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6-3

Nomenclature and Units*

In this listing, symbols used in this section are defined in a general way and appropriate SI units are given. Specific definitions, as denoted by subscripts, are stated at
the place of application in the section. Some specialized symbols used in the section are defined only at the place of application. Some symbols have more than one
definition; the appropriate one is identified at the place of application.

U.S. customary 
Symbol Definition SI units units

a Pressure wave velocity m/s ft/s
A Area m2 ft2

b Wall thickness m in
b Channel width m ft
c Acoustic velocity m/s ft/s
cf Friction coefficient Dimensionless Dimensionless
C Conductance m3/s ft3/s
Ca Capillary number Dimensionless Dimensionless
C0 Discharge coefficient Dimensionless Dimensionless
CD Drag coefficient Dimensionless Dimensionless
d Diameter m ft
D Diameter m ft
De Dean number Dimensionless Dimensionless
Dij Deformation rate tensor 1/s 1/s

components
E Elastic modulus Pa lbf/in2

Ėv Energy dissipation rate J/s ft ⋅ lbf/s
Eo Eotvos number Dimensionless Dimensionless
f Fanning friction factor Dimensionless Dimensionless
f Vortex shedding frequency 1/s 1/s
F Force N lbf
F Cumulative residence time Dimensionless Dimensionless

distribution
Fr Froude number Dimensionless Dimensionless
g Acceleration of gravity m/s2 ft/s2

G Mass flux kg/(m2 ⋅ s) lbm/(ft2 ⋅ s)
h Enthalpy per unit mass J/kg Btu/lbm
h Liquid depth m ft
k Ratio of specific heats Dimensionless Dimensionless
k Kinetic energy of turbulence J/kg ft ⋅ lbf/ lbm
K Power law coefficient kg/(m ⋅ s2 − n) lbm/(ft ⋅ s2 − n)
lv Viscous losses per unit mass J/kg ft ⋅ lbf/ lbm
L Length m ft
ṁ Mass flow rate kg/s lbm/s
M Mass kg lbm
M Mach number Dimensionless Dimensionless
M Morton number Dimensionless Dimensionless
Mw Molecular weight kg/kgmole lbm/lbmole
n Power law exponent Dimensionless Dimensionless
Nb Blend time number Dimensionless Dimensionless
ND Best number Dimensionless Dimensionless
NP Power number Dimensionless Dimensionless
NQ Pumping number Dimensionless Dimensionless
p Pressure Pa lbf/in2

q Entrained flow rate m3/s ft3/s
Q Volumetric flow rate m3/s ft3/s
Q Throughput (vacuum flow) Pa ⋅ m3/s lbf ⋅ ft3/s
δQ Heat input per unit mass J/kg Btu/lbm
r Radial coordinate m ft
R Radius m ft
R Ideal gas universal constant J/(kgmole ⋅ K) Btu/(lbmole ⋅ R)
Ri Volume fraction of phase i Dimensionless Dimensionless
Re Reynolds number Dimensionless Dimensionless
s Density ratio Dimensionless Dimensionless

U.S. customary 
Symbol Definition SI units units

s Entropy per unit mass J/(kg ⋅ K) Btu/(lbm ⋅ R)
S Slope Dimensionless Dimensionless
S Pumping speed m3/s ft3/s
S Surface area per unit volume l/m l/ft
St Strouhal number Dimensionless Dimensionless
t Time s s
t Force per unit area Pa lbf/in2

T Absolute temperature K R
u Internal energy per unit mass J/kg Btu/lbm
u Velocity m/s ft/s
U Velocity m/s ft/s
v Velocity m/s ft/s
V Velocity m/s ft/s
V Volume m3 ft3

We Weber number Dimensionless Dimensionless
Ẇs Rate of shaft work J/s Btu/s
δWs Shaft work per unit mass J/kg Btu/lbm
x Cartesian coordinate m ft
y Cartesian coordinate m ft
z Cartesian coordinate m ft
z Elevation m ft

Greek symbols

α Velocity profile factor Dimensionless Dimensionless
α Included angle Radians Radians
β Velocity profile factor Dimensionless Dimensionless
β Bulk modulus of elasticity Pa lbf/in2

γ̇ Shear rate l/s l/s
Γ Mass flow rate kg/(m ⋅ s) lbm/(ft ⋅ s)

per unit width
δ Boundary layer or film m ft

thickness
δij Kronecker delta Dimensionless Dimensionless
� Pipe roughness m ft
� Void fraction Dimensionless Dimensionless
� Turbulent dissipation rate J/(kg ⋅ s) ft ⋅ lbf/ (lbm ⋅ s)
θ Residence time s s
θ Angle Radians Radians
λ Mean free path m ft
µ Viscosity Pa ⋅ s lbm/(ft ⋅ s)
ν Kinematic viscosity m2/s ft2/s
ρ Density kg/m3 lbm/ft3

σ Surface tension N/m lbf/ft
σ Cavitation number Dimensionless Dimensionless
σij Components of total Pa lbf/in2

stress tensor
τ Shear stress Pa lbf/in2

τ Time period s s
τij Components of deviatoric Pa lbf/in2

stress tensor
Φ Energy dissipation rate J/(m3 ⋅ s) ft ⋅ lbf/ (ft3 ⋅ s)

per unit volume
φ Angle of inclination Radians Radians
ω Vorticity 1/s 1/s

* Note that with U.S. Customary units, the conversion factor gc may be required to make equations in this section dimensionally consistent; gc = 32.17 (lbm⋅ft)/lbf⋅s2).
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NATURE OF FLUIDS

Deformation and Stress A fluid is a substance which undergoes
continuous deformation when subjected to a shear stress. Figure 6-1
illustrates this concept. A fluid is bounded by two large parallel plates,
of area A, separated by a small distance H. The bottom plate is held
fixed. Application of a force F to the upper plate causes it to move at a
velocity U. The fluid continues to deform as long as the force is applied,
unlike a solid, which would undergo only a finite deformation.

The force is directly proportional to the area of the plate; the shear
stress is τ = F/A. Within the fluid, a linear velocity profile u = Uy/H is
established; due to the no-slip condition, the fluid bounding the
lower plate has zero velocity and the fluid bounding the upper plate
moves at the plate velocity U. The velocity gradient γ̇ = du/dy is called
the shear rate for this flow. Shear rates are usually reported in units
of reciprocal seconds. The flow in Fig. 6-1 is a simple shear flow.

Viscosity The ratio of shear stress to shear rate is the viscosity, µ.

µ = (6-1)

The SI units of viscosity are kg/(m ⋅ s) or Pa ⋅ s (pascal second). The cgs
unit for viscosity is the poise; 1 Pa ⋅ s equals 10 poise or 1000 cen-
tipoise (cP) or 0.672 lbm/(ft ⋅ s). The terms absolute viscosity and
shear viscosity are synonymous with the viscosity as used in Eq. (6-1).
Kinematic viscosity ν � µ/ρ is the ratio of viscosity to density. The SI
units of kinematic viscosity are m2/s. The cgs stoke is 1 cm2/s.

Rheology In general, fluid flow patterns are more complex than
the one shown in Fig. 6-1, as is the relationship between fluid defor-
mation and stress. Rheology is the discipline of fluid mechanics which
studies this relationship. One goal of rheology is to obtain constitu-
tive equations by which stresses may be computed from deformation
rates. For simplicity, fluids may be classified into rheological types in
reference to the simple shear flow of Fig. 6-1. Complete definitions
require extension to multidimensional flow. For more information,
several good references are available, including Bird, Armstrong, and
Hassager, (Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics,
Wiley, New York, 1977); Metzner, (“Flow of Non-Newtonian Fluids”
in Streeter, Handbook of Fluid Dynamics, McGraw-Hill, New York,
1971); and Skelland (Non-Newtonian Flow and Heat Transfer, Wiley,
New York, 1967).

τ
�
γ̇

Fluids without any solidlike elastic behavior do not undergo any
reverse deformation when shear stress is removed, and are called
purely viscous fluids. The shear stress depends only on the rate of
deformation, and not on the extent of deformation (strain). Those
which exhibit both viscous and elastic properties are called viscoelas-
tic fluids.

Purely viscous fluids are further classified into time-independent
and time-dependent fluids. For time-independent fluids, the shear
stress depends only on the instantaneous shear rate. The shear stress
for time-dependent fluids depends on the past history of the rate of
deformation, as a result of structure or orientation buildup or break-
down during deformation.

A rheogram is a plot of shear stress versus shear rate for a fluid in
simple shear flow, such as that in Fig. 6-1. Rheograms for several types
of time-independent fluids are shown in Fig. 6-2. The Newtonian
fluid rheogram is a straight line passing through the origin. The slope
of the line is the viscosity. For a Newtonian fluid, the viscosity is inde-
pendent of shear rate, and may depend only on temperature and per-
haps pressure. By far, the Newtonian fluid is the largest class of fluid
of engineering importance. Gases and low molecular weight liquids
are generally Newtonian. Newton’s law of viscosity is a rearrangement
of Eq. (6-1) in which the viscosity is a constant:

τ = µγ̇ = µ (6-2)

All fluids for which the viscosity varies with shear rate are non-
Newtonian fluids. For non-Newtonian fluids the viscosity, defined
as the ratio of shear stress to shear rate, is often called the apparent
viscosity to emphasize the distinction from Newtonian behavior.
Purely viscous, time-independent fluids, for which the apparent vis-
cosity may be expressed as a function of shear rate, are called gener-
alized Newtonian fluids.

Non-Newtonian fluids include those for which a finite stress τy is
required before continuous deformation occurs; these are called
yield-stress materials. The Bingham plastic fluid is the simplest
yield-stress material; its rheogram has a constant slope µ∞, called the
infinite shear viscosity.

τ = τy + µ∞γ̇ (6-3)

Highly concentrated suspensions of fine solid particles frequently
exhibit Bingham plastic behavior.

Shear-thinning fluids are those for which the slope of the
rheogram decreases with increasing shear rate. These fluids have also
been called pseudoplastic, but this terminology is outdated and dis-
couraged. Many polymer melts and solutions, as well as some solids
suspensions, are shear-thinning. Shear-thinning fluids without yield
stresses typically obey a power law model over a range of shear rates.

τ = Kγ̇n (6-4)

The apparent viscosity is
µ = Kγ̇n − 1 (6-5)

du
�
dy
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The factor K is the consistency index or power law coefficient, and
n is the power law exponent. The exponent n is dimensionless, while
K is in units of kg/(m ⋅ s2 − n). For shear-thinning fluids, n < 1. The
power law model typically provides a good fit to data over a range of
one to two orders of magnitude in shear rate; behavior at very low and
very high shear rates is often Newtonian. Shear-thinning power law
fluids with yield stresses are sometimes called Herschel-Bulkley fluids.
Numerous other rheological model equations for shear-thinning fluids
are in common use.

Dilatant, or shear-thickening, fluids show increasing viscosity with
increasing shear rate. Over a limited range of shear rate, they may be
described by the power law model with n > 1. Dilatancy is rare,
observed only in certain concentration ranges in some particle sus-
pensions (Govier and Aziz, pp. 33–34). Extensive discussions of dila-
tant suspensions, together with a listing of dilatant systems, are given
by Green and Griskey (Trans. Soc. Rheol, 12[1], 13–25 [1968]);
Griskey and Green (AIChE J., 17, 725–728 [1971]); and Bauer and
Collins (“Thixotropy and Dilatancy,” in Eirich, Rheology, vol. 4, Aca-
demic, New York, 1967).

Time-dependent fluids are those for which structural rearrange-
ments occur during deformation at a rate too slow to maintain equi-
librium configurations. As a result, shear stress changes with duration
of shear. Thixotropic fluids, such as mayonnaise, clay suspensions
used as drilling muds, and some paints and inks, show decreasing
shear stress with time at constant shear rate. A detailed description of
thixotropic behavior and a list of thixotropic systems is found in Bauer
and Collins (ibid.).

Rheopectic behavior is the opposite of thixotropy. Shear stress
increases with time at constant shear rate. Rheopectic behavior has
been observed in bentonite sols, vanadium pentoxide sols, and gyp-
sum suspensions in water (Bauer and Collins, ibid.) as well as in some
polyester solutions (Steg and Katz, J. Appl. Polym. Sci., 9, 3, 177
[1965]).

Viscoelastic fluids exhibit elastic recovery from deformation when
stress is removed. Polymeric liquids comprise the largest group of flu-
ids in this class. A property of viscoelastic fluids is the relaxation time,
which is a measure of the time required for elastic effects to decay.
Viscoelastic effects may be important with sudden changes in rates of
deformation, as in flow startup and stop, rapidly oscillating flows, or as
a fluid passes through sudden expansions or contractions where accel-
erations occur. In many fully developed flows where such effects are
absent, viscoelastic fluids behave as if they were purely viscous. In vis-
coelastic flows, normal stresses perpendicular to the direction of shear
are different from those in the parallel direction. These give rise to
such behaviors as the Weissenberg effect, in which fluid climbs up a
shaft rotating in the fluid, and die swell, where a stream of fluid issu-
ing from a tube may expand to two or more times the tube diameter.

A parameter indicating whether viscoelastic effects are important is
the Deborah number, which is the ratio of the characteristic relax-
ation time of the fluid to the characteristic time scale of the flow. For
small Deborah numbers, the relaxation is fast compared to the char-
acteristic time of the flow, and the fluid behavior is purely viscous. For
very large Deborah numbers, the behavior closely resembles that of
an elastic solid.

Analysis of viscoelastic flows is very difficult. Simple constitutive
equations are unable to describe all the material behavior exhibited by
viscoelastic fluids even in geometrically simple flows. More complex
constitutive equations may be more accurate, but become exceedingly
difficult to apply, especially for complex geometries, even with
advanced numerical methods. For good discussions of viscoelastic
fluid behavior, including various types of constitutive equations, see
Bird, Armstrong, and Hassager (Dynamics of Polymeric Liquids, vol.
1: Fluid Mechanics, vol. 2: Kinetic Theory, Wiley, New York, 1977);
Middleman (The Flow of High Polymers, Interscience (Wiley) New
York, 1968); or Astarita and Marrucci (Principles of Non-Newtonian
Fluid Mechanics, McGraw-Hill, New York, 1974).

Polymer processing is the field which depends most on the flow
of non-Newtonian fluids. Several excellent texts are available, includ-
ing Middleman (Fundamentals of Polymer Processing, McGraw-Hill,
New York, 1977) and Tadmor and Gogos (Principles of Polymer Pro-
cessing, Wiley, New York, 1979).

There is a wide variety of instruments for measurement of Newto-
nian viscosity, as well as rheological properties of non-Newtonian flu-
ids. They are described in Van Wazer, Lyons, Kim, and Colwell,
(Viscosity and Flow Measurement, Interscience, New York, 1963);
Coleman, Markowitz, and Noll (Viscometric Flows of Non-Newtonian
Fluids, Springer-Verlag, Berlin, 1966); Dealy and Wissbrun (Melt
Rheology and its Role in Plastics Processing, Van Nostrand Reinhold,
1990). Measurement of rheological behavior requires well-
characterized flows. Such rheometric flows are thoroughly discussed
by Astarita and Marrucci (Principles of Non-Newtonian Fluid
Mechanics, McGraw-Hill, New York, 1974).

KINEMATICS OF FLUID FLOW

Velocity The term kinematics refers to the quantitative descrip-
tion of fluid motion or deformation. The rate of deformation depends
on the distribution of velocity within the fluid. Fluid velocity v is a vec-
tor quantity, with three cartesian components vx, vy, and vz. The veloc-
ity vector is a function of spatial position and time. A steady flow is
one in which the velocity is independent of time, while in unsteady
flow v varies with time.

Compressible and Incompressible Flow An incompressible
flow is one in which the density of the fluid is constant or nearly con-
stant. Liquid flows are normally treated as incompressible, except in
the context of hydraulic transients (see following). Compressible flu-
ids, such as gases, may undergo incompressible flow if pressure and/or
temperature changes are small enough to render density changes
insignificant. Frequently, compressible flows are regarded as flows in
which the density varies by more than 5 to 10 percent.

Streamlines, Pathlines, and Streaklines These are curves in a
flow field which provide insight into the flow pattern. Streamlines are
tangent at every point to the local instantaneous velocity vector. A
pathline is the path followed by a material element of fluid; it coin-
cides with a streamline if the flow is steady. In unsteady flow the path-
lines generally do not coincide with streamlines. Streaklines are
curves on which are found all the material particles which passed
through a particular point in space at some earlier time. For example,
a streakline is revealed by releasing smoke or dye at a point in a flow
field. For steady flows, streamlines, pathlines, and streaklines are
indistinguishable. In two-dimensional incompressible flows, stream-
lines are contours of the stream function.

One-dimensional Flow Many flows of great practical impor-
tance, such as those in pipes and channels, are treated as one-
dimensional flows. There is a single direction called the flow direction;
velocity components perpendicular to this direction are either zero or
considered unimportant. Variations of quantities such as velocity,
pressure, density, and temperature are considered only in the flow
direction. The fundamental conservation equations of fluid mechanics
are greatly simplified for one-dimensional flows. A broader category
of one-dimensional flow is one where there is only one nonzero veloc-
ity component, which depends on only one coordinate direction, and
this coordinate direction may or may not be the same as the flow
direction.

Rate of Deformation Tensor For general three-dimensional
flows, where all three velocity components may be important and may
vary in all three coordinate directions, the concept of deformation
previously introduced must be generalized. The rate of deformation
tensor Dij has nine components. In Cartesian coordinates,

Dij = � + � (6-6)

where the subscripts i and j refer to the three coordinate directions.
Some authors define the deformation rate tensor as one-half of that
given by Eq. (6-6).

Vorticity The relative motion between two points in a fluid can
be decomposed into three components: rotation, dilatation, and
deformation. The rate of deformation tensor has been defined. Dilata-
tion refers to the volumetric expansion or compression of the fluid,
and vanishes for incompressible flow. Rotation is described by a ten-
sor ωij = ∂vi /∂xj − ∂vj /∂xi. The vector of vorticity given by one-half the

∂vj
�
∂xi

∂vi
�
∂xj
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curl of the velocity vector is another measure of rotation. In two-
dimensional flow in the x-y plane, the vorticity ω is given by

ω = � − � (6-7)

Here ω is the magnitude of the vorticity vector, which is directed
along the z axis. An irrotational flow is one with zero vorticity. Irro-
tational flows have been widely studied because of their useful math-
ematical properties and applicability to flow regions where viscous
effects may be neglected. Such flows without viscous effects are called
inviscid flows.

Laminar and Turbulent Flow, Reynolds Number These
terms refer to two distinct types of flow. In laminar flow, there are
smooth streamlines and the fluid velocity components vary smoothly
with position, and with time if the flow is unsteady. The flow described
in reference to Fig. 6-1 is laminar. In turbulent flow, there are no
smooth streamlines, and the velocity shows chaotic fluctuations in
time and space. Velocities in turbulent flow may be reported as the
sum of a time-averaged velocity and a velocity fluctuation from the
average. For any given flow geometry, a dimensionless Reynolds
number may be defined for a Newtonian fluid as Re = LU ρ/µ where
L is a characteristic length. Below a critical value of Re the flow is lam-
inar, while above the critical value a transition to turbulent flow
occurs. The geometry-dependent critical Reynolds number is deter-
mined experimentally.

CONSERVATION EQUATIONS

Macroscopic and Microscopic Balances Three postulates,
regarded as laws of physics, are fundamental in fluid mechanics.
These are conservation of mass, conservation of momentum, and con-
servation of energy. In addition, two other postulates, conservation of
moment of momentum (angular momentum) and the entropy inequal-
ity (second law of thermodynamics) have occasional use. The conser-
vation principles may be applied either to material systems or to
control volumes in space. Most often, control volumes are used. The
control volumes may be either of finite or differential size, resulting in
either algebraic or differential conservation equations, respectively.
These are often called macroscopic and microscopic balance equa-
tions.

Macroscopic Equations An arbitrary control volume of finite
size Va is bounded by a surface of area Aa with an outwardly directed
unit normal vector n. The control volume is not necessarily fixed in
space. Its boundary moves with velocity w. The fluid velocity is v. Fig-
ure 6-3 shows the arbitrary control volume.

Mass balance Applied to the control volume, the principle of
conservation of mass may be written as (Whitaker, Introduction to
Fluid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1968,
Krieger, Huntington, N.Y., 1981)

�
Va

ρ dV + �
Aa

ρ(v − w) ⋅ n dA = 0 (6-8)

This equation is also known as the continuity equation.

d
�
dt

∂vx
�
∂y

∂vy
�
∂x

1
�
2

Simplified forms of Eq. (6-8) apply to special cases frequently
found in practice. For a control volume fixed in space with one inlet of
area A1 through which an incompressible fluid enters the control vol-
ume at an average velocity V1, and one outlet of area A2 through which
fluid leaves at an average velocity V2, as shown in Fig. 6-4, the conti-
nuity equation becomes

V1 A1 = V2 A2 (6-9)

The average velocity across a surface is given by

V = (1/A) �
A

v dA

where v is the local velocity component perpendicular to the inlet sur-
face. The volumetric flow rate Q is the product of average velocity 
and the cross-sectional area, Q = VA. The average mass velocity is 
G = ρV. For steady flows through fixed control volumes with multiple
inlets and/or outlets, conservation of mass requires that the sum of
inlet mass flow rates equals the sum of outlet mass flow rates. For
incompressible flows through fixed control volumes, the sum of inlet
flow rates (mass or volumetric) equals the sum of exit flow rates,
whether the flow is steady or unsteady.

Momentum Balance Since momentum is a vector quantity, the
momentum balance is a vector equation. Where gravity is the only
body force acting on the fluid, the linear momentum principle,
applied to the arbitrary control volume of Fig. 6-3, results in the fol-
lowing expression (Whitaker, ibid.).

�
Va

ρv dV + �
Aa

ρv(v − w) ⋅ n dA = �
Va

ρg dV + �
Aa

tn dA (6-10)

Here g is the gravity vector and tn is the force per unit area exerted by
the surroundings on the fluid in the control volume. The integrand of
the area integral on the left-hand side of Eq. (6-10) is nonzero only 
on the entrance and exit portions of the control volume boundary. For
the special case of steady flow at a mass flow rate ṁ through a control
volume fixed in space with one inlet and one outlet, (Fig. 6-4) with the
inlet and outlet velocity vectors perpendicular to planar inlet and out-
let surfaces, giving average velocity vectors V1 and V2, the momentum
equation becomes

ṁ(β2V2 − β1V1) = −p1A1 − p2A2 + F + Mg (6-11)

where M is the total mass of fluid in the control volume. The factor β
arises from the averaging of the velocity across the area of the inlet or
outlet surface. It is the ratio of the area average of the square of veloc-
ity magnitude to the square of the area average velocity magnitude.
For a uniform velocity, β = 1. For turbulent flow, β is nearly unity,
while for laminar pipe flow with a parabolic velocity profile, β = 4/3.
The vectors A1 and A2 have magnitude equal to the areas of the inlet
and outlet surfaces, respectively, and are outwardly directed normal to
the surfaces. The vector F is the force exerted on the fluid by the non-
flow boundaries of the control volume. It is also assumed that the
stress vector tn is normal to the inlet and outlet surfaces, and that its
magnitude may be approximated by the pressure p. Equation (6-11)
may be generalized to multiple inlets and/or outlets. In such cases, the
mass flow rates for all the inlets and outlets are not equal. A distinct
flow rate ṁi applies to each inlet or outlet i. To generalize the equa-
tion, �pA terms for each inlet and outlet, −ṁβV terms for each 
inlet, and ṁβV terms for each outlet are included.

Balance equations for angular momentum, or moment of momen-
tum, may also be written. They are used less frequently than the lin-

d
�
dt
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ear momentum equations. See Whitaker (Introduction to Fluid
Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1968, Krieger,
Huntington, N.Y., 1981; or Shames (Mechanics of Fluids, 3d ed.,
McGraw-Hill, New York, 1992).

Total Energy Balance The total energy balance derives from
the first law of thermodynamics. Applied to the arbitrary control vol-
ume of Fig. 6-3, it leads to an equation for the rate of change of the
sum of internal, kinetic, and gravitational potential energy. In this
equation, u is the internal energy per unit mass, v is the magnitude of
the velocity vector v, z is elevation, g is the gravitational acceleration,
and q is the heat flux vector:

�
Va

ρ�u + + gz� dV + �
Aa

ρ�u + + gz�(v − w) ⋅ n dA

= �
Aa

(v ⋅ tn) dA − �
Aa

(q ⋅ n) dA (6-12)

The first integral on the right-hand side is the rate of work done on the
fluid in the control volume by forces at the boundary. It includes both
work done by moving solid boundaries and work done at flow
entrances and exits. The work done by moving solid boundaries also
includes that by such surfaces as pump impellers; this work is called
shaft work; its rate is ẆS.

A useful simplification of the total energy equation applies to a par-
ticular set of assumptions. These are a control volume with fixed solid
boundaries, except for those producing shaft work, steady state condi-
tions, and mass flow at a rate ṁ through a single planar entrance and
a single planar exit (Fig. 6-4), to which the velocity vectors are per-
pendicular. As with Eq. (6-11), it is assumed that the stress vector tn is
normal to the entrance and exit surfaces and may be approximated by
the pressure p. The equivalent pressure, p + ρgz, is assumed to be
uniform across the entrance and exit. The average velocity at the
entrance and exit surfaces is denoted by V. Subscripts 1 and 2 denote
the entrance and exit, respectively.

h1 + α1 + gz1 = h2 + α2 + gz2 − δQ − δWS (6-13)

Here, h is the enthalpy per unit mass, h = u + p/ρ. The shaft work per
unit of mass flowing through the control volume is δWS = Ẇs /ṁ. Sim-
ilarly, δQ is the heat input rate per unit of mass. The factor α is the
ratio of the cross-sectional area average of the cube of the velocity to
the cube of the average velocity. For a uniform velocity profile, α = 1.
In turbulent flow, α is usually assumed to equal unity; in turbulent
pipe flow, it is typically about 1.07. For laminar flow in a circular pipe
with a parabolic velocity profile, α = 2.

Mechanical Energy Balance, Bernoulli Equation A balance
equation for the sum of kinetic and potential energy may be obtained
from the momentum balance by forming the scalar product with the
velocity vector. The resulting equation, called the mechanical energy
balance, contains a term accounting for the dissipation of mechanical
energy into thermal energy by viscous forces. The mechanical energy
equation is also derivable from the total energy equation in a way that
reveals the relationship between the dissipation and entropy genera-
tion. The macroscopic mechanical energy balance for the arbitrary
control volume of Fig. 6-3 may be written, with p = thermodynamic
pressure, as

�
Va

ρ� + gz� dV + �
Aa

ρ� + gz�(v − w) ⋅ n dA

= �
Va

p � ⋅ v dV + �
Aa

(v ⋅ tn) dA − �
Va

Φ dV (6-14)

The last term is the rate of viscous energy dissipation to internal
energy, Ėv = �Va

Φ dV, also called the rate of viscous losses. These
losses are the origin of frictional pressure drop in fluid flow. Whitaker
and Bird, Stewart, and Lightfoot provide expressions for the dissipa-
tion function Φ for Newtonian fluids in terms of the local velocity gra-
dients. However, when using macroscopic balance equations the local
velocity field within the control volume is usually unknown. For such
cases additional information, which may come from empirical correla-
tions, is needed.

v2

�
2

v2

�
2

d
�
dt

V 2
2

�
2

V 2
1

�
2

v2

�
2

v2

�
2

d
�
dt

For the same special conditions as for Eq. (6-13), the mechanical
energy equation is reduced to

α1 + gz1 + δWS = α2 + gz2 + �p2

p1

+ lv (6-15)

Here lv = Ėv /ṁ is the energy dissipation per unit mass. This equation
has been called the engineering Bernoulli equation. For an
incompressible flow, Eq. (6-15) becomes

+ α1 + gz1 + δWS = + α2 + gz2 + lv (6-16)

The Bernoulli equation can be written for incompressible, inviscid
flow along a streamline, where no shaft work is done.

+ + gz1 = + + gz2 (6-17)

Unlike the momentum equation (Eq. [6-11]), the Bernoulli equation
is not easily generalized to multiple inlets or outlets.

Microscopic Balance Equations Partial differential balance
equations express the conservation principles at a point in space.
Equations for mass, momentum, total energy, and mechanical energy
may be found in Whitaker (ibid.), Bird, Stewart, and Lightfoot (Trans-
port Phenomena, Wiley, New York, 1960), and Slattery (Momentum,
Heat and Mass Transfer in Continua, 2d ed., Krieger, Huntington,
N.Y., 1981), for example. These references also present the equations
in other useful coordinate systems besides the cartesian system. The
coordinate systems are fixed in inertial reference frames. The two
most used equations, for mass and momentum, are presented here.

Mass Balance, Continuity Equation The continuity equation,
expressing conservation of mass, is written in cartesian coordinates as

+ + + =0 (6-18)

In terms of the substantial derivative, D/Dt,

� + vx + vy + vz = −ρ� + + � (6-19)

The substantial derivative, also called the material derivative, is the
rate of change in a Lagrangian reference frame, that is, following a
material particle. In vector notation the continuity equation may be
expressed as

= −ρ∇ ⋅ v (6-20)

For incompressible flow,

∇ ⋅ v = + + =0 (6-21)

Stress Tensor The stress tensor is needed to completely describe
the stress state for microscopic momentum balances in multidimen-
sional flows. The components of the stress tensor σij give the force in
the j direction on a plane perpendicular to the i direction, using a sign
convention defining a positive stress as one where the fluid with the
greater i coordinate value exerts a force in the positive i direction on
the fluid with the lesser i coordinate. Several references in fluid
mechanics and continuum mechanics provide discussions, to various
levels of detail, of stress in a fluid (Denn; Bird, Stewart, and Lightfoot;
Schlichting; Fung [A First Course in Continuum Mechanics, 2d. ed.,
Prentice-Hall, Englewood Cliffs, N.J., 1977]; Truesdell and Toupin [in
Flügge, Handbuch der Physik, vol. 3/1, Springer-Verlag, Berlin,
1960]; Slattery [Momentum, Energy and Mass Transfer in Continua,
2d ed., Krieger, Huntington, N.Y., 1981]).

The stress has an isotropic contribution due to fluid pressure and
dilatation, and a deviatoric contribution due to viscous deformation
effects. The deviatoric contribution for a Newtonian fluid is the three-
dimensional generalization of Eq. (6-2):

τij = µDij (6-22)

The total stress is

σij = (−p + λ∇ ⋅ v)δij + τij (6-23)
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The identity tensor δij is zero for i ≠ j and unity for i = j. The coefficient
λ is a material property related to the bulk viscosity, κ = λ + 2µ/3.
There is considerable uncertainty about the value of κ. Traditionally,
Stokes’ hypothesis, κ = 0, has been invoked, but the validity of this
hypothesis is doubtful (Slattery, ibid.). For incompressible flow, the
value of bulk viscosity is immaterial as Eq. (6-23) reduces to

σij = −pδij + τij (6-24)

Similar generalizations to multidimensional flow are necessary for
non-Newtonian constitutive equations.

Cauchy Momentum and Navier-Stokes Equations The dif-
ferential equations for conservation of momentum are called the
Cauchy momentum equations. These may be found in general
form in most fluid mechanics texts (e.g., Slattery [ibid.]; Denn;
Whitaker; and Schlichting). For the important special case of an
incompressible Newtonian fluid with constant viscosity, substitution
of Eqs. (6-22) and (6-24) lead to the Navier-Stokes equations,
whose three Cartesian components are

ρ� + vx + vy + vz �
= − + µ� + + � + ρgx (6-25)

ρ� + vx + vy + vz �
= − + µ� + + � + ρgy (6-26)

ρ� + vx + vy + vz �
= − + µ� + + � + ρgz (6-27)

In vector notation,

ρ = + (v ⋅ ∇ )v = −∇ p + µ∇ 2v + ρg (6-28)

The pressure and gravity terms may be combined by replacing the
pressure p by the equivalent pressure P = p + ρgz. The left-hand side
terms of the Navier-Stokes equations are the inertial terms, while
the terms including viscosity µ are the viscous terms. Limiting cases
under which the Navier-Stokes equations may be simplified include
creeping flows in which the inertial terms are neglected, potential
flows (inviscid or irrotational flows) in which the viscous terms are
neglected, and boundary layer and lubrication flows in which cer-
tain terms are neglected based on scaling arguments. Creeping flows
are described by Happel and Brenner (Low Reynolds Number Hydro-
dynamics, Prentice-Hall, Englewood Cliffs, N.J., 1965); potential
flows by Lamb (Hydrodynamics, 6th ed., Dover, New York, 1945) and
Milne-Thompson (Theoretical Hydrodynamics, 5th ed., Macmillan,
New York, 1968); boundary layer theory by Schlichting (Boundary
Layer Theory, 8th ed., McGraw-Hill, New York, 1987), and lubrica-
tion theory by Batchelor (An Introduction to Fluid Dynamics,
Cambridge University, Cambridge, 1967) and Denn (Process Fluid
Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1980).

Because the Navier-Stokes equations are first-order in pressure and
second-order in velocity, their solution requires one pressure bound-
ary condition and two velocity boundary conditions (for each velocity
component) to completely specify the solution. The no slip condition,
which requires that the fluid velocity equal the velocity of any bound-
ing solid surface, occurs in most problems. Specification of velocity is
a type of boundary condition sometimes called a Dirichlet condition.
Often boundary conditions involve stresses, and thus velocity gradi-
ents, rather than the velocities themselves. Specification of velocity
derivatives is a Neumann boundary condition. For example, at the
boundary between a viscous liquid and a gas, it is often assumed that
the liquid shear stresses are zero. In numerical solution of the Navier-
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Stokes equations, Dirichlet and Neumann, or essential and natural,
boundary conditions may be satisfied by different means.

Fluid statics, discussed in Sec. 10 of the Handbook in reference to
pressure measurement, is the branch of fluid mechanics in which the
fluid velocity is either zero or is uniform and constant relative to an
inertial reference frame. With velocity gradients equal to zero, the
momentum equation reduces to a simple expression for the pressure
field, ∇ p = ρg. Letting z be directed vertically upward, so that gz = −g
where g is the gravitational acceleration (9.806 m2/s), the pressure
field is given by

dp/dz = −ρg (6-29)

This equation applies to any incompressible or compressible static
fluid. For an incompressible liquid, pressure varies linearly with
depth. For compressible gases, p is obtained by integration account-
ing for the variation of ρ with z.

The force exerted on a submerged planar surface of area A is
given by F = pcA where pc is the pressure at the geometrical centroid
of the surface. The center of pressure, the point of application of
the net force, is always lower than the centroid. For details see, for
example, Shames, where may also be found discussion of forces on
curved surfaces, buoyancy, and stability of floating bodies.

Examples Four examples follow, illustrating the application of
the conservation equations to obtain useful information about fluid
flows.

