Azomethane [503-28-6] M 58.1, m -78°, b 1.5°. Purified by vacuum distn and stored in the dark at -80°. Can be EXPLOSIVE.

p,p'-Azoxyanisole (4,4'-dimethoxyazoxybenzene) [1562-94-3] M 258.3, transition temps: 118.1-118.8°, 135.6-136.0°, pK^{25} -5.23 (20% aq EtOH + 80% aq H₂SO₄). Crystd from absolute or 95% EtOH, or acetone, and dried by heating under vacuum or sublimed in a vac onto a cold finger.

Azoxybenzene [495-48-7] M 198.2, m 36°, pK^{25} -6.16 (20% aq EtOH + 80% aq H₂SO₄). Crystd from EtOH or MeOH, and dried for 4h at 25° and 10⁻³mm. Sublimed before use.

p,p-Azoxyphenetole [4792-83-0] M 286.3, m 137-138° (turbid liquid clarifies at 167°). Crystd from toluene or EtOH.

Azulene [275-51-4] M 128.2, m 98.5-99°, pK²⁵ -1.65 (aq H₂SO₄). Crystd from EtOH.

Azuleno(1,2-b)thiophene [25043-00-9] M 184.2. Crystd from cyclohexane, then sublimed in vacuo.

Azuleno(2,1-b)thiophene [248-13-5] M 184.2. Crystd from cyclohexane, then sublimed in vacuo.

Azure A (3-amino-7-dimethylaminophenazin-5-ium chloride) [531-53-3] M 291.8, CI 52005, m > 290°(dec), λ_{max} 633nm, pK 7.2. Twice recrystd from H₂O, and dried at 100°/1h in an oven.

Azure B (3-dimethylamino-7-methylaminophenazin-5-ium chloride) [531-55-5] M 305.8, CI 52010, m > 201°(dec), λ_{max} 648nm, pK 7.4. Twice recrystd from H₂O, and dried at 100°/1h in an oven.

Azure C (3-amino-7-methylaminophenazin-5-ium chloride) [531-57-7] M 277.8, λ_{max} 616nm, pK 7.0. Twice recrystd from H₂O, and dried at 100°/1h in an oven.

B.A.L. (British Anti-Lewesite) see 1,2-dimercapto-3-propanol.

Barbituric acid [6-hydroxypyrimidin-2,4-dione] [67-52-7] M 128.1, m 250°(dec), $pK_1^{25}3.99$, $pK_2^{25}12.5$. Crystd twice from H₂O, then dried for 2 days at 100°.

Bathophenanthroline (4,7-diphenyl-1,10-phenanthroline) [1662-01-7] M 332.4, m 215-216°, 218-220°, pK^{25} 4.67. Best purified by recrystn from $*C_6H_6$ or toluene. Its solubility (per L): H₂O (1mg), M HCl (20mg), heptane (110mg), Et₂O (530mg), Me₂CO (2.3g), dioxane (3.4g), MeOH (6.0g), EtOH (10.5g), isoPrOH (10.0g), *n*-pentanol (18.7g), $*C_6H_6$ (12.2g), pyridine (33g), nitrobenzene (44.7g), CHCl₃ (78g) and AcOH (450.4g). [UV: Bull Soc Chim Fr 371 1972.] For di-Na salt 3H₂O see entry in Chapter 5.

Batyl alcohol [544-62-7] M 344.6, m 70.5-71°. Crystd from aq Me₂CO, EtOH or pet ether (b 40-60°).

Behenoyl chloride (docosanoyl chloride) [21132-76-3] M 359.0, m 40°. If the IR shows OH bands then it should be dissolved in oxalyl chloride in C_6H_6 soln and warmed at 35° for 24h in the absence of moisture, evaporated and distd in a vacuum of 10^{-5} mm. It is sol in C_6H_6 and Et_2O . It is moisture sensitive and is LACHRYMATORY. [J Chem Soc 1001 1937; J Biol Chem 59 905 1924.]

Benzalacetone (*trans*-4-phenyl-3-buten-2-one) [122-57-6] M 146.2, m 42°. Crystd from pet ether (b 40-60°), or distd (b 137-142° /16mm).

Benzalacetophenone (Chalcone) [94-41-7] M 208.3, m 56-58°, b 208°/25mm, pK^{25} -5.73 (aq H₂SO₄). Crystd from EtOH warmed to 50° (about 5mL/g), iso-octane, or toluene/pet ether, or recrystd from MeOH, and then twice from hexane. SKIN IRRITANT.

Benzaldehyde [100-52-7] M 106.1, f -26°, b 62° (58°)/10mm, 179.0°/760mm, d 1.044, n 1.5455, pK^{25} -7.1 (aq H₂SO₄). To diminish its rate of oxidation, benzaldehyde usually contains additives such as hydroquinone or catechol. It can be purified *via* its bisulfite addition compound but usually distn (under nitrogen at reduced pressure) is sufficient. Prior to distn it is washed with NaOH or 10% Na₂CO₃ (until no more CO₂ is evolved), then with satd Na₂SO₃ and H₂O, followed by drying with CaSO₄, MgSO₄ or CaCl₂.

anti-Benzaldoxime [932-90-1] M 121.1, m 33-34°. Crystd from diethyl ether by adding pet ether (b 60-80°). The syn-isomer [622-32-2] has b 121-124°/12mm, m 34-36°.

Benzamide [55-21-0] **M 121.1, m 129.5°, pK²⁵ -2.16 (aq H₂SO₄).** Crystd from hot water (about 5mL/g), EtOH or 1,2-dichloroethane, and air dried. Crystd from dilute aqueous ammonia, water, acetone and then *benzene (using a Soxhlet extractor). Dried in an oven at 110° for 8h and stored in a desiccator over 99% H₂SO₄. [Bates and Hobbs J Am Chem Soc 73 2151 1951.]

Benzamidine [618-39-3] **M 120.2, m 64-66^o, pK²⁰ 11.6.** Liberated from chloride by treatment with 5M NaOH. Extracted into diethyl ether. Sublimed *in vacuo*.

Benzanilide [93-98-1] M 197.2, m 164°, pK⁵⁵ 1.26. Crystd from pet ether (b 70-90°) using a Soxhlet extractor, and dried overnight at 120°. Also crystd from EtOH.

Benz[a]anthracene [56-55-3] **M 228.3, m 159-160°.** Crystd from MeOH, EtOH or *benzene (charcoal), then chromatographed on alumina from sodium-dried *benzene (twice), using vacuum distn to remove *benzene. Final purification was by vacuum sublimation.

Benz[a]anthracene-7,12-dione [2498-66-0] M 258.3, m 169.5-170.5°. Crystd from MeOH (charcoal).

Benzanthrone [82-05-3] M 230.3, m 170°, pK -3.2 (aq H₂SO₄). Crystd from EtOH or xylene.

*Benzene [71-43-2] M 78.1, f 5.5°, b 80.1°, d 0.874, n 1.50110, n^{25} 1.49790. For most purposes, *benzene can be purified sufficiently by shaking with conc H₂SO₄ until free from thiophene, then with H₂O, dilute NaOH and water, followed by drying (with P₂O₅, sodium, LiAlH₄, CaH₂, 4X Linde molecular sieve, or CaSO₄, or by passage through a column of silica gel, for a preliminary drying, CaCl₂ is suitable), and distn. A further purification step to remove thiophene, acetic acid and propionic acid, is crystn by partial freezing. The usual contaminants in dry thiophene-free *benzene are non-benzenoid hydrocarbons such as cyclohexane, methylcyclohexane, and heptanes, together with naphthenic hydrocarbons and traces of toluene. Carbonyl-containing impurities can be removed by percolation through a Celite column impregnated with 2,4dinitrophenylhydrazine, phosphoric acid and H₂O. (Prepared by dissolving 0.5g DNPH in 6mL of 85% H₃PO₄ by grinding together, then adding and mixing 4mL of distd H₂O and 10g Celite.) [Schwartz and Parker Anal Chem 33 1396 1961.] *Benzene has been freed from thiophene by refluxing with 10% (w/v) of Raney nickel for 15min, after which the nickel was removed by filtration or centrifugation.

Dry *benzene was obtained by doubly distilling high purity *benzene from a soln containing the blue ketyl formed by the reaction of sodium-potassium alloy with a small amount of benzophenone.

Thiophene has been removed from *benzene (absence of bluish-green coloration when 3mL of *benzene is shaken with a soln of 10mg of isatin in 10mL of conc H_2SO_4) by refluxing the *benzene (1Kg) for several hours with 40g HgO (freshly pptd) dissolved in 40mL glacial acetic acid and 300mL of water. The ppte was filtered off, the aq phase was removed and the *benzene was washed twice with H_2O , dried and distd. Alternatively, *benzene dried with CaCl₂ has been shaken vigorously for half an hour with anhydrous AlCl₃ (12g/L) at 25-35°, then decanted, washed with 10% NaOH, and water, dried and distd. The process was repeated, giving thiophene-free *benzene. [Holmes and Beeman Ind Eng Chem 26 172 1934.]

After shaking successively for about an hour with conc H_2SO_4 , distd water (twice), 6M NaOH, and distd water (twice), *benzene was distd through a 3-ft glass column to remove most of the water. Abs EtOH was added and the *benzene-alcohol azeotrope was distd. (This low-boiling distn leaves any non-azeotrope-forming impurities behind.) The middle fraction was shaken with distd water to remove EtOH, and again redistd. Final slow and very careful fractional distn from sodium, then LiAlH₄ under N₂, removed traces of water and peroxides. [Peebles, Clarke and Stockmayer J Am Chem Soc 82 2780 1960.] *Benzene liquid and vapour are very TOXIC and HIGHLY FLAMMABLE, and all operations should be carried out in an efficient fume cupboard and in the absence of naked flames in the vicinity.

