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accuracy Proximity of the measurements to actual values. Data
frequently contain bias, a deviation between the measurement and
the actual value. The smaller the deviation, the greater the accuracy.

bias Offset between the measurement and the actual value of a
measurement.

equipment boundary Limit in equipment operation. This could
refer to design limits such as operating pressure and temperature.
More often, the concern of the plant-performance analyst is the upper
and lower operating limits for the equipment. These boundaries typi-
cally describe an operating range beyond which the equipment per-
formance deteriorates markedly.

equipment constraints Limits beyond which the equipment
cannot be operated, either due to design or operating boundaries.

fault detection Process of identifying deteriorating unit operat-
ing performance. Examples are instrument failure, increased energy
consumption, and increased catalyst usage.

gross error Extreme systematic error in a measurement. The
bias or systematic error is sufficiently large to distort the reconciliation
and model development conclusions. Gross errors are frequently
identified during rectification. Validation steps also are used to iden-
tify gross errors in measurements.

identification Procedure for developing hypotheses and deter-

mining critical measurements. Identification requires an understand-
ing of the intent of the process and intent of the plant-performance
analysis to be conducted.

interpretation Procedure for using the plant measurements or
adjustments thereof to troubleshoot, detect faults, develop a plant
model, or estimate parameters.

measurements Plant information. These provide a window into
the operation. They may consist of routinely acquired information
such as that recorded by automatic control systems or recorded on
shift logs, or they may consist of nonroutine information acquired as
part of a plant test.

model Qualitative or quantitative relationship between operating
specifications and products. The quantitative model can be relational
(e.g., a linear model) or physical (e.g., one comprised of appropriate
material and energy balances, equilibrium relations, and rate rela-
tions). The parameters of these models (e.g., linear coefficients in the
relational model; or tray efficiency, reactor volume efficiency, and
heat transfer coefficients in a physical model) can be estimated from
plant data.

plant A group of processing units. Within this context, it is the
entire processing facility, typically too large to be the focus of a single
plant-performance analysis. The terminology in plant-performance
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Nomenclature
U.S.

customary 
Symbol Definition SI units units

B Matrix of linear constraint 
coefficients

�b Vector of bias
b Bias
Cp Heat capacity kJ/kgmol/K Btu/lbmole/F
c Number of components
d� Vector of weighted adjustment 

in measurements
dj Weighted adjustment to 

measurement j
f� Vector of constraints
g〈 〉 Operator on the measurements 

and equipment boundaries
H0 Null hypothesis
Ha Alternative hypothesis
J Variance-covariance matrix of 

measurements
Ki j Equilibrium vaporization ratio 

for component i on stage j
k Specific rate constant
Q Variance-covariance matrix of 

measurement adjustments
Q Heat transfer kJ/hr Btu/hr
Qjj Variance of adjustment to 

measurement j
R Variance-covariance matrix of 

constraint residuals
Rii Variance of constraint residual i
r� Constraint equation residuals
rj Single constraint residual
S Stream flow kgmol/hr lbmole/hr
T Temperature K °F
t Time
X1 Matrix of all measurements

X� 1
m Vector of measurements

X̂� 1
m Vector of adjusted 

measurements

U.S.
customary 

Symbol Definition SI units units

X̂� 1
M Vector of estimated  

measurements from 
the model

δX� 1 Deviation between adjusted 
and measured values

X2 Matrix of equipment boundaries
X� 2 Vector of component flows
Xi, j Component i flow in stream j
xij Entry in the measurement 

matrix; liquid mole fraction  
of component i on stage j

x̂i Individual adjusted 
measurement

xi Individual measurement
x̃i True value of individual measurement
x�i Mean value of individual measurement
yij Vapor mole fraction of  

component i on stage j
y*i, j Equilibrium vapor mole fraction  

of component i on stage j

Greek Symbols

β� Vector representation of 
parameters

σi Uncertainty in individual 
measurement

θi j Tray efficiency of component 
i on stage j

ρj Stream density kg/m3 lbm/ft3

Superscripts

M Measurement
m Measured
P Plant
T Transpose
T Total

Subscripts

i Matrix, vector position
j Matrix, vector position

GLOSSARY



analysis is inconsistent. Often the study is of a particular unit and
rarely of the entire plant. However, the terms plant test and plant data
refer to unit tests and unit data and will be used consistent with 
practice.

parameters Model constants that relate the operating specifica-
tions to measures of product quality and quantity. Estimation of these
is a frequent goal of plant-performance analysis.

precision Measurement of the random deviations around some
mean value. Precision is compromised by sampling methods, instru-
ment calibrations, and laboratory calibrations. Reconciliation meth-
ods have been developed to minimize the impact of measurement
precision.

process constraints Chemical engineering fundamental rela-
tions for the unit. Examples include material balances, energy bal-
ances, hydraulic balances and, at times, thermodynamic equilibria.
These constraints may be equality constraints such as material bal-
ances or inequality constraints such as those found in hydraulic bal-
ances (i.e., Pout ≤ Pin for a process vessel). Obvious process constraints
may not always apply due to internal or external leaks, vents, and
process misunderstanding.

reconciliation Procedure for the adjustment of the measure-
ments to close the process constraints. The purpose of reconciliation
is to provide a set of measurements that better represent the actual
plant operation.

rectification Procedure for the identification of measurements

that contain gross errors. This process is frequently done simultane-
ously or cyclically with the reconciliation.

systematic error Measure of the bias in the measurements. It is
a constant deviation or offset between the measurement and the
actual value. This term is frequently used interchangeably with bias.

troubleshooting Procedure to identify and solve a problem in
operating unit. This is the most frequent interpretation step in plant-
performance analysis.

uncertainty A general term used for measurement error. This
includes random and systematic errors in measurements.

unit Battery limits of equipment under study. The unit under
study may consist of a single piece of equipment, a group (e.g., a dis-
tillation tower with auxiliary equipment), an entire process (e.g., reac-
tors and the corresponding separation train), or the entire plant.

unit test Special operating procedure. The unit is operated at
prescribed conditions. Special measurements may be made to supple-
ment routine ones. One of the principal goals is to establish nearly
constant material and energy balances to provide a firmer foundation
for model development.

validation Procedure for screening measurements to determine
whether they are consistent with known unit characteristics. Mea-
surements are compared to other measurements, expected operating
limits, actual equipment status, and equipment performance charac-
teristics. It is a useful tool to eliminate potentially distorting measure-
ments from further consideration.

MOTIVATION

The goal of plant-performance analysis is to develop an accurate
understanding of plant operations. This understanding can be used to:

• Identify problems in the current operation.
• Identify deteriorating performance in instruments, energy usage,

equipment, or catalysts.
• Identify better operating regions leading to improved product or

operating efficiency.
• Identify a better model leading to better designs.

The results of plant-performance analysis ultimately lead to a more
efficient, safe, profitable operation.

FOCUS

Section 30 is written for engineers responsible for day-to-day interpre-
tations of plant operation, those responsible for developing unit (plant)
tests, and those responsible for analyzing plant data. The content focuses
on aspects of troubleshooting, fault detection, parameter estimation,
and model discrimination. In order to reach reliable conclusions, meth-
ods of identification, validation, reconciliation, rectification and inter-
pretation are included. The emphasis is on guidelines that assist in
avoiding many of the pitfalls of plant-performance analysis. While there
are numerous mathematical and statistical methods in the technical lit-
erature, most of them apply only to restricted plant situations atypical of
normal operations or to situations where enormous amounts of mea-
surements are handled on a routine basis. Typical plant measurements
are incomplete, their statistical distributions are unknown, the plant
fluctuations are too great, and/or the volume of data makes the methods
intractable. The numerical methods are useful to provide some insight,
and an overview is presented. However, because of the limitations to
measurement and numerical methods, the engineering judgment of
plant-performance analysts is critical. Analysts must develop an accurate
understanding of plant operations in order to draw valid conclusions
about current operation, alternative operating regimes, and proposed
designs founded upon the current plant configuration.

OVERVIEW

Historical Definition Plant-performance analysis has been
defined as the reconciliation, rectification, and interpretation of plant

measurements to develop an adequate understanding of plant opera-
tion. Measurements taken from the operating plant are the foundation
for the analysis. The measurements are reconciled to meet the con-
straints on the process, such as material balances, energy balances,
and phase relations. The measurements are rectified to identify and
eliminate those measurements that contain bias (i.e., systematic
errors) sufficiently large to distort conclusions. The data are inter-
preted to troubleshoot, develop plant models, or estimate values for
significant operating parameters. Ultimately, the results are used to
discriminate among causes for deterioration of performance, operat-
ing regions, models, and possible operating decisions. The purpose of
plant-performance analysis is to understand plant operations such that
relational or physical models of the plant can be developed. The
intended results are better profits, better control, safer operation, and
better subsequent designs.

Plant-Performance Triangle This view of plant-performance
analysis is depicted in Fig. 30-1 as a plant-performance triangle. Fig-
ure 30-2 provides a key to the symbols used.

The three vertices are the operating plant, the plant data, and the
plant model. The plant produces a product. The data and their uncer-
tainties provide the history of plant operation. The model along with
values of the model parameters can be used for troubleshooting, fault
detection, design, and/or plant control.

The vertices are connected with lines indicating information flow.
Measurements from the plant flow to plant data, where raw measure-
ments are converted to typical engineering units. The plant data infor-
mation flows via reconciliation, rectification, and interpretation to the
plant model. The results of the model (i.e., troubleshooting, model
building, or parameter estimation) are then used to improve plant
operation through remedial action, control, and design.

Unit (Plant) Data Measurements supporting plant-performance
analysis come from daily operating logs, specific plant tests, auto-
matic data acquisition, and specific measurement requirements.
Examples of these data include temperatures, pressures, flows, com-
positions, elapsed time, and charge volume. The data are all subject
to random errors from a variety of sources ranging from plant fluctu-
ations and sampling technique through instrument calibration to 
laboratory methodology. The random errors define the precision in
the data.

The measurements are also subject to systematic errors ranging
from sensor position, sampling methods, and instrument degradation
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to miscalibration in the field and laboratory. The systematic errors
define the accuracy in the data.

These measurements with their inherent errors are the bases for
numerous fault detection, control, and operating and design deci-
sions. The random and systematic errors corrupt the decisions, ampli-
fying their uncertainty and, in some cases, resulting in substantially
wrong decisions.

Role of Plant-Performance Analysts In this simplified repre-
sentation, the principal role of analysts is to recognize these uncertain-
ties; to accommodate them in the analysis; and to develop more
confident control, operating, or design decisions. The analysts recog-
nize and quantify these uncertainties through repeated measurements
and effective communication with equipment and laboratory techni-
cians. They validate the data comparing them to known process and
equipment information. They accommodate these errors through rec-
onciliation—adjusting the measurements to close the process con-
straints. Example constraints include process constraints such as
material balances, energy balances, equilibrium relations (occasion-
ally), elapsed time, and so on; and equipment constraints or boundaries
that define the limitations of equipment operation. The reconciliation
literature focuses primarily on process constraints, but it is important
to include equipment constraints and boundaries to ensure correct
measurement adjustment.

During reconciliation, measurements in which the analysts have a
high degree of confidence are adjusted little, if at all, to meet the con-
straints, while adjustments for less reliable measurements are greater.
Correct reconciliation minimizes the impact of measurement error
and results in adjusted measurements that represent plant operation
better than the raw ones. Traditionally, analysts have adjusted the
measurements intuitively, relying on their experience and engineering
judgment. The purpose of mathematical and statistical algorithms

developed over the past several years is to perform these adjustments
automatically. However, algorithmic adjustment is subject to many of
the same pitfalls that exist for intuitive adjustment. Both intuitive and
algorithmic adjustment require correct estimates for uncertainty in
the measurements. Both methods also require a correct implicit
model of the plant. Without correct measurement error estimates and
constraints, reconciliation will add bias to the adjusted measurements.
For example, an unrecognized leak or vent invalidates the material-
balance constraints developed from the implicit plant model, and
either intuitive or algorithmic adjustment of data to meet invalid con-
straints adds systematic error to the adjusted measurements. Even
when reconciliation is done algorithmically, the experience and judg-
ment of the analysts are crucial.

The primary assumption in reconciliation is that the measurements
are subject only to random errors. This is rarely the case. Misplaced
sensors, poor sampling methodology, miscalibrations, and the like add
systematic error to the measurements. If the systematic errors in the
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measurements are large and not accounted for, all reconciled mea-
surements will be biased. During the measurement adjustment, the
systematic errors will be imposed on other measurements, resulting in
systematic error throughout the adjusted measurements.

Rectification accounts for systematic measurement error. During
rectification, measurements that are systematically in error are identi-
fied and discarded. Rectification can be done either cyclically or
simultaneously with reconciliation, and either intuitively or algorith-
mically. Simple methods such as data validation and complicated
methods using various statistical tests can be used to identify the pres-
ence of large systematic (gross) errors in the measurements. Coupled
with successive elimination and addition, the measurements with the
errors can be identified and discarded. No method is completely reli-
able. Plant-performance analysts must recognize that rectification is
approximate, at best. Frequently, systematic errors go unnoticed, and
some bias is likely in the adjusted measurements.

The result of the reconciliation/rectification process is a set of
adjusted measurements that are intended to represent actual plant
operation. These measurements form the basis of the troubleshoot-
ing, control, operating, and design decisions. In order for these deci-
sions to be made, the adjusted measurements must be interpreted.
Interpretation typically involves some form of parameter estimation.
That is, significant parameters—tray efficiency in a descriptive distil-
lation model or linear model parameters in a relational model—are
estimated. The model of the process coupled with the parameter esti-
mates is used to control the process, adjust operation, explore other
operating regimes, identify deteriorating plant and instrument perfor-
mance or to design a new process. The adjusted measurements can
also be interpreted to build a model and discriminate among many
possible models. The parameter estimation and model building
process is based on some form of regression or optimization analysis
such that the model is developed to best represent the adjusted mea-
surements. As with reconciliation and rectification, unknown or inac-
curate knowledge of the adjusted measurement uncertainties will
translate into models and parameter estimates with magnified uncer-
tainty. Further, other errors such as those incorporated into the data-
base will corrupt the comparison between the model and adjusted
measurements. Consequently, parameters that appear to be funda-
mental to the unit (e.g., tray efficiency) actually compensate for other
uncertainties (e.g., phase equilibria uncertainty in this case).

Extended Plant-Performance Triangle The historical repre-
sentation of plant-performance analysis in Fig. 30-1 misses one of the
principal aspects: identification. Identification establishes trou-
bleshooting hypotheses and measurements that will support the level
of confidence required in the resultant model (i.e., which measure-
ments will be most beneficial). Unfortunately, the relative impact of
the measurements on the desired end use of the analysis is frequently
overlooked. The most important technical step in the analysis proce-
dures is to identify which measurements should be made. This is one
of the roles of the plant-performance engineer. Figure 30-3 includes
identification in the plant-performance triangle.

The typically recorded measurements in either daily operations or
specific plant-performance tests are not optimal. The sampling loca-
tions were not selected with troubleshooting, control, operations, or
model building as the focus. Even if the designers analyzed possible
sample locations to determine which might maximize the information
contained in measurements, it is likely that the actual operation is dif-
ferent from that envisioned by the designers or control engineers.
More often, the sample locations are based on historic rules of thumb
whose origins were likely based on convenience. Thus, for a given mea-
surement, the amount of information leading to accurate parameter
estimates is limited. Greater model accuracy can be achieved if loca-
tions are selected with the end use of the information well defined. It
is necessary to define the intended end-use of the measurements and
then to identify measurement positions to maximize the value in test-
ing hypotheses and developing model parameter estimates.

END USE

The goal of plant-performance analysis is to improve understanding,
efficiency, quality, and safety of operating plants. The end use must be

established to focus the analysis. Figure 30-3 shows the three princi-
pal categories of end use improvements. The criteria for accuracy may
vary among the categories requiring different numbers and levels of
accuracy in the measurements.

Plant Operation The purpose is to maintain and improve per-
formance (i.e., product quality, rate, efficiency, safety, and profits).
Examples include identification of plant conditions that limit perfor-
mance (troubleshooting, debottlenecking) and exploration of new
operating regions.

History The history of a plant forms the basis for fault detection.
Fault detection is a monitoring activity to identify deteriorating oper-
ations, such as deteriorating instrument readings, catalyst usage, and
energy performance. The plant data form a database of historical per-
formance that can be used to identify problems as they form. Moni-
toring of the measurements and estimated model parameters are
typical fault-detection activities.

Design In this context, design embodies all aspects requiring a
model of the plant operations. Examples can include troubleshooting,
fault detection, control corrections, and design development.

TECHNICAL BARRIERS TO ACCURATE UNDERSTANDING

Limited Contained Information Data supporting the plant-
performance analysis can come from daily operating logs, automatic
or manual, or from formal plant tests. Daily logs consist of those mea-
surements that the process and control designers and, subsequently,
the plant engineers deem to be important in judging daily plant 
operation. No special operations (e.g., accumulating a constant-
composition feed stock) are prerequisite for acquiring plant data of
this caliber. While these data were intended to give sensitive insight
into plant-performance, oftentimes they are recorded based on his-
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tory and not formal analysis (i.e., their value has not been established
or identified with respect to their end use). This presents the first
technical hurdle—using data with limited contained information.

