Purification of Inorganic and Metal-Organic Chemicals

Previous Page

water, HNO₃ or H₂SO₄, as vapour. After 4h, the sulfur was cooled so that the reflux tube could be replaced by a bent air-cooled condenser. The sulfur was then distilled, rejecting the first and the final 100mL portions, and transferred in 200mL portions to 400mL glass cylinder ampoules (which were placed on their sides during solidification). After adding about 80mL of water, displacing the air with N₂, and sealing the ampoule was cooled, and the water was titrated with 0.02M NaOH, the process being repeated until the acid content was negligible. Finally, entrapped water was removed by alternate evacuation to 10mm Hg and refilling with N₂ while the sulfur was kept molten. Other purifications include crystn from CS₂ (which is less satisfactory because the sulfur retains appreciable amounts of organic material), *benzene or *benzene/acetone, followed by melting and degassing. Has also been boiled with 1% MgO, then decanted, and dried under vacuum at 40° for 2 days over P₂O₅. [For purification of S₆, "recryst. S₈" and "Bacon-Fanelli sulfur" see Bartlett, Cox and Davis *J Am Chem Soc* **83** 103, 109 *1961*.]

Sulfur dichloride [10545-99-0] M 103.0, m -78°, b 59°/760mm(dec), d 1.621. Twice distilled in the presence of a small amount of PCl₃ through a 12in Vigreux column, the fraction boiling between 55-61° being redistd (in the presence of PCl₃), and the fraction distilling between 58-61° retained. (The PCl₃ is added to inhibit the decomposition of SCl₂ into S₂Cl₂ and Cl₂). The SCl₂ must be used as quickly as possible after distn, within 1h at room temperature, The sample contains 4% S₂Cl₂. On long standing this reaches 16-18%. HARMFUL VAPOURS.

Sulfur dioxide [7446-09-5] M 64.1, b -10°. Dried by bubbling through concentrated H_2SO_4 and by passage over P_2O_5 , then passed through a glass-wool plug. Frozen with liquid air and pumped to a high vacuum to remove dissolved gases. HARMFUL VAPOURS.

Sulfuric acid [7664-93-9] M 98.1, d 1.83, $pK_1^{25} \sim -8.3$, pK_2^{25} 1.99. Sulfuric acid, and also 30% fuming H₂SO₄, can be distilled in an all-Pyrex system, optionally from potassium persulfate. Also purified by fractional crystn of the monohydrate from the liquid. Dehydrates and attacks skin—wash immediately with H₂O.

Sulfur monochloride (sulfur monochloride) [10025-67-9] M 135.0, m -77°; b 19.1°, 29-30°/12mm, 72°/100mm, 138°/760mm, d^{20} 1.677, n_D^{20} 1.67. Pungent, irritating golden yellow liquid. When impure its colour is orange to red due to SCl₂ formed. It fumes in moist air and liberates HCl, SO₂ and H₂S in the presence of H₂O. Distil and collect the fraction boiling above 137° at atmospheric pressure. Fractionate this fraction over sulfur at *ca* 12mm using ground glass apparatus (b 29-30°). Alternatively purify by distn below 60° from a mixture containing sulfur (2%) and activated charcoal (1%), under reduced pressure (e.g. 50mm). It is soluble in EtOH, *C₆H₆, Et₂O, CS₂ and CCl₄. Store in a closed container in the dark in a refrigerator. [Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Vol I 371 1963.] HARMFUL VAPOURS.

Sulfur trioxide pyridine complex [26412-87-3] M 159.2, m 155-165°, 175°. Wash the solid with a little CCl₄, then H₂O to remove traces of pyridine sulfate, and dry over P₂O₅ [Chem Ber 59 1166 1926; Synthesis 59 1979].

Sulfuryl chloride [7791-25-2] M 135.0, m -54.1°, b 69.3°/760mm, d_4^{20} 1.67, n_D^{30} 1.44. Pungent, irritating colourless liquid. It becomes yellow with time due to decomposition to SO₂ and HCl. Distil and collect fraction boiling below 75°/atm which is mainly SO₂Cl₂. To remove HSO₃Cl and H₂SO₄ impurities, the distillate is poured into a separating funnel filled with crushed ice and briefly shaken. The lower cloudy layer is removed, dried for some time in a desiccator over P₂O₅ and finally fractionated at atmospheric pressure. The middle fraction boils at 69-70° and is pure SO₂Cl₂. It decomposes gradually in H₂O to H₂SO₄ and HCl. Reacts violently with EtOH and MeOH and is soluble in *C₆H₆, toluene Et₂O and acetic acid. [Handbook of Preparative Inorganic Chemistry (Ed Brauer) Vol I 383 1963; Inorg Synth 1 114 1939]. HARMFUL VAPOURS.

Tantalium (V) chloride (tantalium pentachloride) [7721-01-9] M 358.2, m 216.2°, 216.5-220°; b 239°/atm., d 3.68. Purified by sublimation in a stream of Cl₂. Colourless

needles when pure (yellow when contaminated with even less than 1% of NbCl₅). Sensitive to H₂O, even in conc HCl it decomposes to tantalic acid. Sol in EtOH. [J Am Chem Soc 80 2952 1958; Handbook of Preparative Inorganic Chemistry (Ed Brauer) Vol II 1302 1965.]

Tantalium pentaethoxide [6074-84-6] M 406.3, b 147°/0.2mm, 202°/10mm, $pK_1^{25}9.6$, pK_2^{25} 13.0 (for tantalic acid). Purified by distillation. It aggregates in ${}^{*}C_6H_6$, EtOH, MeCN, pyridine and diisopropyl ether. [J Chem Soc 726 1955, 5 1956.]

Telluric acid [7803-68-1] M 229.6, pK_1^{25} 7.70, pK_2^{25} 11.04 (H₆TaO₆). Crystd once from nitric acid, then repeatedly from hot water (0.4mL/g).

Tellurium [13494-80-9] **M 127.6, m 450°.** Purified by zone refining and repeated sublimation to an impurity of less than 1 part in 10^8 (except for surface contamination by TeO₂). [Machol and Westrum J Am Chem Soc 80 2950 1958.] Tellurium is volatile at 500°/0.2mm. Also purified by electrode deposition [Mathers and Turner Trans Amer Electrochem Soc 54 293 1928].

Tellurium dioxide [7446-07-3] **M 159.6, m 733°, d 6.04.** Dissolved in 5M NaOH, filtered and ppted by adding 10M HNO₃ to the filtrate until the soln was acid to phenolphthalein. After decanting the supernatant, the ppte was washed five times with distilled water, then dried for 24h at 110° [Horner and Leonhard J Am Chem Soc 74 3694 1952].

Terbium oxide [12037-01-3] M 747.7, pK²⁵ 8.16 (for Tb³⁺ hydrolysis). Dissolved in acid, ppted as its oxalate and ignited at 650°.

Tetraallyltin (tetraallylstannane) [7393-43-3] M 283.0, b 52°/0.2mm, 69-70°/15mm, d 1.179, n 1.536. Possible contaminants are allyl chloride and allyltin chloride. Check ¹H NMR and IR [Fishwick and Wallbridge *J Organometal Chem* 25 69 1970], and if impure, dissolve in Et_2O and shake with a 5% aq soln of NaF which ppts allyltin fluoride. Separate the Et_2O layer, dry (MgSO₄) and dist at ~ 0.2mm. It decomposes slightly on repeated distn. [O'Brien et al. *Inorg Synth* 13 75 1972; Fishwick et al. *J Chem Soc* (A) 57 1971.]

Tetrabutylammonium borohydride [33725-74-5] M 257.3, m 128-129°. Purified by recrystn from EtOAc followed by careful drying under vacuum at 50-60°. Samples purified in this way showed no signs of loss of *active* H after storage at room temperature for more than 1 year. Nevertheless samples should be stored at *ca* 6° in tightly stoppered bottles if kept for long periods. It is soluble in CH₂Cl₂. [J Org Chem 41 690 1976; Tetrahedron Lett 3173 1972.]

Tetrabutylammonium chlorochromate [54712-57-1] **M 377.9, m 184-185°.** Recrystd from EtOAc-hexane. IR v 920cm⁻¹ in CHCl₃ [Synthesis 749 1983]. Powerful oxidant.

Tetrabutylammonium tetrafluoroborate [429-42-5] M 329.3, m 161.8°, 161-163°, pK^{25} -4.9 (for HBF₄). Recryst from H₂O, aq EtOH or from EtOAc by cooling in Dry ice. Also recrystd from ethyl acetate/pentane or dry acetonitrile. Dried at 80° under vacuum. [Detty and Jones J Am Chem Soc 109 5666 1987; Hartley and Faulkner J Am Chem Soc 107 3436 1985.] Acetate m 118±2° (from BuCl); bromide m 118° (from EtOAc) and nitrate m 120° (from ${}^{*}C_{6}H_{6}$). [J Am Chem Soc 69 2472 1947, 77 2024 1955.]

Tetrabutyl orthotitanate monomer (titanium tetrabutoxide) [5593-70-4] M 340.4, b 142°/0.1mm, 134-136°/0.5mm, 160°/0.8mm, 174°/6mm, 189°/13mm, d_4^{35} 0.993, n_D^{25} 1.49. Dissolve in *C₆H₆, filter if solid is present, evaporate and vacuum fractionate through a Widmer 24inch column. The ester hydrolyses when exposed to air to give hydrated ortho-titanic acid. Titanium content can be determined thus: weigh a sample (*ca* 0.25g) into a weighed crucible and cover with 10mL of H₂O and a few drops of conc HNO₃. Heat (hot plate) carefully till most of the H₂O has evaporated. Cool and add more H₂O (10mL) and conc HNO₃ (2mL) and evaporate carefully (no spillage) to dryness and ignite residue at 600-650°/1h. Weigh the residual TiO₂. [J Chem Soc 2773 1952; J Org Chem 14 655 1949.]

Tetrabutyl tin (tin tetrabutyl) [1461-25-2] M 347.2, b 94.5-96°/0.28mm, 145°/11mm, 245-247°/atm, d_4^{20} 1.05, n_D^{24} 1.473. Dissolve in Et₂O, dry over MgSO₄, filter, evaporate and distil under reduced pressure. Although it does not crystallise easily, once the melt has crystallised then it will recrystallise more easily. It is soluble in Et₂O, Me₂CO, EtOAc and EtOH but insoluble in MeOH and H₂O and shows no apparent reaction with H₂O. [J Org Chem 19 74 1954, J Chem Soc 1992 1954.]

Tetraethoxysilane (tetraethyl orthosilicate) [78-10-4] M 208.3, m -77°, b 165-166°/atm, d_4^{20} 0.933, n_D^{25} 1.382. Fractionate through an 80cm Podbielniak type column (see p. 141) with heated jacket and partial take-off head. Slowly decomposed by H₂O, soluble in EtOH. It is flammable - irritates the eyes and mucous membranes. [J Am Chem Soc 78 5573 1956, cf J Chem Soc 5020 1952.]

Tetraethylammonium hexafluorophosphate [429-07-2] M 275.2, m >300°, 331°(dec), $pK_1^{25} \sim 0.5$, $pK_2^{25} 5.12$ (for fluorophosphoric acid H_2PO_3F). Dissolve salt (0.8g) in hot H_2O (3.3mL) and cool to crystallise. Yield of prisms is 0.5g. Solubility in H_2O is 8.1g/L at 19° [*Chem Ber* 63 1067 1930].

Tetraethylammonium tetrafluoroborate [429-06-1] M 217.1, m 235°, 356-367°, pK^{25} -4.9 (for HBF₄). Dissolve in hot MeOH, filter and add Et₂O. It is soluble in ethylene chloride [J Am Chem Soc 69 1016 1947, 77 2025 1955]. See entry on p. 359 in Chapter 4.

Tetraethyl lead [78-00-2] M 323.5, b 200°, 227.7°(dec), d 1.653, n 1.5198. Its more volatile contaminants can be removed by exposure to a low pressure (by continuous pumping) for 1h at 0°. Purified by stirring with an equal volume of H_2SO_4 (d 1.40), keeping the temperature below 30°, repeating this process until the acid layer is colourless. It is then washed with dilute Na₂CO₃ and distilled water, dried with CaCl₂ and fractionally distd at low pressure under H_2 or N₂ [Calingaert *Chem Rev* 2 43 1926]. VERY POISONOUS.