Example 1: Force Exerted on a Reducing Bend An incompress-
ible fluid flows through a reducing elbow (Fig. 6-5) situated in a horizontal
plane. The inlet velocity V1 is given and the pressures p1 and p2 are measured.
Selecting the inlet and outlet surfaces 1 and 2 as shown, the continuity equation
Eq. (6-9) can be used to find the exit velocity V2 = V1A1/A2. The mass flow rate is
obtained by ṁ = ρV1A1.

Assume that the velocity profile is nearly uniform so that β is approximately
unity. The force exerted on the fluid by the bend has x and y components; these
can be found from Eq. (6-11). The x component gives

Fx = ṁ(V2x − V1x) + p1A1x + p2A2x

while the y component gives

Fy = ṁ(V2y − V1y) + p1A1y + p2A2y

The velocity components are V1x = V1, V1y = 0, V2x = V2 cos θ, and V2y = V2 sin θ.
The area vector components are A1x = −A1, A1y = 0, A2x = A2 cos θ, and A2y =
A2 sin θ. Therefore, the force components may be calculated from

Fx = ṁ(V2 cos θ − V1) − p1A1 + p2A2 cos θ
Fy = ṁV2 sin θ + p2A2 sin θ

The force acting on the fluid is F; the equal and opposite force exerted by the
fluid on the bend is �F.

Example 2: Simplified Ejector Figure 6-6 shows a very simplified
sketch of an ejector, a device that uses a high velocity primary fluid to pump
another (secondary) fluid. The continuity and momentum equations may be
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FIG. 6-5 Force at a reducing bend. F is the force exerted by the bend on the
fluid. The force exerted by the fluid on the bend is �F.



applied on the control volume with inlet and outlet surfaces 1 and 2 as indicated
in the figure. The cross-sectional area is uniform, A1 = A2 = A. Let the mass flow
rates and velocities of the primary and secondary fluids be ṁp, ṁs, Vp and Vs.
Assume for simplicity that the density is uniform. Conservation of mass gives 
ṁ2 = ṁp + ṁs. The exit velocity is V2 = ṁ2 /(ρA). The principle momentum
exchange in the ejector occurs between the two fluids. Relative to this exchange,
the force exerted by the walls of the device are found to be small. Therefore, the
force term F is neglected from the momentum equation. Written in the flow
direction, assuming uniform velocity profiles, and using the extension of Eq. 
(6-11) for multiple inlets, it gives the pressure rise developed by the device:

(p2 − p1)A = (ṁp + ṁs)V2 − ṁpVp − ṁsVs

Application of the momentum equation to ejectors of other types is discussed in
Lapple (Fluid and Particle Dynamics, University of Delaware, Newark, 1951)
and in Sec. 10 of the Handbook.

Example 3: Venturi Flowmeter An incompressible fluid flows
through the venturi flowmeter in Fig. 6-7. An equation is needed to relate the
flow rate Q to the pressure drop measured by the manometer. This problem can
be solved using the mechanical energy balance. In a well-made venturi, viscous
losses are negligible, the pressure drop is entirely the result of acceleration into
the throat, and the flow rate predicted neglecting losses is quite accurate. The
inlet area is A and the throat area is a.

With control surfaces at 1 and 2 as shown in the figure, Eq. (6-17) in the
absence of losses and shaft work gives

+ = +

The continuity equation gives V2 = V1A/a, and V1 = Q/A. The pressure drop mea-
sured by the manometer is p1 − p2 = (ρm − ρ)g∆z. Substituting these relations
into the energy balance and rearranging, the desired expression for the flow rate
is found.

Q = ��
Example 4: Plane Poiseuille Flow An incompressible Newtonian

fluid flows at a steady rate in the x direction between two very large flat plates,
as shown in Fig. 6-8. The flow is laminar. The velocity profile is to be found. This
example is found in most fluid mechanics textbooks; the solution presented here
closely follows Denn.

This problem requires use of the microscopic balance equations because the
velocity is to be determined as a function of position. The boundary conditions
for this flow result from the no-slip condition. All three velocity components
must be zero at the plate surfaces, y = H/2 and y = −H/2.

Assume that the flow is fully developed, that is, all velocity derivatives van-

2(ρm − ρ)g∆z
��
ρ[(A/a)2 − 1]

1
�
A

V2
2

�
2

p2
�
ρ

V 2
1

�
2

p1
�
ρ

ish in the x direction. Since the flow field is infinite in the z direction, all veloc-
ity derivatives should be zero in the z direction. Therefore, velocity compo-
nents are a function of y alone. It is also assumed that there is no flow in the z
direction, so vz = 0. The continuity equation Eq. (6-21), with vz = 0 and ∂vx /∂x
= 0, reduces to

= 0.

Since vy = 0 at y = �H/2, the continuity equation integrates to vy = 0. This is a
direct result of the assumption of fully developed flow.

The Navier-Stokes equations are greatly simplified when it is noted that vy =
vz = 0 and ∂vx /∂x = ∂vx /∂z = ∂vx /∂t = 0. The three components are written in
terms of the equivalent pressure P:

0 = − + µ 

0 = − 

0 = − 

The latter two equations require that P is a function only of x, and therefore
∂P/∂x = dP/dx. Inspection of the first equation shows one term which is a func-
tion only of x and one which is only a function of y. This requires that both terms
are constant. The pressure gradient −dP/dx is constant. The x-component equa-
tion becomes

=

Two integrations of the x-component equation give

vx = y2 + C1y + C2

where the constants of integration C1 and C2 are evaluated from the boundary
conditions vx = 0 at y = �H/2. The result is

vx = �− ��1 − � �
2

�
This is a parabolic velocity distribution. The average velocity V =
(1/H) � H/2

−H/2
vx dy is

V = �− �
This flow is one-dimensional, as there is only one nonzero velocity component,
vx, which, along with the pressure, varies in only one coordinate direction.

INCOMPRESSIBLE FLOW IN PIPES AND CHANNELS

Mechanical Energy Balance The mechanical energy balance,
Eq. (6-16), for fully developed incompressible flow in a straight cir-
cular pipe of constant diameter D reduces to

+ gz1 = + gz 2 + lv (6-30)

In terms of the equivalent pressure, P � p + ρgz,

P1 − P2 = ρlv (6-31)

The pressure drop due to frictional losses lv is proportional to pipe
length L for fully developed flow and may be denoted as the (positive)
quantity ∆P � P1 − P2.

Friction Factor and Reynolds Number For a Newtonian fluid
in a smooth pipe, dimensional analysis relates the frictional pressure
drop per unit length ∆P/L to the pipe diameter D, density ρ, and aver-
age velocity V through two dimensionless groups, the Fanning fric-
tion factor f and the Reynolds number Re.
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FIG. 6-6 Draft-tube ejector.
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FIG. 6-8 Plane Poiseuille flow.



f � (6-32)

Re � (6-33)

For smooth pipe, the friction factor is a function only of the Reynolds
number. In rough pipe, the relative roughness �/D also affects the fric-
tion factor. Figure 6-9 plots f as a function of Re and �/D. Values of �
for various materials are given in Table 6-1. The Fanning friction fac-
tor should not be confused with the Darcy friction factor used by
Moody (Trans. ASME, 66, 671 [1944]), which is four times greater.
Using the momentum equation, the stress at the wall of the pipe may
be expressed in terms of the friction factor:

τw = f  (6-34)

Laminar and Turbulent Flow Below a critical Reynolds
number of about 2,100, the flow is laminar; over the range 2,100 <
Re < 5,000 there is a transition to turbulent flow. For laminar flow, the
Hagen-Poiseuille equation

f = , Re ≤ 2,100 (6-35)

may be derived from the Navier-Stokes equation and is in excellent
agreement with experimental data. It may be rewritten in terms of
volumetric flow rate, Q = VπD2/4, as

Q = , Re ≤ 2,100 (6-36)
π∆PD4

�
128µL

16
�
Re

ρV 2

�
2

DVρ
�

µ

D∆P
�
2ρV 2L

For turbulent flow in smooth tubes, the Blasius equation gives the
friction factor accurately for a wide range of Reynolds numbers.

f = , 4,000 < Re < 105 (6-37)

The Colebrook formula (Colebrook, J. Inst. Civ. Eng. [London], 11,
133–156 [1938–39]) gives a good approximation for the f-Re-(�/D)
data for rough pipes over the entire turbulent flow range:

= −4 log � + � Re > 4,000 (6-38)
1.256
�
Re	f


�
�
3.7D

1
�
	f


0.079
�
Re0.25
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FIG. 6-9 Fanning Friction Factors. Reynolds number Re = DVρ/µ, where D = pipe diameter, V = velocity, ρ = fluid density, and µ = fluid vis-
cosity. (Based on Moody, Trans. ASME, 66, 671 [1944].)

TABLE 6-1 Values of Surface Roughness for Various
Materials*

Material Surface roughness ε, mm

Drawn tubing (brass, lead, glass, and the like) 0.00152
Commercial steel or wrought iron 0.0457
Asphalted cast iron 0.122
Galvanized iron 0.152
Cast iron 0.259
Wood stove 0.183–0.914
Concrete 0.305–3.05
Riveted steel 0.914–9.14

* From Moody, Trans. Am. Soc. Mech. Eng., 66, 671–684 (1944); Mech. Eng.,
69, 1005–1006 (1947). Additional values of ε for various types or conditions of
concrete wrought-iron, welded steel, riveted steel, and corrugated-metal pipes
are given in Brater and King, Handbook of Hydraulics, 6th ed., McGraw-Hill,
New York, 1976, pp. 6-12–6-13. To convert millimeters to feet, multiply by
3.281 × 10−3.



An equation by Churchill (Chem. Eng., 84[24], 91–92 [Nov. 7, 1977])
for both smooth and rough tubes offers the advantage of being explicit
in f:

= −4 log � + (7/Re)0.9� Re > 4,000 (6-39)

In laminar flow, f is independent of �/D. In turbulent flow, the fric-
tion factor for rough pipe follows the smooth tube curve for a range of
Reynolds numbers (hydraulically smooth flow). For greater Reynolds
numbers, f deviates from the smooth pipe curve, eventually becoming
independent of Re. This region, often called complete turbulence, is
frequently encountered in commercial pipe flows. The Reynolds
number above which f becomes essentially independent of Re is
(Davies, Turbulence Phenomena, Academic, New York, 1972, p. 37)

Re = (6-40)

Roughness may also affect the transition from laminar to turbulent
flow (Schlichting).

Common pipe flow problems include calculation of pressure drop
given the flow rate (or velocity) and calculation of flow rate (or veloc-
ity) given pressure drop. When flow rate is given, the Reynolds num-
ber is first calculated to determine the flow regime, so that the
appropriate relations between f and Re (or pressure drop and velocity
or flow rate) are used. When pressure drop is given and the velocity is
unknown, the Reynolds number and flow regime cannot be immedi-
ately determined. It is necessary to assume the flow regime and then
verify by checking Re afterward. With experience, the initial guess for
the flow regime will usually prove correct. When solving Eq. (6-38)
for velocity when pressure drop is given, it is useful to note that 
the right-hand side is independent of velocity since Re	f
 =
(D3/2/µ)	ρ
∆
P
/(
2
L
)
.

As Fig. 6-9 suggests, the friction factor is uncertain in the transition
range 2,100 < Re < 4,000 and a conservative choice should be made
for design purposes.

Velocity Profiles In laminar flow, the solution of the Navier-
Stokes equation, corresponding to the Hagen-Poiseuille equation,
gives the velocity v as a function of radial position r in a circular pipe
of radius R in terms of the average velocity V = Q/A. The parabolic
profile, with centerline velocity twice the average velocity, is shown in
Fig. 6-10.

v = 2V�1 − � (6-41)

In turbulent flow, the velocity profile is much more blunt, with
most of the velocity gradient being in a region near the wall, described
by a universal velocity profile. It is characterized by a viscous sub-
layer, a turbulent core, and a buffer zone in between.

Viscous sublayer

u+ = y+ for y+ < 5 (6-42)

Buffer zone

u+ = 5.00 ln y+ − 3.05 for 5 < y+ < 30 (6-43)

Turbulent core

u+ = 2.5 ln y+ + 5.5 for y+ > 30 (6-44)

Here, u+ = v/u* is the dimensionless, time-averaged axial velocity, u* =

r2

�
R2

20[3.2 − 2.46 ln (�/D)]
���
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0.27�
�

D
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�
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	τw
/ρ
 is the friction velocity and τw = fρV 2/2 is the wall stress. The
friction velocity is of the order of the root mean square velocity fluc-
tuation perpendicular to the wall in the turbulent core. The dimen-
sionless distance from the wall is y+ = yu*ρ/µ. The universal velocity
profile is valid in the wall region for any cross-sectional channel shape.
For incompressible flow in constant diameter circular pipes, τw =
∆P/4L where ∆P is the pressure drop in length L. In circular pipes,
Eq. (6-44) gives a surprisingly good fit to experimental results over the
entire cross section of the pipe, even though it is based on assump-
tions which are valid only near the pipe wall.

For rough pipes, the velocity profile in the turbulent core is given by

u+ = 2.5 ln y/� + 8.5 for y+ > 30 (6-45)

when the dimensionless roughness �+ = �u*ρ/µ is greater than 5 to 10;
for smaller �+, the velocity profile in the turbulent core is unaffected
by roughness.

For velocity profiles in the transition region, see Patel and Head 
(J. Fluid Mech., 38, part 1, 181–201 [1969]) where profiles over the
range 1,500 < Re < 10,000 are reported.

Entrance and Exit Effects In the entrance region of a pipe,
some distance is required for the flow to adjust from upstream condi-
tions to the fully developed flow pattern. This distance depends on the
Reynolds number and on the flow conditions upstream. For a uniform
velocity profile at the pipe entrance, the computed length in laminar
flow required for the centerline velocity to reach 99 percent of its fully
developed value is (Dombrowski, Foumeny, Ookawara and Riza, Can.
J. Chem. Engr., 71, 472–476 [1993])

Lent /D = 0.370 exp (−0.148Re) + 0.0550Re + 0.260 (6-46)

In turbulent flow, the entrance length is about

Lent /D = 40 (6-47)

The frictional losses in the entrance region are larger than those for
the same length of fully developed flow. (See the subsection, “Fric-
tional Losses in Pipeline Elements,” following.) At the pipe exit, the
velocity profile also undergoes rearrangement, but the exit length is
much shorter than the entrance length. At low Re, it is about one pipe
radius. At Re > 100, the exit length is essentially 0.

Residence Time Distribution For laminar Newtonian pipe
flow, the cumulative residence time distribution F(θ) is given by

F(θ) = 0 for θ <

F(θ) = 1 − � �
2

for θ ≥ (6-48)

where F(θ) is the fraction of material which resides in the pipe for less
than time θ and θavg is the average residence time, θ = V/L.

The residence time distribution in long transfer lines may be made
narrower (more uniform) with the use of flow inverters or static
mixing elements. These devices exchange fluid between the wall
and central regions. Variations on the concept may be used to provide
effective mixing of the fluid. See Godfrey (“Static Mixers,” in Harnby,
Edwards, and Nienow, Mixing in the Process Industries, 2d ed.,
Butterworth Heinemann, Oxford, 1992); Gretta and Smith (Trans.
ASME J. Fluids Eng., 115, 255–263 [1993]); Kemblowski and Pustel-
nik (Chem. Eng. Sci., 43, 473–478 [1988]).

A theoretically derived equation for flow in helical pipe coils by
Ruthven (Chem. Eng. Sci., 26, 1113–1121 [1971]; 33, 628–629
[1978]) is given by

F(θ) = 1 − � � � �
2.81

for 0.5 < < 1.63 (6-49)

and was substantially confirmed by Trivedi and Vasudeva (Chem. Eng.
Sci., 29, 2291–2295 [1974]) for 0.6 < De < 6 and 0.0036 < D/Dc <
0.097 where De = Re	D
/D
c
 is the Dean number and Dc is the diam-
eter of curvature of the coil. Measurements by Saxena and Nigam
(Chem. Eng. Sci., 34, 425–426 [1979]) indicate that such a distribu-
tion will hold for De > 1. The residence time distribution for helical
coils is narrower than for straight circular pipes, due to the secondary
flow which exchanges fluid between the wall and center regions.
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FIG. 6-10 Parabolic velocity profile for laminar flow in a pipe, with average
velocity V.



In turbulent flow, axial mixing is usually described in terms of tur-
bulent diffusion or dispersion coefficients, from which cumulative 
residence time distribution functions can be computed. Davies (Tur-
bulence Phenomena, Academic, New York, 1972, p. 93), gives DL =
1.01νRe0.875 for the longitudinal dispersion coefficient. Levenspiel
(Chemical Reaction Engineering, 2d ed., Wiley, New York, 1972, pp.
253–278) discusses the relations among various residence time distri-
bution functions, and the relation between dispersion coefficient and
residence time distribution.

Noncircular Channels Calculation of frictional pressure drop in
noncircular channels depends on whether the flow is laminar or turbu-
lent, and on whether the channel is full or open. For turbulent flow in
ducts running full, the hydraulic diameter DH should be substi-
tuted for D in the friction factor and Reynolds number definitions, Eqs.
(6-32) and (6-33). The hydraulic diameter is defined as four times the
channel cross-sectional area divided by the wetted perimeter.
For example, the hydraulic diameter for a circular pipe is DH = D, for
an annulus of inner diameter d and outer diameter D, DH = D − d, for a
rectangular duct of sides a, b, DH = ab/[2(a + b)]. The hydraulic radius
RH is defined as one-fourth of the hydraulic diameter.

With the hydraulic diameter subsititued for D in f and Re, Eqs. 
(6-37) through (6-40) are good approximations. Note that V appearing
in f and Re is the actual average velocity V = Q/A; for noncircular
pipes; it is not Q/(πDH

2 /4). The pressure drop should be calculated
from the friction factor for noncircular pipes. Equations relating Q to
∆P and D for circular pipes may not be used for noncircular pipes
with D replaced by DH because V ≠ Q/(πDH

2 /4).
Turbulent flow in noncircular channels is generally accompanied by

secondary flows perpendicular to the axial flow direction (Schlicht-
ing). These flows may cause the pressure drop to be slightly greater
than that computed using the hydraulic diameter method. For data 
on pressure drop in annuli, see Brighton and Jones (J. Basic Eng., 86,
835–842 [1964]); Okiishi and Serovy (J. Basic Eng., 89, 823–836
[1967]); and Lawn and Elliot (J. Mech. Eng. Sci., 14, 195–204 [1972]).
For rectangular ducts of large aspect ratio, Dean (J. Fluids Eng., 100,
215–233 [1978]) found that the numerator of the exponent in the Bla-
sius equation (6-37) should be increased to 0.0868. Jones (J. Fluids
Eng., 98, 173–181 [1976]) presents a method to improve the estima-
tion of friction factors for rectangular ducts using a modification of the
hydraulic diameter–based Reynolds number.

The hydraulic diameter method does not work well for laminar
flow because the shape affects the flow resistance in a way that cannot
be expressed as a function only of the ratio of cross-sectional area to
wetted perimeter. For some shapes, the Navier-Stokes equations have
been integrated to yield relations between flow rate and pressure
drop. These relations may be expressed in terms of equivalent 
diameters DE defined to make the relations reduce to the second
form of the Hagen-Poiseulle equation, Eq. (6-36); that is, DE �
(128QµL/π∆P)1/4. Equivalent diameters are not the same as
hydraulic diameters. Equivalent diameters yield the correct rela-
tion between flow rate and pressure drop when substituted into Eq.
(6-36), but not Eq. (6-35) because V ≠ Q/(πDE/4). Equivalent diame-
ter DE is not to be used in the friction factor and Reynolds number; 
f ≠ 16/Re using the equivalent diameters defined in the following. This
situation is, by arbitrary definition, opposite to that for the hydraulic
diameter DH used for turbulent flow.

Ellipse, semiaxes a and b (Lamb, Hydrodynamics, 6th ed., Dover,
New York, 1945, p. 587):

DE = � �
1/4

(6-50)

Rectangle, width a, height b (Owen, Trans. Am. Soc. Civ. Eng., 119,
1157–1175 [1954]):

DE = � �
1/4

(6-51)

a/b = 1 1.5 2 3 4 5 10 ∞
K = 28.45 20.43 17.49 15.19 14.24 13.73 12.81 12

Annulus, inner diameter D1 outer diameter D2 (Lamb, op. cit., p.
587):

128ab3

�
πK

32a3b3

�
a2 + b2

DE = �(D2
2 − D1

2)�D2
2 + D1

2 − ��
1/4

(6-52)

For isosceles triangles and regular polygons, see Sparrow (AIChE
J., 8, 599–605 [1962]), Carlson and Irvine (J. Heat Transfer, 83,
441–444 [1961]), Cheng (Proc. Third Int. Heat Transfer Conf., New
York, 1, 64–76 [1966]), and Shih (Can. J. Chem. Eng., 45, 285–294
[1967]).

The critical Reynolds number for transition from laminar to tur-
bulent flow in noncircular channels varies with channel shape. In
rectangular ducts, 1,900 < Rec < 2,800 (Hanks and Ruo, Ind. Eng.
Chem. Fundam., 5, 558–561 [1966]). In triangular ducts, 1,600 <
Rec < 1,800 (Cope and Hanks, Ind. Eng. Chem. Fundam., 11,
106–117 [1972]; Bandopadhayay and Hinwood, J. Fluid Mech., 59,
775–783 [1973]).

Nonisothermal Flow For nonisothermal flow of liquids, the
friction factor may be increased if the liquid is being cooled or
decreased if the liquid is being heated, because of the effect of tem-
perature on viscosity near the wall. In shell and tube heat-exchanger
design, the recommended practice is to first estimate f using the bulk
mean liquid temperature over the tube length. Then, in laminar flow,
the result is divided by (µa /µw)0.23 in the case of cooling or (µa /µw)0.38

in the case of heating. For turbulent flow, f is divided by (µa /µw)0.11 in
the case of cooling or (µa /µw)0.17 in case of heating. Here, µa is the vis-
cosity at the average bulk temperature and µw is the viscosity at the
average wall temperature (Seider and Tate, Ind. Eng. Chem., 28,
1429–1435 [1936]). In the case of rough commercial pipes, rather
than heat-exchanger tubing, it is common for flow to be in the “com-
plete” turbulence regime where f is independent of Re. In such cases,
the friction factor should not be corrected for wall temperature. If the
liquid density varies with temperature, the average bulk density
should be used to calculate the pressure drop from the friction factor.
In addition, a (usually small) correction may be applied for accelera-
tion effects by adding the term G2[(1/ρ2) − (1/ρ1)] from the mechani-
cal energy balance to the pressure drop ∆P = P1 − P2, where G is the
mass velocity. This acceleration results from small compressibility
effects associated with temperature-dependent density. Christiansen
and Gordon (AIChE J., 15, 504–507 [1969]) present equations and
charts for frictional loss in laminar nonisothermal flow of Newtonian
and non-Newtonian liquids heated or cooled with constant wall tem-
perature.

Frictional dissipation of mechanical energy can result in significant
heating of fluids, particularly for very viscous liquids in small channels.
Under adiabatic conditions, the bulk liquid temperature rise is given
by ∆T = ∆P/Cvρ for incompressible flow through a channel of constant
cross-sectional area. For flow of polymers, this amounts to about 4°C
per 10 MPa pressure drop, while for hydrocarbon liquids it is about
6°C per 10 MPa. The temperature rise in laminar flow is highly
nonuniform, being concentrated near the pipe wall where most of the
dissipation occurs. This may result in significant viscosity reduction
near the wall, and greatly increased flow or reduced pressure drop,
and a flattened velocity profile. Compensation should generally be
made for the heat effect when ∆P exceeds 1.4 MPa (203 psi) for adia-
batic walls or 3.5 MPa (508 psi) for isothermal walls (Gerard, Steidler,
and Appeldoorn, Ind. Eng. Chem. Fundam., 4, 332–339 [1969]).

Open Channel Flow For flow in open channels, the data are
largely based on experiments with water in turbulent flow, in channels
of sufficient roughness that there is no Reynolds number effect. The
hydraulic radius approach may be used to estimate a friction factor
with which to compute friction losses. Under conditions of uniform
flow where liquid depth and cross-sectional area do not vary signifi-
cantly with position in the flow direction, there is a balance between
gravitational forces and wall stress, or equivalently between frictional
losses and potential energy change. The mechanical energy balance
reduces to lv = g(z1 − z2). In terms of the friction factor and hydraulic
diameter or hydraulic radius,

lv = = = g(z1 − z2) (6-53)

The hydraulic radius is the cross-sectional area divided by the wetted
perimeter, where the wetted perimeter does not include the free sur-

f V 2L
�
2RH

2 f V 2L
�

DH

D2
2 − D1

2

��
ln (D2 /D1)

6-12 FLUID AND PARTICLE DYNAMICS



face. Letting S = sin θ = channel slope (elevation loss per unit length
of channel, θ = angle between channel and horizontal), Eq. (6-53)
reduces to

V = �� (6-54)

The most often used friction correlation for open channel flows is due
to Manning (Trans. Inst. Civ. Engrs. Ireland, 20, 161 [1891]) and is
equivalent to

f = (6-55)

where n is the channel roughness, with dimensions of (length)1/6.
Table 6-2 gives roughness values for several channel types.

For gradual changes in channel cross section and liquid depth, and
for slopes less than 10°, the momentum equation for a rectangular
channel of width b and liquid depth h may be written as a differential
equation in the flow direction x.

(1 − Fr) − Fr � � = S − (6-56)

For a given fixed flow rate Q = Vbh, and channel width profile b(x),
Eq. (6-56) may be integrated to determine the liquid depth profile
h(x). The dimensionless Froude number is Fr = V 2/gh. When Fr = 1,
the flow is critical, when Fr < 1, the flow is subcritical, and when 
Fr > 1, the flow is supercritical. Surface disturbances move at a wave
velocity c = 	gh
; they cannot propagate upstream in supercritical
flows. The specific energy Esp is nearly constant.

Esp = h + (6-57)

This equation is cubic in liquid depth. Below a minimum value of Esp

there are no real positive roots; above the minimum value there are
two positive real roots. At this minimum value of Esp the flow is criti-
cal; that is, Fr = 1, V = 	gh
, and Esp = (3/2)h. Near critical flow condi-
tions, wave motion and sudden depth changes called hydraulic
jumps are likely. Chow (Open Channel Hydraulics, McGraw-Hill,
New York, 1959), discusses the numerous surface profile shapes
which may exist in nonuniform open channel flows.

For flow over a sharp-crested weir of width b and height L, from a
liquid depth H, the flow rate is given approximately by

Q = Cd b	2
g
(H − L)3/2 (6-58)

where Cd ≈ 0.6 is a discharge coefficient. Flow through notched weirs
is described under flow meters in Sec. 10 of the Handbook.
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Non-Newtonian Flow For isothermal laminar flow of time-
independent non-Newtonian liquids, integration of the Cauchy
momentum equations yields the fully developed velocity profile and
flow rate–pressure drop relations. For the Bingham plastic fluid
described by Eq. (6-3), in a pipe of diameter D and a pressure drop
per unit length ∆P/L, the flow rate is given by

Q = �1 − + � (6-59)

where the wall stress is τw = D∆P/(4L). The velocity profile consists 
of a central nondeforming plug of radius rP = 2τy /(∆P/L) and an annu-
lar deforming region. The velocity profile in the annular region is
given by

vz = � (R2 − r2) − τy(R − r)�, rP ≤ r ≤ R (6-60)

where r is the radial coordinate and R is the pipe radius. The velocity
of the central, nondeforming plug is obtained by setting r = rP in Eq.
(6-60). When Q is given and Eq. (6-59) is to be solved for τw and the
pressure drop, multiple positive roots for the pressure drop may be
found. The root corresponding to τw < τy is physically unrealizable, as
it corresponds to rp > R and the pressure drop is insufficient to over-
come the yield stress.

For a power law fluid, Eq. (6-4), with constant properties K and n,
the flow rate is given by

Q = π� �
1/n

� � R(1 + 3n)/n (6-61)

and the velocity profile by

vz = � �
1/n

� � [R(1 + n)/n − r (1 + n)/n] (6-62)

Similar relations for other non-Newtonian fluids may be found in
Govier and Aziz and in Bird, Armstrong, and Hassager (Dynamics of
Polymeric Liquids, vol. 1: Fluid Mechanics, Wiley, New York, 1977).

For steady-state laminar flow of any time-independent viscous
fluid, at average velocity V in a pipe of diameter D, the Rabinowitsch-
Mooney relations give a general relationship for the shear rate at the
pipe wall.

γ̇w = � � (6-63)

where n′ is the slope of a plot of D∆P/(4L) versus 8V/D on logarithmic
coordinates,

n′ = (6-64)

By plotting capillary viscometry data this way, they can be used
directly for pressure drop design calculations, or to construct the
rheogram for the fluid. For pressure drop calculation, the flow rate
and diameter determine the velocity, from which 8V/D is calculated
and D∆P/(4L) read from the plot. For a Newtonian fluid, n′ = 1 and
the shear rate at the wall is γ̇ =8V/D. For a power law fluid, n′ = n. To
construct a rheogram, n′ is obtained from the slope of the experimen-
tal plot at a given value of 8V/D. The shear rate at the wall is given by
Eq. (6-63) and the corresponding shear stress at the wall is τw =
D∆P/(4L) read from the plot. By varying the value of 8V/D, the shear
rate versus shear stress plot can be constructed.

The generalized approach of Metzner and Reed (AIChE J., 1, 434
[1955]) for time-independent non-Newtonian fluids defines a modi-
fied Reynolds number as

ReMR � (6-65)

where K′ satisfies

= K′ � �
n′

(6-66)

With this definition, f = 16/ReMR is automatically satisfied at the value
of 8V/D where K′ and n′ are evaluated. Equation (6-66) may be
obtained by integration of Eq. (6-64) only when n′ is a constant, as, for
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TABLE 6-2 Average Values of n for Manning Formula, 
Eq. (6-55)

Surface n, m1/6 n, ft1/6

Cast-iron pipe, fair condition 0.014 0.011
Riveted steel pipe 0.017 0.014
Vitrified sewer pipe 0.013 0.011
Concrete pipe 0.015 0.012
Wood-stave pipe 0.012 0.010
Planed-plank flume 0.012 0.010
Semicircular metal flumes, smooth 0.013 0.011
Semicircular metal flumes, corrugated 0.028 0.023
Canals and ditches

Earth, straight and uniform 0.023 0.019
Winding sluggish canals 0.025 0.021
Dredged earth channels 0.028 0.023

Natural-stream channels
Clean, straight bank, full stage 0.030 0.025
Winding, some pools and shoals 0.040 0.033
Same, but with stony sections 0.055 0.045
Sluggish reaches, very deep pools, rather weedy 0.070 0.057

SOURCE: Brater and King, Handbook of Hydraulics, 6th ed., McGraw-Hill,
New York, 1976, p. 7–22. For detailed information, see Chow, Open-Channel
Hydraulics, McGraw-Hill, New York, 1959, pp. 110–123.



example, the cases of Newtonian and power law fluids. For Newto-
nian fluids, K′ = µ and n′ = 1; for power law fluids, K′ = K[(1 + 3n)/
(4n)]n and n′ = n. For Bingham plastics, K′ and n′ are variable, given as
a function of τw (Metzner, Ind. Eng. Chem., 49, 1429–1432 [1957]).

K = τ w
1 − n′ � �

n′

(6-67)

n′ = (6-68)

For laminar flow of power law fluids in channels of noncircular
cross section, see Schecter (AIChE J., 7, 445–448 [1961]), Wheeler
and Wissler (AIChE J., 11, 207–212 [1965]), Bird, Armstrong, and
Hassager (Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics,
Wiley, New York, 1977), and Skelland (Non-Newtonian Flow and
Heat Transfer, Wiley, New York, 1967).

Steady state, fully developed laminar flows of viscoelastic fluids in
straight, constant-diameter pipes show no effects of viscoelasticity.
The viscous component of the constitutive equation may be used to
develop the flow rate–pressure drop relations, which apply down-
stream of the entrance region after viscoelastic effects have disap-
peared. A similar situation exists for time-dependent fluids.

The transition to turbulent flow begins at ReMR in the range of
2,000 to 2,500 (Metzner and Reed, AIChE J., 1, 434 [1955]). For
Bingham plastic materials, K′ and n′ must be evaluated for the τw con-
dition in question in order to determine ReMR and establish whether
the flow is laminar. An alternative method for Bingham plastics is by
Hanks (Hanks, AIChE J., 9, 306 [1963]; 14, 691 [1968]; Hanks and
Pratt, Soc. Petrol. Engrs. J., 7, 342 [1967]; and Govier and Aziz, pp.
213–215). The transition from laminar to turbulent flow is influenced
by viscoelastic properties (Metzner and Park, J. Fluid Mech., 20, 291
[1964]) with the critical value of ReMR increased to beyond 10,000 for
some materials.

For turbulent flow of non-Newtonian fluids, the design chart of
Dodge and Metzner (AIChE J., 5, 189 [1959]), Fig. 6-11, is most
widely used. For Bingham plastic materials in turbulent flow, it is gen-
erally assumed that stresses greatly exceed the yield stress, so that the
friction factor–Reynolds number relationship for Newtonian fluids
applies, with µ∞ substituted for µ. This is equivalent to setting n′ = 1
and τy /τw = 0 in the Dodge-Metzner method, so that ReMR = DVρ/µ∞.
Wilson and Thomas (Can. J. Chem. Eng., 63, 539–546 [1985]) give
friction factor equations for turbulent flow of power law fluids and
Bingham plastic fluids.

Power law fluids:

= + 8.2 + 1.77 ln � � (6-69)
1 + n
�

2
1 − n
�
1 + n

1
�
	fN


1
�
	f


1 − 4τy /(3τw) + (τy /τw)4/3
���

1 − (τy /τw)4

µ∞
���
1 − 4τy /3τw + (τy /τw)4/3

where fN is the friction factor for Newtonian fluid evaluated at Re =
DVρ/µeff where the effective viscosity is

µeff = K� �
n − 1

� �
n − 1

(6-70)

Bingham fluids:

= + 1.77 ln � � + ξ(10 + 0.884ξ) (6-71)

where fN is evaluated at Re = DVρ/µ∞ and ξ = τy /τw. Iteration is
required to use this equation since τw = fρV 2/2.

Drag reduction in turbulent flow can be achieved by adding solu-
ble high molecular weight polymers in extremely low concentration to
Newtonian liquids. The reduction in friction is generally believed to
be associated with the viscoelastic nature of the solutions effective in
the wall region. For a given polymer, there is a minimum molecular
weight necessary to initiate drag reduction at a given flow rate, and a
critical concentration above which drag reduction will not occur (Kim,
Little and Ting, J. Colloid Interface Sci., 47, 530–535 [1974]). Drag
reduction is reviewed by Hoyt (J. Basic Eng., 94, 258–285 [1972]);
Little, et al. (Ind. Eng. Chem. Fundam., 14, 283–296 [1975]) and Virk
(AIChE J., 21, 625–656 [1975]). At maximum possible drag reduction
in smooth pipes,

= −19 log � � (6-72)

or, approximately, f = (6-73)

for 4,000 < Re < 40,000. The actual drag reduction depends on the
polymer system. For further details, see Virk (ibid.).

