Index Terms		<u>Links</u>					
abietic acid	2-28						
abrasion index	20-12						
absorptance	5-25						
definition	5-25						
variation with temperature of radiation							
source	5-26						
accelerating rate calorimeter (ARC)	26-50						
acceleration:							
centrifugal	18-106						
coriolis	18-107						
accounting	9-39						
accountancy, types of	9-41						
balance sheets	9-41						
books, closing of	9-39						
budgets	9-54						
capital:							
concepts	9-40						
conventions	9-40						
cost of	9-47						
cost control	9-54						
double-entry	9-39						
working	9-52						
company data, comparative	9-45						
equities, purchase and sale of	9-44						
financial ratios	9-42						
financing debt	9-44						
financing of assets:							
by debt	9-43						
by equity	9-43						
income statements	9-41						
inventory evaluation and control	9-49						
management and cost	9-48						
overall company ratios, application of	9-45						
principles of	9-39						
retained earnings	9-44						
acenaphthene	2-28						
acentric factor	4-16						
acetal	2-28	2-61					
acetaldehyde	2-28	2-52	2-61				
acetaldehyde ammonia	2-28						
acetamide	2-28	2-53	2-61				
acetanilide	2-28	2-61					
acetic acid	2-28	2-52	2-61	2-110	2-175	2-184	2-204
acetic anhydride	2-28	2-52					
acetic nitrile	2-28	2-53					
acetone	2-28	2-52	2-61	2-175	2-206		
acetonyl urea	2-28						
acetophenone benzoyl hydride	2-28						
acetphenetidide	2-28						
acettoluidide	2-28						
acetyl chloride	2-28						
······································	2 20						

Index Terms		<u>Links</u>			
acetylene	2-28	2-50	2-61	2-125	2-206
acetylene dichloride	2-28				
acetyl phenylenediamine	2-28				
acid egg	10-35				
aconitic acid	2-28				
acridine	2-28	2-61			
acrolein ethylene aldehyde	2-28				
acrylic acid	2-28	2-61			
acrylic nitrile	2-28	2 01			
activity coefficient	4-25				
actuators	8-66				
diaphragm actuator	8-66				
electric	8-67				
hydraulic	8-67				
motion conversion	8-67				
pneumatic	8-66				
Adams-Bashforth method	3-55				
adaptive meshes	3-60				
adiabatic	10-5				
flow	10-5				
adipic acid	2-28	2-61			
adipic amide	2-28				
adipic nitrile	2-28				
adrenaline	2-28				
adsorbents:					
density:					
bulk	16-11				
particle	16-11				
skeletal	16-11				
wet	16-11				
See also sorbents					
adsorption:					
adiabatic	16-32				
batch processes	16-25				
biochemical separation	22-75				
countercurrent	16-60				
crosscurrent	16-61				
cycles	16-48	16-54			
pressure swing adsorption (PSA)	16-49				
purge/concentration swing adsorption	16-51				
temperature swing adsorption (TSA)	16-48				
design concepts	16-5				
energy balance	16-17				
equilibrium	16-5				
multiple components	16-15				
separation factor	16-14				
equipment	16-56				
controls	16-59				
regeneration	16-58				
vessels	16-56				
fixed beds. <i>See</i> fixed beds	10.50				
incu beus. see incu beus					

This page has been reformatted by knovel for easier navigation.

Index Terms		<u>Links</u>
adsorption (Cont.):		
heat transfer in	16-18	
isotherms. See isotherms		
mass transfer in. See mass transfer		
material balance	16-17	
moving beds, simulated	16-56	16-63
physical properties of	16-9	
process selection	16-56	
rate factor	16-17	
selection of	16-5	
adsorptive-bubble separation	22-30	
adsorption	22-32	
bubble fractionation	22-35	
classification	22-30	
column operation	22-34	
enriching	22-33	
foam-column theory	22-33	
foam considerations	22-34	
limiting equations	22-34	
simple mode	22-33	
stripping	22-33	
advanced control system:		
adaptive control	8-20	
cascade control	8-18	
decoupling	8-23	
feedback	8-17	
feed forward	8-16	
fuzzy logic control	8-21	
override control	8-19	
relative gain array method (RGA)	8-24	
smith preditor	8-19	
statistical process control	8-21	
aerosol deposition:		
mechanism	17-25	
parameter	17-25	
affinity laws	10-25	
agglomeration	19-33	20-56
agitation	20-56	
circuit	20-57	
compression	20-56	
density	20-59	
extent of	20-57	
granulation	20-57	
kinetics	20-57	
porosity	20-59	
rate process	20-61	
breakage	20-68	
growth and consolidation	20-64	
powder compaction	20-69	
wetting	20-61	

macx rennb		-
agglomeration (Cont.)		
size	20-59	
strength of	20-60	
agitated vessels, jackets of	18-23	
agitation	11-27	
bed agitation intensity	20-64	
high agitation intensity	20-64	
low agitation intensity	20-64	
agitation equipment	18-12	
selection of	18-12	
air	2-53	2
air conditioning	11-74	
application of	11-74	
definition of	11-74	
equipment for	11-74	
air-cooled:		
heat exchanger	11-47	
air-flow control	11-50	
air recirculation	11-50	
costs of, table	11-51	
evaporative cooling	11-50	
fan drivers	11-49	
fans	11-49	
finned-tube construction	11-49	
forced-draft	11-48	
humidification chambers	11-50	
trim coolers	11-50	
tube-bundle	11-48	
tubing	11-48	
overhead condenser	11-51	
steam condenser	11-51	
air filter:		
classification	17-51	
high-efficiency particulate air (HEPA)	17-50	
theory	17-48	
types	17-50	
air lift	10-35	
air pollutants, effects of	25-24	
air-quality legislation and regulations	25-5	
alanine	2-28	
aldol acetaldol	2-28	
algae	24-4	
algebra	3-12	
binomial theorem	3-13	
factor theorem	3-14	
fundamental theorem	3-14	
permutations	3-14	
probability	3-14	
remainder theorem	3-14	

<u>Links</u>

2-125 2-133 2-140 2-200 2-207 2-221

Index Terms		<u>Links</u>					
algebra, elementary	3-12						
binomial theorem	3-13						
determinants	3-15						
operations	3-12						
permutations, combinations, and							
probability	3-14						
progressions	3-13						
theory of equations	3-14						
algebraic inequalities:							
arithmetic-geometric inequality	3-9						
Carleman's inequality	3-9						
Cauchy-Schwarz inequality	3-9						
Hölder's inequality	3-9						
Lagrange's inequality	3-9						
Minkowski's inequality	3-9						
Alizarin	2-28						
allyl alcohol	2-28	2-61					
allyl bromide	2-28						
allyl chloride	2-28	2-61					
allyl thiocyanate	2-28						
allyl thiourea	2-28						
alum:							
ammonium:							
chrome	2-8						
iron	2-8						
potassium	2-8						
potassium chrome	2-8						
sodium	2-8						
aluminum acetate	2-7						
aluminum and alloys as construction							
material	28-36						
properties of	28-43						
aluminum bromide	2-7						
aluminum carbide	2-7						
aluminum chloride	2-7	2-57	2-121	2-151	2-161	2-187	2-201
aluminum ethoxide	2-28	2 57	2 121	2 10 1	2 101	2 107	2 201
aluminum fluoride	2-7	2-57	2-161	2-187	2-201		
aluminum hydroxide	2-7	2 57	2 101	2 107	2 201		
aluminum nitrate	2-7						
aluminum nitride	2-7						
aluminum oxide	2-7	2-57	2-151	2-161	2-187		
aluminum phosphate	2-7	2 57	2 101	2 101	2 107		
aluminum potassium silicate	2-8						
aluminum potassium tartrate	2-8 2-8						
aluminum sodium fluoride	2-8						
aluminum sodium silicate	2-8						
aluminum solutin sineate	2-8						
American National Standards Institute	2-0						
(ANSI)	28-28						
American Society for Testing and	20-20						
Materials (ASTM)	13-26	13-86	28-28				
	13-20	13-00	20-20				

This page has been reformatted by knovel to provide easier navigation.

Index Terms		<u>Links</u>			
American Society of Mechanical					
Engineers (ASME)	28-28				
amino-anthraquinone	2-28				
amino azobenzene	2-28				
amino benzoic acid	2-28				
aminodiphenylamine	2-29				
amino-G-acid	2-29				
amino-J-acid	2-29				
amino monopotassium salt	2-29				
amino monosodium salt	2-29				
aminonaphthol sulfonic	2-29				
aminophenol	2-29				
aminotoluene sulfonic acid	2-29				
ammonia	2-8	2-53	2-57	2-85	2-99
ummoniu	2-125	2-184		2 05	2 //
ammonium acetate	2-125	2-104	2-214		
ammonium auricyanide	2-8 2-8				
ammonium aurcyande ammonium bicarbonate	2-8 2-8				
ammonium bromide	2-8 2-8	2-57	2-121	2-201	
			2-121	2-201	
ammonium carbonate	2-8	2-57	2 00	0.100	2 201
ammonium chloride	2-8	2-57	2-99	2-120	2-201
ammonium chloroplatinate	2-8				
ammonium chloroplatinite	2-8				
ammonium chlorostannate	2-8				
ammonium chromate	2-8				
ammonium cyanide	2-8	2-57			
ammonium dichromate	2-8				
ammonium hydrosulfide	2-8	2-57			
ammonium hydroxide	2-8				
ammonium ferrocyanide	2-8				
ammonium fluoride	2-8				
ammonium formate	2-8				
ammonium molybdate	2-8				
ammonium nitrate	2-8				
ammonium nitrite	2-8				
ammonium osmochloride	2-8				
ammonium oxalate	2-8				
ammonium perchlorate	2-8				
ammonium persulfate	2-8				
ammonium phosphate	2-8				
ammonium phosphomolybdate	2-9				
ammonium silicofluoride	2-9				
ammonium sulfamate	2-9				
ammonium sulfate	2-9				
ammonium sulfide	2-9				
ammonium sulfite	2-9				
ammonium tartrate	2-9				
ammonium thiocyanate	2-9				
ammonium vanadate, meta-	2-9				
amyl acetate	2-29	2-61			
amyl alcohol	2-29	2-61			
anyi aconoi	2-27	2-01			

<u>Links</u>

Index Terms

amyl amine	2-29
amyl aniline	2-29
amyl benzoate	2-29
amyl bromide	2-29
amyl chloride	2-29
amyl formate	2-29
amyl i-butyrate	2-29
amyl i-cyanide	2-29
amyl iodide	2-29
amyl isobutyl carbinol	2-29
amyl i-valerate	2-29
amyl mercaptan	2-29
amyl methyl propyl carbinol	2-29
amyl n-butyrate	2-29
amyl phenol	2-29
amyl propionate	2-29
amyl salicylate	2-29
amylene	2-30
analytic geometry	3-16
plane analytic geometry	3-16
asymptotes	3-16
conic sections	3-17
coordinates	3-16
curves	3-16
line	3-16
parametric equations	3-18
polar equations	3-18
solid analytic geometry	3-18
coordinate systems	3-18
lines and planes	3-19
space curves	3-19
surfaces	3-19
analyzers:	
chemical-composition	8-50
chromatography	8-51
infrared analyzers	8-51
paramagnetism	8-51
sampling system	8-52
ultraviolet and visible radiation	8-51
anemometers:	
current meter	10-10
heated-thermocouple	10-10
hot-film	10-10
hot-wire	10-10
laser-Doppler	10-11
thermistor	10-10
turbine	10-10
vane	10-10
anethole	2-30
angle of kinematic friction	21-28
angle of repose	21-27
- •	

arsenic sulfide, di-

arsenious chloride

arsenious hydride

arsenic sulfide, penta-

Index Terms		<u>Links</u>				
anhydroformaldaniline	2-30					
aniline	2-30	2-52	2-61	2-175	2-184	
aniline hydrochloride	2-30					
aniline nitrate	2-30					
aniline sulfate	2-30					
anisalacetone	2-30					
anisic acid	2-30					
anisic aldehyde	2-30					
anisidine	2-30					
anisole	2-30					
annual cash income	9-5					
annual expense	9-6					
annual tax	9-6					
annulus Reynolds number	10-17					
anthracene	2-30					
anthranil	2-30					
anthranilic acid	2-30					
anthrapurpurin	2-30					
anthraquinone	2-30					
anthraquinone disulfonate	2-30					
anthraquinone sulfonate	2-30					
anthranfin	2-30					
antimony	2-9	2-57	2-151	2-161	2-187	
antimony chloride, tri-	2-9	2-57	2-151	2-161	2-187	
antimony oxide, tri-	2-9	2-57	2-151	2-161	2-187	
antimony sulfide, penta-	2-9					
antimony sulfide, tri-	2-9					
antimony telluride	2-9					
antimonyl potassium tartrate	2-9					
antimonyl sulfate	2-9					
antipyrene	2-30					
Antoine equation	4-15					
constants	13-21					
aperture	19-18					
apiole	2-30					
arabinose	2-30					
arachidic acid	2-30					
argon	2-9	2-20	2-53	2-57	2-133	2-140
	2-161	2-217				
arithmetic-geometric	3-9					
arithmetic progression	3-9	3-13	3-32			
arsanilic acid	2-30					
arsenic:						
black	2-9	2-57	2-151	2-161	2-187	
crystalline	2-9					
arsenic acid	2-9					
arsenic pentoxide	2-9					
. 10.1 1	2.0					

-- T.

This page has been reformatted by knovel for easier navigation.

2-9

2-9

2-9

2-9

Index Terms		<u>Links</u>		
arsenious oxide	2-9			
asbestos:	- /			
flexible metal hose	10-96			
pressure	10-97			
ASOG method	4-26			
asparagine	2-30			
asphalt as construction material	28-49			
aspirin	2-30			
ASME Code	10-144			
atmospheric tanks	10-138			
definition of	10-138			
elevated	10-138			
open	10-138			
posttensioned concrete	10-138			
pressure	10-138			
atomizers	27-34			
atropic acid	2-34			
auramine	2-30			
auric chloride	2-50			
auric cyanide	2-9			
aurine, coralline	2-30			
aurous chloride	2-30			
	2-9			
aurous cyanide axial dispersion in adsorption	16-20	16-24	16-34	
coefficient	16-17	16-20	10-54	
	13-54	10-20		
azeotropes				
azeotropes, multicomponent azeotropic distillation	13-10	12 70		
See also distillation	13-68	13-78		
azoanisole	2 20			
	2-30	2 (1	2 175	
azobenzene	2-30	2-61	2-175	
azoxybenzene	2-30			
bacteria	24-4			
baffles:				
cut	11-42			
impingement	11-43			
longitudinal	11-43			
rod	11-42			
segmental	11-42			
spacer	11-43			
spacing	11-42			
ball-mill:				
liners	20-32			
oscillation	20-32			
planetary	20-39			
surge	20-32			
barbituric acid	2-30			
barium	2-57	2-151	2-161	2-187
barium acetate	2-9			
1 1 1 1	27			

2-7

barium bromide

I -10

Index Terms

<u>Links</u>

barium carbonate	2-10
barium chlorate	2-10
barium chloride	2-10
barium hydroxide	2-10
barium nitrate	2-10
barium oxalate	2-10
barium oxide	2-10
barium peroxide	2-10
barium phosphate	2-10
barium silicofluoride	2-10
barium sulfate	2-10
barium sulfide	2-10
Barker's method	4-27
Barometer, mercury	10-12
Basset force	6-52
batch:	
centrifuges	18-117
crystallation	18-49
distillation	13-96
See also distillation	
filtration	18-86
heating and cooling of vessels	11-18
mixers	18-25
operations	11-18
percolators	18-55
processes:	
cyclical batch	8-38
flexible batch	8-38
multigrade	8-38
semibatch	8-38
trays and dryers	12-42
weighing	21-32
beach	18-114
bearings:	
thrust	10-66
thrust -bearing power loss	10-67
types of	10-65
bed-expansion ratio	11-28
circumferential grooved	10-65
cylindrical bore	10-65
lemon bore	10-65
offset halves	10-65
plain journal	10-65
pressure dam	10-65
three-lobe	10-65
tilt-pad bearings	10-65

This page has been reformatted by knovel for easier navigation.