Formal unit (plant) tests (e.g., those developed for commissioning)
usually last over a period of hours to weeks. The intent is to have the
plant lined out in a representative operating regime. Feed stocks are
typically accumulated in advance to ensure steady-state or controlled
operation. Plant personnel are notified about the importance of the
test so that they pay special attention to the operation, including
charging rates, operating conditions, cycle times, and the like. Labo-
ratory resources are dedicated beyond those normally required. A for-
mal unit (plant) test requires significant coordination and investment.
While it may give an indication of the plant capability, it is not repre-
sentative of normal operation. During a unit (plant) test, greater
attention and more personnel are dedicated to operation and data
acquisition. Excursions in operating conditions are minimized. The
data-acquisition effort should focus on sensitive measurements, pro-
viding insight beyond that gleaned from daily operations. However,
oftentimes, little forethought is given to the end use of the informa-
tion and the conclusions that will be drawn from it. Therefore, these
additional data are not typically in the most sensitive regions of space
and time. These data, too, contain less than optimal information.

There are significant technical barriers to accurate understanding
from either source.

Limited Data First, plant data are limited. Unfortunately, those
easiest to obtain are not necessarily the most useful. In many cases,
the measurements that are absolutely required for accurate model
development are unavailable. For those that are available, the sensi-
tivity of the parameter estimate, model evaluation, and/or subsequent
conclusion to a particular measurement may be very low. Design or
control engineers seldom look at model development as the primary
reason for placing sensors. Further, because equipment is frequently
not operated in the intended region, the sensitive locations in space
and time have shifted. Finally, because the cost-effectiveness of mea-
surements can be difficult to justify, many plants are underinstru-
mented.

Plant Fluctuations Second, the plant is subject to constant fluc-
tuations. These can be random around a certain operating mean; drift
as feed stock, atmospheric, and other conditions change; or step
change due to feed or other changes. While these fluctuations may be
minimized during a formal unit (plant) test, nevertheless they are
present. Given that each piece of equipment has time constants, usu-
ally unknown, these fluctuations propagate throughout the process,
introducing error to assumed constraints such as material and energy
balances.

Random Measurement Error Third, the measurements con-
tain significant random errors. These errors may be due to sampling
technique, instrument calibrations, and/or analysis methods. The
error-probability-distribution functions are masked by fluctuations in
the plant and cost of the measurements. Consequently, it is difficult to
know whether, during reconciliation, 5 percent, 10 percent, or even
20 percent adjustments are acceptable to close the constraints.

Systematic Measurement Error Fourth, measurements are
subject to unknown systematic errors. These result from worn instru-
ments (e.g., eroded orifice plates, improper sampling, and other
causes). While many of these might be identifiable, others require
confidence in all other measurements and, occasionally, the model in
order to identify and evaluate. Therefore, many systematic errors go
unnoticed.

Systematic Operating Errors Fifth, systematic operating
errors may be unknown at the time of measurements. While not
intended as part of daily operations, leaky or open valves frequently
result in bypasses, leaks, and alternative feeds that will add hidden
bias. Consequently, constraints assumed to hold and used to reconcile
the data, identify systematic errors, estimate parameters, and build
models are in error. The constraint bias propagates to the resultant
models.

Unknown Statistical Distributions Sixth, despite these prob-
lems, it is necessary that these data be used to control the plant and
develop models to improve the operation. Sophisticated numerical
and statistical methods have been developed to account for random

errors, identify and eliminate gross errors, and develop parameter
estimates. These methods require good estimates of the underlying
uncertainties (e.g., probability distributions for each of the measure-
ments). Because the probability distributions are usually unknown,
their estimates are usually poor and biased. The bias is carried
through to the resulting conclusions and decisions.

PERSONNEL BARRIERS TO ACCURATE
UNDERSTANDING
Because the technical barriers previously outlined increase uncer-
tainty in the data, plant-performance analysts must approach the data
analysis with an unprejudiced eye. Significant technical judgment is
required to evaluate each measurement and its uncertainty with
respect to the intended purpose, the model development, and the
conclusions. If there is any bias on the analysts’ part, it is likely that
this bias will be built into the subsequent model and parameter esti-
mates. Since engineers rely upon the model to extrapolate from cur-
rent operation, the bias can be amplified and lead to decisions that are
inaccurate, unwarranted, and potentially dangerous.

To minimize prejudice, analysts must identify and deal effectively
with personnel barriers to accurate understanding. One type of per-
sonnel barrier is the endemic mythologies that have been developed
to justify decisions and explain day-to-day operation in the plant.
These mythologies develop because time, technical expertise, or engi-
neers’ and operators’ skills do not warrant more sophisticated or tech-
nical solutions.

Operators Operators develop mythologies in response to the
pressure placed upon them for successful production quality and
rates. These help them make decisions that, while not always techni-
cally supported, are generally in the correct direction. When they are
not, convincing plant personnel of the deficiency in their decision
structures is a difficult task.

Design and Control Engineers Equally important are the
mythologies developed by the design or control engineers. Their mod-
els of plant performance are more technically sound, but may be no
more accurate than the operators’ mythology. Consequently, the
mythology passed along by the design and control engineers can also
add bias to the foundation upon which the analyst relies.

Finally, with the current developments in control technology, there
is a reliance by the operating engineer on, what is in most cases, an
approximate model. While the control and design engineers might
fully recognize the limitations inherent in projecting beyond the nar-
row confines of current operation, the operating engineer will fre-
quently believe that the control model is accurate. This leads to bias in
the operation and subsequent decisions regarding performance.

Analysts The above is a formidable barrier. Analysts must use
limited and uncertain measurements to operate and control the plant
and understand the internal process. Multiple interpretations can
result from analyzing limited, sparse, suboptimal data. Both intuitive
and complex algorithmic analysis methods add bias. Expert and artifi-
cial intelligence systems may ultimately be developed to recognize
and handle all of these limitations during the model development.
However, the current state-of-the-art requires the intervention of
skilled analysts to draw accurate conclusions about plant operation.

The critical role of analysts introduces a potential for bias that over-
rides all others—the analysts’ evaluation of the plant information.
Analysts must recognize that the operators’ methods, designers’ mod-
els, and control engineers’ models have merit but must also beware
they can be misleading. If the analysts are not familiar with the unit,
the explanations are seductive, particularly since there is the motiva-
tion to avoid antagonizing the operators and other engineers.

Analysts must recognize that the end use as well as the uncertainty
determines the value of measurements. While the operators may pay
the most attention to one set of measurements in making their deci-
sions, another set may be the proper focus for model development
and parameter estimation. The predilection is to focus on those mea-
surements that the operators believe in or that the designers/con-
trollers originally believed in. While these may not be misleading, they
are usually not optimal, and analysts must consciously expand their
vision to include others.
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In most situations, the plant was designed to be controlled and
operated in a certain regime. It is likely that this has changed due to
differences between the design basis and actual operation, due to
operating experience and wholesale changes in purpose. Further,
when developing sample, control, and measurement points, the
designers/controllers may have had a model in mind for the operation.
It is likely that that model is not accurate. Alternatively, they may have
only used rules of thumb. Focusing only on previously selected points
is limiting.

Each of the above can reduce analysts’ opportunity for full under-
standing of the plant. Analysts must recognize that the plant operates
by well-defined but not always obvious rules. It is important to iden-
tify these fundamental rules. If the analyst uses incorrect rules, the
results will be further biased.

For the plant-performance analysis to be effective, the identified
variables must be measured, the laboratory analysis must be correct,
the simulation programs must accurately model the plant and the con-
trol recommendations must be implemented. In many settings, these
aspects are not performed by plant-performance analysts. Analysts
may be viewed as outsiders and operators are reluctant to modify their
time-tested decision process. Laboratories geared to focusing on feed
stock and product quality view unit (plant) tests as an overload. Simu-
lation programs are not easily modified and proposed changes may
not receive high priority attention. Control engineers may view modi-
fications as an invasion of their responsibility. The plant-performance
analysis milieu is much more complicated than that presented in Fig.
30-3 because of the personnel and communication barriers to imple-
mentation.

Figure 30-4 presents a more complete representation of plant-per-
formance analysis. The information flow always faces barriers of per-
sonnel interactions. The operator must be convinced that the
proposed changes and measurements will work using his/her lan-
guage. The laboratory personnel must be convinced that the mea-
surements are necessary, occasionally convinced that greater accuracy
is required and that methods used are not giving results needed.
Again, communication in their language must be effective. The soft-
ware interaction is typically direct. However, the general nature of
commercial simulators limits their effectiveness in particular situa-
tions. Occasionally, modifications are required. The software engineer
is not familiar with the process and likely cannot be made aware
because of proprietary considerations. This impedes communication.
Finally, control engineers have been successful in establishing a con-
trol scheme which for all appearances works. Modifying the perfor-
mance implies that they have not been as successful as appearances
might indicate. While in all of these situations, teamwork should over-
ride these personnel considerations, it often doesn’t. Consequently,
communication is the paramount skill for plant-performance analysts.

OVERALL GUIDELINES

There are four overall guidelines that analysts should keep in mind.
They must recognize the difficulties associated with the limited num-
ber and accuracy of the data, overcome the plant operation mytholo-
gies, overcome the designers’ and controllers’ biases and, finally,
override the analysts’ own prejudices. The following four overall
guidelines assist in overcoming the hurdles to proper plant perfor-
mance.

First, any analysis must be coupled with a technically correct inter-
pretation of the equipment performance soundly rooted in the funda-
mentals of mass, heat, and momentum transfer; rate processes; and
thermodynamics. Pseudotechnical explanations must not be substi-
tuted for sound fundamentals. Even when the development of a rela-
tional model is the goal of the analysis, the fundamentals must be at
the forefront.

Second, any analysis must recognize the nonlinearities of equip-
ment capability. Model development must recognize that equipment
fundamentals will affect conclusions and extrapolations. These

boundaries and nonlinearities of equipment performance overlay the
chemical engineering fundamentals and temper the conclusions.

Third, any analysis must recognize that the measurements have sig-
nificant uncertainty, random and systematic. These affect any conclu-
sions drawn and models developed. Multiple interpretations of the
same set of measurements, describing them equally well, can lead to
markedly different conclusions and, more significantly, extrapolations.

Fourth, communication is paramount, since successful analysis
requires that those responsible for measurement, control, and opera-
tion are convinced that the conclusions drawn are technically correct
and the recommended changes will enhance their performance. This
is the most significant guideline in implementing the results of the
analysis.

Analysis of plant performance has been practiced by countless engi-
neers since the beginning of chemical-related processing. Neverthe-
less, there is no body of knowledge that has been assembled called
“analysis of plant performance.” The guidelines given herein are
effective in plant-performance applications. There are many more
practiced by others that are also effective and should be employed
whenever the challenges arise. Therefore, the material discussed in
this section is the initial point for analysis and should not be consid-
ered all-inclusive. The particular equipment, operations, and prob-
lems associated with any plant spawn a myriad of effective methods to
approach analysis of plant performance. They should not be ignored
in preference to material in this section but should be added to these
to improve the accuracy of conclusions and the efficiency of approach.
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MOTIVATION

These are a few of the reasons to justify analysis of plant performance.
Units come on-line too slowly or with extreme difficulty because heat
exchangers cannot add or remove heat, venting is inadequate, or tow-
ers do not produce quality product. Units come on-line and do not
meet nameplate capacity and/or quality. Unit efficiency, quality,
and/or yield are below expectations because energy or catalyst usage
appears too high, product compositions are below that required, or
raw material usage is excessive. Unit safety is questioned because
operation appears too close to equipment control limitations. Unit
environmental specifications are unfulfilled. Unit operations have
deteriorated from historical norms. Alternate feed stocks are avail-
able, but their advantages and disadvantages if fed to the unit are
unknown. Product demand exceeds the apparent capacity of the unit
requiring modifications in operating conditions, in equipment config-
uration, or in equipment size. Unit operation is stable, and under-
standing of the operation is desired.

Troubleshooting start-up, quality and capacity problems, detecting
faults in deteriorating effectiveness or efficiency performance, unit
modeling to examine alternate feed stocks and operating conditions,
and debottlenecking to expand operations are all aspects of analysis of
plant performance. Conclusions drawn from the analyses lead to pip-
ing and procedure modifications, altered operating conditions includ-
ing setpoint modifications and improved designs. Analyzing plant
performance and drawing accurate conclusions is one of the most dif-
ficult and challenging responsibilities of the chemical engineer (Gans,
M., D. Kohan, and B. Palmer, “Systematize Troubleshooting Tech-
niques,” Chemical Engineering Progress, April 25–29, 1991). Measure-
ments and data are incomplete and inaccurate. Identical symptoms
come from different causes. Aspects of unit response are not readily
quantified and modeled, requiring inductive, investigative reasoning.
According to Gans et al. (1991), 75 percent of all plant problems are
due to unidentified, inefficient plant performance ultimately traced to
simple equipment problems and limitations. Another 20 percent are
due to inadequate design such as those encountered in startup and
quality/quantity limitations. The remainder is due to a process failure.
The goal of the plant-performance analyst is to identify correctly the
problems and the opportunities for changes and to quantify the poten-
tial improvements.

The opportunities leading to false conclusions and inadequate rec-
ommendations are extreme. The probability of successful completion
of analysis of plant performance is greatly enhanced if the preparatory
work is complete. Analysts must define the detail of study required.
Analysts must understand the operation of the unit. This includes the
chemical engineering fundamentals and the operator’s perspective
and control response. Analysts must understand historical unit perfor-
mance, developing a model commensurate with the measurements
available and the detail of study required. Should a unit test, short-cut
or exhaustive, be required, the unit personnel must understand the
goals and their responsibilities. The laboratory must be prepared to
handle the overload of samples that may be necessary and be able to
produce data of required quality. Personnel and the supporting sup-
plies must be available to make measurements, gather samples, and
solve problems during the course of the test.

The purpose of this section is to provide guidelines for this prepa-
ration. General aspects are covered. Preparations for the specific units
can be drawn from these. Topics include analyst, model, plant, and
laboratory preparation. Since no individual analyst can be responsible
for all of these activities, communication with other personnel is para-
mount for the success of the analysis.

ANALYST PREPARATION
Analysts must have a strong foundation in plant operations and in the
unit under study. The hurdles thrown at analysts increase the proba-
bility that the conclusions drawn will be incorrect. A lack of under-
standing in the operation of the unit increases the likelihood that the
conclusions will be inaccurate. An understanding of the chemical

engineering fundamentals, the equipment flowsheets, the equipment
plot, the operators’ understanding and interpretations, and the 
operators’ control decisions is essential to minimize the likelihood for
drawing false conclusions. Reaching this understanding prior to
undertaking a unit test and the measurement interpretation will
increase the success and efficiency of the analysis.

The analyst must necessarily rely on the expertise and efforts of
others to operate, gather, and analyze samples and record (automati-
cally or manually) readings. Communication of the goals, measure-
ment requirements, and outcome to all involved is critical. It is
imperative that all involved understand their responsibilities, the use
of the information that they gather, and the goals of the test.

Measurement locations and methods may be different from those
used daily. Analysts and the sample-gatherers must be intimately
familiar with the locations, difficulties, and methods. Analysts must
ensure that the methods are safe, that the locations are as indicated on
the flow sheets, and that the sample-gatherers will be able to safely
obtain the necessary samples.

Process Familiarization The analysts’ first step in preparation
for analyzing plant performance is to become completely familiar with
the process. Analysts should review:

• Process flow diagrams (PFDs)
• Operating instructions and time-sequence diagrams
• Piping and instrumentation diagrams (P&IDs)
• Unit installation
• Operator perspectives, foci, and responses

The review should emphasize developing an understanding of the
processing sequence, the equipment, the equipment plot, the operat-
ing conditions, instrument and sample locations, the control decisions,
and the operators’ perspectives. While the preparation effort may be
less for those who have been responsible for the unit for a long period
of time, the purpose of the test requires that the types and locations of
the measurements be different from those typically recorded and typ-
ically used. The condition of these locations must be inspected. Oper-
ating specifications may be different. Therefore, refreshment is
always necessary.

The intensity of the situation requiring the analysis may not allow
analysts to develop a formal preparatory review of the unit as
described below. Analysts must recognize that the incomplete prepa-
ration may result in a less efficient analysis of plant performance.

PFDs (process flow diagrams) display the processing sequence for
the unit, the principal pieces of equipment in the unit, and the oper-
ating conditions and control scheme. The equipment sequence should
represent the sequence found in the unit. The operating conditions
shown on the flow sheet may be those envisioned by the designer and
may not properly reflect the current conditions. These should be ver-
ified during the subsequent discussions with operators and studied
through review of the shift and daily logs. Where differences are sub-
stantial, these need to be understood, as they may indicate that oper-
ating philosophy has changed significantly from that proposed by the
designers. It is particularly important to verify that the control scheme
represents the current control philosophy. The purpose of each piece
of equipment must be understood. This understanding should include
understanding of key components, temperature specifications, elapsed
time constraints, and the like. The basis of the operating conditions
must be understood with respect to these constraints. The PFD
review is completed by developing a material balance of sufficient
detail for analysts to understand the reactions and separations.

Operating instructions and time-sequence diagrams provide insight
into the basis for the operating conditions. They will also provide a
foundation for the subsequent discussion with operators. The time
sequence diagrams may provide insight into any difficulties that will
arise during the unit test.

P&IDs (piping and instrumentation diagrams) should identify
instruments, sample locations, the presence of sample valves, nozzle
blinding, and control points. Of particular importance are the by-
passes and alternate feed locations. The isolation valves in these lines
may leak and can distort the interpretation of the measurements.
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Understanding the positions of sample and other measurement loca-
tions within the equipment is also important. The presence or absence
of isolation valves needs to be identified. While isolation valves may be
too large for effective sampling, their absence will require that pipe
fitters add them such that sample valves can be connected. This must
be done in advance of any test. If analysts assume that samples are
from a liquid stream when they are vapor or that temperature mea-
surements are within a bed instead of outside it, interpretation of
results could be corrupted. Analysts should also develop an under-
standing of control transmitters and stations. The connection between
these two may be difficult to identify at this level in fully computer-
controlled units.