Economic Pipe Diameter, Turbulent Flow The economic
optimum pipe diameter may be computed so that the last increment
of investment reduces the operating cost enough to produce the
required minimum return on investment. For long cross-country
pipelines, alloy pipes of appreciable length and complexity, or pipe-
lines with control valves, detailed analyses of investment and operat-
ing costs should be made. Peters and Timmerhaus (Plant Design and
Economics for Chemical Engineers, 4th ed., McGraw-Hill, New York,
1991) provide a detailed method for determining the economic opti-
mum size. For pipelines of the lengths usually encountered in chemi-
cal plants and petroleum refineries, simplified selection charts are
often adequate. In many cases there is an economic optimum velocity
that is nearly independent of diameter, which may be used to estimate
the economic diameter from the flow rate. For low-viscosity liquids in
schedule 40 steel pipe, economic optimum velocity is typically in the
range of 1.8 to 2.4 m/s (5.9 to 7.9 ft/s). For gases with density ranging
from 0.2 to 20 kg/m3 (0.013 to 1.25 lbm/ft3), the economic optimum
velocity is about 40 m/s to 9 m/s (131 to 30 ft/s). Charts and rough
guidelines for economic optimum size do not apply to multiphase
flows.

Economic Pipe Diameter, Laminar Flow Pipelines for the
transport of high-viscosity liquids are seldom designed purely on the
basis of economics. More often, the size is dictated by operability con-
siderations such as available pressure drop, shear rate, or residence
time distribution. Peters and Timmerhaus (ibid., Chap. 10) provide an
economic pipe diameter chart for laminar flow. For non-Newtonian
fluids, see Skelland (Non-Newtonian Flow and Heat Transfer, Chap.
7, Wiley, New York, 1967).

Vacuum Flow When gas flows under high vacuum conditions or
through very small openings, the continuum hypothesis is no longer
appropriate if the channel dimension is not very large compared to the
mean free path of the gas. When the mean free path is comparable to
the channel dimension, flow is dominated by collisions of molecules
with the wall, rather than by collisions between molecules. An approx-
imate expression based on Brown, et al. (J. Appl. Phys., 17, 802–813
[1946]) for the mean free path is

λ = � � �� (6-74)
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FIG. 6-11 Fanning friction factor for non-Newtonian flow. (From Dodge and
Metzner, Am. Inst. Chem. Eng. J., 5, 189 [1959]).



The Knudsen number Kn is the ratio of the mean free path to the
channel dimension. For pipe flow, Kn = λ/D. Molecular flow is char-
acterized by Kn > 1.0; continuum viscous (laminar or turbulent) flow
is characterized by Kn < 0.01. Transition or slip flow applies over the
range 0.01 < Kn < 1.0.

Vacuum flow is usually described with flow variables different from
those used for normal pressures, which often leads to confusion.
Pumping speed S is the actual volumetric flow rate of gas through a
flow cross section. Throughput Q is the product of pumping speed
and absolute pressure. In the SI system, Q has units of Pa ⋅ m3/s.

Q = Sp (6-75)

The mass flow rate w is related to the throughput using the ideal gas law.

w = Q (6-76)

Throughput is therefore proportional to mass flow rate. For a given
mass flow rate, throughput is independent of pressure. The relation
between throughput and pressure drop ∆p = p1 − p2 across a flow ele-
ment is written in terms of the conductance C. Resistance is the
reciprocal of conductance. Conductance has dimensions of volume
per time.

Q = C∆p (6-77)

The conductance of a series of flow elements is given by

= + + + ⋅⋅⋅ (6-78)

while for elements in parallel,

C = C1 + C2 + C3 + ⋅⋅⋅ (6-79)

For a vacuum pump of speed Sp withdrawing from a vacuum vessel
through a connecting line of conductance C, the pumping speed at
the vessel is

S = (6-80)

Molecular Flow Under molecular flow conditions, conductance
is independent of pressure. It is proportional to 	T
/M
w
, with the pro-
portionality constant a function of geometry. For fully developed pipe
flow,

C = �� (6-81)

For an orifice of area A,

C = 0.40A�� (6-82)

Conductance equations for several other geometries are given by
Ryans and Roper (Process Vacuum System Design and Operation,
Chap. 2, McGraw-Hill, New York, 1986). For a circular annulus of
outer and inner diameters D1 and D2 and length L, the method of
Guthrie and Wakerling (Vacuum Equipment and Techniques,
McGraw-Hill, New York, 1949) may be written

C = 0.42K �� (6-83)

where K is a dimensionless constant with values given in Table 6-3.
For a short pipe of circular cross section, the conductance as calcu-

lated for an orifice from Eq. (6-82) is multiplied by a correction factor
K which may be approximated as (Kennard, Kinetic Theory of Gases,
McGraw-Hill, New York, 1938, pp. 306–308)
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K = for 0 ≤ L/D ≤ 0.75 (6-84)

K = for L/D > 0.75 (6-85)

For L/D > 100, the error in neglecting the end correction by using the
fully developed pipe flow equation (6-81) is less than 2 percent. For
rectangular channels, see Normand (Ind. Eng. Chem., 40, 783–787
[1948]).

Yu and Sparrow (J. Basic Eng., 70, 405–410 [1970]) give a theoret-
ically derived chart for slot seals with or without a sheet located in or
passing through the seal, giving mass flow rate as a function of the
ratio of seal plate thickness to gap opening.

Slip Flow In the transition region between molecular flow and
continuum viscous flow, the conductance for fully developed pipe
flow is most easily obtained by the method of Brown, et al. (J. Appl.
Phys., 17, 802–813 [1946]), which uses the parameter

X = �� � � = � � �� (6-86)

where pm is the arithmetic mean absolute pressure. A correction fac-
tor F, read from Fig. 6-12 as a function of X, is applied to the conduc-
tance for viscous flow.

C = F (6-87)

For slip flow through square channels, see Milligan and Wilker-
son (J. Eng. Ind., 95, 370–372 [1973]). For slip flow through annuli,
see Maegley and Berman (Phys. Fluids, 15, 780–785 [1972]).

The pump-down time θ for evacuating a vessel in the absence of
air in-leakage is given approximately by

θ = � � ln � � (6-88)

where Vt = volume of vessel plus volume of piping between vessel and
pump; S0 = system speed as given by Eq. (6-80), assumed independent
of pressure; p1 = initial vessel pressure; p2 = final vessel pressure; and
p0 = lowest pump intake pressure attainable with the pump in ques-
tion. See Dushman and Lafferty (Scientific Foundations of Vacuum
Technique, 2d ed., Wiley, New York, 1962).

The amount of inerts which has to be removed by a pumping sys-
tem after the pump-down stage depends on the in-leakage of air at the
various fittings, connections, and so on. Air leakage is often correlated
with system volume and pressure, but this approach introduces uncer-
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TABLE 6-3 Constants for Circular Annuli

D2 /D1 K D2 /D1 K

0 1.00 0.707 1.254
0.259 1.072 0.866 1.430
0.500 1.154 0.966 1.675

FIG. 6-12 Correction factor for Poiseuille’s equation at low pressures. Curve
A: experimental curve for glass capillaries and smooth metal tubes. (From
Brown, et al., J. Appl. Phys., 17, 802 [1946].) Curve B: experimental curve for
iron pipe (From Riggle, Courtesy of E. I. du Pont de Nemours & Co.)



tainty because the number and size of leaks does not necessily corre-
late with system volume, and leakage is sensitive to maintenance qual-
ity. Ryans and Roper (Process Vacuum System Design and Operation,
McGraw-Hill, New York, 1986) present a thorough discussion of air
leakage.

FRICTIONAL LOSSES IN PIPELINE ELEMENTS

The viscous or frictional loss term in the mechanical energy balance
for most cases is obtained experimentally. For many common fittings
found in piping systems, such as expansions, contractions, elbows and
valves, data are available to estimate the losses. Substitution into the
energy balance then allows calculation of pressure drop. A common
error is to assume that pressure drop and frictional losses are equiva-
lent. Equation (6-16) shows that in addition to frictional losses, other
factors such as shaft work and velocity or elevation change influence
pressure drop.

Losses lv for incompressible flow in sections of straight pipe of con-
stant diameter may be calculated as previously described using the
Fanning friction factor:

lv = = (6-89)

where ∆P = drop in equivalent pressure, P = p + ρgz, with p = pres-
sure, ρ = fluid density, g = acceleration of gravity, and z = elevation.
Losses in the fittings of a piping network are frequently termed minor
losses or miscellaneous losses. These descriptions are misleading
because in process piping fitting losses are often much greater than
the losses in straight piping sections.

Equivalent Length and Velocity Head Methods Two meth-
ods are in common use for estimating fitting loss. One, the equiva-
lent length method, reports the losses in a piping element as the
length of straight pipe which would have the same loss. For turbulent
flows, the equivalent length is usually reported as a number of diame-
ters of pipe of the same size as the fitting connection; Le /D is given as
a fixed quantity, independent of D. This approach tends to be most
accurate for a single fitting size and loses accuracy with deviation from
this size. For laminar flows, Le /D correlations normally have a size
dependence through a Reynolds number term.

The other method is the velocity head method. The term V 2/2g
has dimensions of length and is commonly called a velocity head.
Application of the Bernoulli equation to the problem of frictionless
discharge at velocity V through a nozzle at the bottom of a column of
liquid of height H shows that H = V 2/2g. Thus H is the liquid head cor-
responding to the velocity V. Use of the velocity head to scale pressure
drops has wide application in fluid mechanics. Examination of the
Navier-Stokes equations suggests that when the inertial terms domi-
nate the viscous terms, pressure gradients are expected to be propor-
tional to ρV 2 where V is a characteristic velocity of the flow.

In the velocity head method, the losses are reported as a number of
velocity heads K. Then, the engineering Bernoulli equation for an
incompressible fluid can be written

p1 − p2 = α2 − α1 + ρg(z2 − z1) + K (6-90)

where V is the reference velocity upon which the velocity head loss
coefficient K is based. For a section of straight pipe, K = 4 fL/D.
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Contraction and Entrance Losses For a sudden contraction
at a sharp-edged entrance to a pipe or sudden reduction in cross-
sectional area of a channel, as shown in Fig. 6-13a, the loss coefficient
based on the downstream velocity V2 is given for turbulent flow in
Crane Co. Tech Paper 410 (1980) approximately by

K = 0.5 �1 − � (6-91)

Example 5: Entrance Loss Water, ρ = 1000 kg/m3, flows from a large
vessel through a sharp-edged entrance into a pipe at a velocity in the pipe of 2
m/s. The flow is turbulent. Estimate the pressure drop from the vessel into the
pipe.

With A2 /A1 ∼ 0, the viscous loss coefficient is K = 0.5 from Eq. (6-91). The
mechanical energy balance, Eq. (6-16) with V1 = 0 and z2 − z1 = 0 and assuming
uniform flow (α2 = 1) becomes

p1 − p2 = + 0.5 = 4,000 + 2,000 = 6,000 Pa

Note that the total pressure drop consists of 0.5 velocity heads of frictional loss
contribution, and 1 velocity head of velocity change contribution. The frictional
contribution is a permanent loss of mechanical energy by viscous dissipation.
The acceleration contribution is reversible; if the fluid were subsequently decel-
erated in a frictionless diffuser, a 4,000 Pa pressure rise would occur.

For a trumpet-shaped rounded entrance, with a radius of round-
ing greater than about 15 percent of the pipe diameter (Fig. 6-13b),
the turbulent flow loss coefficient K is only about 0.1 (Vennard and
Street, Elementary Fluid Mechanics, 5th ed., Wiley, New York, 1975,
pp. 420–421). Rounding of the inlet prevents formation of the vena
contracta, thereby reducing the resistance to flow.

For laminar flow the losses in sudden contraction may be esti-
mated for area ratios A2 /A1 < 0.2 by an equivalent additional pipe
length Le given by

Le /D = 0.3 + 0.04Re (6-92)

where D is the diameter of the smaller pipe and Re is the Reynolds
number in the smaller pipe. For laminar flow in the entrance to rect-
angular ducts, see Shah (J. Fluids Eng., 100, 177–179 [1978]) and
Roscoe (Philos. Mag., 40, 338–351 [1949]). For creeping flow, Re < 1,
of power law fluids, the entrance loss is approximately Le/D = 0.3/n
(Boger, Gupta, and Tanner, J. Non-Newtonian Fluid Mech., 4,
239–248 [1978]). For viscoelastic fluid flow in circular channels with
sudden contraction, a toroidal vortex forms upstream of the contrac-
tion plane. Such flows are reviewed by Boger (Ann. Review Fluid
Mech., 19, 157–182 [1987]).

For creeping flow through conical converging channels, inertial
acceleration terms are negligible and the viscous pressure drop ∆p =
ρlv may be computed by integration of the differential form of the
Hagen-Poiseuille equation Eq. (6-36), provided the angle of conver-
gence is small. The result for a power law fluid is

∆p = K � �
n

� �
n

� �1 − � �
3n

�� (6-93)

where D1 = inlet diameter
D2 = exit diameter
V2 = velocity at the exit
α = total included angle
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FIG. 6-13 Contractions and enlargements: (a) sudden contraction, (b) rounded contraction, (c) sudden enlargement, and (d) uniformly diverging duct.

(a) (b) (c) (d)



Equation (6-93) agrees with experimental data (Kemblowski and Kil-
janski, Chem. Eng. J. (Lausanne), 9, 141–151 [1975]) for α < 11°. For
Newtonian liquids, Eq. (6-93) simplifies to

∆p = µ � � � �1 − � �
3

�� (6-94)

For creeping flow through rectangular or two-dimensional converging
channels, the differential form of the Hagen-Poiseulle equation with
equivalent diameter given by Eq. (6-49) may be used, provided the
convergence is gradual.

Expansion and Exit Losses For ducts of any cross section, the
frictional loss for a sudden enlargement (Fig. 6-13c) with turbulent
flow is given by the Borda-Carnot equation:

lv = = �1 − �
2

(6-95)

where V1 = velocity in the smaller duct
V2 = velocity in the larger duct
A1 = cross-sectional area of the smaller duct
A2 = cross-sectional area of the larger duct

Equation (6-95) is valid for incompressible flow. For compressible
flows, see Benedict, Wyler, Dudek, and Gleed ( J. Eng. Power, 98,
327–334 [1976]). For an infinite expansion, A1/A2 = 0, Eq. (6-95)
shows that the exit loss from a pipe is 1 velocity head. This result is
easily deduced from the mechanical energy balance Eq. (6-90), noting
that p1 = p2. This exit loss is due to the dissipation of the discharged jet;
there is no pressure drop at the exit.

For creeping Newtonian flow (Re < 1), the frictional loss due to a
sudden enlargement should be obtained from the same equation for a
sudden contraction (Eq. [6-92]). Note, however, that Boger, Gupta,
and Tanner (ibid.) give an exit friction equivalent length of 0.12 diam-
eter, increasing for power law fluids as the exponent decreases. For
laminar flows at higher Reynolds numbers, the pressure drop is twice
that given by Eq. (6-95). This results from the velocity profile factor α
in the mechanical energy balance being 2.0 for the parabolic laminar
velocity profile.

If the transition from a small to a large duct of any cross-sectional
shape is accomplished by a uniformly diverging duct (see Fig. 
6-13d) with a straight axis, the total frictional pressure drop can be
computed by integrating the differential form of Eq. (6-89), dlv /dx =
2 f V 2/D over the length of the expansion, provided the total angle α
between the diverging walls is less than 7°. For angles between 7 and
45°, the loss coefficient may be estimated as 2.6 sin (α/2) times the
loss coefficient for a sudden expansion; see Hooper (Chem. Eng., Nov.
7, 1988). Gibson (Hydraulics and Its Applications, 5th ed., Constable,
London 1952, p. 93) recommends multiplying the sudden enlarge-
ment loss by 0.13 for 5° < α < 7.5° and by 0.0110α1.22 for 7.5° < α <
35°. For angles greater than 35 to 45°, the losses are normally consid-
ered equal to those for a sudden expansion, although in some cases
the losses may be greater. Expanding flow through standard pipe
reducers should be treated as sudden expansions.

Trumpet-shaped enlargements for turbulent flow designed for
constant decrease in velocity head per unit length were found by 
Gibson (ibid., p. 95) to give 20 to 60 percent less frictional loss than
straight taper pipes of the same length.

A special feature of expansion flows occurs when viscoelastic liq-
uids are extruded through a die at a low Reynolds number. The extru-
date may expand to a diameter several times greater than the die
diameter, whereas for a Newtonian fluid the diameter expands only 10
percent. This phenomenon, called die swell, is most pronounced
with short dies (Graessley, Glasscock, and Crawley, Trans. Soc. Rheol.,
14, 519–544 [1970]). For velocity distribution measurements near the
die exit, see Goulden and MacSporran (J. Non-Newtonian Fluid
Mech., 1, 183–198 [1976]) and Whipple and Hill (AIChE J., 24,
664–671 [1978]). At high flow rates, the extrudate becomes distorted,
suffering melt fracture at wall shear stresses greater than 105 N/m2.
This phenomenon is reviewed by Denn (Ann. Review Fluid Mech.,
22, 13–34 [1990]). Ramamurthy (J. Rheol., 30, 337–357 [1986]) has
found a dependence of apparent stick-slip behavior in melt fracture to
be dependent on the material of construction of the die.

A1
�
A2

V1
2

�
2

V1
2 − V2

2

�
2

D2
�
D1

1
��
6 tan (α/2)

8V2
�
D2

Fittings and Valves For turbulent flow, the frictional loss for
fittings and valves can be expressed by the equivalent length or veloc-
ity head methods. As fitting size is varied, K values are relatively more
constant than Le /D values, but since fittings generally do not achieve
geometric similarity between sizes, K values tend to decrease with
increasing fitting size. Table 6-4 gives K values for many types of fit-
tings and valves.

Manufacturers of valves, especially control valves, express valve
capacity in terms of a flow coefficient Cv, which gives the flow rate
through the valve in gal/min of water at 60°F under a pressure drop of
1 lbf/in2. It is related to K by

Cv = (6-96)

where C1 is a dimensional constant equal to 29.9 and d is the diameter
of the valve connections in inches.

For laminar flow, data for the frictional loss of valves and fittings
are meager. (Beck and Miller, J. Am. Soc. Nav. Eng., 56, 62–83 [1944];
Beck, ibid., 56, 235–271, 366–388, 389–395 [1944]; De Craene, Heat.
Piping Air Cond., 27[10], 90–95 [1955]; Karr and Schutz, J. Am. Soc.
Nav. Eng., 52, 239–256 [1940]; and Kittredge and Rowley, Trans.
ASME, 79, 1759–1766 [1957]). The data of Kittredge and Rowley
indicate that K is constant for Reynolds numbers above 500 to 2,000,
but increases rapidly as Re decreases below 500. Typical values for K
for laminar flow Reynolds numbers are shown in Table 6-5.

Methods to calculate losses for tee and wye junctions for dividing
and combining flow are given by Miller (Internal Flow Systems, 2d
ed., Chap. 13, BHRA, Cranfield, 1990), including effects of Reynolds
number, angle between legs, area ratio, and radius. Junctions with
more than three legs are also discussed. The sources of data for the
loss coefficient charts are Blaisdell and Manson (U.S. Dept. Agric.
Res. Serv. Tech. Bull. 1283 [August 1963]) for combining flow and
Gardel (Bull. Tech. Suisses Romande, 85[9], 123–130 [1957]; 85[10],
143–148 [1957]) together with additional unpublished data for divid-
ing flow.

Miller (Internal Flow Systems, 2d ed., Chap. 13, BHRA, Cranfield,
1990) gives the most complete information on losses in bends and
curved pipes. For turbulent flow in circular cross-section bends of
constant area, as shown in Fig. 6-14a, a more accurate estimate of the
loss coefficient K than that given in Table 6-4 is

K = K*CReCoCf (6-97)

where K*, given in Fig. 6-14b, is the loss coefficient for a smooth-
walled bend at a Reynolds number of 106. The Reynolds number cor-
rection factor CRe is given in Fig. 6-14c. For 0.7 < r/D < 1 or for K* <
0.4, use the CRe value for r/D = 1. Otherwise, if r/D < 1, obtain CRe from

CRe = (6-98)

The correction Co (Fig. 6-14d) accounts for the extra losses due to
developing flow in the outlet tangent of the pipe, of length Lo. The
total loss for the bend plus outlet pipe includes the bend loss K plus
the straight pipe frictional loss in the outlet pipe 4 fLo /D. Note that 
Co = 1 for Lo /D greater than the termination of the curves on Fig. 
6-14d, which indicate the distance at which fully developed flow in the
outlet pipe is reached. Finally, the roughness correction is

Cf = (6-99)

where frough is the friction factor for a pipe of diameter D with the
roughness of the bend, at the bend inlet Reynolds number. Similarly,
fsmooth is the friction factor for smooth pipe. For Re > 106 and r/D ≥ 1,
use the value of Cf for Re = 106.

Example 6: Losses with Fittings and Valves It is desired to calcu-
late the liquid level in the vessel shown in Fig. 6-15 required to produce a dis-
charge velocity of 2 m/s. The fluid is water at 20°C with ρ = 1,000 kg/m3 and µ =
0.001 Pa ⋅ s, and the butterfly valve is at θ = 10°. The pipe is 2-in Schedule 40,
with an inner diameter of 0.0525 m. The pipe roughness is 0.046 mm. Assuming
the flow is turbulent and taking the velocity profile factor α = 1, the engineering
Bernoulli equation Eq. (6-16), written between surfaces 1 and 2, where the

frough
�
fsmooth

K*
���
K* + 0.2(1 − CRe, r/D = 1)

C1d 2

�
	K
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pressures are both atmospheric and the fluid velocities are 0 and V = 2 m/s,
respectively, and there is no shaft work, simplifies to

gZ = + lv

Contributing to lv are losses for the entrance to the pipe, the three sections of
straight pipe, the butterfly valve, and the 90° bend. Note that no exit loss is used
because the discharged jet is outside the control volume. Instead, the V 2/2 term
accounts for the kinetic energy of the discharging stream. The Reynolds number
in the pipe is

Re = = = 1.05 × 105

From Fig. 6-9 or Eq. (6-38), at �/D = 0.046 × 10−3/0.0525 = 0.00088, the friction
factor is about 0.0054. The straight pipe losses are then

lv(sp) = � �
= � �
= 1.23 

The losses from Table 6-4 in terms of velocity heads K are K = 0.5 for the sudden
contraction and K = 0.52 for the butterfly valve. For the 90° standard radius (r/D
= 1), the table gives K = 0.75. The method of Eq. (6-94), using Fig. 6-14, gives

K = K*CReCoCf

= 0.24 × 1.24 × 1.0 × � �
= 0.37

This value is more accurate than the value in Table 6-4. The value fsmooth = 0.0044
is obtainable either from Eq. (6-37) or Fig. 6-9.

The total losses are then

lv = (1.23 + 0.5 + 0.52 + 0.37) = 2.62 

and the liquid level Z is

Z = � + 2.62 � = 3.62 

= = 0.73 m

Curved Pipes and Coils For flow through curved pipe or coil, a
secondary circulation perpendicular to the main flow called the Dean
effect occurs. This circulation increases the friction relative to
straight pipe flow and stabilizes laminar flow, delaying the transition
Reynolds number to about

Recrit = 2,100 �1 + 12 ��� (6-100)

where Dc is the coil diameter. Equation (6-100) is valid for 10 < Dc /
D < 250. The Dean number is defined as

De = (6-101)

In laminar flow, the friction factor for curved pipe fc may be expressed
in terms of the straight pipe friction factor f = 16/Re as (Hart, Chem.
Eng. Sci., 43, 775–783 [1988])

Re
�
(Dc /D)1/2

D
�
Dc

3.62 × 22

�
2 × 9.81

V 2

�
2g

V 2

�
2

V 2

�
2

1
�
g

V 2

�
2

V 2

�
2

0.0054
�
0.0044

V 2

�
2

V 2

�
2

4 × 0.0054 × (1 + 1 + 1)
���

0.0525

V 2

�
2

4fL
�
D

0.0525 × 2 × 1000
��

0.001
DVρ
�

µ

V 2

�
2
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TABLE 6-5 Additional Frictional Loss for Laminar Flow
through Fittings and Valves

Additional frictional loss expressed as K

Type of fitting or valve Re = 1,000 500 100 50

90° ell, short radius 0.9 1.0 7.5 16
Gate valve 1.2 1.7 9.9 24
Globe valve, composition disk 11 12 20 30

Plug 12 14 19 27
Angle valve 8 8.5 11 19
Check valve, swing 4 4.5 17 55

SOURCE: From curves by Kittredge and Rowley, Trans. Am. Soc. Mech. Eng.,
79, 1759–1766 (1957).

TABLE 6-4 Additional Frictional Loss for Turbulent Flow
through Fittings and Valvesa

Additional friction loss,
equivalent no. of

Type of fitting or valve velocity heads, K

45° ell, standardb,c,d,e,f 0.35
45° ell, long radiusc 0.2
90° ell, standardb,c,e,f,g,h 0.75

Long radiusb,c,d,e 0.45
Square or miterh 1.3

180° bend, close returnb,c,e 1.5
Tee, standard, along run, branch blanked offe 0.4

Used as ell, entering rung,i 1.0
Used as ell, entering branchc,g,i 1.0
Branching flowi,j,k 1l

Couplingc,e 0.04
Unione 0.04
Gate valve,b,e,m open 0.17
e openn 0.9
a openn 4.5
d openn 24.0

Diaphragm valve,o open 2.3
e openn 2.6
a openn 4.3
d openn 21.0

Globe valve,e,m

Bevel seat, open 6.0
a openn 9.5

Composition seat, open 6.0
a openn 8.5

Plug disk, open 9.0
e openn 13.0
a openn 36.0
d openn 112.0

Angle valve,b,e open 2.0
Y or blowoff valve,b,m open 3.0
Plug cockp

θ = 5° 0.05
θ = 10° 0.29
θ = 20° 1.56
θ = 40° 17.3
θ = 60° 206.0

Butterfly valve p

θ = 5° 0.24
θ = 10° 0.52
θ = 20° 1.54
θ = 40° 10.8
θ = 60° 118.0

Check valve,b,e,m swing 2.0q

Disk 10.0q

Ball 70.0q

Foot valvee 15.0
Water meter,h disk 7.0r

Piston 15.0r

Rotary (star-shaped disk) 10.0r

Turbine-wheel 6.0r

aLapple, Chem. Eng., 56(5), 96–104 (1949), general survey reference.
b“Flow of Fluids through Valves, Fittings, and Pipe,” Tech. Pap. 410, Crane

Co., 1969.
cFreeman, Experiments upon the Flow of Water in Pipes and Pipe Fittings,

American Society of Mechanical Engineers, New York, 1941.
dGiesecke, J. Am. Soc. Heat. Vent. Eng., 32, 461 (1926).
ePipe Friction Manual, 3d ed., Hydraulic Institute, New York, 1961.
fIto, J. Basic Eng., 82, 131–143 (1960).
gGiesecke and Badgett, Heat. Piping Air Cond., 4(6), 443–447 (1932).
hSchoder and Dawson, Hydraulics, 2d ed., McGraw-Hill, New York, 1934, 

p. 213.
iHoopes, Isakoff, Clarke, and Drew, Chem. Eng. Prog., 44, 691–696 (1948).
jGilman, Heat. Piping Air Cond., 27(4), 141–147 (1955).
kMcNown, Proc. Am. Soc. Civ. Eng., 79, Separate 258, 1–22 (1953); discus-

sion, ibid., 80, Separate 396, 19–45 (1954). For the effect of branch spacing on
junction losses in dividing flow, see Hecker, Nystrom, and Qureshi, Proc. Am.
Soc. Civ. Eng., J. Hydraul. Div., 103(HY3), 265–279 (1977).

lThis is pressure drop (including friction loss) between run and branch, based
on velocity in the mainstream before branching. Actual value depends on the
flow split, ranging from 0.5 to 1.3 if mainstream enters run and from 0.7 to 1.5 if
mainstream enters branch.

mLansford, Loss of Head in Flow of Fluids through Various Types of 1a-in.
Valves, Univ. Eng. Exp. Sta. Bull. Ser. 340, 1943.



fc /f = 1 + 0.090 � � (6-102)

For turbulent flow, equations by Ito (J. Basic Eng, 81, 123 [1959]) and
Srinivasan, Nandapurkar, and Holland (Chem. Eng. [London] no. 218,
CE113-CE119 [May 1968]) may be used, with probable accuracy of
�15 percent. Their equations are similar to

fc = + (6-103)

The pressure drop for flow in spirals is discussed by Srinivasan, et al.
(loc. cit.) and Ali and Seshadri (Ind. Eng. Chem. Process Des. Dev.,

0.0073
�
	(D
c /
D
)


0.079
�
Re0.25

De1.5

�
70 + De

10, 328–332 [1971]). For friction loss in laminar flow through semi-
circular ducts, see Masliyah and Nandakumar (AIChE J., 25, 478–
487 [1979]); for curved channels of square cross section, see Cheng,
Lin, and Ou (J. Fluids Eng., 98, 41–48 [1976]).

For non-Newtonian (power law) fluids in coiled tubes,
Mashelkar and Devarajan (Trans. Inst. Chem. Eng. (London), 54,
108–114 [1976]) propose the correlation

fc = (9.07 − 9.44n + 4.37n2)(D/Dc)0.5(De′)−0.768 + 0.122n (6-104)
where De′ is a modified Dean number given by

De′ = � �
n

ReMR �� (6-105)

where ReMR is the Metzner-Reed Reynolds number, Eq. (6-65). This
correlation was tested for the range De′ = 70 to 400, D/Dc = 0.01 to
0.135, and n = 0.35 to 1. See also Oliver and Asghar (Trans. Inst.
Chem. Eng. [London], 53, 181–186 [1975]).

Screens The pressure drop for incompressible flow across a
screen of fractional free area α may be computed from

D
�
Dc

6n + 2
�

n
1
�
8
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FIG. 6-15 Tank discharge example.

FIG. 6-14 Loss coefficients for flow in bends and curved pipes: (a) flow geometry, (b) loss coefficient for a smooth-walled bend at Re = 106, (c) Re correction factor,
(d) outlet pipe correction factor (From D. S. Miller, Internal Flow Systems, 2d. ed., BHRA, Cranfield, U.K., 1990.)
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∆p = K (6-106)

where ρ = fluid density
V = superficial velocity based upon the gross area of the screen
K = velocity head loss

K = � � � � (6-107)

The discharge coefficient for the screen C with aperture Ds is given as
a function of screen Reynolds number Re = Ds(V/α)ρ/µ in Fig. 6-16
for plain square-mesh screens, α = 0.14 to 0.79. This curve fits
most of the data within �20 percent. In the laminar flow region, Re <
20, the discharge coefficient can be computed from

C = 0.1	R
e
 (6-108)

Coefficients greater than 1.0 in Fig. 6-16 probably indicate partial
pressure recovery downstream of the minimum aperture, due to
rounding of the wires.

Grootenhuis (Proc. Inst. Mech. Eng. [London], A168, 837–846
[1954]) presents data which indicate that for a series of screens, the
total pressure drop equals the number of screens times the pressure
drop for one screen, and is not affected by the spacing between
screens or their orientation with respect to one another, and presents
a correlation for frictional losses across plain square-mesh screens and
sintered gauzes. Armour and Cannon (AIChE J., 14, 415–420 [1968])
give a correlation based on a packed bed model for plain, twill, and
“dutch” weaves. For losses through monofilament fabrics see Peder-
sen (Filtr. Sep., 11, 586–589 [1975]). For screens inclined at an
angle θ, use the normal velocity component V ′

V ′ = V cos θ (6-109)

(Carothers and Baines, J. Fluids Eng., 97, 116–117 [1975]) in place of
V in Eq. (6-106). This applies for Re > 500, C = 1.26, α ≤ 0.97 and 0 <
θ < 45°, for square-mesh screens and diamond-mesh netting. Screens
inclined at an angle to the flow direction also experience a tangential
stress.

For non-Newtonian fluids in slow flow, friction loss across a
square-woven or full-twill-woven screen can be estimated by consid-
ering the screen as a set of parallel tubes, each of diameter equal to
the average minimal opening between adjacent wires, and length
twice the diameter, without entrance effects (Carley and Smith,
Polym. Eng. Sci., 18, 408–415 [1978]). For screen stacks, the losses of
individual screens should be summed.

1 − α2

�
α2

1
�
C2

ρV 2

�
2

JET BEHAVIOR

A free jet, upon leaving an outlet, will entrain the surrounding fluid,
expand, and decelerate. To a first approximation, total momentum is
conserved as jet momentum is transferred to the entrained fluid. For
practical purposes, a jet is considered free when its cross-sectional
area is less than one-fifth of the total cross-sectional flow area of the
region through which the jet is flowing (Elrod, Heat. Piping Air
Cond., 26(3), 149–155 [1954]), and the surrounding fluid is the same
as the jet fluid. A turbulent jet in this discussion is considered to be
a free jet with Reynolds number greater than 2,000. Additional dis-
cussion on the relation between Reynolds number and turbulence in
jets is given by Elrod (ibid.). Abramowicz (The Theory of Turbulent
Jets, MIT Press, Cambridge, 1963) provides a thorough discourse on
the theory of turbulent jets. Hussein, et al. (J. Fluid Mech., 258,
31–75 [1994]) give extensive velocity data for a free jet, as well as an
extensive discussion of free jet experimentation and comparison of
data with momentum conservation equations.

A turbulent free jet is normally considered to consist of four flow
regions (Tuve, Heat. Piping Air Cond., 25(1), 181–191 [1953]; Davies,
Turbulence Phenomena, Academic, New York, 1972) as shown in Fig.
6-17:

1. Region of flow establishment—a short region whose length is
about 6.4 nozzle diameters. The fluid in the conical core of the same
length has a velocity about the same as the initial discharge velocity.
The termination of this potential core occurs when the growing mixing
or boundary layer between the jet and the surroundings reaches the
centerline of the jet.

2. A transition region that extends to about 8 nozzle diameters.
3. Region of established flow—the principal region of the jet. In

this region, the velocity profile transverse to the jet is self-preserving
when normalized by the centerline velocity.
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FIG. 6-16 Screen discharge coefficients, plain square-mesh screens. (Courtesy of E. I. du Pont de Nemours
& Co.)

FIG. 6-17 Configuration of a turbulent free jet.



4. A terminal region where the residual centerline velocity
reduces rapidly within a short distance. For air jets, the residual veloc-
ity will reduce to less than 0.3 m/s, (1.0 ft/s) usually considered still air.

Several references quote a length of 100 nozzle diameters for the
length of the established flow region. However, this length is depen-
dent on initial velocity and Reynolds number.