Index Terms		Links			
beds:					
flooded fixed bed	23-36				
fluidized	23-30	23-54			
moving	23-38	25 54			
multiple fixed	23-36				
single fixed	23-36				
solid	6-34	6-38			
suspended catalyst	23-54	0-50			
thin	23-34				
trickle	23-53				
Benedict-Webb-Rubin Equation of State	4-21	13-17			
benzal acetone	2-30	10 17			
benzaldehyde	2-30	2-61			
benzamide	2-30	2 01			
benzanilide	2-30				
benzene	2-30	2-51	2-61	2-175	2-221
benzene sufinic acid	2-30	2.51	2 01	2175	2 221
benzene sulfonic acid	2-30				
benzene sulfonic amide	2-30				
benzene sulfonic chloride	2-30				
benzidine	2-30				
benzidine disulfonic acid	2-30				
benzil	2-30	2-61			
benzoic acid	2-30	2-52	2-61	2-175	2-204
benzoic anhydride	2-30	2-61			
benzoic nitrile	2-30	2-53	2-61		
benzoin	2-31	2-61			
benzophenone	2-31	2-61			
benzotrichloride	2-31	2-61			
benzoylbenzoic acid	2-31				
benzoylchloride	2-31	2-61			
benzoylperoxide	2-31				
benzylacetate	2-31	2-61			
benzyl alcohol	2-31	2-61			
benzyl amine	2-31	2-62			
benzyl aniline	2-31				
benzyl benzoate	2-31				
benzyl butyrate	2-31				
benzyl chloride	2-31				
benzyl ether	2-31				
benzyl formate	2-31				
benzyl propionate	2-31				
berberonic acid	2-31				
beryllium	2-10				
Bessel's method	3-37				
binary interaction parameters	13-20				
binary solution:					
behavior for liquid solutions	4-12				
equation	4-7				

general

Index Terms		<u>Links</u>
binomial probability distribution	3-71	
Bernoulli process	3-71	
binomial series	3-32	
binomial theorem	3-13	
bin opening	21-29	
biochemical engineering	24-3	
biological reactors	24-7	
fermenters	24-7	
oxygen transfer to	24-10	
scale-up of	24-11	
sparger systems in	24-11	
cell cultures	24-6	24-14
primary growth	24-6	
secondary metabolic requirements	24-7	
enzyme engineering	24-21	
immobilizing enzymes	24-21	
reaction kinetics	24-21	
reactors	24-22	
process modeling	24-16	
cell cultures	24-18	
computer aids	24-18	
continuous culture	24-10 24-17	
controls	24-17	
mathematical analysis	24-20 24-17	
mixed cultures	24-19	
recycle	24-19	
product recovery	24-15	
rundown, definition of	24-3	
sterilization	24-13	
batch	24-13	
continuous	24-14	
by filtration	24-14	
of media	24-13 24-13	
See also biological concepts	24-13	
biological concepts	24-4	
algae	24-4	
autotrophs and heterotrophs, definitions	24-4	
bacteria	24-4	
cells	24-4 24-4	
fungi	24-4 24-4	
genetic engineering	24-4	
mutations	24-0 24-6	
viruses	24-0 24-4	
	24-4 22-69	
biochemical separation processes		
final purification	22-75	
chromatography	22-75	
drying	22-78	
lyophilization (freeze drying)	22-78 22-69	
general	·//_6u	

24-18

22-69

Index Terms		<u>Links</u>		
biochemical separation processes (Cont.)				
initial product harvest	22-71			
centrifugation	22-71			
filtration	22-72			
initial purification	22-73			
adsorption	22-75			
extraction	22-74			
precipitation	22-73			
biochemistry	24-4			
energy	24-5			
enzymes	24-5	24-21		
photosynthesis	24-5			
proteins	24-4			
See also biological concepts				
bismuth	2-10	2-57	2-151	2-162
bismuth carbonate, sub-	2-10			
bismuth chloride	2-10	2-57	2-151	
bismuth nitrate	2-10			
bismuth oxide	2-10			
bismuth oxychbride	2-10			
biuret	2-31			
blending:	2 51			
of chemical reactions	18-14			
of high-viscosity systems	18-13			
of solid dispersion	18-16			
of solid-liquid	18-15			
of solid-liquid mass transfer	18-16			
of speed for just suspension	18-15			
blinding	18-76			
blowcase	10-35			
blowdown drum	26-31			
sizing and design	26-35			
blowers	10-45			
backward-curved blade	10-45			
centrifugal	10-40			
forward-curved blade	10-45			
boilers	27-40			
boiling liquids	5-22			
coefficients	5-22			
expanding vapor explosions (BLEVEs)	26-59			
mechanisms	5-22			
Boltzmann-type T	4-23			
bonding index	20-72			
bonnet	11-40			
book value	9-8			
boric acid	2-10			
borne ol	2-10 2-31			
bornyl acetate	2-31 2-31			
borny acetate	2-31 2-10			
boron carbide	2-10			

2-10

boron oxide

I -14

Index Terms		<u>Links</u>		
boundary layer	6-40			
brass:				
as a construction material	28-37			
properties of	28-44			
brazing	10-126			
breakage:				
controlling	20-70			
fracture measurements	20-69			
fracture properties	20-68			
mechanisms of	20-69			
breakeven:				
charts	9-7			
production rate	9-7			
breakthrough curves in adsorption	16-30			
in chromatography. See elution, curves				
constant pattern	16-32			
J function	16-36			
brick construction	28-39	28-43		
briquettes	20-57	20 43		
brittle fracture index (BFI)	20-37			
bromic acid	20-72			
bromine	2-10 2-10	2-53		
bromine hydrate	2-10 2-10	2-55		
bromoaniline	2-10 2-31			
bromobenzene	2-31	2-53	2-62	
bromocamphor	2-31	2-55	2-02	
bromodiphenyl	2-31	2-62		
bromoform	2-31	2-62		
bromonaphthalene	2-31	2-02		
-	2-31			
bromophenol	2-31			
bromostyrene bromotoluene		2.62		
bronzes as construction material	2-31	2-62		
	28-37			
properties of	28-44			
Brownian motion	6-57			
bubble point	13-25			
Buckingham pi method	3-89			
bulk densities	21-6			
burners:	07.07			
gas	27-37			
oil	27-35			
butadiene	2-31	2-50	2-62	
butadienyl acetylene	2-31			
butane	2-31	2-50	2-62	2-222
butene	2-50	2-62		
butyl acetate	2-31	2-52		
butyl alcohol	2-31	2-51	2-62	
butyl amine	2-31	2-62		
butyl aniline	2-31			
butyl arsonic acid	2-31			
butyl benzoate	2-31	2-62		

Index Terms		<u>Links</u>					
butyl bromide	2-31	2-62					
butyl butyrate	2-31	2-62					
butyl caproate	2-31						
butyl carbamate	2-31						
butyl cellosolve	2-31						
butyl chloride	2-32	2-62					
butyl dimethylbenzene	2-32						
butylene	2-32						
butyl formate	2-32	2-63					
butyl furoate	2-32						
butyl iodide	2-32	2-63					
butyl iso -thiocyanate	2-32						
butyl lactate	2-32						
butyl mer captan	2-32	2-53					
butyl methacrylate	2-32						
butyl p-aminophenol	2-31						
butyl phenol	2-32	2-63					
butyl propionate	2-32	2 05					
butyl stearate	2-32						
butyl valerate	2-32						
butyraldehyde	2-32						
butyric acid	2-32	2-52	2-63				
butyric amide	2-32	2 32	2 05				
butyric anhydride	2-32						
butyric anilide	2-32						
cadmium	2-10	2-57	2-151	2-162	2-188		
cadmium acetate	2-10						
cadmium carbonate	2-10						
cadmium chloride	2-10	2-11	2-57	2-120	2-151	2-188	2-201
cadmium cyanide	2-11						
cadmium hydroxide	2-11						
cadmium nitrate	2-11						
cadmium oxide	2-11	2-57	2-151	2-162	2-188		
cadmium sulfate	2-11						
cadmium sulfide	2-11						
caffeic acid	2-32						
caffeine	2-32						
calciners, indirect heat	12-62						
calcium	2-11	2-57	2-100	2-151	2-162	2-188	
calcium acetate	2-11						
calcium aluminate	2-11						
calcium aluminum silicate	2-11						
calcium arsenate	2-11						
calcium bromide	2-11						
calcium carbonate	2-11						
calcium chloride	2-11						
calcium citrate	2-11						
calcium cyanamide	2-11						
calcium ferrocyanide	2-11						
calcium fluoride	2-11						

much fermis	-	211115	
calcium formate	2-11		
calcium hydride	2-11		
calcium hydroxide	2-11		
calcium hypochlorite	2-11		
calcium hypophosphate	2-11		
calcium lactate	2-11		
calcium magnesium silicate	2-11		
calcium nitrate	2-11		
calcium nitride	2-11		
calcium nitrite	2-11		
calcium oxalate	2-11		
calcium oxide	2-11		
calcium peroxide	2-11		
calcium phosphate	2-11		
calcium phosphide	2-11		
calcium silicate	2-11		
calcium sulfate	2-11		
calcium sulfhydrate	2-12		
calcium sulfide	2-12		
calcium sulfite	2-12		
calcium tartrate	2-12		
calcium thiocyanate	2-12		
calcium thiosulfate	2-12		
calcium tungstate	2-12		
calculus	3-23		
differential calculus	3-23		
derivative	3-23		
indeterminant for ms	3-25		
partial derivative	3-25		
integral calculus	3-27		
definite	3-29		
indefinite	3-27		
thermodynamics and multivariable			
calculus	3-26		
camphene	2-32	2-63	2-175
camphor	2-32		
camphoric acid	2-32		
cantharidine	2-32		
capacity:			
terminology of	10-22		
capillary state	20-60		
capillary theory	12-33		
capital cost	9-7		
capping	20-72		
capric acid	2-32	2-63	2-175
caproic acid	2-32	2-63	
caprylic acid	2-32		
carbazole	2-32	2-63	
carbitol	2-32		

INDEX I-17

Index Terms		<u>Links</u>				
carbon	2-12	2-57	2-151	2-162	2-188	
as construction material	28-49					
properties of	28-61					
carbon dioxide	2-12	2-54	2-63	2-122	2-125	2-134
	2-141	2-162	2-188	2-224		
absorption coefficients	23-41					
correlation of KGa	23-41					
self-diffusion	5-61	5-64				
as supercritical fluid in separations	22-14					
carbon disulfide	2-12	2-32	2-54	2-63		
carbon mo noxide	2-12	2-32	2-54	2-63	2-122	2-125
	2-141	2-162	2-188	2-225		
as a pollutant	27-28					
carbon oxychloride	2-12					
carbon oxysulfide	2-12	2-57				
carbon suboxide	2-12	2-32				
carbon tetrabromide	2-32					
carbon tet rachloride	2-32					
carbon tetrafluoride	2-32					
carbon thionyl chloride	2-12					
carbonyl sulfide	2-32					
carminic acid	2-32					
carvacrylamine	2-33					
carvone	2-33					
caryacrol	2-32	2-63				
cash flow	9-13					
curves of	9-14					
discounted	9-13					
casting:						
circular	10-24					
volute	10-24					
cast iron	28-29					
austenitic	28-6					
ductile	28-29					
gray	28-6	28-29				
high-silicon	28-29					
low-alloy	28-6					
malleable	28-29					
nickel-alloy	28-29					
properties	28-38					
white	28-29					
catalysis:						
homogeneous	23-26	23-32				
phase-transfer	23-26					
by solid	23-26					
catalysts:						
activity	23-31					
deactivation	23-30					
diffusivity	23-29					
effectiveness	23-30					

Index Terms	<u>Links</u>			
catalysts (Cont.):				
heterogenized	23-26			
immobilized	23-26			
membrane reactors	23-32			
multiple fixed beds	23-36			
poisoning	23-32			
polymer bound	23-26			
pore	23-29			
selection	23-26			
single fixed beds	23-36			
types	23-28			
uniform deactivation	23-31			
cavitation	6-44	8-75	10-23	
cellosolve	2-33			
cellosolve acetate	2-33			
cells	24-4			
cellulose	2-33			
cement and concrete as construction				
materials	28-43			
centrifugal force:				
terminology of	10-22			
centrifugal pumps	10-24			
action of	10-24			
canned-motor	10-29			
casings	10-24			
characteristic curve of	10-24			
characteristics of	10-24			
close-coupled	10-29			
double-suction single-stage	10-28			
multistage	10-29			
diffuser-type	10-29			
dry-pit	10-29			
volute	10-29			
wet-pit	10-29			
performance curve of	10-26			
process pumps	10-28			
horizontal	10-28			
vertical	10-28			
sealing in	10-28			
mechanical seals	10-28			
packing	10-28			
shaft seals	10-28			
specific speeds of	10-25	10-27		
sump	10-29			
system curves of	10-25			
vertical process	10-29			
centrifugal separators:				
dust collection	17-32			
centrifugation:				
biochemical separation	22-71			

