

by Pete Goodl i f fe

San Francisco

®

CODE CRAFT. Copyright © 2007 by Pete Goodliffe.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

10 09 08 07 06 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-119-0
ISBN-13: 978-1-59327-119-0

Publisher: William Pollock
Production Editor: Elizabeth Campbell
Cover Design: Octopod Studios
Text Illustrations: David Brookes
Technical Reviewer: Jon Jagger
Copyeditor: Megan Dunchak
Compositors: Megan Dunchak, Riley Hoffman, and Christina Samuell
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Goodliffe, Pete.

 Code craft: the practice of writing excellent code / Pete Goodliffe.

 p. cm.

 Includes bibliographical references and index.

 ISBN-13: 978-1-59327-119-0

 ISBN-10: 1-59327-119-0

 1. Computer programming. 2. Programming languages (Electronic computers) 3. Computer software--

Development. I. Title.

QA76.6.G656 2006

005.1--dc22

 2006015575

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

All text illustrations copyright © 2006 by David Brookes.

Printed on recycled paper in the United States of America

To Bryony, my wonderful wife.
To Alice, who drew balloons on this book.

To Millie, who tasted this book.
And to Jessica, who never got a chance to.

Psalm 150

B R I E F C O N T E N T S

Preface ... xxvii

Acknowledgments .. xxxv

About the Author...xxxvii

PART I
AT THE CODEFACE 1

Chapter 1: On the Defensive
Defensive Programming Techniques for Robust Code ...3

Chapter 2: The Best Laid Plans
The Layout and Presentation of Source Code ..23

Chapter 3: What’s in a Name?
Giving Meaningful Things Meaningful Names..39

Chapter 4: The Write Stuff
Techniques for Writing “Self-Documenting” Code..57

Chapter 5: A Passing Comment
How to Write Code Comments ...73

Chapter 6: To Err Is Human
Dealing with the Inevitable—Error Conditions in Code ...89

PART II
THE SECRET LIFE OF CODE 109

Chapter 7: The Programmer’s Toolbox
Using Tools to Construct Software ...111

Chapter 8: Testing Times
The Black Art of Testing Code ...129

viii Br ie f Contents

Chapter 9: Finding Fault
Debugging: What to Do When Things Go Wrong ..153

Chapter 10: The Code That Jack Built
Mechanisms to Turn Source Code into Executable Code ..175

Chapter 11: The Need for Speed
Optimizing Programs and Writing Efficient Code ..199

Chapter 12: An Insecurity Complex
Writing Secure Programs ...223

PART III
THE SHAPE OF CODE 239

Chapter 13: Grand Designs
How to Produce Good Software Designs..241

Chapter 14: Software Architecture
Laying the Foundations of Software Design...261

Chapter 15: Software Evolution or Software Revolution?
How Does Code Grow?...279

PART IV
A HERD OF PROGRAMMERS? 293

Chapter 16: Code Monkeys
Fostering the Correct Attitude and Approach to Programming...295

Chapter 17: Together We Stand
Teamwork and the Individual Programmer..315

Chapter 18: Practicing Safe Source
Source Control and Self-Control ..349

PART V
PART OF THE PROCESS 365

Chapter 19: Being Specific
Writing Software Specifications ..367

Chapter 20: A Review to a Kill
Performing Code Reviews...385

Br ie f Contents ix

Chapter 21: How Long Is a Piece of String?
The Black Art of Software Timescale Estimation ...401

PART VI
VIEW FROM THE TOP 417

Chapter 22: Recipe for a Program
Code Development Methodologies and Processes ...419

Chapter 23: The Outer Limits
The Different Programming Disciplines ...441

Chapter 24: Where Next?
All’s Well That Ends Well...459

Answers and Discussion...463

Bibliography...559

Index ...565

C O N T E N T S I N D E T A I L

PREFACE xxvii

What’s In It for Me? .. xxvii
Getting Better .. xxviii
Who Should Read This Book?..xxix
What’s Covered? ..xxx
How This Book Is Organized ..xxx
The Chapters—A Closer Look ...xxxii

Part I: At The Codeface...xxxii
Part II: The Secret Life of Code ...xxxii
Part III: The Shape of Code..xxxii
Part IV: A Herd of Programmers ...xxxii
Part V: Part of the Process..xxxii
Part VI: From the Top ..xxxii

How to Use This Book... xxxiii
A Note to Mentors .. xxxiii

ACKNOWLEDGMENTS xxxv

ABOUT THE AUTHOR xxxvii

PART I
AT THE CODEFACE

1
ON THE DEFENSIVE
Defensive Programming Techniques for Robust Code 3

Toward Good Code .. 4
Assume the Worst ... 4
What Is Defensive Programming?.. 6
The Big, Bad World .. 8
Techniques for Defensive Programming .. 8

Employ a Good Coding Style and Sound Design ... 9
Don’t Code in a Hurry .. 9
Trust No One... 10
Write Code for Clarity, Not Brevity .. 10
Don’t Let Anyone Tinker with Stuff They Shouldn’t ... 11
Compile with All Warnings Switched On .. 11
Use Static Analysis Tools ... 12
Use Safe Data Structures ... 12
Check Every Return Value.. 13
Handle Memory (and Other Precious Resources) Carefully 13

xii Contents in Detai l

Initialize All Variables at Their Points of Declaration 14
Declare Variables as Late as Possible ... 14
Use Standard Language Facilities... 14
Use a Good Diagnostic Logging Facility ... 15
Cast Carefully.. 15
The Fine Print ... 15

Constraints ... 16
What to Constrain.. 17
Removing Constraints ... 18

In a Nutshell ... 20
See Also .. 20
Get Thinking... 21

Mull It Over ... 21
Getting Personal .. 22

2
THE BEST LAID PLANS
The Layout and Presentat ion of Source Code 23

What’s the Big Deal?... 24
Know Your Audience... 25
What Is Good Presentation? ... 26
Brace Yourself .. 26

K&R Brace Style ... 27
Exdented Brace Style .. 27
Indented Brace Style... 29
Other Brace Styles.. 29

One Style to Rule Them All ... 30
House Styles (and Where to Stick Them) .. 31
Setting the Standard .. 33
Righteous Wars?... 35
In a Nutshell ... 35
See Also .. 37
Get Thinking... 37

Mull It Over ... 37
Getting Personal .. 38

3
WHAT’S IN A NAME?
Giving Meaningful Things Meaningful Names 39

Why Should We Name Well?.. 41
What Do We Name? .. 41
Name Games... 42

Descriptive .. 42
Technically Correct... 42
Idiomatic... 43
Appropriate... 43

The Nuts and Bolts .. 44
Naming Variables.. 44
Naming Functions .. 45

Contents in Detai l xiii

Naming Types ... 46
Naming Namespaces... 47
Naming Macros... 48
Naming Files ... 48

A Rose by Any Other Name... 49
Be Consistent ... 50
Exploit Context .. 51
Use Names to Your Advantage.. 51

In a Nutshell ... 52
See Also .. 53
Get Thinking... 53

Mull It Over ... 53
Getting Personal .. 55

4
THE WRITE STUFF
Techniques for Wri t ing “Sel f -Document ing” Code 57

Self-Documenting Code.. 59
Techniques for Self-Documenting Code .. 61

Write Simple Code with Good Presentation... 61
Choose Meaningful Names ... 62
Decompose into Atomic Functions .. 62
Choose Descriptive Types.. 63
Name Constants .. 63
Emphasize Important Code.. 64
Group-Related Information... 64
Provide a File Header ... 64
Handle Errors Appropriately .. 65
Write Meaningful Comments ... 65

Practical Self-Documentation Methodologies ... 66
Literate Programming.. 66
Documentation Tools .. 67

In a Nutshell ... 69
See Also .. 70
Get Thinking... 71

Mull It Over ... 71
Getting Personal .. 72

5
A PASSING COMMENT
How to Wri te Code Comments 73

What Is a Code Comment? .. 74
What Do Comments Look Like?... 75
How Many Comments?.. 75
What Goes Inside Our Comments? ... 76

Explain Why, Not How .. 76
Don’t Describe the Code ... 76

xiv Contents in Detai l

Don’t Replace Code ... 76
Keep It Useful .. 77
Avoid Distractions .. 78

In Practice .. 79
A Comment on Aesthetics... 80

Consistency ... 80
Clear Block Comments.. 80
Indenting Comments ... 81
End-of-Line Comments ... 81
Helping You to Read the Code .. 81
Choose a Low-Maintenance Style ... 82
Breakwaters .. 82
Flags .. 83
File Header Comments.. 83

Working with Comments.. 84
Helping You to Write Routines ... 84
Bug-Fix Notices.. 85
Comment Rot ... 85
Maintenance and the Inane Comment... 86

In a Nutshell ... 86
See Also .. 87
Get Thinking... 87

Mull It Over ... 87
Getting Personal .. 88

6
TO ERR IS HUMAN
Deal ing with the Inevi table—Error Condi t ions in Code 89

From Whence It Came... 90
Error-Reporting Mechanisms ... 91

No Reporting... 91
Return Values... 92
Error Status Variables ... 93
Exceptions... 93
Signals ... 95

Detecting Errors .. 95
Handling Errors... 96

When to Deal with Errors .. 97
Possible Reactions .. 98
Code Implications .. 100

Raising Hell .. 104
Managing Errors... 105
In a Nutshell ... 106
See Also .. 107
Get Thinking... 107

Mull It Over ... 107
Getting Personal .. 108

Contents in Detai l xv

PART II
THE SECRET LIFE OF CODE

7
THE PROGRAMMER’S TOOLBOX
Using Tools to Construct Sof tware 111

What Is a Software Tool?... 112
Why Worry About Tools? .. 114
Power Tools.. 115

Understand What It Can Do .. 115
Learn How to Drive it .. 116
Know What Tasks It’s Good For... 116
Check That It’s Working.. 116
Have a Clear Route to Find Out More... 117
Find Out When New Versions Appear ... 117

Which Tools? ... 117
Source Editing Tools ... 118
Code Construction Tools ... 120
Debugging and Investigative Tools ... 123
Language Support Tools.. 124
Miscellaneous Tools.. 125

In a Nutshell ... 126
See Also .. 127
Get Thinking... 128

Mull It Over ... 128
Getting Personal .. 128

8
TESTING TIMES
The Black Art of Test ing Code 129

Reality Check.. 131
Who, What, When, and Why? .. 132

Why We Test .. 132
Who Tests ... 133
What Testing Involves ... 133
When We Test .. 134

Testing Isn’t Hard 135
The Types of Test... 138
Choosing Unit Test Cases... 142
Design for Test .. 144
Look! No Hands! .. 144
The Face of Failure .. 145
Can You Manage It? ... 146

Fault-Tracking System.. 147
Bug Reviews .. 148

xvi Contents in Detai l

In a Nutshell ... 149
See Also .. 150
Get Thinking... 150

Mull It Over ... 150
Getting Personal .. 151

9
FINDING FAULT
Debugging: What to Do When Things Go Wrong 153

The Facts of Life .. 154
Nature of the Beast ... 155

The View from 1,000 Feet... 155
The View from the Ground .. 156
The View from the Trenches ... 158

Pest Extermination ... 160
The Low Road.. 161
The High Road... 161

Bug Hunting ... 162
Compile-Time Errors ... 162
Run-Time Errors .. 164

How to Fix Faults .. 167
Prevention .. 169
Wasp Spray, Slug Repellent, Fly Paper 169

Debugger.. 169
Memory Access Validator ... 170
System Call Tracing.. 170
Core Dump ... 170
Logging .. 170

In a Nutshell ... 171
See Also .. 172
Get Thinking... 173

Mull It Over ... 173
Getting Personal .. 173

10
THE CODE THAT JACK BUILT
Mechanisms to Turn Source Code into Executable Code 175

Language Barriers ... 176
Interpreted Languages... 177
Compiled Languages.. 178
Byte-Compiled Languages ... 179

Making Mountains out of Molehills.. 179
Building Builds .. 181
What Makes a Good Build System? .. 184

Simplicity .. 184
Uniformity ... 184
Repeatable and Reliable ... 185

Contents in Detai l xvii

Atomic.. 186
Coping with Errors ... 187

The Mechanics.. 187
Choice of Targets ... 187
Housekeeping.. 189
Dependencies.. 189
Automated Builds ... 190
Build Configuration .. 191
Recursive Make ... 192

Please Release Me .. 192
Jack-of-All-Trades, Buildmaster Of? .. 194
In a Nutshell ... 195
See Also .. 195
Get Thinking... 196

Mull It Over ... 196
Getting Personal .. 196

11
THE NEED FOR SPEED
Optimizing Programs and Wri t ing Ef f ic ient Code 199

What Is Optimization?... 200
What Makes Code Suboptimal? ... 201
Why Not Optimize?.. 202

Alternatives ... 204
Why Optimize? .. 205
The Nuts and Bolts .. 206

Prove You Need to Optimize ... 206
Identify the Slowest Code .. 207
Testing the Code .. 208
Optimizing the Code .. 209
After Optimization.. 209

Optimization Techniques.. 210
Design Changes... 210
Code Changes .. 213

Writing Efficient Code ... 217
In a Nutshell ... 219
See Also .. 219
Get Thinking... 220

Mull It Over ... 220
Getting Personal .. 221

12
AN INSECURITY COMPLEX
Writ ing Secure Programs 223

The Risks .. 224
The Opposition ... 226
Excuses, Excuses ... 228

xviii Contents in Detai l

Feeling Vulnerable .. 229
Insecure Design and Architecture ... 229
Buffer Overrun ... 229
Embedded Query Strings .. 230
Race Conditions... 231
Integer Overflow .. 231

Protection Racket... 232
System Installation Techniques ... 233
Software Design Techniques .. 234
Code Implementation Techniques ... 235
Procedural Techniques .. 236

In a Nutshell ... 236
See Also .. 237
Get Thinking... 237

Mull It Over ... 237
Getting Personal .. 238

PART III
THE SHAPE OF CODE

13
GRAND DESIGNS
How to Produce Good Sof tware Designs 241

Programming as Design ... 242
What Do We Design? ... 243
What’s All the Fuss About?... 244
Good Software Design .. 245

Simplicity .. 246
Elegance... 247
Modularity .. 247
Good Interfaces ... 248
Extensibility ... 251
Avoid Duplication .. 251
Portability.. 252
Idiomatic... 252
Well-Documented... 253

How to Design Code ... 253
Design Methods and Processes .. 254
Design Tools.. 255

In a Nutshell ... 257
See Also .. 258

Contents in Detai l xix

Get Thinking... 258
Mull It Over ... 258
Getting Personal .. 259

14
SOFTWARE ARCHITECTURE
Laying the Foundat ions of Sof tware Design 261

What Is Software Architecture? ... 262
Software Blueprints... 262
Points of View.. 263
Where and When Do You Do It? ... 264
What Is It Used For? ... 265
Of Components and Connections... 266

What Is Good Architecture? ... 268
Architectural Styles .. 269

No Architecture ... 269
Layered Architecture ... 270
Pipe and Filter Architecture.. 271
Client/Server Architecture ... 271
Component-Based Architecture .. 273
Frameworks... 274

In a Nutshell ... 275
See Also .. 276
Get Thinking... 276

Mull It Over ... 276
Getting Personal .. 277

15
SOFTWARE EVOLUTION OR SOFTWARE REVOLUTION?
How Does Code Grow? 279

Software Rot ... 281
The Warning Signs ... 282
How Does Code Grow?... 284
Believe the Impossible.. 286
What Can We Do About This? ... 287

Writing New Code .. 287
Maintenance of Existing Code ... 288

In a Nutshell ... 290
See Also .. 290
Get Thinking... 291

Mull It Over ... 291
Getting Personal .. 292

xx Contents in Detai l

PART IV
A HERD OF PROGRAMMERS?

16
CODE MONKEYS
Foster ing the Correct At t i tude and Approach to Programming 295

Monkey Business... 296
The Eager Coder.. 297
The Code Monkey.. 298
The Guru... 299
The Demiguru .. 300
The Arrogant Genius .. 300
The Cowboy.. 302
The Planner ... 302
The Old Timer.. 303
The Zealot ... 304
The Monocultured Programmer .. 305
The Slacker ... 306
The Reluctant Team Leader .. 306
You .. 307

The Ideal Programmer.. 308
So What? .. 308
The Stupidest of Men ... 309
In a Nutshell ... 310
See Also .. 310
Action Sheet ... 311
Get Thinking... 312

Mull It Over ... 312
Getting Personal .. 312

17
TOGETHER WE STAND
Teamwork and the Individual Programmer 315

Our Teams—The Big Picture ... 316
Team Organization ... 318

Management Approach .. 318
Division of Responsibility... 318
Organization and Code Structure .. 320

Teamwork Tools .. 320
Team Diseases .. 322

Tower of Babel .. 322
Dictatorship ... 324
Development Democracy... 325
Satellite Station .. 327

Contents in Detai l xxi

The Grand Canyon .. 329
Quicksand .. 330
Lemmings .. 332

Personal Skills and Characteristics for Good Teamwork ... 333
Communication.. 333
Humility .. 334
Dealing with Conflict .. 334
Learning and Adaptability ... 335
Know Your Limitations... 336

Teamwork Principles .. 336
Collective Code Ownership... 336
Respect Other People’s Code... 337
Code Guidelines .. 337
Define Success... 337
Define Responsibility... 338
Avoid Burnout.. 338

The Team Life Cycle... 339
Team Creation ... 339
Team Growth... 341
Teamwork ... 342
Team Closure .. 343

In a Nutshell ... 345
See Also .. 346
Action Sheet ... 347
Get Thinking... 348

Mull It Over ... 348
Getting Personal .. 348

18
PRACTICING SAFE SOURCE
Source Control and Sel f -Control 349

Our Responsibility ... 350
Source Control.. 351

Revision Control ... 352
Access Control... 353
Working with the Repository.. 354
Leave Branching to the Trees ... 354
A Brief History of Source Control.. 356

Configuration Management.. 356
Backups ... 358
Releasing Source Code.. 359
Wherever I Lay My Source ... 360
In a Nutshell ... 361
See Also .. 362
Get Thinking... 363

Mull It Over ... 363
Getting Personal .. 363

xxii Contents in Detai l

PART V
PART OF THE PROCESS

19
BEING SPECIFIC
Writ ing Sof tware Speci f icat ions 367

What Are They, Specifically?.. 368
The Types of Specification .. 369

Requirements Specification .. 371
Functional Specification .. 373
System Architecture Specification ... 373
User Interface Specification ... 374
Design Specification ... 374
Test Specification ... 375

What Should Specifications Contain? .. 376
The Specification-Writing Process .. 379
Why Don’t We Write Specifications? .. 381
In a Nutshell ... 383
See Also .. 383
Get Thinking... 384

Mull It Over ... 384
Getting Personal .. 384

20
A REVIEW TO A KILL
Performing Code Reviews 385

What Is a Code Review?.. 386
When Do You Review? .. 387

Whether to Review... 388
Which Code to Review ... 389

Performing Code Reviews... 389
Code Review Meetings ... 390
Integration Reviews .. 392

Review Your Attitudes .. 393
The Author’s Attitude .. 393
The Reviewer’s Attitude ... 394

Code Perfection .. 395
Beyond the Code Review ... 396
In a Nutshell ... 397
See Also .. 397
Checklist .. 398
Get Thinking... 399

Mull It Over ... 399
Getting Personal .. 399

Contents in Detai l xxiii

21
HOW LONG IS A PIECE OF STRING?
The Black Art of Sof tware T imescale Est imat ion 401

A Stab in the Dark... 402
Why Is Estimation So Hard? ... 403
Under Pressure.. 405
Practical Ways to Estimate ... 406
The Planning Game... 409
Keep Up! ... 412
In a Nutshell ... 415
See Also .. 415
Get Thinking... 416

Mull It Over ... 416
Getting Personal .. 416

PART VI
VIEW FROM THE TOP

22
RECIPE FOR A PROGRAM
Code Development Methodologies and Processes 419

Programming Styles ... 420
Structured Programming.. 421
Object-Oriented Programming ... 422
Functional Programming.. 423
Logic Programming .. 424

Recipes: The How and the What ... 424
Development Processes .. 425

Ad Hoc... 426
Waterfall Model .. 427
SSADM and PRINCE .. 429
V Model.. 430
Prototyping.. 430
Iterative and Incremental Development .. 432
Spiral Model ... 432
Agile Methodologies .. 433
Other Development Processes .. 434

Enough, Already! .. 435
Pick a Process... 436
In a Nutshell ... 437
See Also .. 438
Get Thinking... 438

Mull It Over ... 438
Getting Personal .. 439

xxiv Contents in Detai l

23
THE OUTER LIMITS
The Dif ferent Programming Disc ipl ines 441

Applications Programming ... 442
Shrink-Wrap Software .. 443
Custom Applications... 444

Games Programming... 445
Systems Programming.. 446
Embedded Programming.. 447
Distributed Programming.. 450
Web Application Programming... 451
Enterprise Programming ... 453
Numerical Programming .. 454
So What? .. 455
In a Nutshell ... 456
See Also .. 456
Get Thinking... 457

Mull It Over ... 457
Getting Personal .. 457

24
WHERE NEXT?
All ’s Wel l That Ends Wel l 459

But What Now?.. 460

ANSWERS AND DISCUSSION 463

Chapter 1: On the Defensive .. 463
Mull It Over ... 463
Getting Personal .. 465

Chapter 2: The Best Laid Plans.. 466
Mull It Over ... 466
Getting Personal .. 471

Chapter 3: What’s in a Name? .. 474
Mull It Over ... 474
Getting Personal .. 478

Chapter 4: The Write Stuff ... 480
Mull It Over ... 480
Getting Personal .. 484

Chapter 5: A Passing Comment .. 485
Mull It Over ... 485
Getting Personal .. 486

Chapter 6: To Err Is Human.. 487
Mull It Over ... 487
Getting Personal .. 490

Chapter 7: The Programmer’s Toolbox... 491
Mull It Over ... 491
Getting Personal .. 492

Contents in Detai l xxv

Chapter 8: Testing Times.. 494
Mull It Over ... 494
Getting Personal .. 498

Chapter 9: Finding Fault .. 500
Mull It Over ... 500
Getting Personal .. 502

Chapter 10: The Code That Jack Built .. 502
Mull It Over ... 502
Getting Personal .. 508

Chapter 11: The Need for Speed.. 510
Mull It Over ... 510
Getting Personal .. 514

Chapter 12: An Insecurity Complex... 515
Mull It Over ... 515
Getting Personal .. 518

Chapter 13: Grand Designs ... 519
Mull It Over ... 519
Getting Personal .. 521

Chapter 14: Software Architecture .. 522
Mull It Over ... 522
Getting Personal .. 525

Chapter 15: Software Evolution or Software Revolution? .. 527
Mull It Over ... 527
Getting Personal .. 530

Chapter 16: Code Monkeys ... 532
Mull It Over ... 532

Chapter 17: Together We Stand... 533
Mull It Over ... 533
Getting Personal .. 538

Chapter 18: Practicing Safe Source... 539
Mull It Over ... 539
Getting Personal .. 542

Chatper 19: Being Specific .. 544
Mull It Over ... 544
Getting Personal .. 546

Chapter 20: A Review to a Kill ... 547
Mull It Over ... 547
Getting Personal .. 549

Chapter 21: How Long Is a Piece of String? ... 550
Mull It Over ... 550
Getting Personal .. 552

Chapter 22: Recipe for a Program .. 553
Mull It Over ... 553
Getting Personal .. 556

Chapter 23: The Outer Limits .. 557
Mull It Over ... 557
Getting Personal .. 558

BIBLIOGRAPHY 559

INDEX 565

P R E F A C E
There are many things of which a wise

man might wish to be ignorant.
—Ralph Waldo Emerson

This book comes from the trenches. Well, it actually
comes from deep within the software factory, but some-
times there isn’t too much difference. This book is for
programmers who care about what they’re doing. If you
don’t, then shut the book now and put it neatly back
on the bookshelf.

What’s In It for Me?

Programming is your passion. It’s sad, but it’s true. As a hardcore techie, you
practically program in your sleep. Now you’re in the heart of the Real World,
deep in the industry, doing what you could never imagine: being paid to play
with computers. The truth is, you’d have paid someone for the privilege.

But this is an odd place, not what you were expecting at all. Surprised by
the incursion of unrealistic deadlines and bad management (if management
is what they call it), of shifting requirements and a legacy of awful code, you’re
left wondering if this is really it. The world is conspiring to prevent you from
writing the code you always dreamed of. Welcome to life in the software
factory. You’re on the front line of a tough battle to create pieces of artistic
mastery and scientific genius. Good luck.

xxviii Preface

That’s where Code Craft comes in. This book is about what no one has
taught you yet: how to program, properly, in the Real World. Code Craft picks
up where the textbooks left off. Sure, it’s about the technicalities and intri-
cacies of good code. But it’s also about something more than that: How to
write the right code, in the right way.

What does that mean? Writing good programs in the Real World means
many things:

Crafting technically elegant code

Creating maintainable code that others can interpret

Understanding and adapting other people’s messy code

Working well alongside other programmers

You need all of these skills (and more) to be a crack coder. You must
understand the secret life of code: What happens to it after you type it. You
must have a sense of aesthetics: distinguishing beautiful code from ugly code.
And you must have a head for the practicalities: to work out when shortcuts
are justified, when to labor on the code design, and when to give up and move
on (the pragmatic quit when you’re ahead principle). This book will help you to
achieve these goals. You’ll learn how to survive the software factory, how to
survey the battlefield and understand your enemy, how to work out tactics to
avoid enemy traps, and how to produce truly excellent programs, despite it all.

Software development is an interesting profession. It’s fast moving, full
of fleeting vogues and transient fashions, get-rich schemes and peddlers of
new ideologies. It’s not mature. I’m not claiming to have any magic answers
here, but I do have some practical, useful advice to impart. There’s no ivory
tower theory—just Real World experience and good practice.

By the time you’ve digested this stuff, you won’t just be a better program-
mer. You will be a better inhabitant of the software factory. A real code warrior.
You’ll have learned code craft. If that doesn’t sound exciting, then perhaps
you should consider a career in the military.

Getting Better

So what sets good programmers apart from bad ones? More importantly, what
sets exceptional programmers apart from merely adequate ones? The secret
doesn’t lie solely in technical competence—I’ve seen intellectual programmers
who can write intense and impressive C++, who know their language standard
by heart, but who write the most awful code. I’ve seen more humble pro-
grammers who stick to very simple code, but write the most elegant and
well-thought-out programs.

What’s the real difference? Good programming stems from your attitude. It
lies in knowing the professional approach and always wanting to write the best
software you can, despite the pressures of the software factory. Attitudes are the
lenses through which we view things. They color our work and our actions.
Good code needs to be carefully crafted by master artisans, not thoughtlessly

Preface xxix

hacked by sloppy programmers. The code to hell is paved with good intentions.
To become exceptional programmers, we must learn to rise above intentions,
foster positive perspectives, and develop these healthy attitudes.

In this book, we’ll see how to do this. I cover a lot of ground, from
the lowest hands-on code-writing issues to larger organizational concerns.
Through all of these themes, I highlight what our correct attitude and
approach should be.

Who Should Read This Book?

Obviously, the people who should read this book are those who want to
improve the quality of their code. We should all aspire to be better pro-
grammers; if you don’t have that aspiration, then this book isn’t for you.
You might be a professional programmer, perhaps a few years into your
employment. You might be an advanced student, familiar with programming
concepts but unsure about how best to apply them. This book is also a useful
aid if you are being mentored or are mentoring a trainee.

You must have programming experience. This book won’t teach you
how to program; it will teach you how to program better. While I’ve tried to
avoid language bias and dogma, I need to show code examples. Most of

A T T I T U D E S — A N A N G L E O F A P P R O A C H

The more I’ve investigated and cataloged the world of software development, the
more I’ve become convinced that it is specific attitudes that distinguish exceptional
programmers. The dictionary definition of the word attitude looks something like this:

attitude (at.ti.tude)

1. A state of mind or a feeling; a disposition.

2. The position of an aircraft relative to a frame of reference.

That first definition isn’t exactly surprising, but what’s the second one about?
It’s actually more revealing than the first.

There are three imaginary lines of axis running through an aircraft; one from
wing to wing, one from nose to tail, and one running vertically where the other two
cross. A pilot positions his aircraft around these axes; they define the aircraft’s angle
of approach. This is known as the attitude of the aircraft. If you apply a little power to
the aircraft while it has the wrong attitude, it will end up missing the target massively.
A pilot has to constantly monitor his vehicle’s attitude, especially at critical times like
takeoff and landing.

At the risk of sounding like a cheesy motivational video, this closely parallels our
software development work. The plane’s attitude defines its angle of approach, and
our attitude defines our angle of approach to the coding task. It doesn’t matter how
technically competent a programmer is, if his or her abilities aren’t tempered by
healthy attitudes, the work will suffer.

A wrong attitude can make or break a software project, so it’s vital that we main-
tain the right angle of approach to programming. Your attitude will either hinder or
promote your personal growth. To become better programmers, we need to ensure
we have the right attitudes.

xxx Preface

these are written in C, C++, or Java, since they are in the family of popular
contemporary languages. None of them require great language expertise to
read, so don’t panic if you’re not a world-class C++ programmer.

The assumption here is that you are—or will be—writing code in the heat
of the software factory. This often means employment in a commercial devel-
opment organization, but it could be working on a chaotic open source
development project, or becoming a hired gun (a contractor) providing
software for a third party.

What’s Covered?

This book addresses programmer attitudes, but it’s not some kind of psychology
textbook. We’ll investigate many topics, including:

Source code presentation

Defensive coding techniques

How to debug programs effectively

Good teamworking skills

Managing your source code

Take a quick glance through the table of contents to see exactly what’s
covered. What is the rationale behind my selection of topics? I’ve been mentor-
ing trainee programmers for many years, and these are the topics that have
come up time and time again. I’ve also worked in the software factory for
long enough to have seen the recurring problems—I address these too.

If you can conquer all of these programming demons, you’ll progress
from an apprentice coder to a real code craftsman.

How This Book is Organized

I’ve tried to make this book as easy to read as possible. Conventional wisdom
says you should start at the beginning and work to the end. Forget that. You
can pick up this book, open it to a chapter that interests you, and start there.
Each chapter stands on its own, with helpful cross referencing so you can see
how they all fit together. Of course, if you enjoy being conventional, the
beginning is as good a place to start as any.

Each chapter is similarly structured; you won’t find any nasty surprises.
They are split into these sections:

In This Chapter
At the very beginning, I list the highlights of the chapter. You’ll get a few
lines of content overview. Go on, skim through them all now to see what
ground we’ll cover.

The chapter
All the riveting stuff that you paid good money to read.

Preface xxxi

Dotted throughout the chapter are key concepts. These emphasize the
important tips, issues, and attitudes, so watch out for them. They look
like this:

KEY CONCEPT This is important. Pay attention!

In a Nutshell
At the end of each chapter, this little section wraps up the discussion. It
provides a bird’s eye view of the material. If you’re really pushed for time,
you could just read the key concepts and these concluding sections. Just
don’t tell anyone I said that.

Afterwards, I contrast a good programmer’s approach with that of a
bad programmer to summarize the important attitudes you should aim
to develop. If you’re feeling brave, you can rate yourself against these
examples; hopefully the truth won’t hurt too much!

See Also
This list points you at the related chapters and explains how they tie in
to the topic at hand.

Get Thinking
Finally, there are some questions to consider. These haven’t just been
included to fluff out the book—they are an integral part of each chapter.
They don’t ask for a banal rehashing of the material you just read, but
are intended to make you think, and to think beyond the contents of the
chapter. The questions are split into two groups:

Mull it Over These questions investigate the chapter’s topic in
depth and raise some important issues.

Getting Personal These questions probe the working practices and
coding maturity of you and your software development team.

Don’t skip these questions! Even if you’re too lazy to sit down and
seriously think about each answer (believe me, you’ll gain a lot from
doing so), at least read the questions and consider them in passing.

The final part of this book contains answers and discussion for each of
these questions. It’s not a straight answer set—few of the questions have a
definite yes or no response. Once you’ve thought about them, compare your
answers with mine. Many of my “answers” contain extra information that isn’t
covered in the main chapter.

The Chapters—a Closer Look

Each chapter covers a single topic, a specific problem area in modern soft-
ware development. These are the common reasons people write bad code or
write code badly. Each chapter describes the correct approaches and attitudes,
which will make life on the front line more bearable.

xxxii Preface

The chapters are split into six parts; the contents page for each lists the
chapters in the part with a short description of the material contained in
each. These parts work from the inside, outwards. We’ll start off looking at
what code we write and end up looking at how we write it.

Our investigations begin at the codeface, focusing on the micro level of
writing source code. I’ve deliberately put this first; cutting code is what
programmers really care about:

Part I: At the Codeface
In this part we look at the nuts and bolts of developing source code. We’ll
investigate defensive programming techniques and how to format and
lay out code. Then we’ll move on to look at naming and documenting
our code. Comment-writing conventions and error-handling techniques
are also covered.

Part II: The Secret Life of Code
Next we’ll take a look at the process of writing code; how we create it
and work with it. We’ll look at construction tools, testing methods,
debugging techniques, the correct processes for building executables,
and optimization. Finally, we’ll consider how to write secure programs.

Part III: The Shape of Code
Then we’ll look at the wider issues of source code construction. We’ll
discuss the development of a code design, software architecture, and
how source code grows (or decays) over time.

We then move to the macro level, when we lift up our heads and see
what’s going on around us—life in the software factory. We can’t write large-
scale software without being part of a development team, and the next three
parts contain tricks and techniques for getting the best out of these teams:

Part IV: A Herd of Programmers?
Few programmers exist in a vacuum. (It requires special breathing
equipment.) In this part we’ll move into the wider world with a look at
good development practices and how they fit into a professional pro-
grammer’s daily routine. Good personal and team programming skills
and the use of revision control systems are covered here.

Part V: Part of the Process
Here we’ll look at some of the rites and rituals of the software develop-
ment process: writing specifications, performing code reviews, and the
black art of timescale estimation.

Part VI: From the Top
The final part provides a higher level look at the development process,
investigating software development methodologies, and the different
programming disciplines.

Preface xxxiii

How to Use This Book

Work from the front cover to the back, or pick it up in the places that interest
you—it doesn’t matter.

What does matter is that you read Code Craft with an open mind, and
think about how to apply what you read to what you do. A wise man learns from
his mistakes; a wiser man learns from the mistakes of others. It’s always good to
learn from others’ experiences, so look at this material, and then ask the
opinion of a programmer you respect. Look over the questions and discuss
them together.

As you learn code craft, I hope you enjoy yourself. When you have
finished, look back and see how much more of the craft you appreciate, how
your skills have grown, and how your attitudes have improved. If nothing has
changed, then this book has failed. I’m sure it won’t.

A Note to Mentors

This book is a great tool for mentoring less experienced programmers. It
has been specifically designed with this in mind, and has proven to increase
programmer maturity and insight.

The best approach to this material is not to methodically work through
each section together. Instead, read a chapter separately, and then get
together with your trainee to discuss the contents. The questions really work
as a springboard for discussion, so it’s a good idea to start there.

A C K N O W L E D G M E N T S
There is always something for which to be thankful.

—Charles Dickens

This book was written over a period of several years.
They say good things come to those who wait. In that time
countless people have helped along the way . . .

No one deserves more thanks, and indeed sympathy, than my wife
Bryony who has put up with me and this project over its long gestation
period. Phillipians 1v3.

My good friend, excellent programmer, and illustrator extraordinaire,
David Brookes, took my awful monkey cartoons with lame jokes and turned
them into things of beauty. Thanks Dave! The lame jokes are still my fault.

Many people have read early drafts of this material in one form or
another. Specific thanks are due to ACCU (www.accu.org) which has been
a fertile proving ground for my writing skills. Thanks to the cthree.org geeks
Andy Burrows, Andrew Bennet, and Chris Reed who gave valuable feedback,
to Steve Love, and to the #ant.org geeks. Jon Jagger provided well balanced
technical review and lent his own war stories and battle scars, which have
improved the book considerably.

Most of this book is born from my experience and frustration with the
poor state of software development in the Real World, and a desire to help
people improve. “Thanks” are therefore also due to the various dysfunctional

xxxvi Acknowledgments

companies I’ve worked in, and the awful programmers I’ve encountered
there, who have provided me with almost a lifetime’s worth of things to
moan about! I never really realized how lucky I was.

Finally, thanks to all the guys at No Starch Press who have taken my
painful XML formatted manuscript and turned it into a really great book.
Thanks for your faith in the project, and for going the extra mile.

A B O U T T H E A U T H O R

Pete Goodliffe is an expert software developer who never stays at the same
place in the software food chain; he’s worked in numerous languages on
diverse projects. He also has extensive experience in teaching and mentor-
ing programmers, and writes the regular “Professionalism in Programming”
column for ACCU’s C Vu magazine (www.accu.org). Pete enjoys writing
excellent, bug-free code so he can spend more time having fun with his kids.

PART I
A T T H E C O D E F A C E

Programmers write programs. It doesn’t take a
genius to figure that one out. But there is a more
subtle distinction: Only good programmers habitually
write good code. Bad programmers . . . don’t. They
create messes that take more effort to fix than they
did to write.

Which would you rather be?
Code craft starts at the codeface; it’s where we love to be. We program-

mers are never happier than when immersed in an editor, bashing out line
after line of perfectly formed and well-executed source code. We’d be quite
happy if the world around us disappeared in a puff of boolean logic. Sadly,
the Real World isn’t going anywhere—and it doesn’t seem willing to keep
itself to itself.

Around your carefully crafted code, the world is in a chaotic state of
change. Almost every software project is characterized by flux: changing
requirements, changing budgets, changing deadlines, changing priorities,
and changing teams. These all conspire to make writing good code a very
difficult job. Welcome to the Real World.

2 Par t I

Good programmers naturally write neat code when left to their own
devices. But they also have an array of battle tactics to help write robust
code on the front line. They know how to defend themselves against the
harsh realities of the software factory and write code that can survive the
whirlwinds of change.

That’s what we’re looking at here. This first section delves into the
painfully practical, gory details of code construction, the nuts and bolts of
writing source code statements. You’ll learn strategies to keep yourself afloat
on the turbulent software development ocean and will be challenged to
improve your code-writing skills.

These chapters focus on the following issues:

Chapter 1: On the Defensive
Defensive programming: How to write robust code when the world is
conspiring against you.

Chapter 2: The Best Laid Plans
Good presentation: why it’s important and how to present code well.

Chapter 3: What’s in a Name?
Choosing clear names for the parts of your program.

Chapter 4: The Write Stuff
Self-documenting code. Practical strategies to explain code when you
can’t write a whole novel.

Chapter 5: A Passing Comment
Effective techniques for writing the most appropriate code comments.

Chapter 6: To Err Is Human
Handling errors: How to manage operations that might go wrong, and
what to do when they do.

These form the path to sound code in an unsound world; they are solid
code-writing techniques that should become second nature. If you don’t
write clear, understandable, defensive, easily testable, easily maintainable
software, then you’ll be distracted by tedious code-related problems when
you should be preparing for what the software factory will throw at you next.

O N T H E
D E F E N S I V E

Defensive Programming Techniques
for Robust Code

1

In this chapter:

What is defensive programming?

Strategies for safer code

Constraints and assertions

We have to distrust each other. It’s our only defense
against betrayal.

—Tennessee Williams

When my daughter was 10 months old, she liked
playing with wooden bricks. Well, she liked playing
with wooden bricks and me. I’d build a tower as
high as I could, and then with a gentle nudge of
the bottom brick, she’d topple the whole thing and
let out a little whoop of delight. I didn’t build these
towers for their strength—it would have been point-
less if I did. If I had really wanted a sturdy tower,
then I’d have built it in a very different way. I’d
have shorn up a foundation and started with a wide
base, rather than just quickly stacking blocks upon
each other and building as high as possible.

Too many programmers write their code like
flimsy towers of bricks; a gentle unexpected prod
to the base, and the whole thing falls over. Code
builds up in layers, and we need to use techniques
that ensure that each layer is sound so that we can
build upon it.

4 Chapter 1

Toward Good Code

There is a huge difference between code that seems to work, correct code, and
good code. M.A. Jackson wrote, “The beginning of wisdom for a software
engineer is to recognize the difference between getting a program to work,
and getting it right .” (Jackson 75) There is a difference:

It is easy to write code that works most of the time. You feed it the usual
set of inputs; it gives the usual set of outputs. But give it something sur-
prising, and it might just fall over.

Correct code won’t fall over. For all possible sets of input, the output will
be correct. But usually the set of all possible inputs is ridiculously large
and hard to test.

However, not all correct code is good code—the logic may be hard to
follow, the code may be contrived, and it may be practically impossible
to maintain.

By these definitions, good code is what we should aim for. It is robust,
efficient enough and, of course, correct. Industrial strength code will not
crash or produce incorrect results when given unusual inputs. It will also
satisfy all other requirements, including thread safety, timing constraints,
and re-entrancy.

It’s one thing to write this good code in the comfort of your own home, a
carefully controlled environment. It’s an entirely different prospect to do so in
the heat of the software factory, where the world is changing around you, the
codebase is rapidly evolving, and you’re constantly being faced with grotesque
legacy code—archaic programs written by code monkeys that are now long
gone. Try writing good code when the world is conspiring to stop you!

In this torturous environment, how do you ensure that your code is
industrial strength? Defensive programming helps.

While there are many ways to construct code (object-oriented approaches,
component based models, structured design, Extreme Programming, etc.),
defensive programming is an approach that can be applied universally. It’s
not so much a formal methodology as an informal set of basic guidelines.
Defensive programming is not a magical cure-all, but a practical way to
prevent a pile of potential coding problems.

Assume the Worst

When you write code, it’s all too easy to make a set of assumptions about how
it should run, how it will be called, what the valid inputs are, and so on. You
won’t even realize that you’ve assumed anything, because it all seems obvious
to you. You’ll spend months happily crafting code, as these assumptions fade
and distort in your mind.

Or you might pick up some old code to make a vital last-minute fix when
the product’s going out the door in 10 minutes. With only enough time for
a brief glance at its structure, you’ll make assumptions about how the code

On the Defens ive 5

works. There’s no time to perform full literary criticism, and until you get a
chance to prove the code is actually doing what you think it’s doing, assump-
tions are all you have.

Assumptions cause us to write flawed software. It’s easy to assume:

The function won’t ever be called like that. I will always be passed valid
parameters only.

This piece of code will always work; it will never generate an error.

No one will ever try to access this variable if I document it For internal
use only.

When we program defensively, we shouldn’t make any assumptions. We
should never assume that it can’t happen. We should never assume that the
world works as we’d expect it to work.

Experience tells us that the only thing you can be certain about is this:
Your code will somehow, someday, go wrong. Someone will do a dumb thing.
Murphy’s Law puts it this way: “If it can be used incorrectly, it will.” Listen to
that man—he spoke from experience.1 Defensive programming prevents
these accidents by foreseeing them, or at least fore-guessing them—figuring
out what might go wrong at each stage in the code, and guarding against it.

Is this paranoid? Perhaps. But it doesn’t hurt to be a little paranoid. In
fact, it makes a lot of sense. As your code evolves, you will forget the original
set of assumptions you made (and real code does evolve—see Chapter 15).
Other programmers won’t have any knowledge of the assumptions in your
head, or else they will just make their own invalid assumptions about what
your code can do. Software evolution exposes weaknesses, and code growth
hides original simple assumptions. A little paranoia at the outset can make
code a lot more robust in the long run.

KEY CONCEPT Assume nothing. Unwritten assumptions continually cause faults, particularly as
code grows.

Add to this the fact that things neither you nor your users have any
control over can go wrong: Disks fill up, networks fail, and computers crash.
Bad things happen. Remember, it’s never actually your program that fails—
the software always does what you told it to. The actual algorithms, or
perhaps the client code, are what introduce faults into the system.

As you write more code, and as you work through it faster and faster, the
likelihood of making mistakes grows and grows. Without adequate time to
verify each assumption, you can’t write robust code. Unfortunately, on the
programming front line, there’s rarely any opportunity to slow down, take
stock, and linger over a piece of code. The world is just moving too fast, and
programmers need to keep up. Therefore, we should grasp every opportunity
to reduce errors, and defensive practices are one of our main weapons.

1 Edward Murphy Jr. was a US Air Force engineer. He coined this infamous law after discovering
a technician had systematically connected a whole row of devices upside down. Symmetric con-
nectors permitted this avoidable mistake; afterward, he chose a different connector design.

6 Chapter 1

What Is Defensive Programming?
As the name suggests, defensive programming is careful, guarded program-
ming. To construct reliable software, we design every component in the
system so that it protects itself as much as possible. We smash unwritten
assumptions by explicitly checking for them in the code. This is an attempt
to prevent, or at least observe, when our code is called in a way that will
exhibit incorrect behavior.

Defensive programming enables us to detect minor problems early on,
rather than get bitten by them later when they’ve escalated into major
disasters. All too often, you’ll see “professional” developers rush out code
without thinking. The story goes something like this:

They are continually tripped up by the incorrect assumptions that they
never took the time to validate. Hardly a promotion for modern day software
engineering, but it’s happening all the time. Defensive programming helps
us to write correct software from the start and move away from the code-it,
try-it, code-it, try-it . . . cycle. With defensive programming, the story looks
more like this:

Okay, defensive programming won’t remove program failures altogether.
But problems will become less of a hassle and easier to fix. Defensive program-
mers catch falling snowflakes rather than get buried under an avalanche of
errors.

Defensive programming is a method of prevention, rather than a form
of cure. Compare this to debugging—the act of removing bugs after they’ve
bitten. Debugging is all about finding a cure.

Tinker with the code Run it Crash!

Tinker with the code Run it Crash!

Tinker with the code Run it Crash!

TestCode It works!

On the Defens ive 7

Is defensive programming really worth the hassle? There are arguments
for and against:

The case against
Defensive programming consumes resources, both yours and the
computer’s.

It eats into the efficiency of your code; even a little extra code
requires a little extra execution. For a single function or class, this
might not matter, but when you have a system made up of 100,000
functions, you may have more of a problem.

Each defensive practice requires some extra work. Why should you
follow any of them? You have enough to do already, right? Just make
sure people use your code correctly. If they don’t, then any problems
are their own fault.

The case for
The counterargument is compelling.

Defensive programming saves you literally hours of debugging and
lets you do more fun stuff instead. Remember Murphy: If your code
can be used incorrectly, it will be.

Working code that runs properly, but ever-so-slightly slower, is far
superior to code that works most of the time but occasionally col-
lapses in a shower of brightly colored sparks.

W H A T D E F E N S I V E P R O G R A M M I N G I S N ’ T

There are a few common misconceptions about defensive programming. Defensive
programming is not:

Error checking
If there are error conditions that might arise in your code, you should be checking
for them anyway. This is not defensive code. It’s just plain good practice—a part
of writing correct code.

Testing
Testing your code is not defensive. It’s another normal part of our development
work. Test harnesses aren’t defensive; they can prove the code is correct now, but
won’t prove that it will stand up to future modification. Even with the best test suite
in the world, anyone can make a change and slip it past untested.

Debugging
You might add some defensive code during a spell of debugging, but debugging
is something you do after your program has failed. Defensive programming is
something you do to prevent your program from failing in the first place (or to
detect failures early before they manifest in incomprehensible ways, demanding
all-night debugging sessions).

8 Chapter 1

We can design some defensive code to be physically removed in
release builds, circumventing the performance issue. The majority of
the items we’ll consider here don’t have any significant overhead,
anyway.

Defensive programming avoids a large number of security prob-
lems—a serious issue in modern software development. More on
this follows.

As the market demands software that’s built faster and cheaper, we need
to focus on techniques that deliver results. Don’t skip the bit of extra work up
front that will prevent a whole world of pain and delay later.

The Big, Bad World

Someone once said, “Never ascribe to malice that which is adequately
explained by stupidity.”2 Most of the time we are defending against stupidity,
against invalid and unchecked assumptions. However there are malicious
users, and they will try to bend and break your code to suit their vicious
purposes.

Defensive programming helps with program security, guarding against
this kind of willful misuse. Crackers and virus writers routinely exploit sloppy
code to gain control of an application and then weave whatever wicked
schemes they desire. This is a serious threat in the modern world of software
development; it has huge implications in terms of the loss of productivity,
money, and privacy.

Software abusers range from the opportunistic user exploiting a small
program quirk to the hard-core cracker who spends his time deliberately
trying to gain illicit access to your systems. Too many unwitting programmers
leave gaping holes for these people to walk through. With the rise of the
networked computer, the consequences of sloppiness become more and
more significant.

Many large development corporations are finally waking up to this threat
and are beginning to take the problem seriously, investing time and resources
into serious defensive code work. In reality, it’s hard to graft in defenses after
an attack. We look at software security in more detail in Chapter 12.

Techniques for Defensive Programming

Enough of the background. What does all this mean to programmers work-
ing in the software factory?

There are a number of common sense rules under the defensive pro-
gramming umbrella. People usually think of assertions when they think of
defensive programming, and rightly so. We’ll talk about those later. But
there’s also a pile of simple programming habits that will immeasurably
improve the safety of your code.

2 Some historians attribute this quote to Napoleon Bonaparte. Now there’s a guy who knew
something about defense.

On the Defens ive 9

Despite seeming common sense, these rules are often ignored—hence
the low standard of most software at large in the world. Tighter security and
reliable development can be achieved surprisingly easily, as long as pro-
grammers are alert and well informed.

The next few pages list the rules of defensive programming. We’ll start
off by painting with broad strokes, looking at high-level defensive techniques,
processes, and procedures. As we progress, we’ll fill in finer detail, looking
more deeply at individual code statements. Some of these defensive tech-
niques are language specific. This is natural—you have to put on bulletproof
shoes if your language lets you shoot yourself in the foot.

As you read this list, evaluate yourself. How many of these rules do you
currently follow? Which ones will you now adopt?

Employ a Good Coding Style and Sound Design

We can prevent most coding mistakes by adopting a good coding style. This
naturally dovetails with the other chapters in this section. Simple things like
choosing meaningful variable names and using parentheses judiciously can
increase clarity and reduce the likelihood of faults slipping past unnoticed.

Similarly, considering the larger-scale design before ploughing into
the code is key. “The best documentation of a computer program is a clean
structure.” (Kernighan Plaugher 78) Starting off with a set of clear APIs to
implement, a logical system structure, and well-defined component roles
and responsibilities will avoid headaches further down the line.

Don’t Code in a Hurry
It’s all too common to see hit-and-run programming. Programmers quickly
hack out a function, shove it through the compiler to check syntax, run it
once to see if it works, and then move on to the next task. This approach is
fraught with peril.

Instead, think about each line as you write it. What errors could arise?
Have you considered every logical twist that might occur? Slow, methodical
programming seems mundane—but it really does cut down on the number
of faults introduced.

KEY CONCEPT More haste, less speed. Always think carefully about what you’re typing as you type it.

A particular C-family gotcha that snares speedy programmers is
mistyping == as just =. The former is a test for equality; the latter a variable
assignment. With an unhelpful compiler (or with warnings switched off)
there will be no indication that the program behavior is not what was
intended.

Always do all of the tasks involved in completing a code section before
rushing on. For example, if you decide to write the main flow first and the
error checking/handling second, you must be sure you have the discipline to
do both. Be very wary of deferring the error checking and moving straight on
to the main flow of three more code sections. Your intention to return later
may be sincere, but later can easily become much later, by which time you

10 Chapter 1

will have forgotten much of the context, making it take longer and be more
of a chore. (And of course, by then there will be some artificially urgent
deadline.)

Discipline is a habit that needs to be learned and reinforced. Every time
you don’t do the right thing now, you become more likely to continue not
doing the right thing in the future. Do it now; don’t leave it for a rainy day in
the Sahara. Doing it later actually requires more discipline than doing it now!

Trust No One
Your mother told you never to talk to strangers. Unfortunately, good software
development requires even more cynicism and less faith in human nature.
Even well-intentioned code users could cause problems in your program;
being defensive means you can’t trust anybody.

You might suffer problems because of:

Genuine users accidentally giving bogus input or operating the program
incorrectly.

Malicious users trying to consciously provoke bad program behavior.

Client code calling your function with the wrong parameters or supply-
ing inconsistent input.

The operating environment failing to provide adequate service to the
program.

External libraries behaving badly and failing to honor interface con-
tracts that you rely on.

You might even make a silly coding mistake in one function or forget
how some three-year-old code is supposed to work and then use it badly.
Don’t assume that all will go well or that all code will operate correctly. Put
safety checks in place throughout your work. Constantly watch for weak
spots, and guard against them with extra-defensive code.

KEY CONCEPT Trust no one. Absolutely anyone—including yourself—can introduce flaws into your
program logic. Treat all inputs and all results with suspicion until you can prove that
they are valid.

Write Code for Clarity, Not Brevity
Whenever you can choose between concise (but potentially confusing) code
and clear (but potentially tedious) code, use code that reads as intended,
even if it’s less elegant. For example, split complex arithmetic operations
into a series of separate statements to make the logic clearer.

Think about who might read your code. It might require maintenance
work by a junior coder, and if he can’t understand the logic, then he’s bound
to make mistakes. Complicated constructs or unusual language tricks might
prove your encyclopedic knowledge of operator precedence, but it really
butchers code maintainability. Keep it simple.

On the Defens ive 11

If it can’t be maintained, your code is not safe. In really extreme cases,
overly complex expressions can cause the compiler to generate incorrect
code—many compiler optimization errors come to light this way.

KEY CONCEPT Simplicity is a virtue. Never make code more complex than necessary.

Don’t Let Anyone Tinker with Stuff They Shouldn’t
Things that are internal should stay on the inside. Things that are private
should be kept under lock and key. Don’t display your code’s dirty laundry
in public. No matter how politely you ask, people will fiddle with your data
when you’re not looking if given half a chance, and they will try to call
“implementation-only” routines for their own reasons. Don’t let them.

In object-oriented languages, prevent access to internal class data by
making it private. In C++, consider the Cheshire cat/pimpl idiom.
(Meyers 97)

In procedural languages, you can still employ object-oriented (OO)
packaging concepts, by wrapping private data behind opaque types and
providing well-defined public operations on them.

Keep all variables in the tightest scope necessary; don’t declare variables
globally when you don’t have to. Don’t put them at file scope when they
can be function-local. Don’t place them at function scope when they can
be loop-local.

Compile with All Warnings Switched On
Most languages’ compilers draw on a vast selection of error messages when
you hurt their feelings. They will also spit out various warnings when they
encounter potentially flawed code, like the use of a C or C++ variable before its
assignment.3 These warnings can usually be selectively enabled and disabled.

3 Many languages (like Java and C#) classify this as an error.

S A Y “ W H E N ”

When do you program defensively? Do you start when things go wrong? Or when
you pick up some code you don’t understand?

No, these defensive programming techniques should be used all the time. They
should be second nature. Mature programmers have learned from experience—
they’ve been bitten enough times that they know to put sensible safeguards in place.

Defensive strategies are much easier to apply as you start writing code, rather
than retrofitting them into existent code. You can’t be thorough and accurate if you
try to shoehorn in this stuff late in the day. If you start adding defensive code once
something has gone wrong, you are essentially debugging—being reactive, not
preventative and proactive.

However, during the course of debugging, or even when adding new functionality
you’ll discover conditions that you’d like to verify. It’s always a good time to add
defensive code.

12 Chapter 1

If your code is full of dangerous constructs, you’ll get pages and pages of
warnings. Sadly, the common response is to disable compiler warnings or just
ignore the messages. Don’t do either.

Always enable your compiler’s warnings. And if your code generates any
warnings, fix the code immediately to silence the compiler’s screams. Never
be satisfied with code that doesn’t compile quietly when warnings are enabled.
The warnings are there for a reason. Even if there’s a particular warning you
think doesn’t matter, don’t leave it in, or one day it will obscure one that does
matter.

KEY CONCEPT Compiler warnings catch many silly coding errors. Always enable them. Make sure your
code compiles silently.

Use Static Analysis Tools
Compiler warnings are the result of a limited static analysis of your code, a
code inspection performed before the program is run.

There are many separate static analysis tools available, like lint (and its
more modern derivatives) for C and FxCop for .NET assemblies. Your daily
programming routine should include use of these tools to check your code.
They will pick up many more errors than your compiler alone.

Use Safe Data Structures
Or failing that, use dangerous data structures safely.

Perhaps the most common security vulnerability results from buffer
overrun. This is triggered by the careless use of fixed-size data structures.
If your code writes into a buffer without checking its size first, then there
is always potential for writing past the end of the buffer.

It’s frighteningly easy to do, as this small snippet of C code demonstrates:

char *unsafe_copy(const char *source)

{

char *buffer = new char[10];

strcpy(buffer, source);

return buffer;

}

If the length of the data in source is greater than 10 characters, its copy
will extend beyond the end of buffer’s reserved memory. Then anything
could happen. In the best case, the result would be data corruption—some
other data structure’s contents will be overwritten. In the worst case, a
malicious user could exploit this simple error to put executable code on
the program stack and use it to run his own arbitrary program, effectively
hijacking the computer. These kinds of flaw are regularly exploited by
system crackers—serious stuff.

It’s easy to avoid being bitten by these vulnerabilities: Don’t write
such bad code! Use safer data structures that don’t allow you to corrupt the
program—use a managed buffer like C++’s string class. Or systematically use

On the Defens ive 13

safe operations on unsafe data types. The C code above can be secured by
swapping strcpy for strncpy, a size-limited string copy operation:

char *safer_copy(const char *source)

{

char *buffer = new char[10];

strncpy(buffer, source, 10);

return buffer;

}

Check Every Return Value

If a function returns a value, it does so for a reason. Check that return
value. If it is an error code, you must inspect it and handle any failure.
Don’t let errors silently invade your program; swallowing an error can
lead to unpredictable behavior.

This applies to user-defined functions as well as standard library ones.
Most of the insidious bugs you’ll find arise when a programmer fails to check
a return value. Don’t forget that some functions may return errors through a
different mechanism (i.e., the standard C library’s errno). Always catch and
handle appropriate exceptions at the appropriate level.

Handle Memory (and Other Precious Resources) Carefully

Be thorough and release any resource that you acquire during execution.
Memory is the example of this cited most often, but it is not the only one.
Files and thread locks are other precious resources that we must use care-
fully. Be a good steward.

Don’t neglect to close files or release memory because you think that
the OS will clean up your program when it exits. You really don’t know how
long your code will be left running, eating up all file handles or consuming
all the memory. You can’t even be sure that the OS will cleanly release your
resources—some OSes don’t.

There is a school of thought that says, “Don’t worry about freeing memory
until you know your program works in the first place; only then add all the
relevant releases.” Just say no. This is a ludicrously dangerous practice. It will
lead to many, many errors in your memory usage; you will inevitably forget to
free memory in some places.

KEY CONCEPT Treat all scarce resources with respect. Manage their acquisition and release carefully.

Java and .NET employ a garbage collector to do all this tedious tidying
up for you, so you can just “forget” about freeing resources. Let them drop to
the floor, since the run time sweeps up every now and then. It’s a nice luxury,
but don’t be lulled into a false sense of security. You still have to think. You
have to explicitly drop references to objects you no longer care about, or
they won’t be cleaned up; don’t accidentally hold on to an object reference.
Less advanced garbage collectors are also easily fooled by circular references

14 Chapter 1

(e.g., A refers to B, and B refers to A, but no one else cares about them). This
could cause objects to never be swept up; a subtle form of memory leak.

Initialize All Variables at Their Points of Declaration

This is a clarity issue. The intent of each variable is explicit if you initialize it.
It’s not safe to rely on rules of thumb like If I don’t initialize it, I don’t care about
the initial value. The code will evolve. The uninitialized value may turn into a
problem further down the line.

C and C++ compound this issue. If you accidentally use a variable with-
out having initialized it, you’ll get different results each time your program
runs, depending on what garbage was in memory at the time. Declaring a
variable in one place, assigning it later on, and then using it even later
opens up a window for errors. If the assignment is ever skipped, you’ll
spend ages hunting down random behavior. Close the window by initial-
izing every variable as you declare it; even if the value’s wrong, the behavior
will at least be predictably wrong.

Safer languages (like Java and C#) sidestep this pitfall by defining an
initial value for all variables. It’s still good practice to initialize a variable as
you declare it, which improves code clarity.

Declare Variables as Late as Possible
By doing this, you place the variable as close as possible to its use, preventing
it from confusing other parts of the code. It also clarifies the code using the
variable. You don’t have to hunt around to find the variable’s type and
initialization; a nearby declaration makes it obvious.

Don’t reuse the same temporary variable in a number of places, even if
each use is in a logically separate area. It makes later reworking of the code
awfully complicated. Create a new variable each time—the compiler will sort
out any efficiency concerns.

Use Standard Language Facilities
C and C++ are nightmares in this respect. They suffer from many different
revisions of their specifications, with more obscure cases left as implemen-
tation-specific undefined behavior. Today there are many compilers, each with
subtly different behavior. They are mostly compatible, but there is still plenty
of rope to hang yourself with.

Clearly define which language version you are using. Unless mandated
by your project (and there had better be a good reason), don’t rely on com-
piler weirdness or any nonstandard extensions to the language. If there is an
area of the language that is undefined, don’t rely on the behavior of your
particular compiler (e.g., don’t rely on your C compiler treating char as a
signed value—others won’t). Doing so leads to very brittle code. What happens
when you update the compiler? What happens when a new programmer
joins the team who doesn’t understand the extensions? Relying on a parti-
cular compiler’s odd behavior leads to really subtle bugs later in life.

On the Defens ive 15

Use a Good Diagnostic Logging Facility
When you write some new code, you’ll often include a lot of diagnostics to
check what’s going on. Should these really be removed after the event?
Leaving them in will make life easier when you have to revisit the code,
especially if they can be selectively disabled in the meantime.

There are a number of diagnostic logging systems available to facilitate
this. Many can be used in such a way that diagnostics have no overhead if not
needed; they can be conditionally compiled out.

Cast Carefully
Most languages allow you to cast (or convert) data from one type to another.
This operation is some times more successful than others. If you try to convert
a 64-bit integer into a smaller 8-bit data type, what will happen to the other
56 bits? Your execution environment might suddenly throw an exception or
silently degrade your data’s integrity. Many programmers don’t think about
this kind of thing, and so their programs behave in unnatural ways.

If you really want to use a cast, think carefully about it. What you’re
saying to the compiler is, “Forget your type checking: I know what this
variable is, you don’t.” You’re ripping a big hole into the type system and
walking straight through it. It’s unstable ground; if you make any kind of
mistake, the compiler will just sit there quietly and mutter, “I told you so,”
under its breath. If you’re lucky (e.g., using Java or C#) the run time might
throw an exception to let you know, but this depends on exactly what you’re
trying to convert.

C and C++ are particularly vague about the precision of data types, so
don’t make assumptions about data type interchangeability. Don’t presume
that int and long are the same size and can be assigned to one another, even
if you can get away with it on your platform. Code migrates platforms, but bad
code migrates badly.

The Fine Print

There are many low-level defensive construction techniques, all part of a
sensible coding routine and a healthy distrust of the Real World. Consider:

Providing default behavior
Most languages provide a switch statement; they document what hap-
pens in the default case. If the default case is erroneous, make that
explicit in the code. If nothing happens, make that explicit in the
code—that way the maintenance programmer will understand.

Similarly, if you write an if statement without an else clause, stop for a
moment and consider whether you should handle the logical default case.

Following language idioms
This simple piece of advice will ensure that your readers understand all
of the code you have written. They’ll make fewer bad assumptions.

16 Chapter 1

Checking numeric limits
Even the most basic calculations may cause numeric variables to overflow
or underflow. Be on the lookout for this. Language specifications or core
libraries provide mechanisms for determining the capacity of standard
types—use them. Make sure you know all the available numeric types,
and what each is most suitable for.

Check that each calculation is sound. For example, make sure you
can’t use values that would cause a divide by zero error.

Being const-correct
C/C++ programmers should be really vigilant about this—it will make
life much easier. Make everything as const as you possibly can. It does two
things: const qualifications act as code documentation, and const allows
the compiler to spot silly mistakes that you make. It prevents you from
modifying data that’s off-limits.

Constraints

We’ve thought about the set of assumptions we make as we program. But
how can we physically incorporate these assumptions into our software so
they’re not illusive problems waiting to emerge? Simply write a little extra
code to check for each condition. This code acts as the documentation of
each assumption, making it explicit rather than implicit.4 In doing so, we’re
codifying the constraints on program functionality and behavior.

What do we want the program to do if a constraint is broken? Since this
kind of constraint will be more than a simple detectable and correctable run-
time error (we should already be checking for and handling those), it must
be a flaw in the program logic. There are few possibilities for the program’s
reaction:

Turn a blind eye to the problem, and hope that nothing will go wrong as
a consequence.

Give it an on-the-spot fine and allow the program to continue (e.g., print
a diagnostic warning or log the error).

Go directly to jail; do not pass go (e.g., abort the program immediately,
in a controlled or uncontrolled manner).

For example, it is invalid to call C’s strlen function with a string pointer
set to zero, because the pointer will be immediately dereferenced, so the
latter two options are the most plausible candidates. It’s probably most
appropriate to abort the program immediately, since derefencing a null
pointer can lead to all sorts of catastrophes on unprotected operating
systems.

There are a number of different scenarios in which constraints are used:

Preconditions
These are conditions that must hold true before a section of code is
entered. If a precondition fails, it’s due to a fault in the client code.

4 This doesn’t replace writing good documentation, though.

On the Defens ive 17

Postconditions
These must hold true after a code block is left. If a postcondition fails, it’s
due to a fault in the supplier code.

Invariants
These are conditions that hold true every time the program’s execution
reaches a particular point: between loop passes, across method calls, and
so on. Failure of an invariant implies a fault in the program logic.

Assertions
Any other statement about a program’s state at a given point in time.

The first two listed here are frustrating to implement without language
support—if a function has multiple exit points,5 then inserting a postcondi-
tion gets messy. Eiffel supports pre- and postconditions in the core language
and can also ensure that constraint checks don’t have any side effects.

However tedious, good constraints expressed in code make your
program clearer and more maintainable. This technique is also known as
design by contract, since constraints form an immutable contract between
sections of code.

What to Constrain

There are a number of different problems you can guard against with
constraints. For example, you can:

Check all array accesses are within bounds.

Assert that pointers are not zero before dereferencing them.

Ensure that function parameters are valid.

Sanity check function results before returning them.

Prove that an object’s state is consistent before operating on it.

Guard any place in the code where you’d write the comment We should
never get here.

The first two of these examples are particularly C/C++ focused. Java and
C# have their own ways of avoiding some of these pitfalls in the core language,
as do other languages.

Just how much constraint checking should you do? Placing a check on
every other line is a bit extreme. As with many things, the correct balance
becomes clear as the programmer gets more mature. Is it better to have too
much or too little? It is possible for too many constraint checks to obscure
the code’s logic. “Readability is the best single criterion of program quality:
If a program is easy to read, it is probably a good program; if it is hard to
read, it probably isn’t good.” (Kernighan Plaugher 76)

Realistically, putting pre- and postconditions in major functions plus
invariants in the key loops is sufficient.

5 There is a theological debate about whether functions should have multiple exit points.

18 Chapter 1

Removing Constraints
This kind of constraint checking is usually only required during the develop-
ment and debugging stages of program construction. Once we have used the
constraints to convince ourselves (rightly or wrongly) that the program logic
is correct, we would ideally remove them so as not to incur an unnecessary
run-time overhead.

Thanks to the wonders of modern technology, all of this is perfectly
possible. The C and C++ standard libraries provide a common mechanism
to implement constraints—assert. assert acts as a procedural firewall, test-
ing the logic of its argument. It is provided as an alarm for the developer to
show incorrect program behavior and should not be allowed to trigger in
customer-facing code. If the assertion’s constraint is satisfied execution
continues. Otherwise, the program aborts, producing an error message
looking something like this:

bugged.cpp:10: int main(): Assertion "1 == 0" failed.

assert is implemented as a preprocessor macro, which means it sits more
naturally in C than in C++. There are a number of more C++-sympathetic
assertion libraries available.

To use assert you must #include <assert.h>. You can then write something
like assert(ptr != 0); in your function. Preprocessor magic allows us to strip
out assertions in a production build by specifying the NDEBUG flag to the com-
piler. All asserts will be removed, and their arguments will not be evaluated.
This means that in production builds asserts have no overhead at all.

Whether or not assertions should be completely removed, as opposed to
just being made nonfatal, is a debatable issue. There is a school of thought
that says after you remove them, you are testing a completely different piece
of code.6 Others say that the overhead of assertions is not acceptable in a
release build, so they must be eliminated. (But how often do people profile
execution to prove this?)

Either way, our assertions must not have any side effects. What would
happen, for example, if you mistakenly wrote:

int i = pullNumberFromThinAir();

assert(i = 6); // hmm - should type more carefully!

printf("i is %d\n", i);

The assertion will clearly never trigger in a debug build; its value is 6
(near enough true for C). However, in a release build, the assert line will be
removed completely and the printf will produce different output. This can
be the cause of subtle problems late in product development. It’s quite hard
to guard against bugs in the bug-checking code!

6 In practice, more may change between development and release builds of software—com-
piler optimization levels and the inclusion of debugging symbols, for example. Both of these
can make subtle differences to execution and may obscure the manifestation of other faults.
During even the earliest stages of development, testing should be performed equally with
development and release builds.

On the Defens ive 19

It’s not difficult to envision situations where assertions might have even
more subtle side effects. For example, if you assert(invariants());, yet the
invariants() function has a side effect, it’s not easy to spot.

Since assertions can be removed in production code, it is vital that
only constraint testing is done with assert. Real error-condition testing, like
memory allocation failure or filesystem problems, should be dealt with in
ordinary code. You wouldn’t want to compile that out of your program!
Justifiable run-time errors (no matter how undesirable) should be detected
with defensive code that can never be removed.

Java has a similar assert mechanism.7 It can be enabled and disabled by
controls on the JVM, and throws an exception (java.lang.AssertionError)
instead of causing an instant program abort. .NET provides an assertion
mechanism in the framework’s Debug class.

When you discover and fix a fault, it is good practice to slip in an
assertion where the fault was fixed. Then you can ensure that you won’t be
bitten twice. If nothing else, this would act as a warning sign to people
maintaining the code in the future.

A common C++/Java technique for writing class constraints is to add a
single member function called bool invariant() to each class. (Naturally
this function should have no side effects.) Now an assert can be put at the
beginning and end of each member function calling this invariant. (There
should be no assertion at the beginning of a constructor or at the end of the
destructor, for obvious reasons.) For example, a circle class’s invariant may
check that radius != 0; that would be invalid object state and could cause
later calculations to fail (perhaps with a divide by zero error).

7 It was added in JDK 1.4 and is not available in earlier versions.

O F F E N S I V E P R O G R A M M I N G ?

