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GENERAL

The basic problems of the sciences and engineering fall broadly into
three categories:

1. Steady state problems. In such problems the configuration of
the system is to be determined. This solution does not change with
time but continues indefinitely in the same pattern, hence the name
“steady state.” Typical chemical engineering examples include steady
temperature distributions in heat conduction, equilibrium in chemical
reactions, and steady diffusion problems.

2. Eigenvalue problems. These are extensions of equilibrium
problems in which critical values of certain parameters are to be
determined in addition to the corresponding steady-state configura-
tions. The determination of eigenvalues may also arise in propagation
problems. Typical chemical engineering problems include those in
heat transfer and resonance in which certain boundary conditions are
prescribed.

3. Propagation problems. These problems are concerned with
predicting the subsequent behavior of a system from a knowledge of
the initial state. For this reason they are often called the transient
(time-varying) or unsteady-state phenomena. Chemical engineering
examples include the transient state of chemical reactions (kinetics),
the propagation of pressure waves in a fluid, transient behavior of an
adsorption column, and the rate of approach to equilibrium of a
packed distillation column.

The mathematical treatment of engineering problems involves four
basic steps:

1. Formulation. The expression of the problem in mathematical
language. That translation is based on the appropriate physical laws
governing the process.

2. Solution. Appropriate mathematical operations are accom-
plished so that logical deductions may be drawn from the mathemati-
cal model.

3. Interpretation. Development of relations between the math-
ematical results and their meaning in the physical world.

4. Refinement. The recycling of the procedure to obtain better
predictions as indicated by experimental checks.

Steps 1 and 2 are of primary interest here. The actual details are left
to the various subsections, and only general approaches will be dis-
cussed.

The formulation step may result in algebraic equations, difference
equations, differential equations, integral equations, or combinations
of these. In any event these mathematical models usually arise from
statements of physical laws such as the laws of mass and energy con-
servation in the form.

Input of conserved quantity − output of conserved quantity
+ conserved quantity produced 

= accumulation of conserved quantity

Rate of input of conserved quantity − rate of output of
conserved quantity + rate of conserved quantity produced

= rate of accumulation of conserved quantity

These statements may be abbreviated by the statement

Input − output + production = accumulation

When the basic physical laws are expressed in this form, the formula-
tion is greatly facilitated. These expressions are quite often given the
names, “material balance,” “energy balance,” and so forth. To be a lit-
tle more specific, one could write the law of conservation of energy in
the steady state as

Rate of energy in − rate of energy out + rate of energy produced = 0

Many general laws of the physical universe are expressible by dif-
ferential equations. Specific phenomena are then singled out from the
infinity of solutions of these equations by assigning the individual ini-
tial or boundary conditions which characterize the given problem. In
mathematical language one such problem, the equilibrium problem,

is called a boundary-value problem (Fig. 3-1). Schematically, the
problem is characterized by a differential equation plus an open
region in which the equation holds and, on the boundaries of the
region, by certain conditions (boundary conditions) that are dictated
by the physical problem. The solution of the equation must satisfy the
differential equation inside the region and the prescribed conditions
on the boundary.

In mathematical language, the propagation problem is known as an
initial-value problem (Fig. 3-2). Schematically, the problem is charac-
terized by a differential equation plus an open region in which the
equation holds. The solution of the differential equation must satisfy
the initial conditions plus any “side” boundary conditions.

The description of phenomena in a “continuous” medium such as a
gas or a fluid often leads to partial differential equations. In particular,
phenomena of “wave” propagation are described by a class of partial
differential equations called “hyperbolic,” and these are essentially
different in their properties from other classes such as those that
describe equilibrium (“elliptic”) or diffusion and heat transfer (“para-
bolic”). Prototypes are:

1. Elliptic. Laplace’s equation

+ = 0

Poisson’s equation

+ = g(x,y)

These do not contain the variable t (time) explicitly; accordingly, their
solutions represent equilibrium configurations. Laplace’s equation
corresponds to a “natural” equilibrium, while Poisson’s equation cor-
responds to an equilibrium under the influence of an external force of
density proportional to g(x, y).

2. Parabolic. The heat equation

= +

describes nonequilibrium or propagation states of diffusion as well as
heat transfer.

3. Hyperbolic. The wave equation

= +

describes wave propagation of all types when the assumption is made
that the wave amplitude is small and that interactions are linear.

The solution phase has been characterized in the past by a concen-
tration on methods to obtain analytic solutions to the mathematical

∂2u
�
∂y2

∂2u
�
∂x2

∂2u
�
∂t2

∂2u
�
∂y2

∂2u
�
∂x2

∂u
�
∂t

∂2u
�
∂y2

∂2u
�
∂x2

∂2u
�
∂y2

∂2u
�
∂x2
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FIG. 3-1 Boundary conditions.

FIG. 3-2 Propagation problem.



equations. These efforts have been most fruitful in the area of the lin-
ear equations such as those just given. However, many natural phe-
nomena are nonlinear. While there are a few nonlinear problems that
can be solved analytically, most cannot. In those cases, numerical
methods are used. Due to the widespread availability of software for
computers, the engineer has quite good tools available.

Numerical methods almost never fail to provide an answer to any
particular situation, but they can never furnish a general solution of
any problem.

The mathematical details outlined here include both analytic and
numerical techniques useful in obtaining solutions to problems.

Our discussion to this point has been confined to those areas in
which the governing laws are well known. However, in many areas,
information on the governing laws is lacking. Interest in the applica-
tion of statistical methods to all types of problems has grown rapidly
since World War II. Broadly speaking, statistical methods may be of
use whenever conclusions are to be drawn or decisions made on the
basis of experimental evidence. Since statistics could be defined as the
technology of the scientific method, it is primarily concerned with 
the first two aspects of the method, namely, the performance of exper-
iments and the drawing of conclusions from experiments. Tradition-
ally the field is divided into two areas:

1. Design of experiments. When conclusions are to be drawn or
decisions made on the basis of experimental evidence, statistical tech-
niques are most useful when experimental data are subject to errors.
The design of experiments may then often be carried out in such a
fashion as to avoid some of the sources of experimental error and
make the necessary allowances for that portion which is unavoidable.
Second, the results can be presented in terms of probability state-
ments which express the reliability of the results. Third, a statistical
approach frequently forces a more thorough evaluation of the experi-
mental aims and leads to a more definitive experiment than would
otherwise have been performed.

2. Statistical inference. The broad problem of statistical infer-
ence is to provide measures of the uncertainty of conclusions drawn
from experimental data. This area uses the theory of probability,
enabling scientists to assess the reliability of their conclusions in terms
of probability statements.

Both of these areas, the mathematical and the statistical, are inti-
mately intertwined when applied to any given situation. The methods
of one are often combined with the other. And both in order to be suc-
cessfully used must result in the numerical answer to a problem—that
is, they constitute the means to an end. Increasingly the numerical
answer is being obtained from the mathematics with the aid of com-
puters.

MISCELLANEOUS MATHEMATICAL CONSTANTS

Numerical values of the constants that follow are approximate to the
number of significant digits given.

π =3.1415926536 Pi
e = 2.7182818285 Napierian (natural) logarithm base
γ =0.5772156649 Euler’s constant

ln π =1.1447298858 Napierian (natural) logarithm of pi, base e
log π =0.4971498727 Briggsian (common logarithm of pi, base 10

Radian = 57.2957795131°
Degree = 0.0174532925 rad
Minute = 0.0002908882 rad
Second = 0.0000048481 rad

THE REAL-NUMBER SYSTEM

The natural numbers, or counting numbers, are the positive integers:
1, 2, 3, 4, 5, . . . . The negative integers are −1, −2, −3, . . . .

A number in the form a/b, where a and b are integers, b ≠ 0, is a
rational number. A real number that cannot be written as the quotient
of two integers is called an irrational number, e.g., �2�, �3�, �5�, π, 
e, �3 2�.

There is a one-to-one correspondence between the set of real num-
bers and the set of points on an infinite line (coordinate line).

Order among Real Numbers; Inequalities
a > b means that a − b is a positive real number.
If a < b and b < c, then a < c.
If a < b, then a � c < b � c for any real number c.
If a < b and c > 0, then ac < bc.
If a < b and c < 0, then ac > bc.
If a < b and c < d, then a + c < b + d.
If 0 < a < b and 0 < c < d, then ac < bd.
If a < b and ab > 0, then 1/a > 1/b.
If a < b and ab < 0, then 1/a < 1/b.

Absolute Value For any real number x, |x| = �x if x ≥ 0
−x if x < 0

Properties
If |x| = a, where a > 0, then x = a or x = −a.
|x| = |−x|; −|x| ≤ x ≤ |x|; |xy| = |x| |y|.
If |x| < c, then −c < x < c, where c > 0.
||x| − |y|| ≤ |x + y| ≤ |x| + |y|.
�x2� = |x|.

Proportions If = , then = , = , 

= .

Indeterminants

Form Example

(∞)(0) xe−x x → ∞
00 xx x → 0+

∞0 (tan x)cos x x →a π−

1∞ (1 + x)1/x x → 0+

∞ − ∞ �x�+� 1� − �x�−� 1� x → ∞

x → 0

x → ∞

Limits of the type 0/∞, ∞/0, 0∞, ∞ ⋅ ∞, (+∞) + (+∞), and (−∞) + (−∞)
are not indeterminate forms.

Integral Exponents (Powers and Roots) If m and n are posi-
tive integers and a, b are numbers or functions, then the following
properties hold:

a−n = 1/an a ≠ 0

(ab)n = anbn

(an)m = anm, anam = an + m

�
n

a� = a1/n if a > 0

�m
�

n�a�� = �
mn

a�, a > 0

am/n = (am)1/n = �
n

am�, a > 0

a0 = 1 (a ≠ 0)

0a = 0 (a ≠ 0)

Infinity (∞) is not a real number. It is possible to extend the real-
number system by adjointing to it “∞” and “−∞,” and within the 
extended system, certain operations involving +∞ or −∞ are possible.
For example, if 0 < a < 1, then a∞ = limx→∞ ax = 0, whereas if a > 1, then 
a∞ = ∞, ∞a = ∞ (a > 0), ∞a = 0 (a < 0).

Care should be taken in the case of roots and fractional powers of a
product; e.g., �xy� ≠ �x��y� if x and y are negative. This rule applies if
one is careful about the domain of the functions involved; so �xy� =
�x��y� if x > 0 and y > 0.

Given any number b > 0, there is a unique function f(x) defined for
all real numbers x such that (1) f(x) = bx for all rational x; (2) f is
increasing if b > 1, constant if b = 1, and decreasing if 0 < b < 1. This
function is called the exponential function bx. For any b > 0, f(x) = bx is

ex

�
x

∞
�
∞

sin x
�

x
0
�
0

c − d
�
c + d

a − b
�
a + b

c − d
�

d
a − b
�

b
c + d
�

d
a + b
�

b
c
�
d

a
�
b
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a continuous function. Also with a,b > 0 and x,y any real numbers, 
we have

(ab)x = axbx

bxby = bx + y

(bx)y = bxy

The exponential function with base b can also be defined as the
inverse of the logarithmic function. The most common exponential
function in applications corresponds to choosing b the transcendental
number e.

Logarithms log ab = log a + log b, a > 0, b > 0
log an = n log a

log (a/b) = log a − log b
log �

n
a� = (1/n) log a

The common logarithm (base 10) is denoted log a or log10a. The nat-
ural logarithm (base e) is denoted ln a (or in some texts loge a).

Roots If a is a real number, n is a positive integer, then x is called
the nth root of a if xn = a. The number of nth roots is n, but not all of
them are necessarily real. The principal nth root means the following:
(1) if a > 0 the principal nth root is the unique positive root, (2) if 
a < 0, and n odd, it is the unique negative root, and (3) if a < 0 and n
even, it is any of the complex roots. In cases (1) and (2), the root can
be found on a calculator by taking y = ln a/n and then x = ey. In case
(3), see the section on complex variables.

PROGRESSIONS

Arithmetic Progression

�
n − 1

k = 0

(a + kd) = na + n(n − 1)d = (a + �)

where � is the last term, � = a + (n − 1)d.
Geometric Progression

�
n

k = 1

ark − 1 = (r ≠ 1)

Arithmetic-Geometric Progression

�
n − 1

k = 0

(a + kd)rk = + (r ≠ 1)

�
n

k = 1

k5 = n2(n + 1)2(2n2 + 2n − 1)

�
n

k = 1

(2k − 1) = n2

�
n

k = 1

(2k − 1)2 = n(4n2 − 1)

�
n

k = 1

(2k − 1)3 = n2(2n2 − 1)

γ = lim
n→∞ � �

n

m = 1

− ln n� = 0.577215

ALGEBRAIC INEQUALITIES

Arithmetic-Geometric Inequality Let An and Gn denote
respectively the arithmetic and the geometric means of a set of posi-
tive numbers a1, a2, . . . , an. The An ≥ Gn, i.e.,

≥ (a1a2 ⋅⋅⋅ an)1/n

The equality holds only if all of the numbers ai are equal.
Carleman’s Inequality The arithmetic and geometric means

just defined satisfy the inequality

�
n

r = 1

Gr ≤ neAn

a1 + a2 + ⋅⋅⋅ + an
��

n

1
�
m

1
�
3

1
�
12

dr(1 − r n − 1)
��

(1 − r)2

a − [a + (n − 1)d]rn

��
1 − r

a(rn − 1)
�

r − 1

n
�
2

1
�
2

or, equivalently,

�
n

r = 1

(a1a2 ⋅⋅⋅ ar)1/r ≤ neAn

where e is the best possible constant in this inequality.
Cauchy-Schwarz Inequality Let a = (a1, a2, . . . , an), b = (b1,

b2, . . . , bn), where the ai’s and bi’s are real or complex numbers. Then

��
n

k = 1

akb�k�
2

≤ ��
n

k = 1

|ak|2���
n

k = 1

|bk|2�
The equality holds if, and only if, the vectors a, b are linearly depen-
dent (i.e., one vector is scalar times the other vector).

Minkowski’s Inequality Let a1, a2, . . . , an and b1, b2, . . . , bn be
any two sets of complex numbers. Then for any real number p > 1,

��
n

k = 1

|ak + bk|p�
1/p

≤ ��
n

k = 1

|ak|p�
1/p

+ ��
n

k = 1

|bk|p�
1/p

Hölder’s Inequality Let a1, a2, . . . , an and b1, b2, . . . , bn be any
two sets of complex numbers, and let p and q be positive numbers
with 1/p + 1/q = 1. Then

��
n

k = 1

akb�k� ≤ ��
n

k = 1

|ak|p�
1/p

��
n

k = 1

|bk|q�
1/q

The equality holds if, and only if, the sequences |a1|p, |a2|p, . . . , |an|p
and |b1|q, |b2|q, . . . , |bn|q are proportional and the argument (angle) of
the complex numbers akb�k is independent of k. This last condition is of
course automatically satisfied if a1, . . . , an and b1, . . . , bn are positive
numbers.

Lagrange’s Inequality Let a1, a2, . . . , an and b1, b2, . . . , bn be
real numbers. Then

��
n

k = 1

akbk�
2

= ��
n

k = 1

ak
2���

n

k = 1

bk
2� − �

1 ≤ k ≤ j ≤ n

(akbj − ajbk)2

Example Two chemical engineers, John and Mary, purchase stock in the
same company at times t1, t2, . . . , tn, when the price per share is respectively p1,
p2, . . . , pn. Their methods of investment are different, however: John purchases
x shares each time, whereas Mary invests P dollars each time (fractional shares
can be purchased). Who is doing better?

While one can argue intuitively that the average cost per share for Mary does
not exceed that for John, we illustrate a mathematical proof using inequalities.
The average cost per share for John is equal to

= = �
n

i = 1

pi

The average cost per share for Mary is

=

Thus the average cost per share for John is the arithmetic mean of p1, p2, . . . , pn,
whereas that for Mary is the harmonic mean of these n numbers. Since the har-
monic mean is less than or equal to the arithmetic mean for any set of positive
numbers and the two means are equal only if p1 = p2 = ⋅⋅⋅ = pn, we conclude that
the average cost per share for Mary is less than that for John if two of the prices
pi are distinct. One can also give a proof based on the Cauchy-Schwarz inequal-
ity. To this end, define the vectors

a = (p1
−1/2, p2

−1/2, . . . , pn
−1/2) b = (p1

1/2, p2
1/2, . . . , pn

1/2)

Then a ⋅ b = 1 + ⋅⋅⋅ + 1 = n, and so by the Cauchy-Schwarz inequality

(a ⋅ b)2 = n2 ≤ �
n

i = 1
�

n

i = 1

pi

with the equality holding only if p1 = p2 = ⋅⋅⋅ = pn. Therefore

≤
�

n

i = 1

pi

�
n

n
�

�
n

i = 1

�
p
1

i

�

1
�
pi

n
�

�
n

i = 1

�
p
1

i

�

nP
�

�
n

i = 1

�
p
P

i

�

1
�
n

x �
n

i = 1

pi

�
nx

Total money invested
����
Number of shares purchased
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Let A denote areas and V, volumes, in the following.

PLANE GEOMETRIC FIGURES WITH STRAIGHT
BOUNDARIES

Triangles (see also “Plane Trigonometry”) A = abh where b =
base, h = altitude.

Rectangle A = ab where a and b are the lengths of the sides.
Parallelogram (opposite sides parallel) A = ah = ab sin α where

a, b are the lengths of the sides, h the height, and α the angle between
the sides. See Fig. 3-3.

Rhombus (equilateral parallelogram) A =aab where a, b are the
lengths of the diagonals.

Trapezoid (four sides, two parallel) A = a(a + b)h where the
lengths of the parallel sides are a and b, and h = height.

Quadrilateral (four-sided) A = aab sin θ where a, b are the
lengths of the diagonals and the acute angle between them is θ.

Regular Polygon of n Sides See Fig. 3-4.

A = nl 2 cot where l = length of each side

R = csc where R is the radius of the circumscribed circle

r = cot where r is the radius of the inscribed circle

β =

θ =

l = 2r tan = 2R sin 

Inscribed and Circumscribed Circles with Regular Polygon of
n Sides Let l = length of one side.

Radius of Radius of
circumscribed inscribed

Figure n Area circle circle

Equilateral triangle 3 0.4330 l2 0.5774 l 0.2887 l
Square 4 1.0000 l2 0.7071 l 0.5000 l
Pentagon 5 1.7205 l2 0.8507 l 0.6882 l
Hexagon 6 2.5981 l2 1.0000 l 0.8660 l
Octagon 8 4.8284 l2 1.3065 l 1.2071 l
Decagon 10 7.6942 l2 1.6180 l 1.5388 l
Dodecagon 12 11.1962 l2 1.8660 l 1.9318 l

Radius r of Circle Inscribed in Triangle with Sides a, b, c

r = �		 where s =a(a + b + c)
(s − a)(s − b)(s − c)
��

s

β
�
2

β
�
2

(n − 2)180°
��

n

360°
�

n

180°
�

n
l

�
2

180°
�

n
l

�
2

180°
�

n
1
�
4

Radius R of Circumscribed Circle

R =

Area of Regular Polygon of n Sides Inscribed in a Circle of
Radius r

A = (nr 2/2) sin (360°/n)

Perimeter of Inscribed Regular Polygon

P = 2nr sin (180°/n)

Area of Regular Polygon Circumscribed about a Circle of
Radius r

A = nr 2 tan (180°/n)

Perimeter of Circumscribed Regular Polygon

P = 2nr tan 

PLANE GEOMETRIC FIGURES 
WITH CURVED BOUNDARIES

Circle (Fig. 3-5) Let
C = circumference
r = radius

D = diameter
A = area
S = arc length subtended by θ
l = chord length subtended by θ

H = maximum rise of arc above chord, r − H = d
θ = central angle (rad) subtended by arc S
C = 2πr = πD (π =3.14159 . . .)
S = rθ =aDθ
l = 2�r2� −� d�2� = 2r sin (θ/2) = 2d tan (θ/2)

d = �4�r2� −� l�2� = l cot 

θ = = 2 cos−1 = 2 sin−1

A (circle) = πr2 =dπD2

A (sector) =arS =ar 2θ
A (segment) = A (sector) − A (triangle) =ar 2(θ − sin θ)

= r2 cos−1 − (r − H) �2�rH� −� H�2�

Ring (area between two circles of radii r1 and r2 ) The circles need
not be concentric, but one of the circles must enclose the other.

A = π(r1 + r2)(r1 − r2) r1 > r2

r − H
�

r

l
�
D

d
�
r

S
�
r

θ
�
2

1
�
2

1
�
2

180°
�

n

abc
���
4�s(�s�−� a�)(�s�−� b�)(�s�−� c�)�

MENSURATION FORMULAS
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Ellipse (Fig. 3-6) Let the semiaxes of the ellipse be a and b

A = πab
C = 4aE(k)

where e2 = 1 − b2/a2 and E(e) is the complete elliptic integral of the
second kind,

E(e) = 
1 − � �
2

e2 + ⋅⋅⋅�
[an approximation for the circumference C = 2π�(a�2�+� b�2)�/2�].

Parabola (Fig. 3-7)

Length of arc EFG = �4�x2� +� y�2� + ln 

Area of section EFG = xy

Catenary (the curve formed by a cord of uniform weight sus-
pended freely between two points A, B; Fig. 3-8)

y = a cosh (x/a)

Length of arc between points A and B is equal to 2a sinh (L/a). Sag of
the cord is D = a cosh (L/a) − 1.

SOLID GEOMETRIC FIGURES WITH PLANE BOUNDARIES

Cube Volume = a3; total surface area = 6a2; diagonal = a�3�,
where a = length of one side of the cube.

Rectangular Parallelepiped Volume = abc; surface area =
2(ab + ac + bc); diagonal = �a2� +� b�2�+� c�2�, where a, b, c are the lengths
of the sides.

Prism Volume = (area of base) × (altitude); lateral surface area =
(perimeter of right section) × (lateral edge).

Pyramid Volume = s (area of base) × (altitude); lateral area of
regular pyramid =a (perimeter of base) × (slant height) =a (number
of sides) (length of one side) (slant height).

Frustum of Pyramid (formed from the pyramid by cutting off
the top with a plane

V =s (A1 + A2 + �A�1�⋅�A�2�)h
where h = altitude and A1, A2 are the areas of the base; lateral area of
a regular figure =a (sum of the perimeters of base) × (slant height).

4
�
3

2x + �4�x2� +� y�2�
��

y
y2

�
2x

1
�
2

π
�
2

FIG. 3-6 Ellipse. FIG. 3-7 Parabola.

FIG. 3-8 Catenary.

Volume and Surface Area of Regular Polyhedra with Edge l

Type of surface Name Volume Surface area

4 equilateral triangles Tetrahedron 0.1179 l3 1.7321 l2

6 squares Hexahedron (cube) 1.0000 l3 6.0000 l2

8 equilateral triangles Octahedron 0.4714 l3 3.4641 l2

12 pentagons Dodecahedron 7.6631 l3 20.6458 l2

20 equilateral triangles Icosahedron 2.1817 l3 8.6603 l2

SOLIDS BOUNDED BY CURVED SURFACES

Cylinders (Fig. 3-9) V = (area of base) × (altitude); lateral surface
area = (perimeter of right section) × (lateral edge).

Right Circular Cylinder V = π(radius)2 × (altitude); lateral sur-
face area = 2π (radius) × (altitude).

Truncated Right Circular Cylinder

V = πr 2h; lateral area = 2πrh

h =a (h1 + h2)

Hollow Cylinders Volume = πh(R2 − r 2), where r and R are the
internal and external radii and h is the height of the cylinder.

Sphere (Fig. 3-10)

V (sphere) = 4⁄3πR3, jπD3

V (spherical sector) =wπR2h =jπh1(3r 2
2 + h1

2)

V (spherical segment of one base) =jπh1(3r 2
2 + h1

2)

V (spherical segment of two bases) =jπh2(3r 1
2 + 3r 2

2 + h2
2)

A (sphere) = 4πR2 = πD2

A (zone) = 2πRh = πDh

A (lune on the surface included between two great circles, the incli-
nation of which is θ radians) = 2R2θ.

Cone V =s (area of base) × (altitude).
Right Circular Cone V = (π/3) r 2h, where h is the altitude and r

is the radius of the base; curved surface area = πr �r2� +� h�2�, curved sur-
face of the frustum of a right cone = π(r1 + r2) �h�2�+� (�r1� −� r�2)�2�, where
r1, r2 are the radii of the base and top, respectively, and h is the alti-
tude; volume of the frustum of a right cone = π(h/3)(r 1

2 + r1r2 + r 2
2) =

h/3(A1 + A2 + �A�1A�2�), where A1 = area of base and A2 = area of top.
Ellipsoid V = (4 ⁄3) πabc, where a, b, c are the lengths of the semi-

axes.
Torus (obtained by rotating a circle of radius r about a line whose

distance is R > r from the center of the circle)

V = 2π2Rr 2 Surface area = 4π2Rr

Prolate Spheroid (formed by rotating an ellipse about its major
axis [2a])

Surface area = 2πb2 + 2π(ab/e) sin−1 e V = 4 ⁄3πab2

where a, b are the major and minor axes and e = eccentricity (e < 1).
Oblate Spheroid (formed by the rotation of an ellipse about its

minor axis [2b]) Data as given previously.

FIG. 3-9 Cylinder. FIG. 3-10 Sphere.



Surface area = 2πa2 + π ln V = 4 ⁄3πa2b

MISCELLANEOUS FORMULAS

See also “Differential and Integral Calculus.”
Volume of a Solid Revolution (the solid generated by rotating

a plane area about the x axis)

V = π �b

a

[ f(x)]2 dx

where y = f(x) is the equation of the plane curve and a ≤ x ≤ b.
Area of a Surface of Revolution

S = 2π�b

a

y ds

where ds = �1� +� (�d�y�/d�x)�2� dx and y = f(x) is the equation of the plane
curve rotated about the x axis to generate the surface.

Area Bounded by f(x), the x Axis, and the Lines x = a, x = b

A = �b

a

f(x) dx [ f(x) ≥ 0]

Length of Arc of a Plane Curve
If y = f(x),

Length of arc s = �b

a
�1	 +	 �		�

2	 dx

If x = g(y),

Length of arc s = � d

c
�1	 +	 �		�

2	 dy

If x = f(t), y = g(t),

Length of arc s = �t1

t0
��		�

2	 +	 �		�
2	 dt

In general, (ds)2 = (dx)2 + (dy)2.
Theorems of Pappus (for volumes and areas of surfaces of revo-

lution)

dy
�
dt

dx
�
dt

dx
�
dy

dy
�
dx

1 + e
�
1 − e

b2

�
e

1. If a plane area is revolved about a line which lies in its plane but
does not intersect the area, then the volume generated is equal to the
product of the area and the distance traveled by the area’s center of
gravity.

2. If an arc of a plane curve is revolved about a line that lies in its
plane but does not intersect the arc, then the surface area generated
by the arc is equal to the product of the length of the arc and the dis-
tance traveled by its center of gravity.

These theorems are useful for determining volumes V and surface
areas S of solids of revolution if the centers of gravity are known. If 
S and V are known, the centers of gravity may be determined.

IRREGULAR AREAS AND VOLUMES

Irregular Areas Let y0, y1, . . . , yn be the lengths of a series of
equally spaced parallel chords and h be their distance apart. The area
of the figure is given approximately by any of the following:

AT = (h/2)[(y0 + yn) + 2(y1 + y2 + ⋅⋅⋅ + yn − 1)] (trapezoidal rule)

As = (h/3)[(y0 + yn) + 4(y1 + y3 + y5 + ⋅⋅⋅ + yn − 1)

+ 2(y2 + y4 + ⋅⋅⋅ + yn − 2)] (n even, Simpson’s rule)

The greater the value of n, the greater the accuracy of approximation.
Irregular Volumes To find the volume, replace the y’s by cross-

sectional areas Aj and use the results in the preceding equations.

REFERENCES: 20, 102, 108, 191, 269, 277.

OPERATIONS ON ALGEBRAIC EXPRESSIONS

An algebraic expression will here be denoted as a combination of let-
ters and numbers such as

3ax − 3xy + 7x2 + 7x 3/ 2 − 2.8xy

Addition and Subtraction Only like terms can be added or sub-
tracted in two algebraic expressions.

Example (3x + 4xy − x2) + (3x2 + 2x − 8xy) = 5x − 4xy + 2x2.

Example (2x + 3xy − 4x1/2) + (3x + 6x − 8xy) = 2x + 3x + 6x − 5xy − 4x1/2.

Multiplication Multiplication of algebraic expressions is term by
term, and corresponding terms are combined.

Example (2x + 3y − 2xy)(3 + 3y) = 6x + 9y + 9y2 − 6xy2.

Division This operation is analogous to that in arithmetic.

Example Divide 3e2x + ex + 1 by ex + 1.

Dividend

Divisor ex + 1 | 3e2x + ex + 1 3ex − 2 quotient
3e2x + 3ex

−2ex + 1
−2ex − 2

+ 3 (remainder)

Therefore, 3e2x + ex + 1 = (ex + 1)(3ex − 2) + 3.

Operations with Zero All numerical computations (except divi-
sion) can be done with zero: a + 0 = 0 + a = a; a − 0 = a; 0 − a = −a;
(a)(0) = 0; a0 = 1 if a ≠ 0; 0/a = 0, a ≠ 0. a/0 and 0/0 have no meaning.

Fractional Operations

− = −� � = = ; = ; = , if a ≠ 0.

� = ; � �� � = ; = � �� � =

Factoring That process of analysis consisting of reducing a given
expression into the product of two or more simpler expressions called
factors. Some of the more common expressions are factored here:

(1) (x2 − y2) = (x − y)(x + y)

xt
�
yz

t
�
z

x
�
y

x/y
�
z/t

xz
�
yt

z
�
t

x
�
y

x � z
�

y
z
�
y

x
�
y

ax
�
ay

x
�
y

−x
�
−y

x
�
y

−x
�
y

x
�
−y

−x
�
−y

x
�
y
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(2) x2 + 2xy + y2 = (x + y)2

(3) x2 + ax + b = (x + c)(x + d) where c + d = a, cd = b

(4) by2 + cy + d = (ey + f)(gy + h) where eg = b, fg + eh = c, fh = d

(5) x2 + y2 + z2 + 2yz + 2xz + 2xy = (x + y + z)2

(6) x2 − y2 − z2 − 2yz = (x − y − z)(x + y + z)

(7) x2 + y2 + z2 − 2xy − 2xz + 2yz = (x − y − z)2

(8) x3 − y3 = (x − y)(x2 + xy + y2)

(9) (x3 + y3) = (x + y)(x2 − xy + y2)

(10) (x4 − y4) = (x − y)(x + y)(x2 + y2)

(11) x5 + y5 = (x + y)(x4 − x3y + x2y2 − xy3 + y4)

(12) xn − yn = (x − y)(xn − 1 + xn − 2y + xn − 3y2 + ⋅⋅⋅ + yn − 1)

Laws of Exponents
(an)m = anm; an + m = an ⋅ am; an/m = (an)1/m; an − m = an/am; a1/m = m�a�; 

a1/2 = �a�; �x2� = |x| (absolute value of x). For x > 0, y > 0, �xy� = �x�
�y�; for x > 0 �xm� = xm/n; �n 1�/x� = 1/�x�

THE BINOMIAL THEOREM

If n is a positive integer,

(a + b)n = an + nan − 1b + an − 2 b2

+ an − 3b3 + ⋅⋅⋅ + bn = �
n

j = 0
� �an − jbj

where � � = = number of combinations of n things taken j at

a time. n! = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅⋅⋅ n, 0! = 1.

Example Find the sixth term of (x + 2y)12. The sixth term is obtained by
setting j = 5. It is

� � x12 − 5(2y)5 = 792x7(2y)5

Example �
14

j = 0
� � = (1 + 1)14 = 214.

If n is not a positive integer, the sum formula no longer applies and
an infinite series results for (a + b)n. The coefficients are obtained
from the first formulas in this case.

Example (1 + x)1/2 = 1 + ax − a ⋅ dx2 + a ⋅ d ⋅ 3⁄6 x3 ⋅⋅⋅ (convergent for 
x2 < 1).

Additional discussion is under “Infinite Series.”

PROGRESSIONS

An arithmetic progression is a succession of terms such that each
term, except the first, is derivable from the preceding by the addition
of a quantity d called the common difference. All arithmetic progres-
sions have the form a, a + d, a + 2d, a + 3d, . . . . With a = first term, 
l = last term, d = common difference, n = number of terms, and s =
sum of the terms, the following relations hold:

l = a + (n − 1)d = − +�2	d	s	+	 �	a	−			�
2	

= + d

s = [2a + (n − 1)d] = (a + l) = [2l − (n − 1)d]
n
�
2

n
�
2

n
�
2

(n − 1)
�

2
s

�
n

d
�
2

d
�
2

n
j

12
5

n!
�
j!(n − j)!

n
j

n
j

n(n − 1)(n − 2)
��

3!

n(n − 1)
�

2!
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a = l − (n − 1)d = − = − l

d = = =

n = + 1 = =

The arithmetic mean or average of two numbers a, b is (a + b)/2;
of n numbers a1, . . . , an is (a1 + a2 + ⋅⋅⋅ + an)/n.

A geometric progression is a succession of terms such that each
term, except the first, is derivable from the preceding by the multipli-
cation of a quantity r called the common ratio. All such progressions
have the form a, ar, ar 2, . . . , arn − 1. With a = first term, l = last term, 
r = ratio, n = number of terms, s = sum of the terms, the following rela-
tions hold:

l = arn − 1 = =

s = = = =

a = = r = log r =

n = + 1 =

The geometric mean of two nonnegative numbers a, b is �ab�; of n
numbers is (a1a2 . . . an)1/n.

Example Find the sum of 1 +a +d + ⋅⋅⋅ + 1⁄64. Here a = 1, r =a, n = 7. Thus

s = = 127/64

s = a + ar + ar 2 + ⋅⋅⋅ + arn − 1 = −

If |r| < 1, then lim
n→∞

s =

which is called the sum of the infinite geometric progression.

Example The present worth (PW) of a series of cash flows Ck at the end
of year k is

PW = �
n

k = 1

where i is an assumed interest rate. (Thus the present worth always requires
specification of an interest rate.) If all the payments are the same, Ck = R, the
present worth is

PW = R �
n

k = 1

This can be rewritten as

PW = �
n

k = 1

= �
n − 1

j = 0

This is a geometric series with r = 1/(1 + i) and a = R/(1 + i). The formulas above
give

PW (=s) =

The same formula applies to the value of an annuity (PW) now, to provide for
equal payments R at the end of each of n years, with interest rate i.

A progression of the form a, (a + d )r, (a + 2d )r 2, (a + 3d )r 3, etc., is
a combined arithmetic and geometric progression. The sum of n such
terms is

s = +

If |r| < 1, lim
n→∞

s = + rd/(1 − r)2.
a

�
1 − r

rd(1 − rn − 1)
��

(1 − r)2

a − [a + (n − 1)d]rn

��
I − r

(1 + i)n − 1
��

(1 + i)n

R
�
i

1
�
(1 + i) j

R
�
1 + i

1
�
(1 + i)k − 1

R
�
1 + i

1
�
(1 + i)k

Ck
�
(1 + i)k

a
�
1 − r

arn

�
1 − r

a
�
1 − r

a(1⁄64) − 1
��
a − 1

log[a + (r − 1)s] − log a
���

log r
log l − log a
��

log r

log l − log a
��

n − 1
s − a
�
s − l

(r − 1)s
�
rn − 1

l
�
rn − l

lr n − l
�
r n − rn − 1

rl − a
�
r − 1

a(1 − rn)
�

1 − r
a(rn − 1)
�

r − 1

(r − 1)srn − 1

��
rn − 1

[a + (r − 1)s]
��

r

2l + d + �(2�l�+� d�)2� −� 8�d�s�
���

2d
2s

�
l + a

l − a
�

d

2(nl − s)
�
n(n − 1)

2(s − an)
�
n(n − 1)

l − a
�
n − 1

2s
�
n

(n − 1)d
�

2
s

�
n



The non-zero numbers a, b, c, etc., form a harmonic progression if
their reciprocals 1/a, 1/b, 1/c, etc., form an arithmetic progression.

Example The progression 1, s, 1⁄5, 1⁄7, . . . , 1⁄31 is harmonic since 1, 3, 5,
7, . . . , 31 form an arithmetic progression.

The harmonic mean of two numbers a, b is 2ab/(a + b).

PERMUTATIONS, COMBINATIONS, AND PROBABILITY

Each separate arrangement of all or a part of a set of things is called a
permutation. The number of permutations of n things taken r at a
time, written

P(n, r) = = n(n − 1)(n − 2) ⋅⋅⋅ (n − r + 1)

Example The permutations of a, b, c two at a time are ab, ac, ba, ca, cb,
and bc. The formula is P(3,2) = 3!/1! = 6. The permutations of a, b, c three at a
time are abc, bac, cab, acb, bca, and cba.

Each separate selection of objects that is possible irrespective of the
order in which they are arranged is called a combination. The number
of combinations of n things taken r at a time, written C(n, r) = n!/
[r!(n − r)!].

Example The combinations of a, b, c taken 2 at a time are ab, ac, bc; taken
3 at a time is abc.

An important relation is r! C(n, r) = P(n, r).
If an event can occur in p ways and fail to occur in q ways, all ways

being equally likely, the probability of its occurrence is p/(p + q), and
that of its failure q/(p + q).

Example Two dice may be thrown in 36 separate ways. What is the prob-
ability of throwing such that their sum is 7? Seven may arise in 6 ways: 1 and 6,
2 and 5, 3 and 4, 4 and 3, 5 and 2, 6 and 1. The probability of shooting 7 is j.

THEORY OF EQUATIONS

Linear Equations A linear equation is one of the first degree
(i.e., only the first powers of the variables are involved), and the
process of obtaining definite values for the unknown is called solving
the equation. Every linear equation in one variable is written Ax + B =
0 or x = −B/A. Linear equations in n variables have the form

a11 x1 + a12 x2 + ⋅⋅⋅ + a1nxn = b1

a21 x1 + a22 x2 + ⋅⋅⋅ + a2nxn = b2

�
am1x1 + am2x2 + ⋅⋅⋅ + amnxn = bm

The solution of the system may then be found by elimination or matrix
methods if a solution exists (see “Matrix Algebra and Matrix Compu-
tations”).

Quadratic Equations Every quadratic equation in one variable
is expressible in the form ax 2 + bx + c = 0. a ≠ 0. This equation has two
solutions, say, x1, x2, given by

 =

If a, b, c are real, the discriminant b2 − 4ac gives the character of the
roots. If b2 − 4ac > 0, the roots are real and unequal. If b2 − 4ac < 0, the
roots are complex conjugates. If b2 − 4ac = 0 the roots are real and
equal.

Two quadratic equations in two variables can in general be solved
only by numerical methods (see “Numerical Analysis and Approxi-
mate Methods”). If one equation is of the first degree, the other of the
second degree, a solution may be obtained by solving the first for one
unknown. This result is substituted in the second equation and the
resulting quadratic equation solved.

Cubic Equations A cubic equation, in one variable, has the form
x3 + bx2 + cx + d = 0. Every cubic equation having complex coefficients

−b � �b�2�−� 4�ac�
��

2a
x1

x2

n!
�
(n − r)!
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has three complex roots. If the coefficients are real numbers, then at
least one of the roots must be real. The cubic equation x3 + bx2 + cx +
d = 0 may be reduced by the substitution x = y − (b/3) to the form y3 +
py + q = 0, where p =s(3c − b2), q = 1⁄27(27d − 9bc + 2b3). This equa-
tion has the solutions y1 = A + B, y2 = −a(A + B) + (i�3�/2)(A − B), 
y3 = −a(A + B) − (i�3�/2)(A − B), where i2 = −1, A = �3

−�q�/2� +� ��R��, 
B = �3

−�q�/2� −� ��R��, and R = (p/3)3 + (q/2)2. If b, c, d are all real and if
R > 0, there are one real root and two conjugate complex roots; if R =
0, there are three real roots, of which at least two are equal; if R < 0,
there are three real unequal roots. If R < 0, these formulas are imprac-
tical. In this case, the roots are given by yk = � 2 �−�p�/3� cos [(φ/3) +
120k], k = 0, 1, 2 where

φ =cos−1 �	
and the upper sign applies if q > 0, the lower if q < 0.

Example x3 + 3x2 + 9x + 9 = 0 reduces to y3 + 6y + 2 = 0 under x = y − 1.
Here p = 6, q = 2, R = 9. Hence A = �

3
2�, B = �

3
−�4�. The desired roots in y are

�
3

2� − �
3

−�4� and −a(�
3

2� − �
3

4�) � (i�3�/2)(�
3

2� + �
3

4�). The roots in x are x =
y − 1.

Example y3 − 7y + 7 = 0. p = −7, q = 7, R < 0. Hence

xk = −�	 cos � + 120k�
where φ =�	, = 3°37′52″.

The roots are approximately −3.048916, 1.692020, and 1.356897.

Example Many equations of state involve solving cubic equations for the
compressibility factor Z. For example, the Redlich-Kwong-Soave equation of
state requires solving

Z3 − Z2 + cZ + d = 0, d < 0

where c and d depend on critical constants of the chemical species. In this case,
only positive solutions, Z > 0, are desired.

Quartic Equations See Ref. 118.
General Polynomials of the nth Degree Denote the general

polynomial equation of degree n by

P(x) = a0 xn + a1xn − 1 + ⋅⋅⋅ + an − 1 x + an = 0

If n > 4, there is no formula which gives the roots of the general
equation. For fourth and higher order (even third order), the roots
can be found numerically (see “Numerical Analysis and Approximate
Methods”). However, there are some general theorems that may
prove useful.

Remainder Theorems When P(x) is a polynomial and P(x) is
divided by x − a until a remainder independent of x is obtained, this
remainder is equal to P(a).

Example P(x) = 2x4 − 3x2 + 7x − 2 when divided by x + 1 (here a = −1)
results in P(x) = (x + 1)(2x3 − 2x2 − x + 8) − 10 where −10 is the remainder. It is
easy to see that P(−1) = −10.

Factor Theorem If P(a) is zero, the polynomial P(x) has the fac-
tor x − a. In other words, if a is a root of P(x) = 0, then x − a is a factor
of P(x).

If a number a is found to be a root of P(x) = 0, the division of P(x) by
(x − a) leaves a polynomial of degree one less than that of the original
equation, i.e., P(x) = Q(x)(x − a). Roots of Q(x) = 0 are clearly roots of
P(x) = 0.

Example P(x) = x3 − 6x2 + 11x − 6 = 0 has the root + 3. Then P(x) =
(x − 3)(x2 − 3x + 2). The roots of x2 − 3x + 2 = 0 are 1 and 2. The roots of P(x) are
therefore 1, 2, 3.

Fundamental Theorem of Algebra Every polynomial of degree
n has exactly n real or complex roots, counting multiplicities.

φ
�
3

27
�
28

φ
�
3

28
�
3

q2/4
�
−p3/27



Every polynomial equation a0xn + a1 xn − 1 + ⋅⋅⋅ + an = 0 with rational
coefficients may be rewritten as a polynomial, of the same degree, with
integral coefficients by multiplying each coefficient by the least com-
mon multiple of the denominators of the coefficients.

Example The coefficients of 3⁄2 x4 + 7⁄3 x3 − 5⁄6 x2 + 2x − j = 0 are rational
numbers. The least common multiple of the denominators is 2 × 3 = 6. There-
fore, the equation is equivalent to 9x4 + 14x3 − 5x2 + 12x − 1 = 0.

Upper Bound for the Real Roots Any number that exceeds all
the roots is called an upper bound to the real roots. If the coefficients
of a polynomial equation are all of like sign, there is no positive root.
Such equations are excluded here since zero is the upper bound to the
real roots. If the coefficient of the highest power of P(x) = 0 is nega-
tive, replace the equation by −P(x) = 0.

If in a polynomial P(x) = c0xn + c1 xn − 1 + ⋅⋅⋅ + cn − 1x + cn = 0, with
c0 > 0, the first negative coefficient is preceded by k coefficients

which are positive or zero, and if G denotes the greatest of the numer-
ical values of the negative coefficients, then each real root is less than 
1 + �k G�/c�0�.

A lower bound to the negative roots of P(x) = 0 may be found by
applying the rule to P(−x) = 0.

Example P(x) = x7 + 2x5 + 4x4 − 8x2 − 32 = 0. Here k = 5 (since 2 coeffi-
cients are zero), G = 32, c0 = 1. The upper bound is 1 + �

3
3�2� = 3. P(−x) = −x7 −

2x5 + 4x4 − 8x2 − 32 = 0. −P(−x) = x7 + 2x5 − 4x4 + 8x2 + 32 = 0. Here k = 3, G = 4,
c0 = 1. The lower bound is −(1 + �

3
4�) ≈ −2.587. Thus all real roots r lie in the

range −2.587 < r < 3.

Descartes Rule of Signs The number of positive real roots of a
polynomial equation with real coefficients either is equal to the num-
ber v of its variations in sign or is less than v by a positive even integer.
The number of negative roots of P(x) = 0 either is equal to the number
of variations of sign of P(−x) or is less than that number by a positive
even integer.

Example P(x) = x4 + 3x3 + x − 1 = 0. v = 1; so P(x) has one positive root. 
P(−x) = x4 − 3x3 − x − 1. Here v = 1; so P(x) has one negative root. The other two
roots are complex conjugates.

Example P(x) = x4 − x2 + 10x − 4 = 0. v = 3; so P(x) has three or one posi-
tive roots. P(−x) = x4 − x2 − 10x − 4. v = 1; so P(x) has exactly one negative root.

Numerical methods are often used to find the roots of polynomials.
A detailed discussion of these techniques is given under “Numerical
Analysis and Approximate Methods.”

Determinants Consider the system of two linear equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

If the first equation is multiplied by a22 and the second by −a12 and the
results added, we obtain

(a11a22 − a21a12)x1 = b1a22 − b2a12

The expression a11a22 − a21a12 may be represented by the symbol

� � = a11a22 − a21a12

This symbol is called a determinant of second order. The value of the
square array of n2 quantities aij, where i = 1, . . . , n is the row index, 
j = 1, . . . , n the column index, written in the form

|A| = � �
is called a determinant. The n2 quantities aij are called the elements
of the determinant. In the determinant |A| let the ith row and jth 
column be deleted and a new determinant be formed having n − 1
rows and columns. This new determinant is called the minor of aij

denoted Mij.

a13 ⋅⋅⋅ a1n

⋅⋅⋅⋅⋅ a2n

an3 ⋅⋅⋅ ann

a12

a22

an2

a11

a21

�
an1

a12

a22

a11

a21
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Example � � The minor of a23 is M23 = � �
The cofactor Aij of the element aij is the signed minor of aij determined 

by the rule Aij = (−1) i + jMij. The value of |A| is obtained by forming any of the
equivalent expressions �n

j = 1 aijAij, �
n
t = 1 aijAij, where the elements aij must be

taken from a single row or a single column of A.

Example

� �= a31A31 + a32A32 + a33A33

= a31 � � − a32 � � + a33 � �
In general, Aij will be determinants of order n − 1, but they may in turn be

expanded by the rule. Also,

�
n

j = 1

ajiAjk = �
n

j = 1

aijAjk = �|A| i = k
0 i ≠ k

Fundamental Properties of Determinants
1. The value of a determinant |A| is not changed if the rows and

columns are interchanged.
2. If the elements of one row (or one column) of a determinant

are all zero, the value of |A| is zero.
3. If the elements of one row (or column) of a determinant are

multiplied by the same constant factor, the value of the determinant is
multiplied by this factor.

4. If one determinant is obtained from another by interchanging
any two rows (or columns), the value of either is the negative of the
value of the other.

5. If two rows (or columns) of a determinant are identical, the
value of the determinant is zero.

6. If two determinants are identical except for one row (or col-
umn), the sum of their values is given by a single determinant
obtained by adding corresponding elements of dissimilar rows (or
columns) and leaving unchanged the remaining elements.

Example

� � + � � = 13 + 6 = 19 Directly

� � = 35 − 16 = 19 By rule 6

7. The value of a determinant is not changed if to the elements of
any row (or column) are added a constant multiple of the correspond-
ing elements of any other row (or column).

8. If all elements but one in a row (or column) are zero, the value
of the determinant is the product of that element times its cofactor.

The evaluation of determinants using the definition is quite labori-
ous. The labor can be reduced by applying the fundamental properties
just outlined.

The solution of n linear equations (not all bi zero)

a11 x1 + a12x2 + ⋅⋅⋅ + a1nxn = b1

a21 x1 + a22x2 + ⋅⋅⋅ + a2nxn = b2

��� �
an1x1 + an2x2 + ⋅⋅⋅ + annxn = bn

where |A| = � � ≠ 0

has a unique solution given by x1 = |B1|/ |A|, x2 = |B2|/ |A|, . . . , xn =
|Bn|/ |A|, where Bk is the determinant obtained from A by replacing its
kth column by b1, b2, . . . , bn. This technique is called Cramer’s rule.
It requires more labor than the method of elimination and should not
be used for computations.

a11 ⋅⋅⋅ a1n

a21 ⋅⋅⋅ a2n

�
an1 ⋅⋅⋅ ann

2
5

7
8

2
5

4
7

2
5

3
1

a12

a22

a11

a21

a13

a23

a11

a21

a13

a23

a12

a22

a13

a23

a33

a12

a22

a32

a11

a21

a31

a12

a32

a11

a31

a13

a23

a33

a12

a22

a32

a11

a21

a31
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ANALYTIC GEOMETRY

REFERENCES: 108, 188, 193, 260, 261, 268, 274, 282.
Analytic geometry uses algebraic equations and methods to study geometric

problems. It also permits one to visualize algebraic equations in terms of geo-
metric curves, which frequently clarifies abstract concepts.

PLANE ANALYTIC GEOMETRY

Coordinate Systems The basic concept of analytic geometry is
the establishment of a one-to-one correspondence between the points
of the plane and number pairs (x, y). This correspondence may be
done in a number of ways. The rectangular or cartesian coordinate
system consists of two straight lines intersecting at right angles (Fig. 
3-12). A point is designated by (x, y), where x (the abscissa) is the dis-
tance of the point from the y axis measured parallel to the x axis, pos-
itive if to the right, negative to the left. y (ordinate) is the distance of
the point from the x axis, measured parallel to the y axis, positive if
above, negative if below the x axis. The quadrants are labeled 1, 2, 3,
4 in the drawing, the coordinates of points in the various quadrants
having the depicted signs. Another common coordinate system is the
polar coordinate system (Fig. 3-13). In this system the position of a
point is designated by the pair (r, θ), r = �x2� +� y�2� being the distance to
the origin 0(0,0) and θ being the angle the line r makes with the posi-
tive x axis (polar axis). To change from polar to rectangular coordi-
nates, use x = r cos θ and y = r sin θ. To change from rectangular to 
polar coordinates, use r = �x2� +� y�2� and θ = tan−1 (y/x) if x ≠ 0; θ = π/2
if x = 0. The distance between two points (x1, y1), (x2, y2) is defined
by d = �(x�1�−� x�2)�2�+� (�y�1�−� y�2)�2� in rectangular coordinates or by d =
�r 1�2�+� r�2

2� −� 2�r1�r2� c�o�s�(θ�1�−� θ�2)� in polar coordinates. Other coordinate
systems are sometimes used. For example, on the surface of a sphere
latitude and longitude prove useful.

The Straight Line (Fig. 3-14) The slope m of a straight line is
the tangent of the inclination angle θ made with the positive x axis. If
(x1, y1) and (x2, y2) are any two points on the line, slope = m = (y2 − y1)/
(x2 − x1). The slope of a line parallel to the x axis is zero; parallel to the
y axis, it is undefined. Two lines are parallel if and only if they have the
same slope. Two lines are perpendicular if and only if the product of
their slopes is −1 (the exception being that case when the lines are par-
allel to the coordinate axes). Every equation of the type Ax + By + C =
0 represents a straight line, and every straight line has an equation of
this form. A straight line is determined by a variety of conditions:

Given conditions Equation of line

(1) Parallel to x axis y = constant
(2) Parallel y axis x = constant
(3) Point (x1, y1) and slope m y − y1 = m(x − x1)
(4) Intercept on y axis (0, b), m y = mx + b
(5) Intercept on x axis (a, 0), m y = m(x − a)

(6) Two points (x1, y1), (x2, y2) y − y1 = (x − x1)

(7) Two intercepts (a, 0), (0, b) x/a + y/b = 1

The angle β a line with slope m1 makes with a line having slope m2

is given by tan β = (m2 − m1)/(m1m2 + 1). A line is determined if the
length and direction of the perpendicular to it (the normal) from the

y2 − y1
�
x2 − x1

origin are given (see Fig. 3-15). Let p = length of the perpendicular
and α the angle that the perpendicular makes with the positive x axis.
The equation of the line is x cos � + y sin � = p. The equation of a line
perpendicular to a given line of slope m and passing through a point
(x1, y1) is y − y1 = −(1/m) (x − x1). The distance from a point (x1, y1) to
a line with equation Ax + by + C = 0 is

d =

Example If it is known that centigrade C and Fahrenheit F are linearly
related and when C = 0°, F = 32°; C = 100°, F = 212°, find the equation relating
C and F and that point where C = F. By using the two-point form, the equation
is

F − 32 = (C − 0)

or F = 9⁄5C + 32. Equivalently

C − 0 = (F − 32)

or C = 5⁄9(F − 32). Letting C = F, we have from either equation F = C = −40.

Occasionally some nonlinear algebraic equations can be reduced to
linear equations under suitable substitutions or changes of variables.
In other words, certain curves become the graphs of lines if the scales
or coordinate axes are appropriately transformed.

Example Consider y = bxn. B = log b. Taking logarithms log y =
n log x + log b. Let Y = log y, X = log x, B = log b. The equation then has the form 
Y = nX + B, which is a linear equation. Consider k = k0 exp (−E/RT), taking log-
arithms loge k = loge k0 − E/(RT). Let Y = loge k, B = loge k0, and m = −E/R, 
X = 1/T, and the result is Y = mX + B. Next consider y = a + bxn. If the substitu-
tion t = xn is made, then the graph of y is a straight line versus t.

Asymptotes The limiting position of the tangent to a curve as the
point of contact tends to an infinite distance from the origin is called
an asymptote. If the equation of a given curve can be expanded in a
Laurent power series such that

f(x) = �
n

k = 0

ak xk + �
n

k = 0

and lim
x→∞

f(x) = �
n

k = 0

akxk

then the equation of the asymptote is y = �n
k = 0 ak xk. If n = 1, then the

asymptote is (in general oblique) a line. In this case, the equation of
the asymptote may be written as

y = mx + b m = lim
x→∞

f ′(x)

b = lim
x→∞

[ f(x) − xf ′(x)]

Geometric Properties of a Curve When the Equation Is
Given The analysis of the properties of an equation is facilitated by
the investigation of the equation by using the following techniques:

1. Points of maximum, minimum, and inflection. These may be
investigated by means of the calculus.

bk
�
xk

100 − 0
�
212 − 32

212 − 32
�
100 − 0

|Ax1 + By1 + C|
��

�A�2�+� B�2�

FIG. 3-12 Rectangular coordinates. FIG. 3-13 Polar coordinates. FIG. 3-14 Straight line. FIG. 3-15 Determination of line.
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2. Symmetry. Let F(x, y) = 0 be the equation of the curve.

Condition on F(x, y) Symmetry

F(x, y) = F(−x, y) With respect to y axis
F(x, y) = F(x, −y) With respect to x axis
F(x, y) = F(−x, −y) With respect to origin
F(x, y) = F(y, x) With respect to the line y = x

3. Extent. Only real values of x and y are considered in obtain-
ing the points (x, y) whose coordinates satisfy the equation. The extent
of them may be limited by the condition that negative numbers do not
have real square roots.

4. Intercepts. Find those points where the curves of the func-
tion cross the coordinate axes.

5. Asymptotes. See preceding discussion.
6. Direction at a point. This may be found from the derivative of

the function at a point. This concept is useful for distinguishing among
a family of similar curves.

Example y2 = (x2 + 1)/(x2 − 1) is symmetric with respect to the x and y axis,
the origin, and the line y = x. It has the vertical asymptotes x = �1. When x = 0,
y2 = −1; so there are no y intercepts. If y = 0, (x2 + 1)/(x2 − 1) = 0; so there are no
x intercepts. If |x| < 1, y2 is negative; so |x| > 1. From x2 = (y2 + 1)/(y2 − 1), y = �1
are horizontal asymptotes and |y| > 1. As x → 1+, y → + ∞; as x → + ∞, y → + 1.
The graph is given in Fig. 3-16.

Conic Sections The curves included in this group are obtained
from plane sections of the cone. They include the circle, ellipse,
parabola, hyperbola, and degeneratively the point and straight line. A
conic is the locus of a point whose distance from a fixed point called
the focus is in a constant ratio to its distance from a fixed line, called
the directrix. This ratio is the eccentricity e. If e = 0, the conic is a cir-
cle; if 0 < e < 1, the conic is an ellipse; if e = 1, the conic is a parabola;
if e > 1, the conic is a hyperbola. Every conic section is representable
by an equation of second degree. Conversely, every equation of sec-
ond degree in two variables represents a conic. The general equation
of the second degree is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. Let � be
defined as the determinant

� = � �D
E
2F

B
2C
E

2A
B
D

The table characterizes the curve represented by the equation.

B2 − 4AC < 0 B2 − 4AC = 0 B2 − 4AC > 0

A� < 0
A ≠ C, an ellipse

� ≠ 0 A� < 0
A = C, a circle Parabola Hyperbola
A� > 0, no locus

2 parallel lines if Q = D2 + E2 −
4(A + C)F > 0 2 intersecting

� = 0 Point 1 straight line if Q = 0, no locus straight lines
if Q < 0

Example 3x2 + 4xy − 2y2 + 3x − 2y + 7 = 0.

� = � � = −596 ≠ 0, B2 − 4AC = 40 > 0

The curve is therefore a hyperbola.

To translate the axes to a new origin at (h, k), substitute for x and y
in the original equation x + h and y + k. Translation of the axes can
always be accomplished to eliminate the linear terms in the second-
degree equation in two variables having no xy term.

Example x2 + y2 + 2x − 4y + 2 = 0. Rewrite this as x2 + 2x + 1 + y2 − 4y +
4 − 5 + 2 = 0 or (x + 1)2 + (y − 2)2 = 3. Let u = x + 1, v = y − 2. Then u2 + v2 = 3.
The axis has been translated to the new origin (−1, 2).

The type of curve determined by a specific equation of the second
degree can also be easily determined by reducing it to a standard form
by translation and/or rotation. In the case in which the equation has no
xy term, the procedure is merely to complete the squares of the terms
in x and y separately.

To rotate the axes through an angle α, substitute for x the quantity
x cos α − y sin α and for y the quantity x sin α + y cos α. A rotation of
the axes through α = a cot−1 (A − C)/B will eliminate the cross-
product term in the general second-degree equation.

Example Consider 3x2 + 2xy + y2 − 2x + 3y = 7. A rotation of axes through
α = a cot−1 1 = 22a° eliminates the cross-product term.

The following tabulation gives the form of the more common equa-
tions.

Polar equation Type of curve

(1) r = a Circle
(2) r = 2a cos θ Circle
(3) r = 2a sin θ Circle
(4) r2 − 2br cos (θ − β) + b2 − a2 = 0 Circle at (b, β), radius a

e = 1 parabola
(5) r = 0 < e < 1 ellipse

e > 1 hyperbola

ke
��
1 − e cos θ

3
−2
14

4
−4
−2

6
4
3

FIG. 3-16 Graph of y2 = (x2 + 1)/(x2 − 1)

Some common equations in parametric form are given below.

Circle (Fig. 3-23) Parameter is angle θ.

Ellipse (Fig. 3-20) Parameter is angle φ.

Circle Parameter is t = = slope of tangent at (x, y).

