CH_{2}}\\ (\underline{CH_{3}})_{2}\underline{C=O}\\ \underline{CH_{2}=CH-CH=O}\\ (\underline{C_{2}H_{3}})\underline{CH-CHO}\\ \underline{H_{2}NCH=CH-CHO}\\ \underline{H_{2}NCH=CH-CHO}\\ \underline{H_{2}NCH=CH-CHO}\\ \underline{H_{2}NCH-CHO}\\ \underline{C_{6}H_{6}}\\ \end{array}$	$ \begin{array}{r} -4.5 \\ 5.9 \\ -3.4 \\ 1.2 \\ 26.7 \\ -2.4 \\ 5.5 \\ 26.9 \\ 26.9 \\ 26.9 \\ 6.0 \\ 20.0 \\ 1.0 \end{array} $	$\begin{array}{c} n = 4 \\ n = 5 \\ n = 6 \end{array}$ $\begin{array}{c} H \\ C = C \\ H \\ C = C \\ C \\ C \\ H \\ C = C \\ C \\ H \\ C = C \\ C \\ C \\ H \\ C = C \\ C$	4.2 5.2 5.5 16.0 0.8 49.3 61.0 33.2 32.5 35.3 46.3 10.8

TABLE 7.58 Carbon-Carbon Spin Coupling Constants

Structure*	$J_{\rm CC},{\rm Hz}$	Structure	$J_{\rm CC},{\rm Hz}$
$\begin{array}{l} H_{3}CCH_{3} \\ H_{3}CCH_{2}Ar \\ H_{3}CCH_{2}Ar \\ H_{3}CCH_{2}CN \\ H_{3}CCH_{2}-CH_{2}OH \\ C^{-1}, C^{-2} \\ C^{-2}, C^{-3} \\ H_{3}CCH_{2}NH_{2} \\ CC=0 \\ C-C=0 \\ C-C=-C=0 \\ C-C-C=0 \\ C-C-$	35 37 34 33 38 34 37 38–40 36 43 52 52 52 57	$C-CO-OR$ $C-CN$ $C-C \equiv C^{2}J_{CC} = 11.8$ $H_{2}C \equiv CH_{2}$ $\geq \underline{C} = \underline{C} - CO - OH$ $\geq \underline{C} = \underline{C} - CN$ $\geq \underline{C} = \underline{C} - Ar$ $C_{6}H_{6}$ $C_{3}H_{3}NO_{2}$ $1-2$ $2-3, 3-4$ $^{3}J_{2-5}$	5952-57676870-717167-705755567.6

* R, alkyl group; Ar, aryl group.
| Structure* | $J_{\rm CC},{\rm Hz}$ | Structure | $J_{\rm CC},{\rm Hz}$ |
|---|-----------------------|---------------------------------------|-----------------------|
| C ₆ H ₅ I | | Pyridine | |
| 1-2 | 60 | 2-3 | 54 |
| 2-3 | 53 | 3-4 | 56 |
| 3-4 | 58 | ${}^{3}J_{2,5}$ | 14 |
| ${}^{3}J_{2,5}$ | 8.6 | Furan | 69 |
| C ₆ H ₅ —OCH ₃ | | Pyrrole | 69 |
| 2-3 | 58 | Thiophene | 64 |
| 3-4 | 56 | $H_2C = C = C(CH_3)_2$ | 100 |
| C ₆ H ₅ NH ₂ | | $-\overline{C}\equiv\overline{C}-$ | 170-176 |
| 1-2 | 61 | | |
| 2-3 | 58 | Structure | $^{2}J_{CC}$, Hz |
| 3-4 | 57 | | , |
| ${}^{3}J_{2-5}$ | 7.9 | $CH_{-}CO = CH_{-}$ | 16 |
| C ₆ H ₅ CH ₃ | 44 | $\overline{CH_3} = C \equiv CH$ | 11.8 |
| | | $\overline{CH_2CH_2}$ \overline{CN} | 33 |
| | | <u><u> </u></u> | 55 |

TABLE 7.58 Carbon-Carbon Spin Coupling Constants (Continued)

* R, alkyl group; Ar, aryl group.

 TABLE 7.59
 Carbon-Fluorine Spin Coupling Constants

Structure*	$J_{\rm CF},{\rm Hz}$	Structure*	$J_{\rm CF},{\rm Hz}$
F H H	- 158	$p-F-C_6H_4-CF_3$ $p-F-C_6H_4-CO-CH_3$ $p-F-C_6H_4-NO_2$ $F-C_6H_4-NO_2$	- 252 - 253 - 257
F H F H	-235	${}^{2}J_{CF} = 21.0$ ${}^{3}J_{CF} = 7.7$ ${}^{4}J_{CF} = 3.4$	- 244
F F H	-274	F F C=CH ₂	- 287
F F F	-259	F F C=0	- 308
F F C C C C H ₃	-271	F C=O	- 353
F H C Ar	- 165	F C=0	- 369
$F-CH_2CH_2- \text{ or } F-CR_3$ $p-F-C_6H_4-OR$ $p-F-C_6H_4-R$	- 167 - 237 - 241	F C CH ₂ OH	- 241

* Ar, aryl group; R, alkyl group.

Structure*	$J_{\rm CF},{\rm Hz}$	Structure*	$J_{\rm CF},{\rm Hz}$
$ \begin{array}{c} F \\ F $	- 278 - 265	F F C C C C C C C C C C C C C C C C C C	- 289
F C OCF ₃	- 265		

TABLE 7.59 Carbon-Fluorine Spin Coupling Constants (Continued)

* Ar, aryl group; R, alkyl group.

TABLE 7.60 Carbon-13 Chemical Shifts of Deuterated Solvents

Relative to tetramethylsilane.

Solvent	Group	δ, ppm
Acetic- d_3 acid- d_1	Methyl	20.0
	Carbonyl	205.8
Acetone- d_6	Methyl	28.1
~	Carbonyl	178.4
Acetonitrile-d ₃	Methyl	1.3
5	Carbonyl	117.7
Benzene-d ₆		128.5
Carbon disulfide		193
Carbon tetrachloride		97
Chloroform-d ₁		77
Cyclohexane-d ₁₂		25.2
Dimethyl sulfoxide- d_6		39.5
1,4-Dioxane- d_6		67
Formic- d_1 acid- d_1	Carbonyl	165.5
Methanol-d ₄		47-49
Methylene chloride- d_2		53.8
Nitromethane-d ₃		57.3
Pyridine-d ₅	C_{3}, C_{5}	123.5
, , , , , , , , , , , , , , , , , , ,	C_4	135.5
	$\vec{C_2}, \vec{C_6}$	149.9

 TABLE 7.61
 Carbon-13 Spin Coupling Constants with Various Nuclei

Nuclei	Structure	^{1}J , Hz	² <i>J</i> , Hz	³ <i>J</i> , Hz	⁴ <i>J</i> , Hz
² H	$CDCl_3 CD_3 - CO - CD_3 (CD_3)_2SO C_6D_6$	32 20 22 26			

Nuclei	Structure	¹ <i>J</i> , Hz	² <i>J</i> , Hz	³ <i>J</i> , Hz	⁴ <i>J</i> , Hz
⁷ Li	CH ₃ Li	15			
${}^{11}B$	$(C_{6}H_{5})_{4}B^{-}$	49		3	
^{14}N	$(\mathrm{CH}_3)_4\mathrm{N}^+$ $\mathrm{CH}_3\mathrm{NC}$	10 8			
²⁹ Si	(CH ₃) ₄ Si	52			
³¹ P	$(CH_3)_3P$ $(C_4H_9)_3P$ $(C_6H_5)_3P$ $(CH_3)_4P^+$ $(C_4H_9)_4P^+$	14 11 12 56 48	12 20 4	5 7 15	0
	$(C_6H_5)_4P^+$ R(RO)_2P=O $(C_4H_9O)_3P=O$	88 142	11 5-7 6	13 7	3
⁷⁷ Se	$(CH_3)_2Se$ $(CH_3)_3Se^+$	62 50			
113Cd	(CH ₃) ₂ Cd	513, 537			
¹¹⁹ Sn	$(CH_3)_4Sn$ $(CH_3)_3SnC_6H_5$	340 474	37	47	11
¹²⁵ Te	(CH ₃) ₂ Te	162			
¹⁹⁹ Hg	$(CH_3)_2Hg$ $(C_6H_5)_2Hg$	687 1186	88	102	18
²⁰⁷ Pb	$\begin{array}{c} (CH_3)_2 Pb \\ (C_6H_5)_4 Pb \end{array}$	250 481	68	81	20

TABLE 7.61 Carbon-13 Spin Coupling Constants with Various Nuclei (Continued)

 TABLE 7.62
 Boron-11 Chemical Shifts

Values given in ppm on the δ scale, relative to B(OCH₃)₃.

Structure	δ, ppm	Structure	δ, ppm
R ₃ B Ar ₃ B BF ₃ BCl ₃ BBr ₃ BI ₃ B(OH) ₃	-67 to -68 -43 24 -12 -6 41 36	HB NH-BH NH NH-BH NH H B H H H B H H	- 12 37
$\begin{array}{l} B(OR)_{3} \\ B(NR_{2})_{3} \\ C_{6}H_{5}BCl_{2} \\ C_{6}H_{5}B(OH)_{2} \\ C_{6}H_{5}B(OR)_{2} \\ M(BH_{4}) \\ B(BF_{4}) \end{array}$	$ \begin{array}{r} 0-1 \\ -13 \\ -36 \\ -14 \\ -10 \\ 55-61 \\ 19-20 \end{array} $	$H_{H} = H_{H} = H_{H}$ $H_{H} = H_{H} = H_{H}$ $(CH_{3})_{2}N = B(CH_{3})_{2}$	15 62

Structure	δ, ppm	Structure	δ, μ	opm
Addition complexes $R_2 O \cdot BH_3$ $R_3 N \cdot BH_3$ $R_2 NH \cdot BH_3$	18–19 25 33	$\begin{array}{c} \textbf{Boranes} \\ B_2H_6 \\ B_4H_{10} \\ (BH_2) \\ (BH) \end{array}$		1 25 60
$N \cdot BH_3$ $R_2O(or ROH) \cdot BF_3$ $R_2O(or ROH) \cdot BCl_3$ $R_2O(or ROH) \cdot BBr_3$ $R_2O(or ROH) \cdot BI_3$ $N \cdot BBr_3$	31 17-19 -7 to -8 23-24 74-82 24	$B_5H_9 \\ B_5H_{11} \\ B_{10}H_{14}$	Base 31 - 16 7	Apex 70 50 54

TABLE 7.62	Boron-11	Chemical	Shifts ((Continued)
-------------------	----------	----------	----------	-------------

TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts

Values given in ppm on the δ scale, relative to NH₃ liquid.

Substituent group	δ, ppm	Substituent group	δ, ppm
Aliphatic amines		Amides (continued)	
Primary	1-59	HCO—NH—Aryl	138-141
Secondary	7-81	RCO—NHR or RCO—NR ₂	103-130
Tertiary	14-44	RCO-NH-Aryl	131-136
Cyclo, primary	29-44	Aryl—CO—H—Aryl	ca 126
Aryl amines	40-100	Guanidines	
Aryl hydrazines	40-100	Amino	30-60
Piperidines, decahydroquino-	30-82	Imino	166-207
lines		Thioureas	85-111
Amine cations		Thioamides	135-154
Primary	19-59	Cyanamides	
Secondary	40-74	R ₂ N—	-12 to -38
Tertiary	30-67	-CN	175-200
Quaternary	43-70	Carbodiimides	95-120
Enamines, tertiary type		Isocyanates	
Alkyl	29-82	Alkyl, primary	14-32
Cycloalkyl	55-104	Alkyl, secondary and tertiary	54-57
Aminophosphines	59-100	Aryl	ca 46
Amine N-oxides	95-122	Isothiocyanates	90-107
Ureas		Azides	52-80
Aliphatic	63-84		108-122
Aryl	105-108		240-260
Sulfonamides	79-164	Lactams	113-122
Amides		Hydrazones	
HCO—NHR		Amino	141-167
R = primary	100-115	Imino	319-327
R = secondary	104-148	Cyanates	155-182
R = tertiary	96-133	Nitrile N-oxides, fulminates	195-225
-			1

SPECTROSCOPY

Substituent group	δ, ppm	Substituent group	δ, ppm
Isonitriles		Oximes	340-380
Alkyl, primary	162 - 178	Nitramines	
Alkyl, secondary	191-199	Amine	252 - 280
Aryl	ca 180	$-NO_2$	328-355
Nitriles		Nitrates	310-353
Alkyl	235-241	gem-Polynitroalkanes	310-353
Aryl	258 - 268	Nitro	
Thiocyanates	265-280	Aryl	350-382
Diazonium		Alkyl	372-410
Internal	222-230	Hetero, unsaturated	354-367
Terminal	315-322	Azoxy	330-356
Diazo		Azo	504-570
Internal	226-303	Nitrosamines	222-250
Terminal	315-440		525-550
Nitrilium ions	123-150	Nitrites	555-582
Azinium ions	185-220	Thionitrites	720-790
Azine N-oxides	230-300	Nitroso	
Nitrones	270-285	Aliphatic amines, NO	535-560
Imides	170-178	Aryl	804-913
Imines	310-359		

TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued)

Saturated cyclic systems

Unsaturated cyclic systems

TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued)

	0 517.5 1 1	-i		
Substituent	$\Delta_{\text{C-2}}$	$\Delta_{ ext{C-3}}$	$\Delta_{ ext{C-4}}$	
—CH ₃	-0.4	0.3	-8.0	
-CH ₂ CH ₃	-1.8		-6.6	
$-CH(CH_3)_2$	-5.1		-5.9	
$-C(CH_3)_3$	-2.5		-5.8	
-CN	-0.9	-0.8	10.6	
—СНО	10	11	29	
-CO-CH ₃	-9	15	11	
-CO-OCH ₂ CH ₃	11.8		-5	
-OCH ₃	-49	0	-23	
—ОН	-126	-2	-118	
$-NO_2$	-23	1	22	
$-NH_2$	-45	10	-46	
—F	-42	-18		
—Cl	-4	4	-6	
—Br	2	8	7	

 TABLE 7.64
 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine

Substituent	$\Delta_{ ext{C-2}}$	$\Delta_{ ext{C-3}}$	$\Delta_{ ext{C-4}}$
—CH ₃	-0.4	0.3	-8.0
-CH ₂ CH ₃	-1.8		-6.6
$-CH(CH_3)_2$	-5.1		-5.9
$-C(CH_3)_3$	-2.5		-5.8
-CN	-0.9	-0.8	10.6
—СНО	10	11	29
-CO-CH ₃	-9	15	11
-CO-OCH ₂ CH ₃	11.8		-5
-OCH ₃	-49	0	-23
—ОН	-126	-2	-118
$-NO_2$	-23	1	22
$-NH_2$	-45	10	-46
—F	-42	-18	
—Cl	-4	4	-6
—Br	2	8	7

$\delta = 317.3 + 4$

 TABLE 7.65
 Nitrogen-15 Chemical Shifts for Standards

Values given in ppm, relative to NH₃ liquid at 23°C.