Table 6-6 gives characteristics of rounded-inlet circular jets and
rounded-inlet infinitely wide slot jets (aspect ratio > 15). The
information in the table is for a homogeneous, incompressible air sys-
tem under isothermal conditions. The table uses the following nomen-
clature:

B0 = slot height
D0 = circular nozzle opening

q = total jet flow at distance x
q0 = initial jet flow rate
r = radius from circular jet centerline
y = transverse distance from slot jet centerline

Vc = centerline velocity
Vr = circular jet velocity at r
Vy = velocity at y

Witze (Am. Inst. Aeronaut. Astronaut. J., 12, 417–418 [1974]) gives
equations for the centerline velocity decay of different types of sub-
sonic and supersonic circular free jets. Entrainment of surrounding
fluid in the region of flow establishment is lower than in the region of
established flow (see Hill, J. Fluid Mech., 51, 773–779 [1972]). Data
of Donald and Singer (Trans. Inst. Chem. Eng. [London], 37, 255–267

[1959]) indicate that jet angle and the coefficients given in Table 6-6
depend upon the fluids; for a water system, the jet angle for a circular
jet is 14° and the entrainment ratio is about 70 percent of that for an
air system. Most likely these variations are due to Reynolds number
effects which are not taken into account in Table 6-6. Rushton
(AIChE J., 26, 1038–1041 [1980]) examined available published
results for circular jets and found that the centerline velocity decay is
given by

= 1.41Re0.135 � � (6-110)

where Re = D0V0ρ/µ is the initial jet Reynolds number. This result cor-
responds to a jet angle tan α/2 proportional to Re−0.135.

Characteristics of rectangular jets of various aspect ratios are
given by Elrod (Heat., Piping, Air Cond., 26[3], 149–155 [1954]). For
slot jets discharging into a moving fluid, see Weinstein, Osterle,
and Forstall (J. Appl. Mech., 23, 437–443 [1967]). Coaxial jets are
discussed by Forstall and Shapiro (J. Appl. Mech., 17, 399–408
[1950]), and double concentric jets by Chigier and Beer (J. Basic
Eng., 86, 797–804 [1964]). Axisymmetric confined jets are
described by Barchilon and Curtet (J. Basic Eng., 777–787 [1964]).
Restrained turbulent jets of liquid discharging into air are described
by Davies (Turbulence Phenomena, Academic, New York, 1972).
These jets are inherently unstable and break up into drops after some
distance. Lienhard and Day (J. Basic Eng. Trans. AIME, p. 515 [Sep-
tember 1970]) discuss the breakup of superheated liquid jets which
flash upon discharge.

Density gradients affect the spread of a single-phase jet. A jet of
lower density than the surroundings spreads more rapidly than a jet of
the same density as the surroundings, and, conversely, a denser jet
spreads less rapidly. Additional details are given by Keagy and Weller
(Proc. Heat Transfer Fluid Mech. Inst., ASME, pp. 89–98, June 22–24
[1949]) and Cleeves and Boelter (Chem. Eng. Prog., 43, 123–134
[1947]).

Few experimental data exist on laminar jets (see Gutfinger and
Shinnar, AIChE J., 10, 631–639 [1964]). Theoretical analysis for
velocity distributions and entrainment ratios are available in Schlicht-
ing and in Morton (Phys. Fluids, 10, 2120–2127 [1967]).

Theoretical analyses of jet flows for power law non-Newtonian
fluids are given by Vlachopoulos and Stournaras (AIChE J., 21,
385–388 [1975]), Mitwally (J. Fluids Eng., 100, 363 [1978]), and Srid-
har and Rankin (J. Fluids Eng., 100, 500 [1978]).

FLOW THROUGH ORIFICES

Section 10 of this Handbook describes the use of orifice meters for
flow measurement. In addition, orifices are commonly found within
pipelines as flow-restricting devices, in perforated pipe distributing
and return manifolds, and in perforated plates. Incompressible flow
through an orifice in a pipeline as shown in Fig. 6-18, is commonly
described by the following equation for flow rate Q in terms of pres-
sure drop across the orifice ∆p, the orifice area Ao, the pipe cross-
sectional area A, and the density ρ.

Q = Co Ao �� (6-111)
2∆p/ρ

��
[1 − (Ao /A)2]

D0
�
x

Vc
�
V0
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TABLE 6-6 Turbulent Free-Jet Characteristics
Where Both Jet Fluid and Entrained Fluid Are Air

Rounded-inlet circular jet

Longitudinal distribution of velocity along jet center line*†

= K for 7 < < 100

K = 5 for V0 = 2.5 to 5.0 m/s
K = 6.2 for V0 = 10 to 50 m/s

Radial distribution of longitudinal velocity†

log � � = 40 � �
2

for 7 < < 100

Jet angle°†

α  20° for < 100

Entrainment of surrounding fluid‡

= 0.32 for 7 < �
D
x

0
� < 100

Rounded-inlet, infinitely wide slot jet

Longitudinal distribution of velocity along jet centerline‡

= 2.28 � �
0.5

for 5 < < 2,000 and V0 = 12 to 55 m/s

Transverse distribution of longitudinal velocity‡

log � � = 18.4 � �
2

for 5 < < 2,000

Jet angle‡

α is slightly larger than that for a circular jet

Entrainment of surrounding fluid‡

= 0.62 � �
0.5

for 5 < < 2,000

*Nottage, Slaby, and Gojsza, Heat, Piping Air Cond., 24(1), 165–176 (1952).
†Tuve, Heat, Piping Air Cond., 25(1), 181–191 (1953).
‡Albertson, Dai, Jensen, and Rouse, Trans. Am. Soc. Civ. Eng., 115, 639–664

(1950), and Discussion, ibid., 115, 665–697 (1950).

x
�
B0

x
�
B0

q
�
q0

x
�
B0

y
�
x

Vc
�
Vx

x
�
B0

B0
�
x

Vc
�
V0

x
�
D0

q
�
q0

x
�
D0

x
�
D0

r
�
x

Vc
�
Vr

x
�
D0

D0
�
x

Vc
�
V0

Pipe area A 

Vena contracta

Orifice
area Ao

FIG. 6-18 Flow through an orifice.



The velocity of approach term [1 − (Ao /A)2] accounts for the kinetic
energy approaching the orifice, while the orifice coefficient or dis-
charge coefficient Co accounts for the vena contracta effect which
causes the fluid to accelerate to velocity greater than Q/Ao. The down-
stream pressure measurement corresponding to ∆p in Eq. (6-111) is
taken at the vena contracta. Downstream of the vena contracta, the
velocity decelerates and some pressure recovery may be expected.
Any pressure recovery is completed about 4 to 8 pipe diameters down-
stream of the orifice. As an approximation, the pressure recovery,
expressed as a fraction of the orifice pressure drop, is approximately
equal to the area ratio Ao /A. When the orifice discharges into a large
chamber, instead of being installed within a pipe, there is negligible
pressure recovery. Equation (6-111) may also be used for flow across
a perforated plate with open area Ao and total area A.

The orifice coefficient has a value of about 0.62 at large Reynolds
numbers (Re = DoVoρ/µ > 20,000), although values ranging from 0.60
to 0.70 are frequently used. At lower Reynolds numbers, the orifice
coefficient varies with both Re and with the area or diameter ratio.
See Sec. 10 for more details.

When liquids discharge vertically downward from orifices into gas,
gravity increases the discharge coefficient. Figure 6-19 shows this
effect, giving the discharge coefficient in terms of a modified Froude
number, Fr = ρg∆p/Do.

The orifice coefficient deviates from its value for sharp-edged ori-
fices when the orifice wall thickness exceeds about 75 percent of the
orifice diameter. Some pressure recovery occurs within the orifice and
the orifice coefficient increases. Pressure drop across segmental ori-
fices is roughly 10 percent greater than that for concentric circular
orifices of the same open area.

COMPRESSIBLE FLOW

Flows are typically considered compressible when the density varies
by more than 5 to 10 percent. In practice compressible flows are nor-
mally limited to gases, supercritical fluids, and multiphase flows con-
taining gases. Liquid flows are normally considered incompressible,
except for certain calculations involved in hydraulic transient analy-
sis (see following) where compressibility effects are important even
for nearly incompressible liquids with extremely small density varia-
tions. Textbooks on compressible gas flow include Shapiro (Dynamics
and Thermodynamics of Compressible Fluid Flow, vol. I and II,
Ronald Press, New York [1953]) and Zucrow and Hofmann (Gas
Dynamics, vol. I and II, Wiley, New York [1976]).

In chemical process applications, one-dimensional gas flows
through nozzles or orifices and in pipelines are the most important
applications of compressible flow. Multidimensional external flows are
of interest mainly in aerodynamic applications.

Mach Number and Speed of Sound The Mach number M =
V/c is the ratio of fluid velocity, V, to the speed of sound or acoustic
velocity, c. The speed of sound is the propagation velocity of infini-
tesimal pressure disturbances and is derived from a momentum bal-
ance. The compression caused by the pressure wave is adiabatic and
frictionless, and therefore isentropic.

c = �����
s

� (6-112)

The derivative of pressure p with respect to density ρ is taken at con-
stant entropy s. For an ideal gas,

� �
s
=

where k = ratio of specific heats, Cp /Cv

R = universal gas constant (8,314 J/kgmol K)
T = absolute temperature

Mw = molecular weight

Hence for an ideal gas,

c = �� (6-113)

Most often, the Mach number is calculated using the speed of sound
evaluated at the local pressure and temperature. When M = 1, the
flow is critical or sonic and the velocity equals the local speed of
sound. For subsonic flow M < 1 while supersonic flows have M > 1.
Compressibility effects are important when the Mach number
exceeds 0.1 to 0.2. A common error is to assume that compressibility
effects are always negligible when the Mach number is small. The
proper assessment of whether compressibility is important should be
based on relative density changes, not on Mach number.

Isothermal Gas Flow in Pipes and Channels Isothermal com-
pressible flow is often encountered in long transport lines, where
there is sufficient heat transfer to maintain constant temperature.
Velocities and Mach numbers are usually small, yet compressibility
effects are important when the total pressure drop is a large fraction
of the absolute pressure. For an ideal gas with ρ = pMw /RT, integra-
tion of the differential form of the momentum or mechanical energy
balance equations, assuming a constant friction factor f over a length
L of a channel of constant cross section and hydraulic diameter DH,
yields,

p1
2 − p2

2 = G2 � + 2 ln � �� (6-114)

where the mass velocity G = w/A = ρV is the mass flow rate per unit
cross-sectional area of the channel. The logarithmic term on the right-
hand side accounts for the pressure change caused by acceleration of
gas as its density decreases, while the first term is equivalent to the
calculation of frictional losses using the density evaluated at the aver-
age pressure (p1 + p2)/2.

Solution of Eq. (6-114) for G and differentiation with respect to p2

reveals a maximum mass flux Gmax = p2	M
w /
(R
T
)
 and a corresponding
exit velocity V2,max = 	R
T
/M
w
 and exit Mach number M2 = 1/	k
. This
apparent choking condition, though often cited, is not physically
meaningful for isothermal flow because at such high velocities, and
high rates of expansion, isothermal conditions are not maintained.

Adiabatic Frictionless Nozzle Flow In process plant pipelines,
compressible flows are usually more nearly adiabatic than isothermal.
Solutions for adiabatic flows through frictionless nozzles and in chan-
nels with constant cross section and constant friction factor are readily
available.

Figure 6-20 illustrates adiabatic discharge of a perfect gas through
a frictionless nozzle from a large chamber where velocity is effectively
zero. A perfect gas obeys the ideal gas law ρ = pMw /RT and also has
constant specific heat. The subscript 0 refers to the stagnation con-
ditions in the chamber. More generally, stagnation conditions refer to
the conditions which would obtained by isentropically decelerating a
gas flow to zero velocity. The minimum area section, or throat, of the
nozzle is at the nozzle exit. The flow through the nozzle is isentropic
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4 fL
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because it is frictionless (reversible) and adiabatic. In terms of the exit
Mach number M1 and the upstream stagnation conditions, the flow
conditions at the nozzle exit are given by

= �1 + M 1
2�

k / (k − 1)

(6-115)

= 1 + M 1
2 (6-116)

= �1 + M 1
2�

1 / (k − 1)

(6-117)

The mass velocity G = w/A, where w is the mass flow rate and A is the
nozzle exit area, at the nozzle exit is given by

G = p0 �� (6-118)

These equations are consistent with the isentropic relations for a per-
fect gas p/p0 = (ρ/ρ0)k, T/T0 = (p/p0)(k − 1)/k. Equation (6-116) is valid for
adiabatic flows with or without friction; it does not require isentropic
flow. However, Eqs. (6-115) and (6-117) do require isentropic flow.

The exit Mach number M1 may not exceed unity. At M1 = 1, the
flow is said to be choked, sonic, or critical. When the flow is choked,
the pressure at the exit is greater than the pressure of the surround-
ings into which the gas flow discharges. The pressure drops from the
exit pressure to the pressure of the surroundings in a series of shocks
which are highly nonisentropic. Sonic flow conditions are denoted by
*; sonic exit conditions are found by substituting M1 = M1* = 1 into Eqs.
(6-115) to (6-118).

= � �
k/(k − 1)

(6-119)

= (6-120)

= � �
1/(k − 1)

(6-121)

G* = p0 �����
(�k +� 1)�/(k� −�1)������ (6-122)

Note that under choked conditions, the exit velocity is V = V* = c* =
	kR
T
*/
M
w
, not 	kR
T
0/
M
w
. Sonic velocity must be evaluated at the
exit temperature. For air, with k = 1.4, the critical pressure ratio p*/p0

is 0.5285 and the critical temperature ratio T*/T0 = 0.8333. Thus, for
air discharging from 300 K, the temperature drops by 50 K (90 R).
This large temperature decrease results from the conversion of inter-
nal energy into kinetic energy and is reversible. As the discharged jet
decelerates in the external stagant gas, it recovers its initial enthalpy.

When it is desired to determine the discharge rate through a nozzle

kMw
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RT0

2
�
k + 1

2
�
k + 1
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�
ρ0

2
�
k + 1

T*
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2
�
k + 1
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p0
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���

�1 + �
k −

2
1

� M1
2�

(k + 1) / 2(k − 1)
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�
RT0

k − 1
�

2
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k − 1
�

2
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k − 1
�

2
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from upstream pressure p0 to external pressure p2, Equations (6-115)
through (6-122) are best used as follows. The critical pressure is first
determined from Eq. (6-119). If p2 > p*, then the flow is subsonic
(subcritical, unchoked). Then p1 = p2 and M1 may be obtained from
Eq. (6-115). Substitution of M1 into Eq. (6-118) then gives the desired
mass velocity G. Eqs. (6-116) and (6-117) may be used to find the exit
temperature and density. On the other hand, if p2 ≤ p*, then the flow
is choked and M1 = 1. Then p1 = p*, and the mass velocity is G*
obtained from Eq. (6-122). The exit temperature and density may be
obtained from Eqs. (6-120) and (6-121).

When the flow is choked, G = G* is independent of external down-
stream pressure. Reducing the downstream pressure will not increase
the flow. The mass flow rate under choking conditions is directly pro-
portional to the upstream pressure.

Example 7: Flow through Frictionless Nozzle Air at p0 and tem-
perature T0 = 293 K discharges through a frictionless nozzle to atmospheric
pressure. Compute the discharge mass flux G, the pressure, temperature, Mach
number, and velocity at the exit. Consider two cases: (1) p0 = 7 × 105 Pa absolute,
and (2) p0 = 1.5 × 105 Pa absolute.

1. p0 = 7.0 × 105 Pa. For air with k = 1.4, the critical pressure ratio from Eq.
(6-119) is p*/p0 = 0.5285 and p* = 0.5285 × 7.0 × 105 = 3.70 × 105 Pa. Since this
is greater than the external atmospheric pressure p2 = 1.01 × 105 Pa, the flow is
choked and the exit pressure is p1 = 3.70 × 105 Pa. The exit Mach number is 1.0,
and the mass flux is equal to G* given by Eq. (6-118).

G* = 7.0 × 105 × �����
(�1.4� +�1)/�(1.�4 −� 1)� ����� = 1,650 kg/m2 ⋅ s

The exit temperature, since the flow is choked, is

T* = � �T0 = � � × 293 = 244 K

The exit velocity is V = Mc = c* = 	kR
T
*/
M
w
 = 313 m/s.
2. p0 = 1.5 × 105 Pa. In this case p* = 0.79 × 105 Pa, which is less than p2.

Hence, p1 = p2 = 1.01 × 105 Pa. The flow is unchoked (subsonic). Equation 
(6-115) is solved for the Mach number.

= �1 + M1
2�

1.4/(1.4 − 1)

M1 = 0.773

Substitution into Eq. (6-118) gives G.

G = 1.5 × 105 × ��
× = 337 kg/m2 ⋅ s

The exit temperature is found from Eq. (6-116) to be 261.6 K or −11.5°C.
The exit velocity is

V = Mc = 0.773 × ��� = 250 m/s

Adiabatic Flow with Friction in a Duct of Constant Cross
Section Integration of the differential forms of the continuity,
momentum, and total energy equations for a perfect gas, assuming a
constant friction factor, leads to a tedious set of simultaneous algebraic
equations. These may be found in Shapiro (Dynamics and Thermody-
namics of Compressible Fluid Flow, vol. I, Ronald Press, New York,
1953) or Zucrow and Hofmann (Gas Dynamics, vol. I, Wiley, New
York, 1976). Lapple’s (Trans. AIChE., 39, 395–432 [1943]) widely
cited graphical presentation of the solution of these equations con-
tained a subtle error, which was corrected by Levenspiel (AIChE J.,
23, 402–403 [1977]). Levenspiel’s graphical solutions are presented in
Fig. 6-21. These charts refer to the physical situation illustrated in Fig.
6-22, where a perfect gas discharges from stagnation conditions in a
large chamber through an isentropic nozzle followed by a duct of
length L. The resistance parameter is N = 4fL/DH, where f = Fanning
friction factor and DH = hydraulic diameter.

The exit Mach number M2 may not exceed unity. M2 = 1 corre-
sponds to choked flow; sonic conditions may exist only at the pipe exit.
The mass velocity G* in the charts is the choked mass flux for an
isentropic nozzle given by Eq. (6-118). For a pipe of finite length,
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the mass flux is less than G* under choking conditions. The curves in
Fig. 6-21 become vertical at the choking point, where flow becomes
independent of downstream pressure.

The equations for nozzle flow, Eqs. (6-114) through (6-118), remain
valid for the nozzle section even in the presence of the discharge pipe.
Equations (6-116) and (6-120), for the temperature variation, may
also be used for the pipe, with M2, p2 replacing M1, p1 since they are
valid for adiabatic flow, with or without friction.

The graphs in Fig. 6-21 are based on accurate calculations, but are
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FIG. 6-21 Design charts for adiabatic flow of gases; (a) useful for finding the allowable pipe length for given
flow rate; (b) useful for finding the discharge rate in a given piping system. (From Levenspiel, Am. Inst. Chem.
Eng. J., 23, 402 [1977].)
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FIG. 6-22 Adiabatic compressible flow in a pipe with a well-rounded
entrance.



difficult to interpolate precisely. While they are quite useful for rough
estimates, precise calculations are best done using the equations for
one-dimensional adiabatic flow with friction, which are suitable for
computer programming. Let subscripts 1 and 2 denote two points
along a pipe of diameter D, point 2 being downstream of point 1.
From a given point in the pipe, where the Mach number is M, the
additional length of pipe required to accelerate the flow to sonic
velocity (M = 1) is denoted Lmax and may be computed from

= + ln � � (6-123)

With L = length of pipe between points 1 and 2, the change in Mach
number may be computed from

= � �
1
− � �

2
(6-124)

Eqs. (6-116) and (6-113), which are valid for adiabatic flow with
friction, may be used to determine the temperature and speed of
sound at points 1 and 2. Since the mass flux G = ρv = ρcM is constant,
and ρ = PMw /RT, the pressure at point 2 (or 1) can be found from G
and the pressure at point 1 (or 2).

The additional frictional losses due to pipeline fittings such as
elbows may be added to the velocity head loss N = 4 fL/DH using the
same velocity head loss values as for incompressible flow. This works
well for fittings which do not significantly reduce the channel cross-
sectional area, but may cause large errors when the flow area is greatly
reduced, as, for example, by restricting orifices. Compressible flow
across restricting orifices is discussed in Sec. 10 of this Handbook.
Similarly, elbows near the exit of a pipeline may choke the flow even
though the Mach number is less than unity due to the nonuniform
velocity profile in the elbow. For an abrupt contraction rather than
rounded nozzle inlet, an additional 0.5 velocity head should be added
to N. This is a reasonable approximation for G, but note that it allo-
cates the additional losses to the pipeline, even though they are actu-
ally incurred in the entrance. It is an error to include one velocity head
exit loss in N. The kinetic energy at the exit is already accounted for in
the integration of the balance equations.

Example 8: Compressible Flow with Friction Losses Calculate
the discharge rate of air to the atmosphere from a reservoir at 106 Pa gauge and
20°C through 10 m of straight 2-in Schedule 40 steel pipe (inside diameter =
0.0525 m), and 3 standard radius, flanged 90° elbows. Assume 0.5 velocity heads
lost for the elbows.

For commercial steel pipe, with a roughness of 0.046 mm, the friction factor
for fully rough flow is about 0.0047, from Eq. (6-38) or Fig. 6-9. It remains to be
verified that the Reynolds number is sufficiently large to assume fully rough
flow. Assuming an abrupt entrance with 0.5 velocity heads lost,

N = 4 × 0.0047 × + 0.5 + 3 × 0.5 = 5.6

The pressure ratio p3 /p0 is

= 0.092

From Fig. 6-21b at N = 5.6, p3 /p0 = 0.092 and k = 1.4 for air, the flow is seen to
be choked. At the choke point with N = 5.6 the critical pressure ratio p2 /p0 is
about 0.25 and G/G* is about 0.48. Equation (6-122) gives

G* = 1.101 × 106 × �����
(�1.4� +�1)/�(1.�4 −� 1)� ����� = 2,600 kg/m2 ⋅ s

Multiplying by G/G* = 0.48 yields G = 1,250 kg/m2 ⋅ s. The discharge rate is w =
GA = 1,250 × π ×0.05252/4 = 2.7 kg/s.

Before accepting this solution, the Reynolds number should be checked. At
the pipe exit, the temperature is given by Eq. (6-120) since the flow is choked.
Thus, T2 = T* = 244.6 K. The viscosity of air at this temperature is about 1.6 ×
10−5 Pa ⋅ s. Then

Re = = = =4.1 × 106

At the beginning of the pipe, the temperature is greater, giving greater viscosity
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and a Reynolds number of 3.6 × 106. Over the entire pipe length the Reynolds
number is very large and the fully rough flow friction factor choice was indeed
valid.

Once the mass flux G has been determined, Fig. 6-21a or 6-21b can
be used to determine the pressure at any point along the pipe, simply
by reducing 4fL/DH and computing p2 from the figures, given G,
instead of the reverse. Charts for calculation between two points in a
pipe with known flow and known pressure at either upstream or
downstream locations have been presented by Loeb (Chem. Eng.,
76[5], 179–184 [1969]) and for known downstream conditions by
Powley (Can. J. Chem. Eng., 36, 241–245 [1958]).

Convergent/Divergent Nozzles (De Laval Nozzles) During
frictionless adiabatic one-dimensional flow with changing cross-
sectional area A the following relations are obeyed:

= (1 − M 2) = = −(1 − M 2) (6-125)

Equation (6-125) implies that in converging channels, subsonic flows
are accelerated and the pressure and density decrease. In diverging
channels, subsonic flows are decelerated as the pressure and density
increase. In subsonic flow, the converging channels act as nozzles and
diverging channels as diffusers. In supersonic flows, the opposite is
true. Diverging channels act as nozzles accelerating the flow, while
converging channels act as diffusers decelerating the flow.

Figure 6-23 shows a converging/diverging nozzle. When p2 /p0 is
less than the critical pressure ratio (p*/p0), the flow will be subsonic in
the converging portion of the nozzle, sonic at the throat, and super-
sonic in the diverging portion. At the throat, where the flow is critical
and the velocity is sonic, the area is denoted A*. The cross-sectional
area and pressure vary with Mach number along the converging/
diverging flow path according to the following equations for isentropic
flow of a perfect gas:

= � �1 + M 2��
(k + 1) / 2(k − 1)

(6-126)

= �1 + M 2�
k / (k − 1)

(6-127)

The temperature obeys the adiabatic flow equation for a perfect gas,

= 1 + M 2 (6-128)

Equation (6-128) does not require frictionless (isentropic) flow. The
sonic mass flux through the throat is given by Eq. (6-122). With A set
equal to the nozzle exit area, the exit Mach number, pressure, and
temperature may be calculated. Only if the exit pressure equals the
ambient discharge pressure is the ultimate expansion velocity reached
in the nozzle. Expansion will be incomplete if the exit pressure
exceeds the ambient discharge pressure; shocks will occur outside the
nozzle. If the calculated exit pressure is less than the ambient dis-
charge pressure, the nozzle is overexpanded and compression shocks
within the expanding portion will result.

The shape of the converging section is a smooth trumpet shape sim-
ilar to the simple converging nozzle. However, special shapes of the
diverging section are required to produce the maximum supersonic
exit velocity. Shocks result if the divergence is too rapid and excessive
boundary layer friction occurs if the divergence is too shallow. See
Liepmann and Roshko (Elements of Gas Dynamics, Wiley, New York,
1957, p. 284). If the nozzle is to be used as a thrust device, the diverg-
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FIG. 6-23 Converging/diverging nozzle.



ing section can be conical with a total included angle of 30° (Sutton,
Rocket Propulsion Elements, 2d ed., Wiley, New York, 1956). To
obtain large exit Mach numbers, slot-shaped rather than axisymmetric
nozzles are used.

MULTIPHASE FLOW

Multiphase flows, even when restricted to simple pipeline geometry,
are in general quite complex, and several features may be identified
which make them more complicated than single-phase flow. Flow pat-
tern description is not merely an identification of laminar or turbulent
flow. The relative quantities of the phases and the topology of the
interfaces must be described. Because of phase density differences,
vertical flow patterns are different from horizontal flow patterns, and
horizontal flows are not generally axisymmetric. Even when phase
equilibrium is achieved by good mixing in two-phase flow, the chang-
ing equilibrium state as pressure drops with distance, or as heat is
added or lost, may require that interphase mass transfer, and changes
in the relative amounts of the phases, be considered.

Wallis (One-dimensional Two-phase Flow, McGraw-Hill, New
York, 1969) and Govier and Aziz present mass, momentum, mechani-
cal energy, and total energy balance equations for two-phase flows.
These equations are based on one-dimensional behavior for each
phase. Such equations, for the most part, are used as a framework in
which to interpret experimental data. Reliable prediction of multi-
phase flow behavior generally requires use of data or correlations.
Two-fluid modeling, in which the full three-dimensional micro-
scopic (partial differential) equations of motion are written for each
phase, treating each as a continuum, occupying a volume fraction
which is a continuous function of position, is a rapidly developing
technique made possible by improved computational methods. For
some relatively simple examples not requiring numerical computa-
tion, see Pearson (Chem. Engr. Sci., 49, 727–732 [1994]). Constitutive
equations for two-fluid models are not yet sufficiently robust for accu-
rate general-purpose two-phase flow computation, but may be quite
good for particular classes of flows.

Liquids and Gases For cocurrent flow of liquids and gases in
vertical (upflow), horizontal, and inclined pipes, a very large literature
of experimental and theoretical work has been published, with less
work on countercurrent and cocurrent vertical downflow. Much of the
effort has been devoted to predicting flow patterns, pressure drop,
and volume fractions of the phases, with emphasis on fully developed
flow. In practice, many two-phase flows in process plants are not fully
developed.

The most reliable methods for fully developed gas/liquid flows use
mechanistic models to predict flow pattern, and use different pres-
sure drop and void fraction estimation procedures for each flow pat-
tern. Such methods are too lengthy to include here, and are well
suited to incorporation into computer programs; commercial codes
for gas/liquid pipeline flows are available. Some key references for
mechanistic methods for flow pattern transitions and flow regime–
specific pressure drop and void fraction methods include Taitel and
Dukler (AIChE J., 22, 47–55 [1976]), Barnea, et al. (Int. J. Multiphase
Flow, 6, 217–225 [1980]), Barnea (Int. J. Multiphase Flow, 12,
733–744 [1986]), Taitel, Barnea, and Dukler (AIChE J., 26, 345–354
[1980]), Wallis (One-dimensional Two-phase Flow, McGraw-Hill,
New York, 1969), and Dukler and Hubbard (Ind. Eng. Chem. Fun-
dam., 14, 337–347 [1975]). For preliminary or approximate calcula-
tions, flow pattern maps and flow regime–independent empirical
correlations, are simpler and faster to use. Such methods for horizon-
tal and vertical flows are provided in the following.

In horizontal pipe, flow patterns for fully developed flow have
been reported in numerous studies. Transitions between flow patterns
are gradual, and subjective owing to the visual interpretation of indi-
vidual investigators. In some cases, statistical analysis of pressure fluc-
tuations has been used to distinguish flow patterns. Figure 6-24
(Alves, Chem. Eng. Progr., 50, 449–456 [1954]) shows seven flow pat-
terns for horizontal gas/liquid flow. Bubble flow is prevalent at high
ratios of liquid to gas flow rates. The gas is dispersed as bubbles which
move at velocity similar to the liquid and tend to concentrate near the
top of the pipe at lower liquid velocities. Plug flow describes a pat-
tern in which alternate plugs of gas and liquid move along the upper

part of the pipe. In stratified flow, the liquid flows along the bottom
of the pipe and the gas flows over a smooth liquid/gas interface. Simi-
lar to stratified flow, wavy flow occurs at greater gas velocities and has
waves moving in the flow direction. When wave crests are sufficiently
high to bridge the pipe, they form frothy slugs which move at much
greater than the average liquid velocity. Slug flow can cause severe
and sometimes dangerous vibrations in equipment because of impact
of the high-velocity slugs against bends or other fittings. Slugs may
also flood gas/liquid separation equipment.

In annular flow, liquid flows as a thin film along the pipe wall and
gas flows in the core. Some liquid is entrained as droplets in the gas
core. At very high gas velocities, nearly all the liquid is entrained as
small droplets. This pattern is called spray, dispersed, or mist flow.

Approximate prediction of flow pattern may be quickly done using
flow pattern maps, an example of which is shown in Fig. 6-25
(Baker, Oil Gas J., 53[12], 185–190, 192–195 [1954]). The Baker chart
remains widely used; however, for critical calculations the mechanistic
model methods referenced previously are generally preferred for
their greater accuracy, especially for large pipe diameters and fluids
with physical properties different from air/water at atmospheric pres-
sure. In the chart,

λ = (ρ′Gρ′L)1/2 (6-129)

ψ = � �
1/3

(6-130)
µ′L

�
(ρ′L)2

1
�
σ′
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FIG. 6-24 Gas/liquid flow patterns in horizontal pipes. (From Alves, Chem.
Eng. Progr., 50, 449–456 [1954].)

FIG. 6-25 Flow-pattern regions in cocurrent liquid/gas flow through horizon-
tal pipes. To convert lbm/(ft2 ⋅ s) to kg/(m2 ⋅ s), multiply by 4.8824. (From Baker,
Oil Gas J., 53[12], 185–190, 192, 195 [1954].)



GL and GG are the liquid and gas mass velocities, µ′L is the ratio of liq-
uid viscosity to water viscosity, ρ′G is the ratio of gas density to air den-
sity, ρ′L is the ratio of liquid density to water density, and σ′ is the ratio
of liquid surface tension to water surface tension. The reference prop-
erties are at 20°C (68°F) and atmospheric pressure, water density
1,000 kg/m3 (62.4 lbm/ft3), air density 1.20 kg/m3 (0.075 lbm/ft3), water
viscosity 0.001 Pa ⋅ s, (1.0 cp) and surface tension 0.073 N/m (0.0050
lbf/ft). The empirical parameters λ and ψ provide a crude accounting
for physical properties. The Baker chart is dimensionally inconsistent
since the dimensional quantity GG /λ is plotted against a dimensionless
one, GLλψ/GG, and so must be used with GG in lbm/(ft2 ⋅ s) units on
the ordinate. To convert to kg/(m2 ⋅ s), multiply by 4.8824.

Rapid approximate predictions of pressure drop for fully devel-
oped, incompressible horizontal gas/liquid flow may be made using
the method of Lockhart and Martinelli (Chem. Eng. Prog., 45, 39–48
[1949]). First, the pressure drops that would be expected for each of
the two phases as if flowing alone in single-phase flow are calculated.
The Lockhart-Martinelli parameter X is defined in terms of the ratio
of these pressure drops:

X = � �
1/2

(6-131)

The two-phase pressure drop may be then be estimated from either of
the single-phase pressure drops, using

� �
TP

= YL � �
L

(6-132)

or � �
TP

= YG � �
G

(6-133)

where YL and YG are read from Fig. 6-26 as functions of X. The curve
labels refer to the flow regime (laminar or turbulent) found for each of
the phases flowing alone. The common turbulent-turbulent case is
approximated well by

YL = 1 + + (6-134)

Lockhart and Martinelli (ibid.) correlated pressure drop data from
pipes 25 mm (1 in) in diameter or less within about �50 percent. In
general, the predictions are high for stratified, wavy, and slug flows
and low for annular flow. The correlation can be applied to pipe diam-
eters up to about 0.1 m (4 in) with about the same accuracy.

1
�
X 2

20
�
X

∆p
�
L

∆p
�
L
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�
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�
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The volume fraction, sometimes called holdup, of each phase in
two-phase flow is generally not equal to its volumetric flow rate frac-
tion, because of velocity differences, or slip, between the phases. For
each phase, denoted by subscript i, the relations among superficial
velocity Vi, in situ velocity vi, volume fraction Ri, total volumetric flow
rate Qi, and pipe area A are

Qi = ViA = viRiA (6-135)

vi = (6-136)

The slip velocity between gas and liquid is vs = vG − vL. For two-phase
gas/liquid flow, RL + RG = 1. A very common mistake in practice is to
assume that in situ phase volume fractions are equal to input volume
fractions.

For fully developed incompressible horizontal gas/liquid flow, a
quick estimate for RL may be obtained from Fig. 6-27, as a function of
the Lockhart-Martinelli parameter X defined by Eq. (6-131). Indica-
tions are that liquid volume fractions may be overpredicted for liquids
more viscous than water (Alves, Chem. Eng. Prog., 50, 449–456
[1954]), and underpredicted for pipes larger than 25 mm diameter
(Baker, Oil Gas J., 53[12], 185–190, 192–195 [1954]).