Tetraethylsilane [631-36-7] M 144.3, b 153.8°/760mm, d_4^{30} 0.77, n_D^{30} 1.427. Fractionate through a 3ft vacuum jacketted column packed with 1/4" stainless steel saddles. The material is finally percolated through a 2ft column packed with alumina and maintained in an inert atmosphere. [J Chem Soc 1992 1954; J Am Chem Soc 77 272 1955.]

1.1.3.3-Tetraisopropyldisiloxane [18043-71-5] M 246.5, b 129-130°/6mm, d_4^{30} 0.89, n_D^{30} 1.47. Fractionate under reduced pressure in a N₂ atm. [J Am Chem Soc 69 1500 1947.]

Tetraisopropyl orthotitanate (titanium tetraisopropyl) [546-68-9] **M 284.3, m 18.5°; b 80°/2mm, 78°/12mm, 228-229°/755mm.** Dissolve in dry ${}^{*}C_{6}H_{6}$, filter if a solid separates, evap and fractionate. It is hydrolysed by H₂O to give solid Ti₂O(*iso*-OPr)₂ **m** ca 48°. [J Chem Soc 2027, 1952, 469 1957.]

Tetrakis(diethylamino) titanium [(titanium tetrakis(diethylamide)] [4419-47-0] M 336.4, b 85-90°/0.1mm, $112^{\circ}/0.1$ mm, d_4^{30} 0.93, n_D^{30} 1.54. Dissolve in *C₆H₆, filter if a solid separates, evaporate under reduced pressure and distil. Orange liquid which reacts violently with alcohols. [J Chem Soc 3857 1960.]

Tetrakis(hydroxymethyl)phosphonium chloride [124-64-1] **M 190.6, m 151°**. Crystd from AcOH and dried at 100° in a vacuum. An 80% w/v aqueous solution has d_4^{20} 1.33 [J Am Chem Soc 77 3923 1955].

Tetrakis(triphenylphosphine) palladium [14221-01-3] M 1155.58, m 100-105°(dec). Yellow crystals from EtOH. It is stable in air only for a short time, and prolonged exposure turns its colour to orange. Store in an inert atmosphere below room temp in the dark. [J Chem Soc 1186 1957.]

Tetrakis(triphenylphosphine) platinum [14221-02-4] M 1244.3, m 118°. Recrystd by adding hexane to a cold saturated solution in ${}^{*}C_{6}H_{6}$. It is soluble in ${}^{*}C_{6}H_{6}$ and CHCl₃ but insoluble in EtOH and hexane. A less pure product is obtained if crystd by adding hexane to a CHCl₃ soln. Stable in air for several hours and completely stable under N₂. [J Am Chem Soc 2323 1958.]

Tetramethoxysilane (tetramethyl orthosilicate) [681-84-5] M 152.2, m 4.5°, b 122°/760mm. Purification as for tetraethoxysilane. It has a vapour pressure of 2.5mm at 0°. [IR: J Am Chem Soc 81 5109 1959.]

Tetramethylammonium borohydride [16883-45-7] **M 89.0.** Recrystn from H₂O three times yields ca 94% pure compound. Dry in high vacuum at 100° for 3h. The solubility in H₂O is 48% (20°), 61% (40°); and in EtOH 0.5% (25°) and MeCN 0.4% (25°). It decompose slowly in a vacuum at 150°, but rapidly at 250°. The rate of hydrolysis of Me₄N.BH₄ (5.8M) in H₂O at 40° is constant over a period of 100h at 0.04% of original wt/h. The rate decreases to 0.02%/h in the presence of Me₄NOH (5% of the wt of Me₄N.BH₄). [J Am Chem Soc 74 2346 1952.]

Tetramethylammonium hexafluorophosphate [558-32-7] M 219.1, m >300°, d_4^{25} 1.617, $pK_1^{25} \sim 0.5$, pK_2^{25} 5.12 (for fluorophosphoric acid H_2PO_3F). The salt (0.63g) is recrystd from boiling H₂O (76mL), yielding pure (0.45) Me₄N.PF₆ after drying at 100°. It is a good supporting electrolyte. [*Chem Ber* 63 1067 1930.]

Tetramethylammonium perchlorate [2537-36-2] M 123.6, m>300°, pK²⁵ -2.4 to -3.1 (for HClO₄). Crystallise twice from H₂O and dry at 100° in an oven. Insol in most organic solvents. [J Chem Soc 1210 1933.]

Tetramethylammonium triacetoxyborohydride [109704-53-2] M 263.1, m 93-98°, 96.5-98°. If impure, wash with freshly distd Et_2O and dry overnight in a vac to give a free flowing powder. Check ¹H NMR, and if still suspect prepare freshly from Me_4NBH_4 and AcOH in $*C_6H_6$ and store away from moisture [Banus et al. J Am Chem Soc 74 2346 1952; Evans and Chipman Tetrahedron Lett 27 5939 1986]. It is an IRRITANT and MOISTURE SENSITIVE.

Tetramethylammonium triphenylborofluoride [437-11-6] M 392.2. Crystd from acetone or acetone/ethanol.

2,4,6,8-Tetramethylcyclotetrasiloxane [2370-88-9] M 240.5, m -69°, b 134°/750 mm, 134.5-134.9°/755 mm, d_4^{20} 0.99, n_D^{20} 1.3872. It is purified by repeated redistillation, and fractions with the required ¹H NMR data are collected. [J Gen Chem USSR (Engl Transl) 29 262 1959; J Am Chem Soc 68 962 1946].

1,1,3,3-Tetramethyldisiloxane [3277-26-7] M 134.3, b 70.5-71°/731mm, 71-72°/atm, d_4^{30} 0.75, n_D^{25} 11.367. Possible impurity is 1,1,5,5-tetramethyl-3-trimethylsiloxytrisiloxane b 154-155°/733mm. Fractionate, collect fractions boiling below 80° and refractionate. Purity can be analysed by alkaline hydrolysis and measuring the volume of H₂ liberated followed by gravimetric estimation of silica in the hydrolysate. It is unchanged when stored in glass containers in the absence of moisture for 2-3 weeks. Small amounts of H₂ are liberated on long storage. *Care should be taken when opening a container due to pressure developed.* [J Am Chem Soc 79 974 1958; J Chem Soc 609 1958; IR: Z Anorg Chem 299 78 1959.]

N,*N*,*N'N'*-**Tetramethylphosphonic diamide (methylphosphonic bis-dimethylamide)** [2511-17-3] M 150.2, b 60.5°/0.6mm, 138°/32mm, 230-230°/atm, d_4^{30} 1.0157, n_D^{30} 1.4539. Dissolve in heptane or ethylbenzene shake with 30% aqueous NaOH, stir for 1h, separate the organic layer and fractionate. [J Org Chem 21 413 1956]. IR has v 1480, 1460, 1300, 1184, 1065 and 988-970 cm⁻¹ [Can J Chem 33 1552 1955].

Tetramethylsilane (TMS) [75-76-3] M 88.2, b 26.3°, n 1.359, d 0.639. Distilled from conc H_2SO_4 (after shaking with it) or LiAlH₄, through a 5ft vacuum-jacketted column packed with glass helices into an ice-cooled condenser, then percolated through silica gel to remove traces of halide.

2,4,6,8-Tetramethyl tetravinyl cyclotetrasiloxane [2554-06-5] M 344.7, m -43.5°, b 111-112°/10mm, 145-146°/13mm, 224-224.5°/758mm, d_4^{30} 0.98, n_D^{30} 1.434. A 7mL sample was

distilled in a small Vigreux column at atmospheric pressure without polymerisation or decomposition. It is soluble in cyclohexane. [J Am Chem Soc 77 1685 1955.]

Tetraphenylarsonium chloride hydrate [507-28-8] **M 418.8, m 261-263°.** A neutralised aqueous soln was evaporated to dryness. The residue was extracted into absolute EtOH, evaporated to a small volume and ppted by addition of absolute Et₂O. It was again dissolved in a small volume of absolute EtOH or ethyl acetate and reppted with Et_2O . Alternatively purified by adding conc HCl to ppte the chloride dihydrate. Redissolved in water, neutralised with Na_2CO_3 and evaporated to dryness. The residue was extracted with CHCl₃ and finally crystallised from CH₂Cl₂ or EtOH by adding Et_2O . If the aqueous layer is somewhat turbid treat with Celite and filter through filter paper. **POISONOUS.**

Tetraphenylarsonium iodide [7422-32-4] M 510.2. Crystd from MeOH. POISONOUS.

Tetraphenylarsonium perchlorate [3084-10-4] M 482.8, pK²⁵ -2.4 to -3.1 (for HClO₄). Crystd from MeOH. POISONOUS.

Tetraphenylboron potassium [3244-41-5] M 358.2. See potassium tetraphenylborate on p. 458.

Tetraphenylphosphonium chloride [2001-45-8] **M 374.9, m 273-275°.** Crystd from acetone. Dried at 70° under vacuum. Also recrystd from a mixture of 1:1 or 1:2 dichloromethane/pet ether, the solvents having been dried over anhydrous K_2CO_3 . The purified salt was dried at room temperature under vasuum for 3 days, and at 170° for a further 3 days. *Extremely hygroscopic*.

Tetraphenylsilane [1048-08-4] M 336.4, m 231-233°. Crystd from *benzene.

Tetraphenyltin [595-90-4] **M 427.1, m 224-225°, 226°.** Yellow crystals from CHCl₃, pet ether (b 77-120°), xylene or *benzene/cyclohexane, and dried at 75°/20mm. [J Am Chem Soc 74 531 1952.]

Tetrapropylammonium perchlorate [15780-02-6] M 285.8, m 238-240°, pK^{25} -2.4 to -3.1 (for HClO₄). Purified by recrystns from H₂O or MeCN/H₂O (1:4.v/v), and dried in an oven at 60° for several days, or in vacuum over P₂O₅ at 100°. [Z Phys Chem 165A 245 1933, 144 281 1929, 140 97 1929.]

Tetra-n-propylammonium perruthenate (TPAP, tetrapropyl tetraoxoruthenate) [114615-82-6] **M 351.4, m 160°(dec).** It is a strong oxidant and may explode on heating. It can be washed with aq *n*propanol, then H_2O and dried over KOH in a vac. It is stable at room temp but best stored in a refrigerator. It is sol in CH_2Cl_2 and MeCN. [Dengel et al. *Transition Met Chem* 10 98 1985; Griffith et al. J Chem Soc, Chem Commun 1625 1987.] § Polymer supported reagent is available commercially.

Tetrasodium pyrene-1,3,6,8-tetrasulfonate [59572-10-0] **M 610.5.** Recrystd from aqueous acetone [Okahata et al. J Am Chem Soc 108 2863 1986].

Thallium (I) acetate [563-68-8] M 263.4, m 126-128°, 127°, pK^{25} 13.2 (for Tl⁺). Likely impurity is H₂O because the white solid is deliquescent. Dry in a vacuum over P₂O₅ or for several days in a desiccator, and store in a well closed container. 7.5g dissolve in 100g of liquid SO₂ at 0°, and *ca* 2mol% in AcOH at 25°. **POISONOUS.** [*Trans Faraday Soc* 32 1660 1936; *J Am Chem Soc* 52 516.]

Thallous bromide [7789-40-4] M 284.3, m 460°. Thallous bromide (20g) was refluxed for 2-3h with water (200mL) containing 3mL of 47% HBr. It was then washed until acid-free, heated to 300° for 2-3h and stored in brown bottles. POISONOUS.

Thallous carbonate [6533-73-9] M 468.7, m 268-270°. Crystd from hot water (4mL/g) by cooling. POISONOUS.

Thallous chlorate [13453-30-0] M 287.8, d 5.05. Crystd from hot water (2mL/g) by cooling. POISONOUS.

Thallous chloride [7791-12-0] **M 239.8, m 429.9°, d 7.0.** Crystd from 1% HCl and washed until acid-free, or crystd from hot water (50mL/g), then dried at 140° and stored in brown bottles. Also purified by subliming in vacuum, followed by treatment with dry HCl gas and filtering while molten. (Soluble in 260 parts of cold water and 70 parts of boiling water). **POISONOUS.**

Thallous hydroxide [12026-06-1] M 221.4, m 139°(dec), pK^{25} 13.2 (for Tl⁺). Crystd from hot water (0.6mL/g) by cooling. POISONOUS.

Thallous iodide [7790-30-9] M 331.3, m 441.8°, b 824°, d 7.1. Refluxed for 2-3h with water containing HI, then washed until acid-free, and dried at 120°. Stored in brown bottles. POISONOUS.

Thallous nitrate [10102-45-1] M 266.4, m 206°, b 450°(dec), d 5.55. Crystd from warm water (1mL/g) by cooling to 0°. POISONOUS.