28-5

2-229

Index Terms

centrifuges	18-106						
cost of	18-125						
filtering	18-117						
base-bearing centrifuges	18-117						
batch-automatic basket centrifuges	18-118						
batch centrifuges	18-117						
continuous-filtering centrifuges	18-119						
link-suspended basket centrifuges	18-117						
open-bottom basket centrifuges	18-117						
solid-bottom basket centrifuges	18-117						
top-suspended centrifuges	18-118						
variable-speed basket centrifuges	18-117						
principles of	18-106						
sedimenting	18-110						
decanter centrifuges	18-113						
disk centrifuges	18-113						
knife-discharge centrifugal clarifiers	18-112						
laboratory test	18-110						
multichamber centrifuges	18-112						
screenbowl centrifuges	18-115						
transient centrifugation theory	18-111						
tubular-bowl centrifuges	18-112						
selection of	18-123						
theory of centrifugal filtration	18-121						
centroid	3-67						
ceric hydroxide	2-12						
ceric hydroxynitrate	2-12						
ceric oxide	2-12						
ceric sulfate	2-12						
cerium	2-12						
cetyl acetate	2-33						
cetyl alcohol	2-33						
channel	11-40						
Chebyshev's method	3-38						
Chemical Exposure Index (CEI)	26-8	26-11					
chemical potential:							
pure ideal gases	4-33						
chemical-reaction equilibrium constant	4-32						
chiller, definition of	11-35						
chi-square distribution	3-75						
chloral	2-33	2-63					
chloral hydrate	2-33	2-63	2-175				
chloranil	2-33	2-63					
chloretone	2-33						
chloric acid	2-12						
chlorine	2-12	2-53	2-58	2-122	2-126	2-162	
chlonine hydrate	2-12						
chloroacetanilide	2-33						
chloroacetic acid	2-33	2-63	2-175				
chloroacetone	2-33						
chloroacetophenone	2-33						

Index Terms		<u>Links</u>	
chloroacetyl chloride	2-33		
chloroaniline	2-33	2-63	
chloroanthraquinone	2-33		
chlorobenzaldehyde	2-33		
chlorobenzene	2-33	2-53	2-63
chlorobenzoic acid	2-33		
chlorobuta-1/2-diene	2-33		
chlorobuta-1/3-diene	2-33		
chlorodimethylhydantoin	2-33		
chlorodiphenyl	2-33	2-64	
chloroform	2-33	2-64	2-231
chlorohydroquinone	2-33		
chloronaphthalene	2-33	2-64	
chloronitrobenzene	2-33		
chloronitrotoluene	2-33		
chlorophenol	2-33	2-64	
chlorophyll	2-33		
chloropicrin	2-33	2-64	
chloroplatinic acid	2-12		
chloropropane	2-53		
chloropropionic acid	2-33		
chlorostannic acid	2-12		
chlorosulfonic acid	2-12	2-58	
chlorotoluene	2-33	2-64	
cholesterol	2-33		
choking	6-22	6-29	
chromatography	16-38		
biochemical separation	22-75		
chromatograms	16-40		
displacement development	16-39	16-44	
elution. See elution			
frontal analysis	16-39		
Gaussian curves	16-40		
ion-exchange	16-44		
productivity, definition of	16-47		
resolution	16-41		
retention factor	16-40		
reversed-phase	16-44		
chromic acetate	2-12		
chromic chloride	2-12		
chromic fluoride	2-12		
chromic hydroxide	2-12		
chromic nitrate	2-12		
chromic oxide	2-12		
chromic sulfate	2-12		
chromic sulfide	2-13		
chromium	2-12	2-58	2-162
chromium trioxide	2-13		
chromous chloride	2-13		
chromous hydroxide	2-13		
chromous oxide	2-13		

Index Terms Links chromous sulfate 2-13 chromous sulfide 2 - 13chromyl chloride 2-13 chrysene 2-33 chrysoidine 2-33 chrysophanic acid 2-33 cineole, eucalyptole 2-33 cinnamic acid 2-33 2-64 cinnamic aldehyde 2-33 cinnamyl alcohol 2-33 2-64 cinnamyl cinnamate 2-33 citraconic acid 2-33 citral 2-33 2-64 citric acid 2-33 citronellal 2-33 citronellol 2-33 2-64 Clapeyron equation 4-15 clarifiers: 18-102 cartridge micronic 18-102 circular 18-65 clarifier-thickener 18-66 design criteria, table 18-72 industrial waste secondary 18-66 rectangular 18-65 selection of 18-73 solids-contact 18-66 tilted-plate 18-66 19-23 classification, wet classifiers 19-8 19-24 air 20-39 bowl 19-28 bowl desilter 19-28 cone 19-24 countercurrent 19-29 -O siphon sizer 19-29 19-28 drag 20-39 dry 19-29 hydraulic hydrocyclone 19-24 hydroseparator 19-28 jet sizer 19-29 nonmechanical 19-24 rake 20-40 rake and spiral 19-28 rotor blades of 20-39 screw 20-40 19-28 solid-bowl centrifuge vari-mesh 20-39 wet 20-40

I -22

Index Terms		<u>Links</u>
Clean Air Act of 1970	25-5	
Clean Air Act of 1990	25-8	
Clean Water Act of 1977	25-10	
closure models	6-46	
cloth:		
silk bolting	19-22	
woven-wire	19-22	
coal:		
coal-ash	27-5	
coke	27-6	
composition	27-5	
classification	27-4	
derived fuels	27-11	
derived gases	27-14	
gasification	27-13	
heating value	27-5	
liquefaction	27-18	
direct	27-18	
economics	27-24	
indirect	27-21	
physical properties	27-6	
coalescence kernel	20-86	
for granulation, table	20-87	
coating flows	6-42	
coatings, properties of:		
in atmospheric service	28-55	
for concrete surfaces	28-56	
in immersion service	28-54	
cobalt	2-13	
cobalt carbonyl	2-13	
cobalt sulfide, di-	2-13	
cobaltic chloride	2-13	2-58
cobaltic hydroxide	2-13	
cobaltic oxide	2-13	
cobaltic sulfate	2-13	
cobaltic sulfide	2-13	
cobalto-cobaltic oxide	2-13	
cobaltous acetate	2-13	
cobaltous chloride	2-13	
cobaltous nitrate	2-13	
cobaltous oxide	2-13	
cobaltous sulfate	2-13	
cobaltous sulfide	2-13	
coefficient:		
discharge	6-22	
orifice	6-21	

10-118 27-51

thermal-expansion

cogeneration

Index Terms Links coils: bayonet heaters 11-22 external coils 11-22 fin-tube 11-21 helical 11-20 11-21 panel pipe tank 11-20 plate 11-21 Teflon immersion 11-21 Colburn j factor 5-13 5-16 in an annulus 5-17 combustion 27-25 excess air 27-25 fluidized-bed 27-32 gaseous fuels 27-37 liquid fuels 27-34 solid fuels 27-29 theoretical oxygen 27-25 5-40 combustion chamber 11-57 bayonet-tube 5-41 in furnace 5-41 thermal performance common units 1-4 compact heat exchangers 11-52 11-57 atmospheric section brazed-plate-fin 11-56 cascade coolers 11-57 ceramic 11-58 gasketed-plate 11-52 graphite 11-57 nonmetallic 11-57 plate-and-frame 11-52 plate-fin tubular 11-56 **PVDF** 11-57 spiral-plate 11-55 spiral tube 11-56 Teflon 11-58 welded- and brazed-plate 11-55 compartment through circulation equipment 12-44 complex chemical-reaction equilibria 4-33 complex functions: conformal mapping 3-35 exponential 3-33

harmonic

hyperbolic inverse hyperbolic

logarithms

polynomials

trigonometric

inverse trigonometric

This page has been reformatted by knovel to provide easier navigation.

3-34 3-33

3-34

3-34

3-33

3-33 3-33

	=
complex variables	3-33
algebra	3-33
complex functions (analytic)	3-34
elementary complex functions	3-33
powers and roots	3-33
special operations	3-33
trigonometric representation	3-33
compressibilities	2-140
of powder	20-71
compressibility factor	4-8
partial compressibility factor	4-18
residual properties	4-8
formulations	4-14
compression:	
adiabatic	10-37
calculations	10-37
head	10-37
equipment selection	10-45
of gases	10-37
isothermal	10-37
polytropic	10-37
theory of	10-37
work	10-38
compressors:	
axial flow	10-49
aspect ratio	10-49
individual blade stall	10-49
pressure ratio	10-49
rotating stall	10-49
stall flutter	10-49
casing material	10-48
categories of	10-47
centrifugal	10-47
pressure ratio	10-47
configuration	10-48
selection of	10-48
continuous-flow	10-47
high-pressure compressors	10-54
metallic diaphragm	10-55
nonlubricated cylinders	10-53
open inlet -valve unloaders	10-53
piston-rod packing	10-55
three-step control	10-53
valve losses	10-52
impeller fabrication	10-49
techniques	10-49
operating range:	
choke	10-48
stonewall	10-48
surge	10-47
positive displacement	10-50
-	

compressors (Cont.);	
reciprocating:	
clearance unloaders	10-53
closed suction unloaders	10-53
control devices	10-52
five-step control	10-53
rotary	10-50
characteristic curve	10-50
figures	10-51
liquid-piston type	10-51
screw-type	10-50
sliding-vane type	10-51
straight-lobe type	10-50
selection of	10-45
speed of rotation of	10-45
computational fluid dynamics	6-47
computer process control	8-4
condensation	5-70
coefficients	5-20
Dukler theory	5-20
vapor shear control	5-21
mechanisms	5-20
condenser:	
barometric	11-117
definition of	11-35
jet	11-117
multicomponent	11-12
overhead	11-51
refrigeration	11-83
single component	11-11
surface	11-116
thermal design of	11-11
horizontal in -shell condenser	11-11
horizontal in -tube condensers	11-12
mean temperature difference	11-11
pressure drop	11-11
vertical in -shell condensers	11-12
vertical in -tube condensers	11-12
condensing coefficient	11-11
conduction	5-8
conduction equation, three-dimensional	5-8
conductivity, thermal	5-9
Fourier's law	5-8
steady - state	5-9
bodies in parallel	5-10
bodies in series	5-9
one-dimensional	5-9
two-dimensional	5-10

conduction (Cont.):		
unsteady state	5-10	
one-dimensional	5-10	
phase change	5-11	
two-dimensional	5-11	
conductivity, thermal	5-9	
coniine	2-33	
consolidation:	2 00	
contact mechanics	20-64	
controlling	20-68	
deformability	20-64	
granule	20-64	
high-agitation intensity growth	20-66	
low-agitation intensity growth	20-65	
tensile strength	20-64	
constant-composition systems	4-5	
constants:		
gas law	1-18	
physical	1-22	
constrained derivatives	3-66	
continuity method (homotopy)	3-51	
continuous compound interest	9-10	
factors	9-11	
continuous stirred tank reactor	23-17	23-23
continuous surfaces	6-40	
continuous tunnels	12-47	
contraction strains	10-103	
contribution charts	9-7	
contribution efficiency	9-37	
control:		
feedback	8-4	8-17
feed forward	8-4	8-16
multivariable control problems	8-22	
strategies for solution	8-22	
on/off	8-12	
proportional	8-12	
proportional-plus-integral (PI)	8-12	
proportional-plus-integral-plus-derivative		
(PID)	8-12	
controller	8-61	
distributed control systems	8-61	
electronic controllers	8-61	
fieldbus controller	8-60	8-62
multiloop controllers	8-61	
pairing	8-24	
performance criteria	8-13	
personal computer controllers	8-62	
pneumatic controller	8-62	
programmable logic controllers	8-60	8-61
reliability and application	8-62	
single-loop controls	8-59	8-62

muex rerms		Links
controller (Cont.)		
tunning	8-13	
method	8-15	
control valves	8-64	
ball valves	8-65	
booster relays	8-71	
butterfly valves	8-64	
contour-plug globe valves	8-64	
digital field communications	8-72	
fire, explosion protection	8-72	
flow characteristics	8-76	
globe and angle valve	8-64	
liquid pressure recovery	8-74	
manual	8-67	
materials and pressure ratings	8-73	
plug valves	8-65	8-66
positioners	8-69	0.00
air spring rate	8-71	
applications	8-71	
frequency response curves	8-70	
pneumatic	8-69	
stiffness	8-69	
seals, bearings, packing system	8-09	
sizing	8-70	
solenoid valves	8-73	
special application valves	8-65	
	8-03 8-72	
stem-position transmitters	8-72 8-72	
trip valves	8-72 8-73	
valve application technology		
valve-control devices	8-67	
vena contracta	8-73	
convection	5-12	
forced	5-14	
dimensional equations	5-17	
laminar flow	5-15	
transition region	5-16	
turbulent flow	5-16	
heat transfer coefficient	5-12	
energy equation	5-12	
film coefficients	5-13	
individual coefficient	5-12	
overall coefficient	5-12	
liquid metals	5-19	
natural	5-13	
dimensional equations, simplified	5-13	
enclosed spaces	5-13	
Nusselt equation	5-13	
radiation, simultaneous loss	5-13	
nonnewtonian fluids	5-19	
convergent nozzles	6-25	

Index Terms		<u>Links</u>
conversion factors	1-4	
common	1-15	
common to S.I.	1-4	
examples of	1-23	
metric	1-13	
U.S. customary to S.I.	1-4	
water volume	22-48	
conveyors:		
auxiliary equipment:		
brake	21-5	
cleaners	21-5	
torque-limiting devices	21-5	
belt conveyors:		
belt selection	21-8	
belt width and speed	21-9	
design	21-8	
idlers and return rolls	21-9	
loading and discharge points	21-10	
operating conditions	21-9	
power	21-9	
pulleys	21-8	
tonnage requirement	21-8	
bucket elevators:		
continuous-bucket	21-13	
horsepower	21-14	
skip hoists	21-14	
spaced-bucket centrifugal-discharge	21-10	
spaced-bucket positive-discharge	21-10	
supercapacity continuous-bucket	21-14	
V-bucket elevator-conveyors	21-14	
continuous-flow conveyors:		
apron-conveyors	21-18	
capacities	21-19	
closed-belt conveyor	21-18	
control of:		
process-control computers	21-5	
programmable controllers	21-5	
conveyor drives:		
adjustable-speed drives	21-5	
fixed-speed drives	21-5	
conveyor motors:		
silicon-controlled rectifier	21-5	
squirrel-cage motor	21-5	
feed selection	21-4	
flight-conveyors	21-18	
pneumatic conveyors	21-19	
blow tank	21-21	
capacity	21-20	
fluidizing systems	21-20	
optimum system	21-20	
pressure system	21-20	

pneumatic conveyors (Cont.)					
pressure-vacuum systems	21-20				
vacuum systems	21-20				
screw conveyors:					
discharge arrangements	21-7				
feed arrangements	21-7				
gates	21-8				
hanger bearings	21-7				
hollow screws and pipes	21-7				
jacketed casings	21-7				
power calculations	21-7				
short -pitch screws	21-7				
selection	21-4				
vibrating or oscillating conveyors:					
classification	21-14				
electrical vibrating	21-14				
mechanical vibrating	21-14				
pneumatic and hydraulic vibrating	21-14				
processing operations	21-16				
cooler exchanger					
definition of	11-35				
cooling:					
equipment for	11-47				
evaporative	11-29	11-50			
mixers	18-34				
See also heat exchanger					
of tanks	11-20				
of vessels	11-18	11-19			
cooling ponds	12-23				
cooling towers:					
energy management	12-20				
fan horsepower	12-17				
fogging	12-18				
operation	12-17				
plume abatement	12-18				
pumping horsepower	12-18				
water makeup	12-17				
copper	2-13	2-58	2-163	2-189	
copper and alloys as construction material	28-36				
properties of	28-17				
Coriolis acceleration	18-107				
corrosion	28-3				
biological	28-6				
microbiologically influenced corrosion					
(MIC)	28-6	28-24			
cavitation	28-5				
combating:					
altering the environment	28-9				
anodic protection	28-10				
cathodic protection	28-10				
cladding	28-10				
	_0 10				

muck i crins		
corrosion, combating (Cont.):		
coatings	28-10	
inhibitors	28-3	28-9
insulation	28-4	
linings	28-10	
material selection	28-9	
organic coatings	28-10	
proper design	28-9	
corrosion fatigue	28-5	
crevice	28-3	
dezincification	28-6	
erosion	28-5	
factors influencing:		
films	28-8	
fluid velocity	28-8	
oxidizing agents	28-7	
solution pH	28-7	
stream concentration	28-8	
temperature	28-8	
fretting	28-5	
galvanic	28-4	
area effects	28-4	
graphitic	28-6	
high-temperature attack	28-8	
hydrogen attack	28-5	
impingement	28-5	
intergranular	28-4	
liquid-metal	28-5	
oxygen-concentration cell	28-4	
parting (dealloying)	28-6	
pitting	28-3	
stress-corrosion cracking	28-4	
testing methods.		
See corrosion-testing methods		
corrosion-testing methods	28-10	
AC impedance	28-23	
crevice corrosion prediction	28-21	
electrical impedance spectroscopy		
(EIS)	28-23	
electrical-resistance method	28-14	
pourbaix diagrams	28-14	
tafel extrapolation	28-15	
environmental cracking	28-21	
fract ure mechanics methods	28-23	
modulus measurements	28-22	
polarization	28-23	
separated anode/cathode	28-23	
slow strain-rate test	28-22	
stress corrosion cracking	28-21	