Catenary (Fig. 3-24; such as hanging cable under gravity) Parameter s = arc length
from (0, a) to (x, y). See Fig. 3-24.

dy
�
dx

x = h + a cos θ
y = k + a sin θ
x = h + a cos φ
y = k + a sin φ

x =

y =

x = a sinh−1

y2 = a2 + s2

x = a(φ −sin φ)
y = a(1 − cos φ)

s
�
a

a
�
�t2� +� 1�

−at
�
�t2� +� 1�

(1) (x − h)2 + (y − k)2 = a2

(2) + = 1

(3) z2 + y2 = a2

(4) y = a cosh 

(5) Cycloid

x
�
a

(y − k)2

�
b2

(x − h)2

�
a2



Graphs of Polar Equations The equation r = 0 corresponds to 
x = 0, y = 0 regardless of θ. The same point may be represented in sev-
eral different ways; thus the point (2, π/3) or (2, 60°) has the following
representations: (2, 60°), (2, −300°). These are summarized in (2, 
60° + n 360°), n = 0, �1, �2, or in radian measure [2, (π/3) + 2nπ], 
n = 0, �1, �2. Plotting of polar equations can be facilitated by the fol-
lowing steps:

1. Find those points where r is a maximum or minimum.
2. Find those values of θ where r = 0, if any.
3. Symmetry: The curve is symmetric about the origin if the equa-

tion is unchanged when θ is replaced by θ � π, symmetric about the x
axis if the equation is unchanged when θ is replaced by −θ, and sym-
metric about the y axis if the equation is unchanged when θ is
replaced by π − θ.

Parametric Equations It is frequently useful to write the equa-
tions of a curve in terms of an auxiliary variable called a parameter.
For example, a circle of radius a, center at (0, 0), can be written in the
equivalent form x = a cos θ, y = a sin φwhere θ is the parameter. Sim-
ilarly, x = a cos φ, y = b sin φare the parametric equations of the ellipse
x2/a2 + y2/b2 = 1 with parameter φ.

SOLID ANALYTIC GEOMETRY

Coordinate Systems The commonly used coordinate systems
are three in number. Others may be used in specific problems (see
Ref. 212). The rectangular (cartesian) system (Fig. 3-25) consists of
mutually orthogonal axes x, y, z. A triple of numbers (x, y, z) is used to
represent each point. The cylindrical coordinate system (r, θ, z; Fig.
3-26) is frequently used to locate a point in space. These are essen-
tially the polar coordinates (r, θ) coupled with the z coordinate. As
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FIG. 3-17 Circle center (0,0) r = a. FIG. 3-18 Circle center (a,0) r = 2a cos θ. FIG. 3-19 Circle center (0,a) r = 2a sin θ.

FIG. 3-20 Ellipse, 0 < e < 1. FIG. 3-21 Hyperbola, e > 1, r = ke/(1 − e cos θ). FIG. 3-22 Parabola, e = 1.

FIG. 3-23 Circle.

FIG. 3-24 Cycloid.

Circle at (b, β), radius a: r2 − 2br cos (θ − β) � b2 − a2 = 0.

FIG. 3-25 Cartesian coordinates.

FIG. 3-26 Cylindrical coordinates.



before, x = r cos θ, y = r sin θ, z = z and r2 = x2 + y2, y/x = tan θ. If r is
held constant and θ and z are allowed to vary, the locus of (r, θ, z) is a
right circular cylinder of radius r along the z axis. The locus of r = C is
a circle, and θ = constant is a plane containing the z axis and making
an angle θ with the xz plane. Cylindrical coordinates are convenient to
use when the problem has an axis of symmetry.

The spherical coordinate system is convenient if there is a point 
of symmetry in the system. This point is taken as the origin and the
coordinates (ρ, φ, θ) illustrated in Fig. 3-27. The relations are x =
ρ sin φcos θ, y = ρ sin φsin θ, z = ρ cos φ, and r = ρ sin φ. θ = constant
is a plane containing the z axis and making an angle θ with the xz
plane. φ =constant is a cone with vertex at 0. ρ = constant is the sur-
face of a sphere of radius ρ, center at the origin 0. Every point in the
space may be given spherical coordinates restricted to the ranges 0 ≤
φ ≤ π, ρ ≥ 0, 0 ≤ θ < 2π.

Lines and Planes The distance between two points (x1, y1, z1),
(x2, y2, z2) is d = �(x�1�−� x�2)�2�+� (�y�1�−� y�2)�2�+� (�z1� −� z�2)�2�. There is nothing in
the geometry of three dimensions quite analogous to the slope of a
line in the plane case. Instead of specifying the direction of a line by 
a trigonometric function evaluated for one angle, a trigonometric
function evaluated for three angles is used. The angles α, β, γ that 
a line segment makes with the positive x, y, and z axes, respectively,
are called the direction angles of the line, and cos α, cos β, 
cos γ are called the direction cosines. Let (x1, y1, z1), (x2, y2, z2) be 
on the line. Then cos α = (x2 − x1)/d, cos β = (y2 − y1)/d, cos γ =
(z2 − z1)/d, where d = the distance between the two points. Clearly 
cos2 α + cos2 β + cos2 γ = 1. If two lines are specified by the direction
cosines (cos α1, cos β1, cos γ1), (cos α2, cos β2, cos γ2), then the angle θ
between the lines is cos θ = cos α1 cos α2 + cos β1 cos β2 + cos γ1 cos γ2.
Thus the lines are perpendicular if and only if θ = 90° or cos α1

cos α2 + cos β1 cos β2 + cos γ1 cos γ2 = 0. The equation of a line with
direction cosines (cos α, cos β, cos γ) passing through (x1, y1, z1) is 
(x − x1)/cos α = (y − y1)/cos β = (z − z1)/cos γ.

The equation of every plane is of the form Ax + By + Cz + D = 0.
The numbers

, , 

are direction cosines of the normal lines to the plane. The plane
through the point (x1, y1, z1) whose normals have these as direction
cosines is A(x − x1) + B(y − y1) + C(z − z1) = 0.

Example Find the equation of the plane through (1, 5, −2) perpendicular
to the line (x + 9)/7 = (y − 3)/−1 = z/8. The numbers (7, −1, 8) are called direc-
tion numbers. They are a constant multiple of the direction cosines. cos α =
7/114, cos β = −1/114, cos γ = 8/114. The plane has the equation 7(x − 1) −
1(y − 5) + 8(z + 2) = 0 or 7x − y + 8z + 14 = 0.

The distance from the point (x1, y1, z1) to the plane Ax + By + Cz + D = 0 is

d =

Space Curves Space curves are usually specified as the set of
points whose coordinates are given parametrically by a system of
equations x = f(t), y = g(t), z = h(t) in the parameter t.

Example The equation of a straight line in space is (x − x1)/a = (y − y1)/b =
(z − z1)/c. Since all these quantities must be equal (say, to t), we may write x =
x1 + at, y = y1 + bt, z = z1 + ct, which represent the parametric equations of the
line.

Example The equations z = a cos βt, y = a sin βt, z = bt, a, β, b positive
constants, represent a circular helix.

Surfaces The locus of points (x, y, z) satisfying f(x, y, z) = 0,
broadly speaking, may be interpreted as a surface. The simplest sur-
face is the plane. The next simplest is a cylinder, which is a surface
generated by a straight line moving parallel to a given line and passing
through a given curve.

Example The parabolic cylinder y = x2 (Fig. 3-28) is generated by a
straight line parallel to the z axis passing through y = x2 in the plane z = 0.

|Ax1 + By1 + Cz1 + D|
���

�A�2�+� B�2�+� C�2�

C
��
�A�2�+� B�2�+� C�2�

B
��
�A�2�+� B�2�+� C�2�

A
��
�A�2�+� B�2�+� C�2�
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FIG. 3-27 Spherical coordinates. FIG. 3-28 Parabolic cylinder.

FIG. 3-29 Ellipsoid. + + = 1 (sphere if a = b = c)
z2

�
c2

y2

�
b2

x2

�
a2

FIG. 3-30 Hyperboloid of one sheet. + − = 1
z2

�
c2

y2

�
b2

x2

�
a2

FIG. 3-31 Hyperboloid of two sheets. + − = −1
z2

�
c2

y2

�
b2

x2

�
a2



A surface whose equation is a quadratic in the variables x, y, and z
is called a quadric surface. Some of the more common such surfaces
are tabulated and pictured in Figs. 3-29 to 3-37.

REFERENCES: 20, 108, 131, 158, 166, 202.

ANGLES

An angle is generated by the rotation of a line about a fixed center
from some initial position to some terminal position. If the rotation is
clockwise, the angle is negative; if it is counterclockwise, the angle is
positive. Angle size is unlimited. If α, β are two angles such that α +
β = 90°, they are complementary; they are supplementary if α + β =
180°. Angles are most commonly measured in the sexagesimal system
or by radian measure. In the first system there are 360 degrees in one
complete revolution; one degree = 1⁄90 of a right angle. The degree is
subdivided into 60 minutes; the minute is subdivided into 60 seconds.
In the radian system one radian is the angle at the center of a circle
subtended by an arc whose length is equal to the radius of the circle.
Thus 2� rad = 360°; 1 rad = 57.29578°; 1° = 0.01745 rad; 1 min  =
0.00029089 rad. The advantage of radian measure is that it is dimen-
sionless. The quadrants are conventionally labeled as Fig. 3-38 shows.

FUNCTIONS OF CIRCULAR TRIGONOMETRY

The trigonometric functions of angles are the ratios between the vari-
ous sides of the reference triangles shown in Fig. 3-39 for the various 
quadrants. Clearly r = �x2� +� y�2� ≥ 0. The fundamental functions (see
Figs. 3-40, 3-41, 3-42) are

PLANE TRIGONOMETRY
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FIG. 3-32 Cone. + + = 0
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FIG. 3-33 Elliptic paraboloid.

+ + 2z = 0
y2

�
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x2
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FIG. 3-34 Hyperbolic paraboloid. − + 2z = 0
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FIG. 3-35 Elliptic cylinder. + = 1
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�
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FIG. 3-36 Hyperbolic cylinder.

− = 1
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x2
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FIG. 3-37 Parabolic cylinder.

y2 + 2ax = 0

FIG. 3-38 Quadrants.

FIG. 3-39 Triangles.

FIG. 3-40 Graph of y = sin x.



Plane Trigonometry

Sine of θ = sin θ = y/r Secant of θ = sec θ = r/x
Cosine of θ = cos θ = x/r Cosecant of θ = csc θ = r/y
Tangent of θ = tan θ = y/x Cotangent of θ = cot θ = x/y

Magnitude and Sign of Trigonometric Functions 0 ≤ θ ≤
360°

Function 0° to 90° 90° to 180° 180° to 270° 270° to 360°

sin θ +0 to +1 +1 to +0 −0 to −1 −1 to −0
csc θ +∞ to +1 +1 to +∞ −∞ to −1 −1 to −∞
cos θ +1 to 0 −0 to −1 −1 to −0 +0 to +1
sec θ +1 to +∞ −∞ to −1 −1 to −∞ +∞ to +1
tan θ +0 to +∞ −∞ to −0 +0 to +∞ −∞ to −0
cot θ +∞ to +0 −0 to −∞ +∞ to +0 −0 to −∞

Values of the Trigonometric Functions for Common Angles

θ° θ, rad sin θ cos θ tan θ

0 0 0 1 0
30 π/6 1/2 �3�/2 �3�/3
45 π/4 �2�/2 �2�/2 1
60 π/3 �3�/2 1/2 �3�
90 π/2 1 0 +∞

If 90° ≤ θ ≤ 180°, sin θ = sin (180° − θ); cos θ = −cos (180° − θ); 
tan θ = −tan (180° − θ). If 180° ≤ θ ≤ 270°, sin θ = −sin (270° − θ); 
cos θ = −cos (270° − θ); tan θ = tan (270° − θ). If 270° ≤ θ ≤ 360°, 
sin θ = −sin (360° − θ); cos θ = cos (360° − θ); tan θ = −tan (360° − θ).
The reciprocal properties may be used to find the values of the other
functions.

If it is desired to find the angle when a function of it is given, the
procedure is as follows: There will in general be two angles between
0° and 360° corresponding to the given value of the function.

Find an acute
Given (a > 0) angle θ0 such that Required angles are

sin θ = +a sin θ0 = a θ0 and (180° − θ0)
cos θ = +a cos θ0 = a θ0 and (360° − θ0)
tan θ = +a tan θ0 = a θ0 and (180° + θ0)
sin θ = −a sin θ0 = a 180° + θ0 and 360° − θ0

cos θ = −a cos θ0 = a 180° − θ0 and 180° + θ0

tan θ = −a tan θ0 = a 180° − θ0 and 360° − θ0

Relations between Functions of a Single Angle sec θ = 1/
cos θ; csc θ = 1/sin θ, tan θ = sin θ/cos θ = sec θ/csc θ = 1/cot θ; sin2 θ +
cos2 θ = 1; 1 + tan2 θ = sec2 θ; 1 + cot2 θ = csc2 θ. For 0 ≤ θ ≤ 90° the
following results hold:

sin θ = cos θ/cot θ = �1� −� c�o�s2� θ� = cos θ tan θ

= = = 2 sin � � cos � �
and cos θ = �1� −� s�in�2�θ� =

= = = cos2 � � − sin2 � �
The cofunction property is very important. cos θ = sin (90° − θ), 
sin θ = cos (90° − θ), tan θ = cot (90° − θ), cot θ = tan (90° − θ), etc.

Functions of Negative Angles sin (−θ) = −sin θ, cos (−θ) =
cos θ, tan (−θ) = −tan θ, sec (−θ) = sec θ, csc (−θ) = −csc θ, cot (−θ) =
−cot θ.

Identities
Sum and Difference Formulas Let x, y be two angles. sin (x � y) =

sin x cos y � cos x sin y; cos (x � y) = cos x cos y � sin x sin y; tan 
(x � y) = (tan x � tan y)/(1 � tan x tan y); sin x � sin y = 2 sin a(x �
y) cos a(x � y); cos x + cos y = 2 cos a(x + y) cos a(x − y); cos x − cos
y = −2 sin a(x + y) sin a(x − y); tan x � tan y = [sin (x � y)]/(cos x cos
y); sin2 x − sin2 y = cos2 y − cos2 x = sin (x + y) sin (x − y); cos2 x − sin2 y =
cos2 y − sin2 x = cos (x + y) cos (x − y); sin (45° + x) = cos (45° − x); 
sin (45° − x) = cos (45° + x); tan (45° � x) = cot (45° � x). A cos x +
B sin x = �A�2�+� B�2� sin (α + x) = �A�2�+� B�2� cos (β − x) where tan α = A/B,
tan β = B/A; both α and β are positive acute angles.

Multiple and Half Angle Identities Let x = angle, sin 2x = 2 sin x
cos x; sin x = 2 sin ax cos ax; cos 2x = cos2 x − sin2x = 1 − 2 sin2x =
2 cos2x − 1. tan 2x = (2 tan x)/(1 − tan2 x); sin 3x = 3 sin x − 4 sin3x;
cos 3x = 4 cos3 x − 3 cos x. tan 3x = (3 tan x − tan3 x)/(1 − 3 tan2 x); 
sin 4x = 4 sin x cos x − 8 sin3 x cos x; cos 4x = 8 cos4 x − 8 cos2 x + 1.

sin � � = �a�(1� −� c�o�s�x)�

cos � � = �a�(1� +� c�o�s�x)�

tan � � = �	 = =

Relations between Three Angles Whose Sum Is 180° Let x, y,
z be the angles.

six x + sin y + sin z = 4 cos � � cos � � cos � �
cos x + cos y + cos z = 4 sin � � sin � � sin � � + 1

sin x + sin y − sin z = 4 sin � � sin � � cos � �
sin2 x + sin2 y + sin2 z = 2 cos x cos y cos z + 2; tan x + tan y + tan z =
tan x tan y tan z; sin 2x + sin 2y + sin 2z = 4 sin x sin y sin z.

INVERSE TRIGONOMETRIC FUNCTIONS

y = sin −1 x = arcsin x is the angle y whose sine is x.

Example y = sin−1 a, y is 30°.
The complete solution of the equation x = sin y is y = (−1)n sin−1 x + n(180°),

−π/2 ≤ sin−1 x ≤ π/2 where sin−1 x is the principal value of the angle whose sine 
is x. The range of principal values of the cos−1 x is 0 ≤ cos−1 x ≤ π and −π/2 ≤
tan−1 x ≤ π/2. If these restrictions are allowed to hold, the following formulas
result:

z
�
2

y
�
2

x
�
2

z
�
2

y
�
2

x
�
2

z
�
2

y
�
2

x
�
2

1 − cos x
�

sin x
sin x

�
1 + cos x

1 − cos x
�
1 + cos x

x
�
2

x
�
2

x
�
2

θ
�
2

θ
�
2

sin θ
�
tan θ

cot θ
��
�1� +� c�o�t2� θ�

1
��
�1� +� t�an�2�θ�

θ
�
2

θ
�
2

1
��
�1� +� c�o�t2� θ�

tan θ
��
�1� +� t�an�2�θ�
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FIG. 3-41 Graph of y = cos x.

FIG. 3-42 Graph of y = tan x.



sin−1 x = cos−1 �1� −� x�2� = tan−1 = cot−1

= sec−1 = csc−1 = − cos−1 x

cos−1 x = sin−1 �1� −� x�2� = tan−1

= cot−1 = sec−1

= csc−1 = − sin−1 x

tan−1 x = sin−1 = cos−1

= cot−1 = sec−1 �1� +� x�2� = csc−1

RELATIONS BETWEEN ANGLES 
AND SIDES OF TRIANGLES

Solutions of Triangles (Fig. 3-43) Let a, b, c denote the sides
and α, β, γ the angles opposite the sides in the triangle. Let 2s = a +
b + c, A = area, r = radius of the inscribed circle, R = radius of the cir-
cumscribed circle, and h = altitude. In any triangle α + β + γ =180°.

Law of Sines sin α /a = sin β/b = sin γ/c.
Law of Tangents

= ; = ; =

Law of Cosines a2 = b2 + c2 − 2bc cos α; b2 = a2 + c2 − 2ac cos β;
c2 = a2 + b2 − 2ab cos γ.

Other Relations In this subsection, where appropriate, two
more formulas can be generated by replacing a by b, b by c, c by a,
α by β, β by γ, and γ by α. cos α = (b2 + c2 − a2)/2bc; a = b cos γ + c =
cos β; sin α = (2/bc) �s(�s�−� a�)(�s�−� b�)(�s�−� c�)� ;

sin � � = �	; cos � � = �	;  A = bh

= ab sin γ = =�s(�s�−� a�)(�s�−� b�)(�s�−� c�)� = rs

where r = �		
R = a/(2 sin α) = abc/4A; h = c sin a = a sin γ =2rs/b.

Example a = 5, b = 4, α = 30°. Use the law of sines. 0.5/5 = sin β/4, 
sin β = 2⁄5, β = 23°35′, γ =126°25′. So c = sin 126°25′/ 1⁄10 = 10(.8047) = 8.05.

The relations given here suffice to solve any triangle. One method
for each triangle is given.

(s − a)(s − b)(s − c)
��

s

a2 sin β sin γ
��

2 sin α
1
�
2

1
�
2

s(s − a)
�

bc
α
�
2

(s − b)(s − c)
��

bc
α
�
2

tan a(α + γ)
��
tan a(α − γ)

a + c
�
a − c

tan a(β + γ)
��
tan a(β − γ)

b + c
�
b − c

tan a(α + β)
��
tan a(α − β)

a + b
�
a − b

�1� +� x�2�
�

x
1
�
x

1
�
�1� +� x�2�

x
�
�1� −� x�2�

π
�
2

1
�
�1� −� x�2�

1
�
x

x
�
�1� −� x�2�

�1� −� x�2�
�

x

π
�
2

1
�
x

1
�
�1� −� x�2�

�1� −� x�2�
�

x

x
�
�1� −� x�2�

Right Triangle (Fig. 3-44) Given one side and any acute angle α
or any two sides, the remaining parts can be obtained from the fol-
lowing formulas:

a = �(c� +� b�)(�c�−� b�)� = c sin α = b tan α
b = �(c� +� a�)(�c�−� a�)� = c cos α = a cot α

c = �a2� �� b�2�, sin α = , cos α = , tan α = , β = 90° − α

A = ab = = =

Oblique Triangles (Fig. 3-45) There are four possible cases.
1. Given b, c and the included angles α,

(β + γ) = 90° − α; tan (β − γ) = tan (β + γ)

β = (β + γ) + (β − γ); γ = (β + γ) − (β − γ); a =

2. Given the three sides a, b, c, s =a (a + b + c);

r = �		
tan α = ; tan β = ; tan γ =

3. Given any two sides a, c and an angle opposite one of them α,
sin γ = (c sin α)/a; β = 180° − a − γ; b = (a sin β)/(sin α). There may be
two solutions here. γ may have two values γ1, γ2; γ1 < 90°, γ2 = 180° −
γ1 > 90°. If α + γ2 > 180°, use only γ1. This case may be impossible if 
sin γ >1.

4. Given any side c and two angles α and β, γ = 180° − α − β; a =
(c sin α)/(sin γ); b = (c sin β)/(sin γ).

HYPERBOLIC TRIGONOMETRY
The hyperbolic functions are certain combinations of exponentials ex

and e−x.

cosh x = ; sinh x = ; tanh x = =

coth x = = = ; sech x = = ; 

csch x = =

Fundamental Relationships sinh x + cosh x = ex; cosh x − sinh 
x = e−x; cosh2 x − sinh2 x = 1; sech2 x + tanh2 x = 1; coth2 x − csch2 x = 1;
sinh 2x = 2 sinh x cosh x; cosh 2x = cosh2 x + sinh2 x = 1 + 2 sinh2 x =
2 cosh2 x − 1. tanh 2x = (2 tanh x)/(1 + tanh2 x); sinh (x � y) = sinh x
cosh y � cosh x sinh y; cosh (x � y) = cosh x cosh y � sinh x sinh y;
2 sinh2 x/2 = cosh x − 1; 2 cosh2 x/2 = cosh x + 1; sinh (−x) = −sinh x;
cosh (−x) = cosh x; tanh (−x) = −tanh x.

When u = a cosh x, v = a sinh x, then u2 − v2 = a2; which is the equa-
tion for a hyperbola. In other words, the hyperbolic functions in the
parametric equations u = a cosh x, v = a sinh x have the same relation
to the hyperbola u2 − v2 = a2 that the equations u = a cos θ, v = a sin θ
have to the circle u2 + v2 = a2.

2
�
ex − e−x

1
�
sinh x

2
�
ex + e−x

1
�
cosh x

cosh x
�
sinh x

1
�
tanh x

ex + e−x

�
ex − e−x

ex − e−x

�
ex + e−x

sinh x
�
cosh x

ex − e−x

�
2

ex + e−x

�
2

r
�
s − c

1
�
2

r
�
s − b

1
�
2

r
�
s − a

1
�
2

(s − a)(s − b)(s − c)
��

s

b sin α
�

sin β
1
�
2

1
�
2

1
�
2

1
�
2

1
�
2

b − c
�
b + c

1
�
2

1
�
2

1
�
2

c2 sin 2α
�

4
b2 tan α
�

2
a2

�
2 tan α

1
�
2

a
�
b

b
�
c

a
�
c
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FIG. 3-43 Triangle.

FIG. 3-44 Right triangle. FIG. 3-45 Oblique triangle.



Inverse Hyperbolic Functions If x = sinh y, then y is the in-
verse hyperbolic sine of x written y = sinh−1 x or arcsinh x. sinh−1 x =
loge (x + �x2� +� 1�)

cosh−1 x = loge (x + �x2� +� 1�); tanh −1 x = loge ; 

coth−1 x = loge ; sech−1 x = loge � �; 

csch−1 = loge � �
Magnitude of the Hyperbolic Functions cosh x ≥ 1 with

equality only for x = 0; −∞ < sinh x < ∞; −1 < tanh x < 1. cosh x ∼ ex/2
as x → ∞; sinh x → ex/2 as x → ∞.

1 + �1� +� x�2�
��

x

1 + �1� −� x�2�
��

x
x + 1
�
x − 1

1
�
2

1 + x
�
1 − x

1
�
2

APPROXIMATIONS FOR TRIGONOMETRIC 
FUNCTIONS

For small values of θ (θ measured in radians) sin θ ≈ θ, 
tan θ ≈ θ; cos θ ≈ 1 − (θ2/2). The following relations actually hold:
sin θ < θ < tan θ; cos θ < sin θ/θ < 1; θ �1� −� θ�2� < sin θ < θ; cos θ <
θ/tan θ < 1;

θ �1 − � < sin θ < θ and θ < tan θ <

The behavior ratio of the functions as θ → 0 is given by the fol-
lowing:

lim
θ→0

sin θ/θ = 1; sin θ/tan θ = 1.

θ
�
�1� −� θ�2�

θ2

�
2

REFERENCES: 114, 158, 260, 261, 274, 282, 296. See also “General Refer-
ences: References for General and Specific Topics—Advanced Calculus.” For
computer evaluations of the calculus described here, see Refs. 68, 299.

DIFFERENTIAL CALCULUS
An Example of Functional Notation Suppose that a storage

warehouse of 16,000 ft3 is required. The construction costs per square
foot are $10, $3, and $2 for walls, roof, and floor respectively. What are
the minimum cost dimensions? Thus, with h = height, x = width, and
y = length, the respective costs are

Walls = 2 × 10hy + 2 × 10hx = 20h(y + x)
Roof = 3xy

Floor = 2xy
Total cost = 2xy + 3xy + 20h(x + y) = 5xy + 20h(x + y) (3-1)

and the restriction
Total volume = xyh (3-2)

Solving for h from Eq. (3-2),

h = volume/xy = 16,000/xy (3-3)

Cost = 5xy + (y + x) = 5xy + 320,000 � + � (3-4)

In this form it can be shown that the minimum cost will occur for 
x = y; therefore

Cost = 5x2 + 640,000 (1/x)

By evaluation, the smallest cost will occur when x = 40.

Cost = 5(1600) + 640,000/40 = $24,000

The dimensions are then x = 40 ft, y = 40 ft, h = 16,000/(40 × 40) =
10 ft. Symbolically, the original cost relationship is written

Cost = f(x, y, h) = 5xy + 20h(y + x)

and the volume relation

Volume = g(x, y, h) = xyh = 16,000

In terms of the derived general relationships (3-1) and (3-2), x, y, and
h are independent variables—cost and volume, dependent vari-
ables. That is, the cost and volume become fixed with the specifica-
tion of dimensions. However, corresponding to the given restriction of
the problem, relative to volume, the function g(x, y, z) = xyh becomes
a constraint function. In place of three independent and two depen-
dent variables the problem reduces to two independent (volume has
been constrained) and two dependent as in functions (3-3) and (3-4).
Further, the requirement of minimum cost reduces the problem to
three dependent variables (x, y, h) and no degrees of freedom, that
is, freedom of independent selection.

1
�
y

1
�
x

320,000
�

xy

Limits The limit of function f(x) as x approaches a (a is finite or
else x is said to increase without bound) is the number N.

lim
x→a

f(x) = N

This states that f(x) can be calculated as close to N as desirable by
making x sufficiently close to a. This does not put any restriction on
f(x) when x = a. Alternatively, for any given positive number ε, a num-
ber δ can be found such that 0 < |a − x| < δ implies that |N − f(x)| < ε.

The following operations with limits (when they exist) are valid:

lim
x→a

bf(x) = b lim
x→a

f(x)

lim
x→a

[ f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

lim
x→a

[ f(x)g(x)] = lim
x→a

f(x) ⋅ lim
x→a

g(x)

lim
x→a

= if lim
x→a

g(x) ≠ 0

Continuity A function f(x) is continuous at the point x = a if

lim
h→0

[ f(a + h) − f(a)] = 0

Rigorously, it is stated f(x) is continuous at x = a if for any positive ε
there exists a δ > 0 such that | f(a + h) − f(a)| < ε for all x with |x − a| <
δ. For example, the function (sin x)/x is not continuous at x = 0 and
therefore is said to be discontinuous. Discontinuities are classified
into three types:

1. Removable y = sin x/x at x = 0
2. Infinite y = 1/x at x = 0
3. Jump y = 10/(1 + e1/x) at x = 0+ y = 0+

x = 0 y = 0
x = 0− y = 10

Derivative The function f(x) has a derivative at x = a, which can
be denoted as f ′(a), if

lim
h→0

exists. This implies continuity at x = a. Conversely, a function may be
continuous but not have a derivative. The derivative function is

f ′(x) = = lim
h→0

Differentiation Define ∆y = f(x + ∆x) − f(x). Then dividing by ∆x

= f(x + ∆x) − f(x)
��

∆x
∆y
�
∆x

f(x + h) − f(x)
��

h
df
�
dx

f(a + h) − f(a)
��

h

lim
x→a

f(x)
�
lim
x→a

g(x)
f(x)
�
g(x)
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Call lim
∆x→0

=

then = lim
∆x→0

Example Find the derivative of y = sin x.

= lim
∆x→0

= lim
∆x→0

= lim
∆x→0

+ lim
∆x→0

= cos x since lim
∆x→0

= 1

Differential Operations The following differential operations
are valid: f, g, . . . are differentiable functions of x, c is a constant; e is
the base of the natural logarithms.

= 0 (3-5)

= 1 (3-6)

( f + g) = + (3-7)

( f × g) = f + g (3-8)

= if ≠ 0 (3-9)

f n = nf n − 1 (3-10)

� � = (3-11)

= × (chain rule) (3-12)

= gf g − 1 + f g ln f (3-13)

= (ln a) ax (3-14)

Example Derive dy/dx for x2 + y3 = x + xy + A.

Here x2 + y3 = x + xy + A

2x + 3y2 = 1 + y + x + 0

by rules (3-10), (3-10), (3-6), (3-8), and (3-5) respectively.

Thus =

Differentials

dex = ex dx (3-15a)

d(ax) = ax log a dx (3-15b)

d ln x = (1/x) dx (3-16)

d log x = (log e/x)dx (3-17)

d sin x = cos x dx (3-18)

2x − 1 − y
��

x − 3y2

dy
�
dx

dy
�
dx

dy
�
dx

d
�
dx

d
�
dx

d
�
dx

d
�
dx

d
�
dx

dax

�
dx

dg
�
dx

df
�
dx

dfg

�
dx

dv
�
dx

df
�
dv

df
�
dx

g(df/dx) − f(dg/dx)
��

g2

f
�
g

d
�
dx

df
�
dx

d
�
dx

dx
�
dy

1
�
dx/dy

dy
�
dx

df
�
dx

dg
�
dx

d
�
dx

dg
�
dx

df
�
dx

d
�
dx

dx
�
dx

dc
�
dx

sin ∆x
�

∆x

sin ∆x cos x
��

∆x

sin x(cos ∆x − 1)
��

∆x

sin x cos ∆x + sin ∆x cos x − sin x
����

∆x

sin (x + ∆x) − sin(x)
��

∆x

dy
�
dx

f(x + ∆x) − f(x)
��

∆x
dy
�
dx

dy
�
dx

∆y
�
∆x

d cos x = −sin x dx (3-19)

d tan x = sec2 x dx (3-20)

d cot x = −csc2 x dx (3-21)

d sec x = tan x sec x dx (3-22)

d csc x = −cot x csc x dx (3-23)

d sin−1 x = (1 − x2)−1/2 dx (3-24)

d cos−1x = −(1 − x2)−1/2 dx (3-25)

d tan−1 x = (1 + x2)−1 dx (3-26)

d cot−1 x = −(1 + x2)−1 dx (3-27)

d sec−1 x = x−1(x2 − 1)−1/2 dx (3-28)

d csc−1 x = −x−1(x2 − 1)−1/2 dx (3-29)

d sinh x = cosh x dx (3-30)

d cosh x = sinh x dx (3-31)

d tanh x = sech2 x dx (3-32)

d coth x = −csch2 x dx (3-33)

d sech x = −sech x tanh x dx (3-34)

d csch x = −csch x coth x dx (3-35)

d sinh−1 x = (x2 + 1)−1/2 dx (3-36)

d cosh−1 = (x2 − 1)−1/2 dx (3-37)

d tanh−1 x = (1 − x2)−1 dx (3-38)

d coth−1 x = −(x2 − 1)−1 dx (3-39)

d sech−1 x = −(1/x)(1 − x2)−1/2 dx (3-40)

d csch−1 x = −x−1(x2 + 1)−1/2 dx (3-41)

Example Find dy/dx for y = �x� cos (1 − x2). Using

= �x� cos (1 − x2) + cos (1 − x2) �x� (3-8)

cos (1 − x2) = −sin (1 − x2) (1 − x2) (3-19)

= −sin (1 − x2)(0 − 2x) (3-5), (3-10)

= x−1/2 (3-10)

= 2x3/2 sin (1 − x2) + x−1/2 cos (1 − x2)

Example Find the derivative of tan x with respect to sin x.

v = sin x

y = tan x Using

= = (3-12)

= (3-9)

= sec2 x/cos x (3-18), (3-20)

Very often in experimental sciences and engineering functions and
their derivatives are available only through their numerical values. In
particular, through measurements we may know the values of a func-
tion and its derivative only at certain points. In such cases the preced-
ing operational rules for derivatives, including the chain rule, can be
applied numerically.

Example Given the following table of values for differentiable functions f
and g; evaluate the following quantities:

1
�

�
d s

d
i
x
n x
�

d tan x
�

dx

dx
�
dv

dy
�
dx

dy
�
dv

d tan x
�
d sin x

1
�
2

dy
�
dx

1
�
2

d�x�
�

dx

d
�
dx

d
�
dx

d
�
dx

d
�
dx

dy
�
dx
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x f(x) f ′(x) g(x) g′(x)

1 3 1 4 −4
3 0 2 4 7
4 −2 10 3 6

[ f(x) + g(x)]|x = 4 = f ′(4) + g′(4) = 10 + 6 = 16

� �′(1) = = = =1

Higher Differentials The first derivative of f(x) with respect to x
is denoted by f ′ or df/dx. The derivative of the first derivative is called
the second derivative of f(x) with respect to x and is denoted by f″, f (2),
or d 2 f/dx2; and similarly for the higher-order derivatives.

Example Given f(x) = 3x3 + 2x + 1, calculate all derivative values at x = 3.

= 9x2 + 2 x = 3, f ′(3) = 9(9) + 2 = 83

= 18x x = 3, f″(3) = 18(3) = 54

= 18 x = 3, f″(3) = 18

= 0 for n ≥ 4

If f ′(x) > 0 on (a, b), then f is increasing on (a, b). If f ′(x) < 0 on 
(a, b), then f is decreasing on (a, b).

The graph of a function y = f(x) is concave up if f ′ is increasing on 
(a, b); it is concave down if f ′ is decreasing on (a, b).

If f ″(x) exists on (a, b) and if f ″(x) > 0, then f is concave up on (a, b).
If f ″(x) < 0, then f is concave down on (a, b).

An inflection point is a point at which a function changes the direc-
tion of its concavity.

Indeterminate Forms: L’Hospital’s Theorem Forms of the
type 0/0, ∞/∞, 0 × ∞, etc., are called indeterminates. To find the limit-
ing values that the corresponding functions approach, L’Hospital’s
theorem is useful: If two functions f(x) and g(x) both become zero at 
x = a, then the limit of their quotient is equal to the limit of the quo-
tient of their separate derivatives, if the limit exists or is + ∞ or − ∞.

Example Find lim
n→0

.

Here lim
x→0

= lim
x→0

= lim
x→0

= 1

Example Find lim
x→∞

.

lim
x→∞

= lim
x→∞

= lim
x→∞

Obviously lim
x→∞

= ∞ since repeated application of the rule will reduce the

denominator to a finite number 1000! while the numerator remains infinitely
large.

Example Find lim
x→∞

x3 e−x.

lim
x→∞

x3 e−x = lim
x→∞

= lim
x→∞

= 0

Example Find lim
x→0

(1 − x)1/x.

Let y = (1 − x)1/x

ln y = (1/x) ln (1 − x)

lim
x→0

(ln y) = lim
x→0

= −1

Therefore, lim
x→0

y = e−1

ln(1 − x)
�

x

6
�
ex

x3

�
ex

1.1x

�
x1000

(ln 1.1)(1.1)x

��
1000x999

d(1.1)x

�
dx1000

(1.1)x

�
x1000

(1.1)x

�
x1000

cos x
�

1
d sin x
�

dx
sin x
�

x

sin x
�

x

dnf(x)
�

dxn

d3f(x)
�

dx3

d2f(x)
�

dx2

df(x)
�

dx

16
�
16

1 ⋅ 4 − 3(−4)
��

(−4)2

f ′(1)g(1) − f(1)g′(1)
���

[g(1)]2

f
�
g

d
�
dx

Partial Derivative The abbreviation z = f(x, y) means that z is a
function of the two variables x and y. The derivative of z with respect
to x, treating y as a constant, is called the partial derivative with
respect to x and is usually denoted as ∂z/∂x or ∂f(x, y)/∂x or simply fx.
Partial differentiation, like full differentiation, is quite simple to apply.
Conversely, the solution of partial differential equations is appreciably
more difficult than that of differential equations.

Example Find ∂z/∂x and ∂z/∂y for z = yex 2 + xey.

= y + ey = ex2 + x

= 2xyex2 + ey = ex2 + xey

Order of Differentiation It is generally true that the order of
differentiation is immaterial for any number of differentiations or
variables provided the function and the appropriate derivatives are
continuous. For z = f(x, y) it follows:

= =

General Form for Partial Differentiation
1. Given f(x, y) = 0 and x = g(t), y = h(t).

Then = +

= � �
2

+ 2 + � �
2

+

+

Example Find df/dt for f = xy, x = ρ sin t, y = ρ cos t.

= � � + � �
= y(ρ cos t) + x(−ρ sin t)
= ρ2 cos2 t − ρ2 sin2 t

2. Given f(x, y) = 0 and x = g(t, s), y = h(t, s).

Then = +

= +

Differentiation of Composite Function

Rule 1. Given f(x, y) = 0, then = − � ≠ 0�.

Rule 2. Given f(u) = 0 where u = g(x), then

= f ′(u)

= f″(u) � �
2

+ f ′(u)

Example Find df/dx for f = sin2 u and u = �1� −� x�2�

=

= 2 sin u cos u � � (−2x)(1 − x2)−1/2

= −2 sin u cos u

Rule 3. Given f(u) = 0 where u = g(x,y), then

= f ′(u) + = f ′(u)
∂u
�
∂y

∂f
�
∂y

∂u
�
∂x

∂f
�
∂x

�1� −� u�2�
�

u

1
�
2

d�1� −� x�2�
��

dx
d sin2 u
�

du
df
�
dx

d 2u
�
dx2

du
�
dx

d2f
�
dx2

du
�
dx

df
�
dx

∂f
�
∂y

∂f/∂x
�
∂f/∂y

dy
�
dx

∂y
�
∂x

∂f
�
∂y

∂x
�
∂s

∂f
�
∂x

∂f
�
∂s

∂y
�
∂t

∂f
�
∂y

∂x
�
∂t

∂f
�
∂x

∂f
�
∂t

d ρ cos t
�

dt
∂(xy)
�

∂y
d ρ sin t
�

dt
∂(xy)
�

∂x
df
�
dt

d2y
�
dt2

∂f
�
∂y

d 2x
�
dt2

∂f
�
∂x

dy
�
dt

∂2f
�
∂y2

dy
�
dt

dx
�
dt

∂2f
�
∂x ∂y

dx
�
dt

∂2f
�
∂x2

d 2f
�
dt2

dy
�
dt

∂f
�
∂y

dx
�
dt

∂f
�
∂x

df
�
dt

∂3f
�
∂x ∂y2

∂3f
�
∂y ∂x ∂y

∂3f
�
∂y2 ∂x

∂ey

�
∂y

∂y
�
∂y

∂z
�
∂y

∂x
�
∂x

∂ex2

�
∂x

∂z
�
∂x
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= f″ � �
2

+ f ′

= f″ + f ′

= f″ � �
2

+ f ′

MULTIVARIABLE CALCULUS APPLIED 
TO THERMODYNAMICS

Many of the functional relationships needed in thermodynamics are
direct applications of the rules of multivariable calculus. This section
reviews those rules in the context of the needs of themodynamics.
These ideas were expounded in one of the classic books on chemical
engineering thermodynamics.151

State Functions State functions depend only on the state of the
system, not on past history or how one got there. If z is a function of
two variables, x and y, then z(x,y) is a state function, since z is known
once x and y are specified. The differential of z is

dz = M dx + N dy

The line integral

�
C

(M dx + N dy)

is independent of the path in x-y space if and only if

= (3-42)

The total differential can be written as

dz = � �
y
dx + � �

x
dy (3-43)

and the following condition guarantees path independence.

� �
y
= � �

x

or = (3-44)

Example Suppose z is constant and apply Eq. (3-43).


0 = � �
y
dx + � �

x
dy�

z

Rearrangement gives

� �
y
= −� �

z
� �

x
= − (3-45)

Alternatively, divide Eq. (3-43) by dy when holding some other variable w con-
stant to obtain

� �
w

= � �
v
� �

w
+ � �

x
(3-46)

Also divide both numerator and denominator of a partial derivative by dw while
holding a variable y constant to get

� �
y
= = � �

y
� �

y
(3-47)

Themodynamic State Functions In thermodynamics, the state
functions include the internal energy, U; enthalpy, H; and Helmholtz
and Gibbs free energies, A and G, respectively, defined as follows:

H = U + p V
A = U − TS
G = H − TS = U + pV − TS = A + pV

S is the entropy, T the absolute temperature, p the pressure, and V the
volume. These are also state functions, in that the entropy is specified
once two variables (like T and p) are specified, for example. Likewise,

∂w
�
∂x

∂z
�
∂w

(∂z/∂w)y
�
(∂x/∂w)y

∂z
�
∂x

∂z
�
∂y

∂x
�
∂y

∂z
�
∂x

∂z
�
∂y

(∂y/∂x)z
�
(∂y/∂z)x

∂z
�
∂y

∂y
�
∂x

∂z
�
∂x

∂z
�
∂y

∂z
�
∂x

∂2z
�
∂x ∂y

∂2z
�
∂y ∂x

∂z
�
∂y

∂
�
∂x

∂z
�
∂x

∂
�
∂y

∂z
�
∂y

∂z
�
∂x

∂N
�
∂x

∂M
�
∂y

∂2u
�
∂y2

∂u
�
∂y

∂2f
�
∂y2

∂2u
�
∂x ∂y

∂u
�
∂y

∂u
�
∂x

∂2f
�
∂x ∂y

∂2u
�
∂x2

∂u
�
∂x

∂2f
�
∂x2

V is specified once T and p are specified; it is therefore a state 
function.

All applications are for closed systems with constant mass. If a
process is reversible and only p-V work is done, the first law and dif-
ferentials can be expressed as follows.

dU = T dS − p dV
dH = T dS + V dp
dA = −S dT − p dV
dG = −S dT + V dp

Alternatively, if the internal energy is considered a function of S and V,
then the differential is:

dU = � �
V

dS + � �
S

dV

This is the equivalent of Eq. (3-43) and gives the following definitions.

T = � �
V
, p = −� �

S

Since the internal energy is a state function, then Eq. (3-44) must be
satisfied.

=

This is � �
S

= −� �
V

This is one of the Maxwell relations, and the other Maxwell relations
can be derived in a similar fashion by applying Eq. (3-44).

� �
S

= � �
p

� �
T

= � �
V

� �
T

= −� �
p

In process simulation it is necessary to calculate enthalpy as a func-
tion of state variables. This is done using the following formulas,
derived from the above relations by considering S and H as functions
of T and p.

dH = Cp dT + 
V − T� �
p
� dp

Enthalpy differences are then given by the following formula.

H(T2, p2) − H(T1, p1) = �T2

T1

Cp(T, p1) dT + �p
2

p1

V − T� �

p
��

T2,p
dp

The same manipulations can be done for internal energy as a func-
tion of T and V.

dU = CV dT − 
p + T � dV

Partial Derivatives of All Thermodynamic Functions The
various partial derivatives of the thermodynamic functions can be
classified into six groups. In the general formulas below, the variables
U, H, A, G or S are denoted by Greek letters, while the variables V, T,
or p are denoted by Latin letters.

Type I (3 possibilities plus reciprocals)

General: � �
c
; Specific: � �

V

Eq. (3-45) gives

� �
V

= −� �
p
� �

T
= − 

Type II (30 possibilities)

General: � �
c
; Specific: � �

V

∂G
�
∂T

∂α
�
∂b

(∂V/∂T)p
�
(∂V/∂p)T

∂p
�
∂V

∂V
�
∂T

∂p
�
∂T

∂p
�
∂T

∂a
�
∂b

(∂V/∂T)p
�
(∂V/∂p)T

∂V
�
∂T

∂V
�
∂T

∂V
�
∂T

∂S
�
∂p

∂p
�
∂T

∂S
�
∂V

∂V
�
∂S

∂T
�
∂p

∂p
�
∂S

∂T
�
∂V

∂2U
�
∂S ∂V

∂2U
�
∂V ∂S

∂U
�
∂V

∂U
�
∂S

∂U
�
∂V

∂U
�
∂S
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The differential for G gives

� �
V

= −S + V � �
V

Using the other equations for U, H, A, or S gives the other possibilities.
Type III (15 possibilities plus reciprocals)

General: � �α
; Specific: � �

S

First expand the derivative using Eq. (3-45).

� �
S

= −� �
V
� �

T
= − 

Then evaluate the numerator and denominator as type II derivatives.

� �S
= − =

These derivatives are of importance for reversible, adiabatic processes
(such as in an ideal turbine or compressor), since then the entropy is
constant. An example is the Joule-Thomson coefficient.

� �
H

= 
−V + T� �
p
�

Type IV (30 possibilities plus reciprocals)

General: � �
c
; Specific: � �

p

Use Eq. (3-47) to introduce a new variable.

� �p
= � �p � �p

=

This operation has created two type II derivatives; by substitution we
obtain

� �
p

=

Type V (60 possibilities)

General: � �β
; Specific: � �

A

Start from the differential for dG. Then we get

� �
A

= −S� �
A

+ V

The derivative is type III and can be evaluated by using Eq. (3-45).

� �
A

= S + V

The two type II derivatives are then evaluated.

� �
A

= + V

These derivatives are also of interest for free expansions or isentropic
changes.

Type VI (30 possibilities plus reciprocals)

General: � �γ
; Specific: � �

H

We use Eq. (3-47) to obtain two type V derivatives.

� �
H

=

These can then be evaluated using the procedures for Type V derivatives.

INTEGRAL CALCULUS

Indefinite Integral If f ′(x) is the derivative of f(x), an antideriv-
ative of f ′(x) is f(x). Symbolically, the indefinite integral of f ′(x) is

(∂G/∂T)H
�
(∂A/∂T)H

∂G
�
∂A

∂G
�
∂A

∂α
�
∂β

Sp (∂V/∂p)T
��
S + p (∂V/∂T)p

∂G
�
∂p

(∂A/∂p)T
�
(∂A/∂T)p

∂G
�
∂p

∂T
�
∂p

∂G
�
∂p

∂G
�
∂p

∂α
�
∂b

S
��
S + p (∂V/∂T)p

∂G
�
∂A

(∂G/∂T)p
�
(∂A/∂T)p

∂T
�
∂A

∂G
�
∂T

∂G
�
∂A

∂G
�
∂A

∂α
�
∂β

∂V
�
∂T

1
�
Cp

∂T
�
∂p

��
∂
∂
V
p
��

T
�

��
∂
∂
V
T
��

p

CV
�
T

�
C
T

V
�

��

−��
∂
∂
V
T
��

p
��

∂
∂
V
p
��

T

∂V
�
∂T

(∂S/∂T)V
�
(∂S/∂V)T

∂V
�
∂S

∂S
�
∂T

∂V
�
∂T

∂V
�
∂T

∂a
�
∂b

∂p
�
∂T

∂G
�
∂T

� f ′(x) dx = f(x) + c

where c is an arbitrary constant to be determined by the problem. By
virtue of the known formulas for differentiation the following rela-
tionships hold (a is a constant):

� (du + dv + dw) = � du + � dv + � dw (3-48)

� a dv = a � dv (3-49)

� vn dv = + c (n ≠ −1) (3-50)

� = ln |v| + c (3-51)

� av dv = + c (3-52)

� ev dv = ev + c (3-53)

� sin v dv = −cos v + c (3-54)

� cos v dv = sin v + c (3-55)

� sec2 v dv = tan v + c (3-56)

� csc2 v dv = −cot v + c (3-57)

� sec v tan v dv = sec v + c (3-58)

� csc v cot v dv = −csc v + c (3-59)

� = tan−1 + c (3-60)

� = sin−1 + c (3-61)

� = ln � � + c (3-62)

� = ln |v + �v2� �� a�2|� + c (3-63)

� sec v dv = ln (sec v + tan v) + c (3-64)

� csc v dv = ln (csc v − cot v) + c (3-65)

Example Derive ∫ av dv = (av/ln a) + c. By reference to the differentiation
formula dav/dv = av ln a, or in the more usable form d(av/ln a) = av dv, let f ′ =
av dv; then f = av/ln a and hence ∫ av dv = (av/ln a) + c.

Example Find ∫ (3x2 + ex − 10) dx using Eq. (3-48). ∫ (3x2 + ex − 10) dx =
3 ∫ x2 dx + ∫ ex dx − 10 ∫ dx = x3 + ex − 10x + c (by Eqs. 3-50, 3-53).

Example Find � . Let v = 2 − 3x2; dv = −6x dx

Thus � = 7 � = − �
= − �
= − ln |v| + c

= − ln |2 − 3x2| + c
7
�
6

7
�
6

dv
�
v

7
�
6

−6x dx
�
2 − 3x2

7
�
6

x dx
�
2 − 3x2

7x dx
�
2 − 3x2

7x dx
�
2 − 3x2

dv
��
�v2� �� a�2�

v − a
�
v + a

1
�
2a

dv
�
v2 − a2

v
�
a

dv
�
�a2� −� v�2�

v
�
a

1
�
a

dv
�
v2 + a2

av

�
ln a

dv
�
v

vn + 1

�
n + 1
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Example—Constant of Integration By definition the derivative of
x3 is 3x2, and x3 is therefore the integral of 3x2. However, if f = x3 + 10, it follows
that f ′ = 3x2, and x3 + 10 is therefore also the integral of 3x2. For this reason the
constant c in ∫ 3x2 dx = x3 + c must be determined by the problem conditions,
i.e., the value of f for a specified x.

Methods of Integration In practice it is rare when generally
encountered functions can be directly integrated. For example, the
integrand in ∫ �si�n� x� dx which appears quite simple has no elementary 
function whose derivative is �si�n� x�. In general, there is no explicit way
of determining whether a particular function can be integrated into an
elementary form. As a whole, integration is a trial-and-error proposi-
tion which depends on the effort and ingenuity of the practitioner.
The following are general procedures which can be used to find the
elementary forms of the integral when they exist. When they do not
exist or cannot be found either from tabled integration formulas or
directly, the only recourse is series expansion as illustrated later.
Indefinite integrals cannot be solved numerically unless they are rede-
fined as definite integrals (see “Definite Integral”), i.e., F(x) = ∫ f(x) dx,
indefinite, whereas F(x) = ∫ x

a f(t) dt, definite.
Direct Formula Many integrals can be solved by transformation

in the integrand to one of the forms given previously.

Example Find ∫ x2 �3�x3� +� 1�0� dx. Let v = 3x3 + 10 for which dv = 9x2 dx.
Thus

� x2 �3�x3� +� 1�0� dx = � (3x3 + 10)1/2 (x2 dx)

= � (3x3 + 10)1/2(9x2 dx)

= � v1/2 dv

= + c [by Eq. (3-50)]

= (3x3 + 10)3/2 + c

Trigonometric Substitution This technique is particularly well
adapted to integrands in the form of radicals. For these the function is
transformed into a trigonometric form. In the latter form they may be
more easily recognizable relative to the identity formulas. These func-
tions and their transformations are

�x2� −� a�2� Let x = a sec θ

�x2� +� a�2� Let x = a tan θ

�a2� −� x�2� Let x = a sin θ

Example Find � dx. Let x = sin θ; then dx = cos θ dθ.

3 � dx = 3 � � cos θ dθ�

= 3 � dθ

= 3 � cot2 θ dθ

= −3 cot θ − 3θ + c by trigonometric transform

= − − 3 sin−1 x + c in terms of x

Algebraic Substitution Functions containing elements of the
type (a + bx)1/n are best handled by the algebraic transformation yn =
a + bx.

Example Find � . Let 3 + 4x = y4; then 4dx = 4y3 dy and
x dx

��
(3 + 4x)1/4

3
�
2

�4� −� 9�x2�
��

x

cos2 θ
�
sin2 θ

2
�
3

2/3�1� −� s�in�2�θ�
��

(2/3)2 sin2 θ

�(2�/3�)2� −� x�2�
��

x2

2
�
3

2
�
3

�4� −� 9�x2�
��

x2

2
�
27

v3/2

�
3⁄2

1
�
9

1
�
9

1
�
9

� = �

= � y2(y4 − 3) dy

= − + c

= (3 + 4x)7/4 − (3 + 4x)3/4 + c

General The number of possible transformations one might use
are unlimited. No specific overall rules can be given. Success in han-
dling integration problems depends primarily upon experience and
ingenuity. The following example illustrates the extent to which alter-
native approaches are possible.

Example Find � . Let ex = y; then ex dx = dy or dx = 1/y dy.

� = � = � = ln = ln 

Partial Fractions Rational functions are of the type f(x)/g(x)
where f(x) and g(x) are polynomial expressions of degrees m and n
respectively. If the degree of f is higher than g, perform the algebraic
division—the remainder will then be at least one degree less than the
denominator. Consider the following types:

Type 1 Reducible denominator to linear unequal factors. For
example,

=

= + +

=

=

Equate coefficients and solve for A, B, and C.

A + B + C = 0
−3A + B = 0

2A − 2B − 4C = 1
A = 1⁄12, B =d, C = −s

= + −

Hence

� = � + � − �
Parts An extremely useful formula for integration is the relation

d(uv) = u dv + v du

and uv = � u dv + � v du

or � u dv = uv − � v du

No general rule for breaking an integrand can be given. Experience
alone limits the use of this technique. It is particularly useful for
trigonometric and exponential functions.

Example Find � xex dx. Let

u = x and dv = ex dx

du = dx v = ex

dx
�
3(x − 1)

dx
�
4(x − 2)

dx
�
12(x + 2)

dx
��
x3 − x2 − 4x + 4

1
�
3(x − 1)

1
�
4(x − 2)

1
�
12(x + 2)

1
��
x3 − x2 − 4x + 4

x2(A + B + C) + x(−3A + B) + (2A − 2B − 4C)
�����

(x + 2)(x − 2)(x − 1)

A(x − 2)(x − 1) + B(x + 2)(x − 1) + C(x + 2)(x − 2)
������

(x + 2)(x − 2)(x − 1)

C
�
x − 1

B
�
x − 2

A
�
x + 2

1
���
(x + 2)(x − 2)(x − 1)

1
��
x3 − x2 − 4x + 4

ex − 2
�

ex

y − 1
�

y
dy

�
y2 − y

(1/y) dy
�

y − 1
dx

�
ex − 1

dx
�
ex − 1

1
�
4

1
�
28

y3

�
3

3
�
4

y7

�
7

1
�
4

1
�
4

�
y4

4
− 3
� y3 dy

��
y

x dx
��
(3 + 4x)1/4
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Therefore � xex dx = xex − � ex dx

= xex − ex + c

Example Find � ex sin x dx. Let

u = ex dv = sin x dx

du = ex dx v = −cos x

� ex sin x dx = −ex cos x + � ex cos x dx

Again u = ex dv = cos x dx

du = ex dx v = sin x

� ex sin x dx = −ex cos x + ex sin x − � ex sin x dx + c

= (ex/2)(sin x − cos x) +

Series Expansion When an explicit function cannot be found,
the integration can sometimes be carried out by a series expansion.

Example Find � e−x2
dx. Since

e−x2 = 1 − x2 + − + ⋅⋅⋅

� e−x2
dx = � dx − � x2 dx + � dx − � dx + ⋅⋅⋅

= x − + − + ⋅⋅⋅ for all x

Definite Integral The concept and derivation of the definite
integral are completely different from those for the indefinite integral.
These are by definition different types of operations. However, the
formal operation ∫ as it turns out treats the integrand in the same way
for both.

Consider the function f(x) = 10 − 10e−2x. Define x1 = a and xn = b,
and suppose it is desirable to compute the area between the curve and
the coordinate axis y = 0 and bounded by x1 = a, xn = b. Obviously, by
a sufficiently large number of rectangles this area could be approxi-
mated as closely as desired by the formula

�
n − 1

i = 1

f(ξi)(xi + 1 − xi) = f(ξ1)(x2 − a) + f(ξ2)(x3 − x2)

+ ⋅⋅⋅ + f(ξn − 1)(b − xn − 1) xi − 1 ≤ ξi − 1 ≤ xi

The definite integral of f(x) is defined as

�b

a
f(x) dx = lim

n→∞ �
n

i = 1

f(ξi)(xi + 1 − xi)

where the points x1, x2, . . . , xn are equally spaced. For a rigorous def-
inition of the definite integral the references should be consulted.

Thus, the value of a definite integral depends on the limits a, b, and
any selected variable coefficients in the function but not on the
dummy variable of integration x. Symbolically

F(x) = � f(x) dx indefinite integral where dF/dx = f(x)

or F(a, b) = �b

a
f(x) dx definite integral

F(α) = �b

a
f(x, α) dx

There are certain restrictions of the integration definition, “The func-
tion f(x) must be continuous in the finite interval (a, b) with at most a
finite number of finite discontinuities,” which must be observed
before integration formulas can be generally applied. Two of these
restrictions give rise to so-called improper integrals and require
special handling. These occur when

1. The limits of integration are not both finite, i.e., ∫ ∞
0 e−x dx.

2. The function becomes infinite within the interval of integra-
tion, i.e.,

�1

0
dx

1
�
�x�

x7

�
7.3!

x5

�
5.2!

x3

�
3

x6

�
3!

x4

�
2!

x6

�
3!

x4

�
2!

c
�
2

Techniques for determining when integration is valid under these
conditions are available in the references. However, the following sim-
plified rules will, in general, serve as a guide for most practical appli-
cations.

Rule 1 For the integral

�∞

0
dx

if φ(x) is bounded, the integral will converge for n > 1 and not con-
verge for n ≤ 1.

It is easily seen that ∫ ∞
0 e−x dx converges by noting 1/x2 > 1/ex > 0 for

large x.
Rule 2 For the integral

�b

a
dx,

if φ(x) is bounded, the integral will converge for n < 1 and diverge for
n ≥ 1. Thus 

�1

0
dx

will converge (exist) since a = n < 1.
Properties The fundamental theorem of calculus states

�b

a
f(x) dx = F(b) − F(a)

where dF(x)/dx = f(x)

Other properties of the definite integral are

�b

a
c[ f(x) dx] = c �b

a
f(x) dx

�b

a
[ f1(x) + f2(x)] dx = �b

a
f1(x) dx + �b

a
f2(x) dx

�b

a
f(x) dx = −�a

b
f(x) dx

�b

a
f(x) dx = �c

a
f(x) dx + �b

c
f(x) dx

�b

a
f(x) dx = (b − a) f(ξ) for some ξ in (a, b)

�b

a
f(x) dx = f(b)

�b

a
f(x) dx = −f(a)

= �b

a
dx if a and b are constant

�b

a
dx �d

c
f(x, α) dα = �d

c
dα �b

a
f(x, α) dx (3-66)

when F(x) = �b(x)

a(x)
f(x, y) dy

the Leibniz rule gives

= f [x, b(x)] − f [x, a(x)] + �b(x)

a(x)
dy

Example Find �π/2

0
sin x dx.

�π/2

0
sin x dx = [−cos x]0

π/2 = −�cos − cos 0� = 1

since −d cos x/dx = sin x

π
�
2

∂f
�
∂x

da
�
dx

db
�
dx

dF
�
dx

∂f(x, α)
�

∂α
dF(α)
�

dα

∂
�
∂a

∂
�
∂b

1
�
�x�

φ(x)
�
(a − x)n

φ(x)
�

xn
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Example Find �2

0
. Direct application of the formula would yield

the incorrect value

�2

0
= 
− �

0

2

= −2

It should be noted that f(x) = 1/(x − 1)2 becomes unbounded as x → 1
and by Rule 2 the integral diverges and hence is said not to exist.