Unit layout as installed is the next step of preparation. This may
take some effort if analysts have not been involved with the unit prior
to the plant-performance analysis. The equipment in the plant should
correspond to that shown on the PFDs and P&IDs. Where differ-
ences are found, analysts must seek explanations. While a line-by-line
trace is not required, details of the equipment installation and condi-
tion must be understood. It is particularly useful to correlate the sam-
ple and measurement locations and the bypasses shown on the P&IDs
to those actually piped in the unit. Gas vents and liquid (particularly
water-phase) discharges may have been added to the unit based on
operating experience but not shown on the P&IDs. While these flows
may ultimately be small within the context of plant-performance
analysis, they may have sufficient impact to alter conclusions regard-
ing trace component flows, particularly those that have a tendency to
build in a process.

Discussion with operators provide substantial insight. The purpose
of the discussion should be to develop an understanding of operators’
perspectives of the unit, their foci for the operation, and their decision
sequence in response to deviations and off-specification products. Two
additional, albeit nontechnical, goals of this discussion are to establish
rapport with the operators and to learn their language. The operators
will ultimately be required to implement recommendations developed
by analysts. Their confidence is essential to increase the likelihood of
success. The following topics should be included in the discussion.

The operators have been given instructions on unit operation. Most
of these are written and should have been studied prior to the meet-
ing. Others may be verbal or implied. While this is not optimal, verbal
instructions and operating experience are still part of every unit. It is
not unusual that different shifts will have different operation methods.
While none of the shift operations may be incorrect, they do lead to
variability in operation and different performance. “What-if” ques-

tions posed to the operators can lead to insight into operator response.
This will lead to analysts gaining better understanding of the unit
(Block, S.R., “Improve Quality with Statistical Process Control,”
Chemical Engineering Progress, November 1990, 38–43). The discus-
sion with the operators must provide insight into their view of the unit
operation, their focus on the operation, and their understanding of
equipment limitations.

One topic of discussion is the measurements to which the operators
pay the most attention (their foci). Of the myriad of measurements,
there is a limited set that they find most important. These are the
measurements that they use to make the short-cycle decisions. The
important points to glean are the reasons they focus on these, the val-
ues and trends that they expect, and their responses to the deviations
from these.

With respect to their response, the discussion should emphasize
why these are important and why they adjust certain control settings.
Among the deviations on which analysts should focus the discussion
are the high and low alarm settings. Some alarms will require rapid
response. Alarms may give insight into equipment-operation bound-
aries as well as process constraints.

Operators typically have long cycle measurements upon which they
focus. These may be part of morning reports giving production rates,
compositions, yields, and so on. They may also have some recorded
measurements that they examine once per shift. Analysts should
understand the importance that the operators place on these mea-
surements and the operators’ responses to them.

Analysts are typically not totally prepared to discuss the purpose of
the impending test at this meeting. Therefore, this topic may be pre-
mature. There is typically a sequence of meetings between operators
and analysts. The information flow in the first is typically from the
operators to analysts as analysts develop their understanding and learn
to communicate in the operators’ language. After the analysts study
the process further based on the first meeting and preliminary simu-
lations of the unit, another meeting is useful to test the analysts’
understanding and communication methods. A third meeting to dis-
cuss the impending test purpose, focus, measurements, and proce-
dures completes this phase of the preparation.

Data Acquisition As part of the understanding, the measure-
ments that can be taken must be understood. A useful procedure to
prepare for this is to develop a tag sheet for the process (Lieberman,
N.P., Troubleshooting Refinery Processes, PennWell Books, Tulsa,
1981, 360 pp). An example of a simplified sheet is given in Fig. 30-5.

This sheet will be used ultimately to record readings during the
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plant test. It will help to develop a consistent set of measurements for
the plant and help validate the measurements (identify inconsisten-
cies). At this stage, however, it gives the analyst a visual representation
of what measurements can be made. If there are sample locations,
these must be added. Also, differential pressure measurements, addi-
tional flows, and utilities can be added as the unit instrumentation
allows and as identified as being important during the identification
step. Since identification has not been completed at this point, the
measurements shown on these sheets are the ones already available
on the board and in the field. The tag sheet also provides a visual point
for discussion with the operators to confirm that certain measure-
ments are made or can be made.

As part of this step, the analyst needs to develop an understanding
of the uncertainty in the measurements and typical fluctuations expe-
rienced in daily operation. The uncertainties are functions of the
instruments and their condition. Qualitatively, dial thermometers are
less certain than thermocouples. On-line analyzers tend to be less
accurate than lab analyses (assuming that the sample-gathering
methodology is correct). Readings using different pressure gauges are
less reliable than readings using a single pressure gauge. These ran-
dom errors may be negligible in a unit that exhibits large fluctuations.
The relative importance of plant fluctuations and random measure-
ment error should be established. Multiple, rapid readings, control
samples, or confirming measurements with other instruments will
help establish the measurement uncertainty. Operating data will pro-
vide insight into the plant fluctuations, which can then be compared
to the instrument uncertainty.

Operators frequently have insight into which instruments are accu-
rate and which are not. If those instruments subsequently prove criti-
cal, recalibration must be done prior to the unit test. Preliminary
analysis of daily measurements and practice measurements will help
to identify which are suspect and require instrument recalibration
prior to the unit test.

Analysts should discuss sample-collection methods with those
responsible. Frequently, the methods result in biased data due to
venting, failure to blow down the sample lines, and contamination.
These are limitations that must either be corrected or accepted and
understood. Sampling must be conducted within the safety proce-
dures established for the unit. Since samples may be hot, toxic, or
reactive in the presence of oxygen, the sample gatherers must be
aware of and implement the safety procedures of the unit.

Material Balance Constraint There are two types of con-
straints for the unit. These are the process constraints and the equip-
ment constraints. In each of these, there are equality constraints such
as material balances and inequality constraints such as temperature
limits. Analysts must understand the process and equipment con-
straints as part of the preparation for the unit analysis.

The most important of the process constraints is the material bal-
ance. No test or analysis can be completed with any degree of cer-
tainty without an accurate material balance. The material balance
developed during this preparation stage provides the foundation for
the analysts’ understanding of the unit and provides an organizational
tool for measurement identification. Analysts should develop a mate-
rial balance for the process based on typical operating measurements.
This can be compared to the design material balance. Estimates of
tower splits, reactor conversions, elapsed times, and stream divisions
help to identify the operating intent of the unit. Analysts must focus
on trace as well as major components. The trace components will typ-
ically provide the most insight into the operation of the unit, particu-
larly the separation trains.

During this preparation stage, analysts will frequently find that
there is insufficient quantity or quality of measurements to close the
material balance. Analysts should make every effort to measure all
stream flows and compositions for the actual test. They should not rely
upon closing material balances by back-calculating missing streams.
The material balance closure will provide a check on the validity of the
measurements. This preparatory material balance will help to identify
additional measurements and schedule the installation of the addi-
tional instruments.

A typical material-balance table listing the principal components or
boiling ranges in the process as a function of the stream location

should be the result of this preliminary analysis. An example shown as
a spreadsheet is given in the validation discussion (Fig. 30-18).

Energy Balance Many of the principal operating problems
found in a plant result from energy-transfer problems such as fouled
or blanketed exchangers, coked furnaces, and exchanger leaks. Con-
sequently, developing a preliminary energy balance is a necessary part
of developing an understanding of the unit. A useful result of the
energy-balance analysis is the identification of redundant measure-
ments that provide methods to obtain two estimates for unit perfor-
mance. For example, reflux-flow and steam-flow measurements
provide two routes to identifying heat input to a tower. These redun-
dant measurements are very useful; both should be taken to provide
the redundancy, and one or the other should not be ignored.

The material balance table can be supplemented with temperatures,
pressures, phases, and stream enthalpies (or internal energies). Utility
flows and conditions should be added to the process information.

Other Process Constraints Typical of these constraints are com-
position requirements, process temperature limits, desired recover-
ies, and yields. These are frequently the focus of operators. Violation
of these constraints and an inability to set operating conditions that
meet these constraints are frequently the motivation for the unit
analysis.

Equipment Constraints These are the physical constraints for
individual pieces of equipment within a unit. Examples of these are
flooding and weeping limits in distillation towers, specific pump
curves, heat exchanger areas and configurations, and reactor volume
limits. Equipment constraints may be imposed when the operation of
two pieces of equipment within the unit work together to maintain
safety, efficiency, or quality. An example of this is the temperature
constraint imposed on reactors beyond which heat removal is less than
heat generation, leading to the potential of a runaway. While this tem-
perature could be interpreted as a process constraint, it is due to the
equipment limitations that the temperature is set.

Developing an understanding of these constraints provides further
insight into unit operation.

Database The database consists of physical property constants
and correlations, pure component and mixture, that are necessary for
the proper understanding of the operation of the unit. Examples of
the former are molecular weights, boiling curves, and critical proper-
ties. Example pure-property correlations are densities versus temper-
ature, vapor pressures versus temperature, and enthalpies versus
temperature and pressure. Example mixture-property correlations are
phase equilibria versus composition, temperature, and pressure;
kinetic rate constants versus temperature; and interfacial tension ver-
sus composition and temperature. While the material balance can be
developed without most of these, the energy balance and any subse-
quent model cannot. Therefore, an accurate database is critical to
accurate understanding of plant operation. Very often, unit model
parameters will interact with database parameters. The most notable
example is the distillation tower efficiency and the phase equilibria
constants. If the database is inaccurate, the efficiency estimate will
also be inaccurate. Therefore, whenever the goal of the unit analysis is
to develop a model for operation and design, care must be taken to
minimize errors in the database that can affect the accuracy of the
model parameters. Inaccurate models cannot be used for sensitivity
studies or extrapolation to other operating conditions.

Analysts should not rely on databases developed by others unless
citations and regression results are available. Many improper conclu-
sions have been drawn when analysts have relied upon the databases
supplied with commercial simulators. While they may be accurate in
the temperature, pressure, or composition range upon which they
were developed, there is no guarantee that they are accurate for the
unit conditions in question. Pure component and mixture correlations
should be developed for the conditions experienced in the plant. The
set of database parameters must be internally consistent (e.g., mix-
ture-phase equilibria parameters based on the pure-component vapor
pressures that will be used in the analysis). This ensures a consistent
set of database parameters.

It is not unusual for 30–40 percent of the process design effort to be
spent in developing a new database. The amount of time required at
this stage in the analysis of plant performance for analysis of the unit
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should be equivalent. The amount of effort devoted to database devel-
opment becomes more intensive as the interaction between the
model parameters and the database increases.

PLANT MODEL PREPARATION

Focus For the purposes of this discussion, a model is a mathe-
matical representation of the unit. The purpose of the model is to tie
operating specifications and unit input to the products. A model can
be used for troubleshooting, fault detection, control, and design.
Development and refinement of the unit model is one of the principal
results of analysis of plant performance. There are two broad model
classifications.

The first is the relational model. Examples are linear (i.e., models
linear in the parameters and neural network models). The model out-
put is related to the input and specifications using empirical relations
bearing no physical relation to the actual chemical process. These
models give trends in the output as the input and specifications
change. Actual unit performance and model predictions may not be
very close. Relational models are useful as interpolating tools.

The second classification is the physical model. Examples are the
rigorous modules found in chemical-process simulators. In sequential
modular simulators, distillation and kinetic reactors are two important
examples. Compared to relational models, physical models purport to
represent the actual material, energy, equilibrium, and rate processes
present in the unit. They rarely, however, include any equipment con-
straints as part of the model. Despite their complexity, adjustable
parameters bearing some relation to theory (e.g., tray efficiency) are
required such that the output is properly related to the input and
specifications. These models provide more accurate predictions of
output based on input and specifications. However, the interactions
between the model parameters and database parameters compromise
the relationships between input and output. The nonlinearities of
equipment performance are not included and, consequently, signifi-
cant extrapolations result in large errors. Despite their greater com-
plexity, they should be considered to be approximate as well.

Preliminary models are required to identify significant measure-
ments and the complexity of model required and to test the analysis
methods that will be used during the unit analysis. Effort must be
devoted during the preparation stage to develop these preliminary
models.

It must be recognized that model building is not the only outcome
of analysis of plant performance. Many troubleshooting activities do
not require a formal mathematical model. Even in these circum-
stances, analysts have developed through preliminary effort or experi-
ence a mental model of the relation between specifications, input, and
output that provides a framework for their understanding of the
underlying chemical engineering. These mental models generally take
longer to develop but can be more accurate than mathematical 
models.

Intended Use The intended use of the model sets the sophisti-
cation required. Relational models are adequate for control within
narrow bands of setpoints. Physical models are required for fault
detection and design. Even when relational models are used, they are
frequently developed by repeated simulations using physical models.
Further, artificial neural-network models used in analysis of plant per-
formance including gross error detection are in their infancy. Readers
are referred to the work of Himmelblau for these developments. [For
example, see Terry and Himmelblau (1993) cited in the reference
list.] Process simulators are in wide use and readily available to engi-
neers. Consequently, the emphasis of this section is to develop a pre-
liminary physical model representing the unit.

Required Sensitivity This is difficult to establish a priori. It is
important to recognize that no matter the sophistication, the model
will not be an absolute representation of the unit. The confidence in
the model is compromised by the parameter estimates that, in theory,
represent a limitation in the equipment performance but actually
embody a host of limitations. Three principal limitations affecting the
accuracy of model parameters are:

• Interaction between database and model parameters
• Interaction between measurement error and model parameters

• Interaction between model and model parameters
Three examples are discussed.

Tray efficiency is one example of the first interaction. Figure 30-6 is
a representation of a distillation tray.

Defining tray efficiency as the difference between the actual and
the equilibrium vaporization, the efficiency is:

θi, j =

where y*i, j = Ki, j xi, j

Tray efficiency θi, j is supposed to represent a measure of the deviation
from equilibrium-stage mass transfer assuming backmixed trays.
However, the estimate of tray efficiency requires accurate knowledge
of the equilibrium vaporization constant. Any deviations between the
actual equilibrium relation and that predicted by the database will be
embodied in the tray efficiency estimate. It is a tender trap to accept
tray efficiency as a true measure of the mass transfer limitations when,
in fact, it embodies the uncertainties in the database as well.

As another example of the first interaction, a potential parameter in
the analysis of the CSTR is estimating the actual reactor volume.
CSTR shown in Fig. 30-7. The steady-state material balance for this
CSTR having a single reaction can be represented as:

0 = Xi,1 − Xi,2 − Vr kf(��X2,S2,ρ2)

where Xi is the flow of component i, Vr is the reactor volume, k is the
rate constant at the reactor temperature, ��X2 is the vector of compo-
nent flows in stream 2, S2 is the stream-2 flow, and ρ2 is the stream-2
density. Any effort to estimate the reactor volume and therefore also
the volume efficiency of the reactor depends upon the database esti-
mate of the rate constant. Any errors in the rate constant will result in
errors in the reactor volume estimate. Extrapolations to other operat-
ing conditions will likely be erroneous. Estimating the rate constant
based on reactor volume will have the same difficulties.

The second interaction results in compromised accuracy in the
parameter estimate due to the physical limitations of the process as

yi, j − xi, j
�
y*i, j − xi, j
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FIG. 30-6 Representation of a distillation tray numbering from the top of the
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FIG. 30-7 Flow sheet of a single feed and single product CSTR.



embodied in the measurement uncertainties. Figure 30-8 shows a
simple shell and tube heat exchanger. Many plant problems trace back
to heat-transfer-equipment problems. Analysts may then be inter-
ested in estimating the heat-transfer coefficient for the heat
exchanger to compare to design operation. However, this estimation is
compromised when stream temperature changes are small, amplify-
ing the effect of errors in the heat-transfer estimation. For example,
the heat transfer could be calculated from the energy balance for
Stream 1.

Q = S1Cp(T2 − T1)

The error in estimating the temperature difference is

σ∆T = �2�σT

The percentage error in the temperature difference translates directly
to the percentage error in the estimate Q. As temperature-
measurement error increases, so does the heat transfer coefficient
error.

The third interaction compromising the parameter estimate is due
to bias in the model. If noncondensables blanket a section of the
exchanger such that no heat transfer occurs in that section, the esti-
mated heat-transfer coefficient based on a model assuming all of the
area is available will be erroneous.

The first two examples show that the interaction of the model para-
meters and database parameters can lead to inaccurate estimates of
the model parameters. Any use of the model outside the operating
conditions (temperature, pressures, compositions, etc.) upon which
the estimates are based will lead to errors in the extrapolation. These
model parameters are effectively no more than adjustable parameters
such as those obtained in linear regression analysis. More complicated
models may have more subtle interactions. Despite the parameter ties
to theory, they embody not only the uncertainties in the plant data but
also the uncertainties in the database.

The third example shows how the uncertainties in plant measure-
ments compromise the model parameter estimates. Minimal temper-
ature differences, very low conversions, and limited separations are all
instances where errors in the measurements will have a greater impact
on the parameter estimate.

The fourth example shows how improper model development will
lead to erroneous parameter estimates. Assuming that the equipment
performs in one regime and developing a model based on that
assumption could lead to erroneous values of model parameters.
While these values may imply model error, more often the estimates
appear reasonable, giving no indication that the model does not rep-
resent the unit. More complicated examples like the kind given by
Sprague and Roy (1990) emphasize the importance of the accuracy of
the underlying model in parameter estimation, troubleshooting, and
fault detection. In these situations, the model may describe the cur-
rent operation reasonably well but will not actually describe the unit
operation at other operating conditions.