Thallous perchlorate [13453-40-2] M 303.8, pK^{25} -2.4 to -3.1 (for HClO₄). Crystd from hot water (0.6mL/g) by cooling. Dried under vacuum for 12h at 100° (protect from possible EXPLOSION).

Thallous sulfate [7446-18-6] M 504.8, m 633°, d 6.77. Crystd from hot water (7mL/g) by cooling, then dried under vacuum over P_2O_5 . POISONOUS.

Thexyl dimethyl chlorosilane (dimethyl-[2,3-dimethyl-2-butyl] chlorosilane) [67373-56-2] M 178.8, b 55-56°/10mm, 158-159°/720mm, d_4^{20} 0.970, n_D^{20} 1.428. Purified by fractional distillation and stored in small aliquots in sealed ampoules. It is very sensitive to moisture and is estimated by dissolving an aliquot in excess of 0.1M NaOH and titrating with 0.1M HCl using methyl red as indicator. [Helv Chim Acta 67 2128 1984].

N-(Thexyl dimethylsilyl)dimethylamine (N-[2,3-dimethyl-2-butyl]dimethylsilyl dimethylamine) [81484-86-8] M 187.4, b 156-160°/720mm. Dissolve in hexane, filter, evaporate and distil. Colourless oil extremely sensitive to humidity. It is best to store small quatities in sealed ampoules after distillation. For estimation of purity crush an ampoule in excess 0.1N HCl and titrate the excess acid with 0.1M NaOH using methyl red as indicator. [Helv Chim Acta 67 2128 1984.]

Thionyl chloride [7719-09-7] **M 119.0, b 77°, d 1.636.** Crude $SOCl_2$ can be freed from sulfuryl chloride, sulfur monochloride and sulfur dichloride by refluxing with sulfur and then fractionally distilling twice. [The $SOCl_2$ is converted to SO_2 and sulfur chlorides. The S_2Cl_2 (**b** 135.6°) is left in the residue, whereas SCl_2 (**b** 59°) passes over in the forerun]. The usual purification is to distil from quinoline (50g $SOCl_2$ to 10g quinoline) to remove acid impurities, followed by distillation from boiled linseed oil (50g $SOCl_2$ to 20g of oil). Precautions must be taken to exclude moisture.

Thionyl chloride for use in organic syntheses can be prepared by distillation of technical $SOCl_2$ in the presence of diterpene (12g/250mL SOCl₂), avoiding overheating. Further purification is achieved by redistillation from linseed oil (1-2%) [Rigby *Chem Ind (London)* 1508 1969]. Gas chromatographically pure material is obtained by distillation from 10% (w/w) triphenyl phosphite [Friedman and Wetter J Chem Soc (A) 36 1967; Larsen et al. J Am Chem Soc 108 6950 1986]. Harmful vapours.

Thorium chloride [10026-08-1] M 373.8, pK_1^{25} 10.45, pK_2^{25} 10.62, pK_3^{25} 10.80, pK_4^{25} 11.64 (for aquo Th⁴⁺). Freed from anionic impurities by passing a 2M soln of ThCl₄ in 3M HCl through a Dowex-1 anion-resin column. The eluate was partially evaporated to give crystals which were filtered off, washed with Et₂O and stored in a desiccator over H₂SO₄ to dry. Alternatively, a saturated solution of ThCl₄ in 6M HCl was filtered through quartz wool and extracted twice with ethyl, or isopropyl, ether (to remove iron), then evaporated to a small volume on a hot plate. (Excess silica ppted, and was filtered off. The filtrate was cooled to 0° and saturated with dry HCl gas.) It was shaken with an equal volume of Et₂O, agitating with HCl gas, until the mixture becomes homogeneous. On standing, ThCl₄.8H₂O ppted and was filtered off, washed with Et₂O and dried [Kremer J Am Chem Soc 64 1009 1942].

Thorium sulfate (4H₂O) [10381-37-0] M 496.2, m 42°(loses H₂O), d 2.8. Crystd from water.

Tin (powder) [7440-31-5] M 118.7. The powder was added to about twice its weight of 10% aqueous NaOH and shaken vigorously for 10min. (This removed oxide film and stearic acid or similar material sometimes added for pulverisation.) It was then filtered, washed with water until the washings were no longer alkaline to litmus, rinsed with MeOH and air dried. [Sisido, Takeda and Kinugama J Am Chem Soc 83 538 1961.]

Tin tetramethyl [594-27-4] M 178.8, m 16.5°, b 78.3°/740mm. It is purified by fractionation using a Todd column of 35-40 plates at atmospheric pressure (p. 177). The purity of the fractions can be followed by IR [J Am Chem Soc 77 6486 1955]. It readily dissolves stopcock silicone greases which give bands in the 8-10µ region. [J Am Chem Soc 76 1169 1954.]

Titanium tetrabromide [7789-68-6] M 367.5, m 28.3°, b 233.5°, d 3.3. Purified by distn. Distillate forms light orange hygroscopic crystals. Store in the dark under N_2 preferably in sealed brown glass ampules. [Olsen and Ryan J Am Chem Soc 54 2215 1932.]

Titanium tetrachloride [7550-45-0] M 189.7, b 136.4°, 154°, d 1.730, $pK_1^{25}0.3$, $pK_2^{25}1.8$, $pK_3^{25}2.1$, $pK_4^{25}2.4$ (for aquo Ti⁴⁺ hydrolysis). Refluxed with mercury or a small amount of pure copper turnings to remove the last traces of light colour [due to FeCl₃ and VCl₄], then distilled under N₂ in an all-glass system, taking precautions to exclude moisture. Clabaugh, Leslie and Gilchrist [*J Res Nat Bur Stand* 55 261 1955] removed organic material by adding aluminium chloride hexahydrate as a slurry with an equal amount of water (the slurry being *ca* one-fiftieth the weight of TiCl₄), refluxing for 2-6h while bubbling in chlorine, which was subsequently removed by passing a stream of clean dry air. The TiCl₄ was then distilled, refluxed with copper and again distilled, taking precautions to exclude moisture. Volatile impurities were then removed using a technique of freezing, pumping and melting. [Baxter and Fertig *J Am Chem Soc* 45 1228 1923; Baxter and Butler *J Am Chem Soc* 48 3117 1926.] HARMFUL VAPOURS.

Titanium trichloride [7705-07-9] **M 154.3, m >500°, pK**₁²⁵**2.55** (for hydrolysis of Ti³⁺ to TiOH²⁺). Brown purple powder that is very reactive with H₂O and pyrophoric when dry. It should be manipulated in a dry box. It is soluble in CH₂Cl₂ and tetrahydrofuran and is used as a M solution in these solvents in the ratio of 2:1, and stored under N₂. It is a powerful reducing agent. [*Inorg Synth* **6** 52 *1960*; *Synthesis* 833 *1989*.]

Titanocene dichloride [1271-19-8] **M 248.9, m 260-280°(dec), 289.2°, 298-291°, d 1.60.** Bright red crystals from toluene or xylene-CHCl₃ (1:1) and sublimes at 190°/2mm. It is moderately soluble in EtOH and insoluble in Et₂O, $*C_6H_6$, CS₂, CCl₄, pet ether and H₂O. [IR: J Am Chem Soc 76 4281 1954; NMR and X-ray: Can J Chem 51 2609 1973, 53 1622 1975.]

Titanyl sulfate (TiOSO₄.2H₂O) [13825-74-6] M 160.0. Dissolved in water, filtered and crystd three times from boiling 45% H₂SO₄, washing with EtOH to remove excess acid, then with Et₂O. Air dried for several hours, then oven dried at 105-110°. [Hixson and Fredrickson *Ind Eng Chem* 37 678 1945.]

Tribenzyl chlorosilane [18740-59-5] M 336.9, m 139-142°, 141-142°, b 300-360°/100 mm. It is recrystd three times from pet ether; slender colourless needles, m 141°, sparingly soluble in pet ether and soluble in Et_2O . Does not fume in air but is decomposed by H_2O to give *tribenzyl silanol* m 106° (from pet ether). [J Chem Soc 93 439 1908; J Org Chem 15 556 1950.]

Tribenzyl phosphine [76650-89-7] M **304.4, m 96-101°, b 203-210°/0.5mm, pK_{Est}~8.8.** Dissolve in Et₂O, dry over Na₂SO₄, evap and distil in an inert atmosphere. Distillate solidifies on cooling and is sublimed at 140°/0.001mm. This has m 92-95°(evacuated capillary). When air is bubbled through an Et₂O solution, it is oxidised to *tribenzyl phosphine oxide*, m 209-212° (evacuated capillary) (from Me₂CO). [J Chem Soc 2835 1959.]

Tri-*n***-butyl borate** [688-74-4] **M 230.2, b 232.4°, n 1.4092, d 0.857.** The chief impurities are *n*-butyl alcohol and boric acid (from hydrolysis). It must be handled in a dry-box, and can readily be purified by fractional distillation, under reduced pressure.

Tri-*n***-butyl chlorosilane** [995-45-9] M 234.9, b 93-94°/4.5mm, 134-139°/16mm, 250-252°/atm, 142-144°/29mm, d_4^{20} 0.88, n_D^{20} 1.447. Fractionate and store in small aliquots in sealed ampoules. [J Am Chem Soc 74 1361 1952; J Org Chem 24 219 1959.]

Tri-*n*-butyl phosphate (butyl phosphate) [126-73-8] M 266.3, m -80°, b 47°/0.45 mm, 98°/0.1mm, 121-124°/3mm, 136-137°/5.5mm, 166-167°/17mm, 177-178°/27 mm, 289°/760atm (some dec), d_4^{20} 0.980, n_D^{20} 1.44249. The main contaminants in commercial samples are organic pyrophosphates, mono- and di- butyl phosphates and butanol. It is purified by washing successively with 0.2M HNO₃ (three times), 0.2M NaOH (three times) and water (three times), then fractionally distilled under vacuum. [Yoshida J Inorg Nucl Chem 24 1257 1962.] It has also been purified via its uranyl nitrate addition compound, obtained by saturating the crude phosphate with uranyl nitrate. This compound was crystd three times with *n*-hexane by cooling to -40°, and then decomposed by washing with Na₂CO₃ and water. Hexane was removed by steam distn and the water was then evaporated under reduced pressure and the residue was distilled under reduced pressure. [Siddall and Dukes J Am Chem Soc 81 790 1959.]

Alternatively wash with water, then with 1% NaOH or 5% Na₂CO₃ for several hours, then finally with water. Dry under reduced pressure and fractionate carefully under vacuum. Stable colourless oil, sparingly soluble in H₂O (1mL dissolves in 165mL of H₂O), but freely miscible in organic solvents. [J Am Chem Soc 74 4953 1952, 80 5441 1958; ³¹P NMR: J Am Chem Soc 78 5715 1956; J Chem Soc 1488 1957.]

Tri-*n*-butyl phosphine [998-40-3] M 202.3, b 109-110°/10mm, 115-116°/12mm, 149.5°/50mm, 240.4-242.2°/atm, d_4^{20} 0.822, n_D^{20} 1.4463, pK_{Est}~7.6. Fractionally distilled under reduced pressure in an inert atm (N₂) through an 8" gauze packed column (b 110-111°/10mm) and redistilled in a vacuum and sealed in thin glass ampoules. It is easily oxidised by air to *tri-n-butylphosphine oxide*, b 293-296°/745mm. It has a characteristic odour, it is soluble in EtOH, Et₂O, and *C₆H₆ but insoluble in H₂O and is less easily oxidised by air than the lower molecular weight phosphines. It forms complexes, e.g. with CS₂ (1:1) m 65.5° (from EtOH). [J Chem Soc 33 1929, 1401 1956.]

Tri-*n***-butyl phosphite** [102-85-2] **M 250.3, b 114-115°/5mm, 122°/12mm, 130°/17mm, 137°/26mm, d_4^{20}0.926, n_D^{20} 1.4924.** Fractionate with an efficient column. Stable in air but is slowly hydrolysed by H₂O. [J Chem Soc 1464 1940, 1488 1957; J Am Chem Soc 80 2358, 2999 1958.]

Tri-n-butyl tin chloride [1461-22-9] **M** 325.5, **b** 98-100°/0.4mm, 140-152°/10mm, 172°/25mm, d_4^{20} 1.21, n_D^{20} 1.492. Fractionate in an inert atmosphere, and seal in small aliquots in glass ampoules. Sensitive to moisture. [*J Chem Soc* 1446 1947; *J Appl Chem* 6 93 1956.]