Substance	δ , ppm	Conditions
Nitromethane (neat)	380.2	For organic solvents and acidic aqueous solutions
Potassium (or sodium) nitrate (saturated aqueous solution)	376.5	For neutral and basic aqueous solutions
$C(NO_2)_4$	331	For nitro compounds
$(CH_3)_2$ —CHO (neat)	103.8	For organic solvents and aqueous solutions
$(C_2H_5)_4N^+Cl^-$	64.4	Saturated aqueous solution
$(CH_3)_4 N^+ Cl^-$	43.5	Saturated aqueous solution
NH ₄ Cl	27.3	Saturated aqueous solution
NH ₄ NO ₃	20.7	Saturated aqueous solution
NH ₃	0.0	Liquid, 25°C
-	-15.9	Vapor, 5 atm

TABLE 7.66 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants

Structure	J, Hz	Structure	J, Hz
$\begin{array}{c} R \longrightarrow NH_2 \text{ and } R_2NH \\ Aryl \longrightarrow NH_2 \\ p - CH_3O \longrightarrow aryl \longrightarrow NH_2 \\ p - O_2N \longrightarrow aryl \longrightarrow NH_2 \\ Amine salts (alkyl and aryl) \\ Aryl \longrightarrow NHOH \\ Aryl \longrightarrow NHCH_3 \\ Aryl \longrightarrow NHCH_2F \end{array}$	61-67 78 79 90-93 73-76 79 87 90	$\begin{array}{c} \text{Aryl-NHNH}_{2} \\ p \text{-} O_{2}\text{N} \text{-} aryl \text{-} \text{NHNH}_{2} \\ \text{Aryl-SO}_{2} \text{-} \text{NH}_{2} \\ \text{Aryl-SO}_{2} \text{-} \text{NHR} \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ C \text{-} N \\ H \\ \end{array} \\ \begin{array}{c} H \\ H \\ H \\ \end{array} \\ \begin{array}{c} H \\ H $	90 99 81 86 88 92-93

Structure	J, Hz	Structure	J, Hz
$ \begin{array}{c} $	88–92 97 133–136 82–90	$(R_3Si)_2NH$ CF_3 — S — NH_2 $(CF_3$ — $S)_2NH$ Pyridinium ion Quinolinium ion	67 81 99 90 96

TABLE 7.66 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants (Continued)

TABLE 7.67 Nitrogen-15 to Carbon-13 Spin Coupling Constants

Structure	J, Hz	Structure	J, Hz
Alkyl amines	4-4.5	Alkyl $-NO_2$	11
Cyclic alkyl amines	2-2.5	R—CN	18
Alkyl amines protonated	4-5	$CH_3 - \vec{N} \equiv \bar{C}$	
Aryl amines	10-14	H ₃ C—N	10
Aryl amines protonated	9	—N≡C	9
CH ₃ CO—NH ₂	14-15	Diaryl azoxy	
H ₂ N-CO-NH ₂	20	anti	18
Aryl—NO ₂	15	syn	13

TABLE 7.68 Nitrogen-15 to Fluorine-19 Spin Coupling Constants

Structure	J, Hz	Iz Structure	
NF ₃	155	Pyridine	
$F_4 N_2$	164	2-F	52
FNO ₂	158	3-F	4
F ₃ NO	190	2,6-di-F	37
$F_3C - O - NF_2$	164-176	Pyridinium ion	
FCO—NF ₂	221	2-F	23
$(NF_4)^+SbF_6^-$	323	3-F	3
$(NF_4)^+AsF_6^-$	328	Quinoline, 8-F	3
$(N_2F)^+AsF_6^-$	459	Aniline	
$F_3C - NO_2$	215	2-F	0
F,		3-F	0
N = N (² I = 10)	190	4-F	1.5
	150	Anilinium ion	
F		2-F	1.4
F. F	202	3-F	0.2
$N = N \qquad (^2J = 52)$	203	4-F	0

TABLE 7.69 Fluorine-19 Chemical Shifts

Values given in ppm on the δ scale, relative to CCl₃F.

Substituent group	δ, ppm	Substituent group	δ, ppm
—SO ₂ —F	-67 to $-42(aryl)(alkyl)$	Cyclohexane-F	210 (axial)
-CO-F	-29 to -20		to
>N-CO-F	-5		240
$Aryl-CF_2Cl$	49		(equatorial)
$-CF_2I$	56	Perfluorocycloalkane	131-138
$-CF_2Br$	63	$>C\underline{F}-CF_3$	163-198
R—CF ₂ Cl	61-71	$>C\underline{F}(CF_3)_2$	180-191
\geq C-CF ₃ and aryl-CF ₃	56-73	-CFH-	198-231
$-CS-CF_3$	70	-CFH ₂	235-244
$\geq CF - CF_3$	71–73	$F_2C = CF_2$	133
$-S-CF_3$	41	F_{c} CF_{2} $CF_{2}H$	
$-S-CF_2-S-$	39	C = C'	
$\geq P - CF_3$	46-66	F. F.	
$>N-CF_3$	40-58	cis	108
$>N-CF_2-C$	85-127	trans	92
$-O-CF_2-R$	70-91	gem	192
$-O-CF_2-CF_3$	70-91	F ₂ F ₃	
$-CH_2-CF_3$	76-77	H C=C	
HO-CO-CF ₃	77	C=C H	
$-CHF-CF_3$	81	H F	
$-CF_2-CF_3$	78-88		120
—CS—F	81		120
$CF_3 - C - N \leq$	84-96	Г-2 Е 3	155
$-CO-CF_2-CF_3$	83	CIEC = CH - CE	61
-CF ₂ -	86-126	Cycloalkenes	01
$-CF_2Br$	91	$=CF-CF_{2}-$	
$-C-CF_2-S-$	91-98	$C(CF_2 \text{ or } H)$	101-113
-CF=	180-192	$-CF_2-CF_2-$	
$-CF_2$ $-CF_3$	111	$C(CF_3 \text{ or } CH_3) =$	110-114
$-CO-CF_2-$	116-131	$-CF_2-CF_2-CH=$	113-116
$-C(\text{nalide})-CF_2-$	119-128	$-CF_2-C\overline{F}_2-CF=$	119-122
$-CF_2 - CF_3$	121-125	Aryl—F	113
$-CF_2-CF_2-$	121-129	$C_{10}H_7$ —F	
-CE - CHE	122-133	F-1	127
$-CE_{H}$	136-143	F-2	114
N _	150 115	$C_6H_5-C_6H_4-F$	
$>F_2$	151-156	F-2	117
\wedge		F-3	113
$\langle \rangle F_2$	147	C F	109
\sim		$C_6\Gamma_6$	105
$\int F_{2}$	96-133		
≫F	159		
\checkmark			

Substance	Formula	δ, ppm
Trichlorofluoromethane	CFCl ₃	0.0
α, α, α -Trifluorotoluene	$C_6H_5CF_3$	63.8
Trifluoroacetic acid	CF ₃ COOH	76.5
Carbon tetrafluoride	CF_4	76.7
Fluorobenzene	C_6H_5F	113.1
Perfluorocyclobutane	C_4F_8	138.0

TABLE 7.70 Fluorine-19 Chemical Shifts for Standards

TABLE 7.71 Fluorine-19 to Fluorine-19 Spin Coupling Constants

Structure	$J_{\rm FF},{ m Hz}$
F ₂ C cycloalkane	
gem	212-260
Unsaturated compounds $>C=C\leq$	
gem	30-90
trans	115-130
cis	9-58
Aromatic compounds, monocyclic	
ortho	18-22
meta	0-7
para	12-15
Alkanes	
$CFCl_2 - CF_2 - CFCl_2$	6
$CFCl_2 - CF_2 - CCl_3$	5
$CF_2Cl-CF_2-CF_2Cl$	1
$C\underline{F}_3 - C\underline{F}_2 - CF_2Cl (or - CF_3)$	<1
$CF_3 - CF_2 - CF_2Cl$	2
$CF_3 - CF_2 - CF_2Cl$	9
$CF_3 - CF_2 - CF_3$	7

TABLE 7.72 Silicon-29 Chemical Shift	îts
--	-----

Values given in ppm on the δ scale relative to tetramethylsilane.

	п			
Substituent group X in $(CH_3)_{4-n}SiX_n$	1	2	3	4
—F	35	9	-52	- 109
-Cl	30	32	13	- 19
—Br	26	20	-18	-94
—I	9	- 34	-18	- 346
—н	- 19	-42	-65	-93
$-C_2H_5$	2	5	7	8
$-C_6H_5$	-5	-9	-12	
-CH=CH ₂	-7	-14	-21	-23
-Oalkyl	14-17	-3 to -6	-41 to -45	-79 to -83
-Oaryl	17	-6	- 54	-101
-O-CO-alkyl	22	4	-43	-75
$-N(CH_3)_2$	6	-2	-18	-28

Structure	δ, ppm	Structure	δ , ppm
	$\begin{array}{r} -39 \text{ to } -60 \\ -5 \text{ to } -37 \\ -2 \text{ to } -39 \\ \end{array}$ $\begin{array}{r} -69 \text{ to } -72 \\ -77 \text{ to } -81 \\ -85 \text{ to } -89 \\ -93 \text{ to } -97 \\ -107 \text{ to } -120 \\ \end{array}$ $\begin{array}{r} 6-8 \\ -18 \text{ to } -23 \\ \end{array}$ $\begin{array}{r} -35 \text{ to } -36 \end{array}$	$\begin{array}{c} O-\\ \\ CH_{3}Si-O-\\ O-\\ O-\\ O-\\ Si-O-\\ (cross-linked)\\ \\ O-\\ Polysilanes\\ F_{3}Si-SiCl_{3}\\ (CH_{3}O)_{3}Si-Si(OCH_{3})_{3}\\ (CH_{3})_{3}Si-Si(OCH_{3})_{3}\\ (CH_{3})_{3}Si-Si(OCH_{3})_{3}\\ (CH_{3})_{2}Si[Si(CH_{3})_{3}]_{2}\\ H\underline{Si}[Si(CH_{3})_{3}]_{4}\\ \hline \end{array}$	-65 to -66 -105 to -110 -74 -8 -53 -20 -48 -117 -135

TABLE 7.72 Silicon-29 Chemical Shifts (Continued)

TABLE 7.73 Phosphorus-31 Chemical Shifts

Values given in ppm on the δ scale, relative to 85% H₃PO₄.

	Identical atoms	Non-identically substituted phosphorus			
Structure	to phosphorus	$R = CH_3$	$R = C_2 H_5$	$R = C_6 H_5$	
P ₄	461				
PR ₃		62	20	6	
PHR ₂		99	56	41	
PH ₂ R		164	128	122	
PH ₃	241				
PF ₃	-97				
PRF ₂			- 168	-207	
PCl ₃	-220				
PRCl ₂		- 192	- 196	- 162	
PR ₂ Cl		- 94	-119	-81	
PBr ₃	- 227				
PRBr ₂		- 184	- 194	- 152	
PR ₂ Br		-91	-116	-71	
PI ₃	-178				
P(CN) ₃	136				
$P(SiR_3)_3$		251			
$P(OR)_3$		- 141	-139	- 127	
$P(OR)_2Cl$		- 169	- 165	- 157	
P(OR)Cl ₂		-114	- 177	- 173	
$P(SR)_3$		- 125	-115	- 132	
$P(SR)_2Cl$		-188	- 186	- 183	
P(SR)Cl ₂		-206	-211	-204	
P(SR) ₂ Br				- 184	

	Identical atoms	Non-identically substituted phosphorus			
Structure	to phosphorus	$R = CH_3$	$R = C_2 H_5$	$R = C_6 H_5$	
$\begin{array}{c} P(SR)Br_2 \\ P(NR_2)_3 \\ P(NR_2)Cl_2 \\ PR(NR_2)_2 \\ PR_2(NR_2) \\ F_2P - PF_2 \\ Cl_2P - PCl_2 \\ I_2P - PI_2 \\ PH_2^-K^+ \\ P(CF_3)_3 \\ P_4O_6 \end{array}$	- 226 - 155 - 170 255 3 - 113	- 204 - 123 - 166 - 86 - 39	- 118 - 162 - 100 - 62	- 151 - 100	
	Identical atoms attached directly	Non-ide	ntically substituted ph	osphorus	
Structure	to phosphorus	X = F	X = Cl	X = Br	
$P(NCO)_3$ $P(NCO)_2X$ $P(NCO)X_2$ $P(NCS)_3$	- 97 - 86	- 128 - 131	- 128 - 166	- 127	
$P(NCS)_2X$ $P(NCS)X_2$			- 114 - 155	- 112 - 153	
	Identical atoms	Non-identically substituted phosphorus			
Structure	attached directly to phosphorus	$R = CH_3$	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R = C_6 H_5$	
$\begin{array}{l} 0 = PR_{3} \\ 0 = PR_{2} \\ 0 = PF_{3} \\ 0 = PRF_{2} \\ 0 = PRCI_{2} \\ 0 = PRCI_{2} \\ 0 = PRCI_{2} \\ 0 = P(OR)_{2}CI \\ 0 = P(OR)_{2}CI \\ 0 = P(OR)_{2}CI \\ 0 = P(OR)_{2}CI \\ 0 = PR(OC_{2}H_{5}) \\ 0 = PR(OC_{2}H_{5}) \\ 0 = PR(OC_{2}H_{5}) \\ 0 = P(OR)_{2}NH_{2} \\ 0 = P(OR)_{2}NH_{2} \\ 0 = P(OR)_{2}NH_{2} \\ 0 = P(OR)_{2}NH_{2} \\ 0 = P(OR)_{2}(NCS) \\ 0 = PSR_{3} \\ 0 = P(NCO)_{3} \\ 0 = P(NCS)_{3} \\ 0 = P(NL_{3})_{3} \\ 0 = P($	36 - 2 103 41 62 - 22	$ \begin{array}{r} -36 \\ -63 \\ -27 \\ -45 \\ -65 \\ -1 \\ -6 \\ -6 \\ -19 \\ -50 \\ -30 \\ -23 \\ -44 \\ -15 \\ -66 \end{array} $	$ \begin{array}{r} -48 \\ -29 \\ -53 \\ -77 \\ 1 \\ -3 \\ -6 \\ -15 \\ -52 \\ -33 \\ -24 \\ -12 \\ 19 \\ -61 \\ \end{array} $	$ \begin{array}{r} -25 \\ -23 \\ -11 \\ -34 \\ -43 \\ 18 \\ 6 \\ -2 \\ -31 \\ -17 \\ -2 \\ -26 \\ -3 \\ 29 \\ -55 \end{array} $	

TABLE 7.73 Phosphorus-31 Chemical Shifts (Continued)

Structure	Identical atoms attached directly to phosphorus	Str	Structure		
$\begin{array}{c} PF_{5} \\ PF_{6}^{-}H^{+} \\ PBr_{5} \\ P(OC_{2}H_{5})_{5} \\ O = P[OSi(CH_{3})_{3}]_{3} \\ H_{4}P_{2}O_{7} \\ Phosphonium cations \\ Alkyl \\ Aryl \\ (O_{3}P - PO_{3})^{4-} \\ Polyphosphates \\ O = P - O - \\ & \\ (OR)_{2} \\ (end group) \end{array}$	$ \begin{array}{r} 35\\ 144\\ 101\\ 71\\ -6\\ 33\\ 11\\ -24 \text{ to } -2\\ -43 \text{ to } -32\\ -35 \text{ to } -18\\ -9\\ \end{array} $ ca 6	O -O-P- O O (1 O O O -O-P- O O O O O O O O O O O O O	$ \begin{array}{c} $		
	Identical atoms	Non-id	Non-identically substitute		
Structure	to phosphorus	$R = CH_3$	$R = C_2 H_5$	$R = C_6 H_5$	
$S = PR_{3}$ $S = PCI_{3}$ $S = PRCI_{2}$ $S = PR_{2}CI$ $S = PRB_{3}$ $S = PRB_{7}$ $S = P(OR)_{3}$ $S = P(OR)_{2}CI$ $S = P(OR)_{2}CI$ $S = P(OR)_{2}CI$ $S = P(NR_{2})_{3}$ $S = P(NR_{2})_{3}$ $S = P(OR)_{3}$ $S = P(OR)_{3}$ $S = P(SR)_{3}$ $S = P(SR)_{3}$ $P(OR)_{5}$ PRF_{4} $PR_{2}F_{3}$	- 29 112 - 60	$ \begin{array}{r} -59 \\ -80 \\ -87 \\ -21 \\ -64 \\ -73 \\ -59 \\ -73 \\ -74 \\ -98 \\ -82 \\ -78 \\ -82 \\ 30 \\ -9 \\ \end{array} $	$ \begin{array}{c} -55\\ -94\\ -109\\ -42\\ -98\\ -68\\ -56\\ -68\\ -69\\ -92\\ -78\\ -71\\ -76\\ 71\\ 30\\ -6\\ \end{array} $	$ \begin{array}{r} -43 \\ -75 \\ -80 \\ -20 \\ -53 \\ -54 \\ -59 \\ -59 \\ -92 \\ -58 \\ 86 \\ 42 \\ \end{array} $	

TABLE 7.73 Phosphorus-31 Chemical Shifts (Continued)