Preliminary Analysis The purpose of the preliminary analyses is
to develop estimates for the model parameter values and to establish
the model sensitivity to the underlying database and plant and model
uncertainties. This will establish whether the unit test will actually
achieve the desired results.

The model parameter estimation follows the methods given in the
interpretation subsection of this chapter. Analysts acquire plant mea-
surements, adjust them to close the important constraints including
the material and energy balances and then through repeated simula-
tions, adjust parameter values to obtain a best description of the
adjusted measurements. Not only does this preliminary analysis pro-
vide insight into the suitability of the model but also it tests the analy-
sis procedures. The primary emphasis at this stage should be on
developing preliminary parameter estimates with less emphasis on
rigorously developing the measurement error analysis.

Once the model parameters have been estimated, analysts should
perform a sensitivity analysis to establish the uniqueness of the para-
meters and the model. Figure 30-9 presents a procedure for perform-
ing this sensitivity analysis. If the model will ultimately be used for
exploration of other operating conditions, analysts should use the
results of the sensitivity analysis to establish the error in extrapolation
that will result from database/model interactions, database uncertain-
ties, plant fluctuations, and alternative models. These sensitivity
analyses and subsequent extrapolations will assist analysts in deter-
mining whether the results of the unit test will lead to results suitable
for the intended purpose.

PLANT PREPARATION

Intent Plant personnel, supplies, and budget are required to suc-
cessfully complete a unit test. Piping modifications, sample collection,
altered operating conditions, and operation during the test require
advance planning and scheduling. Analysts must ensure that these are
accomplished prior to the actual test. Some or all of the following may
be necessary for a successful unit test.

Communication Analysts will require the cooperation of the
• Unit operators
• Unit supervisors
• Plant management
• Maintenance personnel
• Laboratory personnel

Operators are primarily concerned with stable operation and may be
leery of altering the operation; they may fear that operation will drift
into a region that cannot be controlled. Supervision may be reluctant
despite their recognizing that a problem exists: Any deficiencies with
the operation or operating decisions is their responsibility. Permission
for conducting the test from the supervisor and the operators will be
required. Management cooperation will be required, particularly if
capital is ultimately needed. Maintenance will be called upon to make
modifications to sample locations and perform a sequential pressure
measurement. The laboratory personnel, discussed in detail in the
next subsection, may view the unit test as an overload to available
resources. These concerns must be addressed to ensure accurate sam-
ple interpretation.

Permission Analysts must have the permission of the operators
and the supervisors to conduct even the most straightforward tests.
While this is part of the analysts’ preparation, it is important for all
involved to know that analysts have that permission.

Schedule Complex tests should be done over a period of days.
This provides the opportunity for the unit to be nearly steady. The
advantages are that confirming measurements can be made. Schedul-
ing a multiday test should be done when there is a likelihood that the
feed stock supply and conditions will be nearly constant. The cooper-
ation of upstream units will be required. The multiday test also
requires that the downstream units can take the unit products.

The schedule should be set well in advance so that support services
can provide the necessary personnel and supplies.

Simpler tests will not require this amount of time. However, they
should be scheduled to minimize disruption to normal operations.

Piping Modifications One result of the inspection of the sample
locations is a list of sample locations that will require modifications.
The mechanical department will be required to make these modifica-
tions before the unit test is run. It is likely that the locations that are
not typically used will be plugged with debris. The plugs will have to
be drilled out before the test begins. Drilling out plugs presents a
safety hazard, and those involved must be aware of this and follow the
plant safety protocols.
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Instrumentation Calibration may be required for the instru-
ments installed in the field. This is typically the job of an instrument
mechanic. Orifice plates should be inspected for physical condition
and suitability. Where necessary, they should be replaced. Pressure
and flow instruments should be zeroed. A preliminary material bal-
ance developed as part of the preliminary test will assist in identifying
flow meters that provide erroneous measurements and indicating
missing flow-measurement points.

When doing a hydraulic test, a single pressure gauge should be used
and moved from location to location. This gauge must be obtained in
advance. The locations where this pressure will be measured should
be tagged to assist the pipe fitter who will be responsible for moving
the gauge from location to location. A walk-through with the pipe fit-
ter responsible can be instructive for both the analysts and the fitter.

Thermocouples tend to be reliable, but dial thermometers may
need to be pulled and verified for accuracy.

Sample Containers More sample containers will be required
for a complex test than are typically used for normal operation. The
number and type of sample containers must be gathered in advance,
recognizing the number of measurements that will be required. The
sample containers should be tagged for the sample location, type, and
conditions.

Field Measurement Conditions Those gathering samples must
be aware of the temperature, pressure, flammability, and toxic charac-
teristics of the samples for which they will be responsible. This is par-
ticularly important when samples are taken from unfamiliar locations.
Sample ports will have to be blown down to obtain representative 
samples. Liquid samples will have to be vented. Temperatures above
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330 K (140° F) can cause burns. Pressures above atmospheric will
result in flashing upon pressure reduction during venting. Venting to
unplug the sample port and the sample bomb must be done properly
to minimize exposure. A walk-through may be useful so that sample-
gatherers are familiar with the actual location for the sample.

Operating Guidelines The test protocol should be developed in
consultation with the principal operators and supervisor. Their coop-
eration and understanding are required for the test to be successful.
Once the protocol is approved, analysts should distribute an approved
one-page summary of the test protocol to the operators. This should
include a concise statement of the purpose of the test, the duration of
the test, the operating conditions, and the measurements to be made.
The supervisor for the unit should initial the test protocol. Attached to
this statement should be the tag sheet that will be used to record mea-
surements.

Upstream and Downstream Units Upstream and downstream
units should be notified of the impending test. If the unit test will last
over a period of days, analysts should discuss this with the upstream
unit to ensure that they are not scheduling activities that could disrupt
feed to the unit under study. Analysts should seek the cooperation of
the upstream units by requesting as consistent feed as possible. The
downstream units should also be notified to ensure that they will be
able to absorb the product from the unit under study. For both units,
measurements from their instruments will be useful to confirm those
for the unit under study. If this is the case, analysts must work with
those operators and supervisors to ensure that the measurements are
made.

Preliminary Test Operation of the unit should be set at the test
protocol conditions. A preliminary set of samples should be taken to
identify problems with instruments, measurements, and sample loca-
tions. This preliminary set of measurements should also be analyzed in
the same manner that the full-test results will be analyzed to ensure
that the measurements will lead to the desired results. Modifications
to the test protocol can be made prior to exerting the effort and
resources necessary for the complete test.

LABORATORY PREPARATION

Communication Laboratory services are typically dedicated to
supporting the daily operation of the unit under study as well as other
units in the plant. Their purpose is the routine confirmation that the
unit is running properly and the determination of the quality of feed
stocks. Laboratory staffing is normally set based on these routine ser-
vice requirements. Consequently, whenever a plant test is conducted
to address deterioration in efficiency, yield, or specifications or to
develop a unit model, the additional samples required to support the
test, place laboratory services in overload (Gans, M., and B. Palmer,
“Take Charge of Your Plant Laboratory,” Chemical Engineering
Progress, September 1993, 26–33). If the laboratory cannot handle
the analysis quickly, the likelihood of the samples reacting, leaking, or
being lost markedly increases with subsequent deterioration in the
accuracy of the conclusions to be drawn from the test. Therefore, ade-
quate laboratory personnel must be accounted for early in the prepa-
ration process.

Plant-performance analysts must understand:
• Laboratory limitations
• Laboratory organization
• Laboratory measurement uncertainties
• Measurement cost
• Additional personnel requirements

The laboratory supervision and personnel must supply this informa-
tion so that analysts gain this understanding.

Laboratory supervision and personnel must understand:
• Type of samples required
• Level of detail, accuracy, and precision of the samples
• Flammability, toxicity, and conditions of samples
• Anticipated schedule and duration of the test
• Justification for the overload assignments

Analysts provide this information.
The laboratory may need time to prepare for the unit test. This

must be accounted for when the test is scheduled. The analysis of

samples required for the unit test may focus on different composition
ranges and different components than those done on a routine basis.
Laboratory personnel may need to modify their methods or instru-
ments to attain the required level of accuracy and detail. The modifi-
cation, testing, and verification of the methods are essential parts of
the preparation process. A practice run of gathering samples will help
identify any deficiencies in the sample handling, storage, and analyses.

Without forethought, planning, and team-building, the sample
analyses during the unit test may be delayed, lost, or inaccurate. The
laboratory is an essential part of the unit test and must be recognized
as such.

Confidence The accuracy of the conclusions drawn from any
unit test depends upon the accuracy of the laboratory analyses. Plant-
performance analysts must have confidence in these analyses includ-
ing understanding the methodology and the limitations. This
confidence is established through discussion, analyses of known mix-
tures, and analysis of past laboratory results. This confidence is estab-
lished during the preparation stage.

Discussing the laboratory procedures with the personnel is para-
mount. Routine laboratory results may focus on certain components
or composition ranges in the sample. The routine analyses narrow the
laboratory personnel’s outlook. The succinct and often misleading
daily logs are the result of this focus. Analysts who have little daily
interaction with the laboratory and plant may interpret daily results
differently than intended. A typical example is laboratory analyses of
complex streams where components are often grouped and identified
as a single component. Consequently, important trace components
are unanalyzed or masked. The impending plant test may require that
these components be identified and quantified. The masking in the
routine results can only be identified through discussion.

Even within a single sample analysis, it is likely that some of the
reported concentrations are known with greater accuracy than others.
Laboratory personnel will know which concentrations can be relied
upon and which should be questioned. The plant-performance analyst
should know at this stage which of the concentrations are of greatest
importance and direct the discussion to those components.

Should the additional component compositions be required to fully
understand the unit operation, the laboratory may have to develop
new analysis procedures. These must be tested and practiced to estab-
lish reliability and minimize bias. Analysts must submit known sam-
ples to verify the accuracy.

Known samples should also be run to verify the accuracy and preci-
sion of the routine methods to be used during the unit test. Poor qual-
ity will manifest itself as poor precision, measurements inconsistent
with plant experience or laboratory history, and disagreement among
methods. Plotting of laboratory analysis trends will help to determine
whether calibrations are drifting with time or changing significantly.
Repeated laboratory analyses will establish the confidence that can be
placed in the results.

If the random errors are higher than can be tolerated to meet the
goals of the test, the errors can be compensated for with replicate
measurements and a commensurate increase in the laboratory
resources. Measurement bias can be identified through submission
and analysis of known samples. Establishing and justifying the preci-
sion and accuracy required by the laboratory is a necessary part of
establishing confidence.

Sampling Despite all of the preparation inside the laboratory, by
far the greatest impact on successful measurements is the accuracy of
the sampling methods. The number of sample points for a unit test are
typically greater than the number required for routine sampling. It is
likely that some of the sample locations, characteristics, and proper-
ties are unfamiliar to the sample-gatherers responsible for the routine
ones. This unfamiliarity could lead to improper sampling, such that
samples are not representative of the unit, and accidents, such that the
sample gatherers are placed at risk. Part of the preparation process is
to reduce this unfamiliarity to ensure safety and accuracy. The safety
of the sample-gatherers is paramount and should not be compro-
mised. Proper sampling methods accounting for volatility, flash points,
toxicity, corrosivity, and reactivity should be written down for each
plant and unit within the plant. The methodology must be understood
and practiced.
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Plant-performance analysts should be involved in reviewing the
entire sampling procedure. The procedures for review are:

• Sampling locations
• Sampling safety
• Containers
• Sample transport, storage, and discharge system
• In-laboratory sampling
• Sample container cleaning

Each plant has established methods. The following should be consid-
ered during this preparation stage. Problems identified, typically dur-
ing a pretest, should be solved prior to the initiation of the unit test.

Sampling locations for the unit test should be readily and safely
accessible. The sample gatherer should be able to easily access the
sample point. An isolation valve should be installed at the location. If
a blind is installed, this should be modified in advance of the test. The
sample locations shown on the P&IDs must be compared against the
actual locations on the equipment. Experienced operators may pro-
vide insight into the suitability of the location in question.

The integrity and suitability of the sample containers must be estab-
lished during the preparation stage. This is particularly important for
those sample containers that will be used for the nonroutine measure-
ments. Leaks jeopardize personnel and distort the resultant composi-
tion. Dirty containers contaminate samples. Open containers used for
high boiling samples are unsuitable for volatile, high-temperature,
pressurized samples. Trace components may preferentially adsorb
onto either the container surface or the residue left in the container.
Since trace components provide the greatest insight into unit opera-
tion and are the most difficult to quantify, this adsorption could lead to
distorted conclusions.

Dead legs in the sample line must be discharged safely to ensure
that the sample will actually be representative of the material in the
unit. Without blowing down the dead leg, samples taken will be erro-
neous, as they may be representative of some past operating condi-
tions. If the location is nonroutine, the sample leg may have
accumulated debris. The debris could partially or totally block the
line. Opening the isolation valve to blow down the line could result in
a sudden, uncontrolled release, presenting a hazard to the sample
gatherer.

Sample temperatures may be below ambient. If the sample vessel is
liquid-full, a hazard results due to overpressurization as the liquid
expands. Venting may be required, but it can distort the results. This
safety hazard must be accounted for in the procedure and in inter-
preting the laboratory results.

Sample temperatures may be above ambient. If the temperature is
significantly above ambient, personnel must be protected against
burns.

Samples may separate into two or more phases as they cool in the
sample line: precipitate, coagulate, and freeze. Laboratory sampling
may result in nonrepresentative compositions. Heat tracing may be
required and may not be installed on the nonroutine sample locations.

Validation of the measurements may require the simultaneous mea-
surement of pressure and temperature. Typical sample locations do
not have thermowells and pressure indicators. Consequently, modifi-
cations will be required to facilitate validation.

The efficient analysis will be required to minimize compromise of
the analysis due to degradation (e.g., dimerization, polymerization,
reactions, leaks, and contamination).

Samples will form multiple phases. The laboratory secondary sam-
pling methods must recognize the presence of vapor, liquid, and solid
phases. Improper secondary sampling methods will result in distorted
measurements. These limitations must be clearly communicated to
the laboratory.

Cataloging and storage of samples may inundate the laboratory,
resulting in storage and retrieval problems. Mislabeled and lost sam-
ples are frequent problems. The longer the special samples remain in
the laboratory, the greater the likelihood that some will be lost or mis-
labeled.

These potential sampling problems must be solved in advance of
the unit test. The conclusions drawn from any unit test are strongly
affected by the accuracy of the sampling methods and the resultant
analyses. Methods should be discussed and practiced before the
actual unit test. Analysts should use the trial measurements in prelim-
inary plant-performance analysis to ensure that the results will be use-
ful during the actual unit test.

PREPARATION GUIDELINES

Overall Everyone involved in the unit test and the analysis of
measurements must understand:

• The purpose of the test
• The expectations of plant-performance analysts
• Each individual’s personal responsibility to the successful out-

come
Analyst Analysts must have a firm understanding of the operation

of the unit. If they are not involved in the day-to-day operation or
responsible for the unit, more preliminary work including process
familiarization, equipment familiarization, operator interviews, and
constraint limitations will be required. Even when an analyst is
responsible, a review is necessary. Analysts must firmly establish the
purpose of the unit test. Different levels require different budgets,
personnel, and unit commitment. Additional resources beyond that
required for routine measurements must be justified against the value
of the measurements to the establishment of the understanding of the
plant operation.

Model The level of sophistication needs to be identified. Prelim-
inary usage of the model should identify the uniqueness of parameter
estimates and conclusions to be drawn.

Plant Sufficient personnel and supplies will be required for the
test. Personnel may include additional operators, sample-gatherers,
pipe fitters, and engineers. Upstream and downstream units need
notification so that feed and product rates can be maintained.

Laboratory The laboratory requirements and responsibilities
need to be identified and accepted. The laboratory supervisor must be
aware of the impending test and the likely demands placed on his/her
area of responsibility. Agreement as to error levels and expected turn-
around must be reached. Proper sampling methodology and storage
must be established and practiced.

THE PROBLEM
Consider Fig. 30-10. This is a single unit process with one input and
two output streams. The goal for plant-performance analysis is to
understand accurately the operation of this unit.

Plant-performance analysis requires the proper analysis of limited,
uncertain plant measurements to develop a model of plant operations
for troubleshooting, design, and control.

Measurements The potential set of data can be identified by the
matrix X1

The rows represent the type of measurement (e.g., compositions,
flows, temperatures, and pressures). The columns represent
streams, times, or space position in the unit. For example, composi-
tions, total flows, temperatures, and pressures would be the rows.
Streams 1, 2, and 3 would be columns of the matrix of measure-
ments. Repeated measurements would be added as additional
columns.

For more complex equipment, the columns might contain mea-
surements for internal distillation, batch-reactor intermediate condi-
tions, or tubular-reactor between-bed conditions. Some of these
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measurements might be recorded regularly, while others may be
recorded only for the specific unit test analysis.

This matrix will necessarily be sparse. First, not all measurements
can be taken for a given stream or position (e.g., a chromatographic
analysis may only measure a subset of the component compositions).
Second, not all streams or positions are included. Third, some of the
measurements are inadequate due to bias and are discarded.

Equipment Limitations The plant-performance engineer
might also have a matrix of equipment information that must be
accounted for in the analysis.

X 2

This matrix will contain information regarding loading characteristics
such as flooding limits, exchanger areas, pump curves, reactor vol-
umes, and the like. While this matrix may be adjusted during the
course of model development, it is a boundary on any possible inter-
pretation of the measurements. For example, distillation-column per-
formance markedly deteriorates as flood is approached. Flooding
represents a boundary. These boundaries and nonlinearities in equip-
ment performance must be accounted for.