Rapid purification: To dry benzene, alumina, CaH_2 or 4A molecular sieves (3% w/v) may be used (dry for 6h). Then benzene is distd, discarding the first 5% of distillate, and stored over molecular sieves (3A, 4A) or Na wire.

 $[^{2}H_{6}]^{*}$ Benzene (**benzene-d*₆) [1076-43-3] M 84.2, b 80°/773.6mm, 70°/562mm, 60°/399mm, 40°/186.3mm, 20°/77.1mm, 10°/49.9mm, 0°/27.5mm, d 0.9488, d⁴⁰ 0.9257, n 1.4991, n⁴⁰ 1.4865. Hexadeuteriobenzene of 99.5% purity is refluxed over and distd from CaH₂ onto Linde type 5A sieves under N₂.

Benzeneazodiphenylamine (4-phenylazodiphenylamine) [28110-26-1] M 273.3, m 82°, pK²² 1.52. Purified by chromatography on neutral alumina using anhydrous $*C_6H_6$ with 1% anhydrous MeOH. The major component, which gave a stationary band, was cut out and eluted with EtOH or MeOH. [Högfeldt and Bigeleisen J Am Chem Soc 82 15 1960.] Crystd from pet ether or EtOH. See Sudan I.

1-Benzeneazo-2-naphthol [842-07-9] M 248.3, m 134°, pK_{Est} ~9.5 (OH). Crystd from EtOH.

1-Benzeneazo-2-naphthylamine (Yellow AB) [85-84-7] M 247.3, m 102-104°, pK_{Est} ~4.1. Crystd from glacial acetic acid, acetic acid/water or ethanol.

1,2-Benzenedimethanol (1,2-bishydroxymethylbenzene) [612-14-6] M 138.2, m 61-64°, 63-64°, 64-65°, 65-66.5°, b 145°/3mm. Recrystd from C_6H_6 , H₂O, pet ether or pentane. It has been extracted in a Soxhlet with Et₂O, evaporated and recrystd from hot pet ether. Also dissolve in Et₂O, allow to evaporate till crystals are formed, filter off and wash the colourless crystals with warm pet ether or pentane. The *diacetate* has m 35°, 35-36°. [J Am Chem Soc 69 1197 1947, IR and UV: J Am Chem Soc 74 441 1952.]

m-Benzenedisulfonic acid [98-48-6] M 238.2, $pK_{Est} < 0$. Freed from H₂SO₄ by conversion to the calcium or barium salts (using Ca(OH)₂ or Ba(OH)₂, and filtering). The calcium salt was then converted to the potassium salt, using K₂CO₃. Both the potassium and the barium salts were recrystd from H₂O, and the acid was regenerated by passing through the H⁺ form of a strong cation exchange resin. The acid was recrystd twice from conductivity water and dried over CaCl₂ at 25°. [Atkinson, Yokoi and Hallada J Am Chem Soc 83 1570 1961.] It has also been crystd from Et₂O and dried in a vacuum oven.

m-Benzenedisulfonyl chloride [585-47-7] M 275.1, m 63°. Crystd from CHCl₃ (EtOH free, by passing through an alumina column) and dried at 20mm pressure.

Benzene-1,2-dithiol [17534-15-5] **M** 142.2, **m** 24-25°, 27-28°, **b** 110-112°, **pK**Est(1) ~6.0, **pK**Est(2)~9.4. Likely impurities are the oxidation products, the disulfides which could be polymeric. Dissolve in aq NaOH until the soln is alkaline. Extract with Et₂O and discard the extract. Acidify with cold HCl (diluted 1:1 by vol with H₂O) to Congo Red paper under N₂ and extract three times with Et₂O. Dry the Et₂O with Na₂SO₄, filter, evaporate and distil residue under reduced press in an atmosphere of N₂. The distillate solidifies on cooling. [UV: J Chem Soc 3076 1958; J Am Chem Soc 81 4939 1951; Org Synth Coll Vol V 419 1973.]

Benzenesulfinic acid [618-41-7] **M 142.2, m 84°, pK²⁵ 2.16 (2.74).** The acid is purified by dissolving the Na salt in H₂O, acidifying to Congo Red paper with HCl and adding a concentrated soln of FeCl₃ whereby Fe sulfinate ppts. Collect the salt, wash with a little H₂O, drain, suspend in H₂O and add a slight excess of 1.5M aq NaOH. The Fe(OH)₃ ppts, it is filtd off, the sulfinic acid in the aq soln is extracted with

Et₂O, the extract is dried (Na_2SO_4) and evapl to give colorless crysts of benzenesulfinic acid **m** 84° which are stored under N_2 in the dark, as it slowly oxidises in air to the sulfonic acid [see Org Synth 42 62 1966].

Benzenesulfonic acid [98-11-3] M 158.2, m 43-44°, 50-55° (anhydrous), 65-66°, pK²⁵ -2.7, 0.70 (2.53?) Purified by dissolving in a small volume of distd H₂O and stirring with slightly less than the theoretical amount of BaCO₃. When effervescence is complete and the solution is still acidic, filter off the insoluble barium benzenesulfonate. The salt is collected and dried to constant weight *in vacuo*, then suspended in H₂O and stirred with a little less than the equivalent (half mol.) of sulfuric acid. The insoluble BaSO₄ (containing a little barium benzenesulfonate) is filtd off and the filtrate containing the free acid is evapd in a high vacuum. The oily residue will eventually crystallise when completely anhydrous. A 32% commercial acid was caused to fractionally cryst at room temp over P₂O₅ in a vac desiccator giving finally colorless deliquescent plates m 52.5°. The anhydrous crystn acid is deliquescent and should be stored over anhyd Na₂SO₄ in the dark and should be used in subdued sunlight as it darkens under sunlight. The main impurify is Fe which readily separates as the Fe salt in the early fractions [Taylor and Vincent J Chem Soc 3218 1952]. It is an IRRITANT to the skin and eyes. [see Org Synth Coll Vol I 84 1948; Michael and Adair Chem Ber 10 585 1877.]

Benzenesulfonic anhydride [512-35-6] M 298.3, m 88-91°. Crystd from Et₂O.

Benzenesulfonyl chloride [98-09-9] M 176.6, m 14.5°, b 120°/10mm, 251.2°/760mm(dec), d 1.384. Distd, then treated with 3mole % each of toluene and AlCl₃, and allowed to stand overnight. The free benzenesulfonyl chloride was distd off at 1mm pressure, and then carefully fractionally distd at 10mm in an all-glass column. [Jensen and Brown J Am Chem Soc 80 4042 1958.]

Benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid [89-05-4] M 254.2, m 281-284°, pK_1^{25} 1.87, pK_2^{25} 2.72, pK_3^{25} 4.30, pK_4^{25} 5.52. See entry on p. 345.

Benzene-1,2,3-tricarboxylic (hemimellitic) acid (H₂O) [36362-97-7] M 210.1, m 190°(dec), pK_1^{25} 2.62, pK_2^{25} 3.82, pK_3^{25} 5.51. Crystd from water.

Benzene-1,3,5-tricarboxylic (trimesic or trimellitic) acid [554-95-0] M 210.1, m 360°(dec), pK_1^{25} 2.64, pK_2^{25} 3.71, pK_3^{25} 5.01. Crystd from water.

1,2,4-Benzenetriol [533-73-3] M 126.1, m 141°, pK₁²⁰9.08, pK₂²⁰11.82. Crystd from Et₂O.

Benzethonium chloride [121-54-0] M 448.1, m 164-166°. Crystd from 1:9 MeOH/Et₂O mixture.

Benzhydrol (diphenylmethanol) [91-01-0] M 184.2, m 69°, b 297°/748mm, 180°/20mm. Crystd from hot H₂O or pet ether (b 60-70°), pet ether containing a little *benzene, from CCl₄, or EtOH (1mL/g). An additional purification step is passage of a *benzene soln through an activated alumina column. Sublimes in a vacuum. Also crystd three times from MeOH/H₂O [Naguib J Am Chem Soc 108 128 1986]. § A commercial polystyrene supported version is available.

Benzidine (4,4'-diaminobiphenyl) [92-87-5] M 184.2, m 128-129°, $pK_1^{20}3.85$, $pK_2^{20}4.95$. Its soln in *benzene was decolorized by percolation through two 2-cm columns of activated alumina, then concentrated until benzidine crystd on cooling. Recrystd alternatively from EtOH and *benzene to constant absorption spectrum [Carlin, Nelb and Odioso J Am Chem Soc 73 1002 1951]. Has also been crystd from hot water (charcoal) and from diethyl ether. Dried under vac in an Abderhalden pistol. Stored in the dark in a stoppered container. CARCINOGENIC.

Benzidine dihydrochloride [531-85-1] M 257.2, m >250°(dec). Crystd by soln in hot H_2O , with addition of conc HCl to the slightly cooled soln. CARCINOGENIC.

Benzil [134-81-6] M 210.2, m 96-96.5°. Crystd from *benzene after washing with alkali. (Crystn from EtOH did not free benzil from material reacting with alkali.) [Hine and Howarth J Am Chem Soc 80 2274

1958.] Has also been crystd from CCl₄, diethyl ether or EtOH [Inoue et al. J Chem Soc, Faraday Trans 1 82 523 1986].

Benzilic acid (diphenylglycollic acid) [76-93-7] M 228.3, m 150°, pK^{18} 3.06. Crystd from *benzene (*ca* 6mL/g), or hot H₂O.

Benzil monohydrazone [5433-88-7] M 224.3, m 151°. Crystd from EtOH.

 α -Benzil monoxime [14090-77-8], [E, 574-15-2], [Z, 574-16-3] M 105.1, m 140°. Crystd from *C₆H₆ (must not use animal charcoal).