TABLE 7.74	Phosphorus-31 Sp	oin Coupling Constant	s

Substituent group	$J_{\rm PH},{\rm Hz}$	Substituent group	$J_{\rm PP},{\rm Hz}$
$PH = PH_2^-$ PH_2^- $PH_2 = PH_2$ $PH_2 = P-CH_3$	180-225 134 160-210 1-6	> P-F RPF_2 R_2PF RP(N)F	1320-1420 (1F) (3F) 1140-1290 1020-1110 920-985
$\begin{array}{c} P - CH_2 - \\ H_{\alpha} \\ P \\ P \\ H_{\gamma} \\ \end{array}$	12-22	-o PF	(alkyl) (aryl) 1225–1305
$\beta \\ \gamma \\ (Halogen)_2 P - CH \\ \ge P - NH \\ \ge P - O - CH_3$	$ \begin{array}{r} 12-22\\ 30-40\\ 14-20\\ 16-20\\ 10-28\\ 11-15 \end{array} $	(OCN)PF N-P F >P-CF	1310 1100–1200 60–90
$\geq P - O - CH_2 - R$ $\geq P - O - CHR_2$ $\geq P - SCH$ $\geq P - N - CH$ $\geq P - C - CH$	6-10 3-7 5-20 8-25 0-4	PF ortho meta para	0-60 1-7 0-3
ortho meta	7-10 2-4	Substituent group	J _{PF} , Hz
$O = PHR_{2}$ $O - PH(S)R$ $O_{2}PHR$ $O_{2}PH(N)$ $O_{2}PH(S \text{ or } Se)$ $O_{2}PH$	210-500 490-540 500-575 560-630 630-655 630-760	$ \begin{array}{c} -P' & axial \\ F & equatorial \\ O = P - CF \\ \downarrow \\ \end{array} $	600-860 800-1000 110-113
S(or Se) = P - H	490-650	O = P - F	980-1190
S(or Se)=PHR ₂ O=P-CH ₃	420-454 7-15	Substituent group	J _{PB} , Hz
0=P-CH=C	15-30	H_3B-P-N	80
O = P - CH - Aryl(or C = O)	15-30	Substituent group	$J_{\rm PP},{\rm Hz}$
(Halogen) ₂ P—N—CH	9-18	>P-P<	220-400
S=P-CH	11-15	$ \bigcirc = \stackrel{P}{P} - \stackrel{P}{P} = 0 $	330-500
$\geq P - CH_3^+$ $\geq P - H^+$	12–17 490–600	S=P-P=S	15-500

Substituent group	$J_{\rm PP},{\rm Hz}$	Substituent group	$J_{\rm PP},{\rm Hz}$
	ca 70	$0 = \stackrel{ }{P} - N - \stackrel{ }{P} = 0$	8-30
>P-0-P<	20-40	P-N N P	5–66
>P-S-P<	86-90	P-N	
0 = P - 0 - P = 0	15-25	P=N-P=N-	5-65

TABLE 7.74 Phosphorus-31 Spin Coupling Constants (Continued)

7.8 MASS SPECTROMETRY

7.8.1 Correlation of Mass Spectra with Molecular Structure

7.8.1.1 *Molecular Identification.* In the identification of a compound, the most important information is the molecular weight. The mass spectrometer is able to provide this information, often to four decimal places. One assumes that no ions heavier than the molecular ion form when using electron-impact ionization. The chemical ionization spectrum will often show a cluster around the nominal molecular weight.

Several relationships aid in deducing the empirical formula of the parent ion (and also molecular fragments). From the empirical formula hypothetical molecular structures can be proposed, using the entries in the formula indices of Beilstein and *Chemical Abstracts*.

7.8.1.2 Natural Isotopic Abundances. The relative abundances of natural isotopes produce peaks one or more mass units larger than the parent ion (Table 7.75*a*). For a compound $C_w H_x O_z N_y$, a formula allows one to calculate the percent of the heavy isotope contributions from a monoisotopic peak, P_M , to the P_{M+1} peak:

$$100 \frac{P_{M+1}}{P_M} = 0.015x + 1.11w + 0.37y + 0.037z$$

Tables of abundance factors have been calculated for all combinations of C, H, N, and O up to mass 500 (J. H. Beynon and A. E. Williams, *Mass and Abundance Tables for Use in Mass Spectrometry*, Elsevier, Amsterdam, 1963).

Compounds that contain chlorine, bromine, sulfur, or silicon are usually apparent from prominent peaks at masses 2, 4, 6, and so on, units larger than the nominal mass of the parent or fragment ion. For example, when one chlorine atom is present, the P + 2 mass peak will be about one-third the intensity of the parent peak. When one bromine atom is present, the P + 2 mass peak will be about the same intensity as the parent peak. The abundance of heavy isotopes is treated in terms of the binomial expansion $(a + b)^m$, where a is the relative abundance of the light isotope, b is the relative abundance of the heavy isotope, and m is the number of atoms of the particular element present in the molecule. If two bromine atoms are present, the binomial expansion is

$$(a+b)^2 = a^2 + 2ab + b^2$$

<i>(a)</i>	Abundances of son	ne polyisotopic eleme	ents, %	
Abundance	Element	Abundance	Element	Abundance
99.985	¹⁶ O	99.76	³³ S	0.76
0.015	¹⁷ O	0.037	³⁴ S	4.22
98.892	¹⁸ O	0.204	³⁵ Cl	75.53
1.108	²⁸ Si	92.18	³⁷ Cl	24.47
99.63	²⁹ Si	4.71	⁷⁹ Br	50.52
0.37	³⁰ Si	3.12	⁸¹ Br	49.48
	(b) Selected	d isotope masses		
Element	Mass	Element	Mass	
$^{1}\mathrm{H}$	1.0078	³¹ P	30.9738	
^{12}C	12.0000	³² S	31.9721	
^{14}N	14.0031	³⁵ Cl	34.9689	
¹⁶ O	15.9949	⁵⁶ Fe	55.9349	
¹⁹ F	18.9984	⁷⁹ Br	78.9184	
²⁸ Si	27.9769	^{127}I	126.9047	
	(a) Abundance 99.985 0.015 98.892 1.108 99.63 0.37 Element IH ¹² C ¹⁴ N ¹⁶ O ¹⁹ F ²⁸ Si	(a) Abundances of son Abundance Element 99.985 160 0.015 170 98.892 180 1.108 28Si 99.63 29Si 0.37 30Si (b) Selected Element Mass ¹ H 1.0078 ¹² C 12.0000 ¹⁴ N 14.0031 ¹⁶ O 15.9949 ¹⁹ F 18.9984 ²⁸ Si 27.9769	(a) Abundances of some polyisotopic element Abundance Element Abundance 99.985 ${}^{16}O$ 99.76 0.015 ${}^{17}O$ 0.037 98.892 ${}^{18}O$ 0.204 1.108 ${}^{28}Si$ 92.18 99.63 ${}^{29}Si$ 4.71 0.37 ${}^{30}Si$ 3.12 (b) Selected isotope masses Element Mass Element ${}^{14}H$ 1.0078 ${}^{31}P$ ${}^{12}C$ 12.0000 ${}^{32}S$ ${}^{14}N$ 14.0031 ${}^{35}Cl$ ${}^{16}O$ 15.9949 ${}^{56}Fe$ ${}^{19}F$ 18.9984 ${}^{79}Br$ ${}^{28}Si$ 27.9769 ${}^{127}I$	(a) Abundances of some polyisotopic elements, % Abundance Element Abundance Element 99.985 ${}^{16}O$ 99.76 ${}^{33}S$ 0.015 ${}^{17}O$ 0.037 ${}^{34}S$ 98.892 ${}^{18}O$ 0.204 ${}^{35}Cl$ 1.108 ${}^{28}Si$ 92.18 ${}^{37}Cl$ 99.63 ${}^{29}Si$ 4.71 ${}^{79}Br$ 0.37 ${}^{30}Si$ 3.12 ${}^{81}Br$ (b) Selected isotope masses Element Mass Element Mass ${}^{14}H$ 1.0078 ${}^{31}P$ 30.9738 ${}^{12}C$ 12.0000 ${}^{32}S$ 31.9721 ${}^{14}N$ 14.0031 ${}^{35}Cl$ 34.9689 ${}^{16}O$ 15.9949 ${}^{56}Fe$ 55.9349 ${}^{19}F$ 18.9984 ${}^{79}Br$ 78.9184 ${}^{28}Si$ 27.9769 ${}^{127}I$ 126.9047

TABLE 7.75 Isotopic Abundances and Masses of Selected Elements

Now substituting the percent abundance of each isotope (⁷⁹Br and ⁸¹Br) into the expansion,

 $(0.505)^2 + 2(0.505)(0.495) + (0.495)^2$ 0.255 + 0.500 + 0.250

gives

which are the proportions of P:(P+2):(P+4), a triplet that is slightly distorted from a 1:2:1 pattern. When two elements with heavy isotopes are present, the binomial expansion $(a + b)^m (c + b)^m ($ d)^{*n*} is used.

Sulfur-34 enhances the P + 2 peak by 4.2%; silicon-29 enhances the P + 1 peak by 4.7% and the P + 2 peak by 3.1%.

7.8.1.3 Exact Mass Differences. If the exact mass of the parent or fragment ions are ascertained with a high-resolution mass spectrometer, this relationship is often useful for combinations of C, H, N, and O (Table 7.75b):

> Exact mass difference from nearest integral $\frac{\text{mass} + 0.0051z - 0.0031y}{\text{mass} - 0.0051z} = \text{number of hydrogens}$ 0.0078

One substitutes integral numbers (guesses) for z (oxygen) and y (nitrogen) until the divisor becomes an integral multiple of the numerator within 0.0002 mass unit.

For example, if the exact mass is 177.0426 for a compound containing only C, H, O, and N (note the odd mass which indicates an odd number of nitrogen atoms), then

$$\frac{0.0426 + 0.0051z - 0.0031y}{0.0078} = 7$$
 hydrogen atoms

when z = 3 and y = 1. The empirical formula is C₉H₇NO₃ since

$$\frac{177 - 7(1) - 1(14) - 3(16)}{12} = 9$$
 carbon atoms

7.8.1.4 Number of Rings and Double Bonds. The total number of rings and double bonds can be determined from the empirical formula $(C_w H_x O_z N_v)$ by the relationship

$$\frac{1}{2(2w - x + y + z)}$$

when covalent bonds comprise the molecular structure. Remember the total number for a benzene ring is four (one ring and three double bonds); a triple bond has two.

7.8.1.5 General Rules

- 1. If the nominal molecular weight of a compound containing only C, H, O, and N is even, so is the number of hydrogen atoms it contains.
- **2.** If the nominal molecular weight is divisible by four, the number of hydrogen atoms is also divisible by four.
- **3.** When the nominal molecular weight of a compound containing only C, H, O, and N is odd, the number of nitrogen atoms must be odd.

7.8.1.6 *Metastable Peaks.* If the mass spectrometer has a field-free region between the exit of the ion source and the entrance to the mass analyzer, metastable peaks m^* may appear as a weak, diffuse (often humped-shape) peak, usually at a nonintegral mass. The one-step decomposition process takes the general form:

Original ion \rightarrow daughter ion + neutral fragment

The relationship between the original ion and daughter ion is given by

$$m^* = \frac{(\text{mass of daughter ion})^2}{\text{mass of original ion}}$$

For example, a metastable peak appeared at 147.9 mass units in a mass spectrum with prominent peaks at 65, 91, 92, 107, 108, 155, 172, and 200 mass units. Try all possible combinations in the above expression. The fit is given by

$$147.9 = \frac{(172)^2}{200}$$

which provides this information:

$$200^+ \rightarrow 172^+ + 28$$

The probable neutral fragment lost is either $CH_2 = CH_2$ or CO.

7.8.2 Mass Spectra and Structure

The mass spectrum is a fingerprint for each compound because no two molecules are fragmented and ionized in exactly the same manner on electron-impact ionization. In reporting mass spectra the data are normalized by assigning the most intense peak (denoted as base peak) a value of 100. Other peaks are reported as percentages of the base peak.

A very good general survey for interpreting mass spectral data is given by R. M. Silverstein, G. C. Bassler, and T. C. Morrill, *Spectrometric Identification of Organic Compounds*, 4th ed., Wiley, New York, 1981.

7.8.2.1 Initial Steps in Elucidation of a Mass Spectrum

- 1. Tabulate the prominent ion peaks, starting with the highest mass.
- **2.** Usually only one bond is cleaved. In succeeding fragmentations a new bond is formed for each additional bond that is broken.
- **3.** When fragmentation is accompanied by the formation of a new bond as well as by the breaking of an existing bond, a rearrangement process is involved. These will be even mass peaks when only C, H, and O are involved. The migrating atom is almost exclusively hydrogen; six-membered cyclic transition states are most important.
- **4.** Tabulate the probable groups that (*a*) give rise to the prominent charged ion peaks and (*b*) list the neutral fragments.

7.8.2.2 General Rules for Fragmentation Patterns

- 1. Bond cleavage is more probable at branched carbon atoms: tertiary > secondary > primary. The positive charge tends to remain with the branched carbon.
- 2. Double bonds favor cleavage beta to the carbon (but see rule 6).
- 3. A strong parent peak often indicates a ring.
- **4.** Saturated ring systems lose side chains at the alpha carbon. Upon fragmentation, two ring atoms are usually lost.
- 5. A heteroatom induces cleavage at the bond beta to it.
- **6.** Compounds that contain a carbonyl group tend to break at this group; the positive charge remains with the carbonyl portion.
- **7.** For linear alkanes, the initial fragment lost is an ethyl group (never a methyl group), followed by propyl, butyl, and so on. An intense peak at mass 43 suggests a chain longer than butane.
- **8.** The presence of Cl, Br, S, and Si can be deduced from the unusual isotopic abundance patterns of these elements. These elements can be traced through the positively charged fragments until the pattern disappears or changes due to the loss of one of these atoms to a neutral fragment.
- **9.** When unusual mass differences occur between some fragments ions, the presence of F (mass difference 19), I (mass difference 127), or P (mass difference 31) should be suspected.

7.8.2.3 Characteristic Low-Mass Fragment Ions

Mass 30 = Primary amines

Masses 31, 45, 59 = Alcohol or ether

Masses 19 and 31 = Alcohol

Mass 66 = Monobasic carboxylic acid

Masses 77 and 91 = Benzene ring

7.8.2.4 Characteristic Low-Mass Neutral Fragments from the Molecular Ion

Mass 18 (H₂O) = From alcohols, aldehydes, ketones Mass 19 (F) and 20 (HF) = Fluorides Mass 27 (HCN) = Aromatic nitriles or nitrogen heterocycles Mass 29 = Indicates either CHO or C_2H_5 Mass 30 = Indicates either CH₂O or NO Mass 33 (HS) and 34 (H₂S) = Thiols Mass 42 = CH₂CO via rearrangement from a methyl ketone or an aromatic acetate or an aryl-NHCOCH₃ group Mass 43 = C₃H₇ or CH₃CO Mass 45 = COOH or OC₂H₅

Table 7.76 is condensed, with permission, from the Catalog of Mass Spectral Data of the American Petroleum Institute Research Project 44. These, and other tables, should be consulted for further and more detailed information.

Included in the table are all compounds for which information was available through the C_7 compounds. The mass number for the five most important peaks for each compound are listed, followed in each case by the relative intensity in parentheses. The intensities in all cases are normalized to the *n*-butane 43 peak taken as 100. Another method for expressing relative intensities is to assign the base peak a value of 100 and express the relative intensities of the other peaks as a ratio to the base peak. Taking ethyl nitrate as an example, the tabulated values would be

Ethyl nitrate 91(0.01)(P) 46(100) 29(44.2) 30(30.5) 76(24.2)

The compounds are arranged in the table according to their molecular formulas. Each formula is arranged alphabetically, except that C is first if carbon occurs in the molecules, followed by H if it occurs. The formulas are then arranged alphabetically and according to increasing number of atoms of each kind, all C₄ compounds being listed before any C₅ compounds, and so on.

Nearly all these spectra have been recorded using 70-V electrons to bombard the sample molecules.