The best defense is a good offense.
—Proverb

While writing this chapter, I wondered, What’s the opposite of defensive program-
ming? It’s offensive programming, of course!

There are a number of people I know who you could call offensive program-
mers. But I think there’s more to this than swearing at your computer and never
taking baths.

It stands to reason that an offensive programming approach would be actively
trying to break things in the code, rather than defending against problems. That is,
actively attacking the code rather than securing it. I’d call that testing. As we’ll see
later in “Who, What, When, and Why?” on page 132, testing, when done properly,
has an incredibly positive effect on your software construction. It improves code
quality greatly and brings stability to the development process.

We should be all offensive programmers.

20 Chapter 1

In a Nutshell

Draw water for the siege, strengthen your
defenses! Work the clay, tread the mortar,

repair the brickwork!
—Nahum 3:14

It is important to craft code that is not just correct but is also good. It needs
to document all the assumptions made. This will make it easier to maintain,
and it will harbor fewer bugs. Defensive programming is a method of expect-
ing the worst and being prepared for it. It’s a technique that prevents simple
faults from becoming elusive bugs.

The use of codified constraints alongside defensive code will make your
software far more robust. Like many other good coding practices (unit testing,
for example—see “The Types of Test” on page 138), defensive programming
is about spending a little extra time wisely (and early) in order to save much
more time, effort, and cost later. Believe me, this can save an entire project
from ruin.

See Also

Chapter 8: Testing Times
Offensive programming—say no more.

Chapter 9: Finding Fault
When faults breach your careful defenses, you’ll need a strategy to round
them up.

Chapter 12: An Insecurity Complex
Defensive programming is a key technique for writing secure software
systems.

Good programmers . . . Bad programmers . . .

Care that their code is robust

Make sure every assumption
is explicitly captured in
defensive code

Want well-defined behavior
for garbage input

Think carefully about the code
they write, as they write it

Write code that protects itself
from other people’s (or their
own) stupidity

Would rather not think about what
could go wrong in their code

Release code for integration that
may fail and hope that someone
else will sort it out

Leave important information
about how their code should be
used locked in their heads, ready
to be lost

Apply little thought to the code
they are writing, resulting in
unpredictable and unreliable
software

On the Defens ive 21

Chapter 19: Being Specific
You must document pre- and postconditions; how else will anyone know
they exist? If you have any constraints specified, then you can add defen-
sive code to assert them.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 463.

Mull It Over

1. Can you have too much defensive programming?

2. Should you add an assertion to your code for every bug you find and fix?

3. Should assertions conditionally compile away to nothing in production
builds? If not, which assertions should remain in release builds?

22 Chapter 1

4. Are exceptions a better form of defensive barrier than C-style assertions?

5. Should the defensive checking of pre- and postconditions be put inside
each function, or around each important function call?

6. Are constraints a perfect defensive tool? What are their drawbacks?

7. Can you avoid defensive programming?

a. If you designed a better language, would defensive programming still
be necessary? How could you do this?

b. Does this show that C and C++ are flawed because they have so many
areas for problems to manifest?

8. What sort of code do you not need to worry about writing defensively?

Getting Personal

1. How carefully do you consider each statement that you type? Do you
relentlessly check every function return code, even if you’re sure a
function will not return an error?

2. When you document a function, do you state the pre- and postconditions?

a. Are they always implicit in the description of what the function does?

b. If there are no pre- or postconditions, do you explicitly
document this?

3. Many companies pay lip service to defensive programming. Does your
team recommend it? Take a look at the codebase—do they really? How
widely are constraints codified in assertions? How thorough is the error
checking in each function?

4. Are you naturally paranoid enough? Do you look both ways before cross-
ing the road? Do you eat your greens? Do you check for every potential
error in your code, no matter how unlikely?

a. How easy is it to do this thoroughly? Do you forget to think about
errors?

b. Are there any ways to help yourself write more thorough
defensive code?

T H E B E S T L A I D
P L A N S

The Layout and Presentation
of Source Code

2

In this chapter:

Why code presentation
matters, and what makes
a good layout

How to choose a code layout
style

Creating a coding standard

Religious wars—why you
should avoid them

Stop judging by mere appearances, and make a right
judgment.

—John 7:24

Coding style has been, is, and will continue to be
the subject of holy wars among programmers—
professional, amateur, and student—where,
unfortunately, intense disagreements degrade
into mere name-calling. I’ll show you where to stick
your stupid brackets.

The first company I ever worked for kick-
started a process to define its internal coding
standard. The guidelines were supposed to
encompass several languages, defining common
conventions and best practices. Months later, the
group compiling the guidelines was still arguing
about where to put brackets in C. I’m not sure if
anyone ever followed the standard that was
eventually produced.

24 Chapter 2

Why do people get so worked up about this? As we’ll see, presentation
dramatically affects the readability of code—no one wants to work with code
that isn’t easy to read. Presentation is also a very subjective and personal
thing—you may not like the style that turns me on. Familiarity breeds comfort,
and an alien style puts you on edge.

Programmers are passionate about code, so presentation stirs deep
emotions.

What’s the Big Deal?

The layout and presentation of code is an issue in most modern program-
ming languages. The freedom of formatting that permits individual artistic
expression came en vogue in the early 1960s with the language Algol; the
previously available Fortran versions had been more restricted in format.
Since then, very few languages have deviated from that free-form approach.

A code presentation style governs a surprisingly large number of things;
brace positioning is the most obvious1 and perhaps the most contentious
issue. The wider aspects of code style, like conventions for function and
variable naming, tie in with other coding concerns such as program structure
(e.g., Don’t use gotos, or Only write Single Entry, Single Exit functions) to dictate
the style in which you write a program. Altogether, this constitutes your
coding standard.

Although there are many individual choices to make when you define a
code presentation format, all are aesthetic. By definition, presentation has
no syntactic or semantic meaning at all; the compiler ignores it.

However, presentation makes a real impact on the quality of code.
Programmers read meaning into code based on its layout. It can illuminate
and support your code’s structure, helping the reader understand what’s
going on. Or it can confuse, mislead, and hide the code’s intent. It doesn’t
matter how well designed your program is; if it looks like a thrown-together
mess, it will be unpleasant to work with. But bad formatting not only makes
code harder to follow; it may actually hide bugs from you. As a simple example
of this, consider the following C code:

int error = doSomeMagicOperation();

if (error)

fprintf(stderr, "Error: exiting...\n");

exit(error);

The layout shows what the author meant to happen, but he’ll be surprised
when the code actually runs.

Since we’re conscientious craftsmen committed to high-quality code, we
strive for clear presentation. There are already plenty of stumbling blocks in
software development; we shouldn’t let basic code presentation become one
of them.

1 Brace is a common name for the curly bracket (that is, { and }) so common in C-style program-
ming languages.

The Bes t Laid P lans 25

Know Your Audience

To write effective source code, it’s important to know who you’re presenting
it to. If you’re going to confuse someone, you’d better know who deserves
the apology. There are, in fact, three audiences for our source code:

Ourselves
My handwriting is so bad that sometimes even I can’t read it. It’s practi-
cally useless unless I concentrate on writing clearly. It’s the same with
code. You have to be able to read what you’ve written immediately after
you write it, but also perhaps years later when you come back to it.
Who would have expected to come back to archaic (relatively speak-
ing) COBOL code to fix a Y2K bug?

The compiler
The compiler doesn’t care what your code looks like, as long as it doesn’t
have any syntactic errors. The intent of the code is completely ignored.
You can write detailed comments explaining what you want a function to
do, but the compiler won’t tell you if the instructions don’t actually do
what your comments say. As long as it’s valid code, your development
environment will be happy.

Others
This is the most important audience and often the least considered.

So you’re working in a team, but you’re the only person who will ever
see your bit of code, right? Wrong. It never works that way.

You’re at home writing some code for fun; no one will ever see it. You
don’t need to worry about making it neat, do you? No, you don’t; but
how would that benefit you? You aren’t developing skills that will make
you a professional. This is the perfect opportunity to practice really good
discipline on a project with no external pressures. A chance to get into
good habits. If you blow it here, is it any wonder you have no discipline
on “real” projects?

Your source code is a document, describing the program you are
creating. It needs to read clearly to whoever might come back to it. This
will include those auditing (code reviewing) the work you have done and
anyone who maintains it later. Be kind to people who have to look after
your code—just imagine yourself in their shoes.

We tailor the elements of presentation style with our audiences in mind.
How does the audience affect how we lay out code? Surprisingly, we care least
of all about the compiler. Its job is to ignore all that unnecessary whitespace
and get down to the serious business of interpreting our syntax. Presentation
is not about syntactic meaning, and the compiler can cope with whatever
freakish layout we throw at it.

Rather, we use layout to emphasize the logical structure of the code to
human readers. It’s about communication, and the clearer the better.

KEY CONCEPT Understand the real audience for your source code: other programmers. Write for their
benefit.

26 Chapter 2

What Is Good Presentation?

As you can see, good presentation means more than just being neat. Tidy
code certainly gives an impression of high quality, but code can be both tidy
and misleading. We strive for clear layout; the code structure must be enhanced
by an indentation strategy, not hidden by it. If a particular flow of control is
necessarily complex, the layout should be helping you to read the code.
(If you’ve written a flow of control that is unnecessarily complex, you should
change it immediately.)

Our code layout must convey meaning, rather than disguise it. I suggest
the following as good metrics for the quality of a presentation style.

Consistent
The indentation strategy must be consistent across the project. Don’t
change styles halfway through a source file. Not only does this look
unprofessional, it can confuse and give the impression that your source
files are not really related.

The individual presentation rules should be internally consistent.
The positioning of braces, brackets, and so on in different situations
should all follow a single convention. The number of spaces of
indent should always be the same.

Kernighan and Ritchie—the fathers of C—say, after stressing the
importance of having good indentation: “The position of braces is less
important, although people hold passionate beliefs. We have chosen
one of several popular styles. Pick a style that suits you, then use it
consistently.” (Kernighan Ritchie 88)

Conventional
It’s sensible to adopt one of the major styles currently in use in the indus-
try rather than invent your own indentation rules. You can be sure of it
being accessible to others who are reading your code. And you’re less
likely to make people vomit.

Concise
Can you concisely describe your indentation strategy? Think about it.
If you do this unless such-and-such, in which case you do this if X holds;
otherwise you do something else which depends on . . .

Someone may eventually need to extend the code you’ve written and
should do so in the same style. If it’s not easy to pick up, then is it really a
useful presentation style?

Brace Yourself

To illustrate the impact presentation has on source code and the trade-offs
involved in choosing a particular style, this case study investigates an impor-
tant C-related layout issue. By looking at the variation in this one simple area,
we’ll see how important presentation is and what a profound impact it has on
your code.

Brace positioning is a big concern for the curly bracket languages,
although it’s really only a fraction of the total code layout problem. As the

The Bes t Laid P lans 27

most immediately visible artifact, it generates about 80 percent of the fuss.
Other languages have their own similar layout concerns.

There are a number of conventional brace positioning styles. Which you
pick comes down to your sense of aesthetics, the culture you code in, and
what you’re used to. Different styles are appropriate in different contexts—
consider a magazine article versus a source editor (see “Well Presented” on
page 28). You may prefer the exdented style, but in a magazine you’re forced
to use K&R to maximize use of the printed page.

K&R Brace Style
K&R style is the oldest flavor, established by the fathers of C Kernighan and
Ritchie in their book The C Programming Language. (Kernighan Ritchie 88)
For this reason, it is often considered the original and best. It was driven by the
need to display the most information possible on a small screen. It’s probably
the dominant style for Java code.

int k_and_r() {

int a = 0, b = 0;

while (a != 10) {

b++;

a++;

}

return b;

}

Pros

Takes up little room, so you can get more code on screen at once

The closing brace lines up with the statement it matches, so you can scan
up to find the construct being terminated

Cons

The braces don’t line up, so it’s hard to visually match them

You might not notice if an opening brace goes off the right of the page

Code statements appear very densely packed

Exdented Brace Style
A more spacious approach is the so-called exdented (or sometimes Allman)
style. This is my personal favorite.

int exdented()

{

int a = 0, b = 0;

while (a != 10)

{

b++;

a++;

}

return b;

}

28 Chapter 2

Pros

A clear and uncluttered format

Easier to scan code for opening braces since they’re distinct; this makes
each code block more obvious

Cons

Takes up more vertical space

Looks wasteful when you have lots of blocks containing only one
statement

Too much like Pascal for some hackers

W E L L P R E S E N T E D

How you present code depends on the context in which it will be read. There are
more contexts than you might think. When you’re reading some code, it’s important
to appreciate the forces that drove its presentation. The common code habitats are:

Source editor
This is most code’s natural habitat. It raises all the presentation concerns program-
mers automatically think about. The code is read on a computer screen, usually in
some dedicated editor or IDE. You scroll or navigate through a file to places of
particular interest. It’s an interactive world—more often than not, you’re reading
code to make modifications. This means that the code has to be malleable.

The editor may have horizontal scrollbars for long lines or may limit the page
width and wrap them. Usually there’s syntax coloring to aid comprehension. As
you type, the editor performs some formatting work for you. For example, it intelli-
gently positions the cursor on new lines.

Published code
Unless you live in a lonely, isolated little world, you’ll regularly read published
code. There are plenty of forums: listings in books and magazines, snippets from
library documentation, or even lines in postings to newsgroups. These are format-
ted for clarity, but also favor a more compact representation since space is not
cheap. Lines are compressed vertically to get the most code into a short space,
and they are compressed horizontally to fit into narrow print margins.

This sort of code tends to omit error handling and anything not pertinent to the
main idea of the example. It only serves to convey a point, not to be thorough.

You may never have to write code for this medium, but you’ll certainly see
plenty of it (you’re reading code snippets in this book, at least). You need to
understand the trade-offs and differences from normal code, so you don’t unwit-
tingly pick up any bad habits.

Printouts
When you print out project code you run into new issues. Column widths become
a problem. Should you reformat before you print, scale pages down and cope
with small fonts, or have haphazard line wrapping? There’s no syntax coloring to
enhance presentation (unless you’re rich enough for a color printer and all that
ink), so messy commenting or code disabled by large comment blocks suddenly
becomes less obvious.

Although you may never print out a page of source, these are valid concerns
that you should consider.

The Bes t Laid P lans 29

Indented Brace Style

Less common but still used is the indented style. Here the braces are indented
with the code. It’s also known as the Whitesmith style, since example code for
the early Whitesmith’s C compiler used it.

int indented()

{

int a = 0, b = 0;

while (a != 10)

{

b++;

a++;

}

return b;

}

Pro

Links code blocks to the braces that contain them

Con

Many people don’t like their blocks linked to their braces

Other Brace Styles

There are others. For example, the GNU style is sandwiched between
exdented and indented; braces are placed halfway between each level of
indent. There are also hybrids; the Linux kernel coding style is half K&R,
half exdented. Most C# programmers also combine layout styles. If you’re
really perverse, you’ll like this:

int my_worst_nightmare()

{

int a = 0, b = 0;

while (a != 10) {

b++;

a++;

}

return b;

}

I’ve seen plenty of surreal code like it, and I’m sure you could concoct
something of equally nightmarish proportions if you tried.

KEY CONCEPT Recognize the common code layout styles for your chosen language, and become familiar
working with each of them. Appreciate their advantages and disadvantages.

30 Chapter 2

One Style to Rule Them All

Having seen seen what constitutes a good coding style, what it governs, and
why it’s necessary, you must now actually choose one. This is where the fights
begin. Disciples of one presentation religion clash with the evangelists of the
next, leading to programmer civil war. But the craftsman steps back from
these petty squabbles and takes a more balanced view.

As long as you write in a style that’s good, it doesn’t matter what style that
is. And there’s no point in arguing about it. There is more than one good style;
the quality and applicability of each will depend on context and culture.

KEY CONCEPT Pick a single good coding style, and stick to it.

It could be argued that if your language standard defined the One True
Presentation Style, the world would be a better place. After all, all code
would look the same. The arguments would cease, and we’d all move on to
something more useful instead. You could pick up anyone’s code and get to
grips with it immediately. Sounds pretty good, doesn’t it?

The counterargument is competition is a Good Thing. If we had a single
monopoly coding style, who would be able to say that it was the best one?
By having more than one coding style, we are encouraged to think and
improve the way we apply a style. It encourages style guidelines to improve.
The upshot: It makes us write better code.

That argument is not a license to code in your own particular style,
though. Remember that good presentation is conventional—a layout that
readers expect.

C O M M O N C O D I N G S T A N D A R D S

A number of well-known coding standards are generally used.

Indian Hill
The full title of this famous document is Indian Hill Recommended C Style and
Coding Standards. It has nothing to do with Native Americans standing on
mounds of earth; instead, it came from the renowned Indian Hill AT&T Bell lab.

GNU
The GNU’s Coding Standards are important since they influence most of the
commonly used open source or free software out there.

You can find them on the GNU Project’s website (www.gnu.org).

MISRA
The UK’s Motor Industry Software Reliability Association (MISRA) has defined
a well-known set of standards for writing safety critical embedded software in C.
It consists of 127 guidelines, and a number of tools exist to validate your code
against them. These guidelines are focused more on language use than code
layout.

Project foo
Most every project under the sun defines its own pet coding style. Just go on a
hunt, and you’ll find literally thousands. The Linux kernel, for example, has its own
guidelines, as does the Mozilla project.

The Bes t Laid P lans 31

House Styles (and Where to Stick Them)

Many software companies have an internal (house) coding style that defines,
among other things, its code presentation rules. But why bother—code that’s
been written in any good style is easy to read and maintain. If no one will have
a hard time following it, do we really need this extra level of bureaucracy?

House styles are important and useful for a number of reasons. If every-
one sings from the same hymn book (perhaps that should be writes on the
same hymn book), then all source code will be consistent and homogenized.
What value does this bring? It increases the code quality and makes software
development safer. Here’s how:

Any code released outside the organization will be neatly presented and
coherent, appearing to be well thought out. Having many conflicting
styles in one project looks careless and unprofessional.

The company can be assured that programs are written up to a certain
standard, thanks to common idioms and methodologies. This doesn’t
guarantee good code, but it does help to protect against bad code.

It makes up for poor tools; IDEs set in different ways will fight against
each other, pulling code apart and generally molesting the layout.
A standard provides level ground (and a common enemy for all the
programmers).

The appeal of being able to instantly recognize the shape of your peers’
code and to quickly make appropriate maintenance alterations is clear.
It saves reading time and therefore the company’s money.

Since the programmers won’t be continually reformatting the code to
suit their particular aesthetic fetishes, your version control history is very
useful. If Fred reformats Bert’s code to “his” style, what happens when, a
bit later on, you look at a diff? Many diff tools are pretty crude and will
now display a plethora of trivial whitespace and brace differences.

These house coding standards are a Good Thing. Even if you don’t
actually agree with the rules they mandate—if, for example, your indentation
strategy is much prettier and easier to understand (in your opinion)—it
shouldn’t matter one iota. The benefits of everyone sharing the same style
outweigh the burden on you to have to conform. If you don’t agree with the
standard, you should still work to it.

KEY CONCEPT If your team already has a coding standard, then use it. Don’t use your own pet style.

You may be surprised to find how much of your coding style is bred from
familiarity and practice. If you use a house style for a while, it soon becomes
second nature and seems perfectly normal.

What happens if you’re working on code that originated from outside
the company and doesn’t conform to your house style? In this case, it makes
more sense to write code conforming to the existing style of that source file.
(This is why writing to a style that’s easy to pick up is important.) The only
other real alternative is to convert the file (and any others) into your house

32 Chapter 2

style. For most Real World projects, this latter course of action isn’t feasible,
especially if you are continually being fed with external source code updates.

Conform to the style of a given file or project, conform to your house
style where this doesn’t conflict, and sacrifice your own preferences. Don’t
surrender your style blindly, though; understand the benefits weighed
against the costs. And what if your company doesn’t have a house style?
Push for one. . . .

Start coding.

Give up now.

Use that style.

Is it new code?

Is there a
house style?

Is there an
unwritten style?

Do you like it? Well, that’s
a start. . . .

Other people’s
trash; bad luck!

Tough. Learn to
live with it.

No

No

No

No

No

Yes

Yes

Yes Yes

Yes

Does it have a
consistent style?

MAKING YOURSELF PRESENTABLE

The Bes t Laid P lans 33

Setting the Standard

You’ve been tasked to draw up a code presentation style where there
currently is none. Good luck! You can be sure that everyone will have an
opinion on what the style should contain and that no one will be completely
satisfied with the end result. Techies are helpful like that.

Creating a coding standard is a delicate task, and it should be approached
tactfully but firmly. Why? Dumping edicts upon a group of programmers will
neither make you nor your standard popular. But if you don’t emphasize
how important it is, programmers will not embrace it and will continue
coding in their own peculiar ways.

The difficulty of this task depends on the people in the team:

How many programmers there are

How they code as individuals

How similar their coding styles are already

Whether they actually want a standard or not

Whether they are prepared to change their styles at all

If their coding styles are all reasonably similar, then the job’s a breeze. If
they vary wildly, you’re in for a bumpy ride. While people seldom agree on
the best style, they will generally agree that some styles are better than others.
You must aim to provide a sufficiently detailed set of layout directives while
trying to satisfy as many programmers as possible—and produce something
that will help them to work better as a team. Here’s a collection of pragmatic
advice for this herculean task:

What’s it for?
Start off with a clear idea of the scope of the work—is the coding standard
just for your immediate team, the department, or the whole company?
This makes a big difference in how you’ll develop and implement it.

Remember: What makes a good personal style is not necessarily the
best for a whole team of programmers. You are creating something that
shouldn’t just serve your aesthetic fetishes; it should be a standard that
will unite team code and avoid common problems. Keep this goal in
mind as your develop the standard.

Determine the level of detail you intend to go into. Is this just a
code layout document, or will it also touch on language usage concerns?
It’s best to keep it simple: Write one document for presentation and a
different document for language use.

Get buy-in
Involve everyone on the team, so they own it. If the programmers feel like
they contributed, they’ll be more likely to follow the standard.

Get everyone to agree that a standard is needed before you start
working on it. Make sure the team understands the benefits of
code consistency and the perils of ad-hoc code presentation.

34 Chapter 2

If you have more than a few programmers, don’t try to design the stan-
dard by committee. Well, not unless you hide all the sharp objects in
the office first. Select a small crack team to get the work done.

When the standard nears completion, review it with a panel of
adopters. Make sure that you have a chairman who can make a final
decision though, or everything will stall while 15 programmers sidetrack
themselves in religious disputes.

Produce something
The end product should be an accessible document, not just a fuzzy set
of agreed conventions. You should be able to refer to the document
later, and point newcomers at it. The document contains a list of the
rules, perhaps with justification for the more contentious decisions.

Standardize best practice
Make sure the standard embodies the team’s current best practices—
let them know that they’re doing things right. If there’s nothing that
comes out of the blue, they will be more likely to adopt it. However, if
you include random conventions from outside the team’s experience,
they’ll revolt.

Focus on what matters
Concentrate your efforts on the things that really matter and will make
the biggest improvements to your team’s code. Don’t try to create a pre-
sentation standard for C, C++, and Java if you only ever use C.

Avoid hotspots
Leave rare-but-tedious cases to individual taste if they won’t actually
make much difference. If people get really worked up over the layout of
split lines in an if statement, give up and let them do what they want.

Don’t be too restrictive; allow the rules to be broken if a violation can
genuinely be justified.

Do it in pieces
A sensible approach is to develop your house style a bit at a time. Start
by agreeing on brace layout and indent size. Just that. It will be difficult
enough! Once you have that in place, progress will be much easier; any
change is just more of the same. At some point, it won’t be worth adding
new rules, since the code will be sufficiently regular.

Plan for adoption
Have a clear idea how this coding standard will be adopted. Be realistic.
People have to be happier with it, or they won’t use it. Adoption will have
to be based on some form of majority rule; if Fred still thinks that switch
statements look better his way when everyone else managed to compro-
mise, too bad, Fred. Don’t be tempted to make it a democratic process,
though. That just won’t work.

Don’t threaten people with the standard or induce punishments for
not using it. That’s not going to go down well. Instead, offer incentives—
even if it’s just public kudos in a code review.

The Bes t Laid P lans 35

Ultimately, the take-up of a standard depends on the authority with
which it is introduced. Either the programmers themselves authorize it
or the process gets management to back it. Or it’s a big waste of time.

Does this sound like trying to persuade a load of school children to get
along and play nicely? Funny, isn’t it. . . . Still, you’ll wade your way through a
religious quagmire, emerging on the other side with a house style that will
genuinely improve your team’s code. Once the wounds heal, it will have been
worth it.

Righteous Wars?

The quickest way of ending a war is to lose it.
—George Orwell

Engaging in holy wars over code layout is unproductive and a waste of time;
there are far more important things to focus our attention on. But beware—
code layout is not the only hot potato in the programming community. You
could extend this to cover editors, compilers, methodologies, the One True
Language,2 and beyond.

These little commotions have been going on for years. They’ll continue
to go on. And no one will ever win. No one will ever manage to establish the
right answer, because there is no right answer. These arguments are just an
opportunity for one person to try to enforce his or her particular (carefully
formed) opinion on others, and vice versa. After all, my opinion must be
right, because it’s mine. It’s like trying to knit spaghetti—amusing for a while,
but messy and totally pointless. It’s usually only ever immature programmers
that get involved. (The old-timers are already argued out.)

The key point to learn is: Holy wars are a waste of effort. As a professional,
you should step back from such petty arguments. Of course, have an educated
personal opinion, but don’t arrogantly presume that it’s correct.

KEY CONCEPT Holy wars: Just say no. Don’t get involved. Walk away.

In a Nutshell

Nothing succeeds like the appearance of success.
—Christopher Lasch

Presentation is one of the key features differentiating good code from bad
code. Programmers glean a lot from code’s appearance, so it is right to worry
about layout. It’s an important skill to be able to sensitively lay out code for
maximum clarity, within the guidelines of any company coding standard that
may exist.

2 This brings to mind a C/C++ programming conference I attended some years ago. A speaker
presented his discovery that you get fewer bugs (which are easier to fix) using Pascal rather
than C, while the most difficult to fix and numerous bugs occur in C++. The reaction was
wonderful—everyone’s feathers were ruffled!

36 Chapter 2

It’s reasonable to assume that code that has been carefully laid out will
have been carefully designed. It’s even more reasonable to assume that
sloppily presented code hasn’t been designed with much care. But there’s
more to this story than formatting source code.

Besides presentation skills, there are certain attitudes that separate good
programmers from bad programmers. The moral is simple: Avoid creating hot
air. Computers will do that for you (we don’t need in-office heating because
ours belch out so much heat). Know what you like and be prepared to defend
it, to put your view across—but don’t presume that you have to win or that
you have to be right, and don’t arrogantly do your own thing anyway.

Good programmers . . . Bad programmers . . .

Avoid pointless arguments and
are sensitive to others’ opinions

Are humble enough to know
that they’re not right all the time

Know how code layout impacts
readability and strive for the
clearest code possible

Are close-minded and
opinionated—My view is
the right one

Argue with anyone over the most
trivial things; it’s a chance to
prove their superiority

L O O K I N G F O R A F I G H T

Code layout is not the only excuse for a programmer flame war. There are many
religious subjects that you’d best tactfully dodge for the sake of your blood pressure.
Watch out for:

My OS is better than yours
. . . because it scales from a wristwatch to an alien mothership, only requires
rebooting once every epoch, and performs most operations with a single two-
letter command.

But mine’s better than yours because you’ll never see a single piece of text
using it, it’s tastefully color coordinated, and it can be operated by a blind
squirrel. Anything you can’t do with it is illegal in most civilized countries,
anyway.

My editor is better than yours
. . . because it recognizes more than a million different syntax schemes, can edit
files written in hieroglyphics, and each of its 400 operations are accessible with
fewer than 10 simultaneous keystrokes. You can use it on the desktop, from a
command line, over a modem, through a rising main, and over 128-bit encrypted
smoke signals.

But mine’s better than yours because it integrates with my underwear and
knows what I want to type before I’ve even thought of it myself.

My language is better than yours
. . . because it implements the artificial intelligence of most major governments
and is clever enough to interpret random gesticulations as meaningful sequences
of instructions.

But mine’s better than yours because it allows you to write in haiku and
encodes information in combinations of whitespace characters.

The Bes t Laid P lans 37

See Also

Chapter 3: What’s in a Name?
A coding standard may mandate how you create names.

Chapter 4: The Write Stuff
Good presentation is key to writing code that’s self-documenting.

Chapter 5: A Passing Comment
Describes how we write comments; some comment use relates to source
code layout.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 466.

Mull It Over

1. Should you alter the layout of legacy code to conform to your latest code
style? Is this a valuable use of code reformatting tools?

2. A common layout convention is to split source lines at a set number of
columns. What are the pros and cons of this? Is it useful?

3. How detailed should a reasonable coding standard be?

a. How serious are deviations from the style? How many limbs should
be amputated for not following it?

b. Can a standard become too detailed and restrictive? What would
happen if it did?

Will adopt a house style even if
it contradicts their personal
preferences

Have no consistent personal
coding style

Trample over others’ code in
their own style

Good programmers . . . Bad programmers . . .

38 Chapter 2

4. When defining a new presentation style, how many items or cases need
layout rules? What other presentation rules must be provided? List them.

5. Which is more important—good code presentation or good code
design? Why?

Getting Personal

1. Do you write in a consistent style?

a. When you work with other people’s code, which layout style do you
adopt—theirs or your own?

b. How much of your coding style is dictated by your editor’s auto-for-
matting? Is this an adequate reason for adopting a particular style?

2. Tabs: Are they a work of the devil, or the best thing since sliced bread?
Explain why.

a. Do you know if your editor inserts tabs automatically? Do you know
what your editor’s tab stop is?

b. Some hugely popular editors indent with a mixture of tabs and
spaces. Does this make the code any less maintainable?

c. How many spaces should a tab correspond to?

3. Do you have a preferred layout style?

a. Describe it in a series of simple statements. Be complete. Include, for
example, how you format switch statements and split up long lines.

b. How many statements did it take? Is that what you expected?

c. Does your company have a coding standard?

d. Do you know where it is? Is it advertised? Have you read it?

i. If yes: Is it any good? Perform an honest critique, and feed your
comments back to the document owners.

ii. If no: Should it? (Justify your answer.) Is there a common
unwritten code style that everyone adopts? Can you drive the
adoption of a standard?

e. Is there more than one standard used, perhaps one per project? If so,
how is code shared among projects?

4. How many different layout styles have you followed?

a. Which did you feel most comfortable with?

b. Which was the most rigorously defined?

c. Is there a link?

W H A T ’ S I N
A N A M E ?

Giving Meaningful Things
Meaningful Names

3

In this chapter:

Why good names are
important for quality code

What is a good name?

How to name variables,
functions, types, namespaces,
macros, and files

When I use a word, Humpty Dumpty said, in a rather
scornful tone, it means just what I choose it to mean—
neither more nor less.

—Lewis Carroll

Ancient civilizations knew that to name
something was to have power over it. This was
more than a simple claim to possession. Some
believed so strongly in the power of names
that they would never give their own names to
strangers, for fear the strangers might use it to
inflict harm against them.

40 Chapter 3

Names mean an awful lot. You may not live in fear of them, but don’t
underestimate the power of a name. A name describes:

Identity
Names are fundamental to our concept of identity. There are examples
throughout history—even before 2000 BC, there are Biblical examples of
meaningful place names and children named to reflect circumstances.
In most cultures it’s still convention for a woman to change her last
name when she gets married, although the fact that some women choose
not to shows how they attribute significant meaning to their names.

Behavior
A name not only promotes identity, but also implies behavior. Obviously,
a name doesn’t dictate what an object does, but it will influence how you
interact with it and how the outside world interprets it. We’re never fixed
to one name per object. I’m known by different monikers in different
contexts: the name my wife calls me,1 the name my daughters know me
by, the nickname I use in chat rooms, and so on. These names indicate
different relationships and interactions with me and the roles I fulfil.

Recognition
A name marks something as a distinct entity. It elevates it from ethereal
concept to well-defined reality. Before someone put a name to electric-
ity, no one would have understood what it was, although they might
have some vague idea of its effects by watching lightning or Benjamin
Franklin’s demonstrations. Once named, it became identifiable as a
distinct force and, consequently, easier to reason about. The Basque
culture believes that naming something proves its existence: Izena duen
guzia omen da—That which has a name exists. (Kurlansky 99)

Today the act of naming has become a multimillion-dollar business, used
(with varying degrees of success) by small firms, the largest multinational
corporations, and everything in between. To launch, rebrand, and publicize
products, these organizations need newer, ever more catchy names. These
names help to build awareness of products and services.

Clearly, names are of immense importance.
As programmers, we wield this enormous power over our constructs

when we name them. A badly named entity can be more than just incon-
venient; it can be misleading and even downright dangerous. As a very
simplistic example, consider the following C++ code:

void checkForContinue(bool weShouldContinue)

{

if (weShouldContinue) abort();

}

1 Which depends on whether she’s in a good or bad mood at the time!

What’s in a Name? 41

The parameter name is clearly a lie, or at least its sense is the opposite
of what you’d expect. The function will not perform as anticipated and,
as a consequence, your program will abort—a reasonably dire result from
a single misnamed variable.

Sticks and stones may break my bones, but names will never hurt me. Not true.

Why Should We Name Well?

We need to carefully consider the names we give things. Remember that
writing source code is all about clear communication. A name creates a
channel of understanding, control, and mastery. Appropriate naming means
that to know the name is to know the object.

Good names really matter. The human brain can only hold about seven
pieces of information concurrently2 (although I’m sure I have a couple of
defective slots, reducing this capacity). It’s already hard enough to cram all
the information about a program into your head; we should not add complex
naming schemes or require obscure references to make this task even harder.

Clear naming is one of the hallmarks of well-crafted code. The ability to
name things well is an important skill of the code craftsman—he’ll work hard
to write easy-to-read code.

KEY CONCEPT Learn to name things transparently—an object’s name should describe it clearly.

What Do We Name?

In this chapter we’ll spend some time thinking, as programmers, about what
we name and how we name it. First: What? The things we name most often
while writing code are:

Variables

Functions

Types (classes, enums, structs, typedefs)

C++ namespaces and Java packages

Macros

Source files

This list is by no means exhaustive—there are other, higher-level entities
we’ll give meaningful names to: states of a state machine, parts of messaging
protocols, database elements, application executables, and so on. But these
six are enough to start with.

2 This is known as the Miller number, after George A. Miller’s psychological research. (Miller 56)

42 Chapter 3

Name Games

How do you name? The naming technique for each of these items will depend
on any coding standard you’re working to. However, while a standard might
mandate certain naming conventions, it won’t be specific enough to guide
the appropriate naming of each and every part of a program.

In order to name well, it’s essential to know exactly what you’re naming
before you think up a name for it. If you don’t know what you’re naming,
how it will be used, and why it actually exists, how can you give it a meaning-
ful name? Bad names are often a sign of poor understanding.

KEY CONCEPT The key to good naming is to understand exactly what you’re naming. Only then can
you give a meaningful name. If you can’t invent a good name for something, do you
really know what it is, or even if it should exist at all?

Before we look in detail at the specific categories of names we create, it’s
important to understand the forces that drive our choice of names and exactly
what constitutes a good name. The next few sections explain the qualities of
a good name.

Descriptive

Obviously a name must be descriptive. That’s what you use it for—to describe
something. Yet it’s common to see puzzling identifiers that bear little resem-
blance to the data they describe.

Even an accurate name can be limiting. People often stick to their initial
perceptions of a concept, despite the proverb about judging books by their
covers. Therefore, it’s important to convey the right first impression through
careful naming. Choose names from the perspective of an inexperienced
reader, not from your internal, knowledgeable perspective.

Sometimes finding a good description is difficult. If you can’t come up
with a good name, then you might need to change your design. It’s an indi-
cation that something might be wrong.

Technically Correct

Modern programming languages impose some rules on how we name
things. Most allow case-sensitive names, don’t allow whitespace (spaces, tabs,
newlines), and allow just alphanumeric characters plus certain symbols (like
the underscore). These days, there are no appreciable limits on identifier
length.3 Although many languages permit use of Unicode identifiers, it’s still
common to select from the ISO8859-1 (ASCII) character set for simplicity.

There may be other technical restrictions. The C/C++ standards reserve
specific ranges of names: You should not use any global identifier beginning
with str followed by a lowercase letter, or beginning with an underscore, and

3 Be aware that older versions of C limited external unique linkage to the first six characters, and
case was not necessarily significant. You need to understand exactly what the target of your code is
when you write it.

What’s in a Name? 43

anything in a namespace called std. It’s important to be aware of these kinds
of restrictions so we can write robust, correct code.

Idiomatic
Just because a language permits certain combinations of characters doesn’t
meant they’re automatically good names. Clear names follow conventions that
the reader expects: the language’s idioms. Just as fluency in a natural language
depends on understanding its idioms, fluency in a programming language
requires idiomatic usage.

Some languages have a single, common naming convention—the vast
Java library establishes a prior art that is hard to ignore—while C and C++
have a lesser degree of convergence. There are several cultures, each with
their own foibles; the standard libraries use one convention, Windows Win32
APIs another.

KEY CONCEPT Know your language’s naming rules. But more importantly, know the language’s
idioms. What are the common naming conventions? Use them.

Appropriate
An appropriate name strikes a good balance in several areas:

Length
To create clear, descriptive names, we must use natural language words.
Programmers have a built-in urge to abbreviate and shorten these words,
but this leads to confused, messy names. It doesn’t matter that a name is
long if its meaning is unambiguous. a is not a realistic replacement for
apple_count.

KEY CONCEPT When naming, favor clarity over brevity.

However, there is a case for short (even one letter) variable names:
as loop counters. They actually make sense in small loops where variable
names like loop_counter are not just overly verbose but can quickly
become tedious.

KEY CONCEPT Understand the trade-offs between short and long names—how they depend on the
scope of the variable’s use.

Tone
The tone of a name is important. Just as a rude joke isn’t appropriate
at a funeral, an ill-judged name ruins the professionalism of your code.
Is this serious? Yes—silly names make the reader doubt the ability of
the original author.

Avoid jokey names like blah or wibble, or the bigger geek snares foo
and bar. They can easily creep in, and while amusing at first, they just
create confusion later on. (Objects given these names are usually quick
temporary hacks that outlast their expected lifetime.) And, obviously,
being professional means that you don’t use expletives when naming.

44 Chapter 3

KEY CONCEPT Name things well the first time, all the time.

The Nuts and Bolts

The following sections investigate how to name each category of item we
listed earlier. Even if you’ve been programming for years, this is a useful
review of the broad spectrum of naming conventions.

Naming Variables

If a variable wasn’t just an electronic entity, it would be the sort of thing you
could hold in your hand, the software equivalent of a physical object. A name
that reflects this will usually be a noun. For example, variable names in a GUI
application might be ok_button and main_window. Even variables that don’t
correspond to Real World objects can be given noun names; consider
elapsed_time or exchange_rate.

If not a noun, a variable will usually be a “noun-ized” verb, for example,
count. A numeric variable’s name describes the interpretation of the value, as
in widget_length. A boolean variable name is often the name of a conditional
statement, which is natural, considering the value will either be true or false.

There are a number of object-oriented language conventions for adorn-
ing member variables to show they are members, not ordinary local variables
or (evil) global variables. This is a mild form of Hungarian Notation, which
some programmers find useful.4 For example, C++ members are commonly
prefixed with an underscore, suffixed with an underscore, or prefixed with
m_. The first method is frowned upon because it is somewhat risky and
distasteful.5 Besides, a leading or trailing underscore makes the variable
pretty unnatural to read.

Some programmers adorn pointer types with a suffix like _ptr and refer-
ence types with one like_ref. This is another subtle infiltration of Hungarian

FOOD F O R T H O U G H T

So what’s with all this foo and bar business? These words are a bit of geek humor,
utterly meaningless and yet full of purpose. They are usually used as placeholders to
represent arbitrary things. You might write: for some variable foo, increment it by
++foo;.

The words generally come in a series. There are several variant series, but you’ll
see foo, bar, and baz quite universally. What comes next may be up to the fickle
finger of fate or to whatever geek folklore you prefer.

The etymology of these terms is debatable. Some trace them back to the World
War II army slang FUBAR (Mucked Up Beyond All Repair). Needless to say, you
should never use these names in production code.

4 Of course, this kind of naming convention won’t have any impact on a class’s public API
because all of your member variables are private, aren’t they?
5 You can’t have global identifiers beginning with an underscore followed by a capital letter. The
archaic C naming rules make many such odd demands.

What’s in a Name? 45

Notation, and it is redundant. The fact the variable is a pointer is implicit in
its type. If your function is so large that you think this adornment is useful,
then it’s probably too large!

Another common variable-naming practice is using acronyms as concise,
“meaningful” names. For example, you might declare a variable like this:
SomeTypeWithMeaningfulNaming stwmn(10);. If the scope of use is small, this kind
of name may be clearer than a long-winded variant.

Conventions that distinguish type names from variable names are gen-
erally best. Type names often have an uppercase initial letter, while variables
have a lowercase one. This way, it’s not unusual to see variables declared like
this: Window window;.

KEY CONCEPT Employ a helpful naming convention that differentiates variable names from type names.

Naming Functions

If a variable is like something you could hold in your hand, the function is
what you do with it—you don’t want to hold it forever. Since a function is
an action, its name will most logically be (or will at least include) a verb.
A function with a noun for a name wouldn’t be clear; for example, what does
the function apples() do? Does it return a number of apples, does it convert
something into apples, or does it make apples out of thin air?

Meaningful function names avoid the words be, do, and perform. These are
classic traps for beginners trying to consciously include verbs (this function
does XXX . . .). They are just noise and don’t add any value to the name.

A function should always be named from the viewpoint of the user,
hiding all the internal implementation stuff neatly away. (That’s the point
of a function—it’s a level of compression and abstraction.) Who cares if,
behind the scenes, it stores an element in a list, makes calls over a network,
or builds a new computer and installs a word processor on it? If the user only
sees the function count apples, the function should be called countApples().

KEY CONCEPT Name functions from an external viewpoint, with a doing phrase. Describe the logical
operation, not the implementation.

H U N G A R I A N N O T A T I O N

Hungarian Notation is a controversial naming convention that encodes information
about a variable or function’s type in its name with the belief that it will make the
code more readable and maintainable. It originated at Microsoft in the 1980s and
is widely used in the company’s public Win32 APIs and the MFC library, which is
the main reason for its popularity.

It is called Hungarian Notation because it was pioneered by Charles Simonyi,
a Hungarian programmer. It’s also called that because variable names look like
they may as well have been written in Hungarian: Non-Windows programmers get
confused by surreal names like lpszFile, rdParam, and hwndItem.

There are many subtly different and not-quite-compatible dialects of Hungarian
Notation, which don’t help matters.

46 Chapter 3

The only time you might choose to break this rule is for simple query
functions that request information. For these accessors, you can sensibly
name the function after the data being requested. For an example of this, see
the answer to question 9 in this chapter’s “Mull It Over” section on page 478.

When you write a function, it should be well documented (either in a
specification or using some literate programming method). However, the
name should still be a clear statement of what the function does; it is part of
the function’s contract. What does void a() do? It could be anything.

Naming Types

Which types you can create depends on the language you’re using. C pro-
vides typedefs, which are synonyms for other type names. You use them to
provide easier, more convenient names. It stands to reason, then, that a
typedef should be clearly named. Even if it’s only a local typedef in a
function body, it should still have a descriptive name.

Java, C++, and other OO languages are profoundly based on the creation
of new types (classes). C also allows you to define compound types called
structs. Just as good variable and function names are vital to the readability
of the code, good type names are paramount. There aren’t too many rigid
heuristics for naming classes, though, because different classes serve differ-
ent purposes.

A class may describe some stateful data object. In that case, its name will
probably be a noun.

C A P I T A L I Z A T I O N C O N V E N T I O N S

Most languages prohibit us from using whitespace and punctuation in our identifiers,
so we adopt a convention for joining up multiple words. These capitalization con-
ventions cause as many programmer fist fights as the eternal Holy Editor Wars.
There are a number of common methods that you’ll see in modern code:

camelCase
camelCase is used extensively by the Java language libraries and also in many
C++ codebases. It is so called because the capitalization resembles a camel’s
humps and was probably first used in Smalltalk in the early 1970s.

ProperCase
This is a close relative of camelCase, its only difference being that the first letter is
also capitalized. It is sometimes known as PascalCase. Often the two conventions
are used together. For example, Java class names are written in ProperCase and
members in camelCase. The Windows API and .NET methods use ProperCase.

using_underscores
Proponents of this style are the implementers of the C++ standard library (look at
all the names in the std namespace) and the GNU foundation.

There are also many other forms. How many can you think of? You can start by
mixing ProperCase with underscores, or by dropping uppercase characters entirely.

What’s in a Name? 47

It may be a function object (a functor) or a class implementing some
virtual callback interface. Here the name will probably be a verb, perhaps
including the name of a recognized design pattern. (Gamma et al. 94)

If the class is a combination of both, then it’s probably hard to name and
possibly designed badly.

Interface classes (e.g., abstract C++ classes with pure virtual functions
or interfaces in Java and .NET) tend to be named according to the
interface facility. Names like Printable and Serializable are common.
.NET adds a Hungarian wart, prefixing all interface names with I,
resulting in names like IPrintable.

Earlier, we discussed words to avoid in function names; there is similar
quicksand here. For example, DataObject is a bad name: The class may very
well contain data, and it’s obviously going to be used to create an object—
this doesn’t need to be restated.

KEY CONCEPT Avoid redundant words in names. Specifically, avoid these words in type names: class,
data, object, and type.

Ensure that you describe the class of data and not an actual object. That’s a
subtle, but important distinction.

Naming Namespaces

What name do you give something specifically designed to collate names?
C++ and C# namespaces and Java packages are like bags, acting primarily as
grouping mechanisms.

They are also used to prevent name collisions. When two programmers
create different things with the same name and their code gets glued
together, what will happen is anyone’s guess. At best, the code will fail to
link; at worst, all sorts of run-time carnage will ensue. Putting items into
different namespaces avoids the danger of polluting the global namespace.
This makes them valuable naming tools.

But namespaces on their own do not prevent collisions; your utils
namespace could still clash with someone else’s utils. To remedy this, we
employ a naming scheme. Java defines a hierarchy of package names, nested

A C L A S S O F B A D N A M E S

A bad class name can serve to really confuse programmers. I once worked on an
application that contained a state machine implementation. For some historical
reason, the base class of each state was called Window, rather than something
sensible like State. It was very confusing and threw off several programmers when
they first saw it. To add insult to injury, the base class of a command pattern was
called Strategy, when it wasn’t actually implementing a strategy design pattern.
It was never easy to figure out what was going on. Better naming would have
provided a clear route into the code’s logic.

48 Chapter 3

like Internet domain names—you’ll place code in your own uniquely named
package. This neatly avoids the problem of collisions. Without such a conven-
tion, namespaces reduce, but do not eliminate, the likelihood of problems.

When picking a name for your namespace, choose something that
describes the relationship of the contents. If they are all part of a library’s
interface, make it the library name. If the contents are a single section of a
larger system, choose a name that describes this section; UI, filesystem, or
controls are good names. Don’t choose a name that redundantly implies a
collection of items—controls_group is a bad name.

KEY CONCEPT Give namespaces and packages names that reflect the logical relationships of their
contents.

Naming Macros

Macros are the walnut-cracking sledgehammers of the C/C++ world. They
are search-and-replace tools for basic text that don’t respect scope or visibil-
ity. They’re tactless. However, there are some walnuts that just won’t crack
without them.

Macros have very drastic effects, so there is a well-established tradition
for naming macros in a maximally obvious way: using CAPITAL LETTERS.
Follow this without fail, and don’t make any other name entirely capitalized.
This makes macros stand out like sore thumbs, which is basically what they are.

Since they are simple text replacement tools, give macros names that are
unique enough to not appear elsewhere in the code. Otherwise, carnage and
confusion will ensue.

A unique file or project name prefix will help here. The macro name
PROJECTFOO_MY_MACRO is much safer than MY_MACRO.

KEY CONCEPT Macros in C/C++ are always capitalized to make them stand out and carefully named
to avoid collisions. Don’t capitalize anything else. Ever.

Naming Files

The names of your source files can have a real impact on the ease of coding.
Some languages have strict filename requirements—Java source filenames
must correspond to the contained public class name. On the other hand, C
and C++ are lax, with no restrictions at all.6

To make choosing filenames easy and obvious, each file should contain a
single conceptual unit. Putting more stuff into one file is asking for trouble
in the long run. Split your code into the maximum number of files you can;
not only will it make them easier to name, but it will reduce coupling and
make the project’s structure clearer.

A C/C++ file that defines the interface for a widget should be called
widget.h, not widget_interface.h, widget_decls.h, or any other variation. You
should conventionally balance each widget.h with a matching widget.cpp or

6 Except those imposed by your operating system or filesystem.

What’s in a Name? 49

widget.c (see “All That Ends Well” on page 50) that implements whatever
the widget.h declares. The shared base name ties them together logically.
This is both obvious and conventional.

There are many other subtle, but important issues when naming files:

Be aware of capitalization. Some filesystems can’t get this right and
ignore case when looking up filenames. But when porting to platforms
where case is important, your code won’t compile unless you’ve observed
capitalization carefully. Perhaps the easiest way to avoid being tripped
up is to mandate that all filenames be lowercase; as they say, If you can’t
be good, be careful. (Of course, that won’t work for Java, which uses the
PascalCase naming style for its classes and interfaces.)

For the same reason, if your filesystem considers the filenames foo.h and
Foo.h to be different, don’t exploit it. Make sure that filenames in the
same directory differ by more than just case.

If you mix languages in a single project, don’t create foo.c, foo.cpp, and
foo.java in the same directory. It’s messy—which file is used to create the
object file foo.o, and which creates the executable called foo?

Try to ensure that all the files you create have a distinct names, even if
they’re all spread across different directories. This makes it easier to rea-
son about which file is which. It’s obvious which header file you mean
when you #include "foo.h". If there were two files with the same name,
then a newcomer to the codebase would be confused. This becomes
more of an issue as a system grows.

One valid approach is to add some path information to the logical
filename. Arrange your files so that you can include library_one/version.h
and library_two/version.h without confusion.

File naming seriously impacts ease of coding. I once worked on a C++
project where the majority of the filenames matched the class names exactly;
the class Daffodil was defined in Daffodil.h (names have been changed to
protect the guilty). However, a handful of files were named in a slightly differ-
ent manner, usually abbreviated, so HerbaciousBorder was held in HerbBdr.h.
That made finding the right filename to #include complex and time consum-
ing. On top of this, not all of the Daffodil class implementation was necessarily
in Daffodil.cpp—some of it might have been in a shared FlowerStuff.cpp and
perhaps also in Yogurt.cpp, for no adequately explained reason. As you can
imagine, this made finding particular bits of code a nightmare. Source code
browsers help in situations like this, but they are no substitute for plain old,
well-named code.

A Rose by Any Other Name

There is more to the name game than you’d first think, and there are clearly
a lot of considerations for naming bits of code. What are the main principles
to pull out?

50 Chapter 3

To invent a good name, do the following:

Be consistent

Exploit content

Use names to your advantage

Be Consistent

This is perhaps the most important naming principle. Be consistent—not just
within your own work, but with respect to company-wide practices. I have no
confidence in the quality of a class interface if it looks like this:

class badly_named : public MyBaseClass

{

public:

void doTheFirstThing();

void DoThe2ndThing();

void do_the_third_thing();

};

When a lot of people work together, it’s very easy to end up with code
like this—about as internally consistent as a random number generator. It’s
often a symptom of a more serious problem—perhaps that the programmers
aren’t respecting the fundamental design of the code they’re simultaneously
working on. This is where mandated coding standards and central design
documents can be a big help.

Naming consistency goes beyond capitalization and formatting to the
way you create names. A name establishes an implicit metaphor. Across a
program or project, these metaphors should be consistent. Your naming
approach should be holistic.

KEY CONCEPT Choose a consistent naming convention—and use it consistently.

A L L T H A T E N D S W E L L

Choosing a suffix is integral to file naming. Java’s build system insists that source
filenames end in .java. C and C++ compilers are suffix agnostic, but calling header
files something.h is such a universal convention that it would be like sticking pins in
your eyes not to do it. We do feel some pain from the lack of rigid definition; there
are several conventions for C++ implementation filenames, like the common suffixes
.C, .cc, .cpp, .cxx, and .c++. Less common, but still seen, are C++ headers files
suffixed with .hpp. Your choice may depend on the compiler, personal preference,
and/or a coding standard. Consistency is the key; pick a file suffix scheme and use
it consistently.

I have even worked on a platform that didn’t support filename suffixes. Determining
the filetype was a complex and messy business.

What’s in a Name? 51

With consistent naming, we get code that is intuitive and therefore easier
to work with, easier to extend, and easier to maintain. In the long run, it’s
much cheaper to manage.

Exploit Context

Every name should make perfect sense when read in context. A name
will only ever be read in its context, so you can delete all the superfluous bits
that duplicate contextual information. We strive for succinct, descriptive
names, without unnecessary baggage.

This contextual information may come from:

Scope
Things either live in a top-level, global scope or exist within some name-
space, class, or function. Choose a name that makes sense in the context
of that scope. The smaller and more specific a scope is, the easier it is
to create a name within it and the easier it is for the reader to under-
stand what that name really means. If a function counts the number of
apples in a tree and is defined in a class Tree, then it needn’t be called
countApplesInTree(). Its fully qualified name would be an unambiguous
description: Tree::countApples(). Put things in the smallest (and there-
fore most descriptive) scope you can.

The French language, like most other Romance languages, has two
forms of the word you: tu and vous. Which one you use depends on how
familiar you are with the person you’re addressing. Similarly, the name
you call a variable may depend on the context in which you’re using it.
You may see a variable named differently in a function’s public declara-
tion than in the function implementation.

Type
Everything has a type, and you’ll know what that type is. A name doesn’t
need to restate this type information. (Restating this is the purpose of
Hungarian Notation and is why it’s an often derided convention.)

An inexperienced programmer will name his address string variable
address_string. What good does the _string suffix do? Nothing, so get
rid of it.

KEY CONCEPT The detail required in a name depends on its context. Use contextual information to
your advantage when naming.

Use Names to Your Advantage

There is power in a name—power that allows you to be more expressive than
a language’s syntax alone might allow. Think about how you can use similar
names to group things together, using a common prefix. Or consider how
you can imply which of a function’s parameters are input or output by
including this information in their names.

52 Chapter 3

In a Nutshell

In your name I will hope, for your name is good.
—Psalms 52:9

Our ancient ancestors knew it, and good programmers know it: It’s crucial to
name things well. Good names serve more than just an aesthetic purpose;
they convey information about the structure of code. They are an essential
tool to aid comprehensibility and maintainability.

The main reason we write code in high-level languages is to communi-
cate, and that communication is to an audience of code readers—other
programmers—rather than to the compiler. Bad names have the potential to
mislead. There is power in a name, and experienced programmers under-
stand the balance of concerns involved when naming any part of their code.

G E N E R A L D O S A N D D O N ’ T S

We can condense a lot of the advice in this chapter into some general dos and
don’ts. Don’t create names that are:

Cryptic
You can create inexplicable names in a number of ways. Acronyms and abbrevi-
ations can appear quite random, and single letter names are far too magical.

Verbose
Avoid terse names, but don’t create a variable called the_number_of_apples_
before_I_started_eating, either. It’s neither remotely useful nor funny.

Inaccurate or misleading
As obvious as it seems, make your names accurate. Don’t call something a
widget_list if it has nothing to do with lists. Don’t call something widget if it’s a
container of widgets.

Misspelling opens a minefield of confusion: I thought the variable was called
ignoramus, but I can’t find it anywhere. Oops, it was misspelled ignoramous. Sigh.

Ambiguous or vague
Don’t use a name that could be interpreted in several ways. Don’t use a hope-
lessly vague name like data or value unless it’s perfectly clear what it represents.
Avoid the vague temp or tmp unless you really need it.

Don’t differentiate names by capitalization or by changes of a single character.
Be wary of names that sound similar.

Don’t gratuitously create local variables with the same name as something in
an outer scope.

Too cute
Sexy little abbreviations, clever shortenings that are hard to remember, and inter-
pretive use of numerals should be avoided. i18n, a common abbreviation for
internationalization, reads like nonsense to the uninitiated.

On the other hand, do create appropriate names that are clear, specific, concise,
accurate, and unambiguous. Do use common terms and frames of reference. Use
words from the problem domain, and draw on descriptive design pattern names.
(Gamma et al. 94)

What’s in a Name? 53

See Also

Chapter 2: The Best Laid Plans
Discusses coding standards, which may guide you in naming things.
Also talks about holy wars, which Hungarian Notation is definitely a
cause of.

Chapter 4: The Write Stuff
Good names don’t replace well-documented code—but they are an
integral part of code documentation.

Get Thinking

A detailed discussion of the following questions can be found in the
“Answers and Discussion” section on page 474.

Good programmers . . . Bad programmers . . .

Realize the importance of names
and treat them with respect

Think about naming and choose
appropriate names for every-
thing they create

Hold many forces in balance:
name length, clarity, context,
and so on

Keep a view of the bigger
picture, so their names hold
together across a project (or
projects)

Care little for the clarity of
their code

Produce write-once code that is
quick to write and poorly
thought out

Ignore the language’s natural
idioms

Are inconsistent in naming

Don’t think holistically, failing
to consider how their piece of
code fits into the whole

54 Chapter 3

Mull It Over

1. Are these good variable names? Answer with either yes (explain why, and
in what context), no (explain why), or can’t tell (explain why).

a. int apple_count

b. char foo

c. bool apple_count

d. char *string

e. int loop_counter

2. When would these be appropriate function names? Which return types
or parameters might you expect? Which return types would make them
nonsensical?

a. doIt(...)

b. value(...)

c. sponge(...)

d. isApple(...)

3. Should a naming scheme favor the easy reading or easy writing of code?
How would you make either easy?

a. How many times do you write a single piece of code? (Think about
it.) How many times do you read it? Your answers should give some
indication as to the relative importances.

b. What do you do when naming conventions collide? Say you’re work-
ing on camelCase C++ code and need to do STL (using_underscore)
library work. What’s the best way to handle this situation?

4. How long should a loop be before you need to give a meaningful loop
counter name?

5. In C, if assert is a macro, why is its name lowercase? Why should we name
macros so they stand out?

6. What are the pros and cons of following your language’s standard library
naming conventions?

7. Can you wear out a name? Is it okay to repeat a local variable name in
many different functions? Is it okay to use local names that override (and
hide) global names? Why?

8. Describe the mechanics of Hungarian Notation. What are the pros and
cons of this naming convention? Does it have a place in modern code
design?

9. We see many classes containing member functions acting as getters and
setters; reading and writing the value of certain properties. What are the
common naming conventions for these functions, and which is the best?

What’s in a Name? 55

Getting Personal

1. How good are you at naming? How many of these heuristics do you
follow already? Do you consciously think about your naming and these
sorts of rules, or do you just do it all naturally? In which areas can you
improve?

2. Does your coding standard mention naming at all?

a. Does it cover all the cases we’ve looked at here? Is it sufficient? Is it
useful, or just superficial?

b. How much naming detail is appropriate in a coding standard?

3. What’s the worst name you’ve come across recently? How have names
ever misled you? How would you have changed them to avoid future
confusion?

4. Do you have to port code between platforms? How has this affected file-
names, other names, and the overall code structure?

T H E W R I T E
S T U F F

Techniques for Writing
“Self-Documenting” Code

4

In this chapter:

How to document your code

Literate programming

Documentation tools

Real seriousness in regard to writing is one of two absolute
necessities. The other, unfortunately, is talent.

—Ernest Hemingway

Modern self-assembly (flat-pack) furniture is
remarkable, leaving even the seasoned carpenter
in a state of awe and confusion. Generally, it’s
cleverly designed and will eventually build into
what you expect it to.

When assembling it, you have to rely on the
supplied instructions—you’ll build something
more like modern art than furniture without them.
The quality of the instructions drastically affects
how easy construction is. Bad instructions make
you sweat, swear, and continually take apart pieces
of wood that should never have been attached in
the first place.

It’s a shame they don’t make things like they
used to.

58 Chapter 4

Source code suffers from similar problems. It’s true, they don’t make it
like they used to, but no one was ever that fond of punched cards or COBOL
anyway. More importantly, without good instructions that explain how the
code fits together, working with some programs can make you sweat, swear,
and continually take apart pieces of code that should never have been
attached in the first place.

Creating good code means creating well-documented code. The reason we
write code is to communicate clear sets of instructions—not just to the com-
puter, but also to the poor fools who have to fix or extend those instructions
later on. Code in the Real World is never written and then forgotten about.
It will be modified, extended, and maintained over the life of the software
product. To do this we need instructions, a user guide—documentation.

Common wisdom for documenting code is that you should either write
tons of documents about the code or write tons of comments in the code.

Both ideas are nonsense. Most programmers have an aversion to word
processors and get bored with writing too many comments. Writing code is
hard work. Documenting it shouldn’t be more hard work. In the heat of the
software factory, anything that requires extra work tends not to be done.
Or if it is, it is done badly.

I’ve seen software systems propped up by design specifications, imple-
mentation notes, maintenance guides, and style guides. Unsurprisingly, this
is the kind of code that’s really tedious to work with. The problem with all of
this supporting documentation is:

We don’t need extra work to do. Writing documentation takes a lot of
time; so does reading it. Programmers would rather spend that time
programming.

All these separate documents must be kept up to date with any code
changes. In a large project, that’s an awful lot of work. The common
alternative (never updating any documentation) leads to dangerously
inaccurate and misleading information.

A forest of documentation is hard to manage. It’s not easy to find the
right document or to locate a particular piece of information that could
be in one of several places within a document. Like code, documentation
has to be held under revision control, and you must make sure you’re
reading the corresponding document version for the version of source
code you’re working on.

Important information in separate documents can easily be missed.
If it’s not beside the code, and there are no helpful pointers, things
are overlooked.

KEY CONCEPT Don’t write code that needs to be propped up by external documentation. It’s flimsy.
Ensure that your code reads clearly on its own.

The common alternative—documenting your code with detailed
code comments—can be just as bad, if not worse. Reams of slavishly

The Wri te S tu f f 59

detailed comments obstruct good code. You’ll end up writing poorly
formatted documentation rather than a good program.

How do we avoid this nightmare? We write self-documenting code.

Self-Documenting Code

It sounds like a good idea, doesn’t it? But what is self-documenting code?
This program is self-documenting:

10 PRINT "I am very small and very pointless"
20 GOTO 10

It’s not anything to be proud of, though. A more complicated, more useful
self-documenting program requires a great deal of skill. Computer programs
tend to be much harder to read than they are to write. Anyone who has used
Perl will understand this; it has been described as the ultimate write-once
language. Indeed, old Perl code can be truly unfathomable, but you can write
opaque code in any language, and it doesn’t take much effort.

The only document that describes your code completely and correctly
is the code itself. That doesn’t automatically mean it’s the best description
possible, but more often than not, it’s the only documentation you’ll have
available.

You should, therefore, do everything you can to make it good documen-
tation, the kind of documentation that anyone can read. By necessity, code is
something that more people than just the author must be able to understand.
Programming languages are our communication medium. Clear communica-
tion is vital. With clarity, your code gains quality because you’re less likely to
make mistakes (since errors are more obvious), and it is cheapter to main-
tain the code—it takes less time to learn.

Self-documenting code is easily readable code. It is comprehensible on
its own, without relying on external documentation. We can improve the
clarity of our code in many ways. Some techniques are very basic and have
been drilled into us since we were taught to program. Others are more subtle
and come with experience.

KEY CONCEPT Write your code to be read. By humans. Easily. The compiler will be able to cope.

Here’s an example of a simple function that’s about as far from self-
documenting as you can get. What do you think it does?

int fval(int i)

{

int ret=2;

for (int n1=1, n2=1, i2=i-3; i2>=0; --i2)

{

n1=n2; n2=ret; ret=n2+n1;

}

return (i<2) ? 1 : ret;

}

60 Chapter 4

That’s a realistic example; countless millions of lines in production soft-
ware look like that, and programmers on the front line suffer because of it.
In contrast, the following code is self-documenting. You can probably work
out what it does by just reading the first line.

D O N ’ T J U D G E A B O O K . . .

A file of self-documenting code reads a lot like a good reference book. Such a book
is carefully structured, sectioned, and laid out. It reads naturally from front to back
and top to bottom, but you can just as easily dive into it as a reference. That’s how
our code should work. Let’s compare the parts:

Introduction
A book’s introduction explains what’s inside, sets the tone, and explains how
it into the bigger picture. A source file should begin with a code comment header.
It explains what’s in the file and specifies to which project the source file belongs.

 Table of contents
Although some argue that the file header should include a list of all the contained
functions, I strongly advise against this. It will rapidly become out of date. You can,
however, list the contents of the file (all types and classes, functions, variables) with
most modern editors or IDEs, providing useful directions to specific pieces of code.

Sections
This book is divided into several parts. Source files may also split into major
sections; perhaps a single file contains several classes or logical groups of
functions. This is where breakwater comments help. Extravagant ASCII art is
generally a Bad Thing, but these kinds of comments help to logically break up
the file for easy navigation.

Beware, though. Putting too many things in a single source file is not a good
idea. A simple one-to-one file/class correspondence is best. Large, multipurpose
files are confusing to understand and very hard to navigate. (If this advice leaves
you with too many source files, then you need to improve the higher-level code
structure.)

Chapters
Each chapter of a book is a self-contained and well-named chunk. Source files
typically contain a number of well-named functions.

Paragraphs
Within each function, you’ll group code into blocks of statements. The initial
variable declarations will be in one logical block, separated from the following
code by a blank line (well, at least they will be in older C code). This isn’t a
syntactic thing, just layout that helps you read the code.

Sentences
Sentences naturally correspond to each single code statement.

Cross-references and index
Again, this isn’t a part of your source file markup, but a good editor or IDE will
provide cross-referencing capabilities. Learn how to use them.

This is an interesting analogy, but what difference does it make for writing code?
Many good book-writing techniques translate into good code-writing techniques.
Learn them to make your code more readable. Split code into sections, chapters,
and paragraphs. Use layout to emphasize the code’s logical structure. Use simple,
short code statements—just like short sentences, they’re more readable.

The Wri te S tu f f 61

int fibonacci(int position)

{

if (position < 2)

{

return 1;

}

int previousButOne = 1;

int previous = 1;

int answer = 2;

for (int n = 2; n < position; ++n)

{

previousButOne = previous;

previous = answer;

answer = previous + previousButOne;

}

return answer;

}

There’s one thing you should notice about that function—the lack of
comments. It’s obvious what’s going on without any. Comments would just
add more stuff to be read. They’d be unnecessary noise and would make the
function harder to maintain in the future. That’s important—because even
the smallest, most beautiful functions will need later maintenance.1

Techniques for Self-Documenting Code

Writing self-documenting code is traditionally thought to involve adding a
copious amount of comments. Good commenting certainly is an important
technique, but there’s much more to it than that. In fact, we should actively
avoid comments by writing clear code that doesn’t need them.

The following sections list important self-documenting code techniques.
You’ll notice that they cover similar ground to the other chapters in this first
part of the book. That’s not entirely surprising—there are many overlapping
characteristics of good code; the benefits of one technique will be seen in
several areas of code quality.

Write Simple Code with Good Presentation

Presentation has an enormous impact on the clarity of code. Thoughtful
layout conveys the structure of the code; it makes functions, loops, and
conditional statements clearer.

Make the “normal” path through your code obvious. Error cases should
not confuse the normal flow of execution. Your if-then-else constructs
should be ordered consistently (i.e., always place the “normal” case
before the “error” case, or vice versa).

1 Did you work out what that first example did? Both functions compute a value in the Fibonacci
sequence. Which would you prefer to read?

62 Chapter 4

Avoid too many nested statements. They lead to complex code that
needs lengthy explanation. Common wisdom claims that each function
should have one and only one exit point; this is known as Single Entry,
Single Exit (SESE) code. But this is actually too restrictive for readable
code and leads to deep levels of nesting. I prefer the fibonacci example
we saw previously to this SESE variant:

int fibonacci(int position)

{

int answer = 1;

if (position >= 2)

{

int previousButOne = 1;

int previous = 1;

for (int n = 2; n < position; ++n)

{

previousButOne = previous;

previous = answer;

answer = previous + previousButOne;

}

}

return answer;

}

For the sake of an extra return statement, I’d rather avoid that gra-
tuitous nesting—it has made the function much harder to read. returns
deep in the middle of a function’s logic are questionable, but simple
short circuits at the top aid function readability immensely.

Be wary of optimizing code so that it’s no longer a clear expression of
a basic algorithm. Never optimize code unless you’ve proved that it is a
bottleneck to acceptable program function. Optimize only then, and
clearly comment about what’s going on.

Choose Meaningful Names

All variable, type, file, and function names should be meaningful, not
misleading. A name should faithfully describe what it represents. If you
can’t name something meaningfully, then do you really understand what
it’s doing? Your naming scheme should be consistent so that there are no
nasty surprises. Make sure that a variable is only ever used for what its
name implies.

Good names are probably our best way of avoiding gratuitous comments.
They are the nearest thing we have in code to the expressiveness of natural
language.

Decompose into Atomic Functions

The way that you split the code into functions and the names you give those
functions can either add meaning to code or totally strip it of sense.

The Wri te S tu f f 63

One function, one action. Make that your mantra. Don’t write complex func-
tions that make coffee, clean shoes, and guess the number you first thought
of. In one function, do one action. Choose a name that unambiguously
explains that action. A good name means that no extra documentation is
needed.

Minimize any surprising side effects, no matter how benign they appear.
They require extra documentation.

Keep it short. Short functions are easy to understand. You can get your
head around a complex algorithm if it’s broken into small pieces with
descriptive names, but you can’t if it’s a sprawling mess of code on the page.

Choose Descriptive Types

As much as possible, describe constraints or behavior with the available
language features. For example:

If you are defining a value that will never change, enforce it as a constant
type (use const in C).

If a variable should not contain a negative value, use an unsigned type
(if your language provides one).

Use enumerations to describe a related set of values.

Select appropriate types. In C/C++, put sizes in size_t variables and
pointer arithmetic results in ptrdiff_t variables.

Name Constants

Stumbling over some code that reads if (counter == 76) will leave you scratch-
ing your head. What is the magic significance of the number 76? What is the
intent of that test?

These so-called magic numbers are evil. They hide meaning. Writing

const size_t bananas_per_cake = 76;

...

if (count == bananas_per_cake)

{

// make banana cake

}

is much clearer. If you use the constant 76 (sorry, bananas_per_cake) a lot in
your code, you gain an additional benefit: When you need to change the
banana-to-cake ratio, you only need to make one code change, rather than
perform an error-prone search-and-replace for every 76 in the project.

