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Nomenclature and Units

Following is a listing of typical nomenclature expressed in SI and U.S. customary units. Specific definitions and units are stated at the place of application in this section.

U.S.
customary

Symbol Definition SI units units

A, B, C, . . . Names of substances, 
or their concentrations

A• Free radical, as CH3
•

Ca Concentration of substance A kg mol/m3 lb mol/ft3

C0 Initial mean concentration in kg mol/m3 lb mol/ft3

vessel
Cp Heat capacity kJ/(kg⋅K) Btu/(lbm⋅°F)
CSTR Continuous stirred tank reactor
D, De, Dx Dispersion coefficient m2/s ft2/s
Deff Effective diffusivity m2/s ft2/s
DK Knudsen diffusivity m2/s ft2/s
E(t) Residence time distribution
E(tr) Normalized residence time 

distribution
fa Ca /Ca 0 or na /na 0, fraction of A 

remaining unconverted
F(t) Age function of tracer
∆G Gibbs energy change kJ Btu
Ha Hatta number
∆Hr Heat of reaction kJ/kg mol Btu/lb mol
K, Ke, Ky, Kφ Chemical equilibrium constant
k, kc, kp Specific rate of reaction Variable Variable
L Length of path in reactor m ft
n Parameter of Erlang or Gamma 

distribution, or number of 
stages in a CSTR battery

na Number of mols of A present
n′a Number of mols flowing per unit 

time; the prime (′) may be  
omitted when context is clear

nt Total number of mols
pa Partial pressure of substance A kPa psi
Pe Peclet number for dispersion
PFR Plug flow reactor
Q Heat transfer kJ Btu
r Radial position m ft
ra Rate of reaction of A per unit Variable Variable

volume
R Radius of cylindrical vessel m ft
Re Reynolds number
Sc Schmidt number

U.S.
customary

Symbol Definition SI units units

t Time s s
t� Mean residence time s s
tr t/t�, reduced time
TFR Tubular flow reactor
u Linear velocity m/s ft/s
u(t) Unit step input
V Volume of reactor contents m3 ft3

V′ Volumetric flow rate m3/s ft3/s
Vr Volume of reactor m3 ft3

x Axial position in a reactor m ft
xa 1 − fa = 1 − Ca /Ca0 or 1 − na /na0, 

fraction of A converted
z x/L, normalized axial position

Greek letters

β r/R, normalized radial position
γ3(t) Skewness of distribution
δ(t) Unit impulse input, Dirac 

function
ε Fraction void space in a 

packed bed
� t/t�, reduced time, fraction of 

surface covered by adsorbed 
species

η Effectiveness of porous catalyst
Λ(t) Intensity function
µ Viscosity Pa⋅s lbm/(ft⋅s)
ν υ/ρ, kinematic viscosity m2/s ft2/s
π Total pressure Pa psi
ρ Density kg/m3 lbm/ft3

ρ r/R, normalized radial  
position in a pore

σ2(t) Variance
σ2(tr) Normalized variance
τ t/t�, reduced time
τ Tortuosity
φ Thiele modulus
φm Modified Thiele modulus

Subscripts

0 Subscript designating initial or inlet
conditions, as in Ca0, na0, V′0, . . .
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INTRODUCTION

From an engineering viewpoint, reaction kinetics has these principal
functions:

Establishing the chemical mechanism of a reaction
Obtaining experimental rate data
Correlating rate data by equations or other means
Designing suitable reactors
Specifying operating conditions, control methods, and auxiliary

equipment to meet the technological and economic needs of the reac-
tion process

Reactions can be classified in several ways. On the basis of mecha-
nism they may be:

1. Irreversible
2. Reversible
3. Simultaneous
4. Consecutive

A further classification from the point of view of mechanism is with
respect to the number of molecules participating in the reaction, the
molecularity:

1. Unimolecular
2. Bimolecular and higher
Related to the preceding is the classification with respect to order.

In the power law rate equation r = kCa
pCb

q, the exponent to which any
particular reactant concentration is raised is called the order p or q
with respect to that substance, and the sum of the exponents p + q
is the order of the reaction. At times the order is identical with the 
molecularity, but there are many reactions with experimental orders
of zero or fractions or negative numbers. Complex reactions may not
conform to any power law. Thus, there are reactions of:

1. Integral order
2. Nonintegral order
3. Non–power law; for instance, hyperbolic
With respect to thermal conditions, the principal types are:
1. Isothermal at constant volume
2. Isothermal at constant pressure
3. Adiabatic
4. Temperature regulated by heat transfer
According to the phases involved, reactions are:
1. Homogeneous, gaseous, liquid or solid
2. Heterogeneous:

Controlled by diffusive mass transfer
Controlled by chemical factors

A major distinction is between reactions that are:
1. Uncatalyzed
2. Catalyzed with homogeneous or solid catalysts
Equipment is also a basis for differentiation, namely:
1. Stirred tanks, single or in series
2. Tubular reactors, single or in parallel
3. Reactors filled with solid particles, inert or catalytic:

Fixed bed
Moving bed
Fluidized bed, stable or entrained

Finally, there are the operating modes:
1. Batch
2. Continuous flow
3. Semibatch or semiflow
Clearly, these groupings are not mutually exclusive. The chief dis-

tinctions are between homogeneous and heterogeneous reactions and
between batch and flow reactions. These distinctions most influence
the choice of equipment, operating conditions, and methods of
design.

PRIMARY NOMENCLATURE

The participant A is identified by the subscript a. Thus, the concen-
tration is Ca; the number of mols is na; the fractional conversion is xa;
the partial pressure is pa; and the rate of decomposition is ra. Capital
letters are also used to represent concentration on occasion; thus, A
instead of Ca. The flow rate in mol is n′a but the prime (′ ) is left off
when the meaning is clear from the context. The volumetric flow rate
is V′; reactor volume is Vr or simply V of batch reactors; the total 
pressure is π; and the temperature is T. The concentration is Ca = na /V
or n′a /V ′.

Throughout this section, equations are presented without specifica-
tion of units. Use of any consistent unit set is appropriate.

SUMMARY

Basic kinetic relations of this section are summarized in Table 7-1.
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1. The reference reaction is
νaA + νbB + ⋅ ⋅ ⋅ → νrR + νsS + ⋅ ⋅ ⋅
∆ν = νr + νs + ⋅ ⋅ ⋅ − (νa + νb + ⋅ ⋅ ⋅)

2. Stoichiometric balance for any component i:

ni = ni0 � � �(na0 − na)

{ + for product (right-hand side, RHS)
− for reactant (left-hand side, LHS)

Ci = Ci0 � � �(Ca0 − Ca), at constant T and V only

nt = nt0 + � �(na0 − na)

3. Law of mass action:

ra = − =kCa
νaCb

νb⋅ ⋅ ⋅

= kCa
νa[Cb0 − � �(Ca0 − Ca)]νb⋅ ⋅ ⋅

ra = kCa
α[Cb0 − � �(Ca0 − Ca)]β⋅ ⋅ ⋅

where it is not necessarily true that α = νa′, β = νb′, ⋅ ⋅ ⋅
4. At constant volume, Ca = na/Vr

kt = �Ca0

Ca

dCa

kt = �na0

na

dna

Completed integrals for some values of α and β are in Table 7-4.

5. Ideal gases at constant pressure:

Vr = = �nt0 + (na0 − na)�
ra = kCa

α

kt = � �
α − 1�na0

na

dna

6. Temperature effect on the specific rate:

k = k∞ exp � � = exp �a′ − �
E = energy of activation

7. Simultaneous reactions. The overall rate is the algebraic sum of the rates of
the individual reactions. For example, take the three reactions:

A + B →
k1 C + D (1)

C + D →
k2 A + B (2)

A + C →
k3 E (3)

The rates are related by:
ra = ra1 + ra2 + ra3 = k1CaCb − k2CcCd + k3CaCc

rb = −rd = k1CaCb − k2CcCd

rc = k1CaCb + k2CcCd + k3CaCc

re = −k3CaCc

The number of independent rate equations is the same as the number of inde-
pendent stoichiometric relations. In the present example, Reactions (1) and
(2) are reversible reactions and are not independent. Accordingly, Cc and Cd,
for example, can be eliminated from the equations for ra and rb which then
become an integrable system. Usually only systems of linear differential equa-
tions with constant coefficients are solvable analytically.

8. Mass transfer resistance:

Cai = interfacial concentration of reactant A

ra = − =kd(Ca − Cai) = kCα
ai = k�Ca − �

α

kt = �Ca0

Ca

dCa
1

��
(Ca − ra/kd)α

ra
�
kd

dCa
�
dt

b′
�
T

−E
�
RT

[nt0 + (∆ν/νa)(na0 − na)]α − 1

���
na

α

RT
�
P

∆ν
�
νa

RT
�
P

ntRT
�

P

Vr
−1 + α + β

���
na

α[nb0 + (νb/νa)(na0 − na)]β⋅ ⋅ ⋅

1
����
Ca

α[Cb0 − (νb/νa)(Ca0 − Ca)]β ⋅ ⋅ ⋅

νb
�
νa

νb
�
νa

dna
�
dt

1
�
Vr

∆ν
�
νa

νi
�
νa

νi
�
νa

The relation between ra and Ca must be established (numerically if need be)
from the second line before the integration can be completed.

9. Solid-catalyzed reactions. Some Langmuir-Hinshelwood mechanisms for the
reference reaction A + B → R + S (see also Tables 7.2, 7.3):
• Adsorption rate of A controlling:

ra = − =kPaθv

θv = 1/�1 + + KbPb + KrPr + KsPs + KlPl� (1)

Ke = PrPs /PaPb (equilibrium constant)

l is an adsorbed substance that is chemically inert.
• Surface reaction rate controlling:

r = kPaPbθv
2

θv = , summation over all substances absorbed (2)

• Reaction A2 + B → R + S, with A2 dissociated upon adsorption and with
surface reaction rate controlling:

ra = kPaPbθv
3

θv = (3)

• At constant P and T the Pi are eliminated in favor of ni and the total pres-
sure by:

Pa = P

Pi = P = P

�+ for products, RHS
− for reactants, LHS

V =

kt = �na0

na

, for a Case (2) batch reaction (4)

10. A continuously stirred tank reactor (CSTR) battery
Material balances:

n′a0 = n′a + ra1Vr1

�
n′a,j − 1 = n′aj + rajVrj, for the jth stage

For a first-order reaction, with ra = kCa:

=

=

for j tanks in series with the same temperatures and residence times t�i =
Vri /V′i, where V′ is the volumetric flow rate.

11. Plug flow reactor (PFR):

rs = − = kCa
αCb

β⋅ ⋅ ⋅

= k� �
α

� �
β

⋅ ⋅ ⋅n′b
�
V′

n′a
�
V′

dn′a
�
dVr

1
�
(1 + kt�i) j

1
����
(1 + k1t�1)(1 + k2 t�2)⋅ ⋅ ⋅(1 + kj t�j)

Caj
�
Ca0

dna
�
VPaPbθv

2

ntRT
�

P

ni0 � (νi/νa)(na0 − na)
���
nt0 + (∆ν/νa)(na0 − na)

ni
�
nt

na
�
nt

1
���
(1 + �K�aP�a� + KbPb + ⋅ ⋅ ⋅)

1
��
1 + 	 KjPj

PrPs
�
Pb

Ka
�
Ke

dna
�
dt

1
�
V

TABLE 7-1 Basic Rate Equations
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RATE OF REACTION

The term rate of reaction means the rate of decomposition per unit
volume,

ra = − , mol/(unit time) (unit volume) (7-1)

= , n0 = na0(1 − xa) (7-2)

where xa is the fractional conversion of substance A. A rate of forma-
tion will have the opposite sign. The negative sign is required for the
rate of decomposition to be a positive number. When the volume is
constant,

ra = − only at constant volume (7-3)

Law of Mass Action The effect of concentration on the rate is
isolated as

ra = kf(Ca, Cb, . . .) (7-4)

where the specific rate k is independent of concentration but does
depend on temperature, catalysts, and other factors. The law of mass
action states that the rate is proportional to the concentrations of the
reactants. For the reaction

νa A + νbB + νcC + . . . ⇒ ν r R + νsS + . . . (7-5)

the rate equation is

ra = − =kCa
pCb

qCc
r . . . (7-6)

⇒ − at constant volume (7-7)

The exponents (p, q, r, . . .) are empirical, but they are identical with
the stoichiometric coefficients (νa, νb, νc, . . .) when the stoichiometric
equation truly represents the mechanism of reaction. The first group
of exponents identifies the order of the reaction, the stoichiometric
coefficients the molecularity.

Effect of Temperature The Arrhenius equation relates the spe-
cific rate to the absolute temperature,

k = k0 exp � � (7-8)

= exp �A − � (7-9)

ln k = A − (7-10)

E is called the activation energy and k0 the preexponential factor.
When presumably accurate data deviate from linearity as stated by the

B
�
T

B
�
T

−E
�
RT

dCa
�
dt

dna
�
dt

1
�
V

dCa
�
dt

dxa
�
dt

na0
�
V

dna
�
dt

1
�
V

last equation, the reaction is believed to have a complex mechanism
(Fig. 7-1g).

CONCENTRATION, MOLES, PARTIAL PRESSURE, 
AND MOLE FRACTION

Any property of a reacting system that changes regularly as the reac-
tion proceeds can be formulated as a rate equation which should be
convertible to the fundamental form in terms of concentration, Eq.
(7-4). Examples are the rates of change of electrical conductivity, of
pH, or of optical rotation. The most common other variables are par-
tial pressure pi and mole fraction Ni. The relations between these units
are

ni = VCi = nt Ni = (7-11)

where the subscript t denotes the total mol and π the total pressure.
For ideal gases,

V =

ni = Ci = pi = pi = Ni (7-12)

Other volume-explicit equations of state are sometimes required,
such as the compressibility equation V = zRT/P or the truncated virial
equation V = (1 + B′P)RT/P. The quantities z and B′ are not constants,
so some kind of averaging will be required. More accurate equations
of state are even more difficult to use but are not often justified for
kinetic work.

Designate δa as the increase in the total mol per mol decrease of
substance A according to the stoichiometric equation Eq. (7-5):

δa = (7-13)

The total number of mols present is

nt = nt0 + δa(na0 − na) = nt0 + δaxa = nt0 + δb xb = . . . (7-14)

Accordingly,

− = δa = δb = δc = . . . (7-15)

The various differentials are

dni = d(VCi) = d(Vpi) = d(ntNi) = dNi (7-16)

The rate equation

ra = − =kcCa
α (7-17)

dCa
�
dt

1
�
V

nt
�
1 + δiNi

1
�
RT

dnc
�
dt

dnb
�
dt

dna
�
dt

dnt
�
dt

(νr + νs + . . .) − (νa + νb + νc + . . .)
����

νa

πV
�
RT

V
�
RT

ni
�
π

ntRT
�

π

ntRT
�

π

nt pi
�

π

RATE EQUATIONS 7-5

RATE EQUATIONS

12. Material and energy balances for batch, CSTR, and PFR in Tables 7-5, 7-6,
and 7-7.

13. Notation. A, B, R, S are participants in the reaction; the letters also are
used to represent concentrations.

Ci = ni/Vr or n′i /V′, concentration
ni = mol of component i in the reactor
n′i = molal flow rate of component i
Vr = volume of reactor
V′ = volumetric flow rate
νi = stoichiometric coefficient
ri = rate of reaction of substance i [mol/(unit time)(unit volume)]

α,β = empirical exponents in a rate equation

TABLE 7-1 Basic Rate Equations (Concluded)

SOURCE: Adapted from Walas, Chemical Process Equipment Selection and Design, Butterworth-Heinemann, 1990.
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t
r = kCq, slope = k(q – 1)

l/C
q 

– 
1

t
r = kC, slope = –k

ln
 C

ln C
r = kCq, slope = q

ln
 r

ln C0
r = kCq, slope = 1 – q

ln
 t 1

/2

l/T
k = exp(A – E/RT), slope = –E/R
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FIG. 7-1 Constants of the power law and Arrhenius equations by linearization: (a) integrated equation, (b) integrated first order, (c)
differential equation, (d) half-time method, (e) Arrhenius equation, ( f ) variable activation energy, and (g) change of mechanism with
temperature (T in K).
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can be expressed in terms of pressure and mole fraction,

− = kc � �
α

pa
α (7-18)

or at constant volume,

− = kc � �
α − 1

pa
α = k ppa

α (7-19)

where the specific rate in terms of partial pressure is

kp = kc � �
α − 1

(7-20)

Typical Units of Specific Rates For order α, typical units are:
kc (L/g mol)α − 1 ⋅s−1, and s−1 when first order
kp (g mol)/L⋅s⋅atmα

Furthermore,

− = kc � �
α

Na
α

or

− = kc � �
α − 1

� � Na
α

= kc � �
α − 1

� � Na
α (7-21)

Various derivatives are evaluated in numerical Example 1.