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks		
B ₂ H ₆	Diborane	28(0.13)	26(54)	27(52)	24(48)	25(30)
$B_3H_6N_3$	Triborine triamine	81(21)	80(58)	79(37)	53(29)	52(22)
B ₅ H ₉	Pentaborane	64(15)	59(30)	60(30)	62(24)	61(21)
CBrClF ₂	Difluorochlorobromomethane	164(0.23)	85(86)	87(27)	129(17)	131(16)
CBr_2F_2	Difluorodibromomethane	208(1.7)	129(70)	131(68)	79(18)	31(18)
CCl_2F_2	Difluorodichloromethane	120(0.07)	85(33)	87(11)	50(3.9)	101(2.8)
CCl ₃ F	Fluorotrichloromethane	136(0.04)	101(54)	103(35)	66(7.0)	35(5.8)
CCl ₄	Tetrachloromethane	152(0.0)	117(39)	119(37)	35(16)	47(16)
CF ₃ I	Trifluoroiodomethane	196(51)	196(51)	127(49)	69(40)	177(16)
CF_4	Tetrafluoromethane	88(0.0)	69(57)	50(6.8)	19(3.9)	31(2.8)
CHBrClF	Fluorochlorobromomethane	148(5.5)	67(120)	69(38)	31(13)	111(11)
CHBrF ₂	Difluorobromomethane	130(13)	51(83)	31(18)	132(13)	79(13)
CHCl ₃	Trichloromethane	118(1.3)	83(69)	85(44)	47(24)	35(13)
CHF ₃	Trifluoromethane	70(0.25)	69(20)	51(18)	31(9.9)	50(2.9)
CHN	Hydrogen cyanide	27(92)	27(92)	26(15)	12(3.8)	28(1.6)
CH ₂ ClF	Fluorochloromethane	68(48)	68(48)	33(25)	70(15)	49(11)
CH ₂ Cl ₂	Dichloromethane	84(41)	49(71)	86(26)	51(21)	47(13)
CH ₂ F ₂	Difluoromethane	52(2.7)	33(26)	51(25)	31(7.3)	32(2.9)
CH ₂ O	Methanal (formaldehvde)	30(19)	29(21)	28(6.6)	14(0.94)	13(0.92)
CH ₂ O ₂	Methanoic acid (formic)	46(72)	29(118)	45(56)	28(20)	17(20)
CH ₂ Cl	Chloromethane	50(66)	50(66)	15(54)	52(21)	49(6.6)
CH ₃ F	Monofluoromethane	34(29)	15(31)	33(28)	14(5.3)	31(3.2)
CHAI	Indomethane	142(78)	142(78)	127(29)	141(11)	15(10)
CH ₂ NO ₂	Nitromethane	61(35)	30(65)	15(34)	46(23)	29(5.3)
CH	Methane	16(67)	16(67)	15(58)	14(11)	13(5.5)
CHLO	Methanol	32(26)	31(38)	29(25)	28(2.4)	18(0.7)
CH.S	Methanethiol	48(49)	47(65)	45(40)	46(9.5)	15(8.9)
CH ₄ D	Aminomethane (methylamine)	31(30)	30(53)	28(47)	29(8.7)	27(8.6)
CO	Carbon monovide	28(78)	28(78)	12(3.7)	16(1.3)	29(0.9)
COS	Carbonyl sulfide	60(83)	60(83)	32(48)	28(6.9)	12(5.0)
CO	Carbon dioxide	44(76)	44(76)	28(5.0)	16(4.7)	12(3.0) 12(1.0)
	Carbon disulfide	76(184)	76(184)	32(40)	10(117)	78(16)
	Tetrafluoroethene	100(20)	31(47)	81(34)	50(14)	12(3.6)
$C_2 \Gamma_4$	Hexafluoroethane	138(0.14)	69(95)	110(30)	31(17)	50(9.6)
$C_2 \Gamma_6$	Hexafluorodimethylmercury	340(0.83)	69(111)	202(26)	271(22)	200(21)
$C_2 r_6 r_6 r_6$	Ethype	26(102)	26(102)	25(20)	271(22) 24(5.7)	13(5.7)
$C_2 \Pi_2$	Chloroethanenitrile	20(102)	20(102) 75(51)	23(20)	40(23)	77(16)
$C_2 H_2 C H_1$	cis 1.2 Dichloroethene	06(53)	61(72)	98(34)	63(23)	26(22)
$C_2\Pi_2CI_2$	trans 1.2 Dichloroethene	90(33)	61(72)	98(34)	26(25)	63(22)
$C_2 \Pi_2 C \Pi_2$	1 1 2 2 Tatrachloroothana	166(5.0)	82(05)	98(<i>32</i>) 85(60)	20(23)	03(23) 87(07)
$C_2 \Pi_2 C I_4$	1,1,2,2-Tetrachioroethane	64(22)	64(22)	85(00) 45(21)	93(11) 21(16)	07(9.7)
$C_2 \Pi_2 \Gamma_2$	1,1-Diffuoroethere	122(0,0)	04(32)	43(21)	51(10)	33(13) 117(7,1)
$C_2 \Pi_3 C \Pi_3$	1,1,2 Trichloroothone	132(0.0) 122(2.0)	97(37) 07(42)	99(24)	01(19) 00(27)	11/(/.1) 95(26)
$C_2 \Pi_3 C_3$	1,1,2-Themorethane	132(3.9) 84(0.04)	97(43) 60(91)	65(41)	99(27) 15(12)	45(10)
$C_2 \Pi_3 \Gamma_3$	Fthenenitrile	04(0.94)	41(80)	40(46)	13(13) 20(17)	43(10)
C_2H_3N	Ethana (athylanc)	41(89)	41(89)	40(40)	39(17)	38(10)
C_2H_4	Luiene (einyiene)	28(00)	28(00)	27(43)	20(41)	25(7.8)
C_2H_4BfCl	1-Chloro-2-promoethane	142(7.9)	03(93)	27(82)	65(30)	26(24)
$C_2H_4Br_2$	1,2-Dibromoethane	180(1.0)	27(93)	10/(72)	109(67)	26(23)
$C_2H_4Cl_2$	1,1-Dichloroethane	98(5.7)	63(89)	27(64)	65(28)	26(21)

TABLE 7.76 Condensed Table of Mass Spectra

TABLE 7.76	Condensed	Table	of Mass	Spectra	(Continued)
-------------------	-----------	-------	---------	---------	-------------

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three no	Three next most intense peaks		
C ₂ H ₄ Cl ₂	1,2-Dichloroethane	98(1.7)	62(12)	27(11)	49(4.9)	64(3.9)	
$C_2H_4N_2$	Diazoethane	56(16)	28(27)	27(25)	26(21)	41(5.2)	
C_2H_4O	Ethanal (acetaldehyde)	44(30)	29(66)	43(18)	42(6.1)	26(6.1)	
C_2H_4O	Ethylene oxide	44(30)	29(46)	15(30)	14(12)	43(7.1)	
$C_2H_4O_2$	Ethanoic acid (acetic)	60(19)	43(37)	45(33)	15(21)	14(8.0)	
$C_2H_4O_2$	Methyl formate	60(27)	31(96)	29(60)	32(33)	28(6.8)	
C_2H_5Br	Bromoethane	108(35)	29(54)	27(48)	110(33)	26(16)	
C ₂ H ₅ Cl	Chloroethane	64(36)	64(36)	28(32)	29(30)	27(27)	
C_2H_5F	Fluoroethane	48(2.4)	47(24)	27(8.9)	33(8.2)	26(3.0)	
C_2H_5N	Ethylenimine	43(31)	42(56)	28(44)	15(20)	41(11)	
C ₂ H ₅ NO ₂	Nitroethane	75(0.0)	29(85)	27(74)	30(19)	26(11)	
$C_2H_5NO_3$	Ethyl nitrate	91(0.01)	46(95)	29(42)	30(29)	76(23)	
C_2H_6	Ethane	30(26)	28(99)	27(33)	26(23)	29(21)	
C ₂ H ₆ O	Ethanol	46(9.7)	31(63)	45(22)	29(14)	27(14)	
C_2H_6O	Dimethyl ether	46(32)	45(71)	29(56)	15(41)	14(8.9)	
$C_2H_6O_2$	Dimethyl peroxide	62(28)	29(47)	31(45)	15(16)	30(12)	
C_2H_6S	2-Thiapropane	62(56)	47(69)	45(42)	46(29)	35(24)	
C ₂ H ₆ S	Ethanethiol	62(44)	62(44)	29(43)	47(36)	27(35)	
$C_2H_6S_2$	2,3-Dithiabutane	94(95)	94(95)	45(59)	79(56)	46(34)	
C ₂ H ₆ S ₃	2,3,4-Trithiapentane	126(54)	126(54)	45(32)	79(27)	47(19)	
C ₂ H ₇ N	Aminoethane (ethylamine)	45(18)	30(96)	28(28)	44(19)	27(13)	
C ₂ H ₇ N	N-Methylaminomethane	45(36)	44(71)	28(48)	15(14)	42(13)	
$C_{2}H_{8}N_{2}$	1,2-Diaminoethane	60(2.7)	30(111)	18(14)	42(6.9)	43(5.9)	
C_3F_6	Hexafluoropropene	150(16)	31(56)	69(44)	131(41)	100(20)	
C_3F_8	Octafluoropropane	188(0.0)	69(171)	31(49)	169(42)	50(16)	
C ₃ H ₃ N	Propenenitrile	53(55)	26(55)	52(41)	51(18)	27(10)	
C ₃ H ₄	Propadiene	40(72)	40(72)	39(69)	38(29)	37(23)	
$C_{3}H_{4}$	Propyne (methylacetylene)	40(79)	40(79)	39(73)	38(29)	37(22)	
C ₃ H ₄ ClN	3-Chloropropanenitrile	89(12)	49(68)	54(54)	51(29)	26(20)	
C ₃ H ₄ O	Propenal (acrolein)	56(16)	27(25)	26(15)	28(13)	55(11)	
C ₃ H ₅ Cl	1-Chloro-1-propene	76(30)	41(70)	39(43)	40(10)	78(9.6)	
C ₃ H ₅ ClO	3-Chloro-1,2-epoxypropane	92(0.19)	57(55)	27(53)	29(40)	31(21)	
C ₃ H ₅ ClO ₂	Methyl chloroacetate	109(0.23)	59(56)	49(44)	15(43)	29(37)	
C ₃ H ₅ Cl ₃	1,2,3-Trichloropropane	146(0.71)	75(61)	110(22)	77(19)	61(18)	
C ₂ H ₅ N	Propanenitrile	55(8.3)	28(83)	54(51)	26(17)	27(15)	
C ₂ H ₆	Cyclopropane	42(64)	42(64)	41(58)	39(44)	27(23)	
C ₂ H ₆	Propene	42(39)	41(58)	39(41)	27(22)	40(17)	
C ₂ H ₆ Cl ₂	1.1-Dichloropropane	112(0.0)	63(27)	41(25)	77(22)	62(19)	
C ₂ H ₂ Cl ₂	1.2-Dichloropropane	112(2.6)	63(51)	62(36)	27(29)	41(25)	
C ₂ H ₂ O	1-Propen-3-ol (allyl alc.)	58(12)	57(43)	29(34)	31(26)	27(19)	
C ₂ H ₂ O	Propanal	58(25)	29(66)	28(46)	27(38)	26(14)	
C ₂ H ₂ O	Propanone (acetone)	58(24)	43(85)	15(26)	27(5.9)	42(5.9)	
C.H.O	1.2-Epoxypropane	58(19)	28(44)	29(30)	27(28)	26(18)	
C.H.O.	1.3-Dioxolane	74(3.1)	73(52)	43(36)	44(30)	29(30)	
C ₂ H ₂ O ₂	Propanoic acid	74(27)	28(34)	29(28)	27(21)	45(19)	
C ₂ H ₂ O ₂	Ethyl formate	74(5.8)	31(82)	28(60)	29(54)	27(36)	
C ₂ H ₂ O ₂	Methyl acetate	74(22)	43(148)	29(16)	42(15)	59(8.4)	
C.H.O.	Methyl carbonate	90(3.3)	15(93)	45(54)	29(43)	31(34)	
$C_{3}H_{7}Br$	1-Bromopropane	122(14)	43(94)	27(55)	41(47)	39(22)	
5 ,	· · · · · · · · · · · · · · · · · · ·	=(- ·/	/		()	(==)	

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three no	ext most inte	nse peaks
C ₃ H ₇ Br	2-Bromopropane	122(11)	43(100)	27(50)	41(47)	39(24)
C ₃ H ₇ Cl	1-Chloropropane	78(3.6)	42(60)	29(27)	27(22)	41(14)
C ₃ H ₇ Cl	2-Chloropropane	78(14)	43(58)	27(20)	63(15)	41(13)
C ₃ H ₇ F	2-Fluoropropane	62(1.0)	47(84)	46(24)	61(12)	27(7.6)
C ₃ H ₇ N	2-Methylethylenimine	57(22)	28(76)	56(34)	30(24)	29(19)
C ₃ H ₇ N	N-Methylethylenimine	57(31)	42(94)	15(46)	28(25)	27(17)
C ₃ H ₇ NO	N,N-Dimethylformamide	73(54)	44(63)	42(29)	28(25)	15(24)
C ₃ H ₇ NO ₂	1-Nitropropane	89(0.0)	43(68)	27(67)	41(58)	39(24)
C ₃ H ₇ NO ₂	2-Nitropropane	89(0.0)	43(75)	41(55)	27(53)	39(23)
C ₃ H ₈	Propane	44(25)	29(85)	28(50)	27(33)	43(19)
C ₃ H ₈ O	1-Propanol	60(7.2)	31(115)	27(18)	29(17)	59(10)
C ₃ H ₈ O	2-Propanol	60(0.45)	45(112)	43(19)	27(18)	29(11)
C ₃ H ₈ O	Methyl ethyl ether	60(24)	45(94)	29(46)	15(23)	27(19)
C ₃ H ₈ O ₂	Dimethoxymethane	76(1.6)	45(117)	29(51)	75(51)	15(48)
C ₃ H ₈ O ₂	2-Methoxy-1-ethanol	76(7.3)	45(122)	29(44)	15(38)	31(32)
C ₃ H ₈ S	2-Thiabutane	76(47)	61(73)	48(40)	47(30)	27(27)
C ₃ H ₈ S	1-Propanethiol	76(30)	47(43)	43(34)	27(34)	41(32)
C ₃ H _o S	2-Propanethiol	76(41)	43(65)	41(44)	27(41)	61(26)
C ₂ H ₀ N	1-Aminopropane	59(1.5)	30(20)	28(2.5)	27(1.3)	41(1.0)
C ₂ H ₀ N	Trimethylamine	59(37)	58(95)	42(44)	15(32)	30(17)
C ₂ H ₁₂ B ₂ N ₂	B, B', B''-Trimethylborazole	123(30)	108(102)	107(77)	67(38)	66(34)
C ₄ F ₆	Hexafluorocyclobutene	162(21)	93(80)	31(51)	143(15)	74(6.9)
C_4F_6	Hexafluoro-1,3-butadiene	162(27)	93(90)	31(45)	74(10)	112(10)
C ₄ F ₆	Hexafluoro-2-butyne	162(18)	93(47)	143(38)	31(25)	69(20)
C₄F.	Octafluorocyclobutane	200(0.12)	100(97)	131(84)	31(53)	69(24)
C₄F.	Octafluoromethylpropene	200(14)	69(74)	181(54)	31(44)	93(22)
C₄F.	Octafluoro-1-butene	200(11)	131(122)	31(86)	69(44)	93(16)
C_4F_{10}	Decafluorobutane	238(0.0)	69(178)	119(33)	31(22)	100(15)
C ₄ HF ₇ O ₂	Heptafluorobutanoic acid	214(0.0)	45(26)	69(24)	119(17)	100(14)
C ₄ H ₂	1.3-Butadivne	50(133)	50(133)	49(57)	48(14)	25(12)
C ₁ H ₁	1-Buten-3-vne	52(55)	52(55)	51(28)	50(23)	49(7.2)
C ₄ H ₄ O	Furan	68(36)	39(58)	38(9.7)	29(9.3)	40(6.7)
C ₄ H ₄ S	Thiophene	84(93)	84(93)	58(56)	45(49)	39(24)
$C_4H_4S_2$	2-Thiophenethiol	116(68)	116(68)	71(64)	45(31)	39(11)
C ₄ H ₅ N	3-Butenenitrile	67(27)	41(80)	39(36)	27(30)	40(20)
C ₄ H ₅ N	Pyrrole	67(67)	67(67)	39(46)	41(42)	40(36)
C ₄ H ₆	1,2-Butadiene	54(65)	54(65)	27(35)	53(29)	39(28)
C ₄ H ₆	1,3-Butadiene	54(46)	39(53)	27(36)	53(31)	28(24)
C ₄ H ₆	1-Butyne	54(64)	54(64)	39(49)	53(27)	27(26)
C ₄ H ₆	2-Butyne	54(93)	54(93)	27(42)	53(41)	39(24)
C ₄ H ₆ Cl ₂ O ₂	Ethyl dichloroacetate	156(0.12)	29(192)	27(58)	83(23)	28(19)
$C_4H_6O_2$	2,3-Butanedione	86(13)	43(118)	15(40)	14(12)	42(8.6)
C ₄ H ₂ O ₂	Methyl 2-propenoate	86(2.0)	55(98)	27(66)	15(27)	26(22)
C ₄ H ₇ BrO ₂	2-Bromoethyl acetate	166(0.03)	43(158)	27(35)	106(31)	108(30)
C ₄ H ₇ Cl	2-Chloro-2-butene	90(27)	55(68)	27(21)	39(21)	29(18)
C ₄ H ₇ ClO ₂	2-Chloroethyl acetate	122(0.0)	43(162)	73(43)	15(36)	27(29)
C ₄ H ₇ ClO ₂	Ethyl chloroacetate	122(0.96)	29(130)	27(41)	77(37)	49(29)
C ₄ H ₇ N	2-Methylpropanenitrile	69(1.7)	42(79)	68(38)	28(26)	54(19)
C_4H_7N	<i>n</i> -Butanenitrile	69(0.15)	41(112)	29(70)	27(38)	28(11)