KEY CONCEPT Avoid magic numbers. Use well-named constants instead.

This holds true for constant strings as well as numbers. Question the use
of any literal in your code, especially when you use it several times over—can
you use a more maintainable named constant instead?

64 Chapter 4

Emphasize Important Code

Make important stuff stand out from mundane stuff. Draw the reader’s atten-
tion to the right places. There are many coding opportunities to do this.
For example:

Order the declarations in a class helpfully. Public information should
come first, since this is what the class user needs to see. Put the private
implementation details at the end, since they are less important to most
readers.

Wherever possible, hide all nonessential information. Don’t clutter the
global namespace with unnecessary cruft. In C++ you can use the pimpl
idiom to hide class implementation details (Meyers 97).

Don’t hide important code. Write only one statement per line, and keep
each statement simple. You can write very clever for loops, putting all the
logic on one line with an assortment of commas, but it’s not easy to read.
Don’t do it.

Limit the number of nested conditional statements. If you don’t, the
handling of important conditions will become hidden by a nest of ifs
and braces.

KEY CONCEPT Make sure all important code stands out and is easy to read. Hide anything that the
client audience doesn’t care about.

Group-Related Information

Present all related information in one place. Otherwise, you’ll not only make
the reader jump through hoops, you’ll require him to know via ESP where the
hoops are. The API for a single component should be presented in a single
file. If there is so much related information that it becomes messy to present
it all together, question the code’s design.

Whenever possible, group items by a language construct. In C++ and C#
we can group items within a namespace. Java provides packages as grouping
mechanisms. Related constant values can be defined in an enum.

KEY CONCEPT Group information together intentionally. Use language features to make this grouping
explicit.

Provide a File Header

Place a comment block at the top of a file to describe its contents and the
project to which it belongs. This takes only a little effort, but it can make a
big difference. When someone comes to maintain that file, they’ll have a
good idea what to expect.

This header can be important: Most companies mandate that every source
file contains a visible copyright notice for legal reasons. File headers commonly
look something like the following.

The Wri te S tu f f 65

/***

* File: Foo.java

* Purpose: Foo class implementation

* Notice: (c) 1066 Foo industries. All rights reserved.
**/

Handle Errors Appropriately

Handle any error in the most appropriate context. If there is a disk I/O prob-
lem, you should handle it in code that accesses the disk. Perhaps handling this
error would mean raising a different error (like a “couldn’t load file” exception)
to a higher level. This means that at each level in the program, an error is an
accurate description of what the problem is in that context. Don’t handle hard
disk corruption in the user interface code—it doesn’t make sense.

Self-documenting code helps the reader to understand where an error
came from, what it means, and its implications for the program at that point.

KEY CONCEPT Don’t return nonsensical errors. Present the appropriate information in each context.

Write Meaningful Comments
As you can see, we’ve tried to avoid writing comments by using other
implicit code documentation techniques. However, once you’ve written
the clearest code you can, you need to comment what remains. Clear code
contains an appropriate amount of commenting. What is this appropriate
amount?

KEY CONCEPT Only add comments if you can’t improve the clarity of the code in any other way.

Think about all these other techniques first. Would a name change or a
new subordinate function make the code clearer and avoid a comment?

S E L F - I M P R O V E M E N T

How do you get better at writing self-documenting code? Let’s head back into book-
writing territory for some clues.

There’s a simple principle for improving your writing skills: If you read a lot, you
become a better writer. Critically reading the works of recognized authors teaches
you what works and what doesn’t. You pick up new techniques and idioms to add to
your arsenal.

Similarly, if you read a lot of code, you’ll become a better programmer. If you
immerse yourself in good code, you’ll soon be able to smell bad code a mile away.
Customs officials see so many passports each day that a forged one stands out like
a sore thumb. Even clever imitations become obvious. Bad code becomes so much
more striking when you’re sensitive to the warning signs.

With this experience you’ll naturally find yourself using good techniques in your
own code. You’ll begin to spot when you write bad code; it will feel uncomfortable.

66 Chapter 4

Practical Self-Documentation Methodologies

We’ll conclude this chapter by comparing two specific code documentation
methods. Remember that these methods come after the techniques we’ve just
seen. Kernighan and Plaugher said, “Don’t document bad code—rewrite it.”
(Kernighan Plaugher 78)

Literate Programming

Literate programming is an extreme self-documenting code technique, conceived
by the renowned computer scientist Donald Knuth. He wrote a book by this
name that described it. (Knuth 92) It is a radical alternative to the traditional
programming model, although some people think the literate programming
episode of Knuth’s career was a large and unfortunate sidetrack. Even if it’s
not the One True Way to code, there are still things we can learn from it.

The idea behind literate programming is simple: You don’t write a pro-
gram, you write a document. The documentation language is bound up tightly
with the programming language. Your document is primarily a description of
what is being programmed, but also happens to compile into that program.
The source code is the documentation, and vice versa.

A literate program is written almost as a story; it is easy for the human
reader to follow, perhaps even enjoyable to read. It is not ordered or
constrained for a language parser. This is more than just a language with
inverted comments; it’s an inverted method for programming. Literate
programming is a whole different way of thinking.

Knuth originally mixed (a markup language for document type-
setting) and C in a system called WEB. A literate programming tool parses
the program file and generates either formatted documentation or source
code that can be fed into a traditional compiler.

Of course, this is just another programming technique, like structured
programming or object-oriented programming. It doesn’t guarantee quality
documentation. That is, as ever, up to the programmer. However, literate
programming shifts the emphasis toward writing a description of the pro-
gram rather than just writing code that implements it.

Literate programming really comes into its own during a product’s
maintenance phase. With good quality (and quantity of) documentation
directly on hand, it becomes much easier to maintain the source.

There are many useful qualities of literate programming:

Literate programming places emphasis back on writing documentation.

It makes you think about your code in a different way since you write
explanations and justifications as you go along.

You are more likely to update the documentation when you make changes
to the code, since it’s situated conveniently nearby.

You are guaranteed to only have one document for the whole codebase.
You’ll always be able to view the correct version for the code you’re
working on—it is the code you’re working on.

The Wri te S tu f f 67

Literate programming encourages the inclusion of items not normally
found in source comments. For example: a description of the algorithms
used, proofs of correctness, and the justification of design decisions.

However, literate programming isn’t a magical cure-all. It has some serious
drawbacks:

Literate programs are harder to write, because most programmers don’t
find it natural. We tend not to think of code as a printed document that
needs formatting. Rather, we mentally model control flows and interact-
ing objects.

Extra compilation steps are required, which make literate programs
slower to work with. There is still no really good tool support.

It’s quite difficult to process a literate program, since the compiler
needs to extract all the program fragments and reassemble them, in the
correct order. While it’s nice to write the document in any order, C can
be quite specific about how it wants to see code; #includes must come
first, for example. This leads to some practical compromises.

You might end up documenting some code that doesn’t really need it.
And the alternative, not documenting swathes of simple code, often
happens too. This is no longer a good literate program; you may as well
not have bothered.

When everything is being written about, you can miss the few important
bits of documentation in all the noise.

Knuth talked about the programmer as essayist. Many a programmer couldn’t
write an essay to save his life, but he can write the most exquisite code.
Maybe these guys are exceptions to the rule, but not every good program-
mer is a capable literate programmer.

Tying documentation intimately to code can be problematic. You may
have frozen your code for a major release—no changes are allowed—but
you still need to work on the documentation. Altering the documentation
means altering the source code. Now you have an executable-release ver-
sion and a documentation-release version of the same codebase that you
have to tie together: a management nightmare.

A later chapter discusses software specifications; how does literate pro-
gramming relate to specifications? A literate program will never replace a
functional specification describing what work needs to be done. However,
it should be possible to develop a literate program from such a specification.
The literate program really is more of a combination of traditional code with
a design and implementation specification.

Documentation Tools

There is a breed of programming tool that sits halfway between the literate
programming approach and writing external specifications. These tools
generate documentation from your source code by pulling out blocks of
specially formatted comments. This technique has become particularly

68 Chapter 4

fashionable since Sun introduced Javadoc as a core component of the Java
platform. All of the Java API documentation is generated by Javadoc.

To understand exactly how this works, we’ll look at an example. The
exact comment formats may differ, but to document a Widget class, you’d
write something like:

/**

* This is the documentation for the Widget class.

* The tool knows this because the comment started

* with the special '/**' sequence.

*

* @author Author name here

* @version Version number here

*/

class Widget

{

public:

/**

* This is the documentation for a method.

*/

void method();

};

The documentation tool will parse each of your project’s files, extract the
documentation, build a cross-referenced database of all the information it
finds on the way, and spit out a pretty document containing this information.

You can document pretty much any code you write: classes, types,
functions, parameters, flags, variables, namespaces, packages, and so
on. There are facilities to capture a lot of information, including the
ability to:

Specify copyright information

Document the date of creation

Cross-reference information

Mark old code as deprecated

Provide a short synopsis for quick reference

Present a description of each function parameter

There are many documentation tools available, both open source
and commercial. We’ve already mentioned Javadoc; other popular tools
are C#’s NDoc and the excellent Doxygen (www.doxygen.org).

This is an excellent approach to documentation, allowing you to document
code at a sensible level of detail without writing a separate specification. You
can easily read your documentation in the source files too, which can be very
helpful.

Documentation tools offer many benefits:

Like literate programming, this approach encourages you to write
documentation and keep it up to date.

No separate step is required to get compilable code.

The Wri te S tu f f 69

It’s more natural, not requiring massive adjustments or a steep learning
curve. While the code can be used to generate a document, you don’t
have to artificially make your code look like a book or worry about
tedious text layout concerns.

The documentation tools support rich searching, cross-referencing, and
code-outlining features.

However, it is important to understand the consequences of comment-
based code documentation:

Unlike literate programming, it’s really only useful for API documenta-
tion, not internal code documentation. You must use regular comments
at the statement level.

It’s hard to glance at a source file and get an overview of the contents,
since they are spaced out by reams of documentation comments. You’d
have to use the overview output of the tool instead. This may be beauti-
fully formatted, but it’s inconvenient to view when you’re immersed in
the world of the code editor.

KEY CONCEPT Use literate documentation tools to automatically generate documentation from
your code.

Although this is a powerful way to write documentation, you can still
write bad documentation using it. These are some helpful heuristics for
getting it right:

For each publicly visible item, write a one- or two-sentence description;
don’t go overboard with reams of text. A slew of prose is slow to read and
hard to update. Don’t waffle.

Document variables or parameters if it’s not clear what they’re used for,
but don’t document them if their names make it obvious. You don’t need
to document every last detail if it doesn’t add any value. The tool’s output
will still include the item, just with no textual explanation.

If some of a function’s parameters are used for input and some for output,
make this clear in their descriptions. Few languages provide a syntactic
mechanism to express this, so you must document it explicitly.

Document any function pre- or postconditions, what exceptions might
be thrown, and any of a function’s side effects.

In a Nutshell

The skill of writing is to create a context
in which other people can think.

—Edwin Schlossberg

We write code primarily to communicate. Code without documentation is a
perilous thing, hardly communicative. It is a high-maintenance problem. Bad
documentation is no better, either misleading the reader or resulting in a
flimsy program that relies on external explanation.

70 Chapter 4

Often the only documentation we have for a piece of code is that code
itself. Making the code self-documenting and clear to read goes some way to
remedy this situation. Self-documenting code doesn’t happen magically,
you have to carefully think about it. The result is code that looks like it was
easy to write.

Literate programming is one (quite extreme) method of writing self-
documenting code. Another less extreme method employs documentation
tools. These tools can generate API documentation very easily, but they don’t
necessarily replace all written specifications.

See Also

Chapter 3: What’s in a Name?
Good names are powerful tools when writing self-documenting code.

Chapter 5: A Passing Comment
When you do resort to writing comments, this is how to do it correctly.

Good programmers . . . Bad programmers . . .

Seek to write clear, self-
documenting code

Try to write the least amount
of documentation necessary

Think about the needs of
programmers who will
maintain their code

Are proud that they write
unfathomable spaghetti

Try to avoid writing any
documentation

Don’t care about updating
documentation

Think, “If it was hard for me
to write, it should be hard for
anyone else to understand.”

The Wri te S tu f f 71

Chapter 19: Being Specific
Code should document itself, but we still need separate specifications for
many reasons.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 480.

Mull It Over

1. Grouping related code will make its relationships clear. How can we
perform this grouping? Which methods document the relationships
most strongly?

2. We should avoid using magic numbers in our code. Is zero a magic number?
What should you call a constant value representing zero?

3. Self-documenting code makes good use of context to convey informa-
tion. Show how you do this, and give an example of how a particular
name would lead to a different interpretation in different functions?

4. Is it realistic to expect a newcomer to pick up some self-documenting
code and understand it totally?

5. If code is truly self-documenting, how much other documentation is
required?

6. Why must more people than the original author understand any piece
of code?

7. This simple C bubblesort function could use some improvement. What
specific things are wrong with it? Write an improved, self-documenting
version.

void bsrt(int a[], int n)

{

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--)

if (a[j-1] > a[j])

{

int tmp = a[j-1];

a[j-1] = a[j];

a[j] = tmp;

}

}

8. Working with code documentation tools brings up some interesting
issues. What’s your opinion on these?

a. When you review the documentation, should you perform a
code review, looking at the comments in the source files, or a
specification review, looking at the generated documents?

72 Chapter 4

b. Where do you put documentation of protocols and other non-API
issues?

c. Do you document private/internal functions? In C/C++, where do you
place this documentation—in the header file or implementation file?

d. In a large system, should you create a single, large API document or
several smaller documents, one per area? What are the advantages of
each approach?

9. If you’re working on a codebase that isn’t literately documented, and
you need to alter or add new methods or functions, is it a good idea to
give them literate documentation comments, or should you leave them
undocumented?

10. Is it possible to write self-documenting assembly code?

Getting Personal

1. What do you consider to be the best documented code you’ve come
across? What made it so?

a. Did this code have a large number of external specifications? How
many of them did you read? How can you be sure you knew enough
about the code without reading them all?

b. How much of this do you think was due to the author’s programming
style, and how much was because of any house style or guidelines he
or she worked to?

2. If you write in more than one language, how does your documentation
strategy differ in each?

3. In the last code you wrote, how did you make the important stuff stand
out? Did you hide private information away appropriately?

4. If you’re working on a team, how often do others come to you to ask you
how something works? Could you avoid this with better-documented code?

A P A S S I N G
C O M M E N T
How to Write Code Comments

5

In this chapter:

What are comments used for?

How many comments are
required?

How to write effective
comments

Comments are free but facts are sacred.
—Charles Prestwich Scott

Comments are a lot like opinions. You’re free to
make them, but just because you do doesn’t mean
they’re right. In this chapter, we’ll spend a little
time thinking about the details of writing these
things. There’s a lot more to writing comments
than you’d think.

Probably one of the first things you learned
when you were taught to program was how to
write comments. You were told that comments aid
the readability of code, and you were probably
encouraged to write lots of them. But in this game,
we need to be thinking more about quality than
quantity. Comments are our lifelines, memory jogs,
and guides through code. We should treat them
with the respect they deserve.

I set my syntax-highlighting code editor to
display comments in green. This way, I get an
immediate feeling for the quality of a piece of
codeand how easy it’s going to be to work with as
soon as I load up a source file. A nice proportion of

74 Chapter 5

green spread through in the right pattern makes me feel good about the
world. The opposite makes me stroll to the kitchen for a strong coffee before
going any further.

Comments can make the difference between bad code and good code,
between a grossly complex and unfathomable morass of logic and a nice set
of clear algorithms. But let’s not overstate the case—there are things far more
important to get right than comments. When you’ve written truly good code,
your comments are the icing on the cake, delicately placed to add aesthetics
and value, rather than liberally slapped on to cover up all the cracks and
blemishes.

Good commenting is a strategy to avoid intimidating code. Comments
aren’t a magic additive to turn sour code sweet.

What Is a Code Comment?

Don’t skip this section! Admittedly, this is an excruciating place to start. We
all know what a code comment is, right? But it is more philosophical than
you might think.

Syntactically, a comment is a block of source that the compiler will ignore.
Put what you like in it, the names of your grandchildren or the color of your
favorite shirt; the compiler won’t bat an eye as it merrily parses its way through
the file.1

Semantically, a comment is the difference between a dingy dirt track and
a well-lit highway. The comment is an annotation of the code it’s situated by.
You can use it as a highlighter to make a particular problem area stand out or
as a documentation medium in your header file. You might use comments to
describe the shape of an algorithm, to aid the maintenance programmer
(which could be you later on), or to mark the space between each function
to help you navigate through a source file more quickly.

Comments are aimed at the human reader, not the computer. In this
sense, comments are the most human-focused brick in the programming
wall. They are ornately molded bricks, as opposed to structural breeze
blocks. If we want to improve the quality of our comments, we need to
look at and address what the human really needs as he reads code.

Code comments are not the only documentation that you should put in
your code. Comments are not specifications. They are not design documents.
They are not API references.2 However, they are an invaluable form of docu-
mentation that will always be physically attached to the code (unless someone
maliciously hits DELETE). Their close proximity means they’re more likely to
be updated and more likely to be read in context. It’s an internal documen-
tation mechanism.

As responsible programmers, we have a duty to comment well.

1 Of course, the thing that chews up and spits out the comments differs with the kind of language
you’re using. In C/C++, the monstrous preprocessor beast devours comments before the compile
stage begins. In other languages, the compiler itself throws away comments as it tokenizes the
source. In interpreted languages, your intense commenting may slow down execution, since the
interpreter has to jump over the names of all your grandchildren.
2 Well, unless you use a literate programming tool, discussed in “Literate Programming” on
page 66.

A Pass ing Comment 75

What Do Comments Look Like?

Well, they’re green aren’t they? At least they are for me.
C comments come in blocks between /* and */ and can span any number

of lines. C++, C99, C#, and Java add the single line comment that follows //.
Other languages provide similar block and line comment facilities, but with
different syntaxes.

Again, this is elementary subject matter. But the different comment
markers are often used in subtly different ways. We’ll see examples as we go
along. However, any commenting scheme that makes cute use of subtle
syntax differentiations should be viewed warily.

How Many Comments?

Vigorous writing is concise.
—William Strunk Jr.

We need to focus on comment quality, not quantity, so more important than
the amount of comments we write are the contents of those comments. The
next section discusses this.

Student programmers are taught to write comments, and lots of them.
But there is such a thing as too much commenting—you can obscure important
sections of code in a dense forest of words. Code quality suffers when you
have to spend more time wading through complex paragraphs of comments
than the actual code that you need to read.

I liken this skill to being a good musician. Playing in a band is not about
how much noise you can make at every conceivable opportunity. The more
you play your instrument, the more complex the overall sound, and the worse
the music. Likewise, too many comments muddle the code. A good musician
doesn’t have to think, When should I stop playing and let someone else have a chance?
A good musician only plays when it will really add something. It’s about playing
the minimum you can to create the best sound possible. The beauty is in the
space. We should only be writing comments when they really add something.

KEY CONCEPT Learn to write enough comments, and no more. Favor quality, not quantity.

The people who will read your comments can also read the code, so try
to document as much as possible in the code itself, rather than in comments.
It’s what they’ll believe, anyway—comments have a nasty tendency to lie.
Consider your code statements the first level of comment, and make them
self-documenting.

Well-written code doesn’t actually need comments, because everything
should be self-explanatory. Function names like f() and g() scream out for
comments to describe them, but someGoodExample() doesn’t ask for a comment
at all. You can see it’s a good example function name.

KEY CONCEPT Spend your time writing code that doesn’t need to be propped up by tons of comments.

The fewer comments you write, the less chance you have of writing bad
comments.

76 Chapter 5

What Goes Inside Our Comments?

Of writing well the source and
fountainhead is wise thinking.

—Horace

Bad comments are worse than no comments at all—they will misinform and
mislead the reader. So what sort of thing should you write in comments? Here
are a few basic steps to improve the quality of your comment content:

Explain Why, Not How
This is a key point, so read this paragraph twice. Then eat the page. Your
comments should not describe how the program works. You can see that by
reading the code. After all, the code is the definitive description of how the
code works. And it has been written clearly and comprehensibly, hasn’t it?
You should instead focus on describing why something is written the way it is
or what the next block of statements ultimately achieves.

Constantly check whether you’re writing /* update WidgetList structure
from GlbWLRegistry */ or /* cache widget information for later */. They might
equate to the same thing, but the latter conveys the intent of the code, while
the former just tells you what it’s doing.

As you maintain a section of code, the reason why it exists will change less
often than how it achieves that purpose, making this sort of comment’s mainte-
nance much easier.

KEY CONCEPT Good comments explain why not how.

You might also use a comment to explain why you have made a particular
implementation choice. If you have two possible implementation strategies
and you decide on one over the other, then consider whether it is worth
adding a comment explaining this rationale.

Don’t Describe the Code
Worthless descriptive comments can be obvious: ++i; // increment i. They
can also be more subtle: a lengthy comment description of a complex algo-
rithm, followed by the implementation of the algorithm. There is no need to
restate code laboriously in English unless you’re documenting a really com-
plex algorithm that’s impenetrable without it. And then you should probably
worry more about rewriting the algorithm than the comment.

KEY CONCEPT Honor the golden rule: One fact—one source. Don’t duplicate code in a comment.

Don’t Replace Code

If you see a comment stating something that could be enforced by the lan-
guage itself (e.g., // this variable should only be accessed by class foo), then
look to express it in concrete syntax.

A Pass ing Comment 77

If you find yourself writing reams of comments to explain how a complex
algorithm works, stop. First pat yourself on the back for trying to document
what’s going on. But then consider whether you could change the code or
the algorithm to make it clearer.

Perhaps you could split the code into several well-named functions to
reflect the program logic.

Don’t write comments to describe the use of a variable; rename the
variable. The comment you were going to write will often tell you what
the name of the variable should be!

If you are documenting a condition that should always hold, perhaps you
should be writing an assertion.

Remember that you don’t need to prematurely optimize (and thus
obfuscate) your code.

KEY CONCEPT When you find yourself writing dense comments to explain your code, step back.
Is there a bigger problem to solve?

Keep It Useful
A good comment usually takes several iterations to move up the quality ladder,
just like code. Make sure your comments:

Document the unexpected
If any bits of code are unusual, unexpected, or surprising, document them
with a comment. You’ll thank yourself when you come back later, having
forgotten all about the problem. If there are specific work-arounds, say
for an operating system issue, then mention this in a comment.

The flip side of this is that you don’t need to document the obvious.
Remember: Don’t repeat the code!

Tell the truth
When is a comment not a comment? When it’s a lie. Okay, you’ll never
deliberately write lies, but it’s easy to accidentally introduce mistruths,
especially when modifying code that has already been commented.
Later code changes can easily render a comment inaccurate; “Working
with Comments” on page 84 describes tactics to cope with this.

Are worthwhile
Little witty cryptic comments may be witty, and they might be little,
but don’t put them in. They get in the way and cause confusion. Avoid
expletives, inside jokes that only you understand, and comments that
are unnecessarily critical—you never know where your code will end up
in a month or year’s time, so don’t write comments that could cause
you embarrassment later.

Are clear
Your comment serves to annotate and explain the code. Don’t be ambigu-
ous. Be as specific as you can (without writing a thesis about each line).

78 Chapter 5

If someone reads your comment and is left wondering what it means, then
you have made the code worse and slowed down their comprehension.

Are comprehensible
You don’t need to write complete, grammatically correct English sen-
tences inside every comment you write. However, the comment must be
readable. Cute abbreviations of words usually only serve to confuse the
reader—especially if English is not his or her first language.

KEY CONCEPT Think about what you’re writing in a comment; don’t type without using your brain.
Read it back again in the context of the code. Does it contain the right information?

Avoid Distractions
Comments serve to illuminate the surrounding code, so we must avoid
anything that distracts from it. Comments should only add value. Avoid
comments that include:

The past
We don’t need to keep a record of how we used to do something. The
revision control system does that. We don’t need to see old code repro-
duced in comments, nor a description of an old algorithm.

Code you don’t want
Don’t knock out code by enclosing it in comments. It’s confusing. Even
when debugging commando style (no pants, no debugger, and no printfs),
don’t hide code you need to remove in a comment block. Use C’s
#ifdef 0 . . . #endif or some equivalent. These constructs nest and
have clearer intent (especially important if you forget to come back
later and tidy up).

ASCII art
Avoid ASCII art pictures or anything else that tries to highlight code in
clever ways. This, for example, is a bad idea:

aBadExample(n, foo(wibble));

// ^^^

// My favorite

// function

A W A R S T O R Y

I once did some consulting work for a company that had a mixture of programmers:
some were native English speakers, some native Greek speakers. The Greeks could
all speak excellent English, but not one of the English speakers could speak Greek
(no surprise there).

One of the Greek programmers wrote comments in Greek and, when politely
asked, refused to change this practice. The English programmers couldn’t read these
comments because they were, quite literally, all Greek to me!

A Pass ing Comment 79

It won’t make sense in editors with variable width display fonts.
Comments are not supposed to double maintenance effort!

End of blocks
Some programmers comment the end of every control block, for example
putting // end if (a < 1) after the closing brace of an if statement. This
is a redundant form of comment; it needs to be filtered out before real
comprehension can occur. The bottom of a block should be visible on
the same page as the top, and the code layout should make its start and
end clear. All extra verbiage should be avoided.

In Practice

The following example illustrates these commenting principles. Consider
the following snippet of C++ code. Idiomatic criticisms aside, it is not at all
clear what’s going on.

for (int i = 0; i < wlst.sz(); ++i)
k(wlst[i]);

Yuck. There’s some room for improvement here, so let’s improve. The
code can be made less cryptic by applying sensible layout rules and adding a
few comments:

// Iterate over all widgets in the widget list

for (int i = 0; i < wlst.sz(); ++i)

{

// Print out this widget

k(wlst[i]);

}

Much better! Now it’s entirely clear what the code snippet is supposed to
be doing. I’m still not entirely happy, though. With appropriate function and
variable names, we no longer need any comments at all, since the code
describes itself:

for (int i = 0; i < widgets.size(); ++i)

{

printWidget(widgets[i]);

}

Note that I didn’t rename i to something more long-winded. It’s a loop
variable with a very small scope. Calling it loopCounter would have been overkill
and would arguably have made the code harder to read.

It shouldn’t be surprising that we ended up with no comments at all.
Remember Kernighan and Plaugher’s advice: “Don’t document bad code—
rewrite it.” (Kernighan Plaugher 78)

80 Chapter 5

A Comment on Aesthetics

You’ve no doubt heard people religiously touting about how you should format
your comments. I’m not going to prescribe the One True Way to format
(there is no such thing), but there are a few important aspects to consider.
Interpret these as guidelines, according to your personal taste, rather than as
rigid dictates.

Consistency

All commenting should be clear and consistent. Choose a specific way to lay
out your comments, and use it throughout. Every programmer has a different
sense of aesthetics, so choose what works for you. Do use a house style if one
exists, or examine (good) existing code and follow the styles you see there.

Small formatting issues in comment writing may seem trivial—for example,
should each comment start with a capital letter or not? However, if all your
comments are randomly capitalized, it conveys a lack of cohesion in the code,
as if the programmer didn’t really think all that carefully when he crafted it.

Clear Block Comments

Syntax highlighting editors are great because they help comments to stand
out. But don’t rely on them too much. Your code might be read from a mono-
chrome printout or viewed in an editor without syntax coloring. The comment
work should still be easily readable.

A few strategies can help here, especially regarding block comments.
Placing the start and end markers (e.g., /* and */ in C and C++) on their own
lines makes them stand out. Placing a margin character down the left side of
a block comment also helps to make it appear as a single item:

/*

* This is much more readable

* as a block comment in the midst

* of a whole pile of code

*/

This is much better than the alternative:

 /*

a comment that might

span a few lines but without

any margin character.

*/

At the very least, line up the comment text so it’s not a jagged mess.

A Pass ing Comment 81

Indenting Comments

A comment shouldn’t cut across the code and break up the logical flow.
Keep it at the same level of indentation as the code around it. That way, the
comment appears to apply to the correct level of the code. I always have to
stare hard at code like this:

void strangeCommentStyle()

{

for (int n = 0; n < JUST_ENOUGH_TIMES; ++n)

{

// This is a meaningful comment about the next line.

doSomethingMeaningful(n);

// But frankly, it's confusing the pants off of me.
anotherUsefulOperation(n);

}

}

In a loop without braces (which isn’t a good idea anyway), don’t put a
comment before the single loop body statement—this can lead to all sorts of
distaster. If you want a comment in there, wrap up the whole thing in braces.
It’s a far safer strategy.

End-of-Line Comments

Most comments are written on lines of their own, but sometimes a short single
line comment can follow a code statement. In this case, it’s good practice to
space out the comment to mark it as clearly apart from the code. For example:

class HandyExample

{

public:

... some nice public stuff ...

private:

int appleCount; // End-of-line comments:

bool isFatherADustman; // Make them stand out

int favoriteNumber; // from the code

};

This is a good example of using comment layout to improve the
appearance of your code. If each end-of-line comment came directly after
the variable declaration, they’d look jagged, messy, and require more
squinting to read.

Helping You to Read the Code

Comments are usually written above the code that they describe, not below it.
This way, the source code reads downward, almost like a book. The comment
serves to prepare the reader for what is to come.

82 Chapter 5

Used with whitespace, commenting helps to break the code up into
“paragraphs.” A comment introduces a few lines, explaining what they intend
to achieve; the code immediately follows, then a blank line, then the next
block. This is such a convention that a comment with a blank line before it
feels like a paragraph start, whereas a comment sandwiched in the middle of
two code lines feels more like a statement in brackets or a footnote.

KEY CONCEPT Comments are part of the code narrative. Use them in a way that reads naturally.

Choose a Low-Maintenance Style

It’s sensible to choose a low-maintenance comment style, or you’ll waste time
fiddling with comments when you should be writing code.

Some C coders create comment blocks with a column of asterisks in the
left margin and a column of asterisks as a right margin. Arguably this looks
very pretty, but the amount of work required to adjust a paragraph of text
within such margins is immense. When you could have moved on to the next
task at hand, you have to manually realign all the asterisks on the right. If
the programmer used tabs, then things get even nastier: If someone with a
different-sized tab stop opens the file, he or she will wonder what the original
programmer was up to—all the asterisks will look incredibly ugly and badly
lined up.

The end-of-line comments we saw above are an example of alignment
that requires some effort. How much work you’re prepared to spend is up
to you. There is always a balance between good-looking source code and
maintenance effort. I suppose I prefer a little bit of effort to ugly code.

Breakwaters

Comments are often used as breakwaters between sections of code. This is where
people’s artistic sensibilities take over; programmers use different schemes to
differentiate major comments (this is a new section of code) from minor com-
ments (this describes a few of lines of a function). A source file implementing
several classes may have something like this between each major section:

/**

* class foo implementation

**/

Some programmers insert large blocks of comment art between each
function. Some use a long, single-line comment as a rule-off. I just place a
couple of blank lines between functions. If your functions are so large that
you need visual clues to see where they start and end, then you need to revise
your code.

Avoid using these large rules to emphasize every comment in sight.
Otherwise, nothing gets emphasized. Good indentation and structure, not
impressive ASCII art, should group code together.

A Pass ing Comment 83

All that being said, well-chosen breakwater comments can help you to
quickly navigate around a file.

Flags
Comments can also be used as inline flags in the code. There are a number of
common conventions. You’ll see //XXX, //FIXME, or //TODO littered though files
that are still works in progress. Good syntax-highlighting editors display these
comments prominently by default. XXX is used to mark troublesome code or
something that needs to be reworked. TODO often marks missing pieces of
functionality for a later return.3 FIXME indicates something that’s known to
be broken.

File Header Comments
Every source file should begin with a comment block that describes its
contents. This is just a quick overview, a preface, providing some essential
information that you always want displayed as soon as a file is opened. If such
a header exists, then any programmer who opens the file will have confidence
in the contents; it shows the file was thoughtfully created rather than just
hacked up as a dumping ground for some new code.

KEY CONCEPT Give every source file a comment prologue.

Some people advocate that this header should provide a list of every
function, class, global variable, and so on that is defined in the file. This is a
maintenance disaster; such a comment would rapidly become out of date. The
kind of information this file header should contain is the purpose of the file
(e.g., implementation of foo interface) and a copyright statement describing
ownership and copying rights.

If a source file is automatically generated during the build process, then
you must arrange for this file to receive a comment header that states very
clearly (in BIG SCARY CAPITAL LETTERS) where it originated. This will
prevent someone from mistakenly editing it, only to have the contents
regenerated at the next build.

The header should not contain information that could easily become out
of date, like the author(s), modifiers, or the date the file was last modified.
This probably wouldn’t be updated often, and would become misleading.
Version control tells you this anyway. It also needn’t contain a source file
history describing every modification ever made. That information exists in
your source control system and doesn’t need to be duplicated here. Moreover,
if you have to scroll through 10 pages of modification history to get to the
first line of code, then the file becomes tedious to work with. For this reason,
some programmers put it at the end of the file instead, but this will still make
the file unreasonably large, slow to load, and bothersome to work with..

3 Be careful with TODO comments. You might be better off throwing a TODO exception instead,
which cannot be missed. That way, if you forget to implement the missing code, your program
will fail in a well-defined way.

84 Chapter 5

Working with Comments

Comments are convenient tools to use while you are writing code. But be
careful not to abuse them.

Helping You to Write Routines
A common routine-writing approach is to fashion its structure in comments
first and then fill in the code underneath each comment line. If you work
this way, you should ask yourself, once finished, whether the remaining
comments are still useful. Evaluate them against the criteria just discussed,
and revise or remove them if necessary. Don’t just leave them and move on.

The alternative is to write the new routine freehand, and then add any
necessary comments afterward. The danger is that you’ll forget to finish the
job, or that you might not write the best comments—now knowing almost
too well how the code works. The experienced programmer comments as he
goes along. Practice shows you the right amount of commenting to use.

A W E L L - P L A C E D C O M M E N T

We’re focusing on code comments in this chapter, what we actually type into source
code. But different breeds of comment graze in neighboring pastures:

Check in/out comments
Your revision control system maintains a history of how each file was modified
over the life of the project. It associates metadata with each revision—at the very
least, programmer-supplied check-in comments. It may also record checkout
comments if it keeps tabs on which files are currently in use. You use these com-
ments to describe what you are changing, as a record for posterity.

Such comments are invaluable, and should be created carefully. They should be:
• Short (so you can quickly browse a log of all modifications)
• Accurate (don’t get information wrong, or the history is worthless)
• Complete (so you can see all that has happened in a file without manually

diff ing revisions)
Document what has changed and why, not how it has changed. You can use

the file revision differences to work out how you modified the code.
This is where comments about the past belong. It’s also the right place for bug-

tracking references. Don’t be tempted to put information that belongs here into
source code comments. Remember: One fact—one source.

README files
These are plaintext files that live in the directories alongside source code files.
They are useful documentation, falling somewhere between formal specifications
and code comments. They often contain practical information, perhaps on what
each file does or on the structure of the file hierarchy; they are basically short notes.

READMEs tend to be either haphazard and poorly thought out or badly main-
tained and out of date—which is a shame. When you come across a README
file, you naturally load it up to see what helpful information it contains. The pres-
ence of a README shows someone was thinking when they collected the source
files together; there was something worth documenting and something worthwhile
to say about it.

A Pass ing Comment 85

Don’t be afraid of using the flags we saw earlier, like TODO, as markers to
yourself. It will avoid the embarrassment of forgetting to tie up pesky little
loose ends. You can easily search your entire codebase for these comments to
find out what still needs to be completed.

Bug-Fix Notices
A common, but questionable, comment practice is placing notices where faults
have been fixed. You may stumble over a comment like this in the middle of
a function:

// <bug reference> - changed to use blah.foo2()

// method because blah.foo() didn't handle <some

// condition> properly

blah.foo2();

Although written with the best intentions (to help you see what’s
happened in the course of development), these comments often do more
harm than good. To understand the real problem, you’d have to look up the
fault in your fault-tracking system and pull out the previous revision of the
file to investigate what changed. Few bug fixes require that kind of reading,
so the newcomer can probably live in blissful ignorance. These comments
proliferate in the later stages of development and during maintenance and
litter the source code with sidelines, stale information, and distractions from
the main thread of execution.

There is an argument for inserting a comment when you make a non-
obvious fix—to prevent someone who is revising the code later from reintro-
ducing the bug. However, in these well-chosen cases, you are actually
documenting the unexpected rather than placing a bug-fix notice.

KEY CONCEPT Comments should live in the present, not the past. Don’t describe things that have
changed, or tell what something used to do.

Comment Rot

Comments rot. Well, all carelessly maintained code tends to rot, acquiring
unsightly blemishes and losing the original neat design. However, comments
seem to rot much more quickly than any other piece of code. They become
out of date with the code they describe. This can be profoundly annoying.

A W A R S T O R Y

I once worked on a section of code containing the comment Features A and B not
yet implemented. I needed both these facilities, so I wrote them. Only after having
done so did I discover that feature B had already been implemented—I had just
wasted effort—and feature A was redundant, since the implementation of B handled
it as well. If the programmer who did this had removed the incorrect comment, I would
have been spared a lot of work.

86 Chapter 5

The simple solution is this: When you fix, add, or modify any code, fix,
add, or modify any comments around it. Don’t just fiddle with a couple of
lines and move on. Make sure that any code changes don’t turn comments
into lies. The corollary is: We must make comments easy to keep up to date,
or they won’t be updated. Comments must be clearly related to their section
of code, not placed in obscure locations.

KEY CONCEPT When you alter code, maintain any comments around it.

Another bad habit is leaving blocks of code commented out. This will
confuse you when you come back in a year’s time, or when any other program-
mer stumbles across them. If you encounter some code in a comment block,
you’ll wonder why it’s there. Was it a fix that was never completed? Is it still a
work in progress? Did that code never work? Is the rest of the code functionally
complete?

Either leave a note explaining why you have commented the code out or
remove it completely—you can always get it back from the source control
system. Even if you think you’re only knocking something out temporarily,
leave yourself a note; you may forget to finish it off.

Maintenance and the Inane Comment
As you wade though an old codebase, it’s best not to remove any inane
comments you find unless they are downright dangerous. Leave them as a
warning for future maintenance programmers—they give a useful insight
into the (lack of) quality of the surrounding code. Of course, if you’re actually
trying to improve that piece of code, then do rework the comments as you
go! If you find a comment that is factually wrong or misleading, then you
should rewrite it as a part of your maintenance of the code.

Learn the interesting area flags like XXX, and treat them with respect and
caution. Also watch for output statements that have been commented out.
These are a sure sign that there has been a problem area here in the past—
treat the code with care!

Be aware of comment rot. Just because a comment says this is defined in
foo.c doesn’t mean that it is anymore. Always have faith in code and doubt
comments.

In a Nutshell

Major writing is to say what has been seen,
so that it need never be said again.

—Delmore Schwartz

We write a lot of comments. That’s because we write a lot of code. Learning
to write the right sort of comment is important, or our code may keel over
under the weight of inappropriate and outdated commenting.

Comments are no more important than the code they annotate—you can’t
make bad code good using comments. Your aim should be self-documenting
code that requires no comments at all.

A Pass ing Comment 87

See Also

Chapter 2: The Best Laid Plans
Code layout and presentation schemes will affect how you lay out your
comments.

Chapter 3: What’s in a Name?
Another aspect of self-commenting code: choosing good names.

Chapter 4: The Write Stuff
Discusses self-documenting code, a tactic that makes heavy commenting
redundant. Also describes literate programming techniques.

Chapter 18: Practicing Safe Source
Revision control systems hold file history so you don’t need to explain it
in comments.

Get Thinking

A detailed discussion of the following questions can be found in the
“Answers and Discussion” section on page 485.

Good programmers . . . Bad programmers . . .

Try to write a few really good
comments
Write comments explaining why
Concentrate on writing good
code rather than a plethora of
comments
Write helpful comments that
make sense

Can’t tell the difference between
good and bad comments
Write comments explaining how
Don’t mind if comments only
make sense to themselves
Bolster bad code with many
comments
Fill their source files with
redundant information
(revision history, etc.)

88 Chapter 5

Mull It Over
1. How might the need for and the content of comments differ in the following

types of code:
a. Low-level assembly language (machine code)
b. Shell scripts

c. A single-file test harness

d. A large C/C++ project

2. You can run tools to calculate what percentage of your source code lines
are comments. How useful are these tools? How accurate a measure is
this of comment quality?

3. If you come across some incomprehensible code, which is the better way
to factor in some intelligibility: adding comments to document what you
think is going on, or renaming variables/functions/types with more
descriptive names? Which approach will most likely be easier? Which
approach will be safer?

4. When you document a C/C++ API with a code comment block, should it
go in the public header file that declares the function or the source file
containing the implementation? What are the pros and cons of each
location?

Getting Personal
1. Look carefully at the source files you’ve recently worked on. Inspect your

commenting. Is it honestly any good? (I bet as you read through the code
you’ll find yourself making a few changes!)

2. How do you ensure that your comments are genuinely valuable and not
just personal ramblings that only you can understand?

3. Do the people you work with all comment to the same standard, in about
the same way?

a. Who’s the best at writing comments? Why do you think that? Who’s
the worst? How much of a correlation does this bear to these individ-
uals’ general quality of coding?

b. Do you think any imposed coding standards could raise the quality
of the comments written by your team?

4. Do you include history logging information in each source file? If yes:

a. Do you do maintain it manually? Why, if your revision control system
will insert this for you automatically? Is the history kept particularly
accurate?

b. Is this really a sensible practice? How often is this information
needed? Why is it better if placed in the source file than in another,
separate mechanism?

5. Do you add your initials to or otherwise mark the comments you make in
other people’s code? Do you ever date comments? When and why do you
do this—is it a useful practice? Has it ever been useful to find someone
else’s initials and timestamping?

T O E R R I S
H U M A N

Dealing with the Inevitable—
Error Conditions in Code

6

In this chapter:

The types of errors we
encounter

Dealing with errors correctly

How to raise errors

Learning to program in the
face of uncertainty

We know that the only way to avoid error is to detect it,
that the only way to detect it is to be free to enquire.

—J. Robert Oppenheimer

At some point in life, everyone has this epiphany:
The world doesn’t work as you expect it to. My one-year-
old friend Tom learned this when climbing a chair
four times his size. He expected to get to the top.
The actual result surprised him: He ended up
under a pile of furniture.

Is the world broken? Is it wrong? No. The
world has plodded happily along its way for the
last few million years and looks set to continue
for the foreseeable future. It’s our expectations that
are wrong and need to be adjusted. As they say:
Bad things happen, so deal with it. We must write
code that deals with the Real World and its
unexpected ways.

This is particularly difficult because the world
mostly works as we’d expect it to, constantly lulling
us into a false sense of security. The human brain is

90 Chapter 6

wired to cope, with built-in fail-safes. If someone bricks up your front door,
your brain will process the problem, and you’ll stop before walking into an
unexpected wall. But programs are not so clever; we have to tell them where
the brick walls are and what to do when they hit one.

Don’t presume that everything in your program will always run smoothly.
The world doesn’t always work as you’d expect it to: You must handle all
possible error conditions in your code. It sounds simple enough, but that
statement leads to a world of pain.

From Whence It Came

To expect the unexpected shows
a thoroughly modern intellect.

—Oscar Wilde

Errors can and will occur. Undersirable results can arise from almost any
operation. They are distinct from bugs in a faulty program because you know
beforehand that an error can occur. For example, the database file you want
to open might have been deleted, a disk could fill up at any time and your
next save operation might fail, or the web service you’re accessing might not
currently be available.

If you don’t write code to handle these error conditions, you will almost
certainly end up with a bug; your program will not always work as you intend
it to. But if the error happens only rarely, it will probably be a very subtle bug!
We’ll look at bugs in Chapter 9.

An error may occur for one of a thousand reasons, but it will fall into one
of these three categories:

User error
The stupid user manhandled your lovely program. Perhaps he provided
the wrong input or attempted an operation that’s absolutely absurd.
A good program will point out the mistake and help the user rectify it.
It won’t insult him or whine in an incomprehensible manner.

Programmer error
The user pushed all the right buttons, but the code is broken. This is the
consequence of a bug elsewhere, a fault the programmer introduced
that the user can do nothing about (except to try and avoid it in the
future). This kind of error should (ideally) never occur.

There’s a cycle here: Unhandled errors can cause bugs. And those
bugs might result in further error conditions occurring elsewhere in your
code. This is why we consider defensive programming an important
practice.

Exceptional circumstances
The user pushed all the right buttons, and the programmer didn’t mess up.
Fate’s fickle finger intervened, and we ran into something that couldn’t be
avoided. Perhaps a network connection failed, we ran out of printer ink,
or there’s no hard disk space left.

To Er r I s Human 91

We need a well-defined strategy to manage each kind of error in our code.
An error may be detected and reported to the user in a pop-up message box,
or it may be detected by a middle-tier code layer and signaled to the client
code programmatically. The same principles apply in both cases: whether a
human chooses how to handle the problem or your code makes a decision—
someone is responsible for acknowledging and acting on errors.

KEY CONCEPT Take error handling seriously. The stability of your code rests on it.

Errors are raised by subordinate components and communicated upward,
to be dealt with by the caller. They are reported in a number of ways; we’ll
look at these in the next section. To take control of program execution, we
must be able to:

Raise an error when something goes wrong

Detect all possible error reports

Handle them appropriately

Propagate errors we can’t handle

Errors are hard to deal with. The error you encounter is often not
related to what you were doing at the time (most fall under the “exceptional
circumstances” category). They are also tedious to deal with—we want to
focus on what our program should be doing, not on how it may go wrong.
However, without good error management, your program will be brittle—
built upon sand, not rock. At the first sign of wind or rain, it will collapse.

Error-Reporting Mechanisms

There are several common strategies for propagating error information to
client code. You’ll run into code that uses each of them, so you must know
how to speak every dialect. Observe how these error-reporting techniques
compare, and notice which situations call for each mechanism.

Each mechanism has different implications for the locality of error. An error
is local in time if it is discovered very soon after it is created. An error is local
in space if it is identified very close to (or even at) the site where it actually
manifests. Some approaches specifically aim to reduce the locality of error to
make it easier to see what’s going on (e.g., error codes). Others aim to extend
the locality of error so that normal code doesn’t get entwined with error-
handling logic (e.g., exceptions).

The favored reporting mechanism is often an architectural decision.
The architect might consider it important to define a homogeneous hierarchy
of exception classes or a central list of shared reason codes to unify error-
handling code.

No Reporting

The simplest error-reporting mechanism is don’t bother. This works wonderfully
in cases where you want your program to behave in bizarre and unpredictable
ways and to crash randomly.

92 Chapter 6

If you encounter an error and don’t know what to do about it, blindly
ignoring it is not a viable option. You probably can’t continue the function’s
work, but returning without fulfilling your function’s contract will leave the
world in an undefined and inconsistent state.

KEY CONCEPT Never ignore an error condition. If you don’t know how to handle the problem, signal a
failure back up to the calling code. Don’t sweep an error under the rug and hope for the best.

An alternative to ignoring errors is to instantly abort the program upon
encountering a problem. It’s easier than handling errors throughout the code,
but hardly a well-engineered solution!

Return Values

The next most simple mechanism is to return a success/failure value from
your function. A boolean return value provides a simple yes or no answer.
A more advanced approach enumerates all the possible exit statuses and
returns a corresponding reason code. One value means success; the rest repre-
sent the many and varied abortive cases. This enumeration may be shared
across the whole codebase, in which case your function returns a subset of
the available values. You should therefore document what the caller can
expect.

While this works well for procedures that don’t return data, passing error
codes back with returned data gets messy. If int count() walks down a linked
list and returns the number of elements, how can it signify a list structure
corruption? There are three approaches:

Return a compound data type (or tuple) containing both the return
value and an error code. This is rather clumsy in the popular C-like
languages and is seldom seen in them.

Pass the error code back through a function parameter. In C++ or .NET,
this parameter would be passed by reference. In C you’d direct the vari-
able access through pointers. This approach is ugly and nonintuitive;
there is no syntactic way to distinguish a return value from a parameter.

Alternatively, reserve a range of return values to signify failure. The count
example can nominate all negative numbers as error reason codes; they’d
be meaningless answers anyway. Negative numbers are a common choice
for this. Pointer return values may be given a specific invalid value, which
by convention is zero (or NULL). In Java and C#, you can return a null
object reference.

This technique doesn’t always work well. Sometimes it’s hard to
reserve an error range—all return values are equally meaningful and
equally likely. It also has the side effect of reducing the available range of
success values; the use of negative values reduces the possible positive
values by an order of magnitude.1

1 If you used an unsigned int then the number of values available would increase by a power of
two, reusing the signed int’s sign bit.

To Er r I s Human 93

Error Status Variables

This method attempts to manage the contention between a function’s return
value and its error status report. Rather than return a reason code, the function
sets a shared global error variable. After calling the function, you must then
inspect this status variable to find out whether or not it completed successfully.

The shared variable reduces confusion and clutter in the function’s sig-
nature, and it doesn’t restrict the return value’s data range at all. However,
errors signaled through a separate channel are much easier to miss or willfully
ignore. A shared global variable also has nasty thread safety implications.

The C standard library employs this technique with its errno variable.
It has very subtle semantics: Before using any standard library facility, you
must manually clear errno. Nothing ever sets a succeeded value; only failures
touch errno. This is a common source of bugs, and it makes calling each library
function tedious. To add insult to injury, not all C standard library functions
use errno, so it is less than consistent.

This technique is functionally equivalent to using return values, but it
has enough disadvantages to make you avoid it. Don’t write your own error
reports this way, and use existing implementations with the utmost care.

Exceptions

Exceptions are a language facility for managing errors; not all languages sup-
port exceptions. Exceptions help to distinguish the normal flow of execution
from exceptional cases—when a function has failed and cannot honor its con-
tract. When your code encounters a problem that it can’t handle, it stops dead
and throws up an exception—an object representing the error. The language
run time then automatically steps back up the call stack until it finds some
exception-handling code. The error lands there, for the program to deal with.

There are two operational models, distinguished by what happens after
an exception is handled:

The termination model
Execution continues after the handler that caught the exception. This
behavior is provided by C++, .NET, and Java.

The resumption model
Execution resumes where the exception was raised.

The former model is easier to reason about, but it doesn’t give ultimate
control. It only allows error handling (you can execute code when you notice
an error), not fault rectification (a chance to fix the problem and try again).

An exception cannot be ignored. If it isn’t caught and handled, it will
propagate to the very top of the call stack and will usually stop the program
dead in its tracks. The language run time automatically cleans up as it unwinds

94 Chapter 6

the call stack. This makes exceptions a tidier and safer alternative to hand-
crafted error-handling code. However, throwing exceptions through sloppy
code can lead to memory leaks and problems with resource cleanup.2 You
must take care to write exception-safe code. The sidebar explains what this
means in more detail.

The code that handles an exception is distinct from the code that
raises it, and it may be arbitrarily far away. Exceptions are usually provided
by OO languages, where errors are defined by a hierarchy of exception classes.

2 For example, you could allocate a block of memory and then exit early as an exception
propagates through. The allocated memory would leak. This kind of problem makes writing
code in the face of exceptions a complex business.

W H I S T L E - S T O P T O U R O F E X C E P T I O N S A F E T Y

Resilient code must be exception safe. It must work correctly (for some definition of
correctly, which we’ll investigate below), no matter what exceptions come its way.
This is true regardless of whether or not the code catches any exceptions itself.

Exception-neutral code propagates all exceptions up to the caller; it won’t
consume or change anything. This is an important concept for generic programs like
C++ template code—the template types may generate all sorts of exceptions that
template implementors don’t understand.

There are several different levels of exception safety. They are described in terms
of guarantees to the calling code. These guarantees are:

Basic guarantee
If exceptions occur in a function (resulting from an operation you perform or the
call of another function), it will not leak resources. The code state will be consistent
(i.e., it can still be used correctly), but it will not necessarily leave in a known state.
For example: A member function should add 10 items to a container, but an
exception propagates through it. The container is still usable; maybe no objects
were inserted, maybe all 10 were, or perhaps every other object was added.

Strong guarantee
This is far more strict than the basic guarantee. If an exception propagates through
your code, the program state remains completely unchanged. No object is altered,
no global variables changed, nothing. In the example above, nothing was inserted
into the container.

Nothrow guarantee
The final guarantee is the most restrictive: that an operation can never throw an
exception. If we are exception neutral, then this implies the function cannot do
anything else that might throw an exception.

Which guarantee you provide is entirely your choice. The more restrictive
the guarantee, the more widely (re)usable the code is. In order to implement the
strong guarantee, you will generally need a number of functions providing the
nothrow guarantee.

Most notably, every destructor you write must honor the nothrow guarantee.*
Otherwise, all exception handling bets are off. In the presence of an exception,
object destructors are called automatically as the stack is unwound. Raising an
exception while handling an exception is not permissible.

*That’s the case in C++ and Java, at least. C# stupidly called ~X() a destructor, even though it
was a finalizer in disguise. Throwing an exception in a C# destructor has different implications.

To Er r I s Human 95

A handler can elect to catch a quite specific class of error (by accepting a
leaf class) or a more general category of error (by accepting a base class).
Exceptions are particularly useful for signaling errors in a constructor.

Exceptions don’t come for free; the language support incurs a perfor-
mance penalty. In practice, this isn’t significant and only manifests around
exception-handling statements—exception handlers reduce the compiler’s
optimization opportunities. This doesn’t mean that exceptions are flawed;
their expense is justified compared to the cost of not doing any error handling!

Signals

Signals are a more extreme reporting mechanism, largely used for errors sent
by the execution environment to the running program. The operating system
traps a number of exceptional events, like a floating point exception triggered
by the maths coprocessor. These well-defined error events are delivered to
the application in signals that interrupt the program’s normal flow of execu-
tion, jumping into a nominated signal handler function. Your program could
receive a signal at any time, and the code must be able to cope with this. When
the signal handler completes, program execution continues at the point it was
interrupted.

Signals are the software equivalent of a hardware interrupt. They are a
Unix concept, now provided on most platforms (a basic version is part of the
ISO C standard [ISO99]). The operating system provides sensible default
handlers for each signal, some of which do nothing, others of which abort
the program with a neat error message. You can override these with your own
handler.

The defined C signal events include program termination, execution
suspend/continue requests, and math errors. Some environments extend
the basic list with many more events.

Detecting Errors

How you detect an error obviously depends on the mechanism reporting it.
In practical terms, this means:

Return values
You determine whether a function failed by looking at its return code.
This failure test is bound tightly to the act of calling the function;
by making the call, you are implicitly checking its success. Whether or
not you do anything with that information is up to you.

Error status variables
After calling a function, you must inspect the error status variable. If it
follows C’s errno model of operation, you don’t actually need to test for
errors after every single function call. First reset errno, and then call any
number of standard library functions back-to-back. Afterward, inspect
errno. If it contains an error value, then one of those functions failed.
Of course, you don’t know what fell over, but if you don’t care, then
this is a streamlined error-detection approach.

96 Chapter 6

Exceptions
If an exception propagates out of a subordinate function, you can choose
to catch and handle it or to ignore it and let the exception flow up a level.
You can only make an informed choice when you know what kinds of
exceptions might be thrown. You’ll only know this if it has been docu-
mented (and if you trust the documentation).

Java’s exception implementation places this documentation in the
code itself. The programmer has to write an exception specification for every
method, describing what it can throw; it is a part of the function’s signa-
ture. Java is the only mainstream language to enforce this approach.
You cannot leak an exception that isn’t in the list, because the compiler
performs static checking to prevent it.3

Signals
There’s only one way to detect a signal: Install a hander for it. There’s no
obligation. You can also choose not to install any signal handlers at all
and accept the default behavior.

As various pieces of code converge in a large system, you will probably
need to detect errors in more than one way, even within a single function.
Whichever detection mechanism you use, the key point is this:

KEY CONCEPT Never ignore any errors that might be reported to you. If an error report channel exists,
it’s there for a reason.

It is good practice to always write error-detection scaffolding—even if
an error has no implication for the rest of your code. This makes it clear to a
maintenance programmer that you know a function may fail and have con-
sciously chosen to ignore any failures.

When you let an exception propagate through your code, you are not
ignoring it—you can’t ignore an exception. You are allowing it to be handled
by a higher level. The philosophy of exception handling is quite different in
this respect. It’s less clear what the most appropriate way to document this is—
should you write a try/catch block that simply rethrows the exception, should
you write a comment claiming that the code is exception safe, or should you
do nothing? I’d favor documenting the exception behavior.

Handling Errors

Love truth, and pardon error.
—Voltaire

Errors happen. We’ve seen how to discover them and when to do so. The
question now is: What do you do about them? This is the hard part. The
answer largely depends on circumstance and the gravity of an error—
whether it’s possible to rectify the problem and retry the operation or to
carry on regardless. Often there is no such luxury; the error may even

3 C++ also supports exception specifications, but leaves their use optional. It’s idiomatic to avoid
them—for performance reasons, among others. Unlike Java, they are enforced at run time.

To Er r I s Human 97

herald the beginning of the end. The best you can do is clean up and
exit sharply, before anything else goes wrong.

To make this kind of decision, you must be informed. You need to know
a few key pieces of information about the error:

Where it came from
This is quite distinct from where it’s going to be handled. Is the source a
core system component or a peripheral module? This information may
be encoded in the error report; if not, you can figure it out manually.

What you were trying to do
What provoked the error? This may give a clue toward any remedial
action. Error reporting seldom contains this kind of information, but
you can figure out which function was called from the context.

Why it went wrong
What is the nature of the problem? You need to know exactly what
happened, not just a general class of error. How much of the erroneous
operation completed? All or none are nice answers, but generally, the
program will be in some indeterminate state between the two.

When it happened
This is the locality of the error in time. Has the system only just failed,
or is a problem two hours old finally being felt?

The severity of the error
Some problems are more serious than others, but when detected, one
error is equivalent to another—you can’t continue without understand-
ing and managing the problem. Error severity is usually determined by the
caller, based on how easy it will be to recover or work around the error.

How to fix it
This may be obvious (e.g., insert a floppy disk and retry) or not (e.g., you
need to modify the function parameters so they are consistent). More often
than not, you have to infer this knowledge from the other information
you have.

Given this depth of information, you can formulate a strategy to handle
each error. Forgetting to insert a handler for any potential error will lead to a
bug, and it might turn out to be a bug that is hard to exercise and hard to track
down—so think about every error condition carefully.

When to Deal with Errors

When should you handle each error? This can be separate from when it’s
detected. There are two schools of thought.

As soon as possible
Handle each error as you detect it. Since the error is handled near
to its cause, you retain important contextual information, making the
error-handling code clearer. This is a well-known self-documenting code

98 Chapter 6

technique. Managing each error near its source means that control
passes through less code in an invalid state.

This is usually the best option for functions that return error codes.

As late as possible
Alternatively, you could defer error handling for as long as possible. This
recognizes that code detecting an error rarely knows what to do about it.
It often depends on the context in which it is used: A missing file error
may be reported to the user when loading a document but silently swal-
lowed when hunting for a preferences file.

Exceptions are ideal for this; you can pass an exception through each
level until you know how to deal with the error. This separation of detec-
tion and handling may be clearer, but it can make code more complex.
It’s not obvious that you are deliberately deferring error handling, and
it’s not clear where an error came from when you do finally handle it.

In theory, it’s nice to separate “business logic” from error handling.
But often you can’t, as cleanup is necessarily entwined with that business
logic, and it can be more tortuous to write the two separately. However,
centralized error-handling code has advantages: You know where to look
for it, and you can put the abort/continue policy in one place rather than
scatter it through many functions.

Thomas Jefferson once declared, “Delay is preferable to error.” There is
truth there; the actual existence of error handling is far more important than
when an error is handled. Nevertheless, choose a compromise that’s close
enough to prevent obscure and out-of-context error handling, while being
far enough away to not cloud normal code with roundabout paths and error
handling dead ends.

KEY CONCEPT Handle each error in the most appropriate context, as soon as you know enough about
it to deal with it correctly.

Possible Reactions

You’ve caught an error. You’re poised to handle it. What are you going to do
now? Hopefully, whatever is required for correct program operation. While
we can’t list every recovery technique under the sun, here are the common
reactions to consider.

Logging
Any reasonably large project should already be employing a logging
facility. It allows you to collect important trace information, and is an
entry point for the investigation of nasty problems.

The log exists to record interesting events in the life of the program,
to allow you to delve into its inner workings and reconstruct paths of
execution. For this reason, all errors you encounter should be detailed
in the program log; they are some of the most interesting and telling
events of all. Aim to capture all pertinent information—as much of the
previous list as you can.

To Er r I s Human 99

For really obscure errors that predict catastrophic disaster, it may be
a good idea to get the program to “phone home”—to transmit either a
snapshot of itself or a copy of the error log to the developers for further
investigation.

What you do after logging is another matter.

Reporting
A program should only report an error to the user when there’s nothing
left to do. The user does not need to be bombarded by a thousand small
nuggets of useless information or badgered by a raft of pointless questions.
Save the interaction for when it’s really vital. Don’t report when you
encounter a recoverable situation. By all means, log the event, but keep
quiet about it. Provide a mechanism that enables users to read the event
log if you think one day they might care.

There are some problems that only the user can fix. For these, it is
good practice to report the problem immediately, in order to allow the
user the best chance to resolve the situation or else decide how to
continue.

Of course, this kind of reporting depends on whether or not the
program is interactive. Deeply embedded systems are expected to cope
on their own; it’s hard to pop up a dialog box on a washing machine.

Recovery
Sometimes your only course of action is to stop immediately. But not all
errors spell doom. If your program saves a file, one day the disk will fill
up, and the save operation will fail. The user expects your program to
continue happily, so be prepared.

If your code encounters an error and doesn’t know what to do about
it, pass the error upward. It’s more than likely your caller will have the
ability to recover.

Ignore
I only include this for completeness. Hopefully by now you’ve learned to
scorn the very suggestion of ignoring an error. If you choose to forget all
about handling it and to just continue with your fingers crossed, good luck.
This is where most of the bugs in any software package will come from.
Ignoring an error whose occurrence may cause the system to misbehave
inevitably leads to hours of debugging.

You can, however, write code that allows you to do nothing when an
error crops up. Is that a blatant contradiction? No. It is possible to write
code that copes with an inconsistent world, that can carry on correctly
in the face of an error—but it often gets quite convoluted. If you adopt
this approach, you must make it obvious in the code. Don’t risk having
it misinterpreted as ignorant and incorrect.

KEY CONCEPT Ignoring errors does not save time. You’ll spend far longer working out the cause of bad
program behavior than you ever would have spent writing the error handler.

100 Chapter 6

Propagate
When a subordinate function call fails, you probably can’t carry on, but
you might not know what else to do. The only option is to clean up and
propagate the error report upward. You have options. There are two
ways to propagate an error:

Export the same error information you were fed (return the same
reason code or propagate exceptions).

Reinterpret the information, sending a more meaningful message to
the next level up (return a different reason code or catch and wrap
up exceptions).

Ask yourself this question: Does the error relate to a concept exposed
through the module interface? If so, it’s okay to propagate that same error.
Otherwise, recast it in the appropriate light, choosing an error report that
makes sense in the context of your module’s interface. This is a good
self-documenting code technique.

Code Implications
Show me the code! Let’s spend some time investigating the implications of error
handling in our code. As we’ll see, it is not easy to write good error handling
that doesn’t twist and warp the underlying program logic.

The first piece of code we’ll look at is a common error handling structure.
Yet it isn’t a particularly intelligent approach for writing error-tolerant code.
The aim is to call three functions sequentially—each of which may fail—and
perform some intermediate calculations along the way. Spot the problems
with this:

void nastyErrorHandling()

{

if (operationOne())

{

... do something ...

if (operationTwo())

{

... do something else ...

if (operationThree())

{

... do more ...

}

}

}

}

Syntactically it’s fine; the code will work. Practically, it’s an unpleasant style
to maintain. The more operations you need to perform, the more deeply
nested the code gets and the harder it is to read. This kind of error handling
quickly leads to a rat’s nest of conditional statements. It doesn’t reflect the
actions of the code very well; each intermediate calculation could be con-
sidered the same level of importance, yet they are nested at different levels.

To Er r I s Human 101

Can we avoid these problems? Yes—there are a few alternatives. The first
variant flattens the nesting. It is semantically equivalent, but it introduces
some new complexity, since flow control is now dependent on the value of a
new status variable, ok:

void flattenedErrorHandling()

{

bool ok = operationOne();

if (ok)

{

... do something ...

ok = operationTwo();

}

if (ok)

{

... do something else ...

ok = operationThree();

}

if (ok)

{

... do more ...

}

C R A F T I N G E R R O R M E S S A G E S

Inevitably, your code will encounter errors that the user must sort out. Human interven-
tion may be the only option; your code can’t insert a floppy disk or switch on the
printer by itself. (If it can, you’ll make a fortune!)

If you’re going to whine at the user, there are a few general points to bear in mind:

• Users don’t think like programmers, so present information the way they’d expect.
When displaying the free space on a disk, you might report Disk space: 10K.
But if there’s no space left, a zero could be misread as OK—and the user will not be
able to fathom why he can’t save a file when the program says everything’s fine.

• Make sure your messages aren’t too cryptic. You might understand them, but can
your computer-illiterate granny? (It doesn’t matter if your granny won’t use this
program—someone with a lower intellect almost certainly will.)

• Don’t present meaningless error codes. No user knows what to do when faced
with an Error code 707E. It is, however, valuable to provide such codes as
“additional info”—they can be quoted to tech support or looked up more easily
on a web search.

• Distinguish dire errors from mere warnings. Incorporate this information in the
message text (perhaps with an Error: prefix), and emphasize it in message boxes
with an accompanying icon.

• Only ask a question (even a simple one like Continue: Yes/No?) if the user fully
understands the ramifications of each choice. Explain it if necessary, and make
it clear what the consequence of each answer is.

What you present to the user will be determined by interface constraints and
application or OS style guides. If your company has user interface engineers, then
it’s their job to make these decisions. Work with them.

102 Chapter 6

if (!ok)

{

... clean up after errors ...

}

}

We’ve also added an opportunity to clean up after any errors. Is that
sufficient to mop up all failures? Probably not; the necessary cleanup may
depend on how far we got through the function before lightening struck.
There are two cleanup approaches:

Perform a little cleanup after each operation that may fail, then return
early. This inevitably leads to duplication of cleanup code. The more work
you’ve done, the more you have to clean up, so each exit point will need
to do gradually more unpicking.

If each operation in our example allocates some memory, each early-
exit point will have to release all allocations made to date. The further
in, the more releases. That will lead to some quite dense and repetitive
error-handling code, which makes the function far larger and far harder
to understand.

Write the cleanup code once, at the end of the function, but write it in such
a way as to only clean up what’s dirty. This is neater, but if you inadvertently
insert an early return in the middle of the function, the cleanup code will
be bypassed.

If you’re not overly concerned about writing Single Entry, Single Exit (SESE)
functions, this next example removes the reliance on a separate control flow
variable.4 We do lose the cleanup code again, though. Simplicity renders this
a better description of the actual intent:

void shortCircuitErrorHandling()

{

if (!operationOne()) return;

... do something ...

if (!operationTwo()) return;

... do something else ...

if (!operationThree()) return;

... do more ...

}

A combination of this short-circuit exit with the requirement for cleanup
leads to the following approach, especially seen in low-level systems code.
Some people advocate it as the only valid use for the maligned goto. I’m still
not convinced.

4 Although this clearly isn’t SESE, I contend that the previous example isn’t, either. There is only
one exit point, at the end, but the contrived control flow is simulating early exit—it might as well
have multiple exits. This is a good example of how being bound by a rule like SESE can lead to
bad code, unless you think carefully about what you’re doing.

To Er r I s Human 103

void gotoHell()

{

if (!operationOne()) goto error;

... do something ...

if (!operationTwo()) goto error;

... do something else ...

if (!operationThree()) goto error;

... do more ...

return;

error:

... clean up after errors ...

}

You can avoid such monstrous code in C++ using Resource Acquisition Is
Initialization (RAII) techniques like smart pointers. (Stroustrup 97) This has
the bonus of providing exception safety—when an exception terminates
your function prematurely, resources are automatically deallocated. These
techniques avoid a lot of the problems we’ve seen above, moving complexity
to a separate flow of control.

The same example using exceptions would look like this (in C++, Java,
and C#), presuming that all subordinate functions do not return error codes
but instead throw exceptions:

void exceptionalHandling()

{

try

{

operationOne();

... do something ...

operationTwo();

... do something else ...

operationThree();

... do more ...

}

catch (...)

{

... clean up after errors ...

}

}

This is only a basic exception example, but it shows just how neat excep-
tions can be. A sound code design might not need the try/catch block at all
if it ensures that no resource is leaked and leaves error handling to a higher
level. But alas, writing good code in the face of exceptions requires an under-
standing of principles beyond the scope of this chapter.

104 Chapter 6

Raising Hell

We’ve put up with other people’s errors for long enough. It’s time to turn
the tables and play the bad guy: Let’s raise some errors. When writing a
function, erroneous things will happen that you’ll need to signal to your
caller. Make sure you do—don’t silently swallow any failure. Even if you’re
sure that the caller won’t know what to do in the face of the problem, it
must remain informed. Don’t write code that lies and pretends to be doing
something it’s not.

Which reporting mechanism should you use? It’s largely an architectural
choice; obey the project conventions and the common language idioms. In
languages with the facility, it is common to favor exceptions, but only use them
if the rest of the project does. Java and C# really leave you with no choice;
exceptions are buried deep in their execution run times. A C++ architecture
may choose to forego this facility to achieve portability with platforms that
have no exception support or to interface with older C code.

We’ve already seen strategies for propagating errors from subordinate
function calls. Our main concern here is reporting fresh problems encountered
during execution. How you determine these errors is your own business, but
when reporting them, consider the following:

Have you cleaned up appropriately first? Reliable code doesn’t leak
resources or leave the world in an inconsistent state, even when an
error occurs, unless it’s really unavoidable. If you do either of these
things, it must be documented carefully. Consider what will happen
the next time your code is called if this error has manifested. Ensure
it will still work.

Don’t leak inappropriate information to the outside world in your error
reports. Only return useful information that the caller understands and
can act on.

Use exceptions correctly. Don’t throw an exception for unusual return
values—the rare but not erroneous cases. Only use exceptions to signal
circumstances where a function is not able to meet its contract. Don’t
use them non-idiomatically (i.e., for flow control).

Consider using assertions (see “Constraints” on page 16) if you’re
trapping an error that should never happen in the normal course of
program execution, a genuine programming error. Exceptions are a
valid choice for this too—some assertion mechanisms can be config-
ured to throw exceptions when they trigger.

If you can pull forward any tests to compile time, then do so. The sooner
you detect and rectify an error, the less hassle it can cause.