Benzimidazole [51-17-2] **M 118.1, m 172-173^o, pK_1^{25}5.53, pK_2^{25}11.70. Crystd from water or aqueous EtOH (charcoal), and dried at 100^o for 12h.**

2-Benzimidazolylacetonitrile [4414-88-4] M 157.2, m 200-205° dec, 209.7-210.7°(corrected), 210°. Recrystd from aqueous EtOH. It has been recrystd from hot H₂O using charcoal, and finally from aqueous EtOH. [J Am Chem Soc 65 1072 1943].

Benzo[b]biphenylene [259-56-3] M 202.2, m dec >250°. Purified by sublimation under reduced pressure.

Benzo-15-crown-5 [14098-44-3] M 268.3, m 78-80°. Recrystd from *n*-heptane. IRRITANT.

Benzo-18-crown-6 [14098-24-9] **M 312.2, m 42-45°, 43-43.5°.** Purified by passage through a DEAE cellulose column in cyclohexane. Recryst from *n*-hexane. Its complex with thiourea has **m** 127° [5-6 mol of urea to ether, *J Org Chem* 36 1690 1971]. The stability constants of Na⁺, K⁺, Rb⁺, Cs⁺, Tl⁺ and Ba²⁺ are in *Inorg Chim Acta* 28 73 1978] [NMR: *J Am Chem Soc* 98 3769 1976]. IRRITANT.

Benzo[3,4]cyclobuta[1,2-b]quinoxaline [259-57-4] **M 204.2, m dec >250°.** Purified by sublimation under reduced pressure.

Benzofuran (coumarone) [271-89-6] M 118.1, b 62-63°/15mm, 97.5-99.0°/80mm, 170-173°/atm, 173-175°(169)/760mm, d_4^{20} 1.0945, n_D^{20} 1.565. Steam distil, dissolve in Et₂O, wash with 5% aqueous NaOH, saturated NaCl, dry (Na₂SO₄), evaporate and distil. UV: λ_{max} 245, 275, 282nm (log ϵ 4.08, 3.45, 3.48). The *picrate* has m 102-103°. [Org Synth Coll Vol V 251 1973; NMR: Black and Heffernan Aust J Chem 18 353 1965.]

2-Benzofurancarboxylic acid [496-41-3] M 162.1, m 192-193°, pK_{Est} ~3.2. Crystd from water.

Benzofurazan [273-09-6] M 120.1, m 55°. Purified by crystn from EtOH and sublimed.

Benzoic acid [65-85-0] M 122.1, m 122.6-123.1°, pK^{25} 4.12. For use as a volumetric standard, analytical reagent grade benzoic acid should be carefully fused to *ca* 130° (to dry it) in a platinum crucible, and then powdered in an agate mortar. Benzoic acid has been crystd from boiling water (charcoal), aq acetic acid, glacial acetic acid, *C₆H₆, aq EtOH, pet ether (b 60-80°), and from EtOH soln by adding water. It is readily purified by fractional crystn from its melt and by sublimation in a vacuum at 80°.

o-Benzoic acid sulfimide (saccharin, 1,2-benzisothiazol-3(2H)-one 1,1-dioxide) [81-07-2] M 183.2, m 227-229°, 229°, 228.8-229.7°, pK^{25} 1.31, pK^{25} 12.8. Purified by recrystn from Me₂CO [solubility 7.14% at 0°, 14.4% at 50°], or aqueous isoPrOH to give a fluorescent soln. [Am J Pharm 41 17 1952.]

Benzoic anhydride [93-97-0] **M 226.2, m 42°.** Freed from benzoic acid by washing with NaHCO₃, then water, and drying. Crystd from *benzene (0.5mL/g) by adding just enough pet ether (b 40-60°), to cause cloudiness, then cooling in ice. Can be distd at 210-220°/20mm.

(±)-Benzoin (2-hydroxy-2-phenylacetophenone) [119-53-9] M 212.3, m 137°. Crystd from CCl₄, hot EtOH (8mL/g), or 50% acetic acid. Crystd from high purity *benzene, then twice from high purity MeOH, to remove fluorescent impurities [Elliott and Radley Anal Chem 33 1623 1961]. Sublimes.

(±)-α-Benzoinoxime [441-38-3] M 227.3, m 151°. Crystd from diethyl ether.

Benzonitrile [100-47-0] **M 103.1, f -12.9°, b 191.1°, d 1.010, n 1.528.** Dried with CaSO₄, CaCl₂, MgSO₄ or K₂CO₃, and distd from P₂O₅ in an all-glass apparatus, under reduced pressure (b 69°/10mm), collecting the middle fraction. Distn from CaH₂ causes some decomposition of solvent. Isonitriles can be removed by preliminary treatment with conc HCl until the smell of isonitrile has gone, followed by preliminary drying with K₂CO₃. (This treatment also removes amines).

Steam distd (to remove small quantities of carbylamine). The distillate was extracted into ether, washed with dil Na₂CO₃, dried overnight with CaCl₂, and the ether removed by evaporation. The residue was distd at 40mm (**b** 96°) [Kice, Perham and Simons J Am Chem Soc 82 834 1960].

Conductivity grade benzonitrile (specific conductance 2 x 10^{-8} mho) was obtained by treatment with anhydrous AlCl₃, followed by rapid distn at 40-50° under vacuum. After washing with alkali and drying with CaCl₂, the distillate was vac distd several times at 35° before being fractionally crystd several times by partial freezing. It was dried over finely divided activated alumina from which it was withdrawn as required [Van Dyke and Harrison J Am Chem Soc **73** 402 1951].

Benzo[ghi]perylene (1,12-benzoperylene) [191-24-2] M 276.3, m 273°, 277-278.5°, 278-280°. Purified as light green crystals by recrystn from C_6H_6 or xylene and sublimes at 320-340° and 0.05mm [UV Helv Chim Acta 42 2315 1959; Chem Ber 65 846 1932; Fluoresc. Spectrum: J Chem Soc 3875 1954]. 1,3,5-Trinitrobenzene complex m 310-313° (deep red crystals from C_6H_6); picrate m 267-270° (dark red crystals from C_6H_6); styphnate (2,4,6-trinitroresorcinol complex) m 234° (wine red crystals from C_6H_6). It recrystallises from propan-1-ol [J Chem Soc 466 1959].

3,4-Benzophenanthrene [195-19-7] M 228.3, m 68°. Crystd from EtOH, pet ether, or EtOH/Me₂CO.

Benzophenone [119-61-9] M 182.2, m 48.5-49°, pK -6.0 (aq H₂SO₄). Crystd from MeOH, EtOH, cyclohexane, *benzene or pet ether, then dried in a current of warm air and stored over BaO or P₂O₅. Also purified by zone melting and by sublimation [Itoh J Phys Chem 89 3949 1985; Naguib et al. J Am Chem Soc 108 128 1986; Gorman and Rodgers J Am Chem Soc 108 5074 1986; Ohamoto and Teranishi J Am Chem Soc 108 6378 1986; Naguib et al. J Phys Chem 91 3033 1987].

Benzophenone oxime [574-66-3] M 197.2, m 142°, pK 11.18. Crystd from MeOH (4mL/g).

Benzopinacol [464-72-2] M 366.5, m 170-180° (depends on heating rate). Crystd from EtOH.

Benzo[a]pyrene (3,4 benzpyrene) [50-32-8] M 252.3, m 177.5-178°, 179.0-179.5°. A soln of 250mg in 100mL of *benzene was diluted with an equal volume of hexane, then passed through a column of alumina, $Ca(OH)_2$ and Celite (3:1:1). The adsorbed material was developed with a 2:3 *benzene/hexane mixture. (It showed as an intensely fluorescent zone.) The main zone was eluted with 3:1 acetone/EtOH, and was transferred into 1:1 *benzene-hexane by adding H₂O. The soln was washed, dried with Na₂SO₄, evaporated and crystd from *benzene by the addition of MeOH [Lijinsky and Zechmeister J Am Chem Soc 75 5495 1953]. Alternatively it can be chromatographed on activated alumina, eluted with a cyclohexane-*benzene mixture containing up to 8% *benzene, and the solvent evapd under reduced pressure [Cahnmann Anal Chem 27 1235 1955], and recrystd from EtOH [Nithipatikom and McGown Anal Chem 58 3145 1986]. CARCINOGENIC.

Benzo[e]pyrene (1,2-benzpyrene) [192-97-2] M 252.3, m 178-179°, 178-180°. Purified by passage through an Al₂O₃ column (Woelm, basic, activity I) and eluted with $*C_6H_6$ and recrystd from 2 volumes of EtOH- $*C_6H_6$ (4:1). Forms colourless or light yellow prisms or needles. [J Chem Soc 3659 1954; Justus Liebigs Ann Chem 705 190 1967.] 1,3,5-Trinitrobenzene complex m 253-254° (orange needles from

EtOH); the *picrate* prepared by mixing 20mg in 1mL of C_6H_6 with 20mg of picric acid in 2mL C_6H_6 , collecting the deep red crystals, and recrystallising from C_6H_6 m 228-229° [Synth J Chem Soc 398 1967; NMR: J Chem Phys 47 2020 1967]. CARCINOGEN.

3,4-Benzoquinoline (phenanthridine) [229-87-8] M 179.2, m 108-109°, b 350°, $pK^{20}4.61$. Chromatographed on activated alumina from *benzene soln, with diethyl ether as eluent. Evapn of ether gave crystalline material which was freed from residual solvent under vacuum, then further purified by fractional crystn under N₂, from its melt. Sublimes in vacuo. See also p. 324.

5,6-Benzoquinoline [85-02-9] M 179.0, m 93°, b 350°, pK²⁰5.11. As 3,4-benzoquinoline above.