A method for predicting pressure drop and volume fraction for
non-Newtonian fluids in annular flow has been proposed by Eisen-
berg and Weinberger (AIChE J., 25, 240–245 [1979]). Das, Biswas,
and Matra (Can. J. Chem. Eng., 70, 431–437 [1993]) studied holdup
in both horizontal and vertical gas/liquid flow with non-Newtonian
liquids. Farooqi and Richardson (Trans Inst. Chem. Engrs., 60,
292–305, 323–333 [1982]) developed correlations for holdup and
pressure drop for gas/non-Newtonian liquid horizontal flow. They
used a modified Lockhart-Martinelli parameter for non-Newtonian
liquid holdup. They found that two-phase pressure drop may actually
be less than the single-phase liquid pressure drop with shear thinning
liquids in laminar flow.

Pressure drop data for a 1-in feed tee with the liquid entering the
run and gas entering the branch are given by Alves (Chem. Eng.
Progr., 50, 449–456 [1954]). Pressure drop and division of two-phase
annular flow in a tee are discussed by Fouda and Rhodes (Trans.
Inst. Chem. Eng. [London], 52, 354–360 [1974]). Flow through tees
can result in unexpected flow splitting. Further reading on gas/liquid
flow through tees may be found in Mudde, Groen, and van den Akker
(Int. J. Multiphase Flow, 19, 563–573 [1993]); Issa and Oliveira (Com-
puters and Fluids, 23, 347–372 [1993]) and Azzopardi and Smith (Int.
J. Multiphase Flow, 18, 861–875 [1992]).

Results by Chenoweth and Martin (Pet. Refiner, 34[10], 151–155
[1955]) indicate that single-phase data for fittings and valves can be
used in their correlation for two-phase pressure drop. Smith, Mur-
dock, and Applebaum (J. Eng. Power, 99, 343–347 [1977]) evaluated
existing correlations for two-phase flow of steam/water and other
gas/liquid mixtures through sharp-edged orifices meeting ASTM
standards for flow measurement. The correlation of Murdock (J.
Basic Eng., 84, 419–433 [1962]) may be used for these orifices. See
also Collins and Gacesa (J. Basic Eng., 93, 11–21 [1971]), for mea-
surements with steam and water beyond the limits of this correlation.

Vi
�
Ri
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FIG. 6-26 Parameters for pressure drop in liquid/gas flow through horizontal
pipes. (Based on Lockhart and Martinelli, Chem. Engr. Prog., 45, 39 [1949].)

FIG. 6-27 Liquid volume fraction in liquid/gas flow through horizontal pipes.
(From Lockhart and Martinelli, Eng. Prog., 45, 39 [1949].)



For pressure drop and holdup in inclined pipe with upward or
downward flow, see Beggs and Brill (J. Pet. Technol., 25, 607–617
[1973]); the mechanistic model methods referenced above may also
be applied to inclined pipes. Up to 10° from horizontal, upward pipe
inclination has little effect on holdup (Gregory, Can. J. Chem. Eng.,
53, 384–388 [1975]).

For fully developed incompressible cocurrent upflow of gases
and liquids in vertical pipes, a variety of flow pattern terminologies
and descriptions have appeared in the literature; some of these have
been summarized and compared by Govier, Radford, and Dunn (Can.
J. Chem. Eng., 35, 58–70 [1957]). One reasonable classification of pat-
terns is illustrated in Fig. 6-28.

In bubble flow, gas is dispersed as bubbles throughout the liquid,
but with some tendency to concentrate toward the center of the pipe.
In slug flow, the gas forms large Taylor bubbles of diameter nearly
equal to the pipe diameter. A thin film of liquid surrounds the Taylor
bubble. Between the Taylor bubbles are liquid slugs containing some
bubbles. Froth or churn flow is characterized by strong intermit-
tency and intense mixing, with neither phase easily described as con-
tinuous or dispersed. There remains disagreement in the literature as
to whether churn flow is a real fully developed flow pattern or is an
indication of large entry length for developing slug flow (Zao and
Dukler, Int. J. Multiphase Flow, 19, 377–383 [1993]; Hewitt and
Jayanti, Int. J. Multiphase Flow, 19, 527–529 [1993]).

Ripple flow has an upward-moving wavy layer of liquid on the pipe
wall; it may be thought of as a transition region to annular, annular
mist, or film flow, in which gas flows in the core of the pipe while an
annulus of liquid flows up the pipe wall. Some of the liquid is
entrained as droplets in the gas core. Mist flow occurs when all the
liquid is carried as fine drops in the gas phase; this pattern occurs at
high gas velocities, typically 20 to 30 m/s (66 to 98 ft/s).

The correlation by Govier, et al. (Can. J. Chem. Eng., 35, 58–70
[1957]), Fig. 6-29, may be used for quick estimate of flow pattern.

Slip, or relative velocity between phases, occurs for vertical flow as
well as for horizontal. No completely satisfactory, flow regime–inde-
pendent correlation for volume fraction or holdup exists for vertical
flow. Two frequently used flow regime–independent methods are
those by Hughmark and Pressburg (AIChE J., 7, 677 [1961]) and
Hughmark (Chem. Eng. Prog., 58[4], 62 [April 1962]). Pressure
drop in upflow may be calculated by the procedure described in
Hughmark (Ind. Eng. Chem. Fundam., 2, 315–321 [1963]). The
mechanistic, flow regime–based methods are advisable for critical
applications.

For upflow in helically coiled tubes, the flow pattern, pressure
drop, and holdup can be predicted by the correlations of Banerjee,

Rhodes, and Scott (Can. J. Chem. Eng., 47, 445–453 [1969]) and Aka-
gawa, Sakaguchi, and Ueda (Bull JSME, 14, 564–571 [1971]). Corre-
lations for flow patterns in downflow in vertical pipe are given by
Oshinowo and Charles (Can. J. Chem. Eng., 52, 25–35 [1974]) and
Barnea, Shoham, and Taitel (Chem. Eng. Sci., 37, 741–744 [1982]).
Use of drift flux theory for void fraction modeling in downflow is
presented by Clark and Flemmer (Chem. Eng. Sci., 39, 170–173
[1984]). Downward inclined two-phase flow data and modeling are
given by Barnea, Shoham, and Taitel (Chem. Eng. Sci., 37, 735–740
[1982]). Data for downflow in helically coiled tubes are presented
by Casper (Chem. Ing. Tech., 42, 349–354 [1970]).

The entrance to a drain is flush with a horizontal surface, while the
entrance to an overflow pipe is above the horizontal surface. When
such pipes do not run full, considerable amounts of gas can be drawn
down by the liquid. The amount of gas entrained is a function of pipe
diameter, pipe length, and liquid flow rate, as well as the drainpipe
outlet boundary condition. Extensive data on air entrainment and liq-
uid head above the entrance as a function of water flow rate for pipe
diameters from 43.9 to 148.3 mm (1.7 to 5.8 in) and lengths from
about 1.22 to 5.18 m (4.0 to 17.0 ft) are reported by Kalinske (Univ.
Iowa Stud. Eng., Bull. 26, pp. 26–40 [1939–1940]). For heads greater
than the critical, the pipes will run full with no entrainment. The crit-
ical head h for flow of water in drains and overflow pipes is given in
Fig. 6-30. Kalinske’s results show little effect of the height of protru-
sion of overflow pipes when the protrusion height is greater than
about one pipe diameter. For conservative design, McDuffie (AIChE
J., 23, 37–40 [1977]) recommends the following relation for minimum
liquid height to prevent entrainment.

Fr ≤ 1.6� �
2

(6-137)
h
�
D
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FIG. 6-28 Flow patterns in cocurrent upward vertical gas/liquid flow. (From
Taitel, Barnea, and Dukler, AIChE J., 26, 345–354 [1980]. Reproduced by per-
mission of the American Institute of Chemical Engineers © 1980 AIChE. All
rights reserved.)

FIG. 6-30 Critical head for drain and overflow pipes. (From Kalinske, Univ.
Iowa Stud. Eng., Bull. 26 [1939–1940].)

FIG. 6-29 Flow-pattern regions in cocurrent liquid/gas flow in upflow through
vertical pipes. To convert ft/s to m/s, multiply by 0.3048. (From Govier, Radford,
and Dunn, Can. J. Chem. Eng., 35, 58–70 [1957].)



where the Froude number is defined by

Fr � (6-138)

where g = acceleration due to gravity
VL = liquid velocity in the drain pipe
ρL = liquid density
ρG = gas density
D = pipe inside diameter
h = liquid height

For additional information, see Simpson (Chem. Eng., 75(6), 192–214
[1968]). A critical Froude number of 0.31 to ensure vented flow is
widely cited. Recent results (Thorpe, 3d Int. Conf. Multi-phase Flow,
The Hague, Netherlands, 18–20 May 1987, paper K2, and 4th Int.
Conf. Multi-phase Flow, Nice, France, 19–21 June 1989, paper K4)
show hysteresis, with different critical Froude numbers for flooding
and unflooding of drain pipes, and the influence of end effects. Wallis,
Crowley, and Hagi (Trans. ASME J. Fluids Eng., 405–413 [June
1977]) examine the conditions for horizontal discharge pipes to run
full.

Flashing flow and condensing flow are two examples of multi-
phase flow with phase change. Flashing flow occurs when pressure
drops below the bubble point pressure of a flowing liquid. A fre-
quently used one-dimensional model for flashing flow through nozzles
and pipes is the homogeneous equilibrium model which assumes
that both phases move at the same in situ velocity, and maintain vapor/
liquid equilibrium. It may be shown that a critical flow condition,
analogous to sonic or critical flow during compressible gas flow, is
given by the following expression for the mass flux G in terms of the
derivative of pressure p with respect to mixture density ρm at constant
entropy:

Gcrit = ρm �����
s

� (6-139)

The corresponding acoustic velocity 	(∂
p
/∂
ρ
m)
s
 is normally much less
than the acoustic velocity for gas flow. The mixture density is given in
terms of the individual phase densities and the quality (mass flow
fraction vapor) x by

= + (6-140)

Choked and unchoked flow situations arise in pipes and nozzles in the
same fashion for homogeneous equilibrium flashing flow as for gas
flow. For nozzle flow from stagnation pressure p0 to exit pressure p1,
the mass flux is given by

G2 = −2ρ2
m1 �

p1

p0

(6-141)

The integration is carried out over an isentropic flash path: flashes at
constant entropy must be carried out to evaluate ρm as a function of p.
Experience shows that isenthalpic flashes provide good approxima-
tions unless the liquid mass fraction is very small. Choking occurs
when G obtained by Eq. (6-141) goes through a maximum at a value
of p1 greater than the external discharge pressure. Equation (6-139)
will also be satisfied at that point. In such a case the pressure at the
nozzle exit equals the choking pressure and flashing shocks occur out-
side the nozzle exit.

For homogeneous flow in a pipe of diameter D, the differential
form of the Bernoulli equation (6-15) rearranges to

+ g dz + d + 2f = 0 (6-142)

where x′ is distance along the pipe. Integration over a length L of pipe
assuming constant friction factor f yields

G2 = (6-143)

Frictional pipe flow is not isentropic. Strictly speaking, the flashes
must be carried out at constant h + V 2/2 + gz, where h is the enthalpy
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per unit mass of the two-phase flashing mixture. The flash calculations
are fully coupled with the integration of the Bernoulli equation; the
velocity V must be known at every pressure p to evaluate ρm. Compu-
tational routines, employing the thermodynamic and material balance
features of flowsheet simulators, are the most practical way to carry
out such flashing flow calculations, particularly when multicompent
systems are involved. Significant simplification arises when the mass
fraction liquid is large, for then the effect of the V 2/2 term on the flash
splits may be neglected. If elevation effects are also negligible, the
flash computations are decoupled from the Bernoulli equation inte-
gration. For many horizontal flashing flow calculations, this is satisfac-
tory and the flash computatations may be carried out first, to find ρm

as a function of p from p1 to p2, which may then be substituted into
Eq. (6-143).

With flashes carried out along the appropriate thermodynamic
paths, the formalism of Eqs. (6-139) through (6-143) applies to all
homogeneous equilibrium compressible flows, including, for exam-
ple, flashing flow, ideal gas flow, and nonideal gas flow. Equation 
(6-118), for example, is a special case of Eq. (6-141) where the quality
x = 1 and the vapor phase is a perfect gas.

Various nonequilibrium and slip flow models have been pro-
posed as improvements on the homogeneous equilibrium flow model.
See, for example, Henry and Fauske (Trans. ASME J. Heat Transfer,
179–187 [May 1971]). Nonequilibrium and slip effects both increase
computed mass flux for fixed pressure drop, compared to homoge-
neous equilibrium flow. For flow paths greater than about 100 mm,
homogeneous equilibrium behavior appears to be the best assumption
(Fischer, et al., Emergency Relief System Design Using DIERS Tech-
nology, AIChE, New York [1992]). For shorter flow paths, the best
estimate may sometimes be given by linearly interpolating (as a func-
tion of length) between frozen flow (constant quality, no flashing) at
0 length and equilibrium flow at 100 mm.

In a series of papers by Leung and coworkers (AIChE J., 32,
1743–1746 [1986]; 33, 524–527 [1987]; 34, 688–691 [1988]; J. Loss
Prevention Proc. Ind., 2[2], 78–86 [April 1989]; 3(1), 27–32 [January
1990]; Trans. ASME J. Heat Transfer, 112, 524–528, 528–530 [1990];
113, 269–272 [1991]) approximate techniques have been developed
for homogeneous equilibrium calculations based on pseudo–equation
of state methods for flashing mixtures.

Relatively less work has been done on condensing flows. Slip
effects are more important for condensing than for flashing flows.
Soliman, Schuster, and Berenson (J. Heat Transfer, 90, 267–276
[1968]) give a model for condensing vapor in horizontal pipe. They
assume the condensate flows as an annular ring. The Lockhart-
Martinelli correlation is used for the frictional pressure drop. To this
pressure drop is added an acceleration term based on homogeneous
flow, equivalent to the G2d(1/ρm) term in Eq. (6-142). Pressure drop is
computed by integration of the incremental pressure changes along
the length of pipe.

For condensing vapor in vertical downflow, in which the liquid
flows as a thin annular film, the frictional contribution to the pressure
drop may be estimated based on the gas flow alone, using the friction
factor plotted in Fig. 6-31, where ReG is the Reynolds number for the
gas flowing alone (Bergelin, et al., Proc. Heat Transfer Fluid Mech.
Inst., ASME, June 22–24, 1949, pp. 19–28).

− = (6-144)

To this should be added the GG
2 d(1/ρG)/dx term to account for velocity

change effects.
Gases and Solids The flow of gases and solids in horizontal

pipe is usually classified as either dilute phase or dense phase flow.
Unfortunately, there is no clear dilineation between the two types of
flow, and the dense phase description may take on more than one
meaning, creating some confusion (Knowlton, et al., Chem. Eng.
Progr., 90(4), 44–54 [April 1994]). For dilute phase flow, achieved at
low solids-to-gas weight ratios (loadings), and high gas velocities, the
solids may be fully suspended and fairly uniformly dispersed over the
pipe cross section (homogeneous flow), particularly for low-density or
small particle size solids. At lower gas velocities, the solids may
bounce along the bottom of the pipe. With higher loadings and lower
gas velocities, the particles may settle to the bottom of the pipe, form-
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2
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D
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ing dunes, with the particles moving from dune to dune. In dense
phase conveying, solids tend to concentrate in the lower portion of the
pipe at high gas velocity. As gas velocity decreases, the solids may first
form dense moving strands, followed by slugs. Discrete plugs of solids
may be created intentionally by timed injection of solids, or the plugs
may form spontaneously. Eventually the pipe may become blocked.
For more information on flow patterns, see Coulson and Richardson
(Chemical Engineering, vol. 2, 2d ed., Pergamon, New York, 1968, 
p. 583); Korn (Chem. Eng., 57[3], 108–111 [1950]); Patterson ( J. Eng.
Power, 81, 43–54 [1959]); Wen and Simons (AIChE J., 5, 263–267
[1959]); and Knowlton, et al. (Chem. Eng. Progr., 90[4], 44–54 [April
1994]).

For the minimum velocity required to prevent formation of dunes
or settled beds in horizontal flow, some data are given by Zenz (Ind.
Eng. Chem. Fundam., 3, 65–75 [1964]), who presented a correlation
for the minimum velocity required to keep particles from depositing
on the bottom of the pipe. This rather tedious estimation procedure
may also be found in Govier and Aziz, who provide additional refer-
ences and discussion on transition velocities. In practice, the actual
conveying velocities used in systems with loadings less than 10 are
generally over 15 m/s, (49 ft/s) while for high loadings (>20) they are
generally less than 7.5 m/s (24.6 ft/s) and are roughly twice the actual
solids velocity (Wen and Simons, AIChE J., 5, 263–267 [1959]).

Total pressure drop for horizontal gas/solid flow includes accel-
eration effects at the entrance to the pipe and frictional effects beyond
the entrance region. A great number of correlations for pressure gra-
dient are available, none of which is applicable to all flow regimes.
Govier and Aziz review many of these and provide recommendations
on when to use them.

For upflow of gases and solids in vertical pipes, the minimum
conveying velocity for low loadings may be estimated as twice the
terminal settling velocity of the largest particles. Equations for termi-
nal settling velocity are found in the “Particle Dynamics” subsection,
following. Choking occurs as the velocity is dropped below the mini-
mum conveying velocity and the solids are no longer transported, col-
lapsing into solid plugs (Knowlton, et al., Chem. Eng. Progr., 90[4],
44–54 [April 1994]). See Smith (Chem. Eng. Sci., 33, 745–749 [1978])
for an equation to predict the onset of choking.

Total pressure drop for vertical upflow of gases and solids includes
acceleration and frictional affects also found in horizontal flow, plus
potential energy or hydrostatic effects. Govier and Aziz review many
of the pressure drop calculation methods and provide recommenda-
tions for their use. See also Yang (AIChE J., 24, 548–552 [1978]).

Drag reduction has been reported for low loadings of small diam-
eter particles (<60 µm diameter), ascribed to damping of turbulence
near the wall (Rossettia and Pfeffer, AIChE J., 18, 31–39 [1972]).

For dense phase transport in vertical pipes of small diameter, see

Sandy, Daubert, and Jones (Chem. Eng. Prog., 66, Symp. Ser., 105,
133–142 [1970]).

The flow of bulk solids through restrictions and bins is dis-
cussed in symposium articles (J. Eng. Ind., 91[2] [1969]) and by
Stepanoff (Gravity Flow of Bulk Solids and Transportation of Solids
in Suspension, Wiley, New York, 1969). Some problems encountered
in discharge from bins include (Knowlton, et al., Chem. Eng. Progr.,
90[4], 44–54 [April 1994]) flow stoppage due to ratholing or arch-
ing, segregation of fine and coarse particles, flooding upon collapse
of ratholes, and poor residence time distribution when funnel
flow occurs.

Solid/liquid or slurry flow may be divided roughly into two cate-
gories based on settling behavior (see Etchells in Shamlou, Processing
of Solid-Liquid Suspensions, Chap. 12, Butterworth-Heinemann,
Oxford, 1993). Nonsettling slurries are made up of very fine, highly
concentrated, or neutrally buoyant particles. These slurries are nor-
mally treated as pseudohomogeneous fluids. They may be quite vis-
cous and are frequently non-Newtonian. Slurries of particles that tend
to settle out rapidly are called settling slurries or fast-settling slur-
ries. While in some cases positively buoyant solids are encountered,
the present discussion will focus on solids which are more dense than
the liquid.

For horizontal flow of fast-settling slurries, the following rough
description may be made (Govier and Aziz). Ultrafine particles, 10 µm
or smaller, are generally fully syspended and the particle distributions
are not influenced by gravity. Fine particles 10 to 100 µm (3.3 × 10−5

to 33 × 10−5 ft) are usually fully suspended, but gravity causes concen-
tration gradients. Medium-size particles, 100 to 1000 µm, may be fully
suspended at high velocity, but often form a moving deposit on the
bottom of the pipe. Coarse particles, 1,000 to 10,000 µm, (0.0033 to
.033 ft), are seldom fully suspended and are usually conveyed as a
moving deposit. Ultracoarse particles larger than 10,000 µm (0.033 ft)
are not suspended at normal velocities unless they are unusually light.

Figure 6-32, taken from Govier and Aziz, schematically indicates
four flow pattern regions superimposed on a plot of pressure gradient
vs. mixture velocity VM = VL + VS = (QL + QS)/A where VL and VS are
the superficial liquid and solid velocities, QL and QS are liquid and
solid volumetric flow rates, and A is the pipe cross-sectional area. VM4

is the transition velocity above which a bed exists in the bottom of the
pipe, part of which is stationary and part of which moves by saltation,
with the upper particles tumbling and bouncing over one another,
often with formation of dunes. With a broad particle-size distribution,
the finer particles may be fully suspended. Near VM4, the pressure gra-
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FIG. 6-31 Friction factors for condensing liquid/gas flow downward in vertical
pipe. In this correlation Γ/ρL is in ft2/h. To convert ft2/h to m2/s, multiply by
0.00155. (From Bergelin, et al., Proc. Heat Transfer Fluid Mech. Inst., ASME,
1949, p. 19.)

FIG. 6-32 Flow pattern regimes and pressure gradients in horizontal slurry
flow. (From Govier and Aziz, The Flow of Complex Mixtures in Pipes, Van Nos-
trand Reinhold, New York, 1972.)



dient rapidly increases as VM decreases. Above VM3, the entire bed
moves. Above VM2, the solids are fully suspended; that is, there is no
deposit, moving or stationary, on the bottom of the pipe. However, the
concentration distribution of solids is asymmetric. This flow pattern is
the most frequently used for fast-settling slurry transport. Typical mix-
ture velocities are in the range of 1 to 3 m/s (3.3 to 9.8 ft/s). The min-
imum in the pressure gradient is found to be near VM2. Above VM1, the
particles are symmetrically distributed, and the pressure gradient
curve is nearly parallel to that for the liquid by itself.

The most important transition velocity, often regarded as the mini-
mum transport or conveying velocity for settling slurries, is VM2. The
Durand equation (Durand, Minnesota Int. Hydraulics Conf., Proc.,
89, Int. Assoc. for Hydraulic Research [1953]; Durand and Condolios,
Proc. Colloq. On the Hyd. Transport of Solids in Pipes, Nat. Coal
Board [UK], Paper IV, 39–35 [1952]) gives the minimum transport
velocity as

VM2 = FL[2gD(s − 1)]0.5 (6-145)

where g = acceleration of gravity
D = pipe diameter
s = ρS /ρL = ratio of solid to liquid density

FL = a factor influenced by particle size and concentration

Probably FL is a function of particle Reynolds number and concentra-
tion, but Fig. 6-33 gives Durand’s empirical correlation for FL as a
function of particle diameter and the input, feed volume fraction
solids, CS = QS /(QS + QL). The form of Eq. (6-145) may be derived
from turbulence theory, as shown by Davies (Chem. Eng. Sci., 42,
1667–1670 [1987]).

No single correlation for pressure drop in horizontal solid/liquid
flow has been found satisfactory for all particle sizes, densities, con-
centrations, and pipe sizes. However, with reference to Fig. 6-32, the
following simplifications may be considered. The minimum pressure
gradient occurs near VM2 and for conservative purposes it is generally
desirable to exceed VM2. When VM2 is exceeded, a rough guide for
pressure drop is 25 percent greater than that calculated assuming that
the slurry behaves as a psuedohomogeneous fluid with the density 
of the mixture and the viscosity of the liquid. Above the transition
velocity to symmetric suspension, VM1, the pressure drop closely
approaches the pseuodohomogeneous pressure drop. The following

correlation by Spells (Trans. Inst. Chem. Eng. [London], 33, 79–84
[1955]) may be used for VM1.

V 2
M1 = 0.075 � �

0.775

gDS(s − 1) (6-146)

where D = pipe diameter
DS = particle diameter (such that 85 percent by weight of

particles are smaller than DS

ρM = the slurry mixture density
µ = liquid viscosity
s = ρS /ρL = ratio of solid to liquid density

Between VM2 and VM1 the concentration of solids gradually becomes
more uniform in the vertical direction. This transition has been mod-
eled by several authors as a concentration gradient where turbulent
diffusion balances gravitational settling. See, for example, Karabelas
(AIChE J., 23, 426–434 [1977]).

Published correlations for pressure drop are frequently very com-
plicated and tedious to use, may not offer significant accuracy advan-
tages over the simple guide given here, and many of them are
applicable only for velocities above VM2. One which does include the
effect of sliding beds is due to Gaessler (Doctoral Dissertation, Tech-
nische Hochshule, Karlsruhe, Germany [1967]; reproduced by Govier
and Aziz, pp. 668–669). Turian and Yuan (AIChE J., 23, 232–243
[1977]; see also Turian and Oroskar, AIChE J., 24, 1144 [1978]) seg-
regated a large body of data into four flow regime groups and devel-
oped empirical correlations for predicting pressure drop in each flow
regime.

Pressure drop data for the flow of paper stock in pipes are given in
the data section of Standards of the Hydraulic Institute (Hydraulic
Institute, 1965). The flow behavior of fiber suspensions is discussed 
by Bobkowicz and Gauvin (Chem. Eng. Sci., 22, 229–241 [1967]),
Bugliarello and Daily (TAPPI, 44, 881–893 [1961]), and Daily and
Bugliarello (TAPPI, 44, 497–512 [1961]).

In vertical flow of fast-settling slurries, the in situ concentration of
solids with density greater than the liquid will exceed the feed con-
centration C = QS /(QS + QL) for upflow and will be smaller than C for
downflow. This results from slip between the phases. The slip veloc-
ity, the difference between the in situ average velocities of the two
phases, is roughly equal to the terminal settling velocity of the solids in
the liquid. Specification of the slip velocity for a pipe of a given diam-
eter, along with the phase flow rates, allows calculation of in situ vol-
ume fractions, average velocities, and holdup ratios by simple material
balances. Slip velocity may be affected by particle concentration and
by turbulence conditions in the liquid. Drift-flux theory, a frame-
work incorporating certain functional forms for empirical expressions
for slip velocity, is described by Wallis (One-Dimensional Two-Phase
Flow, McGraw-Hill, New York, 1969). Minimum transport velocity
for upflow for design purposes is usually taken as twice the particle
settling velocity. Pressure drop in vertical pipe flow includes the
effects of kinetic and potential energy (elevation) changes and fric-
tion. Rose and Duckworth (The Engineer, 227[5,903], 392 [1969];
227[5,904], 430 [1969]; 227[5,905], 478 [1969]; see also Govier and
Aziz, pp. 487–493) have developed a calculation procedure including
all these effects, which may be applied not only to vertical solid/liquid
flow, but also to gas/solid flow and to horizontal flow.

For fast-settling slurries, ensuring conveyance is usually the key
design issue while pressure drop is somewhat less important. For
nonsettling slurries conveyance is not an issue, because the particles
do not separate from the liquid. Here, viscous and rheological behav-
ior, which control pressure drop, take on critical importance.

Fine particles, often at high concentration, form nonsettling slur-
ries for which useful design equations can be developed by treating
them as homogeneous fluids. These fluids are usually very viscous and
often non-Newtonian. Shear-thinning and Bingham plastic behavior
are common; dilatancy is sometimes observed. Rheology of such flu-
ids must in general be empirically determined, although theoretical
results are available for some very limited circumstances. Further dis-
cussion of both fast-settling and nonsettling slurries may be found in
Shook (in Shamlou, Processing of Solid-Liquid Suspensions, Chap. 11,
Butterworth-Heinemann, Oxford, 1993).

DVM1ρM
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µ
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FIG. 6-33 Durand factor for minimum suspension velocity. (From Govier and
Aziz, The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold, New
York, 1972.)



FLUID DISTRIBUTION

Uniform fluid distribution is essential for efficient operation of chem-
ical-processing equipment such as contactors, reactors, mixers, burn-
ers, heat exchangers, extrusion dies, and textile-spinning chimneys. To
obtain optimum distribution, proper consideration must be given to
flow behavior in the distributor, flow conditions upstream and down-
stream of the distributor, and the distribution requirements of the
equipment. Even though the principles of fluid distribution have been
well developed for more than three decades, they are frequently over-
looked by equipment designers, and a significant fraction of process
equipment needlessly suffers from maldistribution. In this subsection,
guides for the design of various types of fluid distributors, taking into
account only the flow behavior within the distributor, are given.

Perforated-Pipe Distributors The simple perforated pipe or
sparger (Fig. 6-34) is a common type of distributor. As shown, the flow
distribution is uniform; this is the case in which pressure recovery due
to kinetic energy or momentum changes, frictional pressure drop
along the length of the pipe, and pressure drop across the outlet holes
have been properly considered. In typical turbulent flow applications,
inertial effects associated with velocity changes may dominate fric-
tional losses in determining the pressure distribution along the pipe,
unless the length between orifices is large. Application of the momen-
tum or mechanical energy equations in such a case shows that the
pressure inside the pipe increases with distance from the entrance of
the pipe. If the outlet holes are uniform in size and spacing, the dis-
charge flow will be biased toward the closed end. Disturbances
upstream of the distributor, such as pipe bends, may increase or
decrease the flow to the holes at the beginning of the distributor.
When frictional pressure drop dominates the inertial pressure recov-
ery, the distribution is biased toward the feed end of the distributor.

For turbulent flow, with roughly uniform distribution, assuming a
constant friction factor, the combined effect of friction and inertial
(momentum) pressure recovery is given by

∆p = � − 2K� (discharge manifolds) (6-147)

where ∆p = net pressure drop over the length of the distributor
L = pipe length
D = pipe diameter
f = Fanning friction factor

Vi = distributor inlet velocity

The factor K would be 1 in the case of full momentum recovery, or 0.5
in the case of negligible viscous losses in the portion of flow which
remains in the pipe after the flow divides at a takeoff point (Denn, pp.
126–127). Experimental data (Van der Hegge Zijnen, Appl. Sci. Res.,
A3, 144–162 [1951–1953]; and Bailey, J. Mech. Eng. Sci., 17, 338–347
[1975]), while scattered, show that K is probably close to 0.5 for dis-
charge manifolds. For inertially dominated flows, ∆p will be negative.
For return manifolds the recovery factor K is close to 1.0, and the
pressure drop between the first hole and the exit is given by

∆p = � + 2K� (return manifolds) (6-148)

where Ve is the pipe exit velocity.
One means to obtain a desired uniform distribution is to make the

average pressure drop across the holes ∆po large compared to the
pressure variation over the length of pipe ∆p. Then, the relative vari-
ation in pressure drop across the various holes will be small, and so
will be the variation in flow. When the area of an individual hole is

ρV 2
e

�
2

4 fL
�
3D

ρVi
2

�
2

4 fL
�
3D

small compared to the cross-sectional area of the pipe, hole pressure
drop may be expressed in terms of the discharge coefficient Co and
the velocity across the hole Vo as

∆po = (6-149)

Provided Co is the same for all the holes, the percent maldistribution,
defined as the percentage variation in flow between the first and last
holes, may be estimated reasonably well for small maldistribution by
(Senecal, Ind. Eng. Chem., 49, 993–997 [1957])

Percent maldistribution = 100 �1 − ��� (6-150)

This equation shows that for 5 percent maldistribution, the pressure
drop across the holes should be about 10 times the pressure drop over
the length of the pipe. For discharge manifolds with K = 0.5 in Eq. 
(6-147), and with 4 fL/3D << 1, the pressure drop across the holes
should be 10 times the inlet velocity head, ρVi

2/2 for 5 percent maldis-
tribution. This leads to a simple design equation.

Discharge manifolds, 4 fL/3D << 1, 5% maldistribution:

= = 	1
0
Co (6-151)

Here Ap = pipe cross-sectional area and Ao is the total hole area of the
distributor. Use of large hole velocity to pipe velocity ratios promotes
perpendicular discharge streams. In practice, there are many cases
where the 4 fL/3D term will be less than unity but not close to zero. 
In such cases, Eq. (6-151) will be conservative, while Eqs. (6-147), 
(6-149), and (6-150) will give more accurate design calculations. In
cases where 4 fL/(3D) > 2, friction effects are large enough to render
Eq. (6-151) nonconservative. When significant variations in f along
the length of the distributor occur, calculations should be made by
dividing the distributor into small enough sections that constant f may
be assumed over each section.

For return manifolds with K = 1.0 and 4 fL/(3D) << 1, 5 percent
maldistribution is achieved when hole pressure drop is 20 times the
pipe exit velocity head.

Return manifolds, 4 fL/3D << 1, 5% maldistribution:

= = 	2
0
Co (6-152)

When 4 fL/3D is not negligible, Eq. (6-152) is not conservative and
Eqs. (6-148), (6-149), and (6-150) should be used.

One common misconception is that good distribution is always pro-
vided by high pressure drop, so that increasing flow rate improves dis-
tribution by increasing pressure drop. Conversely, it is mistakenly
believed that turndown of flow through a perforated pipe designed
using Eqs. (6-151) and (6-152) will cause maldistribution. However,
when the distribution is nearly uniform, decreasing the flow rate
decreases ∆p and ∆po in the same proportion, and Eqs. (6-151) and 
(6-152) are still satisfied, preserving good distribution independent of
flow rate, as long as friction losses remain small compared to inertial
(velocity head change) effects. Conversely, increasing the flow rate
through a distributor with severe maldistribution will not generally
produce good distribution.

Often, the pressure drop required for design flow rate is unaccept-
ably large for a distributor pipe designed for uniform velocity through
uniformly sized and spaced orifices. Several measures may be taken in
such situations. These include the following:

1. Taper the diameter of the distributor pipe so that the pipe
velocity and velocity head remain constant along the pipe, thus sub-
stantially reducing pressure variation in the pipe.

2. Vary the hole size and/or the spacing between holes to com-
pensate for the pressure variation along the pipe. This method may be
sensitive to flow rate and a distributor optimized for one flow rate may
suffer increased maldistribution as flow rate deviates from design rate.

3. Feed or withdraw from both ends, reducing the pipe flow
velocity head and required hole pressure drop by a factor of 4.

Ap
�
Ao

Vo
�
Ve

Ap
�
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Vo
�
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∆po − |∆p|
��
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FIG. 6-34 Perforated-pipe distributor.



The orifice discharge coefficient Co is usually taken to be about
0.62. However, Co is dependent on the ratio of hole diameter to pipe
diameter, pipe wall thickness to hole diameter ratio, and pipe velocity
to hole velocity ratio. As long as all these are small, the coefficient 0.62
is generally adequate.

Example 9: Pipe Distributor A 3-in schedule 40 (inside diameter
7.793 cm) pipe is to be used as a distributor for a flow of 0.010 m3/s of water 
(ρ = 1,000 kg/m3, µ = 0.001 Pa ⋅ s). The pipe is 0.7 m long and is to have 10 holes
of uniform diameter and spacing along the length of the pipe. The distributor
pipe is submerged. Calculate the required hole size to limit maldistribution to 
5 percent, and estimate the pressure drop across the distributor.