Make it hard for people to ignore your errors. Given half a chance, some-
one will use your code badly. Exceptions are good for this—you have to
act deliberately to hide an exception.

To Er r I s Human 105

What kind of errors should you be looking out for? This obviously depends
on what the function is doing. Here’s a checklist of the general kinds of error
checks you should make in each function:

Check all function parameters. Ensure you have been given correct
and consistent input. Consider using assertions for this, depending on
how strictly your contract was written. (Is it an offense to supply bad
parameters?)

Check that invariants are satisfied at interesting points in execution.

Check all values from external sources for validity before you use them. File
contents and interactive input must be sensible, with no missing pieces.

Check the return status of all system and other subordinate function calls.

Managing Errors

The common principle uniting the raising and handling of errors is to have a
consistent strategy for dealing with failure, wherever it manifests. These are
general considerations for managing the occurrence, detection, and handling
of program errors:

Avoid things that could cause errors. Can you do something that is
guaranteed to work, instead? For example, avoid allocation errors by
reserving enough resource beforehand. With an assured pool of mem-
ory, your routine cannot suffer memory restrictions. Naturally, this will
only work when you know how much resource you need up front, but
you often do.

Define the program or routine’s expected behavior under abnormal
circumstances. This determines how robust the code needs to be and
therefore how thorough your error handling should be. Can a function
silently generate bad output, subscribing to the historic GIGO principle?5

A N E X C E P T I O N T O T H E R U L E

Exceptions are a powerful error reporting mechanism. Used well, they can simplify
your code greatly while helping you to write robust software. In the wrong hands,
though, they are a deadly weapon.

I once worked on a project where it was routine for programmers to break a
while loop or end recursion by throwing an exception, using it as a non-local goto.
It’s an intersting idea, and kind of cute when you first see it. But this behavior is nothing
more than an abuse of exceptions: It isn’t what exceptions are idiomatically used for.
More than one critical bug was caused by a maintenance programmer not under-
standing the flow of control through a complex, magically terminated loop.

Follow the idioms of your language, and don’t write cute code for the sake of it.

5 That is, Garbage In, Garbage Out—feed it trash, and it will happily spit out trash.

106 Chapter 6

Clearly define which components are responsible for handling which
errors. Make it explicit in the module’s interface. Ensure that your client
knows what will always work and what may one day fail.

Check your programming practice: When do you write error-handling
code? Don’t put it off until later; you’ll forget to handle something. Don’t
wait until your development testing highlights problems before writing
handlers—that’s not an engineering approach.

KEY CONCEPT Write all error detection and handling now, as you write the code that may fail. Don’t
put it off until later. If you must be evil and defer handling, at least write the detection
scaffolding now.

When trapping an error, have you found a symptom or a cause? Consider
whether you’ve discovered the source of a problem that needs to be rec-
tified here or if you’ve discovered a symptom of an earlier problem. If it’s
the latter, then don’t write reams of handling code here, put that in a more
appropriate (earlier) error handler.

In a Nutshell

To err is human; to repent, divine; to persist, devilish.
—Benjamin Franklin

To err is human (but computers seem quite good at it, too). To handle these
errors is divine.

Every line of code you write must be balanced by appropriate and
thorough error checking and handling. A program without rigorous error
handling will not be stable. One day an obscure error may occur, and the
program will fall over as a result.

Handling errors and failure cases is hard work. It bogs programming
down in the mundane details of the Real World. However, it’s absolutely
essential. As much as 90 percent of the code you write handles exceptional
circumstances. (Bentley 82) That’s a surprising statistic, so write code expecting
to put far more effort into the things that can go wrong than the things that
will go right.

Good programmers . . . Bad programmers . . .

Combine their good
intentions with good
coding practices

Write the error-handling code
as they write the main code

Are thorough in the code they
write, covering every error
possibility

Take a haphazard approach to
writing code, with neither thought
to nor review of what they’re doing

Ignore the errors that arise as they
write code

End up conducting lengthy
debugging sessions to track down
program crashes, because they
never considered error conditions in
the first place

To Er r I s Human 107

See Also

Chapter 1: On the Defensive
Handing errors in context is one of the many defensive programming
techniques.

Chapter 4: The Write Stuff
Self-documenting code ensures that error handling is integral to the
code narrative.

Chapter 9: Finding Fault
Unhandled error conditions will manifest as bugs in the code. Here’s
how to squash them. (It’s best to avoid them in the first place, though.)

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 487.

Mull It Over

1. Are return values and exceptions equivalent error reporting mechanisms?
Prove it.

2. What different implementations of tuple return types can you think of?
Don’t limit yourself to a single programming language. What are the
pros and cons of using tuples as a return value?

3. How do exception implementations differ between languages?

4. Signals are an old-school Unix mechanism. Are they still needed now
that we have modern techniques like exceptions?

5. What is the best code structure for error handling?

6. How should you handle errors that occur in your error-handling code?

108 Chapter 6

Getting Personal

1. How thorough is the error handling in your current codebase? How does
this contribute to the stability of the program?

2. Do you naturally consider error handling as you write code, or do you
find it a distraction, preferring to come back to it later?

3. Go to the last (reasonably sized) function you wrote or worked on, and
perform a careful review of the code. Find every abnormal occurence
and potential error situation. How many of these were actually handled
in your code?

Now get someone else to review it. Don’t be shy! Did they find any
more? Why? What does this tell you about the code you’re working on?

4. Do you find it easier to manage and reason about error conditions using
return values or exceptions? Are you sure you know what is involved in writ-
ing exception-safe code?

PART II
T H E S E C R E T L I F E

O F C O D E

This section investigates the art and craft of develop-
ing code—the daily activities of programming life.
Although these topics aren’t closely guarded secrets,
you rarely hear expert discussion or see much written about them. Even
so, mastering each practice is crucial if you want to write good programs;
the code craftsman has a thorough understanding of all of these subjects.

We’ll look at:

Chapter 7: The Programmer’s Toolbox
A survey of the tools of our trade and how you should use them.

Chapter 8: Testing Times
No code is complete until it has been proved fit for purpose; until it has
been tested. Here we look at the techniques for doing so.

Chapter 9: Finding Fault
Dealing with the inevitable: How to find and remove bugs in your code.

Chapter 10: The Code That Jack Built
“Building” code: The process of converting source code into executable
programs.

110 Par t I I

Chapter 11: The Need for Speed
A look at the gory details of code optimization. What, why, when, and how.

Chapter 12: An Insecurity Complex
The thorny topic of software security—how to protect your code from
willful abuse and malicious attack.

These are fundamental aspects of code construction. With the pressures
and time constraints of the software factory, they are more than essential
skills—they’re survival tactics. With experience, they become second nature,
so you can spend your precious time focusing on more pressing concerns:
the architecture of your next system, the customer’s changing requirements,
and who’s going to fetch your next cup of espresso.

T H E
P R O G R A M M E R ’ S

T O O L B O X
Using Tools to Construct Software

7

In this chapter:

The tools we use to
construct code

Using tools effectively

Common types of tools

Perilous to us all are the devices of an art deeper than we
possess ourselves.

—J.R.R. Tolkien

To be a productive craftsman, you need a good set
of tools. The contents of a plumber’s toolbox will
support him in whatever task he encounters, or
else you wouldn’t call him the next time your taps
explode.

Not only the existence but also the quality of
these tools is vital; a good craftsman can be let
down by poor tools. If the compression valves are
bad, there will be water everywhere, no matter
how good your plumber is.

Of course, it’s your use of these tools that sets
you apart as a master craftsman. The tools, by
themselves, will achieve nothing. Before power
tools, carpenters were perfectly able to craft exquis-
ite furniture. The tools were more basic, but their
skill with them produced things of beauty.

112 Chapter 7

The same is true of programming. To do a good job, you need to be
supported by an appropriate kit of tools; tools that you have confidence in,
know how to use, and are fit for the jobs you’ll encounter. It takes a skilled
craftsman, good tools, and mastery of those tools to craft great code.

This is serious stuff. How you use your tools can set you apart as a truly
productive programmer. In extreme cases, these tools could provide the
shortcut that determines your project’s success or failure. The relentless pace
of the software factory means that you should cling tightly to anything that
will help you produce better code and produce it more quickly and reliably.

Other chapters cover issues that relate to particular tools. Here we’ll
broach the subject of software tools as a whole. Programming is a discipline that
simply can’t do without tools. From day to day, we use tools without much of a
thought, taking the compiler for granted in much the same way you’d take a
can opener for granted—it’s fine while it works, but as soon as it goes wrong
(or you need to open an oddly shaped can) you’re stuck, no matter how fancy
the can opener is. A cheap, basic can opener that works is better than some
pretentious contraption that doesn’t.

What Is a Software Tool?

We use a wide range of tools to construct software; they are programs that build
programs—if that isn’t too philosophical. Everything we use to create software
is a tool of some form. Some tools help you write code. Some help you write
good code. Some help sort out the mess of code you just created.

They come in all shapes and sizes and work in different ways. Obviously,
the platform and environment they inhabit is a factor, but they also differ in:

Complexity
Some tools are elaborate environments with many, many features and
incredible configurability. Some are minuscule utilities for a single task.
Each approach has its pros and cons:

A feature-rich tool is cool, when you’ve finally learned how to get it
to make coffee and bring you doughnuts at the same time. If the
many magical features make it hard to use, then it’s less helpful.

Simple tools are easier to learn; it’s obvious what they do. You just
end up with a lot of them, one for each task. But if you string them
together, there are a lot of interface points, so they don’t always work
together seamlessly.

Different tools have different scopes, performing everything from
very specific tasks (searching files for text strings) to entire projects (a
collaborative project management environment).

Frequency of use
Some tools are used constantly; we can’t live without them. Others are
only dusted off once in a blue moon, but they’re invaluable when you
need them.

The Programmer’s Toolbox 113

Interface
Some tools have pretty graphical user interfaces (GUIs). Some are more
basic, driven by a command-line interface (CLI) and directing their output
to a file. Which you prefer depends on how your brain is wired and what
you’re used to.

Windows utilities tend to be graphical with no command-line access.
The standard Unix utilities are the opposite, which makes them easier to
automate and integrate into larger tools using scripts. The interface
alters the way you harness a tool’s power.

Integration
Some tools fit into a larger toolchain, often subsumed in a graphical
integrated development environment (IDE). Stand-alone command-line utili-
ties tend to generate plaintext output in a format suitable as input to
other tools, acting primarily as data filters.

Monolithic GUI interfaces can be very comfortable to use, and the
integration can make you incredibly productive. On the other hand, they
take time to set up just as you’d like them, and they seldom offer the
full power of more manual command-line tools. But although they are
incredibly powerful, the discrete Unix tools all have different cryptic
interfaces that make them hard to use.

Cost
There are many excellent free tools.1 However, you often get what you
pay for. Free tools tend to have have poorer documentation, less sup-
port, or a smaller feature set. This doesn’t always hold true, though.
Some free tools are far superior to their commercial counterparts.

You can pay as much as you want for any type of tool, but a higher
price tag doesn’t guarantee a better product. I’ve worked with some fan-
tastically expensive tools that were spectacularly poor. Which leads on to . . .

Quality
Some tools are really good. Some tools are really bad. I have a couple of
critical tools that I’d gladly never see again; they do the job, but only
barely, and are permanently on the brink of a crash. But without them, I
can’t produce the code I get paid for. How often have I been tempted to
rewrite them myself? I can keep on dreaming.

You’ll pick tools based on these characteristics, making appropriate
compromises. Although it’s important to get accustomed to your usual tool
set, to learn it and to be productive with it, avoid the temptation to become
religious about it. Most Windows users despise Unix-style development, while
Unix hackers look down on Windows coders because they can’t handle the
command line. Get over it.

I challenge you to try working in a different environment on a reasonably
large project. It will help you fully understand what makes a good toolchain
and help you gain a real “world view” of software tools.

1 Free has two meanings in the software world: free as in beer (the tool won’t cost you anything to
obtain) and free as in speech (open source software whose code you can view and modify). Which
free is more important depends on how much of an idealist you are. See “Licenses” on page 361.

114 Chapter 7

Why Worry About Tools?

It’s impossible to create programs without a core set of software tools; you’d
be stuck without an editor or compiler. There are other tools that you can get
by without, but that are still genuinely useful. In order to improve your produc-
tivity, code quality, and craftsmanship, it’s good to pay a little attention to the
tools you’re currently using and find out what they can really do.

When you understand how your tools work and which tool to use for
which job, you are better able to produce code that works properly—and
produce it more quickly. Smarter tool use will make you a smarter
programmer.

KEY CONCEPT Know your common tools inside out. A little time invested to become proficient with
them will quickly pay off.

Let’s be clear about why we actually use tools: Tools don’t do our work
for us—they enable us to do our work. The quality of software is always deter-
mined by the competence of its programmer. Remind yourself of that the
next time your compiler spits out pages of error messages. You wrote the
code, dimwit!

Programmers have wildly varying attitudes with regard to selecting and
using tools. There’s probably some deep psychological reasoning behind
it all—something to do with whether you’re an Evil Genius or not. On
encountering a new lengthy task:

Some programmers laboriously complete it by hand.

Others write a tool in a scripting language to do the job automatically.

Others spend hours searching for a pre-written tool to do the job
for them.

Given a tool that might solve the problem:

Some programmers fiddle with it until they get something near enough
to what they want.

Others carefully read the documentation to find out exactly what can be
done and then start to use it.

Which the right approach? Well, it depends. Part of becoming a mature
programmer is understanding how different situations require different
solutions and applying the right tools for the right job. Everyone is different
and everyone works differently—your colleagues may be most productive
using different tools than the ones that are your favorites. But if you saw some-
one converting his C code into assembly by hand on a day-to-day basis, you’d
question his sanity.

Invest your time and money in tools practically. Think about how you’re
going to use a tool. Search for or write a new tool only when the time it will
take to do so will pay off. Don’t spend a week writing a tool that will only save
you one hour every month. Do spend a week writing a tool that will save you
one hour every day.

The Programmer’s Toolbox 115

KEY CONCEPT Adopt a pragmatic approach to software tools—use them only when they’ll make your
life easier.

Power Tools

Since programming and tools go hand in hand, in order to be a super-
programmer, you need to be a super–tool user. What does that mean?

First, it’s important to have a good understanding of which tools are
around. In the next section, we will run down a list of the common tools that
every programmer should have on hand. You don’t need to know every tool
on the market; it makes for incredibly dull dinner party conversation, anyway.
Just knowing the general categories of tools that exist, rather than specific
products, is the important step forward. That will help you choose between
finding a tool for a particular task, writing the tool yourself, or doing the task
by hand.

Take the time to get informed. Check out where you can obtain some of
these tools—there are shops that specialize in selling software tools and
plenty of download sites on the Internet. Maybe you already have some
installed but never needed them, or you didn’t appreciate how useful they
were. Learn what you can expect tools to do for you; it will prepare you for
good tool usage.

KEY CONCEPT Know the sorts of tools that are available. Make sure you know where to get them, even
if you don’t need them right now.

Be prepared to try a new tool and to take time to learn it; this is a healthy
attitude. You may be forced to find new tools if you start a new project, move
to a new platform, encounter a new kind of problem, or find that your old
tools have become deprecated. But don’t wait to be pushed—make sure that
right now, you’re using the best tools you can get your hands on.

Devote a portion of your time to honing your tools skills—just as you’d
spend time reading a techie book or magazine or taking a professional train-
ing course. This stuff is important, so invest in it accordingly.

Here are a few simple steps to become a tool power user. For each weapon
in your software construction arsenal . . .

Understand What It Can Do

Find out the feature set—what it can really do, not what you think it should be
able to do. Even if you don’t know how to wring out every last drop of goodness
(maybe you’d have to look up the more esoteric command-line parameters),
knowing what it’s capable of will be helpful.

Are there particular things the tool can’t do? Perhaps it doesn’t support
some facilities provided by its counterparts. Understand these limitations, so
you know when to shop around for something better.

116 Chapter 7

Learn How to Drive it

Just because you’ve run the tool without generating an error doesn’t mean it
has done exactly what you wanted it to do. You must know how to use it properly
and be confident that you can make it do your bidding.

How does the tool fit into the whole toolchain? This will affect how you
use it. For example, Unix tools can be used as sequential filters by piping them
together—splicing small individual tools into a larger utility.2 Understanding
how to harness the power of each tool and learning about how they inter-
operate lifts your tool usage a notch.

Figure out the best way to use each tool—it might not be by calling it
directly or by clicking somewhere in the GUI interface. Can it be triggered
automatically? A compiler is often invoked through a build system, rather
than manually.

Know What Tasks It’s Good For

Know how each tool fits in the context of the other available tools. For
example, I can set up keystroke recording macros, which allow me to save
time on repetitive actions, in my text editor. Some of these alterations could
also be done using a magic sed invocation.3 However, it’s better to use the
keystroke macros in this context—I’m already using the editor and so it’s
quicker to fire them off.

You might not know how to use yacc,4 but if you ever need to write a
parser, you’ll save yourself loads of effort knowing it’s there.

KEY CONCEPT Use the right tool for the right task. Don’t crack a walnut with a sledgehammer.

Check That It’s Working

Everyone becomes the victim of bad tools at some point. Your code doesn’t
work, but no matter how long you search for the errant behavior, there’s no
explanation. In desperation, you’ll test random things—checking that the
wind is blowing in the right direction and the light fittings have been
secured correctly. Several hours later, you’ll find a flaky tool doing
something peculiar.

Compilers can produce faulty code. Build systems can get dependencies
wrong. Libraries harbor bugs. Learn how to check for obvious failures before
you rip out too much of your own hair.

Having access to the source code for your tools can be instrumental in
diagnosing any problems you encounter, allowing you to work out exactly what
a tool is doing. This might be a deciding factor in your choice of tool set.

2 If you don’t know much about this, I urge you to read up on it. The Unix command man bash is
a good place to start; search the man pages for pipelines.
3 sed is a stream editor command-line utility, explained in the next section.
4 A parser generator. Don’t worry—it’s explained later too.

The Programmer’s Toolbox 117

Have a Clear Route to Find Out More

You don’t have to know it all. The trick is to know someone who does!
Find out where the tool’s documentation is. Who provides support?

How do you get more information? Look for manuals, release notes, online
resources, internal help files, and man pages. Know where they are and how
to access them on demand. Do the online versions have useful search tools
and good indexing?

Find Out When New Versions Appear

Tools seem to develop at an incredible rate—in this industry, technology
changes fast. Some tools develop much faster than others. You’ve barely
installed the latest widgetizer when the authors release a newer version with a
longer red stripe down the side.

It’s important to stay informed about the tools you use so that you don’t
get out of date and end up with a potentially buggy and unsupported tool kit.
But this should be done cautiously; don’t blindly chase the latest version.
The bleeding edge can be painful!

New versions may have new bugs and new higher prices. Adopt upgrades
if they provide significant fixes and have been proven stable. Test first—
sanity check the new tool on your old code to make sure that it behaves itself.

KEY CONCEPT Keep up to date with the latest developments in your tools, but don’t upgrade carelessly.

Which Tools?

There’s a staggering array of software development tools. Over the years they
have been developed to scratch particular itches, the needs that often crop
up. When a task has been done many times, you can bet that someone has
written a tool for it.

Exactly what comprises your tool kit will depend on your line of work.
The available tools for embedded platforms are rarely as rich as those for
desktop applications. We’ll consider the common components below. Some
are really obvious; others are less so.

While we’ll look individually at each class of tool, don’t forget that modern
IDEs collect these disparate programs into a single, streamlined interface.
This is undoubtedly convenient, but it’s important to understand how each
tool stands on its own, for these reasons:

You’ll know how to get the best from each feature that’s available.

You’ll know what useful features your IDE lacks.

Most IDEs are modular—you can substitute one component with a better
alternative and plug in facilities that are not available right out of the box.
Learn what tool varieties are around, and you’ll improve your IDE experience.

118 Chapter 7

Source Editing Tools

A potter’s medium is clay; a sculptor’s, stone; and a programmer’s, code. This
is the fundamental thing we work with, so it’s important to pick excellent
tools to help us write, edit, and investigate source code.

Source Code Editor

The editor is probably your most important tool, even more important than
a compiler. The compiler faces the computer, whereas the editor faces you.
And you’re the one driving. This is where you’ll spend most of your program-
ming life, so pick a good editor and learn to use it really well. Being productive
with your text editor will dramatically improve how you write code.

KEY CONCEPT Your choice of code editor is vital: It has a huge impact on how you write code.

The One True Source Editor is an age-old debate that doesn’t need to
be stirred here, but you should select an editor that you are comfortable with
and does what you require. Just because an editor is embedded in your visual
IDE does not mean that it is the best editor for you. On the other hand, you
may find that having it integrated is an incredible boon. For source code
editing, I require at least the following from my editor:

Comprehensive syntax coloring (with support for many languages—since
I use many languages)

Simple syntax checking (e.g., highlighting mismatched brackets)

Good incremental search facilities (an interactive form of find that searches
as you type)

Keyboard macro recording

Highly configurable

Works across every platform that I use

My requirements and choice of editor may not be the same as yours, but
that seems like a fair list of the most important facilities. I don’t mind spending
a little time learning how to get the best out of all these features. It’s worth it
if it makes me productive.

Depending on the type of work you’re doing, you may find other types of
editors useful. There are binary file editors (usually displaying file contents
in hexadecimal; they’re commonly called hex editors) and editors devoted to
specific file formats, for example XML file editors.

Vim and Emacs are the infamous Unix-land editors, available now on
pretty much any platform (probably even your electric toaster). These contrast
with the default editors bundled with IDEs.

Source Manipulation Tools

The Unix philosophy is characterized by a large collection of small command-
line tools. GUI environments have their counterparts for each tool, but they
are rarely as powerful or easy to string together. The GUI versions are far
simpler to learn, though.

The Programmer’s Toolbox 119

The following Unix commands provide powerful mechanisms to invest-
igate and modify source code:

diff

Compares two files and highlights the differences between them. Basic
diff spits output to the console, but more sophisticated graphical ver-
sions exist. There are even editors that allow you to work on the diffed
files, displaying them side by side and updating the differences as you
type. Exotic diffs can compare three files at once.

sed

Stands for stream editor. Sed reads files a line at a time, applying a specified
conversion rule. Sed can be used to reorder items, as a global search and
replace tool, or to insert patterns into lines.

awk

Imagine sed on steroids. Awk is another pattern-matching program that
can process text files. It implements a full programming language for
this task, so you can write quite advanced awk scripts to perform involved
manipulation.

grep

Searches for patterns of characters in a file. These patterns are described
by regular expressions, a form of mini-language allowing wildcard charac-
ters and flexible match criteria.

find/locate
These tools help to find files in the filesystem. They can hunt them down
by name, date, or a number of other criteria.

These are only the tip of the iceberg, and there are many other tools. wc,
for example, performs word/character counting. For more gems, look into
sort, paste, join, and cut.

Source Navigation Tools

Really large projects have codebases like cities. Not even the town planners
intimately know each and every back street. A few taxi drivers know the best
routes around. Normal citizens know their own neighborhoods fairly well.
Tourists get lost as soon as they step off a bus.

There is a breed of tool to help you delve into and understand code, map
it out, and perform easy searches, navigation, and cross-referencing. Some
tools produce call-graph trees so you can see how control flows around the
system. They may produce a graphical map or integrate with your editor to
provide auto-completion, function call help, and more. This can be invaluable
on large codebases or when entering a project that is well established.

Good examples of freely available tools are LXR, Doxygen, and the
venerable ctags.

120 Chapter 7

Revision Control

We won’t dwell on source control tools here, since we cover them in “Source
Control” on page 351. Suffice to say: you must use one, or else have a limb
forcibly amputated.

Source Generation

A number of tools automatically generate source code. Some are good; some
frighten me.

One example is yacc, an LALR(1)5 parser generator. You define the input
grammar rules, then use it to generate programs that can parse well-formed
input matching those rules. It spits out a C code parser with hooks for you to
add functionality when items are parsed. Bison is a similar tool.

There is a class of code-generating tools that helps you to design user
interfaces, spitting out the workhorse back-end code. These are especially
used for complex GUI tool kits like MFC. If a library requires a tool to do this
much legwork, then it implies that the library is too complex (or fundamen-
tally broken) in the first place. Tread with caution!

Wizards that write reams of scaffolding code that you must later revise
and modify should also be treated with caution. You must honestly under-
stand the generated code before you begin to attack it, or you’ll be bitten by
your own ignorance. If you rerun the wizard after modifying any generated
code, all your hand-edits will be silently overwriten. Ouch.

You can even write your own scripts to spit out repetitive sections of
code. Sometimes this is an indicator that your code could have been designed
better. Sometimes it is the right technical approach. In the past, I have written
Perl scripts to generate code for me automatically. Having written the gener-
ator, I trusted the code it generated. Another programmer might look at it
distrustfully, like any other code wizard.

Source Beautifiers

These tools homogenize source code formatting, creating a uniform lowest
common denominator layout. I honestly think they are more hassle than they’re
worth—they can destroy as much important and helpful formatting as they fix.

Code Construction Tools

We don’t want to stare at pretty source code all day. The fun bit is making it
do something. We do this so often that we take the following tools for granted,
assuming they all work, without thinking about what’s going on behind the
curtain.

Compiler

Besides a source editor, this is the most used software tool. Compilers
convert your source code into an executable so you can marvel at the ways

5 A cryptic techie (and dull) way of saying reasonably complex grammar.

The Programmer’s Toolbox 121

your program fails to work. Since this tool is used so often, it’s important that
you can drive it properly. Do you really know all the options and facilities
that it has? Many companies have a specific buildmaster who ensures that the
build tools are used correctly, but this isn’t an excuse to be ignorant of your
compiler.

Do you understand what level of optimization to employ and how that
might affect the generated code? It’s important—among other things, it
will determine how surprisingly the code runs in the debugger, and even
which compiler bugs you enable!

Do you compile with all warnings switched on? There really is no excuse
not to (perhaps only if you’re maintaining legacy code that is already rid-
dled with warnings). The warnings highlight potential errors, and their
absence gives you extra confidence in the code.

Is the compiler standards-compliant by default? The C++ ISO standard
is, (ISO 98) the 1999 C standard is, (ISO 99) the Java language is defined
by, (Gosling et al. 00) and C# by the ISO standard. (ISO 05) Does the
compiler have any nonstandard extensions; if so, do you know what
they are and how to avoid them?

Is it generating code for the correct CPU instruction set? You may be
churning out 386-compatible code when you’ll only ever run it on the
latest Intel whiz-bang chip. Get your compiler to spit out the most appro-
priate code possible.

I N E E D A T O O L . . .

You need to perform a task. It’s a dull task. It’s repetitive. It’s the kind of thing that
must be better for a computer to do; it would be less error prone, less tedious, and
far quicker. That’s what computers were invented for! How do you find out if there’s
something to do the job for you?

• If it’s mentioned in this list, you’ll know already that a tool is available.

• If it’s not in the list, but you’re sure that you’re not the first person to have this kind
of problem, there’s probably a tool out there somewhere that will help. You’d be
surprised at some of the random programs a quick web search brings up.

• If your problem seems unique, you might have to write your own program for it.
See “Rolling Your Own” on page 126 for more on this.

When looking for a tool, get as much advice as you can:

• Ask others on your team if they have any experience.

• Search the web, and read appropriate newsgroups.

• Go to tools vendors.

Given the selection of available tools, you’ll need to make an informed choice
based on the criteria we saw in the first section. To make this decision, you must
establish your requirements. Is it important that the tool is free? Or is it more important
that you can get it now? Should it be easy to use for everyone on the team? How
often will you use it—will it justify the expense?

122 Chapter 7

A cross compiler targets a different platform from the development
machine. This is primarily used when writing embedded software (after all,
it’s hard to run Visual C++ on a dishwasher).

The compiler is a single part of a larger toolchain, including the linker,
assembler, debugger, profiler, and other object-file manipulators.

Some popular compilers include gcc, Microsoft’s Visual C++, and
Borland’s C++ builder.

Linker

The linker is closely allied with the compiler. It takes all the intermediate
object files that a compiler spits out and glues them together into a single
executable lump of code. The C and C++ linkers are so closely bound to the
compiler that sometimes the same executable does both tasks. For Java and
C# the linker is tied to the run-time environment.

When using your linker, make sure you know:

Does it strip the binary? That is, does it remove debugging symbols like
the names of variables and functions? These can be used by a debugger
to show useful diagnostic information, but they can also significantly
bloat executables and make them slow to load.

Does it eliminate replicated code sections?

Can you make it spit out library objects rather than executables? What
control do you have over the library—can you make it statically or dynam-
ically loaded?

Build Environment

The entire build environment is more than just a compiler and linker. The
kind of build tools that we use are the Unix make program or the build por-
tions of your IDE. They automate the compilation process. Many open
source Unix projects use the autoconf and automake tools to simplify
building.

Learn how to get the most out of your integrated build environment, but
not at the expense of knowing how to use each individual construction tool.
We’ll investigate these topics in more detail in Chapter 10.

Testing Toolchain

Note that this is a code construction tool, not a debugging tool! Appropriate
testing is vital to the production of reliable, high-quality software. It is often
neglected—perhaps because it’s seen as too much work, distracting attention
away from the important task of writing code. This is one of the biggest threats
to good software. You cannot construct a reliable piece code unless you can
prove that it works correctly, and the only way to do this is to construct tests
for it as you write.

There are tools that help automate unit testing, offering a skeleton into
which you can place your test code. These tools can be easily integrated into
your build system, so testing becomes a central part of the code construction
process.

The Programmer’s Toolbox 123

As well as automated unit testing, there are tools that generate test data
and formulate test cases. There are also tools that simulate a target platform,
perhaps with the ability to model particular error conditions (low memory,
high load, etc.).

Debugging and Investigative Tools

These tools characterize running code and help to track down problems—
both things we have seen going wrong and potential disasters waiting to
pounce. We’ll look at them in greater detail in “Wasp Spray, Slug Repellent,
Fly Paper . . .” on page 169.

Debugger

Having a quality debugger and understanding how to use it can save you
hours of development time chasing surprising behavior. It allows you to
investigate paths of execution in your program, break into it, investigate
variable values, set breakpoints, and generally dissect your running code.
It’s an order of magnitude more sophisticated than peppering programs
with printf logging statements!

gdb is GNU’s open source debugger; it has been ported to almost every
conceivable platform. ddd is an accomplished graphical interface for it. Every
IDE and toolchain has its own debugger.

Profiler

This tool is used when your code runs unacceptably slowly. The profiler
times sections of running code and identifies the bottlenecks. It is used to
find targets for sensible optimization; armed with its results, you won’t waste
effort speeding up code that is rarely executed.

Code Validators

Code validators come in two varieties: static and dynamic. The former digest
code in a similar way to a compiler, inspecting your source files to identify
possible problem areas and flawed language use. lint is a well-known example;
it performs static checks for a series of common coding errors in C. Much of
its functionality is built into modern compilers, but there are still separate
tools available for extra checking.

Dynamic validators modify and instrument the code as it is compiled and
then perform checking at run time. Memory allocation/bounds checkers are
a good example—they ensure that all dynamically allocated memory is freed
appropriately and that array accesses do not occur out of bounds.6 These
tools can save hours of legwork looking for obscure bugs. They are much
more useful than a debugger in most situations, since they act like preven-
tion mechanisms rather than cures: They’ll find faults before they have a
chance to break your program.

6 More socially responsible languages, like Java, avoid this kind of problem in the language
design.

124 Chapter 7

Metrics Tools

These tools perform code inspection and are usually a form of static analyzer
(although dynamic metric tools do exist). They produce statistical assessments
of the quality of your code. While statistics can easily mislead, these tools can
powerfully highlight the most brittle areas. This information can help you
pick specific targets for code reviews.

Metrics are usually gathered on a per-function basis. The most basic metric
is number of lines of code, followed by the ratio of comments to code. Neither really
tell you anything particularly useful, but there are plenty of more interesting
metrics. Cyclomatic complexity is a measure of the complexity of code, con-
sidering the number of decision points and potential flows of control. A high
cyclomatic complexity implies unintelligible code, which is more likely to be
brittle and harbor faults.

Disassembler

This peers into executables, allowing you to inspect the machine code.
Debuggers do contain this kind of support, but advanced disassemblers can
attempt to reconstruct code where no symbols exist, generating a high-level
language reinterpretation of the binary program file.

Fault Tracking

A good fault-tracking system provides a shared database that keeps track of
the bugs found in your system. It allows colleagues to report faults, query,
assign, or comment on them, and eventually mark faults as fixed. It’s an
essential tool to ensure the quality of a product—you need to manage faults
systematically, or they’ll slip through your fingers, and you’ll release a flawed
product. Capturing and storing this information is also useful when looking
back over the project history.

Language Support Tools

To write in a high-level language, you need a lot of support. The language
implementation provides everything you need to make coding possible,
making it easier than wallowing in a swamp of machine code.

The Language

The language itself is a tool. Some languages provide facilities absent in others.
These gaps may be filled by separate tools you can run over the program
source. For example, C’s much maligned preprocessor can be remarkably
useful, and text-processing packages exist for other languages. Generic code
facilities (like C++’s templates), and pre- and postcondition checking are
other similarly useful language tools.

It’s valuable to have a selection of languages under your belt. Understand
how they differ, what tasks they lend themselves to, and what their weak points
are. Then you can select the best language for any given task.

The Programmer’s Toolbox 125

KEY CONCEPT Learn several languages; each will teach you different ways to approach problems.
Consider them tools, and select the most appropriate language for each task.

Run Time and Interpreter

Most languages can’t be used without the requisite run-time support.
Interpreted languages rely on their interpreter (or virtual machine), but
directly compiled languages still lean on their support libraries. These libraries
are often intimately entwined with the language itself, so the two can’t be
separated.

Just as you can pick a different compiler, you may be able to select a
different language run time, with different characteristics.

Java’s JVM (The Java Virtual Machine) is a common language interpreter.
The C++ standard library supports the language, providing the default handlers
for some core language features. Similarly, the C# language rests upon the
run-time support of the .NET environment.

Components and Libraries

Yes, these are tools too! Reusing software components and finding libraries
that do what you need avoids reinventing the wheel. A good library can
increase productivity as much as any other software tool.

The scopes of these libraries vary—some are vast abstraction layers for an
entire OS, while some do a very simple job, providing a humble date class.
They look after their details and hide the complexity away so that you don’t
have to worry about it. You don’t have to spend time writing, testing, and
debugging your own versions.

All languages these days come with some level of library support. The
C++ STL is a wonderful example of a powerful extensible library. The Java
language and .NET environment ship with more standard libraries than you
can shake a stick at. Many, many third-party libraries exist, both commercial
and free.

Miscellaneous Tools
The story doesn’t end here. You will come across plenty more tools. “See
Also” on page 127 points out other places where we’ll discuss software tools.

The following are some other interesting tool varieties.

Documentation Tools

Good documentation is invaluable; it’s a key part of well-engineered code.
Various tools help you to write it, both in the source code itself and separately
(I describe some in “Practical Self-Documentation Methodologies” on
page 66). Never underestimate how important a good word processor is.

Documentation needs to be read as well as written. Good online help
systems (backed up by a quality bookshelf) are critical.

126 Chapter 7

Project Management

Management and work collaboration tools allow you to report and track work
against a schedule, manage faults, and monitor team performance. Depending
on the scope of the management tool, humble programmers may not need
to go near it. But more exotic systems may become the central hub of project
activity, drawing in all users.

In a Nutshell

Give us the tools and we will finish the job.
—Sir Winston Churchill

Tools make software development possible. Good tools make it much easier.
Make a point of evaluating the set of tools you use. Do you really know

how to use them all properly? Are there any missing tools you should have?
Are you getting the most from the ones you do have?

A tool is only ever as good as its user. The proverb A bad workman blames
his tools contains a lot of truth. Poor programmers create poor code, no matter
how many tools they use. In fact, tools can help produce spectacularly worse
code. Fostering a professional, responsible attitude toward your toolbox will
make you a better programmer.

R O L L I N G Y O U R O W N

What happens when you can’t find a tool for a job and it’ll take forever to do by
hand? There’s nothing wrong with “rolling your own” tools. Indeed, if this task is
going to crop up repeatedly, a short tool development may save you hours in the
long run.

Some tasks are naturally more tool-able than others. Make sure you’re attempting
something realistic, and check that the effort will be a cost-effective investment.

These are the common ways to create a tool:

• Combine existing tools in a new ways, commonly using the Unix piping
mechanism, perhaps writing a little connecting glue. You can put complex
command-line incantations into a shell script (or batch file in Windows-land) so
you don’t have to type them in every time.

• Use a scripting language. Most small homegrown tools are written in some form
of scripting language, often Perl. They’re quick and easy to work with, yet power-
ful enough to provide the kind of support you need to write tools.

• Create a full-blown program from scratch. You only really want to do this if it’s a
serious tool that you’ll be using over and over again. Otherwise, the effort probably
isn’t justified.

When writing the tool, consider:

• The audience—how polished does the tool have to be? Are a few rough edges
acceptable? If it’s only you and one other techie using it, you can cope. If other,
more delicate souls may one day need it, perhaps you should upholster it tastefully.

• Can you extend an existing tool (wrap its command up, or perhaps create a plug-
in for it)?

The Programmer’s Toolbox 127

See Also

Chapter 10: The Code That Jack Built
The software build process is driven by tools. Just imagine compiling
code by hand!

Chapter 13: Grand Designs
Contains a section discussing specific design tools.

Chapter 18: Practicing Safe Source
A chapter devoted to the use of revision control tools.

Good programmers . . . Bad programmers . . .

Would rather learn once how to
use an appropriate tool, rather
than repeat a tedious job over
and over and over again

Understand different toolchain
models and are comfortable
with each

Use tools to make their lives
easier but don’t become slaves
to them

See everything they use as a tool,
a replaceable utility

Are productive, because the use
of their tools is second nature

Know how to use a few tools and
look at every problem in terms
of them

Are afraid of taking the time to
learn new tools

Started using one development
environment and now use it
religiously, never trying out or
even investigating alternatives

Don’t add to their toolboxes
when they come across a
valuable new tool

128 Chapter 7

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 491.

Mull It Over

1. Is it more important for everyone in a development team to use the same
IDE, or for each person to pick the one that suits him or her best? What
are the implications of different people using different tools?

2. What is the minimum set of tools that any programmer should have at
his or her disposal?

3. Which are more powerful: command-line or GUI-based tools?

4. Are there construction tools that aren’t programs?

5. What’s most important for a tool?

a. Interoperability

b. Flexibility

c. Customization

d. Power

e. Ease of use and learning

Getting Personal

1. What are the common tools in your toolbox? Which do you use every
day? Which do you use a few times a week? Which do you only call on
occasionally?

a. How well do you know how to use them?

b. Are you getting the most from every tool?

c. How did you learn to use them? Did you ever spend any time
improving your skill with them?

d. Are these the best tools you could be using?

2. How up to date are your tools? Does it matter if they’re not the latest
cutting-edge versions?

3. Do you favor an integrated tool set (like a visual development environ-
ment) or a discrete toolchain? What are the advantages of the other
approach? How much experience do you have with both ways of working?

4. Are you a Default Dan or a Tweaker Tom? Do you accept the default set-
tings in your editor, or do you customize them to within an inch of their
lives? Which is the “better” approach?

5. How do you determine your budget for software tools? How do you know
whether a tool is worth its cost?

T E S T I N G
T I M E S

The Black Art of Testing Code

8

In this chapter:

Why test code?

Whose responsibility is it
to test?

How do you test properly?

The different types of testing

Test everything. Keep what is good.
—1 Thessalonians 5:21

Write as much code as you like—there’s one thing
you can be sure of: It won’t work perfectly the first
time. It doesn’t matter how long you took to care-
fully design it; software faults have a creepy ability
to work their way into any program. The more
code you write, the more faults you’ll introduce.
The faster you write, the more you’ll introduce.
I’ve yet to meet a really prolific programmer who
created anything near bug-free code.

What do we do about this? We test our code.
We do this to find any problems that exist, and
once we’ve fixed them, we use the tests to maintain
confidence in the quality of the code as we continue
to modify it. It’s suicide to release untested software,
no matter how good a programmer you think you

130 Chapter 8

are. Untested software is bound to fail; testing is an essential part of our
craft. Too many software factories underestimate the importance of thorough
testing or try to squeeze it into a last-minute dash before the software ships.
It shows.

Testing is not something relegated to the end of the development process,
used to prove that your final program is okay. If that’s all you ever try to do,
you’ll produce very poor code, indeed. Testing is a central construction tech-
nique. It’s only by testing that you can prove that each bit of code works, which
then tells you when you’ve finished it. How could you tell, otherwise? How do
so many software factories think they can get away without decent testing?

T E R M S A N D C O N D I T I O N S

The term bug is remarkably evocative and incredibly imprecise. It’s easy to throw
words around without really understanding what they mean. Using more specific
terminology helps us to define what we’re doing. These definitions are inspired by
IEEE literature (IEEE 84):

Error
An error is something that you do wrong. It is a specific human action that results
in software containing a fault. For example: Forgetting to check a condition in your
code (like the size of a C array before indexing into it) is an error.

Fault
A fault is the consequence of an error, embodied in the software. I made an error,
and this resulted in a fault in the code. At first, this is a latent problem. If the code
I’ve just written is never executed, then this fault will never have a chance to cause
problems. If execution often passes through the faulty code, but never in the
particular way that triggers the fault, we’ll never notice that there is a fault at all.

This subtle point is what makes debugging notoriously difficult. A faulty line of
code may seem fine for years, and then one day it causes the most bizarre system
tantrum you’ve ever seen; you won’t suspect the aged code since it’s been reliable
for so long.

You might discover a fault in a code review, but you can’t identify a fault from
a running program.

Failure
When encountered, a fault may cause a failure. It may not. The failure, the
manifestation of the fault, is what we really care about. It’s probably the only
thing we’ll take notice of. A failure is the departure of your program’s operation
from its requirements, from its expected behavior. This is where we verge on
philosophy. If a tree falls over in a forest, does it make a sound? If the running
program doesn’t exercise a bug, is the mistake still a fault? These definitions help
to answer this.

Bug
The term bug is a colloquialism, often used as a synonym for fault. According to
folklore, the first computer bug was an actual bug. It was discovered by Admiral
Grace Hopper in 1947 at Harvard. A moth trapped between two electrical relays
of the Mark II Aiken Relay Calculator caused the whole machine to shut down.

Tes t ing T imes 131

Reality Check
The two simple questions What is testing? and Why do you test? seem painfully
obvious. Yet all too often, adequate software testing is not performed—or it is
not performed at the appropriate stage of production. Good testing is a skill.
Actually doing some testing is more than many programmers achieve; the mere
mention of testing is enough to make most of them break out in a cold sweat.
“The single most important rule of testing is to do it.” (Kernighan Pike 99)

Testing is a distinct and separate activity from debugging, although their
boundaries blur, and the two often get mixed up together. Testing is a method-
ical process of proving the existence, or lack thereof, of faults in your software.
Debugging is the act of tracking down the cause of this faulty behavior. Testing
leads to debugging, which leads to repair, which leads to more testing (we test
again to prove that the fix worked).

KEY CONCEPT Testing is not debugging. Don’t get the two confused. They require different skills.
Make sure you know when you’re testing and when you’re debugging.

If you’re programming well, you’ll do a lot more testing than debugging.
That’s why this chapter comes before the debugging chapter.

Throughout the software development process, various things are tested:

A large number of documents will go through a testing stage (more com-
monly known as a review process). Doing this ensures, for example, that
the requirements specification correctly models the customer’s needs, the
functional specification implements the requirements specification,
the various subsystem specifications are complete enough to fulfill the
functional specification, and so on.

Naturally, then, the implementation code is tested on the developer’s
machine. It is tested at several levels, ranging from line-by-line testing
of each function as it’s written, to the testing of individual modules, to
integration tests when sections of code are glued together.

Finally, the end product is tested. While this level of testing will (or should)
indirectly test all the code components that have been developed, that
is not the focus of these tests. Here we worry about whether or not the
program, as a whole, is working as specified.1

Product tests may be concerned with a number of things. Most import-
antly, they check that the system functions as intended. They also check that
it installs correctly (if it’s shrink-wrapped PC software) and that it’s usable.

This is the kind of testing performed by the QA department. It is this
department’s job to understand how the product should work and to
ensure that it does, while also meeting any quality criteria that have been
established for it.

In this chapter, we’ll focus on the middle point—how we test our code as
software developers. The other testing activities are large and separate topics,
which are outside the scope of this book.

1 Because, obviously, the correct behavior has been carefully specified beforehand, hasn’t it?

132 Chapter 8

Who, What, When, and Why?

For our software testing to be effective, we need to understand why we test,
who does it, what it entails, and when it is done.

Why We Test

As software developers, our testing procedure exists for a few reasons: to help
us to find faults and fix them, and to ensure the same faults don’t reappear in
later versions.

Note that testing can never reveal the absence of faults, only their exist-
ence. If your tests don’t find any bugs, it doesn’t necessarily mean they aren’t
there; it just means you haven’t found them yet.

KEY CONCEPT Testing can only discover the presence of faults. It can’t prove the absence of faults.
Don’t be led into a false sense of security by code that passes a suite of inadequate tests.

Software testing at the end of a development cycle may have another
motivation. As well as verifying that a software component is correct and
contains no faults, you may need to validate it—ensure that it fulfills the
requirements originally established—to prove that it is good enough for
release. Validation is one form of an acceptance test.

Q U A L I T Y A S S U R A N C E

QA: quality assurance. Sounds painful, doesn’t it? But just who or what is it? This
name is given both to a tribe of software factory inhabitants and a development
practice. To understand QA properly, it’s important to separate colloquialisms and
misconceptions from the real definiton.

People mistakenly bundle QA with testing, but the two differ significantly. Testing
aims to detect erroneous behavior, where software diverges from its specification;
it is effectively detection. Real QA is prevention. It ensures that our processes and
development practices will result in high-quality software. Testing is a small part of
QA—software quality includes more than just a low bug count. It means software
that is delivered on time, to budget, and meeting all requirements and expectations
(these two are not necessarily the same). Sadly, there still isn’t a lot of high-quality
software coming out of today’s software factories.

Who’s responsible for software quality? An organization’s test department (often
known as the QA department) is the group of people dedicated to product testing.
They have the final say as to whether your program is good enough to release. This
is an important piece of the quality jigsaw, but not the whole picture. Everyone in the
development process is involved in producing quality software—it’s not something
you can tack on once the code is complete.

The responsibility for monitoring software quality often rests with the same group
of people performing product testing. Otherwise, overall QA is the responsibility of
project managers, while the testers are left to test.

Tes t ing T imes 133

Who Tests

It is a programmer’s responsibility to test the source code he or she writes. Tattoo
that sentence backward across your forehead and stare in the mirror for
10 minutes every morning.

Too many developers, disillusioned by the trials of the software factory,
crank out code and release it thoughtlessly to QA without having tested it
themselves. This is irresponsible and unprofessional. In the long run, it’ll
cost you more time and effort than testing properly. It’s plain stupid to release
untested code in a product and almost as bad to supply untested code to the
QA department. Its job is testing, but testing the product, not your new lines
of code. It is likely to find the silly coding errors that you left behind, prob-
ably manifesting themselves in obscure and seemingly unrelated ways; but its
job is to look for more fundamental errors that couldn’t have been caught
any earlier, not mop up after sloppy programmers.

KEY CONCEPT You must test every piece of code you write. Don’t expect anyone else to do it for you.

What Testing Involves

When writing software, we create individual functions, data structures, and
classes and glue them together into a working system. Our main testing strat-
egy is to exercise all this code and validate its behavior by writing more code—
test code. This forms a harness around the test subject that prods, pokes, and
drives it, provoking it to respond and checking that its response is correct.

We write test code for each level of the system, testing each important
class and function, through to the superstructures composed of these smaller
parts. For each test, you must be clear about the following:

Exactly which piece of code you’re testing. Clear modules with well-defined
boundaries help here; the interfaces are your test points. Vague or com-
plex interfaces make testing vague and complex.

The method you’re using to test (see “The Types of Test” on page 138).

When you will be finished. This is one of the hardest and most important
questions to answer—you could go on forever. When can you say that
you’ve run enough test cases?

 Another common testing strategy is to inspect the code in order to
prove its correctness. Inasmuch as this is a human activity, it is prone to
failure, and it also relies upon the requirements being well defined. Code
reviews are a common inspection technique (see Chapter 20). Code inspec-
tion tools help, but they cannot magically perform all the tests for you. Too
often, inspection is ad hoc and haphazard; it’s so very easy to overlook faults.
Prefer to use programmatic tests; they bring many benefits, which we’ll see
throughout this chapter. A combination of the two is most effective.

134 Chapter 8

When We Test
Test your code as it’s written, catching coding errors at the earliest possible
opportunity. It’s at this time when errors are easiest to fix, affect fewest people,
and cause the least havoc. Testing early and thoroughly is the most effective
way to ensure software quality.

The cost of a bug escalates as it works through the development process,2

so it’s essential to start testing code as soon as possible—during (or perhaps
before) serious software development. The test-driven development approach,
popularized by agile programmers, advocates testing as a central construc-
tion technique; you write test code before the code being tested!

KEY CONCEPT Effective code testing starts early, so you catch bugs when they’re least harmful. You can
write tests before writing code!

This is an essential point, and it is vitally important to absorb into your
programming routine. For each piece of code you write, immediately write a
test. Or write the test first. Prove that your code works, so you know that it’s
safe to move on. If you don’t write a test at this point, you’ll leave unproven,
potentially buggy code behind. This destroys the stability of your codebase:
When you hit a bug, you won’t know which bit of code (in the mass you’ve
accumulated since you last wrote a test) is causing the problem. So you end
up in the debugger, which is a massive waste of time.

Writing the test later means you will test from a distance—either too late,
when you’ve forgotten what the code is supposed to do, or as a consequence
of testing a separate code module. This will not be an effective test. You’re
also far more likely to forget to write the test at all.

This testing strategy has profound implications: When you start to think
about writing some code, you must simultaneously think about testing it.
This will shape the way you design that code, for the better; we’ll see why in
“Design for Test” on page 144.

Every time you find a fault that managed to slip past your existing tests, you
must add a new test to your test suite (after scolding yourself for missing it in
the first place). The new test will help to prove that your bug fix is correct. It will
also catch any later reappearance of the same bug; bugs can rise unexpectedly
from the dead—this often happens when your code is modified later.

KEY CONCEPT Write a test for every fault you find.

So we write tests as early as possible, but how often do we run them?
As often as humanly possible, if not more often (using computer support).
The more often we run the tests, the more likely we are to detect problems.
This is embodied in a continuous integration strategy (see “Automated Builds” on
page 190), and begins to show why programatic tests (which are easy to run
repeatedly) are so powerful.

KEY CONCEPT Run your tests as often as you can.

2 See “The Economics of Failure” on page 157 for more on the cost of bugs.

Tes t ing T imes 135

Testing Isn’t Hard . . .

Unless you do it badly, and then it’s really hard. It does take thoughtful effort,
though. To test whether a particular piece of code works, you need a test
harness that demonstrates that:

The correct output is generated for all valid inputs.

The appropriate failure behavior is generated for all invalid inputs.

That sounds innocuous enough, yet for all but the simplest of functions,
it is just not practical to exhaustively perform this testing. The set of valid
inputs is usually very large, and it’s impossible to test each input individually.
You’ll have to pick a smaller set of representative input values. The set of
invalid inputs is almost always much larger than the set of valid inputs, so
you have to pick a number of representative bad values, as well.

To illustrate this, here are two examples. This first function is easy to test:

bool logical_not(bool b)

{

if (b)

return false;

else

return true;

}

The set of valid inputs is of size two, and there are no invalid inputs. This
means that the function’s test harness is simple. It might look like this:

void test_logical_not()

{

assert(logical_not(true) == false);

assert(logical_not(false) == true);

}

The function doesn’t do anything particularly exciting, though. Now con-
sider the following function (let’s not critique its elegance at the moment).
How much harder is it to test?

int greatest_common_divisor(int a, int b)

{

int low = min(a, b);

int high = max(a, b);

int gcd = 0;

for (int div = low; div > 0; --div)

{

if ((low % div == 0) && (high % div == 0))

if (gcd < div)

gcd = div;

}

return gcd;

}

136 Chapter 8

It’s still a small snippet of code, but testing it is far more difficult for
these reasons:

Although there are only two parameters, the set of valid input is extremely
large. You can’t conceivably test every possible combination of values;
it would take a very long time.3 Adding more parameters to a function
extends this problem exponentially.

It contains a loop. Any form of branch (including a for loop) adds
complexity and more potential for failure.

There are several conditional statements. You now have to arrange to
exercise the code running through each combination of conditions to
check that each side works.

And that’s just for a single small function. There’s already a fault in there,
did you notice it? Can you find it? Ten points and a gold star if you can.4

KEY CONCEPT It’s very easy to trust the code you read and to believe that it’s correct. When you’ve just
written some code, you’ll read what you intended to write, not what you actually wrote.
Learn to look twice—read all code cynically.

Those three problems aren’t the only reasons software gets harder to test.
There are plenty of other ways to increase test complexity.

Code size
The more code there is, the more room for potential faults, and the more
individual paths of execution that must be traced through to check validity.

Dependencies
Testing one small piece of code should be easy. But if the test harness
has to attach the rest of the codebase before it will do anything, then it
becomes too painful (and too time consuming) to write any tests. In this
case, either testing doesn’t happen, or the tests aren’t comprehensive
enough, since it’s too hard to orchestrate all of the attached code com-
ponents. This is an example of untestable design. We’ll look at remedies
for this later (in “Design for Test” on page 144).

The next two sections are also examples of kinds of inter-code
dependency.

External inputs
Any reliance on the state of an external part of the system is essentially
another input. Unlike function parameters, it’s not easy to arrange for
these external inputs to take on certain test values. A shared global vari-
able can’t be set to an arbitrary value without compromising other parts
of the running program.

3 The higher your input values, the longer the for loop will take. Assuming an int is a 32-bit
value (meaning there are 264 input combinations) and you have a nice, fast machine (let’s say
that every function call will take one millisecond—that’s one hell of a processor cache), a brute-force
test would take almost 600 million years! And that’s without printing out any test results. . . .
4 Look at the answer to this chapter’s first “Mull It Over” question (page 494) to find out what it is.

Tes t ing T imes 137

External stimuli
The code may react to stimuli other than function calls. It’s particularly
troublesome when they may occur asynchronously (at any time), and
with any frequency.

A class can act on callbacks from other parts of the system, which
may crop up at any time.

Hardware interface code reacts to changes in physical device state.

Communication with other systems may take any length of time.
Physical connections are prone to interference, so they may degrade,
and network connections can be unreliable.

User interface code is driven by the user’s mouse gestures. It’s hard
to physically automate a GUI in test conditions.

These conditions are hard to simulate in an artificial test environ-
ment, and they may be particularly timing sensitive (for example, the
speed of mouse double clicks or the frequency of hardware-generated
interrupts).

Some outside influences are unplanned: memory may run low, disk
space may become exhausted, and network connections may fail. You
have to ensure that your code is robust in all prevailing environmental
conditions.

Threads
Multiple threads of control make testing more complex, since the con-
current code may intertwine in any arbitrary sequence. The complex
interplay of execution paths means that any given test run may never be
repeatable. Thread faults leading to deadlock or starvation may be hard
to trigger, but they cause serious problems when they do crop up.

The program’s threaded behavior will be different on truly parallel
multiprocessor systems to the behavior exhibited under simulated con-
currency on single-processor time-slicing environments.

Evolution
Software evolves. This evolution tends to break tests. If the requirements
are not pinned down, your early tests will probably be invalid by the time
you come to deliver because the APIs will have changed, the functional-
ity will be completely different, and a full set of tests will not have been
created because development never stood still long enough.

We require stable interfaces both in our own code and any external
code we rely on. In the Real World, this is an impractical ideal—the code
will never stand still—so we must craft small, malleable tests that can be
easily modified alongside the code.

Hardware faults
Faults exist in hardware as well as in software. Work in an embedded
environment is generally more likely to run into hardware errors, because
you’re closer to the metal. Hardware faults can be an order of magnitude
more difficult to diagnose and fix; they are seldom repeatable, and you’ll
naturally distrust your software first.

138 Chapter 8

Nasty failure modes
Code can fall over in a multitude of exciting and bizarre ways. Program
faults don’t just lead to incorrect output—there’s more to contend with:
infinite loops, deadlock, starvation, program crashes, OS lock-ups, and
other potential failures raise their ugly heads to make testing a varied
and exciting thing. A pathological software failure may even lead to phys-
ical damage to hardware!5 Write a test harness to check for that.

Writing a test harness is no small feat. When components get glued
together and start relying on each other, the complexity of software expands
exponentially. All of these problems gang up to make your life very compli-
cated. This is when it becomes not just difficult, but technically infeasible
to write harnesses that test the software exhaustively. The time and resources
do not exist to generate all the test data necessary, and to run the software
over all sets of inputs and stimuli. The brute-force method rapidly becomes
impractical, and it seems more convenient to ignore testing and just hope
that there aren’t any bugs.

No matter how hard you test, you still can’t produce fault-free software—
writing test code is as hard and requires as much skill as writing regular code.
Some errors will invariably slip through even the most rigorous testing (studies
show that the most carefully tested software still contains 0.5 to 3 errors per
1,000 lines of code). (Myers 86) Testing in the Real World rarely proves that
software is bulletproof—merely that it is adequate.

With this in mind, we need to focus on the key tests that are likely to
capture the majority of software defects for the most effective testing. We’ll
see how to choose these later.

The Types of Test

There are many different kinds of software tests, and no one is better than
any other. Each method approaches the code from a different direction and
will catch a different class of faults. All are needed.

Unit testing
The term unit test is commonly used to mean testing a module of code
(say a library, device driver, or protocol stack layer), but it really describes
the testing of atomic units: each class or function.

Unit testing is performed in strict isolation. Any untrusted external
code with which the unit interfaces is replaced with a stub or simulator—
this ensures that you only trap bugs in this unit, not bugs caused by outside
influences.

Component testing
A step up from unit testing, this validates the combination of one or more
units into a full component. Often this is what people mean by unit test.

5 This is no joke. The 68000 processor had an undocumented stop and catch fire instruction—a
bus test operation that rapidly cycled the address lines, causing the circuit board to overheat and
catch on fire.

Tes t ing T imes 139

Integration testing
This tests the combination of components as they are brought together
in the system, ensuring that they interconnect properly.

Regression testing
This is retesting after fixes or modifications are made to the software or
to its environment. You run regression tests to ensure that the software
works as it did before and that your modification hasn’t broken anything
along the way. When you work with brittle software, a change in one place
can cause strange faults to appear elsewhere. Regression testing helps to
guard against this.

It can be difficult to determine how much retesting is needed,
especially near the end of the development cycle. Automated test tools
are especially useful for this type of testing. I’ll discuss this in detail in
“Look! No Hands!” on page 144.

Load testing
You perform load tests to ensure that your code can handle the expected
volume of data being thrown at it. It’s simple to write code that generates
a good answer, but doing so in a timely manner is another thing. This can
unearth problems related to the efficiency of a system, perhaps due to
incorrect buffer sizes, bad memory usage, or inadequate database design.
Load testing checks that the program “scales up” as expected.

Stress testing
Stress testing throws a huge amount of data at the code within a short
space of time to see what it does. It’s similar to load testing, often used
for high-availability systems. Stress tests check the characteristics of the
system: how tolerant it is to overloading. Load testing is performed to
prove that the code can meet its expected demands; stress testing makes
sure that it won’t just crumple in a heap if it receives a real battering. The
code doesn’t have to keep working perfectly; it just has to fail gracefully
and recover well.

Stress testing helps determine the capacity of the software—how hard
you can push before it falls over. It is especially pertinent in threaded or
real-time systems.

Soak testing
Soak testing is similar to stress testing. The focus is on running at a
high load for a prolonged period of time—several days, weeks, or even
months—to identify any performance problems that appear after a large
number of operations have been executed. Soak testing reveals faults
that might otherwise go undetected: small memory leaks that eventually
crash the program or performance degradation as internal data structures
slowly become fragmented.

Usability testing
Ensures that your software can be used easily by a shortsighted gerbil.
There are various forms of end-user tests, often performed in usability
labs under very controlled and scripted conditions. We also test software
in field trials, putting it in a Real World setting to see what users think.

140 Chapter 8

When we write unit and component tests, there are two main approaches
to devising the test cases: black box and white box testing.

Black box testing
This is also known as functional testing. Black box testing compares actual
functionality against intended functionality. The internal workings of the
code are not known by the tester; it is seen as a black box. The designer and
tester can be independent of each other.6

Black box testing is not concerned that every line of code is tested,
only that it meets the software’s specification—that if you put the right
things into one end of the box, the right things come out the other.
Therefore, without clear specifications and documented APIs, it is very
hard to devise black box tests.

Black box test cases can be designed as soon as the software specifi-
cation is complete. They rely on the specification being correct in the
first place and on it not being radically altered after the tests have been
devised.

6 However, this isn’t necessarily a good idea—a programmer is usually the best person to write
the unit test for the code he or she creates.

A L P H A , B E T A , G A M M A . . .

What about alpha and beta testing? They are common terms, but not quite in the
same league as the other tests we’ve looked at here. They are more focused on final
product testing than on the implementation of particular bits of code. Nevertheless,
they deserve some explanation.

Happily, the terms have no formal definition. Each company will have its own
idea of what software in an alpha or beta state is. For all you know, alpha software
might be made of lemon jelly and explode on exposure to light. Alpha or beta
software is often released externally, as an advance customer preview—an early
chance to elicit feedback and garner confidence.

These are common interpretations of the terms:

Alpha software
The first “code complete” stage. It may still have many, many bugs, and be
completely unreliable. Alpha software provides a good representation of what the
final product will be like, if you can look past the obvious flaws.

Beta software
Well past the alpha stage, beta software is mostly bug free; there are very few
remaining problems. It’s not too far from a final product. Beta testing (that is,
testing beta software) is used in the run up to final release candidates to nail the
remaining issues. Beta testing usually involves Real World field trials.

Release candidate
This is the final stage before a formal software release. Candidate builds go
through verification and assurance testing (validation) prior to the production
release. Release candidates are internal builds, usually going to the test
department only.

If alpha and beta releases venture to the outside world, they may have some
form of crippling (time-limited operation, for example). The release candidates are
“pure” builds, without any of these limitations.

Tes t ing T imes 141

White box testing
This is also known as structural testing. It is a code-coverage–based
approach. Each line of code is scrutinized systematically to ensure correct-
ness. Where you couldn’t see into the black box beforehand, you now
can and do. For this reason, white box testing is sometimes called glass
box testing. It is really only concerned with testing the lines of code pro-
duced, and it doesn’t guarantee that they meet their specifications.

There are static and dynamic methods of white box testing. Static tests
do not run the code; instead, it is inspected and walked through to ensure
that it represents a valid solution. Dynamic tests run the code and are
concerned with path and branch testing—trying to visit every line of
code and execute every decision. This may require some modification of
the code to force control down certain paths. Such modification can be
easier than trying to engineer test cases for all behavioral combinations.7

White box testing is laborious and much more expensive than black
box; consequently, it is done a lot less. The completed code is needed
before white box tests can even be planned. Black box testing is typically
done before white box testing starts. The consequence of a failure at this
stage is much more expensive. You’d have to code a fix, black box test
again, then devise and run new white box tests.

Tools exist to instrument your code and measure the test coverage.
Without tool support, white box testing could make your head explode.

Black box testing is concerned with faults of omission (where the soft-
ware misses out some of the specified behavior), while white box testing
discovers faults of commission (where parts of the implementation are
faulty). In order to fully test a software unit, both black and white box
testing is required.

7 If you do modify the source code, then you’re not actually testing the final executable, which is
concerning.

T E S T T I M E

Each of these test methods is employed at different points in the development
process. The following table illustrates this, showing which tests are most important
at each point.

Stage of Development
Is Black or White
Box Appropriate?

Common Testing Approaches at This
Stage of Development

Who Performs
the Test?

Requirements gathering Black Black box tests devised Developers, QA

Code design Black Black box tests devised Developers, QA

Code construction Black, white Unit, component, regression Developers

Code integration Black, white Component, integration, regression Developers

Alpha status Black, white Regression, load, stress, soak, usability Developers, QA

Beta status Black, white Regression, load, stress, soak, usability QA

Release candidate Black, white Regression, load, stress, soak QA

Release Black, white It’s too late by now . . . Users (good luck)

142 Chapter 8

Choosing Unit Test Cases

If testing is essential but exhaustive testing is impossible, you must judiciously
choose the set of most effective tests. To do this, you need a thoughtful and
methodical plan. You could take a scattergun approach—just prop the code
up on a wall and then fire everything that comes to hand at it. . . .

That way you might find some flaws. But without a sensible, staged testing
approach, you’ll never have the quality tests that will give you proper con-
fidence in your code. Instead of the scattergun, you should pick up a rifle
with an accurate sight and aim careful shots at the code, hitting well-judged
marks, to see how well it stands up.

Where do you aim? How do you determine the volley of test data to
launch? Since you can’t try every possible value, you need to select a handful
of pertinent inputs. You must pick the tests that are most likely to disclose the
software’s faults, rather than run tests that just show the same few problems
repeatedly.

KEY CONCEPT Write a comprehensive suite of tests, each one exercising a different aspect of the code.
Fifteen tests that demonstrate the same fault over and over are less useful than fifteen
tests that show fifteen different faults.

To do this, you must understand the requirements for your piece of code.
You can’t write an accurate test case unless you know what it’s supposed to do.
It might be doing the wrong thing very well.

When black box testing, some test cases will be:

Some good input
Select a number of well-chosen good inputs to ensure that the software
works properly in the normal cases.

Cover the whole range of valid input values; include some middle of
the road values, some values from around the lower bounds of acceptable
input, and some from the upper bounds.

Tes t ing T imes 143

Some bad input
Just as important are a certain number of well-chosen bad inputs. This
ensures that the software is robust and doesn’t give misleading answers
to invalid input.

You must consider all sorts of bad data, including:

Values that are numerically far too large or far too small (handling
negative values is often overlooked)

Input that is too long or too short (string lengths are a classic
example—try sending an empty string to see what happens, or
try different-sized arrays and lists)

Data values that are internally inconsistent (what this means will
depend on the contract of the function; perhaps it expects values
in a certain order)

Boundary values
Test all the boundary cases—they are a rich source of error. Identify the
highest and lowest inputs that are valid, or wherever the natural input
boundaries are (perhaps where behavior changes). For each of these
positions, test the code’s behavior at:

The boundary value itself

The values just above it

The values just below it

This ensures that your software works correctly right into the corners,
and that it then gives up exactly when expected.

Boundary tests catch the all-too-easy mistakes, like typing > instead of
>=, or getting loop count bases wrong (did you start counting from zero
or one?). All three boundary tests are needed to check for these kinds of
mistakes.

Random data
Test randomly generated sets of input data to avoid guesswork. This is a
surprisingly effective test strategy. If you can write an automated test har-
ness that repeatedly generates and applies random data, you stand a good
chance of picking up subtle errors that you would have never thought of
otherwise.

Zero
If the input is numeric, always test for the zero case. For some reason,
programmers fail to think properly about zero, a blind spot in their
reasoning.

C/C++ pointers are often given a zero value to mean unset or undefined.
Try throwing zero pointers at your code to see if it reacts correctly. In Java,
you can send null object references for a similar effect.

144 Chapter 8

Design for Test

The quality of unit test you can write is determined largely by the quality of the
interface you have to test. Testing is easier when your code is written thought-
fully and specifically designed to accommodate inspection and verification.
You achieve this by crafting clear APIs, reducing reliance on other bits of code,
and breaking any hard-coded links to other components. This way, it’s easy
to place a component into its test environment and stimulate it. If, instead,
it’s grafted intimately into other sections of code, you have to drag all of that
code into the test environment and arrange for it to interact with your unit
appropriately. This is not always easy, and often impossible, limiting your
scope for possible tests.

KEY CONCEPT Design your code for easy testing.

There’s a helpful side effect of this rule: When you structure code for
testability, you will be structuring it in a sensible, understandable, and main-
tainable way. You’ll reduce component coupling and increase cohesion.
You’ll make it more flexible, easy to use, and easier to wire up in different
configurations. Your code will be better.

And since you’ve tested it well, the code is more likely to be correct.
You must design for tests up front. You can’t easily return to an old com-

ponent and bolt a “testable” interface onto it. If a lot of other code relies on
the existing interface, then such modifications are hard. Remember: You’re
most likely to design geniunely testable code if you write unit tests alongside
the code.

A few simple design rules lead to highly testable code:

Make each section of code self-contained, without undocumented and
tenuous dependencies on the outside world. Don’t hard-code links to
other parts of the system; rely on abstract interfaces that could be imple-
mented by system components or by test simulators.

Don’t rely on global variables (or singleton objects, which are thin
veneers for globals). Gather such states in a shared structure passed
as an argument.

Limit the complexity of your code; break it into small, comprehensible,
bite-sized chunks that can be individually tested.

Make the code observable, so you can see what it’s doing, query internal
state, and ensure that it’s operating as expected.

Look! No Hands!

You can’t hang around all day turning the handle on your test machinery.
Manually invoking test after test isn’t my idea of a great day’s programming.
Repeated regression testing would rapidly get boring. It wouldn’t just be
boring, but also slow, inefficient, and prone to human error. The golden
testing rule is simple: Automate.

Tes t ing T imes 145

KEY CONCEPT Automate your code testing as much as possible. It’s quicker and easier than running
tests by hand, and it’s far safer: The tests are more likely to be run regularly.

If the tests run without any intervention, they can be triggered as a valid-
ation phase of your build procedure. Before you play with some freshly built
software, you’ll know the unit tests have automatically run and passed; you’re
assured that there are no silly programming errors and that any new work
hasn’t broken old code.

KEY CONCEPT Run unit tests automatically as a part of your build process.

You can gather your individual pieces of test code together in an auto-
mated scaffold that marshals the test execution and gathers the results of the
testing in a single place. This harness monitors which tests have been done;
the more complex test harnesses maintain a history of test results over time.
There are many such popular tools, like JUnit, a common Java unit test
framework.

A high level of automation comes into its own during regression testing.
If you make a modification to the code and want to ensure that you haven’t
accidentally broken anything, you can run the whole set of tests automatic-
ally; out of the end pops a yes or no answer. Of course, the regression test
result is only ever as good as the tests put into the harness.

Automation really is a fundamental concept for solid code development.
If you don’t currently have an automated suite of unit tests, acting as a con-
tinual regression test of your codebase, then get one. Your work will quickly
improve in quality.

Sadly, not all tests can be automated. Unit testing library functions is
relatively easy; automatically testing user interfaces is very hard. How do you
emulate mouse clicks, check the Urdu translation of a text string, or ensure
that the correct sound clip is playing?

The Face of Failure

Our greatest glory is not in never falling,
but in rising every time we fall.