7,8-Benzoquinoline [230-27-3] M 179.0, m 52.0-52.5°, pK²⁰4.21. As 3,4-benzoquinoline above.

p-Benzoquinone [106-51-4] M 108.1, m 115.7°. Usually purified in one or more of the following ways: steam distn, followed by filtration and drying (e.g. in a desiccator over CaCl₂); crystn from pet ether (b 80-100°), *benzene (with, then without, charcoal), water or 95% EtOH; sublimation under vacuum (e.g. from room temperature to liquid N₂). It slowly decomposes, and should be stored, refrigerated, in an evacuated or sealed glass vessel in the dark. It should be resublimed before use. [Wolfenden et al. J Am Chem Soc 109 463 1987.]

1-Benzosuberone (6,7,8,9-tetrahydrobenzocyclohepten-5-one) [826-73-3] M 160.2, b 80-85°/0.5mm, 90-93°/1mm, 138-139°/12mm, 154°/15mm, 175-175°/40mm, d_4^{20} 1.086, n_D^{20} 1.5638. Purified by dissolving in toluene, washing with aqueous 5% NaOH, then brine, dried (MgSO₄), and distd. 2,4-Dinitrophenylhydrazone has m 210.5°, 207-208° (from CHCl₃ + MeOH). Z-O-Picryloxime has m 156-157° (from Me₂CO+MeOH); the *E-O-picryloxime* has m 107°. The oxime has m 106.5-107.5°. [UV J Am Chem Soc 73 1411 1951, 75 3744 1953; Chem Ber 90 1844 1957.]

1,2,3-Benzothiadiazole [273-77-8] M 136.2, m 35°, pK_{Est} ~<0. Crystd from pet ether.

2,1,3-Benzothiadiazole [272-13-2] M 136.2, m 44°, b 206°/760mm, $pK_{Est} < 0$. Crystd from pet ether.

1-Benzothiophene (benzo[b]thiophene, thianaphthene) [95-15-8] M 134.2, m 29-32°, 30°, 31-32°, 32°, b 100°/16mm, 103-105°/20mm, 221-222°/760mm, $d_4^{32.2}$ 1.1484, n_D^{39} 1.6306. It has the odour of naphthalene. If the IR spectrum is not very good then suspend in a faintly alkaline aqueous soln and steam distil. Extract the distillate with Et₂O, dry the extract with CaCl₂, filter, evaporate the solvent and fractionate the residue. Distillate sets solid. The sulfoxide has m 142°, the picrate has m 148-149° (yellow crystals from EtOH) and the styphnate has m 136-137°. [J Org Chem 10, 381 1945; Chem Ber 52B 1249 1919, 53 1551 1920; The Chemistry of Heterocyclic Compounds Hartough and Weisel eds, Interscience Publ, NY, p23, 28, 1954.]

1,2,3-Benzotriazole [95-14-7] M 119.1, m 96-97°, 98.5°, 100°, b 159°/0.2mm, 204°/15mm, pK₁²⁰ 1.6, pK₂²⁰ 8.64. Crystd from toluene, CHCl₃, Me₂NCHO or satd aq soln, and dried at room temperature or in a vacuum oven at 65°. Losses are less if material is distd in a vacuum. CAUTION: may EXPLODE during vac distn, necessary precautions must be taken. [Org Synth Coll Vol III 106 1955.]

O-Benzotriazol-1-yl-N, N, N', N'-tetramethyluronium hexafluorophosphate (HBTU) [94790-37-1] M 379.2, m 200° (dec), 250°, 254°(dec). Wash with H₂O (3 x), CH₂Cl₂ (3 x), dry and recryst from MeCN. Dry in a vacuum and store cold in the dark [Dourtoglou et al. *Tetrahedron Lett* 1269 1978, NMR: Synthesis 572 1984].

Benzoylacetone (1-phenyl-1,3-butanedione) [93-91-4] M 162.2, m 58.5-59.0°. Crystd from Et₂O or MeOH and dried under vacuum at 40°.

2-Benzoylbenzoic acid [85-52-9] M **226.2, m 126-129°, 129.2, 130°, pK^{25} 3.54.** Recrystd from $*C_6H_6$ or cyclohexane, but is best recrystallised by dissolving in a small volume of hot toluene and then adding just enough pet ether to cause pptn and cool. Dry in a low vacuum at 80°. It can be sublimed at 230-240°/0.3mm [J Chem Soc 265 1957]. The S-benzylthiouronium salt has m 177-178° (from EtOH). [J Am Chem Soc 75 4087 1953; Chem Ber 90 1208 1957.]

3-Benzoylbenzoic acid [579-18-0] M 226.2, m 164-166°, pK_{Est}~3.5. Cryst from EtOH; vac subl.

4-Benzoylbenzoic acid [611-95-0] **M 226.2, m 196.5-198°, 197-200°, pK**_{Est} ~3.7. Dissolve in hot H₂O by adding enough aqueous KOH soln till distinctly alkaline, filter and then acidify with drops of conc HCl. Filter off, wash solid with cold H₂O, dry at 100°, and recrystallise from EtOH. [J Am Chem Soc 55 2540 1933.]

(S +) and (R -) 1-Benzoyl-2-tert-butyl-3-methyl-4-imidazolinone [R- 101055-57-6] [S-101055-56-5] M 260.3, m 142-143°, 145.6-146.6°, 145-147°, $[\alpha]_{546}^{20}$ (+) and (-) 155°, $[\alpha]_D^{20}$ (+) and (-) 133° (c 1, CHCl₃). Recrystd from boiling EtOH (sol 1.43g/mL) or better by dissolving in CH₂Cl₂ and adding pentane, filter and dry for at least 12h at 60°/0.1mm and sublimed at 135°/0.01mm. It has also been purified by flash column chromatography with Merck silica gel at 0.04-0.063mm and using Et₂O/pet ether/MeOH (60:35:5) as eluent. It is then recrystd from EtOH/pet ether. [IR, NMR: Helv Chim Acta 70 237 1987; Angew Chem, Int Ed Engl 25 345 1986.] The racemate is purified in a similar manner and has m 104-105° [NMR: Helv Chim Acta 68 949 1985].

Benzoyl chloride [98-88-4] **M 140.6, b 56°/4mm, 196.8°/745mm, d 1.2120, n¹⁰ 1.5537.** A soln of benzoyl chloride (300mL) in C_6H_6 (200mL) was washed with two 100mL portions of cold 5% NaHCO₃ soln, separated, dried with CaCl₂ and distd [Oakwood and Weisgerber Org Synth III 113 1955]. Repeated fractional distn at 4mm Hg through a glass helices-packed column (avoiding porous porcelain or silicon-carbide boiling chips, and hydrocarbon or silicon greases on the ground joints) gave benzoyl chloride that did not darken on addition of AlCl₃. Further purification was achieved by adding 3 mole% each of AlCl₃ and toluene, standing overnight, and distilling off the benzoyl chloride at 1-2mm [Brown and Jenzen J Am Chem Soc 80 2291 1958]. Refluxing for 2h with an equal weight of thionyl chloride before distn, has also been used. Strong IRRITANT. Use in a fume cupboard.

Benzoylformic acid (phenylglyoxylic acid) [611-73-4] M 150.14, m 62-65°, 64.5-65.5°, 67°, b 84°/0.1mm, 163-167°/15mm, pK²⁵ 1.39 (1.79). If the sample is oily then it may contain H₂O. In this case dry in a vacuum desiccator over P₂O₅ or KOH until crisp. For further purification dissolve 5.5g in hot CCl₄ (750mL), add charcoal (2g, this is necessary otherwise the acid may separate as an oil), filter, cool in ice-water until crystallisation is complete. Filter the acid, and the solvent on the crystals is removed by keeping the acid (4.5g) in a vacuum desiccator for 2 days. Slightly yellow crystals are obtained. It can be recrystd also from *C₆H₆/pet ether, and can be distilled in vacuum. The acid is estimated by titration with standard NaOH. The phenylhydrazone is recrystallised form EtOH, m 163-164°; the semicarbazone acid has m 259°(dec) (from EtOH). The methyl ester distils at 137°/14mm, 110-111°/2mm, n_D²⁰ 1.5850. [J Am Chem Soc 67 1482 1945; J Org Chem 24 1825 1959.]

Benzoyl glycine (hippuric acid) [495-69-2] M 179.2, m 188°, pK^{40} 3.59. Crystd from boiling H₂O. Dried over P₂O₅.

Benzoyl isothiocyanate [532-55-8] M 163.2, m 25.5-26°, b 72.5-73°/6mm, 88-91°/20mm, 94-96°/21mm, 202.5-204°/724mm, 250-255°/atm, d_4^{20} 1.213, n_D^{20} 1.637. Distil over a small amount of P₂O₅, whereby the distillate crystallises in prisms. It is readily hydrolysed by H₂O to give benzamide and benzoylurea, but with NH₃ it gives *benzoylurea* m 210° which can be recrystd from EtOH. [J Am Chem Soc 62 1595 1940, 76 580 1954; Org Synth Coll Vol III 735 1955.]

Benzoyl peroxide [94-36-0] M 242.2, m 95°(dec). Dissolved in CHCl₃ at room temperature and ppted by adding an equal volume of MeOH or pet ether. Similarly ppted from acetone by adding two volumes of distilled water. Has also been crystd from 50% MeOH, and from diethyl ether. Dried under vacuum at room

temperature for 24h. Stored in a desiccator in the dark at 0°. When purifying in the absence of water it can be **EXPLOSIVE** and it should be done on a very small scale with adequate protection. Large amounts should be kept moist with water and stored in a refrigerator. [Kim et al. J Org Chem 52 3691 1987.]

p-Benzoylphenol (4-hydroxybenzophenone) [1137-42-4] M 198.2, m 133.4-134.8°, pK²⁵ 7.95. Dissolved in hot EtOH (charcoal), crystd once from EtOH/H₂O and twice from *benzene [Grunwald J Am Chem Soc 73 4934 1951; Dryland and Sheppard J Chem Soc Perkin Trans 1 125 1986].