The inlet velocity computed from Vi = Q/A = 4Q/(πD2) is 2.10 m/s, and the
inlet Reynolds number is

Re = = = 1.64 × 105

For commercial pipe with roughness � = 0.046 mm, the friction factor is about
0.0043. Approaching the last hole, the flow rate, velocity and Reynolds number
are about one-tenth their inlet values. At Re = 16,400 the friction factor f is
about 0.0070. Using an average value of f = 0.0057 over the length of the pipe,
4 fL/3D is 0.068 and may reasonably be neglected so that Eq. (6-151) may be
used. With Co = 0.62,

= = 	1
0
Co = 	1
0
 × 0.62 = 1.96

With pipe cross-sectional area Ap = 0.00477 m2, the total hole area is
0.00477/1.96 = 0.00243 m2. The area and diameter of each hole are then
0.00243/10 = 0.000243 m2 and 1.76 cm. With Vo /Vi = 1.96, the hole velocity is
1.96 × 2.10 = 4.12 m/s and the pressure drop across the holes is obtained from
Eq. (6-149).

∆po = = × =22,100 Pa

Since the hole pressure drop is 10 times the pressure variation in the pipe, the
total pressure drop from the inlet of the distributor may be taken as approxi-
mately 22,100 Pa.

Further detailed information on pipe distributors may be found in
Senecal (Ind. Eng. Chem., 49, 993–997 [1957]). Much of the infor-
mation on tapered manifold design has appeared in the pulp and
paper literature (Spengos and Kaiser, TAPPI, 46[3], 195–200 [1963];
Madeley, Paper Technology, 9[1], 35–39 [1968]; Mardon, et al.,
TAPPI, 46[3], 172–187 [1963]; Mardon, et al., Pulp and Paper Maga-
zine of Canada, 72[11], 76–81 [November 1971]; Trufitt, TAPPI,
58[11], 144–145 [1975]).

Slot Distributors These are generally used in sheeting dies for
extrusion of films and coatings and in air knives for control of thick-
ness of a material applied to a moving sheet. A simple slotted pipe for
turbulent flow conditions may give severe maldistribution because of
nonuniform discharge velocity, but also because this type of design
does not readily give perpendicular discharge (Koestel and Tuve,
Heat. Piping Air Cond., 20[1], 153–157 [1948]; Senecal, Ind. Eng.
Chem., 49, 993–997 [1957]; Koestel and Young, Heat. Piping Air
Cond., 23[7], 111–115 [1951]). For slots in tapered ducts where the
duct cross-sectional area decreases linearly to zero at the far end, the
discharge angle will be constant along the length of the duct (Koestel
and Young, ibid.). One way to ensure an almost perpendicular dis-
charge is to have the ratio of the area of the slot to the cross-sectional
area of the pipe equal to or less than 0.1. As in the case of perforated-
pipe distributors, pressure variation within the slot manifold and pres-
sure drop across the slot must be carefully considered.

In practice, the following methods may be used to keep the diame-
ter of the pipe to a minimum consistent with good performance
(Senecal, Ind. Eng. Chem., 49, 993–997 [1957]):

1. Feed from both ends.
2. Modify the cross-sectional design (Fig. 6-35); the slot is thus

farther away from the influence of feed-stream velocity.
3. Increase pressure drop across the slot; this can be accom-

plished by lengthening the lips (Fig. 6-35).
4. Use screens (Fig. 6-35) to increase overall pressure drop across

the slot.
Design considerations for air knives are discussed by Senecal

(ibid.). Design procedures for extrusion dies when the flow is laminar,
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as with highly viscous fluids, are presented by Bernhardt (Processing
of Thermoplastic Materials, Rheinhold, New York, 1959, pp. 248–
281).

Turning Vanes In applications such as ventilation, the discharge
profile from slots can be improved by turning vanes. The tapered duct
is the most amenable for turning vanes because the discharge angle
remains constant. One way of installing the vanes is shown in Fig. 6-36.
The vanes should have a depth twice the spacing (Heating, Ventilat-
ing, Air Conditioning Guide, vol. 38, American Society of Heating,
Refrigerating and Air-Conditioning Engineers, 1960, pp. 282–283)
and a curvature at the upstream end of the vanes of a circular arc
which is tangent to the discharge angle θ of a slot without vanes and
perpendicular at the downstream or discharge end of the vanes 
(Koestel and Young, Heat. Piping Air Cond., 23[7], 111–115 [1951]).
Angle θ can be estimated from

cot θ = (6-153)

where A s = slot area
Ad = duct cross-sectional area at upstream end
Cd = discharge coefficient of slot

Vanes may be used to improve velocity distribution and reduce fric-
tional loss in bends, when the ratio of bend turning radius to pipe
diameter is less than 1.0. For a miter bend with low-velocity flows,
simple circular arcs (Fig. 6-37) can be used, and with high-velocity
flows, vanes of special airfoil shapes are required. For additional
details and references, see Ower and Pankhurst (The Measurement of
Air Flow, Pergamon, New York, 1977, p. 102); Pankhurst and Holder
(Wind-Tunnel Technique, Pitman, London, 1952, pp. 92–93); Rouse
(Engineering Hydraulics, Wiley, New York, 1950, pp. 399–401); and
Jorgensen (Fan Engineering, 7th ed., Buffalo Forge Co., Buffalo,
1970, pp. 111, 117, 118).

Perforated Plates and Screens A nonuniform velocity profile
in turbulent flow through channels or process equipment can be
smoothed out to any desired degree by adding sufficient uniform
resistance, such as perforated plates or screens across the flow chan-
nel, as shown in Fig. 6-38. Stoker (Ind. Eng. Chem., 38, 622–624
[1946]) provides the following equation for the effect of a uniform
resistance on velocity profile:

= ��� (6-154)

Here, V is the area average velocity, K is the number of velocity heads
of pressure drop provided by the uniform resistance, ∆p = KρV 2/2,
and α is the velocity profile factor used in the mechanical energy bal-

(V1,max /V)2 + α2 − α1 + α2K
���

1 + K
V2,max
�

V

Cd As
�

Ad
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FIG. 6-35 Modified slot distributor.

FIG. 6-36 Turning vanes in a slot distributor.



ance, Eq. (6-13). It is ratio of the area average of the cube of the veloc-
ity, to the cube of the area average velocity V. The shape of the exit
velocity profile appears twice in Eq. (6-154), in V2,max /V and α2. Typi-
cally, K is on the order of 10, and the desired exit velocity profile is
fairly uniform so that α2 ∼ 1.0 may be appropriate. Downstream of the
resistance, the velocity profile will gradually reestablish the fully
developed profile characteristic of the Reynolds number and channel
shape. The screen or perforated plate open area required to produce
the resistance K may be computed from Eqs. (6-107) or (6-111).

Screens and other flow restrictions may also be used to suppress
stream swirl and turbulence (Loehrke and Nagib, J. Fluids Eng., 98,
342–353 [1976]). Contraction of the channel, as in a venturi, provides
further reduction in turbulence level and flow nonuniformity.

Beds of Solids A suitable depth of solids can be used as a fluid
distributor. As for other types of distribution devices, a pressure drop
of 10 velocity heads is typically used, here based on the superficial
velocity through the bed. There are several substantial disadvantages
to use of particle beds for flow distribution. Heterogeneity of the bed
may actually worsen rather than improve distribution. In general, uni-
form flow may be found only downstream of the point in the bed
where sufficient pressure drop has occurred to produce uniform flow.
Therefore, inefficiency results when the bed also serves reaction or
mass transfer functions, as in catalysts, adsorbents, or tower packings
for gas/liquid contacting, since portions of the bed are bypassed. In
the case of trickle flow of liquid downward through column packings,
inlet distribution is critical since the bed itself is relatively ineffective
in distributing the liquid. Maldistribution of flow through packed beds
also arises when the ratio of bed diameter to particle size is less than
10 to 30.

Other Flow Straightening Devices Other devices designed to
produce uniform velocity or reduce swirl, sometimes with reduced
pressure drop, are available. These include both commercial devices
of proprietary design and devices discussed in the literature. For
pipeline flows, see the references under flow inverters and static mix-
ing elements previously discussed in the “Incompressible Flow in
Pipes and Channels” subsection. For large area changes, as at the

entrance to a vessel, it is sometimes necessary to diffuse the momen-
tum of the inlet jet discharging from the feed pipe in order to produce
a more uniform velocity profile within the vessel. Methods for this
application exist, but remain largely in the domain of proprietary,
commercial design.

FLUID MIXING

Mixing of fluids is a discipline of fluid mechanics. Fluid motion is used
to accelerate the otherwise slow processes of diffusion and conduction
to bring about uniformity of concentration and temperature, blend
materials, facilitate chemical reactions, bring about intimate contact
of multiple phases, and so on. As the subject is too broad to cover fully,
only a brief introduction and some references for further information
are given here.

Several texts are available. These include Harnby, Edwards, and
Nienow (Mixing in the Process Industries, 2d ed., Butterworths, Lon-
don, 1992), Oldshue (Fluid Mixing Technology, McGraw-Hill, New
York, 1983), Tatterson (Fluid Mixing and Gas Dispersion in Agitated
Tanks, McGraw-Hill, New York, 1991), Uhl and Gray (Mixing, vols.
I–III, Academic, New York, 1966, 1967, 1986), and Nagata (Mixing:
Principles and Applications, Wiley, New York, 1975). A good overview
of stirred tank agitation is given in the series of articles from Chemical
Engineering (110–114, Dec. 8, 1975; 139–145, Jan. 5, 1976; 93–100,
Feb. 2, 1976; 102–110, Apr. 26, 1976; 144–150, May 24, 1976; 141–
148, July 19, 1976; 89–94, Aug. 2, 1976; 101–108, Aug. 30, 1976; 109–
112, Sept. 27, 1976; 119–126, Oct. 25, 1976; 127–133, Nov. 8, 1976).

Process mixing is commonly carried out in pipeline and vessel
geometries. The terms radial mixing and axial mixing are com-
monly used. Axial mixing refers to mixing of materials which pass a
given point at different times, and thus leads to backmixing. For
example, backmixing or axial mixing occurs in stirred tanks where
fluid elements entering the tank at different times are intermingled.
Mixing of elements initially at different axial positions in a pipeline is
axial mixing. Radial mixing occurs between fluid elements passing a
given point at the same time, as, for example, between fluids mixing in
a pipeline tee.

Turbulent flow, by means of the chaotic eddy motion associated
with velocity fluctuation, is conducive to rapid mixing and, therefore,
is the preferred flow regime for mixing. Laminar mixing is carried
out when high viscosity makes turbulent flow impractical.

Stirred Tank Agitation Turbine impeller agitators, of a variety
of shapes, are used for stirred tanks, predominantly in turbulent flow.
Figure 6-39 shows typical stirred tank configurations and time-
averaged flow patterns for axial flow and radial flow impellers. In
order to prevent formation of a vortex, four vertical baffles are nor-
mally installed. These cause top-to-bottom mixing and prevent mix-
ing-ineffective swirling motion.

For a given impeller and tank geometry, the impeller Reynolds
number determines the flow pattern in the tank:

ReI = (6-155)

where D = impeller diameter, N = rotational speed, and ρ and µ are
the liquid density and viscosity. Rotational speed N is typically
reported in revolutions per minute, or revolutions per second in SI
units. Radians per second are almost never used. Typically, ReI > 104

is required for fully turbulent conditions throughout the tank. A wide
transition region between laminar and turbulent flow occurs over the
range 10 < ReI < 104.

The power P drawn by the impeller is made dimensionless in a
group called the power number:

NP = (6-156)

Figure 6-40 shows power number vs. impeller Reynolds number for a
typical configuration. The similarity to the friction factor vs. Reynolds
number behavior for pipe flow is significant. In laminar flow, the power
number is inversely proportional to Reynolds number, reflecting the
dominance of viscous forces over inertial forces. In turbulent flow,
where inertial forces dominate, the power number is nearly constant.

P
�
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FIG. 6-37 Miter bend with vanes.

FIG. 6-38 Smoothing out a nonuniform profile in a channel.



Impellers are sometimes viewed as pumping devices; the total vol-
umetric flow rate Q discharged by an impeller is made dimensionless
in a pumping number:

NQ = (6-157)

Blend time tb, the time required to achieve a specified maximum stan-
dard deviation of concentration after injection of a tracer into a stirred
tank, is made dimensionless by multiplying by the impeller rotational
speed:

Q
�
ND3

Nb = tbN (6-158)

Dimensionless pumping number and blend time are independent of
Reynolds number under fully turbulent conditions. The magnitude of
concentration fluctuations from the final well-mixed value in batch
mixing decays exponentially with time.

The design of mixing equipment depends on the desired process
result. There is often a tradeoff between operating cost, which
depends mainly on power, and capital cost, which depends on agitator
size and torque. For some applications bulk flow throughout the ves-
sel is desired, while for others high local turbulence intensity is
required. Multiphase systems introduce such design criteria as solids
suspension and gas dispersion. In very viscous systems, helical rib-
bons, extruders, and other specialized equipment types are favored
over turbine agitators.

Pipeline Mixing Mixing may be carried out with mixing tees,
inline or motionless mixing elements, or in empty pipe. In the lat-
ter case, large pipe lengths may be required to obtain adequate mix-
ing. Coaxially injected streams require lengths on the order of 100
pipe diameters. Coaxial mixing in turbulent single-phase flow is char-
acterized by the turbulent diffusivity (eddy diffusivity) DE which
determines the rate of radial mixing. Davies (Turbulence Phenomena,
Academic, New York, 1972) provides an equation for DE which may
be rewritten as

DE ∼ 0.015DVRe−0.125 (6-159)

where D = pipe diameter
V = average velocity

Re = pipe Reynolds number, DVρ/µ
ρ = density
µ = viscosity

Properly designed tee mixers, with due consideration given to main
stream and injected stream momentum, are capable of producing
high degrees of uniformity in just a few diameters. Forney (Jet Injec-
tion for Optimum Pipeline Mixing, in “Encyclopedia of Fluid Mechan-
ics,” vol. 2., Chap. 25, Gulf Publishing, 1986) provides a thorough
discussion of tee mixing. Inline or motionless mixers are generally of

FLUID DYNAMICS 6-35

FIG. 6-39 Typical stirred tank configurations, showing time-averaged flow
patterns for axial flow and radial flow impellers. (From Oldshue, Fluid Mixing
Technology, McGraw-Hill, New York, 1983.)

FIG. 6-40 Dimensionless power number in stirred tanks. (Reprinted with permission from Bates, Fondy, and Corpstein, Ind. Eng.
Chem. Process Design Develop., 2, 310 [1963].)



proprietary commercial design, and may be selected for viscous or
turbulent, single or multiphase mixing applications. They substantially
reduce required pipe length for mixing.

TUBE BANKS

Pressure drop across tube banks may not be correlated by means of a
single, simple friction factor—Reynolds number curve, owing to the
variety of tube configurations and spacings encountered, two of which
are shown in Fig. 6-41. Several investigators have allowed for configu-
ration and spacing by incorporating spacing factors in their friction
factor expressions or by using multiple friction factor plots. Commer-
cial computer codes for heat-exchanger design are available which
include features for estimating pressure drop across tube banks.

Turbulent Flow The correlation by Grimison (Trans. ASME, 59,
583–594 [1937]) is recommended for predicting pressure drop for
turbulent flow (Re ≥ 2,000) across staggered or in-line tube banks for
tube spacings [(a/Dt), (b/Dt)] ranging from 1.25 to 3.0. The pressure
drop is given by

∆p = (6-160)

where f = friction factor
Nr = number of rows of tubes in the direction of flow
ρ = fluid density

Vmax = fluid velocity through the minimum area available for
flow.

4 fNrρV 2
max
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FIG. 6-41 Tube-bank configurations.

FIG. 6-42 Upper chart: Friction factors for staggered tube banks with minimum fluid flow area in transverse openings. Lower chart: Friction factors
for staggered tube banks with minimum fluid flow area in diagonal openings. (From Grimison, Trans. ASME, 59, 583 [1937].)



For banks of staggered tubes, the friction factor for isothermal
flow is obtained from Fig. (6-42). Each “fence” (group of parametric
curves) represents a particular Reynolds number defined as

Re = (6-161)

where Dt = tube outside diameter and µ = fluid viscosity. The numbers
along each fence represent the transverse and inflow-direction spac-
ings. The upper chart is for the case in which the minimum area for
flow is in the transverse openings, while the lower chart is for the case
in which the minimum area is in the diagonal openings. In the latter
case, Vmax is based on the area of the diagonal openings and Nr is the
number of rows in the direction of flow minus 1. A critical comparison
of this method with all the data available at the time showed an aver-
age deviation of the order of �15 percent. (Boucher and Lapple,
Chem. Eng. Prog., 44, 117–134 [1948]). For tube spacings greater
than 3 tube diameters, the correlation by Gunter and Shaw (Trans.
ASME, 67, 643–660 [1945]) can be used as an approximation. As an
approximation, the pressure drop can be taken as 0.72 velocity head
(based on Vmax per row of tubes for tube spacings commonly encoun-
tered in practice (Lapple, et al., Fluid and Particle Mechanics, Uni-
versity of Delaware, Newark, 1954).

For banks of in-line tubes, f for isothermal flow is obtained from
Fig. 6-43. Average deviation from available data is on the order of �15
percent. For tube spacings greater than 3Dt, the charts of Gram,
Mackey, and Monroe (Trans. ASME, 80, 25–35 [1958]) can be used.
As an approximation, the pressure drop can be taken as 0.32 veloc-
ity head (based on Vmax) per row of tubes (Lapple, et al., Fluid and
Particle Mechanics, University of Delaware, Newark, 1954).

For turbulent flow through shallow tube banks, the average fric-
tion factor per row will be somewhat greater than indicated by Figs. 
6-42 and 6-43, which are based on 10 or more rows depth. A 30 per-
cent increase per row for 2 rows, 15 percent per row for 3 rows and 
7 percent per row for 4 rows can be taken as the maximum likely to be
encountered (Boucher and Lapple, Chem. Eng. Prog., 44, 117–134
[1948]).

For a single row of tubes, the friction factor is given by Curve B
in Fig. 6-44 as a function of tube spacing. This curve is based on the

DtVmaxρ
�

µ

the data of several experimenters, all adjusted to a Reynolds number
of 10,000. The values should be substantially independent of Re for
1,000 < Re < 100,000.

For extended surfaces, which include fins mounted perpendicu-
larly to the tubes or spiral-wound fins, pin fins, plate fins, and so on,
friction data for the specific surface involved should be used. For
details, see Kays and London (Compact Heat Exchangers, 2d ed.,
McGraw-Hill, New York, 1964). If specific data are unavailable, the
correlation by Gunter and Shaw (Trans. ASME, 67, 643–660 [1945])
may be used as an approximation.

When a large temperature change occurs in a gas flowing across a
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FIG. 6-43 Friction factors for in-line tube banks. (From Grimison, Trans. ASME, 59, 583 [1937].)

FIG. 6-44 Friction factors vs. transverse spacing for single row of tubes. (From
Boucher and Lapple, Chem. Eng. Prog., 44, 117 [1948].)



tube bundle, gas properties should be evaluated at the mean temper-
ature

Tm = Tt + K ∆Tlm (6-162)

where Tt = average tube-wall temperature
K = constant

∆Tlm = log-mean temperature difference between the gas and
the tubes.

Values of K averaged from the recommendations of Chilton and
Genereaux (Trans. AIChE, 29, 151–173 [1933]) and Grimison (Trans.
ASME, 59, 583–594 [1937]) are as follows: for in-line tubes, 0.9 for
cooling and −0.9 for heating; for staggered tubes, 0.75 for cooling and
−0.8 for heating.

For nonisothermal flow of liquids across tube bundles, the friction
factor is increased if the liquid is being cooled and decreased if the liq-
uid is being heated. The factors previously given for nonisothermal
flow of liquids in pipes (“Incompressible Flow in Pipes and Chan-
nels”) should be used.

For two-phase gas/liquid horizontal cross flow through tube 
banks, the method of Diehl and Unruh (Pet. Refiner, 37[10], 124–128
[1958]) is available.

Transition Region This region extends roughly over the range
200 < Re < 2,000. Figure 6-45 taken from Bergelin, Brown, and
Doberstein (Trans. ASME, 74, 953–960 [1952]) gives curves for fric-
tion factor fT for five different configurations. Pressure drop for liquid
flow is given by

∆p = � �
0.14

(6-163)

where Nr = number of major restrictions encountered in flow through
the bank (equal to number of rows when minimum flow area occurs in
transverse openings, and to number of rows minus 1 when it occurs in
the diagonal openings); ρ = fluid density; Vmax = velocity through min-
imum flow area; µs = fluid viscosity at tube-surface temperature and
µb = fluid viscosity at average bulk temperature. This method gives the
friction factor within about �25 percent.

Laminar Region Bergelin, Colburn, and Hull (Univ. Delaware

µs
�
µb

4 fTNrρV 2
max

��
2

Eng. Exp. Sta. Bull., 2 [1950]) recommend the following equations for
pressure drop with laminar flow (Rev < 100) of liquids across banks of
plain tubes with pitch ratios P/Dt of 1.25 and 1.50:

∆p = � �
1.6

� �
m

� � (6-164)

m = (6-165)

where Rev = DvVmaxρ/µb; Dv = volumetric hydraulic diameter [(4 ×
free-bundle volume)/(exposed surface area of tubes)]; P = pitch (= a
for in-line arrangements, = a or c [whichever is smaller] for staggered
arrangements), and other quantities are as defined following Eq. 
(6-163). Bergelin, et al. (ibid.) show that pressure drop per row is
independent of the number of rows in the bank with laminar flow. The
pressure drop is predicted within about �25 percent.

The validity of extrapolating Eq. (6-164) to pitch ratios larger than
1.50 is unknown. The correlation of Gunter and Shaw (Trans. ASME,
67, 643–660 [1945]) may be used as an approximation in such cases.

For laminar flow of non-Newtonian fluids across tube banks, see
Adams and Bell (Chem. Eng. Prog., 64, Symp. Ser., 82, 133–145
[1968]).

Flow-induced tube vibration occurs at critical fluid velocities
through tube banks, and is to be avoided because of the severe dam-
age that can result. Methods to predict and correct vibration problems
may be found in Eisinger (Trans. ASME J. Pressure Vessel Tech., 102,
138–145 [May 1980]) and Chen (J. Sound Vibration, 93, 439–455
[1984]).

BEDS OF SOLIDS

Fixed Beds of Granular Solids Pressure-drop prediction is
complicated by the variety of granular materials and of their packing
arrangement. For flow of a single incompressible fluid through an
incompressible bed of granular solids, the pressure drop may be esti-
mated by the correlation given in Fig. 6-46 (Leva, Chem. Eng., 56[5],
115–117 [1949]), or Fluidization, McGraw-Hill, New York, 1959).
The modified friction factor and Reynolds number are defined by

fm � (6-166)

Re′ � (6-167)

where −∆p = pressure drop
L = depth of bed

Dp = average particle diameter, defined as the diameter of a
sphere of the same volume as the particle

� = void fraction
n = exponent given in Fig. 6-46 as a function of Re′
φs = shape factor defined as the area of sphere of diameter

Dp divided by the actual surface area of the particle
G = fluid superficial mass velocity based on the empty

chamber cross section
ρ = fluid density
µ = fluid viscosity

As for any incompressible single-phase flow, the equivalent pressure 
P = p + ρgz where g = acceleration of gravity z = elevation, may be
used in place of p to account for gravitational effects in flows with ver-
tical components.

In creeping flow (Re′ < 10),

fm = (6-168)

At high Reynolds numbers the friction factor becomes nearly con-
stant, approaching a value of the order of unity for most packed beds.

In terms of S, particle surface area per unit volume of bed,

Dp = (6-169)
6(1 − �)
�

φsS

100
�
Re′

DpG
�

µ

Dpρφs
3 − n�3|∆p|

��
2G2L(1 − �)3 − n

0.57
�
(Rev)0.25

ρV 2
max

�
2

µs
�
µb
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�
P

280Nr
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FIG. 6-45 Friction factors for transition region flow across tube banks. (Pitch
is the minimum center-to-center tube spacing.) (From Bergelin, Brown, and
Doberstein, Trans. ASME, 74, 953 [1952].)



Porous Media Packed beds of granular solids are one type of the
general class referred to as porous media, which include geological
formations such as petroleum reservoirs and aquifers, manufactured
materials such as sintered metals and porous catalysts, burning coal or
char particles, and textile fabrics, to name a few. Pressure drop for
incompressible flow across a porous medium has the same qualitative
behavior as that given by Leva’s correlation in the preceding. At low
Reynolds numbers, viscous forces dominate and pressure drop is pro-
portional to fluid viscosity and superficial velocity, and at high
Reynolds numbers, pressure drop is proportional to fluid density and
to the square of superficial velocity.

Creeping flow (Re′ <∼ 1) through porous media is often described
in terms of the permeability k and Darcy’s Law:

= V (6-170)

where V = superficial velocity. The SI units for permeability are m2.
Creeping flow conditions generally prevail in geological porous
media. For multidimensional flows through isotropic porous
media, the superficial velocity V and pressure gradient ∇ P vectors
replace the corresponding one-dimensional variables in Eq. (6-170).

∇ P = − V (6-171)

For isotropic homogeneous porous media (uniform permeability and
porosity), the pressure for creeping incompressible single phase-flow
may be shown to satisfy the LaPlace equation:

∇ 2P = 0 (6-172)

For anisotropic or oriented porous media, as are frequently found
in geological media, permeability varies with direction and a perme-
ability tensor K, with nine components Kij giving the velocity com-
penent in the i direction due to a pressure gradient in the j direction,
may be introduced. For further information, see Slattery (Momentum,
Energy and Mass Transfer in Continua, Krieger, Huntington, New
York, 1981, p. 193–218). See also Dullien (Chem. Eng. J. [Laussanne],
10, 1,034 [1975]) for a review of pressure-drop methods in single-
phase flow. Solutions for Darcy’s law for several geometries of interest
in petroleum reservoirs and aquifers, for both incompressible and
compressible flows, are given in Craft and Hawkins (Applied Petro-

µ
�
k

µ
�
k

−∆P
�

L

leum Reservoir Engineering, Prentice-Hall, Englewood Cliffs, N.J.,
1959). See also Todd (Groundwater Hydrology, 2nd ed., Wiley, New
York, 1980).

For granular solids of mixed sizes the average particle diameter
may be calculated as

= �
i

(6-173)

where xi = weight fraction of particles of size Dp,i.
For isothermal compressible flow of a gas with constant com-

pressibility factor Z through a packed bed of granular solids, an equa-
tion similar to Eq. (6-114) for pipe flow may be derived:

p1
2 − p2

2 = �ln + � (6-174)

where p1 = upstream absolute pressure
p2 = downstream absolute pressure
R = gas constant
T = absolute temperature

Mw = molecular weight
v1 = upstream specific volume of gas
v2 = downstream specific volume of gas

For creeping flow of power law non-Newtonian fluids, the method
of Christopher and Middleton (Ind. Eng. Chem. Fundam., 4, 422–426
[1965]) may be used:

−∆p = (6-175)

H = �9 + �
n

� �
(1 − n)/2

(6-176)

where V = G/ρ = superficial velocity, K, n = power law material con-
stants, and all other variables are as defined in Eq. (6-166). This cor-
relation is supported by data from Christopher and Middleton (ibid.),
Gregory and Griskey (AIChE J., 13, 122–125 [1967]), Yu, Wen, and
Bailie (Can. J. Chem. Eng., 46, 149–154 [1968]), Siskovic, Gregory,
and Griskey (AIChE J., 17, 176–187 [1978]), Kemblowski and Mertl
(Chem. Eng. Sci., 29, 213–223 [1974]), and Kemblowski and Dziu-
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FIG. 6-46 Friction factor for beds of solids. (From Leva, Fluidization, McGraw-Hill, New York, 1959, p. 49.)



minski (Rheol. Acta, 17, 176–187 [1978]). The measurements cover
the range n = 0.50 to 1.60, and modified Reynolds number Re′ = 10−8

to 10, where

Re′ = (6-177)

For the case n = 1 (Newtonian fluid), Eqs. (6-175) and (6-176) give a
pressure drop 25 percent less than that given by Eqs. (6-166) through
(6-168).

For viscoelastic fluids see Marshall and Metzner (Ind. Eng.
Chem. Fundam., 6, 393–400 [1967]), Siskovic, Gregory, and Griskey
(AIChE J., 13, 122–125 [1967]) and Kemblowski and Dziubinski
(Rheol. Acta, 17, 176–187 [1978]).

For gas flow through porous media with small pore diameters, the
slip flow and molecular flow equations previously given (see the “Vac-
uum Flow” subsection) may be applied when the pore is of the same
or smaller order as the mean free path, as described by Monet and
Vermeulen (Chem. Eng. Prog., 55, Symp. Ser., 25 [1959]).

Tower Packings For the flow of a single fluid through a bed of
tower packing, pressure drop may be estimated using the preceding
methods. See also Sec. 14 of this Handbook. For countercurrent
gas/liquid flow in commercial tower packings, both structured and
unstructured, several sources of data and correlations for pressure
drop and flooding are available. See, for example, Strigle (Random
Packings and Packed Towers, Design and Applications, Gulf Publish-
ing, Houston, 1989; Chem. Eng. Prog., 89[8], 79–83 [August 1993]),
Hughmark (Ind. Eng. Chem. Fundam., 25, 405–409 [1986]), Chen
(Chem. Eng. Sci., 40, 2139–2140 [1985]), Billet and Mackowiak
(Chem. Eng. Technol., 11, 213–217 [1988]), Krehenwinkel and 
Knapp (Chem. Eng. Technol., 10, 231–242 [1987]), Mersmann and
Deixler (Ger. Chem. Eng., 9, 265–276 [1986]) and Robbins (Chem.
Eng. Progr., 87[5], 87–91 [May 1991]). Data and correlations for
flooding and pressure drop for structured packings are given by Fair
and Bravo (Chem. Eng. Progr., 86[1], 19–29 [January 1990]).

Fluidized Beds When gas or liquid flows upward through a ver-
tically unconstrained bed of particles, there is a minimum fluid veloc-
ity at which the particles will begin to move. Above this minimum
velocity, the bed is said to be fluidized. Fluidized beds are widely
used, in part because of their excellent mixing and heat and mass
transfer characteristics. See Sec. 17 of this Handbook for detailed
information.

BOUNDARY LAYER FLOWS

Boundary layer flows are a special class of flows in which the flow far
from the surface of an object is inviscid, and the effects of viscosity are
manifest only in a thin region near the surface where steep velocity
gradients occur to satisfy the no-slip condition at the solid surface.
The thin layer where the velocity decreases from the inviscid, poten-
tial flow velocity to zero (relative velocity) at the solid surface is called
the boundary layer. The thickness of the boundary layer is indefinite
because the velocity asymptotically approaches the free-stream veloc-
ity at the outer edge. The boundary layer thickness is conventionally
taken to be the distance for which the velocity equals 0.99 times the
free-stream velocity. The boundary layer may be either laminar or tur-
bulent. Particularly in the former case, the equations of motion may
be simplified by scaling arguments. Schlichting (Boundary Layer The-
ory, 8th ed., McGraw-Hill, New York, 1987) is the most comprehen-
sive source for information on boundary layer flows.

Flat Plate, Zero Angle of Incidence For flow over a wide, thin
flat plate at zero angle of incidence with a uniform free-stream veloc-
ity, as shown in Fig. 6-47, the critical Reynolds number at which the
boundary layer becomes turbulent is normally taken to be

Rex = = 500,000 (6-178)

where V = free-stream velocity
ρ = fluid density
µ = fluid viscosity
x = distance from leading edge of the plate

xVρ
�

µ

DpV 2 − nρ
�

H

However, the transition Reynolds number depends on free-stream
turbulence and may range from 3 × 105 to 3 × 106. The laminar
boundary layer thickness δ is a function of distance from the leading
edge:

δ ≈ 5.0xRe x
−0.5 (6-179)

The total drag on the plate of length L and width b for a laminar
boundary layer, including the drag on both surfaces, is:

FD = 1.328bLρV 2ReL
−0.5 (6-180)

For non-Newtonian power law fluids (Acrivos, Shah, and Peter-
son, AIChE J., 6, 312–317 [1960]; Hsu, AIChE J., 15, 367–370
[1969]),

FD = CbLρV 2ReL′− 1/(1 + n) (6-181)

n = 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C = 2.075 1.958 1.838 1.727 1.627 1.538 1.460 1.390 1.328

where Re′L = ρV 2 − nLn/K and K and n are the power law material con-
stants (see Eq. [6-4]).

For a turbulent boundary layer, the thickness may be estimated as

δ ≈ 0.37xRe x
−0.2 (6-182)

and the total drag force on both sides of the plate of length L is

FD = � − �ρbLV 2 5 × 105 < ReL < 109 (6-183)

Here the second term accounts for the laminar leading edge of the
boundary layer and assumes that the critical Reynolds number is
500,000.

Cylindrical Boundary Layer Laminar boundary layers on cylin-
drical surfaces, with flow parallel to the cylinder axis, are described by
Glauert and Lighthill (Proc. R. Soc. [London], 230A, 188–203 [1955]),
Jaffe and Okamura (Z. Angew. Math. Phys., 19, 564–574 [1968]) and
Stewartson (Q. Appl. Math., 13, 113–122 [1955]). For a turbulent
boundary layer, the total drag may be estimated as

FD = c
j
πrLρV 2 (6-184)

where r = cylinder radius, L = cylinder length, and the average friction
coefficient is given by (White, J. Basic Eng., 94, 200–206 [1972])

c
j
 = 0.0015 + �0.30 + 0.015 � �
0.4

�ReL
−1/3 (6-185)

for ReL = 106 to 109 and L/r < 106.
Continuous Flat Surface Boundary layers on continuous sur-

faces drawn through a stagnant fluid are shown in Fig. 6-48. Figure 
6-48a shows the continuous flat surface (Sakiadis, AIChE J., 7, 26–28,
221–225, 467–472 [1961]). The critical Reynolds number for transi-
tion to turbulent flow may be greater than the 500,000 value for the
finite flat-plate case discussed previously (Tsou, Sparrow, and Kurtz, 
J. Fluid Mech., 26, 145–161 [1966]). For a laminar boundary layer, the
thickness is given by

δ = 6.37xRe x
−0.5 (6-186)
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FIG. 6-47 Boundary layer on a flat plate at zero angle of incidence.



and the total drag exerted on the two surfaces is

FD = 1.776bLρV 2ReL
−0.5 (6-187)

The total flow rate of fluid entrained by the surface is

q = 3.232bLVReL
−0.5 (6-188)

The theoretical velocity field was experimentally verified by Tsou,
Sparrow, and Goldstein (Int. J. Heat Mass Transfer, 10, 219–235
[1967]) and Szeri, Yates, and Hai ( J. Lubr. Technol., 98, 145–156
[1976]). For non-Newtonian power law fluids see Fox, Erickson,
and Fan (AIChE J., 15, 327–333 [1969]).