—Confucius

What do you do when your testing finds a program failure? Before you rush
in headlong to debug it, step back and characterize the problem. This is
especially important when you don’t intend (or have no time) to repair it
right away. Follow these steps to pin down the nature of the fault so that you,
or any other developer, can come back later and attempt to sort it out.

1. Note what you were trying to do at the time and which actions triggered
the failure.

2. Try it again. Discover whether the problem is repeatable, how frequently
it crops up, and whether it coincides with any other activities going on at
the same time.

146 Chapter 8

3. Describe the fault. Fully. Be very specific. Include the following:

The context of problem

The simplest steps that can replicate it

Information about repeatability and frequency of occurrence

The version of the software, exact build number, and hardware used

Anything else that might conceivably relate

4. Record it. Don’t lose it! Put this information in your fault-tracking system,
even if it’s a simple coding error that you intend to fix yourself (see “Can
You Manage It?” next).

5. Write the simplest test harness that will demonstrate the failure, and
add it to the suite of automatic tests. This will ensure that the fault cannot
be lost or ignored and, once it’s eventually fixed, won’t reoccur later in
development.

Remember, testing is not debugging—and these steps are not debug-
ging! You’ve not tried to unveil the cause of the failure, or peek into the
code, just to establish enough information to describe the problem to
another developer.

Our favorite kind of fault is a repeatable fault. Really—we like code
that falls over repeatedly: It’s easy to replicate the problem; therefore it’s
easy to track down the fault and easy to prove that you’ve fixed it. Nasty
failures are irregular, even random, and consequently hard to characterize.
Failures that take an eon to manifest and depend upon the wind speed are
a nightmare.

Can You Manage It?

You must be methodical and systematic in order to find faults. You must also
be methodical and systematic in your management and handling of them.
Before releasing code (or checking it into source control), you are the only
person who’d be bitten by its gremlins. But as soon as it leaves your care, code
takes on a life of its own. It’s no longer just you who is concerned with its faults.
The rules change as more players join the game:

A programmer will find problems at the codeface—in his own code and
in other people’s.

The code integrator will find errors as components are glued together.

The QA department will find faults in the product as it tests.

With so many people finding so many problems while others are simul-
taneously trying to make fixes, there had better be a good procedure for
managing it all. Otherwise, the result will be a mess, and development will
come crashing down around everyone’s heads.

Tes t ing T imes 147

Fault-Tracking System

Our key weapon in managing faults is a fault-tracking system. This tool is a
specialized database with interfaces visible to everyone who has a hand in the
testing process.

As bugs are discovered and dealt with, this database is updated to reflect
the status of the software. In doing so, the fault-tracking tool becomes an
integral part of the project’s fault-management procedure. The general actions
performed are:

Report a failure
When you find a bug, make a new entry for it in the database by creating
a fault report. It becomes a fully paid-up member of the fault club, with its
own personal membership number. This reference number uniquely
identifies it for future use. The bug now cannot be overlooked. It must be
addressed before the software is shipped.

Creating a report also alerts others in the team that this fault has been
found; they don’t need to enter the same information when they run into it.

Assign responsibility
This marks a fault report for a particular person’s attention. It defines who is
responsible for fixing (or making sure that someone fixes) each problem.
Without this idea of ownership, every programmer will think that someone
else is going to fix the fault, while the bug works its way through the cracks.

Prioritize reports
The fault-tracking system allows you to mark which faults are the most
important. A repeatable startup crash is clearly more serious than a button
that’s occasionally shifted one pixel to the right.

By differentiating the show-stopping faults from little annoyances,
developers can plan their work and choose which faults need to be fixed
first. There may be various levels of severity supported by the tool—from
critical faults, though medium-to-low priority issues, to feature requests.

Mark as fixed
A developer will do this once a repair has been made. It doesn’t close
the fault report but places it on a pile ready for verification. The person
who submits the report is responsible for testing that the fix is correct,
although he can delegate this task. A fix certainly shouldn’t be verified
by the person who made it, for obvious reasons.

Close a report
Once verified, a report can be closed, becoming nothing more than a
distant memory (and perhaps a project statistic).

There may be other scenarios leading to report closure—the issue
may not have been a fault at all, perhaps just a characteristic of the system,
or even perfectly valid behavior. Testers are fallible too.

Instead of closing a report you don’t intend to deal with, you can defer it,
marking the fault to be fixed in a later software revision.

148 Chapter 8

Query the database
You can query the fault-tracking system for information:

Naturally, you can produce a list of all the pending fault reports,
ordering them by software version, assignee, priority, or whatever.

You can discover which faults have been assigned to you.

You can produce a report on which faults have been fixed in each
software version. This is helpful for preparing release notes.

You can also view project statistics—how many faults have been
reported during development, how many have been fixed, and the
rate of closure versus generation. Presented graphically, this can
give a good impression of how well the software is progressing.

Modify an entry
You can open a report and alter the information it contains. This
includes:

Adding comments for any new information you’ve found

Attaching log files, containing example output, to illustrate the
problem

Marking a report as a duplicate of another fault, to prevent later
confusion

There are plenty of fault-tracking tools available, both commercial and
freely available versions, like the popular Bugzilla system developed as a part
of the Mozilla project.

Bug Reviews
Toward the end of product development, as release deadlines inch ever nearer,
bug review meetings become a part of life, occurring about once a week. These
reviews are scheduled once functionality is complete but before all the bugs
are ironed out—the long home stretch of the development process. They
provide an overview of the project’s progress to all interested parties, help
plan the remaining repair work, and shepherd the software toward release.

These meetings are attended by an eclectic bunch of people:

The software developers responsible for the product. (They’ll be doing
the fixing, after all.)

Representatives from the test team, who will explain the context of faults
and ensure the bug review is steering in the correct direction. (More often
than not, it’s their responsibility to convene the meeting.)

Product managers, who will gain an overview of the progress and will make
the buck stops here decisions.

Commercial and marketing team members, who are the people that will
have to sell this bug-ridden product. (Their viewpoint on the importance
of each fault helps to decide which ones to fix and which to sweep under
the digital carpet.)

Tes t ing T imes 149

A list of outstanding fault reports is generated from the fault tracking
tool, and each fault is discussed in turn during the meeting. Test or develop-
ment team members may present additional information, if required, and
then commercial decisions on the importance of the problem are made. Nasty
lingering faults are discussed, with a progress report of the repair. If work is
struggling, a decision to apply additional resources might be made.

With such a large range of people, the meeting can rapidly get off track,
and it takes a strong-willed chairman to keep discussion focused and to the
point. The topic is fault reports and how to deal with them, not specific code
fixes. Programmers love to talk technical and try to solve every issue in the
meeting. This is not the place for it.8

In a Nutshell

Testing is critical to producing good software. In general, the more testing, the
better—although the quality of the tests will be reflected in the quality of the
final product. Poor tests will catch few faults, and the result will be a defective
software release.

We test at various levels of development, from individual functions,
through component integration, to the final assembled program. At each
stage, you must adopt a methodical approach to finding and managing
software faults.

It is each programmer’s responsibility to test his or her code. The QA
department has enough problems to deal with apart from your buggy code.
You can’t perform testing and then add in software quality at end of develop-
ment—it must be designed in from the start, with tests being developed and
run alongside the code.

8 Tactics for successful meetings are described in “Meeting Your Fate” on page 340.

Good programmers . . . Bad programmers . . .

Write tests for all their code
(possibly even before they write
the code)

Test at the micro level, so macro-
level testing is not hindered by
stupid coding mistakes

Care about product quality and
take responsibility for it, playing
their parts in the total testing
effort

Don’t consider testing to be an
important and integral part of
software development—it’s
someone else’s job

Release untested code to the QA
department and look surprised
when testing uncovers faulty
behavior

Make their lives more compli-
cated by discovering problems
too late—not testing early
enough and then being hit by a
slew of hard-to-locate faults

150 Chapter 8

See Also

Chapter 9: Finding Fault
What to do when you find a fault—the process of locating and fixing bugs.

Chapter 20: A Review to a Kill
Code reviews are a testing technique—a manual form of static code analysis.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 494.

Mull It Over

1. Write a test harness for the greatest_common_divisor code example earlier
in this chapter. Make it as exhaustive as you can. How many individual
test cases have you included?

a. How many of these passed?

b. How many failed?

c. Using these tests, identify any faults and repair the code.

2. How should the testing of a spreadsheet application and an automatic
aircraft pilot differ?

3. Should you test all of the test code that you write?

4. How does a programmer’s testing differ from a QA department
member’s testing?

5. Is it necessary to write a test harness for every single function?

6. Test-driven development encourages you to write tests first, before any code.
What sort of tests should you write?

7. Should you write C/C++ tests to check for the handling of NULL (zero)
pointer parameters? What’s the value of such a test?

Tes t ing T imes 151

8. Your early code tests might not be on the final platform—you may not
yet have access to it. Is it safest to defer testing until you do have a target
test platform, or to steam ahead now?

If the code is intended to run in a different environment (perhaps
on a high-capacity server, or some embedded device), how can you be
sure that your tests are representative and adequate?

9. How do you know when you’ve finished and can stop testing? How much
is enough?

Getting Personal

1. For what percentage of your code do you write tests? Are you happy with
this? Are your tests an automated part of the build process? What sort of
testing do you give the remaining code? Is this adequate? What will you
do about it?

2. How good is your relationship with the people in your QA department?
What personal reputation do you think you have with them?

3. What’s your usual response to finding an error in your code?

4. Do you file a fault report for every code problem you uncover?

5. How much testing are the project engineers expected to do?

F I N D I N G
F A U L T

Debugging: What to Do
When Things Go Wrong

9

In this chapter:

Where do bugs come from?

What sorts of bug do we
encounter?

Debugging techniques:
finding and fixing

Debugging tools

I have not failed. I’ve just found 10,000 ways that
won’t work.

—Thomas Edison

Nobody’s perfect. Well, except for me. All day, I
have to sit down and work through tedious prob-
lems in other people’s code. The test department
discovers that our software falls over when it does
such-and-such. So I trawl through the system to
find what Programmer Fred did wrong three
years ago, patch it up, and send it back for them
to break again.

Of course, you wouldn’t find me making those
sorts of elementary mistakes—not a chance. My
code is watertight. Faultless. Low fat and cholesterol
free. I never write a line without meticulous plan-
ning, I won’t complete a code statement without
considering all the special cases that might occur,
and I type so carefully that I’ve never once mis-
placed = for == in an if statement.

Totally fault free, me. Really.
Well, perhaps not quite.

154 Chapter 9

The Facts of Life

I don’t think anyone sits trainee programmers down and explains the facts
of life to them. It’s like this, son. There are the birds and the bees. Oh, and the bugs.
Bugs are the inevitable dark side of constructing software, a simple fact
of life. Sad, but true. Whole departments, and even industries, exist to
manage them.

We’re all aware of the proliferation of faults in released software. How do
bugs appear with such frightening regularity and in such great magnitude? It
all comes down to human nature. Programs are written by humans. Humans
make mistakes. They make mistakes for a number of reasons (or excuses).
They make mistakes because they don’t understand the system they’re working
on well enough or because they don’t correctly understand what they are
implementing, but more often than not, they make mistakes because they
just don’t pay enough attention to what they’re doing. Most bugs are due to
mindlessness. I once saw a wonderfully simple illustration of this; play along
at home:

The tree that grows from an acorn is called an . . .

The noise a frog makes is a . . .

The vapor that rises from fire is called . . .

The white of an egg is called the . . .

The yolk, right? Think about it. If you didn’t fall for that one, then you
were probably only paying attention because I’d just warned you. (Give yourself
a brownie point anyway.) But tell me, who warns you every time you’re about
to write a potentially flawed line of code? If that person existed, he’d deserve
a lifetime supply of brownie points.

As programmers, we’re all to blame for the bad state of software. We’re
all guilty. Do we learn to live with the guilt, or do we do something about it?
There are two types of responses. The first is the It’s not a fault, it’s a feature
school: Just make up an excuse and ignore it. A fault turns up, and we respond
in the words of the great philosopher Bart Simpson: “I didn’t do it. Nobody
saw me do it. You can’t prove anything!” (Simpsons 91) We blame compiler
quirks, OS flaws, random climate changes, and computers with minds of
their own. Or as I alluded to in the opening paragraphs, we blame other
people. A Teflon raincoat is a handy programming tool.

However, we should really subscribe to the second school, the school
that concedes that software errors are not entirely inevitable. Many mindless
mistakes can be picked up or even prevented, and as responsible programmers,
we should be taking steps to do so. Defensive programming and sensible
testing are our main weapons. In this chapter, we’ll look at good debugging
techniques to employ when bugs do slip through the net.

Finding Faul t 155

Nature of the Beast

Contrary to popular belief, the term bug was in use before the advent of
computers. In the 1870s, Thomas Edison talked about bugs in electrical
circuits. The story of the Harvard University Mark II Aiken Relay Calculator
tells of the first recorded computer bug. In 1945, the early days of computers
when they took up whole rooms, a moth flew in and managed to lodge itself
in some circuits, causing a system failure. They taped it into the logbook and
wrote, First actual case of bug being found. For posterity’s sake, it has been pre-
served in the Smithsonian Institute.

Bugs are bad news. But what are they, really? We outlined the correct
nomenclature for these things in “Terms and Conditions” on page 130. It’s
worth identifying the varieties of bugs we encounter and understanding how
they are born, how they survive, and how they can be exterminated.

The View from 1,000 Feet
Software bugs fall into a few broad categories, and understanding these will
help us to reason about them. Some bugs are naturally harder to find than
others, and this is related to their categories. Stepping back and squinting
from a distance, these three classes of bugs emerge:

Failure to compile
It’s really annoying when the code you’ve spent ages writing fails to com-
pile. It means that you’ll have to go back and fix a tedious little typo or a
parameter type mismatch, and then wait for the compiler to run again
before you can get to the real job of testing your handiwork. Surprisingly,
this is the best type of error you can get. Why? Simply because it’s the
easiest to detect and fix. It’s the most immediate and the most obvious.1

The longer it takes to detect faults, the more it will cost to fix them;
this is demonstrated in “The Economics of Failure” on page 157. The
sooner you catch and fix each fault, the sooner you can move on and
the less fuss and cost they can incur. Compilation failures are very easy
to notice (or rather, they are hard to ignore) and usually easy to fix. You
can’t run the program until you have taken care of them.

Most of the time, a compilation failure will be a silly syntactic mistake
or a simple oversight, like calling a function with the wrong number or
type of parameters. The failure might be due to a fault in a makefile, it
might be a link stage error (perhaps a missing function implementation),
or even a build server running out of disk space.

Run-time crash
After you fix the compilation errors, an executable pops out and you hap-
pily run it. Then it crashes. You’ll probably swear and mutter something
about random cosmic rays. After the 60th crash, you’re threatening to throw
your computer out the window. These kinds of errors are much harder
to deal with than compilation errors, but they’re still reasonably simple.

1 Provided you have a sane build environment that stops when it encounters an error and
provides some reasonable diagnostic messages.

156 Chapter 9

That’s because, like compilation errors, they are blindingly obvious.
You can’t argue with a dead program. You can’t pretend a crash is a
“feature.” When it has kicked the bucket and shuffled off its mortal coil,
you can step back and begin to figure out where your program went
wrong. You’ll have some clues (which input sequence preceded the
crash and what it did before crashing), and you can employ tools to
discover more information (more on this later).

Unexpected behavior
This is the really nasty one—when your program isn’t pushing up the
daisies, just pining for the fjords. Suddenly it does the wrong thing. You
expected a blue square, and out popped a yellow triangle. The code con-
tinues to meander on its happy way with total disregard for your frustra-
tion. What caused the yellow triangle to appear? Has the program been
overthrown by a militant army of guerrilla COM objects? It will almost
certainly be a minute logic problem in the bowels of the code that exe-
cuted over half and hour ago. Good luck finding it.

A failure may manifest itself because of defective single line of code, or it
may only show up when several interconnecting modules whose assumptions
don’t quite match up are finally glued together.

The View from the Ground

If we move in a bit and take a closer look at run-time errors, more groupings
of faults become clear. Here they are ranked in order of pain, from splinter
to decapitation.

Syntactic errors
While these are mostly caught by the compiler at build time, sometimes
language grammar errors slip through undetected. They generate weird
and unexpected behavior. In C-like languages, the syntax error will often
be one of these:

Mistaking == for = or && for & in a conditional expression

Forgetting a semicolon or adding one in the wrong place (the classic
location is after a for statement)

Forgetting to enclose a set of loop statements in braces

Mismatching parentheses

The simplest way to avoid being tripped up by these sorts of errors is
to keep all compiler warnings switched on; modern compilers moan
about of lot of these problems.

KEY CONCEPT Build your code with all compiler warnings switched on. It will highlight potential
problems before they can bite.

Finding Faul t 157

Build errors
While not a run-time fault per se, a build error may only manifest itself at
run time. Be on the lookout and always distrust your build system, no
matter how good you think it is. In these enlightened times, you’re unlikely
to come across a compiler bug. However, you may not always be running
the code you thought you built.

I’ve been hit by this several times: The build system failed to rebuild a
program or shared library (perhaps because the makefiles didn’t contain
adequate dependency information or the old executable had a bad time-
stamp). Every time I tested my modifications, I was still unknowingly
running the old buggy code. There are a number of ways to confuse a
build system, but the worst is when you don’t notice it failing—like a
leprous limb.

T H E E C O N O M I C S O F F A I L U R E

The art of debugging is intimately bound to the topic of the previous chapter—testing
your code. Testing will expose faults that need to be debugged. I’ve covered these
topics in two separate chapters because they are different disciplines. However, the
two in tandem are fundamental to reliable software development.

The frantic pace of the software factory demands code that’s produced quickly
and cheaply. This haste leads to software projects that are riddled with bugs and are
consequently delivered incredibly late. Late software is a huge problem—it’s not just
embarrassing and inconvenient; it could spell disaster for any company.

In fact, the longer you ignore testing and allow bugs to remain, the worse it gets—
this graph illustrates the escalating impact of bugs as they wriggle through the
development process. It shows the average cost of finding and fixing an error
relative to the phase of production in which it is discovered. (Boehm 81)

As you can see, the cost rises dramatically with time (note that the cost axis is a
logarithmic scale). To make matters worse, the nearer we get to a project deadline,
the less time we have to perform thorough testing. The added pressure of impending
deadlines makes debugging that much harder—with the pressure on, you’re even
more likely to introduce fresh faults with each repair.

To save your skin and prevent a lot of debugging stress, test your code early and
thoroughly. Eradicate any bugs you find as soon as possible, before they have a
chance to cause major grief. There are established methodologies for this—look at
test-driven development, one of the components of agile software development.

1000

500

200

100

50

20

10

5

2

1
Req Design Code Devel

Test
Accept

Test
Use

Relative Cost

Development Phase

158 Chapter 9

It can take quite some time to figure this out. For this reason, when
you feel at all wary of what’s going on, it’s sensible to do a total cleanout
of your project and rebuild it from scratch. This should flush out any
potential build system problems.2

Basic semantic bugs
The majority of run-time faults are due to very simple errors causing
incorrect behavior. Using uninitialized variables is a classic example and
can be quite hard to track; the program’s behavior will depend on the
garbage value previously in the memory location used by the variable.
One time the program will work fine; another time it may fail. Other
basic semantic faults are:

Comparing floating-point variables for (in)equality3

Writing calculations that don’t handle numerical overflow
Rounding errors from implicit type conversions (losing the sign of a
char is common)
Declaring an unsigned int foo, later writing if (foo < 0)—oops!

This type of semantic fault is often caught with static analysis tools.

Semantic bugs
These insidious errors that won’t be caught by inspection tools are much
harder to identify. A semantic bug might be a low-level error, like the wrong
variable being used in the wrong place, not validating a function’s input
parameters, or getting a loop wrong. It may be a higher-level piece of
wrong-headedness: calling an API incorrectly or not keeping an object’s
state internally consistent. Many memory-related errors fall into this cate-
gory—they can be devilishly hard to find due to their ability to warp and
corrupt your running code so that it behaves in totally unpredictable and
unreasonable ways.

Programs often behave strangely. The only consolation is that they’re
doing exactly what we told them to.

The best kind of run-time failures are the repeatable ones. If they’re
reproducible, they are much easier to write tests for and track down the cause
of. The failures that don’t always occur tend to be memory corruptions.

The View from the Trenches
Now that we’ve arranged things into neat little boxes, let’s zoom right in and
take a look at some of the common types of semantic faults:

Segmentation faults
Also known as protection faults, segmentation faults come from accessing
memory locations that have not been allocated for the program’s use. They

2 This presumes that you trust your build clean facility. To be really thorough, delete the entire
project and check it back out again afresh. Alternatively, manually remove all intermediate object
files, libraries, and executables. For large projects, both options are extremely tedious. C’est la vie.
3 You can’t do this meaningfully; floating point arithmetic is too approximate to offer an exact
comparison that indicates anything.

Finding Faul t 159

result in the operating system aborting your application and producing
some form of error message, usually with helpful diagnostic information.

This can be triggered far too easily by typing errors involving pointers
or by poor pointer arithmetic. A common C typo causing a segfault is
scanf("%d", number);. The missing & before number makes scanf try to write
into the memory location referenced by the (garbage) contents of
number, and poof—the program disappears in a wisp of smoke. If you’re
really unlucky, though, number happens to hold a value that equates to a
valid memory address. Now your code will continue as if nothing is wrong,
until the memory you just wrote over is used and your fate is in the lap
of the gods.

Memory overruns
These are caused by writing past memory that has been allocated for
your data structure, be it an array, a vector, or some other custom con-
struct. When writing values into the wide blue yonder, you’ll probably
clobber the data in some other part your program. If you’re running on
an unprotected operating system (more common in embedded environ-
ments), you may even tamper with data from another process or the OS
itself. Ouch.

Memory overrun is a common problem and difficult to detect; usually
the symptom is random unexpected behavior manifesting at a much later
point than the overrun, possibly many thousands of instructions later. If
you’re lucky, the memory overrun hits an invalid memory address and you
get a segfault, which is hard to ignore. Use safe data structures wherever
possible to insulate yourself from the possibility of such disaster.

Memory leaks
These are constant threats in languages that do not have garbage collec-
tion.4 When you want some memory, you have to ask the run time for it
nicely (using malloc in C or new in C++). Then you have to be polite and
give it back when you’re done (using free and delete, respectively). If you
rudely forget to release memory, your program slowly consumes more
and more of the computer’s scarce resources. You may not notice it at
first, but your computer’s response will gradually degrade as memory
pages thrash to and from the disk.

Two other classes of error relate to this: freeing a memory block too
many times, causing unpredictable environmental failures, and not man-
aging other scarce resources carefully, such as file handles or network
connections. (Remember: Anything you manually acquire must be
manually released.)

Running out of memory
This is always a possibility, as is running out of file handles or any other
managed resource. It might be rare (modern computers have so much
memory, how could this possibly happen?), but that’s no excuse to

4 It is also possible to leak memory in a language with garbage collection. Hand two object
references to one another, and then let go of them both. Unless you have an advanced garbage
collector, they will never be swept up.

160 Chapter 9

ignore the potential for failure. Only sloppy code fails to make appropri-
ate checks, and it will consequently perform in a very brittle manner
when run in constrained situations. For this reason, you should always
validate the return status of a memory allocation or filesystem call.

Some operating systems never return failure from a memory allocation
call—every allocation returns a pointer to a reserved but unallocated
memory page. When the program eventually tries to access this page, an
OS mechanism traps the access and then really allocates memory to the
page, resuming normal program operation. This all works nicely until
the available memory is finally exhausted. Your program will then be
sent error signals—a long time after the relevant allocation occurred.5

Math errors
These errors come in a number of guises: floating-point exceptions,
incorrect mathematical constructions, overflow/underflow, or expres-
sions that may fail (for example, divide by zero). Even trying to output a
float but passing an int through printf("%f") can cause your program to
bomb with a maths error.

Program hangs
These are usually caused by bad program logic; infinite loops with badly
crafted terminal cases are the most common. We also see deadlock and
race conditions in threaded code, and event-driven code waiting on events
that will never occur. However, it is usually fairly easy to interrupt the
running program, see where the code has stalled, and determine the
cause of the hang.

Different OSes, languages, and environments report these errors in
different ways, using different terminology. Some languages avoid whole
classes of errors by not providing features you can shoot yourself in the foot
with. Java, for example, has no pointers, and it automatically checks every
memory access you make.

Pest Extermination

Weeding out bugs in your software is hard. You have to discover a bug,
diagnose the problem, eradicate all traces of the unwanted behavior, make
sure the bug hasn’t bred elsewhere, and try not to break the code while you’re
doing all of it. The first step alone, finding a fault, is a major hassle: Humans
make mistakes when writing, but they make just as many mistakes when
reading. When looking over my prose or my code, I’ll naturally read what I
meant to write and not what I really wrote. Faulty code isn’t obvious. The
compiler isn’t much help; in fact it’s really quite pedantic. It can only produce
exactly what you asked, not what you were hoping for.

5 This is certainly the case for Linux, at least until you exhaust the virtual memory address space.
At this point, malloc may return 0, but the system would probably have keeled over before you
got a chance to notice.

Finding Faul t 161

Some programmers introduce far fewer faults than their peers (up to
60 percent less), can find and fix faults quicker (in as little as 35 percent
of the time), and introduce fewer faults as they do so. (Gould 75) How do
they do it? They are naturally able to pay more attention to the task and
can focus on the microscopic level of the code they’re writing, while still
keeping the broader picture in mind.

This is the art of debugging; it’s very much a skill to be learned.
Experience teaches you how to become an effective debugger. And this
is something that we will all get plenty of experience doing.

The single most important rule when debugging is this: Use your brain.
Think. Consider what you’re doing. Don’t flail around, thoughtlessly hacking
at bits of code until something appears to work.

KEY CONCEPT Always follow the golden rule of debugging: Use your brain.

There are two paths to pest extermination: the quicky-and-dirty low road
and the theologically correct high road. We must be aware of them both;
sometimes the low road looks like a good shortcut but will actually be slower,
and sometimes the high road takes more effort to follow than is genuinely
required.

The Low Road

The bug is really simple. The cause is obvious. You don’t need to think too
much about it, do you? Sometimes a quick tweak will achieve results; a few
simple tests can pinpoint a problem quickly. So is it a justifiable thing to do?
Perhaps, but don’t fall into the trap of believing it will work every time. Too
many programmers try to fix faults by tinkering, fiddling, poking, and prod-
ding the code without any real thought about what they’re doing. What
happens is rarely anything useful—they just mask the original problem
behind a myriad of other faults.

If you do make the conscious decision to do some quick-and-dirty stabbing
around, set yourself a firm time limit to do it in. Don’t spend an entire morning
with the “just one more try” approach. After your time limit is up, follow the
more methodical approach laid out here.

KEY CONCEPT Set a reasonable time limit for “unstructured” debugging, and then resort to more
methodical approaches if you don’t find success.

If your guesswork turns up trumps and you do find the fault, reengage
your thinking gear. Look at “How to Fix Faults” on page 167, and make the
change carefully and thoughtfully. Even if the fault was easy to find, the fix
isn’t necessarily as obvious.

The High Road

A better debugging technique is more methodical and considered. It
recognizes that there are two distinct facets to removing a bug: finding the
fault that caused it and fixing that fault.

162 Chapter 9

Each presents its own challenges to overcome and problems to solve. It’s
very easy to forget the latter part and to presume that once you’ve found a
fault, it will be easy and obvious to fix. Don’t believe it. I’ll cover both aspects
in depth in later sections, and I’ll outline a sensible approach to the task. But
first, a few key principles govern the debugging game:

How difficult a fault is to find depends on how well you know the code
it’s lurking in. It’s hard to jump into some random source and make any
kind of judgment about it without knowing the structure and how it’s
supposed to work. For this reason, if you have to debug some new code,
take time to learn about it first.

KEY CONCEPT Learn the code you’re debugging—you can’t expect to find errors in code you don’t
understand.

Ease of debugging is also dependent on the control you have over the
execution environment—how much you can play around with the run-
ning program and inspect its state. In an embedded world, debugging
can be much harder because the tool support is more sparse. You’re also
probably running in an environment that is providing a lot less insula-
tion from your own stupidity; little mistakes can have much bigger con-
sequences.

One of the most potent weapons in our debugging arsenal is a distrust of
anyone’s code mixed with a healthy dose of cynicism. The cause of your
errant behavior could be absolutely anything, and in the act of diagnosis,
you should start by eliminating even the most unlikely of candidates.

KEY CONCEPT When you look for a fault, suspect everything. Eliminate even the unlikeliest of causes
first, rather than presume they have nothing to do with it. Assume nothing.

Bug Hunting

How do you find bugs? If there was a simple three-step process, we’d all have
learned it, and our programs would be perfect by now. As it is, there isn’t,
and they aren’t. Let’s try to distill the available bug-hunting wisdom.

Compile-Time Errors

We’ll look at these first, since they are comparatively easy to deal with. When
your compiler comes across something unpleasant, it will not normally just
complain once, but will take the opportunity to sound off about life in general,
spitting out a barrage of subsequent error messages. It’s been told to do this;
upon encountering any error, the compiler tries to pick itself back up and
carry on parsing away. It rarely manages very well, but with code like yours,
who could blame it?

The upshot is that the later compiler messages can be quite random and
irrelevant. You only need to look at the very first error reported and sort out
that problem. Have a glance farther down the list by all means; there may be
some other useful errors there, but often there aren’t.

Finding Faul t 163

KEY CONCEPT When your build fails, look at the first compiler error. Trust this far more than the
subsequent messages.

Even this first compiler error may be cryptic or misleading, depending
on the quality of the compiler (if you’re really stumped by what an error
means, try using another compiler). Hardcore C++ template code can provoke
quite inspired errors from some compilers—listing reams and reams of
mystical template incantations.

The syntax error usually is on the line that the compiler reports, but
sometimes it may actually be on the preceding line—a syntax error there causes
the following line to be nonsensical; this is what the compiler notices and
moans about.6

C A S E S T U D Y # 1 : P I C T U R E T H I S

The program
A reasonably small utility with graphical interface.

The problem
The program was redesigned with an updated “look and feel”—new icons and a
new layout. The old interface was intended to remain available as a configurable
option. During redevelopment, everything worked fine until just before release,
when someone tried to use the legacy interface. The program crashed just as a
window was appearing but before you had a chance to see it fully.

The story
Thankfully, this was a nicely repeatable problem. The program was fired up
in a debugger, and the point of failure was determined to be deep within the UI
library in some image-rendering code.

On investigation, it seemed the failure was due to an invalid graphic being
used. The program was trying to display an icon at memory location zero; a null
pointer was causing the crash. We traced back up the call stack to see which
graphic should have appeared. Armed with this information, a brief look at the
legacy graphics directory showed that this particular icon was missing.

The icon load operation in the window’s constructor had obviously failed,
returning a zero pointer value to signify “No icon loaded.” This return value was
never checked—the author assumed that the graphic would always be present.

The fix would be twofold:
• Check the return values of all icon load routines so they deal with any other

missing graphics more gracefully.
• Place the missing graphic in the correct directory.

Time to fix
A few hours to trace the problem, fix the fault, and verify the repair.

Lessons learned
• Check all function return codes, even the ones you don’t think will fail.
• Test all program functionality as soon as possible, especially the rare condi-

tions that won’t be used very often.

6 C++ has a great party trick here: The preceeding line might be in a different file! If you forget
the ; at the end of your class declaration in a header file, the first line of the implementation file
makes no sense. The compiler gives you a very crytpic error.

164 Chapter 9

Linker errors, on the whole, are far less cryptic. The linker will tell you
that it’s missing a function or a library, so you’d better scurry off and find it
(or write it). Sometimes the linker may complain about arcane v-table related
C++ problems; this is usually a symptom of a missing destructor implemen-
tation or something similar.

Run-Time Errors

Run-time errors require more of a game plan. If your program contains a
bug, then it’s likely that a condition somewhere in the code that you believed
to be true isn’t. Finding the bug is a process of confirming what you think is
correct until you find the place where that condition doesn’t hold. You have
to develop a model of how the code really works and compare this with how
you’d intended it to work. Doing this methodically is the only sensible way.

KEY CONCEPT Debugging is a methodical activity, slowly closing in on the location of a fault.
Don’t treat it like a simple guessing game.

The scientific method is the process scientists use to develop an accurate
representation of the world. That sounds akin to what we are trying to do,
right? There are four steps to the scientific method:

1. Observe a phenomenon.

2. Form a hypothesis to explain it.

3. Use this hypothesis to predict the results of further observations.

4. Perform experiments to test these predications.

Although we’re trying to get rid of the errant phenomenon rather than
build a model of it, we need to understand a fault to truly fix it. The scientific
method is a good debugging backbone, and you’ll see it reflected in the steps
below.

Identify a Failure

It all starts here, when you notice that the program doesn’t do what it’s
supposed to do. It may crash or it may produce a yellow triangle instead of a
blue square, but you know something’s up, and you’ve got to fix it. The first
thing to do is put a fault report into the fault database (see “Fault-Tracking
System” on page 147). This is particularly valuable if you’re in the middle of
tracking some other bug or don’t have time to handle the fault right away.
Making a record ensures that the fault won’t get lost. Don’t just make a
mental note to come back to a problem later—you’ll forget.

Before you rush on and try to find a bug you’ve stumbled across, identify
the nature of the errant behavior. Characterize the problem as completely as
possible by answering questions like: Is it timing sensitive? and Does it depend
on input, system load, or program state? If you don’t understand the bug

Finding Faul t 165

before you try to fix it, you’ll just be changing code until the symptom disap-
pears. You may only have masked a cause, so the same fault will crop up
elsewhere.

Did the code work before? Skip back through your revision control
system to find the last working version, and compare that working code with
this faulty revision.

Reproduce It

This goes alongside characterizing the failure. Work out the set of steps you
must take to reliably trigger the problem. If there is more than one way, then
document them all.

KEY CONCEPT The first step to locating a fault is finding out how to reproduce it reliably.

You have a problem if the bug doesn’t seem reproducible; the best you
can do is set up mousetraps and see what information you can find out when
it does occur. For these unreliable failures, keep careful notes of the informa-
tion you collect; it may be a while until you see the problem crop up again.

Locate the Fault

This is the big one. You’ve got the scent; now you need to use what you’ve
learned to track the beast and pinpoint its location. That is far more easily
said than done. This is a process of eliminating all the things that don’t con-
tribute to the failure or can be shown to work correctly, Sherlock Holmes
style. As you progress, you will find that you need to gather more and more
information—the more answers you get, the more questions that arise. You
may need to draft some new tests. You may need to poke around in the seedy
underbelly of the code.

Analyze what you have learned about the failure. Without jumping to
conclusions, draw up a list of code suspects. See if you can spot patterns of
events that hint at causes. If possible, keep a record of the inputs and outputs
that demonstrate the problem.

A good starting point for the investigation is where the error manifests
itself—although this is rarely the actual habitat of the fault. Remember: Just
because a failure exhibits itself in one module, it doesn’t necessarily mean
that module is to blame. Determining this location is easy if the program
crashed; a debugger will tell you the line of code that failed, the value of all
variables at that point, and who called this function. In the absence of a crash,
start from a point you know exhibits incorrect behavior. Work backward from
there, following the flow of control, checking that the code is doing what you
expect it to at each point.

KEY CONCEPT Start from what you know—the point of a program crash, for example. Then work back
from there to the cause of the failure.

166 Chapter 9

There are a few common bug-hunting strategies:

The worst thing to do is randomly change things to see if the failure goes
away. This is an immature approach. (A professional will at least try to
make it look scientific!)

A far better strategy is to divide and conquer. Say you have the fault pinned
down to a single function that consists of 20 steps. After the 10th step,
print out the intermediate result, or set a breakpoint and investigate it in
your debugger. If the value is good, then the fault lies in the instructions
after this; otherwise, it’s in the instructions before. Concentrate on those
instructions and repeat until you’ve cornered the fault.

Another technique is the dry run method. Rather than relying on intu-
ition to locate the error, you play the role of the computer, tracing pro-
gram execution through a trial run, calculating all intermediate values to
get the final result. If your result and reality don’t match, then you know
a fault lies in the code—it’s not doing what you expect it to. Although it
is time consuming, this can be very effective because it highlights your
bad assumptions.

Understand the Problem

Once you’ve found out where the fault is lurking, you’ve got to understand
the real problem. If it’s a simple syntactic error, such as using = instead of ==
(d’oh!), then the implications aren’t too nasty. For more complex semantic
problems, make sure you really know what the problem is and all the ways
that it may manifest itself before you move on—you may have only found a
part of the problem.

Often the fault is very subtle: The code will be doing exactly what it
should do and what you thought it was supposed to do when you wrote it!
The problem is a flawed assumption (remember how evil these are?). A
function’s writer and caller can easily presume that different behavior is
acceptable in particular strange cases. Trace back and understand exactly
what the cause of the problem is and whether or not any other bits of code
may contain the same mistake.

KEY CONCEPT Once you think you’ve found the cause of a bug, investigate it thoroughly to prove that
you are right. Don’t blindly accept your first hypothesis.

This is a key principle in the fight against bugs. Otherwise, you’ll join the
ranks of the programmers who introduce more faults than they fix with every
bit of repair work.

Create a Test

Write a test case to demonstrate the failure. You may have done this in the
“Reproduce It” step if you were clever. If you didn’t, then you really want to
write one now. With your new understanding, make sure the test is rigorous.

Finding Faul t 167

Fix the Fault

And now the easy part: You’ve just got to fix the darned thing! This should
actually be the easy part—you understand exactly why the faliure occurs, and
you’ve got a reproducible way to excerise it. Given that depth of information,
the fix is usually child’s play. Most programmers find bug fixing hard because
they skip the first two steps.

We’ll look at fixing faults in more detail in the following section.

Prove You’ve Fixed It

Now you know why you wrote a test case. Run it again, and prove the world is
a better place. The test case can be added to your regression test suite to
ensure that the fault is never reintroduced at a later point.

KEY CONCEPT You haven’t finished debugging until you’ve proved that the problem’s been fixed and
has gone away for good.

That’s it! Game over—mission accomplished. Well done. However . . .

If All Else Fails

Sometimes you try all of this but it just doesn’t work; you’re left wailing and
gnashing your teeth, with a sore head from banging it against a brick wall for
too long. When things get this bad, I always find it helps to explain the whole
problem to someone else. Somewhere in the description, everything seems
to slip into place and I see the one key piece of information I had been
missing all along. Try it and see. This is one reason why pair programming is
such a successful strategy.

How to Fix Faults

You’ll notice that this section is much smaller than the preceding one.
Funny. Usually the whole problem is finding the darned fault. Once you’ve
worked out where it is, then the fix is obvious.

But don’t let that lure you into a false sense of security. Don’t stop
thinking once you’ve diagnosed the source of your errant behavior. It’s very
important not to break anything else as you make the fix—it’s surprisingly
easy to trample over something in the flower bed as you stroll over to pluck
out a weed.

KEY CONCEPT Fix bugs with the utmost care. Don’t risk breaking anything else with your modification.

As you modify code, always ask yourself, What are the consequences of this
change? Be aware of whether the fix is isolated to a single statement or if it
affects other surrounding bits of code. Might the effect of your change ripple
out to any code that calls this function; does it subtly alter the behavior of the
function?

168 Chapter 9

Convince yourself that you have really found the root cause of the
problem, and you’re not just hiding another symptom. Then you can feel
confident that you’ve put a fix in the right place. Consider whether similar
mistakes may have been made elsewhere in any related modules; go and fix
them if necessary.7

7 This is why copy and paste programming—duplicating code, perhaps with minor modifications—
is bad. It’s dangerous; you’ll mindlessly duplicate bugs, and then you won’t be able to fix them
in a single place.

C A S E S T U D Y # 2 : H U N G , D R A W N , A N D Q U A R T E R E D

The program
Embedded software controlling a consumer electronics device.

The problem
A random lockup, occurring after about a week’s continuous operation. It resulted
in the total death of the device; there was no UI response, no network connectivity,
not even an interrupt being handled—the processor was completely stalled. This
was particularly nasty, leaving no easy way to find out the cause.

The story
The lockup happened so rarely that it was remarkably hard to track. In an attempt
to pinpoint the cause, we tried a number of tests, leaving each to run for the week-
long gestation period. First we tried different usage patterns to see if we could make
the fault happen sooner and thereby determine what was causing it. These tests
made no difference whatsoever.

The nature of the lockup seemed to imply that it was a gnarly hardware problem.
We tried running the software on different versions of the mainboard with different
peripheral components and different CPU versions. Weeks of testing later, we
were still no nearer to figuring out the problem, but we did have less hair (and
what remained was graying). No matter what configuration we used, the soft-
ware still ran for about a week and then locked up.

Next we tried removing different sections of code from the system. After a lot of
iterative testing, we tracked the problem down to a single component: Its presence
in the build heralded a lockup; its absence prevented it. Finally, progress!

Working out why this software component caused such problems wasn’t straight-
forward. It was layered on top of a third-party library, which itself was built against
a core OS library. We discovered that this core OS library had been upgraded to a
more recent version, but the third-party library had not been rebuilt. We’d been
continually linking against an inappropriate piece of code. While theoretically,
this shouldn’t have made a difference—the OS library change was supposedly
binary compatible—a rebuild of the third-party library fixed the problem for good.

Time to fix
The total process took about four months, elapsed time. It involved many people
on and off over that period, consumed lots of test resources, tied up many bits of
hardware, and caused more review meetings than you’d believe were possible.
As bugs go, this one had a nasty sting, and caused the company a lot of pain
(not to mention expense).

Lesson learned
Rebuild the whole software platform whenever any component changes to prevent
subtle version mismatches.

Finding Faul t 169

KEY CONCEPT When you fix a bug, check to see if the same mistake is lurking in related sections of
code. Exterminate the bug once and for all: Fix all occurences of the fault now.

Finally, try to learn from your mistake. We must learn, or else we will be
doomed to repeat the same errors for all eternity. Is it a simple programming
error you keep making or something more fundamental, like the incorrect
application of an algorithm?

KEY CONCEPT With each fault you fix, learn the lessons. How could you have prevented it? How
could you have discovered it more quickly?

Prevention

Anyone will tell you that “an ounce of prevention is worth a pound of cure.”
The best way to manage the population of bugs is to not introduce them.
Sadly I don’t think that we’ll ever completely reach this ideal. For as long as
programming involves problem solving, it will always be difficult—not only do
you have to solve the problem correctly, you have to understand the whole
problem fully in the first place. Despite this, careful defensive programming
can avoid many problems. Good programming is about discipline and atten-
tion to detail. Thorough testing will prevent faults from leaking out in your
software releases.

This section could be enormous, but all prevention advice boils down to
that one simple statement: Use your brain. Enough said.

Wasp Spray, Slug Repellent, Fly Paper . . .

Many useful debugging tools exist, and you’d be stupid not to take advantage
of them. Some are interactive, allowing you to inspect the code while it is
running. Others are noninteractive, often running as a code filter or parser
spitting out information about the program following analysis. Learn how
they work to immesurably reduce your debugging time.

Debugger

This is the best known debugging tool; the name belies its purpose. A
debugger is an interactive tool that allows you to view the internals of your
running program and poke around with it. You can follow the flow of control,
inspect the contents of variables, set breakpoints in the code for later inter-
ruption, and even run arbitrary sections of code at will.

Debuggers come in many shapes and sizes; some are command-line
tools, and others are graphical applications. There will be at least one avail-
able for your particular development platform (although the ubiquitous gdb
seems to be ported to every conceivable platform these days).

A debugger relies on symbols being left in your executable (these are
elements of the compiler’s internal information that are normally stripped
out at the final link stage)—it uses these to provide you with information
about function and variable names and the location of the source files.

170 Chapter 9

Although debuggers are rich and powerful tools, I believe that they are
often misused or overused, and can actually inhibit good debugging. Program-
mers easily become wrapped up chasing what the program is doing, getting
sidetracked by observing the wrong variable values, stepping into the wrong
functions, and they forget to step back and think about the problem they are
trying to solve. A little more thought about a failure may pinpoint the specific
fault far more quickly than it would take to hunt it down in a debugger.

KEY CONCEPT Use debuggers sparingly, when you encounter behavior you can’t explain. Don’t reach
for them routinely to use as an alternative to understanding how your code works.

Memory Access Validator
This interactive tool inspects your running program for memory leaks and
overruns. It can be remarkably useful, revealing reams of memory release
errors you never knew existed.

System Call Tracing
System call trace utilities, like Linux’s strace, show all the system calls issued
by an application. This is a good way to see how a program is interacting with
its environment and is particularly useful when it appears to be stalled on
some external activity that is not happening.

Core Dump
This is a Unix term for the OS-generated snapshot of a program that is
produced when it exits abnormally. The term derives from archaic machines
with ferrite core memory; the dump file is still called core today. It contains a
copy of the program’s memory when it died, the state of the CPU registers,
and the function call stack. The core dump can be loaded into an analyzer
(which is often the debugger) to reveal a great deal of useful information.

Logging
Logging facilities allow you to programmatically generate information about
your application as it runs. Rich logging systems allow you to assign priorities
to the output (e.g., debug, warning, fatal) and then filter out a particular
message level at run time. The program’s log gives a history of activity that
can help pinpoint the circumstances that triggered a failure.

Even without a good logging facility (either as part of the operating
environment or from a third-party library), you can achieve the same effect
by peppering your code with basic print statements on an ad hoc basis.
However, these printouts may interfere with normal program output, and
they all must be carefully removed in the production code release.

Sometimes even lowly print instructions aren’t available. Once, when
bringing up a new piece of hardware, the only diagnostic output I had was a
single eight-segment LED display and a scope attached to a spare system bus.
It’s impressive how much information you can shoehorn into a few lights
when you try!

Finding Faul t 171

There are downsides to logging: It can slow down program execution,
bloat the executable size, and even introduce bugs of its own. Some logging
systems, in which the crash destroys the buffer containing log messages, are
useless for trapping a program crash. Be sure you know how well your logging
mechanism behaves, and always send diagnostic print statements to an
unbuffered output stream.

Static Analyzer

This is a noninteractive tool that inspects your source code for potential prob-
lems. Many compilers perform basic static analysis when set to their maximum
warning level, but good analysis tools go far beyond this. Products exist to
detect problem code and any usage of undefined behavior or non portable
constructs, to identify dangerous programming practices, to provide code
metrics, to enforce coding standards, and to create automatic test harnesses.

Use of a static analysis tool can eradicate many errors before they have a
chance to bite—a handy safety net. It’s a pragmatic idea to use a static analyzer
from a different company than your compiler manufacturer—two companies
are less likely to have made the same set of assumptions or mistakes.

In a Nutshell
I can remember the exact instant when I realized that a

large part of my life from then on was going to be spent in
finding mistakes in my own programs.

—Maurice Wilkes

Like death and taxes, no matter how hard we try to avoid them, bugs happen.
Sure, you might be able to mitigate the effects of the first two by using every
sort of antiwrinkle cream available and manipulating your money in cunning
ways, but if you don’t know how to deal with faults when they stare you in the
face, your code is doomed.

Debugging is a skill you develop. It doesn’t rely on guesswork, but on
methodical detection and thoughtful repair.

Good programmers . . . Bad programmers . . .
Don’t cultivate bugs; they write
code carefully to prevent intro-
ducing them in the first place

Understand what their code does
and write careful tests to ensure
that it won’t be broken easily
Hunt for bugs methodically and
carefully, rather than rush in
headfirst without a battle plan
Know their limitations and will
ask others to help find a fault
when they’re stuck

Change code carefully, even
when making a “simple” repair

Don’t debug; they flail around,
sinking in a sea of bad code

Spend most of their life in a
debugger, figuring out what
their code is doing
Encounter a failure and try to
hide it—they actively avoid
debugging
Have unrealistic expectations of
the quality of their code and of
their ability to fix faults

“Fix” bugs by masking symp-
toms rather than tracing the
problem back to its real cause

172 Chapter 9

See Also

Chapter 1: On the Defensive
How to prevent bugs from ever gaining a foothold in your code.

Chapter 8: Testing Times
You can’t fix a fault until you know it exists. Thorough testing is a pre-
vention mechanism that stops faults from leaking out into your software
releases.

Chapter 20: A Review to a Kill
Code reviews help to pinpoint and eradicate bugs and can identify prob-
lem areas that would otherwise go undetected.

Finding Faul t 173

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 500.

Mull It Over
1. Is it best for faults to be fixed by the original programmer who wrote the

code? Or is the programmer who discovered the problem better placed
to make a fix?

2. How can you tell when to use a debugger and when to use your brain?

3. You should learn unfamiliar code before you start trying to find and fix
faults in it. But the time pressures of the software factory often dictate
that you can’t spend any serious time studying and understanding the
program you’re repairing. What’s the best way forward?

4. Describe good techniques to avoid memory-leak bugs.

5. When is it justifiable to have a quick stab at finding and fixing a fault,
rather than adopting a more methodical approach?

Getting Personal

1. How many debugging techniques/tools do you routinely use? What
others have you seen that you might find useful?

2. What are the common problems and pitfalls in your language(s) of
choice? How do you guard against these kinds of bugs in your own code?

3. Are most of the bugs that occur in your code sloppy programming
errors, or are they more subtle issues?

4. Do you know how to use a debugger on your platform? How routinely do
you use it? Describe how to do the following:

a. Produce a backtrace

b. Inspect variable values

c. Inspect value of fields within a structure

d. Run an arbitrary function

e. Swap thread contexts

T H E C O D E T H A T
J A C K B U I L T
Mechanisms to Turn Source Code

into Executable Code

10

In this chapter:

How do we build software?

The different program-
ming language models
of construction

The mechanisms of a good
build system

Building release versions

What you spend years building may be destroyed
overnight. Build anyway.

—Mother Teresa

The programmer (Geekus maximus) is usually found
in its natural habitat, hunched in the ethereal glow
of a monitor, entering profound combinations of
punctuation characters into a text editor. Occasion-
ally, this timid beast will leave the confines of its
lair to forage for coffee or pizza. Quickly it returns
to safety, continuing its ritual at the keyboard.

If typing language constructs was all there was
to programming, then our job would be a great
deal easier, although we’d risk being replaced by
the proverbial infinite number of monkeys with
their infinite number of text editors. Instead, we
must run our source code through a compiler (or
interpreter) to obtain something that might just
function as we intend it to. Invariably, it doesn’t.
Rinse and repeat.

176 Chapter 10

The task of converting carefully honed, high-level language into an
executable that can be distributed is commonly referred to as building code
(although you’ll find that this term is used pretty interchangeably with making
and compiling in most contexts).

This act of building is a fundamental part of what we do—we can’t develop
code without performing a build. It’s important, then, to understand what’s
involved and how your project’s build system works in order to have any con-
fidence in the code that’s generated. There are a lot of subtle issues at play
here, especially when a codebase reaches a reasonable size. Interestingly, almost
all programming textbooks will gloss over this kind of topic; they present
single-file example programs that don’t show any real build complexity.

Many developers rely on their IDE’s build system, but this doesn’t remove
the burden of understanding how it works. It’s very convenient to hit a button
and have all your code generated, but if you don’t know which options are
being passed to the C compiler or which level of instrumentation is left in your
object files, then you’re not really in control. The same holds true if you type
a single build instruction at a command prompt. You must understand what’s
going on under the hood to be able to repeatably perform reliable builds.

Language Barriers

There are several varieties of programming languages, each with its own
mechanical process of constructing an executable program from source
code. Some construction models are more complex than others, and each
has its strong and weak points.

There are three main mechanisms: interpreted languages, compiled
languages, and byte-compiled languages. These are shown in Figure 10-1.

Figure 10-1: Programing language build and execution methods

1. Interpreted languages
2. Compiled languages
3. Byte-compiled languages
4. JIT-compiled execution

= Use of a build tool
Byte compilerInterpreter

Compiler

JIT compiler

Interpreter

1 3

2

Source
code files

Executable

01010101

01010101

Output

Run

4 Byte code

The Code That Jack Bui l t 177

Interpreted Languages

Code written in interpreted languages does not need to go through a specific
build phase. After writing some code, you need only tell the interpreter where
it is; it parses and acts on the instructions in real time. Common interpreted
languages are Perl, Python, and JavaScript. The majority of OO languages
are interpreted, largely because they have been developed more recently as
computers have become better able to run interpreters at reasonable speeds.

D O W E R E A L L Y BUILD S O F T W A R E ?

Building is often used as a metaphor for programming, equating what we do to the
“traditional” building industry. There are many striking parallels, since both are con-
struction processes. We have, in fact, seen some sort of overlap and collaboration
between the two disciplines, as the software patterns movement (see “Design
Patterns” on page 255) learned from Christopher Alexander’s architectural work.
(Alexander 79)

It’s valuable to understand how far this metaphor stretches and how useful it really is.
No metaphor is perfect, after all. Although philosophical and a bit of an aside, it does
matter because the comparison will inevitably prejudice our approach to development.
The metaphor is helpful in places; elsewhere it’s less than perfect (even potentially
harmful).

The good
Like the physical construction process of a house, we start from nothing and build
by placing one layer of structure atop another. Before the construction begins, a
process of gathering requirements and careful design and architecture should have
been performed. While you can probably build a garden shed without much
planning, you’d be crazy to hope an unplanned skyscraper had a chance of
standing up; you need serious design and planning up front. This neatly parallels
our software construction.

The bad
The metaphor stretches thin in other areas, though. We can modify the foundational
layers of our software constructions more easily than the foundations of a house.
It’s far cheaper to tear down a software edifice than a physical one. This means
that the software world offers the opportunity to prototype and explore more often
than the physical world does.

Real World building mandates sound engineering principles; this is enshrined
in statute and enforced by public liability. Many software firms wouldn’t know an
engineering principle if it slapped them in the face.

The ugly
Our entire development procedure is akin to a physical construction process,
comprising system conception, design, implementation, and testing. But what
we’re actually thinking about in this chapter is subtly different—it revolves around
compilation and the procedures involved in this kind of building task. The metaphor’s
a bit out of kilter here too. Each time you take a fresh copy of some source code,
you “build” it, creating an executable program; that is what we’re looking at here.
Be clear about these two different uses of the term “build.”

The software build process follows its own rules—if you modify a function, you
must then perform a system rebuild. In contrast, you don’t have to rebuild the walls
in your house every time you paint the doors.

178 Chapter 10

The main advantage of interpreted languages is their speed of develop-
ment; with no intermediate compile stage; you can test each change very quickly.
You also gain platform independence—popular language interpreters run on
many different platforms. Your program will work wherever the interpreter
has been ported.

But interpreted programs have some disadvantages: They execute
more slowly than a compiled equivalent since the language run time has to
read, parse, interpret, and act on each individual code statement. That’s a lot
of work. Modern machines are so fast that this is only a problem for the most
computing-intensive applications. There are various interpreter technologies
that improve code performance: Some languages precompile the source file
before execution (slowing down startup time) or employ Just-In-Time (JIT)
compilation, compiling each function as it’s about to be run (slowing down
each function’s first call). For most programs, this isn’t an appreciable
overhead, and JIT-compiled performance is indistinguishable from native
compiled code.

Scripting languages are often interpreted. These languages support a very
fast development cycle by being very forgiving to questionable code (with lax
language rules and weak typing) and by avoiding complex features. Scripting
languages are often used as glue to invoke other utilities in more convenient
ways. Unix shell scripts, Windows batch files, and Tcl are examples of script-
ing languages.

Compiled Languages

Compiled languages employ a build toolchain to convert your source code
files into machine instructions that will execute natively on the target plat-
form. The target execution platform is usually the same as the development
platform, but embedded developers often build on a PC and target very differ-
ent machines, using a cross compiler. Large projects are compiled in several
stages; each individual source file is compiled into an intermediate object file,
and then these objects are linked into a final executable. This build model
is illustrated by the cake-baking metaphor, shown in Figure 10-2, where
individual ingredients (source files) are mixed (compiled) and finally
baked together (linked).

C and C++ are the most popular compiled languages, although most
structured languages are compiled. By its very nature, a compiled application
will run faster than its interpreted counterpart (at least, without JIT compila-
tion), although in practice, you won’t notice this—most applications are not
computing-intensive; they spend most of their time stalled and waiting for
user, disk, or network input.

The compiled language build procedure is more complex than an
interpreter, so there are more possible points of failure. An application has
to be recompiled for each target platform you want to run it on.1

1 Target platforms are distinguished by their processor types and the host operating systems.
Other factors, like the available peripheral hardware, may be important.

The Code That Jack Bui l t 179

Figure 10-2: Compilation confectionary

Byte-Compiled Languages

Byte-compiled languages sit halfway between interpreted and compiled lan-
guages. They involve a compilation step but don’t produce a native executable
program. Instead, the product is a file of byte code; a pseudo machine language
that can be executed by a virtual machine. Java and C# are common byte-
compiled languages.

A common misconception is that executing byte code is necessarily slower
than executing an equivalent compiled binary. This is not always so. A JIT
optimizer can make intelligent decisions about the code that may make it par-
ticularly fast (for example, tailoring itself to the exact hardware the program
is executing on).

As a compromise, byte compilers inherit some of the advantages and
disadvantages of the previous approaches. Byte code can be executed on any
platform the virtual machine has been ported to, so you gain portability
(although some language run times are more widely ported than others).

Making Mountains out of Molehills

The compiled (and byte-compiled) build models are the hardest to reason
about, so let’s investigate what compiling software entails. It’s shocking how
few newly trained programmers really understand this, so we’ll start from
first principles. If you already know this stuff, feel free to skip ahead.

180 Chapter 10

For a good understanding, it’s best to think about each manual step
rather than rely on your IDE to do all the rebuilding work for you. This
five-part story of a simple program’s development will explain:

1. You’re starting a new project, coded in C. It will solve all the ills of the
software development world and will usher in a new era of world peace.
However all you have at first is a single file containing main. You’ve got to
start somewhere.

It’s easy to build and run this single-file program—you just type
compiler main.c,2 and out pops an executable for you to run and test.
Simple.

2. The program grows. To help organize the parts, you split it into multiple
files, one per functional block. The build is still a simple process. Now
you type compiler main.c func1.c func2.c. The same executable program
pops out, leaving you to carry on testing as before. No sweat.

3. Soon, you recognize that some sections of the code are really individual
components with isolated concerns, almost like stand-alone libraries.
It would be easier to reason about these sections of code by placing them
in their own directories—grouping the similar sections of code together.
Now the project is beginning to spread out. The simple way to build this
new file structure is to compile each individual source file by hand, using
a compiler call that doesn’t build an executable, just intermediate object
files. Afterward, main.c is compiled and linked with all the intermediate
object files. To do this, you may also have to point the compiler at some
other directories’ include files. Now things are getting a little more
complex.

Whenever you change some code in one of the new directories, you
have to fire off the compile command in that directory and then issue the
final “link everything” command once more. Quite manual. Additionally,
if you change a header file that other directories use, all of those directories
have to be rebuilt too. If you forget, the linker will probably generate a
slew of cryptic complaints.

To eliminate this huge command-line burden, you can write a shell
script (or batch file in Windows) that walks around each directory and fires
off the requisite build commands. Having hidden all that messy work
and the tedious compiler parameters, you can get back to the serious
business of code development with the peace of mind that you don’t
have to memorize unnecessary build fluff.

4. Later on, these subdirectories become real stand-alone libraries; they are
also used in other projects. You tidy up the code so it’s a little friendlier
to use, add some good user-facing documentation, and then alter the
build commands to generate shared libraries rather than object files. This
requires some more changes to your build script, but it’s a relatively hid-
den change and isn’t too painful.

2 Obviously, you would replace compiler with the command to prod your C compiler—this is a
hypothetical example.

The Code That Jack Bui l t 181

5. Development carries on like this for some time. Code is added rapidly.
Many new subdirectories and sub-subdirectories are created. Although
the file structure seems pretty neat, build times become a problem—
each time you fire up the build script, it recompiles every source file,
even those that haven’t changed. The temptation here is to track
all changes yourself and to issue subdirectory builds by hand again
(perhaps by creating individual directory build scripts as a halfway
house). The project is now so large that it would be very easy to miss
some dependencies. This would lead to hard to resolve build errors,
or even subtler problems (e.g., you may encounter flaws that don’t
stop the link from working, but that do make the program behave
in incorrect ways).

Now your development is on the brink. You can’t trust the system
being used to build the code. It’s not safe. You can only really trust
the executable if you’ve done a complete cleanout and rebuilt from
scratch.

Enter the tool for just this occasion. The classic solution is a command-
line program imaginatively called make. (Feldman 78) It deals with all of the
intermediate object files and compilation rules for you and, most importantly,
tracks which files depend on which other files. You tell it what to do by writing
makefiles that provide the necessary build rules. It looks at the source file time-
stamps to check what has changed since you last performed a make, and then
it recompiles just those files, along with anything dependent on them. It’s a
more intelligent version of the scripts we wrote above, specifically tailored to
the task of compiling and recompiling software.

Over the years, many variants of the humble make have appeared,
these days many with pretty GUI façades. GNU Make is one of the most
widely used tools (it’s free and very flexible). If you haven’t been initiated
into the Cult of Make, “Make: A Tourist’s Guide” on page 183 explains its
basic operation.

There are many other build systems in common use. Look at SCons,
Ant, Nant, and Jam for examples. They are each tailored to a specific kind of
build environment (for example, Nant is used to build .NET projects) or for
a particular quality (many aim to simplfy the syntax of make, which is quite
baroque!).

Building Builds

In that sinking morass of software construction, we’ve seen some of the main
issues of a build procedure. Essentially, any software build process takes one
or more source files as input, and it spits some executable program out the
other end. It may even produce an entire release distribution, including
an executable, help files, an installer, and so on, all packaged neatly and
ready to be burned onto CD.

182 Chapter 10

Like the cumulative story from which I shamelessly pilfered this chapter’s
title, as our software develops and matures, the build process develops and
matures with it. Maybe yours didn’t start in as basic a state as the example
above, but build scaffolding tends to start simple and grow alongside the code
it builds. A large project often has a bewildering build process that requires
(but doesn’t necessarily always have) adequate documentation. We can see
that the act of compiling a single source file is at the lowest level of the build
food chain, and we will raise a tower of extra work upon this simple act.

T E R M S A N D C O N D I T I O N S

These terms comprise the main software construction terminology:

Source code
Source code is physically contained in the files that you write, and it usually occurs
in a high-level language. These language constructs can be converted into a
functioning program with the appropriate tools.

Compilation
Source code is converted into an executable in one of two ways. One is to compile
it into an executable program. The alternative is to interpret the source code in real
time—a language run time parses and acts on the source code as the program is run.

Build
This is a vague term, often used as a synonym for compile. Compilation is a
single construction step, whereas a build describes the entire construction process.
The term make is used in a similarly vague fashion; even worse, it is also the
name of a common software build tool.

Object code
Object code is held in an object file. It represents the compiled version of a file of
source code. Object code is not directly executable; it relies on other files of code
(most programs are made of more than one source file). An object file must be linked
with other objects to create an executable.

Library
A code library is akin to an object file—it is a collection of compiled code and not
itself a whole program. A library contains a cohesive collection of useful functionality
that can be incorporated into any program. A library can be static or dynamic.
The former is linked like an object file, whereas the latter is dynamically loaded
by the application when it is run.

Machine code
Some compilation steps produce machine code rather than object files. This is a
form of source code that represents the exact CPU instructions for a program.
Machine code is converted into real CPU instructions by an assembler, which is
why it’s also known as assembly code.

Some low-level OS libraries and embedded programs are written in assembly
language, but we generally work in high-level languages and leave assembly to
the internal workings of the compiler.

Linking
The linker combines one or more object files (and perhaps libraries) into a final
executable or into a partially linked code library.

Executable
The outcome of a compile or link step. This is a self-contained program that can
be run directly on your computer.

The Code That Jack Bui l t 183

A build process is not just about compiling source files. It may also
involve preparing some text registration files from templates, creating
internationalized strings for the UI, or converting graphics files from their
source resolution to some destination format. Practically all such activities
can hang off a build system and be run in the normal course of a build.
This does presume that all the tools are scriptable—that they can be run
by some other program (e.g., by make).

It’s important to consider your build system a part of the entire source
tree, not something separate. Makefiles are kept under revision control along-
side other source files, are maintained alongside the source, and are as much
a part of the program as any other source file. They’re essential—you can’t
create the application without them.

KEY CONCEPT Consider the build system a part of the source tree, and maintain the two together. They
are intimately entwined.

M A K E : A T O U R I S T ’ S G U I D E

Make is one of the most widely used build systems in the programming world. Here
is a whirlwind tour of what it is and what it can do.

Make is driven by makefiles, which usually reside in directories beside the source
code they build. These makefiles contain rules describing how to build the application.
Each rule describes a target (that is, a program or intermediate library to build), details
what it depends on, and how to create it. Comments in the file are prefixed by #.
Here’s a short example (using the hypothetical compiler program to build source):

This first rule says ".o files can be built from
.c files and here's the command to do it." $< and
$@ are magic names for the source and destination
file. Yes, make's syntax can be a little cryptic...
%.o: %.c

compiler -object $@ $<

This rule says "the program myapp is built from these
three .o files, and here's how to link them together"
myapp: main.o func1.o func2.o

linker -output $@ main.o func1.o func2.o

That’s the general idea. If you save this with the magic filename Makefile and
then issue the make myapp command, it will be loaded and parsed. Since myapp
depends on some .o files, these will first be built from their respective .c files using
the rule provided. Then the linker command will be run to create the application.

There are many ways to neaten this up so that it’s more manageable. For example,
makefiles can define variables; the myapp rule looks nicer like this:

OBJECT_FILES=main.o func1.o func2.o
myapp: $(OBJECT_FILES)

linker -output $@ $(OBJECT_FILES)

A deeper description of the nuts and bolts of make usage is outside the scope of
this book, but it’s something every developer ought to know. There are many more
useful features available. GUI build tools are essentially wrappers around this kind of
functionality, hiding the detail of writing makefiles. They are generally easier to set up,
but can be a hindrance when you want to do some advanced build configuration.

184 Chapter 10

What Makes a Good Build System?

Following are a few important qualities of a good build system.

Simplicity
The build system must be accessible to all programmers, not just the build
gurus. Every developer must be able to perform a build, or he can’t get any work
done. If a build system is too complicated, it’s practically useless. It must be:

Simple to learn
That is, a new developer should be able to join the team and quickly
understand how to build software. He won’t be productive until he’s
mastered the build procedure. I’ve worked in companies where it was
considered a rite of passage to figure out how the build works and to per-
form one. That is not just an unhelpful attitude, it is dangerous—what
happens when everyone who really knows how to build the code leaves?

As software grows, it becomes larger and harder to understand. As the
build system grows alongside it, it becomes larger and harder to under-
stand. Builds tend to become more clever and more cryptic as new facilities
are introduced. Resist complexity.

Simple to set up
Setting up a build means:

Taking a clean PC (with just a fresh copy of the host OS)

Installing all the necessary software (compilers, translators, source
control, installers, plus patches/service packs)

Installing all the necessary libraries (noting the correct versions)

Creating the correct environment to perform a build in (this may
involve setting up directory structures, assigning environment
variables, getting the correct tool licenses, and so on)

Without clear instructions for setup, how can you be sure that your
build is a repeatable procedure?

Unsurprising
It’s best to use common, well-known build tools. They are what people
expect and know how to use, so the learning curve is less steep. Complex
build tools that do things no one really understands are worrying.3

Uniformity
It’s essential that everyone uses the same build system. Otherwise they’re not
building the same software. Different build mechanisms may seem equivalent—
I use my IDE while he uses makefiles—but you’re increasing the maintenance

3 I have an built-in distrust of anything more clever than GNU Make, but that probably says
more about me than the other clever make tools. GNU Make is quite clever enough, thank you!

The Code That Jack Bui l t 185

effort and the potential for error. Subtle differences can creep in—for example,
compiler options may not be the same, resulting in a different executable.

This dovetails with the requirement to maintain the build system alongside
the source tree. If the build system physically is a part of the code, then it can’t
be ignored or avoided.

KEY CONCEPT Every programmer on a project must use the same build environment. Otherwise you’re
not all building the same software.

This may seem blindingly obvious, but it’s incredibly easy to get wrong.
Even if you are all happily sharing makefiles, other differences can slip past
unnoticed—mismatched versions of libraries, tools, or the build scripts can
all lead to a different program being built.

Repeatable and Reliable

Builds must be deterministic and reliable. You should be able to determine
the set of input files easily before performing the build. Performing two
separate builds on the same set of files should give you exactly the same
executable both times—the build should be repeatable.

KEY CONCEPT A good build system allows you to repeatedly create physically identical binary files.

You can then mark this set of source files in the revision control system as
a particular version of the software (or archive the files to a backup store),
and perform many identical builds at any time in the future.

This is crucial—an important customer may find a significant bug in an
old revision of software, and if you can’t get back to that version and generate
the exact same program, you may never be able to reproduce the failure, let
alone find the fault.

KEY CONCEPT You must be able to pull out a source tree from three years ago and rebuild it correctly.

A build process that spits out an unreproducible binary is worrying. If what
comes out of a build depends on the lunar cycle, the world becomes a hard
place to reason about. This means that gratuitous use of C’s __DATE__ or other
potentially changeable information should be kept to an absolute minimum
in the source files.

The build must work perfectly all the time—it must be reliable. If it falls
over every other day or occasionally produces a broken binary, then it is worse
than useless—it’s dangerous. How can you be sure that you’re testing a good
binary? How can you be sure that your company is releasing an acceptable
product? Problems with the build system really hamper development.

The build should be almost invisible; the only thing you need to worry
about is how to turn the handle, and you should be assured that the right
things will come out at the end.

186 Chapter 10

Atomic

The ideal build system takes undoctored virgin source and compiles it all at
once, with no human intervention. There should be no special steps you
have to go through to perform the build. You should not have to fire up
another application halfway through and prod a file. You shouldn’t even
need to run more than one command to perform the build. This ensures
that no information is locked away in your head, just waiting to be lost. All the
build magic is documented in a reliable place—the build script itself. The build
is always repeatable. It’s safe.

KEY CONCEPT A good build is presented as a single step. You need only push a button or issue one
command.

If you can’t reach this ideal (and it’s not at all unreasonable), then the less
manual a build is, the better. All of the manual steps need full documentation.
It is acceptable (in fact, it’s advisable) to break the procedure up into these
separate parts:

1. Obtain the virgin source.

2. Build it.

3. Create the release distribution from this.

See how the notion of building the code is separate from obtaining it—the
same build instruction could potentially create any version of the software,
depending on the version of source you start with. Packaging the program is
also a separate step; for development work, you don’t always want to waste
time creating a full install package.

A W A R S T O R Y

Repeatable builds are essential; you must be able to regenerate any released version
of your software. You’ll get into trouble otherwise. I once worked for a company that
struggled with this exact problem.