TABLE 7.76 Condensed Table of Mass Spectra (Continued)

TABLE 7.76	Condensed	Table	of Mass	Spectra	(Continued)
-------------------	-----------	-------	---------	---------	-------------

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks			
C ₄ H ₈	Cyclobutane	56(41)	28(65)	41(58)	27(27)	26(15)	
C_4H_8	2-Methylpropene	56(36)	41(85)	39(37)	28(18)	27(17)	
C_4H_8	1-Butene	56(32)	41(87)	39(30)	27(26)	28(26)	
C_4H_8	cis-2-Butene	56(36)	41(76)	39(27)	27(25)	28(24)	
C_4H_8	trans-2-Butene	56(37)	41(80)	27(27)	39(26)	28(26)	
$C_4H_8Cl_2$	1,2-Dichlorobutane	126(0.30)	41(39)	77(35)	27(20)	76(16)	
$C_4H_8Cl_2$	1,4-Dichlorobutane	126(0.03)	55(87)	41(29)	27(24)	90(23)	
$C_4H_8Cl_2$	dl-2,3-Dichlorobutane	126(0.95)	63(63)	62(58)	27(57)	55(29)	
$C_4H_8Cl_2$	meso-2,3-Dichlorobutane	126(0.95)	63(64)	27(57)	62(54)	55(31)	
$C_4H_8N_2$	Acetaldazine	84(23)	42(92)	15(47)	28(46)	69(38)	
C_4H_8O	Butanal	72(19)	27(41)	29(38)	44(34)	43(32)	
C_4H_8O	2-Butanone	72(17)	43(97)	29(24)	27(15)	57(6.0)	
C_4H_8O	Ethyl ethenyl ether	72(27)	44(64)	43(56)	29(49)	27(43)	
C_4H_8O	cis-2,3-Epoxybutane	72(3.6)	43(67)	44(39)	27(35)	29(33)	
C_4H_8O	trans-2,3-Epoxybutane	72(3.5)	43(69)	44(35)	29(32)	27(31)	
C_4H_8O	Tetrahydrofuran	72(22)	42(76)	41(39)	27(25)	71(20)	
$C_4H_8O_2$	2-Methyl-1,3-dioxacyclopentane	88(0.33)	73(67)	43(48)	45(44)	29(34)	
$C_4H_8O_2$	1,4-Dioxane	88(42)	28(138)	29(51)	58(33)	31(24)	
$C_4H_8O_2$	2-Methylpropanoic acid	88(8.1)	43(77)	41(33)	27(26)	73(19)	
$C_4H_8O_2$	n-Butanoic acid	88(1.0)	60(40)	73(12)	27(9.6)	41(9.1)	
$C_4H_8O_2$	<i>n</i> -Propyl formate	88(0.41)	31(123)	42(89)	29(38)	27(36)	
$C_4H_8O_2$	Ethyl acetate	88(7.1)	43(181)	29(46)	45(24)	27(24)	
$C_4H_8O_2$	Methyl propanoate	88(23)	29(110)	57(83)	27(40)	59(27)	
C_4H_8S	3-Methylthiacyclobutane	88(42)	46(101)	45(31)	39(24)	47(21)	
C_4H_8S	Thiacyclopentane	88(44)	60(82)	45(29)	46(29)	47(22)	
C ₄ H ₉ Br	1-Bromobutane	136(7.0)	57(86)	41(63)	29(50)	27(46)	
C_4H_9Br	2-Bromobutane	136(0.72)	57(108)	41(65)	29(61)	27(36)	
C ₄ H ₉ N	Pyrrolidine	71(24)	43(102)	28(38)	70(33)	42(20)	
$C_4H_9NO_2$	<i>n</i> -Butyl nitrite	103(0.0)	27(55)	43(54)	41(50)	30(47)	
C_4H_{10}	2-Methylpropane	58(3.2)	43(117)	41(45)	42(39)	27(33)	
C_4H_{10}	<i>n</i> -Butane	58(12)	43(100)	29(44)	27(37)	28(33)	
$C_4H_{10}Hg$	Diethylmercury	260(12)	29(188)	27(54)	28(21)	231(15)	
$C_4H_{10}O$	2-Methyl-1-propanol	74(7.5)	43(84)	31(56)	42(48)	41(47)	
$C_4H_{10}O$	2-Methyl-2-propanol	74(0.0)	59(92)	31(31)	41(19)	43(14)	
$C_4H_{10}O$	1-Butanol	74(0.37)	31(52)	56(44)	41(31)	43(30)	
$C_4H_{10}O$	2-Butanol	74(0.30)	45(116)	31(23)	59(22)	27(20)	
$C_4H_{10}O$	Diethyl ether	74(22)	31(73)	59(34)	29(29)	45(28)	
$C_4H_{10}O$	Methyl isopropyl ether	74(8.3)	59(126)	29(42)	43(37)	15(32)	
$C_4H_{10}O_2$	1,1-Dimethoxyethane	90(0.06)	59(93)	29(52)	15(37)	31(37)	
$C_4H_{10}O_2$	1,2-Dimethoxyethane	90(12)	45(177)	29(53)	15(50)	60(16)	
$C_4H_{10}O_2$	2-Ethoxyethanol	90(0.49)	31(112)	29(57)	59(56)	27(31)	
$C_4H_{10}O_2$	Diethyl peroxide	90(20)	29(116)	15(42)	45(34)	62(30)	
$C_4H_{10}S$	3-Methyl-2-thiabutane	90(41)	41(49)	75(47)	43(41)	48(38)	
$C_4H_{10}S$	2-Thiapentane	90(58)	61(126)	48(50)	41(43)	27(43)	
$C_4H_{10}S$	3-Thiapentane	90(41)	75(59)	47(51)	27(39)	61(33)	
$C_4H_{10}S$	2-Methyl-1-propanethiol	90(35)	41(60)	43(46)	56(34)	47(29)	
$C_4H_{10}S$	2-Methyl-2-propanethiol	90(34)	41(68)	57(61)	29(44)	39(21)	
$C_4H_{10}S$	1-Butanethiol	90(40)	56(74)	41(65)	27(42)	47(31)	
$C_4H_{10}S$	2-Butanethiol	90(34)	41(56)	57(50)	61(46)	29(46)	

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks			
$C_4H_{10}S_2$	2,3-Dithiahexane	122(37)	80(53)	43(36)	41(27)	27(25)	
$C_4H_{10}S_2$	3,4-Dithiahexane	122(73)	29(82)	66(81)	27(57)	94(53)	
$C_4H_{10}SO_3$	Ethyl sulfite	138(3.3)	29(131)	31(59)	45(42)	27(39)	
$C_4H_{11}N$	N-Ethylaminoethane	73(17)	58(83)	30(81)	28(30)	27(24)	
$C_4H_{11}N$	1-Amino-2-methylpropane	73(1.0)	30(22)	28(2.0)	41(1.2)	27(1.1)	
$C_4H_{11}N$	2-Amino-2-methylpropane	73(0.25)	58(127)	41(26)	42(20)	15(18)	
$C_4H_{11}N$	1-Aminobutane	73(12)	30(200)	28(23)	27(16)	18(12)	
$C_4H_{11}N$	2-Aminobutane	73(1.2)	44(170)	18(25)	41(18)	58(18)	
$C_4H_{12}Pb$	Tetramethyllead	268(0.14)	253(69)	223(59)	208(46)	251(36)	
$C_{5}F_{10}$	Decafluorocyclopentane	250(0.62)	131(173)	100(41)	31(40)	69(28)	
$C_{5}F_{12}$	Dodecafluoro-2-methylbutane	288(0.0)	69(277)	119(45)	131(23)	31(18)	
$C_{5}F_{12}$	Dodecafluoropentane	288(0.08)	69(259)	119(76)	169(25)	31(24)	
C ₅ HF ₉	Nonafluorocyclopentane	232(0.07)	131(61)	113(49)	69(34)	31(19)	
C ₅ H ₅ N	Pyridine	79(135)	79(135)	52(95)	51(48)	50(35)	
C ₅ H ₆	Cyclopentadiene	66(95)	66(95)	65(40)	39(35)	40(30)	
C ₅ H ₆	trans-2-Penten-4-yne	66(77)	66(77)	39(54)	65(38)	40(35)	
C ₅ H ₆ N ₂	2-Methylpyrazine	94(81)	94(81)	67(48)	26(33)	39(30)	
C ₅ H ₆ O ₂	Furfuryl alcohol	98(3.4)	98(3.4)	41(3.3)	39(3.3)	42(2.6)	
C ₅ H ₆ S	2-Methylthiophene	98(68)	97(125)	45(26)	39(17)	53(11)	
C ₅ H ₆ S	3-Methylthiophene	98(74)	97(138)	45(35)	39(14)	27(11)	
C ₄ H.	Methylenecyclobutane	68(38)	40(67)	67(48)	39(47)	53(21)	
C ₂ H ₀	Spiropentane	68(8,9)	67(58)	40(56)	39(52)	53(23)	
C ₅ H _°	Cyclopentene	68(41)	67(99)	39(36)	53(23)	41(19)	
C ₄ H.	3-Methyl-1.2-butadiene	68(53)	68(53)	53(40)	39(28)	41(26)	
C ₄ H.	2-Methyl-1.3-butadiene	68(40)	67(48)	53(41)	39(34)	27(23)	
C _c H _o	1.2-Pentadiene	68(39)	68(39)	53(38)	39(37)	27(31)	
C ₂ H ₀	cis-1.3-Pentadiene	68(40)	67(53)	39(43)	53(38)	41(25)	
C _e H.	trans-1.3-Pentadiene	68(41)	67(52)	39(43)	53(39)	41(26)	
C _c H _o	1.4-Pentadiene	68(40)	39(47)	67(35)	53(33)	41(30)	
C _c H _o	2.3-Pentadiene	68(62)	68(62)	53(42)	39(36)	41(31)	
C ₂ H ₀	3-Methyl-1-butyne	68(8.5)	53(74)	67(45)	27(35)	39(21)	
C _c H _o	1-Pentyne	68(8.7)	67(50)	40(44)	39(42)	27(34)	
C _c H _o	2-Pentyne	68(67)	68(67)	53(61)	39(32)	27(27)	
C _c H _o N _o	3 5-Dimethylpyrazole	96(47)	96(47)	95(37)	39(16)	54(12)	
C.H.O.	2.4-Pentanedione	100(22)	43(120)	85(33)	15(23)	27(11)	
C-H ₂ O ₂	2-Propenyl acetate	100(0.16)	43(177)	41(30)	39(29)	15(28)	
C-H ₂ O ₂	Methyl methacrylate	100(26)	41(78)	69(52)	39(31)	15(16)	
$C_{2}H_{8}ClO_{2}$	Ethyl 3-chloropropanoate	136(0.70)	27(65)	29(62)	91(42)	63(37)	
C.H.	cis-1 2-Dimethylcyclopropane	70(39)	55(77)	42(35)	39(32)	41(32)	
$C_{5}\Pi_{10}$	trans_1.2 Dimethylcyclopropane	70(32)	55(79)	42(33)	41(33)	30(30)	
$C_{5}\Pi_{10}$	Ethylcyclopropane	70(42)	42(93)	55(47)	41(30)	30(35)	
$C_{5}\Pi_{10}$	Cyclopentane	70(20)	42(148)	55(43)	41(33)	30(31)	
$C_{5}\Pi_{10}$	2-Methyl-1-butene	70(30)	55(97)	42(36)	30(34)	$\frac{37(31)}{41(28)}$	
$C_{5}\Pi_{10}$	3 Methyl 1 butene	70(36)	55(102)	$\frac{1}{27(31)}$	42(28)	-1(20) 20(27)	
$C_{5}\Pi_{10}$	2 Mothyl 2 butono	70(20)	55(99)	$\frac{27(31)}{41(21)}$	$\frac{1}{2}(28)$	$\frac{2}{27(27)}$	
С Н	2-iviculyi-2-buicht	70(31)	12(80)	55(53)	J7(20) A1(30)	+2(27) 30(31)	
С H	cis 2 Dentene	70(27)	+2(09) 55(80)	42(41)	30(30)	20(26)	
С Н	$trans_2$ -rentene	70(30)	55(02)	42(41)	30(30)	29(20) A1(28)	
С Н О	3-Methyl_1-butapal	86(3.0)	A1(20)	13(26)	58(20)	70(20)	
U51110U	J INIGHTY1-1-DURAHAI	00(0.0)	T1(JU)	TJ(20)	JU(20)	2 J (20)	

TABLE 7.76 Condensed Table of Mass Spectra (Continued)

TABLE 7.76	Condensed	Table	of Mass	Spectra	(Continued)
-------------------	-----------	-------	---------	---------	-------------