Methods of Integration All the methods of integration available
for the indefinite integral can be used for definite integrals. In addi-
tion, several others are available for the latter integrals and are indi-
cated below.

Change of Variable This substitution is basically the same as pre-
viously indicated for indefinite integrals. However, for definite inte-
grals, the limits of integration must also be changed: i.e., for x = φ(t),

�b

a
f (x) dx = �t1

t0

f [φ(t)]φ′(t) dt

where t = t0 when x = a
t = t1 when x = b

Example Find �4

0
�1�6� −� x�2� dx. Let

x = 4 sin θ (x = 0, θ = 0)
dx = 4 cos θ dθ (x = 4, θ = π/2)

Then �4

0
�1�6� −� x�2� dx = 16 �π/2

0
cos2 θ dθ = 16[aθ +d sin 2θ]0

π/2 = 4π

Differentiation Here the application of the general rules for dif-
ferentiating under the integral sign may be useful.

Example Find

φ(α) = �∞

0
dx (α > 0)

Since this is a continuous function of α, it may be differentiated under the inte-
gral sign

= −�∞

0
e−αx sin x dx

= −1/(1 + α2)
φ(α) = −tan−1 α + c

dφ
�
dα

e−αx sin x
�

x

1
�
x − 1

dx
�
(x − 1)2

dx
�
(x − 1)2

and since φ(α) → 0 as α → ∞,
c = π/2

φ(α) = −tan−1 α + π/2

Integration It is sometimes useful to generate a double integral
to solve a problem. By this approach, the fundamental theorem indi-
cated by Eq. (3-66) can be used.

Example Find �1

0
dx

Consider �1

0
xα dx = (α > −1)

Then multiplying both sides by dα and integrating between a and b,

�b

a
dα �1

0
xα dx = �b

a
= ln � �

But also

�b

a
dα �1

0
xα dx = �1

0
dx �b

a
xα dα = �1

0
dx

Therefore �1

0
dx = ln � �

Complex Variable Certain definite integrals can be evaluated by
the technique of complex variable integration. This is described in the
references for “Complex Variables.”

Numerical Because of the property of definite integrals another
method for obtaining their solution is available which cannot be
applied to indefinite integrals. This involves a numerical approxima-
tion based on the previously outlined summation definition:

lim
n→∞ �

n − 1

1

f(ξi)(xi + 1 − xi) = �b

a
f(x) dx

where x1 = a and xn = b

Examples of this procedure are given in the subsection “Numerical
Analysis and Approximate Methods.”

b + 1
�
a + 1

xb − xα

�
ln x

xb − xα

�
ln x

b + 1
�
a + 1

dα
�
α + 1

1
�
α + 1

xb − xα

�
ln x

REFERENCES: 53, 126, 127, 163. For asymptotic series and asymptotic meth-
ods, see Refs. 51, 127.

DEFINITIONS

A succession of numbers or terms that are formed according to some
definite rule is called a sequence. The indicated sum of the terms 
of a sequence is called a series. A series of the form a0 + a1(x − c) +
a2(x − c)2 + ⋅⋅⋅ + an(x − c)n + ⋅⋅⋅ is called a power series.

Consider the sum of a finite number of terms in the geometric
series (a special case of a power series).

Sn = a + ar + ar 2 + ar 3 + ⋅⋅⋅ + arn − 1 (3-67)

For any number of terms n, the sum equals

Sn = a 

In this form, the geometric series is assumed finite.
In the form of Eq. (3-67), it can further be defined that the terms in

the series be nonending and therefore an infinite series.

S = a + ar + ar 2 + ⋅⋅⋅ + arn + ⋅⋅⋅ (3-68)

However, the defined sum of the terms [Eq. (3-67)]

Sn = a r ≠ 1
1 − r n

�
1 − r

1 − rn

�
1 − r

while valid for any finite value of r and n now takes on a different
interpretation. In this sense it is necessary to consider the limit of Sn as
n increases indefinitely:

S = lim
n→∞

Sn

= a lim
n→∞

For this, it is stated the infinite series converges if the limit of Sn

approaches a fixed finite value as n approaches infinity. Otherwise, the
series is divergent.

On this basis an analysis of

S = a lim
n→∞

shows that if r is less than 1 but greater than −1, the infinite series is
convergent. For values outside of the range −1 < r < 1, the series 
is divergent because the sum is not defined. The range −1 < r < 1 is
called the region of convergence. (We assume a ≠ 0.)

Consider the divergence of Eq. (3-68) when r = −1 and +1. For the
former case r = −1,

S = a + a(−1) + a(−1)2 + a(−1)3 + ⋅⋅⋅ + a(−1)n + ⋅⋅⋅
= a − a + a − a + a − ⋅⋅⋅

1 − r n

�
1 − r

1 − rn

�
1 − r
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and for which

S = a lim
n→∞

= a lim
n→∞

undefined limit (if a ≠ 0)

Since the limit sum does not exist, the series is divergent. This is
defined as a bounded or oscillating divergent series. Similarly for the
value r = +1,

S = a + a(1) + a(1)2 + a(1)3 + ⋅⋅⋅ + a(1)n + ⋅⋅⋅
S = a + a + a + a + ⋅⋅⋅ + a + ⋅⋅⋅ (a ≠ 0)

The series is also divergent but defined as an unbounded divergent
series.

There are also two types of convergent series. Consider the new
series

S = 1 − + − + ⋅⋅⋅ +(−1)n + 1 + ⋅⋅⋅ (3-69)

It can be shown that the series (3-69) does converge to the value S =
log 2. However, if each term is replaced by its absolute value, the
series becomes unbounded and therefore divergent (unbounded
divergent):

S = 1 + + + + + ⋅⋅⋅ (3-70)

In this case the series (3-69) is defined as a conditionally convergent
series. If the replacement series of absolute values also converges, the
series is defined to converge absolutely.

Series (3-69) is further defined as an alternating series, while series
(3-70) is referred to as a positive series.

OPERATIONS WITH INFINITE SERIES

1. The convergence or divergence of an infinite series is unaf-
fected by the removal of a finite number of finite terms. This is a triv-
ial theorem but useful to remember, especially when using the
comparison test to be described in the subsection “Tests for Conver-
gence and Divergence.”

2. If a series is conditionally convergent, its sums can be made to
have any arbitrary value by a suitable rearrangement of the series; it
can in fact be made divergent or oscillatory (Riemann’s theorem). This
seemingly paradoxical theorem can be illustrated by the following
example.

Example S = 1 − + − + − + ⋅⋅⋅

The series is rearranged so that each positive term is followed by two negative
terms:

t = 1 − − + − − + − − + ⋅⋅⋅

Define t3n for the first 3n terms in the series

t3n = �1 − � − + � − � − + ⋅⋅⋅ + � − � −

= − + − + ⋅⋅⋅ + −

= �1 − + − + ⋅⋅⋅ + − �
= S2n

where S2n is the sum of the first 2n terms of the original series. Thus

lim
n→∞

t3n = lim
n→∞

S2n

t = S

and since lim t3n + 2 = lim t3n + 1 = lim t3n, it follows the sum of the series t is (a) S.
Hence a rearrangement of the terms of an alternating series alters the sum of
the series.

1
�
2

1
�
2

1
�
2

1
�
2n

1
�
2n − 1

1
�
4

1
�
3

1
�
2

1
�
2

1
�
4n

1
�
4n − 2

1
�
8

1
�
6

1
�
4

1
�
2

1
�
4n

1
�
4n − 2

1
�
2n − 1

1
�
8

1
�
6

1
�
3

1
�
4

1
�
2

1
�
12

1
�
10

1
�
5

1
�
8

1
�
6

1
�
3

1
�
4

1
�
2

1
�
6

1
�
5

1
�
4

1
�
3

1
�
2

1
�
5

1
�
4

1
�
3

1
�
2

1
�
n

1
�
4

1
�
3

1
�
2

1 − (−1)n

�
1 + 1

1 − rn

�
1 − r

3. A series of positive terms, if convergent, has a sum independent
of the order of its terms; but if divergent, it remains divergent how-
ever its terms are rearranged.

4. An oscillatory series can always be made to converge by group-
ing the terms in brackets.

Example Consider the series

1 − + − + − + ⋅⋅⋅

which oscillates between the values 0.306 and 1.306. However, the series

�1 − � + � − � + � − � + ⋅⋅⋅ = − − − −⋅⋅⋅ � 0.306 ⋅⋅⋅

and

1 − � − � − � − � − � − � + ⋅⋅⋅ = 1 + + + + ⋅⋅⋅ =1.306 ⋅⋅⋅

5. A power series can be inverted, provided the first-degree term
is not zero. Given

y = b1x + b2 x2 + b3 x3 + b4 x4 + b5x5 + b6 x6 + b7x7 + ⋅⋅⋅

then x = B1y + B2y2 + B3y3 + B4y4 + B5y5 + B6y6 + B7y7 + ⋅⋅⋅
where B1 = 1/b1

B2 = −b2 /b1
3

B3 = (1/b1
5 ) (2b2

2 − b1b3 )
B4 = (1/b1

7 )(5b1b2b3 − b1
2 b4 − 5b2

3 )

Additional coefficients are available in the references.
6. Two series may be added or subtracted term by term provided

each is a convergent series. The joint sum is equal to the sum (or dif-
ference) of the individuals.

7. The sum of two divergent series can be convergent. Similarly,
the sum of a convergent series and a divergent series must be diver-
gent.

Example Given

�
∞

n = 1
� � = + + + + ⋅⋅⋅ (a divergent series)

�
∞

n = 1
� � = − − − + ⋅⋅⋅ (a divergent series)

However, � � � + � � � = � � �
= 2 � (convergent)

8. A power series may be integrated term by term to represent the
integral of the function within an interval of the region of conver-
gence. If f(x) = a0 + a1x + a2x2 + ⋅⋅⋅, then

�x2

x1

f(x) dx = �x2

x1

a0 dx + �x2

x1

a1x dx + �x2

x1

a2x2 dx + ⋅⋅⋅

9. A power series may be differentiated term by term and repre-
sents the function df(x)/dx within the same region of convergence 
as f(x).

TESTS FOR CONVERGENCE AND DIVERGENCE

In general, the problem of determining whether a given series will
converge or not can require a great deal of ingenuity and resourceful-
ness. There is no all-inclusive test which can be applied to all series. As
the only alternative, it is necessary to apply one or more of the devel-
oped theorems in an attempt to ascertain the convergence or diver-
gence of the series under study. The following defined tests are given
in relative order of effectiveness. For examples, see references on
advanced calculus.

1. Comparison Test. A series will converge if the absolute value
of each term (with or without a finite number of terms) is less than the
corresponding term of a known convergent series. Similarly, a positive
series is divergent if it is termwise larger than a known divergent series
of positive terms.

1
�
n2

1 + n + 1 − n
��

n2

1 − n
�

n2

1 + n
�

n2

3
�
16

2
�
9

1
�
4

1 − n
�

n2

5
�
16

4
�
9

3
�
4

2
�
1

1 + n
�

n2

1
�
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1
�
20

1
�
6

6
�
7

5
�
6

4
�
5

3
�
4

2
�
3

1
�
2

1
�
56

1
�
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1
�
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1
�
2

5
�
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3
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1
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2
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�
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3
�
4
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�
3
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�
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2. nth-Term Test. A series is divergent if the nth term of the
series does not approach zero as n becomes increasingly large.

3. Ratio Test. If the absolute ratio of the (n + 1) term divided by
the nth term as n becomes unbounded approaches

a. A number less than 1, the series is absolutely convergent
b. A number greater than 1, the series is divergent
c. A number equal to 1, the test is inconclusive
4. Alternating-Series Leibniz Test. If the terms of a series are

alternately positive and negative and never increase in value, the
absolute series will converge, provided that the terms tend to zero as
a limit.

5. Cauchy’s Root Test. If the nth root of the absolute value of the
nth term, as n becomes unbounded, approaches

a. A number less than 1, the series is absolutely convergent
b. A number greater than 1, the series is divergent
c. A number equal to 1, the test is inconclusive
6. Maclaurin’s Integral Test. Suppose � an is a series of positive

terms and f is a continuous decreasing function such that f(x) ≥ 0 for 
1 ≤ x < ∞ and f(n) = an. Then the series and the improper integral 
∫

∞
1 f(x) dx either both converge or both diverge.

SERIES SUMMATION AND IDENTITIES

Sums for the First n Numbers to Integer Powers

�
n

j = 1

j = = 1 + 2 + 3 + 4 + ⋅⋅⋅ + n

�
n

j = 1

j2 = = 12 + 22 + 32 + 42 + ⋅⋅⋅ + n2

�
n

j = 1

j3 = = 13 + 23 + 33 + ⋅⋅⋅ + n3

�
n

j = 1

j4 = = 14 + 24 + 34 + ⋅⋅⋅ + n4

Arithmetic Progression

�
n

k = 1

[a + (k − 1)d] = a + (a + d) + (a + 2d)
+ (a + 3d) + ⋅⋅⋅ + [a + (n − 1)]d

= na + n(n − 1)d

Geometric Progression

�
n

j = 1

ar j − 1 = a + ar + ar 2 + ar 3 + ⋅⋅⋅ + ar n − 1

= a r ≠ 1

Harmonic Progression

�
n

k = 0

= + + + + + ⋅⋅⋅ +

The reciprocals of the terms of the arithmetic-progression series are
called harmonic progression. No general summation formulas are
available for this series.

Binomial Series

(x + y)n = xn + nxn − 1y + xn − 2 y2

+ xn − 3y3 + ⋅⋅⋅ + xn − ryr + ⋅⋅⋅ + yn

(1 � x)n = 1 � nx + x2 � x3 + ⋅⋅⋅ (x2 < 1)
n(n − 1)(n − 2)
��

3!
n(n − 1)
�

2!

n!
�
(n − r)!r!

n(n − 1)(n − 2)
��

3!

n(n − 1)
�

2!

1
�
a + nd

1
�
a + 4d

1
�
a + 3d

1
�
a + 2d

1
�
a + d

1
�
a

1
�
a + kd

1 − r n

�
1 − r

1
�
2

n(n + 1)(2n + 1)(3n2 + 3n − 1)
����

30

n2(n + 1)2

��
4

n(n + 1)(2n + 1)
��

6

n(n + 1)
�

2

Taylor’s Series

f(x + h) = f(h) + xf ′(h) + f ″(h) + f ′′′ (h) + ⋅⋅⋅

or f(x) = f(x0) + f ′(x0) (x − x0) + (x − x0)2 + (x − x0)3 + ⋅⋅⋅

Example Find a series expansion for f(x) = ln (1 + x) about x0 = 0.

f ′(x) = (1 + x)−1, f″(x) = −(1 + x)−2, f ′′′ (x) = 2(1 + x)−3, etc.

thus f(0) = 0, f ′(0) = 1, f″(0) = −1, f ′′′ (1) = 2, etc.

ln (x + 1) = x − + − + ⋅⋅⋅ +(−1)n + 1 + ⋅⋅⋅

which converges for −1 < x ≤ 1.

Maclaurin’s Series

f(x) = f(0) + xf ′(0) + f″(0) + f ′′′ (0) + ⋅⋅⋅

This is simply a special case of Taylor’s series when h is set to zero.

Exponential Series

ex = 1 + x + + + ⋅⋅⋅ + + ⋅⋅⋅ − ∞ <x < ∞

Logarithmic Series

ln x = + � �
2

+ � �
3

+ ⋅⋅⋅ (x >a)

ln x = 2 
� � + � �
3

+ ⋅⋅⋅ (x > 0)

Trigonometric Series*

sin x = x − + − + ⋅⋅⋅ −∞ <x < ∞

cos x = 1 − + − + ⋅⋅⋅ −∞ <x < ∞

sin−1 x = x + + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅⋅⋅ (x2 < 1)

tan−1 x = x − x3 + x5 − x7 + ⋅⋅⋅ (x2 < 1)

Taylor Series The Taylor series for a function of two variables,
expanded about the point (x0, y0), is

f(x, y) = f(x0, y0) + �
x0, y0

(x − x0) + �
x0, y0

(y − y0) 

+ 
 �
x0, y0

(x − x0)2 + 2 �
x0, y0

(x − x0)(y − y0) 

+ �
x0, y0

(y − y0)2� + ⋅⋅⋅

Partial Sums of Infinite Series, and How They Grow Calcu-
lus textbooks devote much space to tests for convergence and diver-
gence of series that are of little practical value, since a convergent

∂2f
�
∂y2

∂2f
�
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�
∂x2
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�
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�
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�
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�
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* tan x series has awkward coefficients and should be computed as 


(sign) �.
sin x

��
�1� −� s�in�2�x�



series either converges rapidly, in which case almost any test (among
those presented in the preceding subsections) will do; or it converges
slowly, in which case it is not going to be of much use unless there is

some way to get at its sum without adding up an unreasonable number
of terms. To find out, as accurately as possible, how fast a convergent
series converges and how fast a divergent series diverges, see Ref. 34.

REFERENCES: General. 73, 163, 172, 179. Applied and computational complex
analysis. 141, 146, 179.

Numbers of the form z = x + iy, where x and y are real, i2 = −1, are
called complex numbers. The numbers z = x + iy are representable in
the plane as shown in Fig. 3-46. The following definitions and termi-
nology are used:

1. Distance OP = r = modulus of z written |z|. |z| = �x2� +� y�2�.
2. x is the real part of z.
3. y is the imaginary part of z.
4. The angle θ, 0 ≤ θ < 2π, measured counterclockwise from the

positive x axis to OP is the argument of z. θ = arctan y/x = arcsin y/r =
arccos x/r if x ≠ 0, θ = π/2 if x = 0 and y > 0.

5. The numbers r, θ are the polar coordinates of z.
6. z = x − iy is the complex conjugate of z.

ALGEBRA

Let z1 = x1 + iy1, z2 = x2 + iy2.
Equality z1 = z2 if and only if x1 = x2 and y1 = y2.
Addition z1 + z2 = (x1 + x2) + i(y1 + y2).
Subtraction z1 − z2 = (x1 − x2) + i(y1 − y2).
Multiplication z1 ⋅ z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Division z1 /z2 = + i , z2 ≠ 0.

SPECIAL OPERATIONS

zz� = x2 + y2 = |z|2; z�1�����z�2� = z�1 � z�2; ��zz1 = z1; z�1�z�2� = z�1z�2; |z1 ⋅ z2| = |z1| ⋅ |z2|;
arg (z1 ⋅ z2) = arg z1 + arg z2; arg (z1 /z2) = arg z1 − arg z2; i4n = 1 for n any
integer; i2n = −1 where n is any odd integer; z + z� = 2x; z − z = 2iy.

Every complex quantity can be expressed in the form x + iy.

TRIGONOMETRIC REPRESENTATION

By referring to Fig. 3-46, there results x = r cos θ, y = r sin θ so that 
z = x + iy = r (cos θ + i sin θ), which is called the polar form of the com-
plex number. cos θ + i sin θ = e iθ. Hence z = x + iy = reiθ. z� = x − iy =
re−iθ. Two important results from this are cos θ = (eiθ + e−iθ)/2 and 
sin θ = (eiθ − e−iθ)/2i. Let z1 = r1e iθ1, z2 = r2e iθ2. This form is conve-
nient for multiplication for z1z2 = r1r2e i(θ1 + θ2) and for division for 
z1 /z2 = (r1 /r2)ei(θ1 − θ2), z2 ≠ 0.

POWERS AND ROOTS

If n is a positive integer, zn = (reiθ)n = rneinθ = rn(cos nθ + i sin nθ).
If n is a positive integer,

x2y1 − x1y2
��

x 2
2 + y2

2

x1x2 + y1y2
��

x 2
2 + y2

2

z1/ n = r 1/ nei[(θ + 2kπ)/n] = r 1/n 
cos � � + i sin � ��
and selecting values of k = 0, 1, 2, 3, . . . , n − 1 give the n distinct val-
ues of z1/n. The n roots of a complex quantity are uniformly spaced
around a circle, with radius r 1/n, in the complex plane in a symmetric
fashion.

Example Find the three cube roots of −8. Here r = 8, θ = π. The roots 
are z0 = 2(cos π/3 + i sin π/3) = 1 + i �3�, z1 = 2(cos π + i sin π) = −2, z2 =
2(cos 5π/3 + i sin 5π/3) = 1 − i �3�.

ELEMENTARY COMPLEX FUNCTIONS

Polynomials A polynomial in z, anzn + an − 1zn − 1 + ⋅⋅⋅ + a0, where n
is a positive integer, is simply a sum of complex numbers times inte-
gral powers of z which have already been defined. Every polynomial
of degree n has precisely n complex roots provided each multiple root
of multiplicity m is counted m times.

Exponential Functions The exponential function ez is defined
by the equation ez = ex + iy = ex ⋅ eiy = ez(cos y + i sin y). Properties: e0 =
1; ez1 ⋅ ez2 = ez1 + z2; ez1/ez2 = ez1 − z2; ez + 2kπi = ez.

Trigonometric Functions sin z = (eiz − e−iz)/2i; cos z = (eiz + e−iz)/2;
tan z = sin z/cos z; cot z = cos z/sin z; sec z = 1/cos z; csc z = 1/sin z.
Fundamental identities for these functions are the same as their real
counterparts. Thus cos2 z + sin2 z = 1, cos (z1 � z2) = cos z1 cos z2 �
sin z1 sin z2, sin (z1 � z2) = sin z1 cos z2 � cos z1 sin z2. The sine and
cosine of z are periodic functions of period 2π; thus sin (z + 2π) =
sin z. For computation purposes sin z = sin (x + iy) = sin x cosh y +
i cos x sinh y, where sin x, cosh y, etc., are the real trigonometric and
hyperbolic functions. Similarly, cos z = cos x cosh y − i sin x sinh y. If
x = 0 in the results given, cos iy = cosh y, sin iy = i sinh y.

Example Find all solutions of sin z = 3. From previous data sin z =
sin x cosh y + i cos x sinh y = 3. Equating real and imaginary parts sin x cosh y =
3, cos x sinh y = 0. The second equation can hold for y = 0 or for x = π/2, 3π/2,
. . . . If y = 0, cosh 0 = 1 and sin x = 3 is impossible for real x. Therefore, x =
�π/2, �3π/2, . . . �(2n + 1)π/2, n = 0, �1, �2, . . . . However, sin 3π/2 = −1 
and cosh y ≥ 1. Hence x = π/2, 5π/2, . . . . The solution is z = [(4n + 1)π]/2 +
i cosh−13, n = 0, 1, 2, 3, . . . .

Example Find all solutions of ez = −i. ez = ex(cos y + i sin y) = −i. Equating
real and imaginary parts gives ex cos y = 0, ex sin y = −1. From the first y = �π/2,
�3π/2, . . . . But ex > 0. Therefore, y = 3π/2, 7π/2, −π/2, . . . . Then x = 0. The
solution is z = i[(4n + 3)π]/2.

Two important facets of these functions should be recognized.
First, the sin z is unbounded; and, second, ez takes all complex values
except 0.

Hyperbolic Functions sinh z = (ez − e−z)/2; cosh z = (ez + e−z)/2;
tanh z = sinh z/cosh z; coth z = cosh z/sinh z; csch z = 1/sinh z;
sech z = 1/cosh z. Identities are: cosh2 z − sinh2 z = 1; sinh (z1 + z2) =
sinh z1 cosh z2 + cosh z1 sinh z2; cosh (z1 + z2) = cosh z1 cosh z2 +
sinh z1 sinh z2; cosh z + sinh z = ez; cosh z − sinh z = e−z. The hyper-
bolic sine and hyperbolic cosine are periodic functions with the imag-
inary period 2πi. That is, sinh (z + 2πi) = sinh z.

Logarithms The logarithm of z, log z = log |z| + i(θ + 2nπ), where
log |z| is taken to the base e and θ is the principal argument of z,
that is, the particular argument lying in the interval 0 ≤ θ < 2π. The
logarithm of z is infinitely many valued. If n = 0, the resulting loga-
rithm is called the principal value. The familiar laws log z1z2 = log z1 +
log z2, log z1 /z2 = log z1 − log z2, log zn = n log z hold for the principal
value.

θ + 2kπ
�

n
θ + 2kπ
�

n
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Example log (1 + i) = log �2� + i � + 2nπ�.

General powers of z are defined by zα = eα log z. Since log z is infi-
nitely many valued, so too is zα unless α is a rational number.

DeMoivre’s formula can be derived from properties of ez.

zn = rn (cos θ + i sin θ)n = rn (cos nθ + i sin nθ)

Thus (cos θ + i sin θ)n = cos nθ + i sin nθ

Example ii = eilog i = ei[log|i| + i(π/2 + 2nπ)] = e−(π/2 + 2nπ). Thus i i is real with prin-
cipal value (n = 0) = e−π/2.

Example (�2�)1 + i = e(1 + i) log �2� = elog �2�. ei log �2� = �2�. (cos log �2� +
i sin log �2�) = �2�[cos (0.3466) + i sin (0.3466)].

Inverse Trigonmetric Functions cos−1 z = −i log (z � �z2� −� 1�); 

sin−1 z = −i log (iz � �1� −� z�2�); tan−1 z = log � �. These functions 

are infinitely many valued.
Inverse Hyperbolic Functions cosh−1 z = log (z � �z2� −� 1�); 

sinh−1 z = log (z � �z2� +� 1�); tanh−1 z = log � �.

COMPLEX FUNCTIONS (ANALYTIC)

In the real-number system a greater than b(a > b) and b less than 
c(b < c) define an order relation. These relations have no meaning for
complex numbers. The absolute value is used for ordering. Some
important relations follow: |z| ≥ x; |z| ≥ y; |z1 � z2| ≤ |z1| + |z2|; |z1 − z2| ≥
||z1| − |z2||; |z| ≥ (|x| + |y|)/�2�. Parts of the complex plane, commonly
called regions or domains, are described by using inequalities.

Example |z − 3| ≤ 5. This is equivalent to �(x� −� 3�)2� +� y�2� ≤ 5, which is the
set of all points within and on the circle, centered at x = 3, y = 0 of radius 5.

Example |z − 1| ≤ x represents the set of all points inside and on the
parabola 2x = y2 + 1 or, equivalently, 2x ≥ y2 + 1.

Functions of a Complex Variable If z = x + iy, w = u + iv and if
for each value of z in some region of the complex plane one or more
values of w are defined, then w is said to be a function of z, w = f(z).
Some of these functions have already been discussed, e.g., sin z, log z.
All functions are reducible to the form w = u(x, y) + iv(x, y), where u,
v are real functions of the real variables x and y.

Example z3 = (x + iy)3 = x3 + 3x2(iy) + 3x(iy)2 + (iy)3 = (x3 − 3xy2) +
i(3x2y − y3).

Example cos z = cos x cosh y − i sin x sinh y.

Differentiation The derivative of w = f(z) is

= lim
∆z→0

and for the derivative to exist the limit must be the same no matter
how ∆z approaches zero. If w1, w2 are differentiable functions of z, the
following rules apply:

= � = w2 + w1 

=

and = nw1
n − 1

For w = f(z) to be differentiable, it is necessary that ∂u/∂x = ∂v/∂y and

dw1
�
dz

dw1
n

�
dz

w2(dw1/dz) − w1(dw2/dz)
���

w2
2

d(w1/w2)
�

dz

dw2
�
dz

dw1
�
dz

d(w1w2)
�

dz
dw2
�
dz

dw1
�
dz

d(w1 � w2)
��

dz

f(z + ∆z) − f(z)
��

∆z
dw
�
dz

1 + z
�
1 − z

1
�
2

i + z
�
i − z

i
�
2

π
�
4

∂v/∂x = −∂u/∂y. The last two equations are called the Cauchy-
Riemann equations. The derivative

= + i = − i 

If f(z) possesses a derivative at zo and at every point in some neighbor-
hood of z0, then f(z) is said to be analytic at z0. If the Cauchy-Riemann
equations are satisfied and

u, v, , , , 

are continuous in a region of the complex plane, then f(z) is analytic in
that region.

Example w = zz� = x2 + y2. Here u = x2 + y2, v = 0. ∂u/∂x = 2x, ∂u/∂y = 2y,
∂v/∂x = ∂v/∂y = 0. These are continuous everywhere, but the Cauchy-Riemann
equations hold only at the origin. Therefore, w is nowhere analytic, but it is dif-
ferentiable at z = 0 only.

Example w = ez = ex cos y + iex sin y. u = ex cos y, v = ex sin y. ∂u/∂x = ex cos
y, ∂u/∂y = −ex sin y, ∂v/∂x = ex sin y, ∂v/∂y = ex cos y. The continuity and Cauchy-
Riemann requirements are satisfied for all finite z. Hence ez is analytic (except
at ∞) and dw/∂z = ∂u/∂x + i(∂v/∂x) = ez.

Example w = = = − i 

It is easy to see that dw/dz exists except at z = 0. Thus 1/z is analytic except at 
z = 0.

Singular Points If f(z) is analytic in a region except at certain
points, those points are called singular points.

Example 1/z has a singular point at zero.

Example tan z has singular points at z = �(2n + 1)(π/2), n = 0, 1, 2, . . . .

The derivatives of the common functions, given earlier, are the same
as their real counterparts.

Example (d/dz)(log z) = 1/z, (d/dz)(sin z) = cos z.

Harmonic Functions Both the real and the imaginary parts of
any analytic function f = u + iv satisfy Laplace’s equation ∂2φ/∂x2 +
∂2φ/∂y2 = 0. A function which possesses continuous second partial
derivatives and satisfies Laplace’s equation is called a harmonic func-
tion.

Example ez = ex cos y + iex sin y. u = ex cos y, ∂u/∂x = ex cos y, ∂2u/∂x2 =
ex cos y, ∂u/∂y = −ex sin y, ∂2u/∂y2 = −ex cos y. Clearly ∂2u/∂x2 + ∂2u/∂y2 = 0. Sim-
ilarly, v = ex sin y is also harmonic.

If w = u + iv is analytic, the curves u(x, y) = c and v(x, y) = k inter-
sect at right angles, if wi(z) ≠ 0.

Example z3 = (x3 − 3xy2) + i(3x2y − y3). Set u = x3 − 3xy2 = c, v = 3x2y −
y3 = k. By implicit differentiation there results, respectively, dy/dx = (x2 − y2)/2xy,
dy/dx = 2xy/(y2 − x2), which are clearly negative reciprocals, the condition for
perpendicularity.

Integration In much of the work with complex variables a simple
extension of integration called line or curvilinear integration is of 
fundamental importance. Since any complex line integral can be ex-
pressed in terms of real line integrals, we define only real line inte-
grals. Let F(x,y) be a real, continuous function of x and y and c be any
continuous curve of finite length joining the points A and B (Fig. 
3-47). F(x,y) is not related to the curve c. Divide c up into n segments,
∆si, whose projection on the x axis is ∆xi and on the y axis is ∆yi. Let 
(εi, ηi) be the coordinates of an arbitrary point on ∆si. The limits of the
sums

lim
∆si→0 �

n

i = 1

F(εi, ηi) ∆si = �
c

F(x, y) ds

y
�
x2 + y2

x
�
x2 + y2

x − iy
�
x2 + y2

1
�
z

∂v
�
∂y

∂v
�
∂x

∂u
�
∂y

∂u
�
∂x

∂u
�
∂y

∂v
�
∂y

∂v
�
∂x

∂u
�
∂x

dw
�
dz
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lim
∆si→0 �

n

i = 1

F(εi, ηi) ∆xi = �
c

F(x, y) dx

lim
∆si→0 �

n

i = 1

F(εi, ηi) ∆yi = �
c

F(x, y) dy

are known as line integrals. Much of the initial strangeness of these
integrals will vanish if it be observed that the ordinary definite integral
∫b
a f(x) dx is just a line integral in which the curve c is a line segment on

the x axis and F(x, y) is a function of x alone. The evaluation of line
integrals can be reduced to evaluation of ordinary integrals.

Example ∫c y(1 + x) dy, where c: y = 1 − x2 from (−1, 0) to (1, 0). Clearly
y = 1 − x2, dy = −2x dx. Thus ∫c y(1 + x) dy = −2 ∫ 1

−1 (1 − x2)(1 + x)x dx = −8⁄15.

Example ∫c x2y ds, c is the square whose vertices are (0, 0), (1, 0), (1, 1),
(0, 1). ds = �d�x2� +� d�y�2�. When dx = 0, ds = dy. From (0, 0) to (1, 0), y = 0, dy =
0. Similar arguments for the other sides give

�
c

x2y ds = �1

0
0.x2 dx + �1

0
y dy + �0

1
x2 dx + �0

1
0.y dy =a −s = 1⁄6

Let f(z) be any function of z, analytic or not, and c any curve as
above. The complex integral is calculated as ∫c f(z) dz = ∫c (u dx − v dy)
+ i ∫c (v dx + u dy), where f(z) = u(x, y) + iv(x, y). Properties of line inte-

grals are the same as those for ordinary integrals. That is, ∫c [ f(z) �
g(z)] dz = ∫c f(z) dz � ∫c g(z) dz; ∫c kf(z) dz = k ∫c f(z) dz for any constant
k, etc.

Example �
c

(x2 + iy) dz along c: y = x, 0 to 1 + i. This becomes

�
c

(x2 + iy) dz = �
c

(x2 dx − y dy) 

+ i �
c

(y dx + x2 dy) = �1

0
x2 dx − �1

0
x dx + i �1

0
x dx + i �1

0
x2 dx = −1⁄6 + 5i/6

Conformal Mapping Every function of a complex variable w =
f(z) = u(x, y) + iv(x, y) transforms the x, y plane into the u, v plane in
some manner. A conformal transformation is one in which angles
between curves are preserved in magnitude and sense. Every analytic
function, except at those points where f ′(z) = 0, is a conformal trans-
formation. See Fig. 3-48.

Example w = z2. u + iv = (x2 − y2) + 2ixy or u = x2 − y2, v = 2xy. These are
the transformation equations between the (x, y) and (u, v) planes. Lines parallel
to the x axis, y = c1 map into curves in the u, v plane with parametric equations
u = x2 − c1

2, v = 2c1x. Eliminating x, u = (v2/4c1
2) − c1

2, which represents a family of
parabolas with the origin of the w plane as focus, the line v = 0 as axis and open-
ing to the right. Similar arguments apply to x = c2.

The principles of complex variables are useful in the solution of a vari-
ety of applied problems. See the references for additional information.

REFERENCES: Ordinary Differential Equations: Elementary level, 41, 44, 62,
81, 204, 236, 263. Intermediate level, 30, 43, 144. Theory and Advanced topics,
252. Applications, 9, 263. Partial Differential Equations: Elementary level and
solution methods, 9, 41, 61, 72, 144, 156, 229. Theory and advanced level, 79,
220, 240.

See also “Numerical Analysis and Approximate Methods” and “General Ref-
erences: References for General and Specific Topics—Advanced Engineering
Mathematics” for additional references on topics in ordinary and partial differ-
ential equations.

The natural laws in any scientific or technological field are not
regarded as precise and definitive until they have been expressed in
mathematical form. Such a form, often an equation, is a relation
between the quantity of interest, say, product yield, and independent
variables such as time and temperature upon which yield depends.
When it happens that this equation involves, besides the function
itself, one or more of its derivatives it is called a differential equation.

Example The homogeneous bimolecular reaction A + B k→ C is charac-
terized by the differential equation dx/dt = k(a − x)(b − x), where a = initial con-
centration of A, b = initial concentration of B, and x = x(t) = concentration of C
as a function of time t.

Example The differential equation of heat conduction in a moving fluid
with velocity components vx, vy is

+ vx + vy = � + �∂2u
�
∂y2

∂2u
�
∂x2

K
�
ρcp

∂u
�
∂y

∂u
�
∂x

∂u
�
∂t

where u = u(x, y, t) = temperature, K = thermal conductivity, ρ = density, and 
cp = specific heat at constant pressure.

ORDINARY DIFFERENTIAL EQUATIONS

When the function involved in the equation depends upon only one
variable, its derivatives are ordinary derivatives and the differential
equation is called an ordinary differential equation. When the func-
tion depends upon several independent variables, then the equation is
called a partial differential equation. The theories of ordinary and par-
tial differential equations are quite different. In almost every respect
the latter is more difficult.

Whichever the type, a differential equation is said to be of nth order
if it involves derivatives of order n but no higher. The equation in the
first example is of first order and that in the second example of second
order. The degree of a differential equation is the power to which the
derivative of the highest order is raised after the equation has been
cleared of fractions and radicals in the dependent variable and its
derivatives.

A relation between the variables, involving no derivatives, is called
a solution of the differential equation if this relation, when substituted
in the equation, satisfies the equation. A solution of an ordinary dif-
ferential equation which includes the maximum possible number of
“arbitrary” constants is called the general solution. The maximum
number of “arbitrary” constants is exactly equal to the order of the dif-
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ferential equation. If any set of specific values of the constants is cho-
sen, the result is called a particular solution.

Example The general solution of (d2x/dt2) + k2x = 0 is x = A cos kt +
B sin kt, where A, B are arbitrary constants. A particular solution is x =a cos kt +
3 sin kt.

In the case of some equations still other solutions exist called singu-
lar solutions. A singular solution is any solution of the differential
equation which is not included in the general solution.

Example y = x(dy/dx) − d(dy/dx)2 has the general solution y = cx − dc2,
where c is an arbitrary constant; y = x2 is a singular solution, as is easily verified.

ORDINARY DIFFERENTIAL EQUATIONS 
OF THE FIRST ORDER

Equations with Separable Variables Every differential equa-
tion of the first order and of the first degree can be written in the form
M(x, y) dx + N(x, y) dy = 0. If the equation can be transformed so that
M does not involve y and N does not involve x, then the variables are
said to be separated. The solution can then be obtained by quadra-
ture, which means that y = ∫ f(x) dx + c, which may or may not be
expressible in simpler form.

Example Two liquids A and B are boiling together in a vessel. Experi-
mentally it is found that the ratio of the rates at which A and B are evaporating
at any time is proportional to the ratio of the amount of A (say, x) to the amount
of B (say, y) still in the liquid state. This physical law is expressible as
(dy/dt)/(dx/dt) = ky/x or dy/dx = ky/x, where k is a proportionality constant. This
equation may be written dy/y = k(dx/x), in which the variables are separated.
The solution is ln y = k ln x + ln c or y = cxk.

Exact Equations The equation M(x, y) dx + N(x, y) dy = 0 is
exact if and only if ∂M/∂y = ∂N/∂x. In this case there exists a function
w = f(x, y) such that ∂f /∂x = M, ∂f /∂y = N, and f(x, y) = C is the
required solution. f(x, y) is found as follows: treat y as though it were
constant and evaluate ∫ M(x, y) dx. Then treat x as though it were con-
stant and evaluate ∫ N(x, y) dy. The sum of all unlike terms in these
two integrals (including no repetitions) is f(x, y).

Example (2xy − cos x) dx + (x2 − 1) dy = 0 is exact for ∂M/∂y = 2x, ∂N/∂x =
2x. ∫ M dx = ∫ (2xy − cos x) dx = x2y − sin x, ∫ N dy = ∫ (x2 − 1) dy = x2y − y. The
solution is x2y − sin x − y = C, as may easily be verified.

Linear Equations A differential equation is said to be linear
when it is of first degree in the dependent variable and its derivatives.
The general linear first-order differential equation has the form 
dy/dx + P(x)y = Q(x). Its general solution is

y = e−∫ P dx 
� Qe∫ P dx dx + C�
Example A tank initially holds 200 gal of a salt solution in which 100 lb 

is dissolved. Six gallons of brine containing 4 lb of salt run into the tank per
minute. If mixing is perfect and the output rate is 4 gal/min, what is the 
amount A of salt in the tank at time t? The differential equation of A is dA/dt +
[1/(100 + t)]A = 4. Its general solution is A = 2(100 + t) + C/(100 + t). At t = 0, 
′A = 100; so the particular solution is A = 2(100 + t) − 104/(100 + t).

ORDINARY DIFFERENTIAL EQUATIONS 
OF HIGHER ORDER

The higher-order differential equations, especially those of order 2,
are of great importance because of physical situations describable by
them.

Equation y(n) = f(x) Such a differential equation can be solved by
n integrations. The solution will contain n arbitrary constants.

Linear Differential Equations with Constant Coefficients
and Right-Hand Member Zero (Homogeneous) The solution of
y″ + ay′ + by = 0 depends upon the nature of the roots of the charac-
teristic equation m2 + am + b = 0 obtained by substituting the trial
solution y = emx in the equation.

Distinct Real Roots If the roots of the characteristic equation

are distinct real roots, r1 and r2, say, the solution is y = Aer1x + Ber2x,
where A and B are arbitrary constants.

Example y″ + 4y′ + 3 = 0. The characteristic equation is m2 + 4m + 3 = 0.
The roots are −3 and −1, and the general solution is y = Ae−3x + Be−x.

Multiple Real Roots If r1 = r2, the solution of the differential
equation is y = er1x(A + Bx).

Example y″ + 4y + 4 = 0. The characteristic equation is m2 + 4m + 4 = 0
with roots −2 and −2. The solution is y = e−2x(A + Bx).

Complex Roots If the characteristic roots are p � iq, then the
solution is y = epx(A cos qx + B sin qx).

Example The differential equation My″ + Ay′ + ky = 0 represents the
vibration of a linear system of mass M, spring constant k, and damping constant
A. If A < 2 �kM�, the roots of the characteristic equation

Mm2 + Am + k = 0 are complex − � i �	 −	 �		�
2	

and the solution is y = e−(At/2M)

�c1 cos ��	 −	 �		�
2	� t + c2 sin ��	 −	 �		�

2	� t
This solution is oscillatory, representing undercritical damping.

All these results generalize to homogeneous linear differential
equations with constant coefficients of order higher than 2. These
equations (especially of order 2) have been much used because of the
ease of solution. Oscillations, electric circuits, diffusion processes, and
heat-flow problems are a few examples for which such equations are
useful.

Second-Order Equations: Dependent Variable Missing Such
an equation is of the form

F �x, , � = 0

It can be reduced to a first-order equation by substituting p = dy/dx
and dp/dx = d 2y/dx2.

Second-Order Equations: Independent Variable Missing
Such an equation is of the form

F �y, , � = 0

Set = p, = p 

The result is a first-order equation in p,

F �y, p, p � = 0

Example The capillary curve for one vertical plate is given by

= 
1 + � �
2

�
3/2

Its solution by this technique is

x + �c2� −� y�2� − �c2� −� h�0
2� = �cosh−1 − cosh−1 �

where c, h0 are physical constants.

Example The equation governing chemical reaction in a porous catalyst
in plane geometry of thickness L is

D = k f(c), (0) = 0, c(L) = c0

where D is a diffusion coefficient, k is a reaction rate parameter, c is the con-
centration, k f(c) is the rate of reaction, and c0 is the concentration at the bound-
ary. Making the substitution gives

p = f(c)
k

�
D

dp
�
dc

dc
�
dx

d 2c
�
dx2

c
�
h0

c
�
y

c
�
2

dy
�
dx

4y
�
c2

d 2y
�
dx2

dp
�
dy

dp
�
dy

d 2y
�
dx2

dy
�
dx

d 2y
�
dx2

dy
�
dx

d 2y
�
dx2

dy
�
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A
�
2M

k
�
M

A
�
2M

k
�
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k
�
M
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Integrating gives = �c

c(0)
f(c) dc

If the reaction is very fast, c(0) ≈ 0 and the average reaction rate is related to
p(L). See Ref. 106. This variable is given by

p(L) = 
 �c0

0
f(c) dc�

1/2

Thus, the average reaction rate can be calculated without solving the complete
problem.

Linear Nonhomogeneous Differential Equations
Linear Differential Equations Right-Hand Member f(x) ≠ 0

Again the specific remarks for y″ + ay′ + by = f(x) apply to differential
equations of similar type but higher order. We shall discuss two gen-
eral methods.

Method of Undetermined Coefficients Use of this method is
limited to equations exhibiting both constant coefficients and particu-
lar forms of the function f(x). In most cases f(x) will be a sum or prod-
uct of functions of the type constant, xn (n a positive integer), emx,
cos kx, sin kx. When this is the case, the solution of the equation is y =
H(x) + P(x), where H(x) is a solution of the homogeneous equations
found by the method of the preceding subsection and P(x) is a partic-
ular integral found by using the following table subject to these condi-
tions: (1) When f(x) consists of the sum of several terms, the
appropriate form of P(x) is the sum of the particular integrals corre-
sponding to these terms individually. (2) When a term in any of the
trial integrals listed is already a part of the homogeneous solution, the
indicated form of the particular integral is multiplied by x.

Form of Particular Integral

If f(x) is Then P(x) is

a (constant) A (constant)
axn Anxn + An − 1xn − 1 + ⋅⋅⋅A1x + A0

aerx Berx

c cos kx  A cos kx + B sin kxd sin kx

gxnerx cos kx  (Anxn + ⋅⋅⋅ + A0)erx cos kx + (Bnxn + ⋅⋅⋅ + B0)erx sin kx
hxnerx sin kx

Since the form of the particular integral is known, the constants may
be evaluated by substitution in the differential equation.

Example y″ + 2y′ + y = 3e2x − cos x + x3. The characteristic equation is 
(m + 1)2 = 0 so that the homogeneous solution is y = (c1 + c2x)e−x. To find a par-
ticular solution we use the trial solution from the table, y = a1e2x + a2 cos x +
a3 sin x + a4x3 + a5x2 + a6x + a7. Substituting this in the differential equation col-
lecting and equating like terms, there results a1 = s, a2 = 0, a3 = −a, a4 = 1, 
a5 = −6, a6 = 18, and a7 = −24. The solution is y = (c1 + c2x)e−x +se2x −a sin x +
x3 − 6x2 + 18x − 24.

Method of Variation of Parameters This method is applicable
to any linear equation. The technique is developed for a second-order
equation but immediately extends to higher order. Let the equation
be y″ + a(x)y′ + b(x)y = R(x) and let the solution of the homogeneous
equation, found by some method, be y = c1 f1(x) + c2 f2(x). It is now
assumed that a particular integral of the differential equation is of the
form P(x) = uf1 + vf2 where u, v are functions of x to be determined by
two equations. One equation results from the requirement that uf1 +
vf2 satisfy the differential equation, and the other is a degree of free-
dom open to the analyst. The best choice proves to be

u′f1 + v′f2 = 0 and u′ f ′1 + v′f ′2 = R(x)

Then u′ = = − R(x)

v′ = = R(x)

and since f1, f2, and R are known u, v may be found by direct inte-
gration.

f1
��
f1 f ′2 − f2 f ′1

dv
�
dx

f2
��
f1 f ′2 − f2 f ′1

du
�
dx

2k
�
D

k
�
D

p2

�
2

Example (1 − x2) − = x. The homogeneous equation

(1 − x2) − = 0

reduces to =

when we set dy/dx = p. Upon integrating
twice, y = c1�x2� −� 1� + c2 is the homogeneous solution. Now assume that the par-
ticular solution has the form y =
u�x2� −� 1� + v. The equations for u and v become

u′ = du/dx = �x2� −� 1�

v′ = = 1 − x2

so that

u = [x�x2� −� 1� − ln (x + �x2� −� 1�)] and v = x − x3/3.

The complete solution is

y = c1�x2� −� 1� + c2 + − − �x2� −� 1� ln (x + �x2� −� 1�).

Perturbation Methods If the ordinary differential equation has
a parameter that is small and is not multiplying the highest derivative,
perturbation methods can give solutions for small values of the param-
eter.

Example Consider the differential equation for reaction and diffusion in
a catalyst; the reaction is second order: c″ = ac2, c′(0) = 0, c(1) = 1. The solution
is expanded in the following Taylor series in a.

c(x, a) = c0(x) + ac1(x) + a2c2(x) + …

The goal is to find equations governing the functions {ci(x)} and solve them. Sub-
stitution into the equations gives the following equations:

c0″(x) + a c″1(x) + a2c″2(x) + … = a[c0(x) + ac1(x) + a2c2(x) + …]2

c′0(0) + ac′1(0) + a2c′2(0) + … = 0

c0(1) + ac1(1) + a2c2(1) + … = 1

Like terms in powers of a are collected to form the individual problems.

c″0 = 0, c′0(0) = 0, c0(1) = 1

c″1 = c0
2, c′1(0) = 0, c1(1) = 0

c″2 = 2c0c1, c′2(0) = 0, c2(1) = 0

The solution proceeds in turn.

c0(x) = 1, c1(x) = , c2(x) =

SPECIAL DIFFERENTIAL EQUATIONS (SEE REF. 1)

Euler’s Equation The linear equation xny(n) + a1xn − 1y(n − 1) + ⋅⋅⋅ +
an − 1xy′ + any = R(x) can be reduced to a linear equation with constant
coefficients by the change of variable x = et. To solve the homogeneous
equation substitute y = xr into it, cancel the powers of x, which are the
same for all terms, and solve the resulting polynomial for r. In case of
multiple or complex roots there results the form y = xr(log x)r and y =
xα[cos (β log x) + i sin (β log x)].

Example Solve x2y″ − 2y = 0. By setting y = xr, xr[r(r − 1) − 2] = 0. 
The roots of r 2 − r − 2 = 0 are r = 2, −1. The general solution is y = Ax2 + B/x.

The equation (ax + b)ny(n) + a1(ax + b)n − 1y(n − 1) + ⋅⋅⋅ + any = R(x) can be
reduced to the Euler form by the substitution ax + b = z. It may be treated with-
out change of variable, the homogeneous equation having solutions of the form
y = (ax + b)r.

Bessel’s Equation The linear equation x2(d 2y/dx2) + (1 − 2α)
x(dy/dx) + [β2γ2 x 2γ + (α2 − p2γ2)]y = 0 is the general Bessel equation.
By series methods, not to be discussed here, this equation can be
shown to have the solution

y = AxαJp(βxγ) + BxαJ−p(βxγ) p not an integer or zero

y = AxαJp(βxγ) + BxαYp(βxγ) p an integer

5 − 6x2 + x4

��
12

(x2 − 1)
�

2

1
�
2

x3

�
6

x
�
2

1
�
2

dv
�
dx

dx
�
x(1 − x2)

dp
�
p

dy
�
dx

1
�
x

d 2y
�
dx2

dy
�
dx

1
�
x

d 2y
�
dx2
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where Jp(x) = � �
p

�
∞

k = 0

J−p(x) = � �
–p

�
∞

k = 0

p not an integer

Γ(n) = �∞

0
xn − 1e−x dx n > 0

is the gamma function. For p an integer

Jp(x) = � �
p

�
∞

k = 0

(Bessel function of the first kind of order p)

Yp(x) =

(replace right-hand side by limiting value if P is an integer or zero).
The series converge for all x. Much of the importance of Bessel’s

equation and Bessel functions lies in the fact that the solutions of
numerous linear differential equations can be expressed in terms of
them.

Example d 2y/dx2 + [9x − (63/4x2)]y = 0. In general form this is x2(d 2y/dx2)
+ (9x3 − 63⁄4)y = 0. Thus α = a, γ = 3⁄2; β = 2, p = 8⁄3. The solution is (since p 	
integer) y = Ax1/2J8/3(2x3/2) + Bx1/2J–8/3(2x3/2). Tables are available for the evaluation
of many of these functions.

Example The heat flow through a wedge-shaped fin is characterized by
the equation x2(d 2y/dx2) + x(dy/dx) − a2xy = 0, where y = T − Tair, α is a combi-
nation of physical constants, and x = distance from fin end. By comparing this
with the standard equation, there results α = 0, p = 0, γ =a, β2 = −4a2 or β = 2ai.
The solution is y = AJ0(2ai �x�) + BY0(2ai �x�).

Legendre’s Equation The Legendre equation (1 − x2)y″ −
2xy′ + n(n + 1)y = 0, n ≥ 0, has the solution y = Aun(x) + Bvn(x) for 
n not an integer where

un(x) = 1 − x2 + x4

− x6 + ⋅⋅⋅

vn(x) = x − x3 + x5 − ⋅⋅⋅⋅

If n is an even integer or zero, un is a polynomial in x. If n is an odd
integer, then vn is a polynomial. The interval of convergence for the
series is −1 < x < 1. If n is an integer, set

Pn(x) = (n even or zero), Pn = (n odd)

The polynomials Pn are the so-called Legendre polynomials, P0(x) = 1,
P1(x) = x, P2(x) =a(3x2 − 1), P3(x) =a(5x3 − 3x), . . . .

Laguerre’s Equation The Laguerre equation x(d 2y/dx2) + (c − x)
(dy/dx) − ay = 0 is satisfied by the confluent hypergeometric function.
See Refs. 1 and 173.

Hermite’s Equation The Hermite equation y″ − 2xy′ + 2ny = 0
is satisfied by the Hermite polynomial of degree n, y = AHn(x) if n is a
positive integer or zero. H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) =
8x3 − 12x, H4(x) = 16x4 − 48x2 + 12, Hr + 1(x) = 2xHr(x) − 2rHr − 1(x).

Example y″ − 2xy′ + 6y = 0. Here n = 3; so y = AH3 = A(8x3 − 12x) is a solu-
tion.

Chebyshev’s Equation The equation (1 − x2)y″ − xy′ + n2y = 0
for n a positive integer or zero is satisfied by the nth Chebyshev poly-
nomial y = ATn(x). T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,
T4(x) = 8x4 − 8x2 + 1; Tr + 1(x) = 2xTr(x) − Tr − 1(x).

Example (1 − x2)y″ − xy′ + 36y = 0. Here n = 6. A solution is y = T6(x) =
2xT5(x) − T4(x) = 2x(2xT4 − T3) − T4 = 32x6 − 48x4 + 18x2 − 1. Further details on
these special equations and others can be found in the literature.

vn(x)
�
vn(1)

un(x)
�
un(1)

(n − 1)(n − 3)(n + 2)(n + 4)
���

5!
(n − 1)(n + 2)
��

3!

n(n − 2)(n − 4)(n + 1)(n + 3)(n + 5)
����

6!

n(n − 2)(n + 1)(n + 3)
���

4!
n(n + 1)
�

2!

[ Jp(x) cos (pπ) − J−p(x)]
���

sin (pπ)

(−1)k(x/2)2k

��
k!(p + k)!

x
�
2

(−1)k(x/2)2k

��
k!Γ(k + 1 − p)

x
�
2

(−1)k(x/2)2k

��
k!Γ(p + k + 1)

x
�
2

PARTIAL DIFFERENTIAL EQUATIONS

The analysis of situations involving two or more independent variables
frequently results in a partial differential equation.

Example The equation ∂T/∂t = K(∂2T/∂x2) represents the unsteady one-
dimensional conduction of heat.

Example The equation for the unsteady transverse motion of a uniform
beam clamped at the ends is

+ = 0

Example The expansion of a gas behind a piston is characterized by the
simultaneous equations

+ u + = 0 and + u + ρ =0

Example The heating of a diathermanous solid is characterized by the
equation α(∂2θ/∂x2) + βe−γz = ∂θ/∂t.

The partial differential equation ∂2f/∂x ∂y = 0 can be solved by two
integrations yielding the solution f = g(x) + h(y), where g(x) and h(y)
are arbitrary differentiable functions. This result is an example of the
fact that the general solution of partial differential equations involves
arbitrary functions in contrast to the solution of ordinary differential
equations, which involve only arbitrary constants. A number of meth-
ods are available for finding the general solution of a partial differen-
tial equation. In most applications of partial differential equations the
general solution is of limited use. In such applications the solution of
a partial differential equation must satisfy both the equation and cer-
tain auxiliary conditions called initial and/or boundary conditions,
which are dictated by the problem. Examples of these include those in
which the wall temperature is a fixed constant T(x0) = T0, there is no
diffusion across a nonpermeable wall, and the like. In ordinary differ-
ential equations these auxiliary conditions allow definite numbers to
be assigned to the constants of integration. In partial differential equa-
tions the boundary conditions demand that the arbitrary functions
resulting from integration assume specific forms. Except for a few
cases (some first-order equations, D’Alembert’s solution of the wave
equation, and others) a procedure which first determines the arbitrary
functions and then specializes them to fit the boundary conditions is
usually not feasible. A more fruitful attack is to determine directly a
set of particular solutions and then combine them so that the bound-
ary conditions are satisfied. The only area in which much analysis has
been accomplished is for linear homogeneous partial differential
equations. Such equations have the property that if f1, f2, . . . ,
fn, . . . are individually solutions, then the function f = �∞

i=1 fi is also a
solution, provided the series converges and is differentiable up to the
order (termwise) of the equation.

Partial Differential Equations of Second and Higher Order
Many of the applications to scientific problems fall naturally into par-
tial differential equations of second order, although there are impor-
tant exceptions in elasticity, vibration theory, and elsewhere.

A second-order differential equation can be written as

a + b + c = f

where a, b, c, and f depend upon x, y, u, ∂u/∂x, and ∂u/∂y. This equa-
tion is hyperbolic, parabolic, or elliptic, depending on whether the dis-
criminant b2 − 4ac is >0, =0, or <0, respectively. Since a, b, c, and f
depend on the solution, the type of equation can be different at dif-
ferent x and y locations. If the equation is hyperbolic, discontinuities
can be propagated. See Refs. 11, 79, 105, 159, and 192.

Phenomena of propagation such as vibrations are characterized by
equations of “hyperbolic” type which are essentially different in their
properties from other classes such as those which describe equilib-
rium (elliptic) or unsteady diffusion and heat transfer (parabolic). Pro-
totypes are as follows:

Elliptic Laplace’s equation ∂2u/∂x2 + ∂2u/∂y2 = 0 and Poisson’s
equation ∂2u/∂x2 + ∂2u/∂y2 = g(x, y) do not contain the variable time

∂2u
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∂2u
�
∂x∂y

∂2u
�
∂x2
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∂ρ
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�
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�
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ρ
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explicitly and consequently represent equilibrium configurations.
Laplace’s equation is satisfied by static electric or magnetic potential
at points free from electric charges or magnetic poles. Other impor-
tant functions satisfying Laplace’s equation are the velocity potential
of the irrotational motion of an incompressible fluid, used in hydrody-
namics; the steady temperature at points in a homogeneous solid, and
the steady state of diffusion through a homogeneous body. The gravi-
tational potential V at points occupied by mass of density d satisfies
Poisson’s equation ∂2V/∂x2 + ∂2V/∂y2 + ∂2V/∂z2 = −4πd.

Parabolic The heat equation ∂T/∂t = ∂2T/∂x2 + ∂2T/∂y2 repre-
sents nonequilibrium or unsteady states of heat conduction and diffu-
sion.

Hyperbolic The wave equation ∂2u/∂t2 = c2(∂2u/∂x2 + ∂2u/∂y2)
represents wave propagation of many varied types.

Quasilinear first-order differential equations are like

a + b = f

where a, b, and f depend on x, y, and u, with a2 + b2 ≠ 0. This equation
can be solved using the method of characteristics, which writes the
solution in terms of a parameter s, which defines a path for the char-
acteristic.

= a, = b, = f

These equations are integrated from some initial conditions. For a
specified value of s, the value of x and y shows the location where the
solution is u. The equation is semilinear if a and b depend just on x
and y (and not u), and the equation is linear if a, b, and f all depend on
x and y, but not u. Such equations give rise to shock propagation, and
conditions have been derived to deduce the presence of shocks, Ref.
245. For further information, see Refs. 79, 159, 192, and 245.

An example of a linear hyperbolic equation is the advection equa-
tion for flow of contaminants when the x and y velocity components
are u and v, respectively.

+ u + v = 0

The equations for flow and adsorption in a packed bed or chromatog-
raphy column give a quasilinear equation.

φ + φu + (1 − φ) = 0

Here n = f(c) is the relation between concentration on the adsorbent
and fluid concentration.

The solution of problems involving partial differential equations
often revolves about an attempt to reduce the partial differential
equation to one or more ordinary differential equations. The solutions
of the ordinary differential equations are then combined (if possible)
so that the boundary conditions as well as the original partial differen-
tial equation are simultaneously satisfied. Three of these techniques
are illustrated.