They had made a live change to the code on a customer’s site and did not
replicate the change in their master copy under version control. The customer was
no longer running an “official” software release. Later on, when the customer
found a critical bug, the programmers couldn’t reproduce it. But of course no one
could figure out why, because the on-site tweak had been long forgotten.

Why did they do this? Because it was much, much easier to make a quick-and-
dirty change than to do it properly (i.e., fix the bug in the main codebase, test it,
make an official software release, ship it to the customer, and then get the appropriate
approval and sign-off before installation). When your client’s business depends on
your software and its entire production line is waiting for you to fix a bug, the pressure
for a dirty hack is enormous.

The Code That Jack Bui l t 187

Coping with Errors

At the end of development, when the dust settles over finished code, there
will be no build errors. But during development you’ll be breaking things all
over the place. The build system has to cope with this and should lend a
hand to deal with it.

Your build system should not continue after an error. It should stop and
leave you with no doubt about what broke and where it can be fixed.
If the build process continues, other problems will almost certainly result
as a consequence of that first skipped error. These will be very hard to
understand. For your own sanity, don’t break this rule!

The build system should remove any incomplete objects when a build
step fails. Otherwise the next time you run a build, it will assume that file
is actually intact and pick up after it. This will cause much pain later on;
errors that magically hide themselves are great fun.

Builds should not be noisy. This isn’t determined so much by the build
process as the source code that you’ve written.4 If your code generates
compiler warnings, then there is something in it that you should be looking
into. Persuade the compiler to be quiet by writing better code. Copious
silly warnings can cloak the more insidious messages that you should be
reading.

For maximum peace of mind, build with all compiler warnings
enabled—switching them off does not fix the problem; it hides it.

The only real way to follow this advice is from the very start: Think about
the build process at the beginning of your project. Trying to add the flag
that says all warnings enabled when you’ve already written a lot of code will
result in an instant flood of warnings. The overwhelmingly likely response is
to quickly turn the flag off again and pretend it never happened. Anything
for an easy life. You really have to start as you mean to go on.

The Mechanics

Beyond those quality concerns are the practicalities of a build system.
To discuss this in concrete terms, we’ll talk about make, a specific build
system, and makefiles a lot—don’t worry too much; barring syntactic
differences, other build systems follow similar conventions (even the
pretty graphical ones).

Choice of Targets

Makefiles define rules that describe how to build targets. (Remember: Other
build systems work in a very similar manner, even if the terminology is subtly
different.) The system is clever enough to infer all intermediate targets and

4 Actually, it could be—you can disable compiler warnings to remove the noise. This is the wrong
way to solve the problem.

188 Chapter 10

build those along the way. A single makefile can contain multiple targets.
This allows you to use one build system to generate several different outputs,
such as:

Distinct programs (commonly seen when two programs have some
common code components and so live in the build source tree)

Different target platforms to build your application for (say a Windows/
Apple/Linux version, or a desktop/PDA release)

Product variants (the full release build or a demo version with save/print
disabled)

The development build (with debugging support enabled, logging
switched on, and assertions made fatal)

Differing levels of build (build just the internal libraries, build the appli-
cation, build an entire distribution)

You might even require some combination of these targets, say a
“demonstration PDA” build.5 You can design your source tree so that each
of these targets can be built from the same place. Rather than type just make,
you might type make desktop or make pda, and an appropriate executable will
come out the other end. (The name following make is the rule it should
attempt to build.)

There is a huge benefit in doing this rather than having separate source
trees for each target. Maintaining several source trees across which most of the
code is identical would be an intense and error-prone task. You could easily
forget to apply one of your modifications to all copies of the code.6

So how do these target rules differ? The actual differences can boil down
to a number of things:

Different files being built (e.g., save_release.c or save_demo.c)

Different macro definitions being passed through to the compiler (e.g.,
the compiler predefines a DEMO_VERSION macro to select appropriate
#ifdefed code in save.c)

Different compiler options being used (e.g., to enable debugging support)

Different tool sets or environments being selected for building (e.g., using
the correct compiler for the target platform)

While you could have any number of targets for all sorts of minor
differences, it opens the possibility of making your build system complex and
unwieldy. Some selections can be moved to build configuration options. Some
configuration can actually be done at code install time, or even at run time.
This is preferable if it reduces the number of different builds that exist and
require testing.

5 In this case, the mechanism changes: You can only build one target at a time, so the “demo-ness”
would become a build configuration rather than a target. A later section discusses configurations.
6 Note how this dangerous approach is different from maintaining multiple branches of a project
in a revision control system. Revision control systems provide a mechanism to merge changes across
branches and to easily compare branches for differences.

The Code That Jack Bui l t 189

Housekeeping

For every target rule you define, there should be a corresponding clean rule
that undoes all the build operations—removing the program executable,
intermediate library, object files, and any other files created during the build.
The source tree should revert to its original virgin state—it’s relatively easy to
verify that it does.7

This implies that a build system that physically alters the source files is
nasty—how can you easily revert from these changes? You should instead use
the original files as templates, and send modifications to a different output file.

Clean rules are a good housekeeping convention. They allow you to easily
sweep everything away and rebuild from scratch when you think that a build
gremlin is catching up to you.

KEY CONCEPT For every build rule, have a corresponding clean rule that undoes the action.

Dependencies
How does a build system know which files depend on which others? Short of
ESP, it’s a difficult task, and so we will elicit help from the people who do know.

You provide dependency information in your makefile rules: a recipe in
make’s preferred format. Make can build and follow the tree of dependencies,
inspect each file’s timestamp, and work out which parts need to be rebuilt
after any modification.

This is simple enough for an executable build rule—you just need to
specify which object files and libraries comprise it. You don’t, however, want
to laboriously specify dependency information for every single source file; no
doubt there are many #included files, which themselves #include many others.
Quite a list. It would be really easy to type incorrectly at first and very likely to
become out of date; you could easily add a new #include and forget to alter
the makefile correspondingly.

7 Just do a build, do a clean, and then check the tree for differences from the start state.

L I F E A F T E R M A K E

A lot of the issues we’re investigating here are quite specific to the C-style develop-
ment cycle, where a compiler generates object code and libraries from source files,
and these are linked into a final executable. Some languages follow a different model.
Java simplifies the build process greatly; the javac compiler takes over the role of
make, performing dependency checks automatically. It locks you down more, enforcing
a particular build tree structure, but makes your life easier by doing so.

Simple Java programs don’t need an elaborate build system; one javac command
can safely rebuild the world. However, a reasonably large Java project often will
employ make. We’ve seen that there is more to a build than just compiling source.
You need a mechanism to prepare supporting files, to run automated tests, and to
create the final distribution. Make is a good framework for this to hang off of, so it
isn’t entirely redundant.

190 Chapter 10

Who does know about all this dependency information? The compiler
does—it’s the one component in the build system that actually traces all source
file dependencies. Helpfully, all good compilers have an option that causes
them to spit out dependency information. The trick is to write a make rule that
gathers this dependency information, places it in an appropriately formatted
file, and then includes that in the dependency tree.

Automated Builds
If your build procedure is atomic, a simple matter of firing off one command,
you can easily set up overnight builds of the entire source tree.8 A regular over-
night build takes the code that has been produced during the day and applies
the full build procedure to it. This is a remarkably helpful practice with many
benefits:

Every morning there’s a fresh copy of the state of the art. Developers
often spend the day in their own little worlds, forgetting to synchronize
their code with colleagues’ check-ins. This technique provides a painless
integration test, checking that everything knits together properly.
It identifies build problems early on, with no extra work on your part. When
you sit down at your desk in the morning, coffee in hand, you can see
whether the source tree is in a buildable state. You’ll know immediately
where to start fixing, rather than wait for your own build to complete.
You can add automated regression and stress tests to the overnight build.
This is a good way to sanity-test code before anyone ever tries to use it.
During the day, you may not have time to run the full test suite with every
build—this ensures that it never gets overlooked. It’s a potent valida-
tion mechanism.
The overnight build can be used as a yardstick of project progress. Publish
the overnight test results and, as more and more tests pass, the developers
gain a sense of achievement.
You can make actual product releases from the overnight build. You’ll
trust this build to have not suffered from command-typing mistakes,
misconfiguration, or other human errors.
It proves that you really know how to build the software and that the
build procedure really is atomic. Without running automatic builds, how
do you know that your build process doesn’t rely on some other activity,
like one of the developers cleaning away the old build tree first?

KEY CONCEPT Establish an automatic build of your software. Use it to ensure that your codebase is in
a consistent state.

Automated builds are especially good for big systems (where a build of
everything may take hours and hours) or for systems with many people working
alongside one another (where each developer may not have a copy of the
absolute latest system source at any given point).

8 Time-delayed commands can be set up in Unix using the cron utility or in Windows using the
Scheduled Tasks facility.

The Code That Jack Bui l t 191

A good practice with nightly builds is to capture the build log (the output
of the build procedure) and make it publicly accessible. Perhaps even email
the results around when the build fails, to highlight the problem. It’s impor-
tant to know what happened each time a build ran, especially when something
goes wrong.

The overnight build becomes a central heartbeat of project development.
The code is developing healthfully and happily if the builds are successful.
A great rule enforced on many projects is: Don’t break anything in the source
tree—checking in code that breaks during the nightly build is punishable by
something extremely painful and unpleasant (preferably involving public
humiliation). A second rule is this: If the build breaks, it’s everyone’s problem. If the
overnight build fails, all developers must put down their down tools until it
works again.

You can take this automatic build procedure to the extreme, and use
tools that perform a build whenever the source repository is altered. This is
known as continuous integration and is a powerful way to check that your code
is consistent and buildable at any point in time.

Build Configuration

A good build system allows you to configure certain aspects on a per-build
basis. This could be via options in your IDE, but makefiles usually achieve
this by defining variables. Variables can be picked up from a number of places:

Inherited from the calling environment

Set on make’s command line

Defined explicitly within a makefile

Configuration variables are commonly used in the following ways:

A PROJECT_ROOT variable is defined, pointing to the root of the build tree.
This allows the build system to know where to look for other files—for
example, to establish paths for header files. You really don’t want to
hard-code the location of the build tree on your development machine.
If you did, you could never move it around, and you wouldn’t be able to
manage two build trees at the same time.

Other variables may specify where to find each external library (so you
can point the build at different versions for testing purposes).

They may specify the kind of build to produce (development or release, for
example).

The command to invoke each build tool (compiler, linker, etc.) can
be placed into a variable. This makes it easy to test a different set of
command-line parameters, or to employ a different vendor’s tool.

You can put default values into the makefile. This serves two purposes:
it documents all the available options and means you don’t have to provide
values for every config option all the time.

192 Chapter 10

Recursive Make

Source code naturally nests into directories. If all the files in a large project
got dumped into one directory, things would rapidly become unmanageable.
Since the source tree nests, the build system has to nest too. Far from making
life more complex, accommodating this nesting can make the build system
more flexible.

A makefile in one directory can invoke the makefiles in subordinate
directories by firing off another make command, just as it would invoke a
compiler. This is a common technique known as recursive make; the build
system that recurses into each subdirectory builds the components in there
and returns to build the components in this directory. In this way, you can
type make from the project root directory to build the whole codebase, or within
a subcomponent’s directory for a partial build. Whatever you want to be built
is built.

Recursive make helps to compartmentalize and manage build components,
but introduces some problems of its own. It is slow (as it fires off many child
processes to traverse into subdirectories), and since each child-make only sees
its portion of the entire build tree, it can get dependency information incorrect.
Be wary of recursive make if you see it—prefer to make non-recursive build
systems. (For more on this, see the answer to this chapter’s “Mull It Over”
question 7 on page 506.)

Please Release Me

Some builds are particularly important and require more care in their prepara-
tion. These are release builds, builds that are made with a special purpose, rather
than in the course of code development. A release could be one of a num-
ber of exciting events: a beta version, the first official product release, or a
maintenance release. It may also be an internal development milestone or
an interim release to the test department; these builds won’t leave the company
but are held in as high regard as external releases, almost a fire drill for an
official release.

If the build system is carefully crafted, there shouldn’t be any extra prep-
aration needed for a release build. However, these important builds must be
handled thoughtfully, so we need to make sure that no build issues compromise
the final executable. The key concerns with release builds are:

Release builds should always come from a virgin source tree, not from
someone’s half-built development tree. Start from scratch. We need to
know the exact state of the source files being built. Do not trust the files
on Joe’s computer to be in a “good enough” state.

Prior to the build itself, a specific step identifies which source code and
which particular file versions to include in this release. It then marks them
in some manner, usually by tagging or labeling them in the source control
system. The release’s file set is now retrievable at any later point.

The Code That Jack Bui l t 193

Each release build has a particular name you identify it by, sometimes a
cool code name, sometimes just a build number. This should tally with
the source control label the code was marked with. If you and I agree
that we’re talking about “build five” when investigating a fault, then we’re
working in harmony. If you are working with build five, but I found a fault
in build six, how do we know we’ll see the same issues?

KEY CONCEPT Release builds are always made from virgin source. Ensure that these pristine sources
can always be retrieved from source control or a backup archive in the future.

There may be some extra packaging stage after the code has been built,
like preparing a CD, adding documentation, integrating licensing infor-
mation, or whatever. This step should also be automated.

T H E (S O U R C E) T R E E O F K N O W L E D G E

All code lives in a source tree; a file structure housing directories and source files. The
structure of this tree affects how easy the code is to work with. A messy glob of files
is far harder to understand than a neatly arranged hierarchy. We can use the source
file structure to our advantage, making development easier. This tree structure goes
hand-in-hand with the build system, since the build system physically is a part of
the source tree (hence the term build tree is used interchangeably with source tree).
A modification to one requires meddling with the other.

We divide code into separate modules, libraries, and applications. A good
source tree reflects that structure. The code composition should map neatly into
files, using directories as a logical grouping mechanism. This helps to manage
development with multiple programmers—each person will probably be working in
his own self-contained directory, removed from other people’s work by a reasonably
safe distance.

Libraries
Place each library in its own self-contained directory. Use the tree structure to
differentiate the library interface (the public header files) from private implementation
details. It is a good idea to place the public API within a directory on the compiler’s
lookup path and keep any private headers out of the way.

Applications
Structuring is easier; there are no public files as such, just a collection of source
files that link to libraries. Even so, wrap each application in its own directory to
make its bounds clear. If the application is large enough to have distinct constituent
parts, they should be separated into subdirectories, or even libraries, and built
separately. Make the build tree reflect the program structure.

Third-party code
The source tree should clearly mark your own code from third-party work. Projects
increasingly rely on others’ code; common libraries are brought in from outside
(from commercial vendors, free software projects, or even other parts of the
company). These external files should be kept separate.

Other stuff
Program documentation can live in the source tree. Put it in directories beside the
code it refers to. The same holds for graphics and any other supporting files.

194 Chapter 10

Each release should be archived and stored for future reference.
Obviously you store a copy of the final built executable in whatever
form it ships to the user (the exact shipped Zip file, self-extracting
EXE, or whatever). You should also capture the final state of the build
tree if possible, but often this will be enormous and impractical.

At the very least, the build log, the exact sequence of commands issued
and the response generated, should be retained. These logs allow you to
look back over old builds and see which compiler errors were overlooked
or exactly what happened during the build. Sometimes this can give a clue
into a fault reported in a years-old version of product that has long since
been discontinued.

Each release has a release note that describes what has changed. It may
or may not be a customer-facing document, depending on exactly what
you’re building. These notes should also be archived. Usually the release
note describes the changes since the last release and contains updates
subsequent to the printing of the official documentation, any known
issues, upgrade instructions, and so on. It is an important part of the
release procedure and shouldn’t be overlooked.

When performing release builds, you must select the correct set of com-
piler switches—they might differ from those used in development builds.
Debugging support gets switched off, for example. You also need to choose
what level of code optimization is appropriate. Optimization may be
disabled for development builds since the optimizer often takes a par-
ticularly long time to execute. This can become unbearable on very large
build trees. However, ramping the optimizer up to warp speed nine may
expose compiler bugs that break your code; you have to carefully choose
(and test) a level.

If you use different sets of compiler options for development and
release builds, beware. You must test the release builds regularly, long
before a deadline approaches. Aim to minimize the differences between
release and development builds.

KEY CONCEPT Ensure that you test the release configuration of your application, not just the develop-
ment builds. Subtle differences may adversely affect the code’s behavior.

Since creating a release build is a relatively involved task and is so important
to get right, responsibility is usually delegated to a nominated team member
(perhaps one of the coders, perhaps someone in QA). That person produces
all the release builds for the project to make sure that each build is of the same
high quality. Release builds are as much about procedure as they are about
the build system.

Jack-of-All-Trades, Buildmaster Of?

Many organizations employ a specific person to fulfill a build engineer role,
often known as the buildmaster. This person’s job is to maintain the build
system. The role may also involve planning and managing release schedules, or
it may be purely technical. The buildmaster knows the build system intimately.

The Code That Jack Bui l t 195

He or she probably sets it up, adds new targets as required, maintains the over-
night build scripts, and so on. The buildmaster also owns the build system
documentation, and probably administers the source control system.

The buildmaster performs the release builds, and for this reason is often
heavily involved with tracking component stability. He or she is charged with
ensuring the reliability and safety of the release process.

The buildmaster is not always a specific full-time position; sometimes
a programmer will double in this task.

In a Nutshell

It is easier to pull down than to build up.
---Latin proverb

On the face of it, building software is easy if you have the right tools. But you
have to know how to use the tools properly. The quality of your build system
is paramount; without a safe, reliable build process, you can’t realistically
develop solid code. Producing trustworthy release builds for production
is an even more involved matter—it requires a thorough approach and a
well-defined procedure. It is important to have an understanding of what’s
going on when you fire off a build, even if you don’t have to alter the build
system every day.

Performing good builds is not a straightforward task; our jobs are safe
from the proverbial infinite number of monkeys. They’re too busy arguing
about which of their infinite number of text editors is the better one, anyway.

See Also

Chapter 9: Finding Fault
Describes how to deal with build errors.

Chapter 18: Practicing Safe Source
The build tree is held in a source control system, and the two are
intimately linked.

Good programmers . . . Bad programmers . . .

Understand how their build
system works, how to use it, and
how to extend it

Craft simple, atomic build
systems, and maintain them
alongside the source code

Automate as many build
activities as possible

Use overnight builds to catch
integration problems

Ignore build system mechanics,
then get caught by silly build
problems

Don’t care how unsafe and unre-
liable their build system is

Expect newcomers to pick up
their baroque build procedure
in an almost adversarial manner

Create thrown-together release
builds without following a
defined release procedure

196 Chapter 10

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 502.

Mull It Over

1. Why should people with nice integrated development environments
worry about using a command-line make utility, when they can just hit
a single button to build their project?

2. Why is it important to treat the extraction of source code as a separate
step from building it?

3. Where should the intermediate files from construction steps (e.g., object
files) be put?

4. If you add an automated test suite to the build system, should it run auto-
matically after the software is built, or must you fire a separate command
to invoke the tests?

5. Should the overnight build be a debug or release build?

6. Write a make rule to automatically generate dependency information
from your compiler. Show how to use this information in the makefile.

7. Recursive make is a popular method of creating a modular build system
spanning several directories. However, it is fundamentally flawed.
Describe its problems and suggest alternatives.

Getting Personal

1. Do you know how to perform different types of compilation using your
build system? How can you build a debug or release version of the appli-
cation from the same sources, with the same makefiles?

The Code That Jack Bui l t 197

2. How good is your current project’s build process? Does it rate well
against the characteristics in this chapter? How could you improve it?
How easy is it to:

a. Add a new file to a library?

b. Add a new directory of code?

c. Move or rename a file of code?

d. Add a different build configuration (say, a demo build)?

e. Build two configurations in one copy of the source tree without
doing a clean in between?

3. Have you ever created a build system from scratch? What drove you to its
particular design?

4. Everyone suffers from flaws in a build system from time to time. When
programming a build script, you’re as likely to introduce bugs as you are
when programming real code.

What kinds of build errors have you been bitten by, and how could
you fix, or even prevent, them?

T H E N E E D F O R
S P E E D

Optimizing Programs and
Writing Efficient Code

11

In this chapter:

Why efficient code matters

Designing efficient code

Improving the performance
of existing code

There is more to life than increasing its speed.
—Mahatma Gandhi

We live in a fast food culture. Not only must our
dinner arrive yesterday; our car should be fast
and our entertainment instant. Our code should
also run like lightning. I want my result. And I
want it now.

Ironically, writing fast programs takes a
long time.

Optimization is a spectre hanging over
software development, as renowned computer
scientist W.A. Wulf observed: “More computing
sins are committed in the name of efficiency
(without necessarily achieving it) than for any
other single reason—including blind stupidity.”
(Wulf 72)

200 Chapter 11

Optimization is a well-worn subject, on which everyone has offered their
two cents’ worth, and the same advice has been served time and time again.
But despite this, a lot of code is still not developed sensibly. Optimization
seems like a good idea, but programmers get it wrong all too often: They get
sidetracked by the lure of efficiency, they write bad code in the name of
performance, they optimize when it’s really not necessary, or they apply the
wrong kind of optimizations.

In this chapter, we’ll address this. We’ll tread the familiar ground, but
look out for some new views on the way. Don’t worry—if the subject is
optimization, it shouldn’t take too long. . . .

What Is Optimization?

The word optimization purely means to make something better, to improve it.
In our world, it’s generally taken to mean “making code run faster,” measuring
a program’s performance against the clock. But this is only a part of the
picture. Different programs have different requirements; what’s “better” for
one may not be “better” for another. Software optimization may actually mean
any of the following:

Speeding up program execution

Decreasing executable size

Improving code quality

Increasing output accuracy

Minimizing startup time

Increasing data throughput (not necessarily the same as execution speed)

Decreasing storage overhead (i.e., database size)

Conventional optimization wisdom is summed up by M.A. Jackson’s
infamous laws of optimization:

1. Don’t do it.

2. (For experts only) Don’t do it yet.

That is, you should avoid optimization at all costs. Ignore it at first, and
only consider it at the end of development when your code is not running
fast enough. This is a simplistic viewpoint—accurate to a point, but potentially
misleading and harmful. Performance is really a valid consideration right
from the humble beginnings of development, before a single line of code
has been written.

Code performance is determined by a number of factors, including:

The execution platform

The deployment or installation configuration

Architectural software decisions

Low-level module design

The Need for Speed 201

Legacy artifacts (like the need to interoperate with older parts of the
system)

The quality of each line of source code

Some of these are fundamental to the software system as a whole, and an
efficiency problem there won’t be easy to rectify once the program has been
written. Notice how little impact individual lines of code have; there is so
much more that affects performance. We must manage performance issues
at every step of the development process and deal with any problems as they
arise. In a sense, optimization (while not a specific scheduled activity) is an
ongoing concern through all stages of development.

KEY CONCEPT Think about the performance of your program from the very start—do not ignore it,
hoping to make quick fixes at the end of development.

But don’t use this as an excuse to write tortured code based on your
notion of what is fast or not. Programmers’ gut feelings for where bottlenecks
lie are seldom right, no matter how experienced they are. In the following
sections, we’ll see practical solutions to this code-writing dilemma.

But first, the golden rule. Before you consider a stint of code optimization,
you must bear this advice in mind:

KEY CONCEPT Correct code is far more important than fast code. There’s no point in arriving
quickly at the wrong answer.

You should spend more time and effort proving that your code is correct
than making it fast. Any later optimization must not break this correctness.

What Makes Code Suboptimal?

In order to improve our code, we have to know the things that will slow it
down, bloat it, or degrade its performance. Later on, this will help us to
determine some code optimization techniques. At this stage, it’s helpful to
appreciate what we’re fighting against.

A W A R S T O R Y

I once discovered that a module I’d written was running unbelievably slowly. I profiled
it and tracked the problem down to a single line of code. It was called frequently
and appended a single element to a buffer.

Upon inspection, the buffer (which I was given and hadn’t written) was expanding
itself by a single element each time it got full! In other words: Every single append
was allocating, copying, and deallocating the entire buffer. Ouch. Needless to say,
I was not expecting this behavior.

This helps to show how we get suboptimal programs: by growth. Few people
willfully attempt to write an ambling program. As we glue software components into
a larger system, we can easily make assumptions about the performance character-
istics of the code and end up with a nasty shock.

202 Chapter 11

Complexity
Unnecessary complexity is a killer. The more work there is to do, the
more slowly the code will run. Reducing the amount of work or break-
ing it up into a different set of simpler, faster tasks can greatly enhance
performance.

Indirection
This is touted as the solution to all known programming problems, sum-
marized by the infamous programmer maxim: Every problem can be solved
by an extra level of indirection. But indirection is also blamed for a lot of
slow code. This criticism is often leveled by old-school procedural pro-
grammers, aimed at modern OO designs.

Repetition
Repetition can often be avoided and will inevitably ruin code perfor-
mance. Repetition can often be avoided and will inevitably ruin code
performance. It comes in many guises—for example, failing to cache
the results of expensive calculations or of remote procedure calls.
Every time you recompute, you waste precious efficiency. Repeated
code sections unnecessarily extend executable size.

Bad design
It’s inevitable: Bad design will lead to bad code. For example, placing
related units far away from each other (across module boundaries, for
example) will make their interaction slow. Bad design can lead to the
most fundamental, the most subtle, and the most difficult performance
problems.

I/O
A program’s communication with the outside world—its input and out-
put—is a remarkably common bottleneck. A program whose execution is
blocked waiting for input or output (to and from the user, the disk, or a
network connection) is bound to perform badly.

This list is nowhere near exhaustive, but it gives us a good idea of what to
think about as we investigate how to write optimal code.

Why Not Optimize?

Historically, optimization was a crucial skill, since early computers ran very,
very slowly. Getting a program to complete in anything like reasonable time
required a lot of skill and the hand-honing of individual machine instructions.
That skill is not so important these days; the personal computer revolution
has changed the face of software development. We often have a surplus of
computational power, quite the reverse of the days of yore. It might seem
that optimization doesn’t really matter anymore.

The Need for Speed 203

Well, not quite. The software factory still throws us situations requiring
high-performance code, and if you’re not careful, you’ll need a mad optimi-
zation dash at the last minute. But it is preferable to avoid optimizing code
if at all possible. Optimization has a lot of downsides.

There’s always a price to pay for more speed. Optimizing code is the act
of trading one desirable quality for another. Some aspect of the code will
suffer. Done well, the (correctly identified) more desirable quality is
enhanced. These trade-offs are the top reasons to avoid optimizing code:

Loss of readability
It’s rare for optimized code to read as clearly as its slower counterpart.
By its very nature, the optimized version is not as direct an implementa-
tion of the logic or as straightforward. You sacrifice readability and neat
code design for performance. Most “optimized” code is ugly and hard
to follow.

Increase in complexity
A more clever implementation—perhaps exploiting special backdoors
(thereby increasing module coupling) or taking advantage of platform-
specific knowledge—will add complexity. Complexity is the enemy of
good code.

Hard to maintain/extend
As a consequence of increased complexity and a lack of readability, the
code will be harder to maintain. If an algorithm is not clearly presented,
the code can hide bugs more easily. Optimization is a surefire way to add
subtle new faults—these will be difficult to find because the code is more
contrived and harder to follow. Optimization leads to dangerous code.

It also stunts the extensibility of your code. Optimizations often come
from making more assumptions, limiting generality and future growth.

Introducing conflicts
Often an optimization will be quite platform specific. It might make cer-
tain operations faster on one system, at the expense of another platform.
Picking optimal data types for one processor type may lead to slower
execution on others.

More effort
Optimization is another job that needs to be done. We have quite enough
to do already, thank you. If the code is working adequately, then we should
focus our attentions on more pressing concerns.

Optimizing code takes a long time, and it’s hard to target the real
causes. If you optimized the wrong thing, you’ve wasted a lot of precious
energy.

For these reasons, optimization should be quite a way down on your list
of concerns. Balance the need to optimize your code against the requirement
to fix faults, to add new features, or to ship a product. Often optimization is
not worthwhile or is uneconomical. If you take care to write efficient code in
the first place, you’re less likely to need to optimize anyway.

204 Chapter 11

Alternatives

Often code optimization is performed when it’s not actually necessary. There
are a number of alternative approaches that we can employ without altering
our exisiting good-quality code. Consider these solutions before you get too
focused on optimization:

Can you put up with this level of performance—is it really that disastrous?

Run the program on a faster machine. This seems laughably obvious,
but if you have enough control over the execution platform, it might be
more economical to specify a faster computer than spend time tinkering
with code. Given the average project duration, you are guaranteed that
by the time you reach completion, processors will be considerably faster.
If they're not much faster, then they'll have double the number of CPU
cores embedded in the same physical space.

Not all problems can be fixed by a faster CPU, especially if the
bottleneck is not execution speed—a slow storage system, for example.
Sometimes a faster CPU can cause drastically worse performance; faster
execution can exacerbate thread-locking problems.

Look for hardware solutions: Add a dedicated floating-point unit to
speed up calculations; add a bigger processor cache, more memory, a
better network connection, or a wider-bandwidth disk controller.

Reconfigure the target platform to reduce the CPU load on it. Disable
background tasks or any unnecessary pieces of hardware. Avoid processes
that consume huge amounts of memory.

Run slow code asynchronously, in a background thread. Adding threads
at the last minute is a road to disaster if you don’t know what you’re doing,
but careful thread design can accommodate slow operations quite
acceptably.

Work on user interface elements that affect the user’s perception of
speed. Ensure that GUI buttons change immediately, even if their code
takes over a second to execute. Implement a progress meter for slow tasks;
a program that hangs during a long operation appears to have crashed.
Visual feedback of an operation’s progress conveys a better impression
of the quality of performance.

Design the system for unattended operation so that no one notices the
speed of execution. Create a batch-processing program with a neat UI
that allows you to queue work.

Try a newer compiler with a more aggressive optimizer, or target your
code for the most specific processor variant (with all extra instructions
and extensions enabled) to take advantage of all performance features.

KEY CONCEPT Look for alternatives to optimizing code—can you increase your program’s performance
in any other way?

The Need for Speed 205

Why Optimize?

Having seen the dangers of code optimization, should you now give up
any foolish notion of ever optimizing your code? Well, no: You should still
avoid optimization wherever possible, but there are plenty of situations
where optimization is important. And contrary to popular belief, some
areas are guaranteed to require optimization.

Games programming always needs well-honed code. Despite the huge
advances in PC power, the market demands more realistic graphics and
more impressive artificial intelligence algorithms. This can only be deliv-
ered by stretching the execution environment to its very limits. It’s an
incredibly challenging field of work; as each new piece of faster hard-
ware is released, games programmers still have to wring every last drop
of performance out.

Digital signal processing (DSP) programming is all about high performance.
Digital signal processors are dedicated devices specifically optimized to
perform fast digital filtering on large amounts of data. If speed didn’t
matter, you wouldn’t be using them. DSP programming generally relies
less on an optimizing compiler, since you want to have a high degree of
control over what the processor is doing at all times. DSP programmers
are skilled at driving these devices at their maximum performance.

Resource constrained environments, such as deeply embedded platforms,
can struggle to achieve reasonable performance with the available hard-
ware. You’ll have to hone the code for acceptable quality of service or
work hard to fit it into the device’s tight memory.

Real-time systems rely on timely execution, on being able to complete
operations within well-specified quanta. Algorithms have to be carefully
honed and proven to execute in fixed time limits.

Numerical programming—in the financial sector, or for scientific
research—demands high performance. These huge systems are run on
very large computers with dedicated numerical support, providing vector
operations and parallel calculations.

Perhaps optimization is not a serious consideration for general-purpose
programming, but there are plenty of cases where optimization is a crucial
skill. Performance is seldom specified in a requirements document, yet the
customer will complain if your program runs unacceptably slowly. If there
are no alternatives, and the code doesn’t perform adequately, then you have
to optimize it.

There is a shorter list of reasons to optimize than not to. Unless you have
a specific need to optimize, you should avoid doing so. But if you do need to
optimize, make sure you know how to do it well.

KEY CONCEPT Understand when you do need to optimize code, but prefer to write efficient high-
quality code in the first place.

206 Chapter 11

The Nuts and Bolts

So how do you optimize? Rather than learn a list of specific code optimizations,
it’s far more important to understand the correct approach to optimizing.
Don’t panic; we will see some programming techniques later, but they must
be read in the context of this wider optimization process.

The six steps for speeding up a program are:

1. Determine that it’s too slow, and prove you do need to optimize.

2. Identify the slowest code. Target this point.

3. Test the performance of the optimization target.

4. Optimize the code.

5. Test that the optimized code still works (very important).

6. Test the speed increase, and decide what to do next.

This sounds like a lot of work, but without it you’ll actually waste time
and effort and end up with crippled code that runs no faster. If you’re not
trying to improve execution speed, adjust this process accordingly; for
example, tackle memory consumption problems by identifying which data
structures are consuming all the memory and target those.

It’s important to begin optimization with a clear goal in sight—the more
optimization you perform, the less readable the code becomes. Know the
level of performance you require, and stop when it’s sufficiently fast. It’s
tempting to keep going, continually trying to squeeze out a little extra
performance.

To stand any chance of optimizing correctly, you must take great care to
prevent external factors from changing the way your code works. When the
world is changing under your feet, you can’t compare measurements
realistically. There are two essential techniques that help here:

KEY CONCEPT Optimize your code separately from any other work, so the outcome of one task doesn’t
cloud the other.

. . . and . . .

KEY CONCEPT Optimize release builds of your program, not development builds.

The development builds may run very differently from release builds,
due to the inclusion of debugging trace information, object file symbols, and
so on.

Now we’ll look at each of these optimization steps in more detail.

Prove You Need to Optimize

The first thing to do is make sure you really do need to optimize. If the code’s
performance is acceptable, then there’s no point in tinkering with it. Knuth
said (himself quoting C.A.R. Hoare): “We should forget about small efficiencies,

The Need for Speed 207

say about 97 percent of the time: Premature optimization is the root of all
evil.” There are so many compelling reasons not to optimize that the
quickest and safest optimization technique is to prove that you don’t need
to do it.

You make this decision based on program requirements or usability
studies. With this information you can determine whether optimization takes
priority over adding new features and fixing bugs.

Identify the Slowest Code

This is the part that most programmers get wrong. If you’re going to spend
time optimizing, you need to target the places where it will make a difference.
Investigations show that the average program spends more than 80 percent
of its time in less than 20 percent of the code. (Boehm 87) This is known as
the 80/20 rule.1 That’s a relatively small target that is very easy to miss, which
means you might waste effort optimizing code that’s rarely run.

You might notice that a part of your program has some relatively easy
optimizations, but if that part is seldom executed, then there’s no point in
optimizing—in this situation, clear code is better than faster code.

How do you figure out where to focus your attention? The most effective
technique is to use a profiler. This tool times the flow of control around your
program. It shows where that 80 percent of execution time is going, so you
know where to concentrate your effort.

A profiler doesn’t tell you which parts of the code are slowest; this is a
common misconception. It actually tells you where the CPU spends most of
its time. This is subtly different.2 You have to interpret these results and use
your brain. The program might spend most of its execution time in a few
perfectly valid functions which cannot be improved at all. You can’t always
optimize; sometimes the laws of physics win.

There are plenty of benchmarking programs around—many excellent
commercial programs and a number of freely available tools. It’s worth
spending money on a decent profiler: Optimization can easily eat into your
time; this is also an expensive commodity. If you don’t have a profiler
available, there are a few other timing techniques you can try:

Put manual timing tests throughout your code. Make sure you use an
accurate clock source and that the time taken to read the clock will not
affect program performance too much.

Count how often each function is called (some debug libraries provide
support for this kind of activity).

Exploit compiler-supplied hooks to insert your own accounting code when
each function is entered or exited. Many compilers provide a means to
do this; some profilers are implemented using such a mechanism.

1 Some go so far as to claim this should be the 90/10 rule.
2 All code runs at a fixed rate, based on the speed of the CPU clock, the number of other
processes being juggled by the OS, and the thread’s priority.

208 Chapter 11

Sample the program counter; interrupt your program periodically in a
debugger to see where control is. This is harder in multithreaded pro-
grams and is a very slow, manual approach. If you have control over the
execution environment, you can write scaffolding to automate this kind
of test—effectively writing your own form of profiler.

Test an individual function’s impact on the total program execution
time by making it slower. If you suspect that a particular function is caus-
ing a slowdown, try replacing its call with two calls in succession, and
measure how it affects execution time.3 If the program takes 10 percent
longer to run, then the function consumes approximately 10 percent of
execution time. Use this as a very basic timing test.

When profiling, make sure that you use realistic input data, simulating
Real World events. The way your code executes may be drastically affected by
the kind of input you feed it or by the way it is driven, so make sure that you
provide true representative input sets. If possible, capture a set of real input
data from a live system.

Try profiling several different data sets, to see what difference this
makes. Select a very basic set, a heavy use set, and a number of general use
sets. This will prevent you from optimizing for the particular quirks of one
input data set.

KEY CONCEPT Select profiling test data carefully to represent Real World program use. Otherwise, you
might optimize parts of the program that are not normally run.

While a profiler (or equivalent) is a good starting point to choose
optimization targets, you can easily miss quite fundamental problems. The
profiler only shows how the code in the current design executes—and
encourages you to perform code-level improvement only. Look at larger
design issues too. The lack of performance may not be due to a single
function, but rather a more pervasive design flaw. If it is, then you’ll have to
work harder to remedy the problem. This shows how important it is to get
the initial code design right, with knowledge of established performance
requirements.

KEY CONCEPT Don’t rely solely on a profiler to find the causes of program inefficiency; you might miss
important problems.

Having completed this step, you’ve found the areas of your code where
a performance improvement will have the most benefit. Now it’s time to
attack them.

Testing the Code
We recognized three testing phases in the optimization procedure. For each
piece of code targeted, we test its performance before optimization, confirm

3 This won’t necessarily make the function run twice as slowly. Filesystem buffers or CPU memory
caches can enhance the performance of repeated code sections. Treat this as a very rough
guide—more qualitative than quantitative.

The Need for Speed 209

that the code still works correctly once optimized, and test its performance
after optimization.

Programmers often forget the second check: that the optimized code
still works correctly in all possible situations. It’s easy to check the normal mode
of operation, but it’s not in our nature to test each and every rare case. This
can be the cause of weird bugs late in the day, so be very rigorous about this.

You must measure the code’s performance before and after modification
to make sure that you have made a real difference—and to make sure that it
is a change for the better; sometimes an “optimization” can be an unwitting
pessimization. You can perform these timing tests with your profiler or by
inserting timing instrumentation by hand.

KEY CONCEPT Never try to optimize code without performing some kind of before and after
measurement.

These are some very important things to think about when running your
timing tests:

Run both the before and after tests with exactly the same set of input
data so that you’re testing exactly the same thing. Otherwise, your tests
are meaningless; you’re not comparing apples to apples. An automated
test suite is best (see “Look! No Hands!” on page 144)—with the same
kind of live representative data we used in the profiling step.

Run all tests under identical prevailing conditions, so that factors like the
CPU load or amount of free memory don’t affect your measurements.

Ensure that your tests don’t rely on user input. Humans can cause timings
to fluctuate wildly. Automate every possible aspect of the test procedure.

Optimizing the Code

We’ll investigate some specific optimization techniques later. Speed-ups vary
from the simple refactoring of small sections of code to more serious design-
level alterations. The trick is to optimize without totally destroying the code.

Determine how many different ways exist to optimize the identified
code, and pick the best. Only perform one change at a time; it’s less risky,
and you’ll have a better idea of what improved performance the most.
Sometimes it’s the least expected things that have the most significant
optimization effects.

After Optimization
Don’t forget to benchmark the optimized code to prove that you’ve made a
successful modification. If an optimization is unsuccessful, remove it. Back
out your changes. This is where a source control system is useful, helping you
to revert to the previous code version.

210 Chapter 11

Also remove the slightly successful optimizations. Prefer clear code to
modest optimizations (unless you’re absolutely desperate for an improve-
ment, and there are no other avenues to explore).

Optimization Techniques

We’ve avoided this for long enough; now it’s time to look at the really gory
details. Having followed the optimization procedure outlined above, you’ve
proved that your program performs badly and have found the worst code
culprit. Now you need to whip it into shape. What can you do?

There’s a palette of optimizations to choose from. Which is the most
appropriate will depend on the exact cause of the problem, what you’re
trying to achieve (e.g., increased execution speed or reduced code size), and
how much of an improvement is required.

These optimizations fall into two broad categories: design changes and
code changes. A change at the design level will usually have a more profound
effect on performance than a code-level tweak. An inefficient design can
strangle efficiency more than a few bad lines of source code, so a design fix—
while more difficult—will have a bigger payoff.

Most often, our goal is to increase execution speed. The speed-based
optimization strategies are to:

Speed up slow things

Do slow things less often

Defer slow things until you really need them

The other common optimization goals are to reduce memory consump-
tion (mainly by changing the data representation, by tweaking the pattern of
memory consumption, or by reducing the amount of data accessed at once),
or to reduce executable size (by removing functionality or by exploiting
commonality). As we’ll see, these goals often conflict: Most speed increases
come at the expense of memory consumption, and vice versa.

Design Changes
These are the macro optimizations, the fixes on a large scale that improve the
internal design of your software. Bad design is hard to fix. The nearer a
project is to a release deadline, the less likely you are to perform design
changes; the risk is too great.4 We end up plastering over the cracks by
employing small, code-level fixes instead.

When brave enough, the kinds of design optimization we can perform
include:

Adding layers of caching or buffering to enhance slow data access or pre-
vent lengthy recalculations. Precompute values that you know will be
needed, and store them for immediate access.

4 Sadly, it’s often only near project deadlines that anyone notices that performance isn’t good
enough.

The Need for Speed 211

Creating a pool of resources to reduce the overhead of allocating
objects. For example, preallocate memory, or hold a selection of files
open rather than repeatedly opening and then closing them. This tech-
nique is often used to speed up memory allocation; older OS memory
allocation routines were designed for simple non-threaded use. Their
locks stall multithreaded applications, leading to horrible performance.

Sacrificing accuracy for speed if you can get away with it. Dropping
floating-point precision is the obvious example. Many devices have no
floating-point unit (FPU) hardware and employ slower FPU emulation soft-
ware instead. You can switch to fixed-point arithmetic libraries to bypass
a slow emulator, at the expense of numeric resolution. This is particu-
larly easy in C++ by taking advantage of its abstract data type facilities.

Accuracy is not solely due to your choice of data types; this tactic can
run far deeper to your use of algorithms or the quality of your output.
Perhaps you can let users make this decision—allow them to select slow
but accurate or fast but approximate operation modes.

Changing the data storage format or its on-disk representation to some-
thing more suited to high-speed operation. For example, speed up text
file parsing by using a binary format. Transmit or store compressed files
to reduce network bandwidth.

Exploiting parallelization and using threading to prevent one action
from being serialized after another. As advances in processor speeds tail
off, CPU manufacturers are increasingly introducing multi-core, multi-
pipeline processors. To use these effectively, your code must be designed
with a threaded model at its heart. The front line of the optimization bat-
tle is rapidly moving in this direction.

Threading efficiently: Avoiding or removing excessive locking. It inhibits
concurrency, generates overhead, and often leads to deadlock. Employ
static checking to prove which locks are necessary and which aren’t.

Avoiding overuse of exceptions. They can inhibit compiler optimiza-
tions5 and will hamper timely operation when used too frequently.

Forgoing certain language facilities if it will save code space. Some C++
compilers allow you to disable RTTI and exceptions, consequently
reducing executable size.

Removing functionality: The quickest code is code that doesn’t run at
all. A function will be slow if it is doing too many things, some of which
are unnecessary. Cut out the superfluous stuff. Move it elsewhere in the
program. Defer all work until it’s really necessary.

Compromising design quality to gain speed. For example, reducing indi-
rection and increasing coupling. You can do this by breaking encapsula-
tion: leaking a class’s private implementation through its public interface.
Knocking down module barriers will cause irreparable damage to the
design. If possible, try a less disruptive optimization mechanism first.

5 Like functions, try/catch blocks act as barriers to an optimizer. It’s not possible to look through
the barrier to perform optimization, so some potential speed-ups will be lost.

212 Chapter 11

The major design-level optimizations involve improvements in
algorithms or data structures. Most speed degradation or memory consumption
comes down to a bad choice of one or both, and a subsequent change will
rectify this.

Algorithms
Algorithms have a profound impact on the speed of execution. A function
that works acceptably in a small local test may not scale up when Real
World data gets thrown at it. If profiling shows that your code spends
most of its time running a certain routine, you must make it run faster.

C O M P L E X I T Y N O T A T I O N

Algorithmic complexity is a measure of how well an algorithm scales—how long it
takes in proportion to the size of input. It’s a qualitative mathematical model, allowing
you to quickly compare the performance characteristics of different implementation
approaches. It doesn’t measure exact execution time (this is highly dependent on
CPU speed, OS configuration, etc.).

Complexity is determined by the amount of work an algorithm must perform: the
number of basic operations it executes. A basic operation is something like an arith-
metic operation, an assignment, a test, or a data read/write. Algorithmic complexity
doesn’t count the exact number of operations performed, just how this value relates
to the problem size. We are usually interested in the worst case performance of an
algorithm, the most work that will ever need to be done. A good comparison looks
at the best case and average time complexity as well.

Algorithmic complexity is expressed using Big O notation, invented by the German
number theorist Edmund Landau. For a problem with input size n, it might have a
complexity of:

O(1): Order 1
This is a constant time algorithm. No matter how large the input set, it always
takes the same amount of time to complete the task. This is the best performance
characteristic possible.

O(n): Order n
A linear time algorithm’s complexity rises in line with the input size. Searching a
linked list will involve visiting more nodes as the list size grows; the number of
operations is directly related to the size of the list.

O(n2): Order n squared
This is where performance really begins to get bad: Complexity is increasing
faster than the rate of input growth. A quadratic time algorithm may seem fine
when you give it a small set of data, but large data sets take a seriously long time.
The bubblesort algorithm is O(n2).

Of course, complexity may be of any order; the quicksort algorithm averages
O(n log n). This is worse than O(n), but far better than O(n2). A simple optimization
route for a slow bubblesort algorithm is to replace it with a quicksort algorithm,
especially since there are plenty of freely available quicksort implementations.

These Big O expressions don’t include constants or low-order terms. You’ll rarely
see any talk about a complexity of O(2n+6). When n gets large enough, these constants
and low-order terms dwarf into insignificance.

The Need for Speed 213

One approach is at the code level, chipping small improvements from
each instruction. A better approach is to replace the entire algorithm
with a more efficient version.

Consider this realistic example: A particular algorithm runs a loop
1,000 times. Each iteration takes 5 milliseconds (ms) to execute. The
operation therefore completes in around 5 seconds. By tweaking the code
inside the loop, you can shave 1 ms from each iteration—that’s a saving
of 1 second. Not bad. But instead, you can plug in a different algorithm,
where an iteration takes 7 ms, although it only iterates 100 times. That’s
a saving of almost 4 and a half seconds—significantly better.

For this reason, prefer to look at optimizations that change funda-
mental algorithms, not that tweak specific lines of code. There are many
algorithms to chose from in the computer science world, and unless your
code is particularly dire, you’ll always gain the most significant perfor-
mance improvements by selecting a better algorithm.

KEY CONCEPT Prefer to replace a slow algorithm with a faster variant than to tinker with the
algorithm’s implementation.

Data structures
Data structures are intimately related to your choice of algorithms;
some algorithms require certain data structures, and vice versa. If your
program is consuming far too much memory, changing the data storage
format may improve matters, although often at the expense of execution
speed. If you need to quickly search a list of 1,000 items, don’t store them
in a linear array with O(n) search time; use a (larger) binary tree with
O(log n) performance.

Selecting a different data structure seldom requires you to implement
the new representation yourself. Most languages come with library support
for all common data structures.

Code Changes

And so now we creep anxiously on to the really disgusting stuff: the micro-
level, small-scale, shortsighted, code-tweaking optimizations. There are many
ways to molest source code for the sake of performance. You must experiment
to see what works best in each situation: Some changes will work well; others
will have little, or even negative effect. Some may prevent the compiler’s
optimizer from performing its task, producing startlingly worse results.

The first task is easy: Turn on compiler optimization or increase the
optimization level. It often gets disabled for development builds since the
optimizer can take a very long time to run, increasing the build time of large
projects by an order of magnitude.6 Try configuring the optimizer, and test
what affect this has. Many compilers allow you to bias optimization toward
extra speed or reduced code size.

6 It has to do complex inspection of the parsed code to determine the set of possible speed-ups
and select the most appropriate ones.

214 Chapter 11

There are a few very low-level optimizations that you should know about
but should generally avoid. These are the kind of changes that a compiler is
able to perform for you. If you’ve switched the optimizer on, it’ll be looking
in these areas already—enable optimization and make the most of its help.
You will rarely need to apply these by hand, which is good: They butcher your
code’s readability, since they warp its fundamental logic out of shape. Only
consider using one of these optimizations if you can prove that it’s really
required, that your optimizer hasn’t already done it, and that there are no
better alternatives.

Loop unrolling
For loops with very short bodies, the loop scaffolding may be more
expensive than the looped operation itself. Remove this overhead by flat-
tening it out—turn your 10-iteration loop into 10 consecutive individual
statements.

Loop unrolling can be done partially; this makes more sense for large
loops. You can insert four operations per iteration, and increment the
loop counter by four each time. But this tactic gets nasty if the loop doesn’t
always iterate over a whole number of unrolls.

Code inlining
For small operations, the overhead of calling a function might be pro-
hibitive. Splitting code into functions brings significant benefits: clearer
code, consistency through reuse, and the ability to isolate areas of change.
However, this can be removed to increase performance, by merging the
caller(s) and the callee.

There are a number of ways to do this. With language support, you
can request it in the source code (in C/C++ using the inline keyword);
this method preserves a lot of the code’s readability. Otherwise, you have
to merge the code yourself, either by duplicating the function over and
over again or using a preprocessor to do the work for you.

It’s hard to inline recursive function calls—how would you know
when to stop inlining? Try to find alternative algorithms to replace
recursion.

Inlining often opens the way for further code-level optimizations
(that were not previously possible across a function boundary) to be
performed.

Constant folding
Calculations involving constant values can be computed at compile time
to reduce the amount of work done at run time. The simple expression
return 6+4; can be reduced to return 10;. Carefully ordering the terms of
a large calculation might bring two constants together, enabling them to
be reduced into a simpler subexpression.

It’s unusual for a programmer to write something as obvious as
return 6+4;. However, these sorts of expressions are common after macro
expansion.

The Need for Speed 215

Move to compile time
There is more you can do at compile time than just constant folding.
Many conditional tests can be proved statically and removed from the
code. Some kinds of tests can be avoided altogether; for example,
remove tests for negative numbers by using unsigned data types.

Strength reduction
This is the act of replacing one operation with an equivalent that exe-
cutes faster. This is most important on CPUs with poor arithmetic sup-
port. For example, replace integer multiplication and division with
constant shifts or adds; x/4 can be converted to x>>2 if it’s faster on your
processor.

Subexpressions
Common subexpression elimination avoids the recalculation of expressions
whose values have not changed. In code like this:

int first = (a * b) + 10;
int second = (a * b) / c;

the expression (a * b) is evaluated twice. Once is enough. You can factor
out the common subexpression, and replace it with

int temp = a * b;

int first = temp + 10;

int second = temp / c;

Dead code elimination
Don’t write needless code; prune anything that’s not strictly necessary to
the program. Static analysis will show you the functions that are never
used or the sections of code that will never execute. Remove them.

While those are particularly distasteful code optimizations, the following
ones are slightly more socially acceptable. They focus on increasing program
execution speed.

If you find that you’re repeatedly calling a slow function, then don’t call
it so often. Cache its result and reuse this value. This might lead to less
clear code, but the program will run faster.

Reimplement the function in another language. For example, rewrite a
critical Java function in C using the Java Native Interface (JNI) facility. Con-
ventional compilers still beat JIT code interpreters for execution speed.

Don’t naïvely assume that one language is faster than another—
many programmers have been surprised by how little difference using
JNI makes. It has been commonly claimed that OO languages are far
slower than their procedural counterparts. This is a lie. Bad OO code can
be slow, but so can bad procedural code. If you write OO-style code in C,
it is likely to be slower than good C++; the C++ compiler will generate
better-tuned method dispatch code than your attempts.

216 Chapter 11

Reorder the code for improved performance.
Defer work until it’s absolutely necessary. Don’t open a file until

you’re about to use it. Don’t calculate a value if you might not need it; wait
until it’s wanted. Don’t call a function yet if the code will work without it.

Hoist checking further up the function to avoid needless work. If a
test leading to an early return can be placed at the top of a function or
halfway though it, prefer to place it at the top. Make the check sooner to
avoid delays.

Move invariant calculations out of a loop. The most subtle source
of this problem is a loop condition. If you write for (int n = 0; n <
tree.appleCount(); ++n), but appleCount() manually counts 1,000 items
on every call, you’ll have a very slow loop. Move the count operation
before the loop:

int appleCount = tree.appleCount();

for (int n = 0; n < appleCount; ++n)

{

... do something ...

}

However, don’t forget to profile first to prove that the loop truly is
a problem. This is a great example of how optimizations are local to a
particular execution environment: In C#, the new version could well
be slower because the unoptimized code is a pattern the JIT compiler
understands and can optimize away itself.

Use lookup tables for complex calculations, trading time for space. For
example, rather than write a set of trigonometric functions that individu-
ally calculate their values, precalculate the return values and store them
in an array. Map input values to the closest index into this array.

Exploit short-circuit evaluation. Make sure that the tests likely to fail are
placed first to save time. If you write a conditional expression if
(condition_one && condition_two), make sure that condition_one is
statistically more likely to fail than condition_two (unless, of course,
condition_one acts as a guard for condition_two’s validity).

Don’t reinvent the wheel—reuse standard routines that have already
been performance tuned. Library writers will have already carefully
honed their code. But be aware that a library may have been optimized
for different goals than yours; perhaps an embedded product was pro-
filed for memory consumption, not for speed.

Size-focused, code-level optimizations include:

Producing compressed executables that unpack their code before run-
ning. This doesn’t necessarily affect the size of the running program, but
it reduces the storage space required.7 This might be important if your
program is stored in limited flash memory.

7 This may have the pleasant side effect of decreasing program startup time: A compressed
executable will load from disk much faster.

The Need for Speed 217

Factoring common code into a shared function to avoid duplication.

Moving seldom-used functions out of the way. Put them into a dynami-
cally loaded library or into a separate program.

Of course, the ultimate hard-core optimization technique is to reimple-
ment a section of code in assembly—the one environment where you have
full control over the CPU and can do exactly what you want (including shoot-
ing yourself in the foot). This is always a last resort and is almost certainly
unnecessary. These days, compilers produce perfectly acceptable code, and
the lost time spent writing, debugging, and maintaining “optimized” sections
of machine code far outweighs the advantages gained.

Writing Efficient Code

If the best approach is not to optimize, how can we avoid any need to improve
code performance? The answer is to design for performance, planning to provide
adequate quality of service from the outset, rather than trying to whittle it
out at the last minute.

Some argue that this is a dangerous road to follow. Indeed, there are
potential hazards for the unwary. If you try to optimize as you go along, then
you’ll write at a lower level than needed; you’ll end up with nasty, hacky code
full of low-level performance enhancements and back-door interfaces.

How do we reconcile these seemingly opposing views? It isn’t hard,
because they’re not actually at odds. There are two complementary strategies:

Write efficient code.

Optimize code later.

If you make a point of writing clear, good, efficient code now, you will
not need to perform heavy optimizations later. Some claim that you don’t
know whether any optimization is necessary at first, so you should write
everything as simply as possible, and only optimize when profiling proves that
there is a bottleneck.

This approach has obvious flaws. If you know that you need a data
structure with good search performance (because your program must
perform fast searches), pick a binary tree over an array.8 If you’re not aware
of any such requirement, then go for the most appropriate thing that will
work. This still might not be the simplest—a raw C array is a hard data
structure to manage.

As you design each module, don’t blindly chase performance—only
spend the effort when necessary. Understand the mandated performance
requirements and justify how your choices will meet these requirements at
each stage. When you know what level of performance is required, it’s easier

8 But, as always, it’s not necessarily that simple. Arrays often provide better cache coherence
(since binary tree nodes can easily become scattered across memory). An array that is kept
sorted (you amortize time when inserting) would be a worthy consideration. Measure,
measure, measure.

218 Chapter 11

to design for appropriate efficiency. It also helps you to write explicit tests
that prove you do achieve these performance goals.

Some simple design choices that will increase efficiency and aid later
optimization are:

Minimizing your reliance on functions that might be implemented on
remote machines or that will access the network or a slow data storage
system

Understanding the target deployment and how the program is expected
to be run so you can design it to work well in these situations

Writing modular code so it’s easy to speed up one section without having
to rewrite other sections too

P E S S I M I Z A T I O N S

Without careful measurement, you can easily end up writing optimizations that are
not at all optimal. A perfectly good optimization for one situation might turn out to
be a performance disaster in another. Here’s a case study. Exhibit A: The copy-on-
write string optimization.

This was a common optimization applied to C++ standard library implementations
around 1990. Programs that performed intensive string manipulation experienced
a massive overhead when copying long strings, both in terms of execution speed
and memory consumption. Copying large strings means duplicating and shoveling
around large quantities of data. Many string copies are automatically generated,
temporary objects that are created and then thrown away shortly after—they are
never actually modified. The expensive copy operation is an unnecessary cost.

The copy-on-write (COW) optimization turns the string data type into a form of
smart pointer; the actual string data is held in a (hidden) shared representation.
The string copy operation now only has to perform an inexpensive smart pointer
copy (attaching a new smart pointer to the shared representation), rather than
duplicate the entire string contents. Only when you make a modification to a shared
string is the internal representation copied and the smart pointer remapped. This
optimization avoids a large number of unnecessary copy operations.

COW worked well in single-threaded programs; it was shown to greatly speed up
performance. However, a problem became apparent when multithreaded pro-
grams used COW strings. (Indeed, this problem also manifests in single-threaded
programs if the COW string class is built with multithreading support). The implemen-
tation requires very conservative thread locking around the copy operations—
these locks become a major bottleneck. Suddenly, a lightning-fast program slowed
down to a crawl. The COW optimization proved to be a serious pessimization.

Far better multithreaded performance was achieved by reverting to classic string
implementations and writing more careful code that reduced automatic string copying.
Thankfully, C++ library vendors now provide more intelligent versions of the string
class, which are both thread safe and fast.

The Need for Speed 219

In a Nutshell

Technological progress has merely provided us
with more efficient means for going backwards.

—Aldous Huxley

High-performance code is not as important as some people think.
Although you sometimes do have to roll your sleeves up and tinker with
code, optimization is a task you should actively avoid. To do this, make sure
that you know the software’s performance requirements before you start
working on it. At each level of design, ensure that you provide this quality of
service. Then optimization will be unnecessary.

When you do optimize, be very methodical and measured in your
approach. Have a clear goal, and prove that each step is getting you closer to
it. Be guided by solid data, not your hunches. As you write code, ensure that
your designs are efficient, but don’t compromise on quality. Worry about
code-level performance only when it proves to be a problem.

See Also

Chapter 1: On the Defensive
Optimizations that remove “unnecessary” code often clash with any extra
defensive code.

Chapter 4: The Write Stuff
The needs of optimized code are often at odds with self-documenting
code.

Chapter 13: Grand Designs
Efficiency must be designed into the codebase from the start of a project.

Good programmers . . . Bad programmers . . .

Avoid optimizing unless it proves
to be absolutely necessary

Attempt optimization methodi-
cally, taking a considered and
measured approach

Look for alternatives and
investigate design improve-
ments before ever resorting to
code-level optimizations

Prefer optimizations that won’t
destroy the code’s quality

Start optimizing before the code
proves to be inadequate

Dive in feet first, attacking the
pieces of code they think are
bottlenecks without measuring
or investigating

Never consider the wider picture:
what the full implications of
their optimization are in other
code areas and usage patterns

Think speed is more important
than code quality

220 Chapter 11

Chapter 19: Being Specific
Performance requirements must be carefully specified before construc-
tion begins so you know how much optimization is necessary.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 510.

Mull It Over

1. Optimization is a process of making trade-offs—sacrificing one quality of
code for another desirable quality. Describe the kinds of trade-offs that
lead to a performance increase.

2. Look at each of the optimization alternatives listed in “Why Not Opti-
mize?” on page 202. Describe what trade-offs are being made, if any.

3. Explain these terms and their exact relationship:

Performance

Efficiency

Optimized

4. What are the likely bottlenecks in a slow program?

5. How can you avoid the need to optimize? What methods will prevent you
from writing inefficient code?

6. How does the presence of multiple threads affect optimization?

7. Why don’t we write efficient code? What stops us from using high-
performance algorithms in the first place?

8. A List data type is implemented using an array. What is the worst case
algorithmic complexity of each of the following List methods?

a. The constructor

b. append—places a new item on the end of the list

The Need for Speed 221

c. insert—slides a new item in between two existing list items, at a
given position

d. isEmpty—returns true if the list contains no items

e. contains—returns true if the list contains a specified item

f. get—returns the item with a given index

Getting Personal

1. How important (honestly) is code performance in your current project?
What is the motivator for this performance requirement?

2. In your last optimization attempt:

a. Did you use a profiler?

b. If yes, how much improvement did you measure?

c. If no, how did you know whether you made any kind of improvement?

d. Did you test that the code still worked after optimizing?

e. If yes, how thoroughly did you test?

f. If no, why not? How could you be sure the code still worked properly
for all cases?

3. If you’ve not yet attempted to optimize the code you’re currently work-
ing on, take a guess at which parts are the slowest and which bits con-
sume the most memory. Now run it through a profiler—how accurate
were you?

4. How well specified are your program’s performance requirements? Do
you have a concrete plan to test that you meet these criteria?

A N I N S E C U R I T Y
C O M P L E X

Writing Secure Programs

12

In this chapter:

The security threats to
operational code

How crackers can exploit
your code

Techniques to reduce code
vulnerability

Security is mostly a superstition. It does not exist in
nature. . . . Life is either a daring adventure or
nothing.

—Helen Keller

Not so long ago, computer access was a scarce
commodity. The world contained only a handful
of machines, owned by a few organizations and
accessed by small teams of highly trained per-
sonnel. In those days, computer security meant
wearing the right lab coat and pass card to get
past the guard on the door.

Fast-forward to today. We carry more compu-
tational power in our pockets than those operators
ever dreamed of. Computers are plentiful and,
more pertinently, highly connected.

224 Chapter 12

The volume of data carried by computer systems is growing at a fantastic
rate. We write programs to store, manipulate, interpret, and transfer this
data. Our software must guard against information going astray: into the
hands of malicious attackers, past the eyes of accidental observers, or even
disappearing into the ether. This is critical; a leak of top-secret company infor-
mation could spell financial ruin. You don’t want sensitive personal informa-
tion (your bank account or credit card details, for example) leaking out for
anyone to use. Most software systems require some level of security.1

Whose responsibility is it to build secure software? Here’s the bad news:
It’s our headache. If we don’t consider the security of our handiwork carefully,
we will inevitably write insecure, leaky programs and reap the rewards.

Software security is a really big deal, but generally we’re very bad at it.
Nearly every day you’ll hear of a new security vulnerability in a popular
product or see the results of viruses compromising system integrity.

This is an enormous topic, far larger than we have scope to go into
here. It’s a highly specialized field, requiring much training and experience.
However, even the basics are not adequately addressed by modern software
engineering teaching. The aim of this chapter is to highlight security issues,
explore the problems, and learn some basic techniques to protect our code.

The Risks

Better be despised for too anxious apprehensions,
than ruined by too confident security.

—Edmund Burke

Why would anyone bother to attack your system? It’s usually because you’ve
got something that they want. This could be:

Your processing power

Your ability to send data (e.g., spam)

Your privately stored information

Your capabilities—perhaps the specific software you have installed

Your connection to more interesting remote systems

People might even attack you for the sheer fun of it or because they
dislike you and want to cause harm by disrupting your computer resources.
While malicious people are lurking around looking for easy, insecure prey, a
security vulnerability might also be caused by a program that accidentally
releases information to the wrong audience. A lucky user might exploit the
leak and cause you harm.

KEY CONCEPT Know what important assets you possess. Do you have particularly sensitive informa-
tion or specific capabilities that an attacker might want? Guard them.

1 As we’ll see, this is true whether they handle sensitive data or not. If a noncritical component
has a public interface, then it poses a security risk to the system as a whole.

An Insecur i ty Complex 225

To understand the kinds of attack you might suffer, it’s important to
differentiate protecting an entire computer system (comprising of several
computers, a network, and a number of collaborating applications) from
writing a single secure program. Both are important aspects of computer
security; they blur together since both are necessary. The latter is a subset of
the former. It takes just one insecure program to render an entire computer
system (or network) insecure.

These are the common security risks and compromises of a live, running
computer system:

A thief who acquires a laptop or PDA can read any unsecured sensitive
data. The stolen device might be configured to automatically dial into a
private network, allowing a simple route straight through all your com-
pany’s defences. This is a serious security threat and one that you can’t
easily guard against in code! What we can do is write systems that aren’t
immediately accessible to computer thieves.

Flawed input routines can be exploited, leading to many types of com-
promise—even to the attacker gaining access to the whole machine
(we’ll see this in “Buffer Overrun” on page 229).

Break-ins through an unsecured public network interface are partic-
ularly worrying. While vulnerbilities in a GUI interface can only be
exploited by people actually using that UI, an insecure system running
on a public network could lead to the whole world trying to break down
your door.

Privilege escalation occurs when a user with limited access rights tricks the
system to gain a higher security level. The attacker could be an authentic
user or someone who has just broken into the system. His or her ultimate
aim is to achieve root or administrator privilege, where the attacker has
total control of the machine.

If communication is unencrypted and traverses an insecure medium
(e.g., the Internet), then any computer en route can syphon off and read
data, like a phone tap. A variant of this is known as a man-in-the-middle
attack: An attacker’s machine pretends to be the other communicant
and sits between both senders, snooping on their data.

Any system has a small set of trusted users. Malicious authorized users
can wreak havoc by copying and sharing data they’re not supposed to or
entering bad data to compromise the quality of your computer system.

It’s hard to guard against this. You have to trust that each user is
responsible enough to handle the level of system access he or she has
been designated. If the user isn’t trustworthy, you can’t write a program
to fix it. This shows that security is as much about administration and
policy as it is about writing code.

Careless users (or careless administrators) can leave a system unnecessarily
open and vulnerable. For example:

People forget to log off; if there is no session timeout, anyone can
pick up your program later and start using it.

226 Chapter 12

Many attackers use dictionary-based password-cracking tools that
fire off many login attempts until one works. Users choose easy-to-
memorize passwords that are also easy to guess. Any system that allows
weak, easy-to-guess passwords is vulnerable. More secure systems sus-
pend a user’s account after a few unsuccessful logins.

Social engineering—the art of acquiring important information from
people, items in an office, or even the outgoing trash—is usually a
lot easier (and often quicker) than worming a way into your com-
puter system. People are easier to con than computers, and attackers
know this.

Out-of-date software installations permit many compromises. Many
vendors issue security warnings (or bulletins) and software patches.
An administrator can easily fall behind the cutting edge, leaving the
system open to attack.

Setting lax permissions will allow users access to sensitive parts of your
system—for example, letting casual viewers read everyone’s salary details.
The cure could be as basic as setting correct access permissions on the
database files.

Virus attacks (self-replicating malicious programs, commonly spread by
email attachment), Trojans (hidden malicious payloads in seemingly
benign software), and spyware (a form of Trojan that spies on what you
are doing, the web pages you visit, etc.) infect machines and can cause all
sorts of mayhem. They can capture even the most complex password
with keystroke loggers, for example.

Storing data “in the clear” (unencrypted)—even in memory—is danger-
ous. Memory is not as safe as many programmers think; a virus or Trojan
can scan computer memory and pull out a lot of interesting tidbits for an
attacker to exploit.

The risks increase as the number of routes into a system grows, with more
input methods (web-access, command-line, or GUI interfaces), more individ-
ual inputs (different windows, prompts, web forms, or XML feeds), and more
users (there is a better chance of someone discovering a password). With
more outputs, there are more chances for bugs to manifest in the display
code, leaking out the wrong information.

KEY CONCEPT The more complicated a computer system is, the more likely it is to contain security
vulnerabilities. Therefore, write the simplest software possible!

The Opposition

It’s probably difficult to believe that anyone would take the time and effort to
hack your application. But these people exist. They’re talented, motivated,
and very, very patient. In the battle to write secure software, it’s important to
know who you’re fighting against. Understand exactly what they’re doing,
how they do it, the tools they’re using, and their objectives. Only then can
you formulate a strategy to cope.

An Insecur i ty Complex 227

Who
Your attacker might be a common crook, a talented cracker, a script kiddie
(a derogatory name for crackers who run automated cracker scripts—
they exploit well-known vulnerabilities with little skill themselves), a
dishonest employee cheating the company, or a disgruntled ex-employee
seeking revenge for unfair dismissal.

Crackers are well informed. There is a cracker subculture where
knowledge is passed on and easy-to-use cracker tools are distributed.
Not knowing about this doesn’t make you innocent and pure, just naïve
and open to the simplest attack.

Where
Thanks to pervasive networking, attackers could be anywhere, on any
continent, using any type of computer. When working over the Internet,
attackers are very hard to locate; many are skilled at covering their tracks.
Often they crack easy machines to use as covers for more audacious
attacks.

When
They could attack at any time, day or night. Across continents, one
person’s day is another’s night. You need to run secure programs
around the clock, not just during business hours.

Why
With such a large bunch of potential attackers, the motives for an attack
are diverse. It might be malicious (a political activist wants to ruin your
company or a thief wants to access your bank account), or it might be for
fun (a college prankster wants to post a comical banner on your website).
It might be inquisitive (a hacker just wants to see what your network infra-
structure looks like or practice his cracking skills) or opportunist (a user
stumbles over data he shouldn’t see and works out how to use it to his
advantage).

S E C U R E I N T H E K N O W L E D G E

These important terms help us to reason about security problems:

Flaw
A security flaw is an unintended problem in an application. It is a program fault
(see “Terms and Conditions” on page 130). Not all flaws are security problems.

Vulnerability
A vulnerability exists when a flaw opens the possibility for a program to be
insecure.

Exploit
This is an automated tool (or a manual method) that employs a program vulnera-
bility to force unintended—and insecure—behavior. Not all vulnerabilities are
found and exploited (that’s called luck).

228 Chapter 12

In a networked world, you usually won’t know who your enemies actually
are until after they have struck. You might not even find out who they are then;
your forensic skills might not be able to work back from a smouldering pile
of digital debris. But like any good boy scout: Be prepared. Don’t ignore vulner-
abilities and assume no one is interested in attacking your systems—someone
out there is interested.

KEY CONCEPT Don’t ignore vulnerabilities and pretend that you’re invincible. Someone, somewhere
wants to exploit your code, guaranteed.