Example 1: Rates of Change at Constant V or Constant P
Consider the ideal gas reaction 2A ⇒ B + 2C occurring at 800°R, starting with 
5 lb mol of pure A at 10 atm. The rate equation is

ra = − =700 Ca
2 lb mol/(ft3 ⋅h)

Evaluate the various rates of change at the time when the rate of reaction is ra =
0.1 lb mol/(ft3⋅h) and the reaction proceeds at (1) constant volume, and (2) con-
stant pressure.

ra = − =700 Ca
2 = 0.1 lb mol/(ft3⋅h)

Ca = 
� = 0.01195 lb mol/ft3

V0 = = = 291.6 ft3

Ca0 = = = 0.01715 lb mol/ft3

nt = 0.5(3na 0 − na) lb mol

V = = 29.16(15 − na) ft3

π = π0 = 3na 0 − na atm

At constant volume, na = V0Ca = 291.6(0.01195) = 3.4853 lb mol

= V0 = −291.6(0.1) = −29.16 lb mol/h

Na = =

= � � = (−29.16)

= −6.598 h−1

pa = atm

= � � = (−29.16) = −58.32 atm/h
0.729(800)
��

291.6
dna
�
dt

RT
�
V0

dpa
�
dt

naRT
�

V0

6
��
5(3 − 3.4853/5)2

dna
�
dt

6
��
na 0(3 − na /na 0)2

dNa
�
dt

2na
�
3na 0 − na

na
�
nt

dCa
�
dt

dna
�
dt

nt
�
nt 0

(3na 0 − na) RT
��

2π0

5
�
291.6

na 0
�
V0

5(0.729)(800)
��

10
na 0 RT
�

π0

0.1
�
700

dna
�
dt

1
�
V

dna
�
dt

1
�
V

1
�
1 + δa Na

π
�
RT

1
�
1 + δa Na

nt
�
V

dNa
�
dt

nt
�
V

dNa
�
dt

nt
��
V(1 + δaNa)

1
�
RT

1
�
RT

dpa
�
dt

1
�
RT

d(Vpa )
�

dt
1

�
RTV

π = π0 = π0 = 5 �3 − � atm

= − =29.16 atm/h

At constant pressure, na = VCa = 29.16(15 − na) (0.01195) = 3.8768 lb mol

= −Vra = −324.4(0.1) = −32.44 lb mol/h

since V = 29.16 (15 − 3.8768) = 324.4 ft3

Ca = = lb mol/ft3

= � � = � � (−32.44)

= 0.1349 lb mol/(ft3 ⋅h)

= = (−32.44) = −7.8658 h−1

pa = Naπ0 = atm

= = (−32.44) = −78.66 atm/h

V = ft3

= �− � = (32.44) = 945.95 ft3/h

= � � = − = − (−32.44) = 6.488 h−1

SUMMARY

Rate At constant V At constant P

dnadt, lb mol/h −29.16 −32.44
dNa /dt, h−1 −6.598 −7.866
dpa /dt, atm/h −58.32 −78.66
dπ/dt, atm/h 29.16 0
dV/dt, ft3/h 0 946.0
dxa /dt, h−1 5.832 6.488

REACTION TIME IN FLOW REACTORS

Flow reactors usually operate at nearly constant pressure, and thus at
variable density when there is a change of moles of gas or of tempera-
ture. An apparent residence time is the ratio of reactor volume and the
inlet volumetric flow rate,

t�app = (7-22)

The true residence time is obtained by integration of the rate equation,

t� = � = � = � (7-23)

The apparent time is readily evaluated and is popularly used to indi-
cate the loading of a flow reactor.

A related concept is that of space velocity, which is a ratio of a flow
rate at STP (usually 60°F, 1 atm) to the size of the reactor. The most
common versions in typical units are:

GHSV (gas hourly space velocity) = (volumes of feed as gas at
STP/h)/(volume of reactor or its content of catalyst) = SCFH gas
feed/ft3.

LHSV (liquid hourly space velocity) = (volume of liquid feed at
60°F/h)/(ft3 of reactor) = SCFH liquid feed/ft3.

WHSV (weight hourly space velocity) = (lb feed/h)/(lb catalyst).
It is usually advisable to spell out the units when the acronym is

used, since the units are arbitrary.

dn
��
kV ′(n/V ′)q

dn
�
V ′r

dVr
�
V ′

Vr
�
V ′0

1
�
5

dna
�
dt

1
�
na0

na 0 − na
�

na0

d
�
dt

dxa
�
dt

0.729(800)
��

20
dna
�
dt

RT
�
2π0

dV
�
dt

(3na 0 − na)RT
��

2π0

(6)(10)(5)
��
(15 − 3.8768)2

dna
�
dt

6π0
��
(3na 0 − na)2

dpa
�
dt

2π0na
�
3na 0 − na

30
��
(15 − 3.8768)2

dna
�
dt

6na 0
��
(3na 0 − na)2

dNa
�
dt

15
��
(15 − 3.8768)2

1
�
29.16

dna
�
dt

15
��
(15 − na)2

1
�
29.16

dCa
�
dt

na
��
29.16(15 − na)

na
�
V

dna
�
dt

dna
�
dt

5
�
na 0

dπ
�
dt

na
�
na 0

3na 0 − na
��

2na0

nt
�
nt 0
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CONSTANTS OF THE RATE EQUATION

The problem is to apply experimental data to find the constants of
assumed rate equations, of which some of the simpler examples are:

r = − =kCq (7-24)

or r = − =exp �a − � Cq (7-25)

or ra = − =kCa
pCb

q (7-26)

Experimental data that are most easily obtained are of (C, t), (p, t), 
(r, t), or (C, T, t). Values of the rate are obtainable directly from mea-
surements on a continuous stirred tank reactor (CSTR), or they may
be obtained from (C, t) data by numerical means, usually by first curve
fitting and then differentiating. When other properties are measured
to follow the course of reaction—say, conductivity—those measure-
ments are best converted to concentrations before kinetic analysis is
started.

The most common ways of evaluating the constants are from linear
rearrangements of the rate equations or their integrals. Figure 7-1
examines power law and Arrhenius equations, and Fig. 7-2 has some
more complex cases.

From the Differential Equation Linear regression can be
applied with the differential equation to obtain constants. Taking log-
arithms of Eq. (7-25),

ln r = a − + q ln C (7-27)

The variables that are combined linearly are ln r, 1/T, and ln C. Multi-
linear regression software can be used to find the constants, or only
three sets of the data suitably spaced can be used and the constants
found by simultaneous solution of three linear equations. For a lin-
earized Eq. (7-26) the variables are logarithms of r, Ca, and Cb. The
logarithmic form of Eq. (7-24) has only two constants, so the data can
be plotted and the constants read off the slope and intercept of the
best straight line.

From the Integrated Equation The integral of Eq. (7-24) is

k = ln , when q = 1 (7-28)

�� �
q − 1

− 1�, when q ≠ 1 (7-29)

A value of q is assumed and values of k are calculated for each data
point. The correct value of q has been chosen when the values of k are
nearly constant or show no drift. This procedure is applicable for a
rate equation of any complexity if it can be integrated. Eqs. (7-28) and
(7-29) can also be put into linear form:

ln � � = k(t − t0), when q = 1 (7-30)

� �
q − 1

= � �
q − 1

+ k(q − 1) (t − t0), when q ≠ 1 (7-31)

When the plots are collinear, the correct value of k is found from the
slope of the best straight line.

From Half-Times The time by which one-half of the reactant
has been converted is called the half-time. From Eq. (7-24),

kt1/2 = ln 2, q = 1

q ≠ 1 (7-32)

When several sets of (C0, t1/2) are known, values of q are tried until one
is found that makes all k values substantially the same. Alternatively,
the constants may be found from a linearized plot,

ln t1/2 = ln + (1 − q) ln C0 (7-33)
2q − 1 − 1
�
(q − 1)k

2q − 1 − 1
��
(q − 1)C0

q − 1

1
�
C0

1
�
C

C0
�
C

C0
�
C

C0
q − 1

��
(t − t0) (q − 1)

C0
�
C

1
�
t − t0

b
�
T

dCa
�
dt

b
�
t

dC
�
dt

dC
�
dt

Complex Rate Equations Complex rate equations may require
individual treatment, although the examples in Fig. 7-2 are all lin-
earizable. A perfectly general procedure is nonlinear regression. For
instance, when r = f(C, a, b, . . .) where (a, b, . . .) are the constants to
be found, the condition is

	 [ri − f(Ci, a, b, . . .)]2 ⇒ Minimum (7-34)

and = = . . . = 0 (7-35)

Much professional software is devoted to this problem. A diskette for
sets of differential and algebraic equations with parameters to be
found by this method is by Constantinides (Applied Numerical Meth-
ods with Personal Computers, McGraw-Hill, 1987).

The acquisition of kinetic data and parameter estimation can be at
quite a sophisticated level, particularly for solid catalytic reactions: 
statistical design of experiments, refined equipment, computer moni-
toring of data acquisition, and statistical evaluation of the data. Two
papers are devoted to this topic by Hofmann (in Chemical Reaction
Engineering, ACS Advances in Chemistry, 109, 519–534 [1972]; in 
de Lasa, ed., Chemical Reactor Design and Technology, Martinus
Nijhoff, 1985, pp. 69–105).

MULTIPLE REACTIONS AND 
STOICHIOMETRIC BALANCES

Single Reaction For the stoichiometric equation, Eq. (7-5), the
relations between the conversions of the several participants are

= = = . . . = − = − =. . . (7-36)

Ca = = , Cb = , Cc = , and so on

(7-37)

Also, Cb = Cb0 − (Ca0 − Ca)

Cc = Cc0 − (Ca0 − Ca), and so on (7-38)

Accordingly, the rate equation can be written in terms of the single
dependent variable x; thus,

ra = − =

= k � �
p

� �
q

� �
r
. . . (7-39)

and in terms of concentrations,

ra = − =kCa
pCb

qCc
r . . .

= kCa
p�Cb0 − (Ca0 − Ca)�

q

�Cc0 − (Ca0 − Ca)�
r
. . . (7-40)

Eq. (7-39) becomes integrable when V is properly expressed in terms
of the composition of the system, and Eq. (7-40) can be integrated as
it stands.

Multiple Reactions When a substance participates in several
reactions at the same time, its net rate of decomposition is the alge-
braic sum of its rates in the individual reactions. Identify the rates of
the individual steps with subscripts, (dC/dt)1, (dC/dt)2, . . . . Take this
case of three reactions,

A + B ⇒1
C

A + C ⇒2
D + E

D + E ⇒3
A + C

νc
�
νa

νb
�
νa

dCa
�
dt

nc0 − νcx /νa
��

V
nb0 − νbx/νa
��

V
na0 − x
�

V

dx
�
dt

1
�
V

dna
�
dt

1
�
V

νc
�
νa

νb
�
νa

Cc0 − νcx/νa
��

V
nb0 − νbx/νa
��

V
na0 − x
�

V
na
�
V

ns0 − ns
�

νs

nr0 − nr
�

νr

nb0 − nb
�

νb

na0 − na
�

νa

x
�
νa

∂Σ
�
∂b

∂Σ
�
∂a
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FIG. 7-2 Linear analysis of catalytic rate equations. (a), (b) Sucrose hydrolysis with an enzyme, r = kM/(M + C). Data are 
(C, t) curve-fitted with a fourth-degree polynomial and differentiated for r − (−dC/dt). Integrated equation,
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y = 
� = a + bpu + cps + dph

= 2.7655 + 1.5247pu + 1.0092ps + 1.1291ph

ln r = ln k + a ln Pu + b ln ps + c ln ph

= −4.059 + 0.469 ln pu − 0.2356 ln ps + 0.5997 ln ph

r = 0.0173 P u
0.469 p s
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The overall rates of the several participants are

ra = ra1 + ra2 + ra3 = −k1CaCb − k2CaCc + k3CdCe

rb = −k1CaCb

rc = k1CaCb − k2CaCc + k3CdCe

rd = re = k2CaCe − k3CdCe (7-41)

The number of independent rate equations is the same as the number
of independent stoichiometric relations. In this example, reactions 2
and 3 are reversible and are not independent, so there are only two
independent rate equations.

Some reactions apparently represented by single stoichiometric
equations are in reality the result of several reactions, often involving
short-lived intermediates. After a set of such elementary reactions is
postulated by experience, intuition, and exercise of judgment, a rate
equation is deduced and checked against experimental rate data. Sev-
eral examples are given under “Mechanisms of Some Complex Reac-
tions,” following.

Stoichiometric Balances The amounts of all participants in a
group of reactions can be expressed in terms of a number of key com-
ponents equal to the number of independent stoichiometric relations.
The independent rate equations will then involve only those key com-
ponents and will be, in principle, integrable.

For a single equation, Eqs. (7-36) and (7-37) relate the amounts of
the several participants. For multiple reactions, the procedure for
finding the concentrations of all participants starts by assuming that
the reactions proceed consecutively. Key components are identified.
Intermediate concentrations are identified by subscripts. The result-
ing concentration from a particular reaction is the starting concentra-
tion for the next reaction in the series. The final value carries no
subscript. After the intermediate concentrations are eliminated alge-
braically, the compositions of the excess components will be express-
ible in terms of the key components.

Example 2: Analysis of Three Simultaneous Reactions Con-
sider the three reactions

A + 2B ⇒
1

3C

A + C ⇒
2

2D

C + D ⇒
3

2E

with A, B, and C the key components. Apply Eq. (7-37),

A0 − A1 = =

A1 − A = C1 − C2 =

C2 − C = D2 − D = (7-42)

Elimination of the concentrations with subscripts 1 and 2 will find D and E in
terms of A, B, and C, with the same results that are achieved by the following
method.

This alternative procedure is called the xyz method. The amount of change
by the first reaction is x, by the second y, and by the third z. For the same
example,

A = A0 − x − y

B = B0 − 2x

C = C0 + 3x − y − z

D = D0 + 2y − z

E = E0 + 2z (7-43)

Elimination of x, y, and z gives for the excess components:

D0 − D = −3(A0 − A) + 3(B0 − B)

E0 − E = 2(A0 − A) − 4(B0 − B) − 2(C0 − C) (7-44)

The differential equations for the three key components become:

= −k1AB2 − k2AC

= −2k1AB2dB
�
dt

dA
�
dt

E − E0
�

2

D2 − D0
�

2

C1 − C0
�

3
B0 − B
�

2

= 3k1AB2 − k2AC − k3CD

= 3k1AB2 − C{k2A + k3[D0 + 3(A0 − A) − 3(B0 − B)]} (7-45)

These equations will have to be solved numerically for A, B, and C as functions
of time; then D and E can be found by algebra. Alternatively, five differential
equations can be written and solved directly for the five participants as functions
of time, thus avoiding the use of stoichiometric balances, although these are
really involved in the formulation of the differential equations.

MECHANISMS OF SOME COMPLEX REACTIONS

The rates of many reactions are not represented by application of the
law of mass action on the basis of their overall stoichiometric relations.
They appear, rather, to proceed by a sequence of first- and second-
order processes involving short-lived intermediates which may be new
species or even unstable combinations of the reactants; for 2A + B ⇒
C, the sequence could be A + B ⇒ AB followed by A + AB ⇒ C.

Free radicals are molecular fragments having one or more unpaired
electrons, usually short-lived (milliseconds) and highly reactive. They
are detectable spectroscopically and some have been isolated. They
occur as initiators and intermediates in such basic phenomena as oxi-
dation, combustion, photolysis, and polymerization. The rate equation
of a process in which they are involved is developed on the postulate
that each free radical is at equilibrium or its net rate of formation is
zero. Several examples of free radical and catalytic mechanisms will be
cited, all possessing nonintegral power law or hyperbolic rate equa-
tions.

Phosgene Synthesis CO + Cl2 ⇒ COCl2, but with the sequence:

Cl2 ⇔ 2Cl•

Cl• + CO ⇔ COCl•

COCl• + Cl2 ⇒ COCl2 + Cl•

Assuming the first two reactions to be in equilibrium, an expression is
found for the concentration of COCl• and when this is substituted into
the third equation the rate becomes

rCOCl 2 = k(CO)(Cl2)3/2 (7-46)

Ozone and Chlorine The assumed sequence is:

Cl2 + O3 ⇒ ClO• + ClO2
•

ClO2
• + O3 ⇒ ClO3

• + O2

ClO3
• + O3 ⇒ ClO2

• + 2O2

ClO3
• + ClO3

• ⇒ Cl2 + 3O2

The chain carriers ClO2
• and ClO3

• are assumed to attain steady state.
Then,

rO3 = k(Cl2)1/ 2 (O3)3/ 2 (7-47)

Hydrogen Bromide H2 + Br2 ⇒ 2HBr (Bodenstein, 1906). The
chain of reactions is:

Br2 ⇒1
2Br•

Br• + H2 ⇒2
HBr

H• + Br2 ⇒3
HBR + Br•

H• + HBr ⇒ H2 + Br•

Br• + Br• ⇒ Br2

Assuming equilibrium for the concentrations of the free radicals, the
rate equation becomes

= k1(Br•)(H2) + k2(H•)(Br2) − k3(H•)(HBr)

= (7-48)

Enzyme Kinetics The enzyme E and the reactant S are assumed
to form a complex ES that then dissociates into product P and uncom-
bined enzyme.

k1(H2)(Br2)3/ 2

��
k2(Br2) + k3(HBr)

d(HBr)
�

dt

dC
�
dt
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S + E ⇔
2

1
ES

ES ⇒3
E + P

If equilibrium holds,

= = Km

where (E0) is the total of the free and combined enzyme and Km is a dis-
sociation constant. Solve for (ES) and substitute into the rate equation,

rp = = k(ES) = (7-49)

This hyperbolic equation is named after Michaelis and Menten
(Biochem. Zeit., 49, 333 [1913]).