The purpose of the plant-performance analysis is to operate on the
set of measurements obtained, subject to the equipment constraints
to troubleshoot; to develop models; or to estimate values for model
parameters.

g〈X1
m;X2〉 ⇒ b��

where g〈 〉 is an operator on the measurements and data. The vector 
��b is a representation of the conclusions, model, and/or equipment 
parameters.

Measurement Selection The identification of which measure-
ments to make is an often overlooked aspect of plant-performance
analysis. The end use of the data interpretation must be understood
(i.e., the purpose for which the data, the parameters, or the resultant
model will be used). For example, building a mathematical model of
the process to explore other regions of operation is an end use.
Another is to use the data to troubleshoot an operating problem. The
level of data accuracy, the amount of data, and the sophistication of
the interpretation depends upon the accuracy with which the result of
the analysis needs to be known. Daily measurements to a great extent
and special plant measurements to a lesser extent are rarely planned
with the end use in mind. The result is typically too little data of too
low accuracy or an inordinate amount with the resultant misuse in
resources.

If the problem were accurately known, identification of which mea-
surements should be taken would be exact. When the problem is ini-
tially not accurately known, the identification, measurement, and
analysis procedure is iterative. Familiarity with the plant will help in
identifying the measurements most likely to provide insight.

When building a model for the plant either in terms of a set of rela-
tions or in terms of a set of parameters for an existing model, it is
important that the measurements contain a maximum amount of

information. If the model is embodied in the symbol of the parame-
ters, ��b, then the measurements should be made such that the mea-
surement matrix X1

m has the greatest impact on ��b. This maximizes the
plant information contained in the parameters. The process is neces-
sarily iterative. Measurements are analyzed to refine the model and
optimal locations for new measurements are defined.

Analysts must recognize the above sensitivity when identifying
which measurements are required. For example, a typical use of plant
data is to estimate the tray efficiency or HTU of a distillation tower.
Certain tray compositions are more important than others in provid-
ing an estimate of the efficiency. Unfortunately, sensor placement or
sample port location are usually not optimal and, consequently, avail-
able measurements are, all too often, of less than optimal use. Uncer-
tainty in the resultant model is not minimized.

Plant Operations Each of the elements xij in X1
m have inherent

error. Consequently, xij is only an estimator of the actual plant value.
Or,

xij = x̃ij + ε
It is useful to recognize the contributions to this error.

First, plant operations are rarely exactly as intended. While the
designer may have developed all operating specifications as if the
plant would operate at steady state, the plant fluctuates and drifts with
time. Changes occur because of changes in feed stock, atmospheric
conditions, operating conditions, controller response, and any number
of factors, both known and unknown. The actual value then fluctuates
around some mean operation. For example, Fig. 30-11 is a typical
plant strip chart recording. The lower trace shows that the measure-
ment is fluctuating around a mean value. The upper trace also shows
fluctuation, but the mean value is changing with time.

While the random fluctuations apparent are a function of the scal-
ing factor for the traces, the two show different amplitudes. The top
trace has a relatively small fluctuation, while the bottom trace shows a
larger one.

Mathematically, the mean value is the desired value for further
analysis.

x̃ij = x�ij + εij
P

The plant drift makes all measurements functions of time. The
upper trace in the above figure shows some evidence of drift. Figure
30-12 shows a larger drift.

This drift can be represented mathematically as:

x̃ij(t) = x�ij(t) + εij
P

This time dependence is different for each measurement. The fluctu-
ation may also be a function of time.

In addition to the drift with time, step changes due to operating
decisions, atmospheric changes, or other conditions result in addi-
tional time dependence. Not only is there a sudden change due to the
actual decision, but also the plant changes due to the time constants.
For example, Fig. 30-13 shows measurements with step changes in
the operation.

Data Limitations The process of measuring x̃ij(t) adds addi-
tional error due to the random error of measurement. Or,

xij(t) = x̃ij(t) + εij
M

xij(t) = x�ij(t) + εij
P + εij

M

Consequently, if these random errors are assumed to be normal, the
total uncertainty including fluctuations is:

σij
T = �(σ�ij

P�)2� +� (�σ�ij
M�)2�

where σ replaces ε to represent a normal distribution. Therefore,

xij(t) = x�ij(t) + σij
T

The problem with plant data becomes more significant when sam-
pling, instrument, and calibration errors are accounted for. These
errors result in a systematic deviation in the measurements from the
actual values. Descriptively, the total error (mean square error) in the
measurements is

MSE = (σij
T )2 + (bM)2
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The above assumes that the measurement statistics are known. This
is rarely the case. Typically a normal distribution is assumed for the
plant and the measurements. Since these distributions are used in the
analysis of the data, an incorrect assumption will lead to further bias in
the resultant troubleshooting, model, and parameter estimation con-
clusions.

Constraints Limitations Typically, the plant performance is
assumed to be subject to process constraints.

��f〈X1〉 = ��0

where ��f〈 〉 is a vector of constraints. For the process shown in Fig. 
30-10, these constraints could be, using the component flows and total
flows and temperatures as the measurements:
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xi,1 − xi,2 − xi,3 = 0 i = 1 . . . c

where c is the number of components

xc + 1,1 − xc + 1,2 − xc + 1,3 = 0

xc + 1,1H1 − xc + 1,2H2 − xc + 1,3H3 = 0

where the c + 1th position is the total flow. Only c of the material bal-
ance constraints are independent. Of course, the actual measure-
ments do not close the constraints.

��f〈X1
m〉 ≠ ��0

To complicate matters further, because of the time dependence, leaks,
or accumulation, the constraints might not actually apply such that
there is a vector of unknown plant bias’ associated with the con-
straints.

��f〈X 1
m〉 = ��bP

Assuming ��bP = 0 will potentially add bias to the interpretation of plant
measurements. Further, the plant bias may to some extent mask the
error in the measurements. While the designer may have envisioned a
constant set of conditions or a specified time dependence, it is likely
that the actual operation changes due to external factors.

The technical problem becomes one of:

g〈X1
m;X2〉

bσ

⇒ ��b

subject to ��f〈X1
m〉 = ��bP

This is a formidable analysis problem. The number and impact of
uncertainties makes normal plant-performance analysis difficult.
Despite their limitations, however, the measurements must be used to
understand the internal process. The measurements have limited
quality, and they are sparse, suboptimal, and biased. The statistical
distributions are unknown. Treatment methods may add bias to the
conclusions. The result is the potential for many interpretations to
describe the measurements equally well.

Personnel Bias Because of the possibility of several interpreta-
tions of the plant-performance problem, the judgment of analysts
plays a critical role. Any bias in the analysts’ judgments will carry
through the data analyses. To minimize this, analysts must develop an

implicit model based on the fundamental rules of the plant and not on
the prejudices of the operators, designer engineers, control engineers,
or the analyst’s own perceptions.

The following presents guidelines for identifying, validating, recon-
ciling, rectifying, and interpreting plant measurements to remove
some of the bias from the conclusions.

IDENTIFICATION

Motivation Unit tests require a substantial investment in time
and resources to complete successfully. This is the case whether the
test is a straightforward analysis of pump performance or a complex
analysis of an integrated reactor and separation train. The uncertain-
ties in the measurements, the likelihood that different underlying
problems lead to the same symptoms, and the multiple interpretations
of unit performance are barriers against accurate understanding of the
unit operation. The goal of any unit test should be to maximize the
success (i.e., to describe accurately unit performance) while minimiz-
ing the resources necessary to arrive at the description and the subse-
quent recommendations. The number of measurements and the
number of trials should be selected so that they are minimized.

Often, analysts will want to run special short-term tests with the
operating unit in order to identify the cause of the trouble being expe-
rienced by the unit. Operators are naturally leery of running tests out-
side their normal operating experience because their primary focus is
the stable control of the unit, and tests outside their experience may
result in loss of control. Multiple tests with few results may decrease
their cooperation.

Modern petro/chemical processes provide the opportunity for gath-
ering a large number of measurements automatically and frequently.
Most are redundant and provide little additional insight into unit per-
formance. The difficulties in handling a large amount of information
with little intimate knowledge of the operation increases the likeli-
hood that some of the conclusions drawn will be erroneous.

Therefore, the identification of appropriate tests and measure-
ments most important to understanding the unit operation is a critical
step in the successful analysis of plant performance.

Limitations Identifying the appropriate test to troubleshoot a
unit problem requires hypothesis development and testing. Hypothe-
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ses are based on the observed problem in current operation and the
historical performance. It is the skill of analysts to develop the mini-
mum number of hypotheses and unit tests to identify what is typically
a well-hidden problem.

Identifying the minimum number of specific measurements con-
taining the most information such that the model parameters are
uniquely estimated requires that the model and parameter estimates
be known in advance. Repeated unit tests and model building exer-
cises will ultimately lead to the appropriate measurements. However,
for the first unit test in absence of a model, the identification of the
minimum number of measurements is not possible.

The methodology of identifying the optimum test and number of
measurements has received little attention in analysis of plant perfor-
mance and design literature.

Measurement Error Uncertainty in the interpretation of unit
performance results from statistical errors in the measurements, low
levels of process understanding, and differences in unit and modeled
performance (Frey, H.C., and E. Rubin, “Evaluate Uncertainties in
Advanced Process Technologies,” Chemical Engineering Progress,
May 1992, 63–70). It is difficult to determine which measurements
will provide the most insight into unit performance. A necessary first
step is the understanding of the measurement errors likely to be
encountered.

An example adapted from Verneuil, et al. (Verneuil, V.S., P. Yan, and
F. Madron, “Banish Bad Plant Data,” Chemical Engineering Progress,
October 1992, 45–51) shows the impact of flow measurement error on
misinterpretation of the unit operation. The success in interpreting
and ultimately improving unit performance depends upon the uncer-
tainty in the measurements. In Fig. 30-14, the material balance con-
straint would indicate that S3 = −7, which is unrealistic. However,
accounting for the uncertainties in both S1 and S2 shows that the value
for S3 is −7�28. Without considering uncertainties in the measure-
ments, analysts might conclude that the flows or model contain bias
(systematic) error.

Analysts should review the technical basis for uncertainties in the
measurements. They should develop judgments for the uncertainties
based on the plant experience and statistical interpretation of plant
measurements. The most difficult aspect of establishing the measure-
ment errors is establishing that the measurements are representative
of what they purport to be. Internal reactor CSTR conditions are
rarely the same as the effluent flow. Thermocouples in catalyst beds
may be representative of near-wall instead of bulk conditions. Heat
leakage around thermowells results in lower than actual temperature
measurements.

These measurement uncertainties must be accounted for in devel-
oping hypotheses used to explain unit performance and in identifying
measurements which will provide the best model of the unit.

Hypothesis Development Successful, efficient development of
hypotheses and operating conditions to test them require design,
operation, control, and troubleshooting experience. Understanding
the relation of the fundamentals of chemical engineering, the specifi-
cations and their intent for operation, the response of equipment to
upsets, and the identification of the unusual are all essential tools for
developing and testing hypotheses during troubleshooting exercises.
Hypothesis development is typically iterative with unit operating con-
ditions adjusted to test a hypothesis. The results lead to other
hypotheses and other operating conditions. This is an essential part of
troubleshooting and model development.

Troubleshooting is usually based on checklists developed by ana-
lysts specific to the unit and types of equipment in the unit. These
checklists assist in hypothesizing the cause of observed problems
based on past experience and in developing tests or measurements to
confirm the hypotheses. Few published checklists exist in the litera-
ture. Most analysts develop their own based on experience. As engi-
neers move from assignment to assignment with little direct,
continued experience in the design, operation, control, and trou-
bleshooting, the checklists are lost. The skill resides with the engineer
and not with the unit. Consequently, individual checklists are devel-
oped repeatedly with little continuity unless current analysts seek out
those who were once responsible for the unit. One notable exception
is the set of checklists for refinery operations published by Lieberman
(1981). Many of his experiences arise in and apply to other chemical
engineering applications. His lists give the observed problem and 
possible explanations. Harrison and France (Harrison, M.E. and 
J.J. France, “Auxiliary Equipment: Troubleshooting Distillation
Columns,” Chemical Engineering, June 1989, 130–137) list a series of
problems with corresponding causes. Symptoms in one piece of
equipment may appear as a problem in another; therefore, checklists
should include the potential that other equipment in the unit is the
cause of the observed problem.

A proposed checklist form is given in Table 30-1. The descriptive
example concerns a problem observed with distillation performance
in a specific unit. It is included for descriptive purposes only and does
not provide an exhaustive list of possible explanations for the observed
problem. The important aspects are a clear statement of the problem;
recognized changes in unit operation at the time of the observation
and hypothesized causes under the categories of erroneous instru-
ment readings; changes upstream and downstream from the unit and
within the unit itself. Typical explanations under each cause category
could be substantially longer than ones included in the table.

History is important is establishing hypotheses. When a problem
arises in a unit, something has changed. The first step in developing a
hypothesis explaining the cause of the problem is to establish that the
operation has clearly changed from some earlier operation. Easily
identified alterations in operation such as those that result from
changes in operating specifications, equipment installations, or opera-
tor responses should be listed.

The observations may be erroneous due to misleading measure-
ments. The basis of the observations should be examined. Instruments
may have degraded. Sample lines may have become plugged. Trip set-
tings may have changed. Where possible, these causes should be elim-
inated before moving to more complex explanations and tests. Many
unit problems are caused by upstream or downstream units. This
interaction should be identified before performing extensive tests
with the unit. In the table, a sudden increase in light ends could flood
the upper section of the tower. Pump cavitation may be the result of
fluctuating discharge pressures in the downstream units. Corrosion in
the unit may be caused by carryover from an upstream unit. Insuffi-
cient pump capacity could be caused by a changed fluid density from
changed feed stock.

With the problem being identified as real and other units being
eliminated as the cause, the focus can move to identifying whether the
problem is with capacity or efficiency within the unit.

The following are guidelines for establishing checklists used to
identify the cause of observed problems.
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FIG. 30-14 Material balance measurements with error.

TABLE 30-1 Example Checklist Form

Observed problem Increased pressure drop in the distillation column
Unit changes Steam header pressure increase, no equipment 

changes
Instrument cause DP meter reading is misleading due to failed 

instrument, plugged ports, etc.
Upstream cause Increased percentage of light components fed to 

column resulting in flooding in rectifying section
Downstream cause Not applicable
Capacity cause Steam reboiler flow set above column jet flood limit
Efficiency cause Trays plugged with polymer buildup



• Establish the timeline of the problem hypothesizing that changes
in operation, equipment, or response are the root cause of the 
problem.

• Establish the observed problem is real by hypothesizing potential
problems with instruments and instrument installations.

• Establish that the observed problem could not be caused by
upstream or downstream unit performance.

• Establish that the problem is one with capacity of the unit by
hypothesizing causes for the decreased unit production.

• Establish that the problem is one with efficiency of the unit by
hypothesizing causes to explain the decreased performance of the unit.

Any set of guidelines must be tempered by the analysts’ experience.
This is an investigative process. The explanations are rarely simple.
However, many exhaustive tests have been run to identify that a
bypass valve or alternative feed valve had been mistakenly left open.
Plant resources were misused because the simple was overlooked.

Since hypothesis development and testing frequently require alter-
native operating conditions, safety considerations must be paramount.
The operators’ concerns about loss of control are justified. When tests
are planned, it must be recognized that adjustments should be slow
and stepwise with time allowed for the unit to line out. All possible
outcomes of the adjustments should be thought through to minimize
the potential for moving the unit into an unstable operating regime.

Model Development Preliminary modeling of the unit should
be done during the familiarization stage. Interactions between data-
base uncertainties and parameter estimates and between measure-
ment errors and parameter estimates could lead to erroneous
parameter estimates. Attempting to develop parameter estimates
when the model is systematically in error will lead to systematic error
in the parameter estimates. Systematic errors in models arise from not
properly accounting for the fundamentals and for the equipment
boundaries. Consequently, the resultant model does not properly rep-
resent the unit and is unusable for design, control, and optimization.
Cropley (1987) describes the erroneous parameter estimates obtained
from a reactor study when the fundamental mechanism was not prop-
erly described within the model.

Verneuil et al. (Verneuil, V.S., P. Yan, and F. Madron, “Banish Bad
Plant Data,” Chemical Engineering Progress, October 1992, 45–51)
emphasize the importance of proper model development. Systematic
errors result not only from the measurements but also from the model
used to analyze the measurements. Advanced methods of measure-
ment processing will not substitute for accurate measurements. If
highly nonlinear models (e.g., Cropley’s kinetic model or typical distil-
lation models) are used to analyze unit measurements and estimate
parameters, the likelihood for arriving at erroneous models increases.
Consequently, resultant models should be treated as approximations.

Recognition of measurement error, model nonlinearities, inter-
actions, and potential fundamental oversights are an important part of
the identification stage of analysis of plant performance. Repeated
simulations using different models extrapolated to other operating
conditions will provide insight into model viability. Model accuracy
can be verified by operating the unit at different operating conditions
and making appropriate measurements. Identification of these condi-
tions and measurements is one aspect of the identification step. These
model building studies to identify possible alternative models and
operating conditions are useful in minimizing the impact of erroneous
model development and subsequent parameter estimation.

Measurement Selection Along with the hypothesis develop-
ment, the principal result of the identification step is determining
which measurements will provide insight into the unit operation. This
often-overlooked aspect of analysis of plant performance deserves
greater attention in the plant operations and research literature. The
potential resource savings resulting from minimizing the number of
measurements, repeated unit tests, and associated personnel are
enormous. Coupled with the benefit of developing a more robust
model of the unit, this overlooked aspect of analysis of plant perfor-
mance potentially outweighs the benefits of all other aspects.