Tributyl tin hydride [688-73-3] M 291.1, b 76°/0.7mm, 81°/0.9mm, d_4^{20} 1.098, n_D^{20} 1.473. Dissolve in Et₂O, add quinol (500mg for 300mL), dry over Na₂SO₄, filter, evaporate and distil under dry N₂. It is a clear liquid if dry and decompose very slowly. In the presence of H₂O traces of tributyl tin hydroxide are formed in a few days. Store in sealed glass ampoules in small aliquots. It is estimated by reaction with aq NaOH when H₂ is liberated. CARE: stored samples may be under pressure due to liberated H₂. [J Appl Chem 7 366 1957.]

B-Trichloroborazine [933-18-6] M 183.1, m 87°, b 88-92°/21mm. Purified by distillation from mineral oil.

Trichloromethyl trimethylsilane (trimethylsilyl trichloromethane) [5936-98-1] M 191.6, m 130-132°, b 146-156°/749mm. It distils at atmospheric pressure without decomposition and readily sublimes at 70°/10mm. It has one peak in the ¹H NMR spectrum (CH₂Cl₂) δ : 0.38. [Synthesis 626 1980.]

Tricyclohexylphosphine [2622-14-2] M 280.4, m 82-83°, pK_{Est}~9.5. Recrystd from EtOH [Boert et al. J Am Chem Soc 109 7781 1987].

Triethoxysilane [998-30-1] M 164.3, m -170°, b 131.2-131.8°/atm, 131.5°/760mm, d_4^{20} 0.98753, n_D^{20} 1.4377. Fractionated using a column packed with glass helices of *ca* 15 theoretical plates in

an inert atmosphere. Store in aliquots in sealed ampoules because it is sensitive to moisture. [J Am Chem Soc 72 1377, 2032 1950; J Org Chem 13 280 1948.]

Triethylborane [97-94-9] M 146.0, b 118.6°, n 1.378, d 0.678. Distilled at 56-57°/220mm.

Triethyl borate [150-46-9] M 146.0, b 118°, n 1.378, d 0.864. Dried with sodium, then distilled.

Triethyl phosphate [78-40-0] M 182.2, b 40-42°/0.25-0.3mm, 98-98.5°/8-10 mm, 90°/10mm, 130°/55mm, 204°/680mm, 215-216°/760mm, d_4^{25} 1.608, n_D^{20} 1.4053. Dried by refluxing with solid BaO and fractionally distilled under reduced pressure. It is kept with Na and distilled under reduced pressure. The middle fraction is stirred for several weeks over anhydrous Na₂SO₄ and distilled under reduced pressure. The middle fraction is stirred for several weeks over anhydrous Na₂SO₄ and again fractionated under reduced pressure until the specific conductance reached a constant low value of κ^{25} 1.19 x 10⁸, κ^{40} 1.68 x 10⁸, and κ^{55} 2.89 x 10⁸ ohm⁻¹ cm⁻¹. It has also been fractionated carefully under reduced pressure through a glass helices packed column. It is soluble in EtOH, Et₂O and H₂O (dec). [J Am Chem Soc 77 4767 1955, 78 6413, 3557 (P NMR) 1956; J Chem Soc 3582 1959, IR: J Chem Soc 475 1952 and Can J Chem 36 820 1958; Kosolapoff Organophosphorus Compounds, Wiley p. 258 1950.]

Triethylphosphine [554-70-1] M 118.2, b 100°/7mm, 127-128°/744mm, d_4^{15} 0.812, n_D^{18} 1.457, pK²⁵ 8.69 (also available as a 1.0M soln in THF). All operations should be carried out in an efficient fume cupboard because it is flammable, toxic and has a foul odour. Purified by fractional distn at atm pressure in a stream of dry N₂, as it is oxidised by air to the oxide. In 300% excess of CS₂ it forms Et₃PCS₂ (m 118-120° cryst from MeOH) which decomposes in CCl₄ to give Et₃PS as a white solid m 94° when recryst from EtOH. [Sorettas and Isbell J Org Chem 27 273 1962; J Am Chem Soc 82 5791 1960; pK: Henderson and Streuli J Am Chem Soc 82 5791 1960; see also trimethylphosphine.] Store in a sealed vial under N₂.

Alternatively, dissolve in Et_2O and shake with a solution of AgI and KI to form the insoluble complex. Filter off the complex, dry over P_2O_5 and the Et_3P is regenerated by heating the complex in a tube attached to a vacuum system. [J Chem Soc 530 1953, 1828 1937; J Org Chem 27 2573 1962; Kosolapoff Organophosphorus Compounds, Wiley p. 31 1950.]

Triethyl phosphite [122-52-1] M 166.2, b 48-49°/11mm, b 52°/12mm, 57.5°/19mm, 157.9°/757mm, d_4^{20} 0.9687, n_D^{20} 1.4135. Treat with Na (to remove water and any dialkyl phosphonate), then decant and distil under reduced pressure, with protection against moisture or distil in vacuum through an efficient Vigreux column or a column packed with Penn State 0.16 x 0.16 in protruded nickel packing and a variable volume take-off head. [Org Synth Coll Vol IV 955 1963; J Am Chem Soc 78 5817 1956, 80 2999 1958; Kosolapoff Organophosphorus Compounds, Wiley p. 203 1950.]

Triethyl phosphonoacetate (triethyl carboxymethyl phosphonate) [867-13-0] M 224.2, b 83-84°/0.5mm, 103°/1.2mm, 143-144°/11mm, 260-262°/atm, d_4^{20} 1.1215, n_D^{20} 1,4310. Purified by fractional distn, preferably *in vacuo*. ³¹P NMR has P resonance at 19.5 relative to orthophosphate. [Kosolapoff and Powell J Am Chem Soc 68 1103 1946; 72 4198 1950; Speziale and Freeman J Org Chem 23 1586 1958.]

Triethyl phosphonoformate [1474-78-8] M 210.2, b 70-72°/0.1mm, 122.5-123°/8mm, 130-131°/10mm, 138.2°/12.5mm, d_4^{20} 1.22, n_D^{20} 1.423. Dissolve in Et₂O, shake with H₂O (to remove any trace of NaCl impurity), dry (Na₂SO₄), evaporate and distil using an efficient fractionating column. [*Chem Ber* 57 1035 1924.]

Triethyl 2-phosphonopropionate [3699-66-9] M 238.2, b 76-77°/0.2mm, 137-138.5°/17mm, d_0^{20} 1.096, n_D^{20} 1.432. Purified by fractional distillation with high reflux ratio, preferably using a spinning band column. [J Am Chem Soc 4198 1950.]

Triethylsilane [617-86-7] M 116.3, b 105-107°, 107-108°, d 0.734. n 1.414. Refluxed over molecular sieves, then distilled. It was passed through neutral alumina before use [Randolph and Wrighton J Am Chem Soc 108 3366 1986].

Triethylsilyl-1,4-pentadiene (1,4-pentadien-3-yloxy-trimethylsilane) [62418-65-9] M 198.4, b 72-74°/12mm, d_4^{20} 0.842, n_D^{20} 1.439. Dissolve in pentane, wash with H₂O, dry (Na₂SO₄), evaporate, and distil under vacuum. R_F values on Kieselgel 60 are 0.15 (pentane) and 0.60 (*C₆H₆). [IR, NMR, MS: *Helv Chim Acta* 64 2002 1981.]

Triethyltin hydroxide [994-32-1] M 222.9. Treated with HCl, followed by KOH, and filtered to remove diethyltin oxide [Prince J Chem Soc 1783 1959].

Tri-n-hexylborane [1188-92-7] **M 265.3.** Treated with hex-1-ene and 10% anhydrous Et_2O for 6h at gentle reflux under N₂, then vacuum distilled through an 18in glass helices-packed column under N₂ taking the fraction **b** 130°/2.1mm to 137°/1.5mm. The distillate still contained some di-*n*-hexylborane [Mirviss J Am Chem Soc **83** 3051 1961].

Triiron dodecacarbonyl [17685-52-8] M 503.7, m 140°(dec). It usually contains 10% by weight of MeOH as stabiliser. This can be removed by keeping in a vacuum at 0.5mm for at least 5h. It can be sublimed slowly at high vacuum and is soluble in organic solvents. [J Org Chem 37 930 1972, J Chem Soc 4632 1960; Inorg Synth 7 193 1963.]

Triisoamyl phosphate [919-62-0] **M 308.4, b 143°/3mm.** Purified by repeated crystallisation, from hexane, of its addition compound with uranyl nitrate. (see *tributyl phosphate*.) [Siddall J Am Chem Soc 81 4176 1959].

Triisobutyl phosphate [126-71-6] M 266.3, b 119-129°/8-12mm, 192°/760mm, d 0.962, n 1.421. Purified by repeated crystallisation, from hexane, of its addition compound with uranyl nitrate. (see tributyl phosphate.) [Siddall J Am Chem Soc 81 4176 1959.]

Triisooctyl thiophosphate [30108-39-5] **M 450.6.** Purified by passage of its solution in CCl₄ through a column of activated alumina.

Triisopropyl phosphite [116-17-6] **M 208.2, b 58-59°/7mm, n²⁵ 1.4082.** Distilled from sodium, under vacuum, through a column with glass helices. (This removes any dialkyl phosphonate).

Trimesitylphosphine [23897-15-6] M 388.5, m 205-206°, pK_{Est}~8.0. Recrystd from EtOH [Boert et al. J Am Chem Soc 109 7781 1987].

Trimethallyl phosphate [14019-81-9] M 260.3, b 134.5-140°/5mm, n²⁵ 1.4454. Purified as for triisoamyl phosphate.

Trimethoxysilane [2487-90-3] M 122.2, m -114.8°, 81.1°/760mm, 84°/atm, d_4^{20} 0.957, n_D^{20} 1.359. Likely impurities are Si(OMe)₄ and H₂Si(OMe)₂. Efficient fractionation is essential for removing these impurities [IR: J Am Chem Soc 81 5109 1959].

Trimethyl borate (methylborate, trimethoxyboron) [121-43-7] M 103.9, b 67-68°/742mm, d_4^{20} 0.928, n_D^{20} 1.3610. Carefully fractionated through a gauze-packed column. Redistil and collect in weighed glass vials and seal. Keep away from moisture. It undergoes alkyl exchange with alcohols and forms azeotropes, e.g. with MeOH the azeotrope consists of 70% (MeO)₃B and 30% MeOH with b 52-54°/atm, d 0.87. [J Chem Soc 2288 1952; Chem Ind (London) 53 1952; J Am Chem Soc 75 213 1953.] Also dried with Na, then distilled.

Trimethyl boroxine [823-96-1] M 125.5, b 80°/742mm, 79.3°/755mm, d_4^{20} 0.902. Possible impurity is methylboronic acid. If present then add a few drops of conc H₂SO₄ and distil immediately, then

fractionate through an efficient column. [J Am Chem Soc 79 5179 1957; IR: Z Anorg Chem 272 303 1953.]

Trimethyl chlorosilane (chlorotrimethylsilane) [75-77-4] M 108.6, b 56-57°/atm, 58°/760mm, d 0.86, n 1.388. Likely impurities are other chlorinated methylsilanes, and tetrachlorosilane (b 57.6°), some of which can form azeotropes. To avoid the latter very efficient fractional distillation is required. It has been fractionated through a 12 plate glass helices packed column with only the heart-cut material used. It has also been fractionated through a 90cm, 19mm diameter Stedman column (see p. 441). Also purified by redistilling from CaH₂ before use. [J Am Chem Soc 70, 4254, 4258 1948; J Org Chem 23 50 1958.] FLAMMABLE and CORROSIVE.

Trimethyloxonium tetrafluoroborate [420-37-1] M 147.9, m 141-143°(sinters, open capillary), 179.6-180.0°(dec), 210-220°(dec). The salt must be a white crystalline solid $m \sim 179.6-180.0°$ (dec, sealed tube). Under a N₂ atmosphere (e.g. Dry Box), wash twice with CH₂Cl₂ then twice with Nadried Et₂O, and dry by passing dry N₂ over the salt until free from Et₂O [Curphey Org Synth Coll Vol VI 1019 1988]. The oxonium salt purified in this way can be handled in air for short periods. The sample kept in a desiccator (Drierite) for 1 month at -20° had the same m, and samples stored in this way for >1 year are satisfactory for alkylations. ¹H NMR in liq SO₂ in a sealed tube had a single peak at δ 4.54 (impurities have δ at 3.39). [Meerwein Org Synth Coll Vol V 1096 1973.] If the sample looks good, dry in a vac desiccator for 2h (25°/1mm) and stored under N₂ at -20°. Melting point depends on heating rate.