N-Benzoyl-N-phenylhydroxylamine [304-88-1] M 213.2, m 121-122°. Recrystd from hot water, *benzene or acetic acid.

2-Benzoylpyridine [91-02-1] M 183.2, m 41-43°, 48-50°, 72°/0.02mm, 104-105°/0.01, n_D^{24} 1.6032, pK_{Est} ~2.4. Dissolve in Et₂O, shake with aqueous NaHCO₃, H₂O, dry over MgSO₄, it solidifies on cooling. The solid can be recrystd from pet ether. Its *hydrochloride* crystallises from Me₂CO, m 126-127°, and the 2,4-dinitrophenylhydrazone has m 193-195°. [J Organomet Chem 24 623 1970.]

Benzoyl sulfide [644-32-6] M 174.4, m 131.2-132.3°. About 300mL of solvent was blown off from a filtered soln of benzoyl disulfide (25g) in acetone (350mL). The remaining acetone was decanted from the solid which was recrystd first from 300mL of 1:1 (v/v) EtOH/ethyl acetate, then from 300mL of EtOH, and finally from 240mL of 1:1 (v/v) EtOH/ethyl acetate. Yield about 40% [Pryor and Pickering J Am Chem Soc 84 2705 1962]. Handle in a fume cupboard because of TOXICITY and obnoxious odour.

2,1-Benzoxathiol-3-one-1,1-dioxide (sulfobenzoic acid anhydride) [81-08-3] M 184.2, m 116-124°, 126-127°, 128°, b 184-186°/18mm. Purified by distn in a vacuum and readily solidifies to a crystalline mass on cooling. [J Am Chem Soc 34 1594 1912.] Alternatively purified by dissolving in the minimum vol of toluene and reflux for 2h using a Dean-Stark trap. Evaporate under reduced pressure and distil the anhydride at 18mm. It can then be recrystd three times from its own weight of dry C_6H_6 . It is sensitive to moisture and should be stored in the dark in a dry atmosphere. The O-methyloxime has m 110-112° [Tetrahedron Lett 3289 1972]. [Org Synth Coll Vol I 495 1941.] (See also p. 568 in Chapter 6.)

Benzoxazolinone [59-49-4] M 135.1, m 137-139°, 142-143°(corrected), b 121-213°/17mm, 335-337°/760mm. It can be purified by recrystn from aqueous Me₂CO then by distn at atm pressure then in a vacuum. The *methyl mercury salt* recryst from aq EtOH has m 156-158°. [J Am Chem Soc 67 905 1945.]

N-Benzoyl-o-tolylhydroxylamine [1143-74-4] M 227.3, m 104°. Recrystd from aqueous EtOH.

Benzyl-2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranoside [13343-63-0] M 399.4, m 256-261°, 263-264°, $[\alpha]_D^{26}$ +120° (c 1, pyridine). Wash with cold isoPrOH and crystallise from dioxane/isoPrOH. [J Org Chem 32 2759 1967.]

Benzyl acetate [140-11-4] M 150.2, m -51°, b 92-93°/10mm, 134°/102mm, 214.9°/760mm, d_4^{20} 1.0562, n_D^{25} 1.4994. Purified by fractional distn, preferably in a good vacuum. Values of n^{25} of 1.5232-1.5242 seem too high and should be 1.4994. [J Org Chem 26 5180 1961.]

Benzyl acetoacetate [5396-89-4] M 192.2, b 130°/2mm, 156-157°/10mm, 162-167°/15mm, 275-277°/atm, d_4^{20} 1.114, n_D^{20} 1.514. Fractionate and collect fractions of expected physical properties. Otherwise add *ca* 10% by weight of benzyl alcohol and heat in an oil bath (160-170°, open vessel) for 30min during which time excess of benzyl alcohol will have distd off, then fractionate. [*J Org Chem* 17 77 1952.]

4'-Benzylacetophenone [782-92-3] M 210.3, m 73°. Crystd from EtOH (ca 1mL/g).

Benzyl alcohol [100-51-6] M 107.2, f -15.3°, b 205.5°, 93°/10mm, d 0.981, n 1.54033, pK^{25} 15.4. Usually purified by careful fractional distn at reduced pressure in the absence of air. Benzaldehyde, if present, can be detected by UV absorption at 283nm. Also purified by shaking with aq KOH and extracting with peroxide-free diethyl ether. After washing with water, the extract was treated with satd NaHS sol, filtered,

washed and dried with CaO and distd under reduced pressure [Mathews J Am Chem Soc 48 562 1926]. Peroxy compounds can be removed by shaking with a soln of Fe(II) followed by washing the alcohol layer with distd water and fractionally distd.

Benzylamine [100-46-9] M 107.2, b 178°/742mm, 185°/768mm, d 0.981, n 1.5392, pK^{25} 9.33. Dried with NaOH or KOH, then distd under N₂, through a column packed with glass helices, taking the middle fraction. Has also been distd from zinc dust under reduced pressure.

Benzylamine hydrochloride [3287-99-8] M 143.6, m 248° (rapid heating). Crystd from water.

N-Benzylaniline (*N*-phenylbenzylamine) [103-32-2] M 183.4, m 36°, b 306-307°, d 1.061, pK^{25} 4.04. Crystd from pet ether (b 60-80°) (ca 0.5mL/g).

1-Benzyl-1-aza-12-crown-4 (10-benzyl-1,4,7-trioxa-10-azacyclododecane) [84227-47-4] M 265.4, 122-125°/0.03mm, 140-143°/0.05mm, d_4^{20} 1.09, n_D^{20} 1.52, pK_{Est} ~ 7.7. Dissolve in CH₂Cl₂ or CCl₄ (1g in 30mL) wash with H₂O (30mL), brine (30mL), H₂O (30 mL) again, dry over MgSO₄ or Na₂SO₄ and evaporate. The residue in CH₂Cl₂ is chromatographed through Al₂O₃ (eluting with 10% EtOAc in hexane), evaporate, collect the correct fractions and distil (Kügelrohr). Log K_{Na} in dry MeOH at 25° for Na⁺ complex is 2.08. [*Tetrahedron Lett* 26 151 1985; J Org Chem 53 5652 1988.]

Benzyl bromide [100-39-0] M 171.0, m -4°, b 85°/12mm, 192°/760mm, d 1.438, n 1.575. Washed with conc H₂SO₄ (CARE), water, 10% Na₂CO₃ or NaHCO₃ soln, and again with water. Dried with CaCl₂, Na₂CO₃ or MgSO₄ and fractionally distd in the dark, under reduced pressure. It has also been thoroughly degassed at 10⁻⁶ mm and redistd in the dark. This gave material with λ_{max} (MeCN): 226nm (ε 8200) [Mohammed and Kosower J Am Chem Soc 93 2709 1971]. Handle in a fume cupboard, extremely LACHRYMATORY.

Benzyl bromoacetate [5437-45-6] M 229.1, b 96-98°/0.1mm, 146°/12mm, 166-170°/22mm, d_4^{20} 1.444, n_D^{25} 1.5412. Dilute with Et₂O, wash with 10% aqueous NaHCO₃, H₂O, dry (MgSO₄) and fractionate using a Fenske (glass helices packing) column. [*J Chem Soc* 1521 1956.] LACHRYMATORY

N-Benzyl-tert-butylamine (*N*-tert-butylbenzylamine) [3378-72-1] M 163.3, b 91°/12mm, 109-110°/25mm, 218-220°/atm, d_4^{20} 0.899, n_D^{25} 1.4942., pK²⁵ 10.19. Dissolve in Et₂O, dry over KOH pellets, filter and fractionate in a N₂ atmosphere to avoid reaction with CO₂ from the air. The hydrochloride has m 245-246°(dec) (from MeOH + Me₂CO) and the perchlorate has m 200-201°. [J Am Chem Soc 80 4320 1958.]

Benzyl carbamate [621-84-1] M 151.2, m 86°, 86-88°, 90-91°. If it smells of NH₃ then dry in a vac desiccator and recryst from 2 vols of toluene and dry in a vac desiccator again. It forms glistening plates from toluene, and can be recrystd from H₂O [J Org Chem 6 878 1941; Org Synth Coll Vol III 168 1955].

Benzyl chloride [100-44-7] **M 126.6, m 139°, b 63°/8mm, d 1.100, n 1.538.** Dried with MgSO₄ or CaSO₄, or refluxed with fresh Ca turnings, then fractionally distd under reduced pressure, collecting the middle fraction and storing with CaH₂ or P₂O₅. Has also been purified by passage through a column of alumina. Alternatively it is dried over MgSO₄ and distd in a vacuum. The middle fraction is degassed by several freeze-thaw cycles and then fractionated in an 'isolated fractionating column' (which has been evacuated and sealed off at ~10⁻⁶ mm) over a steam bath. The middle fraction is retained. The final samples were vacuum distd from this sample and again retaining the middle fraction. The purity is >99.9% (no other peaks are visible on GLC and the NMR spectrum is consistent with the structure. [Mohammed and Kosower J Am Chem Soc 93 1709 1971.] IRRITANT and strongly LACHRYMATORY.

N-Benzyl-B-chloropropionamide [24752-66-7] M 197.7, m 94°. Crystd from MeOH.