Chain Polymerization The growth process of a polymer postu-
lates a three-step mechanism:

1. An initiator I generates a free radical R•

2. The free radical reacts repeatedly with monomer by a process
called propagation.

3. The free radical eventually disappears by some reaction, called
termination. The stoichiometric equations are

I ⇒1
2R•

R• + M ⇒2
RM•, initiation

RM• + M ⇒
kp

RM2
•

or RMn
• + M ⇒

kp
RMn

•
+ 1, propagation

RMn
• + RMm

• ⇒
kt

R2Mn + m

or RMn + RMm, termination

The rates of formation of the free radicals R• and M• reach steady
states,

= 2k1(I) − k2(R•)(M) = 0

= k2(R•)(M) − 2kt(M•)2 = 0

These equations are solved for (R•) and (M•) and substituted into the
propagation equation. The rate of polymerization becomes

rp = − =kp(M•)(M) = kp � �
1/2

(M)(I)1/2 (7-50)

Thus, the process of chain polymerization is first-order with respect to
monomer and half-order with respect to initiator.

Solid Catalyzed Reaction The pioneers were Langmuir ( J. Am.
Chem. Soc., 40, 1361 [1918]) and Hinshelwood (Kinetics of Chemical
Change, Oxford, 1940). For a gas phase reaction A + B ⇒ Products,
catalyzed by a solid, the postulated mechanism consists of the follow-
ing:

1. The reactants are first adsorbed on the surface, where they
subsequently react and the product is desorbed.

2. The rate of adsorption is proportional to the partial pressure
and to the fraction of uncovered surface ϑv.

3. The rate of desorption of A is proportional to the fraction ϑa of
the surface covered by A.

4. Adsorptive equilibrium is maintained.
5. The rate of reaction between adsorbed species is proportional

to their amounts on the surface.
The net rates of adsorption are:

ra = kapaϑv − k−aϑa ⇒ 0

rb = kbpbϑv − k−bϑb ⇒ 0

Substitute ϑv = 1 − ϑa − ϑb and solve for the coverages:

ϑa = � � paϑv = Ka paϑv

ϑb = � � pbϑv = Kbpbϑv
kb
�
k−b

ka
�
k−a

k1
�
kt

dM
�
dt

dM•

�
dt

dRn
•

�
dt

k(E0)(S)
�
Km + (S)

d(P)
�

dt

(S)[(E0) − (ES)]
��

(ES)
(S)(E)
�
(ES)

ϑv =

The rate of surface reaction is:

r = kϑaϑb = (7-51)

The linearized form can be used to find the constants,

y = 
� =

More about this topic is presented later.

WITH DIFFUSION BETWEEN PHASES

When reactants are distributed between several phases, migration
between phases ordinarily will occur: with gas/liquid, from the gas to
the liquid; with fluid/solid, from the fluid to the solid; between liquids,
possibly both ways because reactions can occur in either or both
phases. The case of interest is at steady state, where the rate of mass
transfer equals the rate of reaction in the destined phase. Take a
hyperbolic rate equation for the reaction on a surface. Then,

r = rd = rs

= k1(C − Cs) = = (7-52)

The unknown intermediate concentration Cs has been mathemati-
cally eliminated from the last term. In this case, r can be solved for
explicitly, but that is not always possible with surface rate equations of
greater complexity. The mass transfer coefficient k1 is usually obtain-
able from correlations. When the experimental data are of (C, r) the
other constants can be found by linear plotting.

CATALYSIS BY SOLIDS: 
LANGMUIR-HINSHELWOOD MECHANISM

A plausible mechanism of solid catalytic reactions is that the partici-
pants chemisorb on the surface and react while in the adsorbed state.
The process of adsorption of A on an active site of the surface σ is rep-
resented by

A + σ ⇒ Aσ
and the reaction between adsorbed molecules, for instance, by

Aσ + Bσ ⇒ Cσ + Dσ
Adsorptive Equilibrium The fraction of the surface covered by

A at equilibrium is

ϑa = Kapaϑv (7-53)

ϑv = (7-54)

where terms may be added for adsorbed inerts that may be present,
and analogous expressions for the other participants. The rate of reac-
tion between species in adsorptive equilibrium is then

r = kpapbϑv
2 (7-55)

Dissociation A diatomic molecule A2 may adsorb as atoms,

A2 + 2σ ⇒ 2Aσ
with the result,

ϑa = = �K�ap�a� ϑv

and the rate of the reaction is

2Aσ + Bσ ⇒ Products

r = k′ϑ a
2ϑb = kpapbϑv

3 (7-56)

Different Sites When A and B adsorb on chemically different
sites σ1 and σ2, the rate of the reaction A + B ⇒ Unadsorbed products

�K�ap�a�
���
1 + �K�ap�a� + Kbpb + . . .

1
����
1 + Kapa + Kbpb + KcPc + Kd pd + . . .

k2(C − r/k1)
��
1 + k3(C − r/k1)

k2Cs
�
1 + k3Cs

1 + KaPa + Kbpb
��

�kK�aK�b�
papb
�

r

kKaKbpapb
��
(1 + Kapa + K bpb)2

1
��
1 + Ka pa + Kbpb
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is

r = (7-57)

Dual Sites When the numbers of moles of reactants and prod-
ucts are unequal, A ⇔ M + N, the mechanism is assumed to be

Aσ + σ ⇔ Mσ + Nσ
and the rate

r = k�ϑaϑv − � = k�pa − � ϑv
2

= (7-58)

Reactant in the Gas Phase When A in the gas phase reacts with
adsorbed B,

A + Bσ ⇒ Products

r = kpaϑb = kpapbϑv = (7-59)

Chemical Equilibrium When A is not in adsorptive equilib-
rium, it is assumed to be in chemical equilibrium, with p*a = pmpn /Kepb.
This expression is substituted for pa wherever it appears in the rate
equation. Then

r = kp*a pbϑv
2 = (7-60)

All of these relations are brought together in the fundamental form

r = (7-61)

Table 7-2 summarizes the cases when all substances are in adsorp-
tive equilibrium and the surface reaction controls. In Table 7-3, sub-
stance A is not in adsorptive equilibrium, so its adsorption rate is
controlling.

Details of the derivations of these and some other equations are
presented by Yang and Hougen (Chem. Eng. Prog., 46, 146 [1950]),

(kinetic term)(driving force)
���

adsorption term

kpm pn/Ke
�����
(1 + K a pmpn /Kepb + Kbpb + K mpm + K npn)2

kpa pb
��
(1 + ΣKipi)

k(pa − pmpn /K)
���
(1 + Kapa + Kmpm + Knpn)2

pmpn
�

K
ϑmϑn
�

K

kpa pb
���
(1 + Kapa)(1 + Kbpb)

Walas (Reaction Kinetics for Chemical Engineers, McGraw-Hill,
1959; Butterworths, 1989, pp. 153–164), and Rase (Chemical Reactor
Design for Process Plants, vol. 1, Wiley, 1977, pp. 178–191).

All of the relations developed here assume that only one step is con-
trolling. A more general case is that of the reaction A ⇒ B with five
steps controlling, namely

r = k1(pag − pai) Diffusion of A to the surface

r = k2 �paiθv − � Adsorption of A

r = k4θa Surface reaction

r = k5 �pbiθv − � Desorption of B

r = k7(pbi − pbg) Diffusion of B from the surface (7-62)

where θv = 1 − θa − θb .
At steady state these rates are all the same. Upon elimination of the

unmeasurable quantities pai, pbi, ϑa, ϑb, and ϑv, the relation becomes

r = �1 − �
− k5 �pbg + + � �1 − − � + �� (7-63)

Combinations of several adsorption and surface reaction steps are
usually not felt to be necessary, since so many alternatives are avail-
able individually. Single steps in combination with diffusion to the sur-
face are usually adequate, as in the case leading to Eq. (7-52).

Over the usual limited range of conditions, a power law rate equa-
tion often appears to be as satisfactory a fit of the data as a more 
complex Langmuir-Hinshelwood equation. The example of the hydro-
genation of octenes is shown in Fig. 7-2d and 7-2e, and another case
follows.

Example 3: Phosgene Synthesis Rate data were obtained by Potter
and Baron (Chem. Eng. Prog., 47, 478 [1951]) for the reaction CO (A) +
Cl2 (B2) ⇒ COCl2 (C) at 30.6. Three correlations of approximately equal statis-

1
�
k3 k4

1
�
k2

k1r
�
k1 pag − r

r
�
k4

1
�
k6

r
�
k7

r
�
k4

k5(k7pbg + r)
��

k7

θb
�
k6

θa
�
k3
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TABLE 7-2 Surface-reaction Controlling (Adsorptive Equilibrium Maintained of All Participants)

Reaction Special condition Basic rate equation Driving force Adsorption term

1. A → M + N General case r = kθa pa 1 + Kapa + Kmpm + Knpn

A → M + N Sparsely covered surface r = kθa pa 1
A → M + N Fully covered surface r = kθa 1 1

2. A AM r = k1θa − k−1θm pa − 1 + Kapa + Kmpm

3. A AM + N Adsorbed A reacts with vacant site r = k1θaθv − k−1θmθn pa − (1 + Kapa + Kmpm + Knpn)2

4. A2AM Dissociation of A2 upon adsorption r = k1θa
2 − k−1θmθv pa − (1 + �K�ap�a� + Kmpm)2

5. A + B → M + N Adsorbed B reacts with A in gas but not r = kθaθb papb (1 + Kapa + Kbpb + Kmpm + Knpn)2

A + B → M + N with adsorbed A r = kpaθb papb 1 + Kapa + Kbpb + Kmpm + Knpn

6. A + B A M r = k1θaθb − k−1θmθv papb − (1 + Kapa + Kbpb + Kmpm)2

7. A + B A M + N r = k1θaθb − k−1θmθn papb − (1 + Kapa + Kbpb + Kmpm + Knpn)2

8. A2 + B A M + N Dissociation of A2 upon adsorption r = k1θa
2θb − k−1θmθnθv papb − (1 + �K�ap�a� + Kbpb + Kmpm + Knpn)3

NOTE: The rate equation is:

r =

When an inert substance I is adsorbed, the term Kipi is to be added to the adsorption term.
SOURCE: From Walas, Reaction Kinetics for Chemical Engineers, McGraw-Hill, 1959; Butterworths, 1989.

k (driving force)
��
adsorption term

pmpn
�

K

pmpn
�

K

pm
�
K

pm
�
K

pmpn
�

K

pm
�
K



tical validity are:
1. Aσ + 2Bσ ⇒ C + 3σ

y = � �
1/3

= 0.34(1 − 0.061pa + 0.0032�p�b� − 0.00046pc)

2. Aσ + B2σ ⇒ C + 2σ

y = � �
1/2

= 2.38(1 + 1.98pb + 0.59pc)

3. r = 0.02pa
1.33 pb

0.58 pc
−0.68

The data are partial pressures, atm and the rate r, g mol phosgene
made/(h⋅g catalyst).

The first is ruled out because the constants physically cannot be
negative. Although the other correlations are equally valid statistically,
the Langmuir-Hinshelwood may be preferred to the power law form
because it is more likely to be amenable to extrapolation.

CHEMICAL EQUILIBRIUM

The rate of a reversible reaction

aA + bB ⇔
k2

k1
cC + dD

may be written

r = k1 �Ca
aCb

b − � (7-64)

In terms of the compositions at equilibrium, the equilibrium constant
is

Ke =

With the aid of the stoichiometric “degree of advancement,”

ε = = = − = − 

the equilibrium constant can be written in terms of a single variable.
When several reactions occur simultaneously, each reaction is charac-
terized by its own εi. When the Kes are known, the composition can be

Cd0 − Cd
�

d
CC0 − Cc
�

c
Cb0 − Cb
�

b
Ca0 − Ca
�

a

Cc
ceCde

d

�
Ca

aeCbe
b

Cc
c Cd

d

�
Ke

papb
�

r

papb
�

r

found by simultaneous solution of the several equations. The equilib-
rium composition of a mixture of known chemical species also can be
found by a process of Gibbs energy minimization without the formu-
lation of stoichiometric equations. Examples of the calculation of
equilibria are in books on thermodynamics and in Walas (Phase Equi-
libria in Chemical Engineering, Butterworths, 1985).

The equilibrium constant depends on temperature according to

=

This is integrable to

ln K = ln K298 + �T

298
dT (7-65)

where ∆Hr is the enthalpy change of reaction. Over a moderate tem-
perature range, an adequate form of relation is

K = exp �a + � (7-66)

Gaseous equilibria are expressed in terms of fugacities or fugacity
coefficients. In terms of partial pressures, pi = yiπ,

Kp = = K yπc + d − a − b (7-67)

Pressure affects the composition of an equilibrium mixture, but not
the equilibrium constant itself.

Although the equilibrium constant can be evaluated in terms of
kinetic data, it is usually found independently so as to simplify finding
the other constants of the rate equation. With K e known, the correct
exponents of Eq. (7-64) can be found by choosing trial sets until k1

comes out approximately constant. When the exponents are small
integers or simple fractions, this process is not overly laborious.

Example 4: Reaction between Methane and Steam At 600°C
the principal reactions between methane and steam are

CH4 + H2O ⇔ CO + 3H2 CO + H2O ⇔ CO2 + H2

1 − x 5 − x x 3x x − y 5 − x − y y 3x + y Σ = 6 + 2x

pc
c pd

d

�
pa

a pb
b

b
�
t

∆Hr298 + � T

298
∆Cp dT

���
T 2

1
�
R

∆Hr
�
RT 2

d ln K
�

dT
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TABLE 7-3 Adsorption-rate Controlling (Rapid Surface Reaction)

Reaction Special condition Basic rate equation Driving force Adsorption term

1. A → M + N r = kpaθv pa 1 + + Kmpm + Knpn

2. A A M r = k�paθv − � pa − 1 + + Kmpm

3. A A M + N r = k�paθv − � pa − 1 + + Kmpm + Knpn

4. A2 A M Dissociation of A2 upon adsorption r = k�paθv
2 − � pa − �1 + 
� + Kmpm�

2

5. A + B → M + N Unadsorbed A reacts with adsorbed B r = kpaθv pa 1 + + Kbpb + Kmpm + Knpn

6. A + B A M r = k�paθv − � pa − 1 + + Kbpb + Kmpm

7. A + B A M + N r = k�paθv − � pa − 1 + + Kbpb + Kmpm + Knpn

8. A2 + B A M + N Dissociation of A2 upon adsorption r = k�paθv
2 − � pa − �1 + 
� + Kbpb + Kmpm + Knpn�

2

NOTES: The rate equation is:

r =

Adsorption rate of substance A is controlling in each case. When an inert substance I is adsorbed, the term Kipi is to be added to the adsorption term.
SOURCE: From Walas, Reaction Kinetics for Chemical Engineers, McGraw Hill, 1959; Butterworths, 1989.

k (driving force)
��
adsorption term

Kapmpn
�

Kpb

pmpn
�
Kpb

θa
2

�
Ka

Kapmpn
�

Kpb

pmpn
�
Kpb

θa
�
Ka

Knpm
�

Kpb

pm
�
Kpb

θa
�
Ka

Kapmpn
�

Kpb

Kapm
�

K
pm
�
K

θa
2

�
Ka

Kapmpn
�

K
pmpn
�

K
θa
�
Ka

Kapm
�

K
pm
�
K

θa
�
Ka

Kapmpn
�

K



where K1 = 0.574, K2 = 2.21. Starting with 1 mol methane and 5 mol steam,

= 0.574, = 2.21

Simultaneous solution by the Newton-Raphson method yields x = 0.9121, y =
0.6328. Accordingly, the fractional compositions are:

CH4 = = 0.0112

CO = = 0.0357

CO2 = = 0.0809

H2O = = 0.4416

H2 = = 0.4306

Approach to Equilibrium As equilibrium is approached the
rate of reaction falls off, and the reactor size required to achieve a
specified conversion goes up. At some point, the cost of increased
reactor size will outweigh the cost of discarded or recycled uncon-
verted material. No simple rule for an economic appraisal is really
possible, but sometimes a basis of 95 percent of equilibrium conver-

(3x + y)
�
(6 + 2x)

(5 − x − y)
��

(6 + 2x)

y
�
(6 + 2x)

(x − y)
�
(6 + 2x)

(1 − x)
�
(6 + 2x)

y(3x + y)
��
(x − y)(5 − x − y)

(x − y)(3x + y)3

���
(1 − x)(5 − x − y)(6 + 2x)2

sion is taken. For adiabatic operation, a certain approach to equilib-
rium temperature is common practice, say within 10 to 20°C (18 to
36°F), a number possibly based on experience with a particular
process.

Example 5: Percent Approach to Equilibrium For a reversible
reaction with rate equation r = k[A2 − (1 − A)2/16], the size function kVr /V′ of a
plug flow reactor will be found in terms of percent approach to equilibrium:

= �1

A
, Aequilib = 0.2000

Percent approach 70 90 95 98 99 99.5 100

A 0.440 0.280 0.240 0.216 0.208 0.204 0.2
kVr /V′ 1.319 3.053 4.309 6.090 7.600 9.315 ∞

The volume escalates rapidly at high percent approaches.