Trimethylphenylsilane (phenyltrimethylsilane) [768-32-1] M 150.3, b $67.3^{\circ}/20 \text{ mm}$, 170.6°/738mm, d_4^{25} 0.8646, n 1.491. Fractionally distd at atm or reduced pressure (Podbielniak column, p.141) and estimated by GC with a column packed with Silicone Fluid No 710 on Chromosorb P support. [Gilman et al. J Org Chem 18 1743 1953; Maienthal et al. J Am Chem Soc 76 6392 1954; House and Respess J Organomet Chem 4 95 1965; J Am Chem Soc 71 2923 1949, 73 4770 1951, 75 2821 1953]

Trimethyl phosphate [512-56-1] **M 140.1, b 77°/12mm, 94°/22mm, 110°/60mm, 197.2°/atm, d_4^{20} 1.0213, n_D^{20} 1.3961**. Purified by fractionation through and efficient column at high reflux ratio. It is quite soluble in H₂O, solubility is 1:1 at 25°. [*J Am Chem Soc* 74 2923 1952; IR: *J Chem Soc* 847 1952; Can J Chem 36 820 1958; Kosolapoff Organophosphorus Compounds, Wiley p. 258 1950.]

Trimethylphosphine [594-02-2] M 76.1, m -86°, b 38-39°/atm, pK²⁵ 8.65, (also available as a 1.0M soln in THF or toluene). All operations should be carried out in an efficient fume cupboard because it is flammable, toxic and has a foul odor. Distd at atm pressure in a stream of dry N₂ (apparatus should be held together with springs to avoid loss of gas from increased pressure in the system) and the distillate run into a soln of AgI in aq KI whereby the complex [Me₃PAgI]₄ separates steadily. Filter off the complex, wash with satd aq KI soln, then H_2O and dry in a vac desiccator over P_2O_5 . The dry complex is heated in a flask (in a stream of dry N_2) in an oil bath at 140°, when pure Me₃P distils off (bath temp can be raised up to 260°). The vapour pressure of Me₃P at 20° is 466mm and the b is 37.8° [Thomas and Eriks Inorg Synth 9 59 1967]. Alternatively, freshly distilled Me₃P (6g) is shaken with a solution of AgI (13.2g, 1.1mol) in saturated aqueous KI solution (50mL) for 2h. A white solid, not wetted with H₂O, separates rapidly. It is collected, washed with the KI solution, H₂O, and dried [J Chem Soc 1829 1937]. The silver complex is stable if kept dry in the dark in which state it can be kept indefinitely. Me₃P can be generated from the complex when required. Store under N₂ in a sealed container. It has been distd in a vacuum line at -78° in vacuo and condensed at -96° [IR and NMR: Crosbie and Sheldrick J Inorg Nucl Chem 31 3684 1969]. The pK²² by NMR was 8.80 [Silver and Lutz J Am Chem Soc 83 786 1961; pK 8.65: Henderson and Strueuli J Am Chem Soc 82 5791 1960].

 $[Me_2PAgI]_4$ [12389-34-3] complex is a flammable solid which has m 140-142°. It is decomposed by heating gently in one arm of an inverted U tube. The other arm is kept in a freezing mixture. The complex dissociates and pure Me₃P collects in the cold arm and is used at once. It should not be allowed to come in contact with air [*J Chem Soc* 708 1938]. The CS₂ complex has m 119° (cryst from 95% EtOH) and decomposes in CCl₄ to give Me₃PS m 154° (from EtOH) [Sorettas and Isbell *J Org Chem* 27 273 1962].

Triphenylphosphine hydrochloride is unstable and volatilises at 75°/0.4mm (120°/14mm). [J Am Chem Soc 67 503 1945; IR: Trans Faraday Soc 40 41 1944; Kosolapoff Organophosphorus Compounds, Wiley p. 31 1950.]

Trimethyl phosphite [121-45-9] M 124.1, b $22^{\circ}/23$ mm, 86-86.5°/351mm, 111-112°/760mm, 111°/atm, d_4^{20} 1.0495, n_D^{20} 1.408. Treated with Na (to remove water and any dialkyl phosphonate), then decanted and distilled with protection against moisture. It has also been treated with sodium wire for 24h, then distilled in an inert atmosphere onto activated molecular sieves [Connor et al. J Chem Soc, Dalton Trans 511 1986]. It has also been fractionally distilled using a spinning band column at high reflux ratio. It is a colourless liquid which is slowly hydrolysed by H₂O. [J Am Chem Soc 80 2999 1958; IR: J Chem Soc 255 1950, P NMR: J Am Chem Soc 79 2719 1957; Kosolapoff Organophosphorus Compounds, , Wiley p. 203 1950.]

Trimethylsilyl acetamide [13435-12-6] M 131.3, m 38-43°, 52-54°, b 84°/13mm, 185-186°/atm. Repeated distillation in an inert atmosphere, all operations to be performed under anhydrous atmosphere. In the presence of moisture trimethylsilanol (b 31-34°/26mm) is formed and is a likely impurity (check by NMR). [Chem Ber 96 1473 1963.]

Trimethylsilyl acetonitrile (TMSAN) [18293-53-3] M 113.2, b 49-51°/10mm, 65-70°/20mm, d_4^{20} 0.8729, n_D^{20} 1.4420. Check if NMR and IR spectra are correct, if not dissolve in *C₆H₆ (10vols), wash with buffer (AcOH-AcONa pH *ca* 7) several times, dry (CaCl₂), evaporate and distil. IR: v (CCl₄) 2215 (CN) cm⁻¹; NMR δ (CCl₄): 0.23 (s, 9H, SiMe₃), and 1.53 (s, 2H, CH₂CN). [J Chem Soc Perkin Trans 1 26 1979.]

Trimethylsilyl azide [4648-54-8] M 115.2, b 92-95°/atm, 95-99°/atm, d_4^{20} 0.878, n_D^{20} 1.441. Distil through a Vigreux column in a N₂ atmosphere maintaining the oil bath temperature thermostated at 135-140°. Check the purity by ¹H NMR [CHCl₃, δ : single peak at 13cps from Me₄Si. Likely impurities are siloxane hydrolysis products. The azide is thermally stable even at 200° when it decomposes slowly without explosive violence. All the same it is advisable to carry out the distillation behind a thick safety screen in a fumehood because unforseen **EXPLOSIVE** azides may be formed on long standing. [Birkofer and Wagner Org Synth Coll Vol VI 1030 1988.]

Trimethylsilyl chloroacetate [18293-71-5] **M 166.7, m -20°, b 57-58°/14mm, 70-71°/30mm, 159^{\circ}/760mm, d_4^{20} 1.057, n_D^{20} 11.4231. Purified by repeated fractionation and taking the fractions with clean NMR spectra. [J Am Chem Soc 2371 1952.]**

Trimethylsilyl cyanide [7677-24-9] M 99.2, m 8-11°, 10.5-11.5°, 11-12°, 12-12.5°; b 54-55°/87mm, 67-71°/168mm, 114-117°/760mm, 118-119°/760mm, d_4^{20} 0.79 n_D^{20} 1.43916. Material should have only one sharp signal in the ¹H NMR (in CCl₄ with CHCl₃ as internal standard) δ : 0.4 and IR with v at 2210cm⁻¹ [*J Am Chem Soc* 74 5247 1952, 77 3224 1955]; otherwise purify by fractionating through an 18 x 1/4 in column. [*J Am Chem Soc* 81 4493 1959.] It has also been carefully distilled using a 60cm vac jacketed column. If volume of sample is small the cyanide can be chased (in the distillation) with xylene that had be previously distilled over P₂O₅. [*J Org Chem* 39 914 1974.]

2-Trimethylsilyl-1,3-dithiane [13411-42-2] M 192.2, b 54.5°/0.17mm, 100°/8mm, d_4^{20} 1.04, n_D^{20} 1.533. Fractionally distil through an efficient column and collect the fractions that have the correct NMR and IR spectra. ¹H NMR (CCl₄) τ 6.36 (SiMe₃), 9.87 (SCHS) and dithiane H at 7 and 8 (ratio 1:9:4:2) from Me₄Si; UV λ_{max} 244nm (ϵ 711); sh 227nm (ϵ 800). [J Am Chem Soc 89 434 1967.]

Trimethylsilyl ethanol [2916-68-9] M 118.3, b 53-55°/11mm, 75°/41mm, 95°/100mm, d_4^{25} 0.8254, n_D^{25} 1.4220. If the NMR spectrum is not clean then dissolve in Et₂O, wash with aqueous NH₄Cl solution, dry (Na₂SO₄), evaporate and distil. The 3,4-dinitrobenzoyl deriv has m 66° (from EtOH). [NMR: J Am Chem Soc 79 974 1957; Z Naturforsch 14b 137 1959.]

2-(Trimethylsilyl)ethoxymethyl chloride (SEMCl) [76513-69-4] M 166.7, b 57-59°/8mm, d 0.942, n 1.4350. Dissolve in pentane, dry (MgSO₄), evaporate and dist residual oil in a vac. Stabilise with 10ppm of diisopropylamine. Store under N_2 in a sealed container in a refrigerator. [Lipshutz and Pegram Tetrahedron Lett 21 3343 1980.]

2-(Trimethylsilyl)ethoxymethyltrimethylphosphonium chloride [82495-75-8] M **429.0**, m **140-142°.** Wash the solid with AcOH and recryst from CH₂Cl₂-EtOAc. Dry in a vacuum desiccator. *Hygroscopic.* ¹H NMR (CDCl₃) δ : -0.2 (s, Me₃Si), 0.8 (t, 8Hz, CH₂Si), 3.83 (t, 8Hz, OCH₂), 5.77 (d, J_{PH} 4Hz, P⁺-CH₂O) and 7.70 (m, aromatic H). [Justus Liebigs Ann Chem 1031 1983.]

Trimethylsilylethyl phenylsulfone (phenyl-2-trimethylsilylethylsulfone) [73476-18-3] M 242.4, m 52°. Dissolve in Et₂O, wash with saturated HCO₃, saturated NaCl, H₂O and dried (MgSO₄). Evaporation leaves residual crystals m 52°. [Tetrahedron Lett 23 1963 1982, J Org Chem 53 2688 1985.]

1-Trimethylsilyloxy-1,3-butadiene [6651-43-0] M 142.3, b 131°/760mm (mixt of isomers), 49.5°/25mm (E-isomer), d 0.8237, n 1.447. Purified by fractional distn and collecting the fractions with the required ¹H NMR. Store under N_2 — it is a flammable and moisture sensitive liquid. [Caseau et al. Bull Soc Chim Fr 16658 1972; Belge Patent 670,769, Chem Abstr 65 5487d 1966.]

1-(Trimethylsilyloxy)cyclopentene [19980-43-9] M 156.3, b 45°/11mm, 75-80°/20-21mm, d_4^{20} 0.878, n_D^{20} 1.441. If too impure as seen by the NMR spectrum then dissolve in 10 vols of pentane, shake with cold NaHCO₃(3 x 500mL), then 1.5M HCl (200mL) and aqueous NaHCO₃ (200mL) again, dry (Na₂SO₄), filter, evaporate and distil through a short Vigreux column. ¹H NMR: (CDCl₃) δ : 0.21 (s, 9H), 1.55 (m, 2H), 1.69 (m, 2H), 2.05 (br d, 4H) and 4.88 (br s, 1H). GLPC in a 6ft x 1/8in with 3% SP2100 on 100-120 mesh Supelcoport column should give one peak. [Org Synth Coll Vol VIII 460 1993.]

2-(Trimethylsilyloxy)furan [61550-02-5] **M 156.3, b 34-35°/9-10mm, 42-50°/17mm, 40-42°/25mm, d_4^{20} 0.950, n_D^{20} 1.436. Fractionally distilled using a short path column. ¹H NMR in CCl₄ has \delta: 4.90 (dd, J 1.3Hz, 3H), 6.00 (t, J 3Hz, 4H) and 6.60 (m, 5H). [Heterocycles 4 1663 1976.]**

4-Trimethylsilyloxy-3-penten-2-one (cis) (acetylacetone enol trimethylsilyl ether) [13257-81-3] M 172.3, b 66-68°/4mm, 61-63°/5mm, d_4^{20} 0.917, n_D^{20} 1.452. Fractionally distilled and stored in glass ampoules which are sealed under N₂. It hydrolyses readily in contact with moisture giving, as likely impurities, hexamethyldisiloxane and 2,4-pentanedione. [J Am Chem Soc 80 3246 1958.]