Benzyl cinnamate [103-41-3] M 238.3, m 34-35°, 39°, b 154-157°/0.5mm, 228-230°/22mm. Recrystd to constant melting point from 95% EtOH and has the odour of balsam. Alternatively dissolve in Et₂O, wash with 10% aqueous Na₂CO₃, H₂O, dry (Na₂SO₄), evaporate and fractionate under reduced press using a short Vigreux column. It decomposes when boiled at atm press. [J Am Chem Soc 74 547 1952; 84 2550 1962.]

Benzyl cyanide [140-29-4] M 117.1, b 100°/8mm, 233.5°/760mm, d 1.015, n 1.523. Benzyl isocyanide can be removed by shaking vigorously with an equal volume of 50% H₂SO₄ at 60°, washing with satd aq NaHCO₃, then half-saturated NaCl soln, drying and fractionally distilling under reduced pressure. Distn from CaH₂ causes some decomposition of this compound: it is better to use P₂O₅. Other purification procedures include passage through a column of highly activated alumina, and distn from Raney nickel. *Precautions should be taken because of possible formation of free* TOXIC cyanide; use an efficient fume cupboard.

N-Benzyl dimethylamine [103-83-3] **M 135.2, b 66-67°/15mm, 83-84°/30mm, 98-99°/24mm,** d_4^{20} 0.898, n_D^{20} 1.516, pK^{25} 8.91. Dry over KOH pellets and fractionate over Zn dust in a CO₂—free atmosphere. It has a pKa²⁵ of 8.25 in 45% aq EtOH. Store under N₂ or in a vacuum. The picrate has **m** 94-95°, and the picrolonate has **m** 151° (from EtOH). [Chem Ber 63 34 1930; J Am Chem Soc 55 3001 1933; J Chem Soc 2845 1957.] The tetraphenyl borate salt has **m** 182-185°. [Anal Chem 28 1794 1956.]

Benzyldimethyloctadecylammonium chloride [122-19-0] M 442.2, m 63°. Crystd from acetone.

2-Benzyl-1,3-dioxolane [101-49-5] M 164.2, b 98-99°/1mm, 110°/5mm, 137-138°/34mm, 240-242°/atm, d_4^{20} 1.087, n_D^{20} 1.532. Dissolve in CH₂Cl₂, wash well with 1M NaOH, dry over K₂CO₃, filter, evaporate and distil through a short path still (Kügelrohr). It has also been purified by preparative gas chromatography. [Synthesis 808 1974; J Org Chem 34 3949 1969.]

Benzyl ether [103-50-4] M 198.3, b 298°, 158-160°/0.1mm, d 1.043, n 1.54057. Refluxed over sodium, then distd under reduced pressure. Also purified by fractional freezing.

N-Benzyl-*N*-ethylaniline [92-59-1] M 221.3, b 212-222°/54mm, 285-286°/710mm, 312-313°/atm (dec), d_4^{20} 1.029, n_D^{20} 1.595, pK_{Est} ~4.6. Dry over KOH pellets and fractionate. The *picrate* crystallises from *C₆H₆ as yellow lemon crystals m 126-128° (softening at 120°). [*J Chem Soc* 303 1951; IR: *J Chem Soc* 760 1958.]

Benzyl ethyl ether [539-30-0] **M 136.2, b 186°, 65°/10mm, d 0.949, n 14955.** Dried with CaCl₂ or NaOH, then fractionally distd. [J Am Chem Soc 78 6079 1956.]

Benzyl ethyl ketone (1-phenylbutan-2-one) [1007-32-5] M 148.2, b 49-49.5°/0.01mm, 66-69°/1mm, 83-85°/5mm, 101-102°/10mm, 229-233°/atm, d_4^{20} 0.989, n_D^{25} 1.5015. Purified by fractionation using an efficient column. It can be converted into the *oxime* and distd, b 117-118°/2mm, 145-146°/15mm, d_{25}^{25} 1.036, n_D^{25} 1.5363, decompose oxime and the ketone is redistilled. It can also be purified via the *semicarbazone* which has m 154 155°. [J Am Chem Soc 77 5655 1955; J Org Chem 15 8 1950.]

S-(+)- and R-(-)- Benzyl glycidyl ether (1-benzyloxyoxirane) [S:14618-80-5] [R:16495-13-9] M 164.2, b 68°/10⁻⁴ mm, 105°/0.4mm, d_4^{20} 1.072, n_D^{20} 1.517, $[\alpha]_{546}^{20}$ (+) and (-) 5.5°, $[\alpha]_D^{20}$ (+) and (-) 5.1° (c 5, toluene), $[\alpha]_D^{20}$ (+) and (-) 1.79° (c 5.02, CHCl₃), $[\alpha]_D^{21}$ (+) and (-) 15.3° (neat). The ether in EtOAc is dried (Na₂SO₄) then purified by flash chromatography using pet ether/EtOAc (5:1) as eluent. The ether is then distd through a short path dist apparatus (Kugelrohr) as a colourless liquid. Alternatively, dissolve in CHCl₃, wash with H₂O, dry (Na₂SO₄), evaporate and purify through silica gel chromatography. [J Chem Soc 1021 1967; Heterocycles 16 381 1981; Org Synth 69 82 1990; Synthesis 539 1989; Chem Pharm Bull Jpn 39 1385 1991.]

3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolinium chloride [4568-71-2] M 269.8, m 142-144°, 145-147°. Purified by recrystn from EtOH or H_2O . If placed in a bath at 125° and heated at 2°/min the m is 140.5-141.4°. [J Biol Chem 167 699 1947, J Am Chem Soc 79 4386 1957.]

O-Benzylhydroxylamine hydrochloride [2687-43-6] M 159.6, m 234-238°(sublimes), pK_{Est} ~5.9. Recrystd from H₂O or EtOH.

N-Benzylideneaniline [538-51-2] M 181.2, m 48° (54°), b 300°/760mm. Steam volatile and crystd from *benzene or 85% EtOH.

Benzyl isocyanate [3173-56-6] M 133.2, b 82-84°/10mm, 87°/14mm, 95°/17mm, 101-104°/33mm, d_4^{20} 1.08, n_D^{20} 1.524. Purified by fractionation through a two-plate column. It is a viscous liquid and is TOXIC. [J Chem Soc 182 1947; J Am Chem Soc 81 4838 1959; IR: Monatsh Chem 88 35 1957.]

Benzyl isothiocyanate [622-78-6] M 149.2, b 123-124°/1mm, 138-140°/20mm, 255-260°/atm, d_4^{20} 1.1234, n_D^{20} 1.6039. Dissolve in Et₂O, filter, if there is any solid, and distil through an efficient column at 11mm with bath temperature at *ca* 150°. Characterise by reacting (0.5mL) in EtOH (1mL) with 50% NH₂NH₂.H₂O (2 mL) to give 4-benzylthiosemicarbazide as colourless needles which are recrystallised from EtOH, m 130°. [J Chem Soc 1582 1950; Justus Liebigs Ann Chem 612 11 1958; IR and UV: Acta Chem Scand 13 442 1959.]

S-Benzyl-isothiouronium chloride [538-28-3] M 202.7, two forms, m 150° and 175°, pK_{Est} ~9.8 (free base). Crystd from 0.2M HCl (2mL/g) or EtOH and dried in air.

Benzylmalonic acid [616-75-1] M 194.2, m 121°, pK₁²⁵ 2.91, pK₂²⁵ 5.87. Crystd from *C₆H₆.

Benzylidene malononitrile [2700-22-3] M 154.2, m 83-84°. Recrystd from EtOH [Bernasconi et al. J Am Chem Soc 107 3612 1985].

Benzyl mercaptan [100-53-8] M 124.2, b 70.5-70.7°/9.5mm, d 1.058, n 1.5761, pK^{25} 9.43. Purified via the mercury salt [see Kern J Am Chem Soc 75 1865 1953], which was crystd from *benzene as needles (m 121°), and then dissolved in CHCl₃. Passage of H₂S gas regenerated the mercaptan. The HgS ppte was filtered off, and washed thoroughly with CHCl₃. The filtrate and washings were evaporated to remove CHCl₃, then residue was fractionally distd under reduced pressure [Mackle and McClean, Trans Faraday Soc 58 895 1962].

(-)-N-Benzyl-N-methylephedrinium bromide [benzyl(2-hydroxy-1-methyl-2-phenethyl) dimethylammonium bromide] [58648-09-2] M 350.3, m 209-211°, 212-214°, $[\alpha]_D^{25}$ -3.8° (c 1.45, MeOH), $[\alpha]_D^{20}$ -5.3° (c 1.45, MeOH). Recrystd from MeOH/Et₂O. [Justus Liebigs Ann Chem 710 1978.] The chloride is recrystd from EtOAc/n-hexane, m 198-199° $[\alpha]_D^{25}$ -8.67° (c 1.45, MeOH). [J Chem Soc, Perkin Trans 1 574 1981.]

Benzyl 4-nitrophenyl carbonate [13795-24-9] **M 273.2, m 78-80°.** Dissolve in Et₂O, wash with H₂O (3x) and satd aq NaCl, dry (MgSO₄), evap in vac and recryst residue from a small vol of MeOH, **m** 78-79°. Alternatively dissolve in Et₂O, wash with N HCl (2x), 0.5N NaHCO₃ (4x) then H₂O, dry (Na₂SO₄), evap Et₂O and recryst residue from *C₆H₆-pet ether, **m** 79-80°. [Khosla et al. *Indian J Chem* **5** 279 1967; Wolman et al. J Chem Soc (C) 596 1976.]

Benzyloxyacetyl chloride [19810-31-2] M 184.6, b 81°/0.2mm, 84-87°/0.4mm, 105-107°/5mm, d_4^{20} 1.19, n_D^{20} 1.523. Check IR to see if there are OH bands. If so then it may be contaminated with free acid formed by hydrolysis. Add oxalyl chloride (amount depends on contamination and needs to be judged, *ca* 3mols) heat at 50° in the absence of moisture for 1h and fractionate twice, b 81°/0.2mm (with bath temp at 81°). Excessive heating results in decomposition to give benzyl chloride. The anilide is formed by adding aniline in CHCl₃ soln, m 49°. [Helv Chim Acta 16 1130 1933.]