INTEGRATION OF RATE EQUATIONS

In either batch or flow systems, many single-rate equations lead to
integrands that are ratios of low-degree polynomials that can be inte-
grated by inspection or with the briefest of integral tables. Some of the
cases of frequent occurrence are summarized in Table 7-4. When the
problem is to relate C and t, the constants are known, and the polyno-
mials are of second degree or higher, numerical integration may save

dA
��
A2 − (1 − A)2/16

kVr
�
V′
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1. A → Products:

− kAq

=

�
exp [−k(t − t0)], q = 1

� �
1/(q − 1)

, q ≠ 1

2. A + B → Products:

− = kAB = kA(A + B0 − A0)

k(t − t0) = ln 

3. Reversible reaction A
k2

A

k1

B:

− = k1A − k2(A0 + B0 − A) = (k1 + k2)A − k2(A0 + B0)

(k1 + k2)(t − t0) = ln 

4. Reversible reaction, second order, A + B
k2

A

k1

R + S:

− = k1AB − k2RS = k1A(A + B0 − A0)

− k2(A0 + R0 − A)(A0 + S0 − A)
= αA2 + βA − γ

α = k1 − k2

β = k1(B0 − A0) + k2(2A0 + R0 + S0)
γ =k2(A0 + R0)(A0 + S0)
q = �β�2�+� 4�α�γ�

k(t − t0) = { , q = 0

ln �� �� ��, q ≠ 0

5. The reaction νaA → νrR + νsS between ideal gases at constant T and P:

− = kna
α

�
Vα − 1

dna
�
dt

2αA + β + q
��
2αA + β − q

2αA0 + β − q
��
2αA0 + β + q

1
�
q

2αA0 + β
�
2αA + β

dA
�
dt

k1A0 − k2B0
���
(k1 + k2)A − k2(A0 + B0)

dA
�
dt

A0(A + B0 − A0)
��

AB0

1
�
B0 − A0

dA
�
dt

1
���
1 + (q − 1)kA0

q − 1(t − t0)

A
�
A0

dA
�
dt

V = nt = �nt0 + (na0 − na)�
�na0

na

dna, in general

k(t − t0) = �nb0 + � − �
− ln � ��, when α = 2

6. Equations readily solvable by Laplace transforms. For example:

A 
k3

A

k1

B →
k2

C

Rate equations are

− = k1A − k2B

− = −k1A + (k2 + k3)B

− = −k2B

Laplace transformations are made and rearranged to

(s + k1)A� + k3B� = A0

−k1A� + (s + k2 + k3)B� = B0

−k2B� + sC� = C0

These linear equations are solved for the transforms as

D = s2 + (k1 + k2 + k3)s + k1k2

A� =

B� =

C� =

Inversion of the transforms can be made to find the concentrations A, B, and C
as functions of the time t.

k2B� + C0
�

s

B0s + k1(A0 + B0)
��

D

A0s + (k2 + k3)A0 + K3B0
���

D

dC
�
dt

dB
�
dt

dA
�
dt

na0
�
na

∆ν
�
νa

1
�
na0

1
�
na

∆ν
�
νa

RT
�
P

Vα − 1

�
na

α

RT
�
P

∆ν
�
νa

RT
�
P

TABLE 7-4 Some Isothermal Rate Equations and Their Integrals

�

SOURCE: Adapted from Walas, Chemical Process Equipment Selection and Design, Butterworth-Heinemann, 1990.



time and preserve reliability. Some 40 cases of integrations at constant
volume are developed by Capellos and Bielski (Kinetic Systems Math-
ematical Descriptions of Chemical Kinetics, Wiley, 1972).

Sets of first-order rate equations are solvable by Laplace transform
(Rodiguin and Rodiguina, Consecutive Chemical Reactions, Van Nos-
trand, 1964). The methods of linear algebra are applied to large sets of
coupled first-order reactions by Wei and Prater (Adv. Catal., 13, 203
[1962]). Reactions of petroleum fractions are examples of this type.

Example 6: Laplace Transform Application For the reaction

A ⇒1 B ⇔
3

2 C

with B0 = C0 = 0

the rate equations are = k1A

= k1A − k2B + k3(A0 − A − B)

The transforms are sA� − A0 = −k1A�

sB� = + (k1 − k3) A� − (k2 + k3) B�

Explicitly, A� = B� = � + �
A and B as functions of t are found by inversion with a table of L-T pairs.

When even second-order reactions are included in a group to be
analyzed, individual integration methods may be needed. Three cases
of coupled first- and second-order reactions will be touched on. All of
them are amenable only with difficulty to the evaluation of specific
rates from kinetic data. Numerical integrations are often necessary.

k1 − k3
�
s + k1

k3
�
s

A0
��
s + k2 + k3

A0
�
s + k1

k3A0
�

s

dB
�
dt

dA
�
dt

1. The reactions are 2A ⇒1 B ⇒2 C. The partial solutions are

A =

+ k2B =

Although the differential equation is first-order linear, its integration
requires evaluation of an infinite series of integrals of increasing dif-
ficulty.

2. The reactions are A ⇒1 B and A + B ⇒2 C. After A is expressed in
terms of B by elimination of t,

= (k1 − k2B) �A0 − B0 + B − 2k ln �, k =

but this cannot be integrated analytically.
3. For the reactions A ⇒1 B, 2B ⇒2 C; 2A ⇒1 B ⇒2 C; 2A ⇒1 B, 

2B ⇒2 C; the rate equations are solved in terms of higher transcenden-
tal functions by Chien ( J. Am. Chem. Soc., 76, 2256 [1948]). For the
first case, with B0 = 0:

A = exp (−k1t)

B = A0
�
where τ = exp (−k1t)

K = k1k2 A0

γ =2i�K�τ�
β = iJ1(γ)/H1

(i)(γ)

The notation of the Bessel functions is that of Jahnke and Emde
(Tables of Functions with Formulas and Curves, Dover, 1945; Teub-
ner, 1960).

iJ1(γ) − βH1
(i)(γ)

��
J0(γ) + βiH0

(i)

τ
�
K

k1
�
k2

B − k
�
B + k

dB
�
dt

k1A0
2

��
(1 + 2k1A0t)2

dB
�
dt

A0
��
(1 + 2k1A0 t)
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IDEAL REACTORS

INTRODUCTION

A useful classification of kinds of reactors is in terms of their concen-
tration distributions. The concentration profiles of certain limiting
cases are illustrated in Fig. 7-3; namely, of batch reactors, continu-
ously stirred tanks, and tubular flow reactors. Basic types of flow reac-
tors are illustrated in Fig. 7-4. Many others, employing granular
catalysts and for multiphase reactions, are illustrated throughout Sec.
23. The present material deals with the sizes, performances and heat
effects of these ideal types. They afford standards of comparison.

In a batch reactor, all the reactants are loaded at once; the concen-
tration then varies with time, but at any one time it is uniform
throughout. Agitation serves to mix separate feeds initially and to
enhance heat transfer. In a semibatch operation, some of the reactants
are charged at once and the others are then charged gradually.

In an ideal continuously stirred tank reactor (CSTR), the conditions
are uniform throughout and the condition of the effluent is the same
as the condition in the tank. When a battery of such vessels is
employed in series, the concentration profile is step-shaped if the
abscissa is the total residence time or the stage number. The residence
time of individual molecules varies exponentially from zero to infinity,
as illustrated in Fig. 7-3e.

In another kind of ideal flow reactor, all portions of the feed stream
have the same residence time; that is, there is no mixing in the axial
direction but complete mixing radially. It is called a plug flow reactor
(PFR), or a tubular flow reactor (TFR), because this flow pattern is
characteristic of tubes and pipes. As the reaction proceeds, the con-
centration falls off with distance.

Often, complete mixing cannot be approached for economic rea-
sons. Inactive or dead zones, bypassing, and limitations of energy
input are common causes. Packed beds are usually predominantly
used in plug flow reactors, but they may also have small mixing zones

superimposed in series or in parallel. In tubular reactors for viscous
fluids, laminar or non-Newtonian behavior gives rise to variations of
residence time. Deviations from ideal behavior are analyzed at length
in Sec. 23.

MATERIAL AND ENERGY BALANCES

These balances are based on the general conservation law,

Input + Sources = Outputs + Sinks + Accumulation (7-68)

The terms may be quantities or rates of flow of material or enthalpy.
Inputs and outputs are streams that cross the vessel boundaries. A
heat of reaction within the vessel is a source. A depletion of reactant in
the vessel is a sink. Accumulation is the time derivative of the content
of the reference quantity in the vessel; of the volume times the con-
centration, ∂VrCa /∂t; or of the total enthalpy of the vessel contents,
∂[WCp(T − Tref )] /∂t.

BATCH REACTORS

Batch reactors are tanks, usually provided with agitation and some
mode of heat transfer to maintain temperature within a desirable
range. They are primarily employed for relatively slow reactions of
several hours duration, since the downtime for filling and emptying
large equipment may be an hour or so. Agitation maintains uniformity
and improves heat transfer. Modes of heat transfer are illustrated in
Figs. 23-1 and 23-2.

Except in the laboratory, batch reactors are mostly liquid phase. In
semibatch operation, a gas of limited solubility may be fed in gradually
as it is used up. Batch reactors are popular in practice because of their
flexibility with respect to reaction time and to the kinds and quantities
of reactions that they can process.



Material and energy balances of a nonflow reactor are summarized
in Table 7-5. Several batch operations are summarized in Fig. 7-5.

Daily Yield Say the downtime for filling and emptying a reactor
is td and no reaction occurs during these periods. The reaction time tr

of a first-order reaction, for instance, is given by ktr = −ln (1 − x). The
daily yield with n batches per day will be

y = nVr(C0 − C) = = (7-69)

Some conditions at which the daily yield is a maximum are
ktd 0.01 0.1 0.5 5.0
x 0.13 0.45 0.68 0.88

Thus, the required conversion goes up as the downtime increases.
Details are in Problem P2 of the “Solved Problems” subsection.

Filling and Emptying Periods Say the pumping rate is V ′, the
full tank volume is Vr1, and the rate of reaction is r = kCa

q. For t ≤
Vr1/V ′, the material balances with Eq. (7-68) are as follows.

24Vr kC0 x
��
−ln (1 − x) + ktd

24VrC0 x
�

tr + td

Filling: Vr = V′t, Ca = Ca0 , when t = 0,

V′Ca0 = 0 + rVr + = kVrCa
q + V′Ca + V′t 

or Ca0 = Ca + k � � Ca
q + t (7-70)

where the variables are separable.
Emptying: Vr = Vr1 − V′t, Ca = Ca1, when t = 0,

0 = V′Ca + kVrCa
q + = V′Ca + kVrCa

q − V′Ca + Vr

= −kCa
q (7-71)

This is the same equation as for the full tank, but applies only for t ≤
Vr1/V′. Figure 7-5e shows a complete batch cycle.

Optimum Operation of Reversible Reactions Often, equilib-
rium composition becomes less favorable and the rate of reaction
becomes more favorable as the temperature increases, so a best con-
dition may exist. If the temperature is adjusted at each composition to

dCa
�
dt

dCa
�
dt

d(VrCa)
�

dt

dCa
�
dt

Vr
�
V′

dCa
�
dt

d(VrCa)
�

dt
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make the rate a maximum, then a minimum reactor size or maximum
conversion will result. Take the first-order reversible process,

r = k1(1 − x) − k2x

k1 = A1 exp (−B1 /T) and k2 = A2 exp (−B2 /T). The condition 

(∂r/∂T)x = 0

leads to T = (7-72)

which tells what the temperature must be at each fractional conversion
for the minimum reactor size. Practically, it may be difficult to vary the
temperature of a batch reactor in this way, but the operation may be
more nearly feasible with a CSTR battery or a PFR. Figure 7-5f shows
an example of such a temperature profile for a batch reactor.

CONTINUOUS STIRRED TANK REACTORS (CSTR)

Flow reactors are used for greater production rates when the reaction
time is comparatively short, when uniform temperature is desired,
when labor costs are high. CSTRs are used singly or in multiple units
in series, in either separate vessels or single, compartmented shells.

Material and energy balances are based on the conservation law,
Eq. (7-69). In the operation of liquid phase reactions at steady state,
the input and output flow rates are constant so the holdup is fixed.
The usual control of the discharge is on the liquid level in the tank.
When the mixing is adequate, concentration and temperature are uni-
form, and the effluent has these same properties. The steady state
material balance on a reactant A is

V ′0Ca0 = V′Ca + Vr ra (7-73)

B1 − B2
��

ln �
A1B

A
1

2

(
B
1

2

−
x

x)
�

Changes in density because of reaction or temperature changes are
often small enough to be ignored. Then the volumetric flow rate is
uniform and the balance becomes

Ca0 = Ca + t�ra (7-74)

where the residence time is

t� = (7-75)

A useful rearrangement,

ra = (7-76)

emphasizes how CSTR measurements can provide data for the devel-
opment of rate equations without integrating them.

During startup or discharge the material balance becomes

V ′0Ca0 = V′Ca + Vr ra + (7-77)

where the reactor volume Vr is a known function of time.
For a power law rate equation at steady state,

Ca0 = Ca + kt�Ca
q (7-78)

A summary of material and energy balances is in Table 7-6.
For each vessel of a series,

Ca, n − 1 = Can + t�nran (7-79)

The set of equations for all stages can be solved in succession, starting
with the inlet to the first stage as Ca0.

Example 7: A Four-Stage Unit When the material balances are 
Cn − 1 = Cn + 1.5[Cn /(0.2 + Cn)]2 and C0 = 2, the successive outlet concentrations
are found by RootSolver to be 0.985, 0.580, 0.389, and 0.281.

The simplest problem is when all of the stages have the same kt�; then one of
the three variables (kt�, n, or Can) can be found when the others are specified. For
first-order reactions,

= (7-80)

⇒ (7-81)

for identical stages.
For multiple reactions, material balances are required for each stoichiometry.

Example 8: Consecutive Reactions Take the reaction A ⇒1 B ⇒2 C,
with B0 = C0 = 0. Define ϑ = k1t�A0, α = 1/(1 + k1 t�), β = 1/(1 + k 2 t�). Then by set-
ting up successive material balances, equations for the effluent from the nth
stage are derived as

An = A0αn Bn = (α n − βn) Cn = A0 − An − Bn (7-82)

When n ⇒ ∞ , this equation reduces to

= [exp (−k1t�) − exp (−k2t�)] (7-83)

This is the equation for a plug flow reactor. It can be derived directly from the
rate equations with the aid of Laplace transforms. The sequences of second-
order reactions of Figs. 7-5a and 7-5c required numerical integrations.

When CSTRs are operated in series, the sum of the reactor volumes
drops off sharply with the number of stages. An economical number
often is only 3 to 6, since the benefit of reduced volume may be out-
weighed by the increased cost of multiple agitators, pumps, and con-
trols. When all stages are in a single shell, the economics are more
favorable to large numbers of stages, but the single-shell arrange-
ments lose some of the flexibility of the multiple-tank designs.

Example 9: Comparison of Batch and CSTR Volumes For a
first-order reaction, the ratio of n-stage CSTR and batch volumes is

Ratio = n[(C0 /C)1/n − 1]
��

ln(C0 /C)

k1
�
k2 − k1

B
�
A0

αβϑ
�
α − β

1
��
(1 + kt�total /n)n

1
����
(1 + k1t�1)(1 + k2t�2) . . . (1 + knt�n)

Can
�
Ca0

d(VrCa)
�

dt

Ca0 − Ca
�

t�

Vr
�
V ′
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TABLE 7-5 Material and Energy Balances 
of a Nonflow Reactor

Rate equations:

ra = − = kCa
α = k� �

α

(1)

k = exp �a′ − � (2)

Heat of reaction:

∆Hr = ∆Hr298 + �T

298
∆Cp dT (3)

Rate of heat transfer:
Q′ = UA(Ts − T) (4)

(the simplest case is when UA and Ts are constant)

Enthalpy balance:

= �∆Hr + � (5)

= �∆Hr + � (6)

T = T0 when Ca = Ca0 (7)

C�p = 	 niCpi (8)

Solve Eq. (6) to find T = f(Ca); combine Eqs. (1) and (2) and integrate as

θ = �Ca0

Ca

dCa (9)

SOURCE: Adapted from Walas, Chemical Process Equipment Selection and
Design, Butterworth-Heinemann, 1990.

1
���
Ca

αexp [a′ − b′/f(Ca)]

1
�
ρVr

UA(Ts − T)
��

VrkCa
α

1
�
ρC�p

dT
�
dCa

UA(Ts − T)
��
Vrk(na/Vr)α

1
�
ρVrC�p

dT
�
dna

b′
�
T ′

na
�
Vr

dna
�
dθ

1
�
Vr
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Some values are

C0 /C

n 2 10 20

1 2.89 3.91 6.34
5 1.07 1.27 1.37

The ratio goes up sharply as the conversion increases and down sharply as the
number of stages increases. For higher-order reactions the numbers are of com-
parable magnitudes.

Different Sizes Ordinarily, it is most economical to make all
stages of a CSTR battery the same size. For a first-order reaction the
resulting total volume is a minimum for a specified performance, but
not so for other orders. Take a two-stage battery:

t�1 + t�2 = +

With C0 and C2 specified, the condition for a minimum is

= 0
∂(t�1 + t�2)
�

∂C1

C1 − C2
�

kC2
q

C0 − C1
�

kC1
q

and C1
q + 1 + C2

q [(q − 1)C1 − qC0] = 0

when q = 1, C1 = �C�0C�2�, and t�1 = t�2

For higher orders t�1 ≠ t�2 and the sum is less than twice the sum of
equal stages, although usually not much different from that sum. As an
example, when the second-order reaction between benzoquinone and
cyclopentadiene is done in a three-stage unit, the reactor sizes are
3.25, 4.68, and 6.27, totaling 14.20, as compared to 14.56 with three
equal stages (where consistent units are used). Details are in Walas
(Chemical Reaction Engineering Handbook of Solved Problems, p.
4.11.15, Gordon & Breach, 1995).