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak 43(106)	Three next most intense peaks			
C ₅ H ₁₀ O	2-Pentanone	86(16)		29(23)	27(23)	57(20)	
$C_5H_{10}O$	3-Pentanone	86(15)	57(87)	29(87)	27(32)	28(9.4)	
$C_5H_{10}O$	Ethyl-2-propenyl ether	86(6.2)	41(52)	29(48)	58(44)	57(42)	
$C_5H_{10}O$	Ethyl isopropyl ether	86(21)	43(87)	44(69)	41(46)	27(45)	
$C_5H_{10}O$	2-Methyltetrahydrofuran	86(8.9)	71(57)	43(55)	41(40)	27(27)	
$C_5H_{10}O_2$	Tetrahydrofurfuryl alcohol	102(0.02)	71(8.9)	43(6.8)	41(4.8)	27(3.8)	
$C_5H_{10}O_2$	2-Methoxyethyl ethenyl ether	102(3.0)	29(69)	45(58)	15(48)	58(45)	
$C_5H_{10}O_2$	2,2-Dimethylpropanoic acid	102(2.0)	57(83)	41(38)	29(27)	39(12)	
$C_5H_{10}O_2$	2-Methylbutanoic acid	102(0.32)	74(54)	57(34)	29(33)	41(28)	
$C_5H_{10}O_2$	<i>n</i> -Butyl formate	102(0.27)	56(80)	41(48)	31(47)	29(42)	
$C_5H_{10}O_2$	Isobutyl formate	102(0.27)	43(58)	56(48)	41(46)	31(38)	
$C_5H_{10}O_2$	sec-Butyl formate	102(0.17)	45(99)	29(49)	27(32)	41(31)	
$C_5H_{10}O_2$	<i>n</i> -Propyl acetate	102(0.07)	43(176)	61(34)	31(31)	27(26)	
$C_5 H_{10} O_2$	Isopropyl acetate	102(0.17)	43(155)	45(50)	27(22)	61(18)	
$C_5H_{10}O_2$	Ethyl propanoate	102(10)	29(151)	57(97)	27(52)	28(24)	
$C_5H_{10}O_2$	Methyl 2-methylpropanoate	102(8.9)	43(69)	71(23)	41(19)	59(17)	
$C_5H_{10}O_2$	Methyl butanoate	102(1.0)	43(53)	74(37)	71(29)	27(23)	
$C_{5}H_{10}O_{3}$	Ethyl carbonate	118(0.30)	29(114)	45(80)	31(60)	27(46)	
$C_5H_{10}S$	2-Methylthiacyclopentane	102(37)	87(88)	41(30)	45(29)	59(18)	
$C_5H_{10}S$	3-Methylthiacyclopentane	102(40)	60(45)	41(31)	45(25)	74(23)	
$C_5H_{10}S$	Thiacyclohexane	102(43)	87(44)	68(33)	61(32)	41(28)	
C ₅ H ₁₀ S	Cyclopentanethiol	102(19)	41(48)	69(47)	39(26)	67(18)	
C ₅ H ₁₁ N	Piperidine	85(22)	84(43)	57(22)	56(22)	44(17)	
C ₅ H ₁₁ NO	<i>N</i> -Methylmorpholine	101(4.4)	43(18)	42(8.6)	15(3.4)	71(2.9)	
$C_5H_{11}NO_2$	3-Methylbutyl nitrite	117(0.0)	29(75)	41(68)	57(43)	30(42)	
C ₅ H ₁₂	2,2-Dimethylpropane	72(0.01)	57(126)	41(52)	29(49)	27(20)	
C ₅ H ₁₂	2-Methylbutane	72(4.7)	43(74)	42(64)	41(49)	57(40)	
$C_{5}H_{12}^{12}$	<i>n</i> -Pentane	72(10)	43(114)	42(66)	41(45)	27(39)	
C ₅ H ₁₂ O	2-Methyl-1-butanol	88(0.18)	57(57)	29(55)	41(53)	56(50)	
C ₅ H ₁₂ O	3-Methyl-1-butanol	88(0.02)	55(47)	42(42)	43(39)	41(38)	
C ₅ H ₁₂ O	2-Methyl-2-butanol	88(0.0)	59(43)	55(37)	45(25)	73(22)	
C _e H ₁₂ O	1-Pentanol	88(0.0)	42(41)	55(30)	41(25)	70(23)	
C _e H ₁₂ O	Methyl <i>n</i> -butyl ether	88(3.1)	45(211)	56(36)	29(36)	27(28)	
C ₅ H ₁₂ O	Methyl isobutyl ether	88(12)	45(186)	41(30)	29(30)	15(27)	
C ₆ H ₁₀ O	Methyl <i>sec</i> -butyl ether	88(2.0)	52(142)	29(50)	27(27)	41(25)	
C ₆ H ₁₂ O	Methyl <i>tert</i> -butyl ether	88(0.02)	73(119)	41(33)	43(32)	57(32)	
C ₆ H ₁₂ O	Ethyl isopropyl ether	88(2.6)	45(143)	43(46)	73(40)	27(24)	
C ₆ H ₁₂ O ₂	Diethoxymethane	104(2.1)	31(104)	59(99)	29(62)	103(39)	
C.H.O.	1.1-Dimethoxypropane	104(0.05)	75(84)	73(62)	29(43)	45(37)	
C ₂ H ₁₂ O ₂	3 3-Dimethyl-2-thiabutane	104(30)	57(83)	41(62)	29(42)	39(16)	
C ₂ H ₁₂ S	4-Methyl-2-thiapentane	104(37)	41(46)	56(38)	27(29)	39(23)	
C ₂ H ₁₂ S	2-Methyl-3-thiapentane	104(82)	89(119)	62(79)	43(63)	61(58)	
C-H-S	2-Thiahexane	104(38)	61(77)	56(50)	41(39)	27(33)	
C.H.S	3-Thiahexane	104(30)	75(72)	27(53)	47(50)	62(33)	
C.H.S	2 2-Dimethyl-1-propagethiol	104(31)	57(100)	41(55)	55(48)	29(42)	
C.H.S	2-Methyl-1-butanethiol	104(28)	41(65)	29(44)	57(40)	70(40)	
C.H.S	2-Methyl-2-butanethiol	104(18)	43(88)	$\frac{2}{(44)}$	41(46)	55(34)	
C-H.S	3-Methyl-2-butanethiol	104(23)	61(73)	43(55)	27(33)	55(28)	
C _c H _i S	1-Pentanethiol	104(35)	42(91)	55(44)	41(39)	70(39)	
~ 5**120			·=(/ ·)	22(11)	· - (27)	(

			Mass numbers (and intensities) of:					
$ \begin{array}{c} C_{1} P_{12}S & 2-Pentanethiol \\ C_{1} P_{12}S & 3-Pentanethiol \\ C_{1} P_{12}S & 4-Dimethyl-2,3-dithiapentane \\ 136(20) & 94(49) & 27(46) & 43(39) & 66(37) \\ C_{2} H_{12}S & 2-Methyl-3,4-dithiahexane \\ 136(20) & 94(49) & 27(46) & 43(39) & 66(37) \\ C_{2} H_{12}S & 2-Methyl-3,4-dithiahexane \\ 136(20) & 94(49) & 27(46) & 43(39) & 66(37) \\ C_{2} H_{12}B & Trimethylenhylend \\ 282(0.64) & 223(61) & 253(52) & 208(51) & 221(33) \\ C_{1}F_{2} & Dodecafluorocyclohexane \\ 300(0.96) & 131(138) & 69(97) & 100(40) & 31(30) \\ C_{6}F_{14} & Tetradecafluoro-2-methylpentane \\ 338(0.13) & 69(268) & 119(74) & 169(51) & 151(41) & 50(36) \\ C_{4}F_{4} & Tetradecafluorohexane \\ 123(39) & 77(93) & 51(55) & 50(23) & 30(15) \\ C_{4}H_{6} & Barzene \\ 78(113) & 78(113) & 52(22) & 77(20) & 31(15) \\ C_{4}H_{6} & Barzene \\ 78(113) & 78(113) & 52(22) & 77(20) & 51(15) \\ C_{4}H_{6} & Barzene \\ 78(113) & 78(113) & 52(22) & 77(20) & 51(15) \\ C_{4}H_{6} & Barzene \\ 78(113) & 78(113) & 52(22) & 77(20) & 51(15) \\ C_{4}H_{6} & Barzene \\ 78(113) & 78(113) & 52(22) & 77(20) & 51(15) \\ C_{4}H_{7} & Aminobenzene (aniline) \\ 93(19) & 93(19) & 66(6.5) & 65(3.6) & 93(3.5) \\ C_{6}H_{8} & Aminobenzene (aniline) \\ 93(19) & 93(86) & 66(6.5) & 65(3.6) & 93(3.5) \\ C_{4}H_{8} & Methylcyclopentadiene \\ 80(53) & 79(02) & 77(35) & 59(21) & 27(18) \\ C_{4}H_{8} & 2.3-Dimethylfurian \\ 96(57) & 43(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.3-Dimethylfuran \\ 96(57) & 43(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.3-Dimethylfurian \\ 96(57) & 41(56) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_{8} & 2.3-Dimethylfurian \\ 96(57) & 41(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.3-Dimethylfurian \\ 96(57) & 41(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.3-Dimethylfurian \\ 96(57) & 41(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.5-Dimethylfurian \\ 96(57) & 41(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.5-Dimethylfurian \\ 96(57) & 41(56) & 97(54) & 53(37) & 81(24) \\ C_{4}H_{8} & 2.5-Dimethylfurian \\ 96(57) & 43(56) & 97(55) & 59(22) & 41(47) \\ C_{4}$	Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks			
$ \begin{array}{c} C_{H_12S} & 3-\text{Pentanethiol} & 104(23) & 43(56) & 41(48) & 75(29) & 47(23) \\ C_{3H_12S} & 4.4-\text{Dimethyl-2,3-dithiapentane} & 136(12) & 57(74) & 41(38) & 29(36) & 80(13) \\ C_{3H_12S} & 2-\text{Methyl-3,4-dithiahexane} & 136(20) & 94(49) & 27(46) & 43(39) & 66(37) \\ C_{3H_12B} & \text{Trimethylethylehad} & 282(0.64) & 223(61) & 253(52) & 208(51) & 221(33) \\ C_{3F_12} & \text{Dodecafluorocyclohexane} & 300(0.96) & 131(138) & 69(97) & 100(40) & 31(30) \\ C_{3F_14} & \text{Tetradecafluoroc-2-methylpentane} & 338(0.0) & 69(317) & 131(41) & 119(36) & 169(29) \\ C_{4}F_{44} & \text{Tetradecafluorochexane} & 138(0.13) & 69(268) & 119(74) & 169(51) & 131(37) \\ C_{4}H_3B & \text{Bromohenzene} & 123(39) & 77(08) & 158(74) & 51(41) & 50(36) \\ C_{4}H_4C & \text{Chorobenzene} & 78(13) & 78(113) & 52(22) & 77(20) & 51(15) \\ C_{4}H_6 & \text{Benzene} & 78(188) & 78(108) & 51(55) & 52(38) & 50(32) \\ C_{4}H_6 & \text{Benzene} & 78(108) & 78(108) & 51(55) & 52(38) & 50(31) \\ C_{4}H_8 & \text{Benzenethiol} & 110(68) & 110(68) & 66(36) & 39(24) & 51(11) \\ C_{4}H_8 & \text{Benzenethiol} & 93(86) & 93(86) & 66(36) & 39(24) & 51(11) \\ C_{4}H_8 & 1.3-Cyclohexadiene & 80(53) & 79(87) & 77(29) & 39(19) & 51(11) \\ C_{4}H_8 & 1.3-Cyclohexadiene & 80(53) & 79(87) & 77(29) & 39(19) & 51(11) \\ C_{4}H_8 & 1.3-Cyclohexadiene & 80(53) & 79(87) & 77(29) & 39(19) & 51(11) \\ C_{4}H_8 & 2.3-Dimethylthiophene & 112(27) & 111(36) & 97(18) & 45(94) & 39(70) \\ C_{4}H_8 & 2.3-Dimethylthiophene & 112(27) & 97(68) & 45(16) & 39(89) & 27(54) \\ C_{4}H_8 & 3-Eibylthiophene & 112(27) & 97(68) & 45(16) & 39(89) & 27(12) \\ C_{4}H_8 & 3-Eibylthiophene & 112(27) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_8 & 3-Dimethylthiophene & 112(27) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_9 & 3-Dimethylthiophene & 112(27) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_8 & 3-Dimethylthiophene & 112(27) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_8 & 3-Dimethylthiophene & 112(27) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{4}H_9 & 3-Dimethylthiophene & 82(23) & 67(8) & 39(31) & 45(9) & 27(12) \\ C_{4}H_9 & $	C ₅ H ₁₂ S	2-Pentanethiol	104(28)	43(72)	61(52)	27(39)	55(38)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₅ H ₁₂ S	3-Pentanethiol	104(23)	43(56)	41(48)	75(29)	47(23)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_5H_{12}S_2$	4,4-Dimethyl-2,3-dithiapentane	136(12)	57(74)	41(38)	29(36)	80(13)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_5H_{12}S_2$	2-Methyl-3,4-dithiahexane	136(20)	94(49)	27(46)	43(39)	66(37)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₅ H ₁₄ Pb	Trimethylethyllead	282(0.64)	223(61)	253(52)	208(51)	221(33)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_6F_6	Hexafluorobenzene	186(95)	186(95)	117(59)	31(58)	93(23)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ F ₁₂	Dodecafluorocyclohexane	300(0.96)	131(138)	69(97)	100(40)	31(30)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ F ₁₄	Tetradecafluoro-2-methylpentane	338(0.0)	69(317)	131(41)	119(36)	169(29)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ F ₁₄	Tetradecafluorohexane	338(0.13)	69(268)	119(74)	169(51)	131(37)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₅ Br	Bromobenzene	156(75)	77(98)	158(74)	51(41)	50(36)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₅ Cl	Chlorobenzene	112(102)	112(102)	77(49)	114(33)	51(17)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₅ NO ₂	Nitrobenzene	123(39)	77(93)	51(55)	50(23)	30(15)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_6H_6	Benzene	78(113)	78(113)	52(22)	77(20)	51(18)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₆	1,5-Hexadiyne	78(58)	39(65)	52(38)	51(32)	50(26)	
$ \begin{array}{cccc} C_{\rm c} H_{\rm o} S & {\rm Benzenethiol} & 110(68) & 110(68) & 66(26) & 109(17) & 51(15) \\ C_{\rm H} H_{\rm N} & {\rm Aminobenzene} (aniline) & 93(19) & 93(19) & 66(6.5) & 66(3.6) & 39(28) & 51(16) \\ C_{\rm o} H_{\rm N} & {\rm 1-Methyl-2-pyridone} & 109(71) & 109(71) & 81(49) & 39(34) & 80(29) \\ C_{\rm o} H_{\rm s} & {\rm Methylcyclopentadiene} & 80(53) & 79(87) & 77(29) & 39(19) & 51(11) \\ C_{\rm s} H_{\rm s} & {\rm 1.3-Cyclohexadiene} & 80(53) & 79(27) & 77(35) & 39(21) & 27(18) \\ C_{\rm c} H_{\rm s} & {\rm 2.3-Dimethylfuran} & 96(57) & 43(65) & 95(48) & 53(37) & 81(24) \\ C_{\rm c} H_{\rm s} & {\rm 2.3-Dimethylfuran} & 96(57) & 43(65) & 95(48) & 53(37) & 81(24) \\ C_{\rm c} H_{\rm s} S & {\rm 2.3-Dimethylfuran} & 112(27) & 111(36) & 97(18) & 45(9.4) & 39(7.0) \\ C_{\rm c} H_{\rm s} S & {\rm 2.4-Dimethylfuriophene} & 112(27) & 111(36) & 97(18) & 45(9.4) & 39(7.0) \\ C_{\rm c} H_{\rm s} S & {\rm 2.5-Dimethylfuriophene} & 112(27) & 97(68) & 45(16) & 39(8.9) & 27(5.4) \\ C_{\rm c} H_{\rm s} S & {\rm 2.Ethylthiophene} & 112(27) & 97(68) & 45(16) & 39(8.9) & 27(5.4) \\ C_{\rm c} H_{\rm s} S & {\rm 3-Ethylthiophene} & 112(24) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{\rm c} H_{\rm s} S & {\rm 3-Ethylthiophene} & 112(254) & 97(147) & 45(38) & 39(20) & 27(12) \\ C_{\rm c} H_{\rm s} S & {\rm 3-Ethylthiophene} & 82(20) & 67(92) & 41(47) & 39(46) & 27(22) \\ C_{\rm c} H_{\rm 10} & 1.5{\rm Horexthylcyclopentene} & 82(23) & 67(83) & 54(64) & 41(31) & 39(30) \\ C_{\rm c} H_{\rm 10} & 2.3-Dimethyl-1.3-butadiene & 82(1.3) & 41(98) & 67(80) & 39(60) & 54(52) \\ C_{\rm c} H_{\rm 10} & 3.3-Dimethyl-1.3-butadiene & 82(1.3) & 41(88) & 67(80) & 39(60) & 54(52) \\ C_{\rm c} H_{\rm 10} & 3.3-Dimethyl-1-1-pentyne & 82(2.3) & 67(82) & 41(74) & 43(64) & 39(55) \\ C_{\rm c} H_{\rm 10} & 2-Hexyne & 82(56) & 67(58) & 53(50) & 27(39) & 41(36) \\ C_{\rm c} H_{\rm 10} & 2-Hexyne & 82(56) & 67(58) & 53(50) & 27(39) & 41(36) \\ C_{\rm c} H_{\rm 10} & 2-Hexyne & 82(56) & 67(58) & 53(50) & 27(39) & 41(36) \\ C_{\rm c} H_{\rm 10} & 2-Hexyne & 82(56) & 67(58) & 53(50) & 27(39) & 41(36) \\ C_{\rm c} H_{\rm 10} & 2-Hexyne & 82(55) & 67(59) & 41(55) & 39(37) & 53(20) \\ C_{$	C ₆ H ₆	2,4-Hexadiyne	78(108)	78(108)	51(55)	52(38)	50(31)	
$ \begin{array}{cccc} C_{\rm e} T_{\rm r} {\rm N} & {\rm Aminobenzene (aniline)} & {\rm 93}(19) & {\rm 93}(19) & {\rm 66}(6.5) & {\rm 65}(3.6) & {\rm 39}(3.5) \\ C_{\rm e} {\rm H}_{\rm r} {\rm N} & {\rm 2-Methylpyridine} & {\rm 93}(86) & {\rm 93}(86) & {\rm 66}(6.5) & {\rm 65}(3.6) & {\rm 39}(28) & {\rm 51}(16) \\ C_{\rm e} {\rm H}_{\rm r} {\rm N} & {\rm 1-Methyl-2-pyridone} & {\rm 109}(71) & {\rm 109}(71) & {\rm 81}(49) & {\rm 39}(34) & {\rm 80}(29) \\ C_{\rm c} {\rm H}_{\rm s} & {\rm 1,3-Cyclohexadiene} & {\rm 80}(53) & {\rm 79}(92) & {\rm 77}(35) & {\rm 39}(21) & {\rm 27}(18) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 2,3-Dimethylfuran} & {\rm 96}(57) & {\rm 43}(65) & {\rm 95}(48) & {\rm 53}(37) & {\rm 81}(24) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 2,4-Dimethylfhiophene} & {\rm 112}(27) & {\rm 111}(36) & {\rm 97}(18) & {\rm 45}(9.4) & {\rm 39}(7.0) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 2,5-Dimethylfhiophene} & {\rm 112}(27) & {\rm 111}(36) & {\rm 97}(18) & {\rm 45}(9.4) & {\rm 39}(7.0) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 2,5-Dimethylfhiophene} & {\rm 112}(27) & {\rm 97}(68) & {\rm 45}(16) & {\rm 39}(8.9) & {\rm 27}(5.4) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 3-Ethylthiophene} & {\rm 112}(27) & {\rm 97}(147) & {\rm 45}(38) & {\rm 39}(20) & {\rm 27}(12) \\ C_{\rm e} {\rm H}_{\rm s} & {\rm 3-Ethylthiophene} & {\rm 112}(27) & {\rm 97}(147) & {\rm 45}(38) & {\rm 39}(20) & {\rm 27}(12) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 1-Methylcyclopentene} & {\rm 82}(20) & {\rm 67}(92) & {\rm 41}(47) & {\rm 39}(46) & {\rm 27}(22) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 1-Methylcyclopentene} & {\rm 82}(23) & {\rm 67}(88) & {\rm 39}(30) & {\rm 41}(26) & {\rm 27}(13) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 2,3-Dimethyl-1,3-Dentadiene} & {\rm 82}(23) & {\rm 67}(88) & {\rm 39}(30) & {\rm 41}(26) & {\rm 27}(13) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 2,3-Dimethyl-1,3-Dentadiene} & {\rm 82}(23) & {\rm 67}(88) & {\rm 39}(30) & {\rm 41}(26) & {\rm 27}(13) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 2,3-Dimethyl-1,3-Dentadiene} & {\rm 82}(23) & {\rm 67}(88) & {\rm 39}(30) & {\rm 41}(26) & {\rm 27}(13) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 2,3-Dimethyl-1,3-Dentadiene} & {\rm 82}(23) & {\rm 67}(88) & {\rm 39}(30) & {\rm 41}(26) & {\rm 27}(13) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 3,3-Dimethyl-1-Dentyne} & {\rm 82}(2,3) & {\rm 67}(82) & {\rm 41}(14) & {\rm 53}(23) & {\rm 33}(20) \\ C_{\rm e} {\rm H}_{\rm 0} & {\rm 3,3-D$	C ₆ H ₆ S	Benzenethiol	110(68)	110(68)	66(26)	109(17)	51(15)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₇ N	Aminobenzene (aniline)	93(19)	93(19)	66(6.5)	65(3.6)	39(3.5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₇ N	2-Methylpyridine	93(86)	93(86)	66(36)	39(28)	51(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₇ NO	1-Methyl-2-pyridone	109(71)	109(71)	81(49)	39(34)	80(29)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₈	Methylcyclopentadiene	80(53)	79(87)	77(29)	39(19)	51(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₈	1,3-Cyclohexadiene	80(53)	79(92)	77(35)	39(21)	27(18)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ O	2.5-Dimethylfuran	96(57)	43(65)	95(48)	53(37)	81(24)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ S	2,3-Dimethylthiophene	112(44)	97(53)	111(44)	45(16)	27(9.4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ S	2,4-Dimethylthiophene	112(27)	111(36)	97(18)	45(9.4)	39(7.0)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ S	2,5-Dimethylthiophene	112(67)	111(95)	97(59)	59(23)	45(19)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₆ H ₈ S	2-Ethylthiophene	112(27)	97(68)	45(16)	39(8.9)	27(5.4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₈ S	3-Ethylthiophene	112(54)	97(147)	45(38)	39(20)	27(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₉ N	2,5-Dimethylpyrrole	95(73)	94(127)	26(52)	80(22)	42(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	Isopropenylcyclopropane	82(20)	67(92)	41(47)	39(46)	27(22)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	1-Methylcyclopentene	82(26)	67(98)	39(21)	81(16)	41(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	Cyclohexene	82(33)	67(83)	54(64)	41(31)	39(30)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	2,3-Dimethyl-1,3-butadiene	82(41)	67(60)	39(55)	41(44)	54(22)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	2-Methyl-1,3-pentadiene	82(23)	67(48)	39(30)	41(26)	27(13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	1,5-Hexadiene	82(1.3)	41(98)	67(80)	39(60)	54(52)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₀	3,3-Dimethyl-1-butyne	82(0.57)	67(101)	41(57)	39(31)	27(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	4-Methyl-1-pentyne	82(2.3)	67(82)	41(74)	43(64)	39(55)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	1-Hexyne	82(1.0)	67(131)	41(88)	27(85)	43(67)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	2-Hexyne	82(56)	67(58)	53(50)	27(39)	41(36)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{6}H_{10}$	3-Hexyne	82(55)	67(59)	41(55)	39(37)	53(20)	
	C ₆ H ₁₀ O	Cvclohexanone	98(32)	55(102)	42(86)	41(35)	27(34)	
	C ₆ H ₁₀ O	4-Methyl-3-penten-2-one	98(40)	55(82)	83(82)	43(64)	29(38)	
	$C_{e}H_{10}O_{2}$	2.5-Hexanedione	114(4.0)	43(148)	15(25)	99(22)	14(14)	
	$C_{c}H_{10}O_{2}$	Propanoic anhydride	130(0.0)	57(190)	29(119)	27(62)	28(26)	
	$C_{6}H_{10}O_{3}$	Ethyl acetoacetate	130(8.3)	43(150)	29(52)	27(32)	15(27)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₁ N	4-Methylpentanenitrile	97(0.13)	55(98)	41(51)	43(45)	27(39)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₁ N	Hexanenitrile	97(0.54)	41(73)	54(49)	27(43)	55(40)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₁₂	1.1.2-Trimethylcyclopropane	84(38)	41(132)	69(81)	39(34)	27(24)	
C_6H_{12} Isopropylcyclopropane $84(2.0)$ $56(114)$ $41(84)$ $39(30)$ $43(28)$	C ₆ H ₁₂	1-Methyl-1-ethylcvclopropane	84(25)	41(78)	55(58)	69(53)	27(33)	
	C ₆ H ₁₂	Isopropylcyclopropane	84(2.0)	56(114)	41(84)	39(30)	43(28)	