Benzyloxybutan-2-one [6278-91-7] M 178.2, b 90-92°/0.1mm, 88-91°/0.5mm, 121-126°/5mm, d_4^{20} 1.0275, n_D^{20} 1.5040. Dissolve in CHCl₃, wash with H₂O, aqueous saturated NaHCO₃, H₂O, dry (MgSO₄), evaporate the CHCl₃, and fractionate. [J Am Chem Soc 79 2316 1957.]

Benzyloxycarbonyl chloride (Cbz-Cl, benzyl chloroformate) [501-53-1] M 170.6, b 103°/20mm, d 1.195, n 1.5190. Commercial material is better than 95% pure and may contain some toluene, benzyl alcohol, benzyl chloride and HCl. After long storage (e.g. two years at 4°, Greenstein and Winitz [*The Chemistry of the Amino Acids* Vol 2 p. 890, J Wiley and Sons NY, 1961] recommended that the liquid should be flushed with a stream of dry air, filtered and stored over sodium sulfate to remove CO₂ and HCl which are formed by decomposition. It may further be distilled from an oil bath at a temperature below 85° because Thiel and Dent [*Annalen* 301 257 1898] stated that benzyloxycarbonyl chloride decarboxylates to benzyl chloride slowly at 100° and vigorously at 155°. Redistillation at higher vac below 85° yields material which shows no other peaks than those of benzyloxycarbonyl chloride by NMR spectroscopy. LACHRYMATORY and TOXIC.

N-Benzyloxycarbonylglycyl-L-alaninamide [17331-79-2] M 279.3, m dec >200°. Recrystd from EtOH/Et₂O.

N-Benzyloxycarbonyl-*N*'-methyl-L-alaninamide [33628-84-1] M 236.3, m dec >200°. Recrystd from EtOAc.

5-Benzyloxyindole [1215-59-4] **M 223.3, m 96-97°; 100-103°, 104-106°, pK <0.** Recrystd from C_6H_6 -pet ether or pet ether. The *picrate*, red crystals from C_6H_6 , has **m** 142-143°. [Chem Ind (London) 1035 1953; J Am Chem Soc **76** 5579 1954; fluorescence: Biochem J **107** 225 1968.]

p-(Benzyloxy)phenol [103-16-2] M 200.2, m 122.5°, pK_{Est} ~10.1. Crystd from EtOH or water, and dried over P₂O₅ under vacuum. [Walter et al. J Am Chem Soc 108 5210 1986.]

S-(-)-3-Benzyloxypropan-1,2-diol [17325-85-8] M 182.2, m 24-26°, b 117-118°/10⁻⁴mm, 115-116°/0.02mm, 121-123°/0.2mm, d_4^{20} 1.1437, n_D^{22} 1.5295, $[\alpha]_D^{25}$ -5.9° (neat). Purified by repeated fractional distn. [J Biol Chem 193 835 1951, 230 447 1958.]

2-Benzylphenol [28994-41-4] M 184.2, m 54.5°, b 312°/760mm, 175°/18mm, $pK_{Est} \sim 10.0$ Crystd from EtOH, stable form has m 52° and unstable form has m 21°.

4-Benzylphenol (α -Phenyl-*p*-cresol) [101-53-1] M 184.2, m 84°, pK_{Est} ~10.2. Crystd from water.

1-Benzyl-4-piperidone [3612-20-2] M 189.3, b 107-108°/0.2mm, 114-116°/0.3mm, 143-146°/5mm, 157-158°/11mm, d 1.059, n 1.538. If physical properties show contamination then dissolve in the minimum volume of H₂O, made strongly alkaline with aqueous KOH, extract with toluene several times, dry the extract with K₂CO₃, filter, evaporate and distil the residue at high vacuum using a bath temp of 160-190°, and redistil. [*J Chem Soc* 3173 *1957*, *J Am Chem Soc* 53 1030 *1930*.] The hydrochloride has m 159-161° (from Me₂CO + Et₂O), and the picrate has m 174-182° (from Me₂CO + Et₂O). [Helv Chim Acta 41 1184 *1958*.]

2-Benzylpyridine [101-82-6] M 169.2, b 98.5°/4mm, d 1.054, n²⁶ 1.5771, pK²⁵ 5.13. Dried with NaOH for several days, then distd from CaO under reduced pressure, redistilling the middle fraction.

4-Benzylpyridine [2116-65-6] M 169.2, b 110.0°/6mm, d 1.065, n²⁶ 1.5814, pK²⁵ 5.59. Dried with NaOH for several days, then distd from CaO under reduced pressure, redistilling the middle fraction.

4-N-Benzylsulfanilamide [1709-54-2] M 262.3, m 175°. Crystd from dioxane/H₂O.

Benzyl sulfide [538-74-9] M 214.3, m 50°. See dibenzylsulfide on p. 192.

Benzylthiocyanate [3012-37-1] M 149.2, m 43°, b 256°(dec). Crystd from EtOH or aqueous EtOH.

Benzyl toluene-p-sulfonate [1024-41-5] M 162.3, m 58°. Crystd from pet ether (b 40-60°).

Benzyltributylammonium bromide [25316-59-0] M 356.4, m 169-171°, 174-175°. Recrystd from EtOAc/EtOH and EtOH/Et₂O. [J Am Chem Soc 73 4122 1951, 81 3264 1959.]

Benzyl 2,2,2-trichloroacetimidate [81927-55-1] **M 252.5, b 106°/0.5mm, m 3°, d 1.349, n 1.545.** Purify by distn to remove up to 1% of PhCH₂OH as stabiliser. A soln in hexane can be stored for up to 2 months without decompn. It is hygroscopic and has to be stored dry. [Wessel et al. J Chem Soc, Perkin Trans 1 2247 1985.]

Benzyltrimethylammonium chloride [56-93-9] **M 185.7, m 238-239°(dec).** A 60% aq soln was evapd to dryness under vac on a steam bath, and then left in a vac desiccator containing a suitable dehydrating agent. The solid residue was dissolved in a small amount of boiling absolute EtOH and pptd by adding an equal volume of diethyl ether and cooling. After washing, the ppte was dried under vac [Karusch J Am Chem Soc 73 1246 1951].

Benzyltrimethylammonium hydroxide (Triton B) [100-85-6] M 167.3, d 0.91. A 38% soln (as supplied) was decolorized (charcoal), then evaporated under reduced pressure to a syrup, with final drying at 75° and 1mm pressure. Prepared anhydrous by prolonged drying over P_2O_5 in a vacuum desiccator.

Berbamine [478-61-5] M 608.7, m 197-210°, $[\alpha]_D^{20}$ +115° (CHCl₃), pK²⁰7.33. Crystd from pet ether.

Berberine [2086-83-1] M 336.4, m 145°, pK_1^{20} 2.47, pK_2^{20} 11.73 (pseudobase?). Crystd from pet ether or ether as yellow needles.

Berberine hydrochloride $(2H_2O)$ [633-65-8] M 407.9, m 204-206°(dec), pK 2.47. Crystn from water gives the dihydrate. The anhydrous salt may be obtained by recrystn from EtOH/Et₂O, wash with Et₂O and dry in a vacuum. The *iodide* has m 250°(dec) (from EtOH). [J Chem Soc 113 503 1918; J Chem Soc 2036 1969.]

Betaine [107-43-7] M 117.1, m 301-305°(dec) (anhydrous), pK²⁵ 1.83. Crystd from aq EtOH.

Betamethasone $(9\alpha$ -fluoro-11 β ,17 α ,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione) [378-44-9] M 392.5, m 231-136°(dec), 235-237°(dec), $[\alpha]_D^{20}$ +108° (c 1, Me₂CO). Crystd from ethyl acetate, and has λ_{max} 238nm (log ε 4.18) in MeOH.

Biacetyl (butan-2,3-dione) [431-03-8] **M 86.1, b 88°, d 0.981, n^{18.5}1.3933.** Dried with anhydrous CaSO₄, CaCl₂ or MgSO₄, then vacuum distd under nitrogen, taking the middle fraction and storing it at Dry-ice temperature in the dark (to prevent polymerization).

Bibenzyl [103-29-7] **M 182.3, m 52.5-53.5°.** Crystd from hexane, MeOH, or 95% EtOH. It has also been sublimed under vacuum, and further purified by percolation through columns of silica gel and activated alumina.

Bicuculline [485-49-4] M 367.4, m 215° (196°, 177°), $[\alpha]_{546}^{20}$ +159° (c 1, CHCl₃), pK 4.84. See bicuculline entry on p. 515 in Chapter 6.

Bicyclohexyl [92-51-3] **M 166.3, b 238°** (cis-cis), 217-219° (trans-trans). Shaken repeatedly with aqueous KMnO₄ and with conc H₂SO₄, washed with water, dried, first from CaCl₂ then from sodium, and distd. [Mackenzie J Am Chem Soc 77 2214 1955.]

Bicyclo[3.2.1]octane [6221-55-2] M 110.2, m 141°. Purified by zone melting.

Biguanide [56-03-1] M 101.1, m 130° pK₁²⁵ 3.1, pK₂²⁵ 12.8. Crystd from EtOH.

Bilirubin [635-65-4] M 584.7, ϵ_{450nm} 55,600 in CHCl₃, pK_{Est} ~3.0. An acyclic tetrapyrrole bile pigment with impurities which can be eliminated by successive Soxhlet extraction with diethyl ether and MeOH. It crystallises from CHCl₃ as deep red-brown rhombs, plates or prisms, and is dried to constant weight at 80° under vacuum. [Gray et al. J Chem Soc 2264, 2276 1961.]