Selectivity A significant respect in which CSTRs may differ from
batch (or PFR) reactors is in the product distribution of complex 
reactions. However, each particular set of reactions must be treated
individually to find the superiority. For the consecutive reactions 
A ⇒ B ⇒ C, Fig. 7-5b shows that a higher peak value of B is reached
in batch reactors than in CSTRs; as the number of stages increases the
batch performance is approached.

TUBULAR AND PACKED BED FLOW REACTORS

Tubular reactors are made up of one or more tubes in parallel, each of
less than approximately 100-mm (3.94-in) diameter. With fluids of
normal viscosity, plug flow exists in tubes of this size, with all mole-
cules having essentially the same residence time. In packed beds of
larger diameters, large-scale convection may be inhibited to such an
extent that plug flow is also approached. Continuous gas phase reac-
tions are predominantly done in such units, as are many liquid phase
processes. Immiscible liquids are best handled in stirred tanks,
although in-line mixers can facilitate such reactions in pipes. Reaction
times are mostly short, made feasible by elevated temperatures. In
such large-scale operations as oil cracking, the tubes may be several
hundred meters long in a trombonelike arrangement. Temperature
control is by heat transfer through the walls or by cold-shot injection.
Shell-and-tube arrangements can provide large amounts of heat trans-
fer. Product distribution of complex reactions is like that of batch reac-
tors, but different from that of CSTRs.

Material and energy balances of a plug flow reactor are summarized
in Table 7-7.

For convenience, the loading on a flow reactor is expressed as a size
of reactor per unit of flow rate, say Vr /V′, and is labeled the space
velocity. Some of the units in practical use are stated in the Introduc-
tion. How the actual residence time is calculated when the density of
flow varies is illustrated in Table 7-8.

Tubular flow reactors operate at nearly constant pressure. How the
differential material balance is integrated for a number of second-
order reactions will be explained. When na is the molal flow rate of
reactant A the flow reactor equation is

−dna = na0dx = −V′dCa = ra dVr (7-84)

or Vr = �na0

na

(7-85)

The equation is rendered integrable by application of the stoichiome-
try of the reaction, the ideal gas law, and, for instance, the power law
for rate of reaction. Some details are shown in Table 7-9.

Frictional Pressure Drop Usually this does not have a signifi-
cant effect on the reactor size, except perhaps when the flow is two-
phase. Some approximate relations will be cited that are adequate for
pressure-drop calculations of homogeneous flow reactions in pipe-
lines. The pressure drop is given by

−dP = dL (7-86)

A good approximation to the friction factor in the turbulent flow
range is

f = 0.046(Re)−0.2 = 0.044 � �
0.2

(7-87)

The mass flow rate is

W = 0.7854D2ρu

µD
�
W

fρu2

�
2gD

dna
�
ra
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TABLE 7-6 Material and Energy Balance of a CSTR

The sketch identifies the nomenclature.

Mean residence time:

t� = (1)

Temperature dependence:

k = exp �a′ − � (2)

Rate equation:

ra = kCa
α = kCα

a0(1 − x)α, x = (3)

Material balance:
Ca0 = Ca + kt�Ca (4)

x = ktCa0
α − 1(1 − x)α (5)

Enthalpy balance:

	 n′iHi − 	 n′i0Hi0 = Q′ − ∆Hr(n′a0 − n′a) (6)

Hi = �T

298
Cpi dT (7)

∆Hr = ∆Hr298 + �T

298
∆Cp dT (8)

For the reaction aA + bB → rR + sS:

∆Cp = rCpr + sCps − aCpa − bCpb (9)

When the heat capacities are equal and constant, the heat balance is:
C�pρV′(T − T0) = Q′ − ∆Hr298V′(Ca0 − Ca) (10)

SOURCE: Adapted from Walas, Chemical Process Equipment Selection and
Design, Butterworth-Heinemann, 1990.

(Ca0 − Ca)
��

Ca0

b′
�
T

Vr
�
V′



The density in terms of the molecular weight M is

ρ = =

Also, in terms of the tube length dL,

dVr = 0.7854D2dL

Combining, −dP = dVr (7-88)

This is to be solved simultaneously with the flow reactor equation, 
Eq. (7-84). Alternatively, dVr can be eliminated from Eq. (7-88) for a
direct relation between P and na.

More accurate relations than Eqs. (7-86) and (7-87) are described
in Sec. 11 of this Handbook.

RECYCLE AND SEPARATION MODES

All reactor modes can sometimes be advantageously operated with
recycling of part of the product or intermediate streams. Heated or
cooled recycle streams serve to moderate undesirable temperature
travels, and they can be processed for changes in composition before
being returned.

Say the recycle flow rate in a PFR is V ′r and the fresh feed rate is V ′0,
with the ratio R = V ′r /V ′0. With a fresh feed concentration of C0 and a
product of C2 the composite feed concentration is

C1 = (7-89)
C0 + RC2
�

1 + R

0.046W1.8µ0.2RT[nt0 + δa(na0 − na)]
����

gD6.8M0nt0P

PM0nt0
�

RTnt

M
�
V

The change in concentration across the reactor becomes

∆C = C1 − C2 = (7-90)

Accordingly, the change in concentration (or in temperature) across
the reactor can be made as small as desired by upping the recycle
ratio. Eventually, the reactor can become a differential unit with 
substantially constant temperature, while substantial differences will
concurrently arise between the fresh feed inlet and the product with-
drawal outlet. Such an operation is useful for obtaining experimental
data for analysis of rate equations.

In the simplest case, where the product is recycled without change,
the flow reactor equation at constant density with a power law is

−V′0 (1 + R)dC = kCqdVr

and Vr = V ′0 (1 + R) �C1

C2

(7-91)

Recycling increases the size of the reactor and degrades the plug flow
characteristics, so there must be practical compensation by adjust-
ment of the temperature or composition.

Example 10: Reactor Size with Recycle For first-order reaction
with C0 /C2 = 10 and R = 5, C1 /C2 = 2.5. The relative reactor sizes with recycle
and without are

Ratio = = = 1.193

With reversible reactions, recycling is warranted when improvement in con-
version can be realized by removing some of the product in a separator and
returning only unconverted material. In some CSTR operations, the product is
removed continuously by extraction or azeotropic distillation. The gasoline addi-

5.497
�
4.605

(1 + 5) ln (C1 /C2)
��

ln (C0 /C2)

dC
�
kCq

C2 − C0
�

1 + R
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The balances are made over a differential volume dVr of the reactor. Rate
equation:

dVr = (1)

= − � �
α

dn′a (2)

= −exp �−a′ + �� �
α

dn′a (3)

Enthalpy balance:

∆Hr = ∆Hr298 + �T

298
∆Cp dT (4)

dQ = U(Ts − T) dAp = (Ts − T) dVr

= − dn′a (5)

dQ + ∆Hr dn′a = 	 nidHi = 	 niCpidT (6)

= = f(T, Ts, n′a) (7)
∆Hr − 4U(Ts − T)/Dra
���	 nicpi

dT
�
dn′a

4U(Ts − T)
��

Dra

4U
�
D

n′tRT
�
Pn′a

b′
�
T

V′
�
n′a

1
�
k

−dn′a
�

ra

At constant Ts, Eq. (7) may be integrated numerically to yield the temperature
as a function of the number of moles

T = φ(n′a) (8)

Then the reactor volume is found by integration

Vr = �n′a0

n′a
dn′a (9)

Adiabatic process:

dQ = 0 (10)

The balance around one end of the reactor is

	 ni0Hi0 − 	 Hr0(n′a0 − n′a) = 	 niHi = 	 ni � Cpi dT (11)

With reference temperature at T0, enthalpies Hi0 = 0

∆Hr0 = ∆Hr298 + �T

29

0

8
∆Cp dT (12)

Substituting Eq. (12) into Eq. (10)

�−∆Hr298 + �T

29

0

8
∆Cp dT�(n′a0 − n′a) = 	 ni �

T

T0

Cpi dT (13)

Adiabatic process with ∆Cp = 0 and with constant heat capacities

T = T0 − (14)

This expression is substituted instead of Eq. (8) to find the volume with Eq. (9).

∆Hr298(n′a0 − n′a)
��

	 niCpi

1
����
exp [a′ − b′/φ(n′a)][Pn′a/n′tRφ(n′a)]α

TABLE 7-7 Material and Energy Balances of a Plug Flow Reactor (PFR)



tive methyl-tert-butyl ether is made in a distillation column where reaction and
simultaneous separation occur.

HEAT EFFECTS

The heat balance of a reactor is made up of three terms: Heat of reac-
tion + Heat transfer = Gain of sensible and latent heats by the mixture.
This establishes the temperature as a function of the composition

T = f(na)

which may be substituted into the equations of the specific rate and
the equilibrium constant

k = exp �A + �
Ke = exp �C + �

With these substitutions the rate equation remains a function of the
composition alone.

Heat balances of several kinds of reactors are summarized in Tables
7-5, 7-6, 7-7 and 7-10.

Enthalpy changes of processes depend only on the end states. Nor-
mally the enthalpy change of reaction is known at some standard tem-

D
�
f(na)

B
�
f(na)

perature, Tb = 298 K (536 R), for instance. The simplest formulation
of the heat balance, accordingly, is to consider the reaction to occur at
this temperature, transfer whatever heat is required, and raise the
enthalpy of the reaction products to their final values.

Batch Reactions For a batch reaction, the heat balance is

−(∆Hr)Tb(na0 − na) + Q = 	 ni(HiT − HiTb) (7-92)
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TABLE 7-8 True Contact Time in A PFR

The ratio Vr /V′0 is of the volume of the reactor to the incoming volumetric rate
and has the dimensions of time. It will be compared with the true residence
time when the number of mols changes as reaction goes on, or P and T also
change.

rα = k� �q

= k� �q� �q

V′ =

The differential balance on the reactant is:

−dnα = rαdVr

dVr = − � �q� �q

dnα

= − � �q − 1� �q

dnα (1)

The definition of the rate of reaction and the law of mass action is:

rα = − = k� �q

Rearrange to

dt = − = − � �q

dnα = − � �q − 1� �dnα (2)

Eqs. (1) and (2) are the desired comparison. Before integrating, substitute

nt = nt0 + δα(nα0 − nα)

Example: Take q = 1, nt0 = nα0.

= �nα0

nα
dnα = �(δα + 1) ln − δαx�

t = �nα0

nα
= ln 

The ratio

y = = δα + 1 −

> 1 when δα < 0
< 1 when δα > 0

δαx
��
ln [1/(1 − x)]

t
�
Vr /V′0

1
�
1 − x

1
�
k

dnα
�
nα

1
�
k

1
�
1 − x

1
�
k

(δα + 1)nα0 − δαnα
��

nα

Vr
�
V′0

nt
q − 1

�
nα

q

RT
�
π

1
�
k

V′
�
nα

1
�
kV′

dnα
�
rα

1
�
V′

nα
�
V′

dnα
�
dt

1
�
V′

nt
�
nα

RT
�
π

1
�
knt0

dVr
�
V′0

nt
�
nα

RT
�
π

1
�
k

ntRT
�

π

nα
�
nt

π
�
RT

nα
�
V′

TABLE 7-9 Integration of Rate Equations of a PFR 
at Constant Pressure

Tubular flow reactors usually operate at nearly constant pressure. For a reac-
tant A, the differential material balance is:

−dnα = nα0dx = −V′dCα = V′Cα0dx = rαdVr

One form of the integration is:

= �x

x0
,

nt = nt0 + δα(nα0 − nα) = nt0 + δαx

V′ = ntRT/π

Cα = = � �� � = � �� �
The rate equations will be stated in these terms for a number of reactions. In
all these cases, the integrands are ratios of second-degree equations. The mod-
erately complex integrations are accomplished with the aid of a table of inte-
grals, or by MATHEMATICA, or numerically when the constants are known.

2 A ⇒ M (1)
A + B ⇒ M (2)
2A ⇔ M (3)
A + B ⇔ M (4)

Part (1):

δα = = −0.5

V′ = � �(nt0 − 0.5x)

= � = (R�T�)2 �x

x0
� �

2

dx

Part (2):

δα = = −1

V′ = � �(nt0 − x)

= � �2�x

x0
dx

Part (3):

δa = − 0.5

V′ = � �(nt0 − 0.5x)

rα = k1� �2� �2

− k2� �� �
Part (4):

δα = −0.5

rα = k1� �
2

− k2� � � �nm0 + 0.5nα0x
��

nt0 − 0.5x
RT
�
π

(nα0 − x)(nb0 − x)
��

(nt0 − 0.5x)2

RT
�
π

nm0 + 0.5nα0x
��

nt0 − 0.5x
RT
�
π

nα0 − x
��
nt0 − 0.5x

RT
�
π

RT
�
π

(nα0 − x)(nb0 − x)
��

(nt0 − x)2

π
�
RT

1
�
k

Vr
�
nα0

RT
�
π

(1 − 2)
�

1

nt0 − 0.5x
��

nα0 − x
1
�
k

dx
�
rα

Vr
�
nα0

RT
�
π

(1 − 2)
�

2

nα0 − x
�
nt0 + δαx

π
�
RT

nα
�
nt

π
�
RT

nα
�
V′

reactor volume
��
molal input rate

dx
�
rα

Vr
�
nα0



The solvent, as well as any other inerts, and the mass of the vessel are
included in this summation. The heat exchange through a jacket or
coils at temperature Tm is

Q = UA(Tm − T) (7-93)

When phase changes are absent,

−(∆Hr)Tb(na0 − na) + UA(Tm − T) = 	 ni �
T

Tb

Cpi dT (7-94)

When the mixture can be characterized by an overall heat capacity,

−(∆Hr)Tb(na0 − na) + UA(Tm − T) = VrρCp(T − Tb) (7-95)

or −(∆Hr)Tb(Ca0 − Ca) + � �(Tm − T) = ρCp(T − Tb) (7-96)

CSTR Reactions For a CSTR reaction, the quantities ni are
molal flow rates. Per unit of time,

−(∆Hr)TbVrra + Q = 	 ni(HiT − HiTb) (7-97)

⇒ 	 ni �
T

Tb

Cpi dT (7-98)

The last equation applies in the absence of phase change.
Plug Flow Reactions The differential relations in a cylindrical

vessel are

dA = � � dVr −∆HrT dna + dVr = 	 niCpi dT (7-99)

⇒ ntCpt dT (7-100)

Note that the enthalpy change of reaction is a function of tempera-
ture, but a mean value often is adequate.

The various heat balances are to be solved simultaneously with the
appropriate material balances, but when the temperatures can be
solved for explicitly their equivalents are simply substituted into the
equations for k and Ke and the material balance is solved alone.

Packed Bed Reactors The commonest vessels are cylindrical.
They will have gradients of composition and temperature in the radial
and axial directions. The partial differential equations of the material
and energy balances are summarized in Table 7-10. Example 4 of
“Modeling of Chemical Reactions” in Sec. 23 is an application of such
equations.

A variety of provisions for heat transfer are illustrated in Figs. 23-1
to 23-3 and elsewhere in Sec. 23.

UNSTEADY CONDITIONS WITH ACCUMULATION TERMS

Unsteady material and energy balances are formulated with the con-
servation law, Eq. (7-68). The sink term of a material balance is Vrca

and the accumulation term is the time derivative of the content of
reactant in the vessel, or ∂(VrCa)/∂t, where both Vr and Ca depend on
the time. An unsteady condition in the sense used in this section
always has an accumulation term. This sense of unsteadiness excludes
the batch reactor where conditions do change with time but are taken
account of in the sink term. Startup and shutdown periods of batch
reactors, however, are classified as unsteady; their equations are
developed in the “Batch Reactors” subsection. For a semibatch oper-
ation in which some of the reactants are preloaded and the others are
fed in gradually, equations are developed in Example 11, following.

For a CSTR the unsteady material balance is

V′Ca0 = V′Ca + Vrra + (7-101)

Enthalpy balances also will have accumulation terms.
Conditions that give rise to unsteadiness are changes in feed rate,

composition, or temperature. In the case of Fig. 7-6, a sinusoidal input
of feed rate is introduced. The output concentration also appears to
vary sinusoidally. The amplitude of the response is lower as the spe-
cific rate is increased.

If a sinusoidal variation of the temperature of the heat transfer
medium in the jacket or coil occurs, say

Tm = Tm0(1 + α sin βt) (7-102)

the balances will be

−∆HrVrra + UA(Tm − T) = V′ρCp(T − T0) + ρVrCp (7-103)

V′Ca0 = V′Ca + Vrra + Vr (7-104)

Since each input of mass to a perfect plug flow unit is independent
of what has been input previously, its condition as it moves along the

dCa
�
dt

dT
�
dt

d(VrCa)
�

dt

4UA
�

D
4

�
D

UA
�
Vr
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TABLE 7-10 Material and Energy Balances 
of a Packed Bed Reactor

Diffusivity and thermal conductivity are taken appreciable only in the radial
direction.