Trimethylsilyl isocyanate [1118-02-1] M 115.2, b 90-92°/atm, b 91.3-91.6°/atm, d_4^{20} 0.850 n $_D^{20}$ 1.43943. Purified by repeated fractionation as for the isothiocyanate. [J Chem Soc 3077 1950.]

Trimethylsilyl isothiocyanate [2290-65-5] M 131.3, m -33°, b 142.6-143.1°/759 mm, 143.8°/760 mm, n_D^{20} 1.4809. The ¹H NMR spectrum should have only one peak, if not purify by repeated fractionation in an all glass system using a 50cm (4mm internal diameter) column without packing. [J Am Chem Soc 69 3049 1947; Chem Ber 90 1934 1957; Synthesis 51 1975.]

(Trimethylsilyl)methanol [3219-63-4] M 104.2, b 120-122°/754mm, 122-123°/768mm, d_4^{20} 0.83 n_D^{20} 1.4176. If the NMR indicates impurities (should have only two signals) then dissolve in Et₂O, shake with aqueous 5N NaOH, M H₂SO₄, saturated aqueous NaCl, dry (MgSO₄) and distil using an efficient column at atmospheric pressure. The 3,5-dinitrobenzoate has m 70-70.5° (from 95% EtOH). [Huang and Wang Acta Chem Sin 23 291 1957, Chem Abs 52 19911 1958; Speier et al. J Am Chem Soc 81 1844 1959 and J Am Chem Soc 70 1117 1949.]

(Trimethylsilyl)methylamine (aminomethyl trimethylsilane) [18166-02-4] M 103.2, b 101.6°/735mm, d_4^{20} 0.77, n_D^{20} 1.416. A possible contaminant is hexamethyldisiloxane. Should have two ¹H NMR signals in CDCl₃, if not, dissolve in ^{*}C₆H₆, shake with 15% aq KOH, separate, dry (Na₂SO₄), filter, evaporate and distil using a still of *ca* 10 theoretical plates. The water azeotrope has b 83°/735mm,

hence it is important to dry the extract well. The hydrochloride has m 198/199° (from MeOH or Me₂CO). [J Am Chem Soc 73 3867 1951; NMR, IR: J Organometal Chem 44 279 1972.]

Trimethylsilylmethyl phenylsulfone (phenyltrimethylsilylmethylsulfone) [17872-92-3] M 228.4, m 28-32°, b 121°/0.01mm, 160°/6mm, n_D^{20} 1.5250. Fractionate at high vacuum and recrystallise from pentane at -80°. If too impure (cf IR) dissolve in CH₂Cl₂ (ca 800mL for 100g), wash with 2M aqueous NaOH (2 x 200mL), brine, dry, evaporate and distil. [J Chem Soc, Perkin Trans 1 1949 1985; IR and NMR: J Am Chem Soc 76 3713 1954.]

1-(Trimethylsilyl)-2-phenylacetylene (1-phenyl-2-trimethylsilylacetylene) [78905-09-6] M 174.3, b 45-46°/0.1mm, 67°/5mm, 87.5°/9mm, d 0.8961 n 1.5284. Dissolve in Et_2O , wash with H₂O, dry and fractionate through a Todd column (see p. 174). [J.Am Chem Soc 80 5298 1958.]

3-(Trimethylsilyl)propyne [13361-64-3] M 112.3, b 99-100°/760mm, d 0.7581, n 1.4091. Fractionally distilled and 0.5% of 2,6-di-*tert*-butyl-*p*-cresol added to stabilise it. [Doklady Acad Nauk USSR 93 293 1953; Chem Abs 48 13616 1954.]

1-Trimethylsilyl-1,2,4-triazole [18293-54-4] M 141.3, b 74°/12mm, d_4^{20} 0.99, n_D^{20} 1.4604. Fractionally distilled at atmospheric pressure in an inert atmosphere because it is moisture sensitive. [*Chem* Ber 93 2804 1960.]

Trimethylsilyl trifluoromethane (trifluoromethyl trimethylsilane) [81290-20-2] M 142.2, b 54-55°, 55-55.5°, d_4^{20} 0.962, n_D^{20} 1.332. Purified by distilling from trap to trap in a vacuum of 20mm using a bath at 45° and Dry ice-Me₂CO bath for the trap. The liquid in the trap is then washed with ice cold H₂O (3x), the top layer is collected, dried (Na₂SO₄), the liquid was decanted and fractionated through a helices packed column at atmospheric pressure. ¹H, ¹³C, ¹⁹F, and ²⁹Si NMR can be used for assessing the purity of fractions. [*Tetrahedron Lett* 25 2195 1984; J Org Chem 56 984 1991.]

Trimethyl vinyl silane [754-05-2] M 100.2, b 54.4°/744mm, 55.5°/767mm, d(25,4) 0.6865, n_D^{25} 1.3880. If the ¹H NMR spectrum shows impurities then dissolve in Et₂O, wash with aq NH₄Cl soln, dry over CaCl₂, filter, evaporate and distil at atmospheric pressure in an inert atmosphere. It is used as a copolymer and may polymerise in the presence of free radicals. It is soluble in CH₂Cl₂. [J Org Chem 17 1379 1952.]

Trineopentyl phosphate [14540-59-1] M 320.4. Crystd from hexane.

Tri-(4-nitrophenyl)phosphate [3871-20-3] **M 461.3, m 155-156°, 156°, 156°, 156-158°, 157-159°**. It has been recrystd from AcOH, dioxane, AcOEt and Me₂CO and dried in vacuum over P₂O₅. [J Am Chem Soc **72** 5777 1950, **79** 3741 1957.]

Tri-n-octylphosphine oxide [78-50-2] **M 386.7, m 59.5-60°, pK**_{Est} <0. Mason, McCarty and Peppard [J Inorg Nuclear Chem 24 967 1962] stirred an 0.1M solution in *benzene with an equal volume of 6M HCl at 40° in a sealed flask for 48h, then washed the *benzene solution successively with water (twice), 5% aq Na₂CO₃ (three times) and water (six times). The *benzene and water were then evaporated under reduced pressure at room temperature. Zingaro and White [J Inorg Nucl Chem 12 315 1960] treated a pet ether solution with aqueous KMnO₄ (to oxidise any phosphinous acids to phosphinic acids), then with sodium oxalate, H₂SO₄ and HCl (to remove any manganese compounds). The pet ether solution was slurried with activated alumina (to remove phosphinic acids) and recrystd from pet ether or cyclohexane at -20°. It can also be crystd from EtOH.

Triphenylantimony [603-36-1] M 353.1, m 52-54°. Recrystd from acetonitrile [Hayes et al. J Am Chem Soc 107 1346 1985].

Triphenylarsine [603-32-7] M 306.2, m 60-62°. Recrystd from EtOH or aqueous EtOH [Dahlinger et al. J Chem Soc, Dalton Trans 2145 1986; Boert et al. J Am Chem Soc 109 7781 1987].

Triphenylbismuth (bismuth triphenyl) [603-33-8] M 440.3, m 75-76°, 77-78°, 78.5°, d^{98.5} 1.6427(melt). Dissolve in EtOH, ppte with H₂O, extract with Et₂O, dry and evaporate when the residue crystallises. It has been recrystd from EtOH and Et₂O-EtOH and is a stable compound. [*J Chem Soc* suppl p121 1949; Chem Ber 37 4620 1904; J Am Chem Soc 62 665 1940; UV: J Chem Phys 22 1430 1954.]

Triphenyl borane (borane triphenyl) [960-71-4] M 242.1, m 134-140°, 137°, 139-141°, 142-142.5°, 147.5-148°, 151°, b 203°/15mm. Recryst three times from Et_2O or C_6H_6 under N_2 and dry at 130°. It can be distilled in a high vacuum at 300-350°, and has been distilled (b 195-215°) in vacuum using a bath temp of 240-330°. N_2 was introduced into the apparatus before dismantling. It forms complexes with amines. [Chem Ind (London) 1069 1957; Justus Liebigs Ann Chem 563 110 1949; J Am Chem Soc 57 1259 1935.]

Triphenylchlorostannane (triphenyltin chloride) [639-58-7] M 385.5, m 103-106^o(dec). See triphenyltin chloride on p. 494.

Triphenyl phosphate [115-86-6] M 326.3, m 49.5-50°, b 245°/0.1mm. Crystd from EtOH.

Triphenylphosphine [603-35-0] M 262.3, m 77-78°, 79°, 79-81°, 80.5°, 80-81°, b >360°(in inert gas), d_4^{25} 1.194, d_4^{80} 1.075 (liq), pK 2.73. Crystd from hexane, MeOH, diethyl ether, CH₂Cl₂/hexane or 95% EtOH. Dried at 65°/<1mm over CaSO₄ or P₂O₅. Chromatographed through alumina using (4:1) *benzene/CHCl₃ as eluent. [Blau and Espenson et al. J Am Chem Soc 108 1962 1986; Buchanan et al. J Am Chem Soc 108 1537 1986; Randolph and Wrighton J Am Chem Soc 108 3366 1986; Asali et al. J Am Chem Soc 109 5386 1987.] It has also been crystd twice from pet ether and 5 times from Et₂O-EtOH to give m 80.5°. Alternatively, dissolve in conc HCl, and upon dilution with H₂O it separates because it is weakly basic; it is then crystallised from EtOH-Et₂O. It recrystallises unchanged from AcOH. [J Chem Soc Suppl. p121 1949; J Am Chem Soc 78 3557 1956.] 3Ph₃P .4HCl crystallises when HCl gas is bubbled through an Et₂O solution; it has m 70-73°, but recrystallises very slowly and is deliquescent. The HI, made by adding Ph₃P to hydriodic acid is not hygroscopic and decomps at ~100°. The chlorate (1:1) salt has m 165-167°, but decomposes slowly at 100°. All salts hydrolyse in H₂O to give Ph₃P [IR, UV: J Am Chem Soc 80 2117 1958; pK: J Am Chem Soc 82 5791 1960; Kosolapoff, Organophosphorus Compounds, Wiley 1950]. § Available commercially on a polystyrene or polyethyleneglycol support.

Triphenyl phosphine dibromide [1034-39-5] **M 422.1, m 235°, 245-255°(dec).** Recrystd from MeCN-Et₂O. Although it has been recrystd from EtOH, this is not recommended as it converts alcohols to alkyl bromides. It deteriorates on keeping and it is best to prepare it afresh. [Anderson and Freenor J Am Chem Soc **86** 5037 1964; Horner et al. Justus Liebigs Ann Chem **626** 26 1959.]

Triphenylphosphine oxide [791-28-6] M 278.3, m 152.0°, $pK_{Est} \sim -2.10$ (aq H₂SO₄). Crystd from absolute EtOH. Dried *in vacuo*.

Triphenyl phosphite [101-02-0] M 310.3, b 181-189°/1mm, d 1.183. Its ethereal soln was washed succesively with aqueous 5% NaOH, distilled water and saturated aqueous NaCl, then dried with Na_2SO_4 and distilled under vacuum after evaporating the diethyl ether.

Triphenylphosphorylidene acetaldehyde (formylmethylenetriphenylphosphorane) [2136-75-6] **M 304.3, m 185-187°, 186-187°(dec).** Recryst from Me₂CO, or dissolve in C_6H_6 , wash with N NaOH, dry (MgSO₄), evap, and cryst residue from Me₂CO. It can be prepd from its precursor, formylmethyltriphenylphosphonium chloride (crystd from CHCl₃/EtOAc), by tratment with Et₃N and extraction with C_6H_6 . [Tripett and Walker *Chem Soc* 1266 1961.]

Triphenyl silane [789-25-3] **M 260.4, m 45°, b 148-151°/1mm.** Purified by recrystn from MeOH. [J Am Chem Soc 81 5925 1959; Acta Chem Scand 9 947 1955; IR: J Am Chem Soc 76 5880 1954.]

Triphenylsilanol (hydroxytriphenylsilane) [791-31-1] M 276.4, m 150-153°, 151-153°, 154-155°, 156°. It can be purified by dissolving in pet ether, passing through an Al_2O_3 column, eluting thoroughly with CCl₄ to remove impurities and then eluting the silanol with MeOH. Evaporation gives crystals m 153-155°. It can be recrystallised from pet ether, CCl₄ or from *benzene or Et₂O-pet ether (1:1). It has also been recrystallised by partial freezing from the melt to constant melting point. [J Am Chem Soc 81 3288 1959; IR: J Org Chem 17 1555 1952 and J Chem Soc 124 1949.]