Similarity Variables The physical meaning of the term “similar-
ity” relates to internal similitude, or self-similitude. Thus, similar solu-
tions in boundary-layer flow over a horizontal flat plate are those for
which the horizontal component of velocity u has the property that
two velocity profiles located at different coordinates x differ only by a
scale factor. The mathematical interpretation of the term similarity is
a transformation of variables carried out so that a reduction in the
number of independent variables is achieved. There are essentially
two methods for finding similarity variables, “separation of variables”
(not the classical concept) and the use of “continuous transformation
groups.” The basic theory is available in Ames (see the references).

Example The equation ∂θ/∂x = (A/y)(∂2θ/∂y2) with the boundary condi-
tions θ = 0 at x = 0, y > 0; θ = 0 at y = ∞, x > 0; θ = 1 at y = 0, x > 0 represents the
nondimensional temperature θ of a fluid moving past an infinitely wide flat plate
immersed in the fluid. Turbulent transfer is neglected, as is molecular transport
except in the y direction. It is now assumed that the equation and the boundary
conditions can be satisfied by a solution of the form θ = f(y/xn) = f(u), where θ =

∂c
�
∂t

df
�
dc

∂c
�
∂x

∂c
�
∂t

∂c
�
∂y

∂c
�
∂x

∂c
�
∂t

du
�
ds

dy
�
ds

dx
�
ds

∂u
�
∂y

∂u
�
∂x

0 at u = ∞ and θ = 1 at u = 0. The purpose here is to replace the independent
variables x and y by the single variable u when it is hoped that a value of n exists
which will allow x and y to be completely eliminated in the equation. In this case
since u = y/xn, there results after some calculation ∂θ/∂x = −(nu/x)(dθ/du),
∂2θ/∂y2 = (1/x2n)(d2θ/du2), and when these are substituted in the equation, 
−(1/x)nu(dθ/du) = (1/x3n)(A/u)(d2θ/du2). For this to be a function of u only,
choose n =s. There results (d2θ/du2) + (u2/3A)(dθ/du) = 0. Two integrations and
use of the boundary conditions for this ordinary differential equation give the
solution

θ = �∞

u
exp (−u3/9A) du ��∞

0
exp (−u3/9A) du

Group Method The type of transformation can be deduced
using group theory. For a complete exposition, see Refs. 9, 12, and
145; a shortened version is in Ref. 106. Basically, a similarity transfor-
mation should be considered when one of the independent variables
has no physical scale (perhaps it goes to infinity). The boundary con-
ditions must also simplify (and combine) since each transformation
leads to a differential equation with one fewer independent variable.

Example A similarity variable is found for the problem

= �D(c) �, c(0,t) = 1, c(∞,t) = 0, c(x,0) = 0

Note that the length dimension goes to infinity, so that there is no length scale
in the problem statement; this is a clue to try a similarity transformation. The
transformation examined here is

t� = aαt, x� = aβx, c� = aγc

With this substitution, the equation becomes

aα − γ = a2β − γ 
D(a−γ c�) �
Group theory says a system is conformally invariant if it has the same form in the
new variables; here, that is

γ =0, α − γ = 2β − γ, or α = 2β
The invariants are

η = , δ =

and the solution is

c(x, t) = f(η)tγ/α

We can take γ =0 and δ = β/α = a. Note that the boundary conditions combine
because the point x = ∞ and t = 0 give the same value of η and the conditions on
c at x = ∞ and t = 0 are the same. We thus make the transformation

η = , c(x, t) = f(η)

The use of the 4 and D0 makes the analysis below simpler. The result is


D(c) � + 2η = 0, f(0) = 1, f(∞) = 0

Thus, we solve a two-point boundary value problem instead of a partial differ-
ential equation. When the diffusivity is constant, the solution is the error func-
tion, a tabulated function.

c(x,t) = 1 − erf η = erfc η

erf η = �η

0
e−ξ2

dξ ��∞

0
e−ξ2

dξ

Separation of Variables This is a powerful, well-utilized
method which is applicable in certain circumstances. It consists of
assuming that the solution for a partial differential equation has the
form U = f(x)g(y). If it is then possible to obtain an ordinary differen-
tial equation on one side of the equation depending only on x and on
the other side only on y, the partial differential equation is said to be
separable in the variables x, y. If this is the case, one side of the equa-
tion is a function of x alone and the other of y alone. The two can be
equal only if each is a constant, say λ. Thus the problem has again
been reduced to the solution of ordinary differential equations.

Example Laplace’s equation ∂2V/∂x2 + ∂2V/∂y2 = 0 plus the boundary con-
ditions V(0, y) = 0, V(l, y) = 0, V(x, ∞) = 0, V(x, 0) = f(x) represents the steady-
state potential in a thin plate (in z direction) of infinite extent in the y direction

df
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and of width l in the x direction. A potential f(x) is impressed (at y = 0) from x =
0 to x = 1, and the sides are grounded. To obtain a solution of this boundary-
value problem assume V(x, y) = f(x)g(y). Substitution in the differential equation
yields f″(x)g(y) + f(x)g″(y) = 0, or g″(y)/g(y) = −f″(x)/f(x) = λ2 (say). This system
becomes g″ (y) − λ2g(y) = 0 and f″(x) + λ2f(x) = 0. The solutions of these ordinary
differential equations are respectively g(y) = Aeλy + Be−λy, f(x) = C sin λx +
D cos λx. Then f(x)g(y) = (Aeλy + Be−λy) (C sin λx + D cos λx). Now V(0, y) = 0 so
that f(0)g(y) = (Aeλy + Be−λy) D � 0 for all y. Hence D = 0. The solution then has
the form sin λx (Aeλy + Be−λy) where the multiplicative constant C has been elim-
inated. Since V(l, y) = 0, sin λl(Aeλy + Be−λy) � 0. Clearly the bracketed function
of y is not zero, for the solution would then be the identically zero solution.
Hence sin λl = 0 or λn = nπ/l, n = 1, 2, . . . where λn = nth eigenvalue.

The solution now has the form sin (nπx/l)(Aenπy/l + Be−nπy/l). Since V(x, ∞) = 0,
A must be taken to be zero because ey becomes arbitrarily large as y → ∞. 
The solution then reads Bn sin (nπx/l)e−nπy/l, where Bn is the multiplicative con-
stant. The differential equation is linear and homogeneous so that �∞

n = 1 Bne−nπy/l

sin (nπx/l) is also a solution. Satisfaction of the last boundary condition is en-
sured by taking

Bn = �l

0
f(x) sin (nπx/l) dx = Fourier sine coefficients of f(x)

Further, convergence and differentiability of this series are established quite
easily. Thus the solution is

V(x, y) = �
∞

n = 1

Bne−nπy/l sin 

Example The diffusion problem

= �D(c) �, c(0, t) = 1, c(∞, t) = 0, c(x, 0) = 0

can be solved by separation of variables. First transform the problem so that the
boundary conditions are homogeneous (having zeroes on the right-hand side).
Let

c(x, t) = 1 − x + u(x, t)
Then u(x, t) satisfies

= D , u(x, 0) = x − 1, u(0, t) = 0, u(1, t) = 0

Assume a solution of the form u(x, t) = X(x) T(t), which gives

X = D T 

Since both sides are constant, this gives the following ordinary differential equa-
tions to solve.

= −λ, = −λ

The solution of these is

T = A e−λDt, X = B cos �λ� x + E sin �λ� x

The combined solution for u(x,t) is

u = A (B cos �λ� x + E sin �λ� x) e−λDt

Apply the boundary condition that u(0,t) = 0 to give B = 0. Then the solution is

u = A (sin �λ� x)e−λDt

where the multiplicative constant E has been eliminated. Apply the boundary
condition at x = L.

0 = A (sin �λ� L)e−λDt

This can be satisfied by choosing A = 0, which gives no solution. However, it can
also be satisfied by choosing λ such that

sin �λ� L = 0, �λ� L = n π

Thus λ =

The combined solution can now be written as

u = A� �e−n2π2Dt/L2sin nπx
�

L

n2π2

�
L2

d 2X
�
dx2

1
�
X

dT
�
dt

1
�
D T

d 2X
�
dx2

dT
�
dt

∂2u
�
∂x2

∂u
�
∂t

∂c
�
∂x

∂
�
∂x

∂c
�
∂t

nπx
�

l

2
�
l

Since the initial condition must be satisfied, we use an infinite series of these
functions.

u = �
∞

n = 1

An� �e−n2π2Dt/L2

At t = 0, we satisfy the initial condition.

x − 1 = �
∞

n = 1

An� �
This is done by multiplying the equation by

and integrating over x: 0 → L. (This is the same as minimizing the mean-square
error of the initial condition.) This gives

= �L

0
(x − 1) sin mπx dx

which completes the solution.

Integral-Transform Method A number of integral transforms
are used in the solution of differential equations. Only one, the Laplace
transform, will be discussed here [for others, see “Integral Transforms
(Operational Methods)”]. The one-sided Laplace transform indicated
by L[ f(t)] is defined by the equation L[ f(t)] = ∫∞0 f(t)e−st dt. It has
numerous important properties. The ones of interest here are 
L[ f ′(t)] = sL[ f(t)] − f(0); L[ f″(t)] = s2L[ f(t)] − sf(0) − f ′(0); L[ f (n)(t)] =
snL[ f(t)] − sn − 1f(0) − sn − 2f ′(0) − ⋅⋅⋅ − f (n − 1)(0) for ordinary derivatives.
For partial derivatives an indication of which variable is being trans-
formed avoids confusion. Thus, if

y = y(x, t), Lt
 � = sL[y(x, t)] − y(x, 0)

whereas Lt
 � =

since L[y(x, t)] is “really” only a function of x. Otherwise the results
are similar. These facts coupled with the linearity of the transform,
i.e., L[af(t) + bg(t)] = aL[ f(t)] + bL[g(t)], make it a useful device in
solving some linear differential equations. Its use reduces the solution
of ordinary differential equations to the solution of algebraic equa-
tions for L[y]. The solution of partial differential equations is reduced
to the solution of ordinary differential equations. In both situations
the inverse transform must be obtained either from tables, of which
there are several, or by use of complex inversion methods.

Example The equation ∂c/∂t = D(∂2c/∂x2) represents the diffusion in a
semi-infinite medium, x ≥ 0. Under the boundary conditions c(0, t) = c0, c(x, 0) =
0 find a solution of the diffusion equation. By taking the Laplace transform of
both sides with respect to t,

�∞

0
e−st dt = �∞

0
e−st dt

or = (1/D)sF − c(x, 0) =

where F(x, s) = Lt[c(x, t)]. Hence

− � �F = 0

The other boundary condition transforms into F(0, s) = c0 /s. Finally the solution
of the ordinary differential equation for F subject to F(0, s) = c0 /s and F remains 
finite as x → ∞ is F(x, s) = (c0 /s)e−�s/D�x. Reference to a table shows that the func-
tion having this as its Laplace transform is

c(x, t) = c0 
1 − �x/2�D�t�

0
e−u2 du�

Matched-Asymptotic Expansions Sometimes the coefficient in
front of the highest derivative is a small number. Special perturbation
techniques can then be used, provided the proper scaling laws are
found. See Refs. 32, 170, and 180.

2
�
�π�

s
�
D

d 2F
�
dx2

sF
�
D

d2F
�
dx2

∂c
�
∂t

1
�
D

∂2c
�
∂x2

dLt[y(x, t)]
��

dx
∂y
�
∂x

∂y
�
∂t

AmL
�

2

sin mπx
�

L

sin nπx
�

L

sin nπx
�

L
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REFERENCES: 30, 43.

Certain situations are such that the independent variable does not
vary continuously but has meaning only for discrete values. Typical
illustrations occur in the stagewise processes found in chemical engi-
neering such as distillation, staged extraction systems, and absorption
columns. In each of these the operation is characterized by a finite
between-stage change of the dependent variable in which the inde-
pendent variable is the integral number of the stage. The importance
of difference equations is twofold: (1) to analyze problems of the type
described and (2) to obtain approximate solutions of problems which
lead, in their formulation, to differential equations. In this subsection
only problems of analysis are considered; the application to approxi-
mate solutions is considered under “Numerical Analysis and Approxi-
mate Methods.”

ELEMENTS OF THE CALCULUS OF FINITE DIFFERENCES

Let y = f(x) be defined for discrete equidistant values of x, which will
be denoted by xn. The corresponding value of y will be written yn =
f(xn). The first forward difference of f(x) denoted by ∆f(x) = f(x + h) −
f(x) where h = xn − xn − 1 = interval length.

Example Let f(x) = x2. Then ∆f(x) = (x + h)2 − x2 = 2hx + h2.

The second forward difference is obtained by taking the difference
of the first; thus ∆∆f(x) = ∆2f(x) = ∆f(x + h) − ∆f(x) = f(x + 2h) − 2f(x +
h) + f(x).

Example f(x) = x2, ∆2f(x) = ∆[∆f(x)] = ∆2hx + ∆h2 = 2h(x + h) − 2hx + h2 −
h2 = 2h2.

Similarly the nth forward difference is defined by the relation 
∆nf(x) = ∆[∆n − 1f(x)]. Other difference relations are also quite useful.
Some of these are ∇ f(x) = f(x) − f(x − h), which is called the backward
difference, and δf(x) = f [x + (h/2)] − f [x − (h/2)], called the central dif-
ference. Some properties of the operator ∆ are quite important. If C
is any constant, ∆C = 0; if f(x) is any function of period h, ∆f(x) = 0 (in
fact, periodic functions of period h play the same role here as con-
stants do in the differential calculus); ∆[ f(x) + g(x)] = ∆f(x) + ∆g(x);
∆m[∆nf(x)] = ∆m + nf(x); ∆[ f(x)g(x)] = f(x) ∆g(x) + g(x + h) ∆f(x)

∆ 
 � =

Example ∆(x sin x) = x∆ sin x + sin (x + h) ∆x = 2x sin (h/2) cos [x + (h/2)] +
h sin (x + h).

DIFFERENCE EQUATIONS

A difference equation is a relation between the differences and the
independent variable, φ(∆ny, ∆n − 1y, . . . , ∆y, y, x) = 0, where φ is some
given function. The general case in which the interval between the
successive points is any real number h, instead of 1, can be reduced to
that with interval size 1 by the substitution x = hx′. Hence all further
difference-equation work will assume the interval size between suc-
cessive points is 1.

Example f(x + 1) − (α + 1)f(x) + αf(x − 1) = 0. Common notation usually is
yx = f(x). This equation is then written yx + 1 − (α + 1)yx + αyx − 1 = 0.

Example yx + 2 + 2yxyx + 1 + yx = x2.

Example yx + 1 − yx = 2x.

The order of the difference equation is the difference between the
largest and smallest arguments when written in the form of the second
example. The first and second examples are both of order 2, while the
third example is of order 1. A linear difference equation involves no

g(x) ∆f(x) − f(x) ∆g(x)
���

g(x)g(x + h)
f(x)
�
g(x)

products or other nonlinear functions of the dependent variable and
its differences. The first and third examples are linear, while the sec-
ond example is nonlinear.

A solution of a difference equation is a relation between the vari-
ables which satisfies the equation. If the difference equation is of
order n, the general solution involves n arbitrary constants. The tech-
niques for solving difference equations resemble techniques used for
differential equations.

Equation Dny = a The solution of ∆ny = a, where a is a constant,
is a polynomial of degree n plus an arbitrary periodic function of
period 1. That is, y = (axn/n!) + c1xn − 1 + c2xn − 2 + ⋅⋅⋅ + cn + f(x), where 
f(x + 1) = f(x).

Example ∆3y = 6. The solution is y = x3 + c1x2 + c2x + c3 + f(x); c1, c2, c3 are
arbitrary constants, and f(x) is an arbitrary periodic function of period 1.

Equation yx + 1 - yx = φ(x) This equation states that the first dif-
ference of the unknown function is equal to the given function φ(x).
The solution by analogy with solving the differential equation dy/dx =
φ(x) by integration is obtained by “finite integration” or summation.
When there are only a finite number of data points, this is easily
accomplished by writing yx = y0 + � x

t = 1 φ(t − 1), where the data points
are numbered from 1 to x. This is the only situation considered here.

Examples If φ(x) = 1, yx = x. If φ(x) = x, yx = [x(x − 1)]/2. If φ(x) = ax, a ≠ 0,
yx = ax/(a − 1). In all cases y0 = 0.

Other examples may be evaluated by using summation, that is, y2 =
y1 + φ(1), y3 = y2 + φ(2) = y1 + φ(1) + φ(2), y4 = y3 + φ(3) = y1 + φ(1) +
φ(2) + φ(3), . . . , yx = y1 + � x − 1

t = 1 φ(t).

Example yx + 1 − ryx = 1, r constant, x > 0 and y0 = 1. y1 = 1 + r, y2 = 1 + r +
r2, . . . , yx = 1 + r + ⋅⋅⋅ + rx = (1 − rx + 1)/(1 − r) for r ≠ 1 and yx = 1 + x for r = 1.

Linear Difference Equations The linear difference equation
of order n has the form Pnyx + n + Pn − 1yx + n − 1 + ⋅⋅⋅ + P1yx + 1 + P0yx = Q(x)
with Pn ≠ 0 and P0 ≠ 0 and Pj; j = 0, . . . , n are functions of x.

Constant Coefficient and Q(x) = 0 (Homogeneous) The solu-
tion is obtained by trying a solution of the form yx = cβx. When this
trial solution is substituted in the difference equation, a polynomial of
degree n results for β. If the solutions of this polynomial are denoted
by β1, β2, . . . , βn then the following cases result: (1) if all the βj’s are
real and unequal, the solution is yx = � n

j = 1 cjβ j
x, where the c1, . . . , cn

are arbitrary constants; (2) if the roots are real and repeated, say, βj has
multiplicity m, then the partial solution corresponding to βj is β j

x(c1 +
c2x + ⋅⋅⋅ + cmxm − 1); (3) if the roots are complex conjugates, say, a + ib =
peiθ and a − ib = pe−iθ, the partial solution corresponding to this pair is
px(c1 cos θx + c2 sin θx); and (4) if the roots are multiple complex 
conjugates, say, a + ib = peiθ and a − ib = pe−iθ are m-fold, then 
the partial solution corresponding to these is px[(c1 + c2 x + ⋅⋅⋅ +
cmxm − 1) cos θx + (d1 + d2x + ⋅⋅⋅ + dmxm − 1) sin θx].

Example The equation yx + 1 − (α + 1)yx + αyx − 1 = 0, y0 = c0 and ym + 1 =
xm + 1/k represents the steady-state composition of transferable material in the
raffinate stream of a staged countercurrent liquid-liquid extraction system.
Clearly y is a function of the stage number x. α is a combination of system con-
stants. By using the trial solution yx = cβx, there results β2 − (α + 1)β + α = 0, so
that β1 = 1, β2 = α. The general solution is yx = c1 + c2αx. By using the side 
conditions, c1 = c0 − c2, c2 = (ym + 1 − c0)/(αm + 1 − 1). The desired solution is 
(yx − c0)/(ym + 1 − c0) = (αx − 1)/(αm + 1 − 1).

Example yx + 3 − 3yx + 2 + 4yx = 0. By setting yx = cβx, there results β3 −
3β2 + 4 = 0 or β1 = −1, β2 = 2, β3 = 2. The general solution is yx = c1(−1)x +
2x(c2 + c3x).

Example yx + 1 − 2yx + 2yx − 1 = 0. β1 = 1 + i, β2 = 1 − i. p = �1� +� 1� = �2�, 
θ = π/4. The solution is yx = 2x/2[c1 cos (xπ/4) + c2 sin (xπ/4)].

Constant Coefficients and Q(x) ≠ 0 (Nonhomogeneous) In
this case the general solution is found by first obtaining the homoge-
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neous solution, say, yx
H and adding to it any particular solution with

Q(x) ≠ 0, say, yx
P. There are several means of obtaining the particular

solution.
Method of Undetermined Coefficients If Q(x) is a product or

linear combination of products of the functions ebx, ax, xp (p a positive
integer or zero) cos cx and sin cx, this method may be used. The “fam-
ilies” [ax], [ebx], [sin cx, cos cx] and [xp, x p − 1, . . . , x, 1] are defined for
each of the above functions in the following way: The family of a term
fx is the set of all functions of which fx and all operations of the form
ax + y, cos c(x + y), sin c(x + y), (x + y)p on fx and their linear combina-
tions result in. The technique involves the following steps: (1) Solve
the homogeneous system. (2) Construct the family of each term. (3) If
the family has no representative in the homogeneous solution, assume
yx

P is a linear combination of the families of each term and determine
the constants so that the equation is satisfied. (4) If a family has a rep-
resentative in the homogeneous solution, multiply each member of
the family by the smallest integral power of x for which all such repre-
sentatives are removed and revert to step 3.

Example yx + 1 − 3yx + 2yx − 1 = 1 + ax. a ≠ 0. The homogeneous solution is
yx

H = c1 + c2 2x. The family of 1 is 1 and of ax is ax. However, 1 is a solution of the
homogeneous system. Therefore, try yx

P = Ax + Bax. Substituting in the equation
there results

yx = c1 + c22x − x + axa ≠ 1, a ≠ 2

If a = 1, yx = c1 + c22x − 2x. If a = 2, yx = c1 + c22x − x + x2x.

Example The family of x23x is [x23x, x3x, 3x].

Method of Variation of Parameters This technique is applic-
able to general linear difference equations. It is illustrated for the 
second-order system yx + 2 + Ayx + 1 + Byx = φ(x). Assume that the homo-
geneous solution has been found by some technique and write yx

H =
c1ux + c2vx. Assume that a particular solution yx

P = Dxux + Exvx. Ex and Dx

can be found by solving the equations:

Ex + 1 − Ex =

Dx + 1 − Dx =

by summation. The general solution is then yx = yx
P + yx

H.
Variable Coefficients The method of variation of parameters

applies equally well to the linear difference equation with variable
coefficients. Techniques are therefore needed to solve the homoge-
neous system with variable coefficients.

Equation yx + 1 - axyx = 0 By assuming that this equation is valid
for x ≥ 0 and y0 = c, the solution is yx = c � x

n = 1 an − 1.

Example yx + 1 + yx = 0. The solution is

yx = c �
x

n = 1
�− � = c(−1)x ⋅ ⋅⋅⋅ = (−1)xc(x + 1)

Example yx + 1 − xyx = 0. The solution is yx = c(x − 1)!

x + 1
�

x
3
�
2

2
�
1

n + 1
�

n

x + 2
�
x + 1

vx + 1φ(x)
���
vx + 1ux + 2 − vx + 2ux + 1

ux + 1φ(x)
���
ux + 1vx + 2 − ux + 2vx + 1

a
��
(a − 1)(a − 2)

Reduction of Order If one homogeneous solution, say, ux, can be
found by inspection or otherwise, an equation of lower order can be
obtained by the substitution vx = yx /ux. The resultant equation must 
be satisfied by vx = constant or ∆vx = 0. Thus the equation will be of
reduced order if the new variable Ux = ∆(yx /ux) is introduced.

Example (x + 2)yx + 2 − (x + 3)yx + 1 + yx = 0. By observation ux = 1 is a solu-
tion. Set Ux = ∆yx = yx + 1 − yx. There results (x + 2)Ux + 1 − Ux = 0, which is of
degree one lower than the original equation. The complete solution for yx is
finally

yx = c0 �
x

n = 0

+ c1

Factorization If the difference equation can be factored, then
the general solution can be obtained by solving two or more successive
equations of lower order. Consider yx + 2 + Axyx + 1 + Bxyx = φ(x). If there
exists ax, bx such that ax + bx = −Ax and axbx = Bx, then the difference
equation may be written yx + 2 − (ax + bx) yx + 1 + axbxyx = φ(x). First solve
Ux + 1 − bxUx = φ(x) and then yx + 1 − axyx = Ux.

Example yx + 2 − (2x + 1)yx + 1 + (x2 + x)yx = 0. Set ax = x, bx = x + 1. Solve
ux + 1 − (x + 1)ux = 0 and then yx + 1 − xyx = ux.

Substitution If it is possible to rearrange a difference equation
so that it takes the form afx + 2yx + 2 + bfx + 1yx + 1 + cfxyx = φ(x) with a, b, c
constants, then the substitution ux = fxyx reduces the equation to one
with constant coefficients.

Example (x + 2)2yx + 2 − 3(x + 1)2yx + 1 + 2x2yx = 0. Set ux = x2yx. The equa-
tion becomes ux + 2 − 3ux + 1 + 2ux = 0, which is linear and easily solved by previ-
ous methods.

The substitution ux = yx / fx reduces afx fx + 1yx + z + bfx fx + 2yx + 1 +
cfx + 1 fx + 2yx = φ(x) to an equation with constant coefficients.

Example x(x + 1)yx + 2 + 3x(x + 2)yx + 1 − 4(x + 1)(x + 2)yx = x. Set ux =
yx / fx = yx /x. Then yx = xux, yx + 1 = (x + 1)ux + 1 and yx + 2 = (x + 2)ux + 2. Substitution
in the equation yields x(x + 1)(x + 2)ux + 2 + 3x(x + 2)(x + 1)uu + 1 − 4x(x + 1)(x + 2)
ux = x or ux + 2 + 3ux + 1 − 4ux = 1/(x + 1)(x + 2), which is a linear equation with con-
stant coefficients.

Nonlinear Difference Equations: Riccati Difference Equa-
tion The Riccati equation yx + 1yx + ayx + 1 + byx + c = 0 is a nonlinear
difference equation which can be solved by reduction to linear form.
Set y = z + h. The equation becomes zx + 1zx + (h + a)zx + 1 + (h + b)zx +
h2 + (a + b)h + c = 0. If h is selected as a root of h2 + (a + b)h + c = 0
and the equation is divided by zx + 1zx there results [(h + b)/zx + 1] +
[(h + a)/zx] + 1 = 0. This is a linear equation with constant coefficients.
The solution is

yx = h +

Example This equation is obtained in distillation problems, among
others, in which the number of theoretical plates is required. If the relative
volatility is assumed to be constant, the plates are theoretically perfect, and the
molal liquid and vapor rates are constant, then a material balance around the nth
plate of the enriching section yields a Riccati difference equation.

1
����

c
− �
b
a +

+
h
h

��
x

−�
(a + h) +

1
(b + h)
�

1
�
n!

REFERENCES: 75, 79, 105, 195, 273. See also “Numerical Analysis and Approx-
imate Methods.”

An integral equation is any equation in which the unknown function
appears under the sign of integration and possibly outside the sign of
integration. If derivatives of the dependent variable appear elsewhere
in the equation, the equation is said to be integrodifferential.

CLASSIFICATION OF INTEGRAL EQUATIONS

Volterra integral equations have an integral with a variable limit. The
Volterra equation of the second kind is

u(x) = f(x) + λ �x

a
K(x, t)u(t) dt
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whereas a Volterra equation of the first kind is

u(x) = λ �x

a
K(x, t)u(t) dt

Equations of the first kind are very sensitive to solution errors so that
they present severe numerical problems. Volterra equations are simi-
lar to initial value problems.

A Fredholm equation of the second kind is

u(x) = f(x) + λ �b

a
K(x, t)u(t) dt

whereas a Fredholm equation of the first kind is

u(x) = �b

a
K(x, t)u(t) dt

The limits of integration are fixed, and these problems are analogous
to boundary value problems.

An eigenvalue problem is a homogeneous equation of the second
kind, and solutions exist only for certain λ.

u(x) = λ �b

a
K(x, t)u(t) dt

See Refs. 105 and 195 for further information and existence proofs.
If the unknown function u appears in the equation in any way

except to the first power, the integral equation is said to be nonlinear.
The equation u(x) = f(x) + ∫b

a K(x, t)[u(t)]3/2 dt is nonlinear. The differ-
ential equation du/dx = g(x, u) is equivalent to the nonlinear integral
equation u(x) = c + ∫x

a g[t, u(t)] dt.
An integral equation is said to be singular when either one or both

of the limits of integration become infinite or if K(x, t) becomes infi-
nite for one or more points of the interval under discussion.

Example u(x) = x + �∞

0
cos (xt)u(t) dt and f(x) = �x

0
dt are both 

singular. The kernel of the first equation is cos (xt), and that of the second is 
(x − t)−1.

RELATION TO DIFFERENTIAL EQUATIONS

The Leibniz rule (see “Integral Calculus”) can be used to show the
equivalence of the initial-value problem consisting of the second-
order differential equation d 2y/dx2 + A(x)(dy/dx) + B(x)y = f(x)
together with the prescribed initial conditions y(a) = y0, y′(a) = y′0 to
the integral equation.

y(x) = �x

a
K(x, t)y(t) dt + F(x)

where K(x, t) = (t − x)[B(t) − A′(t)] − A(t)

and F(x) = �x

a
(x − t)f(t) dt + [A(a)y0 + y′0](x − a) + y0

This integral equation is a Volterra equation of the second kind.
Thus the initial-value problem is equivalent to a Volterra integral
equation of the second kind.

Example d 2y/dx2 + x2(dy/dx) + xy = x, y(0) = 1, y′(0) = 0. Here A(x) = x2,
B(x) = x, f(x) = x. The equivalent integral equation is y(x) = ∫ x

0 K(x, t)y(t) dt + F(x)
where K(x, t) = t(x − t) − t2 and F(x) = ∫x

0 (x − t)t dt + 1 = x3/6 + 1. Combining these
y(x) = ∫x

0 t[x − 2t]y(t) dt + x3/6 + 1.

Eigenvalue problems can also be related. For example, the problem
(d 2y/dx2) + λy = 0 with y(0) = 0, y(a) = 0 is equivalent to the integral
equation y(x) = λ ∫ a

0 K(x, t)y(t) dt, where K(x, t) = (t/a)(a − x) when 
t < x and K(x, t) = (x/a)(a − t) when t > x. The differential equation may
be recovered from the integral equation by differentiating the integral
equation by using the Leibniz rule.

u(t)
�
x − t

METHODS OF SOLUTION

In general, the solution of integral equations is not easy, and a few
exact and approximate methods are given here. Often numerical
methods must be employed, as discussed in “Numerical Solution of
Integral Equations.”

Equations of Convolution Type The equation u(x) = f(x) +
λ ∫ x

0 K(x − t)u(t) dt is a special case of the linear integral equation of the
second kind of Volterra type. The integral part is the convolution inte-
gral discussed under “Integral Transforms (Operational Methods)”; so
the solution can be accomplished by Laplace transforms; L[u(x)] =
L[ f(x)] + λL[u(x)]L[K(x)] or

L[u(x)] = , u(x) = L−1 
 �
Equations of the type considered here occur quite frequently in prac-
tice in what can be called “cause-and-effect” systems.

Example In a certain linear system, the effect E(t) due to a cause C = λE
at time τ is a function only of the elapsed time t − τ. If the system has the activ-
ity level 1 at time t < 0, the cause λE and effect (E) relation is given by the inte-
gral equation E(t) = 1 + λ ∫ t

0 K(t − τ)E(τ) dτ. Let K(t − τ) = t − τ. Then E(t) = 1 +
λ ∫ t

0 (t − τ)E(τ) dτ. By using the transform method

E(t) = L−1 
 � = L−1 
 � = L−1 
 � = cosh �λ� t

Method of Successive Approximations Consider the equation
y(x) = f(x) + λ ∫b

a K(x, t)y(t) dt. In this method a unique solution is
obtained in sequence form as follows: Substitute in the right-hand
member of the equation y0(t) for y(t). Upon integration there results
y1(t) = f(x) + λ ∫b

a K(x, t)y0(t) dt. Continue in like manner by replacing
y0 by y1, y1 by y2, etc. A series of functions y0(x), y1(x), y2(x), . . . are
obtained which satisfy the equations

yn(x) = f(x) + λ �b

a
K(x, t)yn − 1(t) dt

Then yn(x) = f(x) + λ ∫b
a K(x, t)f(t) dt + λ2 ∫b

a K(x, t) ∫b
a K(t, t1)f(t1) dt1 dt +

λ3 ∫b
a K(x, t) ∫b

a K(t, t1) ∫b
a K(t1, t2)f(t2) dt2 dt1 dt + ⋅⋅⋅ + Rn, where Rn is the

remainder, and

|Rn| ≤ |λn| � � Mn(b − a)n

where M = maximum value of |K| in the rectangle a ≤ t ≤ b, a ≤ x ≤ b.
If |λ|M(b − a) < 1, lim

n→∞
Rn = 0. Then yn(x) → y(x), which is the unique

solution.

Example Consider the equation y(x) = 1 + λ ∫ 1
0 (1 − 3xt)y(t) dt.

y(x) = 1 + λ �1

0
(1 − 3xt) dt + λ2 �1

0
(1 − 3xt) �1

0
(1 − 3tt1) dt1 dt + ⋅⋅⋅

= 1 + λ �1 − x� + λ2 + λ3 �1 − x� + + λ5 �1 − x� + ⋅⋅⋅

= �1 + + + ⋅⋅⋅��1 + λ�1 − x��
= , | λ | < 2 

Example dy/dx = x2 + y. x0 = 0, y0 = 1. This problem is equivalent to the
integral equation y = 1 + ∫x

0 (x2 + y) dx. Let the initial approximation for y be 1.
Then

y(1) = 1 + �x

0
(x2 + 1) dx = 1 + x +

y(2) = 1 + �x

0
[x2 + y(1)] dx = 1 + �x

0

x2 + 1 + x + � dx

= 1 + x + + + , etc.
x4

�
12

x3

�
3

x2

�
2

x3

�
3

x3

�
3

1 + λ(1 − 3⁄2x)
��

1 −dλ2

3
�
2

λ4

�
16

λ2

�
4

3
�
2

1
�
16

λ4

�
16

3
�
2

1
�
4

1
�
4

3
�
2

max. y0

a ≤ x ≤ b

p
�
p2 − λ

1/p
�
1 − λ/p2

L[1]
��
1 − λL[K(t)]

L[ f(x)]
��
1 − λL[K(x)]

L[ f(x)]
��
1 − λL[K(x)]
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REFERENCES: 63, 64, 71, 72, 97, 137, 217.

The term “operational method” implies a procedure of solving differ-
ential and difference equations by which the boundary or initial con-
ditions are automatically satisfied in the course of the solution. The
technique offers a very powerful tool in the applications of mathemat-
ics, but it is limited to linear problems.

Most integral transforms are special cases of the equation g(s) =
∫ b

a f(t)K(s, t) dt in which g(s) is said to be the transform of f(t) and 
K(s, t) is called the kernel of the transform. A tabulation of the more
important kernels and the interval (a, b) of applicability follows. The
first three transforms are considered here.

Name of transform (a, b) K(s, t)

Laplace (0, ∞) e−st

Fourier (−∞, ∞) e−ist

Fourier cosine (0, ∞) �	 cos st

Fourier sine (0, ∞) �	 sin st

Mellin (0, ∞) ts − 1

Hankel (0, ∞) tJν(st), ν ≥ −a

LAPLACE TRANSFORM

The Laplace transform of a function f(t) is defined by F(s) = L{ f(t)} =
∫ ∞

0 e−stf(t) dt, where s is a complex variable. Note that the transform is
an improper integral and therefore may not exist for all continuous
functions and all values of s. We restrict consideration to those values
of s and those functions f for which this improper integral converges.

The function L[ f(t)] = g(s) is called the direct transform, and 
L−1[g(s)] = f(t) is called the inverse transform. Both the direct and the
inverse transforms are tabulated for many often-occurring functions.
In general,

L−1[g(s)] = �� + i∞

� − i∞
estg(s) ds

and to evaluate this integral requires a knowledge of complex vari-
ables, the theory of residues, and contour integration.

A function is said to be piecewise continuous on an interval if it has
only a finite number of finite (or jump) discontinuities. A function f on
0 < t < ∞ is said to be of exponential growth at infinity if there exist
constants M and α such that | f(t)| ≤ Meαt for sufficiently large t.

Sufficient Conditions for the Existence of Laplace Transform
Suppose f is a function which is (1) piecewise continuous on every
finite interval 0 < t < T, (2) of exponential growth at infinity, and (3) 
∫ δ

0 | f(t)| dt exist (finite) for every finite δ > 0. Then the Laplace trans-
form of f exists for all complex numbers s with sufficiently large real
part.

Note that condition 3 is automatically satisfied if f is assumed to be
piecewise continuous on every finite interval 0 ≤ t < T. The function
f(t) = t−1/2 is not piecewise continuous on 0 ≤ t ≤ T but satisfies condi-
tions 1 to 3.

Let Λ denote the class of all functions on 0 < t < ∞ which satisfy con-
ditions 1 to 3.

Example Let f(t) be the Heaviside step function at t = t0; i.e., f(t) = 0 for 
t ≤ t0, and f(t) = 1 for t > t0. Then

L{ f(t)} = �∞

t0
e−st dt = lim

T→∞
�T

t0
e−st dt = lim

T→∞
(e−st0 − e−sT) =

provided s > 0.

Example Let f(t) = eat, t ≥ 0, where a is a real number. Then L{eat} =
∫ ∞

0 e−(s − a) dt = 1/(s − a), provided Re s > a.

e−st0

�
s

1
�
s

1
�
2πi

2
�
π

2
�
π

1
�
�2�π�

Properties of the Laplace Transform
1. The Laplace transform is a linear operator: L{af(t) + bg(t)} =

aL{ f(t)} + bL{g(t)} for any constants a, b and any two functions f and g
whose Laplace transforms exist.

2. The Laplace transform of a real-valued function is real for real
s. If f(t) is a complex-valued function, f(t) = u(t) + iv(t), where u and v
are real, then L{ f(t)} = L{u(t)} + iL{v(t)}. Thus L{u(t)} is the real part
of L{ f(t)}, and L{v(t)} is the imaginary part of L{ f(t)}.

3. The Laplace transform of a function in the class Λ has deriva-
tives of all orders, and L{tkf(t)} = (−1)kdkF(s)/dsk, k = 1, 2, 3, . . . .

Example �∞

0
e−st sin at dt = , s > 0. By property 3, =

�∞

0
e−st t sin at dt = L{t sin at}.

Example By applying property 3 with f(t) = 1 and using the preceding
results, we obtain

L{tk} = (−1)k � � =

provided Re s > 0; k = 1, 2, . . . . Similarly, we obtain

L{tkeat} = (−1)k � � =

4. Frequency-shift property (or, equivalently, the transform of 
an exponentially modulated function). If F(s) is the Laplace transform
of a function f(t) in the class Λ, then for any constant a, L{eat f(t)} =
F(s − a).

Example L{te−at} = , s > 0.

5. Time-shift property. Let u(t − a) be the unit step function at 
t = a. Then L{ f(t − a)u(t − a)} = e−asF(s).

6. Transform of a derivative. Let f be a differentiable function
such that both f and f ′ belong to the class Λ. Then L{ f ′(t)} =
sF(s) − f(0).

7. Transform of a higher-order derivative. Let f be a function
which has continuous derivatives up to order n on (0, ∞), and suppose
that f and its derivatives up to order n belong to the class Λ. Then
L{ f ( j)(t)} = s jF(s) − s j − 1f(0) − s j − 2f ′(0) − ⋅ ⋅ ⋅ − sf ( j − 2)(0) − f ( j − 1)(0) for 
j = 1, 2, . . . , k.

Example L{ f″(t)} = s2L{ f(t)} − sf(0) − f ′(0)

L{ f″′ (t)} = s3L{ f(t)} − s2f(0) − sf ′(0) − f″(0)

Example Solve y″ + y = 2et, y(0) = y′(0) = 2. L[y″] = −y′(0) − sy(0) + s2L[y] =
−2 − 2s + s2L[y]. Thus

−2 − 2s + s2L[y] + L[y] = 2L[et] =

L[y] = = + +

Hence y = et + cos t + sin t.

A short table (Table 3-1) of very common Laplace transforms and
inverse transforms follows. The references include more detailed
tables. NOTE: Γ(n + 1) = ∫ ∞

0 xne−x dx (gamma function); Jn(t) = Bessel
function of the first kind of order n.

8. L 
�
t

a
f(t) dt� = L[ f(t)] + �0

a
f(t) dt

Example Find f(t) if L[ f(t)] = 
 � L 
 sinh at� =

Therefore f(t) = �t

0

�

t

0
sinh at dt� dt = 
 − t�sinh at

�
a

1
�
a2

1
�
a

1
�
s2 − a2

1
�
a

1
�
s2 − a2

1
�
s2

1
�
s

1
�
s

1
�
s2 + 1

s
�
s2 + 1

1
�
s − 1

2s2

��
(s − 1)(s2 + 1)

2
�
s − 1

1
�
(s + a)2

k!
��
(s − a)k + 1

1
�
s − a

dk

�
dsk

k!
�
sk + 1

1
�
s

dk

�
dsk

2as
�
(s2 + a2)2

a
�
s2 + a2
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9. L 
 � = �∞

s
g(s) ds L 
 � = �∞

s
⋅ ⋅ ⋅ �∞

s
g(s)(ds)k

k integrals

Example L 
 � = �∞

s
L[sin at] ds = �∞

s
= cot−1

10. The unit step function

u(t − a) = � L[u(t − a)] = e−as/s

11. The unit impulse function is 

δ(a) = u′(t − a) = � L[u′(t − a)] = e−as

12. L−1[e−asg(s)] = f(t − a)u(t − a) (second shift theorem).
13. If f(t) is periodic of period b, i.e., f(t + b) = f(t), then

L[ f(t)] = 
 � �
b

0
e−stf(t) dt

Example The partial differential equations relating gas composition to
position and time in a gas chromatograph are ∂y/∂n + ∂x/∂θ = 0, ∂y/∂n = x − y,
where x = mx′, n = (kGaP/Gm)h, θ = (mkGaP/ρB)t and GM = molar velocity, y =
mole fraction of the component in the gas phase, ρB = bulk density, h = distance
from the entrance, P = pressure, kG = mass-transfer coefficient, and m = slope of
the equilibrium line. These equations are equivalent to ∂2y/∂n ∂θ + ∂y/∂n +
∂y/∂θ = 0, where the boundary conditions considered here are y(0, θ) = 0 and
x(n, 0) = y(n, 0) + (∂y/∂n) (n, 0) = δ(0) (see property 11). The problem is conve-
niently solved by using the Laplace transform of y with respect to n; write 
g(s, θ) = ∫∞

0 e−nsy(n, θ) dn. Operating on the partial differential equation gives
s(dg/dθ) − (∂y/∂θ) (0, θ) + sg − y(0, θ) + dg/dθ = 0 or (s + 1) (dg/dθ) + sg = (∂y/∂θ)
(0, θ) + y(0, θ) = 0. The second boundary condition gives g(s, 0) + sg(s, 0) −
y(0, 0) = 1 or g(s, 0) + sg(s, 0) = 1 (L[δ(0)] = 1). A solution of the ordinary differ-
ential equation for g consistent with this second condition is

g(s, θ) = e−sθ /(s + 1)

Inversion of this transform gives the solution y(n, θ) = e−(n + θ) I0(2 �n�θ�) where 

1
�
s + 1

1
�
1 − e−bs

∞ at t = a
0 elsewhere

0 t < a
1 t > a

s
�
a

a ds
�
s2 + a2

sin at
�

t

f(t)
�
tk

f(t)
�

t

I0 = zero-order Bessel function of an imaginary argument. For large u, In(u) ∼
eu/�2�π�u�. Hence for large n,

y(n, θ) ∼

or for sufficiently large n, the peak concentration occurs near θ = n.

Other applications of Laplace transforms are given under “Differ-
ential Equations.”

CONVOLUTION INTEGRAL

The convolution integral (faltung) of two functions f(t), r(t) is x(t) =
f(t)°r(t) = ∫ t

0 f(τ)r(t − τ) dτ.

Example t° sin t = �t

0
τ sin (t − τ) dτ = t − sin t.

L[ f(t)]L[h(t)] = L[ f(t)°h(t)]

Z-TRANSFORM

See Refs. 198, 218, and 256. The z-transform is useful when data is
available at only discrete points. Let

f*(t) = f(tk)

be the value of f at the sample points

tk = k ∆t, k = 0, 1, 2, . . .

Then the function f*(t) is

f*(t) = �
∞

k = 0

f(tk) δ(t − tk)

Take the Laplace transform of this.

g*(s) = L[ f*(t)] = �
∞

k = 0

f(tk) e−stk = �
∞

k = 0

f(tk) e−s∆tk

For convenience, replace e−s∆t by z and call g*(z) the z-transform of
f*(t).

g*(z) = �
∞

k = 0

f(tk) z−k

The z-transform is used in process control when the signals are at
intervals of ∆t. A brief table (Table 3-2) is provided here.

The z-transform can also be used to solve difference equations, just
like the Laplace transform can be used to solve differential equations.

exp [−(�θ� − �n�)2]
���

2π1/2(nθ)1/4
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TABLE 3-1 Laplace Transforms

f(t) g(s) f(t) g(s)

1 1/s e−at(1 − at)

tn, (n a + integer)

tn, n ≠ + integer sin at sinh at

cos at cos at cosh at

sin at (sinh at + sin at)

cosh at a (cosh at + cos at)

sinh at tan−1

e−at J0(at)

e−bt cos at nan

e−bt sin a J0 (2 �at�) e−a/s1
�
s

a
��
(s + b)2 + a2

1
��
�s2� +� a�2� − sn

Jn(at)
�

t
s + b

��
(s + b)2 + a2

1
�
�s2� +� a�2�

1
�
s + a

a
�
s

sin at
�

t
a

�
s2 − a2

s2

�
s4 − a4

s
�
s2 − a2

s2

�
s4 − a4

1
�
2a

a
�
s2 + a2

s2

�
s4 + 4a4

s
�
s2 + a2

s
�
s4 + 4a4

1
�
2a2

Γ(n + 1)
�

sn + 1

s
�
(s2 + a2)2

t sin at
�

2a
n!

�
sn + 1

s
�
(s + a)2

TABLE 3-2 z-Transforms

f(k) g*(z)

1(k)

k ∆t

(k ∆t)n − 1 lim
a→0

(−1)n − 1 � �
sin a k ∆t

cos a k ∆t

e−ak∆t

e−bk∆t cos a k ∆t

e−bk∆t sin a k ∆t
z−1 e−b∆t sin a ∆t

����
1 − 2 z−1 e−b∆t cos a ∆t + z−2 e−2b∆t

1
�
b

1
�
b

1 − z−1 e−b∆t cos a ∆t
����
1 − 2 z−1 e−b∆t cos a ∆t + z−2 e−2b∆t

1
��
1 − e−a∆tz−1

1 − z−1 cos a ∆t
���
(1 − 2 z−1 cos a ∆t + z−2)

z−1 sin a ∆t
���
(1 − 2 z−1 cos a ∆t + z−2)

1
��
1 − e−a∆tz−1

∂n − 1

�
∂an − 1

∆t z−1

�
(1 − z−1)2

1
�
1 − z−1



REFERENCES: General (textbooks that cover at an introductory level a variety
of topics that constitute a core of numerical methods for practicing engineers),
2, 3, 4, 22, 56, 59, 70, 77, 133, 135, 143, 150, 155, 219. Numerical solution of
nonlinear equations, 153, 171, 237, 302. Numerical solution of ordinary differ-
ential equations, 76, 117, 127, 185, 257. Numerical solution of integral equa-

tions, 23, 26, 129, 162. Numerical solution of partial differential equations, 11,
76, 127, 133, 155, 210, 251, 286, 287, 213, 233, 253. Spline functions and appli-
cations, 38, 56, 70, 230. Finite elements and applications, 5, 29, 83, 130, 164,
210, 241, 281, 287, 303, 304. Fast Fourier transforms, 47, 56, 135, 238. Soft-
ware, 187, 231.

Example The difference equation for y(k) is

y(k) + a1y(k − 1) + a2y(k − 2) = b1u(k)

Take the z-transform
(1 + a1z−1 + a2z−2) y*(z) = u*(z)

Then y*(z) =

The inverse transform must be found, usually from a table of inverse transforms.

FOURIER TRANSFORM

The Fourier transform is given by

F[ f(t)] = �∞

−∞
f(t)e−ist dt = g(s)

and its inverse by

F−1[g(s)] = �∞

−∞
g(s)eist dt = f(t)

In brief, the condition for the Fourier transform to exist is that 
∫ ∞
-∞ |f(t)| dt < ∞, although certain functions may have a Fourier trans-

form even if this is violated.

Example The function f(t) = � has F[ f(t)] =�a

−a
e−ist dt =

�a

0
eist dt + �a

0
e−ist dt = 2 �a

0
cos st dt =

Properties of the Fourier Transform Let F[ f (t)] = g(s); 
F−1[g(s)] = f(t).

1. F[ f (n)(t)] = (is)nF[ f(t)].
2. F[af(t) + bh(t)] = aF[ f(t)] + bF[h(t)].
3. F[ f(−t)] = g(−s).

4. F[ f(at)] = g � �, a > 0.

5. F[e−iwt f(t)] = g(s + w).
6. F[ f(t + t1)] = eist1g(s).
7. F[ f(t)] = G(is) + G(−is) if f(t) = f(−t) ( f even)

F[ f(t)] = G(is) − G(−is) if f(t) = −f(−t) ( f odd)
where G(s) = L[f(t)]. This result allows the use of the Laplace-
transform tables to obtain the Fourier transforms.

Example Find F[e−a|t|] by property 7. e−a|t| is even. So L[e−at] = 1/(s + a).
Therefore, F[e−a|t|] = 1/(is + a) + 1/(−is + a) = 2a/(s2 + a2).

Tables of this transform may be found in Higher Transcendental
Functions, vols. I, II, and III, A. Erdelyi, et al., McGraw-Hill, New
York, 1953–1955.

FOURIER COSINE TRANSFORM

The Fourier cosine transform is given by

Fc[f(t)] = g(s) = �	 �∞

0
f(t) cos st dt

2
�
π

s
�
a

1
�
a

2 sin sa
�

s

1 − a ≤ t ≤ a
0 elsewhere

1
�
�2�π�

1
�
�2�π�

u*(z)
��
1 + a1z−1 + a2z−2

and its inverse by

Fc
−1[g(s)] = f(t) = �	 �∞

0
g(s) cos st ds

The Fourier sine transform Fs is obtainable by replacing the cosine by
the sine in these integrals.

Example Fc[ f(t)], f(t) = � Fc[ f(t)] = �	 �a

0
cos st dt =

�	
Properties of the Fourier Cosine Transform Fc[ f(t)] = g(s).
1. Fc[af(t) + bh(t)] = aFc[ f(t)] + bFc[h(t)].
2. Fc[ f(at)] = (1/a)g(s/a).

3. Fc[ f(at) cos bt] = 
g � � + g � ��, a, b > 0

4. Fc[t−2nf(t)] = (−1)n (d 2ng/ds2n).
5. Fc[t2n + 1f(t)] = (−1)n (d 2n + 1/ds2n + 1) Fs[ f(t)].

A short table (Table 3-3) of Fourier cosine transforms follows. 

Example The temperature 
 in the semi-infinite rod 0 ≤ x < ∞ is deter-
mined by the differential equation ∂
�∂t = k(∂2
�∂x2) and the condition 
 = 0
when t = 0, x ≥ 0; ∂
�∂x = −µ = constant when x = 0, t > 0. By using the Fourier
cosine transform a solution may be found as 


(x, t) = �∞

0
(1 − e−kp2t) dp.

cos px
�

p
2µ
�
π

s − b
�

a
s + b
�

a
1

�
2a

sin as
�

s
2
�
π

2
�
π

1 0 < t < a
0 a < t < ∞

2
�
π
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TABLE 3-3 Fourier Transforms

f(t)
g(s)
�
�2�/π�

t
2 − t
0
t−1/2

0
(t − a)−1/2

(t2 + a2)−1

e−at

e−at2

sin at
�

t

0 < t < 1
1 < t < 2 
2 < t < ∞

0 < t < a a < t < ∞

a > 0

a > 0

a > 0

[2 cos s − 1 − cos 2s]

π1/2(2s)−1/2

π1/2(2s)−1/2 [cos as − sin as]

aπa−1e−as

aπ1/2a−1/2e−s2/4a

� π/2 s < a
π/4 s = a
0 s > a

a
�
s2 + a2

1
�
s2
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MATRIX ALGEBRA

Matrices A rectangular array of mn quantities, arranged in m
rows and n columns

A = (aij) = 
 �
is called a matrix. The elements aij may be real or complex. The nota-
tion aij means the element in the ith row and jth column, i is called the
row index, j the column index. If m = n the matrix is said to be square
and of order n. A matrix, even if it is square, does not have a numeri-
cal value, as a determinant does. However, if the matrix A is square, a
determinant can be formed which has the same elements as the matrix
A. This is called the determinant of the matrix and is written det (A) or
|A|. If A is square and det (A) ≠ 0, A is said to be nonsingular; if 
det (A) = 0, A is said to be singular. A matrix A has rank r if and only if
it has a nonvanishing determinant of order r and no nonvanishing
determinant of order > r.

Equality of Matrices Let A = (aij), B = (bij). Two matrices A and
B are equal (=) if and only if they are identical; that is, they have the
same number of rows and the same number of columns and equal cor-
responding elements (aij = bij for all i and j).

Addition and Subtraction The operations of addition (+) and
subtraction (−) of two or more matrices are possible if and only if they
have the same number of rows and columns. Thus A � B = (aij � bij);
i.e., addition and subtraction are of corresponding elements.

Transposition The matrix obtained from A by interchanging the
rows and columns of A is called the transpose of A, written A′ or AT.

Example A = 
 �, AT = 
 �
Note that (AT)T = A.

Multiplication Let A = (aij), i = 1, . . . , m1; j = 1, . . . , m2. B = (bij),
i = 1, . . . , n1, j = 1, . . . , n2. The product AB is defined if and only if the
number of columns of A (m2) equals the number of rows of B(n1), i.e.,
n1 = m2. For two such matrices the product P = AB is defined by sum-
ming the element by element products of a row of A by a column of B.

This is the row by column rule. Thus

pij = �
n1

k = 1

aikbkj

The resulting matrix has m1 rows and n2 columns.

Example 
 � 
 � = 
 �
It is helpful to remember that the element pij is formed from the ith

row of the first matrix and the jth column of the second matrix. The
matrix product is not commutative. That is, AB ≠ BA in general.

Inverse of a Matrix A square matrix A is said to have an inverse
if there exists a matrix B such that AB = BA = I, where I is the identity
matrix of order n.


 �
The inverse B is a square matrix of the order of A, designated by A−1.
Thus AA−1 = A−1A = I. A square matrix A has an inverse if and only if A
is nonsingular.

Certain relations are important:

(1) (AB)−1 = B−1A−1

(2) (AB)T = BTAT

(3) (A−1)T = (AT )−1

(4) (ABC)−1 = C−1B−1A−1

0

0
1

0 . . . .
1 . .

1
. . . . 0

1
0
�
0

24
9

42

17
6

29

3
1
5

−4
−2
−8

6
3

5
1

1
0

0
−2

2
1
4

3
1
5

2
1
6

1
3
4

4
6

3
1

1
2

a1n

a2n
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…

a11

a21

�
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Scalar Multiplication Let c be any real or complex number.
Then cA = (caij).

Adjugate Matrix of a Matrix Let Aij denote the cofactor of the
element aij in the determinant of the matrix A. The matrix BT where 
B = (Aij) is called the adjugate matrix of A written adj A = BT. The ele-
ments bij are calculated by taking the matrix A, deleting the ith row
and jth column, and calculating the determinant of the remaining
matrix times (−1)i + j. Then A−1 = adj A/ |A|. This definition may be used
to calculate A−1. However, it is very laborious and the inversion is usu-
ally accomplished by numerical techniques shown under “Numerical
Analysis and Approximate Methods.”

Example Let A = 
 � Form B = (Ai j), B = 
 �
adj A = BT = 
 �; |A| = 12

A−1 = =
 �
Linear Equations in Matrix Form Every set of n nonhomoge-

neous linear equations in n unknowns

a11 x1 + a12 x2 + ⋅⋅⋅ + a1n xn = b1

a21 x1 + a22 x2 + ⋅⋅⋅ + a2n xn = b2

� �
an1 x1 + an2x2 + ⋅⋅⋅ + annxn = bn

can be written in matrix form as AX = B, where A = (aij), XT = [x1 ⋅⋅⋅ xn],
and BT = [b1 ⋅⋅⋅ bn]. The solution for the unknowns is X = A−1B.

Special Square Matrices
1. A triangular matrix is a matrix all of whose elements above or

below the main diagonal (set of elements a11, . . . , ann) are zero.
If A is triangular, det (A) = a11. a22 . . . ann.

2. A diagonal matrix is one such that all elements both above and
below the main diagonal are zero (i.e., aij = 0 for all i ≠ j). If all diago-
nal elements are equal, the matrix is called scalar. If A is diagonal, A =
(aij), A−1 = (1/aij).

3. If aij = aji for all i and j (i.e., A = AT), the matrix is symmetric.
4. If aij = −aji for i ≠ j but the aij are not all zero, the matrix is skew.
5. If aij = −aji for all i and j (i.e., aii = 0), the matrix is skew sym-

metric.
6. If AT = A−1, the matrix A is orthogonal.
7. If the matrix A* = (a�ij)T, a�ij = complex conjugate of aij, A* is the

hermitian conjugate of A.
8. If A = A−1, A is involutory.
9. If A = A*, A is hermitian.

10. If A = −A*, A is skew hermitian.
11. If A−1 = A*, A is unitary.
If A is any matrix, then AAT and ATA are square symmetric matrices,

usually of different order.

Example Let A = 
 �, AT = 
 �
AAT = 
 �, ATA = 
 �

Using a program such as MATLAB, these are easily calculated. 

Matrix Calculus
Differentiation Let the elements of A = [aij(t)] be differentiable 

functions of t. Then = 
 �.
daij(t)
�

dt
dA
�
dt
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Example A = 
 �, = 
 �.

Integration The integral ∫ A dt = [∫ aij(t) dt].

Example A = 
 �, ∫ A dt = 
 �.

The matrix B = A − λI is called the characteristic (eigen) matrix of
A. Here A is square of order n, λ is a scalar parameter, and I is the 
n × n identity. det B = det (A − λI) = 0 is the characteristic (eigen)
equation for A. The characteristic equation is always of the same
degree as the order of A. The roots of the characteristic equation are
called the eigenvalues of A.

Example A = 
 �, B = 
 � − 
 � = 
 �
is the characteristic matrix and f(λ) = det (B) = det (A − λI) = (1 − λ)(8 − λ) − 6 =
2 − 9λ + λ2 = 0 is the characteristic equation. The eigenvalues of A are the roots
of λ2 − 9λ + 2 = 0, which are (9 � �7�3�)/2.

A nonzero matrix Xi, which has one column and n rows, called a col-
umn vector satisfying the equation

(A − λI)Xi = 0

and associated with the ith characteristic root λi is called an eigen-
vector.

Vector and Matrix Norms To carry out error analysis for
approximate and iterative methods for the solutions of linear systems,
one needs notions for vectors in Rn and for matrices that are analogous
to the notion of length of a geometric vector. Let Rn denote the set of
all vectors with n components, x = (x1, . . . , xn). In dealing with matri-
ces it is convenient to treat vectors in Rn as columns, and so x =
(x1, . . . , xn)T; however, we shall here write them simply as row vectors.
A norm on Rn is a real-valued function f defined on Rn with the fol-
lowing properties:

1. f(x) ≥ 0 for all x � Rn.
2. f(x) = 0 if and only if x = (0, 0, . . . , 0).
3. f(ax) = |a| f(x) for all real numbers a and x � Rn.
4. f(x + y) � f(x) + f(y) for all x, y � Rn.
The usual notation for a norm is f(x) = �x�.
The norm of a matrix is

κ(A) � �A� � A−1�

where �A� = supx ≠ 0 = maxk �
n

j = 1

|ajk|

The norm is useful when doing numerical calculations. If the com-
puter’s floating-point precision is 10−6, then κ = 106 indicates an ill-
conditioned matrix. If the floating-point precision is 10−12 (double
precision), then a matrix with κ = 1012 may be ill-conditioned. Two
other measures are useful and are more easily calculated:

Ratio = , V = , α i = (a2
i1 + a2

i2 + . . . a2
in)1/2

where akk
(k) are the diagonal elements of the LU decomposition.