Material balance equation:

− � + � − rc = 0 (1)

Energy balance equation:

− � + � + rc = 0 (2)

At the inlet:
x(0, r) = x0 (3)
T(0, r) = T0 (4)

At the center:

r = 0, = = 0 (5)

At the wall:

r = R, = 0 (6)

= (T′ − T) (7)

When the temperature T′ of the heat-transfer medium is not constant, another
enthalpy balance must be formulated to relate T′ with the process temperature T.

A numerical solution of these equations may be obtained in terms of finite
difference equivalents, taking m radial increments and n axial ones. With the
following equivalents for the derivatives, the solution may be carried out by
direct iteration:

r = m(∆r)

z = n(∆z) (8)

= (9)

= (10)

= (11)

Expressions for the x derivatives are of the same form:
rc = rate of reaction, a function of s and T
G = mass flow rate, mass/(time)(superficial cross section)
u = linear velocity
D = diffusivity
k = thermal conductivity

SOURCE: Adapted from Walas, Chemical Process Equipment Selection αnd
Design, Butterworth-Heinemann, 1990.
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���
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reactor will be determined solely by its initial condition and its resi-
dence time, independently of what comes before and after. Practically,
of course, some interaction will occur at the boundaries of successive
inputs of different compositions or temperatures. This is governed by
diffusional behaviors that are beyond the scope of the present work.

Example 11: Balances of a Semibatch Process The reaction A +
B ⇒ Products is carried out by first charging B into the vessel to a concentration
Cb0 and a volume Vr0, then feeding a solution of concentration Ca0 at volumetric
rate V′ for a time t.

Volume of solution in the tank:

Vr = Vr0 + V′t (7-105)

Stoichiometric balance:

V′tCa 0 − VrCa = Vr 0Cb 0 − Vr Cb

Cb = Ca + (7-106)

Material balance on A:

Input = Output + Sink + Accumulation

V′Ca0 = 0 + kVrCaCb +

= kVrCaCb + Vr + CaV′

+ kCaCb + = (7-107)

Eqs. (7-105), (7-106), and (7-107) are combined into

= (Ca0 − Ca) − kCa �Ca + � (7-108)

A numerical integration is required.

Vr0Cb0 − V′tCa0
��

Vr0 + V′t
V′

�
Vr0 + V′t

dCa
�
dt

V′Ca0
�

Vr

V′Ca
�

Vr

dCa
�
dt

dCa
�
dt

d(CaVr)
�

dt

Vr 0Cb0 − V′ tCa0
��

Vr0 + V′t
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FIG. 7-6 Sinusoidal input of feed rate to a CSTR. Input: F = 1 + 0.2 sin (t); out-
put: dC/dt = (1 − C)[1 + 0.2 sin (t)] − kc2. Straight lines are for constant feed rate.

LARGE SCALE OPERATIONS

INTRODUCTION

In this category are included a number of topics that become espe-
cially significant on the industrial scale. Some of this material is cov-
ered at length in Sec. 23, so only an outline is provided here.

MULTIPLE STEADY STATES

Phenomena of multiple steady states and instabilities occur particu-
larly with nonisothermal CSTRs. Some isothermal processes with
hyperbolic rate equations and processes with porous catalysts also can
have such behavior.

Mathematically, multiplicities become evident when heat and
material balances are combined. Both are functions of temperature,
the latter through the rate equation which depends on temperature by
way of the Arrhenius law. The curves representing these balances may
intersect in several points. For first order in a CSTR, the material bal-
ance in terms of the fraction converted can be written

x = , k = exp �a − � (7-109)

and the energy balance
Heat generation = Sensible heat gain

+ UA(Tm − T) = ρCpVr (T − Tf) (7-110)

These balances can be plotted two ways, as shown in Fig. 7-7:
1. x from both equations can be plotted against T, with the inter-

sections at the steady state values of T and corresponding values of x.
2. The LHS (heat generation) and RHS (heat removal) of Eq. 

(7-110) are plotted against T after x has been eliminated between the
two balances; the intersections identify the same steady state temper-
atures as the plot in Fig. 7-7a.

Conditions at which the slope of the heat generation line is greater
than that of the heat removal line are unstable, and where it is less the
condition is stable (see Fig. 7-7b). At an unstable point, any fluctua-

−∆HrVrCf (1 − x)
��

t�

b
�
T

kt�
�
1 + kt�

tion in conditions will move the temperature to a neighboring point.
Control systems always produce small fluctuations of the process vari-
ables, as in the sinusoidal case of Fig. 7-6. If the fluctuations occur
while the system is at an unstable point, the steadiness will disappear.
In the case of Fig. 7-7c, as the unstable position is approached (T =
280, C = 2.4) the profiles of T and C become erratic and eventually
degenerate to the condition at the stable point on the right (Figs. 7-7d
and 7-7e).

Either of the two stable operating conditions can be selected by
adjusting the positions of the curves so that only one intersection is
obtained. In a plant, long-time unstable operation is unlikely because
of imprecise temperature control.

Plug flow reactors with recycle exhibit some of the characteristics of
CSTRs, including the possibility of multiple steady states. This topic is
explored by Perlmutter (Stability of Chemical Reactors, Prentice-
Hall, 1972).

Endothermic reactions possess only one steady state.
For complex reactions and with multistage CSTRs, more than three

steady states can exist (as in Fig. 23-17c). Most of the work on multi-
plicities and instabilities has been done only on paper. No plant studies
and a very few laboratory studies are mentioned in the comprehensive
reviews of Razon and Schmitz (Chem. Eng. Sci., 42, 1,005–1,047
[1987]) and Morbidelli et al. (in Carberry and Varma, Chemical Reac-
tion and Reactor Engineering, Dekker, 1987, pp. 973–1,054).

NONIDEAL BEHAVIOR

Reactors that are nominally CSTRs or PFRs may in practice deviate
substantially from ideal mixing or nonmixing. This topic is developed
at length in Sec. 23, so only a few summary statements are made here.
More information about this topic also may be found in Nauman and
Buffham (Mixing in Continuous Flow Systems, Wiley, 1983).

Laminar Flow With highly viscous fluids the linear velocity
along a streamline varies with the radial position. Laminar flow is
characteristic of some polymeric systems. Figure 23-21 shows how the
conversion is poorer in laminar flow than with uniform flow over the



cross section for first- and second-order reactions. Another adverse
effect with viscous solutions is poor heat transfer. Accordingly, stirred
tanks are often preferred to tubular units for such applications. The
equations for radial and axial distributions of composition and tem-
perature in laminar flow are studied by Nauman (Chemical Reactor
Design, Wiley, 1987, pp. 165–203).

Residence Time Distribution (RTD) This is established by
injecting a known amount of tracer into the feed stream and monitor-

ing its concentration in the effluent. At present there are no correla-
tions of this kind of behavior that could be used for design of a new
process, but such information about existing units is of value for diag-
nostic purposes.

The RTD is a distinctive characteristic of mixing behavior. In Fig. 
7-3e, the CSTR has an RTD that varies as the negative exponential of
the time and the PFR is represented by a vertical line at tr = 1. Multi-
stage units and many packed beds have bell-shaped RTDs, like that of
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the five-stage unit of Fig. 7-3e and the large-scale units of Figs. 23-10
and 23-11. An equation that represents such shapes is called the
Erlang,

RTD = tr
n − 1 exp (−ntr) (7-111)

where n is interpreted as a number of CSTRs in series. When n is inte-
gral, Γ(n) is replaced by (n − 1)!. Plots of these curves are shown in
Fig. 23-9.

When the RTD of a vessel is known, its performance as a reactor for
a first-order reaction, and the range within which its performance will
fall for other orders, can be predicted.

Segregated Flow A real example is bead polymerization of
styrene and some other materials. The reactant is in the form of indi-
vidual small beads suspended in a fluid and retarded from agglomera-
tion by colloids on their surfaces. Accordingly, they go through the
reactor as independent bodies and attain conversions under batch
conditions with their individual residence times. This is called segre-
gated flow. With a particular RTD, conversion is a maximum with this
flow pattern. The mean conversion of all the segregated elements
then is given by

= �∞

0
(RTD) � �

batch
dtr (7-112)

For first order � �
batch

= exp (−kt�tr) (7-113)

For second order � �
batch

= (7-114)

Example 12: Segregated Flow The pilot unit of Fig. 23-11 with 
n = 9.3 has

RTD = 13188tr
8.3 exp (−9.3tr)

Some values of mean concentration ratio C�/C0 of first- and second-order reac-
tions obtained with Eq. (7-112) are:

kt� or kC0t� 1 2 5 10

First order C�/C0 0.386 0.163 0.018
Second order C�/C0 0.513 0.349 0.180 0.100
Second order PFR 0.500 0.333 0.167 0.091

Maximum Mixedness With a particular RTD, this pattern pro-
vides a lower limit to the attainable conversion. It is explained in Sec.
23. Some comparisons of conversions with different flow patterns are
made in Fig. 23-14. Segregated conversion is easier to calculate and is
often regarded as a somewhat plausible mechanism, so it is often the
only one taken into account.

Dispersion In tubes, and particularly in packed beds, the flow
pattern is disturbed by eddies whose effect is taken into account by a
dispersion coefficient in Fick’s diffusion law. A PFR has a dispersion
coefficient of 0 and a CSTR of ∞. Some rough correlations of the
Peclet number uL/D in terms of Reynolds and Schmidt numbers are
Eqs. (23-47) to (23-49). There is also a relation between the Peclet
number and the value of n of the RTD equation, Eq. (7-111). The dis-
persion model is sometimes said to be an adequate representation of
a reactor with a “small” deviation from plug flow, without specifying
the magnitude of small. As a point of superiority to the RTD model,
the dispersion model does have the empirical correlations that have
been cited and can therefore be used for design purposes within the
limits of those correlations.

OPTIMUM CONDITIONS

Optimization of a process is an activity whereby the best conditions
are found for attainment of a maximum or minimum of some desired
objective. In the broadest sense, an industrial process has maximum
profit as its goal, but there are also problems with less-ambitious goals
that do not involve money or the whole plant.

1
��
(1 + kC0t�tr)
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�
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�
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C
�
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�
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nn

�
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The best quality to be found may be a temperature, a temperature
program, a concentration, a conversion, a yield of preferred product,
a cycle period for a batch reaction, a daily production level, a kind of
reactor, a size for a reactor, an arrangement of reactor elements, pro-
visions for heat transfer, profit or cost, and so on—a maximum or min-
imum of some of these factors. Among the constraints that may be
imposed on the process are temperature range, pressure range, corro-
siveness, waste disposal, and others.

Once the objective and the constraints have been set, a mathemat-
ical model of the process can be subjected to a search strategy to find
the optimum. Simple calculus is adequate for some problems, or
Lagrange multipliers can be used for constrained extrema. When a
full plant simulation can be made, various alternatives can be put
through the computer. Such an operation is called flowsheeting. A
chapter is devoted to this topic by Edgar and Himmelblau (Optimiza-
tion of Chemical Processes, McGraw-Hill, 1988) where they list a
number of commercially available software packages for this purpose,
one of the first of which was Flowtran.

With many variables and constraints, linear and nonlinear program-
ming may be applicable, as well as various numerical gradient search
methods. Maximum principle and dynamic programming are labori-
ous and have had only limited applications in this area. The various
mathematical techniques are explained and illustrated, for instance,
by Edgar and Himmelblau (Optimization of Chemical Processes,
McGraw-Hill, 1988).

A few specific conclusions about optimum performance can be
stated:

1. The minimum total volume of a CSTR battery for first-order
reaction, and near-minimum for second-order, is obtained when all
vessels are the same size.

2. An economical optimum number of CSTRs and their auxil-
iaries in series is 4 to 5.

3. In a sequence of PFR and CSTR, better performance is
obtained with the PFR last. Performance of reversible reactions is
improved with the CSTR at a higher temperature.

4. For the consecutive reactions A ⇒ B ⇒ C, a higher yield of
intermediate B is obtained in batch reactors or PFRs than in CSTRs.

5. When the desirable product of a complex reaction is favored by
a high concentration of some reactant, batch or semibatch reactors
can be made superior to CSTRs.

6. Conversion by a reversible reaction is enhanced by starting out
at high temperature and ending at low temperature if equilibrium
conversion drops off at high temperature.

7. For a reversible reaction, the minimum size or maximum con-
version is obtained when the rate of reaction is kept at a maximum at
each conversion by adjustment of the temperature.

Variables It is possible to identify a large number of variables that
influence the design and performance of a chemical reactor with heat
transfer, from the vessel size and type; catalyst distribution among the
beds; catalyst type, size, and porosity; to the geometry of the heat-
transfer surface, such as tube diameter, length, pitch, and so on. Expe-
rience has shown, however, that the reactor temperature, and often also
the pressure, are the primary variables; feed compositions and velocities
are of secondary importance; and the geometric characteristics of the
catalyst and heat-exchange provisions are tertiary factors. Tertiary fac-
tors are usually set by standard plant practice. Many of the major opti-
mization studies cited by Westerterp et al. (1984), for instance, are
devoted to reactor temperature as a means of optimization.

The complexity of temperature regulation of three major commer-
cial reversible processes are represented in Figs. 23-3a, 23-3e, and 
23-3f. Presumably, these profiles have been established by fine-tuning
the operations over a period of time.

Objective Function This is the quantity for which a minimax is
sought. For a complete manufacturing plant, it is related closely to the
economy of the plant. Subsidiary problems may be to optimize con-
version, production, selectivity, energy consumption, and so on in
terms of temperature, pressure, catalyst, or other pertinent variables.

Case Studies Several collections of more or less detailed solu-
tions of optimization problems are cited, as follows.

1. Of the 23 studies listed under “Modeling of Chemical Reac-
tors” in Sec. 23, a number are optimization oriented. Added to them
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may be a detailed study of an existing sulfuric acid plant by Crowe 
et al. (Chemical Plant Simulation, Prentice-Hall, 1971).

2. Chen (Process Reactor Design, Allyn & Bacon, 1983) does the
following examples mostly with simple calculus:

Batch reactors—optimum residence time for series and complex
reactions, minimum cost, optimal operating temperature, and maxi-
mum rate of reaction

CSTRs—minimum volume of battery, maximum yield, optimal
temperature for reversible reaction, minimum total cost, reactor 
volume with recycle, maximum profit for reversible reaction with
recycle, and heat loss

Tubular flow reactors—minimum volume for second-order
reversible reactions, maximum yield of consecutive reactions, mini-
mum cost with and without recycle, and maximum profit with recycle

Packed bed reactor optimization
Size comparison for first- and second-order and reversible reactions
Selectivity of parallel and consecutive reactions and of reactions in

a porous catalyst
3. Edgar and Himmelblau (Optimization of Chemical Processes,

McGraw-Hill, 524–550, 1988) supply many references to other prob-
lems in the literature:

Optimal residence time for the reactions A ⇔ B followed by B ⇒ P
or X

Optimal time for a biochemical CSTR
Selection of feedstock for thermal cracking to ethylene by linear

programming
Maximum yield from a four-stage CSTR by nonlinear programming
Optimal design of ammonia synthesis by differential equation solu-

tion and a numerical gradient search
A C4 alkylation process by sequential quadratic programming
4. Westerterp, van Swaaij, and Beenackers (Chemical Reactor

Design and Operation, Wiley, 1984, pp. 674–746) also supply many
references to other problems in the literature:

Optimized costs for several gas phase reactions: (1) A + B ⇒ P; (2)
A + B ⇔ P; and (3) A + B ⇒ P, A + 2B ⇒ X, P + B ⇒ X

Ammonia cold-shot converter
Maximum yield of first-order consecutive reactions in CSTR by

application of Lagrange multipliers
Autothermal reactor for methanol synthesis using a numerical

search technique
Minimum reactor volumes of isothermal and nonisothermal cas-

cades by dynamic programming
Optimum temperature profiles of 2A ⇒ B ⇒ P by the maximum

principle
Optimizing the temperature for A ⇒ P and A ⇒ X by the maximum

principle
Westerterp et al. (1984; see Case Study 4, preceding) conclude,

“Thanks to mathematical techniques and computing aids now avail-
able, any optimization problem can be solved, provided it is realistic
and properly stated. The difficulties of optimization lie mainly in pro-
viding the pertinent data and in an adequate construction of the
objective function.”

HETEROGENEOUS REACTIONS

Heterogeneous reactions of industrial significance occur between all
combinations of gas, liquid, and solid phases. The solids may be inert
or reactive or catalysts in granular form. Some noncatalytic examples
are listed in Table 7-11, and processes with solid catalysts are listed
under “Catalysis” in Sec. 23. Equipment and operating conditions of
heterogeneous processes are covered at some length in Sec. 23; only
some highlights will be pointed out here.

Reactants migrate between phases in order to react: from gas phase
to liquid, from fluid to solid, and between liquids when the reaction
occurs in both phases. One of the liquids usually is aqueous. Resis-
tance to mass transfer may have a strong effect on the overall rate of
reaction. A principal factor is the interfacial area. Its magnitude is
enhanced by agitation, spraying, sparging, use of trays or packing, and
by size reduction or increase of the porosity of solids. These are the
same operations that are used to effect physical mass transfer between

phases and the equipment can be similar, except that more heat trans-
fer may be needed because of substantial heats of reaction.

Chemical reaction always enhances the rate of mass transfer
between phases. The possible magnitudes of such enhancements are
indicated in Tables 23-6 and 23-7. They are no more predictable than
are specific rates of chemical reactions and must be found experimen-
tally for each case, or in the relatively sparse literature on the subject.