The goal of measurement selection is to identify a set of measure-
ments that, when interpreted, will lead to unique values for the model
parameters, insensitive to uncertainties in the measurements. This is
an iterative process where:

• A group of measurements are proposed based on preliminary
model predictions

• Values for parameters are estimated using the interpretation pro-
cedures

• Simulated unit performance sensitivity to the parameter esti-
mates is evaluated

• Alternative measurements are proposed
• The process is repeated

The optimum measurements are those taken in the unit test. Figure
30-15 provides one procedure for identifying which measurements
should be taken within the plant.

A preliminary model is developed during the preparation stage.
Preliminary values of the model parameters are estimated based on
adjusted plant measurements. Simulations of the unit are then run to
develop values for the temperatures, pressures, flows, compositions,
and the like, that are representative of the unit operation. A group of
measurements that could possibly be taken in the unit test is then
selected. At that point, analysts have two options. In option A, the
parameter estimates are perturbed, the unit resimulated, and the
group of measurements compared to the set corresponding to the per-
turbed parameters. If the comparison is such that the simulated mea-
surements are different beyond the experimental error, then the
parameter values are unique and the group of measurements are
appropriate. If they are not, the proposed measurements should be
changed and the process repeated. In option B, the process is similar.
The group of measurements are perturbed according to the measure-
ment error, the parameters re-estimated, and the parameter values
compared. If there is relatively little change in the parameter values,
the selected measurements are acceptable. If there is a large change,
the measurements do not provide a unique set of parameter esti-
mates. Consequently, the model would be unsuitable. The measure-
ment set needs to be modified. Once the set of measurements have
been selected, the model should be examined and modified if neces-
sary. There are two primary indications that the model may be inade-
quate. First, the preliminary model with the estimated parameters
provide descriptions of one or more measurements representing unit
behavior, particularly internal to individual pieces of equipment. Sec-
ond, the values of the parameters are unrealistic.

With respect to selecting measurements, emphasis should include
measurements within the equipment such as tower internal tempera-
tures and compositions, internal reactor conditions, and intermediate
exchanger temperatures in multipass exchangers. Trace component
compositions provide particular insight into distillation-column per-
formance. Those components that fall between the heavy and light
keys and distribute in the products can usually be described by a vari-
ety of models and parameter estimates: They provide little insight into
the column performance.

The procedure given in Fig. 30-15 leaves much to analysts. Criteria
for selecting the number and location of measurements for a particu-
lar piece of equipment or unit have not been established in the litera-
ture. Therefore, there is heavy reliance on examining alternative
models at the bottom of the procedure. The creativity of analysts to
develop alternative explanations for performance or hypotheses
explaining why the present model might be wrong is a particularly
important skill.

VALIDATION

Initial Measurement Examination The process of reconciling
data to constraints; rectifying data to detect and identify systematic
errors; and interpreting data to troubleshoot, model-build, and esti-
mate parameters is a time-consuming, often unnecessary, and, many
times, inaccurate series of steps. Even under the most controlled cir-
cumstances, the methods often provide estimates of plant operation
that are no better than that provided by the actual plant measure-
ments. If the adjusted measurements contain significant error, the
resultant conclusions could be significantly in error and misleading.
Prescreening can identify measurements containing significant error
and can provide insight into the plant operation.

Validation is the procedure of comparing measurements to known
relations between the measurements and equipment settings (May,
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FIG. 30-15 Procedure for identifying measurements.



D.L. and J.T. Payne, “Validate Process Data Automatically,” Chemical
Engineering, June 1992, 112–116). If a measurement is clearly incon-
sistent with equipment operation that is known to be true, the mea-
surement must then be deemed suspect. Validation is the procedure
of comparing a measurement to one or more of the following.

• Another measurement
• An expected range
• Equipment status
• Equipment relations

If the comparison shows that the measurement is inconsistent with
the comparison information, the measurement is considered suspect.
If a measurement can be compared to more than one set of informa-
tion and found to be inconsistent with all, it is likely that the measure-
ment is in error. The measurement should then be excluded from the
measurement set. In this section, validation is extended to include
comparison of the measurements to the constraints and initial adjust-
ment in the measurements. Validation functions as an initial screening
procedure before the more complicated procedures begin. Often-
times, validation is the only measurement treatment required prior to
interpretation.

It is important to note that validation typically only brings a mea-
surement under suspicion. It does not verify that the measurement is
incorrect. Safety is paramount. Some validation analysis could result
in concluding that the measurement is invalid when, in fact, the com-
parison information is invalid. It is not difficult to extrapolate that
actions could result from this erroneous conclusion which would place
maintenance and operating personnel in jeopardy. Validation merely
raises suspicion; it does not confirm errors of measurement.

The greater the number of validation comparisons between the
measurement and the list above, the greater the likelihood that the
measurement can be identified as valid or invalid.

Measurement versus Measurement In this type of validation,
a process measurement is compared against another. For example, if a
separate high-level alarm indicates that a tank is overflowing but the
level gauge indicates that it is in the expected range, one of these mea-
surements is wrong. As another example, if a light component sud-
denly appears in the bottoms of a distillation tower and no other light
components contained in the feed appear in the bottoms, the first
measurement is suspect.

Measurement versus Expected Range If a steam flow is
expected to vary in a relatively narrow range and the flow measure-

ment indicates that it is twice the high value, the flow measurement is
then suspect and should be reviewed. A frequent occurrence is when
a measurement remains unchanged for a period of time when normal
plant fluctuations should result in oscillations around a setpoint. The
constant measurement would indicate that this reading is suspect.

Measurement versus Equipment State A pump off-line
should have no flow. If the pump is off and the flow meter indicates
that there is flow, the flow measurement is suspect.

Measurement versus Equipment Performance Pumps that
are in reasonable condition typically operate within 5 percent of their
pump curve. Consequently, pressures and flows that are inconsistent
with the pump curve imply that the indicated flow and/or pressure are
incorrect. Figure 30-16 shows a single impeller curve plotted as head
versus flow. The point shown is inconsistent with the pump operation.
Therefore, that pair of flow and pressure measurements is not vali-
dated and should not be used in the subsequent steps.

Validation versus Rectification The goal of both rectification
and validation is the detection and identification of measurements
that contain systematic error. Rectification is typically done simulta-
neously with reconciliation using the reconciliation results to identify
measurements that potentially contain systematic error. Validation
typically relies only on other measurements and operating informa-
tion. Consequently, validation is preferred when measurements and
their supporting information are limited. Further, prior screening of
measurements limits the possibility that the systematic errors will go
undetected in the rectification step and subsequently be incorporated
into any conclusions drawn during the interpretation step.

INITIAL CONSTRAINT ANALYSIS AND ADJUSTMENTS

Spreadsheet Analysis Once validation is complete, prescreen-
ing the measurements using the process constraints as the comparison
statistic is particularly useful. This is the first step in the global test 
discussed in the rectification section. Also, an initial adjustment in
component flows will provide the initial point for reconciliation.
Therefore, the goals of this prescreening are to:

• Pretreat raw measurements
• Estimate the overall and component constraint deviations
• Identify missing measurements
• Adjust (initially) the measurements to close the constraints
The principal focus of this validation is the material and energy bal-
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FIG. 30-16 Typical pump curve showing inconsistency between measurement and curve.



ances for the unit. Specifically designed spreadsheets are particularly
useful during this step. The level of sophistication depends upon the
analysts’ goals. Spreadsheets can be used for pretreatment of mea-
surements, constraint analysis, and measurement adjustment. Often-
times, the more sophisticated reconciliation and rectification methods
are not warranted or will not provide any better results, particularly
when a single unit is under analysis.

For the purposes of this discussion, consider a single distillation
tower with one feed, a distillate, and bottoms, as shown in Fig. 30-17.

A straightforward, generic analysis spreadsheet for this tower is
shown in Fig. 30-18. For this example, the three stream compositions
and the total flows have all been measured. Also, since this is a column
in a purification train, the bottoms flow rate has been measured inde-
pendently as the feed to the next tower.

Spreadsheet Structure There are three principal sections to the
spreadsheet. The first has tables of as-reported and normalized com-
position measurements. The second section has tables for overall and
component flows. These are used to check the overall and component
material balance constraints. The third has adjusted stream and com-
ponent flows. Space is provided for recording the basis of the adjust-
ments. The structure changes as the breadth and depth of the analysis
increases.

The example spreadsheet covers a three-day test. Tests over a
period of days provide an opportunity to ensure that the tower oper-
ated at steady state for a period of time. Three sets of compositions
were measured, recorded, normalized, and averaged. The daily com-
positions can be compared graphically to the averages to show drift.
Scatter-diagram graphs, such as those in the reconciliation section, are
developed for this analysis. If no drift is identified, the scatter in the
measurements with time can give an estimate of the random error
(measurement and fluctuations) in the measurements.

The second section of the spreadsheet contains the overall flows,
the calculated component flows, and the material balance closure of
each. The weighted nonclosure can be calculated using the random
error calculated above, and a constraint test can be done with each
component constraint if desired. Whether the measurement test is
done or not, the nonclosure of the material balance for each compo-
nent gives an indication of the validity of the overall flows and the
compositions. If particular components are found to have significant
constraint error, discussions with laboratory personnel about sampling
and analysis and with instrument personnel about flow-measurement
errors can take place before any extensive computations begin.

The measurements and flows can be adjusted to close the con-
straints. These adjustments can then be compared to the measure-
ments to determine whether any are reasonable. Statistical routines or
hand adjustments are possible. These adjusted flows and composi-
tions might form the basis for the interpretation step bypassing any
deeper reconciliation and rectification. This is particularly appropriate
where many compositions are left unmeasured and those that are

measured have different levels of error. More sophisticated routines
will not compensate for incomplete, imprecise, and potentially inac-
curate measurements.

Recommendations Once measurements are made, validation is
the most important step for establishing a sound set of measurements.
The comparisons against other measurements or other known pieces
of information quickly identify suspect measurements. Spreadsheet
analysis of constraints, particularly material and energy balances,
identifies other weaknesses in the measurements and provides the
opportunity for discussions with those responsible before consider-
able analysis effort is expended. Finally, initial adjustments provide
the beginnings of the interpretation analysis.

RECONCILIATION
Single-Module Analysis Consider the single-module unit

shown in Fig. 30-10. If the measurements were complete, they would
consist of compositions, flows, temperatures, and pressures. These
would contain significant random and systematic errors. Conse-
quently, as collected, they do not close the constraints of the unit
being studied. The measurements are only estimates of the actual
plant operation. If the actual operation were known, the analyst could
prepare a scatter diagram comparing the measurements to the actual
values, which is a useful analysis tool. Figure 30-19 is an example.

If the measurements were completely accurate and precise (i.e.,
they contained neither random nor systematic error), all of the sym-
bols representing the individual measurements would fall on the zero
deviation line. Since the data do contain error, the measurements
should fall within �2 on this type of diagram. This example scatter
diagram shows that some of the measurements do not compare well to
the actual values.

Unfortunately, the actual plant operation is unknown. Therefore,
the actual value of each of the measurements is unknown. The pur-
pose of reconciliation is to adjust the measurements so that they close
the process constraints. The implicit hypothesis is that the resultant
adjusted measurements better represent the actual unit operation
than do the actual measurements.

Statistical Approach Ignoring any discrepancies between the
implicit model used to establish the constraints and the actual unit,
the measurements are adjusted to close the constraints. This adjust-
ment effectively superimposes the known process operation embod-
ied in the constraints onto the measurements. Minimum adjustments
are made to the measurements.

The matrix of measurements is rearranged into a stacked vector
where each subsequent set of stream measurements follows the one
above. As an example, the component flows in the X 1

m matrix are
placed in the vector of measurements as follows:

��Xm = � �
Defining, δ��X1 = ��X̂m

1 − ��X1
m

Minimize: δ��X1
Tδ��X1

Such that: ��f( ��X̂m
1 ) = ��0

If the constraints are linear (e.g., the component flow material bal-
ances) or can be linearized, then

B ��X̂m
1 = ��0

In the material balance example, the matrix B contains the material
balance coefficients for the component flows based on the implicit
model of the process. These adjustments can be done by hand or by

x1,1

x2,1

⋅
⋅

xc,1

x2,1

⋅
⋅

xc − 1,3

xc,3
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Component

ANALYSIS OF TOWER DATA
Measured compositions reported on lab logs

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Feed composition Distillation composition Bottoms composition

Date 1
wt%

Date 2
wt%

Date 3
wt%

Date 2
wt%

Date 3
wt%

Date 1
wt%

Date 2
wt%

Date 3
wt%

Date 1
wt%

Component

Possible material balance adjustment

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Stream flows

Feed
lb/hr wt%

Ovhd product
lb/hr wt%

Btms product
lb/hr wt% Descriptive notes

Component

Projected stream flows—next tower basis

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Stream flows Closure

Feed
lb/hr

Ovhd
lb/hr

Btms
lb/hr lb/hr %

Component

Projected single date flows—next tower basis

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Stream flows Closure

Feed
lb/hr

Ovhd
lb/hr

Btms
lb/hr lb/hr %

Component

Average compositions for period

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Stream compositions

Feed
wt%

Ovhd
wt%

Btms
wt%

Stream

Stream flowrates for single date

Feed
Distillate
Bottoms
Bottoms
Bottoms

As measured
Back-calculated from next unit
Back-calculated to close

lb/hr

Component

Normalized compositions for single date

Component 1
Component 2
Component 3
•
•
•
Component c-1
Component c

Total

Stream compositions

Feed
wt%

Ovhd
wt%

Btms
wt%

FIG. 30-18 Generic spreadsheet for analyzing measurement validity.



using computer aids. They can be made without consideration of mea-
surement errors in the data (Leibovici, C.F., et al., “Improve Predic-
tion with Data Reconciliation,” Hydrocarbon Processing, October,
1993, 79–80) as above or can be done by accounting for the random
errors (MacDonald, R.J. and C.S. Howat, “Data Reconciliation and
Parameter Estimation in Plant Performance Analysis,” AIChE Jour-
nal, 34(1), 1988, 1–8.) For the latter, the problem becomes:

Minimize: δ��X1
TJ−1δ��X1

Such that: ��f(X̂1
m) = ��0

where J is the variance-covariance of the measurements. If the num-
ber of measurements is limited for a stream, the adjustments can be
made on the limited number of measurements. The constraints can
also be used to estimate missing or discarded measurements: This use
of the constraints is defined as coaptation in the literature. However,
this propagates errors and should be done with caution.

Analysis of Measurement Adjustments Once reconciliation
has been completed, the adjusted measurements can be compared to
the actual measurements using a scatter diagram. Figure 30-20 pre-
sents an example. In this figure, the weighted residuals in the adjust-
ments are plotted. The weighting factor is a measure of the random
error in that particular measurement. In this visualization, the value of
the residual should be between �2. The scatter has improved from
the previous figure, but numerical studies have indicated that the ana-
lyst can expect only 60 percent of the measurements to be adjusted
toward the actual value. Consequently, while the scatter may have
improved, there is no guarantee that a particular adjusted measure-
ment is better than the actual measurement. This is one of the princi-
pal shortcomings of any automatic data adjustment method.

Adjustments outside this range could be suspect, either because of

measurement error or error in the estimated uncertainty. These will
be evaluated in the rectification step. Weighted residual values of 0 do
not necessarily indicate that the measurement is correct. While this is
a possible explanation, a more likely one is that the selected con-
straints used in the reconciliation are not sensitive functions of this
measurement. Therefore, in the interpretation step, caution is recom-
mended in using these adjusted measurements to compare against the
model estimate.

At this point, analysts have a set of adjusted measurements that may
better represent the unit operation. These will ultimately be used to
identify faults, develop a model, or estimate parameters. This auto-
matic reconciliation is not a panacea. Incomplete data sets, unknown
uncertainties and incorrect constraints all compromise the accuracy of
the adjustments. Consequently, preliminary adjustments by hand are
still recommended. Even when automatic adjustments appear to be
correct, the results must be viewed with some skepticism.

Complex Flow Sheets Operating plants do not consist of single
flashes, heat exchangers, distillation towers, or reactors. As the num-
ber of pieces of equipment increases within the unit under study, the
reconciliation becomes more difficult. For example, Fig. 30-21 pre-
sents a more complicated, three-module unit.

There are now constraints for each of the modules within the unit.
For example, the material and energy balances must close for each
module. The overall material and energy balances must also close, but
they are not independent. There are three approaches to close these
constraints.

First, the reconciliation can be done separately around each mod-
ule. Each module is studied alone. The measurements are reconciled
to the individual module constraints without consideration of any
other module with common streams. For example, the first module in
the figure is reconciled, and the measurements corresponding to
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FIG. 30-19 Scatter diagram of measurements before reconciliation.



stream 3 are adjusted to close the constraints around the first module.
The reconciliation process moves to the second. The stream-3 mea-
surements are adjusted again to close the module-2 constraints. This
adjustment does not take into account any previous adjustments done
for module 1. The adjustments will not be the same. The adjusted
stream-3 compositions and flows will be different for module 1 and
module 2. Consequently, the overall constraints will not close. This
method provides the best estimate for the actual operation for a spe-

cific module, but each stream joining two units is reconciled twice
yielding two differing estimates.

In the second approach, the reconciliation is done sequentially
from module to module within the unit under study. This is done typ-
ically following the primary direction of material flow. This approach
reconciles the measurements for each module in turn, progressing
through the entire unit under study. Consequently, the reconciled
measurements from the first module are used in the reconciliation of
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FIG. 30-20 Scatter diagram showing results of reconciliation.