<u>Links</u>

8		
laboratory tests	28-11	
aeration of solution	28-12	
apparatus	28-12	
cleaning specimens	28-13	
duration of test	28-13	
evaluating results	28-13	
galvanic corrosion in	28-14	
immersion test	28-11	
impurities	28-14	
planned-interval test	28-13	
solution velocity	28-12	
supporting specimens	28-13	
temperature of solution	28-12	
temperature of specimen	28-14	
test piece	28-11	
test solution, composition of	28-12	
volume of solution	28-12	
linear-polarization method	28-16	
plant tests	28-24	
corrosion rate measurements	28-26	
monitoring probes	28-25	
on-line corrosion monitoring	28-25	
test results	28-25	
test specimens	28-24	
potentiodynamic-polarization method	28-16	
corrosion behavior diagrams	28-17	
logic sequence diagrams	28-18	
scan rates	28-16	
velocity	28-21	
cosolvents	20-21	
cost	9-13	
annual	9-13	
capitalized	9-13	
example of	9-13	
cost estimation:	2-15	
fixed-capital	9-63	
manufacturing	9-03 9-54	
coumaric acid	9-34 2-34	
coumarin	2-34 2-34	2-64
coumarone	2-34 2-34	2-04
	2-34	
coupling: acoustic	11-35	
fluid-elastic	11-35	
Courant number	3-63	
Cramer's rule	3-03	
creatine		
creatine	2-34 2-34	
		2 51
creosol	2-34	2-51
cresyl benzoate	2-34	
critical constants	2-136	

2-64

mach rerms		
critical deformation strain	20-64	
critical pressure ratio	10-14	
critical speed	20-32	
crotonic acid	2-34	
crotonic aldehyde	2-34	
crushers:		
classification of	20-23	
comparison of	20-23	
control of	20-27	
gyratory	20-24	
core	20-25	
primary	20-25	
secondary	20-25	
hammer	20-28	
jaw	20-23	
Blake	20-23	
overhead eccentric	20-23	
pan	20-30	
product sizes	20-26	
roll	20-27	
corrugated	20-27	
smooth	20-27	
toothed	20-27	
selection of	20-23	
See also grinding equipment		
crushing equipment.		
See grinding equipment		
cryogenic process:		
cryogenic fluids in	11-96	
instrumentation	11-106	
insulation	11-104	
foam	11-105	
multilayer	11-104	
powder	11-105	
vacuum	11-104	
Joule-Thomson values	11-102	
refrigeration	11-98	
safety in	11-107	
crystallization:		
batch	18-49	
bulk liquid	22-6	
center-fed column	22-6	
end-fed column	22-6	22-9
coefficient of variation	18-38	
equipment for. See crystallizers		
falling-film	22-10	
fractional	18-37	
general	22-3	
heat effect	18-36	
from the melt	22-3	
phase diagrams	18-35	18-36

Index Terms		<u>Links</u>	
crystallization (Cont.):			
population balance	18-42		
principle of	18-35		
product purity	18-38		
progressive freezing	22-4		
recompression evaporation	18-50		
solubility	18-35	18-36	
yield of	18-36	10 50	
zone melting	22-5		
crystallizers:	22-3		
Armstrong	18-49		
costs of	18-49		
	18-34 18-47		
direct -contact-refrigeration			
draft-tube-baffle evaporator-crystallizer	18-46		
draft -tube crystallizer	18-46		
evaporative	18-49		
forced-circulation evaporator-crystallizer	18-45		
mixed-suspension, classified-product-			
removal	18-48		
mixed-suspension, mixed-product -removal	18-44		
operation of	18-51		
Oslo	18-48		
surface-cooled	18-49		
reaction-type	18-47		
scraped-surface	18-49		
double-pipe	18-49		
specification of	18-50		
surface-cooled	18-47		
crystals:			
definition of	18-35		
formation	18-37		
growth	18-37	18-39	18-40
nucleation	18-37	18-39	18-40
geometry of	18-38		
habit	18-38		
morphology	18-38		
cubic B-splines	3-60		
cubic equations	3-14		
of state	4-20		
culture of cells.			
See biochemical engineering			
cutter:			
giant dicing	20-30		
cumene	2-34		
cumic acid	2-34		
cumidine	2-34		
cupric acetate	2-13		
cupric aceto-arsenite	2-13		
cupric ammonium chloride	2-13		
cupric ammonium sulfate	2-13		
cupric carbonate	2-13		

I -34

Index Terms]	<u>Links</u>			
cupric chloride	2-13				
cupric chromate	2-13				
cupric cyanide	2-13				
cupric dichromate	2-13				
cupric ferricyanide	2-13				
cupric ferrocyanide	2-13				
cupric formate	2-13				
cupric hydroxide	2-13				
cupric lactate	2-13				
cupric nitrate	2-13				
cupric oxychloride	2-14				
cupric oxide	2-14				
cupric phosphide	2-14				
cupric sulfate	2-14				
cupric sulfide	2-14				
cupric tartate	2-14				
cupronickels as construction material	28-37				
properties of	28-44				
cuprous ammonium iodide	2-14				
cuprous carbonate	2-14				
cuprous chloride	2-14	2-58	2-100	2-122	
cuprous cyanide	2-14				
cuprous ferricyanide	2-14				
cuprous ferrocyanide	2-14				
cuprous fluoride	2-14				
cuprous hydroxide	2-14				
cuprous oxide	2-14				
cuprous phosphide	2-14				
cuprous sulfide	2-14				
cyanamide	2-34				
cyanic acid	2-34				
cyanoacetic acid	2-34				
cyanogen	2-14	2-34	2-54	2-58	2-64
cyanogen bromide	2-34	2-64			
cyanogen chloride	2-34	2-64			
cyanuric acid	2-34				
cyclobutane	2-34	2-64			
cycloheptane	2-34				
cyclohexane	2-34	2-51	2-64		
cyclohexanol	2-34	2-51			
cyclohexanone	2-34	2-52	2-64		
cyclohexene	2-34	2-51			
cyclohexyl acetate	2-34				
cyclohexyl amine	2-34				
cyclohexyl bromide	2-34				
cyclohexyl chloride	2-34				
cyclopentadiene	2-34				
cyclopentane	2-34	2-51	2-64		
cyclopentanone	2-34	2.51	2 04		
cyclopropane	2-34	2-64			
cyclone vapor-liquid separator	26-31	2 04			
- Januar apor inquia separator	20 01				

This page has been reformatted by knovel for easier navigation.

Index Terms		<u>Links</u>
sizing and design	26-36	
cymene	2-34	2-64
cystine	2-34	
danabase	2-34	
Darcy's law	6-39	
database	8-58	
distributed database	8-58	
subsystem	8-59	
data reduction	4-26	
Dean effect	6-18	
decahydronaphthalene	2-34	
decane	2-34	2-50
decantation:		
equipment for	18-71	
flow-sheet design	18-71	
interstage mixing efficiencies	18-72	
overflow pumping	18-72	
underflow pumping	18-72	
decene	2-50	
decision trees	9-29	
decoupler	8-23	
decyl alcohol	2-34	
deformation	6-4	
degrees API	1-20	
degrees baumé	1-20	
degrees twaddell	1-20	
deionization	16-53	
delta L law	18-40	
dense-media separation	19-36	
additives in	19-38	
costs of	19-39	
equipment for	19-38	
cone separator	19-38	
cyclone separator	19-38	
drum separator	19-38	
dyna whirlpool	19-39	
feed in	19-36	
preparation	19-36	
process control	19-39	
densities:		
of aqueous in organic solutions	2-99	
of aqueous organic solutions	2-109	
of miscellaneous materials	2-119	
of pure substances	2-91	
density and specific gravity measurement	8-50	
depreciation	9-7	
annual amount of	9-8	
example of methods	9-16	
-		

I -36

Index Terms		<u>Links</u>	
DePriester charts	13-10		
diagram	13-17		
DePriester correlation	4-28		
derivatives	3-23		
partial	3-25		
Descartes' rule	3-50		
desiccant cooling	16-53	16-55	
See also adsorption, cycles			
design	14-5		
design variables	13-22		
for complex processes	13-24		
gas-adsorption systems	14-5		
packed-tower	14-8		
plate-tower	14-11		
Design Institute for Emergency Relief			
Systems (DIERS)	26-29		
determinants	3-15		
detonability:			
limits	11-107		
dew point	12-3	13-25	
dextrin	2-34		
diacetone alcohol	2-34		
diamagnetic	19-40		
diaminobenzophenone	2-34		
diaminodiphenylamine	2-34		
diaminodiphenylmethane	2-34		
diaminodiphenylurea	2-34		
diamylamine	2-34		
diamyl ether	2-34	2-65	
diamyl ketone	2-34		
diamyl phthalate	2-34		
diamyl tartrate	2-34		
dianisidine	2-34		
diatomite	20-55		
diazoaminobenzene	2-34		
diazoaminotoluene	2-34		
diazomethane	2-34		
dibensoyl methane	2-35		
dibensylamine	2-35	2-65	
dibensylaniline	2-35		
dibensyl ketone	2-35		
dibensyl phthalate	2-35		
dibensyl succinate	2-35		
dibenzothiazyl-disulfide	2-35		
dibromobenzene	2-35	2-65	2-175
dibromodiphenyl	2-35		
dibutyladipate	2-35		
dibutylamine	2-35	2-65	
dibutylaniline	2-35		
dibutyl carbonate	2-35		
dibutyl ether	2-35		

Index Terms		<u>Links</u>	
dibutyl ketone	2-35		
dibutyl malate	2-35		
dibutyl oxalate	2-35		
dibutyl-p-aminophenol	2-35		
dibutyl phthalate	2-35	2-65	
dibutyl tartrate	2-35		
dichloramine	2-35		
dichloroacetic acid	2-35	2-65	
dichloroacetone	2-35		
dichloroaniline	2-34		
dichloroanthraquinone	2-35		
dichlorobenzene	2-35	2-65	2-175
dichlorobutane	2-35	2-65	
dichlorodiphenyl	2-35		
dichloroethane	2-35		
dichloronaphthalene	2-35		
dichloronitrobenzene	2-35		
dichloropentane	2-35		
dichlorophenol	2-35	2-65	
dichloropropane	2-53		
dicyandiamide	2-35		
dielectric constant measurement	8-50		
dielectrophoresis	22-23		
diethanolamine	2-35		
diethyladipate	2-35		
diethylamine	2-35	2-52	2-66
diethyl amino phenol	2-35		
diethylaniline	2-35	2-66	
diethylaniline sulfonic acid	2-35		
diethyl carbonate	2-35		
diethyl diethyl malonat e	2-35		
diethyl dimethyl malonate	2-35		
diethyleneglycol dinitrate	2-36		
diethyl glutarate	2-35		
diethyl ketone	2-35		
diethyl malonate	2-35		
diethylmalonic acid	2-35		
diethyl oxalate	2-35	2-66	
diethyl phthalate	2-35		
diethyl sulfate	2-35	2-66	
diethyl sulfide	2-35	2-53	2-66
diethyl tartrate	2-36	2-66	
diethyl toluidine	2-36		
diethynaphthylamine	2-35		
difference equations	3-41		
homogeneous	3-41		
nonhomogeneous	3-41		
Riccati Difference Equation	3-42		

This page has been reformatted by knovel to provide easier navigation.

Index Terms		<u>Links</u>	
differential equations	3-35		
ordinary	3-35		
partial	3-38		
special	3-37		
differential scanning calorimetry (DSC)	26-50		
differential thermal analysis (DTA)	26-50 26-50		
diffusion:	2000		
particle	16-19	16-23	16-26
pore	16-19	16-23	10 20
diffusion battery, definition of	18-55	10 20	
diffusivity:	1000		
in adsorption	16-24		
estimation:	10 2 1		
gases	5-48		
liquids	5-50		
liquids, free-volume theory	5-50		
liquids, Stokes-Einstein	5-50	5-52	
•	5-54	5-52 5-55	
fluids in porous solids	-3-34 16-20	5-55	
in ion exchange interdiffusion coefficient	5-46		
mass	5-46		
mutual	5-46		
self	5-46		
gas, high-pressure	5-49		
tracer	5-46		
difluorodichloromethane	2-36		
digital technology:	0.57		
distributed control system	8-57		
hierarchy of information systems	8-56		
corporate information systems	8-57		
production controls	8-57		
regulatory controls	8-57		
supervisory controls	8-57		
diglycerol	2-36		
DiHus-Boelter equation	5-16		
dihydroxydinaphthyl	2-36		
dihydroxydiphenyl	2-36		
dihydroxyethyl formal	2-36		
dihydroxynaphthalene	2-36		
dimensional analysis	3-89		
dimensionless group	6-48		
dimethoxybenzene	2-36		
dimethoxydiphenylamine	2-36		
dimethoxyethyl adipate	2-36		
dimethyl adipate	2-36	0	
dimethylamine	2-36	2-52	2-66
dimethylaminoasobenzene	2-36		
dimethylaminoethanol	2-36		
dimethylaminophenol	2-36	_	
dimethylaniline	2-36	2-53	2-66
dimethylaniline sulfonic acid	2-36		

This page has been reformatted by knovel for easier navigation.