Excuses, Excuses

How do attackers manage to break into code so often? They’re armed with
weapons we don’t have or (due to lack of education) know nothing about.
Tools, knowledge, skills: These all work in their favor. However, they have
one key advantage that makes all the difference—time. In the heat of the soft-
ware factory, programmers are pressed to deliver as much code as humanly
possible (probably a little bit more) and to do so on time, or else. This code
has to meet all requirements (for functionality, usability, reliability, etc.),
leaving us precious little time to focus on other “peripheral” concerns, like
security. Attackers don’t share this burden; they have plenty of time to learn
the intricacies of your system, and they have learned to attack from many
different angles.

C R A C K E R V S . H A C K E R

These two terms often get confused and used inappropriately. Their correct
definitions are:

Cracker
Someone who purposefully exploits vulnerabilities in computer systems to gain
unauthorized access.

Hacker
Often used incorrectly to mean cracker, a hacker is really someone who hacks
at—works on—code. This is a 1970s term used with pride by a particular breed
of programming geek. A hacker is a computer expert or enthusiast.

You might also see these two hacker terms in use:

White hat
White hat hackers consider the consequences of their work, scorning the actions
of crackers and unethical computer users. They believe that their work is for the
good of society.

Black hat
This is a programmer from the dark side who enjoys abusing computer systems.
Black hats are crackers who actively seek to use systems dishonestly. They have
no regard for other people’s property or privacy.

An Insecur i ty Complex 229

The game is stacked heavily in their favor. As software developers, we
must defend all possible points of the system; an attacker can pick the weakest
point and focus there. We can only defend against the known exploits;
attackers can take their time to find any number of unknown vulnerabilities.
We must be constantly on the lookout for attacks; attackers can strike at
will. We have to write good, clean software that works nicely with the rest of
the world; attackers can play as dirty as they like.

Software security presents a myriad of extra—but important—problems
and challenges for the poor, overworked programmer. What does this tell
us? Simply that we must do better. We must be better informed, better armed,
more aware of our enemies, and more conscious of the way we write code.
We must design in security from the outset and put it into our development
processes and schedules.

Feeling Vulnerable

The programmer’s role in this mess is to write secure code, so let’s survey the
weak points in our software to determine where we must focus our effort.
These are specific types of code vulnerabilities, holes that can be compro-
mised by an attacker.

Insecure Design and Architecture

This is the most fundamental flaw, and consequently the hardest to fix.
Failure to consider security at the architectural level will lead to committing
security sins everywhere: sending unencrypted data over public networks,
storing it on easily accessible media, and running software services that have
known security flaws.

Security should appear on the radar as soon as development starts. Every
system component must be considered for security holes; a computer system
is only as safe as its least secure part, which may not even be the code you’re
writing. For example, a Java program can be no more secure than the JVM
executing it.

Buffer Overrun

Most applications are public facing, listening on an open network port or
handling input from a web browser or GUI interface. These input routines
are prime sites for security failure.

C code programs often use the standard library function sscanf to parse
input. Although it’s part of C’s standard library and appears in C code regu-
larly, sscanf unashamedly provides subtle ways to write insecure code.2

2 This example is written in C and is common in C code, but remember that this exploit is far
from a C-only problem.

230 Chapter 12

You might see code like this:

void parse_user_input(const char *input)

{

/* first parse the input string */

int my_number;

char my_string[100];

sscanf(input, "%d %s", &my_number, my_string);

... now use it ...

}

Can you see the glaring problem? An ill-formed input string—anything
over 100 characters—will overrun the my_string buffer and smear arbitrary
data across invalid memory addresses.

The results depend on what memory is trashed. Sometimes the program
will carry on unaffected; you’ve been very, very lucky.3 Sometimes the program
continues, but its behavior is subtly altered—this can be hard to spot and
confusing to debug. Sometimes the program will crash as a consequence,
perhaps taking other critical system components down with it. But the worst
case is when the spilt data gets written somewhere in the CPU’s execution path.
This isn’t actually hard to do and allows an attacker to execute arbitrary code
on your machine, potentially gaining complete access to it.

Overrun is easiest to exploit when the buffer is located on the stack, as
in the example above. Here it’s possible to direct CPU behavior by overwriting
the stack-stored return address of a function call. However, buffer overrun
exploits can abuse heap-based buffers too.

Embedded Query Strings

This breed of attack can be used to crash programs, execute arbitrary code,
or fish for unauthorized data. Like buffer overrun, it relies on a failure to
parse input, but rather than burst buffer boundaries, these attacks exploit
what the program subsequently does with the unfiltered input.

Format string attacks are a classic example of this problem in C programs.
A common culprit is the printf function (and its variants), used as follows:

void parse_user_input(const char *input)

{

printf(input);

}

A malicious user could provide an input string containing printf format
tokens (like %s and %x) and coerce the program to print data from the stack
or even from locations in memory, depending on the exact form of the printf
call. An attacker can also write arbitrary data to memory locations using a
similar ploy (exploiting the %n format token).

3 Or, to look at it another way, you’ve been very unlucky. You didn’t spot the flaw when testing; it
will enter production code, just waiting for a cracker to exploit it.

An Insecur i ty Complex 231

Solutions to this problem aren’t hard to find. Writing printf("%s", input)
will avoid the problem by ensuring that input is not interpreted as a format
string.

There are many other situations where an embedded query can mali-
ciously exploit a program. SQL statements can be surreptitiously fed into
database applications to force them to perform arbitrary database lookups
for an attacker.

Another variant exhibited by lax web-based applications is known as a
cross-site scripting exploit, due to the way the attack works across the system:
from an attacker’s input, through the web application, finally manifesting on
a victim’s browser. An attacker’s bogus comment on a web-based messaging
system will be rendered by all browsers viewing the page. If the message
contains hidden JavaScript code, the browsers will execute it without their
users realizing it.

Race Conditions

It is possible to exploit systems that rely on the subtle ordering of events, to
provoke unintended behavior or crash the code. This is generally exhibited
in systems with complex threading models or that are comprised of many
collaborating processes.

A threaded program might share its memory pool between two worker
threads. Without adequate guarding, one thread might read information in
the buffer that the writer thread did not intend to release yet—part of a
privileged transaction or a different user’s information.

This problem isn’t restricted to threaded applications, though. Consider
the following fragment of Unix C code. It intends to dump some output to a
file and then change file permissions on it.

fd = open("filename"); /* create a new file */

/* point A (see later) */

write(fd, some_data, data_size); /* write some data */

close(fd); /* close the file */

chmod("filename", 0777); /* give it special privileges */

There is a race here that an attacker can exploit. By removing the file
at point A and replacing it with a link to his own file, the attacker gains a
specially privileged file. This can be used to further exploit the system.

Integer Overflow

Careless use of mathematical constructs can cause a program to cede control
in unusual ways. Integer overflow will occur when a variable type is too small
to represent the result of an arithmetic operation. The unsigned 8-bit data
type (uint8_t) renders this C calculation erroneous:

uint8_t a = 254 + 2;

232 Chapter 12

The contents of a will be 0, not the 256 you’d expect; 8 bits can only
count up to 255. An attacker can supply very large numeric input values to
provoke overflow and generate unintended program results. It’s not hard to
see this causing significant problems; the following C code contains a heap
overrun waiting to happen, thanks to integer overflow:

void parse_user_input(const char* input)

{

uint8_t length = strlen(input) + 11; /* a uint8_t might overflow */

char *copy = malloc(length); /* so this might be too small */

if (copy)

{

sprintf(copy, "Input is: %s", input);

/* oh dear, we might have overrun the buffer */

}

}

It’s true that uint8_t is an unlikely candidate for the string length variable,
but the exact same problem manifests itself with larger data types. It’s less
likely in normal operation, but just as exploitable.

This kind of problem also occurs with subtraction operations (where it’s
called integer underflow), mixed signed and unsigned assignments, bad type
casting, and multiplication or division.

Protection Racket

The more you seek security, the less of it you have.
—Brian Tracy

We’ve seen how software construction is like building a house (see “Do We
Really Build Software?” on page 177, and Chapter 14). We must learn to
secure our programs just like we’d protect a house, locking all doors and
windows, employing a sentry, and adding security mechanisms (like a burglar
alarm, electronic pass cards, identity badges, etc.). But you must still be con-
stantly vigilant: A door can be left ajar regardless of any fancy lock devices,
and a burglar alarm can be left unset.

Our software security strategies apply at different levels:

The system installation
The exact OS configuration, network infrastructure, and version num-
bers of all running applications have important security implications.

The software system design
We need to address design issues like whether the user can remain logged
in for indefinite periods, how each subsystem communicates, and which
protocols are used.

The program implementation
It must be flaw-free. Buggy code leads to security vulnerabilities.

An Insecur i ty Complex 233

The system’s usage procedure
If it is routinely used incorrectly, any software system can be compro-
mised. We should prevent this as much as possible with sound design,
but users must be taught not to cause problems. How many people write
down their username and password on paper beside their terminals?

Creating a secure system is never easy. It will always require a security/
functionality compromise. The more secure a system is, the less useful it
becomes. The safest system has no inputs and no outputs; there’s nowhere
for anyone to attack. It won’t do much, though. The easiest system has no
authentication and allows everyone full access to everything; it’s just terribly
insecure. We need to pick a balance. This depends on the nature of the appli-
cation, its sensitivity, and the perceived threat of attack. To write appropriately
secure code, we must be very clear about such security requirements.

Just as you would take steps to secure a building, the following techniques
will protect your software from malicious attackers.

System Installation Techniques

No matter how good your application is, if the target system is insecure, your
program is vulnerable. Even the most secure application must run in its
operating environment: under a particular OS, on a specific piece of hard-
ware, on a network, and with a certain set of users. An attacker is just as likely
to compromise one of these as your actual code.

Don’t run any untrusted, potentially insecure program on your computer
system.

This raises the question: What makes you trust a piece of software?
You can audit open source software to prove that it’s correct (if you have
the inclination). You can opt for the same software that everyone else
uses, thinking that there’s safety in numbers. (However, if a vulnerability
is found in that software, you, and many other people, must update.)
Or you can pick a supplier based on their reputation, hoping that it’s a
worthwhile indicator.

KEY CONCEPT Only run trusted software on your computer system. Have a clear policy to decide who
you trust.

Employ security technologies like firewalls and spam and virus filters.
Don’t let crackers in through a back door.

Prepare for malicious authorized users by logging every operation, record-
ing who did what and when. Back up all data stores periodically so that
bogus modifications don’t lose all of your good work.

Minimize the access routes into the system, give each user a minimal set
of permissions, and reduce the pool of users if you can.

Set up the system correctly. Certain OSes default to very lax security,
practically inviting a cracker to walk straight in. If you’re setting up such
a system, then it’s vital to learn how to protect it fully.

234 Chapter 12

Install a honeypot: a decoy machine that attackers will find more easily
than your real systems. If it looks plausible enough, then they’ll waste
their energy breaking into it, while your critical machines continue
unaffected. Hopefully you’ll notice a compromise of the honeypot and
repel the attacker long before he gets near your valuable data.

Software Design Techniques
This is the essential place to get your security story straight. You can try to
shoehorn security into code at the end of a development cycle, and you’ll
fail. It must be a fundamental part of your system’s architecture and design.

KEY CONCEPT Security is an essential aspect of every software architecture. It’s a mistake to gloss over
it during early development work.

The simplest software design has the fewest points of attack and is con-
sequently the easiest to secure. More complex designs naturally lead to more
interactions between constituent parts, and so provide more places for a
cracker to attack. If you’re one of the 99.9 percent of programmers who can’t
run your program in a sealed box in an underground bunker in an undis-
closed location in the middle of a desert, then you need to consider how to
make your design as simple as possible.

As you design the code, think about how to actively prevent anyone from
abusing it. Here are the winning strategies:

Limit the number of inputs in your design, and route all communication
through one portion of the system. This way, an attacker can’t get all over
your code—only through a single (secured) bottleneck. His influence is
limited to a secluded corner, and you can focus your security efforts there.4

Run every program at the most restrictive privilege level possible. Don’t
run a program as the system superuser unless it’s absolutely necessary,
and then take even more care than usual. This is especially important for
Unix programs that run setuid—these can be run by any user but are
given special system privileges when they start.

Avoid any features that you don’t really need. It will not only save you
development time, but also reduce the chance of bugs getting into the
program—there’s less software for them to inhabit. The less complicated
your code, the less likely it is to be insecure.

Don’t rely on insecure libraries. An insecure library is anything you don’t
know to be secure. For example, most GUI libraries aren’t designed for
security, so don’t use them in a program run as the superuser.

KEY CONCEPT Only rely on known, secure third-party components in your program design.

Tailor your code to an execution environment that manages security
issues. The .NET run time offers offers a code access security infrastructure
that allows you to assert, for example, that the calling code has been

4 Of course, it’s never quite that simple. A buffer overrun could occur anywhere in your code,
and you must be constantly vigilant. However, most security vulnerabilities exist at, or near, the
sites of program input.

An Insecur i ty Complex 235

signed by a trusted third party. This doesn’t remove all potential problems
(the company’s private key could always go astray), and you must learn
how to use it correctly, but it does help to manage security problems.
Avoid storing sensitive data. If you must, encrypt it so that prying eyes
can’t easily read it. When you handle secrets, be very wary of where you
put them; lock memory pages containing sensitive information so that
your OS’s virtual memory manager can’t swap it onto the hard disk,
leaving it available for an attacker to read.
Obtain secrets from the user carefully. Don’t display passwords.

The least impressive security strategy is known as security through obscurity,
yet this is really the most prevalent. It merely hides all software design and
implementation behind a wall so that no one can see how the code works
and figure out how to abuse it. Obscurity means that you don’t advertise your
critical computer systems in the hope that no attacker will find them.

It’s a flawed plan. Your system will one day be found, and it will one day
be attacked.

It’s not always a conscious decision, and this technique works very conve-
niently when you forget to consider security in the system design at all—that
is, it’s convenient until someone does compromise your system. Then it’s a
different matter.

KEY CONCEPT Expect your software to be attacked, and design each part with this in mind.

Code Implementation Techniques
With a bulletproof system design, your software is unbreakable, right? Sadly,
it is not. We’ve already seen how security exploits can capitalize on flaws in
code to wreak their particular brand of chaos.

Our code is the front line, the most common route an attacker will try to
enter through and the place our battles are fought. Without a good system
design, even the best code is vulnerable to attack; but upon the foundation
of a well-thought-out architecture, we must build strong walls of defense with
secure code. Correct code is not necessarily secure code.

Defensive programming is the main technique to achieve sound code. Its
central tenet—assume nothing—is exactly what secure programming is
about. Paranoia is a virtue, and you can never assume that users will
employ your program as you expect or intend them to.

Simple defensive rules like “check every input” (including user input,
startup commands, and environment variables), and “validate every calcu-
lation” will remove countless security vulnerabilities from your code.
Perform security audits. These are careful reviews of the source code by
security experts. Normal testing won’t find many security flaws; they are
generally caused by bizarre combinations of use that ordinary testers
wouldn’t think of (for example, very long input sequences that provoke
buffer overrun).

236 Chapter 12

Spawn child processes very carefully. If an attacker can redirect the sub-
task, then he can gain control of arbitrary facilities. Don’t use C’s system
function unless there’s no other solution.

Test and debug mercilessly. Squash bugs as rigorously as you can. Don’t
write code that can crash; its use could bring down a running system
instantly.

Wrap all operations in atomic transactions so attackers can’t exploit race
conditions to their advantage. You could fix the chmod example in “Race
Conditions” on page 231 by using fchmod on the open file handle, rather
than chmoding the file by name: It doesn’t matter if the attacker replaces
the file, you know exactly which file is being altered.

Procedural Techniques
This is largely a matter of training and education, although it helps to select
users who aren’t totally inept (if you have that luxury).

Users must be taught safe working practices: not to tell anyone their
password, not to install random software on a critical PC, and to use their
systems only as prescribed. However, even the most diligent people will make
mistakes. We design to minimize the risk of these mistakes, and we hope that
the consequences are never too severe.

In a Nutshell

Security is a kind of death.
—Tennessee Williams

Programming is war.
Security is a real issue in modern software development; you can’t stick

your head in the sand and hide from it. Ostriches write poor code. We can
prevent most security breaches by better design, better system architecture,
and greater awareness of the problems. The benefits of a secure system are
compelling, since the risks are so serious.

Good programmers . . . Bad programmers . . .

Understand the security
requirements for each project
they work on

Instinctively write code that
avoids common security
vulnerabilities

Design security into each
system; they don’t patch it
in at the end

Have a security test strategy

Dismiss security as an unimpor-
tant concern

Consider themselves security
experts (very few people are
security experts)

Only think about security flaws in
their programs when vulnerabili-
ties are discovered, or worse, when
their code is compromised

Focus on security when writing
code and ignore it at the design
and architectural levels

An Insecur i ty Complex 237

See Also

Chapter 1: On the Defensive
Defensive programing is an important technique for writing secure code.

Chapter 8: Testing Times
We must rigorously test our software for security issues.

Chapter 13: Grand Designs
Security is similarly essential to the design of each section of code.

Chapter 14: Software Architecture
Security is one of the fundamental architectural concerns of a computer
system. It must be designed in from the outset.

Get Thinking

A detailed discussion of the following questions can be found in the
“Answers and Discussion” section on page 515.

238 Chapter 12

Mull It Over

1. What is a “secure” program?

2. What input must be validated in a secure program? What sort of valida-
tion is required?

3. How can you guard against attacks from the pool of trusted users?

4. Where can an exploitable buffer overrun occur? What functions are
particularly prone to buffer overrun?

5. Can you avoid buffer overruns altogether?

6. How can you secure the memory in use by your application?

7. Are C and C++ inherently less secure than alternative languages?

8. Has the experience of C led to C++ being a better, more securely
designed language?

9. How do you know when your program has been compromised?

Getting Personal

1. What are the security requirements for your current project? How were
these requirements established? Who knows about them? Where are they
documented?

2. What’s the worst security bug in one of your shipped applications?

3. How many security bulletins have been posted against your application?

4. Have you ever run a security audit? What kinds of flaws did it reveal?

5. What kind of person is most likely to attack your current system? How is
this influenced by

Your company

The type of user

The type of product

The popularity of the product

The competition

The platform you run on

The connectedness and public visibility of the system

PART III
T H E S H A P E O F C O D E

Unlike a fine wine, your code is not likely to get any
better the longer you leave it. If it starts like a small
pile of something that the dog produced, then it will
no doubt end up like a large pile of something an
elephant produced.

This is no secret, yet software factories continually churn out elephan-
tine creations and then suffer the consequences. Their products are neither
adaptable, extensible, or malleable enough to suit their future requirements,
nor easy enough to develop: They fail to deliver on time and to budget. As
programmers, this hurts our pride—but it hurts managers’ wallets, hard.

The answer? One solution is to never attempt code development in the
first place, but that’s hardly practical. The other is to develop code with a view
to the entire system’s structure. Good code doesn’t happen by accident; it is
the product of careful crafting, with much emphasis placed on prior planning
and design. But it also stems from a nimble development approach, from
being agile enough to cope with the inevitable problems and changes that
you’ll encounter en route.

240 Par t I I I

This section explores this process. We’ll look at:

Chapter 13: Grand Designs
Code micro design: low-level construction tips for individual code
modules.

Chapter 14: Software Architecture
Larger-scale system design—the first construction stage of any software
development.

Chapter 15: Software Evolution or Software Revolution?
A look at how software grows and expands over time, with some practical
suggestions for grafting new work into an old codebase.

These are not optional extras or nice-to-haves. They are essential stages
of our craft and are therefore crucial to the production of quality software.
Ignore this stuff at your peril.

G R A N D
D E S I G N S

How to Produce Good
Software Designs

13

In this chapter:

The internal design of code

What we design and why

What does a good design
look like?

Design tools and
methodologies

A camel is a horse designed by committee.
—Sir Alec Issigonis

Some code just makes you sigh.
I once had to write a device driver for an

embedded product. The driver’s interface to the
OS was quite complex. The interface to the hard-
ware I was using was also complex. To keep myself
sane, I split the code into two sections. The first
was an internal library that accessed the hardware,
performed some data buffering, and provided a
simple API to access that buffered data. Then I
wrote a second, distinct layer that implemented the
finicky OS driver interface in terms of this internal
library. The structure of the device driver looked
like Figure 13-1.

242 Chapter 13

Later, the manufacturer of the hardware sent me a sample imple-
mentation of the same device driver. The author of this code had clearly
not thought it out at all. The code was a sprawling mess, tightly intermingling
the complex OS interface with the hardware logic in a completely incompre-
hensible manner. An approximation of its structure is shown in Figure 13-2.

Now, I’m not trying to toot my own horn (any more than is necessary,
anyway). The point of this illustration is clear. The first design is better. It is
easier to understand because it’s so straightforward, it is easier to implement,
and consequently it is easier to maintain.

C.A.R. Hoare wrote, “There are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.” (Hoare 81)

One of the signs of a mature programmer is the design quality of his or
her code. In this chapter, we’ll look at what constitutes a good design and
investigate how to craft high-quality software designs.

Programming as Design

It’s a popular belief that “design” is a stage you complete before moving on
to writing code. Its product is some form of design specification, which is suffi-
cient for a generic code monkey to implement.

The truth is very different. Programming—the act of writing code—is a
design activity.

Even the most detailed specification has holes, or else it would be the
code—you can’t describe every minuscule detail in a design document.
The act of programming verifies the initial design decisions and performs
the remaining design work. It exposes holes, inconsistencies, and errors and
allows you to find a route around them. “Some programmers don’t think
they’re doing design when they program, but whenever you write code,
you’re always doing design, either explicitly or implicitly.” (Page Jones 96)

KEY CONCEPT Programming is a design activity. It’s a creative and artistic act, not mechanical code
generation.

A good development process recognizes this and doesn’t shy away from
writing code when it’s appropriate. Practitioners of Extreme Programming
advocate that design is the code. (Beck 99) There is no separate design activity;

Figure 13-1: Pete’s sane software design Figure 13-2: How not to design software

OS interface Hardware interface

Grand Designs 243

there is no team of designers. It’s the programmers who constantly refine and
extend the design by refining and extending the code. This is enshrined in
their test-driven design approach: Code tests are written before any code, as a
design verification tool. This is a wise idea.

Does this mean that you don’t need to think before starting to hack at
code? Not at all! Deep inside a text editor is not the place to plan what you’re
writing. That’s like trying to drive from Berlin to Rome without deciding a
route first. You’ll end up in Moscow before you’ve worked out which way is
north. By definition, design is something you do first.

KEY CONCEPT Think before you type; establish a coherent design. Otherwise you’ll end up with
chaotic code.

What Do We Design?

Programmers design code structures, obviously. But this means different
things at different stages of the development process. At each stage, design is
a process of decomposing the task into its constituent parts and figuring out
how each part works.

These levels of software design are:

The system architecture
Here we look at the system as a whole, identify the main subsystems, and
work out how they communicate. The architectural design has the most
influence on the performance and characteristics of the system as a whole
and the least impact on specific lines of code. It is the most important
design act and is covered in the next chapter. In this chapter, we’re con-
cerned with the internal design of code, which involves the subsequent
design levels.

Modules/components
The architectural subsystems are usually too large to directly implement
in code, so the next step is to break each one down into comprehensible
modules. It’s very easy to be vague about design at the module level.
In some ways, a “module” does not really exist. Module may mean some-
thing different depending on the design approach; it might be a logical
clump of code, perhaps some physical unit like a Java package, C++/C#
namespace, or a reusable library. It might be a class hierarchy or maybe
even a free-standing executable.

This design stage often produces published interfaces. These can’t
be easily changed later on, since they form strict contracts between code
modules and between the teams of programmers writing them.

Classes and data types
Next, we break a module into bite-sized chunks. Interface design tends
to be less formal and easier to change behind the module. The tendency
is to do this micro design at the keyboard. This urge should be resisted,
or else you’ll write the first code that comes into your head, not the best
code for the problem.

244 Chapter 13

Functions
This may be the lowest design level in the food chain, but it’s of no less
importance. A program is built from routines: If the routines are poorly
designed, then the entire system will suffer. After having established exactly
which functions are required, we design how they work internally, how
the flow of control is routed, and which algorithms are used.1 This is
usually a mental exercise rather than a documented procedure, but a
diligent design is essential.

What’s All the Fuss About?

You won’t find anyone arguing for bad design, but nonetheless, there’s a lot
of badly designed code out there. After a few years on the front line, any
developer has the scars to prove it. (Battle-hardened veterans are already
nodding their heads and mentally rehearsing their war stories.) But why is
this the case?

Sloppy design can be the product of inexperienced programmers, but
more often it is caused by the commercial pressures of the software factory
squeezing out any time that might have been spent on good design. No one
listens to the poor, protesting coders. Programming in the Real World is
necessarily bound by the drive to ship software—any software—on time.
The irony is that in almost every case, a lack of a good design ultimately
costs more than doing it properly would have. As they say, “There’s never
time to do it right, but there’s always time to do it twice.”

Getting design right is really very important. The design of your code is the
foundation upon which it is built. If it’s wrong, then the code will be unstable,
unsafe, and not fit for purpose—dangerous. A bad design foundation leads
to the software equivalent of the Leaning Tower of Pisa. While novel that it
manages to stand up under the strain of real use, it will never be as good as it
ought to be, and in time this inevitably shows.

A sound design makes code:

Easier to write (there’s a well-defined plan of attack, and it’s clear how
it’s all going to fit together)

Easier to understand

Easier to fix (you can identify the location of problems)

Less likely to harbor bugs (program errors are not hidden behind
mystifying design problems)

More resilient to change (the design will encourage extensions and
accommodate modification)

1 Key algorithms will often span multiple functions; they’ll be determined at the module design
stage.

Grand Designs 245

Good Software Design

For any programming problem, there will be many potential code designs.
Your job is to find one. The best one. Or at least a sufficiently good one.
It’s not an easy task. . . .

How do you know that your design will work? After completing a bullet-
proof plan of attack, you confidently begin implementing it. Later, an
unexpected problem will show its ugly head. Back to the drawing board.

How do you know when your design is finished? You can’t know until
you’ve actually implemented it and found that it works. Many issues can’t
be fore-guessed; you have to step out, implement the design, and see
whether or not it’s complete. It’s only by attempting a solution that you
even begin to understand the original problem. Armed with this new
knowledge, you can then try to solve it again properly.

How do you know it’s the best design solution for the problem? You can’t
tell unless you try out every possibility. This isn’t practical. Instead, how
do you know it’s good enough? If performance is a requirement, you won’t
really know until the system is performing.

The best design approaches address these problems. They are:

Iterative
Avoid too many nasty surprises by doing a small amount of design, imple-
menting it, assessing the implications, and feeding this into to the next
design round. This incremental construction approach is very powerful.

Cautious
Don’t try to design too much at once. If something fails, it might be
because of any number of design decisions. Limit the room for failure,
and you’ll find it easier to progress. Small, sure design steps are more
likely to succeed than large, clumsy ones.

Realistic
A prescriptive design process will not work all of the time, every time.
The outcome depends on the quality of the requirements established,
the experience of the team, and the rigor with which the process is applied.
A pragmatic approach takes the best of all methodologies and admits
that it relies on the programmers’ gut feeling—experience has a lot to
do with shaping good design.

Informed
You must fully understand all requirements and motivating principles to
be clear about the problem you’re solving, and also about the important
qualities of the right solution. If you don’t, you’ll solve the wrong problem.
You need this information to get early design decisions right, and some
are hard to reverse.

246 Chapter 13

Your design approach is inevitably affected by the overall development
methodology in use (see “Programming Styles” on page 420 for a description
of these). A good design process is a step towards creating a good design, but
no guarantee. It still comes down to the quality of the design decisions you
make. Different trade-offs lead to different designs. A design for speed will
differ from design for extensibility, for example. Ultimately, there is no right or
wrong design. At best, there are good designs and bad designs.

Good designs have a number of attractive characteristics, whose opposites
are sure indicators of bad design. We’ll discuss these next.

Simplicity

This is the single most important characteristic of well-designed code. A simple
design is easy to understand, has no unnecessary warts or blemishes, and is
easy to implement. It is coherent and consistent.

Simple code is as small as possible but no smaller. This takes some doing,
as the mathematician Blaise Pascal appreciated: “I am sorry for the length of
my letter, but I had not the time to write a short one.” Carefully work out how
little code is needed, and then write just that. Remember, you can always add
more code later for extra functionality, but you can rarely remove something
that has become intimately entwined.

M A K I N G A T R A D E

Software design is a process of making decisions—of decomposing the system into
its constituent parts, but also balancing the contending forces that pull in different
directions. There are trade-offs to be made that shape the final design.

These are common examples of such tightropes and games of tug-of-war:

Extensibility vs. simplicity
A design for extensibility provides plenty of interface points for future code to be
plugged into and ensures the scaffolding is sufficiently general to support any
later requirements. Simplicity avoids the complication of extra levels of indirection
and needless generality.

Efficiency vs. safety
Gains in performance often come by sacrificing purity of design—putting in special
back doors for certain important operations or adding lots of coupling to prevent
too much indirect access. Highly optimized systems are generally less clear and
more brittle in the face of change.

Not all efficient designs are bad, though; many good designs naturally perform
well because of their simplicity.

Features vs. development effort
At project initiation, there are a thousand desired features and a reasonable idea
of when they should be delivered by (tomorrow, if not sooner). Without an infinite
number of monkeys and their infinite number of PCs, you’ll never get it all done.
More features take more time to implement.

Which of these characteristics is most important depends on the project require-
ments. That’s why it’s so important to be clear about them up front.

Grand Designs 247

Laziness can pay off. Work your design so you can defer as much work as
possible, and only concentrate on the immediate problems.

KEY CONCEPT Less is more. Strive for simple code that does a lot with a little.

A simple design is not necessarily easy to create. It takes time. For all but
the most basic programs, a great deal of information must be sifted through
to reach a final solution. Well-designed code looks obvious, but it probably took
an awful lot of thought (and a lot of refactoring) to make it that simple.

KEY CONCEPT It’s a complicated job to make something simple. If a code structure looks obvious, don’t
assume that it was easy to design.

There are many ways to make a design unnecessarily complex, including
incorrect component decomposition, the thoughtless proliferation of threads,
inappropriate choice of algorithms, complex naming schemes, and excessive
or inappropriate module dependencies.

Elegance

Elegance embodies the aesthetic aspects of design and often goes hand in
hand with simplicity. It means that your code isn’t baroque, confusingly
clever, or overly complex. Well-designed code has a beauty in its structure.
These are desirable characteristics:

Control flowing gracefully around the system. A single operation doesn’t
pass through every module, converting the format of its parameter between
16 different representations, before finally ignoring it.

Each part complements the others, adding something distinct and
valuable.

The design is not riddled with special cases.

It associates similar things.

No nasty surprises lurk around the corner.

There is a small locality of change: A single, simple change in one place
doesn’t lead to modifications of the code in many other places.

Good design has a lot to do with balance and aesthetics. I won’t go so far
as to say programming is art, although some could argue a convincing case
for this. Elegance and simplicity underpin most of the remaining character-
istics in this list.

Modularity

As we attack a design problem, we naturally divide it into parts called modules
or components. We decompose into subsystems, libraries, packages, classes, and
so on. Each part is less complex than the original problem, but put together,
they form a complete solution. The quality of this decomposition is paramount.

248 Chapter 13

Key qualities of modularity are cohesion and coupling. We aim for
modules with:

Strong cohesion
Cohesion is a measure of how related functionality is gathered together
and how well the parts inside a module work as a whole. Cohesion is the
glue holding a module together.

Weakly cohesive modules are a sign of bad decomposition. Each
module must have a clearly defined role and not be a grab bag of
unrelated functionality (like the pitifully common utils namespace—
why do people write these things?).

Low coupling
Coupling is a measure of the interdependency between modules—the
amount of wiring to and from them. In the simplest designs, modules
have little coupling and so are less reliant on one another. Obviously,
modules can’t be totally decoupled, or they wouldn’t be working
together at all!

Modules interconnect in many ways—some direct, some indirect.
A module can call functions on other modules or be called by other
modules. It may use another module’s data types or share some data
(perhaps variables or files). Good software design limits the lines of
communication to only those absolutely necessary. These communi-
cation lines are part of what determines the code design.

Once identified, each module can be worked on in isolation and tested
separately. This is an advantage of modularity; it allows you to split tasks
between programmers. Take care, though; Conway’s Law warns that
software structure may follow team structure: “If you have four teams
working together to build a compiler, it will become a four-pass compiler”
(see “Organization and Code Structure” on page 320). Make sure the
decomposition is sensible and based on the problem, not the team
organization.

KEY CONCEPT Design modules that are internally cohesive with minimal coupling. The decomposition
must represent a valid partition of the problem space.

Good Interfaces
Modules help us separate concerns and partition the problem. Each module
defines an interface, the public façade behind which it hides an internal imple-
mentation. This set of available operations is often called an application
programming interface (API). It is the sole route to a module’s functionality,
and its quality determines the quality of that module, at least as seen from
the outside.

KEY CONCEPT Draw lines in the sand that people don’t need to cross: Identify clear APIs and interfaces.

To create a good interface, follow these steps.

1. Identify the client and what it wants to do.

2. Identify the supplier and what it’s able to do.

Grand Designs 249

You can only successfully separate the user and implementer with
an interface if both parties have been correctly identified and their
individual needs are understood. Once you’re clear about this, you
stand a chance of creating an interface that will satisfy its users and is
actually implementable.

Bad design puts operations in the wrong place, making it a night-
mare to follow the application logic and difficult to extend the design.
It leads to increased module coupling and reduced cohesion.

3. Infer the type of interface required.
Is it a function, a class, a network protocol, or something else? This is

probably dictated by who supplies the functionality, but an interface may
also be wrapped up to present it in different ways. For example, wrap-
ping a CORBA object around a library publishes its functionality to a
network of collaborating computers.

4. Determine the nature of operation.
What functionality really needs to be provided—is it more general

than this client’s specific requirement? Inside every function, there is
often a more useful operation waiting to get out.

There are a few key principles that help us to reason about the nature and
quality of our interfaces. As illustrated in Figure 13-3, these are:

Partitioning
An interface forms a point of contact, but also a line of separation between
client and implementer. They can only communicate in the defined
manner, not in any other ad hoc way.

Well-designed code clearly defines roles and responsibilities. Knowing
who the main actors are in a system and what they are all supposed to
do ensures that interfaces are crisp and effective.

A good example is my house: Its main interface is the front door. The
door partitions occupants from visitors and determines where they meet.
There are a number of other interfaces for other operations: windows,
telephones, the chimney, and so on.

Abstraction
An abstraction allows the viewer to concentrate on important decisions,
selectively ignoring certain details. It neatly organizes reality behind a
simpler representation, helping us to cope with complexity. It’s a partic-
ularly important concept in OO design. When designing an interface,
you create an abstraction by carefully choosing exactly what is important
for the user and what can be usefully hidden from them.

Given a bowl of fruit, you can happily say, “Eat the item on top,”
and then “Eat the next one,” without worrying exactly what that
entails; a grapefruit needs to be peeled, while rhubarb needs to be
boiled and smothered in sugar. These details are hidden behind the
abstraction eat; you only care that the fruit was eaten, not how.2

2 This ability to hide multiple physical behaviors behind a single logical abstraction is known as
polymorphism and is described in “Polymorphism” on page 423 .

250 Chapter 13

Figure 13-3: The interfaces provided by a house

Abstractions can form a hierarchy. You can view my house at differ-
ent levels of abstraction, depending on whether you’re a builder, a particle
physicist, or a bank manager. It can be considered:

A collection of rooms

An arrangement of walls, floors, and ceilings

A construction of bricks and timber

A collection of molecules, or even atoms

A mortgage that needs to be paid

Compression
This is the ability of an interface to represent a large operation with
something simpler. Compression is often the result of making good
abstractions, but bad abstractions can lead to more verbose code.

Substitutability
You can substitute one implementation of an interface with another, if it
meets the same contract. If you define a sort interface in your program,
then any algorithm can sit behind it: It could be a quicksort, a heapsort,
or (heaven forbid) a bubblesort. You can change it at any point, as long
as the visible behavior through the interface is the same.

In class inheritance hierarchies, any object can be substituted for its
supertype.

Grand Designs 251

If you want me to open my front door, you’ll ring the doorbell. It used
to be a wired switch that ran to the bell mechanism, but I’ve just invested
in a new-fangled wireless doorbell. This doesn’t affect you at all, in fact
you won’t even know I’ve changed it; you push a button, and I appear.

Extensibility

Well-designed code allows extra functionality to be slotted in at appropriate
places, when necessary. The danger is that this may lead to over-engineered
code, trying to cope with any potential future modification.

Extensibility can be accommodated through software scaffolding:
dynamically loaded plug-ins, carefully chosen class hierarchies with abstract
interfaces at the top, the provision of useful callback functions, and even a
fundamentally logical and malleable code structure.

KEY CONCEPT Design for extensibility, but don’t be hopelessly general—you’ll end up writing an OS,
not a program.

A good designer thinks carefully about how his or her software will be
extended. Randomly sprinkling code with hooks for extensibility may actually
degrade quality. You should balance the functionality needed now, what will
definitely need to be added later, and what might be needed to determine
how extensible the design should be.

Avoid Duplication

Well-designed code contains no duplication; it never has to repeat itself.
Duplication is the enemy of elegant and simple design. Unnecessary
redundant code leads to a brittle program: Given two similar pieces of

A B O U T F A C E

Most of computer science is built around defining interfaces and organizing complexity
around them. The infamous maxim is, “Any problem can be solved by adding an
extra level of indirection”—that is, hiding new complexity behind another interface.
There are many types of interfaces. They all present some public face to their clients
and hide the gory implementation details behind this façade.

Common forms of interfaces that you’ll create are:

• Libraries

• Classes

• Functions

• Data structures (particularly more exotic ones with additional behavior,
like semaphores)

• OS interfaces

• Protocols (network communications, for example)

252 Chapter 13

code that differ only in minor details, you may find and fix a bug in one
and then forget to fix the same bug in the other. This clearly compromises
code safety.

Most duplication comes through cut-and-paste programming—copying code
in the editor. It can arise more subtly through the reinvention of wheels by
programmers who don’t understand the whole system.

If you see strikingly similar things being done by separate sections of
code, generalize it in a function with appropriate parameters. There’s
now a single place to fix any faults. This has the benefit of making the
code’s intent clearer with a descriptive function name.

Classes that are strikingly similar indicate that some functionality could
be pushed up to a superclass or that there’s a missing interface to describe
the common behavior.

KEY CONCEPT Do it once. Do it well. Avoid duplication.

Portability
A good design is not necessarily portable; it depends on the code’s require-
ments. A lot can be done to prevent platform dependence, but compromising
code for unnecessary portability is bad design. A good design is appropriately
portable and manages portability concerns when they are an issue.

The story is familiar: Your code was never intended to run in any other
environment, so it wasn’t designed to cope. Later development unexpectedly
required a new runtime platform; it was simpler to adapt the old program
than write a new one. The code didn’t lend itself to portability, and there
wasn’t enough time to refactor or redesign for cross-platform support. The
result? A tangled mess of code, whose design has been irreparably warped,
riddled with #ifdef NEW_PLATFORM constructions. It has not been programmed
by an engineer; it has been plumbed by a philosopher.

Make careful choices about the structure of your OS-dependent or
hardware-dependent sections of code. It will pay dividends in the future,
and need not affect performance or clarity (sometimes it may even improve
clarity). It’s important to think about this as early in the design as possible;
it is expensive to rework old assumptions.

The common approach is to create a platform abstraction layer (which
may be a simple veneer over a few OS interface functions). You can imple-
ment this layer differently on each platform.

KEY CONCEPT Manage the portability of your code in its design, rather than hacking it in as an
afterthought.

Idiomatic
A good design naturally employs best practices, fitting in with both the design
methodology (see “Programming Styles” on page 420) and the implemen-
tation language’s idioms. This allows other programmers to immediately
understand the code’s structure.

Grand Designs 253

Given the implementation language (which may be fixed or may be
part of the design domain) you must understand how to use it well. C++, for
example, has idioms like Resource Acquisition Is Initialization (RAII) and operator
overloading, which make a big difference to how you design code. Learn
them. Understand them. Use them.

Well-Documented

Last, but by no means least, a good design should be documented. Don’t leave
readers to infer the structure by themselves. This is particularly important at
the higher levels of design. The documentation should be small because the
design is so simple.

At one end of the spectrum, architectural designs are documented in a
specification. At the other end, functions employ self-documenting code. In
the middle, you’ll probably use literate programming for API documentation.

How to Design Code

Always design a thing by considering it in its next larger
context—a chair in a room, a room in a house, a house in

an environment, an environment in a city plan.
—Eliel Saarinen

How do you learn to design well? Are good designers born or made? Can
design be taught or caught? Some programmers have a natural flair for
good design; it fits the way their brains work. They naturally appreciate
aesthetics and can comprehend enough of a problem to make balanced
judgments. Nevertheless, you can learn to design more effectively.

When I was born, I wasn’t very good at pottery. (I’ve never met anyone
who was.) I’m still terrible now, but I took some lessons once. I understand
the mechanics and can produce (almost recognizable) pots. I’d probably be
much better if I practiced a little, but I’ll never become a master artisan.

Similarly, no one is born able to design code: We learn. We are
taught design methodologies and good engineering practice. These aim
to make design a repeatable process, but they are no substitute for craftsmanship.
The creative thought process and construction of innovative designs is much
harder to convey; there will always be better designers who grasp this.

Good software design is aesthetic; to create this digital art requires skill,
experience, and practice. This chapter cannot attempt a paint-by-numbers
description of how to design software. A shame: If I could bottle good design,
I’d be a millionaire. To be a good designer, you must understand what con-
stitutes a good design and learn to avoid the characteristics of bad design.
Then practice. For a long time.

Apart from personal ability, there are design methods and tools that
promise much to the programmer. We’ll conclude by investigating how they
can (or can’t) help us.

254 Chapter 13

Design Methods and Processes

There are many software design methodologies. Some emphasize a notation,
others the process. A systematic approach is better than seat of your pants
design; which method you use is usually dictated by company practice and
culture. I’m always wary of getting too bogged down in a particular process—
satisfying its minuscule details tends to stifle creativity.

Modern design methods fall into two main families, the fundamental
design philosophies upon which they are based:

Structured design
This is primarily about functional decomposition, breaking up the function-
ality of the system into a series of smaller operations. Routines are the main
structuring devices; the design is composed of a hierarchy of routines.
Structured design is characterized by the divide-and-conquer approach,
splitting a problem into successively smaller procedures until each piece
can be decomposed no more.

There are two main lines of attack: top-down and bottom-up.

Not surprisingly, a top-down approach starts with the entire problem
and breaks it down to smaller activities. These, in turn, are designed
as self-contained units, until no more division is necessary.

In contrast, bottom-up design starts with the smallest units of function-
ality, the simple things you know the system must do. It then stitches
these functions together until it arrives at an entire solution.

In practice, these are used in tandem, and the design process ends
where they meet, somewhere in the middle.

Object-oriented design
Whereas structured design focuses on representing the operations a
system must perform, OO design focuses on the data within that system.
It models the software as an interacting set of individual units, known
as objects.

An OO design identifies the primary objects in the problem domain
and determines what their characteristics are. The behavior of these
objects is established, including the operations they provide and which
other objects they each relate to. The objects are weaved into a design,
incorporating any implementation domain objects needed. Design is
complete when all object behavior and interaction is determined.

Object-oriented programming was hailed as the savior of the software
design world, a new paradigm to usher in world peace, so much so that
people are often embarrassed to not be performing OO design. But it has
largely lived up to the hype, allowing software designs to manage the
complexity of far bigger problems.

See “Programming Styles” on page 420 for a more detailed description of
design methods and processes.

Grand Designs 255

Design Tools

Our designs are ultimately expressed in code, but it can often be helpful to
work at a more abstract level. Tools help us to reason about a design, help us
produce more effective designs, and help us to communicate those designs
to other programmers—documenting what we intend to produce and what
we have already created.

In a sense, methodologies are tools, but there’s a broad range of other
design aids that complement them.

Notations
Pretty pictures are worth their weight in words. Many graphical notations
exist to help us express our designs pictorially. Most became fleetingly
fashionable and then quietly slunk out of the limelight to be replaced
by an even sexier way of drawing boxes and lines. The Unified Modeling
Language (UML) is currently the most popular and well-specified notation.
It provides a standard way to model and document practically every
artifact generated by the software development process. In fact, it has
grown so comprehensive that you can use it to visualize far more than
just software; it has been used to model hardware, business processes,
and even organizational structures.

D E S I G N P A T T E R N S

Patterns have become a buzzword in the OO programming community over the last
few years. Popularized by the book Design Patterns: Elements of Reusable Software
(Gamma et al. 94) by the authors affectionately known as the “Gang of Four” (hence
it’s often known as the GoF book), design patterns are the software version of
Christopher Alexander’s architectural work. (Alexander 99)

Patterns establish a vocabulary of proven design solutions, and each pattern
describes a recognizable structure of collaborating objects. These aren’t clever
invented designs, but recurring patterns found in real code that have been shown
to work. Pattern languages collate a catalog of design patterns, showing how they
relate to and complement one another. Each pattern in a language follows a common
form, describing the context, the problem, and the solution. This information allows
you to apply the pattern appropriately in your designs.

Patterns crop up at several levels in a software system. Architectural patterns have
a profound influence on the organization of a system. Design patterns are midlevel
collaborations of software components. Language-level patterns are specific code
techniques, known more commonly as language idioms.

The names of design patterns have entered common parlance, a testament to their
usefulness. You’ll hear programmers happily talking about adaptors, observers,
factories, and singletons.

There is far more to design patterns than this quick description can do justice.
They are a genuinely useful concept, and it’s worth devoting some time to learn
about them. Read the GoF book and material beyond it.

256 Chapter 13

Notations provide a medium to help you express, think about, and
discuss your software design. They serve two purposes:

They allow you to scrawl quick “back of an envelope” designs and
share thoughts around a whiteboard.
They allow you to formally document designs.

To maintain your sanity in the latter case, diagram creation must be
automated with a dedicated drawing tool. Otherwise, diagrams will be
hard to update and will diverge from reality as you develop the code.
Spend your time doing something useful, not drawing boxes and lines.

I prefer to not be bogged down by overly formal use of a notation,
happily using it as a method of communicating the essential elements
of a design. Knowing enough to be able to communicate is good enough
for me; I don’t want to get too concerned about what every diamond and
dotted line means in every type of picture.

Design patterns
A powerful design tool providing a vocabulary of proven design tech-
niques, and showing how to apply them in practice. “Design Patterns”
on page 255 discusses design patterns in more depth.

Flowcharts
A particular kind of graphical notation, used to visualize algorithms.
They’re good for giving a high-level overview but are less precise than
code and become another thing to be kept in sync with code changes.
For this reason, it’s best to use them sparingly.

Pseudocode
Pseudocode helps you draft function implementations. It’s one of the most
curious inventions in software design—halfway between a natural language
and a programming language, a sort of pidgin English. Its advantage is the
freedom from any particular language’s syntax and semantics. You can con-
centrate on what needs to be done, not on language mechanics, and you
can include arbitrary amounts of descriptive prose for clarity.

These aren’t incredible benefits compared to the downsides. The
pseudocode will require translation into an implementation language.
You could have started to write in that language anyway and saved yourself
some effort. If pseudocode is being used as design documentation, then
you’ll have to keep it in sync with code.

Program Design Language (PDL) is an even more absurd invention—
a formalized pseudocode. I guess it made sense to somebody at the time.
I’d love to have seen their pseudocode compiler.

Design in code
This is a useful informal approach to code design. During the initial
design stages, you capture all APIs and the lower-level interfaces in code,
but without implementing any of them—you just write stubs that return
plausible values, putting comments inside each describing what should
be done. When you have reached a sufficiently mature design, the system
already has a lot of code written.

This can be a mixed blessing, as it can lead to less fluid designs. The
more you change the design, the more stubbed code you have to alter.

Grand Designs 257

CASE tools
Computer-aided software engineering (CASE) tools assist in all or part of the
design process, automating tedious jobs and managing the workflow.
Most are capable of generating code (of variable quality) from your
pretty pictures. Some even update the pictures when you modify the
code; this is known as round-trip engineering (or round-tripping). Many CASE
tools support collaborative work, allowing teams of programmers to con-
tribute to a single large-scale design.

A breed of CASE tool worthy of mention is Rapid Application Develop-
ment (RAD) tools: environments for quickly building applications. They
tend to work well in their specific domain (usually simple UI-focused
applications) but aren’t good general-purpose software design models.

KEY CONCEPT Take a pragmatic approach to design tools and methodologies—use them when they are
genuinely helpful—but don’t become a slave to them.

In a Nutshell

Out of intense complexities, intense simplicities emerge.
—Winston Churchill

Good code is well designed. It has a certain aesthetic appeal that makes it feel
good. You must plan a design before beginning to write code, or you’ll end up
with an unpleasant mess. Consider things like clean structure, possible future
extensions, correct interfaces, appropriate abstractions, and portability require-
ments. Aim for simplicity and elegance.

Design involves a strong element of craftsmanship. The best designs come
from experienced and skilled hands. Ultimately, a good designer is what makes
a good design. Mediocre programmers do not produce excellent designs.

Good programmers . . . Bad programmers . . .

Want to leave anything they
touch in a good state

Think of programming as a cre-
ative process and weave an ele-
ment of artistry into their work

Think about the structure of
code before they start working
on it

Feel the need to tidy up and
refactor messy code before they
do any extra work on it

Constantly learn about the
design of other software, build-
ing up knowledge of successes
and failures

Keep knitting more and more
code into a tight ball until they
think they’ve done enough and
then complain about the result

Don’t notice a bad design or feel
any distaste when working with
dense code

Are happy to hack quickly and
run away, leaving someone else
to clean up the mess

Don’t appreciate or respect the
internal design of code they’re
working on; they trample over it
in an unsympathetic manner

258 Chapter 13

See Also

Chapter 8: Testing Times
Describes how to design code for testing—making it easier to prove that
your code works properly.

Chapter 14: Software Architecture
The highest level of software design is known as software architecture.
It provides its own specific problems and is dealt with in this chapter.

Chapter 19: Being Specific
Software designs are often captured in a specification document.

Chapter 22: Recipe for a Program
Design fits into the overall software development process.

Chapter 23: The Outer Limits
The type of system you’re building has an inevitable influence on the
software’s internal design.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 519.

Mull It Over
1. How does project size affect your software design and the work involved

in creating it?

2. Is a well-documented bad design better than an undocumented
good one?

Grand Designs 259

3. How can you measure the design quality of a piece of code? How can you
quantify its simplicity, elegance, modularity, and so on?

4. Is design a team activity? How important are teamworking skills in
creating a good design?

5. Are different methodologies more suitable to different projects?

6. In what ways can you determine whether a design is highly cohesive or
weakly coupled?

7. If you’ve solved a similar design problem in the past, how good an
indicator is it of how difficult this problem will be?

8. Is there a place for experimentation in design?

Getting Personal

1. Look back and think about how you learned to design code. How could
you convey the knowledge you’ve gained to a total novice?

2. What experience do you have with using particular design methodologies?
Were these good or bad experiences? What was the resulting code like?
What might have worked better?

3. Do you find it important to stick rigidly to the methodology you’re using?

4. What was the best designed code you’ve ever seen? What was the worst
designed?

5. A programming language is essentially a tool to implement your design,
not a religion to argue about. How important is it really to know language
idioms?

6. Do you think programming is an engineering discipline, a craft, or an art?

S O F T W A R E
A R C H I T E C T U R E

Laying the Foundations
of Software Design

14

In this chapter:

What is software architecture?

How is software architecture
different from code design?

The qualities of good
architecture

Overview of key architectural
styles

Architecture is the art of how to waste space.
—Philip Johnson

Go into a city. Stand in the middle of it. Look
around. Unless you’ve picked an unusual place,
you will be surrounded by a large number of
buildings of varying ages and styles of construction.
Some fit into their surroundings sympathetically.
Others look totally out of place. Some are aesthet-
ically pleasing and seem well proportioned. Others
are downright ugly. Some will still be there in 100
years’ time. Many will not.

The architects who designed these buildings
took a lot into consideration before they put
pencil to paper. During the process of design,
they worked carefully and methodically to ensure
that the building was feasible to fabricate, and
they balanced all the contending forces: user
requirements, construction methods, maintain-
ability, aesthetics, and so on.

Software is not made of bricks and mortar, but
the same careful thought is required to ensure that

262 Chapter 14

a system meets similar sets of requirements. We have been erecting buildings
far longer than we’ve been writing software, and it shows. We’re still learning
about what makes good software architecture.

In this little foray into the world of software architecture, we’ll investigate
some common architectural patterns and look at what software architecture
really is, what it really isn’t, and what it’s used for.

What Is Software Architecture?

Is this just another term that stretches the building metaphor a little thinner
(see “Do We Really Build Software?” on page 177)? Maybe so, but it is a
genuinely useful concept. Software architecture is sometimes known as high-
level design; regardless of the terms used, the meaning is the same. Architecture
is a more evocative description of the concept.

Software Blueprints
As an architect prepares his blueprint for a building, the software architect
prepares a blueprint for the software system. However, while a building’s blue-
print is a rigorously detailed plan with all the important features included, our
software architecture is a top-level definition, an overview of the system that
specifically avoids too much detail. It is macro, not micro.

In this high-level view, all implementation details are hidden; we just
see the essential internal structure of the software and its fundamental
behavioral characteristics. The architectural view does the following:

Identifies the key software modules (or components, or libraries; at this
point call them what you like—blobs)

U N D E R G R O U N D M O V E M E N T

I joined a project that had produced a large amount of undocumented software,
erected without plan or purpose, with no architect to guide the construction process.
Naturally, it had become an unsightly carbuncle. The time came when we needed to
understand how it all really worked, and an architectural diagram of the system was
drawn up. There were so many different components (many largely redundant),
inappropriate interconnections, and different methods of communication that the
diagram was an intense jumble of tightly woven lines in many interpretive colors—
almost as if a spider had fallen into a few different cans of paint and then spun
psychedelic webs across the office.

Then it struck me. We had all but drawn a map of the London Underground. Our
system bore such a striking resemblance, it was uncanny—it was practically incomp-
rehensible to an outsider, with many routes to achieve the same end, and the plan was
still a gross simplification of reality. This was the kind of system that would vex a
traveling salesman.

The lack of architectural vision had clearly made its mark on the software. It was
hard to work with and hard to understand, with bits of functionality strewn across
completely random modules. It had gotten to the point where the only useful thing
you could do with it was throw it away.

In software construction, as in building construction, the architecture really matters.

Sof tware Archi tec ture 263

Identifies which components communicate with each other

Helps to identify and determine the nature of all the important inter-
faces in the system, clarifying the correct roles and responsibilities of the var-
ious subsystems

This information allows us to reason about the system as a whole without
having to understand how every individual part will work. The architecture
provides a framework into which the later development fits. It shows how
work can be split between teams and allows you to weigh different imple-
mentation strategies.

Not only does the architecture give a picture of how the system is com-
posed, it also shows how it should be extended over time. In large teams, a
program will develop more elegantly when there’s a clear, unified vision of
how the software should be adapted, of what should be put in each module,
and of how modules connect.

KEY CONCEPT The architecture is the single largest influence on the design and future growth of a soft-
ware system. It is therefore essential to get it right in the early stages of development.

As an up-front activity, the architecture is our first chance to map the
problem domain (the Real World problem we are solving) to a solution domain.
There isn’t always a simple one-to-one mapping of objects and activities
between the two, so the architecture shows how to think about one in terms
of the other.

Exactly what needs to be addressed by the software architecture will
differ from project to project. The target platform is not important at this
stage; it may be possible to implement the architecture on a number of
different machines using different languages and technologies. However:

For certain projects, it may be important to specify particular hardware
components, most likely for embedded designs.

For a distributed system, the number of machines and processors and
the split of work between them might be an architectural issue. Mini-
mum and average system configurations should be considered.

The architecture may also describe specific algorithms or data structures if
they are fundamental to the overall design (although this is far less likely).

There is always a trade-off. The more information that is set in stone at
the architectural level, the less room for maneuverability there is at a later
design or implementation stage.

Points of View
In physical architecture, we use a number of different drawings or views of
the same building: one for the physical structure, one for the wiring, one
for the plumbing, and so on. Similarly, we develop different software views
in the architectural process. Four views are commonly recognized:

The conceptual view
Sometimes called the logical view, this shows the major parts of the system
and their interconnections.

264 Chapter 14

The implementation view
This view is seen in terms of the real implementation modules, which
may have to differ from the neat conceptual model.

The process view
Designed to show the dynamic structure in terms of tasks, processes, and
communication, this view is best used when there’s a high degree of con-
currency involved.

The deployment view
Use this view to show the allocation of tasks to physical nodes, in a dis-
tributed system. For example, you may split functionality between a
database server and a farm of web interface gateways.

You don’t start with all of these. Particular views arise as development
work progresses. The main result of the initial architectural phase is the
conceptual view, and that’s what we’re concentrating on here.

Where and When Do You Do It?
The architecture is captured in a high-level document called something
imaginative like the architecture specification. This specification explains the
system’s structure and shows how it fulfills the requirements, including
important issues like the strategy to reach any performance requirements
and how acceptable fault tolerance will be achieved.

KEY CONCEPT Capture system architecture in a known place; a document accessible to everyone
involved—programmers, maintainers, installers, managers (perhaps even customers).

The architecture is the initial system design. It is therefore the first
developmental step after the requirements have been agreed upon. It’s
important to generate a specification up front because it provides a first

F O R W H A T I T ’ S W O R T H

Software architecture has wide-ranging implications—far beyond the initial structure
of the code, right into the heart of the software factory. The architecture will be a
lasting legacy, both in the technological and practical realms. Architecture affects
how the code will grow and how teams of people will work together to extend it;
software design affects workflow. With a three-tiered architecture, you’ll end up with
three teams of people working on the separate parts. There will probably be three
sets of admin staff too, and three management reporting lines. Someone’s early
design decision will affect which desk you sit at.

Since the architecture determines how malleable the software is and how well the
codebase can accommodate future requirements, it ultimately influences the commer-
cial success of your company. A bad architecture is more than just inconvenient—it
could cost you your livelihood. Serious stuff.

As programmers, it affects us most directly—it will affect how fun our work will be.
No one wants to labor intensely to add a minuscule feature that would have taken
two seconds with a correct initial design. At conception, check that the architecture
supports what you think it should, not just what the architects believe.

Sof tware Archi tec ture 265

chance to review and validate the design decisions that will have the most
significant impact on the project. It will expose weaknesses and potential
problems. Reversing a bad decision this early on will save a lot of time, effort,
and money. It’s expensive to change the foundation of a system once a lot of
code has been built upon it.

Architectural work is a form of design, but it is separate from the module
design phase, and distinct from low-level code design, although it certainly
overlaps somewhat. Later work on detailed design may feed changes back up
to the system architecture. This is natural and healthy.

What Is It Used For?

Architecture is the initial system design. But its uses stretch even further. We
use the system architecture to:

Validate
The architecture is our first chance to validate what is going to be built.
With it, we can mentally check that the system will meet all requirements.
We can check that it really is feasible to build. We can ensure that the
design is internally consistent and hangs together well with no special
cases or gratuitous hacks. Nasty blemishes in the high-level design will
only lead to more dangerous hacks at lower levels.

The architecture helps to ensure that there is no duplication of work,
wasted effort, or redundancy. We use it to check that there are no gaps in
the strategy, that we have included all the necessary pieces. We ensure
that there will be no mismatches as separate sections are brought together.

Communicate
We use the architecture specification to communicate the design to all
interested parties. These may be system designers, implementers, main-
tainers, testers, customers, or managers. It’s the primary route to under-
stand the system and is an important piece of documentation that should
always be kept up to date as changes are made.

W H O S E J O B ?

We’ve seen that software architecture affects everyone on the project—not just the
programmers. In contrast, the architecture is determined by a far smaller group of
people. What a responsibility.

The architecture designer is called a software architect. This is a grandiose title
and, like engineer, somewhat contentious. “Real” architects must study, qualify, and
reach levels of professional excellence to even be called architects. There are no such
requirements in the software world.

Software architects are among the project initiators, working right at the beginning
of the development cycle. As development ramps up, programmers will join the
effort to implement this established architecture.

However, on smaller projects requiring less specialized architectural experience,
the programmers themselves will devise the architecture. No big guns are drafted in.
Be ready to contribute to architectural design.

266 Chapter 14

KEY CONCEPT An architecture specification is an essential device to communicate the shape of your
system. Ensure that you keep it in sync with the software.

The architecture conveys the vision of your system, mapping the
problem domain to the solution domain. It should neatly identify how
future extensions fit in, helping to maintain the system’s conceptual
integrity. (Brooks 95) It implicitly provides a set of conventions and
contains an element of style. For example, it’s clear that you shouldn’t
introduce a new component with custom socket-based communication if
the rest of the design uses a CORBA infrastructure.

The architecture provides a natural route into the next level of
design without being too prescriptive.

Discriminate
We use the architecture to help us make decisions. For example, it
identifies build versus buy decisions, determines whether a database is
required, and clarifies the error-handling strategy. It will flag problem
areas, areas of particular risk on the project, and help us plan to mini-
mize this risk. Just as an architect’s primary goal is to ensure his building
stays up when it’s built—under all expected conditions (and some unusual
conditions too)—so should we ensure the resillience of our software
structure. A little wind or extra load shouldn’t topple the thing over.

We need this systemwide perspective to make the appropriate trade-
offs, ensuring that the design meets its required properties. These import-
ant issues are considered at the beginning rather than grafted in toward
the end of development.

KEY CONCEPT Make all software design decisions in the context of the architecture. Always check that
you’re working in line with the system vision and strategy. Don’t create a little wart on
the side that doesn’t complement anything else.

Of Components and Connections
Architecture mostly concerns itself with components and connections. It deter-
mines the number and type of each.

Components

Architecture captures information about each component, whatever component
means in the architecture’s context. It could be an object, a process, a library,
a database, or a third party product. Each of the system’s components is
identified as a clear and logical unit. Each performs one task and does it well.
No component includes a kitchen sink unless there’s a specific kitchen-sink
module.

While it won’t dwell on component implementation issues, the architec-
ture will describe all exposed facilities and perhaps the important externally
visible interfaces. It defines the visibility of the component: what it can see
and what it can’t, and what can see it and what can’t. Different architectural
styles imply different visibility rules, as we’ll see later.

Sof tware Archi tec ture 267

Connections

The architecture identifies all the inter-component connections and
describes the connection properties. A connection may be a simple function
call or data flow through a pipe. It may be an event handler or a message
passing through some OS or network mechanism. A connection can be
synchronous (blocking the caller until the implementation has completed the
request) or asynchronous (returning control to the caller immediately and
arranging for a reply to be posted back at a later date). This is important,
since it affects the flow of control around the system.

Some communication is indirect (and consequently quite subtle). For
example, components can share certain resources and talk through them—
rather like posting messages on a shared whiteboard. Examples of shared
communication channels are: a subordinate component, a shared memory
region, or something as basic as the contents of a file.

A R C H I T E C T S V S . M A R K E T E R S

An architecture is inadequate if it doesn’t fulfill the product requirements for initial
deployment or any future development; design quality is about more than just technical
excellence. Technical issues must be addressed alongside product management and
marketing considerations.

There is no point in developing a product that no one wants; it would obviously
be a huge waste of time. But you can miss vital business opportunities by omitting
marketing requirements from technical consideration. The marketing department
identifies core business objectives including sales strategies (do you charge a one-off
fee or employ a licensing/billing model?), the product’s position in the marketplace
(is it a high-end, feature-packed, high-cost product or a cheap, mass-produced item?),
and the importance of a unique brand running through the system.

In some situations, visibly good architecture may be a unique selling point and
may provide a strong competitive advantage. Other markets care less about the
internal system structure, but an architecture that anticipates and handles future
customer requirements is still essential to establish and maintain a strong market
position.

Technical architects must work closely with the marketing decision makers to
understand how new software will fit into the company’s overall strategy and what
the customer requires for a truly exceptional solution. The software architecture will
address marketing issues such as usability, reliability, upgradeablity, and extensibility.
Each of these has a real influence on the software design. Support for different charg-
ing methods alone may have a huge impact on the profitability of the project—the
inclusion of rich logging support will pave the way for per-transaction billing, which
may lead to increased product revenue. However, it may mandate the inclusion of
additional security and fraud-prevention measures in the architectural planning.

Marketing requirements feed into the technical architecture. Technical considera-
tions will also feed back to the marketing strategy. A truly great architecture is born
when technical and strategic visions meet to create a product that stands out from its
competitors.

268 Chapter 14

What Is Good Architecture?

The key to good architecture is simplicity. A few well-chosen modules and
sensible communication paths are the aim. It also needs to be comprehensible,
which often means visually represented. We all know that a picture speaks a
thousand words.

KEY CONCEPT Good system architecture is simple. It can be described in a single paragraph and sum-
marized in one elegant diagram.

In a well-designed system, there should be neither too few nor too many
components. This criterion scales with the size of the problem. For a small
program, the architecture may fit on (or even be done on) the back of an
envelope, with just a few modules and some simple interconnections. A large
system naturally requires more effort and more envelopes.

Too many fine-grained components lead to an architecture that is bewilder-
ing and hard to work with. It implies that the architect has gone into too much
detail. Too few components means that each module is doing far too much
work; this makes the structure unclear, hard to maintain, and hard to extend.
The correct balance is somewhere between the two.

The architecture does not dictate the inner workings of each module—
that’s what module design is for. The goal is that each module should know
very little about the other parts of the system. We aim for low coupling and
high cohesion (see “Modularity” on page 247) at this level of design, as with
all others.

KEY CONCEPT Architecture identifies the key components of the system and how they interact. It
doesn’t define how they work.

The architecture specification lists the design decisions made and makes
it clear why this approach is being favored over any alternative strategies. It
doesn’t need to labor these other approaches, but should justify the chosen
architecture and prove that some serious thought went into it. It must have
correctly identified the primary goal of the system: For example, extensibility is
a different game from performance and will lead to different architectural
design decisions.

A good architecture leaves room for maneuverability; it allows you to
change your mind. It may specify that we wrap third party components with
abstract interfaces so we can swap one version out for another. It may suggest
technologies that make it easy to select different implementations during
deployment. As a project gains momentum, the correct implementation
choices become clear—they aren’t always obvious at first. A successful archi-
tecture is flexible, providing a mechanism for nimble design during these
initial uncertainties. The architecture is the first pivot on which to balance
contending forces; it will show how we trade one quality for another.

KEY CONCEPT A good architecture leaves space for maneuverability, extension, and modification.
But it isn’t hopelessly general.

The architecture must be clear and unambiguous. Preexisting, well-
known architectural styles or well-known frameworks are best (see the

Sof tware Archi tec ture 269

next section for more on these). Architecture must be easy to understand
and work with.

Like a good design, good architecture has a certain aesthetic appeal that
makes it feel right.

Architectural Styles

Form ever follows function.
—Louis Henry Sullivan

Just as an immense gothic cathedral and a quaint Victorian chapel, or an
imposing tower block and a 1970s public lavatory employ different archi-
tectural styles, there are a number of recognized software architectural styles
that a system may be built upon. A style may be chosen for various reasons,
good or bad—perhaps on sound technological grounds, or perhaps based
on the architect’s prior experience, perhaps even by what style is currently in
fashion. Each architecture has different characteristics:

Its resilience to changes in the data representation, algorithms, and
required functionality

Its method of module separation and connection

Its comprehensibility

Its accommodation of performance requirements

Its consideration of component reusability

In practice, we might see a mixture of architectural styles in one system.
Some data processing may progress through a pipe and filter process, while
the rest of the system employs a component-based architecture.

KEY CONCEPT Recognize the key architectural styles and appreciate their pros and cons. This will help
you to sympathetically work with existing software and perform appropriate system
design.

The following sections describe some of the common architectural styles.
And then compare them to pasta.

No Architecture

want to build good software. Not planning an architecture is a surefire way to
doom development before you’ve even started.

A system always has an architecture, but like my
London Underground project, it may not have
a planned architecture. Before long, this state of
affairs becomes an albatross around the neck
of your development team. The resulting
software will be a mess.

Defining an architecture is essential if you

Spaghetti Ball

Architecture
as Pasta:

Messy, uncontrollable,
unmanagable morass of

interwoven gloop.

270 Chapter 14

Layered Architecture

block in the stack. The positions in the stack indicate what lives where, how the
components relate to each other, and which components can “see” which
other components. Blocks may be placed alongside each other on the same
level and can even become tall enough to span two layers.

A famous example of this is the OSI seven-layer reference model for net-
work communication systems. (ISO 84) A more interesting example is the
Goodliffe seven-layer trifle reference model shown in Figure 14-1.

Figure 14-1: The Goodliffe seven-layer
trifle reference model

At the lowest level of the stack, we find the hardware interface, if the
system does indeed interact with physical devices. Otherwise, this level is
reserved for the most basic service, perhaps the OS or a middleware tech-
nology like CORBA. The highest level will likely be occupied by the fancy
interface that the user interacts with. As you rise further up the stack, you
move further away from the hardware, happily insulated by the layers in
between in the same way that the roof of a house doesn’t have to worry
about the magma at the earth’s core.

At any point, you can brush out all the lower layers and slot in a new
implementation of the layer below—the system will function as before. This
is a key point: It means that you can run the same C++ code on any comput-
ing platform that supports your C++ environment. You can swap the hardware
platform without touching your application code—relying on the OS layer
(for example) to swallow the technical differences. Handy.

Higher levels use the public interfaces of the layer directly below.
Whether they can use the public interfaces of the lower levels depends of
your definition of layering. Sometimes the diagram is fiddled to represent

This is probably the most commonly used archi-
tectural style in conceptual views. It describes
the system as a hierarchy of layers, with a
building-block approach. It is a very simple
model to comprehend; even a non-techie
can quickly grasp what it’s telling him.

Each component is represented by a single

Architecture
as Pasta:
Lasagne

Several distinct layers,
arranged one on top of

another.

Almonds Chocolate sprinkles

Double cream

Custard

Raspberry jelly

Fruit pieces

Sponge cake
Sherry

Bowl

Sof tware Archi tec ture 271

this, like the sherry brick in the trifle stack. Whether or not components on
the same layer can interconnect is also not rigidly defined. You certainly can’t
use anything from a higher level; if you break this edict, you no longer have a
layered architecture, just a meaningless diagram drawn in stack form.

As you can see, most layer diagrams are informal. The relative size and
position of boxes gives a clue as to importance of a component, and that is
generally sufficient as an overview. Component connections are implicit, and
the methods of communication irrelevant. (However, this can be a key archi-
tectural concern for the efficiency of the system—you won’t send gigabytes of
data down an RS232 serial port.)