Mechanisms The most widely investigated heterogeneous reac-
tions have been gas/liquid and fluid/solid catalyst. The Hatta theory or
Langmuir-Hinshelwood mechanisms can suggest the forms of rate
equations but they always involve parameters to be found empirically.
Because liquid diffusivities are low, most liquid/liquid reactions are
believed to be mass-transfer controlled. In some cases the phase in
which reaction occurs has been identified, but there are cases where
both phases are active. Phase-transfer catalysts enhance the transfer
of reactant from an aqueous to an organic phase and thus speed up
reactions. Mass transfer responds less strongly to change of tempera-
ture than does chemical rate, so this feature can be used to discrimi-
nate between possible controlling mechanisms. A sensitivity to stirring
rate or to a change in linear velocity also will indicate the presence of
major resistance to mass transfer. No single pattern appears to hold
for reactions of solids, but much is known about the behavior of
important operations like cement manufacturing, ore roasting, and
lime burning.
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TABLE 7-11 Industrial Noncatalytic Heterogeneous Reaction

Gas/solid
Action of chlorine on uranium oxide to recover volatile uranium chloride
Removal of iron oxide impurity from titanium oxide by volatilization by 
action of chlorine

Combustion and gasification of coal
Manufacture of hydrogen by action of steam on iron
Manufacture of blue gas by action of steam on carbon
Calcium cyanamide by action of atmospheric nitrogen on calcium carbide
Burning of iron sulfide ores with air
Nitriding of steel

Liquid/solid
Ion exchange
Acetylene by action of water on calcium carbide
Cyaniding of steel
Hydration of lime
Action of liquid sulfuric acid on solid sodium chloride or on phosphate rock 
or on sodium nitrate

Leaching of uranium ores with sulfuric acid

Gas/liquid
Sodium thiosulfate by action of sulfur dioxide on aqueous sodium carbonate 
and sodium sulfide

Sodium nitrite by action of nitric oxide and oxygen on aqueous sodium car-
bonate

Sodium hypochlorite by action of chlorine on aqueous sodium hydroxide
Ammonium nitrate by action of ammonia on aqueous nitric acid
Nitric acid by absorption of nitric oxide in water
Recovery of iodine by action of sulfur dioxide on aqueous sodium iodate
Hydrogenation of vegetable oils with gaseous hydrogen
Desulfurization of gases by scrubbing with aqueous ethanolamines

Liquid/liquid
Caustic soda by reaction of sodium amalgam and water
Nitration of organic compounds with aqueous nitric acid
Formation of soaps by action of aqueous alkalies on fats or fatty acids
Sulfur removal from petroleum fractions by aqueous ethanolamines
Treating of petroleum products with sulfuric acid

Solid/solid
Manufacture of cement
Boron carbide from boron oxide and carbon
Calcium silicate from lime and silica
Calcium carbide by reaction of lime and carbon
Leblanc soda ash

Gas/liquid/solid
Hydrogenation or liquefaction of coal in oil slurry

SOURCE: Adapted from Walas, Reaction Kinetics for Chemical Engineers,
McGraw-Hill, 1959; Butterworths, 1989.



Reaction and Separation Some multiphase operations com-
bine simultaneous reaction and separation. A few examples follow.

1. The yield of furfural from xylose is improved by countercurrent
extraction with tetralin (Schoenemann, Proc. 2d Europ. Symp. Chem.
React. Eng., Pergamon, 1961, p. 30).

2. The reaction of vinyl acetate and stearic acid makes vinyl
stearate and acetic acid but also some unwanted ethylidene acetate.
A high selectivity is obtained by reaction in a distillation column with
acetic acid overhead and vinyl stearate to the bottom (Geelen and
Wiffels, Proc. 3d Europ. Symp. Chem. React. Eng., Pergamon, 1964,
p. 125).

3. The hydrolysis of fats is improved by running in a counter-
current extraction column (Donders et al., Proc. 4th Europ. Symp.
Chem. React. Eng., Pergamon, 1968, pp. 159–168).

4. In the production of KNO3 from KCl and HNO3, the product
HCl is removed continuously from the aqueous phase by contact with
amyl alcohol, thus forcing the reaction to completion (Baniel and
Blumberg, Chim. Ind., 4, 27 [1957]).

5. Methyl-tert-butyl ether, a gasoline additive, is made from
isobutene and methanol with distillation in a bed of acidic ion-
exchange resin catalyst. The MTBE goes to the bottom with purity
above 99 percent and unreacted materials overhead.
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ACQUISITION OF DATA

INTRODUCTION

Kinetic data are acquired in the laboratory as a basis for design of
large-scale equipment or for an understanding of its performance, or
for the interpretation of possible reaction mechanisms. All levels of
sophistication of equipment, statistical design of experiments, execu-
tion, and statistical analysis of the data are reported in the literature.
Before serious work is undertaken, the appropriate literature should
be consulted. The bibliography of Shah (Gas-Liquid-Solid Reactor
Design, McGraw-Hill, 1979), for instance, has 145 items classified
into 22 categories of reactor types.

The criteria for selection of laboratory reactors include equipment
cost, ease of operation, ease of data analysis, accuracy, versatility, tem-
perature uniformity, and controllability, suitability for mixed phases,
and scale-up feasibility.

A number of factors limit the accuracy with which parameters for
the design of commercial equipment can be determined. The param-
eters may depend on transport properties for heat and mass transfer
that have been determined under nonreacting conditions. Inevitably,
subtle differences exist between large and small scale. Experimental
uncertainty is also a factor, so that under good conditions with modern
equipment kinetic parameters can never be determined more pre-
cisely than �5 to 10 percent (Hofmann, in de Lasa, Chemical Reactor
Design and Technology, Martinus Nijhoff, 1986, p. 72).

Composition The law of mass action is expressed as a rate in
terms of chemical compositions of the participants, so ultimately the
variation of composition with time must be found. The composition is
determined in terms of a property that is measured by some instru-
ment and calibrated in terms of composition. Among the measures that
have been used are titration, pressure, refractive index, density, chro-
matography, spectrometry, polarimetry, conductimetry, absorbance,
and magnetic resonance. In some cases the composition may vary lin-
early with the observed property, but in every case a calibration is
needed. Before kinetic analysis is undertaken, the data are converted
to composition as a function of time (C, t), or to composition and tem-
perature as functions of time (C, T, t). In a steady CSTR the rate is
observed as a function of residence time.

When a reaction has many participants, which may be the case even
of apparently simple processes like pyrolysis of ethane or synthesis of
methanol, a factorial or other experimental design can be made and
the data subjected to a response surface analysis (Davies, Design and
Analysis of Industrial Experiments, Oliver & Boyd, 1954). A quadratic
of this type for the variables x1, x2, and x3 is

r = k1 x1 + k2x2 + k3x3 + k11x1
2 + k22 x2

2 + k33 x3
2 + k12x1x2 + k13x1x3 + k23 x2 x3

(7-115)

Analysis of such a correlation may reveal the significant variables and
interactions, and may suggest some model, say of the L-H type, that
could be analyzed in more detail by a regression process. The vari-
ables xi could be various parameters of heterogeneous processes as
well as concentrations. An application of this method to isomerization
of n-pentane is given by Kittrel and Erjavec (Ind. Eng. Chem. Proc.
Des. Dev., 7, 321 [1968]).

The constants of rate equations of single reactions often can be
found by one of the linearization schemes of Fig. 7-1. Nonlinear
regression methods can treat any kind of rate equation, even models
made up of differential and algebraic equations together, for instance

= −k1A

= k1A − k2B2 + k3C

C = A0 + B0 + C0 − A − B

Software for these procedures is supplied, for example, by Constan-
tinides (Applied Numerical Methods with Personal Computers,
McGraw-Hill, 1987, pp. 577–614, with diskette) and by the commer-
cial product SimuSolv (Mitchell and Gauthier Associates, 200 Baker
Street, Concord, MA 01742). These do the integration, find the con-
stants and their statistical criteria, and make the plots. SimuSolv is
claimed “to provide maximum efficiency in problem solving with min-
imum involvement in computational procedures.” Since the computer
does the work, many possibilities may be considered. For the reaction
cyclohexanol to cyclohexanone, 36 experiments at 6 temperature lev-
els were made and more than 50 rate equations were tested (Hof-
mann, in de Lasa, Chemical Reactor Design and Technology, Martinus
Nijhoff, 1986, p. 72). A rate equation for methanol from CO2 and H2

was selected from 44 possibilities by Beenackers and Graaf (in
Cheremisinoff, Handbook of Heat and Mass Transfer, vol. 3, Gulf
Publishing, 1989, pp. 671–699). They used a spinning basket reactor
like the item shown in Fig. 23-29c.

EQUIPMENT

Many configurations of laboratory reactors have been employed. Rase
(Chemical Reactor Design for Process Plants, Wiley, 1977) and Shah
(Gas-Liquid-Solid Reactor Design, McGraw-Hill, 1979) each have
about 25 sketches, and Shah’s bibliography has 145 items classified
into 22 categories of reactor types. Jankowski et al. (Chemische Tech-
nik, 30, 441–446 [1978]) illustrate 25 different kinds of gradientless
laboratory reactors for use with solid catalysts.

Laboratory reactors are of two main types:
1. Designed to obtain such fundamental data as chemical rates

free of mass transfer resistances or other complications. Some of the
heterogeneous reactors of Fig. 23-29, for instance, employ known
interfacial areas, thus avoiding one uncertainty.

2. Simulations of the kinds of reactor intended for the pilot or
plant scale. How to do the scale-up to the plant size, however, is a siz-
able problem in itself.

Batch Reactors In the simplest kind of investigation, reactants
can be loaded into a number of ampules, kept in a thermostatic bath
for various periods, and analyzed.

In terms of cost and versatility, the stirred batch reactor is the unit
of choice for homogeneous or slurry reactions and even gas/liquid
reactions when provision is made for recirculation of the gas. They are
especially suited to reactions with half-lives in excess of 10 min. Sam-

dB
�
dt

dA
�
dt



ples are taken at intervals and the reaction is stopped by cooling, usu-
ally by at least 50°C (122°F), by dilution, or by destroying a residual
reactant such as an acid or base; analysis can then be made at leisure.
Analytic methods that do not necessitate termination of reaction
include measurements of (1) the amount of gas produced, (2) the gas
pressure in a constant volume vessel, (3) absorption of light, (4) elec-
trical or thermal conductivity, (5) polarography, (6) viscosity of poly-
merization, and so on. The readings of any instrument should be
calibrated to chemical composition or concentration. Operation may
be isothermal, with the important effect of temperature determined
from several isothermal runs, or the composition and temperature
may be recorded simultaneously and the data regressed simultane-
ously. Finding the parameters of the nonisothermal equation r =
exp (a + b/T) Cq is only a little more difficult than for r = kCq. Rates,
dC/dt, are found by numerical differentiation of (C, t) data.

On the laboratory scale, it is usually safe to assume that a batch
reactor is stirred to uniform composition, but for critical cases such as
high viscosities this could be checked with tracer tests.

CSTRs and other devices that require flow control are more expen-
sive and difficult to operate. Particularly in steady operation, however,
the great merit of CSTRs is their isothermicity and the fact that their
mathematical representation is algebraic, involving no differential
equations, thus making data analysis simpler.

For laboratory research purposes, CSTRs are considered feasible
for holding times of 1 to 4,000 s, reactor volumes of 2 to 400 cm3

(0.122 to 24.4 in3) and flow rates of 0.1 to 2.0 cm3/s.
Flow Reactors Fast reactions and those in the gas phase are gen-

erally done in tubular flow reactors, just as they are often done on 
the commercial scale. Some heterogeneous reactors are shown in Fig.
23-29; the item in Fig. 23-29g is suited to liquid/liquid as well as
gas/liquid. Stirred tanks, bubble and packed towers, and other com-
mercial types are also used. The operation of such units can sometimes
be predicted from independent data of chemical and mass transfer
rates, correlations of interfacial areas, droplet sizes, and other data.

Usually it is not possible to measure compositions along a TFR,
although temperatures can sometimes be measured. Mostly TFRs are
kept at nearly constant temperatures. Small-diameter tubes immersed
in a fluidized sand bed or molten lead or salt can hold quite constant
temperatures of a few hundred degrees. A recycle unit like that shown
in Fig. 23-29a can be operated as a differential reactor with arbitrarily
small conversion and temperature change. This and the CSTR are the
preferred laboratory devices nowadays, unless the budget allows for
only a batch stirred flask. Test work in a tubular flow unit may be desir-
able if the commercial unit is to be of that type, although rate data from
any kind of laboratory equipment are adaptable to the design of most
kinds of large-scale equipment. Larger TFRs may be used in pilot
plants to test predictions by data from gradientless reactors.

Multiple Phases Reactions between gas/liquid, liquid/liquid,
and fluid/solid phases are often tested in CSTRs. Other laboratory
types are suggested by the commercial units depicted in appropriate
sketches in Sec. 23. Liquids can be reacted with gases of low solubili-

ties in stirred vessels, with the liquid charged first and the gas fed con-
tinuously at the rate of reaction or dissolution, sometimes with recir-
culation in larger units. The reactors of Fig. 23-29 are designed to
have known interfacial areas. Most equipment for gas absorption
without reaction is adaptable to absorption with reaction. The many
types of equipment for liquid/liquid extraction also are adaptable to
reactions of immiscible phases.

Solid Catalysts Processes with solid catalysts are affected by dif-
fusion of heat and mass (1) within the pores of the pellet, (2) between
the fluid and the particle, and (3) axially and radially within the packed
bed. Criteria in terms of various dimensionless groups have been
developed to tell when these effects are appreciable. They are dis-
cussed by Mears (Ind. Eng. Chem. Proc. Des. Devel., 10, 541–547
[1971]; Ind. Eng. Chem. Fund., 15, 20–23 [1976]) and Satterfield
(Heterogeneous Catalysis in Practice, McGraw-Hill, 1991, p. 491).

For catalytic investigations, the rotating basket or fixed basket with
internal recirculation are the standard devices nowadays, usually more
convenient and less expensive than equipment with external recircu-
lation. In the fixed basket type, an internal recirculation rate of 10 to
15 or so times the feed rate effectively eliminates external diffusional
resistance, and temperature gradients. A unit holding 50 cm3 (3.05 in3)
of catalyst can operate up to 800 K (1440 R) and 50 bar (725 psi).

When deactivation occurs rapidly (in a few seconds during catalytic
cracking, for instance), the fresh activity can be found with a transport
reactor through which both reactants and fresh catalyst flow without
slip and with short contact time. Since catalysts often are sensitive to
traces of impurities, the time-deactivation of the catalyst usually can be
evaluated only with commercial feedstock, preferably in a pilot plant.

Physical properties of catalysts also may need to be checked peri-
odically, including pellet size, specific surface, porosity, pore size and
size distribution, and effective diffusivity. The effectiveness of a
porous catalyst is found by measuring conversions with successively
smaller pellets until no further change occurs. These topics are
touched on by Satterfield (Heterogeneous Catalysis in Industrial
Practice, McGraw-Hill, 1991).

REFERENCES FOR LABORATORY REACTORS

Berty, “Laboratory reactors for catalytic studies”, in Leach, ed.,
Applied Industrial Catalysis, vol. 1, Academic, 1983, pp. 41–57.

Danckwerts, Gas-Liquid Reactions, McGraw-Hill, 1970.
Hofmann, “Industrial process kinetics and parameter estimation”,

in ACS Advances in Chemistry, 109, 519–534 (1972); “Kinetic data
analysis and parameter estimation”, in de Lasa, ed., Chemical Reactor
Design and Technology, Martinus Nijhoff, 1986, pp. 69–105.

Horak and Pasek, Design of Industrial Chemical Reactors from
Laboratory Data, Heyden, 1978.

Rase, Chemical Reactor Design for Process Plants, Wiley, 1977, pp.
195–259. 124 references.

Shah, Gas-Liquid-Solid Reactor Design, McGraw-Hill, 1979, pp.
149–179. 145 references.

7-28 REACTION KINETICS

SOLVED PROBLEMS

These numerical problems deal with ideal types of batch, continu-
ously stirred, and plug flow reactors, for which the formulas are sum-
marized in Tables 7-5 to 7-7. They find parameters of rate equations,
conversions, vessel sizes, or operating conditions. Numerical methods
are adopted for most integrations and differential equations. Several
ODE softwares are readily available, including POLYMATH, which is
obtainable through the AIChE. A larger and broader collection of
solutions is provided by Walas (Chemical Reaction Engineering Hand-
book of Solved Problems, Gordon & Breach, 1995).

P1. EQUILIBRIUM OF FORMATION OF ETHYLBENZENE

Ethylbenzene is made from benzene and ethylene in the gas phase at
260°C and 40 atm.

C6H6 + C2H4 ⇔ C6H5C2H5

Equimolal proportions of the reactants are used. Thermodynamic
data at 298 K are tabulated. The specific heats are averages. Find: (1)
the enthalpy change of reaction at 298 and 573 K; (2) equilibrium con-
stant at 298 and 573 K; (3) fractional conversion at 573 K.

Cp ∆Hf ∆Gf

C6H6 28 19,820 30,989
C2H4 5 12,496 16,282
C6H5C2H5 38 7,120 31,208
∆ −5 −25,196 −16,063



∆HT = ∆H298 + �T

298
∆Cp dT = −25,196 −5(T − 298)

= −26,576 at 573 K (1)

ln K298 = = = 26.90

= = − −

ln K298 = 26.9 − �573

298
� + � dT = 6.17 (2)

K = 485

=

x = 0.9929, fraction converted (3)

P2. OPTIMUM CYCLE PERIOD WITH DOWNTIME

Find the optimum cycle period for a first-order batch reaction with a
downtime of ϑd h per batch.