TABLE 7.76 Condensed Table of Mass Spectra (Continued)

TABLE 7.76	Condensed	Table	of Mass	Spectra	(Continued)
------------	-----------	-------	---------	---------	-------------

		Mass numbers (and intensities) of:				
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks		
C ₆ H ₁₂	Ethylcyclobutane	84(3.8)	56(138)	41(89)	27(35)	55(34)
$C_{6}H_{12}$	Methylcyclopentane	84(18)	56(116)	41(74)	69(37)	42(33)
C ₆ H ₁₂	Cyclohexane	84(58)	56(75)	41(44)	55(25)	42(21)
C ₆ H ₁₂	2,3-Dimethyl-1-butene	84(27)	41(117)	69(96)	39(36)	27(24)
C ₆ H ₁₂	3,3-Dimethyl-1-butene	84(23)	41(112)	69(107)	39(28)	27(26)
$C_{6}H_{12}$	2-Ethyl-1-butene	84(30)	41(74)	69(66)	55(56)	27(38)
$C_{6}H_{12}$	2,3-Dimethyl-2-butene	84(32)	41(108)	69(88)	39(35)	27(20)
$C_{6}H_{12}$	2-Methyl-1-pentene	84(29)	56(91)	41(73)	55(39)	39(36)
$C_{6}H_{12}$	3-Methyl-1-pentene	84(25)	55(85)	41(67)	69(60)	27(43)
$C_{6}H_{12}$	4-Methyl-1-pentene	84(12)	43(110)	41(80)	56(47)	27(37)
C ₆ H ₁₂	2-Methyl-2-pentene	84(36)	41(120)	69(111)	39(35)	27(28)
$C_{6}H_{12}$	3-Methyl-cis-2-pentene	84(37)	41(104)	69(82)	55(46)	27(36)
$C_{6}H_{12}$	3-Methyl-trans-2-pentene	84(38)	41(102)	69(81)	55(47)	27(35)
C ₆ H ₁₂	4-Methyl-cis-2-pentene	84(35)	41(122)	69(114)	39(35)	27(26)
$C_{6}H_{12}$	4-Methyl-trans-2-pentene	84(34)	41(123)	69(112)	39(34)	27(26)
$C_{6}H_{12}$	1-Hexene	84(20)	41(70)	56(60)	42(52)	27(48)
C ₆ H ₁₂	cis-2-Hexene	84(27)	55(91)	42(51)	41(45)	27(45)
C ₆ H ₁₂	trans-2-Hexene	84(32)	55(112)	42(54)	41(46)	27(41)
C ₆ H ₁₂	cis-3-Hexene	84(28)	55(81)	41(62)	42(54)	27(32)
C ₆ H ₁₂	trans-3-Hexene	84(32)	55(89)	41(72)	42(62)	27(35)
$C_{6}H_{12}N_{2}$	Acetone azine (ketazine)	112(31)	56(99)	15(31)	97(31)	39(26)
C ₆ H ₁₂ O	Cyclopentylmethanol	100(0.02)	41(35)	68(32)	69(31)	67(24)
C ₆ H ₁₂ O	4-Methyl-2-pentanone	100(12)	43(115)	58(37)	41(22)	57(22)
C ₆ H ₁₂ O	Ethenyl <i>n</i> -butyl ether	100(5.7)	29(80)	41(59)	56(45)	57(35)
C ₆ H ₁₂ O	Ethenyl isobutyl ether	100(5.8)	29(73)	41(65)	57(58)	56(40)
$C_{6}H_{12}O_{2}$	4-Hydroxy-4-methyl-2-pentanone	116(0.0)	43(149)	15(45)	58(32)	27(14)
C ₆ H ₁₂ O ₂	<i>n</i> -Butyl acetate	116(0.03)	43(172)	56(58)	41(30)	27(27)
$C_{6}H_{12}O_{2}$	<i>n</i> -Propyl propanoate	116(0.03)	57(147)	29(84)	27(57)	75(47)
$C_{6}H_{12}O_{2}$	Isopropyl proponoate	116(0.26)	57(116)	43(88)	29(54)	27(46)
$C_{6}H_{12}O_{2}$	Methyl 2,2-dimethylpropanoate	116(3.2)	57(85)	41(32)	29(24)	56(21)
C ₆ H ₁₂ O ₂	Ethyl butanoate	116(2.2)	43(50)	71(45)	29(43)	27(31)
C ₆ H ₁₂ O ₃	2,4,6-Trimethyl-1,3,5-trioxacyclo-					
	hexane	132(0.12)	45(196)	43(107)	29(35)	89(23)
C ₆ H ₁₂ S	1-Cyclopentyl-1-thiaethane	116(31)	68(72)	41(64)	39(37)	67(37)
C ₆ H ₁₂ S	cis-2,5-Dimethylthiacyclopentane	116(32)	101(85)	59(34)	41(26)	74(24)
C ₆ H ₁₂ S	trans-2.5-Dimethylthiacyclopentane	116(32)	101(85)	59(34)	74(25)	41(25)
C ₆ H ₁₂ S	2-Methylthiacyclohexane	116(42)	101(81)	41(37)	27(32)	67(30)
C ₆ H ₁₂ S	3-Methylthiacyclohexane	116(41)	101(55)	41(47)	39(33)	45(28)
C ₆ H ₁₂ S	4-Methylthiacyclohexane	116(46)	116(46)	101(44)	41(40)	27(39)
C ₆ H ₁₂ S	Thiacycloheptane	116(60)	87(75)	41(66)	67(48)	47(46)
C ₆ H ₁₂ S	1-Methylcyclopentanethiol	116(20)	83(76)	55(58)	41(39)	67(33)
C ₆ H ₁₂ S	cis-2-Methylcyclopentanethiol	116(32)	55(55)	83(54)	60(48)	41(47)
C ₆ H ₁₂ S	trans-2-Methylcyclopentanethiol	116(28)	67(48)	55(46)	41(42)	83(40)
C ₆ H ₁₂ S	Cyclohexanethiol	116(21)	55(56)	41(45)	67(35)	83(32)
C ₆ H ₁₃ N	Cyclohexylamine	99(8.9)	56(92)	43(25)	28(13)	30(13)
C ₆ H ₁₃ N	3-Methylpiperidine	99(23)	44(49)	30(34)	28(27)	57(26)
C ₆ H ₁₃ NO	N-Ethylmorpholine	115(2.0)	42(9.8)	57(7.0)	100(5.2)	28(4.3)
C ₆ H ₁₄	2,2-Dimethylbutane	86(0.04)	43(85)	57(82)	71(61)	41(51)
C ₆ H ₁₄	2,3-Dimethylbutane	86(5.3)	43(157)	42(136)	41(49)	27(40)