For a turbulent boundary layer, the thickness is given by

δ = 1.01xRe x
−0.2 (6-189)

and the total drag on both sides by

FD = 0.056bLρV 2ReL
−0.2 (6-190)

and the total entrainment by

q = 0.252bLVReL
−0.2 (6-191)

When the laminar boundary layer is a significant part of the total
length of the object, the total drag should be corrected by subtracting
a calculated turbulent drag for the length of the laminar section and
then adding the laminar drag for the laminar section. Tsou, Sparrow,
and Goldstein (Int. J. Heat Mass Transfer, 10, 219–235 [1967]) give an
improved analysis of the turbulent boundary layer; their data indicate
that Eq. (6-190) underestimates the drag by about 15 percent.

Continuous Cylindrical Surface The continuous surface
shown in Fig. 6-48b is applicable, for example, for a wire drawn
through a stagnant fluid (Sakiadis, AIChE J., 7, 26–28, 221–225,
467–472 [1961]). The critical-length Reynolds number for transition
is Rex = 200,000. The laminar boundary layer thickness, total drag, and
entrainment flow rate may be obtained from Fig. 6-49; the drag and
entrainment rate are obtained from the momentum area Θ and dis-
placement area ∆ evaluated at x = L.

FD = ρV 2Θ (6-192)

q = V∆ (6-193)

Further laminar boundary layer analysis is given by Crane (Z. Angew.
Math. Phys., 23, 201–212 [1972]).

For a turbulent boundary layer, the total drag may be roughly esti-
mated using Eqs. (6-184) and (6-185) for finite cylinders. Measured
forces by Kwon and Prevorsek (J. Eng. Ind., 101, 73–79 [1979]) are
greater than predicted this way.

The laminar boundary layer on deforming continuous surfaces
with velocity varying with axial position is discussed by Vleggaar

(Chem. Eng. Sci., 32, 1517–1525 [1977] and Crane (Z. Angew. Math.
Phys., 26, 619–622 [1975]).

VORTEX SHEDDING

When fluid flows past objects or through orifices or similar restric-
tions, vortices may periodically be shed downstream. Objects such as
smokestacks, chemical-processing columns, suspended pipelines, and
electrical transmission lines can be subjected to damaging vibrations
and forces due to the vortices, especially if the shedding frequency is
close to a natural vibration frequency of the object. The shedding can
also produce sound. See Krzywoblocki (Appl. Mech. Rev., 6, 393–397
[1953]) and Marris (J. Basic Eng., 86, 185–196 [1964]).

Development of a vortex street, or von Kármán vortex street is
shown in Fig. 6-50. Discussions of the vortex street may be found in
Panton (pp. 387–393). The Reynolds number is

Re = (6-194)

where D = diameter of cylinder or effective width of object
V = free-stream velocity
ρ = fluid density
µ = fluid viscosity

For flow past a cylinder, the vortex street forms at Reynolds numbers
above about 40. The vortices initially form in the wake, the point of
formation moving closer to the cylinder as Re is increased. At a
Reynolds number of 60 to 100, the vortices are formed from eddies
attached to the cylinder surface. The vortices move at a velocity
slightly less than V. The frequency of vortex shedding f is given in
terms of the Strouhal number, which is approximately constant over a
wide range of Reynolds numbers.

St � (6-195)

For 40 < Re < 200 the vortices are laminar and the Strouhal number
has a nearly constant value of 0.2 for flow past a cylinder. Between 
Re = 200 and 400 the Strouhal number is no longer constant and the
wake becomes irregular. Above about Re = 400 the vortices become
turbulent, the wake is once again stable, and the Strouhal number
remains constant at about 0.2 up to a Reynolds number of about 105.
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FIG. 6-48 Continuous surface: (a) continuous flat surface, (b) continuous
cylindrical surface. (From Sakiadis, Am. Inst. Chem. Eng. J., 7, 221, 467
[1961].)

FIG. 6-49 Boundary layer parameters for continuous cylindrical surfaces.
(From Sakiadis, Am. Inst. Chem. J., 7, 467 [1961].)

(a)

(b)

FIG. 6-50 Vortex street behind a cylinder.



Above Re = 105 the vortex shedding is difficult to see in flow visualiza-
tion experiments, but velocity measurements still show a strong spec-
tral component at St = 0.2 (Panton, p. 392). Experimental data suggest
that the vortex street disappears over the range 5 × 105 < Re < 3.5 ×
106, but is reestablished at above 3.5 × 106 (Schlichting).

Vortex shedding exerts alternating lateral forces on a cylinder, per-
pendicular to the flow direction. Such forces may lead to severe 
vibration or mechanical failure of cylindrical elements such as heat-
exchanger tubes, transmission lines, stacks, and columns when the
vortex shedding frequency is close to resonant bending frequency.
According to Den Hartog (Proc. Nat. Acad. Sci., 40, 155–157 [1954]),
the vortex shedding and cylinder vibration frequency will shift to 
the resonant frequency when the calculated shedding frequency is
within 20 percent of the resonant frequency. The well-known Tacoma 
Narrows bridge collapse resulted from resonance between a torsional
oscillation and vortex shedding (Panton, p. 392). Spiral strakes are
sometimes installed on tall stacks so that vortices at different axial
positions are not shed simultaneously. The alternating lateral force FK,
sometimes called the von Kármán force, is given by (Den Hartog,
Mechanical Vibrations, 4th ed., McGraw-Hill, New York, 1956, pp.
305–309):

FK = CKA (6-196)

where CK = von Kármán coefficient
A = projected area perpendicular to the flow
ρ = fluid density
V = free-stream fluid velocity

For a cylinder, CK = 1.7. For a vibrating cylinder, the effective pro-
jected area exceeds, but is always less than twice, the actual cylinder
projected area (Rouse, Engineering Hydraulics, Wiley, New York,
1950).

The following references pertain to discussions of vortex shedding
in specific structures: steel stacks (Osker and Smith, Trans. ASME,
78, 1381–1391 [1956]; Smith and McCarthy, Mech. Eng., 87, 38–41
[1965]); chemical-processing columns (Freese, J. Eng. Ind., 81,
77–91, [1959]); heat exchangers (Eisinger, Trans. ASME J. Pressure
Vessel Tech., 102, 138–145 [May 1980]; Chen, J. Sound Vibration, 93,
439–455 [1984]; Gainsboro, Chem. Eng. Prog., 64[3], 85–88 [1968];
“Flow-Induced Vibration in Heat Exchangers,” Symp. Proc., ASME,
New York, 1970); suspended pipe lines (Baird, Trans. ASME, 77,
797–804 [1955]); and suspended cable (Steidel, J. Appl. Mech., 23,
649–650 [1956]).

COATING FLOWS

In coating flows, liquid films are entrained on moving solid surfaces.
For general discussions, see Ruschak (Ann. Rev. Fluid Mech., 17,
65–89 [1985]), Cohen and Gutoff (Modern Coating and Drying Tech-
nology, VCH Publishers, New York, 1992), and Middleman (Funda-
mentals of Polymer Processing, McGraw-Hill, New York, 1977). It is
generally important to control the thickness and uniformity of the
coatings.

In dip coating, or free withdrawal coating, a solid surface is with-
drawn from a liquid pool, as shown in Fig. 6-51. It illustrates many of
the features found in other coating flows, as well. Tallmadge and
Gutfinger (Ind. Eng. Chem., 59[11], 19–34 [1967]) provide an early
review of the theory of dip coating. The coating flow rate and film
thickness are controlled by the withdrawal rate and the flow behavior
in the meniscus region. For a withdrawal velocity V and an angle of
inclination from the horizontal φ, the film thickness h may be esti-
mated for low withdrawal velocities by

h � �
1/2

= Ca2/3 (6-197)

where g = acceleration of gravity
Ca = µV/σ = capillary number

µ = viscosity
σ = surface tension

0.944
��
(1 − cos φ)1/2

ρg
�
σ

ρV 2

�
2 Equation (6-197) is asymptotically valid as Ca → 0 and agrees with

experimental data up to capillary numbers in the range of 0.01 to 0.03.
In practice, where high production rates require high withdrawal
speeds, capillary numbers are usually too large for Eq. (6-197) to
apply. Approximate analytical methods for larger capillary numbers
have been obtained by numerous investigators, but none appears
wholly satisfactory, and some are based on questionable assumptions
(Ruschak, Ann. Rev. Fluid Mech., 17, 65–89 [1985]). With the avail-
ability of high-speed computers and the development of the field of
computational fluid dynamics, numerical solutions accounting for
two-dimensional flow aspects, along with gravitational, viscous, iner-
tial, and surface tension forces are now the most effective means to
analyze coating flow problems.

Other common coating flows include premetered flows, such as
slide and curtain coating, where the film thickness is an indepen-
dent parameter that may be controlled within limits, and the curva-
ture of the mensiscus adjusts accordingly; the closely related blade
coating; and roll coating and extrusion coating. See Ruschak
(ibid.), Cohen and Gutoff (Modern Coating and Drying Technology,
VCH Publishers, New York, 1992) and Middleman (Fundamentals of
Polymer Processing, McGraw-Hill, New York, 1977). For dip coating
of wires, see Taughy (Int. J. Numerical Meth. Fluids, 4, 441–475
[1984]).

Many coating flows are subject to instabilities that lead to unac-
ceptable coating defects. Three-dimensional flow instabilities lead to
such problems as ribbing. Air entrainment is another common
defect.

FALLING FILMS

Minimum Wetting Rate The minimum liquid rate required for
complete wetting of a vertical surface is about 0.03 to 0.3 kg/m ⋅ s for
water at room temperature. The minimum rate depends on the geom-
etry and nature of the vertical surface, liquid surface tension, and mass
transfer between surrounding gas and the liquid. See Ponter, et al.
(Int. J. Heat Mass Transfer, 10, 349–359 [1967]; Trans. Inst. Chem.
Eng. [London], 45, 345–352 [1967]), Stainthorp and Allen (Trans.
Inst. Chem. Eng. [London], 43, 85–91 [1967]) and Watanabe, et al. (J.
Chem. Eng. [Japan], 8[1], 75 [1975]).

Laminar Flow For films falling down vertical flat surfaces, as
shown in Fig. 6-52, or vertical tubes with small film thickness com-
pared to tube radius, laminar flow conditions prevail for Reynolds
numbers less than about 2,000, where the Reynolds number is given
by

Re = (6-198)

where Γ = liquid mass flow rate per unit width of surface and µ = liq-

4Γ
�
µ
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uid viscosity. For a flat film surface, the following equations may be
derived. The film thickness δ is

δ = � �
1/3

(6-199)

The average film velocity is

V = = (6-200)

The downward velocity profile u(x) where x = 0 at the solid surface
and x = δ at the liquid/gas interface is given by

u = 1.5V� − � �
2

� (6-201)

These equations assume that there is no drag force at the gas/liquid
interface, such as would be produced by gas flow. For a flat surface
inclined at an angle θ with the horizontal, the preceding equations
may be modified by replacing g by g sin θ. For films falling inside ver-
tical tubes with film thickness up to and including the full pipe radius,
see Jackson (AIChE J., 1, 231–240 [1955]).

These equations have generally given good agreement with experi-
mental results for low-viscosity liquids (<0.005 Pa ⋅ s) (< 5 cp) whereas
Jackson (ibid.) found film thicknesses for higher-viscosity liquids (0.01
to 0.02 Pa⋅s (10 to 20 cp) were significantly less than predicted by Eq.
(6-197). At Reynolds numbers of 25 or greater, surface waves will be
present on the liquid film. West and Cole (Chem. Eng. Sci., 22, 1388–
1389 [1967]) found that the surface velocity u(x = δ) is still within �7
percent of that given by Eq. (6-201) even in wavy flow.

For laminar non-Newtonian film flow, see Bird, Armstrong, and
Hassager (Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics,
Wiley, New York, 1977, p. 215, 217), Astarita, Marrucci, and Palumbo
(Ind. Eng. Chem. Fundam., 3, 333–339 [1964]) and Cheng (Ind. Eng.
Chem. Fundam., 13, 394–395 [1974]).

Turbulent Flow In turbulent flow, Re > 2,000, for vertical sur-
faces, the film thickness may be estimated to within �25 percent
using

δ = 0.304� �
1/3

(6-202)

Replace g by g sin θ for a surface inclined at angle θ to the horizontal.
The average film velocity is V = Γ/ρδ.

Tallmadge and Gutfinger (Ind. Eng. Chem., 59[11], 19–34 [1967])
discuss prediction of drainage rates from liquid films on flat and cylin-
drical surfaces.

Effect of Surface Traction If a drag is exerted on the surface of
the film because of motion of the surrounding fluid, the film thickness
will be reduced or increased, depending upon whether the drag acts
with or against gravity. Thomas and Portalski (Ind. Eng. Chem., 50,
1081–1088 [1958]), Dukler (Chem. Eng. Prog., 55[10], 62–67 [1959])
and Kosky (Int. J. Heat Mass Transfer, 14, 1220–1224 [1971]) have
presented calculations of film thickness and film velocity. Film thick-
ness data for falling water films with cocurrent and countercurrent air
flow in pipes are given by Zhivaikin (Int. Chem. Eng., 2, 337–341
[1962]). Zabaras, Dukler, and Moalem-Maron (AIChE J., 32, 829–843

Γ1.75µ0.25

�
ρ2g

x
�
δ

2x
�
δ

gρδ2

�
3µ

Γ
�
ρδ

3Γµ
�
ρ2g

[1986]) and Zabaras and Dukler (AIChE J., 34, 389–396 [1988])
present studies of film flow in vertical tubes with both cocurrent and
countercurrent gas flow, including measurements of film thickness,
wall shear stress, wave velocity, wave amplitude, pressure drop, and
flooding point for countercurrent flow.

Flooding With countercurrent gas flow, a condition is reached
with increasing gas rate for which flow reversal occurs and liquid is
carried upward. The mechanism for this flooding condition has been
most often attributed to waves either bridging the pipe or reversing
direction to flow upward at flooding. However, the results of Zabaras
and Dukler (ibid.) suggest that flooding may be controlled by flow
conditions at the liquid inlet and that wave bridging or upward wave
motion does not occur, at least for the 50.8-mm diameter pipe used
for their study. Flooding mechanisms are still incompletely under-
stood. Under some circumstances, as when the gas is allowed to
develop its normal velocity profile in a “calming length” of pipe
beneath the liquid draw-off, the gas superficial velocity at flooding will
be increased, and increases with decreasing length of wetted pipe
(Hewitt, Lacy, and Nicholls, Proc. Two-Phase Flow Symp., University
of Exeter, paper 4H, AERE-4 4614 [1965]). A bevel cut at the bottom
of the pipe with an angle 30° from the vertical will increase the flood-
ing velocity in small-diameter tubes at moderate liquid flow rates. If
the gas approaches the tube from the side, the taper should be ori-
ented with the point facing the gas entrance. Figures 6-53 and 6-54
give correlations for flooding in tubes with square and slant bottoms
(courtesy Holmes, DuPont Co.) The superficial mass velocities of gas
and liquid GG and GL, and the physical property parameters λ and ψ
are the same as those defined for the Baker chart (“Multiphase Flow”
subsection, Fig. 6-25). For tubes larger than 50 mm (2 in), flooding
velocity appears to be relatively insensitive to diameter and the flood-
ing curves for 1.98-in diameter may be used.
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FIG. 6-52 Falling film.

FIG. 6-53 Flooding in vertical tubes with square top and square bottom. To
convert lbm/(ft2 ⋅s) to kg/(m2⋅s), multiply by 4.8824; to convert in to mm, multi-
ply by 25.4. (Courtesy of E. I. du Pont de Nemours & Co.)

FIG. 6-54 Flooding in vertical tubes with square top and slant bottom. To con-
vert lbm/(ft2 ⋅s) to kg/(m2⋅s), multiply by 4.8824; to convert in to mm, multiply
by 25.4. (Courtesy of E. I. du Pont de Nemours & Co.)



HYDRAULIC TRANSIENTS

Many transient flows of liquids may be analyzed by using the full time-
dependent equations of motion for incompressible flow. However,
there are some phenomena that are controlled by the small compress-
ibility of liquids. These phenomena are generally called hydraulic
transients.

Water Hammer When liquid flowing in a pipe is suddenly decel-
erated to zero velocity by a fast-closing valve, a pressure wave propa-
gates upstream to the pipe inlet, where it is reflected; a pounding of
the line commonly known as water hammer is often produced. For
an instantaneous flow stoppage of a truly incompressible fluid in an
inelastic pipe, the pressure rise would be infinite. Finite compressibil-
ity of the fluid and elasticity of the pipe limit the pressure rise to 
a finite value. The Joukowski formula gives the maximum pressure
rise as

∆p = ρa∆V (6-203)

where ρ = liquid density
∆V = change in liquid velocity

a = pressure wave velocity

The wave velocity is given by

a = (6-204)

where β = liquid bulk modulus of elasticity
E = elastic modulus of pipe wall
D = pipe inside diameter
b = pipe wall thickness

The numerator gives the wave velocity for perfectly rigid pipe, and the
denominator corrects for wall elasticity. This formula is for thin-walled
pipes; for thick-walled pipes, the factor D/b is replaced by

2 

where Do = pipe outside diameter
Di = pipe inside diameter

Example 10: Response to Instantaneous Valve Closing Com-
pute the wave speed and maximum pressure rise for instantaneous valve closing,
with an initial velocity of 2.0 m/s, in a 4-in Schedule 40 steel pipe with elastic
modulus 207 × 109 Pa. Repeat for a plastic pipe of the same dimensions, with 
E = 1.4 × 109 Pa. The liquid is water with β = 2.2 × 109 Pa and ρ = 1,000 kg/m3.

For the steel pipe, D = 102.3 mm, b = 6.02 mm, and the wave speed is

a =

=

= 1365 m/s

The maximum pressure rise is

∆p = ρa∆V

= 1,000 × 1,365 × 2.0 = 2.73 × 106 Pa

For the plastic pipe,

a =

= 282 m/s

∆p = ρa∆V = 1,000 × 282 × 2.0 = 5.64 × 105 Pa

The maximum pressure surge is obtained when the valve closes in
less time than the period τ required for the pressure wave to travel
from the valve to the pipe inlet and back, a total distance of 2L.

τ = (6-205)

The pressure surge will be reduced when the time of flow stoppage
exceeds the pipe period τ, due to cancellation between direct and
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reflected waves. Wood and Jones (Proc. Am. Soc. Civ. Eng., J.
Hydraul. Div., 99, (HY1), 167–178 [1973]) present charts for reliable
estimates of water-hammer pressure for different valve closure
modes. Wylie and Streeter (Hydraulic Transients, McGraw-Hill, New
York, 1978) describe several solution methods for hydraulic transients,
including the method of characteristics, which is well suited to com-
puter methods for accurate solutions. A rough approximation for the
peak pressure for cases where the valve closure time tc exceeds the
pipe period τ is (Daugherty and Franzini, Fluid Mechanics with Engi-
neering Applications, McGraw-Hill, New York, 1985):

∆p ≈ � �ρa∆V (6-206)

Successive reflections of the pressure wave between the pipe inlet
and the closed valve result in alternating pressure increases and
decreases, which are gradually attenuated by fluid friction and imper-
fect elasticity of the pipe. Periods of reduced pressure occur while the
reflected pressure wave is traveling from inlet to valve. Degassing of
the liquid may occur, as may vaporization if the pressure drops below
the vapor pressure of the liquid. Gas and vapor bubbles decrease the
wave velocity. Vaporization may lead to what is often called liquid col-
umn separation; subsequent collapse of the vapor pocket can result in
pipe rupture.

In addition to water hammer induced by changes in valve setting,
including closure, numerous other hydraulic transient flows are of
interest, as, for example (Wylie and Streeter, Hydraulic Transients,
McGraw-Hill, New York, 1978), those arising from starting or stop-
ping of pumps; changes in power demand from turbines; reciprocat-
ing pumps; changing elevation of a reservoir; waves on a reservoir;
turbine governor hunting; vibration of impellers or guide vanes in
pumps, fans, or turbines; vibration of deformable parts such as valves;
draft-tube instabilities due to vortexing; and unstable pump or fan
characteristics. Tube failure in heat exhangers may be added to this
list.

Pulsating Flow Reciprocating machinery (pumps and compres-
sors) produces flow pulsations, which adversely affect flow meters and
process control elements and can cause vibration and equipment fail-
ure, in addition to undesirable process results. Vibration and damage
can result not only from the fundamental frequency of the pulse pro-
ducer but also from higher harmonics. Multipiston double-acting
units reduce vibrations. Pulsation dampeners are often added. Damp-
ing methods are described by M. W. Kellogg Co. (Design of Piping
Systems, rev. 2d ed., Wiley, New York, 1965). For liquid phase pulsa-
tion damping, gas-filled surge chambers, also known as accumulators,
are commonly used; see Wylie and Streeter (Hydraulic Transients,
McGraw-Hill, New York, 1978).

Software packages are commercially available for simulation of
hydraulic transients. These may be used to analyze piping systems to
reveal unsatisfactory behavior, and they allow the assessment of design
changes such as increases in pipe-wall thickness, changes in valve
actuation, and addition of check valves, surge tanks, and pulsation
dampeners.

Cavitation Loosely regarded as related to water hammer and
hydraulic transients because it may cause similar vibration and equip-
ment damage, cavitation is the phenomenon of collapse of vapor
bubbles in flowing liquid. These bubbles may be formed anywhere
the local liquid pressure drops below the vapor pressure, or they may
be injected into the liquid, as when steam is sparged into water. Local
low-pressure zones may be produced by local velocity increases (in
accordance with the Bernoulli equation; see the preceding “Conser-
vation Equations” subsection) as in eddies or vortices, or near bound-
ary contours; by rapid vibration of a boundary; by separation of liquid
during water hammer; or by an overall reduction in static pressure, as
due to pressure drop in the suction line of a pump.

Collapse of vapor bubbles once they reach zones where the pres-
sure exceeds the vapor pressure can cause objectionable noise and
vibration and extensive erosion or pitting of the boundary materials.
The critical cavitation number at inception of cavitation, denoted σi, is
useful in correlating equipment performance data:

σi = (6-207)
(p − pv)
�
ρV 2/2

τ
�
tc
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where p = static pressure in undisturbed flow
pv = vapor pressure
ρ = liquid density
V = free-stream velocity of the liquid

The value of the cavitation number for incipient cavitation for a spe-
cific piece of equipment is a characteristic of that equipment. Cavita-
tion numbers for various head forms of cylinders, for disks, and for
various hydrofoils are given by Holl and Wislicenus (J. Basic Eng., 83,
385–398 [1961]) and for various surface irregularities by Arndt and
Ippen (J. Basic Eng., 90, 249–261 [1968]), Ball (Proc. ASCE J. Con-
str. Div., 89(C02), 91–110 [1963]), and Holl (J. Basic Eng., 82,
169–183 [1960]). As a guide only, for blunt forms the cavitation num-
ber is generally in the range of 1 to 2.5, and for somewhat streamlined
forms the cavitation number is in the range of 0.2 to 0.5. Critical cavi-
tation numbers generally depend on a characteristic length dimension
of the equipment in a way that has not been explained. This renders
scale-up of cavitation data questionable.

For cavitation in flow through orifices, Fig. 6-55 (Thorpe, Int. J.
Multiphase Flow, 16, 1023–1045 [1990]) gives the critical cavitation
number for inception of cavitation. To use this cavitation number in
Eq. (6-207), the pressure p is the orifice backpressure downstream of
the vena contracta after full pressure recovery, and V is the average
velocity through the orifice. Fig. 6-55 includes data from Tullis and
Govindarajan (ASCE J. Hydraul. Div., HY13, 417–430 [1973]) modi-
fied to use the same cavitation number definition; their data also
include critical cavitation numbers for 30.50- and 59.70-cm pipes
(12.00- to 23.50-in). Very roughly, compared with the 15.40-cm pipe,
the cavitation number is about 20 percent greater for the 30.50-cm
(12.01-in) pipe and about 40 percent greater for the 59.70-cm (23.50-
in) diameter pipe. Inception of cavitation appears to be related to
release of dissolved gas and not merely vaporization of the liquid. For
further discussion of cavitation, see Eisenberg and Tulin (Streeter,
Handbook of Fluid Dynamics, Sec. 12, McGraw-Hill, New York,
1961).

TURBULENCE

Turbulent flow occurs when the Reynolds number exceeds a critical
value above which laminar flow is unstable; the critical Reynolds num-
ber depends on the flow geometry. There is generally a transition
regime between the critical Reynolds number and the Reynolds num-
ber at which the flow may be considered fully turbulent. The transi-
tion regime is very wide for some geometries. In turbulent flow,
variables such as velocity and pressure fluctuate chaotically; statistical
methods are used to quantify turbulence.

Time Averaging In turbulent flows it is useful to define time-
averaged and fluctuation values of flow variables such as velocity com-

ponents. For example, the x-component velocity fluctuation v′x is the
difference between the actual instantaneous velocity vx and the time-
averaged velocity v
x
:

v′x(x, y, z, t) = vx(x, y, z, t) − v
x
(x, y, z) (6-208)

The actual and fluctuating velocity components are, in general, func-
tions of the three spatial coordinates x, y, and z and of time t. The
time-averaged velocity v
x
 is independent of time for a stationary flow.
Nonstationary processes may be considered where averages are
defined over time scales long compared to the time scale of the tur-
bulent fluctuations, but short compared to longer time scales over
which the time-averaged flow variables change due, for example, to
time-varying boundary conditions. The time average over a time inter-
val 2T centered at time t of a turbulently fluctuating variable ζ(t) is
defined as

ζ
(
t
)
 = �t + T

t − T
ζ(τ) dτ (6-209)

where τ = dummy integration variable. For stationary turbulence, ζ

does not vary with time.

ζ
 = lim
T→∞

�t + T

t − T
ζ(τ) dτ (6-210)

The time average of a fluctuation ζ
′
 = ζ � ζ
 = 0. Fluctuation mag-
nitudes are quantified by root mean squares.

ṽ′x = �(v
′x)
2
 (6-211)

In isotropic turbulence, statistical measures of fluctuations are
equal in all directions.

ṽ′x = ṽ′y = ṽ′z (6-212)

In homogeneous turbulence, turbulence properties are independent
of spatial position. The kinetic energy of turbulence k is given by

k = (ṽ′x2 + ṽ′y2 + ṽ′z2) (6-213)

Turbulent velocity fluctuations ultimately dissipate their kinetic
energy through viscous effects. Macroscopically, this energy dissipa-
tion requires pressure drop, or velocity decrease. The energy dissi-
pation rate per unit mass is usually denoted �. For steady flow in a
pipe, the average energy dissipation rate per unit mass is given by

� = (6-214)

where ρ = fluid density
f = Fanning friction factor

D = pipe inside diameter

When the continuity equation and the Navier-Stokes equations for
incompressible flow are time averaged, equations for the time-
averaged velocities and pressures are obtained which appear identical
to the original equations (6-18 through 6-28), except for the appear-
ance of additional terms in the Navier-Stokes equations. Called
Reynolds stress terms, they result from the nonlinear effects of
momentum transport by the velocity fluctuations. In each i-component
(i = x, y, z) Navier-Stokes equation, the following additional terms
appear on the right-hand side:

�
3

j = 1

with j components also being x, y, z. The Reynolds stresses are given
by

τ ij
(t) = −ρ
v′i
v′j (6-215)

The Reynolds stresses are nonzero because the velocity fluctuations
in different coordinate directions are correlated so that 
v′i
v′j in general
is nonzero.

Although direct numerical simulations under limited circumstances
have been carried out to determine (unaveraged) fluctuating velocity
fields, in general the solution of the equations of motion for turbulent
flow is based on the time-averaged equations. This requires semi-
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FIG. 6-55 Critical cavitation number vs. diameter ratio β. (Reprinted from
Thorpe, “Flow regime transitions due to cavitation in the flow through an ori-
fice,” Int. J. Multiphase Flow, 16, 1023–1045. Copyright © 1990, with kind per-
mission from Elsevier Science, Ltd., The Boulevard, Langford Lane, Kidlington
OX5 1GB, United Kingdom.)



empirical models to express the Reynolds stresses in terms of time-
averaged velocities. This is the closure problem of turbulence. In all
but the simplest geometries, numerical methods are required.

Closure Models Many closure models have been proposed. A
few of the more important ones are introduced here. Many employ
the Boussinesq approximation, simplified here for incompressible
flow, which treats the Reynolds stresses as analogous to viscous
stresses, introducing a scalar quantity called the turbulent or eddy vis-
cosity µt .

−ρ
v′i
v′j = µt� + � (6-216)

An additional turbulence pressure term equal to −wkδij, where k = tur-
bulent kinetic energy and δij = 1 if i = j and δij = 0 if i ≠ j, is sometimes
included in the right-hand side. To solve the equations of motion
using the Boussinesq approximation, it is necessary to provide equa-
tions for the single scalar unknown µt (and k, if used) rather than the
nine unknown tensor components τ ij

(t). With this approximation, and
using the effective viscosity µeff = µ + µt, the time-averaged momen-
tum equation is similar to the original Navier-Stokes equation, with
time-averaged variables and µeff replacing the instantaneous variables
and molecular viscosity. However, solutions to the time-averaged
equations for turbulent flow are not identical to those for laminar flow
because µeff is not a constant.

The universal turbulent velocity profile near the pipe wall pre-
sented in the preceding subsection “Incompressible Flow in Pipes
and Channels” may be developed using the Prandtl mixing length
approximation for the eddy viscosity,

µt = ρlP
2 � � (6-217)

where lP is the Prandtl mixing length. The turbulent core of the uni-
versal velocity profile is obtained by assuming that the mixing length is
proportional to the distance from the wall. The proportionality con-
stant is one of two constants adjusted to fit experimental data.

The Prandtl mixing length concept is useful for shear flows parallel
to walls, but is inadequate for more general three-dimensional flows.
A more complicated semiempirical model commonly used in numeri-
cal computations, and found in most commercial software for compu-
tational fluid dynamics (CFD; see the following subsection), is the k–�
model described by Launder and Spaulding (Lectures in Mathemati-
cal Models of Turbulence, Academic, London, 1972). In this model the
eddy viscosity is assumed proportional to the ratio k2/�.

µt = ρCµ (6-218)

where the value Cµ = 0.09 is normally used. Semiempirical partial dif-
ferential conservation equations for k and � derived from the Navier-
Stokes equations with simplifying closure assumptions are coupled
with the equations of continuity and momentum:

(ρk) + (ρv
i
k) 

= � � + µt � + � − ρ� (6-219)

(ρ�) + (ρv
i
�) 

= � � + C1� � + � − C2� (6-220)

In these equations summations over repeated indices are implied.
The values for the empirical constants C1� = 1.44, C2� = 1.92, σk = 1.0,
and σ� = 1.3 are widely accepted (Launder and Spaulding, The
Numerical Computation of Turbulent Flows, Imperial Coll. Sci. Tech.
London, NTIS N74-12066 [1973]). The k–� model has proved rea-
sonably accurate for many flows without highly curved streamlines or
significant swirl. It usually underestimates flow separation and over-
estimates turbulence production by normal straining. The k–� model
is suitable for high Reynolds number flows. See Virendra, Patel, Rodi,
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and Scheuerer (AIAA J., 23, 1308–1319 [1984]) for a review of low
Reynolds number k–� models.

More advanced models, more complex and computationally inten-
sive, are being developed. For example, the renormalization group
theory (Yakhot and Orszag, J. Scientific Computing, 1, 1–51 [1986];
Yakhot, Orszag, Thangam, Gatski, and Speziale, Phys. Fluids A, 4,
1510–1520 [1992]) modification of the k–� model provides theoretical
values of the model constants and provides substantial improvement
in predictions of flows with stagnation, separation, normal straining,
transient behavior such as vortex shedding, and relaminarization.
Stress transport models provide equations for all nine Reynolds stress
components, rather than introducing eddy viscosity. Algebraic closure
equations for the Reynolds stresses are available, but are no longer in
common use. Differential Reynolds stress models (e.g., Launder,
Reece, and Rodi, J. Fluid Mech., 68, 537–566 [1975]) use differential
conservation equations for all nine Reynolds stress components.

In direct numerical simulation of turbulent flows, the solution of
the unaveraged equations of motion is sought. Due to the extreme
computational intensity, solutions to date have been limited to rela-
tively low Reynolds numbers (Re < about 10,000 to 20,000) in simple
geometries such as channel flow. See, for example, Kim, Moin, and
Moser (J. Fluid Mech., 177, 133 [1987]). Since computational grids
must be sufficiently fine to resolve even the smallest eddies, the com-
putational difficulty rapidly becomes prohibitive as Reynolds number
increases. Large eddy simulations use models for subgrid turbu-
lence while solving for larger-scale fluctuations.

Eddy Spectrum The energy that produces and sustains turbu-
lence is extracted from velocity gradients in the mean flow, principally
through vortex stretching. At Reynolds numbers well above the criti-
cal value there is a wide spectrum of eddy sizes, often described as a
cascade of energy from the largest down to the smallest eddies. The
largest eddies are of the order of the equipment size. The smallest are
those for which viscous forces associated with the eddy velocity fluc-
tuations are of the same order as inertial forces, so that turbulent fluc-
tuations are rapidly damped out by viscous effects at smaller length
scales. Most of the turbulent kinetic energy is contained in the larger
eddies, while most of the dissipation occurs in the smaller eddies.
Large eddies, which extract energy from the mean flow velocity gradi-
ents, are generally anisotropic. At smaller length scales, the direction-
ality of the mean flow exerts less influence, and local isotropy is
approached. The range of eddy scales for which local isotropy holds is
called the equilibrium range.

Davies (Turbulence Phenomena, Academic, New York, 1972) pre-
sents a good discussion of the spectrum of eddy lengths for well-
developed isotropic turbulence. The smallest eddies, usually called
Kolmogorov eddies (Kolmogorov, Compt. Rend. Acad. Sci. URSS, 30,
301; 32, 16 [1941]), have a characteristic velocity fluctuation ṽ′K given
by

ṽ′K = (ν�)1/4 (6-221)

where ν = kinematic viscosity and � = energy dissipation per unit mass.
The size of the Kolmogorov eddy scale is

lK = (ν3/�)1/4 (6-222)

The Reynolds number for the Kolmogorov eddy, ReK = lK ṽ′k /ν, is equal
to unity by definition. In the equilibrium range, which exists for well-
developed turbulence and extends from the medium eddy sizes down
to the smallest, the energy dissipation at the smaller length scales is
supplied by turbulent energy drawn from the bulk flow and passed
down the spectrum of eddy lengths according to the scaling rule

� = (6-223)

which is consistent with Eqs. (6-221) and (6-222). For the medium, or
energy-containing, eddy size,

� = (6-224)

For turbulent pipe flow, the friction velocity u* = 	τw
 /ρ
 used earlier
in describing the universal turbulent velocity profile may be used as an
estimate for ṽ′e. Together with the Blasius equation for the friction fac-

(ṽ′e)3

�
le

(ṽ′)3

�
l
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tor from which � may be obtained (Eq. 6-214), this provides an esti-
mate for the energy-containing eddy size in turbulent pipe flow:

le = 0.05DRe−1/8 (6-225)

where D = pipe diameter and Re = pipe Reynolds number. Similarly,
the Kolmogorov eddy size is

lK = 4DRe−0.78 (6-226)

Most of the energy dissipation occurs on a length scale about 5 times
the Kolmogorov eddy size. The characteristic fluctuating velocity for
these energy-dissipating eddies is about 1.7 times the Kolmogorov
velocity.