Triphenyltin chloride (chlorotriphenylstannane) [639-58-7] M 385.5, m 103-106°(dec), 108°(dec), b 240°/13.5mm. Purify by distillation, followed by recrystn from MeOH by adding pet ether (b 30-60°), m 105-106° [Chem Ber 67 1348 1934], or by crystn from Et₂O [Krause Chem Ber 51 914 1918]. It sublimes in a vacuum. HIGHLY TOXIC.

Triphenyltin hydroxide [76-87-9] M 367.0, m 122-123.5°, 124-126°. West, Baney and Powell [J Am Chem Soc 82 6269 1960] purified a sample which was grossly contaminated with tetraphenyltin and diphenyltin oxide by dissolving it in EtOH, most of the impurities remaining behind as an insoluble residue. Evaporation of the EtOH gave the crude hydroxide which was converted to triphenyltin chloride by grinding in a mortar under 12M HCl, then evaporating the acid soln. The chloride, after crystallisation from EtOH, had m 104-105°. It was dissolved in Et_2O and converted to the hydroxide by stirring with excess aqueous ammonia. The ether layer was separated, dried, and evaporated to give triphenyltin hydroxide which, after crystn from EtOH and drying under vacuum, was in the form of white crystals (m 119-120°), which retained some cloudiness in the melt above 120°. The hydroxide retains water (0.1-0.5 moles of water per mole) tenaciously.

Triphenyl vinyl silane [18666-68-7] M 286.5, m 58-59°, 57-59.5°, 67-68°, b 190-210°/3mm. It has been recrystallised from EtOH, 95% EtOH, EtOH- ${}^{*}C_{6}H_{6}$, pet ether (b 30-60°) and Et₂O, and has been distilled under reduced pressure. [J Am Chem Soc 74 4582 1952; J Org Chem 17 1379 1952.]

Tri-*n*-propyl borate [688-71-1] M 188.1, b 175-177°, d 0.857, n 1.395. Dried with sodium and then distilled.

Triquinol-8-yl phosphate [52429-99-9] **M 479.4, m 193-197°, 202-203°**. Purified by recrystn from dimethylformamide. Purity was checked by paper chromatography, $R_F 0.90$ [*i*-PrOH, saturated (NH₄)₂SO₄, H₂O; 2:79:19 as eluent]; IR (KBr) v 1620–1570 (C=C, C=N) and 1253 (P=O). [Bull Chem Soc Jpn 47 779 1974.]

Tri-ruthenium dodecacarbonyl [15243-33-1] **M 639.1, m 154-155°.** Recryst from ${}^{*}C_{6}H_{6}$ or cyclohexane as orange-red crystals, and sublime at 80-100°/0.1mm. It has v_{CO} 2062 and 2032. [J Chem Soc, Chem Commun 684 1966; J Chem Soc (A) 1238 1967; IR,UV: Angew Chem Int Ed Engl 7 427 1968.]

Tris-(2-biphenylyl) phosphate [132-28-5] M 554.6, m 115.5-117.5°. Crystd from MeOH containing a little acetone.

Tris(2,2'-bipyridine)ruthenium(II) dichloride (6H₂O) [50525-27-4] M 748.6. Recrystd from water then from MeOH [Ikezawa et al. J Am Chem Soc 108 1589 1986].

Tris-(1,2-dioxyphenyl)cyclotriphosphazine{trispiro[1,3,5,2,4,6-triazatriphosphorine]-2,2':-2,4":2,6"'-tris(1,3,2)benzodioxaphosphole}[311-03-5]M459.0, m244-245°, 245°,245-246°.Recrystd from *C₆H₆ or chlorobenzene, then triple sublimed (175°/0.1mm, 200°/0.1mm,230°/0.05mm).UV has λ_{max} nm (log ε): 276 (3.72), 271 (3.79) 266sh (3.68) and 209 (4.38) in MeCN. IR(v):1270 (O-Ph), 1220 (P=N), 835 (P-O-Ph) and 745 (Ph) cm⁻¹.[Alcock J Am Chem Soc 86 2591 1964;Alcock et al. J Am Chem Soc 98 5120 1976; Meirovitch J Phys Chem 88 1522 1984.]

(±)-Tris-(2-ethylhexyl)phosphate (TEHP, tri-isooctylphosphate, "trioctyl" phosphate, [78-42-2; 25103-23-5] M 434.6, b 186°/1mm, 219°/5mm, d²⁵ 0.92042, n 1.44464. TEHP, in an equal volume of diethyl ether, was shaken with aqueous 5% HCl and the organic phase was filtered to remove traces of pyridine (used as a solvent during manufacture) as its hydrochloride. This layer was shaken with aqueous Na_2CO_3 , then water, and the ether was distilled off at room temperature. The ester was filtered, dried for 12h at 100°/15mm, and again filtered, then shaken intermittently for 2 days with activated alumina (100g/L). It was decanted through a fine sintered-glass disc (with exclusion of moisture), and distd under vacuum. [French and Muggleton J Chem Soc 5064 1957.] *Benzene can be used as a solvent (to give 0.4M soln) instead of ether. IR: 1702, 1701, 481 and 478cm⁻¹ [Bellamy and Becker J Chem Soc 475 1952]. The uranyl nitrate salt was purified by partial crystallisation from hexane [Siddall J Am Chem Soc 81 4176 1959].

Trisodium citrate (2H₂O) [68-04-2] M 294.1, m 150°(loses H₂O). Crystd from warm water by cooling to 0° .

Trisodium 8-hydroxy-1,3,6-pyrenetrisulfonate [6358-69-6] **M 488.8, m >300(dec).** Purified by chromatography with an alumina column, and eluted with *n*-propanol-water (3:1, v/v). Recrystd from aqueous acetone (5:95, v/v) using decolorising charcoal.

Trisodium 1,3,6-naphthalenetrisulfonate [5182-30-9] **M 434.2.** The free acid was obtained by passage through an ion-exchange column and converted to the lanthanum salt by treatment with La₂O₃. This salt was crystallised twice from hot water. [The much lower solubility of La₂(SO₄)₃ and its retrograde temperature dependence allows a good separation from sulfate impurity]. The lanthanum salt was then passed through an appropriate ion-exchange column to obtain the free acid, the sodium or potassium salt. (The sodium salt is *hygroscopic*). [Atkinson, Yokoi and Hallada J Am Chem Soc **83** 1570 1961.] Also recrystd from aqueous acetone [Okahata et al. J Am Chem Soc **108** 2863 1986].

Trisodium orthophosphate (12H₂O) [10101-89-0] M 380.1, pK_1^{25} 2.15, pK_2^{25} 7.21, pK_3^{25} 12.33 (for H₃PO₄). Crystd from warm dilute aqueous NaOH (1mL/g) by cooling to 0°.

Tris(2,4-pentandionate)aluminium [13963-57-0] M 324.3. See aluminum acetylacetonate on p. 390.

Tris-(trimethylsilyl)silane (TTMSS) [1873-77-4] M 248.7, b 73°/5mm, d 0.808, n 1.49. Purified by fractional distn and taking the middle cut. Store under N_2 or Ar as it is an IRRITANT and **PYROPHORIC**. [Chatgilialoglu Acc Chem Res 25 188 1992; NMR: Gilman et al. J Organomet Chem 4 163 1965.]

Tritium [10028-17-8] M 6.0. Purified from hydrocarbons and ³He by diffusion through the wall of a hot nickel tube [Landecker and Gray *Rev Sci Instrum* 25 1151 1954]. RADIOACTIVE.

Tri-*p*-tolyl phosphate [20756-92-7; 1330-78-5 (isomeric tritolyl phosphate mixture)] M 368.4, b 232-234°, d^{25} 1.16484, n 1.56703. Dried with CaCl₂, then distd under vacuum and percolated through a column of alumina. Passage through a packed column at 150°, with a counter-current stream of nitrogen, under reduced pressure, removed residual traces of volatile impurities.

Tri-o-tolylphosphine [6163-58-2] M 304.4, m 129-130°, pK_{Est} <0. Crystd from EtOH [Boert et al. J Am Chem Soc 109 7781 1987].

Tungsten (rod) [7440-33-7] **M 183.6. m 3410°, b 5900°, d 19.0.** Cleaned with conc NaOH solution, rubbed with very fine emery paper until its surface was bright, washed with previously boiled and cooled conductivity water and dried with filter paper.

Tungsten hexacarbonyl [14040-11-0] M 351.9, d 2.650. Sublimed in vacuo before use [Connoe et al. J Chem Soc, Dalton Trans 511 1986].

Tungsten (VI) trichloride [13283-01-7] M 396.6, m 265°(dec), 275°, b 346°, d_4^{25} 3.520, pK_1^{25} 2.20, pK_2^{25} 3.70 (for tungstic acid, H_2WO_4). Sublimed in a stream of Cl₂ in a high temperature furnace and collected in a receiver cooled in a Dry Ice-acetone bath in an inert atmosphere because it is sensitive to moisture. It is soluble in CS₂, CCl₄, CHCl₃, POCl₃, *C₆H₆, pet ether and Me₂CO. Solns decompose on

standing. Good crystals can be obtained by heating WCl₆ in CCl₄ to 100° in a sealed tube, followed by slow cooling (tablets of four-sided prisms). Store in a desiccator over H₂SO₄ in the dark. [*Inorg Synth* **3** 163 1950, **9** 1331967; Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Vol II 1417 1965.]

Uranium hexafluoride [7783-81-5] M 352.0, b 0°/17.4mm, 56.2°/765mm, m 64.8°, pK²⁵ 1.68 (for hydrolysis of U⁴⁺ to UOH³⁺). Purified by fractional distillation to remove HF. Also purified by low temperature trap-to-trap distillation over pre-dried NaF [Anderson and Winfield J Chem Soc, Dalton Trans 337 1986].

Uranium trioxide [1344-58-7] **M 286.0, d 7.29.** The oxide was dissolved in HClO₄ (to give a uranium content of 5%), and the solution was adjusted to pH 2 by addition of dilute ammonia. Dropwise addition of 30% H₂O₂, with rapid stirring, ppted U(VI) peroxide, the pH being held constant during the pptn, by addition of small amounts of the ammonia soln. (The H₂O₂ was added until further quantities caused no change in pH.) After stirring for 1h, the slurry was filtered through coarse filter paper in a Büchner funnel, washed with 1% H₂O₂ acidified to pH 2 with HClO₄, then heated at 350° for three days in a large platinum dish [Baes J Phys Chem **60** 878 1956].

Uranyl nitrate (6H₂O) [13520-83-7] M 502.1, m 60.2°, b 118°, pK^{25} 5.82 (for aquo UO_2^{2+}). Crystd from water by cooling to -5°, taking only the middle fraction of the solid which separated. Dried as the hexahydrate over 35-40% H₂SO₄ in a vacuum desiccator.

Vanadium (metal) [7440-62-2] M 50.9, m 1910°, d 6.0. Cleaned by rapid exposure consecutively to HNO₃, HCl, HF, de-ionised water and reagent grade acetone, then dried in a vacuum desiccator.

Vanadium (III) acetonylacetonate [13476-99-8] M 348.3, m 181-184°, 185-190°, $pK_1^{25} 2.92$, $pK_2^{25} 3.5$ (for aquo V³⁺ hydrolysis). Crystd from acetylacetone as brown plates. It can be distilled in small quantities without decomposition. It is soluble in CHCl₃ and *C₆H₆ and evaporation of a CHCl₃ solution yields brown crystals which are washed with cold EtOH and dried in vacuum or at 100° in a CO₂ atmosphere. Under moist conditions it readily oxidises [V(AcAc)₃ to V(AcAc)₂O]. [J Chem Soc 103 78 1913, Inorg Synth 5 105 1957; Anal Chem 30 526 1958; UV: J Am Chem Soc 80 5686 1958.]

Vanadyl acetylacetonate [3153-26-2] M 265.2, m 256-259°. Crystd from acetone.

Vanadyl trichloride (VOCl₃) [7727-18-6] M 173.3, m-79.5°, b 124.5-125.5°/744 mm, 127.16°/760mm, d⁰ 1.854, d³² 1.811. Should be lemon yellow in colour. If red it may contain VCl₄ and Cl₂. Fractionally distil and then redistil over metallic Na but be careful to leave some residue because the residue can become **EXPLOSIVE** in the presence of the metal USE A SAFETY SHIELD and avoid contact with moisture. It readily hydrolyses to vanadic acid and HCl. Store in a tightly closed container or in sealed ampoules under N₂. [Inorg Synth 1 106 1939, 4 80 1953.]