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent peak	Base peak	Three next most intense peaks			
C ₆ H ₁₄	2-Methylpentane	86(4.4)	43(147)	42(78)	41(47)	27(40)	
$C_{6}H_{14}$	3-Methylpentane	86(3.2)	57(105)	56(80)	41(67)	29(64)	
$C_{6}H_{14}$	<i>n</i> -Hexane	86(12)	57(87)	43(71)	41(64)	29(55)	
$C_{6}H_{14}N_{2}$	cis-2,5-Dimethylpiperazine	114(0.38)	58(10)	28(7.7)	30(4.7)	44(4.2)	
$C_6H_{14}O$	2-Ethyl-1-butanol	102(0.0)	43(114)	70(40)	29(39)	27(38)	
$C_6H_{14}O$	2-Methyl-1-pentanol	102(0.0)	42(110)	41(40)	29(34)	27(33)	
$C_6H_{14}O$	3-Methyl-1-pentanol	102(0.0)	56(26)	41(20)	29(19)	55(18)	
$C_6H_{14}O$	4-Methyl-2-pentanol	102(0.08)	45(111)	43(34)	41(17)	27(14)	
$C_6H_{14}O$	1-Hexanol	102(0.0)	56(63)	43(52)	41(37)	55(36)	
$C_6H_{14}O$	Ethyl <i>n</i> -butyl ether	102(3.8)	59(108)	31(87)	29(61)	27(42)	
$C_6H_{14}O$	Ethyl sec-butyl ether	102(1.5)	45(150)	73(76)	29(51)	27(39)	
$C_6H_{14}O$	Ethyl isobutyl ether	102(8.7)	59(124)	31(95)	29(53)	27(38)	
$C_6H_{14}O$	Diisopropyl ether	102(1.4)	45(125)	43(66)	87(23)	27(19)	
$C_{6}H_{14}O_{2}$	1,1-Diethoxyethane	118(0.0)	45(132)	73(69)	29(36)	27(27)	
$C_{6}H_{14}O_{2}$	1,2-Diethoxyethane	118(1.2)	31(124)	59(88)	29(72)	45(53)	
$C_{6}H_{14}O_{3}$	bis-(2-Methoxyethyl) ether	134(0.0)	59(140)	29(74)	58(57)	15(56)	
C ₆ H ₁₄ S	2,2-Dimethyl-3-thiapentane	118(33)	57(147)	41(70)	29(54)	27(40)	
C ₆ H ₁₄ S	2,4-Dimethyl-3-thiapentne	118(33)	43(94)	61(85)	41(48)	103(44)	
C ₆ H ₁₄ S	2-Methyl-3-thiahexane	118(206)	43(540)	41(317)	42(301)	27(287)	
C ₆ H ₁₄ S	4-Methyl-3-thiahexane	118(195)	89(585)	29(343)	27(296)	41(279)	
C ₆ H ₁₄ S	5-Methyl-3-thiahexane	118(171)	75(520)	41(230)	47(224)	56(217)	
C ₆ H ₁₄ S	3-Thiaheptane	118(35)	75(55)	29(33)	27(33)	62(28)	
C ₆ H ₁₄ S	4-Thiaheptane	118(47)	43(86)	89(74)	41(57)	27(55)	
C ₆ H ₁₄ S	2-Methyl-1-pentanethiol	118((19)	43(96)	41(51)	56(32)	27(31)	
C ₆ H ₁₄ S	4-Methyl-1-pentanethiol	118(30)	56(142)	41(57)	43(57)	27(32)	
C ₆ H ₁₄ S	4-Methyl-2-pentanethiol	118(6.3)	43(68)	69(61)	41(56)	84(42)	
C ₆ H ₁₄ S	2-Methyl-3-pentanethiol	118(20)	41(64)	43(63)	75(50)	27(28)	
C _c H ₁₄ S	1-Hexanethiol	118(16)	56(66)	41(41)	27(40)	43(38)	
$C_{6}H_{14}S_{2}$	2,5-Dimethyl-3,4-dithiahexane	150(31)	43(152)	108(41)	41(36)	27(30)	
$C_{6}H_{14}S_{2}$	5-Methyl-3,4-dithiaheptane	150(14)	29(86)	94(66)	66(57)	27(41)	
$C_6H_{14}S_2$	6-Methyl-3,4-dithiaheptane	150(4.9)	29(42)	66(40)	122(30)	94(29)	
$C_{6}H_{14}S_{2}$	4.5-Dithiaoctane	150(44)	43(167)	27(65)	41(64)	108(35)	
C ₆ H ₁₅ N	Triethylamine	101(21)	86(134)	30(46)	27(36)	58(35)	
C ₆ H ₁₅ N	Di- <i>n</i> -propylamine	101(7.1)	30(89)	72(70)	44(36)	43(28)	
C ₆ H ₁₅ N	Diisopropylamine	101(5.0)	44(171)	86(52)	58(24)	42(22)	
C _c H ₁ _c Pb	Dimethyldiethyllead	296(0.98)	267(89)	223(83)	208(79)	221(44)	
C ₇ F ₁₄	Tetradecafluoromethylcyclohexane	350(0.0)	69(244)	131(107)	181(48)	100(38)	
$C_7 E_{14}$	Hexadecafluoroheptane	388(0.0)	69(330)	119(89)	169(68)	131(44)	
C ₂ H ₂ N	Benzonitrile	103(246)	103(246)	76(80)	50(42)	51(24)	
C _a H _a Br	1-Methyl-2-bromobenzene	170(48)	91(97)	172(46)	39(21)	63(20)	
C _a H _a Br	1-Methyl-4-bromobenzene	170(46)	91(97)	172(10) 172(45)	39(20)	65(19)	
C ₂ H ₂ Cl	1-Methyl-2-chlorobenzene	126(44)	91(121)	63(20)	39(19)	89(18)	
C-H-Cl	1-Methyl-3-chlorobenzene	126(51)	91(120)	63(19)	39(18)	128(16)	
$C_{-}H_{-}C_{1}$	1-Methyl-4-chlorobenzene	126(31) 126(44)	91(120)	125(19)	63(18)	39(17)	
C _a H _a F	1-Methyl-3-fluorobenzene	110(79)	109(120)	83(17)	57(12)	39(17)	
C _a H _a F	1-Methyl-4-fluorobenzene	110(73)	109(122) 109(122)	83(16)	57(12)	39(0 3)	
C _a H _o	Methylbenzene (toluene)	92(82)	91(108)	39(20)	65(14)	51(10)	
C-H-S	1-Phenyl-1-thiaethane	124(76)	124(76)	109(34)	78(25)	91(10)	
C-H-N	2 4-Dimethylpyridine	107(76)	107(76)	106(20)	79(16)	92(13)	
C71191 V	2, - Dimensipyriume	10/(/0)	10/(/0)	100(2))	/ /(10)	14(13)	

TABLE 7.76 Condensed Table of Mass Spectra (Continued)

TABLE 7.76	Condensed	Table	of Mass	Spectra	(Continued)
-------------------	-----------	-------	---------	---------	-------------

			Mass numbers (and intensities) of:					
$ \begin{array}{cccc} C, H_{10}S \\ C, H_{12} \\ Ethenylcyclopentane \\ S(13) \\ C, H_{12} \\ Ethylidencyclopentane \\ S(13) \\ C, H_{12} \\ Ethylidencyclopentane \\ S(13) \\ C, H_{12} \\ S(13) \\ S(13) \\ C, H_{12} \\ S(14) \\ S(14$	Molecular formula	Name	Parent peak	Base peak	Three ne	Three next most intense peaks		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₀ S	2,3,4-Trimethylthiophene	126(50)	111(81)	125(47)	45(22)	39(18)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₂	Ethenylcyclopentane	96(13)	67(118)	39(44)	68(38)	54(35)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₂	Ethylidenecyclopentane	96(40)	67(180)	39(44)	41(30)	27(30)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₂	Bicyclo[2.2.1]heptane	96(12)	67(64)	68(50)	81(44)	54(30)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₂	3-Ethylcyclopentene	96(29)	67(193)	39(36)	41(35)	27(26)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₂	1-Methylcyclohexene	96(32)	81(83)	68(38)	67(37)	39(33)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7H12	4-Methylcyclohexene	96(28)	81(84)	54(50)	39(44)	55(34)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7H12	4-Methyl-2-hexyne	96(13)	81(71)	67(52)	41(48)	39(35)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7H12	5-Methyl-2-hexyne	96(42)	43(49)	81(43)	27(39)	39(38)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7H12	1-Heptyne	96(0.44)	41(75)	81(70)	29(65)	27(47)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	1,1,2,2,-Tetramethylcyclopropane	98(21)	55(92)	83(90)	41(69)	39(41)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	cis-1,2-Dimethylcyclopentane	98(19)	56(85)	70(77)	41(65)	55(65)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	trans-1,2-Dimethylcyclopentane	98(25)	56(93)	41(63)	55(61)	70(54)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	cis-1,3-Dimethylcyclopentane	98(12)	56(81)	70(78)	41(64)	55(59)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{7}H_{14}$	trans-1,3-Dimethylcyclopentane	98(13)	56(81)	70(68)	41(63)	55(58)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{7}H_{14}$	1,1-Dimethylcyclopentane	98(6.7)	56(81)	55(63)	69(56)	41(55)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{7}H_{14}$	Ethylcyclopentane	98(14)	69(83)	41(78)	68(60)	55(46)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	Methylcyclohexane	98(41)	83(94)	55(78)	41(55)	42(34)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	Cycloheptane	98(37)	41(57)	55(54)	56(50)	42(49)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	2,3,3-Trimethyl-1-butene	98(20)	83(101)	55(83)	41(61)	39(33)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	3-Methyl-2-ethyl-1-butene	98(22)	41(71)	69(71)	55(62)	27(38)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	2,3-Dimethyl-1-pentene	98(13)	41(92)	69(86)	55(40)	39(35)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{7}H_{14}$	2,4-Dimethyl-1-pentene	98(9.1)	56(117)	43(68)	41(61)	39(39)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	3,3-Dimethyl-1-pentene	98(9.4)	69(104)	41(85)	55(42)	27(36)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	3,4-Dimethyl-1-pentene	98(0.61)	56(75)	55(62)	43(55)	41(54)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	4,4-Dimethyl-1-pentene	98(2.6)	57(161)	41(86)	29(52)	55(49)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3-Ethyl-1-pentene	98(19)	41(116)	69(91)	27(43)	39(37)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	2,3-Dimethyl-2-pentene	98(31)	83(80)	55(75)	41(63)	39(34)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	2,4-Dimethyl-2-pentene	98(26)	83(97)	55(71)	41(52)	39(34)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3,4-Dimethyl-cis-2-pentene	98(30)	83(87)	55(82)	41(52)	27(32)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3,4-Dimethyl-trans-2-pentene	98(31)	83(89)	55(83)	41(52)	27(34)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	4,4-Dimethyl-cis-2-pentene	98(27)	83(96)	55(92)	41(62)	39(35)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	4,4-Dimethyl-trans-2-pentene	98(28)	83(105)	55(89)	41(58)	39(31)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3-Ethyl-2-pentene	98(33)	41(86)	69(80)	55(74)	27(33)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	2-Methyl-1-hexene	98(4.6)	56(105)	41(54)	27(30)	39(27)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3-Methyl-1-hexene	98(7.7)	55(76)	41(60)	69(57)	56(48)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	4-Methyl-1-hexene	98(4.9)	41(98)	57(94)	56(80)	29(70)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₇ H ₁₄	5-Methyl-1-hexene	98(1.6)	56(91)	41(75)	55(47)	27(42)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	2-Methyl-2-hexene	98(28)	69(113)	41(99)	27(36)	39(33)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7}H_{14}$	3-Methyl- <i>cis</i> -2-hexene	98(30)	41(95)	69(90)	55(42)	27(36)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7}H_{14}$	4-Methyl-trans-2-hexene	98(23)	69(118)	41(106)	55(40)	39(35)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7}H_{14}$	5-Methyl-2-hexene	98(13)	56(90)	55(74)	43(71)	41(57)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7}H_{14}$	2-Methyl-trans-3-hexene	98(24)	69(86)	41(74)	55(62)	56(37)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{7}H_{14}$	3-Methyl-cis-3-hexene	98(28)	69(98)	41(82)	39(33)	27(33)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	3-Methyl-trans-3-hexene	98(28)	69(97)	41(86)	55(63)	39(35)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₇ H ₁₄	1-Heptene	98(15)	41(91)	56(79)	29(64)	55(54)	
C_7H_{14} trans-3-Heptene $98(27)$ $41(98)$ $56(65)$ $69(55)$ $55(47)$ $C_7H_{14}O$ 2,4-Dimethyl-3-pentanone $114(13)$ $43(226)$ $71(62)$ $27(49)$ $41(42)$	C ₇ H ₁₄	trans-2-Heptene	98(27)	55(64)	56(59)	41(50)	27(35)	
$C_{7}H_{14}O$ 2,4-Dimethyl-3-pentanone 114(13) 43(226) 71(62) 27(49) 41(42)	C ₇ H ₁₄	trans-3-Heptene	98(27)	41(98)	56(65)	69(55)	55(47)	
	C ₇ H ₁₄ O	2,4-Dimethyl-3-pentanone	114(13)	43(226)	71(62)	27(49)	41(42)	

		Mass numbers (and intensities) of:					
Molecular formula	Name	Parent ame peak	Base peak	Three next most intense peaks			
C ₇ H ₁₄ O ₂	n-Butyl propanoate	130(0.03)	57(152)	29(98)	56(54)	27(52)	
$C_{7}H_{14}O_{2}$	Isobutyl propanoate	130(0.07)	57(187)	29(87)	56(27)	27(47)	
$C_{7}H_{14}O_{2}$	n-Propyl n-butanoate	130(0.05)	43(96)	71(90)	27(54)	89(48)	
$C_{7}H_{14}O_{3}$	<i>n</i> -Propyl carbonate	146(0.02)	43(171)	27(61)	63(55)	41(49)	
$C_7H_{14}S$	cis-2-Methylcyclohexanethiol	130(28)	55(138)	97(70)	81(44)	41(44)	
$C_7H_{15}N$	2,6-Dimethylpiperidine	113(5.3)	98(73)	44(43)	42(34)	28(26)	
$C_{7}H_{16}$	2,2,3-Trimethylbutane	100(0.03)	57(110)	43(84)	56(67)	41(64)	
C_7H_{16}	2,2-Dimethylpentane	100(0.06)	57(130)	43(95)	41(59)	56(52)	
C_7H_{16}	2,3-Dimethylpentane	100(2.1)	43(94)	56(93)	57(67)	41(64)	
C_7H_{16}	2,4-Dimethylpentane	100(1.6)	43(139)	57(93)	41(59)	56(50)	
$C_{7}H_{16}$	3,3-Dimethylpentane	100(0.03)	43(166)	71(103)	27(38)	41(36)	
$C_{7}H_{16}$	3-Ethylpentane	100(3.1)	43(175)	70(77)	70(77)	29(45)	
$C_{7}H_{16}$	2-Methylhexane	100(5.9)	43(154)	42(59)	41(57)	85(49)	
C ₇ H ₁₆	3-Methylhexane	100(4.0)	43(110)	57(52)	71(52)	41(50)	
$C_{7}H_{16}$	<i>n</i> -Heptane	100(17)	43(126)	41(65)	57(60)	29(58)	
C ₇ H ₁₆ O	2-Heptanol	116(0.01)	45(131)	43(29)	27(25)	29(23)	
C ₇ H ₁₆ O	3-Heptanol	116(0.01)	59(61)	69(41)	41(29)	31(25)	
C ₂ H ₁₆ O	4-Heptanol	116(0.02)	55(102)	73(72)	43(45)	27(32)	
C ₇ H ₁₆ O	<i>n</i> -Propyl <i>n</i> -butyl ether	116(3.7)	43(120)	57(102)	41(51)	29(49)	
$C_7H_{16}O_2$	Di- <i>n</i> -propoxymethane	132(0.58)	43(194)	73(114)	27(45)	41(34)	
$C_7H_{16}O_2$	Dijsopropoxymethane	132(0.16)	43(133)	45(84)	73(71)	27(28)	
C ₂ H ₁ O ₂	1.1-Diethoxypropane	132(0.0)	59(138)	47(88)	87(84)	29(74)	
C ₇ H ₁₆ S	2.2.4-Trimethyl-3-thiapentane	132(30)	57(149)	41(74)	29(35)	43(32)	
C ₇ H ₁₆ S	2.4-Dimethyl-3-thiahexane	132(30)	61(94)	103(60)	41(51)	43(46)	
C ₂ H ₁₆ S	2-Thiaoctane	132(34)	61(73)	56(53)	27(46)	41(44)	
C ₂ H ₁₆ S	1-Heptanethiol	132(14)	41(48)	27(40)	56(39)	70(38)	
C _a H ₁₆ Ph	Methyltriethyllead	310(0.84)	281(86)	208(76)	223(66)	237(60)	
C _a H ₁₈ Pb	<i>n</i> -Butyltrimethyllead	310(0.14)	253(76)	223(75)	208(68)	295(52)	
C _a H ₁₈ Pb	sec-Butyltrimethyllead	310(1.8)	253(94)	223(85)	208(74)	253(32) 251(45)	
C _a H ₁₈ Pb	<i>tert</i> -Butyltrimethyllead	310(0.09)	252(95)	223(82)	208(65)	250(46)	
C ₁ H ₁₈ I U	1 2-Dimethylbenzene	106(52)	91(91)	105(22)	39(15)	51(14)	
	1 3-Dimethylbenzene	106(58)	91(93)	105(26)	39(17)	51(14)	
	1 4-Dimethylbenzene	106(52)	91(85)	105(20) 105(25)	51(13)	39(13)	
	Ethylbenzene	106(32) 106(45)	91(146)	51(19)	39(14)	65(12)	
E.N	Nitrogen trifluoride	71(10)	52(33)	33(13)	14(3.0)	19(2,7)	
HCI	Hydrogen chloride	36(54)	36(54)	38(17)	35(9.2)	37(2.9)	
H.S	Hydrogen sulfide	34(75)	34(75)	32(33)	33(32)	$1(4 \ 1)$	
H ₂ 5	Ammonia	17(32)	17(32)	16(26)	15(2.4)	14(0.7)	
H N	Phosphine	34(59)	34(59)	33(20)	31(19)	32(7.5)	
H N	Hydrazine	37(39)	32(48)	31(23)	20(10)	30(15)	
NO	Nitric oxide	30(76)	30(76)	14(5.7)	15(1.8)	16(1.1)	
NO.	Nitrogen dioxide	46(6.6)	30(18)	16(4.0)	14(1.7)	47(0.02)	
N	Nitrogen	28(65)	28(65)	1/(3.3)	29(0.47)	τ <i>ι</i> (0.02)	
N O	Nitrous ovide	44(60)	A4(60)	30(10)	$\frac{2}{14(7.8)}$	28(6.5)	
0		32(54)	32(54)	16(2,7)	28(1.7)	20(0.3)	
	Sulfur dioxide	52(3+) 61(17)	52(3+) 61(17)	18(22)	20(1.7) 32(4.0)	16(2.4)	
020	Summi dioxide	0+(+7)	(+/)	40(23)	52(4.7)	10(2.4)	

TABLE 7.76 Condensed Table of Mass Spectra (Continued)

Source: L. Meites, ed., Handbook of Analytical Chemistry, McGraw-Hill, New York, 1963. J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.