2-233

Index Terms		<u>Links</u>		
dimethyl carbonate	2-36			
dimethyl et her	2-36	2-52	2-67	
dimethylformamide	2-36			
dimethyl fumarate	2-36			
dimethyl glutarate	2-36			
dimethyl glyoxime	2-36			
dimethylnaphthalene	2-36			
dimethylnaphthylamine	2-36			
dimethyl oxalate	2-36			
dimethyl phthalate	2-36	2-67		
dimethyl sulfate	2-36	2-07		
dimethyl sulfide	2-30	2-53	2-67	
dimethyl tartrate	2-30	2-33 2-67	2-07	
-	2-30	2-07		
dimethylvinyl-ethenyl carbinol	2-30 2-36			
dinaphthyl				
dinaphthylmethane	2-36			
dinitroanisole	2-36			
dinitrobenzene	2-36			
dinitrobenzene sulfonic acid	2-36			
dinitrobenzoic acid	2-36			
dinitrobenzophenone	2-36			
dinitrodiphenyl	2-36			
dinitronaphthalene	2-36			
dinitrophenol	2-36			
dinitrosalicylic acid	2-36			
dinitrostilbene	2-36			
dinitrotoluene	2-36			
dioxane	2-36			
dipentene	2-36			
diphenyl	2-37	2-51	2-62	2-176
diphenylamine	2-37			
diphenyl carbonate	2-37			
diphenylchloroarsine	2-37			
dipheny lene oxide	2-37			
diphenylethane	2-37			
diphenyl ether	2-37	2-51		
diphenyl guanidine	2-37			
diphenylmethane	2-37			
diphenyl phenylenediamine	2-37			
diphenyl succinate	2-37			
diphenyl sulfide	2-37			
diphenyl sulfone	2-37			
diphenyl urea	2-37			
dipropyl adipate	2-37			
dipropyl amine	2-37	2-52		
dipropyl aniline	2-37			
dipropyl carbonate	2-37			
dipropyl ether	2-37			
dipropyl ketone	2-37			
dipropyl oxalate	2-37			
direct manufacturing costs	9-57			
-				

I -40

Index Terms		<u>Links</u>
direct mass measurement	8-50	
direct numerical simulation	6-46	
disalicylalethylene diamine	2-37	
discharge coefficient:		
for orifices	10-16	
for venturi meter	10-14	
discharge head	10-22	
discounted breakeven point (DBEP)	9-14	
disintegrator	20-42	
angle	20-42	
in-line	20-42	
Rietz	20-42	
vertical	20-42	
dispersion from stacks	25-32	
dispersion model	23-17	23-23
displacement:	25 17	25 25
measurement	8-50	
terminology of	10-21	
disruption, cell	20-56	
distillation	13-1	
azeotropic	13-68	13-78
-	13-08	13-78
design and operation	13-73	
examples of pressure sensitivity	13-09	
batch	13-72	
control	13-96	
	13-90	
operating methods boiling-point method	13-98	
complex operations	13-45	
continuous	13-4	
definition of	13-4	
dynamic	13-4	
enhanced	13-104	
	13-54	
distillation region diagrams (DRDs) residue curve map (RCM)	13-56	
extractive	13-30	13-75
		13-73
examples of salt effects	13-77 13-81	
solvent effects	13-81	
solvent selection	13-70	
solvent-to-feed (S/F) ratio	13-79	
	13-78	
Fenske-Underwood-Gilliland (FUG) method	12 25	
flash calculations	13-35	
	13-25	
graphical methods	13-26	
McCabe-Thiele method	13-27	
homotopy-continuation methods	13-51	
inside-out method	13-49	
Kremser group method	13-37	

<u>Links</u>

distillation (Cont.)	
Naphtali-Sandholm simultaneous-	
correction method	13-48
packed columns	13-108
petroleum and complex-mixture	13-85
applications	13-89
design procedures	13-89
pressure-swing	13-72
rate-based models	13-52
reactive	13-81
applications, table	13-82
catalyst systems	13-83
conditions for azeotropy	13-82
secondary reflux and vaporization (SRV)	13-5
sum-rates (SR) method	13-47
Thiele-Geddes (TG) method	13-40
tridiagonal-matrix algorithm	13-44
distribution curves	9-24
examples of	9-24
mathematical models for	9-24
ditolyl guanidine	2-37
divergent nozzle	6-75
divided solid, heat-transfer equipment for	11-62
agitated-dun type	11-63
conveyor-belt devices	11-64
cylindrical fluidizer	11-62
deep-finned type	11-64
double-cone bending devices	11-65
elevator devices	11-67
flighted type	11-63
jacketed solid flight	11-64
kneading devices	11-63
large-spiral, hollow-flight	11-64
moving-bed type	11-63
plain type	11-63
pneumatic conveying devices	11-67
rotating-shell devices	11-63
shelf devices	11-63
small-spiral, large-shaft	11-64
spiral-conveyor devices	11-64
tubed-shell type	11-63
vacuum-shelf type	11-67
vibratory-conveyor devices	11-65
divinyl acetylene	2-37
docosane	2-37
dodecane	2-37
double-pipe heat exchangers.	
See hairpin exchanger	

This page has been reformatted by knovel to provide easier navigation.

2-50

Index Terms		<u>Links</u>	
drag:			
coefficient	6-50		
force	6-50		
reduction	6-14	6-30	
drift flux theory	6-28	6-31	
dryers:			
agitated	12-64		
flash	12-91		
classification of	12-36		
conical mixer	12-69		
continuous through-circulation	12-47		
control of	8-36		
conveyor	8-37		
direct -heat rotary	12-53		
direct -heat vibrating-conveyor	12-76		
dispersion	12-77		
equipment, selection of	12-38		
exhaust temperature	8-37		
gravity	12-71		
indirect-heat rotary steam-tube	12-60		
plate	12-68		
pneumatic-conveyor	12-77		
rotary	8-37	12-52	
for sheeted solids	11-62	12 0 2	
spray	8-37	12-77	12-81
turbo-tray	12-65		
vacuum rotary	12-65		
vacuum-shelf	12-44		
variables	8-37		
drying:			
application of psychrometry to	12-27		
batch	8-37		
general conditions for	12-29		
periods of	12-31		
constant-rate period	12-31		
falling-rate period	12-32		
rate	11-30		
time, estimations for total	12-34		
Duhem's theorem	4-25		
Dukler theory	5-20		
dulcitol	2-37		
Durand factor	6-31		
durene	2-37		
dust collection	17-22		
air filter	17-48		
classification	17-51		
high-efficiency particulate air (HEPA)	17-51		
theory	17-30		
types	17-48		
centrifugal separators	17-30		
conunugai separators	17-32		

<u>Links</u>

dust collection (Cont.)		
equipment	17-26	
cyclone design factors	17-29	
cyclone efficiency	17-27	
cyclone separators	17-27	
flow pattern	17-27	
gravity settling chambers	17-26	
impingement separators	17-27	
pressure drop	17-28	
fabric filters	17-42	
efficiency	17-46	
fabrics	17-45	
types of	17-43	
granular-bed filters	17-47	
cleanable	17-47	
fixed	17-47	
mechanism	17-24	
scrubbers:		
condensation scrubbing	17-35	
cyclone	17-37	17-39
dry scrubbing	17-39	
ejector-venturi	17-37	
fiber-bed	17-38	
impingement-plate	17-38	
mechanical	17-38	
mobile bed	17-36	17-39
packed-bed	17-36	
performance	17-33	17-34
performance model	17-33	
self-induced spray scrubbers	17-36	
spray	17-37	
types	17-33	
venturi	17-36	
dust collectors	17-25	
design	17-26	
performance	17-25	
dynamic distallation. See also distillation	13-104	
economic comparisons	9-16	
capitalized cost -based	9-18	
incremental	9-18	
time-based	9-17	
economic pipe diameter	6-14	
eddy-current technique	10-149	
eddy simulations	6-46	
eddy spectrum	6-46	
effectiveness of reactions	23-30	
efficiency:		
adiabatic	10-141	
of alternating-current motors	29-7	
of cyclones	17-27	
-		

Index Terms		<u>Links</u>	
efficiency (Cont.)			
of fabric filters	17-46		
of fans	10-45		
fluidization	11-28		
grade	18-116		
grinding	20-14		
mill	20-34		
polytropic	10-41		
practical energy	20-14		
of precipitators	17-53		
of pump	10-23		
pushing	18-121		
reactor	23-15		
of screens	19-25		
eicosane	2-50		
ejectors	6-8	10-35	10-56
aftercondenser	10-56		
booster	10-56		
constant are a mixing	10-56		
performance of	10-56		
steam-jet, figure	10-56		
uses of	10-57		
See also steam-jet			
Ekman layers	18-107		
elaidic acid	2-37	2-67	
elastomers as a construction material.			
See rubber elbow meters	10-17		
electrical solid/liquid separations theory	22-20		
dielectrophoresis	22-23		
electrofiltration	22-22		
cross-flow	22-22		
electrophoresis	22-21		
electroanalytical instruments:			
conductometric analysis	8-51		
pH measurement	8-51		
specific-ion electrodes	8-51		
electrodialysis	22-42		
electrofiltration	22-22		
cross-flow	22-22		
electromagnetic force, terminology of	10-22		
electrophoresis	22-21		
electrostatic forces	20-60		
electrostatic separation	19-50		
applications of	19-53		
charging mechanisms	19-50		
conductive induction	19-51		
contact electrification	19-50		
equipment for	19-51		
ion bombardment	19-51		
operating conditions	19-55		
principles of	19-50		

Index Terms		<u>Links</u>	
electrostatic separators:	19-51		
capacity	19-53		
conductive roll	19-52		
plate	19-52		
power supplies	19-53		
screen-plate	19-52		
triboelectric	19-51		
elliptic equations	3-62		
elution	16-38		
curves	16-40		
See also breakthrough curves			
gradient	16-38	16-44	
isocratic	16-38	16-42	16-45
emissions:			
estimating	25-23		
nitrogen oxide	27-33		
particulate	27-33		
sulfur	27-33		
emissions measurement	25-47		
carbon monoxide	25-51		
fluorides	25-52		
hydrogen chloride	25-55		
metals testing, multiple	25-56		
moisture content	25-49		
molecular weight	25-48		
nitrogen oxides	25-50		
organic concentration, total gaseous	25-53		
organic sampling:			
semivolatile	25-57		
volatile	25-56		
particulates	25-49		
sulfur dioxide	25-50		
velocity and volumetric flow rate	25-47		
emissivity	5-25	11-31	
combustion products	5-32		
flames	5-35		
gas emissivity/adsorptivity	5-34		
mean beam lengths	5-32		
particle clouds	5-36		
definition	5-25		
gas emissivity	3-38		
normal total, various surfaces	5-28		
emittance	5-25		
emulsions	18-18		
energy, electrochemical	27-55		
energy dissipation rate	6-45		
engines, internal combustion	29-14		
brake-specific fuel consumption	29-16		
design characteristics	29-14		
emission control	29-16		
fuel characteristics	29-15		

engines, internal combustion (Cont.)		
heat recovery	29-16	
intermittent	29-15	
installation and costs	29-16	
maintenance and reliability	29-15	
operating characteristics	29-15	
rating	29-15	
size	29-15	
starting	29-15	
supercharging	29-15	
entertainment	14-26	14-66
enthalpy	4-5	
entrainer	13-68	13-70
entrepreneurial return	9-34	
entropy	4-3	
change	4-15	
change of surroundings	4-34	
function of T and P	4-5	
entropy-generation analysis	4-35	
environmental regulations in the U.S.,		
multimedia approach to	25-4	
enzymes	24-5	24-21
eosine	2-37	
ephedrine	2-37	
epichlorhydrin	2-37	2-68
epidichlorohydrin	2-37	
equation-of-state approach	4-28	
equations:		
Bernoulli	6-7	6-29
Cauchy Momentum	6-8	
continuity	6-6	6-45
Durand	6-31	
Navier-Strokes	6-8	6-45
equilibria:		
activity coefficients	15-8	
adsorption and ion exchange	16-11	16-30
Donnan uptake	16-14	
equilibrium constants for ion exchangers	16-14	
fixed beds	16-30	
mass action law	16-13	16-16
separation factor	16-14	
critical solution temperature	15-6	
experimental data	15-9	
hydrogen bonding interactions	15-8	
liquid/liquid	4-30	15-6
partition ratios	15-6	15-8
phase diagrams	15-6	
relative separation	15-6	
selectivity	15-6	
vapor/liquid/liquid	4-30	
· · ·		

Index Terms		<u>Links</u>					
equilibria, phase and supercritical fluids	22-15						
cosolvents	22-16						
glass transition	22-16						
liquid-fluid	22-15						
models	22-16						
polymer-fluid	22-16						
solid-fluid	22-16						
surfactants	22-16						
equilibrium-stage concept	13-4						
equipment:							
batch reactors	7-27						
costs	9-72	9-78					
flow reactors	7-28						
multiple phase	7-28						
equivalent length method	6-16						
equivalent maximum investment period							
(EMIP)	9-15						
equivalent residence time	23-14						
Erlang distribution	23-19						
erythritol	2-37						
erythritol tet ranitrate	2-37						
estimation:							
fixed capital	9-63						
manufacturing cost	9-54						
ethane	2-37	2-50	2-68	2-126	2-134	2-233	23-13
cracking	23-13						
ethanolamine	2-37						
ethanol formamide	2-37						
ether	2-37						
ethyl abietate	2-37						
ethyl acetate	2-37	2-52	2-68				
ethyl acetoacetate	2-37	2-68					
ethylal	2-38						
ethyl alcohol	2-37	2-51	2-112	2-141	2-176	2-184	2-235
ethylamine	2-37	2-52	2-68				
ethylamine hydrochloride	2-37						
ethyl aniline	2-37	2-68					
ethyl aniline sulfonic acid	2-37						
ethyl anisate	2-37						
ethyl anthranilate	2-37						
ethyl benzene	2-37	2-68					
dehydrogenation	23-14						
ethyl benzoate	2-37	2-52	2-68				
ethylbenzyl aniline	2-37						
ethyl bromide	2-37						
ethyl butyrate	2-37	2-52					
ethyl caprate	2-37						
ethyl caproate	2-37						
ethyl caprylate	2-37						
ethyl chloride	2-37	2-68					
ethyl chloroacetate	2-37	2-68					