Vinyl chlorosilane [75-94-5] M 161.5, b 17.7°/46.3mm, 82.9°/599.4mm, 92°/742mm, 91-91.5°/atm, d_4^{20} 0.1.2717, n_D^{20} 1.435. Fractionally distil at atmospheric pressure. It is H₂O sensitive and is stored in the dark and is likely to polymerise. [*Chem Ber* 91 1805 1958, 92 1012 1959; Anal Chem 24 1827 1952]

Vinylferrocene (ferroceneylethene) [1271-51-8] M 212.1, m 51-52.5°, b 80-85°/0.2 mm. Dissolve in Et_2O , wash with H_2O and brine, dry (Na₂SO₄), evap to a small vol. Purify through an Al_2O_3 (Spence grade H) column by eluting the yellow band with pet ether (b 40-60°). The low melting orange crystals which can be sublimed. The *tetracyanoethylene adduct* [49716-63-4] crysts from *C₆H₆-pentane and has m 137-

139°(dec). [Horspool and Sutherland Can J Chem 46 3453 1968; Berger et al. J Org Chem 39 377 1974; Rauch and Siegel J Organomet Chem 11 317 1968.]

Vinyltributylstannane (vinyltributyltin) [7486-35-3] M 317.1, b 104-106°/3.5mm, d 1.081, n 1.4751. Fractionate under reduced pressure and taking the middle fraction to remove impurities such as (*n*-Bu)₃SnCl. [Seyferth and Stone J Am Chem Soc 79 515 1957.]

Water [7732-18-5] M 18.0, m 0°, b 100°, pK^{25} 14.00. Conductivity water (specific conductance ca 10⁻⁷ mho) can be obtained by distilling water in a steam-heated tin-lined still, then, after adding 0.25% of solid NaOH and 0.05% of KMnO₄, distilling once more from an electrically heated Barnstead-type still, taking the middle fraction into a Jena glass bottle. During these operations suitable traps must be used to protect against entry of CO₂ and NH₃. Water only a little less satisfactory for conductivity measurements (but containing traces of organic material) can be obtained by passing ordinary distilled water through a mixed bed ion-exchange column containing, for example, Amberlite resins IR 120 (cation exchange) and IRA 400 (anion exchange), or Amberlite MB-1. This treatment is also a convenient one for removing traces of heavy metals. (The metals Cu, Zn, Pb, Cd and Hg can be tested for by adding pure concentrated ammonia to 10mL of sample and shaking vigorously with 1.2mL 0.001% dithizone in CCl₄. Less than 0.1µg of metal ion will impart a faint colour to the CCl₄ layer.) For almost all laboratory purposes, simple distillation yields water of adequate purity, and most of the volatile contaminants such as ammonia and CO₂ are removed if the first fraction of distillate is discarded.

Xylenol Orange (sodium salt) [3618-43-7]. See entry on p. 387 in Chapter 4.

Zinc (dust) [7440-66-6] M 65.4. Commercial zinc dust (1.2Kg) was stirred with 2% HCl (3L) for 1min, (then the acid was removed by filtration), and washed in a 4L beaker with a 3L portion of 2% HCl, three 1L portions of distilled water, two 2L portions of 95% EtOH, and finally with 2L of absolute Et₂O. (The wash solutions were removed each time by filtration.) The material was then dried thoroughly and if necessary, any lumps were broken up in a mortar.

Zinc (metal) [7440-66-6] M 65.4, m 420°, d 7.141. Fused under vacuum, cooled, then washed with acid to remove the oxide.

Zinc acetate $(2H_2O)$ [5970-45-6] M 219.5, m 100°(loses $2H_2O$), 237°, d 1.74, pK²⁵ 8.96 (for hydrolysis of Zn²⁺ to ZnOH⁺). Crystd (in poor yield) from hot water or, better, from EtOH.

Zinc acetonylacetate [14024-63-6] M 263.6, m 138°. Crystd from hot 95% EtOH.

Zinc bromide [7699-45-8] M 225.2, m 384, b 697. Heated to 300° under vacuum (2 x 10^{-2} mm) for 1h, then sublimed.

Zinc caprylate [557-09-5] M 351.8. Crystd from EtOH.

Zinc chloride [7646-85-7] M 136.3, m 283°, 290°. The anhydrous material can be sublimed under a stream of dry HCl, followed by heating to 400° in a stream of dry N₂. Also purified by refluxing (50g) in dioxane (400mL) with 5g zinc dust, filtering hot and cooling to ppte ZnCl₂. Crystd from dioxane and stored in a desiccator over P₂O₅. It has also been dried by refluxing in thionyl chloride. [Weberg et al. J Am Chem Soc 108 6242 1986.] Hygroscopic: minimal exposure to the atmosphere is necessary.

Zinc cyanide [557-21-1] M 117.4, m 800°(dec), d 1.852. It is a POISONOUS white powder which becomes black on standing if Mg(OH)₂ and carbonate are not removed in the preparation. Thus wash well with H₂O, then well with EtOH, Et₂O and dry in air at 50°. Analyse by titrating the cyanide with standard AgNO₃. Other likely impurities are ZnCl₂, MgCl₂ and traces of basic zinc cyanide; the first two salts can be washed out. It is soluble in aq KCN solns. However, if purified in this way Zn(CN)₂ is not reactive in the Gattermann synthesis. For this the salt should contain at least 0.33 mols of KCl or NaCl which will allow the reaction to proceed faster. [J Am Chem Soc 45 2375 1923, 60 1699 1938; Org Synth Coll Vol III 549 1955.]

Zinc diethyldithiocarbamate [14324-55-1] M 561.7, pK^{25} 3.04 (for $Et_2NCS_2^{-}$). Crystd several times from hot toluene or from hot CHCl₃ by addition of EtOH.

Zinc dimethyldithiocarbamate [137-30-4] M 305.8, m 248-250°, pK^{25} 3.36 (for $Me_2NCS_2^-$). Crystd several times from hot toluene or from hot CHCl₃ by addition of EtOH.

Zinc ethylenebis[dithiocarbamate] [12122-67-7] **M 249.7.** Crystd several times from hot toluene or from hot CHCl₃ by addition of EtOH.

Zinc fluoride [7783-49-5] **M 103.4, m 872°, b 1500°, d²⁵ 5.00.** Possible impurity is H₂O which can be removed by heating at 100° or by heating to 800° in a dry atmosphere. Heating in the presence of NH₄F produces larger crystals. It is sparingly sol in H₂O (1.51g/100mL) but more sol in HCl, HNO₃ and NH₄OH. It can be stored in glass bottles. [Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Vol I 242 1963.]

Zinc formate (2H₂O) [557-41-5] M 191.4, m 140°(loses H₂O), d 2.21. Crystd from water (3mL/g).

Zinc iodide [10139-47-6] M 319.2, m 446, b 624°(dec), d 4.74. Heated to 300° under vacuum (2 x 10^{-2} mm) for 1h, then sublimed.

Zinc RS-lactate (3H₂O) [554-05-2; 16039-53-5 (L)] M 297.5. Crystd from water (6mL/g).

Zincon (o-[1-(2-hydroxy-5-sulfo)-3-phenyl-5-formazono]-benzoic acid) [135-52-4] M 459.4. Main impurities are inorganic salts which can be removed by treatment with dilute acetic acid. Organic contaminants are removed by refluxing with ether. It can be recrystd from dilute H₂SO₄. [Fichter and Schiess Chem Ber 33 751 1900.]

Zincon disodium salt (*o*-[1-(2-hydroxy-5-sulfo)-3-phenyl-5-formazono]-benzoic acid di-Na salt) [135-52-4; 56484-13-0] M 484.4, m ~250-260° (dec). Zincon soln is prepared by dissolving 0.13g of the powder in aqueous N NaOH (2mL diluted to 100mL with H₂O). This gives a deep red colour which is stable for one week. It is a good reagent for zinc ions but also forms stable complexes with transition metal ions. [UV-VIS: Bush and Yoe Anal Chem 26 1345 1954; Hunter and Roberts J Chem Soc 820 1941; Platte and Marcy Anal Chem 31 1226 1959] The free acid has been recrystd from dilute H₂SO₄. [Fichter and Scheiss Chem Ber 33 751 1900.]

Zinc perchlorate (6H₂O) [13637-61-1] M 372.4, m 105-107°, pK^{25} -2.4 to -3.1 (for HClO₄). Crystd from water.

Zinc phenol-o-sulfonate (8H₂O) [127-82-2] M 555.8. Crystd from warm water by cooling to 0°.

Zinc phthalocyanine [14320-04-8] M 580.9. Sublimed repeatedly in a flow of oxygen-free N₂.

Zinc sulfate $(7H_2O)$ [7446-20-0] M 287.5, m 100°(dec), 280°(loses all $7H_2O$), >500(anhydr), d 1.97. Crystd from aqueous EtOH.

Zinc 5,10,15,20-tetraphenylporphyrin [14074-80-7] M 678.1, λ_{max} 418(556)nm. Purified by chromatography on neutral (Grade I) alumina, followed by recrystallisation from CH₂Cl₂/MeOH [Yamashita et al. J Phys Chem 91 3055 1987].

Zinc trifluoromethanesulfonate [54010-75-2] **M 363.5, m >300°.** It should be dried at 125° for 2h at 3mm. It is soluble in CH_2Cl_2 but insoluble in pet ether. [*Tetrahedron Lett* 24 169 1983.]

Zirconium (IV) proposide [23519-77-9] M 327.6, b 198°/0.03mm, 208°/0.1mm, d_4^{20} 1.06, n_D^{20} 1.454. Although it was stated that it could not be crystallised or sublimed even at 150°/10⁻⁴mm [J Chem Soc 280 1951], the proposide has, when properly prepared, been purifed by distn in a high vacuum [J Chem Soc 2025 1953].

Zirconium tetrachloride [10026-11-6] M 233.0, m 300°(sublimes), pK_1^{25} -0.32, pK_2^{25} 0.06, pK_3^{25} 0.35, pK_4^{25} 0.46 (for hydrolysis of aquo Zr⁴⁻). Crystd repeatedly from conc HCl.

Zirconocene chloride hydride (bis[cyclopentadienyl]zirconium hydride chloride) (Schwartz reagent) [37342-97-5] M 257.9. It is a moisture and light sensitive compound. Its purity can be determined by reaction with a slight excess of Me₂CO whereby the active H reacts to produce Cp₂ZrClOPrⁱ and the integrals of the residual Me₂CO in the ¹H NMR will show how pure the sample is. The presence of Cp₂ZrH₂ can be determined because it forms Cp₂Zr(OPrⁱ)₂. For very active compound it is best to prepare freshly from the dichloride by reduction with Vitride [LiAl(OCH₂CH₂OH)₂H₂], the white ppte is filtered off, washed with tetrahydrofuran, *C₆H₆, Et₂O, dried in vacuum and stored under anhydrous conditions and in the dark. [IR: J Chem Soc, Chem Commun 1105 1969; J Am Chem Soc 96 8115 1974, 101 3521 1979; Synthesis 1 1988.]

Zirconocene dichloride (bis[cyclopentadienyl]zirconium dichloride) [1291-32-3] M 292.3, m 242-245°, 248°. Purified by recrystn from CHCl₃ or xylene, and dried in vacuum. ¹H NMR (CDCl₃) δ : 6.52 from Me₄Si. Store in the dark under N₂ as it is moisture sensitive. [IR, NMR, MS: Aust J Chem 18 173 1965; method of J Am Chem Soc 81 1364 1959; and references in the previous entry.]

Zirconyl chloride ($6H_2O$) [7699-43-6] M 286.2, m 150°(loses $6H_2O$). Crystd repeatedly from 8M HCl as $ZrOCl_2.8H_2O$. On drying $ZrOCl_2.6H_2O$ m 150°. The product was not free from hafnium.

Zirconyl chloride $(8H_2O)$ [13520-92-8] M 322.3, m 150°(loses $6H_2O$), 210°(loses all H_2O). 400°(anhydr dec), d 1.91. Recrystd several times from water [Ferragina et al. J Chem Soc, Dalton Trans 265 1986]. Recrystn from 8M HCl gives the octahydrate as white needles on concentrating. It is also formed by hydrolysing ZrCl₄ with water. After one recryst from H_2O , 99+% grade had Ag, Al, As, Cd, Cu, Hf, Mg, Na, Sc and V at 20, 1.8, 0.6, 0.6, 0.4, 8.4, 0.4, 2.4, 80 and 3 ppm resp.