MATRIX COMPUTATIONS

The principal topics in linear algebra involve systems of linear equa-
tions, matrices, vector spaces, linear transformations, eigenvalues and
eigenvectors, and least-squares problems. The calculations are rou-
tinely done on a computer.

LU Factorization of a Matrix To every m × n matrix A there
exists a permutation matrix P, a lower triangular matrix L with unit
diagonal elements, and an m × n (upper triangular) echelon matrix U
such that PA = LU. The Gauss elimination is in essence an algorithm
to determine U, P, and L. The permutation matrix P may be needed
since it may be necessary in carrying out the Gauss elimination to

|det A|
��
α1 α2 . . . αn

maxk |akk
(k)|

��
mink |akk

(k)|

� A x�
�
� x�

2
8−λ

1−λ
3

0
λ

λ
0

2
8

1
3

2
8

1
3

2t
et

t2/2
t3/3

2
et

t
t2

−sin t
cos t

cos t
sin t

dA
�
dt

cos t
sin t

sin t
−cos t

interchange two rows of A to produce a (nonzero) pivot, such as if we
start with

A = 
 �
If A is a square matrix and if principal submatrices of A are all nonsin-
gular, then we may choose P as the identity in the preceding factoriza-
tion and obtain A = LU. This factorization is unique if L is normalized
(as assumed previously), so that it has unit elements on the main diag-
onal.

Solution of Ax = b by Using LU Factorization Suppose that
the indicated system is compatible and that A = LU (the case PA = LU
is similarly handled and amounts to rearranging the equations). Let 
z = Ux. Then Ax = LUx = b implies that Lz = b. Thus to solve Ax = b we
first solve Lz = b for z and then solve Ux = z for x. This procedure does
not require that A be invertible and can be used to determine all solu-
tions of a compatible system Ax = b. Note that the systems Lz = b and
Ux = z are both in triangular forms and thus can be easily solved.

The LU decomposition is essentially a Gaussian elimination,
arranged for maximum efficiency (Ref. 112). The chief reason for
doing an LU decomposition is that it takes fewer multiplications than
would be needed to find an inverse. Also, once the LU decomposition
has been found, it is possible to solve for multiple right-hand sides
with little increase in work. The multiplication count for an n × n
matrix and m right-hand sides is

operation count = n3 − n + mn2

If an inverse is desired, it can be calculated by solving for the LU
decomposition and then solving n problems with right-hand sides con-
sisting of all zeroes except one entry. Thus 4n2/3 − n/3 multiplications
are required for the inverse. The determinant is given by

Det A = �
n

i = 1

aii
(i)

where aii
(i) are the diagonal elements obtained in the LU decomposi-

tion.
A tridiagonal matrix is one in which the only nonzero entries lie on

the main diagonal and the diagonal just above and just below the main
diagonal. The set of equations can be written as

aixi − 1 + bixi + cixi + 1 = di

The LU decomposition is

b1 = b1

for k=2,n do

a′k = , b′k = bk − ck − 1

enddo
d′1 = d1

for k=2,n do
d′k = dk − a′k d′k − 1

enddo
xn = d ′n /b′n
for k=n−1,1 do

xk =

enddo

The operation count for an n × n matrix with m right-hand sides is

2(n − 1) + m(3n − 2)

If |bi| > |ai| + |ci|

no pivoting is necessary, and this is true for many boundary-value
problems and partial-differential equations.

Sparse matrices are ones in which the majority of the elements are

d ′k − ck xk + 1
��

b′k

ak
�
b′k − 1

ak
�
b′k − 1

1
�
3

1
�
3

2
6

0
1
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zero. If the structure of the matrix is exploited, the solution time on a
computer is greatly reduced. See Refs. 27, 55, 95, 96, 101, and 246.
The conjugate gradient method is one method for solving sparse
matrix problems, since it only involves multiplication of a matrix times
a vector. Thus the sparseness of the matrix is easy to exploit. The con-
jugate gradient method is an iterative method that converges for sure
in n iterations where the matrix is an n × n matrix. See Refs. 142 and
206. The singular value decomposition is useful when the matrix is
singular or nearly singular (see Ref. 231).

Matrix methods, in particular finding the rank of the matrix, can be
used to find the number of independent reactions in a reaction set. If
the stoichiometric numbers for the reactions and molecules are put in
the form of a matrix, the rank of the matrix gives the number of inde-
pendent reactions (see Ref. 13).

Pivoting in Gauss Elimination It might seem that the Gauss
elimination completely disposes of the problem of finding solutions of
linear systems, and theoretically it does. In practice, however, things
are not so simple.

Example Assume three-decimal floating arithmetic (i.e., only the three
most significant digits of any number are retained), and solve the following sys-
tem by Gauss elimination:

0.000100x1 + 1.00x2 = 1.00

1.00x1 + 1.00x2 = 2.00
We obtain

0.100 × 10−3x1 + 0.100 × 101x2 = 0.100 × 101

−0.100 × 105x2 = −0.100 × 105

so that x2 = 1.00 and x1 = 0.00.

We check our solution by computing the residual vector r = b − Ax:

r1 = 0.100 × 101 − 0.100 × 10−3x1 − 0.100 × 101x2 = 0.00

r2 = 0.200 × 101 − 0.100 × 101x1 − 0.100 × 101x2 = 0.100 × 101

The fact that r2 = 1 indicates that our “solution” is not very good. Indeed the
exact solution of the system is x1 = 1.00010 and x2 = 0.99990, so the result com-
puted by Gauss elimination is pretty bad.

Now reverse the order of the equations (that is, pivot) and solve

0.100 × 101x1 + 0.100 × 101x2 = 0.200 × 101

0.100 × 101x2 = 0.100 × 101

so that x2 = 1.00 and x1 = 1.00. In this case the residual vector is r1 = 0.00 and 
r2 = 0.100 × 10−3, a considerable improvement over the previous result. In fact,
the solution is as good as one could hope for by using three-digit arithmetic.

The moral of the preceding example is that the order of equations
can make a large difference in how good an answer is obtained. It
should be clear that the poor results in the first case are caused by
having the large multiplier (0.100 × 101)/(0.100 × 10−3), which
resulted from dividing by a relatively small a11. It is not enough just to
avoid zero “pivots”; one must also avoid using pivots that are rela-
tively small.

This magnification of errors can be reduced if we arrange that the
pivot at any stage is larger in magnitude than any remaining element
in the column. If this is done, the multipliers will then be less than or
equal to 1 in magnitude. Gauss elimination modified in this manner is
called pivotal condensation or partial pivoting. This is routinely done
by computer programs.

APPROXIMATION IDENTITIES

For the following relationships the sign � means approximately equal
to, when X is small:

Approximation Approximation

� 1 � X �1� �� X� � 1 �

� 1 + Y � X (1 � X)−n � 1 � nX
1 + Y
�
1 � X

X
�
2

1
�
1 � X
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NUMERICAL APPROXIMATIONS TO SOME EXPRESSIONS

Approximation Approximation

(1 � X)n � 1 � nX (1 � X)−1/2 � 1 �

(a � X)2 � a2 � 2aX ez � 1 + X

sin X � X(X rad) tan X � X

�Y�(Y� +� X�)� � �Y�2�+� X�2� � Y + � small�X
�
Y

X 2

�
2Y

2Y + X
�

2

X
�
2

REFERENCES: General (textbooks that cover at an introductory level a variety
of topics that constitute a core of numerical methods for practicing engineers),
2, 3, 4, 22, 56, 59, 70, 77, 133, 135, 143, 150, 155, 219. Numerical solution of
nonlinear equations, 153, 171, 237, 302. Numerical solution of ordinary differ-
ential equations, 76, 117, 127, 185, 257. Numerical solution of integral equa-
tions, 23, 26, 129, 162. Numerical solution of partial differential equations, 11,
76, 127, 133, 155, 210, 251, 286, 287, 213, 233, 253. Spline functions and appli-
cations, 38, 56, 70, 230. Finite elements and applications, 5, 29, 83, 130, 164,
210, 241, 281, 287, 303, 304. Fast Fourier transforms, 47, 56, 135, 238. Soft-
ware, 187, 231.

INTRODUCTION
The goal of approximate and numerical methods is to provide conve-
nient techniques for obtaining useful information from mathematical
formulations of physical problems. Often this mathematical statement
is not solvable by analytical means. Or perhaps analytic solutions are
available but in a form that is inconvenient for direct interpretation

numerically. In the first case it is necessary either to attempt to
approximate the problem satisfactorily by one which will be amenable
to analysis, to obtain an approximate solution to the original problem
by numerical means, or to use the two techniques in combination.

Numerical techniques therefore do not yield exact results in the
sense of the mathematician. Since most numerical calculations are
inexact, the concept of error is an important feature. The error associ-
ated with an approximate value is defined as

True value = approximate value + error

The four sources of error are as follows:
1. Gross errors. These result from unpredictable human,

mechanical, or electrical mistakes.
2. Round-off errors. These are the consequence of using a num-

ber specified by m correct digits to approximate a number which
requires more than m digits for its exact specification. For example,
approximate the irrational number �2� by 1.414. Such errors are often
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present in experimental data, in which case they may be called inher-
ent errors, due either to empiricism or to the fact that the computer
dictates the number of digits. Such errors may be especially damaging
in areas such as matrix inversion or the numerical solution of partial
differential equations when the number of algebraic operations is
extremely large.

3. Truncation errors. These errors arise from the substitution of a
finite number of steps for an infinite sequence of steps which would
yield the exact result. To illustrate this error consider the infinite
series for e−x ⋅ e−x = 1 − x + x2/2 − x3/6 + ET(x), where ET is the trunca-
tion error, ET = (1/24)e−εx4, 0 < ε < x. If x is positive, ε is also positive.
Hence e−ε < 1. The approximation e−x ≈ 1 − x + x2/2 − x3/6 is in error by
a positive amount smaller than (1/24)x4.

4. Inherited errors. These arise as a result of errors occurring in
the previous steps of the computational algorithm.

The study of errors in a computation is related to the theory of
probability. In what follows a relation for the error will be given in cer-
tain instances.

NUMERICAL SOLUTION OF LINEAR EQUATIONS

See the section entitled “Matrix Algebra and Matrix Computation.”

NUMERICAL SOLUTION OF NONLINEAR EQUATIONS 
IN ONE VARIABLE

Special Methods for Polynomials Consider a polynomial equa-
tion of degree n:

P(x) = a0xn + a1xn − 1 + a2 xn − 2 + ⋅⋅⋅ + an − 1x + an = 0 (3-71)

with real coefficients. P(x) has exactly n roots, which may be real or
complex. If all the coefficients of P(x) are integers, then any rational
root, say, r/s (r, s integers, having no common divisors) of P(x), must be
such that r is an integral divisor of an and s is an integral divisor of a0.
Further, any polynomial with rational coefficients may be converted
into one with integral coefficients by multiplying by the lowest com-
mon multiple of the denominators of the coefficients.

Example 3x4 − 5⁄3x2 + 1⁄5x − 2 = 0. The lowest common multiple of the
denominator is 15. Thus multiplying by 15 (which does not change the roots)
gives 45x4 − 25x2 + 3x − 30 = 0. The only possible rational roots r/s are such that
r may have the values �30, �15, �10, �6, �5, �3, �2, �1. s may have the val-
ues �45, �15, �9, �5, �3, �1. The possible rational roots may then be formed
from all possible quotients, having no common factor.

In addition to these results, one can obtain an upper and lower
bound for the real roots by the following device: If a0 > 0 in Eq. (3-71)
and if in Eq. (3-71) the first negative coefficient is preceded by k co-
efficients which are positive or zero, and if G is the greatest of the
absolute values of the negative coefficients, then each real root is less
than 1 + k

�G�/a�0�.

Example P(x) = x5 + 3x4 − 7x2 − 40x + 2 = 0. Here a0 = 1, G = 40, and k = 3
since we must supply 0 as the coefficient for x3. Thus 1 + 3

�4�0� ≈ 4.42 is an upper
bound for the real roots.

A lower bound to the real roots may be found by applying the crite-
rion to the equation P(−x).

Example P(−x) = −x5 + 3x4 − 7x2 + 40x + 2 = 0, which is equivalent to x5 −
3x4 + 7x2 − 40x − 2 = 0 since a0 must be +. Then a0 = 1, G = 40, and k = 1. Hence
−(1 + 40) = −41 is a lower bound. Thus all real roots −41 < r < 4.42.

One last result is helpful in getting an estimate of how many posi-
tive and negative real roots there are.

Descartes Rule The number of positive real roots of a poly-
nomial with real coefficients is either equal to the number of changes
in sign v or is less than v by a positive even integer. The number of
negative roots of f(x) is either equal to the number of variations of sign
of f(−x) or is less than this by a positive even integer.

Example f(x) = x4 − 13x2 + 4x − 2 = 0 has three changes in sign; therefore,
there are either three or one positive roots. f(−x) = x4 − 13x2 − 4x − 2 has one
change in sign. Therefore, there is one negative root.

General Methods for Nonlinear Equations in One Variable
Successive Substitutions Let f(x) = 0 be the nonlinear equation

to be solved. If this is rewritten as x = F(x), then an iterative scheme
can be set up in the form xk + 1 = F(xk). To start the iteration an initial
guess must be obtained graphically or otherwise. The convergence or
divergence of the procedure depends upon the method of writing x =
F(x), of which there will usually be several forms. However, if a is a
root of f(x) = 0, and if |F ′(a)| < 1, then for any initial approximation suf-
ficiently close to a, the method converges to a. This process is called
first order because the error in xk + 1 is proportional to the first power
of the error in xk for large k.

Example f(x) = x3 − x − 1 = 0. A rough plot shows a real root of approxi-
mately 1.3. The equation can be written in the form x = F(x) in several ways such
as x = x3 − 1, x = 1/(x2 − 1), and x = (1 + x)1/3. In the first case F′(x) = 3x2 = 5.07 at
x = 1.3, in the second F(1.3) = −5.46, and only in the third case is F′(1.3) < 1.
Hence only the third iterative process has a chance to converge. This is illus-
trated in the following table.

Step k x = x3 − 1 x = 1/(x2 − 1) x = (1 + x)1/3

0 1.3 1.3 1.3
1 1.197 1.4493 1.32
2 0.7150 0.9088 1.3238
3 −0.6345 −5.742 1.3245
4 1.3247

Another way of writing the equation is xk + 1 = xk + β f(xk). The choice of β is
made such that |1 + β df/dx(a)| < 1. Convergence is guaranteed by the theorem
given for simultaneous equations.

Methods of Perturbation Let f(x) = 0 be the equation. In gen-
eral, the iterative relation is

xk + 1 = xk − [ f(xk)/ak]

where the iteration begins with x0 as an initial approximation and αk as
some functional.

Newton-Raphson Procedure This variant chooses αk = f ′(xk)
where f ′ = df/dx and geometrically consists of replacing the graph of
f(x) by the tangent line at x = xk in each successive step. If f ′(x) and
f″(x) have the same sign throughout an interval a ≤ x ≤ b containing
the solution, with f(a), f(b) of opposite signs, then the process con-
verges starting from any x0 in the interval a ≤ x ≤ b. The process is sec-
ond order.

Example f(x) = x − 1 +

f ′ (x) = 1 − 2.3105[0.5]x

An approximate root (obtained graphically) is 2.

Step k xk f(xk) f ′(xk)

0 2 0.1667 0.4224
1 1.6054 0.0342 0.2407
2 1.4632 0.0055 0.1620

Method of False Position This variant is commenced by finding
x0 and x1 such that f(x0), f(x1) are of opposite signs. Then α1 = slope of
secant line joining [x0, f(x0)] and [x1, f(x1)] so that

x2 = x1 − f(x1)

In each following step αk is the slope of the line joining [xk, f(xk)] to the
most recently determined point where f(xj) has the opposite sign from
that of f(xk). This method is of first order. If one uses the most recently
determined point (regardless of sign), the method is a secant method.

x1 − x0
��
f(x1) − f(x0)

(0.5)x − 0.5
��

0.3
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Method of Wegstein This is a variant of the method of successive
substitutions which forces and/or accelerates convergence. The itera-
tive procedure xk + 1 = F(xk) is revised by setting x̂k + 1 = F(xk) and then
taking xk + 1 = qxk + (1 − q)x̂k + 1, where q is a suitably chosen number
which may be taken as constant throughout or may be adjusted at each
step. Wegstein found that suitable q’s are:

Behavior of successive substitution process Range of optimum q

Oscillatory convergence 0 < q <a
Oscillatory divergence a < q < 1
Monotonic convergence q < 0
Monotonic divergence 1 < q

At each step q may be calculated to give a locally optimum value by
setting

q =

The Wegstein method is a secant method applied to g(x) � x − F(x).
Numerical Solution of Simultaneous Nonlinear Equations

The techniques illustrated here will be demonstrated for two simulta-
neous equations f(x, y) = 0, g(x, y) = 0. They immediately generalize to
more than two simultaneous equations.

Method of Successive Substitutions Write a system of equa-
tions as

α i = fi(α), or α = f(α)

The following theorem guarantees convergence. Let α be the solution
to α i = fi(α). Assume that given h > 0, there exists a number 0 < µ < 1
such that

�
n

j = 1
� � ≤ µ for |xi − αi| < h, i = 1, . . . , n

x i
k + 1 = fi(xi

k)

Then x i
k → αi

as k increases (see Ref. 106).
Newton-Raphson Method To solve the set of equations

Fi(x1, x2, . . . , xn) = 0, or Fi({xj}) = 0, or Fi(x) = 0

one uses a truncated Taylor series to give

0 = Fi({x k}) + �
n

j = 1
�

xk
(x j

k + 1 − x j
k)

Thus one solves iteratively from one point to another.

�
n

j = 1

Aij
k (x j

k + 1 − x j
k) = −Fi({xk})

where Aij
k = �

xk

This method requires solution of sets of linear equations until the
functions are zero to some tolerance or the changes of the solution
between iterations is small enough. Convergence is guaranteed pro-
vided the norm of the matrix A is bounded, F(x) is bounded for the
initial guess, and the second derivative of F(x) with respect to all vari-
ables is bounded. See Refs. 106 and 155.

Example f(x, y) = 4x2 + 6x − 4xy + 2y2 − 3

g(x, y) = 2x2 − 4xy + y2

By plotting one of the approximate roots is found to be x0 = 0.4, y0 = 0.3. At this
point there results ∂f/∂x = 8, ∂f/∂y = −0.4, ∂g/∂x = 0.4, and ∂g/∂y = −1.

8(xk + 1 − xk) − 0.4(yk + 1 − yk) = +0.26

0.4(xk + 1 − xk) − 1(yk + 1 − yk) = −0.07

The first few iteration steps are as follows:

∂Fi
�
∂xj

∂Fi
�
∂xj

∂fi
�
∂xj

x̂k + 1 − x̂k
��
x̂k + 1 − 2 x̂k + 1 + x̂k− 1

Step k xk yk f(xk, yk) g(xk, yk)

0 0.4 0.3 −0.26 0.07
1 0.43673 0.24184 0.078 0.0175
2 0.42672 0.25573 −0.0170 −0.007
3 0.42925 0.24943 0.0077 0.0010

Method of Continuity (Homotopy) In the case of n equations
in n unknowns, when n is large, determining the approximate solution
may involve considerable effort. In such a case the method of conti-
nuity is admirably suited for use on digital computers. It consists basi-
cally of the introduction of an extra variable into the n equations

fi(x1, x2, . . . , xn) = 0 i = 1, . . . , n (3-72)

and replacing them by

fi(x1, x2, . . . , xn, λ) = 0 i = 1, . . . , n (3-73)

where λ is introduced in such a way that the functions (3-73) depend
in a simple way upon λ and reduce to an easily solvable system for λ =
0 and to the original equations (3-72) for λ = 1. A system of ordinary
differential equations, with independent variable λ, is then con-
structed by differentiating Eqs. (3-73) with respect to λ. There results

�
n

j = 1

+ = 0 (3-74)

where x1, . . . , xn are considered as functions of λ. Equations (3-74)
are integrated, with initial conditions obtained from Eqs. (3-73) with
λ = 0, from λ = 0 to λ = 1. If the solution can be continued to λ = 1, the
values of x1, . . . , xn for λ = 1 will be a solution of the original equa-
tions. If the integration becomes infinite, the parameter λ must be
introduced in a different fashion. Integration of the differential equa-
tions (which are usually nonlinear in λ) may be accomplished by using
techniques described under “Numerical Solution of Ordinary Differ-
ential Equations.”

Other Methods Other methods can be found in the literature.
See Ref. 66.

INTERPOLATION AND FINITE DIFFERENCES

Linear Interpolation If a function f(x) is approximately linear in
a certain range, then the ratio

= f [x0, x1]

is approximately independent of x0, x1 in the range. The linear approx-
imation to the function f(x), x0 < x < x1 then leads to the interpolation
formula

f(x) ≈ f(x0) + (x − x0)f [x0, x1]

≈ f(x0) + [ f(x1) − f(x0)]

≈ [(x1 − x) f(x0) − (x0 − x) f(x1)]

Example Find cosh 0.83 by linear interpolation given cosh 0.8 and cosh 0.9.

xi f(xi) xi − 0.83

0.8 1.33743 −0.03
0.9 1.43309 +0.07

f(0.83) ≈ 1/0.10[(0.07)(1.33743) − (−0.03)(1.43309)]

f(0.83) ≈ 1.36613

Since the true five-place value is 1.36468, it is seen that here linear interpolation
gives three significant figures.

Divided Differences of Higher Order and Higher-Order
Interpolation The first-order divided difference f[x0, x1] was
defined previously. Divided differences of second and higher order
are defined iteratively by

1
�
x1 − x0

x − x0
�
x1 − x0

f(x1) − f(x0)
��

x1 − x0

∂fi
�
∂λ

dxf
�
dλ

∂fi
�
∂xj
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f[x0, x1, x2] =

�

f[x0, x1, . . . , xk] =

and a convenient form for computational purposes is

f[x0, x1, . . . , xk] = �
k′

j = 0

for any k ≥ 0, where the ′ means that the term (xj − xj) is omitted in the
denominator. For example,

f[x0, x1, x2] = + +

If the accuracy afforded by a linear approximation is inadequate, a
generally more accurate result may be based upon the assumption
that f(x) may be approximated by a polynomial of degree 2 or higher
over certain ranges. This assumption leads to Newton’s fundamental
interpolation formula with divided differences

f(x) ≈ f(x0) + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x2]

+ ⋅⋅⋅ + (x − x0)(x − x1) ⋅⋅⋅ (x − xn − 1) f [x0, x1, . . . , xn] + En(x)

where En(x) = error = f n + 1(ε)π(x)

where minimum (x0, . . . , x) < ε < maximum (x0, x1, . . . , xn, x) and 
π(x) = (x − x0)(x − x1) ⋅⋅⋅ (x − xn). In order to use the previous equation
most effectively one may first form a divided-difference table. For
example, for third-order interpolation the difference table is

where each entry is given by taking the difference between diagonally
adjacent entries to the left, divided by the abscissas corresponding to
the ordinates intercepted by the diagonals passing through the calcu-
lated entry.

Equally Spaced Forward Differences If the ordinates are
equally spaced, i.e., xj − xj − 1 = ∆x for all j, then the first differences 
are denoted by ∆f(x0) = f(x1) − f(x0) or ∆y0 = y1 − y0, where y = f(x). The
differences of these first differences, called second differences, are
denoted by ∆2y0, ∆2y1, . . . , ∆2yn. Thus

∆2y0 = ∆y1 − ∆y0 = y2 − y1 − y1 + y0 = y2 − 2y1 + y0

And in general

∆ jy0 = �
j

n = 0

(−1)n � �yj − n

where � � = = binomial coefficients.

If the ordinates are equally spaced,

xn + 1 − xn = ∆x
yn = y(xn)

then the first and second differences are denoted by

∆yn = yn + 1 − yn

∆2yn = ∆yn + 1 − ∆yn = yn + 2 − 2yn + 1 + yn

A new variable is defined

α = xα − x0
�

∆x

j!
�
n!( j − n)!

j
n

j
n

1
�
(n + 1)!

f(x2)
��
(x2 − x0)(x2 − x1)

f(x1)
��
(x1 − x0)(x1 − x2)

f(x0)
��
(x0 − x1)(x0 − x2)

f(xj)
���
(xj − x0)(xj − x1) ⋅⋅⋅ (xj − xk)

f [x1, . . . , xk] − f [x0, x1, . . . , xk − 1]
����

xk − x0

f [x1, x2] − f [x0, x1]
��

x2 − x0

and the finite interpolation formula through the points y0, y1, . . . , yn

is written as follows:

yα = y0 + α ∆y0 + ∆2y0 + ⋅⋅⋅ + ∆ny0

Keeping only the first two terms gives a straight line through 
(x0, y0)–(x1, y1); keeping the first three terms gives a quadratic function
of position going through those points plus (x2, y2). The value α = 0
gives x = x0; α = 1 gives x = x1, and so on.

Equally Spaced Backward Differences Backward differences
are defined by

∇ yn = yn − yn − 1

∇ 2yn = ∇ yn − ∇ yn − 1 = yn − 2 yn − 1 + yn − 2

The interpolation polynomial of order n through the points y0, y−1,
. . . , y−n is

yα = y0 + α ∇ y0 + ∇ 2y0 + ⋅⋅⋅ + ∇ ny0

The value of α = 0 gives x = x0; α = −1 gives x = x−1, and so on. Alter-
natively, the interpolation polynomial of order n through the points y1,
y0, y−1, . . . , y−n is

yα = y1 + (α − 1) ∇ y1 + ∇ 2y1

+ ⋅⋅⋅ + ∇ ny1

Now α = 1 gives x = x1; α = 0 gives x = x0.
Central Differences The central difference denoted by

δf(x) = f�x + � − f �x − �
δ2f(x) = δn − 1 f �x + � − δn − 1 f�x − �

is useful for calculating at the interior points of tabulated data.
Lagrange Interpolation Formulas A global polynomial is

defined over the entire region of space

Pm(x) = �
m

j = 0

cj x j

This polynomial is of degree m (highest power is xm) and order m + 1
(m + 1 parameters {cj}). If we are given a set of m + 1 points

y1 = f(x1), y2 = f(x2), . . . , ym + 1 = f(xm + 1)

then Lagrange’s formula gives a polynomial of degree m that goes
through the m + 1 points:

Pm(x) = y1

+ y2 + ⋅⋅⋅

+ ym + 1

Note that each coefficient of yj is a polynomial of degree m that van-
ishes at the points {xj} (except for one value of j) and takes the value of
1.0 at that point:

Pm(xj) = yj, j = 1, 2, . . . , m + 1

If the function f(x) is known, the error in the approximation is, per
Ref. 14,

|error(x)| ≤ maxx1 ≤ x ≤ xm + 1
| f (m + 2)(x)|

The evaluation of Pm(x) at a point other than at the defining points can
be made with Neville’s algorithm (Ref. 231). Let P1 be the value at x of
the unique function passing through the point (x1, y1); or P1 = y1. Let

|xm + 1 − x1|m + 1

��
(m + 2)!

(x − x1) (x − x2) ⋅⋅⋅ (x − xm + 1)
����
(xm + 1 − x1) (xm + 1 − x2) ⋅⋅⋅ (xm + 1 − xm)

(x − x1) (x − x3) ⋅⋅⋅ (x − xm + 1)
����
(x2 − x1) (x2 − x3) ⋅⋅⋅ (x2 − xm + 1)

(x − x2) (x − x3) ⋅⋅⋅ (x − xm + 1)
����
(x1 − x2) (x1 − x3) ⋅⋅⋅ (x1 − xm + 1)

h
�
2

h
�
2

h
�
2

h
�
2

(α − 1) α (α + 1) ⋅⋅⋅ (α + n − 2)
����

n!

α (α − 1)
�

2!

α (α + 1) ⋅⋅⋅ (α + n − 1)
���

n!
α (α + 1)
�

2!

α (α − 1) ⋅⋅⋅ (α − n + 1)
���

n!
α (α − 1)
�

2!
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P12 be the value at x of the unique polynomial passing through the
points x1 and x2. Likewise, Pijk . . . r is the unique polynomial passing
through the points xi, xj, xk, . . . xr. Then use the table

x1 y1 = P1

P12

x2 y2 = P2 P123

P23 P1234

x3 y3 = P3 P234

P34

x4 y4 = P4

These entries are defined using

Pi(i + 1) . . . (i + m) =

For example, consider P1234. The terms on the right-hand side involve
P123 and P234. The “parents,” P123 and P234, already agree at points 2 and
3. Here i = 1, m = 3; thus, the parents agree at xi + 1, . . . , xi + m − 1

already. The formula makes Pi(i + 1) . . . (i + m) agree with the function at the
additional points xi + m and xi. Thus, Pi(i + 1) . . . (i + m) agrees with the func-
tion at all the points {xi, xi + 1, . . . xi + m}.

NUMERICAL DIFFERENTIATION

Numerical differentiation should be avoided whenever possible, par-
ticularly when data are empirical and subject to appreciable observa-
tion errors. Errors in data can affect numerical derivatives quite
strongly; i.e., differentiation is a roughening process. When such a cal-
culation must be made, it is usually desirable first to smooth the data
to a certain extent.

Use of Interpolation Formula If the data are given over equidis-
tant values of the independent variable x, an interpolation formula
such as the Newton formula (see Refs. 143 and 185) may be used and
the resulting formula differentiated analytically. If the independent
variable is not at equidistant values, then Lagrange’s formulas must be
used. By differentiating three- and five-point Lagrange interpolation
formulas the following differentiation formulas result for equally
spaced tabular points:

Three-Point Formulas Let x0, x1, x2 be the three points.

f ′(x0) = [−3f(x0) + 4f(x1) − f(x2)] + f ′″ (ε)

f ′(x1) = [−f(x0) + f(x2)] − f ′″ (ε)

f ′(x2) = [ f(x0) − 4f(x1) + 3f(x2)] + f ′″ (ε)

where the last term is an error term mi
j
n. xj < ε < ma

j
x. xj.

Smoothing Techniques These techniques involve the approxi-
mation of the tabular data by a least-squares fit of the data by using
some known functional form, usually a polynomial (for the concept of
least squares see “Statistics”). In place of approximating f(x) by a sin-
gle least-squares polynomial of degree n over the entire range of the
tabulation, it is often desirable to replace each tabulated value by the
value taken on by a least-squares polynomial of degree n relevant to a
subrange of 2M + 1 points centered, when possible, at the point for
which the entry is to be modified. Thus each smoothed value replaces
a tabulated value. Let fj = f(xj) be the tabular points and yj = smoothed
values.

First-Degree Least Squares with Three Points

y0 = j[5f0 + 2 f1 − f2]

y1 =s[ f0 + f1 + f2]

y2 =j[−f0 + 2 f1 + 5f2]

Second-Degree Least Squares with Five Points For five
evenly spaced points x−2, x−1, x0, x1, and x2 (separated by distance h) and
their ordinates f−2, f−1, f0, f1, and f2, assume a parabola is fit by least
squares. Then the derivative at the center point is

h2

�
3

1
�
2h

h2

�
6

1
�
2h

h2

�
3

1
�
2h

(x − xi + m) Pi(i + 1) . . . (i + m − 1) + (xi − x) P(i + 1)(i + 2) . . . (i + m)
������

xi − xi + m

f ′0 = 1/10h [−2f−2 − f−1 + f1 + 2f2]

If derivatives are required at end points, with all points and ordinates
to one side, the derivatives are

f ′0 = 1/20h [−21 f0 + 13 f1 + 17 f2 − 9 f3]

f ′1 = 1/20h [−11 f0 + 3 f1 + 7 f2 + f3]

f ′0 = 1/20h [21 f0 − 13 f−1 − 17 f−2 + 9 f−1]

f ′−1 = 1/20h [ 11 f0 − 3 f−1 − 7 f−2 − f−1]

Numerical Derivatives The results given above can be used to
obtain numerical derivatives when solving problems on the computer,
in particular for the Newton-Raphson method and homotopy meth-
ods. Suppose one has a program, subroutine, or other function evalu-
ation device that will calculate f given x. One can estimate the value of
the first derivative at x0 using

�
x0

≈

(a first-order formula) or

�
x0

≈

(a second-order formula). The value of ε is important; a value of 10−6

is typical, but smaller or larger values may be necessary depending on
the computer precision and the application. One must also be sure
that the value of x0 is not zero and use a different increment in that
case.

NUMERICAL INTEGRATION (QUADRATURE)

A multitude of formulas have been developed to accomplish numeri-
cal integration, which consists of computing the value of a definite
integral from a set of numerical values of the integrand.

Newton-Cotes Integration Formulas (Equally Spaced Ordi-
nates) for Functions of One Variable The definite integral 
∫ b

a f(x) dx is to be evaluated.
Trapezoidal Rule This formula consists of subdividing the inter-

val a ≤ x ≤ b into n subintervals a to a + h, a + h to a + 2h, . . . and
replacing the graph of f(x) by the result of joining the ends of adjacent
ordinates by line segments. If fj = f(xj) = f(a + jh), f0 = f(a), fn = f(b), the
integration formula is

�b

a
f(x) dx = [ f0 + 2f1 + 2f2 + ⋅⋅⋅ + 2fn − 1 + fn] + En

where |En| = |f″ (ε)| = | f″ (ε)| a < ε < b

This procedure is not of high accuracy. However, if f″ (x) is continuous
in a < x < b, the error goes to zero as 1/n2, n → ∞.

Parabolic Rule (Simpson’s Rule) This procedure consists of
subdividing the interval a < x < b into n/2 subintervals, each of length
2h, where n is an even integer. By using the notation as above the inte-
gration formula is

�b

a
f(x) dx = [ f0 + 4 f1 + 2 f2 + 4 f3 + ⋅⋅⋅ 

+ 4 fn − 3 + 2 fn − 2 + 4 fn − 1 + fn] + En

where |En| = | f (IV)(ε)| = | f (IV)(ε)| a < ε < b

This method approximates f(x) by a parabola on each subinterval. This
rule is generally more accurate than the trapezoidal rule. It is the most
widely used integration formula.

Gaussian Quadrature Gaussian quadrature provides a highly
accurate formula based on irregularly spaced points, but the integral
needs to be transformed onto the interval 0 to 1.

x = a + (b − a)u, dx = (b − a)du

�b

a
f(x) dx = (b − a) �1

0
f(u) du

(b − a)5

�
180n4

nh5

�
180

h
�
3

(b − a)3

�
12n2

nh3

�
12

h
�
2

f[x0(1 + ε)] − f[x0(1 − ε)]
���

2ε
df
�
dx

f[x0(1 + ε)] − f[x0]
��

ε
df
�
dx
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�1

0
f(u) du = �

m

i = 1

Wi f(ui)

The quadrature is exact when f is a polynomial of degree 2m − 1 in x.
Because there are m weights and m Gauss points, we have 2m param-
eters that are chosen to exactly represent a polynomial of degree 
2m − 1, which has 2m parameters. The Gauss points and weights are
given in the table.

Gaussian Quadrature Points and Weights

m ui Wi

2 0.21132 48654 0.50000 00000
0.78867 51346 0.50000 00000

3 0.11270 16654 0.27777 77778
0.50000 00000 0.44444 44445
0.88729 83346 0.27777 77778

4 0.06943 18442 0.17392 74226
0.33000 94783 0.32607 25774
0.66999 05218 0.32607 25774
0.93056 81558 0.17392 74226

5 0.04691 00771 0.11846 34425
0.23076 53450 0.23931 43353
0.50000 00000 0.28444 44444
0.76923 46551 0.23931 43353
0.95308 99230 0.11846 34425

Example Calculate the value of the following integral.

I = �1

0
e−x sin x dx (3-75)

Using the Gaussian quadrature formulas gives the following values for various
values of m. Clearly, three internal points, requiring evaluation of the integrand
at only three points, gives excellent results.

m I

1 0.908185
2 0.910089
3 0.909336367
4 0.909330666
5 0.909330674

Romberg’s Method Romberg’s method uses extrapolation tech-
niques to improve the answer (Ref. 231). If we let I1 be the value of
the integral obtained using interval size h = ∆x, and I2 be the value of
I obtained when using interval size h/2, and I0 the true value of I, then
the error in a method is approximately hm, or

I1 ≈ I0 + chm

I2 ≈ I0 + c� �
m

Replacing the ≈ by an equality (an approximation) and solving for c
and I0 gives

I0 =

This process can also be used to obtain I1, I2, . . . , by halving h each
time, and then calculating new estimates from each pair, calling them
J1, J2, . . . ; that is, in the formula above, replace I0 with J1. The formu-
las are reapplied for each pair of J to obtain K1, K2, . . . The process
continues until the required tolerance is obtained.

I1 I2 I3 I4

J1 J2 J3

K1 K2

L1

Romberg’s method is most useful for a low-order method (small m)
because significant improvement is then possible.

2mI2 − I1
�

2m − 1

h
�
2

Example Evaluate the same integral (3-75) using the trapezoid rule and
then apply the Romberg method. To achieve four-digit accuracy, any result from
J2 through L1 are suitable, even though the base results (I1–I4) are not that close.

I1 = 0.967058363 I2 = 0.923704741 I3 = 0.912920511 I4 = 0.910227902
J1 = 0.909253534 J2 = 0.909325768 J3 = 0.909330366

K1 = 0.909349846 K2 = 0.909331898
L1 = 0.909325916

Singularities When the integrand has singularities, a variety of
techniques can be tried. The integral may be divided into one part
that can be integrated analytically near the singularity and another
part that is integrated numerically. Sometimes a change of argument
allows analytical integration. Series expansion might be helpful, too.
When the domain is infinite, it is possible to use Gauss-Legendre or
Gauss-Hermite quadrature. Also a transformation can be made (Ref.
26). For example, let u = 1/x and then

�b

a
f(x) dx = �1/a

1/b
f � � du ab > 0

Two-Dimensional Formula Two-dimensional integrals can be
calculated by breaking down the integral into one-dimensional inte-
grals.

�b

a
�g2(x)

g1(x)
f(x, y) dx dy = �b

a
G(x) dx

G(x) = �g2(x)

g1(x)
f(x, y) dy

Gaussian quadrature can also be used in two dimensions, provided the
integration is on a square or can be transformed to one. (Domain
transformations might be used to convert the domain to a square.)

�1

0
�1

0
f(x, y) dx dy = �

mx

i = 1

Wxi �
my

j = 1

Wyj f(xi, yj)

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS AS INITIAL VALUE PROBLEMS

A differential equation for a function that depends on only one vari-
able, often time, is called an ordinary differential equation. The gen-
eral solution to the differential equation includes many possibilities;
the boundary or initial conditions are needed to specify which of those
are desired. If all conditions are at one point, then the problem is an
initial value problem and can be integrated from that point on. If some
of the conditions are available at one point and others at another
point, then the ordinary differential equations become two-point
boundary value problems, which are treated in the next section. Initial
value problems as ordinary differential equations arise in control 
of lumped parameter models, transient models of stirred tank reac-
tors, and in all models where there are no spatial gradients in the
unknowns.

A higher-order differential equation

y(n) + F(y(n − 1), y(n − 2), . . . , y′, y) = 0

with initial conditions

Gi(y(n − 1)(0), y(n − 2)(0), . . . , y(0), y(0)) = 0, i = 1, . . . , n

can be converted into a set of first-order equations using

yi � y(i − 1) = = y(i − 2) =

The higher-order equation can be written as a set of first-order equa-
tions.

= y2

= y3
dy2
�
dt

dy1
�
dt

dyi − 1
�

dt
d

�
dt

d(i − 1)y
�
dt(i − 1)

1
�
u

1
�
u2
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= y4

. . .

= −F(yn − 1, yn − 2, . . . , y2, y1)

The initial conditions would have to be specified for variables
y1(0), . . . , yn(0), or equivalently y(0), . . . , y(n − 1)(0). The set of equa-
tions is then written as

= f(y, t)

All the methods in this section are described for a single equation; the
methods apply to multiple equations. See Refs. 106 and 185 for more
details.

Euler’s method is first-order.

yn + 1 = yn + ∆t f(yn)

and errors are proportional to ∆t. The second-order Adams-Bashforth
method is

yn + 1 = yn + [3 f(yn) − f(yn − 1)]

Errors are proportional to ∆ t2, and high-order methods are available.
Notice that the higher-order explicit methods require knowing the
solution (or the right-hand side) evaluated at times in the past. Since
these were calculated to get to the current time, this presents no prob-
lem except for starting the problem. Then it may be necessary to use
Euler’s method with a very small step size for several steps in order to
generate starting values at a succession of time points. The error
terms, order of the method, function evaluations per step, and stabil-
ity limitations are listed in Ref. 106. The advantage of the high-order
Adams-Bashforth method is that it uses only one function evaluation
per step yet achieves high-order accuracy. The disadvantage is the
necessity of using another method to start.

Runge-Kutta methods are explicit methods that use several func-
tion evaluations for each time step. Runge-Kutta methods are tradi-
tionally written for f(t, y). The first-order Runge-Kutta method is
Euler’s method. A second-order Runge-Kutta method is

yn + 1 = yn + [ f n + f(tn + ∆t, yn + ∆t f n)]

while the midpoint scheme is also a second-order Runge-Kutta
method.

yn + 1 = yn + ∆t f �tn + , yn + f n�
A popular fourth-order Runge-Kutta method is the Runge-Kutta-

Feldberg formulas (Ref. 111), which have the property that the
method is fourth-order but achieves fifth-order accuracy. The popular
integration package RKF45 is based on this method.

k1 = ∆t f(tn, yn)

k2 = ∆t f �tn + , yn + �
k3 = ∆t f �tn + ∆t, yn + k1 + k2�
k4 = ∆t f �tn + ∆t, yn + k1 − k2 + k3�
k5 = ∆t f �tn + ∆t, yn + k1 − 8k2 + k3 − k4�
k6 = ∆t f �tn + , yn − k1 + 2k2 − k3 + k4 − k5�

yn + 1 = yn + k1 + k3 + k4 − k5
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dy
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dyn
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dt

dy3
�
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zn + 1 = yn + k1 + k3 + k4 − k5 + k6

The value of yn + 1 − zn + 1 is an estimate of the error in yn + 1 and can be
used in step-size control schemes.

Usually one would use a high-order method to achieve high accu-
racy. The Runge-Kutta-Feldberg method is popular because it is high
order and does not require a starting method (as does an Adams-
Bashforth method). However, it does require four function evalua-
tions per time step, or four times as many as a fourth-order
Adams-Bashforth method. For problems in which the function evalu-
ations are a significant portion of the calculation time, this might be
important. Given the speed of present-day computers and the wide-
spread availability of microcomputers (which can be run while you are
doing something else, if need be), the efficiency of the methods is
most important only for very large problems that are going to be
solved many times. For other problems, the most important criterion
for choosing a method is probably the time the user spends setting up
the problem.

The stability limits for the explicit methods are based on the largest
eigenvalue of the linearized system of equations (see Ref. 106). For
linear problems, the eigenvalues do not change, so that the stability
and oscillation limits must be satisfied for every eigenvalue of the
matrix A. When solving nonlinear problems, the equations are lin-
earized about the solution at the local time, and the analysis applies
for small changes in time, after which a new analysis about the new
solution must be made. Thus, for nonlinear problems, the eigenvalues
keep changing, and the largest stable time step changes, too. The sta-
bility limits are:

Euler method, λ ∆t ≤ 2
Runge-Kutta, 2nd order, λ ∆t < 2
Runge-Kutta-Feldberg, λ ∆t < 3.0
Richardson extrapolation can be used to improve the accuracy of 

a method. Suppose we step forward one step ∆t with a pth-order
method. Then redo the problem, this time stepping forward from the
same initial point, but in two steps of length ∆t/2, thus ending at the
same point. Call the solution of the one-step calculation y1 and 
the solution of the two-step calculation y2. Then an improved solution
at the new time is given by

y =

This gives a good estimate provided ∆t is small enough that the
method is truly convergent with order p. This process can also be
repeated in the same way Romberg’s method was used for quadrature.

The error term in the various methods can be used to deduce a step
size that will give a user-specified accuracy. Most packages today are
based on a user-specified tolerance; the step-size is changed during
the calculation to achieve that accuracy. The accuracy itself is not
guaranteed, but it improves as the tolerance is decreased.

Implicit Methods By using different interpolation formulas
involving yn + 1, it is possible to derive implicit integration methods.
Implicit methods result in a nonlinear equation to be solved for yn + 1

so that iterative methods must be used. The backward Euler method
is a first-order method.

yn + 1 = yn + ∆t f(yn + 1)

Errors are proportional to ∆t for small ∆t. The trapezoid rule is a 
second-order method.

yn + 1 = yn + [ f(yn) + f(yn + 1)]

Errors are proportional to ∆ t2 for small ∆ t. When the trapezoid rule
is used with the finite difference method for solving partial differen-
tial equations, it is called the Crank-Nicolson method. The implicit
methods are stable for any step size but do require the solution of a
set of nonlinear equations, which must be solved iteratively. The set
of equations can be solved using the successive substitution method
or Newton-Raphson method. See Ref. 36 for an application to
dynamic distillation problems.

The best packages for stiff equations (see below) use Gear’s back-
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ward difference formulas. The formulas of various orders are, per
Refs. 59 and 117,

(1) yn + 1 = yn + ∆t f(yn + 1)

(2) yn + 1 = yn − yn − 1 + ∆t f(yn + 1)

(3) yn + 1 = yn − yn − 1 + yn − 2 + ∆t f(yn + 1)

(4) yn + 1 = yn − yn − 1 + yn − 2 − yn − 3 + ∆t f(yn + 1)

(5) yn + 1 = yn − yn − 1 + yn − 2 − yn − 3 + yn − 4

+ ∆t f(yn + 1)

Stiffness The concept of stiffness is described for a system of lin-
ear equations.

= A y

Let λi be the eigenvalues of the matrix A (Ref. 267). Then, per Ref.
181, the stiffness ratio is defined as

SR =

SR = 20 is not stiff, SR = 103 is stiff, and SR = 106 is very stiff. If the
problem is nonlinear, then the solution is expanded about the current
state.

= fi [y(tn)] + �
n

j = 1

[yj − yj(tn)]

The question of stiffness then depends on the solution at the current
time. Consequently nonlinear problems can be stiff during one time
period and not stiff during another. While the chemical engineer may
not actually calculate the eigenvalues, it is useful to know that they
determine the stability and accuracy of the numerical scheme and the
step size used.

Problems are stiff when the time constants for different phenom-
ena have very different magnitudes. Consider flow through a packed
bed reactor. The time constants for different phenomena are:

1. Time for device flow-through

tflow = =

where Q is the volumetric flow rate, A is the cross sectional area, L is
the length of the packed bed, and φ is the void fraction;

2. Time for reaction

tr × n =

where k is a rate constant (time−1);
3. Time for diffusion inside the catalyst

tinternal diffusion =

where ε is the porosity of the catalyst, R is the catalyst radius, and De

is the effective diffusion coefficient inside the catalyst;
4. Time for heat transfer is

tinternal heat transfer = =

where ρs is the catalyst density, Cs is the catalyst heat capacity per unit
mass, ke is the effective thermal conductivity of the catalyst, and α is
the thermal diffusivity. For example, in the model of a catalytic con-
verter for an automobile (Ref. 103), the time constants for internal dif-
fusion was 0.3 seconds; internal heat transfer, 21 seconds; and device
flow-through, 0.003 seconds. The device flow-through is so fast that it
might as well be instantaneous. The stiffness is approximately 7000.
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Implicit methods must be used to integrate the equations. Alterna-
tively, a quasistate model can be developed (Ref. 239).

Differential-Algebraic Systems Sometimes models involve
ordinary differential equations subject to some algebraic constraints.
For example, the equations governing one equilibrium stage (as in a
distillation column) are

M = Vn + 1yn + 1 − Lnxn − Vnyn + Ln − 1xn − 1

xn − 1 − xn = En(xn − 1 − x*,n)

�
N

i = 1

xi = 1

where x and y are the mole fraction in the liquid and vapor, respec-
tively; L and V are liquid and vapor flow rates, respectively; M is the
holdup; and the superscript is the stage number. The efficiency is E,
and the concentration in equilibrium with the vapor is x*. The first
equation is an ordinary differential equation for the mass of one com-
ponent on the stage, while the third equation represents a constraint
that the mass fractions add to one. This is a differential-algebraic sys-
tem of equations.

Differential-algebraic equations can be written in the general 
notation

F �t, y, � = 0

To solve the general problem using the backward Euler method,
replace the nonlinear differential equation with the nonlinear alge-
braic equation for one step.

F �t, yn + 1, � = 0

This equation must be solved for yn + 1. The Newton-Raphson method
can be used, and if convergence is not achieved within a few itera-
tions, the time step can be reduced and the step repeated. In actual-
ity, the higher-order backward-difference Gear methods are used in
DASSL (Ref. 224).

Differential-algebraic systems are more complicated than differen-
tial systems because the solution may not always be defined. Pon-
telides et al. (Ref. 226) introduced the term index to identify the
possible problems. The index is defined as the minimum number of
times the equations need to be differentiated with respect to time to
convert the system to a set of ordinary differential equations. These
higher derivatives may not exist, and the process places limits on
which variables can be given initial values. Sometimes the initial val-
ues must be constrained by the algebraic equations (Ref. 226). For a
differential-algebraic system modeling a distillation tower, Ref. 226
shows that the index depends on the specification of pressure for the
column. Byrne and Ponzi (Ref. 58) also list several chemical engineer-
ing examples of differential-algebraic systems and solve one involving
two-phase flow.

Computer Software Efficient computer packages are available
for solving ordinary differential equations as initial value problems.
The packages are widely available and good enough that most chemi-
cal engineers use them and do not write their own. Here we discuss
three of them: RKF45, LSODE, and EPISODE. In each of the pack-
ages, the user specifies the differential equation to be solved and a
desired error criterion. The package then integrates in time and
adjusts the step size to achieve the error criterion within the limita-
tions imposed by stability.

A popular explicit, Runge-Kutta package is RKF45, developed by
Forsythe et al. (Ref. 111). The method is based on the Runge-Kutta-
Feldberg formulas. Notice there that an estimate of the truncation
error at each step is available. Then the step size can be reduced until
this estimate is below the user-specified tolerance. The method is thus
automatic, and the user is assured of the results. Note, however, that
the tolerance is set on the local truncation error, namely from one step
to another, whereas the user is usually interested in the global trunca-
tion error, or the error after several steps. The global error is generally
made smaller by making the tolerance smaller, but the absolute accu-
racy is not the same as the tolerance. If the problem is stiff, then very

yn + 1 − yn

�
∆t

dy
�
dt

dxn

�
dt
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small step sizes are used; the computation becomes very lengthy. The
RKF45 code discovers this and returns control to the user with a mes-
sage indicating the problem is too hard to solve with RKF45.

A popular implicit package is LSODE, a version of Gear’s method
(Ref. 117) written by Alan Hindmarsh at Lawrence Livermore Labo-
ratory (Ref. 148). In this package, the user specifies the differential
equation to be solved and the tolerance desired. Now the method is
implicit and therefore stable for any step size. The accuracy may not
be acceptable, however, and sets of nonlinear equations must be
solved. Thus, in practice the step size is limited but not nearly so much
as in the Runge-Kutta methods. In these packages, both the step size
and order of the method are adjusted by the package. Suppose we are
calculating with a kth order method. The truncation error is deter-
mined by the (k + 1)th order derivative. This is estimated using differ-
ence formulas and the values of the right-hand sides at previous times.
An estimate is also made for the kth and (k + 2)th derivative. Then it
is possible to estimate the error in a (k − 1)th order method, a kth
order method, and a (k + 1)th order method. Furthermore, the step
size needed to satisfy the tolerance with each of these methods can be
determined. Then we can choose the method and step size for the
next step that achieves the biggest step, with appropriate adjustments
due to the different work required for each order. The package gen-
erally starts with a very small step size and a first-order method, the
backward Euler method. Then it integrates along, adjusting the order
up (and later down) depending on the error estimates. The user is
thus assured that the local truncation error meets the tolerance. There
is a further difficulty, since the set of nonlinear equations must be
solved. Usually a good guess of the solution is available, since the solu-
tion is evolving in time and past history can be extrapolated. Thus, the
Newton-Raphson method will usually converge. The package protects
itself, though, by only doing three iterations. If convergence is not
reached within this many iterations, then the step size is reduced and
the calculation is redone for that time step. The convergence theorem
for the Newton-Raphson method (p. 3-50) indicates that the method
will converge if the step size is small enough. Thus the method is guar-
anteed to work. Further economies are possible. The Jacobian needed
in the Newton-Raphson method can be fixed over several time steps.
Then, if the iteration does not converge, the Jacobian can be reevalu-
ated at the current time-step. If the iteration still does not converge,
then the step-size is reduced and a new Jacobian is evaluated. Also the
successive substitution method can be used, which is even faster,
except that it may not converge. However, it, too, will converge if the
time step is small enough.

Comparisons of the methods and additional details are provided for
chemical engineering problems by Refs. 59 and 106. Generally, the
Runge-Kutta methods give extremely good accuracy, especially when
the step size is kept small for stability reasons. When the computation
time is comparable for LSODE and RKF45, the RKF45 package gen-
erally gives much more accurate results. The RKF45 package is un-
suitable, however, for many chemical reactor problems because they
are so stiff. Generally, though, standard packages must have a high-
order explicit method (usually a version of Runge-Kutta) and a multi-
step, implicit method (usually a version of GEAR, EPISODE, or
LSODE). The package DASSL (Ref. 224) uses similar principles to
solve the differential-algebraic systems.

The software described here is available by electronic mail over the
Internet. Sending the message

������������	
���
���	�
��	�

will retrieve an index and descriptions of how to obtain the software.
Stability, Bifurcations, Limit Cycles Some aspects of this sub-

ject involve the solution of nonlinear equations; other aspects involve
the integration of ordinary differential equations; applications include
chaos and fractals as well as unusual operation of some chemical engi-
neering equipment. Ref. 176 gives an excellent introduction to the
subject and the details needed to apply the methods. Ref. 66 gives
more details of the algorithms. A concise survey with some chemical
engineering examples is given in Ref. 91. Bifurcation results are
closely connected with stability of the steady states, which is essen-
tially a transient phenomenon.

Sensitivity Analysis When solving differential equations, it is
frequently necessary to know the solution as well as the sensitivity of
the solution to the value of a parameter. Such information is useful
when doing parameter estimation (to find the best set of parameters
for a model) and for deciding if a parameter needs to be measured
accurately. See Ref. 105.

ORDINARY DIFFERENTIAL EQUATIONS-BOUNDARY
VALUE PROBLEMS

Diffusion problems in one dimension lead to boundary value prob-
lems. The boundary conditions are applied at two different spatial
locations: at one side the concentration may be fixed and at the other
side the flux may be fixed. Because the conditions are specified at two
different locations, the problems are not initial value in character. It is
not possible to begin at one position and integrate directly because at
least one of the conditions is specified somewhere else and there are
not enough conditions to begin the calculation. Thus, methods have
been developed especially for boundary value problems.

Shooting Methods The first method is one that utilizes the tech-
niques for initial value problems but allows for an iterative calculation
to satisfy all the boundary conditions. Consider the nonlinear bound-
ary value problem

= f �x, y, �, y(0) = α, y(1) = β

Convert this second-order equation into two first-order equations
along with the boundary conditions written to include a parameter s to
represent the unknown value of v(0) = dy/dx(0).

= v, = f(x, y, v), y(0) = α, v(0) = s

The parameter s is chosen so that the last boundary condition is satis-
fied: y(1) = β. Define the function

χ(s) = y(1, s) − β
and iterate on s to make χ(s) = 0. Note that the condition at x = 0 is sat-
isfied for any s, the differential equation is satisfied by the integration
routine, and only the last boundary condition is yet to be satisfied.
Both successive substitution and the Newton-Raphson methods can
be used. The technique can be used when the boundary conditions
are more general and convergence can be proved (see Refs. 106 and
167). Computer software exists: the IMSL program DTPTB uses
DVERK, which employs Runge-Kutta integration to integrate the
ordinary differential equations (Ref. 55).

Finite Difference Method To apply the finite difference
method, we first spread grid points through the domain. Figure 3-49
shows a uniform mesh of n points (nonuniform meshes are possible,
too). The unknown, here c(x), at a grid point xi is assigned the symbol
ci = c(xi). The finite difference method can be derived easily by using
a Taylor expansion of the solution about this point. Expressions for the
derivatives are:

�
i
= − �

i
+ ⋅⋅⋅ , �

i
= + �

i
+ ⋅⋅⋅

�
i
= − �

i

The truncation error in the first two expressions is proportional to ∆x,
and the methods are said to be first-order. The truncation error in the
third expression is proportional to ∆x2, and the method is said to be
second-order. Usually the last equation is used to insure the best accu-
racy. The finite difference representation of the second derivative is:
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The truncation error is proportional to ∆x2. To solve a differential
equation, it is evaluated at a point i and then these expressions are
inserted for the derivatives.

Example Consider the equation for convection, diffusion, and reaction in
a tubular reactor.

− = Da R(c)

The finite difference representation is

− = Da R(ci)

This equation is written for i = 2 to n − 1, or the internal points. The equations
would then be coupled but would also involve the values of c1 and cn, as well.
These are determined from the boundary conditions.

If the boundary condition involves a derivative, it is important that the deriv-
atives be evaluated using points that exist. Three possibilities exist:

�
1
=

�
1
=

The third alternative is to add a false point, outside the domain, as c0 =
c(x = −∆x).

�
1
=

Since this equation introduces a new variable, c0, another equation is needed
and is obtained by writing the finite difference equation for i = 1, too.

The sets of equations can be solved using the Newton-Raphson method. The
first form of the derivative gives a tridiagonal system of equations, and the stan-
dard routines for solving tridiagonal equations suffice. For the other two
options, some manipulation is necessary to put them into a tridiagonal form (see
Ref. 105).

Frequently, the transport coefficients, such as diffusion coefficient or thermal
conductivity, depend on the dependent variable, concentration, or temperature,
respectively. Then the differential equation might look like

�D(c) � = 0

This could be written as two equations.

− = 0 J = −D(c) 

Because the coefficient depends on c, the equations are more complicated. A
finite difference method can be written in terms of the fluxes at the midpoints,
i + 1/2.

− = 0 Ji +1/2 = −D(ci + 1/2) 

These are combined to give the complete equation.

= 0

This represents a set of nonlinear algebraic equations that can be solved with the
Newton-Raphson method. However, in this case, a viable iterative strategy is to
evaluate the transport coefficients at the last value and then solve

= 0

The advantage of this approach is that it is easier to program than a full Newton-
Raphson method. If the transport coefficients do not vary radically, then the
method converges. If the method does not converge, then it may be necessary
to use the full Newton-Raphson method.

There are three common ways to evaluate the transport coefficient at the
midpoint. The first one uses the transport coefficient evaluated at the average
value of the solutions on either side.

D (ci + 1/2) ≈ D
 (ci + 1 + ci)�
The truncation error of this approach is ∆x2 (Ref. 106). The second approach
uses the average of the transport coefficients on either side.

D (ci + 1/2) ≈ [D(ci + 1) + D(ci)]
1
�
2

1
�
2

D(ck
i + 1/2) (ci + 1

k + 1 − ci
k + 1) − D(ck

i − 1/2) (ci
k + 1 − ci − 1

k + 1)
������

∆x2

D(ci + 1/2) (ci + 1 − ci) − D(ci − 1/2) (ci − ci − 1)
�����

∆x2

ci + 1 − ci
�

∆x
Ji + 1/2 − Ji − 1/2
��

∆x

dc
�
dx

dJ
�
dx

dc
�
dx

d
�
dx

c2 − c0
�

2∆x
dc
�
dx

−3c1 + 4c2 − c3
��

2∆x
dc
�
dx

c2 − c1
�

∆x
dc
�
dx

ci + 1 − ci − 1
��

2∆x
ci + 1 − 2ci + ci − 1
��

∆x2

1
�
Pe

dc
�
dx

d2c
�
dx2

1
�
Pe

2∆x2

�
4!

d4c
�
dx4

ci + 1 − 2ci + ci − 1
��

∆x2

d 2c
�
dx2

The truncation error of this approach is also ∆x2 (Ref. 106). The third approach
uses an “upstream” transport coefficient.