Index Terms		<u>Links</u>	
ethyl chlorocarbonate	2-37		
ethyl cinnamate	2-37	2-68	
ethyl cyanoacetate	2-37		
ethylene	2-38	2-50	
ethylene bromide	2-38		
ethylene bromohydrin	2-38		
ethylene chlorobromide	2-38		
ethylene chlorohydrin	2-38		
ethylene diamine	2-38		
ethylene oxide	2-38	2-53	
ethyl formate	2-37	2-52	
ethyl furoate	2-37	202	
ethyl heptoate	2-37 2-37		
ethyl hypochlorite	2-37		
ethylidene diacetate	2-38		
ethyl iodide	2-33	2-68	
ethyl lactate	2-37	2-00	
ethyl laurate	2-37		
	2-38 2-38	2-53	2-68
ethyl mercaptan ethyl methacrylate	2-38 2-38	2-33	2-08
ethyl naphthylamine	2-38 2-38		
	2-38 2-38		
ethyl naphthyl ether ethyl nitrate	2-38 2-38		
ethyl nitrite	2-38 2-38		
ethyl oleate	2-38 2-38		
ethyl palmitate	2-38		
ethyl perlargonate	2-38 2-38		
ethyl propionate	2-38	2-52	
ethyl salicylate	2-38	2-52	
ethyl stearate	2-38		
ethyl toluate	2-38 2-38		
ethyl toluene sulfonate	2-38 2-38		
ethyl toluidine	2-38 2-38		
ethyl urea	2-38 2-38		
ethyl valerate	2-38 2-38		
eugenol	2-38		
Euler equation	10-11		
Euler's method	3-37	20-18	
evaporative cooling	12-14	20-18	
examples	12-14	12-21	12-23
evaporators:	12-15	12-21	12-23
accessories for	11-117		
agitated thin -film	11-117		
applications of	11-108		
arrangement of	11-103		
batch	11-113		
calculations of	11-13		
cascade	11-115		
continuous	11-111		
corrosion in	11-113		
entrainment in	11-108		
	11-112		

<u>Index Terms</u>		<u>Links</u>
evaporators (Cont.)		
flash	11-111	11-115
foaming in	11-112	
fouling in	11-108	
heat transfer in	11-107	
horizontal tube	11-110	
long-tube vertical	11-109	11-110
falling-film	11-110	
multiple-effect	11-113	
evaporation	11-107	11-113
operations of	11-118	
propeller calandria	11-109	
salting in	11-107	
salt removal	11-117	
scaling in	11-107	
semibatch	11-113	
short-tube vertical	11-109	
splashing in	11-112	
thermal design of	11-13	
thermocompression	11-113	11-115
types of	11-108	
vent system	11-117	
excess-property	4-10	
excitation:		
brushless	29-7	
direct - current field	29-7	
expanders, mechanical	11-101	
expansion factor	10-14	
expansion joints of heat exchangers	11-38	
expansion turbines	29-41	
application of	29-45	
bearings	29-43	
radial	29-43	
thrust	29-43	
buffer-gas system	29-45	
condensing streams	29-44	
efficiency of	29-42	
functional description	29-41	
instrumentation	29-46	
lubrication	29-45	
radial inflow design	29-42	
reversible incremental enthalpy drop	29-46	
rotor resonance	29-44	
seals	29-43	
rotor	29-43	
shaft	29-43	
size	29-46	
special characteristics	29-42	
variable nozzles	29-43	
1	20, 12	

work

29-42

expense:		
annual manufacturing	9-6	
total annual	9-6	
expert systems	8-31	
exponential series	3-32	
expression	18-125	
definition of	18-126	
equipment for:		
belt presses	18-126	
disk presses	18-126	
roll presses	18-126	
screw presses	18-126	
tube presses	18-127	
variable-volume filter presses	18-126	
optimization of	18-127	
theory of	18-130	
extraction:		
biochemical separation	22-74	
dissociation	15-6	
fractional	15-5	
liquid-liquid	15-4	18-22
differential contactor	15-5	
dispersions	15-25	
dissociation	15-6	
emulsions	15-25	
equipment. See extraction equipment		
extract, definition of	15-5	
extraction factor	15-18	
fractionation	15-5	15-20
heat transfer in	15-22	
raffinate, definition of	15-5	
solutes, definition of	15-5	
solvents, definition of	15-5	
solvent selection	15-9	
staged contactor	15-5	
stage efficiency	15-20	15-22
liquid-liquid, countercurrent	15-5	
calculation of theoretical stages	15-16	
liquid-liquid, crosscurrent	15-5	
calculation of theoretical stages	15-16	
extraction equipment	15-22	
centrifuges	15-27	
continuous contact equipment	15-29	
centrifugal extractors	15-46	
Karr reciprocating plate tower	15-42	
Kühni towers	15-42	
Lightnin mixer towers	15-38	
packed towers	15-32	
perforated-plate towers	15-34	

maex rerms		
extraction equipment (Cont.)		
pilot plants	15-39	
pulsed columns	15-44	
rotary-disk contactors	15-37	
Scheibel extraction towers	15-40	
slip velocity	15-38	
spray towers	15-30	
Treybal towers	15-42	
volumet ric efficiency	15-43	
cyclones	15-27	
flooding	15-29	15-31
holdup	15-31	
mass transfer in	15-22	
continuous-phase coefficients	15-22	
dispersed-phase coefficients	15-23	
mixers	15-24	
equilibrium	15-24	
mixer-settlers	15-22	15-28
settlers	15-25	
decanters	15-26	
stage efficiency	15-23	
extractive distillation	13-75	
See also distillation		
extractor:		
Bollman-type	18-55	
Bonotto	18-57	
de Smet belt	18-56	
Hildebrandt total-immersion	18-57	
Kennedy	18-56	
Lurgi frame belt	18-56	
Rotocel	18-56	
screw-conveyor	18-57	
failure mode and effect analysis (FMEA)	26-9	
falling-film crystallization	22-10	
false position method	3-50	
fans	10-45	
axial-flow	10-45	
efficiency	10-46	
performance	10-46	
power requirement	10-46	
fatal accident rate (FAR)	26-15	
F distribution	3-75	
feedwell	18-69	
fenchyl alcohol	2-38	2-69
Fenske's equation	13-35	
Fenske-Underwood-Gilliland (FUG) method	13-35	13-100
Feret's diameter	20-8	
ferric acetate	2-14	
ferric chloride	2-14	
ferric dimethyl-dithiocarbamate	2-38	
-		

Index Terms		<u>Links</u>
ferric hydroxide	2-14	
ferric lactate	2-14	
ferric nitrate	2-14	
ferric oxide	2-14	
ferric sulfate	2-14	
ferromagnetism	19-40	
ferroso -ferric chloride	2-14	
ferroso -ferric ferricy anide	2-14	
ferroso -ferric oxide	2-14	
ferrous ammonium sulfate	2-14	
ferrous chloride	2-14	
ferrous chloroplatinate	2-14	
*	2-14 2-14	
ferrous ferricyanide ferrous formate	2-14 2-14	
	2-14 2-14	
ferrous hydroxide		
ferrous nitrate	2-14	
ferrous oxide	2-14	
ferrous phosphate	2-15	
ferrous silicate	2-15	
ferrous sulfate	2-15	
ferrous sulfide	2-15	
Fick's first law	5-42	5-47
film:		
thickness	6-43	
velocity	6-43	
filter medium:		
characteristics of	18-89	
definition of	18-74	
fabrics:		
metal or screens	18-88	
of woven fibers	18-88	
filter papers	18-89	
polymer membranes	18-89	
pressed felts	18-89	
rigid porous media	18-89	
filters:		
Aqidisc	18-99	
batch cake	18-90	
centrifugal-discharge	18-96	
external-cake tubular	18-92	
filter press	18-91	
horizontal plate	18-91	
liquid bag filters	18-92	
Nutsche filters	18-90	
pressure leaf	18-94	
cake	18-90	
clarifying	18-100	
continuous	18-96	
cost of	18-105	
cycle	18-75	
diatomaceous silica	18-90	

filters (Cont.)		
disk	18-99	
dust collection	17-47	
air filter	17-48	
cleanable granular-bed	17-47	
fixed granular-bed	17-47	
granular-bed	17-47	
Dyna Sand	18-103	
granular media	18-102	
horizontal vacuum	18-99	
Maxi-Flo	18-103	
perlite	18-90	
rotary drum	18-96	
colifilter	18-97	
continuous precoat	18-99	
continuous pressure	18-98	
removable-medium	18-97	
roll-discharge	18-97	
scraper-discharge	18-96	
single-compartment drum	18-97	
string-discharge	18-97	
selection of	18-104	
sizing	18-85	
thickeners	18-100	
filtrate	18-74	
filtration	18-74	
batch	18-86	
biochemical separation	22-72	
cake	18-74	18-76
centrifugal	18-117	
filtration rate	18-122	
classification of	18-74	
constant pressure	18-86	
constant rate	18-86	
continuous	18-74	
data correlation	18-81	
air rate	18-83	
cake moisture	18-81	
cake washing	18-82	
correlation	18-81	
effect of time	18-81	
filtration rate	18-81	
wash time	18-83	
definition of	18-74	
equipment for	18-90	
selection of	18-90	
See also filters	10-100	
5	10 0 <i>E</i>	
filter sizing	18-85	
scale-up factors	18-84	

Index Terms		<u>Links</u>	
filtration (Cont.)			
test procedure	18-77		
bottom-feed procedure	18-77		
precoat procedure	18-80		
top-feed procedure	18-80		
theory	18-74		
variable pressure and rate	18-87		
final condenser, definition of	11-35		
finite difference method	3-57	3-58	
finned surface:			
application of	11-22		
high fins	11-22		
low fins	11-23		
pressure drop	11-23		
fins:			
high	11-22		
longitudinal	11-41		
low	11-23		
fransverse	11-41		
fittings:			
butt-welding	10-83	10-86	
cast-iron screwed	10-86	10 00	
elbow	10-83		
flanged	10-85	10-83	10-84
malleable-iron screwed	10-86	10 00	10 0 .
reducing elbow	10-87		
fire and explosion index (F&EI)	26-9	26-11	
Fischer-Assay	27-7	20 11	
Fisher-Tropsch Synthesis	27-22		
fittings and valves	6-17	6-27	
fixed bed operation:	017	0.27	
heat transfer in	11-24		
fixed beds	16-30		
breakthrough curve for	16-30		
equilibrium	16-30		
See also adsorption	10-50		
fixed-capital-cost estimation	9-63		
auxiliaries	9-74		
checklist of items	9-65		
complete plant costs	9-78		
computers, use of	9-75		
construction time	9-76		
cost indices	9-63		
electrical	9-03 9-73		
engineering	9-79		
equipment costs	9-79	9-78	
base	9-68	9-78	
typical exponents for	9-08 9-69		
estimates:	7-09		
	9-64		
rapid types and accuracy	9-64 9-63		
types and accuracy	9-03		

	Links
--	-------

fixed-capital-cost estimation (Cont.)					
factor methods	9-68				
modular approach	9-68				
multiple	9-68				
single	9-68				
factors for foreign site	9-79				
instrumental	9-73				
labor:					
construction	9-78				
productivity	9-78				
piping	9-73				
project control	9-77				
startup costs	9-76				
total cost	9-63				
flaking	20-85				
flame arresters	26-38				
flammability limits	11-107				
flash processes	13-25				
adiabatic	13-26				
isothermal	13-25				
three phase	13-26				
flocculation	18-63				
flooding	6-43				
flow:					
adiabatic	6-22	10-5			
compressible	6-22				
equalizers	10-6				
incompressible	6-5	6-9			
isentropic	10-5				
isothermal	6-22				
laminar	6-6	6-10	6-42		
measurement	10-6				
molecular	6-15				
multiphase	6-26				
nonisothermal	6-12				
nonnewtonian	6-13	6-19	6-21	6-27	
one-dimensional	6-5				
open channel	6-12				
pulsations	10-17				
slip	6-15	6-29			
turbulent	6-6	6-10	6-34	6-43	6-52
vacuum	6-14				
visualization	10-11				
flow birefringence	10-11				
water table	10-11				
flow-assisting devices:					
belt or apron feeders	21-31				
screw feeders	21-31				
table feeders	21-32				

flow-assisting devices (Cont.):	
vibrating hoppers	21-31
gyrating type	21-31
whirlpool type	21-31
vibratory feeders	21-32
flow coefficient	10-45
flow measurements	8-48
area meters:	
rotameters	10-18
head meters	10-11
accuracy	10-17
calibration of gauges	10-13
conditions of use	10-13
critical flow nozzles	10-14
elbow meters	10-17
flow nozzles	10-14
liquid-column manometers	10-11
mechanical pressure gauges	10-13
multiplying gauges	10-12
orifice meters	10-15
static head	10-11
tube size for manometers	10-2
venturi meters	10-13
mass flowmeters:	
axial-flow transverse-momentum	10-19
inferential mass flowmeter	10-19
static pressure	10-6
average	10-6
local	10-6
special tubes	10-7
specifications for piezometer taps	10-6
static temperature	10-8
total temperature	10-7
resistive thermal detectors (RTDs)	10-8
thermocouples	10-7
for two-phase system	10-20
gas-liquid mixtures	10-20
gas-solid mixtures	10-20
liquid-solid mixtures	10-20
velocity measurements	10-8
anemometers	10-10
flow visualization	10-11
pitot tubes	10-8
traversing for mean velocity	10-9
Weirs	10-19
flowmeters:	
coriolis mass	8-49
magnetic	8-49
ultrasonic	8-49
vortex-shedding	8-48

	-
fluid:	
mechanics	18-6
mixing technology	18-5
fluid corrosion. See corrosion	
fluid distribution	6-32
fluidization	11-28
efficiency	11-28
fluidized-bed systems	17-2
adsorption-desorption	17-18
bed height	17-5
bubbing or turbulent beds	17-8
circulating beds	17-9
coating	17-19
design of fluidized bed	17-3
fluidization vessel	17-4
dust separation	17-12
entrainment	17-5
fast beds	17-9
fluid bed status graph	17-3
freeboard	17-5
gas distributor	17-5
gas-solid systems	17-0
fluidization regimes	17-2
fluidization velocity	17-2
•	17-4
phase diagram types of solid	17-2
heat transfer	17-2
heat treatment	17-10
instrumentation	
	17-13 17-13
flow measurement	
pressure measurement	17-13
length of seal leg	17-12
mixing	17-10
gas	17-10
solid	17-10
scale-up	17-8
size enlargement	17-10
size reduction	17-10
solid discharge	17-11
quench tank	17-11
seal leg	17-12
solids:	
feeders	17-10
flow control	17-10
types of	17-11
standpipes	17-10
temperature control	17-10
transport disengagement height (TDH)	17-6

muck rerms						
fluidized-bed systems (Cont.)						
uses of fluidized beds	17-14					
chemical reactions	17-14					
physical contacting	17-17					
physical contacting and drying	17-17					
fluid mixing	6-34					
fluid motion:						
heat transfer	18-22					
pumping	18-22					
fluids, bulk transport of	10-142					
marine transportation	10-143					
materials of construction	10-144					
pipelines	10-142					
tank cars	10-142					
tanks	10-142					
tank trucks	10-143					
fluid statics	6-8					
fluoboric acid	2-15					
fluorene	2-38	2-69				
fluorescein	2-38					
fluorine	2-15	2-53	2-58	2-163	2-189	2-239
fluorobenzene	2-53	2-69				
fluorodichloromethane	2-38					
fluorotrichloromethane	2-38					
fluosilicic acid	2-15					
force, roll-separating	20-82					
forced-circulation reboiler, definition of	11-35					
formaldehyde	2-38	2-52	2-69			
formamide	2-38	2-53	2-69			
formanilide	2-38					
formic acid	2-38	2-52				
fouling:						
asymptotic	11-23					
biofouling	11-23					
chemical reaction	11-23					
control of	11-23					
corrosion	11-23					
definition of	11-108					
freezing	11-23					
linear	11-23					
particulate	11-23					
precipitation	11-23					
resistances	11-24					
Fourier cosine transform	3-46					
Fourier's law	5-8					
Fourier techniques	20-8					
fractal logic	20-8					
fracture toughness	20-60					
friction, wall angle of	20-71					
-						