− = kC

ϑ = ln � �
Number of daily batches:

n =

Daily yield:

y = Vr(C0 − C)n = =

The ordinate of the plot is y/24kVrC0 which is proportional to the daily
yield. The peaks in this curve are at these values of the parameters:

kϑd 0.01 0.10 1 5
C/C0 0.87 0.65 0.32 0.12

P3. PARALLEL REACTIONS OF BUTADIENE

Butadiene (B) reacts with acrolein (A) and also forms a dimer accord-
ing to the reactions

C4H6 + C3H4O
1⇒ C7H10O, 2 C4H6

2⇒ C8H12

The reaction is carried out in a closed vessel at 330°C, starting at 1 atm
with equal concentrations of A and B, 0.010 g mol/L each. Specific
rates are k1 = 5.900 and k2 = 1.443 L/(g mol⋅min). Find (1) B as a func-
tion of A; (2) A and B as functions of t.
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− = k1AB = 5.9AB (1)

− = k1AB + k2B2 = 5.9AB + 1.443B2 (2)

Dividing these equations,

− = 1 (3)

This is a linear equation whose solution is

B = A + IAk2/k1 = 1.32A − 0.010A0.245 (4)

The integration constant was evaluated with A0 = B0 = 0.010.
Substituting (4) into (1),

− = 5.9A(1.32A − 0.010A0.245) (5)

The variables are separable, but an integration in closed form is not
possible because of the odd exponent. Numerical integration followed
by substitution into (4) will provide both A and B as functions of t. The
plots, however, are of solutions of the original differential equations
with ODE.

P4. BATCH REACTION WITH HEAT TRANSFER

A second-order reaction proceeds in a batch reactor provided with
heat transfer. Initial conditions are T0 = 350 and C0 = 1. Other data are:

k = exp �16 − � ft3/(lb mol⋅h) (1)

∆Hr = −(5000 + 5T) Btu/lb mol (2)

ρCp = 50

The rate of heat transfer is

Q = UA(300 − T) Btu/h (3)

The temperature T and the time t will be found in terms of fractional
conversion x when UA/Vr = 0 or 150.

The rate equation may be written:

= (4)

The differential heat balance is

ρCpVr dT = Qdt − ∆HrVrC0dx

Substituting for dt from Eq. (4) and rearranging,

= � − ∆HrC0�
= 0.02� + 5000 + 5T� (5)

Equations (1), (4), and (5) are solved simultaneously with UA/Vr = 0 or
150. In the adiabatic case, the temperature tends to run away.
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P5. A SEMIBATCH PROCESS

A tank is charged initially with vr0 = 100 L of a solution of concentra-
tion Cb0 = 2 g mol/L. Another solution is then pumped in at V′ = 5
L/min with concentration Ca0 = 0.8 until a stoichiometric amount has
been added. The rate equation is

r = 0.015CaCb g mol/(L⋅min)

Find the concentration during the filling period and for 50 min after-
ward.

Vr = 100 + 5t (1)

Cb = Ca + = Ca + (2)

= − 0.015Ca�Ca + � (3)

The input is continued until 200 lb mol of A have been added, which
is for 50 min. Eq. (3) is integrated for this time interval. After input is
discontinued the rate equation is

− = kCa
2 (4)

At t = 50, Ca = Ca1 = 0.4467.

Ca = = (5)

Plots are shown for several specific rates, including k = 0 when no
reaction takes place.

P6. OPTIMUM REACTION TEMPERATURE 
WITH DOWNTIME

A liquid phase reaction 2A 1⇔
2

B + C has the rate equation

ra = k�Ca
2 − � = kC2

a0 �(1 − f )2 − �, kg mol/(m3⋅h)

where f = fractional conversion
Ca0 = 1

k = exp �4.5 − �
Ke = exp �28.8 − 0.037T − �5,178

�
T

2,500
�

T

f 2

�
Ke

CbCc
�

Ke

0 50

t

0.6

0.3C
a

k = 0

k = 0.015

k = 0.050

100
0

1
���
2.2386 + 0.015(t − 50)

1
��
1/Ca1 + k(t − 50)

dCa
�
dt

40 − 0.8t
�

20 + t
0.8 − Ca
�

20 + t
dCa
�
dt

40 − 0.8t
�

20 + t
100(2) − 5(0.8)t
��

100 + 5t

0 .2 .4 .6 .8
X

500

400

UA/Vr = 0

150

150

0

1
300

T

350

0.2

0.1

0

t

The downtime is 1 h per batch. Find the temperature at which the
daily production is a maximum.

The reaction time of one batch is

tb = �f

0
(1)

Batches/day =

Daily production = VrCa0 f

Maximize P = f/(tb + 1) as a function of temperature. Eq. (1) is inte-
grated with POLYMATH for several temperatures and the results are
plotted. The tabulation gives the integration at 550 K. The peak value
of P = f/(tb + 1) = 0.1941 at 550 K, tb = 0.6, and f = 0.3105.

Maximum daily production = 0.1941(24)VrCa0

= 4.66Vr kg mol/d

The equations:

= k∗ �(1 − f )∗∗ 2 − f ∗∗ �
x = 550

k = exp �4.5 − �
ke = exp �28.8 − �
p = f /(t + 1)

Initial values: t0 = 0.0 f0 = 0.0

Final value: tf = 2.0000

t f p

0.0 0.0 0.0
0.2000 0.1562 0.1302
0.4000 0.2535 0.1811
0.6000 0.3105 0.1941
0.8000 0.3427 0.1904
1.0000 0.3605 0.1802
1.2000 0.3702 0.1683
1.4000 0.3755 0.1565
1.6000 0.3784 0.1455
1.8000 0.3799 0.1357
2.0000 0.3807 0.1269

P7. RATE EQUATIONS FROM CSTR DATA

For the consecutive reactions 2A ⇒ B and 2B ⇒ C, concentrations
were measured as functions of residence time in a CSTR. In all exper-
iments, Ca0 = 1 lb mol/ft3. Volumetric flow rate was constant. The data
are tabulated in the first three columns. Check the proposed rate
equations,

ra = k1Ca
α

rb = −0.5k1Ca
α + k2Cb

β

5,178
��
x − .037 ∗ x

2,500
�

x

2
�
ke

d( f )
�
d(t)

400 425 450 475 500 525 550 575 600 625

Temperature, T
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2.0
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1.4

1.0
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0.4

1.2

t b
, 1

0P

10P

650
0.2

tb

24
�
tb + 1

24
�
tb + 1

df
��
(1 − f )2 − f 2/Ke

1
�
k
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Write and rearrange the material balances on the CSTR.

Ca0 = Ca + t�ra

ra = = k1Ca
α (1)

rb = = −0.5k1Ca
α + k2Cb

β = −0.5ra + k2Cb
β (2)

Numerical values of ra, rb, and rb + 0.5ra are tabulated. The constants
of the rate equations are evaluated from the plots of the linearized
equations,

ln ra = ln k1 + α ln Ca = −2.30 + 2.001 ln Ca

ln (rb + 0.5ra ) = ln k2 + β ln Cb = −4.606 + 0.9979 ln Cb

which make the rate equations

ra = 0.1003Ca
2.00 (3)

rb = −0.0502Ca
2 + 0.01Cb

0.998 (4)

t� Ca Cb ra −rb rb + 0.5ra

10 1.000 0.4545 0.100 0.04545 0.00455
20 0.780 0.5083 0.061 0.02542 0.00508
40 0.592 0.5028 0.0352 0.01257 0.00503

100 0.400 0.400 0.0160 0.0040 0.0040
450 0.200 0.1636 0.0040 0.000364 0.00164

P8. COMPARISON OF BATCH AND CSTR OPERATIONS

A solution containing 0.5 lb mol/ft3 of reactive component is to be
treated at 25 ft3/h. The rate equation is

r = = 2.33C1.7 lb mol/(ft3⋅h)

1. If the downtime is 45 min per batch, what size reactor is
needed for 90% conversion?

2. What percentage conversion is attained with a two-stage
CSTR, each vessel being 50 ft3?

Part 1: The integral of the rate equation is solved for the time,

t = (C−0.7 −C0
−0.7) = � − �

= 4.00 h

Number of batches = = 5.053/d

Reactor volume Vr = = 118.7 ft3

Part 2:

τ = = 2

0.5 = C1 + τr = C1 + 2(2.33)C1
1.7

C1 = C2 + 2(2.33)C2
1.7

50
�
25

24(25)
�
5.053

24
��
(4 + 0.75)

1
�
0.50.7

1
�
0.050.7

1
�
0.7(2.33)

1
�
0.7k

−dC
�

dt

10–1 1002 3 4 5 6 7 8

Ca, Cb

2

10–1

3

10–2

3
2

2

9
10–3

(Ca, ra)

(Cb, 0.5ra + rb)

Cb0 − Cb
�

t�

Ca0 − Ca
�

t�

The solution is,

C1 = 0.1994, = 60.1% conversion

C2 = 0.1025, = 79.5% conversion

P9. INSTANTANEOUS AND GRADUAL FEED RATES

Initially a reactor contains 2 m3 of a solvent. A solution containing 
2 kg mol/m3 of reactant A is pumped in at the rate of 0.06 m3/min until
the volume becomes 4 m3. The rate equation is ra = 0.25Ca, 1/min.
Compare the time-composition profile of this operation with charging
all of the feed instantaneously.

During the filling period,

Vr = 2 + 0.06t

V′Ca0 = kVrCa + = kVrCa + Vr + Ca

0.06(2) = 0.25(2 + 0.06t)Ca + (2 + 0.06t) + 0.06Ca

= , Ca0 = 0 (1)

When all of A is charged at the beginning,

= −0.25Ca, Ca0 = 0.5 (2)

The integrals of these two equations are plotted. A peak value, 
Ca = 0.1695, is reached in the first operation at t = 10.

P10. FILLING AND UNSTEADY OPERATING PERIOD 
OF A CSTR

A stirred reactor is being charged at 5 ft3/min with a concentration of
2 mol/ft3. The reactor has a capacity of 150 ft3 but is initially empty.
The rate of reaction is

r = 0.02C2 lb mol/(ft3⋅min).

After the tank is filled, pumping is continued and overflow is permit-
ted at the same flow rate. Find the concentration in the tank when it
first becomes full, and find how long it takes for the effluent concen-
tration to get within 95% of the steady state value.

Filling period:

Vr = V′t

V′C0 = kVrC2 + = kVrC2 + �C + t �V′

= = , C = 2 when t = 0

The numerical solution is C = 1.3269 when t = 30.
Unsteady period:

V′C0 = V′C + kVrC2 + Vr

= = ,

C = 1.3269 when t = 30.

2 − C − 0.02(30)C2

��
30

C0 − C − kτC2

��
τ

dC
�
dt

dC
�
dt

2 − 0.02tC2 − C
��

t
C0 − ktC2 − C
��

t
dC
�
dt

dC
�
dt

dVrC
�

dt

0 8 16 24 32 40

t

.5

.4

.3

C
a

.2

.1

0

Charged at once

Charged gradually

dCa
�
dt

0.12 −(0.56 + 0.015t)Ca
���

2 + 0.06t
dCa
�
dt

dCa
�
dt

dVr
�
dt

dCa
�
dt

d(VrCa)
�

dt
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The variables are separable, but the plot is of a numerical solution.
The steady state concentration is 1.1736.

At 95% approach to steady state from the condition at t = 30,

C = 0.05(1.3269) + 0.95(1.1736) = 1.1813

From a printout of the solution, t = 67.4 min at this value.

P11. SECOND-ORDER REACTION IN TWO STAGES

A second order reaction is conducted in two equal CSTR stages. The
residence time per stage is τ = 1 and the specific rate is kC0 = 0.5.
Feed concentration is C0. Two cases are to be examined: (1) with pure
solvent initially in the tanks; and (2) with concentrations C0 initially in
both tanks, that is, with C10 = C20 = C0.

The unsteady balances on the two reactors are

fi =

FC0 = FC1 + VrkC1
2 + Vr 

1 = f1 + 0.5f 1
2 + (1)

FC1 = FC2 + VrkC2
2 + Vr 

f1 = f2 + 0.5f 2
2 + (2)

The steady state values are the same for both starting conditions,
obtained by zeroing the derivatives in Eqs. (1) and (2). Then

f1 = 0.5702, f2 = 0.7321

The plots are of numerical solutions.

P12. BUTADIENE DIMERIZATION IN A TFR

A mixture of 0.5 mol of steam per mol of butadiene is dimerized in a
tubular reactor at 640°C and 1 atm. The forward specific rate is k =
118 g mol/(L⋅h⋅atm2) and the equilibrium constant is 1.27. Find the
length of 10-cm ID tube for 40% conversion when the total feed rate
is 9 kg mol/h.

2A ⇔ B

na0 = 6 kg mol/h

0 2.41.6

t

.8 43.2

1

.9

.8
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.2
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0
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Stage 2

f20 = 0

f10 = 0

f20 = 1

f10 = 1

df2
�
dt

dC2
�
dt

df1
�
dt

dC1
�
dt

Ci
�
C0

0 50 100

t

2

1.5C

1

(30, 1.3269)

(67.4, 1.1813)

nt = ns + na + nb = 0.5na0 + na + 0.5(na0 − na) = na0 + 0.5na

Pa = (1)

Pb =

ra = k�Pa
2 − � = � − � (1)

Put na0 = 6, substitute Eq. (1) into the flow reactor equation, and
integrate numerically.

Vr = �6

3.6
= 0.0905 m3

L = = 1,153 cm

P13. AUTOCATALYTIC REACTION WITH RECYCLE

Part of the effluent from a PFR is returned to the inlet. The recycle
ratio is R, fresh feed rate is F0

R =

Ft = Fr + F0 = F0(R + 1)

The concentration of the mixed feed is

Cat =

where Caf is the outlet concentration. For the autocatalytic reaction 
A ⇒ B, the rate equation is

ra = kCaCb = kCa(Ca0 − Ca)

The flow reactor equation is

−FtdCa = −F0(R + 1)dCa = radVr = kCa(Ca0 − Ca)dVr

= (R + 1) �cat

caf

The plot is for Ca0 = 2 and Caf = 0.04. The minimum reactor size is
at a recycle ratio R = 0.23 and mixed feed Cat = 1.57.

P14. MINIMUM RESIDENCE TIME IN A PFR

A reversible reaction A ⇔ B is conducted in a plug flow reactor. The
rate equation is

r = kCa0 �1 − x − �
where Ca0 = 4

k = exp �17.2 − �
Ke = exp �−24.7 + �9,000
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Find the conditions for minimum Vr /V′ when conversion is 80%.
The flow reactor equation is

−dna = V′Ca0dx = kCa0� �dVr

= �0.8

0
= ln (1)

The plot of this equation shows the minimum to be Vr /V′ = 2.04 at
T = 340 K.

P15. HEAT TRANSFER IN A CYLINDRICAL REACTOR

A reaction A ⇒ 2B runs in a tube provided with a cooling jacket that
keeps the wall at 630 R. Inlet is pure A at 650 R and 50 atm. Other
data are stated in the following. Find the profiles of temperature and
conversion along the reactor, both with heat transfer and adiabatically.

Tube diameter D = ft

Cpa = 20, Cpb = 15 Btu/(lb mol R)

∆Hr = −8,000 Btu/(lb mol A)

k = exp �7.82 − � (1)

Heat transfer coefficient U = 5 Btu/(ft3⋅h R)

Heat transfer area dA = (4/D)dVr = 24dVr

Rate equation:

ra = k� � = k� �� � = � �
= � � (2)

x = 1 − 

Flow reactor:

−dna = na0dx = radVr

= ra (3)

Heat balance over a differential volume dVr:

∆Hrdna = −∆Hrra dVr

= 	 niCpidT + U(T − Tw)dA

dx
�
d(Vr /na0)

na
�
na0

1 − x
�
1 + x

68.6k
�

T
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�
2na0 − na

50k
�
0.729T
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�
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Minimum 2.04 at 340 K
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V
′

1
��
0.2 − 0.8/Ke

1
��
k(1 + 1/Ke)

dx
��
1 − x − x/Ke

1
�
k

Vr
�
V′

1 − x − x
�

Ke

= na0[20(1 − x) + 15(2x)dT + 24U(T − Tw)dVr

= = (4)

Differential Eqs. (3) and (4) are solved simultaneously with auxil-
iary Eqs. (1) and (2) by ODE. The solutions with U = 5 and U = 0 are
shown.

P16. PRESSURE DROP AND CONVERSION IN A PFR

A reaction A ⇒ 3B takes place in a tubular flow reactor at constant
temperature and an inlet pressure of 5 atm. The rate equation is

ra = k� � = � � = � �
When put into the plug flow equation,

na0 dx = � � AdL

or = 0.02 (1)

where several factors have been combined into the numerical coeffi-
cient.

The pressure gradient due to friction is proportional to the flowing
mole rate, 1 + 2x, and inversely to the density or the pressure. Here
again, several factors are incorporated into a numerical coefficient,
making

− = 0.6 (2)

The numbered equations are integrated and plotted. They show the
typical fall in pressure as conversion with an increase in the number of
moles proceeds at constant pressure, x = 0.48 when L = 10.
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