D (ci + 1/2) ≈ D(ci + 1), when D (ci + 1) > D(ci)

D (ci + 1/2) ≈ D(ci), when D (ci + 1) < D(ci)

This approach is used when the transport coefficients vary over several orders of
magnitude, and the “upstream” direction is defined as the one in which the
transport coefficient is larger. The truncation error of this approach is only ∆x
(Refs. 106 and 107), but this approach is useful if the numerical solutions show
unrealistic oscillations.

If the grid spacing is not uniform, the formulas must be revised. The notation
is shown in Fig. 3-50. The finite-difference form of the equations is then

− = 0 Ji + 1/2 = −Di + 1/2 , Ji − 1/2 = −Di − 1/2

If average diffusion coefficients are used, then the finite difference equation is
as follows.


 (Di + 1 + Di) (ci + 1 − ci) − (Di + Di − 1) (ci − ci − 1)� = 0

Rigorous error bounds are discussed for linear ordinary differential equations
solved with the finite difference method by Isaacson and Keller (Ref. 107).
Computer software exists to solve two-point boundary value problems. The
IMSL routine DVCPR uses the finite difference method with a variable step
size (Ref. 247). Finlayson (Ref. 106) gives FDRXN for reaction problems.

Example A reaction diffusion problem is solved with the finite difference
method.

= φ2c, (0) = 0, c(1) = 1

The solution is derived for φ =2. It is solved several times, first with two inter-
vals and three points (at x = 0, 0.5, 1), then with four intervals, then with eight
intervals. The reason is that when an exact solution is not known, one must use
several ∆x and see that the solution converges as ∆x approaches zero. With two
intervals, the equations are as follows. The points are x1 = 0, x2 = 0.5, and x3 = 1.0;
and the solution at those points are c1, c2, and c3, respectively. A false boundary
is used at x0 = −0.5.

= 0, − φ2c1 = 0, − φ2c2 = 0, c3 = 1

The solution is c1 = 0.2857, c2 = 0.4286, and c3 = 1.0. Since the solution is only an
approximation and approaches the exact solution only as ∆x approaches zero, it
is necessary to find out if ∆x is small enough to be considered zero. This is done
by solving the problem again with more grid points. The value of concentration
at x = 0 takes the following values for different ∆x. These values are extrapolated
using the Richardson extrapolation technique to give c(0) = 0.265826. Using this
value as the best estimate of the exact solution, the errors in the solution are tab-
ulated versus ∆x. Clearly the errors go as ∆x2 (decreasing by a factor of 4 when
∆x decreases by a factor of 2), thus validating the solution. The exact solution
(given below) is 0.265802.

n − 1 ∆x c(0)

2 0.5 0.285714
4 0.25 0.271043
8 0.125 0.267131

n − 1 ∆x Error in c(0)

2 0.5 0.01989
4 0.25 0.00521
8 0.125 0.00130

Finite Difference Methods Solved with Spreadsheets A
convenient way to solve the finite difference equations for simple
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ci − ci − 1
�

∆xi

ci + 1 − ci
�

∆xi + 1

Ji + 1/2 − Ji − 1/2
��
a(∆xi + ∆xi + 1)
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problems is to use a computer spreadsheet. The equations for the
problem solved in the example can be cast into the following form

c1 =

ci =

cn + 1 = 1

Let us solve the problem using 6 nodes, or 5 intervals. Then the con-
nection between the cell in the spreadsheet and the nodal value is
shown in Fig. 3-51. The following equations are placed into the vari-
ous cells.
���������������������������
��������������������������������
��������

The equation in cell B1 is copied into cells C1 though E1. Then turn
on the iteration scheme in the spreadsheet and watch the solution
converge. Whether or not convergence is achieved can depend on
how you write the equations, so some experimentation may be neces-
sary. Theorems for convergence of the successive substitution method
are useful in this regard.

Orthogonal Collocation The orthogonal collocation method
has found widespread application in chemical engineering, particu-
larly for chemical reaction engineering. In the collocation method, the
dependent variable is expanded in a series of orthogonal polynomials,
and the differential equation is evaluated at certain collocation points.
The collocation points are the roots to an orthogonal polynomial, as
first used by Lanczos (Refs. 182 and 183). A major improvement was
proposed by Villadsen and Stewart (Refs. 288 and 289), who proposed
that the entire solution process be done in terms of the solution at the
collocation points rather than the coefficients in the expansion. This
method is especially useful for reaction-diffusion problems that fre-
quently arise when modeling chemical reactors. It is highly efficient
when the solution is smooth, but the finite difference method is pre-
ferred when the solution changes steeply in some region of space. See
Ref. 105 for comparisons.

Galerkin Finite Element Method In the finite element
method, the domain is divided into elements and an expansion is
made for the solution on each finite element. In the Galerkin finite
element method an additional idea is introduced: the Galerkin
method is used to solve the equation. The Galerkin method is
explained before the finite element basis set is introduced, using the
equations for reaction and diffusion in a porous catalyst pellet.

= φ2R(c)

(0) = 0, c(1) = 1

The unknown solution is expanded in a series of known functions
{bi(x)} with unknown coefficients {ai}.

c(x) = �
NT

i = 1

aibi(x)

The trial solution is substituted into the differential equation to obtain
the residual.

Residual = �
NT

i = 1

ai − φ2R
�
NT

i = 1

aibi(x)�d 2bi
�
dx2

dc
�
dx

d 2c
�
dx2

ci + 1 + ci − 1
��
2 + φ2∆x2

2c2
��
2 + φ2∆x2

The residual is then made orthogonal to the set of basis functions.

�1

0
bj(x) ��

NT

i = 1

ai − φ2R
�
NT

i = 1

aibi(x)� dx = 0 j = 1, . . . , NT

This is the process that makes the method a Galerkin method. The
basis for the orthogonality condition is that a function that is made
orthogonal to each member of a complete set is then zero. The resid-
ual is being made orthogonal, and if the basis functions are complete
and you use infinitely many of them, then the residual is zero. Once
the residual is zero, the problem is solved.

This equation is integrated by parts to give the following equation

−�
NT

i = 1

�1

0
dxai = φ2�1

0
bj(x)R
�

NT

i = 1

aibi(x)� dx

j = 1, . . . , NT − 1 (3-76)

This equation defines the Galerkin method and a solution that satis-
fies this equation (for all j = 1, . . . , ∞) is called a weak solution. For an
approximate solution, the equation is written once for each member
of the trial function, j = 1, . . . , NT − 1, and the boundary condition is
applied.

�
NT

i = 1

aibi(1) = cB

The Galerkin finite element method results when the Galerkin
method is combined with a finite element trial function. The domain
is divided into elements separated by nodes, as in the finite difference
method. The solution is approximated by a linear (or sometimes qua-
dratic) function of position within the element. These approximations
are substituted into Eq. (3-76) to provide the Galerkin finite element
equations. The element integrals are defined as

Be
JI = − �1

0
du, FJ

e = φ2∆xe �
1

0
NJ(u)R
�

NP

I = 1

cI
eNI(u)� du

and the entire method can be written in the following compact nota-
tion:

�
e

BJI
e cI

e = �
e

FJ
e

The matrices for various terms are given in the table. This equation
can also be written in the form

AAc = f

where the matrix AA is sparse; if linear elements are used, the matrix
is tridiagonal. Once the solution is found, the solution at any point can
be recovered from

ce(u) = ce
I = 1(1 − u) + ce

I = 2u

for linear elements.

Element Matrices for Galerkin Method with Linear Shape Functions

N1 = 1 − u, N2 = u, = −1, = 1

�1

0
du = � �, �1

0
NJ du = � �

�1

0
NJNI du = � �, �1

0
NJ du = � �, �1

0
Nju du = � �

Example Solve the specified problem when φ = 2, the rate expression is
linear, R(c) = c, and the boundary condition is 1.0. The Galerkin finite element
method is used with ∆x = 0.33333. The element nodes are at x = 0, 0.3333,
0.6667, and 1.0. The solution at x = 1.0 is c4 = 1.0. The Galerkin equations for
one element are obtained from the table.

−� � = φ2∆x2 � �1⁄6
s

s
1⁄6
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1
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j
s

a
a

j
s
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a
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−a

dNI
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1
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dNI
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dNJ
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dNI
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When these are summed over all elements the result is


 � 
 � = 
 � 
 � + 
 �
After rearrangement this is


 � 
 � = 
 �
The solution is c1 = 0.2560, c2 = 0.3174, c3 = 0.5312, and c4 = 1. The exact solu-
tion is derived using the section entitled “Ordinary Differential Equations: Lin-
ear Differential Equations with Constant Coefficients.”

c = =

The values of the exact solution at the same finite element nodes are c1 = 0.2658,
c2 = 0.3271, c3 = 0.5392, and c4 = 1, indicating that the three-element finite ele-
ment solution is accurate within 3 percent. When the exact solution is not
known, the problem must be solved several times, each with a different number
of elements, so that convergence is seen as the number of elements increases.

Cubic B-Splines Cubic B-splines can also be used to solve dif-
ferential equations (Refs. 105 and 266).

Adaptive Meshes In many two-point boundary value problems,
the difficulty in the problem is the formation of a boundary layer
region, or a region in which the solution changes very dramatically. In
such cases, it is prudent to use small mesh spacing there, either with
the finite difference method or the finite element method. If the
region is known a priori, small mesh spacings can be assumed at the
boundary layer. If the region is not known, though, other techniques
must be used. These techniques are known as adaptive mesh tech-
niques. The mesh size is made small where some property of the solu-
tion is large. For example, if the truncation error of the method is nth
order, then the nth-order derivative of the solution is evaluated and a
small mesh is used where it is large. Alternatively, the residual (the dif-
ferential equation with the numerical solution substituted into it) can
be used as a criterion. See Refs. 21 and 107. It is also possible to define
the error that is expected from a method one order higher and one
order lower. Then a decision about whether to increase or decrease
the order of the method can be made, taking into account the relative
work of the different orders. This provides a method of adjusting both
the mesh spacing (∆x, or sometimes called h) and the degree of poly-
nomial (p). Such methods are called h-p methods.

Singular Problems and Infinite Domains If the solution
being sought has a singularity, it may be difficult to find a good numer-
ical solution. Sometimes even the location of the singularity may not
be known (Ref. 11). One method of solving such problems is to refine
the mesh near the singularity, relying on the better approximation due
to a smaller ∆x. Another approach is to incorporate the singular trial
function into the approximation. Thus, if the solution approaches f(x)
as x goes to zero and f(x) becomes infinite, one may define a new vari-
able u(x) = y(x) − f(x) and derive an equation for u. The differential
equation is more complicated, but the solution is better near the sin-
gularity. See Refs. 39 and 231.

Sometimes the domain is semi-infinite, as in boundary layer flow.
The domain can be transformed from the x domain (0–∞) to the η
domain (1–0) using the transformation η = exp (−x). Another
approach is to use a variable mesh, perhaps with the same transfor-
mation. For example, use η = exp (−βx) and a constant mesh size in η;
the value of β is found experimentally. Still another approach is to
solve on a finite mesh in which the last point is far enough away that
its location does not influence the solution (Ref. 59). A location that is
far enough away must be found by trial and error.

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

In this subsection is considered a method of solving numerically the
Fredholm integral equation of the second kind:

u(x) = f(x) + λ �b

a
k(x, t)u(t) dt for u(x) (3-77)
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The method discussed arises because a definite integral can be closely
approximated by any of several numerical integration formulas (each
of which arises by approximating the function by some polynomial
over an interval). Thus the definite integral in Eq. (3-77) can be
replaced by an integration formula, and Eq. (3-77) may be written

u(x) = f(x) + λ(b − a) 
�
n

i = 1

cik(x, ti)u(ti)� (3-78)

where t1, . . . , tn are points of subdivision of the t axis, a ≤ t ≤ b, and the
c’s are coefficients whose values depend upon the type of numerical
integration formula used. Now Eq. (3-78) must hold for all values of 
x, a ≤ x ≤ b; so it must hold for x = t1, x = t2, . . . , x = tn. Substituting for
x successively t1, t2, . . . , tn and setting u(ti) = ui, f(ti) = fi, we get n lin-
ear algebraic equations for the n unknowns u1, . . . , un. That is,

ui = fi + (b − a)[c1k(ti, t1)u1 + c2k(ti, t2)u2

+ ⋅⋅⋅ + cnk(ti, tn)un] i = 1, 2, . . . , n

These uj may be solved for by the methods under “Numerical Solution
of Linear Equations and Associated Problems” and substituted into
Eq. (3-78) to yield an approximate solution for Eq. (3-77).

Example Solve numerically u(x) = x +s ∫ 1
0 (t + x)u(t) dt. In this example 

a = 0, b = 1. Take n = 3, t1 = 0, t2 =a, t3 = 1. Then Eq. (3-78) takes the form (for
which we have used the parabolic rule)

u(x) = x + (s) [(t1 + x)u(t1) + 4(t2 + x)u(t2) + (t3 + x)u(t3)]

= x + (1/18)[(t1 + x)u(t1) + 4(t2 + x)u(t2) + (t3 + x)u(t3)]

This must hold for all x, 0 ≤ x ≤ 1. Here t1 = 0, t2 =a, and t3 = 1. Evaluate at
x = ti.

u(t1) = t1 + 1⁄18[2t1u(t1) + 4(t2 + t1)u(t2) + (t3 + t1)u(t3)]

u(t2) = t2 + 1⁄18[(t1 + t2)u(t1) + 4(2t2)u(t2) + (t3 + t2)u(t3)]

u(t3) = t3 + 1⁄18[(t1 + t3)u(t1) + 4(t2 + t3)u(t2) + 2t3u(t3)]

By setting in the values of t1, t2, t3 and u(ti) = ui,

18u1 − 2u2 − u3 = 0
−u1 + 28u2 − 3u3 = 18
−u1 − 6u2 + 16u3 = 18

with the solution u1 = 12⁄71, u2 = 57⁄71, u3 = 102⁄71. Thus

u(x) = x + 1⁄18[x12⁄71 + 4(a + x)57⁄71 + (1 + x)102⁄71]

= 90⁄71x + 12⁄71

Because of the work involved in solving large systems of simultane-
ous linear equations it is desirable that only a small number of u’s be
computed. Thus the gaussian integration formulas are useful because
of the economy they offer. See references on numerical solutions of
integral equations.

Solutions for Volterra equations are done in a similar fashion,
except that the solution can proceed point by point, or in small groups
of points depending on the quadrature scheme. See Refs. 105 and
195. There are methods that are analogous to the usual methods for
integrating differential equations (Runge-Kutta, predictor-corrector,
Adams methods, etc.). Explicit methods are fast and efficient until the
time step is very small to meet the stability requirements. Then
implicit methods are used, even though sets of simultaneous algebraic
equations must be solved. The major part of the calculation is the
evaluation of integrals, however, so that the added time to solve the
algebraic equations is not excessive. Thus, implicit methods tend to be
preferred (Ref. 195). Volterra equations of the first kind are not well
posed, and small errors in the solution can have disastrous conse-
quences. The boundary element method uses Green’s functions and
integral equations to solve differential equations (Refs. 45 and 200).

MONTE CARLO SIMULATIONS

Some physical problems, such as those involving interaction of mole-
cules, are usually formulated as integral equations. Monte Carlo
methods are especially well-suited to their solution. This section can-
not give a comprehensive treatment of such methods, but their use in

a
�
3
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calculating the value of an integral will be illustrated. Suppose we wish
to calculate the integral

G = �
Ω0

g(x) f(x) dx

where the distribution function f(x) satisfies:

f(x) ≥ 0, �
Ω0

f(x) dx = 1

The distribution function f(x) can be taken as constant; for example,
1/Ω0. We choose variables x1, x2, . . . , xN randomly from f(x) and form
the arithmetic mean

GN = �
i

g(xi)

The quantity GN is an estimation of G, and the fundamental theorem
of Monte Carlo guarantees that the expected value of GN is G, if G
exists (Ref. 161). The error in the calculation is given by

ε =

where σ1
2 is calculated from

σ1
2 = �

Ω0

g2(x) f(x) dx − G2

Thus the number of terms needed to achieve a specified accuracy can
be calculated once an estimate of σ1

2 is known.

N =

Various methods, such as influence sampling, can be used to reduce
the number of calculations needed (Ref. 161).

NUMERICAL SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS

Parabolic Equations in One Dimension By combining the
techniques applied to initial value problems and boundary value prob-
lems it is possible to easily solve parabolic equations in one dimension.
The method is often called the method of lines. It is illustrated here
using the finite difference method, but the Galerkin finite element
method and the orthogonal collocation method can also be combined
with initial value methods in similar ways. The analysis is done by
example.

Example Consider the diffusion equation, with boundary and initial con-
ditions.

= D

c(x, 0) = 0
c(0, t) = 1, c(1, t) = 0

We denote by ci the value of c(xi, t) at any time. Thus, ci is a function of
time, and differential equations in ci are ordinary differential equa-
tions. By evaluating the diffusion equation at the ith node and replac-
ing the derivative with a finite difference equation, the following
working equation is derived for each node i, i = 2, . . . , n (see Fig. 3-52).

= D 

This can be written in the general form of a set of ordinary differential
equations by defining the matrix AA.

= AAc

This set of ordinary differential equations can be solved using any of
the standard methods, and the stability of the integration of these
equations is governed by the largest eigenvalue of AA. If Euler’s
method is used for integration, the time step is limited by

∆t ≤ 2
�
|λ|max

dc
�
dt

ci + 1 − 2ci + ci − 1
��

∆x2

dci
�
dt

∂2c
�
∂x2

∂c
�
∂t

σ1
2

�
ε

σ1
�
N1/2

1
�
N

whereas, if the Runge-Kutta-Feldberg method is used, the 2 in the
numerator is replaced by 3.0. The largest eigenvalue of AA is bounded
by Gerschgorin’s Theorem (Ref. 155, p. 135).

|λ|max ≤ max2 < j < n �
n

i = 2

|AA ji| =

This gives the well-known stability limit

∆t ≤ 1
�
2

D
�
∆x2

4D
�
∆x2
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The smallest eigenvalue is independent of ∆x (it is Dπ2/L2) so that the
ratio of largest to smallest eigenvalue is proportional to 1/∆x2. Thus,
the problem becomes stiff as ∆x approaches zero (Ref. 106).

Another way to study the stability of explicit equations is to use the
positivity theorem. For Euler’s method, the equations can be written
in the form

= D 

where c i
n = c(xi, tn). Then the new value is given by

ci
n + 1 = cn

i + 1 + �1 − 2 � c i
n + cn

i − 1

Theorem. If c i
n + 1 = Acn

i + 1 + Bci
n + Ccn

i − 1 and A, B, and C are pos-
itive and A + B + C ≤ 1, then the scheme is stable and the errors die
out. Here the theorem requires

�1 − 2 � > 0

which gives the same stability condition (Ref. 106).
Implicit methods can also be used. Write a finite difference form

for the time derivative and average the right-hand sides, evaluated at
the old and new time.

= D(1 − θ) + Dθ 

Now the equations are of the form

− ci + 1
n + 1 + 
 1 + 2 � c i

n + 1 − ci − 1
n + 1

= c i
n + (cn

i + 1 − 2c i
n + cn

i − 1)

and require solving a set of simultaneous equations, which have a
tridiagonal structure. Using θ = 0 gives the Euler method (as above),
θ = 0.5 gives the Crank-Nicolson method, and θ = 1 gives the back-
ward Euler method. The Crank-Nicolson method is also the same as
applying the trapezoid rule to do the integration. The stability limit is
given by

≤

If the ∆t satisfies the following equation, then the solution will not
oscillate from node to node (a numerical artifact). See Ref. 106.

≤

Other methods can be used in space, such as the finite element
method, the orthogonal collocation method, or the method of orthog-
onal collocation on finite elements (see Ref. 106). Spectral methods
employ Chebyshev polynomials and the Fast Fourier Transform and
are quite useful for hyperbolic or parabolic problems on rectangular
domains (Ref. 125).

Packages exist that use various discretizations in the spatial direc-
tion and an integration routine in the time variable. PDECOL uses 
B-splines for the spatial direction and various GEAR methods in time
(Ref. 247). PDEPACK and DSS (Ref. 247) use finite differences in
the spatial direction and GEARB in time (Ref. 66). REACOL (Ref.
106) uses orthogonal collocation in the radial direction and LSODE in
the axial direction, while REACFD uses finite difference in the radial
direction; both codes are restricted to modeling chemical reactors.

Elliptic Equations Elliptic equations can be solved with both
finite difference and finite element methods. One-dimensional ellip-
tic problems are two-point boundary value problems. Two- and three-
dimensional elliptic problems are often solved with iterative methods
when the finite difference method is used and direct methods when
the finite element method is used. So there are two aspects to con-
sider: how the equations are discretized to form sets of algebraic equa-
tions and how the algebraic equations are then solved.
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The prototype elliptic problem is steady-state heat conduction or
diffusion,

k � + � = Q

possibly with a heat generation term per unit volume, Q. The bound-
ary conditions taken here are T = f(x, y) on the boundary (S) with f a
known function. Illustrations are given for constant thermal conduc-
tivity k while Q is a known function of position. The finite difference
formulation is given using the following nomenclature:

Ti, j = T(i∆x, j∆y)

The finite difference formulation is then (see Fig. 3-52)

+ = Qi, j (3-79)

Ti, j = f(xi, yj) on S

If the boundary is parallel to a coordinate axis any derivative is evalu-
ated as in the section on boundary value problems, using either a one-
sided, centered difference or a false boundary. If the boundary is more
irregular and not parallel to a coordinate line then more complicated
expressions are needed and the finite element method may be the
better method.

Equation (3-79) is rewritten in the form

2 �1 + � Ti, j = Ti + 1, j + Ti − 1, j + (Ti, j + 1 + Ti, j − 1) − ∆x2

The relaxation method solves this equation iteratively.

2 �1 + � T*i, j = Ts
i + 1, j + Ts + 1

i − 1, j + (Ts
i, j + 1 + Ti, j − 1

s + 1 ) − ∆x2

Ts + 1
i, j = Ts

i, j + β(T*i, j − Ts
i, j)

If β = 1, this is the Gauss-Seidel method. If β > 1, it is overrelaxation;
if β < 1 it is underrelaxation. The value of β may be chosen empirically,
0 < β < 2, but it can be selected theoretically for simple problems like
this (Refs. 106 and 221). In particular, these equations can be pro-
grammed in a spreadsheet and solved using the iteration feature, pro-
vided the boundaries are all rectangular.

The alternating direction method can be used for elliptic problems
by using sequences of iteration parameters (Refs. 106 and 221). The
method is well suited to transient problems as well.

These are the classical iterative techniques. Recently precondi-
tioned conjugate gradient methods have been developed (see Ref.
100). In these methods, a series of matrix multiplications are done
iteration by iteration; and the steps lend themselves to the efficiency
available in parallel computers. In the multigrid method, the problem
is solved on several grids, each more refined than the previous one. As
one iterates between the solutions on the different grids, one con-
verges to the solution of the algebraic equations. See Juncu and Mihail
(Ref. 68) for a chemical engineering application.

The Galerkin finite element method (FEM) is useful for solving
elliptic problems and is particularly effective when the domain or
geometry is irregular. As an example, cover the domain with triangles
and define a trial function on each triangle. The trial function takes
the value 1.0 at one corner and 0.0 at the other corners and is linear in
between. See Fig. 3-53. These trial functions on each triangle are
pieced together to give a trial function on the whole domain. General
treatments of the finite element method are available (see refer-
ences). The steps in the solution method are similar to those
described for boundary value problems, except now the problems are
much bigger so that the numerical analysis must be done very care-
fully to be efficient. Most engineers, though, just use a finite element
program without generating it. There are three major caveats that
must be addressed. The first one is that the solution is dependent on
the mesh laid down, and the only way to assess the accuracy of the
solution is to solve the problem with a more refined mesh. The second
concern is that the solution obeys the shape of the trial function inside
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�
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�
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the element. Thus, if linear functions are used on triangles, a three-
dimensional view of the solution, plotting the solution versus x and y,
consists of a series of triangular planes joined together at the edges, as
in a geodesic dome. The third caveat is that the Galerkin finite ele-
ment method is applied to both the differential equations and the
boundary conditions. Computer programs are usually quite general
and may allow the user to specify boundary conditions that are not
realistic. Also, natural boundary conditions are satisfied if no other
boundary condition (ones involving derivatives) is set at a node. Thus,
the user of finite element codes must be very clear what boundary
conditions and differential equations are built into the computer code.
When the problem is nonlinear, the Newton-Raphson method is used
to iterate from an initial guess. Nonlinear problems lead to compli-
cated integrals to evaluate, and they are usually evaluated using
Gaussian quadrature.

One nice feature of the finite element method is the use of natural
boundary conditions. It may be possible to solve the problem on a
domain that is shorter than needed to reach some limiting condition
(such as at an outflow boundary). The externally applied flux is still
applied at the shorter domain, and the solution inside the truncated
domain is still valid. Examples are given in Refs. 67 and 107. The
effect of this is to allow solutions in domains that are smaller, thus sav-
ing computation time and permitting the solution in semi-infinite
domains.

A general purpose package for general two-dimensional domains
and rectangular three-dimensional rectangular domains is ELLPACK
(Ref. 247). This package allows choice of a variety of methods: finite
difference, Hermite collocation, spline Galerkin, collocation, as well
as others. Comparisons of the various methods are available (Ref.
154). The program FISHPAK solves the Helmholtz equation in mul-
tiple dimensions when the domain is separable (since fast methods
like FFT are used). See Ref. 247.

Hyperbolic Equations The most common situation yielding
hyperbolic equations involves unsteady phenomena with convection.
Two typical equations are the convective diffusive equation

+ u = D

and the chromatography equation (Ref. 245)

φ + φu + (1 − φ) = 0

where φ is the void fraction and f(c) gives the equilibrium relation
between the concentration in the fluid phase and the concentration in
the solid phase. If the diffusion coefficient is zero, the convective dif-
fusion equation is hyperbolic. If D is small, the phenomenon may be
essentially hyperbolic, even though the equations are parabolic. Thus
the numerical methods for hyperbolic equations may be useful even
for parabolic equations.

Equations for several methods are given here, as taken from the
book by Finlayson (Ref. 107). If the convective term is treated with a
centered difference expression, the solution exhibits oscillations from
node to node, and these only go away if a very fine grid is used. The

∂c
�
∂t
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�
dc

∂c
�
∂x

∂c
�
∂t

∂2c
�
∂x2

∂c
�
∂x

∂c
�
∂t

simplest way to avoid the oscillations with a hyperbolic equation is to
use upstream derivatives. If the flow is from left to right, this would
give

+ u = D 

[ φci + (1 − φ)f(ci)] + φui = 0

(See Ref. 227 for the reason the equation is written in this form.)
The effect of using upstream derivatives is to add artificial or

numerical diffusion to the model. This can be ascertained by rear-
ranging the finite difference form of the convective diffusion equation

+ u = �D + �
Thus the diffusion coefficient has been changed from

D to D +

Another method often used for hyperbolic equations is the Mac-
Cormack method. This method has two steps, and it is written here for
the convective diffusion equation.

c*i n + 1 = ci
n − (cn

i + 1 − c i
n) + (cn

i + 1 − 2c i
n + cn

i − 1)

c i
n + 1 = (ci

n + c*i n + 1) − (c*i n + 1 − c*i − 1
n + 1) 

+ (c*i + 1
n + 1 − 2c*i n + 1 + c*i − 1

n + 1)

The concentration profile is steeper for the MacCormack method
than for the upstream derivatives, but oscillations can still be present.
The flux-corrected transport method can be added to the MacCor-
mack method. A solution is obtained both with the upstream algo-
rithm and the MacCormack method and then they are combined to
add just enough diffusion to eliminate the oscillations without
smoothing the solution too much. The algorithm is complicated and
lengthy but well worth the effort (Refs. 37, 107, and 270).

Stability conditions can be constructed in terms of Co = u∆t/∆x and
r = D∆t/∆x2 by using Fourier analysis (Ref. 107). All the methods
require

Co = ≤ 1

where Co is the Courant number. How much Co should be less than
one depends on the method and on r = D∆t/∆x2. For example, the
upstream method requires Co ≤ 1 − 2r. The MacCormack method
depends less on r and is stable for most Co as long as r ≤ 0.5. Each of
these methods is trying to avoid oscillations that would disappear if the
mesh were fine enough. For the steady convective diffusion equation,
these oscillations do not occur provided

≤ 1

For large velocity u, the ∆x must be small to meet this condition. An
alternative is to use a small ∆x in regions where the solution changes
drastically. Since these regions change in time, it is necessary that the
elements or grid points move. The criteria to move the grid points can
be quite complicated, and typical methods are reviewed in Ref. 107.
Similar considerations apply to the nonlinear chromatography prob-
lem (Ref. 227). See especially Ref. 192.

Parabolic Equations in Two or Three Dimensions Computa-
tions become much more lengthy when there are two or more spatial
dimensions. For example, we may have the unsteady heat conduction
equation

ρCp = k � + � − Q
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FIG. 3-53 Trial functions for Galerkin finite element method: linear polyno-
mial on triangle.



In the finite difference method an explicit technique would evalu-
ate the right-hand side at the nth time level.

ρCp = (Tn
i + 1, j − 2Ti, j

n + T n
i − 1, j) 

+ (Tn
i, j + 1 − 2Tn

i, j + T n
i, j − 1) − Q

When Q = 0 and ∆x = ∆y, the time step limit can be found using the
positivity rule.

∆t ≤ or

These time steps are smaller than for one-dimensional problems. For
three dimensions, the limit is

∆t ≤

To avoid such small time steps, which become smaller as ∆x decreases,
an implicit method could be used. This leads to large, sparse matrices
rather than convenient tridiagonal matrices. These can be solved, 
but the alternating direction method is also useful (Ref. 221). This
reduces a problem on an n  n grid to a series of 2n one-dimensional
problems on an n grid.

SPLINE FUNCTIONS

Splines are functions that match given values at the points x1, . . . , xNT

and have continuous derivatives up to some order at the knots, or the
points x2, . . . , xNT − 1. Cubic splines are most common; see Ref. 38. The
function is represented by a cubic polynomial within each interval (xi,
xi + 1) and has continuous first and second derivatives at the knots. Two
more conditions can be specified arbitrarily. These are usually the sec-
ond derivatives at the two end points, which are commonly taken as
zero; this gives the natural cubic splines.

Take yi = y(xi) at each of the points xi, and let ∆xi = xi + 1 − xi. Then,
in the interval (xi, xi + 1), the function is represented as a cubic poly-
nomial.

Ci(x) = a0i + a1i x + a2ix2 + a3ix3

The interpolating function takes on specified values at the knots and
has continuous first and second derivatives at the knots. Within the ith
interval, the function is

Ci(x) = Ci(xi) + C′i(xi)(x − xi) + C″i (xi) 

+ [C″i (xi + 1) − C″i (xi)] 

where Ci(xi) = yi. The second derivative C″i (xi) = y″i is found by solving
the following tridiagonal system of equations:

y″i − 1∆xi − 1 + y″i 2(∆xi − 1 + ∆xi) + y″i + 1∆xi = 6 � − �
Since the continuity conditions apply only for i = 2, . . . , NT − 1, we
have only NT − 2 conditions for the NT values of y″i . Two additional
conditions are needed, and these are usually taken as the value of the
second derivative at each end of the domain, y″1 , y″NT. If these values
are zero, we get the natural cubic splines; they can also be set to
achieve some other purpose, such as making the first derivative match
some desired condition at the two ends. With these values taken as
zero in the natural cubic spline, we have a NT − 2 system of tridiago-
nal equations, which is easily solved. Once the second derivatives are
known at each of the knots, the first derivatives are given by

y′i = − y″i − y″i + 1

The function itself is then known within each element.

FAST FOURIER TRANSFORM (REF. 231)

Suppose a signal y(t) is sampled at equal intervals
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yn = y(n∆), n = . . . , −2, −1, 0, 1, 2, . . .

∆ = sampling rate (e.g., number of samples per second)

The Fourier transform and inverse transform are

Y(ω) = �∞

−∞
y(t)eiωt dt

y(t) = �∞

−∞
Y(ω)e−iωt dt

The Nyquist critical frequency or critical angular frequency is

fc = , ωc =

If a function y(t) is bandwidth-limited to frequencies smaller than fc,
such as

Y(ω) = 0 for ω > ωc

then the function is completely determined by its samples yn. Thus,
the entire information content of a signal can be recorded by sampling
at a rate ∆−1 = 2fc. If the function is not bandwidth-limited, then alias-
ing occurs. Once a sample rate ∆ is chosen, information correspond-
ing to frequencies greater than fc is simply aliased into that range. The
way to detect this in a Fourier transform is to see if the transform
approaches zero at �fc; if not, aliasing has occurred, and a higher sam-
pling rate is needed.

Next, suppose we have N samples, where N is even

yk = y(tk) tk = k∆ k = 0,1,2, . . . , N − 1

and the sample rate is ∆. With only N values {yk}, it is not possible to
determine the complete Fourier transform Y(ω). We calculate the
value Y(ωn) at the discrete points

ωn = , n = − , . . . , 0, . . . , 

Yn = �
N − 1

k = 0

yke2πikn/N

Y(ωn) = ∆Yn

The discrete inverse Fourier transform is

yk = �
N − 1

n = 0

Yne−2πikn/N

The fast Fourier transform (FFT) is used to calculate the Fourier
transform as well as the inverse Fourier transform. A discrete Fourier
transform of length N can be written as the sum of two discrete
Fourier transforms, each of length N/2.

Yk = Yk
e + W kYk

o

Here Yk is the kth component of the Fourier transform of y, and Yk
e is

the kth component of the Fourier transform of the even components
of {yj} and is of length N/2. Similarly, Yk

o is the kth component of the
Fourier transform of the odd components of {yj} and is of length N/2.
W is a constant, which is taken to the kth power.

W = e2πi/N

Since Yk has N components, while Yk
e and Yk

o have N/2 components, Yk
e

and Yk
o are repeated once to give N components in the calculation of

Yk. This decomposition can be used recursively. Thus, Yk
e is split into

even and odd terms of length N/4.

Yk
e = Yk

ee + WkYk
eo

Yk
o = Yk

oe + WkYk
oo

This process is continued until there is only one component. For this
reason, the number N is taken as a power of 2. The vector {yj} is filled
with zeroes, if need be, to make N = 2 p for some p. For the computer
program, see Ref. 26. The standard Fourier transform takes N 2 oper-
ations to calculation, whereas the fast Fourier transform takes only 
N log2 N. For large N, the difference is significant; at N = 100 it is a
factor of 15, but for N = 1000 it is a factor of 100.
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The discrete Fourier transform can also be used for differentiating
a function, and this is used in the spectral method for solving differ-
ential equations. Suppose we have a grid of equidistant points

xn = n∆x, n = 0, 1, 2, . . . , 2N − 1, ∆x =

The solution is known at each of these grid points {Y(xn)}. First the
Fourier transform is taken.

yk = �
2N − 1

n = 0

Y(xn)e−2ikπxn /L

The inverse transformation is

Y(x) = �
N

k = −N

yke2ikπx/L

Differentiate this to get
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Thus at the grid points
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n
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k = −N

yk e2ikπxn /L

The process works as follows. From the solution at all grid points the
Fourier transform is obtained using FFT, {yk}. Then this is multiplied
by 2πik/L to obtain the Fourier transform of the derivative.

yk = yk

Then the inverse Fourier transform is taken using FFT, giving the
value of the derivative at each of the grid points.
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INTRODUCTION
Optimization should be viewed as a tool to aid in decision making. Its
purpose is to aid in the selection of better values for the decisions that
can be made by a person in solving a problem. To formulate an opti-
mization problem, one must resolve three issues. First, one must have
a representation of the artifact that can be used to determine how the
artifact performs in response to the decisions one makes. This repre-
sentation may be a mathematical model or the artifact itself. Second,
one must have a way to evaluate the performance—an objective func-
tion—which is used to compare alternative solutions. Third, one must
have a method to search for the improvement. This section concen-
trates on the third issue, the methods one might use. The first two
items are difficult ones, but discussing them at length is outside the
scope of this section.

Example optimization problems are: (1) determining the optimal
thickness of pipe insulation; (2) finding the best equipment sizes and
operating schedules for the design of a new batch process to make a
given slate of products; (3) choosing the best set of operating condi-
tions for a set of experiments to determine the constants in a kinetic
model for a given reaction; (4) finding the amounts of a given set of
ingredients one should use for making a carbon rod to be used as an
electrode in an arc welder.

For the first problem, one will usually write a mathematical model
of how insulation of varying thicknesses restricts the loss of heat from
a pipe. Evaluation requires that one develop a cost model for the insu-
lation (a capital cost in dollars) and the heat that is lost (an operating
cost in dollars/year). Some method is required to permit these two
costs to be compared, such as a present worth analysis. Finally, if the
model is simple enough, the method one can use is to set the deriva-
tive of the evaluation function to zero with respect to wall thickness to
find candidate points for its optimal thickness. For the second prob-
lem, selecting a best operating schedule involves discrete decisions,
which will generally require models that have integer variables.

It may not be possible to develop a mathematical model for the
fourth problem if not enough is known to characterize the perfor-
mance of a rod versus the amounts of the various ingredients used in
its manufacture. The rods may have to be manufactured and judged
by ranking the rods relative to each other, perhaps based partially or
totally on opinions. Pattern search methods have been devised to
attack problems in this class.

In this section assume a mathematical model is possible for the
problem to be solved. The model may be encoded in a subroutine and
be known only implicitly, or the equations may be known explicitly. A
general form for such an optimization problem is

min F = F(z), such that h(z) = 0 and g(z) ≤ 0

where F represents a specified objective function that is to be mini-
mized. Functions h and g represent equality and inequality con-
straints that must be satisfied at the final problem solution.

Variables z are used to model such things as flows, mole fractions,
physical properties, temperatures, and sizes. The objective function F
is generally assumed to be a scalar function, one which represents
such things as cost, net present value, safety, or flexibility. Sometimes
several objective functions are specified (e.g., minimizing cost while
maximizing reliability); these are commonly combined into one func-
tion, or else one is selected for the optimization while the others are
specified as constraints. Equations h(z) = 0 are typically algebraic
equations, linear or nonlinear, when modeling steady-state processes,
or algebraic coupled with ordinary and/or partial differential equa-
tions when optimizing time-varying processes. Inequalities g(z) ≤ 0
put limits on the values variables can take, such as a minimum and
maximum temperature, or they restrict one pressure to be greater
than another.

An important issue is how to solve large problems that occur in dis-
tributed systems. The optimization of distributed systems is discussed
in Refs. 52, 120, 244, and 285. For further reading on optimization,
readers are directed to Refs. 120 and 244 as well as introductory texts
on optimization applied to chemical engineering (Refs. 99 and 225).
The material in this section is part of a more advanced treatment (Ref.
295).

Packages There are a number of packages available for opti-
mization, some of which are listed here.

1. Frameworks
• GAMS. This framework is commercially available. It provides a

uniform language to access several different optimization packages,
many of them listed below. It will convert the model as expressed in
“GAMS” into the form needed to run the package chosen.

• AMPL. This framework is by Fourier and coworkers (Ref. 113)
at Northwestern University. It is well suited for constructing complex
models.

• ASCEND. This framework is by Westerberg and coworkers
(Ref. 295) at Carnegie-Mellon University. It features an object-
oriented modeling language and is well suited for constructing com-
plex models.

2. Algebraic optimization with equality and inequality constraints
• SQP. A package by Biegler at Carnegie-Mellon University.
• MINOS5.4. A package available from Stanford Research Insti-

tute (affiliated with Stanford University). This package is the state of
the art for mildly nonlinear programming problems.

• GRG. A package from Lasdon at the University of Texas, Dept.
of Management Science.

3. Linear programming. Most current commercial codes for lin-
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ear programming extend the Simplex algorithm, and they can typically
handle problems with up to 15,000 constraints.

• MPSX. From IBM
• SCICONIC. From the company of that name
• MINOS5.4
• Cplex. A package by R. Bixby at Rice University and Cplx, Inc.

CONDITIONS FOR OPTIMALITY

Local Minimum Point for Unconstrained Problems Con-
sider the following unconstrained optimization problem:

M
u
in {F(u) | u � Rr}

If F is continuous and has continuous first and second derivatives, it is
necessary that F is stationary with respect to all variations in the inde-
pendent variables u at a point û, which is proposed as a minimum to
F; that is,

= 0, i = 1, 2, . . . , r or ∇ uF = 0 at u = û (3-80)

These are only necessary conditions, as point û may be a minimum,
maximum, or saddle point.

Sufficient conditions are that any local move away from the optimal
point û gives rise to an increase in the objective function. Expand F in
a Taylor series locally around the candidate point û up to second-order
terms:

F(u) = F(û) + ∇ uFT �û (u − û) + (u − û)T∇ 2
uuF �û (u − û) + …

If û satisfies necessary conditions [Eq. (3-80)], the second term disap-
pears in this last line. Sufficient conditions for the point to be a local
minimum are that the matrix of second partial derivatives ∇ 2

uu F is pos-
itive definite. This matrix is symmetric, so all of its eigenvalues are
real; to be positive definite, they must all be greater than zero.

Constrained Derivatives—Equality Constrained Problems
Consider minimizing the objective function F written in terms of n
variables z and subject to m equality constraints h(z) = 0, or

M
z
in {F(z) | h(z) = 0, z � Rn, h:Rn → Rm} (3-81)

The point ẑ is tested to see if it could be a minimum point. It is neces-
sary that F be stationary for all infinitesimal moves for z that satisfy the
equality constraints. Linearize the m equality constraints around ẑ,
getting

h(ẑ + ∆z) = h(ẑ) + ∇ zhT � ẑ ∆z (3-82)

where ∆z = z − ẑ. There are m constraints here, so m of the variables
are dependent, leaving r = n − m independent variables. Partition the
variables ∆z into a set of m dependent variables ∆x and r = n − m inde-
pendent variables ∆u. Equation (3-82), rearranged and then rewritten
in terms of these variables, becomes

∆h = ∇ xhT� ẑ ∆x + ∇ uhT� ẑ ∆u = 0

This enables the solution for ∆x. Linearize the objective function
F(z) in terms of the partitioned variables

∆F = ∇ xFT� ẑ ∆x + ∇ uFT� ẑ ∆u

and substitute for ∆x.

∆F = {∇ xFT − ∇ uFT[∇ xhT]−1 ∇ uhT}ẑ ∆u

= � 
T

∆h = 0
∆u = �

r

i = 1
� ∆h = 0

∆ui

There is one term for each ∆ui in the row vector which is in the
curly braces {}. These terms are called constrained derivatives,
which tells how the object function changes when the independent
variables ui are changed while keeping the constraints satisfied (by
varying the dependent variables xi).

Necessary conditions for optimality are that these constrained
derivatives are zero; that is,

dF
�
dui

dF
�
du

1
�
2

∂F
�
∂ui

� ∆h = 0
= 0, i = 1, 2, . . . , r

Equality Constrained Problems—Lagrange Multipliers Form
a scalar function, called the Lagrange function, by adding each of
the equality constraints multiplied by an arbitrary multiplier to the
objective function.

L(x, u, λ) = F(x, u) + �
m

i = 1

λihi(x, u) = F(x, u) + λTh(x, u)

At any point where the functions h(z) are zero, the Lagrange function
equals the objective function.

Next differentiate L with respect to variables x, u, and λ.

∇ xLT� ẑ = ∇ xFT� ẑ + λT∇ hx
T� ẑ = 0T (3-83)

∇ uLT� ẑ = ∇ uFT� ẑ + λT ∇ hu
T� ẑ = 0T (3-84)

∇ λ LT� ẑ = hT(x, u) = 0T

Solve Eq. (3-83) for the Lagrange multipliers

λT = −∇ xFT[∇ hx
T]−1 (3-85)

and then eliminate these multipliers from Eq. (3-84).

∇ uLT = ∇ uFT − ∇ xFT[∇ hx
T]∇ hu

T = 0T

∇ uL is equal to the constrained derivatives for the problem, which
should be zero at the solution to the problem. Also, these stationarity
conditions very neatly provide the necessary conditions for optimality
of an equality-constrained problem.

Lagrange multipliers are often referred to as shadow prices, adjoint
variables, or dual variables, depending on the context. Suppose the
variables are at an optimum point for the problem. Perturb the vari-
ables such that only constraint hi changes. We can write

∆L = ∆F + λi∆hi = 0

which is zero because, as just shown, the Lagrange function is at a sta-
tionary point at the optimum. Solving for the change in the objective
function:

∆F = −λi∆hi

The multiplier tells how the optimal value of the objective function
changes for this small change in the value of a constraint while hold-
ing all the other constraints at zero. It is for this reason that they are
often called shadow prices.

Equality- and Inequality-Constrained Problems—Kuhn-
Tucker Multipliers Next a point is tested to see if it is an optimum
one when there are inequality constraints. The problem is

M
z
in {F(z) | h(z) = 0, g(z) ≤ 0, z � Rn, F:Rn → R1, h:Rn → Rm, g:Rn → Rp}

The Lagrange function here is similar to that used above.

L(z, λ, µ) � F(z) + λTh(z) + µTg(z)

Each of the inequality constraints gi(z) multiplied by what is called a
Kuhn-Tucker multiplier µi is added to form the Lagrange function.
The necessary conditions for optimality, called the Karush-Kuhn-
Tucker conditions for inequality-constrained optimization problems,
are

∇ zL� ẑ = ∇ zF� ẑ + ∇ zh� ẑ λ + ∇ zg� ẑ µ = 0

∇ λL = h(z) = 0

g(z) ≤ 0

µi gi(z) = 0 , i = 1, 2, . . . , p (3-86)

µi ≥ 0 , i = 1, 2, . . . , p

Conditions in Eq. (3-86), called complementary slackness condi-
tions, state that either the constraint gi(z) = 0 and/or its corresponding
multiplier µi is zero. If constraint gi(z) is zero, it is behaving like an
equality constraint, and its multiplier µi is exactly the same as a
Lagrange multiplier for an equality constraint. If the constraint is

dF
�
dui
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away from zero, it is not a part of the problem and should not affect it.
Setting its multiplier to zero removes it from the problem.

As the goal is to minimize the objective function, releasing the con-
straint into the feasible region must not decrease the objective func-
tion. Using the shadow price argument above, it is evident that the
multiplier must be nonnegative (Ref. 177).

Sufficiency conditions to assure that a Kuhn-Tucker point is a local
minimum point require one to prove that the objective function will
increase for any feasible move away from such a point. To carry out
such a test, one has to generate the matrix of second derivatives of the
Lagrange function with respect to all the variables z evaluated at ẑ.
The test is seldom done, as it requires too much work.

STRATEGIES OF OPTIMIZATION

The theory just covered tells if a candidate point is or is not the opti-
mum point, but how is the candidate point found? The simplest strat-
egy is to place a grid of points throughout the feasible space,
evaluating the objective function at every grid point. If the grid is fine
enough, then the point yielding the highest value for the objective
function can be selected as the optimum. Twenty variables gridded
over only ten points would take place over 1020 points in our grid, and,
at one nanosecond per evaluation, it would take in excess of four thou-
sand years to carry out these evaluations.

Most strategies limit themselves to finding a local minimum point
in the vicinity of the starting point for the search. Such a strategy will
find the global optimum only if the problem has a single minimum
point or a set of “connected” minimum points. A “convex” problem
has only a global optimum.

Pattern Search Suppose the optimization problem is to find the
right mix of a given set of ingredients and the proper baking tempera-
ture and time to make the best cake possible. A panel of judges can be
formed to judge the cakes; assume they are only asked to rank the
cakes and that they can do that task in a consistent manner. Our
approach will be to bake several cakes and ask the judges to rank
them. For this type of problem, pattern-search methods can be used
to find the better conditions for manufacturing the product. We shall
only describe the ideas behind this approach. Details on implement-
ing it can be found in Ref. 284.

The complex method is one such pattern search method (see Fig. 
3-54). First, form a “complex” of at least r + 1 (r = 2 and 4 points are
used in Fig. 3-54) different points at which to bake the cakes by pick-
ing a range of suitable values for the r independent variables for the
baking process. Bake the cakes and then ask the judges to identify the
worst cake.

For each independent variable, form the average value at which it
was run in the complex. Draw a line from the coordinates of the worst
cake through the average point—called the centroid—and continue
on that line a distance that is twice that between these two points. This
point will be the next test point. First decide if it is feasible. If so, bake
the cake and discover if it leads to a cake that is better than the worst
cake from the last set of cakes. If it is not feasible or it is not better,
then return half the distance toward the average values from the last

test and try again. If it is better, toss out the worst point of the last test
and replace it with this new one. Again, ask the judges to find the
worst cake. Continue as above until the cakes are all the same quality
in the most recent test. It might pay to restart at this point, stopping
finally if the restart leads to no improvement. The method takes large
steps if the steps are being successful in improving the recipe. It 
collapses onto a set of points quite close to each other otherwise. The
method works reasonably well, but it requires one to bake lots of
cakes.

The following strategies are all examples of Generalized Reduced
Gradient (GRG) methods.

Optimization of Unconstrained Objective Assume the objec-
tive function F is a function of independent variables ui, i = 1 ⋅⋅⋅ r. A
computer program, given the values for the independent variables,
can calculate F and its derivatives with respect to each ui. Assume that
F is well approximated as an as-yet-unknown quadratic function in u.

F ≈ a + bTu + uTQu

where a is a scalar; b, a vector; and Q, an r × r symmetric positive def-
inite matrix. The gradient of the approximate function is

∇ uF = b + Qu

Setting the gradient to zero allows an estimate for its minimum.

u = −Q−1b (3-87)

Initially, Q and b are not known and the calculation proceeds as fol-
lows: b contains r unknown coefficients and Q another r(r + 1)/2. To
estimate b and Q, the computer code is used repeatedly, getting r
equations each time—namely

(∇ uF)(1) = b + Qu(1)

(∇ uF)(2) = b + Qu(2)
. . .

(∇ uF)(t) = b + Qu(t) (3-88)

As soon as there are as many independent equations as there are
unknown coefficients, these linear equations are solved for b and Q. A
proper choice of the points u(i) guarantees getting independent equa-
tions to solve here.

Given b and Q, Eq. (3-87) provides a new estimate for u as a can-
didate minimum point. The subroutine is used again to obtain the 
gradient of F at this point. If the gradient is essentially zero, the cal-
culations stop, since a point has been found that satisfies the necessary
conditions for optimality. If not, the equations are written in the form
of Eq. (3-88) for this new point, adding them to the set while remov-
ing the oldest set of equations. The new set of equations for b and Q
are solved, and the calculations continue until a minimum point is
found. If removal of the oldest equations from the set in Eq. (3-88)
leads to a singular set of equations, then different equations have to be
selected for removal. Alternatively, all the older equations can be kept,
with the new ones added to the top of the list. Pivoting can be done by
proceeding down the list until a nonsingular set of equations is found.
Then the older equations are used only if necessary. Also, since only
one set of equations is being replaced, clever methods are available to
find the solution to the equations with much less work than is required
to solve the set of equations the first time (Refs. 89 and 259).

Quadratic Fit for the Equality Constrained Case Next con-
sider solving a problem of the form of Eq. (3-82). For each iteration k:

1. Enter with values provided for variables u(k).
2. Given values for u(k), solve equations h(x, u) = 0 for x(k). These

will be m equations in m unknowns. If the equations are nonlinear,
solving can be done using a variant of the Newton-Raphson method.

3. Use Eq. (3-85) to solve for the Lagrange multipliers λ(k). If the
Newton-Raphson method (or any or several variants to it) is used to
solve the equations, the jacobian matrix ∇ x

Th| z (k) and its LU factors are
already known so solving Eq. (3-85) requires very little effort.

4. Substitute λ(k) into Eq. (3-84), which in general will not be
zero. The gradient ∇ uL(k) computed will be the constrained deriva-
tives of F with respect to the independent variables u(k).

5. Return.

1
�
2
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FIG. 3-54 Complex method, a pattern search optimization method.



The calculations begin with given values for the independent vari-
ables u and exit with the (constrained) derivatives of the objective
function with respect to them. Use the routine described above for
the unconstrained problem where a succession of quadratic fits is
used to move toward the optimal point for an unconstrained problem.
This approach is a form of the generalized reduced gradient (GRG)
approach to optimizing, one of the better ways to carry out optimiza-
tion numerically.

Inequality Constrained Problems To solve inequality con-
strained problems, a strategy is needed that can decide which of the
inequality constraints should be treated as equalities. Once that ques-
tion is decided, a GRG type of approach can be used to solve the
resulting equality constrained problem. Solving can be split into two
phases: phase 1, where the goal is to find a point that is feasible with
respect to the inequality constraints; and phase 2, where one seeks the
optimum while maintaining feasibility. Phase 1 is often accomplished
by ignoring the objective function and using instead

F = �
p

i = 1
� 

until all the inequality constraints are satisfied.
Then at each point, check which of the inequality constraints are

active, or exactly equal to zero. These can be placed into the active set
and treated as equalities. The remaining can be put aside to be used
only for testing. A step can then be proposed using the GRG algo-
rithm. If it does not cause one to violate any of the inactive inequality
constraints, the step is taken. Otherwise one can add the closest inac-
tive inequality constraint to the active set. Finding the closet inactive
equality will almost certainly require a line search in the direction pro-
posed by the GRG algorithm.

When one comes to a stationary point, one has to test the active
inequality constraints at that point to see if they should remain active.
This test is done by examining the sign (they should be nonnegative if
they are to remain active) of their respective Kuhn-Tucker multipliers.
If any should be released, it has to be done carefully as the release of
a constraint changes the multipliers for all the constraints. One can
find oneself cycling through the testing to decide whether to release
the constraints. A correct approach is to add slack variables s to the
problem to convert the inequality constraints to equalities and then
require the slack variables to remain positive. The multipliers associ-
ated with the inequalities s ≥ 0 all behave independently, and their
sign tells one directly to keep or release the constraints. In other
words, simultaneously release all the slack variables that have multi-
pliers strictly less than zero. If released, the slack variables must be
treated as a part of the set of independent variables until one is well
away from the associated constraints for this approach to work.

Successive Quadratic Programming (SQP) The above
approach to finding the optimum is called a feasible path method, as
it attempts at all times to remain feasible with respect to the equality
and inequality constraints as it moves to the optimum. A quite differ-
ent method exists called the Successive Quadratic Programming
(SQP) method, which only requires one be feasible at the final solu-
tion. Tests that compare the GRG and SQP methods generally favor
the SQP method so it has the reputation of being one of the best
methods known for nonlinear optimization for the type of problems
considered here.

Assume certain inequality constraints will be active at the final solu-
tion. The necessary conditions for optimality are

∇ zL(z, µ, λ) = ∇ F + ∇ gAµ + ∇ hλ = 0, gA(z) = 0, h(z) = 0

Then one can apply Newton’s method to the necessary conditions for
optimality, which are a set of simultaneous (non)linear equations. The
Newton equations one would write are


 �
 � = −
 �
A sufficient condition for a unique Newton direction is that the

matrix of constraint derivatives is of full rank (linear independence 

∇ zL[z(i), µ(i), λ(i)]

gA[z(i)]

h[z(i)]

∆z(i)

∆µ(i)

∆λ(i)

∇ h[z(i)]

0

0

∇ gA[z(i)]

0

0

∇ zzL[z(i), u(i), λ(i)]

∇ gA[z(i)]T

∇ h[z(i)]T

g i
2(z) if gi(z) > 0)
0 otherwise

of constraints) and the Hessian matrix of the Lagrange function 
[∇ zzL(z, µ, λ)] projected into the space of the linearized constraints is
positive definite. The linearized system actually represents the solu-
tion of the following quadratic programming problem:

∆z
Min ∇ F[z(i)]T∆z + ∆zT ∇ zzL[z(i), µ(i), λ(i)]∆z

subject to

gA[z(i)] + ∇ gA[z(i)]T∆z = 0 and h[z(i)] + ∇ h[z(i)]T∆z = 0

Reformulating the necessary conditions as a linear quadratic pro-
gram has an interesting side effect. We can simply add linearizations
of the inactive inequalities to the problem and let the active set be
selected by the algorithm used to solve the linear quadratic program.

Problems with calculating second derivatives as well as maintaining
positive definiteness of the Hessian matrix can be avoided by approx-
imating this matrix by B(i) using a quasi-Newton formula such as
BFGS (Refs. 50, 84, 109, 110, 122, and 259). One maintains positive
definiteness by skipping the update if it causes the matrix to lose this
property. Here gradients of the Lagrange function are used to calcu-
late the update formula (Refs. 136 and 228). The resulting quadratic
program, which generates the search direction at each iteration i,
becomes:

∆z
Min ∇ F[z(i)]T∆z + ∆zTB(i)∆z

subject to g[z(i)] + ∇ g[z(i)]T∆z ≤ 0

h[z(i)] + ∇ h[z(i)]T∆z = 0

This linear quadratic program will have a unique solution if B(i) is
kept positive definite. Efficient solution methods exist for solving it
(Refs. 119 and 123).

Finally, to ensure convergence of this algorithm from poor starting
points, a step size α is chosen along the search direction so that the
point at the next iteration (zi + 1 = zi + αd) is closer to the solution of the
NLP (Refs. 65, 136, and 254).

These problems get very large as the Lagrange function involves all
the variables in the problem. If one has a problem with 5000 variables
z and the problem has only 10 degrees of freedom (i.e., the partition-
ing will select 4990 variables x and only 10 variables u), one is still
faced with maintaining a matrix B that is 5000 × 5000. See Westerberg
(Ref. 40) for references to this case.

Interior Point Algorithms for Linear Programming Problems
There has been considerable excitement in the popular press about 
so-called interior point algorithms (Ref. 23) for solving extremely large
linear programming problems. Computational demands for these algo-
rithms grow less rapidly than for the Simplex algorithm, with a break-
even point being a few thousand constraints. A key idea for an interior
method is that one heads across the feasible region to locate the solu-
tion rather than around its edges as one does for the Simplex algorithm.
This move is found by computing the direction of steepest descent for
the objective function with respect to changing the slack variables.
Variables u are computed in terms of the slack variables by using the
inequality constraints. The direction of steepest descent is a function of
the scaling of the variables used for the problem. See Refs. 6, 124, 199,
and 295.

Linear Programming The combined term linear programming
is given to any method for finding where a given linear function of 
several variables takes on an extreme value, and what that value is,
when the variables are nonnegative and are constrained by linear
equalities or inequalities. A very general problem consists of maximiz-
ing f = �n

f = 1 cjzj subject to the constraints zj ≥ 0 ( j = 1, 2, . . . , n) 
and �n

j = 1 aijzj ≤ bi (i = 1, 2, . . . , m). With S the set of all points 
whose coordinates zj satisfy all the constraints, we must ask three
questions: (1) Are the constraints consistent? If not, S is empty and
there is no solution. (2) If S is not empty, does the function f become
unbounded on S? If so, the problem has no solution. If not, then there
is a point P of S that is optimal in the sense that if Q is any point of S
then f(Q) ≤ f(P). (3) How can we find P?

The simplex algorithm, in a sense, prepares the problem before cal-

1
�
2
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�
2
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culation in such a way that favorable answers to these questions are
tentatively assumed for the given problem and can be guaranteed for
the prepared problem. The calculations then reveal whether or not
those assumptions are justified for the given problem. The simplex
algorithm terminates automatically, yielding full information on the
given problem and so-called dual problem. The dual of the general
problem of linear programming is to minimize d(µ1, . . . , µm) =
�m

i = 1 µibi subject to µi ≥ 0 (i = 1, 2, . . . , m) and �m
i = 1 µi aif ≥ cj( j = 1,

2, . . . , n). Let A be the matrix [aij], c = [cj], U = [µi] be row vectors, and
B = [bi]T, Z = [zj]T be column vectors. In matrix form the original (pri-
mal) problem is to maximize f(Z) = CZ subject to Z ≥ 0, AZ ≤ B. The
dual is to minimize d(U) = UB subject to U ≥ 0, UA ≥ C.