FIG. 30-21 Three-module unit.



the measurements for the second. Each stream is reconciled only
once. This ensures overall closure upon completion. Errors in the rec-
onciliation from the first are propagated to subsequent modules.
Given that numerical studies of plant data show that the reconciliation
methods only improve the estimate of actual performance 60–70 per-
cent of the time, this method introduces significant errors that propa-
gate to an ever greater extent as the complexity of the flow sheet
increases. This method should be avoided.

In the third approach, the reconciliation is done simultaneously for
all of the modules in the entire unit. This provides a consistent set of
adjusted measurements for the entire flow sheet, ensuring individual
module and entire unit constraint closure. However, each module’s
adjustments are poorer than those obtained by a separate reconcilia-
tion.

If the focus of the analysis is on an individual module or piece of
equipment, the separate method is recommended.

References A variety of mathematical methods are proposed to
cope with linear (e.g., material balances based on flows) and nonlinear
(e.g., energy balances and equilibrium relations) constraints. Methods
have been developed to cope with unknown measurement uncertain-
ties and missing measurements. The reference list provides ample
insight into these methods. See, in particular, the works by Mah,
Crowe, and Madron. However, the methods all require more infor-
mation than is typically known in a plant setting. Therefore, even
when automated methods are available, plant-performance analysts
are well advised to perform initial adjustments by hand.

Recommendations Plant measurements should be adjusted to
close the constraints of the process. This adjustment should be done
on a component or subcomponent (e.g., atomic) basis. The adjust-
ments should be done recognizing (at a minimum) the uncertainty in
the measurements. While sophisticated routines have been developed
for reconciliation, the vagaries of plant measurements may make them
unsuitable in most applications. The routines are no substitute for
accurate, precise measurements. They cannot compensate for the
uncertainties and limited information typically found in plant data.

RECTIFICATION

Overview Reconciliation adjusts the measurements to close con-
straints subject to their uncertainty. The numerical methods for rec-
onciliation are based on the restriction that the measurements are
only subject to random errors. Since all measurements have some
unknown bias, this restriction is violated. The resultant adjusted mea-
surements propagate these biases. Since troubleshooting, model
development, and parameter estimation will ultimately be based on
these adjusted measurements, the biases will be incorporated into the
conclusions, models, and parameter estimates. This potentially leads
to errors in operation, control, and design.

Some bias is tolerable in the measurements. This is the case when:
• The bias is insignificant compared to the random error
• The bias does not have significant impact on the measurement

adjustment
• The bias does not contribute significantly to the errors in the con-

straints
• The biased measurement is of little value during interpretation

Consequently, these biases are not of concern.
However, other bias errors are so substantial that their presence

will significantly distort any conclusions drawn from the adjusted mea-
surements. Rectification is the detection of the presence of significant
bias in a set of measurements, the isolation of the specific measure-
ments containing bias, and the removal of those measurements from
subsequent reconciliation and interpretation. Significant bias in mea-
surements is defined as gross error in the literature.

The methods discussed in the technical literature are not exact.
Numerical simulations of plant performance show that gross errors
frequently remain undetected when they are present, or measure-
ments are isolated as containing gross errors when they do not contain
any.

Consequently, analysts must take a skeptical view of rectification
results. The detection and isolation methods are computationally
intensive and better suited for automatic procedures. Simulation stud-

ies show that the best interpretation occurs when entire measurement
sets found containing gross errors are discarded. Therefore, the
emphasis in this section is on detection. Citations are given for the
detection and isolation of measurements containing gross errors.

Reconciliation Result The actual measurements do not close
the constraint equations. That is,

��f(��X1
m) ≠ ��0

or, in the linear case,

B��X1
m ≠ ��0

Note that nonlinear constraints can be treated in this manner through
linearization. Consequently, adjustments to the measurements are
required. The result from the reconciliation process is this set of
adjusted measurements,

��̂X1
m

such that B ��̂X1
m = ��0

These were developed using constrained regression analysis or other
suitable methods such that the following objective function is mini-
mized.

δ��X1
T J−1δ��X1

which can be expressed in algebraic form as:

�
i
� �

2

These adjusted measurements are examined as part of the rectifica-
tion procedure.

There are three principal categories of rectification tests according
to Mah (Chemical Process Structures and Information Flows, Butter-
worths, Boston, 1989, p. 414). These are the global test, the constraint
test (nodal test), and the measurement test. There are variations pub-
lished in the literature, and the reader is referred to the references for
discussion of those.

Global Test The measurements do not close the constraints of
the process. In the linear, material balance constraint example used
above,

B ��X 1
m = ��r

where ��r is a vector of residuals for the constraints. The purpose of the
global test is to test the null hypothesis:

H0: ��r = ��0

Ha: ��r ≠ ��0

The variance-covariance matrix for ��r is:

R = BJBT

The test statistic
rTR−1r

is a chi-squared (χ2) random variable with degrees of freedom equal to
the number of constraints, assuming all measurements are made in
the constraint equations.

This test does not require reconciliation before it is applied. How-
ever, should the null hypothesis be rejected, it only indicates that a
gross error might be present. It does not isolate which of the mea-
surements (or constraints) are in error. Consequently, gross-error iso-
lation must be done subsequently.

Constraint Test In this test, each individual constraint is tested
based on the measurements. The test statistic is

with H0: rj = 0

Ha: rj ≠ 0

This statistic is normal. As with the global test, the constraint test is
based on the actual measurements before reconciliation. Reconcilia-
tion is not required in advance of the application of this test. Also, the

rj
�
�R�jj�

x̂i
m − xi

m

�
σxi
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constraint test does not isolate which of the measurements contains
gross error. Subsequent isolation is required.

Measurement Test This test compares the adjusted measure-
ments to the actual measurements. In so doing, each measurement is
tested for gross error. From the reconciliation development,

δ��X1 = ��X̂1
m − ��X1

m

where the vector δ��X1 is the adjustments made to each of the mea-
surements. Premultiplying this vector by the inverse of the variance-
covariance matrix of the measurements gives a test of maximum
power (assuming that J is diagonal). Define,

��d = J−1δ��X1

Define the variance-covariance matrix for this vector to be

Q = BT(BJBT)−1B

Thus, the N(0,1) test statistic is

Unlike the other two tests, this is associated with each measurement.
Reconciliation is required before this test is applied, but no further
isolation is required. However, due to the limitations in reconciliation
methods, some measurements can be inordinately adjusted because
of incorrectly specified random errors. Other adjustments that do
contain gross errors may not be adjusted because the selected con-
straints are not sensitive to these measurements. Therefore, even
though the adjustment in each measurement is tested for gross error,
rejection of the null hypothesis for a specific measurement does not
necessarily indicate that that measurement contains gross error.

Gross-Error Isolation Gross-error detection methods do not
isolate which measurements contain gross error. The Global and Con-
straint Tests work only with the process constraints. While they detect
gross errors in one or more constraints, they do not isolate the mea-
surements. The measurement test does isolate those measurements
that were adjusted to a larger-than-expected extent. These adjust-
ments may be in error, as discussed above. Once the presence of gross
errors has been detected, the actual measurements need to be iso-
lated. Rosenberg et al. (Rosenberg, J., R.S.H. Mah, and C. Iordache,
“Evaluation of Schemes for Detecting and Identifying Gross Errors in
Process Data,” Industrial and Engineering Chemistry, Research,
26(3), 1987, 555–564) review methods for isolation of gross errors.

The authors test two methods coupled with the measurement test.
In one, they sequentially eliminate measurements and rearrange the
constraints to isolate the specific measurements that contain gross
errors. In the other, streams are added back as the search continues.

Both of these schemes require substantial computing effort and are
focused on networks of modules (i.e., complex units). The reader is
referred to the article for the details of these isolation procedures as
they are beyond the scope of this section.

Statistical Power There are two types of errors. In the type-I
error, gross errors are isolated as present when none are. In the 
type-II error, no errors are isolated when they are actually present. A
third measure of error is selectivity taken from Rosenberg et al. (cited
above), which is the normalized probability of detecting a gross error
in a stream when there is error in that stream only. The power of the
detection methods is defined as the probability of detecting gross
errors when present. The probability of making a false detection must
be minimized. The selectivity should also be high. A balance among
these competing goals must be established.

Results of simulation studies of different types of flow sheets and
measurement-error levels show that the performance of these
schemes depends on the magnitude of the gross error relative to the
measure of the random error. The larger the gross error, the greater
the power and lower the probability of committing a type-II error.
The complexity of the flow sheet contributes in the form of the con-
straint equations. Flowsheets with parallel streams have identical con-
straint equations, giving equal statistical performance. For the cases
studied, the power ranges from 0.1 to 0.8 (desired value 1.0), the
probability of making type-II errors ranges from 0.2 to 0.7 (desired
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value 0.0), and the selectivity ranges from 0.1 to 0.8 (desired value
1.0). These statistics depend on random and gross error magnitudes
and flow sheet configuration. These ranges of statistics show that the
tests are not exact.

This inexact performance leads to the recommendation that mea-
surement sets should be discarded in their entirety when gross errors
are detected. Therefore, actual isolation of which measurements con-
tain error is not necessary when entire sets are discarded.

Recommendation When all measurements were recorded by
hand, operators and engineers could use their judgment concerning
their validity. Now with most acquired automatically in enormous
numbers, the measurements need to be examined automatically. The
goal continues to be to detect correctly the presence or absence of
gross errors and isolate which measurements contain those errors.
Each of the tests has limitations. The literature indicates that the mea-
surement test or a composite test where measurements are sequen-
tially added to the measurement set are the most powerful, but their
success is limited. If automatic analysis is required, the composite
measurement test is the most direct to isolation-specific measure-
ments with gross error.

However, given that reconciliation will not always adjust measure-
ments, even when they contain large random and gross error, the
adjustments will not necessarily indicate that gross error is present.
Further, the constraints may also be incorrect due to simplifications,
leaks, and so on. Therefore, for specific model development, scrutiny
of the individual measurement adjustments coupled with reconcilia-
tion and model building should be used to isolate gross errors.

INTERPRETATION

Overview Interpretation is the process for using the raw or
adjusted unit measurements to troubleshoot, estimate parameters,
detect faults, or develop a plant model. The interpretation of plant
performance is defined as a discreet step but is often done simultane-
ously with the identification of hypotheses and suitable measurements
and the treatment of those measurements. It is isolated here as a sep-
arate process for convenience of discussion.

The activities under interpretation are divided into four categories.
Troubleshooting is a procedure to identify and solve a problem in the
unit. Hypothesized causes for the observed problems are developed
and then tested with appropriate measurements or identification of
changes in operating conditions.

Parameter estimation is a procedure for taking the unit measure-
ments and reducing them to a set of parameters for a physical (or, in
some cases, relational) mathematical model of the unit. Statistical
interpretation tempered with engineering judgment is required to
arrive at realistic parameter estimates. Parameter estimation can be
an integral part of fault detection and model discrimination.

Fault detection is a monitoring procedure intended to identify
deteriorating unit performance. The unit can be monitored by focus-
ing on values of important unit measurements or on values of model
parameters. Step changes or drift in these values are used to identify
that a fault (deteriorated performance in unit functioning or effective-
ness) has occurred in the unit. Fault detection should be an ongoing
procedure for unit monitoring. However, it is also used to compare
performance from one formal unit test to another.

Model discrimination is a procedure for developing a suitable
description of the unit performance. The techniques are drawn from
the mathematics literature where the goodness-of-fit of various pro-
posed models are compared. Unfortunately, the various proposed
models will usually describe a unit’s performance equally well. Model
discrimination is better accomplished when raw or adjusted measure-
ments from many, unique operating conditions provide the founda-
tion for the comparisons.

These procedures are not mutually exclusive and are divided here
as a matter of convenience for discussion. The identification, mea-
surement treatment, and interpretation are typically embodied into a
single effort with testing and retesting as analysts search for the cause
of the observed symptoms.

Troubleshooting The initial steps of troubleshooting have been
discussed in the identification section. Successful troubleshooting
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requires the acquisition and organization of a large amount of obser-
vations from diverse sources. Analysts rely heavily on the observations
of operators and supervisors along with the interpretation of unit mea-
surements. In troubleshooting, a complete unit test is usually the last
resort to identify the cause of the observed problem. Therefore, the
measurements and observations are usually incomplete, and analysts
must hypothesize causes, identify measurements or alternative oper-
ating conditions, and interpret the results based on the analysts’
understanding of the unit operation.

Hasbrouck et al. (Hasbrouck, J.F., J.G. Kunesh, and V.C. Smith,
“Successfully Troubleshoot Distillation Towers,” Chemical Engineer-
ing Progress, March 1993, 63–72) provide guidelines for those prac-
ticing troubleshooting. These have been incorporated into much of
the preparation and identification discussion. Analysts must under-
stand the objectives of the troubleshooting activities established by
unit supervision, plant management, and the analysts’ management.
Analysts must be able to communicate with and have the cooperation
of the unit operators and supervision. Analysts must understand the
unit. Discussions with operators and supervision should emphasize
the symptoms and not their conclusions. Analysts should observe unit
operation both in the control room and in the unit to establish
whether the observations of those involved are accurate. Analysts
should obtain log-sheet measurements to provide the foundation for
establishing the hypotheses explaining the unit problems. As part of
this collection, log sheets from a period when the unit operated cor-
rectly should also be obtained. At this point, the interpretation process
can begin.

The current and past operation should be compared so that the tim-
ing of the observed problems is established. The possible causes
(hypotheses) can be compared against the measurements found on
the log sheets. The number of possible causes can then be reduced.
When the quantity or quality of measurements is insufficient to fur-
ther reduce the set of causes, additional measurements are required.
These may require special instruments (e.g., gamma-ray scanning) not
routinely used in the plant. Alternative operating conditions may also
be required to further reduce the number of causes. As part of the
problem identification, it is always important to look for measure-
ments that are inconsistent with the proposed explanation. They will
be more informative than the ones justifying the hypothesized cause.
Ultimately, with appropriate additional measurements, the cause can
be identified. This is not an exact science and, as stated above, relies
heavily upon the communication, technical, and investigative skills of
analysts.

Figure 30-22 is an expanded flowchart for troubleshooting activities
incorporating the recommendations for hypothesis development as
well as interpretation laid out in Table 30-1. The figure is adapted
from Hasbrouck et al. but expanded and rearranged to make it ger-
mane to units beyond distillation. Following the guidelines from Table
30-1, the changes in the unit equipment, instrumentation, and operat-
ing conditions that coincide with the observed problems are listed.
Instrument readings are verified to ensure that the problem is valid
and not an aberration of poor instruments or calibrations. Hasbrouck
et al. recommend establishing the magnitude of the problem and ver-
ifying that it is significant enough to justify further troubleshooting
activities. In this step, analysts monitor unit operations to verify the
observations of operators and unit supervisors. Hypothesis develop-
ment continues with establishing whether the problem is with the unit
under study or with an upstream unit, downstream unit, auxiliary
equipment, or control. If it is outside the unit under study, attention
should turn to troubleshooting that equipment. If it is within the unit,
then analysts should establish whether the operating conditions are
inappropriately set, causing capacity or efficiency problems, or whether
the equipment itself is the cause of the problem. Troubleshooting
continues by acquiring measurements from logs or, if necessary, from
special instrumentation to reduce the number of possibilities and ulti-
mately identify the cause of the problems. The process concludes with
the alternative operating conditions or equipment identified with sup-
porting economic justification. Analysts then communicate the results
to the management, unit supervision, and the operators. If necessary,
the analysts oversee the implementation of the changes.

Figure 30-22 should be interpreted as a guideline for successful

troubleshooting and not a recipe to be followed exactly. Any one of the
steps can be bypassed as the ground rules for the activity dictate and
the insight into the problem develops. Since troubleshooting is not an
exact science, analysts are well advised to look always for the alternative
causes recognizing that symptoms’ underlying causes are not unique.

Parameter Estimation Relational and physical models require
adjustable parameters to match the predicted output (e.g., distillate
composition, tower profiles, and reactor conversions) to the operating
specifications (e.g., distillation material and energy balance) and the
unit input, feed compositions, conditions, and flows. The physical-
model adjustable parameters bear a loose tie to theory with the limi-
tations discussed in previous sections. The relational models have no
tie to theory or the internal equipment processes. The purpose of this
interpretation procedure is to develop estimates for these parameters.
It is these parameters linked with the model that provide a mathe-
matical representation of the unit that can be used in fault detection,
control, and design.

The purpose is to develop estimates of significant model parame-
ters that provide the best estimate of unit operation. The unit opera-
tion is embodied in the measurements.

��X1
m

If reconciliation and rectification procedures were applied to the mea-
surements, either statistically or judgmentally, to close the constraints,
the unit operation is also embodied in the adjusted measurements.

��̂X1
m

Each of these have corresponding uncertainties.
The object, then, is to develop a set of predicted values for the mea-

surements based on the model

��̂X1
M

such that the differences between these model predictions and the
raw or adjusted measurements are minimized.

Define: δ��X1
M = ��X̂1

M − ��X1
m

or δ��X1
M = ��X̂1

M − ��X̂1
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and minimize: δ��X1
M Tδ��X1

M

This minimization can be unweighted as above, or it can be weighted
using the statistical uncertainty J−1 with respect to the measurements
or engineering judgment.

While the statistical weighting is elegant and rigorous if the uncer-
tainties are known, its applicability is limited because the uncertain-
ties are seldom known. Commercial simulator models are yet unable
to iterate on the parameter estimates against the unit measurements.
And, the focus should be on a limited subset of the complete mea-
surements set.