Biliverdine [114-25-0] M 582.6, m >300°, pK 3.0. The precursor of bilirubin (above) and forms dark green plates or prisms, with a violet reflection, from MeOH. [Gray et al. J Chem Soc 2264 1961; Sheldrick J Chem Soc, Perkin Trans 2 1457 1976.]

(±)-1,1'-Bi-(2-naphthol) [1,1'-di-(2-naphthol)] [602-09-5; 41024-90-2] M 286.3, m 215-217°, 218°, $pK_{Est(1)} \sim 7.1$, $pK_{Est(2)} \sim 11.2$. Crystd from toluene or *benzene (10mL/g). When crystd from chlorobenzene it had m 238°. Sol in dioxane is 5%.

1,1'-Bi-(2-naphthol) [1,1'-di-(2-naphthol)] [R-(+)-18531-94-7], [S-(-)-18531-99-2] M 286.3, m 207.5-208.5°, 209-211°, $[\alpha]_{D}^{20}(+)$ and (-) 37.4.0° (c 0.5, THF), $[\alpha]_{546}^{25}(+)$ and (-) 51° (c 0.1, THF), pK as above. Dissolve in cold 2.5N NaOH, extract with CH₂Cl₂, and acidify with 5% HCl. Collect the white ppte and recryst from aq EtOH and dry in a vacuum [*Tetrahedron* 27 5999 1971]. Optically stable in dioxane-water (100°/24h). *Racemisation:* 72% in 1.2N HCl at 100°/24h and 68% in 0.67M KOH in BuOH at 118°/23h [*J Am Chem Soc* 95 2693 1973]. Cryst from *C₆H₆ (sol 1%) using Norite or aq EtOH after chromatography through silica gel, eluting with Me₂CO-*C₆H₆. [Kyba et al. *J Org Chem* 42 4173 1977; see also Brussee and Jansen *Tetrahedron Lett* 24 3261 1983; Akimoto and Yamada *Tetrahedron* 27 5999 1971.]

1,1'-Binaphthyl $[\pm 32507-32-7 \text{ and } 604-53-5; R(-)- 24161-30-6; S(+)- 734-77-0]$ M 254.3, m 145°, **159°** (±, 2 forms), **153-154°** (+ and -), $[\alpha]_D^{20}$ (-) and (+) ~220° (*C₆H₆). Purified through a silica gel column with Me₂CO-*C₆H₆ [or Al₂O₃ with 10% *C₆H₆/pet ether (b 30-60°)] and recrystd from EtOH, pentane, or slow evap of *C₆H₆, Me₂CO or Et₂O solns. Half life ~10h at 25° in various solvents. [Wilson and Pincock J Am Chem Soc 97 1474 1975; Akimoto and Yamada Tetrahedron 27 5999 1971.]

2,2'-Binaphthyl (β, β'-binaphthyl) [61-78-2] M 254.3, m 188°. Crystd from *benzene.

Biphenyl [92-52-4] **M 154.2, m 70-71°, b 255°, d 0.992.** Crystd from EtOH, MeOH, aq MeOH, pet ether (b 40-60°) or glacial acetic acid. Freed from polar impurities by passage through an alumina column in *benzene, followed by evapn. A in CCl₄ has been purified by vac distn and by zone refining. Treatment with maleic anhydride removed anthracene-like impurities. Recrystd from EtOH followed by repeated vacuum sublimation and passage through a zone refiner. [Taliani and Bree J Phys Chem **88** 2351 1984.]

p-Biphenylamine [92-67-1] M 169.2, m 53°, b 191°/15mm, pK¹⁸ 4.38. See *p*-aminobiphenyl entry on p. 104.

4-Biphenylcarbonyl chloride [14002-51-8] **M 216.7, m 114-115°.** Dissolve in a large volume of pet ether (10 x, b 50-70°), filter through a short column of neutral alumina, evaporate to dryness *in vacuo* and recryst from pet ether (b 60-80°). LACHRYMATORY.

Biphenyl-2-carboxylic (2-phenylbenzoic) acid [947-84-2] M 198.2, m 114°, b 343-344°, pK 3.46. Crystd from C_6H_6 -pet ether or aq EtOH.

Biphenyl-4-carboxylic (4-phenylbenzoic) acid [92-92-2] M 198.2, m 228°, pK^{25} 5.66 (in 50% 2-butoxyethanol). Crystd from *C₆H₆-pet ether or aq EtOH.

2,4'-Biphenyldiamine [492-17-1] M 184.2, m 45°, b 363°/760mm, pK_{Est(1)}~4.8, pK_{Est(2)}~3.9. Crystd from aqueous EtOH.

Biphenylene [259-79-0] M 152.2, m 152°. Recrystd from cyclohexane then sublimed in vacuum.

α-(4-Biphenylyl)butyric acid [959-10-4] M 240.3, m 175-177°, pK_{Est} ~4.5. Crystd from MeOH.

γ-(4-Biphenylyl)butyric acid [6057-60-9] M 240.3, m 118°, pK_{Est} ~4.8. Crystd from MeOH.

2,2'-Bipyridyl [366-18-7] **M 156.2, m 70.5°, b 273°, pK_1^{25}-0.52, pK_2^{25}4.44. Crystd from hexane, or EtOH, or (after charcoal treatment of a CHCl₃ soln) from pet ether. Also ppted from a conc soln in EtOH by addition of H₂O. Dried in a vacuum over P₂O₅. Further purification by chromatography on Al₂O₃ or by sublimation. [Airoldi et al. J Chem Soc, Dalton Trans 1913 1986.]**

4,4'-Bipyridyl [553-26-4] M 156.2, m 73°(hydrate), 114° (171-171°)(anhydrous), b $305^{\circ}/760$ mm, 293°/743mm, pK₁²⁰ 3.17, pK₂²⁰ 4.82. Crystd from water, *benzene/pet ether, ethyl acetate and sublimed *in vacuo* at 70°. Also purified by dissolving in 0.1M H₂SO₄ and twice ppted by addition of 1M NaOH to pH 8. Recrystd from EtOH. [Man et al. J Chem Soc, Faraday Trans 1 82 869 1986; Collman et al. J Am Chem Soc 109 4606 1987.]

2,2'-Bipyridylamine [1202-34-2] M 171.2, m 95.1°, pK_{Est} ~5.0. Crystd from Me₂CO.

2,2'-Biquinolin-4,4'-dicarboxylic (2,2'-bicinchoninic) acid [1245-13-2] M 344.3, m 367°, $pK_{Est(1)}\sim 1.5$, $pK_{Est(2)}\sim 4.0$. Dissolve in dilute NaOH and ppte with acetic acid, filter, wash well with H₂O and dry at 100° in a vacuum oven. Attempts to form a picrate failed. The *methyl ester* (SOCl₂-MeOH) has m 165.6-166°. [J Am Chem Soc 64 1897 1942; 68 2705 1946.] For di-K salt see entry in Chapter 5.

2,2'-Biquinolyl $(\alpha, \alpha'$ -diquinolyl) [119-91-5] M 256.3, m 196°, pK_{Est} ~4.2. Decolorised in CHCl₃ soln (charcoal), then crystd to constant melting point from EtOH or pet ether [Cumper, Ginman and Vogel J Chem Soc 1188 1962].

Bis-acrylamide (N, N'-methylene bisacrylamide) [110-26-9] M 154.2, m >300°. Recrystd from MeOH (100g dissolved in 500mL boiling MeOH) and filtered without suction in a warmed funnel. Allowed to stand at room temperature and then at -15°C overnight. Crystals collected with suction in a cooled funnel and washed with cold MeOH). Crystals air-dried in a warm oven. **TOXIC.**

Bis-(4-aminophenyl)methane [101-77-9] M 198.3, m 92-93°, b 232°/9mm, pK_{Est} ~4.9. See 4.4'-diaminodiphenylmethane on p. 189.

2,5-Bis-(4-aminophenyl)-1,3,4-oxadiazole (BAO) [2425-95-8] M 252.3, m 252-255°, 254-255°. Recrystd from EtOH using charcoal and under N₂ to avoid oxidation.

2,5-Bis(2-benzothiazolyl)hydroquinone [33450-09-8] M 440.3, m dec >200°. Purified by repeated crystn from dimethylformamide followed by sublimation in vacuum [Erusting et al. J Phys Chem 91 1404 1987].

Bis-(*p*-**bromophenyl**)**ether** [53563-56-7] **M 328.0, m 60.1-61.7°.** Crystd twice from EtOH, once from *benzene and dried under vac [Purcell and Smith J Am Chem Soc 83 1063 1961].

Bis-*N***-***tert***-butyloxycarbonyl-L-***cystine*, [10389-65-8] **M** 440.5, **m** 144.5-145°, $[\alpha]_D^{20}$ -133.2° (c 1, MeOH), pK_{Est} ~2.9. Crystd from in EtOAc by adding hexane [Ferraro Biochem Prep 13 39 1971].

 $2R, 3R \cdot (+) \cdot 1, 4$ -Bis-(4-chlorobenzoyl)-2,3-butanediol [85362-86-3] and 2S, 3S \cdot (-) \cdot 1, 4-Bis-(4-chlorobenzoyl)-2,3-butanediol [85362-85-2] M 371.3, m 76-77°, $[\alpha]_D^{20}$ (+) and (-) 6.4° (c 3.11 CHCl₃). Recryst from toluene-hexane. [Tetrahedron 40 4617 1984.]

Bis-(β -chloroethyl)amine hydrochloride [821-48-7] M 178.5, m 214-215°, pK_{Est} ~5.8 (free base). Crystd from Me₂CO.