Example Maximize 3z1 + 4z2 subject to the constraints z1 ≥ 0, z2 ≥ 0, 2z1 +
4z2 ≤ 8, and 4z1 + 3z2 ≤ 10. The dual problem is to minimize 8µ1 + 10µ2 subject
to the constraints µ1 ≥ 0, µ2 ≥ 0, 2µ1 + 4µ2 ≥ 3, and 5µ1 + 3µ2 ≥ 4.

Simplex Method
1. Original problem. Let the column vector [zj]T = z ( j = 1, 2,

. . . , n) and the row vector [cj] = c. To maximize f(z) = �n
j = 1 cjzj = cTz

subject to the n constraints zj ≥ 0 ( j = 1, . . . , n) and m further con-
straints hi: �

n
j = 1 aij zj° ibi (i = 1, 2, . . . , m) where °i can be ≥ = or ≤. 

If any bi ≤ 0, multiply hi by − 1; thus we may assume bi ≥ 0. We sup-
pose the m constraints have been arranged so that °i is ≥ for i = 1, . . . ,
g; °i is = for i = g + 1, . . . , g + e; °i is ≤ for i = g + e + 1, . . . , g + e +
l = m.

2. Adjusted original problem. Introduce m + g further variables

with associated constraints and coefficients for use in f. Thus, replac-
ing j by j + m, f becomes f(x) = �m + n

j = m + 1 cjzj and constraints zj ≥ 0 
and hi: �m + n

j = m + 1 aijzj° ibi, i = 1, . . . , m.
3. Prepared problem. For i = 1, . . . , g replace hi by Hi: zi +

�m + n
j = m + 1 aij zj zm + n + i = bi, define ci = −M(M > 0 and “large”) and 

Cm + n + i = 0, and add the constraints zi ≥ 0, zm + n + i ≥ 0. For i = g + e +
1, . . . , m replace hi by Hi. xi + �m + n

j = m + 1 aijzj = bi, define ci = 0, and adjoin
zi ≥ 0. Let J run from 1 to N = n + m + g; put Z = [zj]T and j =
m + 1, . . . , m + n. The new function to be maximized is f(Z) =
�N

J = 1 cjzj. Actually this is f(Z) = −M �g = e
i = 1 zi + �vm + n

j = m + 1 cjzj, for all other
coefficients are zero. Thus for J = g + e + 1, . . . , m and m + n + 1, . . . ,
N the variables zj make no contribution to f. They are called slack vari-
ables, since they take up the slack permitted by the inequalities (≤ and
≥) in hi. Any variable zj, i = 1, . . . , g + e whose value is not zero gives
rise to a large negative term −Mzi. Such a term will keep f(Z) less than
it would be with that zi = 0. The effect of ci = −M(i = 1, . . . , g + e) is to
make it likely that the optimal solution will have the artificial variables
zi = 0(i = 1, . . . , g + e).

The prepared problem now has the form—maximize f(Z) = �N
j = 1 cjzJ

subject to zJ ≥ 0 and Hi: �
N
j = 1 aijzj = (i = 1, . . . , m), where bi ≥ 0,

aiβ = δiβ = � (β = 1, . . . , m), ai,m + n + β = −δiβ (β = 1, . . . , g)

and aij came from hi.
The set of feasible points SP (points satisfying all constraints) for the

prepared problem is not empty, and f(Z) is bounded above on SP.

0 i ≠ β
l i ≠ β

GENERAL REFERENCES: 69, 93, 134, 169, 186, 211, 265, 291.

INTRODUCTION

Statistics represents a body of knowledge which enables one to deal
with quantitative data reflecting any degree of uncertainty. There are
six basic aspects of applied statistics. These are:

1. Type of data
2. Random variables
3. Models
4. Parameters
5. Sample statistics
6. Characterization of chance occurrences

From these can be developed strategies and procedures for dealing
with (1) estimation and (2) inferential statistics. The following has
been directed more toward inferential statistics because of its broader
utility.

Detailed illustrations and examples are used throughout to develop
basic statistical methodology for dealing with a broad area of applica-
tions. However, in addition to this material, there are many special-
ized topics as well as some very subtle areas which have not been
discussed. The references should be used for more detailed informa-
tion.

Type of Data In general, statistics deals with two types of data:
counts and measurements. Counts represent the number of discrete
outcomes, such as the number of defective parts in a shipment, the
number of lost-time accidents, and so forth. Measurement data are
treated as a continuum. For example, the tensile strength of a syn-
thetic yarn theoretically could be measured to any degree of precision.
A subtle aspect associated with count and measurement data is that
some types of count data can be dealt with through the application of
techniques which have been developed for measurement data alone.
This ability is due to the fact that some simplified measurement statis-
tics serve as an excellent approximation for the more tedious count
statistics.

Random Variables Applied statistics deals with quantitative
data. In tossing a fair coin the successive outcomes would tend to be

different, with heads and tails occurring randomly over a period of
time. Given a long strand of synthetic fiber, the tensile strength of 
successive samples would tend to vary significantly from sample to
sample.

Counts and measurements are characterized as random variables,
that is, observations which are susceptible to chance. Virtually all
quantitative data are susceptible to chance in one way or another.

Models Part of the foundation of statistics consists of the mathe-
matical models which characterize an experiment. The models them-
selves are mathematical ways of describing the probability, or relative
likelihood, of observing specified values of random variables. For
example, in tossing a coin once, a random variable x could be defined
by assigning to x the value 1 for a head and 0 for a tail. Given a fair
coin, the probability of observing a head on a toss would be a .5, and
similarly for a tail. Therefore, the mathematical model governing this
experiment can be written as

x P(x)

0 .5
1 .5

where P(x) stands for what is called a probability function. This term
is reserved for count data, in that probabilities can be defined for par-
ticular outcomes.

The probability function that has been displayed is a very special
case of the more general case, which is called the binomial probability
distribution.

For measurement data which are considered continuous, the term
probability density is used. For example, consider a spinner wheel
which conceptually can be thought of as being marked off on the cir-
cumference infinitely precisely from 0 up to, but not including, 1. In
spinning the wheel, the probability of the wheel’s stopping at a speci-
fied marking point at any particular x value, where 0 ≤ x < 1, is zero,
for example, stopping at the value x = �.5�. For the spinning wheel,
the probability density function would be defined by f(x) = 1 for 0 ≤
x < 1. Graphically, this is shown in Fig. 3-55. The relative-probability
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concept refers to the fact that density reflects the relative likelihood 
of occurrence; in this case, each number between 0 and 1 is equally
likely.

For measurement data, probability is defined by the area under the
curve between specified limits. A density function always must have a
total area of 1.

Example For the density of Fig. 3-55 the

P[0 ≤ x ≤ .4] = .4
P[.2 ≤ x ≤ .9] = .7
P[.6 ≤ x < 1] = .4

and so forth. Since the probability associated with any particular point value is
zero, it makes no difference whether the limit point is defined by a closed inter-
val (≤ or ≥) or an open interval (< or >).

Many different types of models are used as the foundation for sta-
tistical analysis. These models are also referred to as populations.

Parameters As a way of characterizing probability functions and
densities, certain types of quantities called parameters can be defined.
For example, the center of gravity of the distribution is defined to be
the population mean, which is designated as µ. For the coin toss 
µ = .5, which corresponds to the average value of x; i.e., for half of the
time x will take on a value 0 and for the other half a value 1. The aver-
age would be .5. For the spinning wheel, the average value would also
be .5.

Another parameter is called the standard deviation, which is des-
ignated as σ. The square of the standard deviation is used frequently
and is called the popular variance, σ2. Basically, the standard devia-
tion is a quantity which measures the spread or dispersion of the dis-
tribution from its mean µ. If the spread is broad, then the standard
deviation will be larger than if it were more constrained.

For specified probability and density functions, the respective
means and variances are defined by the following:

Probability functions Probability density functions

E(x) = µ = �
x

x P(x) E(x) = µ = �
x

x f(x) dx

Var(x) = σ2 = �
x

(x − µ)2 P(x) Var(x) = σ2 = �
x

(x − µ)2 f(x) dx

where E(x) is defined to be the expected or average value of x.
Sample Statistics Many types of sample statistics will be

defined. Two very special types are the sample mean, designated as
x�, and the sample standard deviation, designated as s. These are, by
definition, random variables. Parameters like µ and σ are not random
variables; they are fixed constants.

Example In an experiment, six random numbers (rounded to four deci-
mal places) were observed from the uniform distribution f(x) = 1 for 0 ≤ x < 1:

.1009

.3754

.0842

.9901

.1280

.6606

The sample mean corresponds to the arithmetic average of the observations,
which will be designated as x1 through x6, where
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x� = �
n

i = 1

xi with n = 6

= (1/6)(.1009 + .3754 + ⋅⋅⋅ + .6606)

= .3899

The sample standard deviation s is defined by the computation

s = �	
= �		

In effect, this represents the root of a statistical average of the squares. The divi-
sor quantity (n − 1) will be referred to as the degrees of freedom.

The value of n − 1 is used in the denominator because the deviations from the
sample average must total zero, or

� (xi − x�) = 0

Thus knowing n − 1 values of xi − x� permits calculation of the nth value of xi − x�.
The sample value of the standard deviation for the data given is .3686. The

following is a tabulation of the deviations (xi − x�j) for the data:

x x − x�
.1009 −.2890
.3754 −.0145
.0842 −.3057
.9901 .6002
.1280 −.2619
.6606 .2707

x� = .3899 s = .3686

In effect, the standard deviation quantifies the relative magnitude of
the deviation numbers, i.e., a special type of “average” of the distance
of points from their center. In statistical theory, it turns out that the
corresponding variance quantities s2 have remarkable properties
which make possible broad generalities for sample statistics and
therefore also their counterparts, the standard deviations.

For the corresponding population, the parameter values are µ = .50
and σ = .2887. If, instead of using individual observations only, 
averages of six were reported, then the corresponding population
parameter values would be µ = .50 and σx� = σ/�6� = .1179. The cor-
responding variance for an average will be written occasionally as 
Var (x�) = var (x)/n. In effect, the variance of an average is inversely
proportional to the sample size n, which reflects the fact that sample
averages will tend to cluster about µ much more closely than individ-
ual observations. This is illustrated in greater detail under “Measure-
ment Data and Sampling Densities.”

Characterization of Chance Occurrences To deal with a
broad area of statistical applications, it is necessary to characterize the
way in which random variables will vary by chance alone. The basic
foundation for this characteristic is laid through a density called the
gaussian, or normal, distribution.

Determining the area under the normal curve is a very tedious pro-
cedure. However, by standardizing a random variable that is normally
distributed, it is possible to relate all normally distributed random
variables to one table. The standardization is defined by the identity 
z = (x − µ)/σ, where z is called the unit normal. Further, it is possible
to standardize the sampling distribution of averages x� by the identity 
z = (x� − µ)/(σ/�n�).

A remarkable property of the normal distribution is that, almost
regardless of the distribution of x, sample averages x� will approach the
gaussian distribution as n gets large. Even for relatively small values 
of n, of about 10, the approximation in most cases is quite close. For
example, sample averages of size 10 from the uniform distribution will
have essentially a gaussian distribution.

Also, in many applications involving count data, the normal distri-
bution can be used as a close approximation. In particular, the approx-
imation is quite close for the binomial distribution within certain
guidelines.

n � xi
2 − (� xi)2

��
n(n − 1)

� (xi − x�)2

��
n − 1

1
�
n

FIG. 3-55 Density function.



ENUMERATION DATA 
AND PROBABILITY DISTRIBUTIONS

Introduction Many types of statistical applications are charac-
terized by enumeration data in the form of counts. Examples are the
number of lost-time accidents in a plant, the number of defective
items in a sample, and the number of items in a sample that fall within
several specified categories.

The sampling distribution of count data can be characterized through
probability distributions. In many cases, count data are appropriately
interpreted through their corresponding distributions. However, in
other situations analysis is greatly facilitated through distributions
which have been developed for measurement data. Examples of each
will be illustrated in the following subsections.

Binomial Probability Distribution
Nature Consider an experiment in which each outcome is classi-

fied into one of two categories, one of which will be defined as a suc-
cess and the other as a failure. Given that the probability of success p
is constant from trial to trial, then the probability of observing a spec-
ified number of successes x in n trials is defined by the binomial dis-
tribution. The sequence of outcomes is called a Bernoulli process,

Nomenclature
n = total number of trials
x = number of successes in n trials
p = probability of observing a success on any one trial
p̂ = x/n, the proportion of successes in n trials
Probability Law

P(x) = P � � = � � px(1 − p)n − x x = 0, 1, 2, . . . , n

where � � =

Properties E(x) = np Var(x) = np(1 − p)

E( p̂) = p Var( p̂) = p(1 − p)/n

Geometric Probability Distribution
Nature Consider an experiment in which each outcome is classi-

fied into one of two categories, one of which will be defined as a suc-
cess and the other as a failure. Given that the probability of success p
is constant from trial to trial, then the probability of observing the first
success on the xth trial is defined by the geometric distribution.

Nomenclature
p = probability of observing a success on any one trial
x = the number of trials to obtain the first success
Probability Law

P(x) = p(1 − p)x − 1 x = 1, 2, 3, . . .
Properties

E(x) = 1/p Var (x) = (1 − p)/p2

Poisson Probability Distribution
Nature In monitoring a moving threadline, one criterion of qual-

ity would be the frequency of broken filaments. These can be identi-
fied as they occur through the threadline by a broken-filament
detector mounted adjacent to the threadline. In this context, the ran-
dom occurrences of broken filaments can be modeled by the Poisson
distribution. This is called a Poisson process and corresponds to a
probabilistic description of the frequency of defects or, in general,
what are called arrivals at points on a continuous line or in time. Other
examples include:

1. The number of cars (arrivals) that pass a point on a high-speed
highway between 10:00 and 11:00 A.M. on Wednesdays

2. The number of customers arriving at a bank between 10:00 and
10:10 A.M.

3. The number of telephone calls received through a switchboard
between 9:00 and 10:00 A.M.

4. The number of insurance claims that are filed each week

n!
�
x!(n − x)!

n
x

n
x

x
�
n
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5. The number of spinning machines that break down during 1
day at a large plant.

Nomenclature
x = total number of arrivals in a total length L or total period T
a = average rate of arrivals for a unit length or unit time
λ = aL = expected or average number of arrivals for the total 

length L
λ = aT = expected or average number of arrivals for the total time T
Probability Law Given that a is constant for the total length L or

period T, the probability of observing x arrivals in some period L or T
is given by

P(x) = e−λ x = 0, 1, 2, . . .

Properties E(x) = λ Var (x) = λ

Example The number of broken filaments in a threadline has been aver-
aging .015 per yard. What is the probability of observing exactly two broken fil-
aments in the next 100 yd? In this example, a = .015/yd and L = 100 yd; therefore
λ = (.015)(100) = 1.5:

P(x = 2) = e−1.5 = .2510

Example A commercial item is sold in a retail outlet as a unit product. In
the past, sales have averaged 10 units per month with no seasonal variation. The
retail outlet must order replacement items 2 months in advance. If the outlet
starts the next 2-month period with 25 items on hand, what is the probability
that it will stock out before the end of the second month?

Given a = 10/month, then λ = 10 × 2 = 20 for the total period of 2 months:

P(x ≥ 26) = �
∞

26

P(x) = 1 − �
25

0

P(x)

�
25

0

e−20 = e−20 
1 + + + ⋅⋅⋅ + �
= .887815

Therefore P(x ≥ 26) = .112185 or roughly an 11 percent chance of a stockout.

Hypergeometric Probability Distribution
Nature In an experiment in which one samples from a relatively

small group of items, each of which is classified in one of two cate-
gories, A or B, the hypergeometric distribution can be defined. One
example is the probability of drawing two red and two black cards
from a deck of cards. The hypergeometric distribution is the analog of
the binomial distribution when successive trials are not independent,
i.e., when the total group of items is not infinite. This happens when
the drawn items are not replaced.

Nomenclature
N = total group size
n = sample group size
X = number of items in the total group with a specified

attribute A
N − X = number of items in the total group with the other

attribute B
x = number of items in the sample with a specified attribute A

n − x = number of items in the sample with the other attribute B

Population Sample

Category A X x
Category B N − X n − x

Total N n

Probability Law

P(x) = � � � ��� �
E(x) =

var (x) = nP(1 − P) 
N − n
�
N − 1

nX
�
N

N
n

X
x

N − X
n − x

2025

�
25!

202

�
2!

20
�
1

20x

�
x!

(1.5)2

�
2!

λx

�
x!



Example What is the probability that an appointed special committee of
4 has no female members when the members are randomly selected from a can-
didate group of 10 males and 7 females?

P(x = 0) =
� �� �

= .0882

� �
Example A bin contains 300 items, of which 240 are good and 60 are

defective. In a sample of 6 what is the probability of selecting 4 good and 2
defective items by chance?

P(x) =
� �� �

= .2478

� �
Multinomial Distribution

Nature For an experiment in which successive outcomes can be
classified into two or more categories and the probabilities associated
with the respective outcomes remain constant, then the experiment
can be characterized through the multinomial distribution.

Nomenclature
n = total number of trials
k = total number of distinct categories
pj = probability of observing category j on any one trial, j = 1,

2, . . . , k
xj = total number of occurrences in category j in n trials
Probability Law

P(x1, x2, . . . , xk) = p1
x1p2

x2 ⋅⋅⋅ pk
xk

Example In tossing a die 12 times, what is the probability that each face
value will occur exactly twice?

p(2, 2, 2, 2, 2, 2) = � �
2

� �
2

� �
2

� �
2

� �
2

� �
2

= .003438

MEASUREMENT DATA AND SAMPLING DENSITIES

Introduction The following example data are used throughout
this subsection to illustrate concepts. Consider, for the purpose of
illustration, that five synthetic-yarn samples have been selected ran-
domly from a production line and tested for tensile strength on each
of 20 production days. For this, assume that each group of five corre-
sponds to a day, Monday through Friday, for a period of 4 weeks:

Monday Tuesday Wednesday Thursday Friday Groups of 25
1 2 3 4 5 pooled

36.48 38.06 35.28 36.34 36.73
35.33 31.86 36.58 36.25 37.17
35.92 33.81 38.81 30.46 33.07
32.28 30.30 33.31 37.37 34.27
31.61 35.27 33.88 37.52 36.94

x� = 34.32 33.86 35.57 35.59 35.64 35.00
s = 2.22 3.01 2.22 2.92 1.85 2.40

6 7 8 9 10

38.67 36.62 35.03 35.80 36.82
32.08 33.05 36.22 33.16 36.49
33.79 35.43 32.71 35.19 32.83
32.85 36.63 32.52 32.91 32.43
35.22 31.46 27.23 35.44 34.16

x� = 34.52 34.64 32.74 34.50 34.54 34.19
s = 2.60 2.30 3.46 1.36 2.03 2.35

11 12 13 14 15

39.63 34.52 36.05 36.64 31.57
34.38 37.39 35.36 31.18 36.21
36.51 34.16 35.00 36.13 33.84
30.00 35.76 33.61 37.51 35.01
39.64 37.63 36.98 39.05 34.95

x� = 36.03 35.89 35.40 36.10 34.32 35.55
s = 4.04 1.59 1.25 2.96 1.75 2.42

1
�
6

1
�
6

1
�
6

1
�
6

1
�
6

1
�
6

12!
��
2!2!2!2!2!2!

n!
��
x1!x2! . . . xk!

300
6

60
2

240
4

17
4

7
0

10
4

Monday Tuesday Wednesday Thursday Friday Groups of 25
16 17 18 19 20 pooled

37.68 35.97 33.71 35.61 36.65
36.38 35.92 32.34 37.13 37.91
38.43 36.51 33.29 31.37 42.18
39.07 33.89 32.81 35.89 39.25
33.06 36.01 37.13 36.33 33.32

x� = 36.92 35.66 33.86 35.27 37.86 35.91
s = 2.38 1.02 1.90 2.25 3.27 2.52

Pooled sample of 100: x� = 35.16 s = 2.47

Even if the process were at steady state, tensile strength, a key
property would still reflect some variation. Steady state, or stable
operation of any process, has associated with it a characteristic varia-
tion. Superimposed on this is the testing method, which is itself a
process with its own characteristic variation. The observed variation is
a composite of these two variations.

Assume that the table represents “typical” production-line perfor-
mance. The numbers themselves have been generated on a computer
and represent random observations from a population with µ = 35 and
a population standard deviation σ = 2.45. The sample values reflect
the way in which tensile strength can vary by chance alone. In prac-
tice, a production supervisor unschooled in statistics but interested in
high tensile performance would be despondent on the eighth day and
exuberant on the twentieth day. If the supervisor were more con-
cerned with uniformity, the lowest and highest points would have
been on the eleventh and seventeenth days.

An objective of statistical analysis is to serve as a guide in decision
making in the context of normal variation. In the case of the produc-
tion supervisor, it is to make a decision, with a high probability of
being correct, that something has in fact changed the operation.

Suppose that an engineering change has been made in the process
and five new tensile samples have been tested with the results:

36.81
38.34 x� = 37.14
34.87 s = 1.85
39.58
36.12

In this situation, management would inquire whether the product has
been improved by increased tensile strength. To answer this question,
in addition to a variety of analogous questions, it is necessary to have
some type of scientific basis upon which to draw a conclusion.

A scientific basis for the evaluation and interpretation of data is con-
tained in the accompanying table descriptions. These tables charac-
terize the way in which sample values will vary by chance alone in the
context of individual observations, averages, and variances.

Designated
Table number symbol Variable Sampling distribution of

3-4 z Observations*

3-4 z Averages

3-5 t Averages when σ is unknown*

3-6 χ2 (s2/σ2)(df) Variances*

3-7 F s1
2 /s 2

2 Ratio of two independent
sample variances*

*When sampling from a gaussian distribution.

Normal Distribution of Observations Many types of data fol-
low what is called the gaussian, or bell-shaped, curve; this is especially
true of averages. Basically, the gaussian curve is a purely mathematical
function which has very special properties. However, owing to some
mathematically intractable aspects primary use of the function is re-
stricted to tabulated values.

x� − µ
�
s/�n�

x� − µ
�
σ /�n�

x − µ
�

σ
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Basically, the tabled values represent area (proportions or probabil-
ity) associated with a scaling variable designated by Z in Fig. 3-56. The
normal curve is centered at 0, and for particular values of Z, desig-
nated as z, the tabulated numbers represent the corresponding area
under the curve between 0 and z. For example, between 0 and 1 the
area is .3413. (Get this number from Table 3-4. The value of A
includes the area on both sides of zero. Thus we want A/2. For z = 1,
A = 0.6827, A/2 = 0.3413. For z = 2, A/2 = 0.4772.) The area between

0 and 2 is .4772; therefore, the area between 1 and 2 is .4772 −
.3413 = .1359.

Also, since the normal curve is symmetric, areas to the left can be
determined in exactly the same way. For example, the area between 
−2 and +1 would include the area between −2 and 0, .4772 (the same
as 0 to 2), plus the area between 0 and 1, .3413, or a total area of .8185.

Any types of observation which are applicable to the normal curve
can be transformed to Z values by the relationship z = (x − µ)/σ and,
conversely, Z values to x values by x = µ + σz, as shown in Fig. 3-56.
For example, for tensile strength, with µ = 35 and σ = 2.45, this would
dictate z = (x − 35)/2.45 and x = 35 + 2.45z.

Example What proportion of tensile values will fall between 34 and 36?

z1 = (34 − 35)/2.45 = −.41 z2 = (36 − 35)/2.45 = .41

P[−.41 ≤ z ≤ .41] = .3182, or roughly 32 percent

The value 0.3182 is interpolated from Table 3-4 using z = �0.40, A = 0.3108, and
z = �0.45, A = 0.3473.

Example What midrange of tensile values will include 95 percent of the
sample values? Since P[−1.96 ≤ z ≤ 1.96] = .95, the corresponding values of x are

x1 = 35 − 1.96(2.45) = 30.2

x2 = 35 + 1.96(2.45) = 39.8

or P[30.2 ≤ x ≤ 39.8] = .95
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FIG. 3-56 Transformation of z values.

TABLE 3-4 Ordinates and Areas between Abscissa Values -z and +z of the Normal Distribution Curve

z X Y A 1 − A z X Y A 1 − A

0 µ 0.399 0.0000 1.0000 �1.50 µ � 1.50σ 0.1295 0.8664 0.1336
�0.05 µ � 0.05σ .398 .0399 0.9601 �1.55 µ � 1.55σ .1200 .8789 .1211
� .10 µ � .10σ .397 .0797 .9203 �1.60 µ � 1.60σ .1109 .8904 .1096
� .15 µ � .15σ .394 .1192 .8808 �1.65 µ � 1.65σ .1023 .9011 .0989
� .20 µ � .20σ .391 .1585 .8415 �1.70 µ � 1.70σ .0940 .9109 .0891

� .25 µ � .25σ .387 .1974 .8026 �1.75 µ � 1.75σ .0863 .9199 .0801
� .30 µ � .30σ .381 .2358 .7642 �1.80 µ � 1.80σ .0790 .9281 .0719
� .35 µ � .35σ .375 .2737 .7263 �1.85 µ � 1.85σ .0721 .9357 .0643
� .40 µ � .40σ .368 .3108 .6892 �1.90 µ � 1.90σ .0656 .9446 .0574
� .45 µ � .45σ .361 .3473 .6527 �1.95 µ � 1.95σ .0596 .9488 .0512

� .50 µ � .50σ .352 .3829 .6171 �2.00 µ � 2.00σ .0540 .9545 .0455
� .55 µ + .55σ .343 .4177 .5823 �2.05 µ � 2.05σ .0488 .9596 .0404
� .60 µ � .60σ .333 .4515 .5485 �2.10 µ � 2.10σ .0440 .9643 .0357
� .65 µ � .65σ .323 .4843 .5157 �2.15 µ � 2.15σ .0396 .9684 .0316
� .70 µ � .70σ .312 .5161 .4839 �2.20 µ � 2.20σ .0335 .9722 .0278

� .75 µ � .75σ .301 .5467 .4533 �2.25 µ � 2.25σ .0317 .9756 .0244
� .80 µ � .80σ .290 .5763 .4237 �2.30 µ � 2.30σ .0283 .9786 .0214
� .85 µ � .85σ .278 .6047 .3953 �2.35 µ � 2.35σ .0252 .9812 .0188
� .90 µ � .90σ .266 .6319 .3681 �2.40 µ � 2.40σ .0224 .9836 .0164
� .95 µ � .95σ .254 .6579 .3421 �2.45 µ � 2.45σ .0198 .9857 .0143

�1.00 µ � 1.00σ .242 .6827 .3173 �2.50 µ � 2.50σ .0175 .9876 .0124
�1.05 µ � 1.05σ .230 .7063 .2937 �2.55 µ � 2.55σ .0154 .9892 .0108
�1.10 µ � 1.10σ .218 .7287 .2713 �2.60 µ � 2.60σ .0136 .9907 .0093
�1.15 µ � 1.15σ .206 .7499 .2501 �2.65 µ � 2.65σ .0119 .9920 .0080
�1.20 µ � 1.20σ .194 .7699 .2301 �2.70 µ � 2.70σ .0104 .9931 .0069

�1.25 µ � 1.25σ .183 .7887 .2113 �2.75 µ � 2.75σ .0091 .9940 .0060
�1.30 µ � 1.30σ .171 .8064 .1936 �2.80 µ � 2.80σ .0079 .9949 .0051
�1.35 µ � 1.35σ .160 .8230 .1770 �2.85 µ � 2.85σ .0069 .9956 .0044
�1.40 µ � 1.40σ .150 .8385 .1615 �2.90 µ � 2.90σ .0060 .9963 .0037
�1.45 µ � 1.45σ .139 .8529 .1471 �2.95 µ � 2.95σ .0051 .9968 .0032

�1.50 µ � 1.50σ .130 .8664 .1336 �3.00 µ � 3.00σ .0044 .9973 .0027
�4.00 µ � 4.00σ .0001 .99994 .00006
�5.00 µ � 5.00s .000001 .9999994 .0000006

�0.000 µ 0.3989 .0000 1.0000 �1.036 µ � 1.036σ 0.2331 0.7000 0.3000
� .126 µ � 0.126σ .3958 .1000 0.9000 �1.282 µ � 1.282σ .1755 .8000 .2000
� .253 µ � .253σ .3863 .2000 .8000 �1.645 µ � 1.645σ .1031 .9000 .1000
� .385 µ � .385σ .3704 .3000 .7000 �1.960 µ � 1.960σ .0584 .9500 .0500
� .524 µ � .524σ .3477 .4000 .6000 �2.576 µ � 2.576σ .0145 .9900 .0100
� .674 µ � .674σ .3178 .5000 .5000 �3.291 µ � 3.291σ .0018 .9990 .0010
� .842 µ � .842σ .2800 .6000 .4000 �3.891 µ � 3.891σ .0002 .9999 .0001



Example What is the sample value of t for the first day of tensile data?

Sample t = (34.32 − 35)/(2.22/�5�) = −.68

Note that on the average 90 percent of all such sample values would be expected
to fall within the interval �2.132.

t Distribution for the Difference in Two Sample Means
Population Variances Are Equal The t distribution can be

readily extended to the difference in two sample means when the
respective populations have the same variance σ2:

t =

where sp
2 is a pooled variance defined by

sp
2 =

In this application, the t distribution has (n1 + n2 − 2) df.
Population Variances Are Unequal When population variances

are unequal, an approximate t quantity can be used:

t =

with a = s1
2 /n1 b = s2

2 /n2

and df = (a + b)2

���
a2/(n1 − 1) + b2/(n2 − 1)

(x�1 − x�2) − (µ1 − µ2)
��

�a�+� b�

(n1 − 1)s1
2 + (n2 − 1)s2

2

���
(n1 − 1) + (n2 − 1)

(x�1 − x�2) − (µ1 − µ2)
��

sp�1�/n�1�+� 1�/n�2�
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Normal Distribution of Averages An examination of the ten-
sile-strength data previously tabulated would show that the range
(largest minus the smallest) of tensile strength within days averages
5.72. The average range in x� values within each week is 2.37, while the
range in the four weekly averages is 1.72. This reflects the fact that
averages tend to be less variable in a predictable way. Given that the
variance of x is var (x) = σ2, then the variance of x� based on n observa-
tions is var (x�) = σ2/n.

For averages of n observations, the corresponding relationship for
the Z-scale relationship is

z = (x� − µ/σ/�n�) or x� = µ + z

Example What proportion of daily tensile averages will fall between 34
and 36?

z1 = (34 − 35)/(2.45/�5�) = −.91 z2 = (36 − 35)/(2.45/�5�) = .91

P[−.91 ≤ z ≤ .91] = .6372, or roughly 64 percent

Example What midrange of daily tensile averages will include 95 percent
of the sample values?

x1 = 35 − 1.96(2.45/�5�) = 32.85

x2 = 35 + 1.96(2.45/�5�) = 37.15

or P[32.85 ≤ x� ≤ 37.15] = .95

Example What proportion of weekly tensile averages will fall between 34
and 36?

z1 = (34 − 35)/(2.45/�2�5�) = −2.04

z2 = (36 − 35)/(2.45/�2�5�) = 2.04

P[−2.04 ≤ z ≤ 2.04] = .9586, or roughly 96 percent

Distribution of Averages The normal curve relies on a knowl-
edge of σ, or in special cases, when it is unknown, s can be used with
the normal curve as an approximation when n > 30. For example, with
n > 30 the intervals x� � s and x� � 2s will include roughly 68 and 
95 percent of the sample values respectively when the distribution is
normal.

In applications sample sizes are usually small and σ unknown. In
these cases, the t distribution can be used where

t = (x� − µ)/(s/�n�) or x� = µ + ts/�n�

The t distribution is also symmetric and centered at zero. It is said to
be robust in the sense that even when the individual observations x
are not normally distributed, sample averages of x have distributions
which tend toward normality as n gets large. Even for small n of 5
through 10, the approximation is usually relatively accurate.

In reference to the tensile-strength table, consider the summary sta-
tistics x� and s by days. For each day, the t statistic could be computed.
If this were repeated over an extensive simulation and the resultant 
t quantities plotted in a frequency distribution, they would match the
corresponding distribution of t values summarized in Table 3-5.

Since the t distribution relies on the sample standard deviation s,
the resultant distribution will differ according to the sample size n. To
designate this difference, the respective distributions are classified
according to what are called the degrees of freedom and abbreviated
as df. In simple problems, the df are just the sample size minus 1. In
more complicated applications the df can be different. In general,
degrees of freedom are the number of quantities minus the number of
constraints. For example, four numbers in a square which must have
row and column sums equal to zero have only one df, i.e., four num-
bers minus three constraints (the fourth constraint is redundant).

Example For a sample size n = 5, what values of t define a midarea of 90
percent. For 4 df the tabled value of t corresponding to a midarea of 90 percent
is 2.132; i.e., P[−2.132 ≤ t ≤ 2.132] = .90.

Example For a sample size n = 25, what values of t define a midarea of 95
percent? For 24 df the tabled value of t corresponding to a midarea of 95 per-
cent is 2.064; i.e., P[−2.064 ≤ t ≤ 2.064] = .95.

σ
�
�n�

TABLE 3-5 Values of t

df t.40 t.30 t.20 t.10 t.05 t.025 t.01 t.005

1 0.325 0.727 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925
3 .277 .584 0.978 1.638 2.353 3.182 4.541 5.841
4 .271 .569 .941 1.533 2.132 2.776 3.747 4.604
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055
13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012
14 .258 .537 .868 1.345 1.761 2.145 2.624 2.977
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947

16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921
17 .257 .534 .863 1.333 1.740 2.110 2.567 2.898
18 .257 .534 .862 1.330 1.734 2.101 2.552 2.878
19 .257 .533 .861 1.328 1.729 2.093 2.539 2.861
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831
22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807
24 .256 .531 .857 1.318 1.711 2.064 2.492 2.797
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771
28 .256 .530 .855 1.313 1.701 2.048 2.467 2.763
29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750

40 .255 .529 .851 1.303 1.684 2.021 2.423 2.704
60 .254 .527 .848 1.296 1.671 2.000 2.390 2.660

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617
∞ .253 .524 .842 1.282 1.645 1.960 2.326 2.576

Above values refer to a single tail outside the indicated limit of t. For exam-
ple, for 95 percent of the area to be between −t and +t in a two-tailed t distribu-
tion, use the values for t0.025 or 2.5 percent for each tail.



Chi-Square Distribution For some industrial applications,
product uniformity is of primary importance. The sample standard
deviation s is most often used to characterize uniformity. In dealing
with this problem, the chi-square distribution can be used where χ 2 =
(s2/σ2) (df). The chi-square distribution is a family of distributions
which are defined by the degrees of freedom associated with the sam-
ple variance. For most applications, df is equal to the sample size
minus 1.

The probability distribution function is

p(y) = y0ydf − 2 exp 
 �
where y0 is chosen such that the integral of p(y) over all y is one.

In terms of the tensile-strength table previously given, the respec-
tive chi-square sample values for the daily, weekly, and monthly fig-
ures could be computed. The corresponding df would be 4, 24, and 99
respectively. These numbers would represent sample values from the
respective distributions which are summarized in Table 3-6.

In a manner similar to the use of the t distribution, chi square can
be interpreted in a direct probabilistic sense corresponding to a
midarea of (1 − α):

P[χ 1
2 ≤ (s2/σ2)(df) ≤ χ 2

2 ] = 1 − α
where χ 1

2 corresponds to a lower-tail area of α/2 and χ 2
2 an upper-tail

area of α/2.
The basic underlying assumption for the mathematical derivation of

chi square is that a random sample was selected from a normal distri-
bution with variance σ2. When the population is not normal but
skewed, square probabilities could be substantially in error.

Example On the basis of a sample size n = 5, what midrange of values will
include the sample ratio s/σ with a probability of 90 percent?

Use Table 3-6 for 4 df and read χ 1
2 = 0.484 for a lower tail area of 0.05/2, 2.5

percent, and read χ 2
2 = 11.1 for an upper tail area of 97.5 percent.

−(df )2

�
2
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TABLE 3-6 Percentiles of the c2 Distribution

Percent

df 0.5 1 2.5 5 10 90 95 97.5 99 99.5

1 0.000039 0.00016 0.00098 0.0039 0.0158 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .1026 .2107 4.61 5.99 7.38 9.21 10.60
3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84
4 .207 .297 .484 .711 1.064 7.78 9.49 11.14 13.28 14.86
5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75

6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55
7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64

For large values of degrees of freedom the approximate formula

χ a
2 = n �1 − + za �	�

3

where za is the normal deviate and n is the number of degrees of freedom, may be used. For example, χ.
2
99 = 60[1 − 0.00370 + 2.326(0.06086)]3 = 60(1.1379)3 = 88.4 for

the 99th percentile for 60 degrees of freedom.

2
�
9n

2
�
9n

P[.484 ≤ (s2/σ2)(4) ≤ 11.1] = .90

or P[.35 ≤ s/σ ≤ 1.66] = .90

Example On the basis of a sample size n = 25, what midrange of values
will include the sample ratio s/σ with a probability of 90 percent?

P[12.4 ≤ (s2/σ2)(24) ≤ 39.4] = .90

or P[.72 ≤ s/σ ≤ 1.28] = .90

This states that the sample standard deviation will be at least 72 percent and not
more than 128 percent of the population variance 90 percent of the time. Con-
versely, 10 percent of the time the standard deviation will underestimate or
overestimate the population standard deviation by the corresponding amount.
Even for samples as large as 25, the relative reliability of a sample standard devi-
ation is poor.

The chi-square distribution can be applied to other types of appli-
cation which are of an entirely different nature. These include appli-
cations which are discussed under “Goodness-of-Fit Test” and
“Two-Way Test for Independence of Count Data.” In these applica-
tions, the mathematical formulation and context are entirely different,
but they do result in the same table of values.

F Distribution In reference to the tensile-strength table, the
successive pairs of daily standard deviations could be ratioed and
squared. These ratios of variance would represent a sample from a dis-
tribution called the F distribution or F ratio. In general, the F ratio is
defined by the identity

F(γ1, γ2) = s1
2 /s2

2

where γ1 and γ2 correspond to the respective df’s for the sample vari-
ances. In statistical applications, it turns out that the primary area of
interest is found when the ratios are greater than 1. For this reason,
most tabled values are defined for an upper-tail area. However, defin-
ing F2 to be that value corresponding to an upper-tail area of α/2, then
F1 for a lower-tail area of α/2 can be determined through the identity



F1(γ1, γ2) = 1/F2(γ2, γ1)

The F distribution, similar to the chi square, is sensitive to the basic
assumption that sample values were selected randomly from a normal
distribution.

Example For two sample variances with 4 df each, what limits will bracket
their ratio with a midarea probability of 90 percent?

Use Table 3-7 with 4 df in the numerator and denominator and upper 5 per-
cent points (to get both sides totaling 10 percent). The entry is 6.39. Thus:

P[1/6.39 ≤ s1
2 /s2

2 ≤ 6.39] = .90

or P[.40 ≤ s1 /s2 ≤ 2.53] = .90

Confidence Interval for a Mean For the daily sample tensile-
strength data with 4 df it is known that P[−2.132 ≤ t ≤ 2.132] = .90.
This states that 90 percent of all samples will have sample t values
which fall within the specified limits. In fact, for the 20 daily samples
exactly 16 do fall within the specified limits (note that the binomial
with n = 20 and p = .90 would describe the likelihood of exactly none
through 20 falling within the prescribed limits—the sample of 20 is
only a sample).

Consider the new daily sample (with n = 5, x� = 37.14, and s = 1.85)
which was observed after a process change. In this case, the same
probability holds. However, in this instance the sample value of t can-
not be computed, since the new µ, under the process change, is not
known. Therefore P[−2.132 ≤ (37.14 − µ)/(1.85/�5�) ≤ 2.132] = .90. In
effect, this identity limits the magnitude of possible values for µ. The
magnitude of µ can be only large enough to retain the t quantity above
−2.132 and small enough to retain the t quantity below +2.132. This
can be found by rearranging the quantities within the bracket; i.e.,
P[35.78 ≤ µ ≤ 38.90] = .90. This states that we are 90 percent sure that
the interval from 35.78 to 38.90 includes the unknown parameter µ.

In general,

P
x� − t ≤ µ ≤ x� + t � = 1 − α

where t is defined for an upper-tail area of α/2 with (n − 1) df. In this
application, the interval limits (x� + t s/�n�) are random variables which
will cover the unknown parameter µ with probability (1 − α). The con-
verse, that we are 100 (1 − α) percent sure that the parameter value is
within the interval, is not correct. This statement defines a probability
for the parameter rather than the probability for the interval.

Example What values of t define the midarea of 95 percent for weekly
samples of size 25, and what is the sample value of t for the second week?

P[−2.064 ≤ t ≤ 2.064] = .95

and (34.19 − 35)/(2.35/�2�5�) = 1.72.

Example For the composite sample of 100 tensile strengths, what is the
90 percent confidence interval for µ?

Use Table 3-5 for t.05 with df ≈ ∞.

P 
35.16 − 1.645 < µ < 35.16 + 1.645 � = .90

or P[34.75 ≤ µ ≤ 35.57] = .90

Confidence Interval for the Difference in Two Population
Means The confidence interval for a mean can be extended to
include the difference between two population means. This interval is
based on the assumption that the respective populations have the
same variance σ2:

(x�1 − x�2) − tsp�1�/n�1�+� 1�/n�2� ≤ µ1 − µ2 ≤ (x�1 − x�2) + tsp�1�/n�1�+� 1�/n�2�

Example Compute the 95 percent confidence interval based on the orig-
inal 100-point sample and the subsequent 5-point sample:

sp
2 = = 5.997

or sp = 2.45

99(2.47)2 + 4(1.85)2

���
103

2.47
�
�1�0�0�

2.47
�
�1�0�0�

s
�
�n�

s
�
�n�

With 103 df and α = .05, t = �1.96 using t.025 in Table 3-5. Therefore

(35.16 − 37.14) � 1.96(2.45) �1�/1�0�0� +� 1�/5� = −1.98 � 2.20

or −4.18 ≤ (µ1 − µ2) ≤ .22

Note that if the respective samples had been based on 52 observations each
rather than 100 and 5, the uncertainty factor would have been �.94 rather than
the observed �2.20. The interval width tends to be minimum when n1 = n2.

Confidence Interval for a Variance The chi-square distribu-
tion can be used to derive a confidence interval for a population vari-
ance σ2 when the parent population is normally distributed. For a
100(1 − α) percent confidence interval

≤ σ2 ≤

where χ1
2 corresponds to a lower-tail area of α/2 and χ2

2 to an upper-tail
area of α/2.

Example For the first week of tensile-strength samples compute the 90
percent confidence interval for σ2 (df = 24, corresponding to n = 25, using 5 per-
cent and 95 percent in Table 3-6):

≤ σ2 ≤

3.80 ≤ σ2 ≤ 10.02

or 1.95 ≤ σ ≤ 3.17

TESTS OF HYPOTHESIS

General Nature of Tests The general nature of tests can be
illustrated with a simple example. In a court of law, when a defendant
is charged with a crime, the judge instructs the jury initially to pre-
sume that the defendant is innocent of the crime. The jurors are then
presented with evidence and counterargument as to the defendant’s
guilt or innocence. If the evidence suggests beyond a reasonable
doubt that the defendant did, in fact, commit the crime, they have
been instructed to find the defendant guilty; otherwise, not guilty. The
burden of proof is on the prosecution.

Jury trials represent a form of decision making. In statistics, an anal-
ogous procedure for making decisions falls into an area of statistical
inference called hypothesis testing.

Suppose that a company has been using a certain supplier of raw
materials in one of its chemical processes. A new supplier approaches
the company and states that its material, at the same cost, will increase
the process yield. If the new supplier has a good reputation, the com-
pany might be willing to run a limited test. On the basis of the test
results it would then make a decision to change suppliers or not. Good
management would dictate that an improvement must be demon-
strated (beyond a reasonable doubt) for the new material. That is, the
burden of proof is tied to the new material. In setting up a test of
hypothesis for this application, the initial assumption would be
defined as a null hypothesis and symbolized as H0. The null hypothe-
sis would state that yield for the new material is no greater than for the
conventional material. The symbol µ0 would be used to designate 
the known current level of yield for the standard material and µ for
the unknown population yield for the new material. Thus, the null
hypothesis can be symbolized as H0: µ ≤ µ0.

The alternative to H0 is called the alternative hypothesis and is sym-
bolized as H1: µ > µ0.

Given a series of tests with the new material, the average yield x�
would be compared with µ0. If x� < µ0, the new supplier would be dis-
missed. If x� > µ0, the question would be: Is it sufficiently greater in the
light of its corresponding reliability, i.e., beyond a reasonable doubt?
If the confidence interval for µ included µ0, the answer would be no,
but if it did not include µ0, the answer would be yes. In this simple
application, the formal test of hypothesis would result in the same
conclusion as that derived from the confidence interval. However, the
utility of tests of hypothesis lies in their generality, whereas confidence
intervals are restricted to a few special cases.

24(2.40)2

�
13.8

24(2.40)2

�
36.4

(df)s2

�
χ1

2

(df)s2

�
χ2

2
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TABLE 3-7 F Distribution

Upper 5% Points (F.95)

Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Upper 1% Points (F.99)

Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

1 4052 5000 5403 5625 5764 5859 5928 5982 6023 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6 13.5
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.53 2.45 2.36 2.27 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Interpolation should be performed using reciprocals of the degrees of freedom.
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Test of Hypothesis for a Mean Procedure
Nomenclature
µ = mean of the population from which the sample has been

drawn
σ = standard deviation of the population from which the sample

has been drawn
µ0 = base or reference level
H0 = null hypothesis
H1 = alternative hypothesis
α = significance level, usually set at .10, .05, or .01
t = tabled t value corresponding to the significance level α. For a

two-tailed test, each corresponding tail would have an area of
α/2, and for a one-tailed test, one tail area would be equal to
α. If σ2 is known, then z would be used rather than the t.

t = (x� − µ0)/(s/�n�) = sample value of the test statistic.
Assumptions
1. The n observations x1, x2, . . . , xn have been selected randomly.
2. The population from which the observations were obtained is

normally distributed with an unknown mean µ and standard deviation
σ. In actual practice, this is a robust test, in the sense that in most
types of problems it is not sensitive to the normality assumption when
the sample size is 10 or greater.

Test of Hypothesis
1. Under the null hypothesis, it is assumed that the sample came

from a population whose mean µ is equivalent to some base or refer-
ence designated by µ0. This can take one of three forms:

Form 1 Form 2 Form 3

H0: µ = µ0 H0: µ ≤ µ0 H0: µ ≥ µ0

H1: µ ≠ µ0 H1: µ > µ0 H1: µ < µ0

Two-tailed test Upper-tailed test Lower-tailed test

2. If the null hypothesis is assumed to be true, say, in the case of a
two-sided test, form 1, then the distribution of the test statistic t is
known. Given a random sample, one can predict how far its sample
value of t might be expected to deviate from zero (the midvalue of t)
by chance alone. If the sample value of t does, in fact, deviate too far
from zero, then this is defined to be sufficient evidence to refute the
assumption of the null hypothesis. It is consequently rejected, and the
converse or alternative hypothesis is accepted.

3. The rule for accepting H0 is specified by selection of the α level
as indicated in Fig. 3-57. For forms 2 and 3 the α area is defined to be
in the upper or the lower tail respectively.

4. The decision rules for each of the three forms are defined as
follows: If the sample t falls within the acceptance region, accept H0

for lack of contrary evidence. If the sample t falls in the critical region,
reject H0 at a significance level of 100α percent.

Example
Application. In the past, the yield for a chemical process has been estab-

lished at 89.6 percent with a standard deviation of 3.4 percent. A new supplier
of raw materials will be used and tested for 7 days.

Procedure
1. The standard of reference is µ0 = 89.6 with a known σ = 3.4.
2. It is of interest to demonstrate whether an increase in yield is achieved

with the new material; H0 says it has not; therefore,

H0: µ ≤ 89.6 H1: µ > 89.6

3. Select α = .05, and since σ is known (the new material would not affect
the day-to-day variability in yield), the test statistic would be z with a corre-
sponding critical value cv(z) = 1.645 (Table 3-5, df = ∞).

4. The decision rule:

Accept H0 if sample z < 1.645
Reject H0 if sample z > 1.645

5. A 7-day test was carried out, and daily yields averaged 91.6 percent with
a sample standard deviation s = 3.6 (this is not needed for the test of hypothesis).

6. For the data sample z = (91.6 − 89.6)/(3.4/�7�) = 1.56.
7. Since the sample z < cv(z), accept the null hypothesis for lack of contrary

evidence; i.e., an improvement has not been demonstrated beyond a reasonable
doubt.

Example
Application. In the past, the break strength of a synthetic yarn has averaged

34.6 lb. The first-stage draw ratio of the spinning machines has been increased.
Production management wants to determine whether the break strength has
changed under the new condition.

Procedure
1. The standard of reference is µ0 = 34.6.
2. It is of interest to demonstrate whether a change has occurred; therefore,

H0: µ = 34.6 H1: µ ≠ 34.6

3. Select α = .05, and since with the change in draw ratio the uniformity
might change, the sample standard deviation would be used, and therefore t
would be the appropriate test statistic.

4. A sample of 21 ends was selected randomly and tested on an Instron with
the results x� = 35.55 and s = 2.041.

5. For 20 df and a two-tailed α level of 5 percent, the critical values of t are
given by �2.086 with a decision rule (Table 3-5, t.025, df = 20):

Accept H0 if −2.086 < sample t < 2.086
Reject H0 if sample t < −2.086 or > 2.086

6. For the data sample t = (35.55 − 34.6)/(2.041/�2�1�) = 2.133.
7. Since 2.133 > 2.086, reject H0 and accept H1. It has been demonstrated

that an improvement in break strength has been achieved.

Two-Population Test of Hypothesis for Means
Nature Two samples were selected from different locations in a

plastic-film sheet and measured for thickness. The thickness of the
respective samples was measured at 10 close but equally spaced points
in each of the samples. It was of interest to compare the average thick-
ness of the respective samples to detect whether they were signifi-
cantly different. That is, was there a significant variation in thickness
between locations?

From a modeling standpoint statisticians would define this problem
as a two-population test of hypothesis. They would define the respec-
tive sample sheets as two populations from which 10 sample thickness
determinations were measured for each.

In order to compare populations based on their respective samples,
it is necessary to have some basis of comparison. This basis is predi-
cated on the distribution of the t statistic. In effect, the t statistic char-
acterizes the way in which two sample means from two separate
populations will tend to vary by chance alone when the population
means and variances are equal. Consider the following:

Population 1 Population 2

Normal Sample 1 Normal Sample 2

µ1 n1 µ2 n2

x�1 x�2

σ1
2 s1

2 σ2
2 s2

2

Consider the hypothesis µ1 = µ2. If, in fact, the hypothesis is correct,
i.e., µ1 = µ2 (under the condition σ1

2 = σ2
2), then the sampling distribu-

tion of (x�1 − x�2) is predictable through the t distribution. The observed
sample values then can be compared with the corresponding t distri-
bution. If the sample values are reasonably close (as reflected through
the α level), that is, x�1 and x�2 are not “too different” from each other
on the basis of the t distribution, the null hypothesis would be
accepted. Conversely, if they deviate from each other “too much” and
the deviation is therefore not ascribable to chance, the conjecture
would be questioned and the null hypothesis rejected.
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Example
Application. Two samples were selected from different locations in a plas-

tic-film sheet. The thickness of the respective samples was measured at 10 close
but equally spaced points.

Procedure
1. Demonstrate whether the thicknesses of the respective sample locations

are significantly different from each other; therefore,

H0: µ1 = µ2 H1: µ1 ≠ µ2

2. Select α = .05.
3. Summarize the statistics for the respective samples:

Sample 1 Sample 2

1.473 1.367 1.474 1.417
1.484 1.276 1.501 1.448
1.484 1.485 1.485 1.469
1.425 1.462 1.435 1.474
1.448 1.439 1.348 1.452

x�1 = 1.434 s1 = .0664 x�2 = 1.450 s2 = .0435

4. As a first step, the assumption for the standard t test, that σ1
2 = σ2

2, can be
tested through the F distribution. For this hypothesis, H0: σ1

2 = σ2
2 would be

tested against H1: σ1
2 ≠ σ2

2. Since this is a two-tailed test and conventionally only
the upper tail for F is published, the procedure is to use the largest ratio and the
corresponding ordered degrees of freedom. This achieves the same end result
through one table. However, since the largest ratio is arbitrary, it is necessary to
define the true α level as twice the value of the tabled value. Therefore, by using
Table 3-7 with α = .05 the corresponding critical value for F(9,9) = 3.18 would
be for a true α = .10. For the sample,

Sample F = (.0664/.0435)2 = 2.33

Therefore, the ratio of sample variances is no larger than one might expect to
observe when in fact σ1

2 = σ2
2. There is not sufficient evidence to reject the null

hypothesis that σ1
2 = σ2

2.
5. For 18 df and a two-tailed α level of 5 percent the critical values of t are

given by �2.101 (Table 3-5, t0.025, df = 18).
6. The decision rule:

Accept H0 if −2.101 ≤ sample t ≤ 2.101
Reject H0 otherwise

7. For the sample the pooled variance estimate is given by

sp
2 = = = .00315

or sp = .056

8. The sample statistic value of t is

Sample t = = −.64

9. Since the sample value of t falls within the acceptance region, accept H0

for lack of contrary evidence; i.e., there is insufficient evidence to demonstrate
that thickness differs between the two selected locations.

Test of Hypothesis for Paired Observations
Nature In some types of applications, associated pairs of observa-

tions are defined. For example, (1) pairs of samples from two popula-
tions are treated in the same way, or (2) two types of measurements
are made on the same unit. For applications of this type, it is not only
more effective but necessary to define the random variable as the dif-
ference between the pairs of observations. The difference numbers
can then be tested by the standard t distribution.

Examples of the two types of applications are as follows:
1. Sample treatment
a. Two types of metal specimens buried in the ground together in

a variety of soil types to determine corrosion resistance
b. Wear-rate test with two different types of tractor tires mounted

in pairs on n tractors for a defined period of time
2. Same unit
a. Blood-pressure measurements made on the same individual

before and after the administration of a stimulus
b. Smoothness determinations on the same film samples at two

different testing laboratories

1.434 − 1.450
��
.056�1�/1�0� +� 1�/1�0�

(.0664)2 + (.0435)2

��
2

9(.0664)2 + 9(.0435)2

���
9 + 9

Test of Hypothesis for Matched Pairs: Procedure
Nomenclature
di = sample difference between the ith pair of observations
s = sample standard deviation of differences
µ = population mean of differences
σ = population standard deviation of differences
µ0 = base or reference level of comparison
H0 = null hypothesis
H1 = alternative hypothesis
α = significance level
t = tabled value with (n − 1) df
t = (d� − µ0)/(s/�n�), the sample value of t

Assumptions
1. The n pairs of samples have been selected and assigned for

testing in a random way.
2. The population of differences is normally distributed with a

mean µ and variance σ2. As in the previous application of the t distri-
bution, this is a robust procedure, i.e., not sensitive to the normality
assumption if the sample size is 10 or greater in most situations.

Test of Hypothesis
1. Under the null hypothesis, it is assumed that the sample came

from a population whose mean µ is equivalent to some base or refer-
ence level designated by µ0. For most applications of this type, the
value of µ0 is defined to be zero; that is, it is of interest generally to
demonstrate a difference not equal to zero. The hypothesis can take
one of three forms:

Form 1 Form 2 Form 3

H0: µ = µ0 H0: µ ≤ µ0 H0: µ ≥ µ0

H1: µ ≠ µ0 H1: µ > µ0 H1: µ < µ0

Two-tailed test Upper-tailed test Lower-tailed test

2. If the null hypothesis is assumed to be true, say, in the case of a
lower-tailed test, form 3, then the distribution of the test statistic t is
known under the null hypothesis that limits µ = µ0. Given a random
sample, one can predict how far its sample value of t might be
expected to deviate from zero by chance alone when µ = µ0. If the
sample value of t is too small, as in the case of a negative value, 
then this would be defined as sufficient evidence to reject the null
hypothesis.

3. Select α.
4. The critical values or value of t would be defined by the tabled

value of t with (n − 1) df corresponding to a tail area of α. For a two-
tailed test, each tail area would be α/2, and for a one-tailed test there
would be an upper-tail or a lower-tail area of α corresponding to forms
2 and 3 respectively.

5. The decision rule for each of the three forms would be to reject
the null hypothesis if the sample value of t fell in that area of the t dis-
tribution defined by α, which is called the critical region. Otherwise,
the alternative hypothesis would be accepted for lack of contrary evi-
dence.

Example
Application. Pairs of pipes have been buried in 11 different locations to

determine corrosion on nonbituminous pipe coatings for underground use. One
type includes a lead-coated steel pipe and the other a bare steel pipe.

Procedure
1. The standard of reference is taken as µ0 = 0, corresponding to no differ-

ence in the two types.
2. It is of interest to demonstrate whether either type of pipe has a greater

corrosion resistance than the other. Therefore,

H0: µ = 0 H1: µ ≠ 0

3. Select α = .05. Therefore, with n = 11 the critical values of t with 10 df are
defined by t = �2.228 (Table 3.5, t.025).

4. The decision rule:

Accept H0 if −2.228 ≤ sample t ≤ 2.228
Reject H0 otherwise

5. The sample of 11 pairs of corrosion determinations and their differences
are as follows:
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Lead-coated Bare steel
Soil type steel pipe pipe d = difference

A 27.3 41.4 −14.1
B 18.4 18.9 −0.5
C 11.9 21.7 −9.8
D 11.3 16.8 −5.5
E 14.8 9.0 5.8
F 20.8 19.3 1.5

G 17.9 32.1 −14.2
H 7.8 7.4 0.4
I 14.7 20.7 −6.0
J 19.0 34.4 −15.4
K 65.3 76.2 −10.9

6. The sample statistics:

d� = −6.245 s2 = = 52.56

or s = 7.25

Sample t = (−6.245 − 0)/(7.25/�1�1�)

= −2.86

7. Since the sample t of −2.86 < tabled t of −2.228, reject H0 and accept H1;
that is, it has been demonstrated that, on the basis of the evidence, lead-coated
steel pipe has a greater corrosion resistance than bare steel pipe.

Example
Application. A stimulus was tested for its effect on blood pressure. Ten men

were selected randomly, and their blood pressure was measured before and
after the stimulus was administered. It was of interest to determine whether the
stimulus had caused a significant increase in the blood pressure.

Procedure
1. The standard of reference was taken as µ0 ≤ 0, corresponding to no

increase.
2. It was of interest to demonstrate an increase in blood pressure if in fact

an increase did occur. Therefore,

H0: µ0 ≤ 0 H1: µ0 > 0

3. Select α = .05. Therefore, with n = 10 the critical value of t with 9 df is
defined by t = 1.833 (Table 3-5, t.05, one-sided).

4. The decision rule:

Accept H0 if sample t < 1.833
Reject H0 if sample t > 1.833

5. The sample of 10 pairs of blood pressure and their differences were as
follows:

Individual Before After d = difference

1 138 146 8
2 116 118 2
3 124 120 −4
4 128 136 8
5 155 174 19

6 129 133 4
7 130 129 −1
8 148 155 7
9 143 148 5

10 159 155 −4

6. The sample statistics:

d� = 4.4 s = 6.85

Sample t = (4.4 − 0)/(6.85/�1�0�) = 2.03

7. Since the sample t = 2.03 > critical t = 1.833, reject the null hypothesis. It
has been demonstrated that the population of men from which the sample was
drawn tend, as a whole, to have an increase in blood pressure after the stimulus
has been given. The distribution of differences d seems to indicate that the
degree of response varies by individuals.

Test of Hypothesis for a Proportion
Nature Some types of statistical applications deal with counts

and proportions rather than measurements. Examples are (1) the

11 � d2 − (� d)2

��
11 × 10

proportion of workers in a plant who are out sick, (2) lost-time worker
accidents per month, (3) defective items in a shipment lot, and (4)
preference in consumer surveys.