The parameter adjustment procedure is most often done with ana-
lysts performing the adjustments by comparing model predictions 
to the raw or adjusted measurements. The spreadsheet given in Fig.
30-18 is extended to include comparisons between the predictions
and basis. Figure 30-23 presents one possible extension. The spread-
sheet contains two principal sections. First, there is a section for the
comparison of component flows. The component flows for the com-
parisons are the raw or adjusted measurements. The predicted values
come from the model with the current estimates for the parameters.
The deviations are summarized as a root mean square error between
the measurements and predictions, weighted if appropriate. The sec-
ond section includes a comparison between measured and predicted
values that are of particular interest, like the measurements upon
which the operators focus, trace component concentrations, ratios of
one group of components to another, or a special product. This section
of the spreadsheet is repeated as often as necessary to provide a run-
ning comparison, as the parameter values are adjusted to improve the
description of the unit operation. The adjustment of the parameter
values is accomplished through finite-difference approximation of the
sensitivity of the performance criteria to the parameter values.

The hurdles to arriving at a unique set of parameter values are
large.
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• The measurements do not close the constraints. Estimation of
the parameter values against the actual measurements results in
parameter values that are not unique.

• The adjusted measurements are not unique and may be no better
than the actual measurements. Simulation studies testing reconcilia-
tion methods in the absence of gross error show that they arrive at a
better estimate of the actual component and stream flows 60 percent
of the time; 40 percent of the time, the actual measured values better
represent the unit performance.

• Gross-error-detection methods detect errors when they are not
present and fail to detect the gross errors when they are. Coupling
the aforementioned difficulties of reconciliation with the limitations
of gross-error-detection methods, it is likely that the adjusted mea-
surements contain unrecognized gross error, further weakening the
foundation of the parameter estimation.

• Few simulation studies of parameter estimation in analysis of
plant-performance are given in the literature. Those that are
reported show that, for the levels of measurement errors expected in
a plant, the uncertainty in estimated parameter values is very large,
much larger than that needed for design. For example, MacDonald
and Howat (1988) show that, for a simple flash vessel with an actual
simulated value of 75 percent flash efficiency, the 95 percent confi-
dence interval in the interpretation of simulated operation is 75% �
12%. Verneuil et al. (1992) point out that interpretation of unit data
using highly nonlinear models should be done with the recognition
that the results must be treated as an approximation.

• The presence of errors within the underlying database further
degrades the accuracy and precision of the parameter estimate. If
the database contains bias, this will translate into bias in the parame-
ter estimates. In the flash example referenced above, including rea-
sonable database uncertainty in the phase equilibria increases the 95
percent confidence interval to �14. As the database uncertainty in-
creases, the uncertainty in the resultant parameter estimate increases
as shown by the trend line represented in Fig. 30-24. Failure to
account for the database uncertainty results in poor extrapolations 
to other operating conditions.

• The models that require parameter estimates are approximate.
Much of the theoretical basis of the parameter definition is lost.
Equipment nonlinearities and boundaries are not accounted for in the
analysis.

Despite these hurdles, models with accurate parameter estimates

are required for analysis, control, and design. The effectiveness of
parameter estimation can be improved by following these guidelines.

• Increase the number of measurements included in the measure-
ment set by using measurements from repeated sampling. Including
repeated measurements at the same operating conditions reduces the
impact of the measurement error on the parameter estimates. The
result is a tighter confidence interval on the estimates.

• Include measurements that represent the internal conditions of
equipment. Including internal measurements such as tray composi-
tions, between-catalyst-bed measurements or spatial measurements
in a CSTR improve the likelihood that the parameter estimates are
accurate. These measurements are particularly useful when product
compositions (e.g., principal component composition in superfrac-
tionation) are not a sensitive measure of the parameter estimate.

• Increase the number of operating conditions in the measurement
set. Measurement sets from different operating conditions have the
same effect as increasing the number of measurements. They have the
added benefit identifying weaknesses in the model when it cannot
accurately describe all of the conditions.

• Focus on specific measurements of particular sensitivity during
the parameter adjustment. Analysts should focus on the primary
measurements upon which the operation, control, or design are based
during the parameter adjustment step. This guideline suggests the
artificial weighting of particular measurements. For example, in
superfractionation, the nondistributed component product composi-
tions provide little insight into evaluating the accuracy of the estimate
of the tray efficiency. Including the deviation in these when develop-
ing a new parameter estimate provides little value and potentially
masks the impact that the parameters have on the trace component
compositions. Monitoring the deviations in the internal tray composi-
tions of these nondistributed components in the region where they
drop from the feed-tray composition to zero composition is important,
but it is not where these compositions are at their limiting values on
the other side of the feed tray.

• Use additional measurement sets that were not included in the
development of the parameter estimates to test their accuracy. A cer-
tain subset of the raw or adjusted measurements is used to adjust the
parameter estimate. Once the optimal values are attained, the model
is used to predict values to compare against other measurement sets
or subsets. These additional measurements provide an independent
check on the parameter estimates and the model validity.
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As with troubleshooting, parameter estimation is not an exact sci-
ence. The facade of statistical and mathematical routines coupled with
sophisticated simulation models masks the underlying uncertainties in
the measurements and the models. It must be understood that the
resultant parameter values embody all of the uncertainties in the mea-
surements, underlying database, and the model. The impact of these
uncertainties can be minimized by exercising sound engineering judg-
ment founded upon a familiarity with unit operation and engineering
fundamentals.

Fault Detection Measurements for units operating at steady-
state fluctuate around mean values. The means tend to drift with time.
Dynamic processes necessarily have time fluctuations in the measure-
ments. These fluctuations and drifts make it difficult to determine
readily the level of unit performance. Along with the process mea-
surements, utility, raw material, and catalyst usage are monitored
through the course of operation. The efficiency or economics of the
unit are strong functions of these usages. These too change with time,
and it is difficult to determine if the efficiency of the unit operation
has changed. Control of the unit depends upon the accuracy of unit
instrument readings. Should the instruments deteriorate, input sig-
nals to the controllers deteriorate and consequently control actions
deteriorate. The validity of the instrument readings must be moni-
tored to ensure that readings and the resultant actions are appropriate
for efficient control.

These observations lead to the principal questions toward which
fault detection is addressed.

• Has the unit operation effectiveness changed due to the input
conditions, ambient conditions, or the state of the equipment?

• Has the unit operation efficiency deteriorated resulting in poorer
performance?

• Has one or more of the instruments deteriorated such that the
readings no longer represent the unit operation?

A fault may interfere with the effectiveness or the functioning of the
unit (Watanabe, K., and D.M. Himmelblau, “Incipient Fault Diagnosis
of Nonlinear Processes with Multiple Causes of Faults,” Chemical
Engineering Science, 39(3), 1984, 491–508). The first question
addresses the effectiveness. The second two address the functioning.
Fault detection is a unit monitoring activity, done automatically or peri-
odically, to determine whether the unit operation has changed.

Figures 30-11 through 14 provide typical traces of unit operations.

Figure 30-12 shows a drift in the measurement, but it does not read-
ily justify a conclusion that the unit operation is changing from one
state to another. The apparent step changes shown in Fig. 30-13 may
be due to instrument failure, input changes to the unit, operator-
induced changes, and an aberration of the chart scaling. It is not read-
ily clear whether the unit functioning or effectiveness has changed in
either of these traces. The complex interactions defined by the chem-
ical engineering and equipment fundamentals within the unit appear
as changes in the measurements. The changes do not necessarily
mean that the functioning or effectiveness of the unit has changed in
any significant way.

The purpose of fault detection is to interpret the set of measure-
ments to determine whether the operation of the unit has changed.
This interpretation is done by monitoring the set of the measurements
or by monitoring values for the significant unit parameters. It is done
automatically as part of the computer control of the unit or periodi-
cally as when comparing one unit test to a subsequent one.

Automatic fault detection and diagnosis relies upon the interpreta-
tion of the unit measurements as they are gathered by the computer
control/data acquisition system. The goal is to identify faults before
they jeopardize the unit operation that could ultimately pose product,
equipment, and safety problems if they are not corrected. The diffi-
culty is that high-frequency data acquisition systems obtain a large
amount of measurements. Automatic filtering methods and data com-
pression are required to retain the unit trends without treating and
archiving all the measurements. Readers are referred to Watanabe
and Himmelblau (Watanabe, K. and D.M. Himmelblau, “Incipient
Fault Diagnosis of Nonlinear Processes with Multiple Causes of
Faults,” Chemical Engineering Science, 39(3), 1984, 491–508) and
their citation list for a discussion of filtering methods. Narashimhan et
al. propose that recording and analysis be done only when the process
steady state has changed (Narashimhan, S., R.S.H. Mah, A.C.
Tamhane, J.W. Woodward, and J.C. Hale, “A Composite Statistical
Test for Detecting Changes of Steady States,” AIChE Journal, 32(9),
1986, 1409–1418). They develop a method for testing whether the
unit is in steady state.

Periodic fault detection is readily done by analysts without exten-
sive software support. Process monitoring such as the examination of
the traces discussed above are one example. However, the number of
measurements in a single set have such complex interactions that it is
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difficult to determine whether the unit operation has changed. A bet-
ter approach for periodic fault detection is to estimate the parameter
values based on the measurements. The parameters, assuming that
the model is accurate, embody the entire operation of the unit as well
as the uncertainties in the measurements. Since their number is small
for any unit, it is easier to monitor the parameter values. Figure 30-25
presents a typical trend in unit parameter values. Two difficulties arise
with this approach, however.

First, the parameter estimate may be representative of the mean
operation for that time period or it may be representative of an
extreme, depending upon the set of measurements upon which it is
based. This arises because of the normal fluctuations in unit measure-
ments. Second, the statistical uncertainty, typically unknown, in the
parameter estimate casts a confidence interval around the parameter
estimate. Apparently, large differences in mean parameter values for
two different periods may be statistically insignificant.

A change in the measurements or parameters indicates a change in
the unit operation. The diagnosis (interpretation) of the cause for the
change requires troubleshooting skills.

Watanabe and Himmelblau (1984) present a discussion of their
simulation studies of the dehydrogenation of heptane to toluene.
Incomplete reaction, deterioration of catalyst performance, and foul-
ing the heat exchange surface are specified as the source of the faults.
These manifest themselves in the outlet concentration of toluene, the
values of the Arrhenius equation frequency factor and activation
energy, and the heat-transfer coefficient, respectively. If the toluene
concentration falls, the reaction completion has decreased. If the fre-
quency decreases and the activation energy increases, the catalyst has
chemically degraded. If the frequency decreases with no change in
the activation energy, the catalyst has physically degraded. If the heat-
transfer coefficient decreases, the exchanger has fouled. They note,
however, that model-formulation difficulties will mask problems such
that the problems do not appear as symptoms in the parameter values.

Wei (Wei, C.-N., “Diagnose Process Problems,” Chemical Engi-
neering Progress, September 1991, 70–74) discusses his success in
monitoring production rates and selectivity to identify faults in a mov-
ing bed adsorber. Continuous monitoring resulted in a time trace of
values for his parameters, clearly indicating that the operation had
changed. The cause of the change in the parameter values was then
diagnosed using troubleshooting methods discussed above. It is
important to be able to compare operation before and after control,

equipment, and other unit modifications. The history of the parame-
ter values provides valuable insight into the effectiveness of the mod-
ifications.

In Fig. 30-25, representation of the fault detection monitoring activ-
ity, there appears to be two distinct time periods of unit operation with
a transition period between the two. The mean parameter value and
corresponding sample standard deviation can be calculated for each
time. These means can be tested by setting the null hypothesis that the
means are the same and performing the appropriate t-test. Rejecting
the null hypothesis indicates that there may have been a shift in opera-
tion of the unit. Diagnosis (troubleshooting) is the next step.

When the number of measurement sets is substantially less than
that indicated Fig. 30-25, the interpretation becomes problematic.
One option is to use the parameter values from one period to describe
the measurements from another. If the description is within measure-
ment error, the operation has not changed. If there is a substantial dif-
ference between the predictions and the measurements, it is likely
that the operation has changed. Methods such as those developed by
Narasimhan et al. (1986) can be used when the number of measure-
ments are large. When implementing automatic methods to treat a
large number of measurements, analysts should ensure that the unit is
at steady state for each time period.

Model Discrimination Relational and physical models should
be robust (i.e., able to describe the operation of the unit over a rea-
sonable range of operating conditions). Relational models used in con-
trol do not necessarily describe the operation exactly. At any given
operating condition, they exhibit bias from the actual operation. How-
ever, their intended purpose is to predict accurately trends in
response to operating specification changes or deviations from set-
points. Physical models, particularly those used in incipient fault
detection and diagnosis, must be unbiased, accurately reflecting the
unit operation.

The parameters of these models must also be unique for the unit.
Only one set of parameters should describe the operation over a wide
range.

The models must be considered to be approximations. Therefore,
the goals of robustness and uniqueness are rarely met. The nonlinear
nature of the physical model, the interaction between the database
and the parameters, the approximation of the unit fundamentals, the
equipment boundaries, and the measurement uncertainties all con-
tribute to the limitations in either of these models.
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Because of these limitations, different models may appear to
describe the unit operation equally well. Analysts must discriminate
among various models with the associated parameter estimates that
best meet the end-use criteria for the model development. There are
three principal criteria for judging the suitability of one model over
another. In addition, there are ancillary criteria like computing time
and ease of use that may also contribute to the decision but are not of
general concern.

The three principal criteria in order of importance are:
• Chemical engineering and equipment fundamentals foundation

within the model
• Interpolation and extrapolation performance to other operating

conditions
• Statistical representation of the raw or adjusted measurements

These criteria form the guidelines for discriminating among compet-
ing models. The principal reason for developing a model of the unit
operation is to reliably predict unit performance under different oper-
ating conditions. Troubleshooting, fault detection, control, and design
all fall under this purpose for developing a model. Different levels of
accuracy may be required for each of these activities based on the end
use criteria, but the choice of model within one of these activities
should be that which best describes the unit operation. Models of lim-
ited accuracy have been used for operation and design with disap-
pointing results. The developer of the model may recognize the
model’s limitations, but frequently these are not passed along to other
analysts. Accurate predictions under different operating conditions is
the primary goal and the foundation for the guidelines.

• The model that best describes the chemical engineering funda-
mentals including transport phenomena, rate mechanisms, and 
the thermodynamics; and includes contributions due to equipment
nonlinearities and boundary conditions should be the model of
choice.

This guideline is paramount. If the model is accurate in its funda-
mentals and equipment performance description, it should be able to
describe the unit operation over a wide range of conditions. Its only
limitations are the weaknesses of underlying database used in the
model calculations and the errors in the unit measurements upon
which the parameter estimates are based. An accurate description of
the chemical engineering fundamentals incorporating the equipment
nonlinearities with theory-based adjustable parameters is difficult to
obtain. Analysts’ knowledge of the transport and rate mechanisms is
approximate under the best of circumstances. When the fundamen-
tals are known, the mathematics may be so complex as to make the
model unusable in the plant setting. Unless the model is specially
developed for the analysis of plant performance, commercial simula-
tors with their inherent inflexibility and limitations must be relied
upon. They rarely allow changes to their model structure and do not
incorporate the nonlinearities of equipment performance. Conse-
quently, the model that is the best approximation of the fundamentals
and equipment limitations and is computationally tractable should be
the choice. It should have the greatest likelihood for extrapolation to
other operating conditions.

• The model that best describes operating conditions other than
those upon which its parameter estimates are based; i.e., the model
that best interpolates among and extrapolates from its development
conditions, should be the model of choice.

The best test for the suitability of the models is to develop their
respective parameter estimates at one set of conditions and then test
the accuracy of the models using measurements for other sets of con-
ditions. The other conditions can be as relatively close to those used to
establish the parameter estimates as might be experienced in routine
operations. They may also be far different with different feed condi-
tions and operating specifications.

Aside from the fundamentals, the principal compromise to the
accuracy of extrapolations and interpolations is the interaction of the
model parameters with the database parameters (e.g., tray efficiency
and phase equilibria). Compromises in the model development due to
the uncertainties in the data base will manifest themselves when the
model is used to describe other operating conditions. A model with
these interactions may describe the operating conditions upon which
it is based but be of little value at operating conditions or equipment
constraints different from the foundation. Therefore, it is good prac-
tice to test any model predictions against measurements at other oper-
ating conditions.

• The model that best describes the raw or adjusted measurements
should be the model of choice.

The statistics literature presents numerous reviews of comparing
the description of one model against another. Watanabe and Himmel-
blau (1984) present a list of review articles. The judgment criterion is
based on a comparison of the model predictions against the measure-
ments. These comparisons are related to the general statistic given
below, developed for each model with its corresponding parameter
set.

S2 = δ��X 1
M Tδ��X1

M

where δ��X1
M = ��X̂1

M − ��X̂1
m

Appropriate weighting and focus on a subset of measurements can be
introduced as statistical knowledge of the measurements, end-use
focus, and engineering judgment warrant. When weighted with the
uncertainties in the adjusted measurements, the statistic is χ2. Two
models can be compared using an F-statistic. With appropriate
hypothesis testing, the best model can be chosen. These statistical
comparisons are not a replacement for sound measurements and
sound model fundamentals. They should be used as a guide only. The
difficulties are:

• The statistical distributions of the measurements are unknown.
• The resultant distribution of the parameter estimates are also

unknown.
• The weighting is usually arbitrary with only a subset of the mea-

surements used.
• The statistical test provides no insight into the accuracy of the

engineering fundamentals, equipment nonlinearities, or parameter
interactions.

Unfortunately, models are rarely exact. The semblance of sophisti-
cation inherent in the model and used to develop parameter estimates
frequently masks their deficiencies. Models are only approximate, and
their predictions when the parameter estimates are based on analysis
of plant performance must be considered as approximate. Validation
of the model and the parameter estimates using other operating con-
ditions will reduce the likelihood that the conclusions have significant
error.
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