Index Terms		<u>Links</u>
frictional losses	6-16	
contraction and entrance	6-16	
expansion and exit	6-17	
friction factor	6-9	6-36
friction head	10-22	
Froude number	20-80	
fructose	2-38	
fuchsin	2-38	
fuel cells	27-55	
efficiency	27-55	
types	27-57	
fuels:		
gaseous	27-11	
liquid	27-8	
solid	27-4	
fugacity and fugacity coefficient	4-9	
in ideal solution	4-10	
fungi	24-4	
funicular state	20-60	
fulminic acid	2-38	
fumaric acid	2-38	
furan	2-53	
furfural	2-38	2-69
furfuran	2-38	2 07
furfuryl acetate	2-38	
furfuryl alcohol	2-38	2-69
furfuryl butyrate	2-38	2 07
furfuryl propionate	2-38	
furnaces:	2 30	
batch and kilns	12-45	
continuous	12-49	
hearth	12-49	
multiple hearth	12-71	
shaft	12-71	
furoic acid	2-38	
fusion	11-61	
of solids	11-61	
of solids	11-01	
G-acid	2-38	
gadolinium	2-15	
galactose	2-38	
Galerkin finite element method	3-59	
gallic acid	2-38	
gallium bromide	2-15	
gamma acid	2-38	
gamma distribution	23-19	
gamma function	3-83	
gamma-phi approach	4-25	
~ 1 11		

<u>Index Terms</u>		<u>Links</u>
gas absorption	14-12	
heat effects	14-12	
adiabatic design	14-14	
equipment considerations	14-13	
examples	14-14	
isothermal design	14-14	
operating variables	14-13	
rigorous methods	14-14	
multicomponent systems	14-15	
concentrated system design	14-16	
dilute system design	14-15	
gas absorption by chemical reaction	14-17	
design methods	14-17	
traditional	14-18	
rigorous	14-20	
desorption	14-23	
scaling up	14-19	
two gases	14-22	
gas adsorption systems:		
design diagrams	14-6	
design of	14-5	
equipment selection	14-6	
liquid-to-gas ratio, calculation of	14-5	
operating conditions, selection of	14-6	
solvent selection	14-5	
gaseous emissions, source control of	25-35	
absorption	25-35	
adsorption	25-36	
biofilters	25-41	
combustion	25-37	
condensation	25-41	
membrane filtration	25-43	
gas-film coefficient	23-43	
gasifier	27-16	
gasketed-plate exchanger	11-52	
applications of	11-52	11-54
gasket materials, properties of	28-60	
gaskets	10-76	
spiral-wound	10-76	
gas-law constant	1-18	
values of	1-18	
gas-liquid contacting systems	14-23	
economics	14-58	
cost of column	14-58	
cost of internals	14-58	
optimization	14-61	
plates vs. packings	14-59	
liquid-dispersed contactors	14-54	
packed columns	14-38	
plate columns	14-24	
welted-wall columns	14-56	

Index Terms		<u>Links</u>
gas-liquid systems:		
gas-liquid dispersion	18-16	
gas-liquid mass transfer	18-17	
liquid-gas-solid system	18-18	
loop reactors	18-18	
gas measures, industrial	22-61	
gas-solid separations	17-19	
aerosol deposition	17-25	
dust collection	17-22	
mechanisms	17-24	
dust collectors	17-25	
design	17-26	
performance	17-25	
nomenclature	17-19	
particle dispersoids	17-22	17-23
particle measurements	17-22	
atmospheric pollution measurements	17-22	
characteristics	17-23	
particle size analysis	17-24	
process gas sampling	17-23	
gas turbines	29-29	
aeroderivative	29-29	
blade materials	29-39	
Brayton-Rankine cycle	29-37	
combustors	29-31	
annular	29-31	
can-annular	29-31	
tubular or side	29-31	
compressors	29-29	
fuel	29-39	
industrial heavy-duty	29-29	
intercoded regenerative reheat cycle	29-36	
life cycle	29-39	
major cycles	29-35	
operation characteristics	29-38	
regenerative cycle	29-36 29-36	
regenerators	29-29	
reheat cycle	29-36	
simple cycles	29-35	
steam injection cycle	29-36	
turbine-blade cooling	29-33	
convection and impingement cooling	2,00	
strut insert design	29-34	
convection cooling	29-33	
film and convection cooling design	29-34	
film coolin g	29-33 29-33	
impingement cooling	29-33	
transpiration cooling	29-33	
water cooling	29-33	
water cooning	2-55	

<u>Links</u>

gas turbines (Cont.)			
turbines	29-32		
axial flow	29-32		
impulse	29-32		
radial inflow	29-32		
reaction	29-32		
Gates-Gaudin-Schumann	20-5		
Gaudin-Meloy	20-5		
gauges	1-21		
Bourdon-tube	10-13		
calibration of	10-13		
compound	10-13		
diaphragm	10-13		
high-vacuum	10-13		
mechanical pressure	10-13		
multiplying	10-12		
open	10-11		
sheet metal	1-21		
wire	1-21		
Gaussian distribution	23-19		
Gaussian quadrature	3-53		
gear train	8-52		
generalized reduced gradient (GRG)	3-68		
genetic engin eering	24-6		
geometric figures:			
plane:			
catenary	3-11		
circle	3-10		
ellipse	3-11		
parabola	3-11		
ring	3-10		
with straight boundaries	3-10		
solid:			
cone	3-11		
cube	3-11		
cylinders	3-11		
ellipsoid	3-11		
frustum of pyramid	3-11		
hollow cylinders	3-11		
oblate spheroid	3-11		
prism	3-11		
prolate spheroid	3-11		
pyramid	3-11		
rectangular parallelepiped	3-11		
right circular cone	3-11		
right circular cylinder	3-11		
sphere	3-11		
torus	3-11		
truncated right circular cylinder	3-11		
geometric probability distribution	3-71		
geometric progression	3-9	3-13	3-32

This page has been reformatted by knovel for easier navigation.

Index Terms		<u>Links</u>			
Geraniol	2-38	2-69			
Gibb-Duhem equation	4-11				
in binary system	4-26				
Gibbs energy	4-5				
partial molar Gibbs energy	4-8				
residual Gibbs energy	4-8				
standard Gibbs-energy change	4-32				
glass and glassed steel as construction					
material	28-37				
properties of	28-49				
glucinium	2-15				
glucose	2-38				
glucuronic acid	2-38				
glutam(in)ic acid	2-38				
glutaric acid	2-39	2-69	2-176		
glyceral tricaprate	2-39				
glycerol	2-39	2-69	2-116	2-176	2-184
glycerol acetate	2-39				
glycerol dinitrate	2-39				
glycerol nitrate	2-39				
glyceryl triacetate	2-39				
glyceryl tribenzoate	2-39				
glyceryl tributyrate	2-39				
glyceryl tricaproate	2-39				
glyceryl tricaprylate	2-39				
glyceryl trilaurate	2-39				
glyceryl trimyristate	2-39				
glycerol trinitrate	2-39				
glycerol trinitrite	2-39				
glyceryl trioleate	2-39				
glyceryl tripalmitate	2-39				
glyceryl tristearate	2-39				
glycide	2-39				
glycine, glycocoll	2-39				
glycol	2-39				
glycol diacetate	2-39				
glycol dibenzoate	2-39				
glycol dibutyrate	2-39				
glycol dicaprylate	2-39				
glycol diformate	2-39				
glycol dilaurate	2-39				
glycol dinitrate	2-39				
glycol dinitrite	2-39				
glycol dipalmitate	2-39				
glycol dipropionate	2-39				
glycol ether	2-39				
glycol formal	2-39				
glycol formate	2-39				
glycolic acid	2-39				
gold	2-15	2-58	2-163	2-189	
Gompertz curve	9-27				

Index Terms	Links		
goodness-of-fit test	3-81		
Gram Charlier series	23-20		
granulation:			
balling	20-73		
equipment for. See granulators			
modeling	20-85		
attrition	20-87		
coalescence	20-86		
layering	20-86		
nucleation	20-85		
pelletization	20-73		
rate processes	20-75	20-77	20-79
simulation of	20-89		
granulators:			
centrifugal	20-79		
CF granulator	20-80		
fluidized	20-77		
fluidized bed	20-77		
spouted bed	20-77		
mixer	20-76		
batch planetary	20-76		
high-speed	20-76		
low-speed	20-76		
tumbling	20-70		
disc	20-73		
drum	20-73		
graphite as a construction material	28-49		
properties of	28-61		
gravity sedimentation. See sedimentation	20-01		
grindability	20-10	20-11	
function	20-10	20-11	
grinding:	20-21		
aids	20-15		
balls	20-13		
batch	20-32		
bone black	20-54 20-54		
carbon products	20-54		
cement charcoal	20-55 20-54		
chemicals	20-54		
circuits	20-34		
coal	20-21		
coke	20-34 20-54		
color and pigments	20-54		
cryogenic	20-56	20.22	
dry	20-15	20-33	
efficiency	20-14		
equipment	20-22		
fertilizers	20-52		
flour and feed	20-48		
gilsonite	20-54		

<u>Links</u>

Index Perms		
Grinding (Cont.):		
gypsum	20-54	
lime	20-54	
ores and minerals	20-49	
asbestos and mica	20-51	
autogenous milling	20-50	
carbonates and sulfates	20-51	
clays and kaolins	20-50	
crushed stone and aggregate	20-52	
cryogenic	20-56	
metalliferous	20-49	
nonmetallic minerals	20-50	
refractories	20-51	
silica and feldspar	20-51	
talc and soapstone	20-51	
organic polymers	20-55	
phosphates	20-52	
practice	20-48	
rate function	20-18	
soaps	20-55	
soybeans	20-48	
starch	20-48	
sulfur	20-55	
wet	20-15	20-33
white pigments	20-55	
grinding equipment:		
classification of	20-23	
disk attrition mill	20-45	
dispersion and colloid mills	20-45	
gyratory crushers	20-13	
hammer mills	20-24	
impact breakers	20-28	
hammer crusher	20-28	
rotor impactors	20-28	
jaw crushers	20-23	
jet mills	20-23 20-47	
novel media mills	20-47	
pan crushers	20-30 20-43	
ring-roller mills Raymond	20-43 20-44	
roll crushers	20-44	
roll press	20-28	
selection of stirred media mills	20-22	
	20-35	
tumbling mills	20-31	
circuits	20-33	
vibratory mills	20-39	
guaiacol	2-39	
guanidine	2-39	

Index Terms		<u>Links</u>
gyratory crusher:		
fixed-spindle	20-25	
operation	20-24	
performance of	20-25	
supported-spindle	20-25	
suspended-spindle	20-25	
H-acid	2-39	
Hadden's method	13-16	
hafnium	2-15	
hairpin exchanger	11-46	
applications of	11-47	
finned	11-46	
multitube	11-46	
hammer mills:		
Aero pulverizer	20-42	
Atrita pulverizer	20-41	
Blue Streak dual-screen pulverizer	20-41	
Imp pulverizer	20-41	
Mikro-pulverizer	20-41	
screen for	20-41	
stedman	20-29	
See also mills		
Hardgrove method	20-11	
grindability index	20-11	
harmonic progression	3-32	
hazard and operability studies (HAZOP)	26-9	26-10
head	10-11	
adiabatic	10-37	
available net positive suction head	10-23	
friction head	10-22	
net positive suction head calculation	10-23	
required net positive suction head	10-23	
static discharge head	10-22	
static suction head	10-22	
total discharge head	10-22	
total dynamic head	10-22	
total static head	10-22	
total suction head	10-22	
velocity head	10-22	
heat capacity:		
at constant pressure	4-5	
at constant volume	4-6	
mean heat capacity	4-15	
pressure or volume, temperature		
dependence	4-6	
ratio	4-6	
standard heat-capacity change	4-32	
hant an anna	0.00	

heat energy, value of

9-62

Index Terms		<u>Links</u>	
heat exchangers:			
absorbers	11-40		
air-cooled	11-47		
baffled	11-7		
baffles	11-42		
ceramic	11-58		
compact and nontubular	11-52		
construction	11-36		
corrosion in	11-43		
cost of	11-44		
double pipe	11-5	11-46	
evaporators	11-40		
expansion joints	11-38		
falling-film	11-40		
freezers	11-40		
internal floating-head	11-40		
liquid coolers	11-40		
nomenclature	11-36	11-37	11-38
outside-packed floating-head	11-39	11.57	11 50
packed-lantern-ring	11-39		
plate-and-frame	11-52		
pull-through floating head	11-32		
for solids	11-40		
TEMA	11-38		
U-tube	11-33		
	11-39		
heating:	11 46		
equipment for	11-46		
with tank coils	11-20		
of tanks	11-20	11 10	
of vessels	11-18	11-19	
See also heat exchanger	4.12	10.24	10.25
heat of mixing	4-12	18-34	18-35
heats and free energies of formation	2-186		
heats of solution	2-201		
heat tracing systems	10-133		
costs of	10-135		
fluid	10-133		
types of	10-133		
heat transfer:			
cements	11-22		
combustion chamber	5-40		
conduction	5-8	11-24	
contactive	11-28		
convective	11-30		
effect of fluid properties on	11-17		
effect of nonconden sables on	11-18		
finned tubes, use in	5-10		
modes of	5-8		
momentum, analogy to	5-14	5-19	
nomenclature and units	5-3		

Index Terms		<u>Links</u>					
heat transfer(Cont.):							
phase change	5-20						
radiation	5-23	11-30					
heat transfer coefficient:	5 25	11 50					
bed-to-wall	11-29						
overall	11-4						
for air-cooled exchangers	11-4						
for coils immersed in liquids	11-21						
external coil	11-27						
jacketed vessels	11-27						
refining service	11-25						
in tubular heat exchangers	11-25						
packed-bed-to-fluid	11-28						
particle-to-fluid	11-29						
pseudo	11-2)						
height equivalent to a theoretical plate	11-110						
(HETP):							
in chromatography	16-40	16-42					
reduced HETP	16-42	10-42					
height of a diffusion unit (HDU)	15-38						
height of transfer units (HTU):	15-56						
inadsorption	16-24						
in liquid-liquid extraction	10-24	15-32	15-38				
helium	2-15	2-53	2-58	2-126	2-135	2-163	2-239
Helmholtz energy	2-13 4-5	2-33	2-30	2-120	2-155	2-105	2-239
Henry's law/constant	4-27						
heptachloroethane	2-39	2-69					
heptacosane	2-39	2-69					
heptadecane	2-50	2-07					
heptane	2-30 2-39	2-50	2-69				
heptene	2-59 2-50	2-50 2-69	2-09				
heptoic acid	2-30 2-39	2-07					
heptoic aldehyde	2-39						
heptyl acetate	2-39						
heptyl alcohol	2-39						
heptyl mercaptan heptyne	2-39 2-50						
Hermite's method	3-38						
heterogeneous reactions	7-26						
industrial noncatalytic	7-26						
mechanism	7-26						
hexachlorobenzene	2-39	2-69					
hexacosane	2-39	2-69					
hexadecane	2-39	2-09					
hexaethyl benzene	2-39	2-30 2-70					
hexamethylbenzene	2-39 2-39	2-70					
hexamethylenediamine							
hexamethylene diisocyanate	2-39 2-39						
hexamethyleneglycol	2-39 2-39						
hexamethylene tetramine	2-39 2-39						
-		2 50	2 70				
hexane	2-39	2-50	2-70				

This page has been reformatted by knovel for easier navigation.