The procedure for testing the significance of a sample proportion
follows that for a sample mean. In this case, however, owing to the
nature of the problem the appropriate test statistic is Z. This follows
from the fact that the null hypothesis requires the specification of the
goal or reference quantity p0, and since the distribution is a binomial
proportion, the associated variance is [p0(1 − p0)]n under the null
hypothesis. The primary requirement is that the sample size n satisfy
normal approximation criteria for a binomial proportion, roughly 
np > 5 and n(1 − p) > 5.

Test of Hypothesis for a Proportion: Procedure
Nomenclature

p = mean proportion of the population from which the
sample has been drawn

p0 = base or reference proportion
[p0(1 − p0)]/n = base or reference variance

p̂ = x/n = sample proportion, where x refers to the number
of observations out of n which have the specified
attribute

H0 = assumption or null hypothesis regarding the popu-
lation proportion

H1 = alternative hypothesis
α = significance level, usually set at .10, .05, or .01
z = Tabled Z value corresponding to the significance

level α. The sample sizes required for the z
approximation according to the magnitude of p0

are given in Table 3-5.
z = (p̂ − p0)/�p�0(�1� −� p�0)�/n�, the sample value of the test

statistic
Assumptions
1. The n observations have been selected randomly.
2. The sample size n is sufficiently large to meet the requirement

for the Z approximation.
Test of Hypothesis
1. Under the null hypothesis, it is assumed that the sample came

from a population with a proportion p0 of items having the specified
attribute. For example, in tossing a coin the population could be
thought of as having an unbounded number of potential tosses. If it is
assumed that the coin is fair, this would dictate p0 = 1/2 for the pro-
portional number of heads in the population. The null hypothesis can
take one of three forms:

Form 1 Form 2 Form 3

H0: p = p0 H0: p ≤ p0 H0: p ≥ p0

H1: p ≠ p0 H1: p > p0 H1: p < p0

Two-tailed test Upper-tailed test Lower-tailed test

2. If the null hypothesis is assumed to be true, then the sampling
distribution of the test statistic Z is known. Given a random sample, it
is possible to predict how far the sample proportion x/n might deviate
from its assumed population proportion p0 through the Z distribution.
When the sample proportion deviates too far, as defined by the signif-
icance level α, this serves as the justification for rejecting the assump-
tion, that is, rejecting the null hypothesis.

3. The decision rule is given by
Form 1: Accept H0 if lower critical z < sample z < upper critical z

Reject H0 otherwise
Form 2: Accept H0 if sample z < upper critical z

Reject H0 otherwise
Form 3: Accept H0 if lower critical z < sample z

Reject H0 otherwise

Example
Application. A company has received a very large shipment of rivets. One

product specification required that no more than 2 percent of the rivets have
diameters greater than 14.28 mm. Any rivet with a diameter greater than this
would be classified as defective. A random sample of 600 was selected and
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tested with a go–no-go gauge. Of these, 16 rivets were found to be defective. Is
this sufficient evidence to conclude that the shipment contains more than 2 per-
cent defective rivets?

Procedure
1. The quality goal is p ≤ .02. It would be assumed initially that the ship-

ment meets this standard; i.e., H0: p ≤ .02.
2. The assumption in step 1 would first be tested by obtaining a random

sample. Under the assumption that p ≤ .02, the distribution for a sample pro-
portion would be defined by the z distribution. This distribution would define
an upper bound corresponding to the upper critical value for the sample pro-
portion. It would be unlikely that the sample proportion would rise above that
value if, in fact, p ≤ .02. If the observed sample proportion exceeds that limit,
corresponding to what would be a very unlikely chance outcome, this would lead
one to question the assumption that p ≤ .02. That is, one would conclude that
the null hypothesis is false. To test, set

H0: p ≤ .02 H1: p > .02

3. Select α = .05.
4. With α = .05, the upper critical value of Z = 1.645 (Table 3-5, t.05, df = ∞,

one-sided).
5. The decision rule:

Accept H0 if sample z < 1.645

Reject H0 if sample z > 1.645

6. The sample z is given by

Sample z =

= 1.17

7. Since the sample z < 1.645, accept H0 for lack of contrary evidence; there
is not sufficient evidence to demonstrate that the defect proportion in the ship-
ment is greater than 2 percent.

Test of Hypothesis for Two Proportions
Nature In some types of engineering and management-science

problems, we may be concerned with a random variable which repre-
sents a proportion, for example, the proportional number of defective
items per day. The method described previously relates to a single
proportion. In this subsection two proportions will be considered.

A certain change in a manufacturing procedure for producing com-
ponent parts is being considered. Samples are taken by using both the
existing and the new procedures in order to determine whether the
new procedure results in an improvement. In this application, it is of
interest to demonstrate statistically whether the population propor-
tion p2 for the new procedure is less than the population proportion p1

for the old procedure on the basis of a sample of data.

Test of Hypothesis for Two Proportions: Procedure
Nomenclature
p1 = population 1 proportion
p2 = population 2 proportion
n1 = sample size from population 1
n2 = sample size from population 2
x1 = number of observations out of n1 that have the designated

attribute
x2 = number of observations out of n2 that have the designated

attribute
p̂1 = x1/n1, the sample proportion from population 1
p̂2 = x2/n2, the sample proportion from population 2
α = significance level

H0 = null hypothesis
H1 = alternative hypothesis

z = tabled Z value corresponding to the stated significance level α

z = , the sample value of Z

Assumptions
1. The respective two samples of n1 and n2 observations have been

selected randomly.
2. The sample sizes n1 and n2 are sufficiently large to meet the

requirement for the Z approximation; i.e., x1 > 5, x2 > 5.

p̂1 − p̂2
����
�p̂1(1 − p̂1)/n1 + p̂2(1 − p̂2)/n2

(16/600) − .02
��
�(.�0�2�)(�.9�8�)/�6�0�0�

Test of Hypothesis
1. Under the null hypothesis, it is assumed that the respective two

samples have come from populations with equal proportions p1 = p2.
Under this hypothesis, the sampling distribution of the corresponding
Z statistic is known. On the basis of the observed data, if the resultant
sample value of Z represents an unusual outcome, that is, if it falls
within the critical region, this would cast doubt on the assumption of
equal proportions. Therefore, it will have been demonstrated statisti-
cally that the population proportions are in fact not equal. The various
hypotheses can be stated:

Form 1 Form 2 Form 3

H0: p1 = p2 H0: p1 ≤ p2 H0: p1 ≥ p2

H1: p1 ≠ p2 H1: p1 > p2 H1: p1 < p2

Two-tailed test Upper-tailed test Lower-tailed test

2. The decision rule for form 1 is given by
Accept H0 if lower critical z < sample z < upper critical z
Reject H0 otherwise

Example
Application. A change was made in a manufacturing procedure for compo-

nent parts. Samples were taken during the last week of operations with the old
procedure and during the first week of operations with the new procedure.
Determine whether the proportional numbers of defects for the respective pop-
ulations differ on the basis of the sample information.

Procedure
1. The hypotheses are

H0: p1 = p2 H1: p1 ≠ p2

2. Select α = .05. Therefore, the critical values of z are �1.96 (Table 3-4, 
A = 0.9500).

3. For the samples, 75 out of 1720 parts from the previous procedure and
80 out of 2780 parts under the new procedure were found to be defective; there-
fore,

p̂1 = 75/1720 = .0436 p̂2 = 80/2780 = .0288

4. The decision rule:

Accept H0 if −1.96 ≤ sample Z ≤ 1.96
Reject H0 otherwise

5. The sample statistic:

Sample z =

= 2.53

6. Since the sample z of 2.53 > tabled z of 1.96, reject H0 and conclude that
the new procedure has resulted in a reduced defect rate.

Goodness-of-Fit Test
Nature A standard die has six sides numbered from 1 to 6. If one

were really interested in determining whether a particular die was
well balanced, one would have to carry out an experiment. To do this,
it might be decided to count the frequencies of outcomes, 1 through
6, in tossing the die N times. On the assumption that the die is per-
fectly balanced, one would expect to observe N/6 occurrences each for
1, 2, 3, 4, 5, and 6. However, chance dictates that exactly N/6 occur-
rences each will not be observed. For example, given a perfectly bal-
anced die, the probability is only 1 chance in 65 that one will observe
1 outcome each, for 1 through 6, in tossing the die 6 times. Therefore,
an outcome different from 1 occurrence each can be expected. Con-
versely, an outcome of six 3s would seem to be too unusual to have
occurred by chance alone.

Some industrial applications involve the concept outlined here. The
basic idea is to test whether or not a group of observations follows a pre-
conceived distribution. In the case cited, the distribution is uniform;
i.e., each face value should tend to occur with the same frequency.

Goodness-of-Fit Test: Procedure
Nomenclature Each experimental observation can be classified

into one of r possible categories or cells.

.0436 − .0288
�����
�(.�0�4�3�6�)(�.9�5�6�4�)/�1�7�2�0� +� (�.0�2�8�8�)(�.9�7�1�2�)/�2�7�8�0�
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r = total number of cells
Oj = number of observations occurring in cell j
Ej = expected number of observations for cell j based on the pre-

conceived distribution
N = total number of observations
f = degrees of freedom for the test. In general, this will be equal

to (r − 1) minus the number of statistical quantities on which
the Ej’s are based (see the examples which follow for details).

Assumptions
1. The observations represent a sample selected randomly from a

population which has been specified.
2. The number of expectation counts Ej within each category

should be roughly 5 or more. If an Ej count is significantly less than 5,
that cell should be pooled with an adjacent cell.

Computation for Ej On the basis of the specified population, the
probability of observing a count in cell j is defined by pj. For a sample
of size N, corresponding to N total counts, the expected frequency is
given by Ej = Npj.

Test Statistics: Chi Square

χ2 = �
r

j = 1

with f df

Test of Hypothesis
1. H0: The sample came from the specified theoretical distribution

H1: The sample did not come from the specified theoretical
distribution

2. For a stated level of α,
Reject H0 if sample χ2 > tabled χ2

Accept H0 if sample χ2 < tabled χ2

Example
Application A production-line product is rejected if one of its characteris-

tics does not fall within specified limits. The standard goal is that no more than
2 percent of the production should be rejected.

Computation
1. Of 950 units produced during the day, 28 units were rejected.
2. The hypotheses:

H0: the process is in control
H1: the process is not in control

3. Assume that α = .05; therefore, the critical value of χ2(1) = 3.84 (Table 
3-6, 95 percent, df = 1). One degree of freedom is defined since (r − 1) = 1, and
no statistical quantities have been computed for the data.

4. The decision rule:

Reject H0 if sample χ2 > 3.84
Accept H0 otherwise

5. Since it is assumed that p = .02, this would dictate that in a sample of 950
there would be on the average (.02)(950) = 19 defective items and 931 accept-
able items:

Expectation
Category Observed Oj Ej = 950pj

Acceptable 922 931
Not acceptable 28 19

Total 950 950

Sample χ2 = +

= 4.35 with critical χ2 = 3.84

6. Conclusion. Since the sample value exceeds the critical value, it would be
concluded that the process is not in control.

Example
Application A frequency count of workers was tabulated according to the

number of defective items that they produced. An unresolved question is
whether the observed distribution is a Poisson distribution. That is, do observed
and expected frequencies agree within chance variation?

Computation
1. The hypotheses:

H0: there are no significant differences, in number of defective units,
between workers

H1: there are significant differences

(28 − 19)2

��
19

(922 − 931)2

��
931

(Oj − Ej)2

�Ej

2. Assume that α = .05.
3. Test statistic:

No. of
defective units Oj Ej

0 8  10 2.06  8.70 pool1 7 6.64
2 9 10.73
3 12 11.55
4 9 9.33
5 6 6.03

6 3 3.24
7 2 1.50
8 0  6 .60  5.66 pool
9 1 .22

≥10 0 .10
Sum 52 52

The expectation numbers Ej were computed as follows: For the Poisson dis-
tribution, λ = E(x); therefore, an estimate of λ is the average number of defec-
tive units per worker, i.e., λ = (1/52)(0 × 3 + 1 × 7 + ⋅⋅⋅ + 9 × 1) = 3.23. Given this
approximation, the probability of no defective units for a worker would be
(3.23)0/0!)e−3.23 = .0396. For the 52 workers, the number of workers producing
no defective units would have an expectation E = 52(0.0396) = 2.06, and so forth.

The sample chi-square value is computed from

χ2 = + + ⋅⋅⋅ +

= .53

4. The critical value of χ2 would be based on four degrees of freedom. This
corresponds to (r − 1) − 1, since one statistical quantity λ was computed from
the sample and used to derive the expectation numbers.

5. The critical value of χ2(4) = 9.49 (Table 3-6) with α = .05; therefore,
accept H0.

Two-Way Test for Independence for Count Data
Nature When individuals or items are observed and classified

according to two different criteria, the resultant counts can be statisti-
cally analyzed. For example, a market survey may examine whether a
new product is preferred and if it is preferred due to a particular char-
acteristic.

Count data, based on a random selection of individuals or items
which are classified according to two different criteria, can be statisti-
cally analyzed through the χ2 distribution. The purpose of this analysis
is to determine whether the respective criteria are dependent. That is,
is the product preferred because of a particular characteristic?

Two-Way Test for Independence for Count Data: Procedure
Nomenclature
1. Each observation is classified into each of two categories:
a. The first one into 2, 3, . . . , or r categories
b. The second one into 2, 3, . . . , or c categories
2. Oij = number of observations (observed counts) in cell (i, j) with

i = 1, 2, . . . , r
j = 1, 2, . . . , c

3. N = total number of observations
4. Eij = computed number for cell (i,j) which is an expectation

based on the assumption that the two characteristics are independent
5. Ri = subtotal of counts in row i
6. Cj = subtotal of counts in column j
7. α = significance level
8. H0 = null hypothesis
9. H1 = alternative hypothesis
10. χ2 = critical value of χ2 corresponding to the significance level

α and (r − 1)(c − 1) df

11. Sample χ2 = �
c,r

i, j

Assumptions
1. The observations represent a sample selected randomly from a

large total population.

(Oij − Eij)2

��
Eij

(6 − 5.66)2

��
5.66

(9 − 10.73)2

��
10.73

(10 − 8.70)2

��
8.70
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2. The number of expectation counts Eij within each cell should
be approximately 2 or more for arrays 3 × 3 or larger. If any cell con-
tains a number smaller than 2, appropriate rows or columns should be
combined to increase the magnitude of the expectation count. For
arrays 2 × 2, approximately 4 or more are required. If the number is
less than 4, the exact Fisher test should be used.

Test of Hypothesis Under the null hypothesis, the classification
criteria are assumed to be independent, i.e.,

H0: the criteria are independent
H1: the criteria are not independent

For the stated level of α,

Reject H0 if sample χ2 > tabled χ2

Accept H0 otherwise

Computation for Eij Compute Eij across rows or down columns
by using either of the following identities:

Eij = Cj � � across rows

Eij = Ri � � down columns

Sample c2 Value

χ2 = �
i, j

In the special case of r = 2 and c = 2, a more accurate and simplified
formula which does not require the direct computation of Eij can be
used:

χ2 =

Example
Application A market research study was carried out to relate the subjective

“feel” of a consumer product to consumer preference. In other words, is the
consumer’s preference for the product associated with the feel of the product, or
is the preference independent of the product feel?

Procedure
1. It was of interest to demonstrate whether an association exists between

feel and preference; therefore, assume

H0: feel and preference are independent
H1: they are not independent

2. A sample of 200 people was asked to classify the product according to
two criteria:

a. Liking for this product
b. Liking for the feel of the product

Like feel

Yes No Ri

Like product Yes 114 13 = 127
No 55 18 = 73
Cj 169 31 200

3. Select α = .05; therefore, with (r − 1)(c − 1) = 1 df, the critical value of 
χ2 is 3.84 (Table 3-6, 95 percent).

4. The decision rule:

Accept H0 if sample χ2 < 3.84
Reject H0 otherwise

5. The sample value of χ2 by using the special formula is

Sample χ2 =

= 6.30

6. Since the sample χ2 of 6.30 > tabled χ2 of 3.84, reject H0 and accept H1.
The relative proportionality of E11 = 169(127/200) = 107.3 to the observed 114
compared with E22 = 31(73/200) = 11.3 to the observed 18 suggests that when
the consumer likes the feel, the consumer tends to like the product, and con-
versely for not liking the feel. The proportions 169/200 = 84.5 percent and

[|114 × 18 − 13 × 55| − 100]2200
����

(169)(31)(127)(73)

[|O11O22 − O12O21| −aN]2N
���

R1R2C1C2

(Oij − Eij)2

��
Eij

Cj
�
N

Ri
�
N

127/200 = 63.5 percent suggest further that there are other attributes of the
product which tend to nullify the beneficial feel of the product.

LEAST SQUARES

When experimental data is to be fit with a mathematical model, it is
necessary to allow for the fact that the data has errors. The engineer is
interested in finding the parameters in the model as well as the uncer-
tainty in their determination. In the simplest case, the model is a lin-
ear equation with only two parameters, and they are found by a
least-squares minimization of the errors in fitting the data. Multiple
regression is just linear least squares applied with more terms. Non-
linear regression allows the parameters of the model to enter in a non-
linear fashion. The following description of maximum likelihood
applies to both linear and nonlinear least squares (Ref. 231). If each
measurement point yi has a measurement error ∆yi that is indepen-
dently random and distributed with a normal distribution about the
true model y(x) with standard deviation σi, then the probability of a
data set is

P = �
N

i = 1
�exp 
− � �

2

� ∆y
Here, yi is the measured value, σi is the standard deviation of the ith
measurement, and ∆y is needed to say a measured value �∆y has a
certain probability. Given a set of parameters (maximizing this func-
tion), the probability that this data set plus or minus ∆y could have
occurred is P. This probability is maximized (giving the maximum like-
lihood) if the negative of the logarithm is minimized.

�
N

i = 1
� �

2

− N log ∆y

Since N, σi, and ∆y are constants, this is the same as minimizing χ2.

χ2 = �
N

i = 1

 �

2

with respect to the parameters {aj}. Note that the standard deviations
{σi} of the measurements are expected to be known. The goodness of
fit is related to the number of degrees of freedom, ν = N − M. The
probability that χ2 would exceed a particular value (χ0)2 is

P = 1 − Q � , χ0
2�

where Q(a, x) is the incomplete gamma function

Q(a, x) = �x

0
e−t ta − 1 dt (a > 0)

and Γ(a) is the gamma function

Γ(a) = �∞

0
ta − 1e−t dt

Both functions are tabulated in mathematical handbooks (Ref. 1). The
function P gives the goodness of fit. Call χ0

2 the value of χ2 at the min-
imum. Then P > 0.1 represents a believable fit; if Q > 0.001, it might
be an acceptable fit; smaller values of Q indicate the model may be in
error (or the σi are really larger.) A “typical” value of χ2 for a moder-
ately good fit is χ2 ∼ ν . Asymptotically for large ν, the statistic χ2

becomes normally distributed with a mean ν and a standard deviation
�(2�ν�)� (Ref. 231).

If values σi are not known in advance, assume σi = σ (so that its
value does not affect the minimization of χ2). Find the parameters by
minimizing χ2 and compute:

σ2 = �
N

i = 1

This gives some information about the errors (i.e., the variance and
standard deviation of each data point), although the goodness of fit, P,
cannot be calculated.

The minimization of χ2 requires

�
N

i = 1

 � = 0, k = 1, . . . , M

∂y(xi; a1, . . . , aM)
��

∂ak

yi − y(xi)
�

σ i
2

[yi − y(xi)]2

��
N

1
�
Γ(a)

1
�
2

ν
�
2

yi − y(xi; a1, . . . , aM)
���

σi

yi − y(xi)
�

�2� σi

yi − y(xi)
�

σi

1
�
2
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Linear Least Squares When the model is a straight line

χ2(a, b) = �
N

i = 1

 �

2

Define S = �
N

i = 1

, Sx = �
N

i = 1

, Sy = �
N

i = 1

Sxx = �
N

i = 1

, Sxy = �
N

i = 1

, ti = �xi − �, Stt = �
N

i = 1

t i
2

Then b = �
N

i = 1

, a = , σa
2 = �1 + �, σb

2 =

Cov (a, b) = − , rab =

We thus get the values of a and b with maximum likelihood as well as
the variances of a and b. Using the value of χ2 for this a and b, we can
also calculate the goodness of fit, P. In addition, the linear correlation
coefficient r is related by

χ2 = (1 − r2) �
N

i = 1

(yi − y�)2

Here r =

Values of r near 1 indicate a positive correlation; r near −1 means a
negative correlation and r near zero means no correlation.

The form of the equations here is given to provide good accuracy
when many terms are used and to provide the variances of the param-
eters. Another form of the equations for a and b is simpler, but is
sometimes inaccurate unless many significant digits are kept in the
calculations. The minimization of χ2 when σi is the same for all i gives
the following equations for a and b.

aN + b �
N

i = 1

xi = �
N

i = 1

yi

a �
N

i = 1

xi + b �
N

i = 1

x i
2 = �

N

i = 1

yixi

The solution is b =

y� = �
N

i = 1

yi �N, x� = �
N

i = 1

xi�N

a = y� − bx�
The value of χ2 can be calculated from the formula

χ2 = �
N

i = 1

yi
2 − a �

N

i = 1

yi − b �
N

i = 1

yixi

It is usually advisable to plot the observed pairs of yi versus xi to sup-
port the linearity assumption and to detect potential outliers. Sus-
pected outliers can be omitted from the least-squares “fit” and then
subsequently tested on the basis of the least-squares fit.

Example
Application. Brenner (Magnetic Method for Measuring the Thickness of

Non-magnetic Coatings on Iron and Steel, National Bureau of Standards,
RP1081, March 1938) suggests an alternative way of measuring the thickness of
nonmagnetic coatings of galvanized zinc on iron and steel. This procedure is
based on a nondestructive magnetic method as a substitute for the standard
destructive stripping method. A random sample of 11 pieces was selected and
measured by both methods.

N �
N

i = 1

yixi − �
N

i = 1

xi �
N

i = 1

yi

���

N �
N

i = 1

x i
2 − ��

N

i = 1

xi�
2

�
N

i = 1

�
(xi − x�

σ
)(

i
2

yi − y�)
�

���

��
N

i =
	

1
	�

(x	i

σ
−	

i
2

x�	)2

�	 ��
N

i =
	

1
	�

(y	i

σ
−	

i
2

y�	)2

�	

Cov (a, b)
�

σaσb

Sx
�
SStt

1
�
Stt

S x
2

�
SStt

1
�
S

Sy − Sxb
�

S
tiyi
�
σi

1
�
Stt

Sx
�
S

1
�
σi

xiyi
�
σ i

2

xi
2

�
σ i

2

yi
�
σ i

2

xi
�
σ i

2

1
�
σ i

2

yi − a − bxi
��

σi

Nomenclature. The calibration between the magnetic and the stripping
methods can be determined through the model

y = a + bx + ε
where x = strip-method determination

y = magnetic-method determination

Sample data

Thickness, 10−5 ln

Stripping method, Magnetic method,
x y

104 85
114 115
116 105
129 127
132 120
139 121

174 155
312 250
338 310
465 443
720 630

Computations. The normal equations are defined by

na + (� x)b = � y

(� x)a + (� x2)b = � xy
For the sample

11a + 2743b = 2461

2743a + 1,067,143b = 952,517

with � y2 = 852,419.
The solution to the normal equations is given by

a = 3.19960 b = .884362

The error sum of squares can be computed from the formula

χ2 = � y2 − a � y − b � xy

if a sufficient number of significant digits is retained (usually six or seven digits
are sufficient). Here

χ2 = 2175.14

If the normalized method is used in addition, the value of Stt is 3.8314 ×
105/σ2, where σ2 is the variance of the measurement of y. The values of a and 
b are, of course, the same. The variances of a and b are σa

2 = 0.2532σ2, σ b
2 =

2.610 × 10−6σ2. The correlation coefficient is 0.996390, which indicates that
there is a positive correlation between x and y. The small value of the variance
for b indicates that this parameter is determined very well by the data. The
residuals show no particular pattern, and the predictions are plotted along with
the data in Fig. 3-58. If the variance of the measurements of y is known through
repeated measurements, then the variance of the parameters can be made
absolute.

Multiple Regression A general linear model is one expressed as

y(x) = �
M

k = 1

akXk(x)

where the parameters are {ak}, and the expression is linear with
respect to them, and Xk(x) can be any (nonlinear) functions of x, not
depending on the parameters {ak}. Then:

�
N

i = 1

yi − �

M

j = 1

ajXj(xi)� Xk(xi) = 0, k = 1, . . . , M

This is rewritten as

�
M

j = 1

�

N

i = 1

Xj(xi)Xk(xi)� aj = �
N

i = 1

Xk(xi)

or as �
M

j = 1

αkjaj = βk

Solving this set of equations gives the parameters {aj}, which maximize
the likelihood. The variance of aj is

σ2(aj) = Cj j

where Cj k = α−1
j k, or C is the inverse of α. The covariance of aj and ak

yi
�
σ i

2

1
�
σ i

2

1
�
σ i

2
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is given by Cj k. If rounding errors affect the result, then we try to make
the functions orthogonal. For example, using

Xk(x) = xk − 1

will cause rounding errors for a smaller M than

Xk(x) = Pk − 1(x)

where Pk − 1 are orthogonal polynomials. If necessary, a singular value
decomposition can be used.

Various global and piecewise polynomials can be used to fit the
data. Most approximations are to be used with M < N. One can some-
times use more and more terms, and calculating the value of χ2 for
each solution. Then stop increasing M when the value of χ2 no longer
increases with increasing M.

Example
Application. Merriman (“The Method of Least Squares Applied to a

Hydraulic Problem,” J. Franklin Inst., 233–241, October 1877) reported on a
study of stream velocity as a function of relative depth of the stream.

Sample data

Depth* Velocity, y, ft/s

0 3.1950
.1 3.2299
.2 3.2532
.3 3.2611
.4 3.2516

.5 3.2282

.6 3.1807

.7 3.1266

.8 3.0594

.9 2.9759

*As a fraction of total depth.

Model. Owing to the curvature of velocity with depth, a quadratic model
was specified:

Velocity = β0 + β1x1 + β2x2

where x2 = x 1
2 .

Normal equations. The three normal equations are defined by

(n)β̂0 + (� x1)β̂1 + (� x2)β̂2 = � y

(� x1)β̂0 + (� x1
2)β̂1 + (� x1x2)β̂2 = � x1y

(� x2)β̂0 + (� x1x2)β̂1 + (� x2
2)β̂2 = � x2y

For the sample data, the normal equations are

10β̂0 + 4.5β̂1 + 2.85β̂2 = 31.7616

4.5β̂0 + 2.85β̂1 + 2.025β̂2 = 14.08957

2.85β̂0 + 2.025β̂1 + 1.5333β̂2 = 8.828813

The algebraic solution to the simultaneous equations is

β̂0 = 3.19513 β̂1 = .4425 β̂2 = −.7653

The inverse of the product matrix

α = � �
is α−1 = � �
The variances are then the diagonal elements of the inverse of matrix α (0.6182,
16.5530, 18.9394) times the variance of the measurement of y, σy

2. The value of
χ2 is 5.751 × 10−5, the correlation coefficient r = 0.99964, and σ = 0.002398.

t values. A sample t value can be computed for each regression coefficient j
through the identity tj =β̂j /(σ̂�cj�j�), where cjj is the ( j, j) element in the inverse.
For the two variables x1 and x2,

Coefficient cjj Sample t value

.4425 16.55 45.3
−.7653 18.94 −73.3

Computational note. From a computational standpoint, it is usually advis-
able to define the variables in deviation units. For example, in the problem pre-
sented, let

x1 = depth − d�e�p�t�h�
= depth − .45

For expansion terms such as a square, define

x2 = x1
2 − x̄1

2 (x̄1
2 = .0825)

For the previous sample data,

Deviation units

x1 x2 x1 x2

−.45 .12 .05 −.08
−.35 .04 .15 −.06
−.25 −.02 .25 −.02
−.25 −.02 .35 .04
−.15 −.06 .45 .12
−.05 −.08

The resultant analysis-of-variance tables will remain exactly the same. However,

2.2727
−17.0455

18.9394

−2.5909
16.5530

−17.0455

.6182
−2.5909

2.2727

2.85
2.025
1.5333

4.5
2.85
2.025

10
4.5
2.85
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the corresponding coefficient t value for the linear coefficient will usually be
improved. This is an idiosyncrasy of regression modeling. With the coded data
presented, the least-squares solution is given by

Ŷ = 3.17616 − .2462x1 − .7653x2

with a corresponding t value for β̂1 = −.2462 of t = −63.63.
When expansion terms are used but not expanded about the mean, the cor-

responding t values for the generating terms should not be used. For example,
if x3 = x1x2 is used rather than the correct expansion (x1 − x�1)(x2 − x�2), then the cor-
responding t values for x1 and x2 should not be used.

Nonlinear Least Squares There are no analytic methods for
determining the most appropriate model for a particular set of data. In
many cases, however, the engineer has some basis for a model. If the
parameters occur in a nonlinear fashion, then the analysis becomes
more difficult. For example, in relating the temperature to the
elapsed time of a fluid cooling in the atmosphere, a model that has 
an asymptotic property would be the appropriate model (temp = a +
b exp(−c time), where a represents the asymptotic temperature corre-
sponding to t → ∞. In this case, the parameter c appears nonlinearly.
The usual practice is to concentrate on model development and com-
putation rather than on statistical aspects. In general, nonlinear
regression should be applied only to problems in which there is a well-
defined, clear association between the two variables; therefore, a test
of hypothesis on the significance of the fit would be somewhat ludi-
crous. In addition, the generalization of the theory for the associate
confidence intervals for nonlinear coefficients is not well developed.

The Levenberg-Marquardt method is used when the parameters of
the model appear nonlinearly (Ref. 231). We still define

χ2(a) = �
N

i = 1

 �

2

and near the optimum represent χ2 by

χ2(a) = χ0
2 − dT ⋅ a + aT ⋅ D ⋅ a

where d is an M × 1 vector and D is an M × M matrix. We then calcu-
late iteratively

D ⋅ (ak + 1 − ak) = −∇χ 2(ak) (3-89)

The notation al
k means the lth component of a evaluated on the kth

iteration. If ak is a poor approximation to the optimum, we might use
steepest descent instead.

ak + 1 − ak = −constant × ∇χ 2(ak) (3-90)

and choose the constant somehow to decrease χ2 as much as possible.
The gradient of χ2 is

= −2 �
N

i = 1

k = 1, 2, . . . , M

The second derivative (in D) is

= 2 �
N

i = 1
� − [yi − y(xi; a)] 

Both Eq. (3-89) and Eq. (3-90) are included if we write

�
M

l = 1

α′kl (a l
k + 1 − al

k ) = βk (3-91)

where α′kl = �
N

i = 1

k ≠ 1

α′kk = �
N

i = 1

 �

2

(1 + λ)

βk = �
N

i = 1

The second term in the second derivative is dropped because it is usu-
ally small [remember that yi will be close to y(xi, a)]. The Levenberg-
Marquardt method then iterates as follows

∂y(xi; a)
�

∂ak

yi − y(xi; a)
��

σ i
2

∂y(xi; a)
�

∂ak

1
�
σ i

2

∂y(xi; a)
�

∂al

∂y(xi; a)
�

∂ak

1
�
σ i

2

∂2y(xi; a)
�

∂ak∂al

∂y(xi; a)
�

∂al

∂y(xi; a)
�

∂ak

1
�
σ i

2

∂2χ2

�
∂ak∂al

∂y(xi; a)
�

∂ak

yi − y(xi; a)
��

σ i
2

∂χ2

�
∂ak

1
�
2

yi − y(xi; a)
��

σ i
2

1. Choose a and calculate χ2(a).
2. Choose λ, say λ = 0.001.
3. Solve Eq. (3-91) for ak + 1 and evaluate χ2(ak + 1).
4. If χ2(ak + 1) ≥ χ2(ak) then increase λ by a factor of, say, 10 and go

back to step 3. This makes the step more like a steepest descent.
5. If χ2(ak + 1) < χ2(ak) then update a, i.e., use a = ak + 1, decrease λ

by a factor of 10, and go back to step 3.
6. Stop the iteration when the decrease in χ2 from one step to

another is not statistically meaningful, i.e., less than 0.1 or 0.01 or
0.001.

7. Set λ = 0 and compute the estimated covariance matrix: C = α−1.
This gives the standard errors in the fitted parameters a.

For normally distributed errors the parameter region in which χ2 =
constant can give boundaries of the confidence limits. The value of a
obtained in the Marquardt method gives the minimum χ2

min. If we set
χ2 = χ2

min + ∆χ for some ∆χ and then look at contours in parameter
space where χ1

2 = constant then we have confidence boundaries at the
probability associated with χ1

2. For example, in a chemical reactor with
radial dispersion the heat transfer coefficient and radial effective heat
conductivity are closely connected: decreasing one and increasing the
other can still give a good fit. Thus, the confidence boundaries may
look something like Fig. 3-59. The ellipse defined by ∆χ2 = 2.3 con-
tains 68.3 percent of the normally distributed data. The curve defined
by ∆χ2 = 6.17 contains 95.4 percent of the data.

Example
Application. Data were collected on the cooling of water in the atmosphere

as a function of time.

Sample data

Time x Temperature y

0 92.0
1 85.5
2 79.5
3 74.5
5 67.0

7 60.5
10 53.5
15 45.0
20 39.5

Model form. On the basis of the nature of the data, an exponential model
was selected initially to represent the trend y = a + becx. In this example, the
resultant temperature would approach as an asymptotic (a with c negative) the
wet-bulb temperature of the surrounding atmosphere. Unfortunately, this tem-
perature was not reported.

Using a computer package in MATLAB gives the following results: a = 33.54,
b = 57.89, c = 0.11. The value of χ2 is 1.83. An alternative form of model is y =
a + b/(c + x). For this model the results were a = 9.872, b = 925.7, c = 11.27, and
the value of χ2 is 0.19. Since this model had a smaller value of χ2, it might be the
chosen one, but it is only a fit of the specified data and may not be generalized
beyond that. Both curve fits give an equivalent plot. The second form is shown
in Fig. 3-60.
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ERROR ANALYSIS OF EXPERIMENTS

Consider the problem of assessing the accuracy of a series of mea-
surements. If measurements are for independent, identically distrib-
uted observations, then the errors are independent and uncorrelated.
Then y�, the experimentally determined mean, varies about E(y), the
true mean, with variance σ2/n, where n is the number of observations
in y�. Thus, if one measures something several times today, and each
day, and the measurements have the same distribution, then the vari-
ance of the means decreases with the number of samples in each day’s
measurement, n. Of course, other factors (weather, weekends) may
make the observations on different days not distributed identically.

Consider next the problem of estimating the error in a variable that
cannot be measured directly but must be calculated based on results
of other measurements. Suppose the computed value Y is a linear
combination of the measured variables {yi}, Y = α1y1 + α2y2 + … . Let
the random variables y1, y2, . . . have means E(y1), E(y2), . . . and vari-
ances σ2(y1), σ2(y2), . . . . The variable Y has mean

E(Y) = α1E(y1) + α2 E(y2) + …

and variance (Ref. 82)

σ2(Y) = �
n

i = 1

α i
2σ2(yi) + 2 �

n

i = 1
�

n

j = i + 1

α iα j Cov (yi, yj)

If the variables are uncorrelated and have the same variance, then

σ2(Y) = ��
n

i = 1

α i
2�σ2

Next suppose the model relating Y to {yi} is nonlinear, but the errors
are small and independent of one another. Then a change in Y is
related to changes in yi by

dY = dy1 + dy2 + …

If the changes are indeed small, then the partial derivatives are con-
stant among all the samples. Then the expected value of the change,
E(dY), is zero. The variances are given by the following equation
(Refs. 25 and 40):

σ2(dY) = �
N

i = 1
� �

2

σ i
2

Thus, the variance of the desired quantity Y can be found. This gives
an independent estimate of the errors in measuring the quantity Y
from the errors in measuring each variable it depends upon.

Example Suppose one wants to measure the thermal conductivity of a
solid (k). To do this, one needs to measure the heat flux (q), the thickness of the

∂Y
�
∂yi

∂Y
�
∂y2

∂Y
�
∂y1

sample (d), and the temperature difference across the sample (∆T). Each mea-
surement has some error. The heat flux (q) may be the rate of electrical heat
input (Q̇) divided by the area (A), and both quantities are measured to some tol-
erance. The thickness of the sample is measured with some accuracy, and the
temperatures are probably measured with a thermocouple to some accuracy.
These measurements are combined, however, to obtain the thermal conductiv-
ity, and it is desired to know the error in the thermal conductivity. The formula
is

k = Q̇

The variance in the thermal conductivity is then

σk
2 = � �

2

σd
2 + � �

2

σQ̇
2 + � �

2

σA
2 + � �

2

σ2
∆T

FACTORIAL DESIGN OF EXPERIMENTS 
AND ANALYSIS OF VARIANCE

Statistically designed experiments consider, of course, the effect of
primary variables, but they also consider the effect of extraneous vari-
ables and the interactions between variables, and they include a mea-
sure of the random error. Primary variables are those whose effect you
wish to determine. These variables can be quantitative or qualitative.
The quantitative variables are ones you may fit to a model in order to
determine the model parameters (see the section “Least Squares”).
Qualitative variables are ones you wish to know the effect of, but you
do not try to quantify that effect other than to assign possible errors or
magnitudes. Qualitative variables can be further subdivided into Type
I variables, whose effect you wish to determine directly, and Type II
variables, which contribute to the performance variability and whose
effect you wish to average out. For example, if you are studying the
effect of several catalysts on yield in a chemical reactor, each different
type of catalyst would be a Type I variable because you would like to
know the effect of each. However, each time the catalyst is prepared,
the results are slightly different due to random variations; thus, you
may have several batches of what purports to be the same catalyst.
The variability between batches is a Type II variable. Since the ulti-
mate use will require using different batches, you would like to know
the overall effect including that variation, since knowing precisely the
results from one batch of one catalyst might not be representative of
the results obtained from all batches of the same catalyst. A random-
ized block design, incomplete block design, or Latin square design
(Ref. 40), for example, all keep the effect of experimental error in the
blocked variables from influencing the effect of the primary variables.
Other uncontrolled variables are accounted for by introducing ran-
domization in parts of the experimental design. To study all variables
and their interaction requires a factorial design, involving all possible
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combinations of each variable, or a fractional factorial design, involv-
ing only a selected set. Statistical techniques are then used to deter-
mine which are the important variables, what are the important
interactions, and what the error is in estimating these effects. The dis-
cussion here is only a brief overview of the excellent Ref. 40.

Suppose we have two methods of preparing some product and we
wish to see which treatment is best. When there are only two treat-
ments, then the sampling analysis discussed in the section “Two-
Population Test of Hypothesis for Means” can be used to deduce if the
means of the two treatments differ significantly. When there are more
treatments, the analysis is more detailed. Suppose the experimental
results are arranged as shown in the table: several measurements for
each treatment. The goal is to see if the treatments differ significantly
from each other; that is, whether their means are different when the
samples have the same variance. The hypothesis is that the treatments
are all the same, and the null hypothesis is that they are different. The
statistical validity of the hypothesis is determined by an analysis of
variance.

Estimating the Effect of Four Treatments

Treatment

1 2 3 4

— — — —
— — — —
— — — —

— — —
— —

—
Treatment average — — — —
Grand average —

The data for k = 4 treatments is arranged in the table. For each
treatment, there are nt experiments and the outcome of the ith exper-
iment with treatment t is called yti. Compute the treatment average

y�t =

Also compute the grand average

y� = , N = �
k

t = 1

nt

Next compute the sum of squares of deviations from the average
within the tth treatment

St = �
nt

i = 1

(yti − y�t)2

Since each treatment has nt experiments, the number of degrees of
freedom is nt − 1. Then the sample variances are

st
2 =

The within-treatment sum of squares is

SR = �
k

t = 1

St

and the within-treatment sample variance is

sR
2 =

Now, if there is no difference between treatments, a second estimate
of σ2 could be obtained by calculating the variation of the treatment
averages about the grand average. Thus compute the between-
treatment mean square

sT
2 = , ST = �

k

t = 1

nt(y�t − y�)2ST
�
k − 1

SR
�
N − k

St
�
nt − 1

�
k

t = 1

nty�t

��
N

�
nt

i = 1

yti

�
nt

Basically the test for whether the hypothesis is true or not hinges on a
comparison of the within-treatment estimate sR

2 (with νR = N − k
degrees of freedom) with the between-treatment estimate sT

2 (with 
νT = k − 1 degrees of freedom). The test is made based on the F dis-
tribution for νR and νT degrees of freedom (Table 3-7).

Next consider the case that uses randomized blocking to eliminate
the effect of some variable whose effect is of no interest, such as the
batch-to-batch variation of the catalysts in the chemical reactor exam-
ple. Suppose there are k treatments and n experiments in each treat-
ment. The results from nk experiments can be arranged as shown in
the block design table; within each block, the various treatments are
applied in a random order. Compute the block average, the treatment
average, as well as the grand average as before.

Block Design with Four Treatments and Five Blocks

Treatment 1 2 3 4 Block average

Block 1 — — — — —
Block 2 — — — — —
Block 3 — — — — —
Block 4 — — — — —
Block 5 — — — — —

The following quantities are needed for the analysis of variance table.

Name Formula dof

average SA = nky�2 1

blocks SB = k �n

i = 1 (y�i − y�)2 n − 1

treatments ST = n �k

t = 1 (y�t − y�)2 k − 1

residuals SR = �k

t = 1 �n

i = 1 (yti − y�i − y�t + y�)2 (n − 1)(k − 1)

total S = �k

t = 1 �n

i = 1 y2
ti N = nk

The key test is again a statistical one, based on the value of

, sT
2 = , sR

2 =

and the F distribution for νR and νT degrees of freedom (Table 3-7).
The assumption behind the analysis is that the variations are linear
(Ref. 40). There are ways to test this assumption as well as transfor-
mations to make if it is not true. Reference 40 also gives an excellent
example of how the observations are broken down into a grand aver-
age, a block deviation, a treatment deviation, and a residual. For two-
way factorial design in which the second variable is a real one rather
than one you would like to block out, see Ref. 40.

To measure the effects of variables on a single outcome a factorial
design is appropriate. In a two-level factorial design, each variable is
considered at two levels only, a high and low value, often designated as
a + and −. The two-level factorial design is useful for indicating trends,
showing interactions, and it is also the basis for a fractional factorial
design. As an example, consider a 23 factorial design with 3 variables
and 2 levels for each. The experiments are indicated in the factorial
design table.

Two-Level Factorial Design with Three Variables

Variable

Run 1 2 3

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

SR
��
(n − 1)(k − 1)

ST
�
k − 1

sT
2

�
sR

2

3-88 MATHEMATICS



The main effects are calculated by calculating the difference between
results from all high values of a variable and all low values of a vari-
able; the result is divided by the number of experiments at each level.
For example, for the first variable:

Effect of variable 1 =

Note that all observations are being used to supply information on
each of the main effects and each effect is determined with the preci-
sion of a fourfold replicated difference. The advantage of a one-at-a-
time experiment is the gain in precision if the variables are additive
and the measure of nonadditivity if it occurs (Ref. 40).

Interaction effects between variables 1 and 2 are obtained by calcu-
lating the difference between the results obtained with the high and
low value of 1 at the low value of 2 compared with the results obtained
with the high and low value 1 at the high value of 2. The 12-inter-
action is

12-interaction = [(y4 − y3 + y8 − y7) − (y2 − y1 + y6 − y5)]
����

2

[(y2 + y4 + y6 + y8) − (y1 + y3 + y5 + y7)]
����

4

The key step is to determine the errors associated with the effect of
each variable and each interaction so that the significance can be
determined. Thus, standard errors need to be assigned. This can be
done by repeating the experiments, but it can also be done by using
higher-order interactions (such as 123 interactions in a 24 factorial
design). These are assumed negligible in their effect on the mean but
can be used to estimate the standard error (see Ref. 40). Then, calcu-
lated effects that are large compared with the standard error are con-
sidered important, while those that are small compared with the
standard error are considered to be due to random variations and are
unimportant.

In a fractional factorial design one does only part of the possible
experiments. When there are k variables, a factorial design requires 2k

experiments. When k is large, the number of experiments can be
large; for k = 5, 25 = 32. For a k this large, Box et al. (Ref. 82, p. 376)
do a fractional factorial design. In the fractional factorial design with 
k = 5, only 16 experiments are done. Cropley (Ref. 82) gives an exam-
ple of how to combine heuristics and statistical arguments in applica-
tion to kinetics mechanisms in chemical engineering.

Dimensional analysis allows the engineer to reduce the number of
variables that must be considered to model experiments or correlate
data. Consider a simple example in which two variables F1 and F2 have
the units of force and two additional variables L1 and L2 have the units
of length. Rather than having to deduce the relation of one variable on
the other three, F1 = fn (F2, L1, L2), dimensional analysis can be used
to show that the relation must be of the form F1 /F2 = fn (L1 /L2). Thus
considerable experimentation is saved. Historically, dimensional
analysis can be done using the Rayleigh method or the Buckingham pi
method. This brief discussion is equivalent to the Buckingham pi
method but uses concepts from linear algebra; see Ref. 13 for further
information.

The general problem is posed as finding the minimum number of
variables necessary to define the relationship between n variables. Let
{Qi} represent a set of fundamental units, like length, time, force, and
so on. Let [Pi] represent the dimensions of a physical quantity Pi; there
are n physical quantities. Then form the matrix α ij

[P1] [P2] … [Pn]

Q1 α11 α12 … α1n

Q2 α21 α22 … α2n
…
Qm αm1 αm2 … αmn

in which the entries are the number of times each fundamental unit
appears in the dimensions [Pi]. The dimensions can then be expressed
as follows.

[Pi] = Q1
α1iQ2

α2i⋅⋅⋅Qm
αmi

Let m be the rank of the α matrix. Then p = n − m is the number of
dimensionless groups that can be formed. One can choose m variables
{Pi} to be the basis and express the other p variables in terms of them,
giving p dimensionless quantities.

Example: Buckingham Pi Method—Heat-Transfer Film Coef-
ficient It is desired to determine a complete set of dimensionless groups with
which to correlate experimental data on the film coefficient of heat transfer
between the walls of a straight conduit with circular cross section and a fluid
flowing in that conduit. The variables and the dimensional constant believed to
be involved and their dimensions in the engineering system are given below:

Film coefficient = h = (F/LθT)
Conduit internal diameter = D = (L)
Fluid linear velocity = V = (L/θ)
Fluid density = ρ = (M/L3)
Fluid absolute viscosity = µ = (M/Lθ)

Fluid thermal conductivity = k = (F/θT)
Fluid specific heat = cp = (FL/MT)
Dimensional constant = gc = (ML/Fθ2)

The matrix α in this case is as follows.

[Pi]

h D V ρ µ k Cp gc

F 1 0 0 0 0 1 1 −1
M 0 0 0 1 1 0 −1 1

Qj L −1 1 1 −3 −1 0 1 1
θ −1 0 −1 0 −1 −1 0 −2
T −1 0 0 0 0 −1 −1 0

Here m ≤ 5, n = 8, p ≥ 3. Choose D, V, µ, k, and gc as the primary variables. By
examining the 5 × 5 matrix associated with those variables, we can see that its
determinant is not zero, so the rank of the matrix is m = 5; thus, p = 3. These
variables are thus a possible basis set. The dimensions of the other three vari-
ables h, ρ, and Cp must be defined in terms of the primary variables. This can be
done by inspection, although linear algebra can be used, too.

[h] = D−1k+1; thus = is a dimensionless group

[ρ] = µ1V−1D−1; thus = is a dimensionless group

[Cp] = k+1µ−1; thus = is a dimensionless group

Thus, the dimensionless groups are

: , , 

The dimensionless group hD/k is called the Nusselt number, NNu, and the
group Cpµ /k is the Prandtl number, NPr. The group DVρ/µ is the familiar
Reynolds number, NRe, encountered in fluid-friction problems. These three
dimensionless groups are frequently used in heat-transfer-film-coefficient cor-
relations. Functionally, their relation may be expressed as

φ(NNu, NPr, NRe) = 0 (3-91)

or as NNu = φ1(NPr, NRe)

It has been found that these dimensionless groups may be correlated well by an
equation of the type

hD/k = K(cpµ/k)a(DVρ/µ)b

in which K, a, and b are experimentally determined dimensionless constants.
However, any other type of algebraic expression or perhaps simply a graphical
relation among these three groups that accurately fits the experimental data
would be an equally valid manner of expressing Eq. (3-91).

Cpµ
�

k
ρVD
�

µ
hD
�

k
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��
Q1

α1i Q2
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�

k
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�
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Naturally, other dimensionless groups might have been obtained in
the example by employing a different set of five repeating quantities
that would not form a dimensionless group among themselves. Some
of these groups may be found among those presented in Table 3-8.
Such a complete set of three dimensionless groups might consist of
Stanton, Reynolds, and Prandtl numbers or of Stanton, Peclet, and
Prandtl numbers. Also, such a complete set different from that
obtained in the preceding example will result from a multiplication of
appropriate powers of the Nusselt, Prandtl, and Reynolds numbers.
For such a set to be complete, however, it must satisfy the condition
that each of the three dimensionless groups be independent of the
other two.

Classification Process simulation refers to the activity in which
mathematical models of chemical processes and refineries are mod-
eled with equations, usually on the computer. The usual distinction
must be made between steady-state models and transient models, 
following the ideas presented in the introduction to this section. In a
chemical process, of course, the process is nearly always in a transient
mode, at some level of precision, but when the time-dependent fluc-
tuations are below some value, a steady-state model can be formu-
lated. This subsection presents briefly the ideas behind steady-state
process simulation (also called flowsheeting), which are embodied in
commercial codes. The transient simulations are important for
designing startup of plants and are especially useful for the operating
of chemical plants.

Process Modules The usual first step in process simulation is to
perform a mass and energy balance for a chosen process. The most
important aspect of the simulation is that the thermodynamic data of
the chemicals be modeled correctly. The computer results of vapor-
liquid equilibria, for example, must be checked against experimental
data to insure their validity before using the data in more complicated
computer calculations. At this first level of detail, it is not necessary to
know the internal parameters for all the units, since what is desired is
just the overall performance. For example, in a heat exchanger design,
it suffices to know the heat duty, the total area, and the temperatures
of the output streams; the details like the percentage baffle cut, tube
layout, or baffle spacing can be specified later when the details of the
proposed plant are better defined. Each unit operation is modeled by
a subroutine, which is governed by equations (presented throughout
this book). Some of the inputs to the units are known, some are spec-
ified by the user as design variables, and some are to be found using
the simulation. It is important to know the number of degrees of free-
dom for each option of the unit operation, because at least that many
parameters must be specified in order for the simulation to be able to
calculate unit outputs. Sometimes the quantities the user would like 
to specify are targets, and parameters in the unit operation are to be
changed to meet that target. This is not always possible, and the
designer will have to adjust the parameters of the unit operation to
achieve the desired target, possibly using the convergence tools dis-
cussed below. For example, in a reaction/separation system, if there is
an impurity that must be purged, a common objective is to set the
purge fraction so that the impurity concentration into the reactor is
kept at some moderate value. Yet the solution techniques do not read-
ily lend themselves to this connection, so convergence strategies must
be employed.

Solution Strategies Consider a chemical process consisting of a
series of units, such as distillation towers, reactors, and so forth. If the
feed to the process is known and the operating parameters of the unit
operations are specified by the user, then one can begin with the first
unit, take the process input, calculate the unit output, carry that out-
put to the input of the next unit, and continue the process. In this way,
one can simulate the entire process. However, if the process involves
a recycle stream, as nearly all chemical processes do, then when the
calculation is begun, it is discovered that the recycle stream is
unknown. Thus the calculation cannot begin. This situation leads to
the need for an iterative process: the flow rates, temperature, and
pressure of the unknown recycle stream are guessed and the calcula-
tions proceed as before. When one reaches the end of the process,
where the recycle stream is formed to return to the inlet, it is neces-
sary to check to see if the recycle stream is the same as assumed. If
not, an iterative procedure must be used to cause convergence. The
techniques like Wegstein (see “Numerical Solution of Nonlinear
Equations in One Variable”) can be used to accelerate the conver-
gence. When doing these iterations, it is useful to analyze the process
using precedence ordering and tearing to minimize the number of
recycle loops (Refs. 201, 242, 255, and 293). When the recycle loops
interact with one another the iterations may not lead to a convergent
solution.

The designer usually wants to specify stream flow rates or parame-
ters in the process, but these may not be directly accessible. For
example, the desired separation may be known for a distillation tower,
but the simulation program requires the specification of the number
of trays. It is left up to the designer to choose the number of trays that
lead to the desired separation. In the example of the purge stream/
reactor impurity, a controller module may be used to adjust the purge
rate to achieve the desired reactor impurity. This further complicates
the iteration process.

An alternative method of solving the equations is to solve them as
simultaneous equations. In that case, one can specify the design vari-
ables and the desired specifications and let the computer figure out
the process parameters that will achieve those objectives. It is possible
to overspecify the system or give impossible conditions. However, the
biggest drawback to this method of simulation is that large sets
(10,000s) of algebraic equations must be solved simultaneously. As
computers become faster, this is less of an impediment.

For further information, see Refs. 90, 175, 255, and 293. For infor-
mation on computer software, see the Annual CEP Software Direc-
tory (Ref. 8) and other articles (Refs. 7 and 175).
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TABLE 3-8 Dimensionless Groups in the Engineering System
of Dimensions

Biot number NBi hL/k
Condensation number NCo (h/k)(µ2/ρ2g)1/3

Number used in condensation of vapors NCv L3ρ2gλ/kµ∆t
Euler number NEu gc(−dp)/ρV2

Fourier number NFo kθ/ρcL2

Froude number NFr V2/Lg
Graetz number NGz wc/kL
Grashof number NGr L3ρ2βg∆t/µ2

Mach number NMa V/Va

Nusselt number NNu hD/k
Peclet number NPe DVρc/k
Prandtl number NPr cµ/k
Reynolds number NRe DVρ/µ
Schmidt number NSc µ/ρDυ

Stanton number NSt h/cVρ
Weber number NWe LV2ρ/σgc
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Intelligent system is a term that refers to computer-based systems that
include knowledge-based systems, neural networks, fuzzy logic and
fuzzy control, qualitative simulation, genetic algorithms, natural lan-
guage understanding, and others. The term is often associated with a
variety of computer programming languages and/or features that are
used as implementation media, although this is an imprecise use.
Examples include object-oriented languages, rule-based languages,
prolog, and lisp. The term intelligent system is preferred over the term
artificial intelligence. The three intelligent-system technologies cur-
rently seeing the greatest amount of industrial application are knowl-
edge-based systems, fuzzy logic, and artificial neural networks. These
technologies are components of distributed systems. Mathematical
models, conventional numeric and statistical approaches, neural net-
works, knowledge-based systems, and the like, all have their place in
practical implementation and allow automation of tasks not well-
treated by numerical algorithms.

Fundamentally, intelligent-system techniques are modeling tech-
niques. They allow the encoding of qualitative models that draw upon
experience and expertise, thereby extending modeling capacity
beyond mathematical description. An important capability of intelli-
gent system techniques is that they can be used not only to model
physical behaviors but also decision-making processes. Decision
processes reflect the selection, application, and interpretation of
highly relevant pieces of information to draw conclusions about com-
plex situations. Activity-specific decision processes can be expressed
at a functional level, such as diagnosis, design, planning, and schedul-
ing, or as their generic components, such as classification, abduction,
and simulation. Decision process models address how information is
organized and structured and then assimilated into active decisions.

Knowledge-Based Systems Knowledge-based system (KBS)
approaches capture the structural and information processing fea-
tures of qualitative problem solving associated with sequential consid-
eration, selection, and search. These technologies not only provide the
means of capturing decision-making knowledge but also offer a
medium for exploiting efficient strategies used by experts.

KBSs, then, are computer programs that model specific ways of
organizing problem-specific fragments of knowledge and then search-
ing through them by establishing appropriate relationships to reach
correct conclusions. Deliberation is a general label for the algorithmic
process for sorting through the knowledge fragments. The basic com-
ponents of KBSs are knowledge representation (structure) and
search. They are the programming mechanisms that facilitate the use
and application of the problem-specific knowledge appropriate to
solving the problem. Together they are used to form conclusions,
decisions, or interpretations in a symbolic form. See Refs. 49, 232, and
275.

Qualitative simulation is a specific KBS model of physical processes
that are not understood well enough to develop a physics-based
numeric model. Corrosion, fouling, mechanical wear, equipment fail-
ure, and fatigue are not easily modeled, but decisions about them can
be based on qualitative reasoning. See Refs. 178 and 292.

Qualitative description of physical behaviors require that each con-
tinuous variable space be quantized. Quantization is typically based on
landmark values that are boundary points separating qualitatively dis-
tinct regions of continuous values. By using these qualitative quantity
descriptions, dynamic relations between variables can be modeled as
qualitative equations that represent the structure of the system. The

solution to the equations represents the possible sequences of qualita-
tive states as well as the explanations for changes in behaviors.

Building and explaining a complex model requires a unified view
called an ontology. Methods of qualitative reasoning can be based on
different viewpoints; the dominant viewpoints are device, process,
and constraints. Behavior generation is handled with two approaches:
(1) simulating successive states from one or more initial states, and 
(2) determining all possible state-to-state transitions once all possible
states are determined.

Fuzzy Logic Fuzzy logic is a formalism for mapping between
numerical values and qualitative or linguistic interpretations. This is
useful when it is difficult to define precisely such terms as “high” and
“low,” since there may be no fixed threshold. Fuzzy sets use the con-
cept of degree of membership to overcome this problem. Degree of
membership allows a descriptor to be associated with a range of
numeric values but in varying degrees. A fuzzy set is explicitly defined
by a degree of membership for each linguistic variable that is applica-
ble, mA(x) where mA is the degree of membership for linguistic vari-
able A. For fuzzy sets, logical operators, such as complement (NOT),
intersection (AND), and union (OR) are defined. The following are
typical definitions.

NOT: mNOT A(x) = 1 − mA(x)

AND: mA AND B(x) = min [mA(x), mB(x)]

OR: mA OR B(x) = max [mA(x), mB(x)]

Using these operators, fuzzy inference mechanisms are then devel-
oped to manipulate rules that include fuzzy values. The largest differ-
ence between fuzzy inference and ordinary inference is that fuzzy
inference allows “partial match” of input and produces an “inter-
polated” output. This technology is useful in control also. See Ref. 94.

Artificial Neural Networks An artificial neural network (ANN)
is a collection of computational units that are interconnected in a net-
work. Knowledge is captured in the form of weights, and input-output
mappings are produced by the interactions of the weights and the
computational units. Each computational unit combines weighted
inputs and generates an output base on an activation function. Typical
activation functions are (1) specified limit, (2) sigmoid, and (3) gauss-
ian. ANNs can be feedforward, with multiple layers of intermediate
units, or feedback (sometimes called recurrent networks).

The ability to generalize on given data is one of the most important
performance characteristics. With appropriate selection of training
examples, an optimal network architecture, and appropriate training,
the network can map a relationship between input and output that is
complete but bounded by the coverage of the training data.

Applications of neural networks can be broadly classified into three
categories:

1. Numeric-to-numeric transformations are used as empirical
mathematical models where the adaptive characteristics of neural net-
works learn to map between numeric sets of input-output data. In
these modeling applications, neural networks are used as an alterna-
tive to traditional data regression schemes based on regression of
plant data. Backpropagation networks have been widely used for this
purpose.

2. Numeric-to-symbolic transformations are used in pattern-
recognition problems where the network is used to classify input data
vectors into specific labeled classes. Pattern recognition problems
include data interpretation, feature identification, and diagnosis.

3. Symbolic-to-symbolic transformations are used in various sym-
bolic manipulations, including natural language processing and rule-
based system implementation. See Refs. 54 and 140.
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