The eddy spectrum is normally described using Fourier transform
methods; see, for example, Hinze (Turbulence, McGraw-Hill, New
York, 1975), and Tennekes and Lumley (A First Course in Turbulence,
MIT Press, Cambridge, 1972). The spectrum E(κ) gives the fraction
of turbulent kinetic energy contained in eddies of wavenumber
between κ and κ + dκ, so that k = � ∞

0 E(κ) dκ. The portion of the equi-
librium range excluding the smallest eddies, those which are affected
by dissipation, is the inertial subrange. The Kolmogorov law gives
E(κ) ∝ κ −5/3 in the inertial subrange.

Several texts are available for further reading on turbulent flow,
including Tennekus and Lumley (ibid.), Hinze (Turbulence, McGraw-
Hill, New York, 1975), Landau and Lifshitz (Fluid Mechanics, 2d ed.,
Chap. 3, Pergamon, Oxford, 1987) and Panton (Incompressible Flow,
Wiley, New York, 1984).

COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics (CFD) emerged in the 1980s as a sig-
nificant tool for fluid dynamics both in research and in practice,
enabled by rapid development in computer hardware and software.
Commercial CFD software is widely available. Computational fluid
dynamics is the numerical solution of the equations of continuity and
momentum (Navier-Stokes equations for incompressible Newtonian
fluids) along with additional conservation equations for energy and
material species in order to solve problems of nonisothermal flow,
mixing, and chemical reaction.

Textbooks include Fletcher (Computational Techniques for Fluid
Dynamics, vol. 1: Fundamental and General Techniques, and vol. 2:
Specific Techniques for Different Flow Categories, Springer-Verlag,
Berlin, 1988), Hirsch (Numerical Computation of Internal and Exter-
nal Flows, vol. 1: Fundamentals of Numerical Discretization, and vol. 2:
Computational Methods for Inviscid and Viscous Flows, Wiley, New
York, 1988), Peyret and Taylor (Computational Methods for Fluid
Flow, Springer-Verlag, Berlin, 1990), Canuto, Hussaini, Quarteroni,
and Zang (Spectral Methods in Fluid Dynamics, Springer-Verlag,
Berlin, 1988), Anderson, Tannehill, and Pletcher (Computational
Fluid Mechanics and Heat Transfer, Hemisphere, New York, 1984),
and Patankar (Numerical Heat Transfer and Fluid Flow, Hemisphere,
Washington, D.C., 1980).

A wide variety of numerical methods has been employed, but three
basic steps are common to all CFD methods:

1. Subdivision or discretization of the flow domain into
cells or elements. There are methods, called boundary element
methods, in which the surface of the flow domain, rather than the vol-
ume, is discretized, but the vast majority of CFD work uses volume
discretization. Discretization produces a set of grid lines or curves
which define a mesh and a set of nodes at which the flow variables
are to be calculated. The equations of motion are solved approxi-
mately on a domain defined by the grid. Curvilinear or body-fitted
coordinate system grids may be used to ensure that the discretized
domain accurately represents the true problem domain.

2. Discretization of the governing equations. In this step,
the exact partial differential equations to be solved are replaced by
approximate algebraic equations written in terms of the nodal values
of the dependent variables. Among the numerous discretization
methods, finite difference, finite volume, and finite element
methods are the most common. The finite difference method esti-
mates spatial derivatives in terms of the nodal values and spacing
between nodes. The governing equations are then written in terms of

the nodal unknowns at each interior node. Finite volume methods,
related to finite difference methods, may be derived by a volume inte-
gration of the equations of motion, with application of the divergence
theorem, reducing by one the order of the differential equations.
Equivalently, macroscopic balance equations are written on each cell.
Finite element methods are weighted residual techniques in which the
unknown dependent variables are expressed in terms of basis func-
tions interpolating among the nodal values. The basis functions are
substituted into the equations of motion, resulting in error residuals
which are multiplied by the weighting functions, integrated over the
control volume, and set to zero to produce algebraic equations in
terms of the nodal unknowns. Selection of the weighting functions
defines the various finite element methods. For example, Galerkin’s
method uses the nodal interpolation basis functions as weighting func-
tions. Each method also has its own method for implementing
boundary conditions. The end result after discretization of the
equations and application of the boundary conditions is a set of alge-
braic equations for the nodal unknown variables. Discretization in
time is also required for the ∂/∂t time derivative terms in unsteady
flow; finite differencing in time is often used. The descretized equa-
tions represent an approximation of the exact equations, and their
solution gives an approximation for the flow variables. The accuracy of
the solution improves as the grid is refined; that is, as the number of
nodal points is increased.

3. Solution of the algebraic equations. For creeping flows,
the algebraic equations are linear and a linear matrix equation is to be
solved. Both direct and iterative solvers have been used. For most
flows, the nonlinear inertial terms in the momentum equation are
important and the algebraic discretized equations are therefore non-
linear. Solution yields the nodal values of the unknowns.

CFD solutions, especially for complex three-dimensional flows,
generate very large quantities of solution data. Computer graphics
have greatly improved the ability to examine CFD solutions and visu-
alize flow.

CFD methods are used for incompressible and compressible,
creeping, laminar and turbulent, Newtonian and non-Newtonian, and
isothermal and nonisothermal flows. Chemically reacting flows, par-
ticularly in the field of combustion, have been simulated. Solution
accuracy must be considered from several perspectives. These include
convergence of the algorithms for solving the nonlinear discretized
equations and convergence with respect to refinement of the mesh so
that the discretized equations better approximate the exact equations
and, in some cases, so that the mesh more accurately fits the true
geometry. The possibility that steady-state solutions are unstable must
always be considered. In addition to numerical sources of error, mod-
eling errors are introduced in turbulent flow, where semiempirical
closure models are used to solve time-averaged equations of motion,
as discussed previously. Most commercial CFD codes include the k–�
turbulence model, which has been by far the most widely used. More
accurate models, such as differential Reynolds stress and renormaliza-
tion group theory models, are also becoming available. Significant
solution error is known to result in some problems from inadequacy of
the turbulence model. Closure models for nonlinear chemical reac-
tion source terms may also contribute to inaccuracy. Direct numeri-
cal simulation and large eddy simulation, which involve solutions
for velocity fluctuations, under limited conditions or with certain
modeling assumptions, remain primarily research areas.

In its general sense, multiphase flow is not currently solvable by
computational fluid dynamics. However, in certain cases reasonable
solutions are possible. These include well-separated flows where the
phases are confined to relatively well-defined regions separated by
one or a few interfaces and flows in which a second phase appears as
discrete particles of known size and shape whose motion may be
approximately computed with drag coefficient formulations, or rigor-
ously computed with refined meshes applying boundary conditions at
the particle surface. Two-fluid modeling, in which the phases are
treated as overlapping continua, with each phase occupying a volume
fraction that is a continuous function of position (and time) is a useful
approximation which is becoming available in commercial software.
See Elghobashi and Abou-Arab ( J. Physics Fluids, 26, 931–938
[1983]) for a k–� model for two-fluid systems.
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Figure 6-56 gives an example CFD calculation for time-dependent
flow past a square cylinder at a Reynolds number of 22,000 (Choud-
hury, et al., Trans. ASME Fluids Div., Lake Tahoe, Nev. [1994]). The
computation was done with an implementation of the renormalization
group theory k–� model. The series of contour plots of stream func-
tion shows a sequence in time over about 1 vortex-shedding period.
The calculated Strouhal number (Eq. [6-195]) is 0.146, in excellent
agreement with experiment, as is the time-averaged drag coefficient,
CD = 2.24. Similar computations for a circular cylinder at Re = 14,500
have given excellent agreement with experimental measurements for
St and CD (Introduction to the Renormalization Group Method and
Turbulence Modeling, Fluent, Inc., 1993).

DIMENSIONLESS GROUPS

For purposes of data correlation, model studies, and scale-up, it is
useful to arrange variables into dimensionless groups. Table 6-7 lists
many of the dimensionless groups commonly found in fluid mechan-
ics problems, along with their physical interpretations and areas of
application. More extensive tabulations may be found in Catchpole
and Fulford (Ind. Eng. Chem., 58[3], 46–60 [1966]) and Fulford and
Catchpole (Ind. Eng. Chem., 60[3], 71–78 [1968]).

6-48 FLUID AND PARTICLE DYNAMICS

FIG. 6-56 Computational fluid dynamic simulation of flow over a square cylinder, show-
ing one vortex shedding period. (From Choudhury, et al., Trans. ASME Fluids Div., 
TN-076 [1994].)
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TABLE 6-7 Dimensionless Groups and Their Significance

Name Symbol Formula Physical interpretation Comments

Archimedes number Ar Particle settling

Bingham number Bm Flow of Bingham plastics = yield 
number, Y

Bingham Reynolds number ReB Flow of Bingham plastics

Blake number B Beds of solids

Bond number Bo Atomization = Eotvos number, Eo

Capillary number Ca Two-phase flows, free surface flows

Cauchy number C Compressible flow, hydraulic transients

Cavitation number σ Cavitation

Dean number De Reynolds number × Flow in curved channels

Deborah number De λ� Viscoelastic flow

Drag coefficient CD Flow around objects, particle settling

Elasticity number El Viscoelastic flow

Euler number Eu Fluid friction in conduits

Fanning friction factor f = Fluid friction in conduits Darcy friction 
factor = 4f

Froude number Fr Often defined as Fr = V/	gL


Densometric Froude number Fr′ or Fr′ =

Hedstrom number He Bingham Reynolds number × Bingham number Flow of Bingham plastics

Hodgson number H Pulsating gas flow

Mach number M Compressible flow

Newton number

Ohnesorge number Z Atomization =

Peclet number Pe Heat, mass transfer, mixing

Pipeline parameter Pn Water hammer
maximum water-hammer pressure rise
�����

2 × static pressure
aVo
�
2gH

convective transport
���

diffusive transport
LV
�
D

Weber number
��
Reynolds number

viscous force
�����
(inertial force × surface tension force)1/2

µ
�
(ρLσ)1/2

fluid velocity
��
sonic velocity

V
�
c

time constant of system
���

period of pulsation
V′ω∆p
�

q
 p


L2τYρ
�

µ∞
2

V
��
	(ρ
d
−
 ρ
)g
L
/ρ


inertial force
��
gravity force

ρV 2

��
(ρd − ρ)gL

inertial force
��
gravity force

V 2

�
gL

wall shear stress
��

velocity head
2τw
�
ρV 2

D∆p
�
2ρV 2L

frictional pressure loss
���

2 × velocity head
∆p
�
ρV 2

elastic force
��
inertial force

λµ
�
ρL2

drag force
����
projected area × velocity head

FD
�
AρV 2/2

fluid relaxation time
���
flow characteristic time

inertial force
��
centrifugal force

Re
�
(Dc/D)1/2

excess pressure above vapor pressure
����

velocity head
p − pv
�
ρV 2/2

inertial force
���
compressibility force

ρV 2

�
β

viscous force
���
surface-tension force

µV
�
σ

gravitational force
���
surface-tension force

(ρL − ρG)L2g
��

σ

inertial force
��
viscous force

Vρ
�
µ(1 − �)s

inertial force
��
viscous force

LVρ
�
µ∞

yield stress
��
viscous stress

τ yL
�
µ∞V

inertial forces × buoyancy forces
����

(viscous forces)2

gL3(ρp − ρ)ρ
��

µ2



GENERAL REFERENCES: Brodkey, The Phenomena of Fluid Motions, Addison-
Wesley, Reading, Mass., 1967; Clift, Grace, and Weber, Bubbles, Drops and Par-
ticles, Academic, New York, 1978; Govier and Aziz, The Flow of Complex
Mixtures in Pipes, Van Nostrand Reinhold, New York, 1972, Krieger, Hunting-
ton, N.Y., 1977; Lapple, et al., Fluid and Particle Mechanics, University of
Delaware, Newark, 1951; Levich, Physicochemical Hydrodynamics, Prentice-
Hall, Englewood Cliffs, N.J., 1962; Orr, Particulate Technology, Macmillan,
New York, 1966; Shook and Roco, Slurry Flow, Butterworth-Heinemann,
Boston, 1991; Wallis, One-dimensional Two-phase Flow, McGraw-Hill, New
York, 1969.

DRAG COEFFICIENT

Whenever relative motion exists between a particle and a surrounding
fluid, the fluid will exert a drag upon the particle. In steady flow, the
drag force on the particle is

FD = (6-227)

where FD = drag force
CD = drag coefficient
AP = projected particle area in direction of motion
ρ = density of surrounding fluid
u = relative velocity between particle and fluid

The drag force is exerted in a direction parallel to the fluid velocity.
Equation (6-227) defines the drag coefficient. For some solid bod-
ies, such as aerofoils, a lift force component perpendicular to the liq-
uid velocity is also exerted. For free-falling particles, lift forces are
generally not important. However, even spherical particles experience
lift forces in shear flows near solid surfaces.

CDAPρu2

�
2

TERMINAL SETTLING VELOCITY

A particle falling under the action of gravity will accelerate until the
drag force balances gravitational force, after which it falls at a constant
terminal or free-settling velocity ut, given by

ut = �� (6-228)

where g = acceleration of gravity
mp = particle mass
ρp = particle density

and the remaining symbols are as previously defined.
Settling particles may undergo fluctuating motions owing to vortex

shedding, among other factors. Oscillation is enhanced with increas-
ing separation between the mass and geometric centers of the parti-
cle. Variations in mean velocity are usually less than 10 percent. The
drag force on a particle fixed in space with fluid moving is somewhat
lower than the drag force on a particle freely settling in a stationary
fluid at the same relative velocity.

Spherical Particles For spherical particles of diameter dp, Eq.
(6-228) becomes

ut = �� (6-229)

The drag coefficient for rigid spherical particles is a function of parti-
cle Reynolds number, Rep = dpρu/µ where µ = fluid viscosity, as shown
in Fig. 6-57. At low Reynolds number, Stokes’ Law gives

CD = Rep < 0.1 (6-230)
24
�
Rep

4gdp(ρp − ρ)
��

3ρCD

2gmp(ρp − ρ)
��

ρρpAPCD
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TABLE 6-7 Dimensionless Groups and Their Significance (Concluded )

Name Symbol Formula Physical interpretation Comments

Power number Po Agitation

Prandtl velocity ratio v+ velocity normalized by friction velocity Turbulent flow near a wall, friction 
velocity = 	τw
 /ρ


Reynolds number Re

Strouhal number St vortex shedding frequency × characteristic flow Vortex shedding, von Karman vortex 
time scale streets

Weber number We Bubble, drop formation
inertial force

���
surface tension force

ρV 2L
�

σ

f′ L
�
V

inertial force
��
viscous force

LVρ
�

µ

v
�
(τ w /ρ)1/2

impeller drag force
���

inertial force
P

�
ρN3L5

Nomenclature SI Units

a Wave speed m/s
A Projected area m
c Sonic velocity m/s
D Diameter of pipe m
Dc Diameter of curvature m
D′ Diffusivity m2/s
f ′ Vortex shedding frequency 1/s
FD Drag force N
g Acceleration of gravity m/s
H Static head m
L Characteristic length m
N Rotational speed 1/s
p Pressure Pa
pv Vapor pressure Pa
p
 Average static pressure Pa
∆p Frictional pressure drop Pa

Nomenclature SI Units

P Power Watts
q
 Average volumetric flow rate m3/s
s Particle area/particle volume 1/m
v Local fluid velocity m/s
V Characteristic or average fluid velocity m/s
V ′ System volume m3

� Bulk modulus Pa
� Void fraction m3

λ Fluid relaxation time s
µ Fluid viscosity Pa ⋅ s
µ ∞ Infinite shear viscosity (Bingham plastics) Pa ⋅ s
ρ Fluid density kg/m3

ρG, ρL Gas, liquid densities kg/m3

ρd Dispersed phase density kg/m3

σ Surface tension N/m
ω Characteristic frequency or reciprocal 1/s

time scale of flow
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which may also be written

FD = 3πµudp Rep < 0.1 (6-231)

and gives for the terminal settling velocity

ut = Rep < 0.1 (6-232)

In the intermediate regime (0.1 < Rep < 1,000), the drag coefficient
may be estimated within 6 percent by

CD = � ��1 + 0.14Re p
0.70� 0.1 < Rep < 1,000 (6-233)

In the Newton’s Law regime, which covers the range 1,000 < Rep <
350,000, CD = 0.445, within 13 percent. In this region, Eq. (6-227)
becomes

ut = 1.73�� 1,000 < Rep < 350,000 (6-234)

Between about Rep = 350,000 and 1 × 106, the drag coefficient drops
dramatically in a drag crisis owing to the transition to turbulent flow
in the boundary layer around the particle, which delays aft separation,
resulting in a smaller wake and less drag. Beyond Re = 1 × 106, the
drag coefficient may be estimated from (Clift, Grace, and Weber):

CD = 0.19 − Rep > 1 × 106 (6-235)

Drag coefficients may be affected by turbulence in the free-stream
flow; the drag crisis occurs at lower Reynolds numbers when the free
stream is turbulent. Torobin and Guvin (AIChE J., 7, 615–619 [1961])
found that the drag crisis Reynolds number decreases with increasing
free-stream turbulence, reaching a value of 400 when the relative 
turbulence intensity, defined as 	u

′

/U
R is 0.4. Here 	u

′

 is the rms
fluctuating velocity and U
R is the relative velocity between the particle
and the fluid.

For particles settling in non-Newtonian fluids, correlations are

8 × 104

�
Rep

gdp(ρp − ρ)
��

ρ

24
�
Rep

gdp
2 (ρp − ρ)

��
18µ

given by Dallon and Christiansen (Preprint 24C, Symposium on
Selected Papers, part III, 61st Ann. Mtg. AIChE, Los Angeles, Dec.
1–5, 1968) for spheres settling in shear-thinning liquids, and by Ito
and Kajiuchi (J. Chem. Eng. Japan, 2[1], 19–24 [1969]) and Pazwash
and Robertson (J. Hydraul. Res., 13, 35–55 [1975]) for spheres set-
tling in Bingham plastics. Beris, Tsamopoulos, Armstrong, and Brown
(J. Fluid Mech., 158 [1985]) present a finite element calculation for
creeping motion of a sphere through a Bingham plastic.

Nonspherical Rigid Particles The drag on a nonspherical par-
ticle depends upon its shape and orientation with respect to the direc-
tion of motion. The orientation in free fall as a function of Reynolds
number is given in Table 6-8.

The drag coefficients for disks (flat side perpendicular to the direc-
tion of motion) and for cylinders (infinite length with axis perpendic-
ular to the direction of motion) are given in Fig. 6-57 as a function of
Reynolds number. The effect of length-to-diameter ratio for cylinders
in the Newton’s law region is reported by Knudsen and Katz (Fluid
Mechanics and Heat Transfer, McGraw-Hill, New York, 1958).

Pettyjohn and Christiansen (Chem. Eng. Prog., 44, 157–172
[1948]) present correlations for the effect of particle shape on free-
settling velocities of isometric particles. For Re < 0.05, the terminal
or free-settling velocity is given by
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FIG. 6-57 Drag coefficients for spheres, disks, and cylinders: Ap = area of particle projected on a plane normal to direction of motion; C = over-
all drag coefficient, dimensionless; Dp = diameter of particle; Fd = drag or resistance to motion of body in fluid; Re = Reynolds number, dimen-
sionless; u = relative velocity between particle and main body of fluid; µ = fluid viscosity; and ρ = fluid density. (From Lapple and Shepherd, Ind.
Eng. Chem., 32, 605 [1940].)

TABLE 6-8 Free-Fall Orientation of Particles

Reynolds number* Orientation

0.1–5.5 All orientations are stable when there are three or
more perpendicular axes of symmetry.

5.5–200 Stable in position of maximum drag.
200–500 Unpredictable. Disks and plates tend to wobble, while

fuller bluff bodies tend to rotate.
500–200,000 Rotation about axis of least inertia, frequently 

coupled with spiral translation.

SOURCE: From Becker, Can. J. Chem. Eng., 37, 85–91 (1959).
*Based on diameter of a sphere having the same surface area as the particle.



ut = K1 (6-236)

K1 = 0.843 log � � (6-237)

where ψ = sphericity, the surface area of a sphere having the same vol-
ume as the particle, divided by the actual surface area of the particle;
ds = equivalent diameter, equal to the diameter of the equivalent
sphere having the same volume as the particle; and other variables are
as previously defined.

In the Newton’s law region, the terminal velocity is given by

ut = �� (6-238)

K3 = 5.31 − 4.88ψ (6-239)

Equations (6-236) to (6-239) are based on experiments on cube-
octahedrons, octahedrons, cubes, and tetrahedrons for which the
sphericity ψ ranges from 0.906 to 0.670, respectively. See also Clift,
Grace, and Weber. A graph of drag coefficient vs. Reynolds number
with ψ as a parameter may be found in Brown, et al. (Unit Operations,
Wiley, New York, 1950) and in Govier and Aziz.

For particles with ψ < 0.67, the correlations of Becker (Can. J.
Chem. Eng., 37, 85–91 [1959]) should be used. Reference to this
paper is also recommended for intermediate region flow. Settling
characteristics of nonspherical particles are discussed by Clift, Grace,
and Weber, Chaps. 4 and 6.

The terminal velocity of axisymmetric particles in axial motion
can be computed from Bowen and Masliyah (Can. J. Chem. Eng., 51,
8–15 [1973]) for low–Reynolds number motion:

ut = (6-240)

K2 = 0.244 + 1.035� − 0.712�2 + 0.441�3 (6-241)

where Ds = diameter of sphere with perimeter equal to maximum
particle projected perimeter

V ′ = ratio of particle volume to volume of sphere with 
diameter Ds

� = ratio of surface area of particle to surface area of a
sphere with diameter Ds

and other variables are as defined previously.
Hindered Settling When particle concentration increases, par-

ticle settling velocities decrease because of hydrodynamic interaction
between particles and the upward motion of displaced liquid. The sus-
pension viscosity increases. Hindered settling is normally encoun-
tered in sedimentation and transport of concentrated slurries. Below
0.1 percent volumetric particle concentration, there is less than a 1
percent reduction in settling velocity. Several expressions have been
given to estimate the effect of particle volume fraction on settling
velocity. Maude and Whitmore (Br. J. Appl. Phys., 9, 477–482 [1958])
give, for uniformly sized spheres,

ut = ut0(1 − c)n (6-242)

where ut = terminal settling velocity
ut0 = terminal velocity of a single sphere (infinite dilution)

c = volume fraction solid in the suspension
n = function of Reynolds number Rep = dput0ρ/µ as given

Fig. 6-58

In the Stokes’ law region (Rep < 0.3), n = 4.65 and in the Newton’s law
region (Rep > 1,000), n = 2.33. Equation (6-242) may be applied to
particles of any size in a polydisperse system, provided the volume
fraction corresponding to all the particles is used in computing termi-
nal velocity (Richardson and Shabi, Trans. Inst. Chem. Eng. [London],
38, 33–42 [1960]). The concentration effect is greater for nonspheri-
cal and angular particles than for spherical particles (Steinour, Ind.
Eng. Chem., 36, 840–847 [1944]). Theoretical developments for
low–Reynolds number flow assemblages of spheres are given by Hap-
pel and Brenner (Low Reynolds Number Hydrodynamics, Prentice-

gDs
2(ρp − ρ)

��
18µ

V′
�
K2

4ds(ρp − ρ)g
��

3K3ρ

ψ
�
0.065

gds
2(ρp − ρ)

��
18µ

Hall, Englewood Cliffs, N.J., 1965) and Famularo and Happel
(AIChE J., 11, 981 [1965]) leading to an equation of the form

ut = (6-243)

where γ is about 1.3. As particle concentration increases, resulting in
interparticle contact, hindered settling velocities are difficult to pre-
dict. Thomas (AIChE J., 9, 310 [1963]) provides an empirical expres-
sion reported to be valid over the range 0.08 < ut /ut0 < 1:

ln � � = −5.9c (6-244)

Time-Dependent Motion The time-dependent motion of par-
ticles is computed by application of Newton’s second law, equating the
rate of change of particle motion to the net force acting on the parti-
cle. Rotation of particles may also be computed from the net torque.
For large particles moving through low-density gases, it is usually suf-
ficient to compute the force due to fluid drag from the relative veloc-
ity and the drag coefficient computed for steady flow conditions. For
two- and three-dimensional problems, the velocity appearing in the
particle Reynolds number and the drag coefficient is the amplitude of
the relative velocity. The drag force, not the relative velocity, is to be
resolved into vector components to compute the particle acceleration
components. Clift, Grace, and Weber (Bubbles, Drops and Particles,
Academic, London, 1978) discuss the complexities that arise in the
computation of transient drag forces on particles when the transient
nature of the flow is important. Analytical solutions for the case of a
single particle in creeping flow (Rep = 0) are available. For example,
the creeping motion of a sphericial particle released from rest in a
stagnant fluid is described by

ρpV = g(ρp − ρ)V − 3πµdpU − V 

− � � dp
2 	π
ρ
µ
 �t

0
(6-245)

Here, U = particle velocity, positive in the direction of gravity, and V =
particle volume. The first term on the right-hand side is the net gravi-
tational force on the particle, accounting for buoyancy. The second is
the steady-state Stokes drag (Eq. 6-231). The third is the added mass
or virtual mass term, which may be interpreted as the inertial effect
of the fluid which is accelerated along with the particle. The volume of
the added mass of fluid is half the particle volume. The last term, the
Basset force, depends on the entire history of the transient motion,
with past motions weighted inversely with the square root of elapsed
time. Clift, et al. provide integrated solutions. In turbulent flows, par-
ticle velocity will closely follow fluid eddy velocities when (Clift et al.)

(dU/dt)t = s ds
��

	t
−
 s

3
�
2

dU
�
dt

ρ
�
2

dU
�
dt

ut
�
ut0

ut0
�
1 + γc1/3
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FIG. 6-58 Values of exponent n for use in Eq. (6-240). (From Maude and
Whitmore, Br. J. Appl. Phys., 9, 481 [1958]. Courtesy of the Institute of Physics
and the Physical Society.)



τ0 >> (6-246)

where τ0 = oscillation period or eddy time scale, the right-hand side
expression is the particle relaxation time, and ν = kinematic viscosity.

Gas Bubbles Fluid particles, unlike rigid solid particles, may
undergo deformation and internal circulation. Figure 6-59 shows rise
velocity data for air bubbles in stagnant water. In the figure, Eo =
Eotvos number, g(ρL − ρG)db

2 /σ, where ρL = liquid density, ρG = gas
density, db = bubble diameter, and σ = surface tension. Small bubbles
(<1-mm [0.04-in] diameter) remain spherical and rise in straight lines.
The presence of surface active materials generally renders small bub-
bles rigid, and they rise roughly according to the drag coefficient and
terminal velocity equations for spherical solid particles. Bubbles
roughly in the range 2- to 8-mm (0.079- to 0.32-in) diameter assume
flattened, ellipsoidal shape, and rise in a zig-zag or spiral pattern. This
motion increases dissipation and drag, and the rise velocity may actu-
ally decrease with increasing bubble diameter in this region, charac-
terized by rise velocities in the range of 20 to 30 cm/s (0.7 to 1.0 ft/s).
Large bubbles, >8-mm (0.32-in) diameter, are greatly deformed,
assuming a mushroomlike, spherical cap shape. These bubbles are
unstable and may break into smaller bubbles. Carefully purified
water, free of surface active materials, allows bubbles to freely circu-
late even when they are quite small. Under creeping flow conditions
Reb = dburρL /µL < 1, where ur = bubble rise velocity and µL = liquid vis-
cosity, the bubble rise velocity may be computed analytically from the
Hadamard-Rybczynski formula (Levich, Physicochemical Hydro-
dynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962, p. 402). When
µG /µL << 1, which is normally the case, the rise velocity is 1.5 times the
rigid sphere Stokes law velocity. However, in practice, most liquids,
including ordinary distilled water, contain sufficient surface active
materials to render small bubbles rigid. Larger bubbles undergo
deformation in both purified and ordinary liquids; however, the varia-
tion in rise velocity for large bubbles with degree of purity is quite evi-
dent in Fig. 6-59. For additional discussion, see Clift, et al., Chap. 7.
Figure 6-60 gives the drag coefficient as a function of bubble or drop
Reynolds number for air bubbles in water and water drops in air, com-
pared with the standard drag curve for rigid spheres. Information on
bubble motion in non-Newtonian liquids may be found in Astarita
and Apuzzo (AIChE J., 11, 815–820 [1965]); Calderbank, Johnson,
and Loudon (Chem. Eng. Sci., 25, 235–256 [1970]); and Acharya,
Mashelkar, and Ulbrecht (Chem. Eng. Sci., 32, 863–872 [1977]).

dp
2 [(2ρp /ρ) + 1]
��

36ν
Liquid Drops in Liquids Very small liquid drops in immisicibile

liquids behave like rigid spheres, and the terminal velocity can be
approximated by use of the drag coefficient for solid spheres up to a
Reynolds number of about 10 (Warshay, Bogusz, Johnson, and Kint-
ner, Can. J. Chem. Eng., 37, 29–36 [1959]). Between Reynolds num-
bers of 10 and 500, the terminal velocity exceeds that for rigid spheres
owing to internal circulation. In normal practice, the effect of drop
phase viscosity is neglected. Grace, Wairegi, and Nguyen (Trans. Inst.
Chem. Eng., 54, 167–173 [1976]; Clift, et al., op. cit., pp. 175–177)
present a correlation for terminal velocity valid in the range

M < 10−3 Eo < 40 Re > 0.1 (6-247)
where M = Morton number = gµ4∆ρ/ρ2σ3

Eo = Eotvos number = g∆ρd 2/σ
Re = Reynolds number = duρ/µ
∆ρ = density difference between the phases

ρ = density of continuous liquid phase
d = drop diameter
µ = continuous liquid viscosity
σ = surface tension
u = relative velocity
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FIG. 6-59 Terminal velocity of air bubbles in water at 20°C. (From Clift, Grace, and Weber, Bubbles,
Drops and Particles, Academic, New York, 1978).

FIG. 6-60 Drag coefficient for water drops in air and air bubbles in water.
Standard drag curve is for rigid spheres. (From Clift, Grace, and Weber, Bub-
bles, Drops and Particles, Academic, New York, 1978.)



The correlation is represented by

J = 0.94H0.757 (2 < H ≤ 59.3) (6-248)

J = 3.42H0.441 (H > 59.3) (6-249)

where H = EoM−0.149� �
−0.14

(6-250)

J = ReM 0.149 + 0.857 (6-251)

Note that the terminal velocity may be evaluated explicitly from

u = M−0.149(J − 0.857) (6-252)

In Eq. (6-250), µ = viscosity of continuous liquid and µw = viscosity of
water, taken as 0.9 cP (0.0009 Pa ⋅ s).

For drop velocities in non-Newtonian liquids, see Mhatre and Kin-
ter (Ind. Eng. Chem., 51, 865–867 [1959]); Marrucci, Apuzzo, and
Astarita (AIChE J., 16, 538–541 [1970]); and Mohan, et al. (Can. J.
Chem. Eng., 50, 37–40 [1972]).

Liquid Drops in Gases Liquid drops falling in stagnant gases
appear to remain spherical and follow the rigid sphere drag relation-
ships up to a Reynolds number of about 100. Large drops will deform,
with a resulting increase in drag, and in some cases will shatter. The
largest water drop which will fall in air at its terminal velocity is about
8 mm (0.32 in) in diameter, with a corresponding velocity of about 
9 m/s (30 ft/s). Drops shatter when the Weber number defined as

We = (6-253)

exceeds a critical value. Here, ρG = gas density, u = drop velocity, d =
drop diameter, and σ = surface tension. A value of Wec = 13 is often
cited for the critical Weber number.

Terminal velocities for water drops in air have been correlated by
Berry and Prnager (J. Appl. Meteorol., 13, 108–113 [1974]) as

Re = exp [−3.126 + 1.013 ln ND − 0.01912(ln ND)2] (6-254)

for 2.4 < ND < 107 and 0.1 < Re < 3550. The dimensionless group ND

(often called the Best number [Clift, et al.]) is given by

ND = (6-255)

and is proportional to the similar Archimedes and Galileo numbers.
Figure 6-61 gives calculated settling velocities for solid spherical

particles settling in air or water using the standard drag coefficient
curve for spherical particles. For fine particles settling in air, the
Stokes-Cunningham correction has been applied to account for
particle size comparable to the mean free path of the gas. The correc-
tion is less than 1 percent for particles larger than 16 µm settling in air.
Smaller particles are also subject to Brownian motion. Motion of
particles smaller than 0.1 µm is dominated by Brownian forces and
gravitational effects are small.

Wall Effects When the diameter of a settling particle is signifi-
cant compared to the diameter of the container, the settling velocity is
reduced. For rigid spherical particles settling with Re < 1, the correc-
tion given in Table 6-9 may be used. The factor kw is multiplied by the
settling velocity obtained from Stokes’ law to obtain the corrected set-

4ρ∆ρgd 3

�
3µ2

ρGu2d
�

σ

µ
�
ρd

µ
�
µw

4
�
3

tling rate. For values of diameter ratio β = particle diameter/vessel
diameter less than 0.05, kw = 1/(1 + 2.1β) (Zenz and Othmer, Fluidiza-
tion and Fluid-Particle Systems, Reinhold, New York, 1960, pp.
208–209). In the range 100 < Re < 10,000, the computed terminal
velocity for rigid spheres may be multiplied by k′w to account for wall
effects, where k′w is given by (Harmathy, AIChE J., 6, 281 [1960])

k′w = (6-256)

For gas bubbles in liquids, there is little wall effect for β < 0.1. For 
β > 0.1, see Uto and Kintner (AIChE J., 2, 420–424 [1956]), Maneri
and Mendelson (Chem. Eng. Prog., 64, Symp. Ser., 82, 72–80 [1968]),
and Collins (J. Fluid Mech., 28, part 1, 97–112 [1967]).

1 − β2

�
	1
 +
 β
4


6-54 FLUID AND PARTICLE DYNAMICS

FIG. 6-61 Terminal velocities of spherical particles of different densities set-
tling in air and water at 70°F under the action of gravity. To convert ft/s to m/s,
multiply by 0.3048. (From Lapple, et al., Fluid and Particle Mechanics, Univer-
sity of Delaware, Newark, 1951, p. 292.)

TABLE 6-9 Wall Correction Factor for Rigid Spheres 
in Stokes’ Law Region

β* kw β kw

0.0 1.000 0.4 0.279
0.05 0.885 0.5 0.170
0.1 0.792 0.6 0.0945
0.2 0.596 0.7 0.0468
0.3 0.422 0.8 0.0205

SOURCE: From Haberman and Sayre, David W. Taylor Model Basin Report
1143, 1958.

*β = particle diameter divided by vessel diameter.
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