Index Terms		<u>Links</u>					
hexene	2-50	2-70					
hexyl acetate	2-40						
hexyl alcohol	2-40						
hexyl formate	2-40						
hexyl resorcinol	2-40						
hexyne	2-50						
high-rate discharge (HRD) explosion							
suppressors	26-66	26-68					
hippuric acid	2-40						
histidine	2-40						
Hodgson number	10-18						
holdup	20-33						
homophthalic acid	2-40						
humid heat	12-3						
humidity:							
absolute	12-3						
charts for solvent vapors	12-29						
measurement of	12-3						
percentage absolute	12-3						
percentage relative	12-3						
saturation	12-3						
humid volume	12-3						
hutch	19-30						
hydraulic jumps	6-13						
hydraulic radius	6-12						
hydraulic transients	6-44						
hydrazine	2-15	2-53					
hydrazine formate	2-15						
hydrazine hydrate	2-15						
hydrazine hydrochloride	2-15						
hydrazine nitrate	2-15						
hydrazine sulfate	2-15						
hydrazoic acid	2-15						
hydriodic acid	2-15						
hydrobromic acid	2-15	2-54	2-58	2-85	2-163	2-189	
hydrochloric acid	2-15	2-54	2-58	2-76	2-101		
	2-127	2-163	2-184	2-189	2-247		
Hydrocyanic acid	2-15	2-40	2-54	2-58	2-70	2-189	
hydrofluoric acid	2-15	2-54	2-58	2-101	2-189		
hydrogen	2-15	2-53	2-58	2-101	2-126	2-127	
	2-135	2-171	2-163	2-189	2-243		
hydrogen bonding	13-80						
hydrogen peroxide	2-15						
hydrogen selenide	2-15						
hydrogen sulfide	2-15	2-54	2-58	2-127	2-163	2-189	2-246
hydroquinone	2-40	2-70					
hydroxybenzaldehyde	2-40	2-70					
hydroxybenzanilide							
njaronjoennannae	2-40						
	2-40 2-15						
hydroxylamine hydroxylamine hydrochloride							

This page has been reformatted by knovel to provide easier navigation.

muex rerms	
hydroxylamine sulfate	2-15
hydroxyquinoline	2-40
hyl-thiuram disulfide	2-47
hyperbolic equations	3-63
hypergeometric probability distribution	3-71
hypobromous acid	2-16
hypothesis tests	3-76
ideal gas	4-6
universal constant	4-6
illinium	2-16
impact breakers:	2 10
hammer crushers	20-28
Jeffrey hammermills	20-29
Pennsylvania nonreversible hammermill	20-28
Pennsylvania reversible impactor	20-28
rotor impactors	20-29
cage mills	20-29
ring-type granulator	20-29
prebreakers	20-30
Mikro roll crusher	20-30
Rietz	20-30
impeller:	20 00
axial flow	18-8
axial flow fluidfoil	18-13
closed clearance	18-8
anchor	18-8
helical	18-8
closed type/shrouded	10-24
double suction	10-24
fabrication	10-49
open type/semiopen type	10-24
power consumption of	18-2
radial flow	18-9
Reynolds number	18-10
side-entering	18-13
single suction	10-24
top-entering	18-13
Imp pulverizer	20-41
income:	
annual cash	9-5
indigo	2-40
indigo white	2-40
indium	2-16
indole	2-40
indoxyl	2-40
industrial furnace	27-48
inequalities, algebraic	3-9

<u>Links</u>

mach i trins		
infinite series	3-30	
operations	3-31	
series summation and identities	3-32	
test for convergence and divergence	3-31	
inflation	9-34	
considering PBP	9-35	
differential, effects of	9-38	
effect on:		
DCFRR	9-35	
NPV	9-34	
with MSF	9-37	
injectors	10-35	18-19
inone	2-40	
instantaneous rate	21-3	
insulation	11-68	
material for	11-68	
system selection of	11-69	
cryogenic	11-69	
foamed	11-69	
multilayer	11-69	
thickness of	11-70	
insurance and risk	9-33	
integral, definite	3-29	
integration, methods of	3-30	
integral equations	3-42	
classification	3-42	
relation to differential equations	3-43	
solution, methods of	3-43	
integral, indefinite	3-43	
integration, methods of	3-27	
integral transforms	3-44	
convolution integral	3-45	
Fourier cosine transform	3-46	
Fourier transform	3-40	
Laplace transform	3-40	
<i>z</i> -transform	3-44	
intensity:	5-45	
bed agitation	20-64	
high agitation	20-04 20-64	
low agitation	20-64	
interaction parameter	4-21	
intercomputer communications	4-21 8-60	
interest	8-00 9-10	
	9-10 9-10	
annual compound compound factors	9-10	
continuous compound	9-11 9-10	
-		
short - interval compound simple	9-10 9-10	
interlocks	9-10 8-83	
testing	8-83 8-84	
e	8-84 4-3	
internal energy	4-3	

Index Terms		<u>Links</u>				
International Organization for						
Standardization (ISO)	28-28					
interpolation:						
higher-order	3-51					
lagrange interpolation formulas	3-52					
linear	3-51					
investment	9-5					
iodic acid	2-16					
iodine	2-16	2-58	2-122	2-152	2-163	2-189
iodine oxide, penta -	2-16					
iodobenzene	2-40	2-70	2-176			
iodoform	2-40					
iodophenol	2-40					
iodoplatinic acid	2-16					
ion exchange	16-4					
breakthrough curve.	10 1					
See breakthrough curve						
cycles	16-52					
in deionization	16-52					
	16-11					
equilibrium	16-14					
Donnan uptake isotherms	16-14	16-11				
		10-11				
multiple exchanges	16-15 16-14					
separation factor equipment	16-64					
mass transfer in	16-18					
mass transfer rates	16-21					
regeneration. See regeneration	16.5					
selection of materials	16-5					
in water treatment	16-65					
See also adsorption	16.0					
ion exchangers	16-8					
capacity	16-13					
equilibrium constants of	16-14					
internal porosity	16-8	16-11				
ionic self diffusivities	16-20					
physical properties of	16-10					
resins	16-8					
ionone	2-40					
iridium	2-16					
iron	2-16	2-58	2-152	2-163	2-189	
iron carbide	2-16					
iron carbonyl	2-16	2-58				
iron nitride	2-16					
iron silicide	2-16					
iron sulfide	2-16					
isatin	2-40					
isentropic	10-5					
flow	10-5					

Index Terms		<u>Links</u>			
isoprene	2-40				
isotherms	16-5	16-11	16-26		
favorability	16-5	16-12			
Freundlich	16-13	16-16			
Langmuir	16-13	16-16	16-26	16-28	16-45
linear	16-12	16-28	16-36	10 20	10 10
pore-filling	16-13				
Sips	16-13				
Tóth	16-13				
types	16-12				
isotropic	10-5				
jaw crushers:					
blake	20-23				
overhead eccentric	20-23				
performance	20-24				
Jenike's criteria	21-27				
flow analysis	21-29				
jet behavior	6-20				
jet mixers	18-19				
jig	19-30				
basic	19-30	19-32			
Batac	19-30	19-32			
Baum	19-30	19-32			
capacity	19-31				
definition of	19-30				
feed	19-30				
Harz	19-30	19-32			
power requirements	19-31				
Remer	19-30	19-32			
water consumption in	19-31				
jigging	19-30				
equipment	19-30				
operation	19-30				
joints:					
bolting	10-78				
branch welds	10-71				
expanded	10-80				
expansion	10-123				
flanged	10-75				
flanged-end fittings	10-75				
flanged-end pipe	10-75				
gaskets	10-76				
spiral-wound	10-76				
grooved	10-81				
metal-ring-joint-facing	10-78				
packed-gland	10-79				
poured	10-80				
pressure-seal	10-82				
push-on	10-80				
seal-ring	10-82				

lactic anhydride

|--|

joints (Cont.):						
silver brazed	10-83					
soldered	10-83					
straight pipe threads	10-75					
seal-welded	10-75					
union joints	10-75					
threaded	10-71					
taper-pipe-thread	10-71					
tubing	10-82					
bite-type-fitting	10-82					
compression-fitting	10-82					
flared fitting	10-82					
O-ring seal	10-83					
welded	10-71					
butt-weld	10-71					
socket -weld	10-71					
V-clamp	10-81					
Joukowski formula	6-44					
Joule-Thomson effect	2-132					
Kady	20-46					
Kamack's equation	20-8					
Kellogg charts	13-10					
ketene	2-40					
kettle reboiler	11-13					
Kiel probe	10-7					
kilns:						
cement manufacture	23-60					
ceramic tunnel	12-51					
direct -heat rotary	12-56					
rotary	23-60					
vertical	23-60					
kinematics of fluid flow	6-5					
kinematic viscosity	1-18					
conversion formulas	1-18					
definition of	10-5					
table of	10-5					
kinetic laws	23-5					
Koch acid	2-40					
Kolmogorov eddy scale	6-46					
Kremser group method	13-37	a - 0				
krypton	2-16	2-58	2-143	2-152	2-163	2-248
Kuhn-Tucker multipliers	3-66					
K-values	4-28	13-10				
analytical correlations	13-16					
definition of	13-10					
graphical correlations	13-10					
Raoult's law equation	13-21					
lactic acid	2-40					
	a 10					

<u>Links</u>

2-40

Index Terms		<u>Links</u>					
lactide	2-40						
lactose	2-40						
Lagrange multiplier	4-33						
Laguerre's method	3-38						
laminar flow	7-23						
forced convection	5-15						
residence time distribution	7-24						
land farming	25-108						
landfills	25-102						
Langmuir-Hinshelwood mechanism	7-11						
lanthanum	2-16						
Laplace transform	3-44						
latent heats	2-150	4-15					
lauric acid	2-40	2-70	2-176				
laurone	2-40						
lauryl alcohol	2-40						
law of mass	4-32						
leaching:							
definition of	18-55						
equipment for	18-55						
dispersed-solids leaching	18-56						
percolation	18-55						
screw-conveyor extractors	18-57						
tray classifier	18-58						
mechanism of	18-55						
operation	18-55						
process design	18-58						
choice of solvents	18-58						
extractor-sizing calculations	18-58						
leaching cycle	18-58						
temperature	18-58						
terminal stream compositions	18-59						
type of reactor lead	18-58	2 50	2 1 5 2	2-164	2-190		
	2-16	2-58	2-152	2-104	2-190		
lead acetate lead and alloys as construction material	2-16						
properties of	28-37 28-48						
lead arsenate	28-48						
lead azide	2-10 2-16						
lead bromide	2-16	2-58	2-122	2-152	2-164	2-190	2-201
lead carbonate	2-16	2 50	- 122	2 192	2 107	2 170	2 201
lead chloride	2-16	2-58	2-122	2-152	2-164	2-190	2-201
lead formate	2-16	2 50	- 122	2 192	2 107	2 170	2 201
lead hydroxide	2-16						
lead nitrate	2-16						
lead oxide	2-16	2-17	2-58	2-152	2-164	2-190	
	2 10	- 17	- 50	- 102	- 107	- 170	

lead silicate	2-17	
lead sulfate	2-17	
lead sulfide	2-17	2-58
lead tetraethyl	2-40	
lead tetramethyl	2-40	
lead thiocyanate	2-17	
learning curves	9-20	
example of	9-22	
least squares:		
linear	3-84	
nonlinear	3-86	
Levenberg-Marquardt method	3-86	
Le Chatelier's principle	13-81	
lecithin	2-40	
Lee and Kesler correlation	4-16	
Legendre's method	3-38	
Leibniz rule	3-43	
L'Hospital's theorem	3-25	
lepidine	2-40	
leucine	2-40	
level measurements:	2-40	
bubble-tube systems	8-49	
electrical methods	8-49	
float-actuated devices	8-49 8-49	
chain or tape float gauge lever and shaft mechanisms	8-49 8-40	
	8-49 8-40	
magnetically coupled devices	8-49	
head devices	8-49	
sonic methods	8-50 8-50	
thermal methods	8-50	2 70
levulinic acid	2-40	2-70
Lewis/Randall rule	4-10	2 70
limonene	2-40	2-70
linaloul	2-40	
linalyl acetate	2-70	
linear equations	3-14	
linoleic acid	2-40	
liquid column measurements	8-50	
liquid diffusion	12-33	
liquid-dispersed contactors	14-55	
backmixed	14-56	
cocurrent	14-56	
countercurrent	14-56	
heat-transfer applications	14-55	
theoretical transfer model	14-55	
liquid flow, internal mechanisms of	12-31	

<u>Links</u>

2-152 2-164 2-190

Index Terms	$\underline{\mathbf{L}}$	inks_					
liquid-liquid contacting	18-18						
emulsions	18-18						
equipment for	18-18						
continuous	18-19						
stagewise	18-19						
See also mixer-settler							
liquid-liquid extraction.							
See extraction, liquid-liquid							
liquid-liquid-gas-solid system	18-24						
liquid-liquid-solid system	18-22						
lithium	2-17	2-58	2-152	2-164	2-190	2-249	
lithium benzoate	2-17						
lithium bromide	2-17	2-58	2-152	2-164	2-190	2-201	2-249
lithium carbonate	2-17						
lithium chloride	2-17	2-58	2-152	2-164	2-190	2-201	
lithium citrate	2-17						
lithium fluoride	2-17	2-58	2-152	2-164	2-190	2-201	
lithium formate	2-17						
lithium hydride	2-17						
lithium hydroxide	2-17						
lithium nitrate	2-17						
lithium oxide	2-17						
lithium phosphate	2-17						
lithium salicylate	2-17						
lithium sulfate	2-17						
local composition	4-22						
logarithmic-mean temperature difference							
(LMTD)	11-4						
correction factor	11-6						
logarithmic series	3-32						
logistics curve	9-26						
log-normal probability law	20-5						
lower flammable limit (LFL)	26-54						
lubricants:							
external	20-73						
internal	20-73						
lutecium	2-17						
lyophilization (freeze-drying)							
biochemical separation	22-78						

Click for next page

This page has been reformatted by knovel to provide easier navigation.