Pipe and Filter Architecture

the computer display or a log file). It’s the old through-the-grapevine tele-
phone game in digital form. The data flows down the pipe, encountering the
various filters en route. The transformations are usually incremental; each
filter does a single simple process and tends to have very little internal state.

The pipe and filter architecture requires a well-defined data structure
between each filter; it has the implicit overhead of repeatedly encoding the
output data for transmission down the pipe and parsing it back again in each
subsequent filter. For this reason, the data stream is usually very simple—just
a plaintext format.

This architecture makes it easy to add functionality by just plugging a
new filter into the pipeline. Its main downside is error handling. It is hard to
determine where an error originated in the pipeline by the time a problem
manifests itself at the sink. It’s cumbersome to pass error codes down the chain
toward the output stage; they need extra encoding and are hard to handle
uniformly over several separate modules. The filters may use a separate error
channel (e.g., stderr), but error messages can get mixed up all too easily.

Client/Server Architecture

This architecture models the logical flow of
data through the system. It is implemented as
a string of sequential modules that each read
some data, process it, and spit it out again. At
the start of the chain is a data generator (maybe
a user interface or perhaps some hardware har-
vesting logic). At the end is a data sink (perhaps

A typically network-based architecture, the
client/server model separates functionality into
two key pieces: the client and the server. It differs
from the older mainframe style of networked
design in the division of work between each
part; a mainframe “client” is a dumb terminal—
little more than a means to capture and trans-
mit keypresses, with some output display.

Good conduit for its contents,
suits particular situations

very well.

Architecture
as Pasta:

Cannelloni

Architecture
as Pasta:
Gemelli

Two complementary strands,
woven tightly together.

272 Chapter 14

The clients of a client/server architecture are richer, more intelligent, and
generally able to present data in an interactive, graphical manner. Here is a
more detailed look at the role of the two elements:

Server
The server provides certain well-defined services to clients. It will gener-
ally be a powerful computer dedicated to providing specific functionality
or to managing a resource (shared files, printers, a database, or pooled
processing power).

The server waits for requests from clients and responds to them. It
may be able to handle any number of simultaneous client connections or
might be limited to certain usage patterns.

Client
The client consumes a server’s services. It sends off requests and
processes the results that are returned. Some clients are dedicated
terminals which only fulfill one role; other clients serve many

A S L A P I N T H E I N T E R F A C E

A key software construction principle is modularity, designing systems from replace-
able components. This is almost a “LEGO brick” approach to construction. Done
correctly, you should be able to take out a square, blue brick and replace it with
a slightly fancier red one. If the bricks are the same size and shape and have the
same kinds of connector, they will fit into the same hole and do the same job.

How do we implement this in software? We define interfaces; these are our con-
nection points and component barriers. They define the size and shape of each
component (as seen from the outside, at least) and determine what you have to do
to provide a like-for-like replacement. Key types of interfaces are:

APIs
Application programming interfaces (APIs) are specified as collections of functions
in a physically linked application. To replace a component that implements a
particular API, you just reimplement all the functions and relink the code.

Class hierarchies
You can design an abstract “interface” class (in Java and C#, you’d actually define
an interface). Then provide any number of concrete implementations that derive
from it and implement that interface.

Component technologies
Technologies such as COM and CORBA allow your program to determine the
correct implementation component at run time. Typically, interfaces are defined in
an abstract Interface Definition Language (IDL). The beauty of this approach is that
components can be written in any language. It requires middleware or OS support.

Data formats
These formats can form a connection point in designs focused on the movement of
data rather than the flow of control. You can replace any component in the data
chain with an analog that interacts with the same data types.

As you can see, architecture—indeed, most of software design—is about crafting
appropriate interfaces. Each of these interface techniques maps to a particular archi-
tectural style. Pick an interface mechanism that complements the architecture.

Sof tware Archi tec ture 273

functions (for example, a “client” application may run on a standard
desktop PC that can also browse the web and view email).

There can be many different types of clients using one server, all
performing the same set of requests but in different ways. One client
might be web based, one might have a GUI interface, while another might
provide command line access.

This client/server approach is sometimes known as a two-tier architecture,
for obvious reasons. It’s very common and is seen throughout the software
development world. The means of communication between client and server
varies—it’s simplest to use standard network protocols, but you may also see
use of remote procedure calls (RPC), remote SQL database queries, or even
proprietary application-specific protocols.

There are various ways of splitting work between the two components.
The main application logic (also known as business logic) may run on either
the client or server, depending on how intelligent and specialized the client
is supposed to be. As more application logic is pushed down to the client, the
design becomes less flexible—separate clients have to reimplement similar
features, negating the benefit of the central server. Clients are generally con-
cerned with providing sensible human interfaces to the published server
functionality.

We sometimes see an extension of this two-tier design, which introduces
another layer (the middle tier). This component is explicitly designed to contain
the business logic, separating it from both the client application (which is now
most definitely only an interface) and the back-end data storage. This is a three-
tier architecture.

A client/server approach is different from a peer-to-peer architecture,
where no network node has more capability or importance than any other.
Peer-to-peer architectures are harder to deploy but more tolerant of faults.
The client/server design is crippled when the server is unavailable (through
some software fault or routine maintenance): No client will be able to operate
until the server comes back to life. For this reason, client/server installations
generally require a designated administrator to keep all systems running
smoothly.

Component-Based Architecture

Definition Language (IDL) and is separate from any implementation, although
some component technologies (like .NET’s built-in component support) can
determine this from the implementation code itself.

This architecture decentralizes control and splits
it into a number of separate collaborating
components rather than a single monolithic
structure. It is an object-oriented approach,
but doesn’t necessarily require implementation
in an OO language. Each component’s public
interface is typically defined in an Interface

Architecture
as Pasta:

Conchiglie

Separate little bits floating in
some connecting goo.

274 Chapter 14

Component-based design arrived with the lure of assembling applications
quickly out of prefabricated components, supposedly enabling plug-and-play
solutions. It’s still up for debate how much of a success this has been. Not all
components are designed for reuse (it’s hard work), and it’s not always easy
to find a component that does what you want it to do. It’s easiest for UIs, where
popular frameworks and established marketplaces exist.

The core of a component-based architecture is a communication infra-
structure, or middleware, which allows components to be plugged in, to broad-
cast their existence, and to advertise the services they provide. Components
are used by looking up this information through a middleware mechanism,
rather than by hardwiring a direct connection between two components.
Common middleware platforms include CORBA, JavaBeans, and COM;
each have different strengths and weaknesses.

A component1 is essentially an implementation unit. It honors one
(maybe more) specific published IDL interfaces. This interface is how clients
of the component interact with it. There are no back doors. The client is con-
cerned with dealing with an instance of that interface, rather than in how the
component is implemented.

Each component is an individual, independent piece of code. Behind its
interface, it implements some logic (perhaps business logic or user interface
activity) and contains some data, which may just be local or may be published
(say a filestore or database component). Components don’t need to know
much about one another. If they are tightly coupled, then the architecture is
just an obfuscated monolithic system.

Component-based architectures can be deployed in a networked
environment with components on different machines, but they can just as
easily exist as a single machine installation. This may depend on the type of
middleware in use.

Frameworks

of the work in a framework has been done for you, with the remaining
pieces following a fill-in-the-blanks approach. Different frameworks follow
different architectural models; by using a framework, you commit to its
particular style.

1 We’ve already talked about components as modules, ephemeral implementation units. But this
is a new definition for the word, quite specific to the world of component-based architecture.
Sadly, the terms are overloaded with multiple meanings.

Instead of developing a new architecture for a
specific project, it may be appropriate to use
an existing application framework and add devel-
opment into that skeleton. A framework is an
extensible library of code (usually a set of co-
operating classes) that forms a reusable design
solution for a particular problem domain. Most

Architecture
as Pasta:

Canned Ravioli

Most of the work’s already
been done for you. Just heat

and serve.

Sof tware Archi tec ture 275

Frameworks differ from traditional libraries in the way they interact with
your code. When using a library, you make explicit calls into the library com-
ponents under your own thread of control. A framework turns this around; it is
responsible for the structure and flow of control. It calls into your supplied
code as and when necessary.

Sitting alongside off-the-shelf frameworks are architectural design patterns.
While not an architectural style in their own right, patterns are small-scale
architectural templates. They are micro-architectures for a few collaborating
components, distilling a recurring structure of communication. Architectural
patterns describe common component structures at the architectural design
level, explaining how they fulfill the requirements of a given context. Patterns
are a set of design best practices, described in the ubiquitous GoF book
(Gamma et al. 94) and numerous subsequent publications (see “Design
Patterns” on page 255).

In a Nutshell

The Roman architect Vitruvius made a timeless statement of what constitutes
good architectural design: strength (firmitas), utility (utilitas), and beauty
(venustas). (Vitruvius) This holds true for our software architectures. With-
out a well-defined, well-communicated architecture, a software project will
lack a cohesive internal structure. It will become brittle, unstable, and ugly.
Eventually, it will reach a breaking point.

All this talk of pasta has made me hungry. I’m off to build a seven-layer
reference trifle. . . .

Good programmers . . . Bad programmers . . .

Understand their software
architecture and write new
code within it

Can apply the appropriate
architecture to each design
scenario

Create simple architectures
that are beautiful and ele-
gant—they appreciate the
aesthetics of software design

Capture the system architec-
ture in a live document that is
continuously updated

Relay problems with the
structure back to the system
architects in an attempt to
improve the design

Write code regardless of any overall
architectural vision—resulting in
unsympathetic blemishes and unin-
tegrated components

Fail to perform any high-level design
before ploughing into code, ignor-
ing any architectural alternatives

Leave architectural information
locked inaccessibly in people’s
heads or in a dangerously out-of-
date specification

Put up with inadequate architec-
tures, adding more badly designed
code rather than fixing the under-
lying problems—they can’t be
bothered to open a larger can
of worms

276 Chapter 14

See Also

Chapter 12: An Insecurity Complex
Security concerns must be addressed by a system architecture.

Chapter 13: Grand Designs
Code design is the subsequent level of code construction.

Chapter 15: Software Evolution or Software Revolution?
Architecture is the start of your software’s life, but it is by no means the
only thing that steers its development.

Chapter 22: Recipe for a Program
Where architectural design fits into the software development process.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 522.

Mull It Over

1. Define where architecture ends and software design begins.

2. In what ways can a bad architecture affect a system? Are there parts that
wouldn’t be affected by architectural flaws?

3. How easy is it to repair architectural deficiencies once they become
apparent?

4. To what extent does architecture affect the following things?

a. System configuration

b. Logging

c. Error handling

d. Security

Sof tware Archi tec ture 277

5. What experience or qualifications are required to be called a software
architect?

6. Should sales strategy influence architecture? If so, how? If not, why?

7. How would you architect for extensibility? How would you architect for
performance? How do these design goals affect the system, and how do
they complement one another?

Getting Personal

1. How diverse is the range of architectural styles to which you are
accustomed? What do you have the most experience with—how does
it affect the software you write?

2. What personal experience do you have of architectures that succeeded
or failed? What made them winning solutions or a hindrances?

3. Get every developer on your current project to draw a picture of the
system architecture—individually (without talking to anyone) and
without any reference to system documentation or the code. Compare
the pictures. See what strikes you about each developer’s efforts—aside
from the relative artistic merit!

4. Do you have an architectural description that’s commonly available for
your current project? How up to date is it? Which kinds of view are you
using? If you needed to explain the system to a newcomer or a potential
customer, what would you really need to have documented?

5. How does your system’s architecture compare to the architecture of your
competitors in the marketplace? How has your architecture been
defined to determine your project’s success?

S O F T W A R E E V O L U T I O N
O R S O F T W A R E
R E V O L U T I O N ?

How Does Code Grow?

15

In this chapter:

How software grows over time

Software rot—how decay
sets in

How to manage the risks of
old code

I cannot say whether things will get better if we change;
what I can say is they must change if they are to get better.

—G.C. Lichtenberg

If only software grew like a plant. You’d put the
seed of an idea into some fertile programming soil,
add a little water, and wait. You’d tend it carefully:
Fertilize it, keep it in good light, and cover it to
keep the birds off. In time, a code seedling would
sprout, and when the program plant was big
enough, you could release it to the world. For
extra functionality you’d keep watering and add
some more fertilizer, and it would continue to
develop. The trunk would strengthen in order to
support the new branches and the program would
stay in perfect balance. If it grew in a direction
you didn’t like, a little pruning would soon set it
straight.

280 Chapter 15

Unfortunately, the Real World does not work like this. Not by a
long shot.

Software is a live entity. It’s not sentient or organic, but it has its own
kind of life: It is conceived, develops steadily, and eventually reaches maturity.
Then it’s sent out into the Big Wide World to make a living and hopefully
garner respect and admiration. It may continue to develop, perhaps to the
point where it gains a middle age spread and loses its youthful looks. Over
time, it grows tired and old and is eventually retired, put out to pasture in a
digital farmyard where it can gracefully die.

This chapter looks at how we cultivate software, especially after the initial
round of development. Programs require thoughtful tending and seldom
receive the care and attention they really deserve. What can we do to prevent
a slowly spreading code cancer that leads to early death?

To answer this, we’ll work backward. We’ll take a look at the symptoms of
bad code growth, explore how we grow our code, and determine some
strategies to develop healthier software.

M O R E M E T A P H O R S F O R
S O F T W A R E C O N S T R U C T I O N

We’ve already examined the metaphor of building and discussed what it tells us
about the software construction process (see “Do We Really Build Software?” on
page 177). In this chapter, I’ll introduce some more metaphors. They provide different
insights into our programming methods:

Growing software
This relates to how we extend existing software, usually by adding new features.
Bug fixing isn’t growth: It is tending to diseased parts of the code.

Our code does grow as we add to it, but programming is not a perfect analog
of plant growth—we have far more control and influence over code growth than
over a seedling. Code grows more like an oyster making a pearl: slowly, by the
progressive accretion of small extra parts.

Evolving software
Another common construction metaphor is the evolution of software. We start with
a single-celled code organism and gradually see it develop into a larger, more
complex beast. This is an incremental process; the software develops through a
number of evolutionary stages. However, there are a few key differences to
biological evolution:

We are the ones deliberately making changes; the software doesn’t develop
by itself.
We don’t employ natural selection to choose the best design. We have
neither the time nor the inclination to develop many different variants of the
same program.

We do have the opportunity to iteratively improve the quality of our code,
mimicing evolutionary development somewhat. We can use experience gained
from previous releases to adapt the code to its natural habitat, ensuring its long-
term survival.

Sof tware Evolu t ion or Sof tware Revolu t ion? 281

Software Rot

When you’re green, you’re growing. When you’re ripe, you rot.
—Ray Kroc

Bad things happen to good code. No matter how well you start, no matter
how honorable your intentions, no matter how pure your design and how
clean the first release’s implementation, time will warp and twist your
masterpiece. Never underestimate the ability of code to acquire warts and
blemishes during its life.

There is a misconception that software only develops during its initial
stages of life. The maintenance phase of software development1 is always the
longest. It’s where most of the overall effort goes—even if this effort is not
scrunched into a compact ball, like the initial design and development work.
B.W. Boehm, a respected computer science professor, observed that 40 to 80
percent of total development time is spent in maintenance. (Boehm 76)

Software is never expected to stand still after a release. There will always
be odd faults to fix, no matter how much testing went on. Customers demand
new features. Requirements change under the development team’s feet.
Assumptions that were made during development prove to be incorrect in
the Real World and require adjustments. The upshot: More code is written
after the project is considered complete.

During the initial development stages, you can keep a firm grip on your
code and play with it as much as you like within the available time constraints.
After it has been released, you’re more restricted. These restrictions may be
practical:

Changes have to be minimized to reduce their impact on the carefully
tested codebase.

Published APIs are already being used by clients, so they are harder to
modify.

The UI is familiar to users and can’t be changed gratuitously.

The restrictions may also be psychological, based on the developers’
(potentially erroneous) preconceptions:

The code has always worked this way, so we can’t change it like that.

It’s too hard to revise the architecture at this late stage.

It’s not worth the time or expense to make this modification properly
now; the product won’t be around for very much longer.

The restriction might even be a simple lack of understanding—a
maintenance programmer may not understand original author’s mental
model of the code; this leads to inappropriate modifications.

There is a fine line between maintaining an existing product and
developing the next version. Where it lies is a moot point. But whatever you’re
doing, the original codebase gets modified—sometimes by the original author,

1 That is, work done after initial delivery that isn’t considered a major new release.

282 Chapter 15

often by someone else. This is where the rot sets in. It’s a damned if you do,
damned if you don’t scenario; whatever you do, the code will rot.

If you never touch the code again, if you don’t keep it up to date with
fixes and modifications, the program will degrade. In the worse case, it will
stop working as the OS changes or its assumptions become outdated. The
Y2K bug is a glorious example of this.2 Or the program will putrefy as
competing solutions develop more features and gain more popularity.
Untouched code slowly rots away.

If you do make extensions and fixes as the code grows, it might still rot.
When fixing a fault, the programmer often introduces more faults as a side
effect. Brooks found that as many as 40 percent of fixes introduced new
faults. (Brooks 95) “The Programmer’s Drinking Song” (sung to the tune of
“99 Bottles of Beer on the Wall”), written by a minstrel unknown, sums this
up neatly:

99 little bugs in the code, 99 bugs in the code,
Fix one bug, compile it again, 101 little bugs in the code.

(Repeat until BUGS == 0)

Even bug-free modifications can cause code turmoil. Quick-and-dirty
fixes pile atop one another, putting nail after nail into the original design’s
coffin, making future maintenance harder. The plant analogy is useful here:
If more heavy branches grow at the top and nothing is reinforcing the trunk,
the entire codebase becomes less stable. Eventually, and inevitably, it totters
over. Healthy plants don’t grow like that; why should we expect our code to?

KEY CONCEPT Be aware of how easily code degrades as it is modified. Don’t be satisfied with changes
that leave the system in a worse state.

Does all this sound unduly pessimistic? Surely code won’t rot if you’re
careful? Perhaps, but adequate care is not taken in today’s software factories.
It’s a culture thing. Fixes must be quick and cheap. Programs have a habit of
hanging around longer than they were ever intended to. Many quick hacks
live on, well past their expected lifetimes.

The Warning Signs

Switch on your code radar, and constantly look out for rotten code. Beware
of the telltale signs: Rot sets in with any change that leads to a lack of clarity
or that makes the system more complex. Unnecessary complexity comes in
many guises.
Here are some, the flashing red lights and Klaxon calls:

The code is littered with many large classes and convoluted functions.

Function names are cryptic or misleading. Functions have suprising side
effects not implied by their names.

2 Many old programs were never expected to be operational in the year 2000, so programmers
considered it safe to encode years in two digits—76 rather than 1976. As the digits rolled over to
00, all their date calculations went awry.

Sof tware Evolu t ion or Sof tware Revolu t ion? 283

There is no structure: It’s not clear where to look for a certain bit of
functionality.

There is duplication: Many separate bits of code crop up to do the
same thing.

There is high coupling: Complex module interconnections and depen-
dencies mean that a small change in one place ripples out across the
entire code, even into seemingly unrelated modules. (See “Modularity”
on page 247).

As data flows through the system it is repeatedly converted between
different representations (e.g., display data is transferred between
std::string, char*, Unicode, UTF-8, and back again).

APIs become blurred; once neat interfaces are now far too broad in
scope, with new features being thoughtlessly added.

APIs change rapidly between code revisions.

Bits of private implementation leak out of public APIs to enable other
quick hacks.

The code is littered with work-arounds: fixes for symptoms but not for
causes. They hide the real problems. The edges of the system are
cluttered with these, leaving faults lurking at the core.

There are functions with enormous parameter lists. Many don’t use
these parameters, passing them through to subordinate function calls.

You find code that’s too scary to even think about improving. You have
no idea if you’ll improve it, break it subtly, or make it even worse.

New features are added with no supporting documentation; the
existing documents are out of date.

The code compiles noisily, with many warnings generated.

You find comments saying, Don’t touch this. . . .

Many of these forms of rot are particularly visible in the code and can be
seen with a quick inspection or using certain tools. However, there is a class
of more subtle, invisible degradations that usually manifest at a higher level
than syntactic gunk. Modifications that fudge the original code architecture
or that subtly circumvent program conventions are much harder to spot until
you’re deeply immersed immersed in the system.

KEY CONCEPT Learn to detect putrid code. Know the warning signs and handle rotten code with the
utmost care.

Why do we make such a big mess of code? The answer is simple: complexity.
A program is a huge collection of information organized on many levels: the
architecture, its component design, the interfaces, the implementation of
each bit of code, and so on. That’s a lot to understand before you start work
on a project. With tight deadlines, there isn’t enough time to work out how a
few lines actually work, let alone how they fit into the overall picture. We
haven’t yet learned to manage this vast complexity.

284 Chapter 15

How Does Code Grow?

No code development ever follows the classic model of lock down all
requirements, design completely, code completely, integrate, test, release.
Unexpected modifications happen to an existing codebase. New pieces are
grafted in somehow. It’s an incremental development cycle toward ever
shifting goalposts.

Code growth happens by one of the following mechanisms, loosely
ranked in order of disgust:

Luck
This is the most frightening way to make code, and far too common.
Code that grows by luck never had any design. It was modified without
thought. Its structure is down to happenstance, and it’s a miracle it works
at all.

Even if your code originally was designed carefully, maintenance
modifications can follow this happy-go-lucky approach. Hit-and-hope
fixes may just mask the immediate problem and make the real fix harder
later on.

Accretion
We need to add a new feature. Doing it properly would involve ripping
up the interfaces between a few key modules and revising a lot of code.
There’s no time to do all this and, even if we did, it would probably still
be too complicated. We’ll just graft on another clump of code. It’ll hang
off one of the existing modules—well, perhaps a few of them—and use
its own special back door interface to talk to them. We’ll have something
working really quickly.

Okay, it’s a monstrous kludge. Oh, and the performance will be awful.
And the modules will no longer have clear roles and responsibilities.
There won’t be a neat design anymore, and maintaining it in the future
will be a nightmare. But we’ll get this version out quickly, and we don’t
have any time to do it the right way now, anyway.

Maybe we’ll come back later and do it properly. . . .

Rewrite
When you recognize that the code you’re working on is truly awful—
unintelligible, fragile, and inextensible—it needs a rewrite. Based on
prior experience, a rewrite is often quicker and safer than hacking at
the original mess. However, rewrites are rarely done. It takes courage
and vision.

Rewrites get riskier as you attack more code at once. Rewriting a
whole product is a different prospect from rewriting a troublesome
function or class. Good modularity and separation of concerns means
that you needn’t rewrite the whole system, just the module you’re working
on, keeping its original interface. If the interface is terrible, or you need
to rewrite because the system isn’t actually modular enough, then a lot
more work is involved.

Sof tware Evolu t ion or Sof tware Revolu t ion? 285

Refactor
A formalized cousin of rewrite. If your code is mostly okay, but bits of it
need some work, you can refactor these unpleasant parts. Refactoring is a
process of making small changes to a body of code in order to improve
its internal structure without changing its external behavior. It improves
the design so that you can work with it more easily in the future. It’s not
about performance improvement, just design enhancement. Not as
drastic as a complete rewrite, refactoring is a series of gentle massages
of what you already have.

This is a fancy name for particular kinds of code modification. Martin
Fowler has formalized it, documenting a number of small, understandable
code refinements. (Fowler 99)

Design for growth
You’ll often have an idea how your code will expand in the future;
perhaps some features have been deferred until the next release. You can
carefully design the system so that it’s easy to make these future additions.
Most of the time, this won’t make the design work much harder.

Even if you don’t know the set of future additions, careful design
affords room for growth. An extensible system provides hinge points for
new functionality to be plugged in. Be careful that this isn’t an exercise
in chasing the wind, though,3 trying to guess the future when you don’t
have a clue how the system will expand. Extensibility comes at the cost of
complexity. If you correctly guess where this complexity is needed, you
win; if you guess incorrectly, then you’ll make an unnecessarily compli-
cated system. This is the danger of over-design, and it’s especially likely
when design occurs by committee.

There is a school of thought, exemplified in Extreme Programming,
that insists on the absolute simplest design that can possibly work in

3 Ecclesiastes 2:11

D O U B L I N G U P

The software had reached a major crossroad. There wasn’t much future in the existing
codebase—it really needed to be rewritten. Finally the management accepted this
fact, and a plan was formed. The developers were split into two teams. Some contin-
ued to hack away at the existing codebase to try and limp it along for just a bit
longer. The rest of the programmers got to start the entire application again from
scratch.

One task was glamorous: devising a sleek new design with interesting implemen-
tation challenges and the chance to work on a fresh, cruft-free codebase. The other
task was menial: patching up holes in a sinking ship until the new cruise liner was
ready (at which time all the old work would be left for scrap). Which team would
you rather have been on?

Not surprisingly, this led to a build up of resentment and frustration and a rivalry
between the teams. Many programmers relegated to the old application asked to
change projects or left the company to seek greener pastures. The work on the old
codebase was second rate, as it was the second-rate project.

286 Chapter 15

any given situation. This could be at odds with the design for growth
mentality (depending on how malleable the initial simple design is).
Exactly how much design for growth you should employ can be a hard—
but important—balance to strike.

Believe the Impossible

Perhaps the reason we see so much bad code and so many dirty hacks is the
mistaken belief that it takes longer to do the job properly. When you factor
in the time spent debugging and the ease of making later modifications, this
proves to be a false assumption. You may be able to close a single fault report
quickly by hacking out a fix, but it’s not a good solution. True craftsmen take
responsibility for what they do to code.

In the corporate world, there is often a management expectation of
quick fixes. It’s reasonably easy to show a manager that a five-ton block of
concrete stuck on top of a flimsily erected flagpole won’t stay up for very
long. It’s harder to make him stand underneath the thing. And it’s much
harder to get the same message across when we’re talking about software.
Managers just don’t get it. As far as they’re concerned, programmers are
magicians who practice dark mystical arts and have limitless powers. Tell
them what to do, provide a deadline, and it will happen, however many all-
night coding sessions are required.

Being gifted and dedicated, sometimes we meet these expectations.
This actually makes matters worse, as management now expects that this
tactic will always work. Worse, they assume that it’s our fault when it doesn’t.
Sadly, there comes a time when hastily hacked software just cannot be made

C H A O S T H E O R Y

Code is obviously shaped by design, but the organization that built it and its life
history also play a large role. Years ago, I joined a project with particularly disgus-
ting user interface code. It worked (usually), but was unfathomable, an intense lump
of intertwining logic with no discernible architecture and labyrinthine paths of exe-
cution. And it was like that for a reason: history.

The code was initially created as a simple one-off television UI for a single customer,
with minimal specifications. Successfully built, it served its purpose well. Sadly, the
story didn’t end there.

It was then sold to a second customer, who wanted it to look different. A second
skin (visual appearance) was hacked on. Then it was sold to another customer in a
different country. Internationalization was bolted on, with another skin. Then it was
sold to a third customer, who wanted some new UI facilities—these were shoehorned
in. This story continued. For a long time. Today the UI is unrecognizable from its
former self, and it’s now also unmaintainable: Each addition has been a quick hack
since the whole thing was always a temporary system.

If the initial design had incorporated all these features, then the code would still
be lean and logical. However, it would have been far too much work up front, and
the company would never have started the project. Pity the poor programmers that
work under these Real World conditions.

Sof tware Evolu t ion or Sof tware Revolu t ion? 287

to expand any more, when it really just wants to keel over and find its final
resting place in a quiet corner somewhere. Management will not be happy.4

Code growth is easier if the company’s culture is to develop software in
small incremental steps (see “Iterative” on page 245 and “Iterative and
Incremental Development” on page 432). This way, evolution is built into
the design strategy, and rewriting code to accommodate change is expected.
The alternative, when you have to attack a monolithic code edifice with a small
pickaxe in 20 seconds flat, is unreasonable—but not unusual.

What Can We Do About This?

God grant me the serenity to accept the things
I cannot change, the courage to change the things

I can, and the wisdom to know the difference.
—Reinhold Niebuhr

Now that we’ve identified some of the problems of an evolving codebase,
how do we manage the mess? What strategies can we adopt to avoid this?

The first and most important step is to recognize the problem. Too
many programmers hack away without thinking about the quality of their
code. As long as they silence the users’ screams in the shortest time possible,
they don’t care what state they leave the code in. Someone else can deal with
it next time.

KEY CONCEPT Code conscientiously. Good programmers care more about how their code will look
after a few years’ work than how much effort it takes to write now.

Writing New Code
Before we think about how to work with legacy (existing) code, here are a few
tactics for creating brand-new code that will greatly aid later maintenance:

Consider the interconnection of modules, and reduce coupling as much
as possible. Avoid having one central module that every other module
depends on; a change there will affect every other module in the system.

Modularity and information hiding (see page “Modularity” on page 247)
are the cornerstones of modern software engineering. Isolate any likely
changes to a small part of the system, making your system more viscous
and therefore stable under change.

Extension and malleability need to be designed in—but, as we’ve seen,
not at the expense of complexity. Modern component/object based par-
adigms promise greater reuse and extensibility. They give clear interface
points between code modules. However, if the interfaces don’t support
later extension, then the code can’t grow. Think very carefully about
your system interfaces as you create them.

4 Of course this is a gross generalization, but not too inaccurate. Many managers used to
be programmers themselves and understand the tensions. A good manager listens to the
programmers’ objections. A good programmer will make his or her boss listen. Too often,
neither happens, and the software suffers.

288 Chapter 15

Write neat, clear code that can easily be understood and worked with,
accompanied by good documentation and well-defined, clearly named
APIs. Consider literate programming tools to document interfaces.

KISS. That is, Keep It Simple, Stupid. Don’t over-complicate; don’t over-
engineer. Optimize an algorithm only when you know that there are
performance issues, not just because you think you know a good way to
make code run faster. Simplicity is nearly always more desirable than
performance, and it certainly makes later maintenance easier.

KEY CONCEPT Write new code with a view to its modifiability. Make it readable, extensible, and simple.

Maintenance of Existing Code
Maintaining good code requires a different battle plan than maintaining bad
code. With the former, you must carefully preserve the integrity of the design
and ensure that you don’t introduce anything out of place. With the latter,
you must try to not make the mess any worse and, if possible, improve things
on your way through. If you can’t rewrite the offending code, a little refactor-
ing will go a long way.

Before you touch any code, these organizational issues should be
considered:

Prioritize any changes that are needed. Balance the importance of each
task against its complexity, and decide which should be done first. What
early changes will have an impact on later work?

Only change what’s necessary. If it ain’t broke, don’t fix it. Don’t gratuitously
“improve” bits of code because you think they need it—only make the
changes that are really required. Refactor the bad code you need to work
with. Give the rest a wide berth.

Monitor how many modifications are being made at once. Making sev-
eral parallel modifications yourself is either incredibly clever or foolish;
most likely the latter. Do one thing at a time. Carefully.

If several people are working on the code at once, be aware of what’s
changing around you. There is a danger of too many separate hacks
causing odd conflicts. Methodical change by a single developer gives
clearest visibility of where the code is being stretched and where the
most care is needed. Several simultaneous modifications might stretch
the code thin without anyone understanding or noticing.

KEY CONCEPT Manage changes carefully. Make sure you know who else is trying to modify code near
where you’re working.

Just as the initial code should be reviewed during its development,
subsequent changes should also be reviewed. Organize formal reviews,
and try to include the code’s original author and reviewers. It’s very easy
to introduce subtle new bugs with small code extensions; reviews will
catch many of these errors.

KEY CONCEPT Review sensitive changes, especially in the run-up to a release. Even the simplest change
can break other code.

Sof tware Evolu t ion or Sof tware Revolu t ion? 289

Once at the codeface, how do we tackle existing source? Here are
practical suggestions:

To make good modifications, you must be informed about the code you’re
working on. Before you modify a file or code module, understand:

Where it sits within the whole system

What interdependencies it has (i.e., which components might be
affected by your change)

What assumptions were made when the code was created (hopefully
documented in the code’s specifications)

The history of modifications that have already been made

Inspect the code’s quality. This is surprisingly easy to do, and rapidly
gives you a sense of how easy the code is going to be to work with. You
may find it helpful to use tools that visualize the code and generate quality
metrics; this will highlight where hidden gotchas could be lurking.
Collate all relevant documentation.

Adopt the correct attitude—avoid the just one more hack mentality.
Don’t dismiss code, thinking that it will be thrown away or rewritten in
the future. It won’t be.

Be constantly aware of the warning signs cataloged in “The Warning
Signs” on page 282. If your modification moves the codebase nearer to
one of those states, refactor the code to alleviate the problem. Take
responsibility for these problems.

Be prepared to do some redesign work. Don’t be afraid to unpick the
code and perform major surgery when necessary. Sometimes a modifica-
tion will be costly right now (in terms of your time and effort), but the
investment will pay off later: Future work with the code will be much,
much easier. For legacy code, this may be considered uneconomical.
Sadly, it’s legacy code that makes cash and is unlikely to be phased out.
If you know that you’ll be working on a section of code a lot in the future,
make sure that the code structure will support future extension.

KEY CONCEPT Don’t mindlessly fiddle with code. Step back and look at what you’re doing.

Try not to introduce extra dependencies with newly added code. An
increase in coupling makes code more complicated and harder to
change next time.

When maintaining any code, retain the programming style of the source
files you are working with, even if it’s not your favorite style or the house
style. A file with code in several formats is confusing and hard to work
with. Apply presentation tidy-ups as you go if they’re not too gratuitous,
but be aware that source code diffs across versions will be harder if you
do so. Maintain the comments around the code you’re working on (see
“Maintenance and the Inane Comment” on page 86).

Use the code’s test suite to check that you don’t break anything.
Exhaustive regression testing is the only real way to have confidence in
the changes you’ve made.

Ensure that you have an adequate test suite, and run it regularly.

290 Chapter 15

KEY CONCEPT Carefully test any modification you make, no matter how simple. It’s really easy for silly
faults to slip past unnoticed.

If you are fixing a fault, do you really understand the cause? Write a test
harness to trigger it; this demonstrates your understanding and will prove
that you have made the fix. Add it to the suite of regression tests.

Once you have made a successful fix, look around the codebase for
similar faults. This overlooked step can make a big difference: Many
problems hang around in packs, and it’s much easier to defeat them in
one crushing blow than to slowly chip away as they each individually
manifest.

If you make a bad change, back it out quickly. Don’t litter code with
unnecessary dead wood.

As a code craftsman, you should always shy away from the pressure to
do a quick bodge job. Strive to make careful, considered changes. Unfortu-
nately, we don’t work in ivory towers, and compromise is sometimes required
on the battle front; it’s not always commercially feasible to complete a task in
the theologically correct way.

This explains why so much code is brittle, flaky, and dangerous. But it
also explains why there’s any code out there at all. If there wasn’t the com-
mercial drive to get software shipped, programmers would spend forever
tweaking their software to get it just right, writing and rewriting. The company
would have collapsed around them long before they’d finished.

However, don’t introduce pragmatic (but distasteful) modifications
without a plan to fix them at a later date. Place a tidy-up task on the develop-
ment schedule.

In a Nutshell

Change in all things is sweet.
—Aristotle

I’m not sure that I agree with Aristotle. Change can be a real pain in the rear
end. We should manage code changes carefully. Then a good program will
evolve into something greater, rather than degrade into an unstable mess.

It’s important to maintain software well and expand it correctly,
preserving the code design and making sympathetic modifications.
Don’t expect maintenance to be easy. You may need to invest a lot of
time to rewrite, redesign, or refactor.

See Also

Chapter 17: Together We Stand
We build and maintain software as a team. Team dynamics inevitably
affect the final shape of your code.

Sof tware Evolu t ion or Sof tware Revolu t ion? 291

Chapter 18: Practicing Safe Source
A history of your code’s development is recorded in the revision control
system.

Chapter 22: Recipe for a Program
The software development lifecycle: the procedures we follow to create
and grow software.

Get Thinking

A detailed discussion of the following questions can be found in the
“Answers and Discussion” section on page 527.

Good programmers . . . Bad programmers . . .

Write maintainable software
with clean structure and
logical layout

Recognize and are prepared
to deal with bade code

Try to understand as much
of the code and the author’s
original mental model as
possible, prior to working
on it

Care about the quality of
code they’re working on;
they refuse to clumsily
patch code

Create complex code without
thinking about the needs of
maintenance programmers

Avoid maintaining old code,
preferring to ignore problems
rather than fix them

Favor an easy patch over thinking
about a good solution

Litter code with quick and dirty
hacks; they employ every shortcut
they can find

Focus attention in the wrong
places, tinkering with code that
didn’t actually need to be fixed

292 Chapter 15

Mull It Over
1. What is the best metaphor for software growth?

2. Looking at a program’s development through the colorful lifetime
metaphor I talked about in the introduction, what Real World events
correspond to a program’s:

Conception

Birth

Growth

Coming of age

Sending out into the Big Wide World

Middle age

Growing tired

Retirement

Death

3. Is there a limit to software life—how long can you keep developing and
working on a program before you have to start afresh?

4. Does the size of a codebase correspond to the maturity of the project?

5. How important is backward compatibility when maintaining code?

6. Is code likely to rot more quickly if you alter it or if you leave it alone?

Getting Personal
1. Is the majority of the code you write brand new or a modification of

existing source?

a. If it’s brand-new code, do you create entirely new systems or new
extensions to existing systems?

b. Does this affect how you write? In what ways?

2. Do you have experience of working with preexisting codebases? If so:

a. How has it shaped your current skill set? What lessons did you learn?

b. Was it predominantly good or bad code? What did you have to judge
it against?

3. Have you ever made changes that degraded the quality of code? Why?

4. How many revisions has your current project gone through?

a. How much changed functionally between revisions? How did the
code change?

b. Has it grown by luck, by design, or something between the two? How
is this evident now?

5. How does your team safeguard code so that it can’t be changed by more
than one programmer at once?

PART IV
A H E R D O F

P R O G R A M M E R S ?

Cubicle after cubicle, arranged in long, dreary rows.
A soul farm. The corporate drudgery of unrealistic
schedules, bad management, and disastrous software.
No natural light and awful coffee.

Welcome to the software factory.
Some programmers freelance, hopping from office to office. Some write

open source code at home for kicks. But most are institutionalized in
uninspiring software factories, serving time for a cause they still love
passionately.

We’re a funny bunch: antisocial by nature, preferring the company of a
compiler and web browser. However, to create software masterpieces, we are
forced to work together, against our natural instincts. As we’ll see, the quality
of your software is determined by the quality of your programmers and their
collaboration. Without sound tactics to cope in the Real World, you’re sunk.

This section investigates how culture and dynamics affect the shape of
your code. We’ll see:

Chapter 16: Code Monkeys
The essential skills and personal qualities of potent programmers.

294 Par t IV

Chapter 17: Together We Stand
How to work as an effective and productive software team.

Chapter 18: Practicing Safe Source
Managing source code that’s shared between many programmers: how
to avoid disaster and heartache.

So what is the collective noun for a group of programmers? It’s certainly
not a swarm: We’re nowhere near as fast and rarely as organized. It’s not a
pride : We’re neither as fierce as lions, nor likely produce something worthy of
boast. The answer (at least for C-family coders) is clear: The collective noun
is a brace of programmers.

C O D E
M O N K E Y S

Fostering the Correct Attitude and
Approach to Programming

16

In this chapter:

The different programmer
attitudes

Identifying your natural
approach to programming

The characteristics of
effective programmers

How to work successfully
with others

We are just an advanced breed of monkeys on a minor
planet of a very average star. But we can understand
the Universe. That makes us something very special.

—Stephen Hawking

Pop quiz: How many programmers does it take to
change a light bulb? Is it:

1. None. The bulb’s not broken; it’s a power-
saving feature.

2. Just the one, but it will take all night and an
inordinate amount of pizza and coffee.

3. Twenty. One to fix the initial problem, and
nineteen to debug the resultant mess.1

1 That’s no joke: I have a friend who’s only ever changed two
light bulbs in her life. The first time, glass showered all over the
carpet. The second time, an electrician had to fit a new light
socket afterward.

296 Chapter 16

What’s the correct answer? It could be any of those, depending on who
does the work. Different programmers work in different ways and will have
their own individual approaches to solving the same problem. There is always
more than one way to do it,2 and different programmers’ attitudes will lead them
to make very different decisions.

Throughout this book, we’ve been identifying the important attitudes of
a good programmer. This chapter focuses specifically on this: We’ll investigate
programmer attitudes, good and bad, and identify the key ones for successful
programming. This includes how we approach the task of coding and also how
we relate to other programmers. We’ll come to some surprising conclusions
about what makes the best coders.

Monkey Business

The software factory is inhabited by a strange collection of freaks and social
misfits, the code monkeys. Any serious software system is built by a bunch of these
people, with their different skill levels and attitudes, all working toward a
common goal.

The way we work together and the kind of code we write will inevitably be
shaped by our attitudes toward the work as much as by technical competence.
If everyone was a diligent, pragmatic, hardworking genius, our software would
be a lot better—delivered on time, to budget, with no bugs. But we’re not
perfect, and unfortunately, it shows in the code we write.

To work out strategies to deal with this, I’ll lead us on a guided tour
through a gallery of programmer stereotypes. These are all directly based on
the types of people I have met in the software factory. Of course it’s a neces-
sarily general list; you’ll know programmers who fall into categories other than
those listed here, or even fit several descriptions at once.

Even so, this shameless categorization highlights important facts and
shows us how to improve. We’ll see:

What motivates the different types of code monkeys

How to work with each of them

How each code monkey can improve

What we can learn from each of them

As you read each code monkey description, ask yourself:

Are you this type of programmer? How closely does the description match
your programming style? What lessons can you learn to improve your
approach to coding?

How many people do you know like this? Are they close colleagues? How
could you work with them better?

2 The Perl programmer’s mantra.

Code Monkeys 297

The Eager Coder
We’ll start with this guy, because he3 probably embodies the traits of most
programmers reading this book. The Eager Coder is fast and fleeting;
he thinks in code. An impulsive, natural-born programmer, he writes code
as soon as an idea forms in his head. He won’t stand back and think first.
So, although an Eager Coder does have very good technical skills, the code
he writes never shows his true potential.

The Eager Coder often tries to use a new feature or idiom because it’s
fashionable. His desire to try out new tricks means that he applies technology
even when it isn’t appropriate.

Strengths
Eager Coders are productive, in terms of code quantity. They write a lot
of code. They love learning new stuff and are really enthusiastic—even
passionate—about programming. The Eager Coder loves his job, and
genuinely wants to write good code.

Weaknesses
Because of his unfettered enthusiasm, the Eager Coder is hasty and
doesn’t think before rushing into the code editor. He does write a lot of
code, but because he writes so fast, it’s flawed—the Eager Coder spends
ages debugging. A little forethought would prevent many silly errors and
many hours ironing out careless faults.

Unfortunately, the Eager Coder is a really bad debugger. In the same
way he rushes into coding, he dives straight into debugging. He’s not meth-
odical, so he spends ages chasing faults down blind alleys.

He’s a poor estimator of time. He’ll make a reasonable estimate for
the case when it all goes well, but it never does go according to plan; he
always takes longer than expected.

What to do if you are one
Don’t lose that enthusiasm—it’s one of the best characteristics of a pro-
grammer. Because your joy lies in seeing programs work and standing
back and admiring the beauty of code, work out practical ways to do this.
Writing units tests as an integral part of code development is a great idea.
But it mostly boils down to this simple piece of advice: Stop and think.
Don’t be hasty. Work out personal disciplines that will help you, even
something basic like writing THINK on a Post-It note and sticking it on
your monitor!

How to work with them
When they work well, these are some of the best people to program along-
side. The trick is to channel their energy into productive code rather than
mindless flapping. They are great to work with in pair programming.

Ask an Eager Coder about what he’s doing each day and what his
plans are. Show an interest in his design—it will encourage him to really
think about it! If you rely on an Eager Coder’s work, ask for early pre-
releases, and ask to see his unit tests too.

3 I’ll describe all code monkeys as male, for no other reason than clarity of prose.

298 Chapter 16

An Eager Coder benefits from appropriate management, to help
with his discipline. Make sure his time is carefully placed on a project
plan (you don’t have to plan his time yourself).

The Code Monkey

If you ever needed an infinite number of monkeys, these guys would be
your first choice. (I wouldn’t advise it though; you’ll be picking monkeys for
a loooong time!)

The Code Monkey writes solid but uninspired code. Given an assignment,
he faithfully plods through it, ready to be handed the next one. Because of
their menial work, these guys are also known—perhaps unfairly—as grunt
programmers.

Code Monkeys have quiet personalities. Afraid to push for good jobs, they
are sidelined on unglamorous projects. They carve out niches as maintenance
programmers, keeping the aged codebase going while the pioneers are off
writing exciting replacements.

A junior Code Monkey will learn and progress given time and mentoring,
but he is given low risk assignments. An older Code Monkey has probably
stagnated and will retire as a Code Monkey. He’ll be quite happy to do so.

Strengths
Give them a job and they’ll do it—reasonably well, reasonably on time.
A Code Monkey is reliable and can usually be counted on to put in extra
effort when it comes to crunch time.

Unlike Eager Coders, Code Monkeys are good estimators of time.
They are methodical and thorough.

Weaknesses
Although Code Monkeys are careful and methodical, they don’t think
outside of the box. They lack design flair and intuition. A Code Monkey will
follow the existing code design conventions unquestioningly, rather than
address any potential problems. Since they are not accountable for the
design, they don’t accept responsibility for any problems that arise and
often won’t take the initiative to investigate and fix them.

It’s hard to teach a Code Monkey new stuff; he’s just not interested.

What to do if you are one
Do you want to explore new areas and broaden your responsibility? If so,
start to strengthen your skills by practicing on personal projects. Grab some
books and study new techniques.

Push for more responsibility, and offer to join in the design work.
Take the initiative in your current work—identify possible failure points
early, and work out plans to avoid them.

Code Monkeys 299

How to work with them
Don’t look down on a Code Monkey, even if you have stronger technical
skills or greater responsibility. Encourage him—compliment his code and
teach him techniques to improve his work.

Write your code thoughtfully to make the maintenance programmer’s
(that is, the maintenance Code Monkey’s) job as easy as possible.

The Guru

This is the fabled mystic genius: a program wizard. The Guru tends to be
quiet and unassuming, perhaps even a little odd.4 He writes excellent code,
but he can’t communicate well with mere mortals.

The Guru is left alone to work on the fundamental stuff: frameworks,
architectures, kernels, and so on. He holds the deserved respect (and some-
times fear) of his colleagues.

Omniscient, the Guru knows all and sees all. He turns up sagely in any
technical discussion to dispense his expert opinion.

Strengths
Gurus are the experienced magicians. They know all the modern tech-
niques and understand which old tricks are better. (Gurus invented all
the cool techniques in the first place.) They have a wealth of experience
and write mature maintainable code.

A good Guru is a wonderful mentor—there’s so much to learn
from him.

Weaknesses
Few Gurus can communicate well. They’re not always tongue tied, but
their ideas fly so fast and at a level beyond mere mortals’, so it’s hard
to follow them. A conversation with a Guru makes you feel stupid,
confused, or both.

The poorer a Guru’s communication skills, the worse mentor he will
make. Gurus find it hard to understand why others don’t know as much
or don’t think as fast as they do.

What to do if you are one
Try to step off of your cloud and live in the Real World. Don’t expect every-
one to be as quick as you are or to think in the same way as you do. It takes
a lot of skill to explain something simply and clearly. Practice this.

How to work with them
If you cross paths with a Guru, learn from him. Absorb what you can—
and not just technical stuff. Becoming established as a Guru takes a
certain temperament and personality—knowledge but not arrogance.
Observe this.

4 Well, more odd than “normal” programmers, anyway. Eccentric is probably the polite way to put it.

300 Chapter 16

The Demiguru

The Demiguru thinks he’s a genius. He isn’t. He talks knowledgeably, but it’s
a load of trash.

This is probably the most dangerous type of code monkey; a Demiguru is
hard to spot until the damage is done. Managers believe he’s a genius because
he sounds so plausible and self-assured.

A Demiguru is generally louder than a Guru. He’s more boastful and full
of himself. He appoints himself to a position of authority. (Gurus, on the other
hand, are recognized as experts by their peers.)

Strengths
It’s easy to assume that a Demiguru has no strengths, but his great asset is
his belief in himself. It’s important to trust your own abilities, and to be
secure that you write high-quality code. However . . .

Weaknesses
The Demiguru’s great weakness is his belief in himself. He overestimates
his abilities, and his decisions will jeopardize your project’s success. He’s
a serious liability.

The Demiguru will haunt you, even after he’s moved on to new
pastures. You’ll be left with the consequences of his bad design and
overly clever code.

What to do if you are one
Right now, take an honest appraisal of your skills. Don’t oversell yourself.
Ambition is a good thing; pretending to be something you’re not isn’t.

You may not be doing this on purpose, so be objective about what
you can and cannot do. Be more concerned about the quality of your
software than how important or clever you look.

How to work with them
Be very, very careful.

Once you have recognized a Demiguru, you’ve won half the battle.
Most of the damage he can cause will occur while you haven’t got him
figured out. Keep a careful watch on the Demiguru: You must filter the
garbage he speaks, grapple with his flawed designs, and inspect his
wretched code.

The Arrogant Genius

This guy is a subtle, but significant, variation on the Guru species. A killer
programmer, he’s fast, efficient, and writes high-quality code. Not quite a
Guru, but he’s hot. But because he’s all too aware of his own skills, he is
cocky, condescending, and demeaning.

The Genius is terminally argumentative because he’s usually right and
always has to promote his correct view over others’ wrong opinions. He’s
become used to it. The most annoying thing is that most of the time, he
is right, so you’re bound to lose any argument with him. If you are correct,
he’ll keep talking until the argument moves on to something he is right about.

Code Monkeys 301

Strengths
The Genius has considerable technical skill. He can provide a strong
technical lead and will catalyze a team when everyone agrees with him.

Weaknesses
The Genius doesn’t like to be proved wrong and thinks that he must
always be right. He feels compelled to act as an authority; The Genius
knows everything about everything. He can never say I don’t know,
suffering from a full humility bypass.

What to do if you are one
Not everyone achieves Godlike status, but there are plenty of good pro-
grammers worthy of respect. Recognize this. Practice humility, and honor
other people’s opinions.

Look for people who might have a more experienced viewpoint, and
learn from them. Never pretend or cover your inexperience—be honest
about what you do and do not know.

How to work with them
Do show a Genius respect, and show respect to other programmers around
him. Avoid nonconstructive quarrels with him. But stand your ground—
assert your reasonable opinions and views. Don’t be daunted by him.
Discussing technical issues with a Genius can make you a better pro-
grammer; just learn to detach your emotions first. If you know that you’re
correct, gain allies to help argue with him.

Take heed and avoid being cocky or argumentative yourself.

G E T T I N G P E R S O N A L

This classification of programmer attitudes isn’t particularly scientific. Psychologists
have devised more formal personality classifications; authoritative ways of calling
you a freak. They don’t focus exclusively on the software development world, but do
give a valuable insight into programmer behavior.

The Myers Briggs Type Indicator is perhaps the most popular tool. (Briggs 80)
It decomposes your personality across four axes: extrovert (E) or introvert (I);
sensing (S) or intuitive (N); thinking (T) or feeling (F); and judging (J) or perceiving (P).
This classification results in a four letter descriptor; ISTJ would be common for
a Code Monkey.

Belbin’s Team Roles is a taxonomy of attitudes, defined as a tendency to behave,
contribute, and interrelate with others in a particular way. (Belbin 81) This is a means
to characterize your natural social behavior and ability to form relationships, to
determine how it helps or hinders the progress of a team. It shows how your person-
ality type affects your teamworking skills. Belbin identifies nine specific behavioral
roles: three action-oriented, three people-oriented, and three cerebral personalities.
Understanding these enables us to build effective teams from people with comple-
mentary skills; if every programmer was a coordinator, then nothing would ever
get done.

Neither of these personality taxonomies have a one-to-one mapping with my
programmer classifications. They also have a distinct lack of primates.

302 Chapter 16

The Cowboy

The Cowboy is a bad programmer who actively avoids hard work. He’ll take
as many shortcuts as he can find. Some would incorrectly classify this guy a
Hacker. He’s not a hacker in the classic sense of the word. Hacker is a term
used by geeks to proudly describe a heroic coder.5

The Cowboy dives straight into code and does the minimum amount
of work to solve the immediate problem. He won’t care if it’s not a very good
solution, if it compromises the code structure, or will not satisfy future
requirements.

A Cowboy is anxious to complete each task and move on to the next.
If he’s read a little about processes, he’ll call this Agile Programming.
It’s really just laziness.

Strengths
Cowboy code works, but isn’t particularly elegant. Cowboys like to learn
new things, but seldom get around to it (it’s too much like hard work).

Weaknesses
You’ll spend ages cleaning up after a Cowboy. His aftermath is not a
pleasant place to be. Cowboy code always requires later repair, rework,
and refactoring. They have a limited palette of techniques to use, and
no real engineering skills.

What to do if you are one
Learn to hack code in the right sense of the word. Take pride in your
work, and spend more time over it. Admit your failings, and try to improve.

How to work with them
Never go into a Cowboy’s house; if his code is anything to go by, it’ll
be a DIY disaster! Understand that they’re not a malicious breed, just
a little lazy. Organize reviews of their code. Get him pair programming.
(A Cowboy might work well with an Eager Coder; if you want to see fur
fly, pair him with a Planner.)

The Planner

The Planner thinks about what he’s doing so much that the project has been
canned long before he’s started writing any code.

It’s true, you must plan up front and establish a cohesive design, but this
guy forms an impenetrable cocoon around himself and refuses any contact
with the outside world until he’s finished. Meanwhile, everything’s changing
around him.

Terminally educated, the Planner studies and reads a lot. A common sub-
species is the Process Weenie; he knows all about the “proper development
process” but is weak on hitting deadlines or getting anything done. (Process
Weenies eventually become middle managers, and then they get fired.)

5 It has also been subverted by ignorant people and used mistakenly to mean cracker—someone who
breaks into computer systems without permission. See “Cracker vs. Hacker” on page 228.

Code Monkeys 303

Strengths
They do design. They do think. They don’t hack out thoughtless code.

Weaknesses
When a Planner sets to work, there is a very real danger of over design.
He tends to create very complex systems. Planners are the key cause of
analysis paralysis—where development becomes more focused on methods
and modeling than on prototyping and creating a solution. The Planner
likes to generate endless documents and call meetings every other hour.

He spends ages thinking and not enough time doing anything. He
knows a lot, but it doesn’t all make the leap from theory to practice.

What to do if you are one
It is important to create careful designs up front, but consider incremental
development and prototyping as methods to verify your design. Sometimes
you can’t commit to a design until you’ve actually started to implement it.
Only then will you appreciate all the problems.

Try to establish a better balance of planning and action. Console
yourself that it’s better to spend too long designing than to write awful
code—the latter is far harder to fix.

How to work with them
Ahead of time, agree on all milestones and deadlines for a Planner’s work.
Throw in a design complete milestone; a Planner will be happy that it has
been recognized as an important task and will be encouraged to complete
his design work on time. This is usually enough to crystallize a Planner
into action.

Avoid meetings with a Planner. You’ll spend an hour arguing about
how to decide the agenda.

The Old Timer

This old boy is a senior programmer from the old school. Sit back and listen
to him reminisce about the Good Old Days, when he used punch cards and
machines without enough memory to hold the result of an integer addition.

The Old Timer is either happy that he’s still doing what he loves the
most or bitter that he’s missed promotion countless times. He’s seen it all,
knows all the answers, and won’t learn new tricks (he’ll tell you that there’s
nothing new to learn; we just repackage the same old ideas). He’s reluctant
to learn new languages: “I don’t need C++. I can get by perfectly well in
Assembler, thank you very much.”

An Old Timer doesn’t suffer fools gladly. He’s a bit cranky and is easily
irritated.

Strengths
He’s been programming for years, and so he has considerable experience
and wisdom. The Old Timer has a mature approach to coding. He has
learned which qualities make good and bad programs and how to avoid
the common pitfalls.

304 Chapter 16

Weaknesses
The Old Timer won’t willingly learn new techniques. Fed up with fash-
ionable ideas that promise much and deliver little, he’s a bit slow and
can be resistent to change.

He has little patience, thanks to years of corporate ineptitude. He’s
been at the receiving end of countless tight deadlines and unreasonable
managers.

What to do if you are one
Don’t be too judgmental of younger, more enthusiastic programmers.
You were once like them, and your code wasn’t awful, was it?

How to work with them
You don’t know how easy you have it, you young programmers. Don’t mess with
an Old Timer, or you’ll find out how he survived this long in the software
factory. Choose your battles with him wisely. Show him respect, but treat
him as a peer, not a deity.

Understand the Old Timer’s motivation. Find out if he’s programming
because he loves to, or because he’s in a career dead end.

The Zealot

The Zealot is a brainwashed convert, a disciple who blindly thinks that every-
thing BigCo produces is excellent. Teenage girls have rock stars to worship;
programmers have their own idols. In his enthusiasm, the Zealot takes it upon
himself to become an unpaid technology evangelist. He’ll try to incorporate
BigCo products into every assignment he is given.

The Zealot follows BigCo to the exclusion of all other approaches and
rarely knows about alternatives. Anything that’s not excellent in the current
BigCo product line will surely be fixed in the next version, which we must
upgrade to immediately.6

Strengths
He knows BigCo’s products inside out and will produce genuinely good
designs based on them. He is productive with that technology, but not
necessarily maximally productive—other unfamiliar approaches might
be more effective.

Weaknesses
Being a Zealot, he’s neither objective nor pragmatic. There may be better
non-BigCo designs that he will miss. Worse, though, are the Zealot’s
continual rants about BigCo.

What to do if you are one
No one expects you to turn away from your beloved BigCo. It is valuable
to understand its technologies and know how to deploy them. But don’t
be a technology bigot. Embrace different approaches and new ways of
thinking. Don’t look at them with an air of superiority or prejudge them.

6 Zealots don’t only idolize software vendors. A Zealot might be an open source advocate or
hanker after an obsolete software package.

Code Monkeys 305

How to work with them
Don’t bother getting into philosophical arguments with a Zealot. Don’t
try to explain the virtues of your preferred technology—he won’t listen.
Watch out: One conversation with this guy can turn you into a Zealot.
He’s contagious.

Zealots are generally harmless (and amusing to watch from a distance),
unless your project is at a critical design stage. At this point, provide a clear,
unbiased perspective on the problem domain and insist on a thorough
evaluation of all implementation approaches. Remember: He might
be right.

If you encounter silly arguments, counter them with well-prepared,
accurate, detailed information about the strengths of your approach and
the weaknesses of his.

The Monocultured Programmer

This is the archetypal geek, the guy who lives and breathes technology. It’s his
whole life; he probably dreams about it.

The Monocultured Programmer has a remarkable one-track mind. Taking
work home with him, he returns with the whole system designed and written,
all the major bugs fixed, and a plan for how to implement the rest of the
project. He’s done it all before you’ve had breakfast.

Strengths
The Monocultured Programmer is focused and determined. He’ll ensure
that the project works, or he’ll die trying. He’s willing to put in a lot of
extra effort, and he’s really useful as deadlines draw near.

Weaknesses
He expects others to be as obsessive and focused as he is and might be
disapproving of those who aren’t. His biggest danger is overlooking
things, since he permanently lives too close to the problem.

What to do if you are one
Take up stamp collecting—or anything—to help you switch off. All work
and no play makes Jack a dull boy. But you probably don’t care anyway.

How to work with them
These guys are great to work with. Their enthusiasm is contagious, and
the project will move quickly when they’re on board. But don’t let them
take over. Given half a chance, the Monocultured Programmer will do
all your work too! Although that might sound good, you’ll be left main-
taining foreign code. It’s not worth the hassle.

Don’t worry about their lack of a personal life, and don’t feel pressured
to spend all the hours God sends on the project—sometimes the best
design tool is a relaxing night off.

306 Chapter 16

The Slacker

The Slacker is a work-shy sluggard. He’s hard to detect, because he’s learned
to make it look like he’s overloaded with jobs. His “design” is playing solitaire,
his “research” is looking at fast cars on the Web, and his “implementation”
is working on his own stuff. The Slacker actively avoids all assignments.
(Oh, I’m far too busy to do that.)

A more subtle Slacker will only work on the things he wants to or the bits
he thinks should be done, not on what he’s supposed to. Despite working con-
stantly, he’ll never get his jobs done.

The Slacker knows how to have fun. He parties too much and can usually
be found sleeping under his desk. His diet consists mostly of coffee, except for
lunchtime, when you’ll find him in the bar.

This guy can be a burnout; one too many failed projects has killed his
desire to work.

Strengths
At least he knows how to have fun.

Weaknesses
A Slacker is an obvious liability. It’s hard to prove he’s slacking—some
hard problems do take a while to sort out. A programmer might not be
slacking; he just might not have enough skill to solve the problem quickly.

What to do if you are one
Work on your morals, and start to put some effort in. Or learn to live
with the guilt.

How to work with them
It’s best not to complain about a Slacker—you have your own flaws.
He’ll get his come-uppance in good time.

Take measures to prove that you are working effectively, and that
delays are the Slacker’s fault. It might help to keep a methodical diary of
your work. A clear set of deadlines is generally enough to get a Slacker
working. Don’t start writing his stuff too, even in desperation. He’ll only
expect you to do this next time.

Avoid burnout yourself; try to have fun as you work. Perhaps you
should hit the bar with him sometimes.

The Reluctant Team Leader

This is the organizational classic; a developer who’s been promoted to team
leader when there was no further technical route for him to advance.

You can plainly see that he is uncomfortable in this role. He doesn’t have
the correct skill set, and he struggles to keep up. He is a programmer, and he
wants to program. This guy is not a natural organizer or manager of people,
and he is a bad communicator.

Code Monkeys 307

Most programmers make spectacularly bad leaders. There are few gen-
uinely excellent software team leaders; it requires a particular skill set that is
both technical and organizational.

The Reluctant Team Leader is usually quite mild mannered and
indecisive—how else did he get persuaded to take on this job? He becomes
squashed between the development team and management, taking the
blame for slippage and poor software. An increasingly harassed expression
grows on his face until he finally burns out.

Strengths
The Reluctant Team Leader has a real sympathy for the programmer’s
plight—he’s been there and now wishes he was back. Often, he is far
too willing to take responsibility for late software delivery to prevent the
programmers being picked on by management. Just as he’s not good at
delegating work, he’s not good at apportioning blame.

Weaknesses
When a Team Leader tries to write code, it will be awful. He never has
enough time to write, design, or test carefully enough. He naïvely plans
himself a full day’s coding alongside team leading duties. He can’t fit it
all in, and so the Reluctant Team Leader spends longer and longer in
the office, trying to keep up. He can’t organize well, can’t explain things
to managers, and can’t manage his team members properly.

What to do if you are one
Get training. Quickly.

If you’re not happy in this role, push for a career move. This is not
admitting defeat; it’s pointless to burn yourself out doing something you
hate and aren’t good at. Not everybody has the skills or passion for man-
agement. Move to an area you do have skill and passion for.

If you like herculean tasks, try to sort out the promotion path at your
company. Get the company to recognize that a managerial position should
not be the next step up from senior developer. Few programmers make
decent managers; their brains aren’t wired up the right way.

How to work with them
Be sympathetic, and do everything you can to help the Team Leader. Give
him reports on time, and try to get your work done on schedule. If you
might miss a deadline, let the Team Leader know early on, so he can plan
around it.

You

In the interest of politeness, we’ll say no more about this curious beast. Sadly,
some people are beyond help. . . .

308 Chapter 16

The Ideal Programmer

From this tangled mess, it’s clear that we’re a strange breed. Which of these
code monkeys should we aspire to be? What code monkey cocktail will create
the Ideal Programmer?

Unfortunately, in the Real World, there are no perfect programmers—
the beast is an urban legend. Therefore, this is an academic question, but
finding an answer will give us something to aim for.

The fabled Ideal Programmer is part:

Politician
He must be diplomatic, able to deal with the peccadilloes of these weird
code monkeys and the many, many more creatures that inhabit the soft-
ware factory—managers, testers, support, customers, users, and so on.

Relational
He works well with others. He isn’t territorial about his code and isn’t
afraid to get his hands dirty if a task is for the common good. He commu-
nicates well—he can listen as well as talk.

Artistic
He can design elegant solutions and appreciate the aesthetic aspects of a
high-quality implementation.

Technical genius
He writes solid, industrial-strength code. He has a broad palette of tech-
nical skills and understands how and when to apply them.

Reading that list again, it’s quite clear what we should be. If you haven’t
realized yet, I’ll spell it out: The ideal programmer is a

Well, that’s something to aspire to.

So What?

Only the wisest and stupidest of men never change.
—Confucius

While it’s entertaining to stare into the cages of these code monkeys and
have a laugh at their expense, what should you do about this? If you do
nothing, then it has been little more than mere entertainment; you’ll walk
away doing exactly the same stupid things you’ve always done.

Code Monkeys 309

To improve as a programmer, you must change. Change is hard—it runs
contrary to our nature. The saying goes, a leopard doesn’t change his spots.
If he did, he wouldn’t be a leopard anymore. Perhaps that’s the key. More of
us should be wildebeests or rhinoceroses.

Take a moment to think about the following questions. You might find it
useful to use the action sheet at the end of this chapter to record your answers.

1. What kind of code monkey are you most like? If you’re honest, there’s
probably a little of each of them in you. Identify the one or two that
describe you best.

2. What are your particular strengths and weaknesses?

3. Look over your code monkey description again and see what practical
things you could change. What specific techniques will help you to over-
come bad attitudes? How can you capitalize on your good ones?

KEY CONCEPT Know what kind of programmer you are. Determine how to exploit your strengths and
compensate for your weaknesses.

The Stupidest of Men

To help us think about the kinds of change required, what lessons can we
learn from each of the code monkeys? We all have individual personality
flaws, but this summary shows some good attitudes and a few common areas
of improvement. To be a good programmer, you must learn to become

That is:

Team player
Learn to work with others effectively. Try to understand each of your
colleagues’ particular traits, and learn how to respond to them better.

Honest and humble
Be realistic about your capabilities: Know your strengths and weaknesses.
Don’t pretend that you are more able. Adopt an attitude that seeks to
help others and to work with them effectively.

Improving constantly
No matter what you know, how much experience you have, and how
good your code is, there is always more to learn, new skills to acquire,
and bad attitudes to address. Confucius said, “Real knowledge is to know

310 Chapter 16

the extent of one’s ignorance.” Acknowledge that you’re not perfect.
A good programmer is in a constant state of improvement.

Considerate
Train yourself to always think about what you’re doing. Silly mistakes
creep in when you’re not paying attention. Always use your brain. Con-
sider what you’re doing before you write each piece of code. Then read
back what you’ve written, even if it’s a simple change.

Keen
Try to maintain the enthusiasm of the Eager Coder. If you love learning
new skills, then keep reading and keep practicing. If you work best with
regular breaks, then plan that vacation! If you relish facing new challenges,
then position yourself where you’ll be most stimulated.

If you become staid and bored, your attitude will worsen, and the
quality of your code will suffer.

In a Nutshell

Darwinian Man, though well-behaved,
At best is only a monkey shaved!

—Gilbert and Sullivan

Programmers are a social species (which is odd considering their lack of
social skills). They are social by necessity; you can’t create excellent large
software systems without a closely working team of programmers who are
knit into a larger social structure (be it a department, company, or an open
source culture).

Each of these programmers has their own foibles and peculiarities. Their
underlying attitudes affect how well they program, shaping their approach to
the code and to their relationships with teammates.

If you want to be an exceptional programmer, you need to foster the
correct positive attitudes. Remember: Aim to be a thick prat.

See Also

Chapter 17: Together We Stand
Discusses team dynamics in more depth.

Good programmers . . . Bad programmers . . .

Are PRATs: politicians,
relational, artistic, and
technical

Are THICK: team players,
honest and humble, improv-
ing constantly, considerate,
and keen

Are not interested in writing
good code

Do not work well on a team

Try to look better than they
really are

Stagnate—they don’t seek to
improve themselves

Code Monkeys 311

Action Sheet

Look at the following action sheet. Take some time to fill it in and figure out
how to put what you’ve learned into practice.

Code Monkeys ACTION SHEET
Take some time to fill out this form thoughtfully.
Refer to the code monkey descriptions for more information.

I am a . . .

Check the code monkey that applies the most.

You can check a second code monkey if you think
that you fall into more than one category. If you
want to check more than two, I can recommend a
good psychiatrist.

My strengths are . . .

List what you think are your best characteristics,
skills, and abilities. Compare them to the description
of your code monkey.

My weaknesses are . . .

List what you think are your worst characteristics,
skills, and abilities. Compare them to the description
of your code monkey.

I can improve by . . .

How can you capitalize on your strengths and
compensate for or improve upon your weaknesses?

I work with . . .

Think about the programmers you work with most
closely. What kind of code monkeys are they?
Check all that apply.

Consider how you can interact with these guys
better. Does identifying their personality types help
you to work with them more effectively?

Our team can improve by . . .

How can you write software better together as a
team? Are there specific steps you could take to help
with this?

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

� Guru

� Planner
� Old Timer
� Zealot
� Monocultured
� Slacker
� Reluctant Team
 Leader

� Eager Coder
� Code Monkey

� Demiguru
� Arrogant Genius
� Cowboy

� Guru

� Planner
� Old Timer
� Zealot
� Monocultured
� Slacker
� Reluctant Team
 Leader

� Eager Coder
� Code Monkey

� Demiguru
� Arrogant Genius
� Cowboy

312 Chapter 16

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 532.

Mull It Over
1. How many programmers does it take to change a light bulb?

2. Is it better to be enthusiastic and less skilled (not incompetent) or to be
incredibly talented and unmotivated?

a. Who will write the better code?

b. Who is the better programmer? (Not the same thing.)

Which does more to shape the code you write: your technical
competence or your attitude?

3. There are various different types of programs we write, differentiated by
code “heritage.” How does writing the following types of code differ?

a. A “toy” program

b. A brand-new system

c. Extensions to an existing system

d. Maintenance work on an old codebase

4. If programming is an art, what is the correct balance of consideration
and planning versus intuition and gut instinct? Do you program by gut
or by plan?

Getting Personal

1. If you haven’t done so already, fill out the action sheet on the previous
page carefully. Make sure you figure out how to improve, and start acting
it out!

2. Here’s an interesting game you can set up for your development team to
help each programmer work out his or her natural coding approach.

The teams
If there are a lot of you, split into smaller groups of three to five
programmers.

The task
You are a team of programmers tasked with the development of the
following new product. In the time available, design the system. Explain
how you’ll split it into components and arrange the work among your
team members.

You don’t have to write the code yet (although there might be bonus
points if you manage to show a working prototype!). Don’t get hung up
on perfectionism (there’s no time); just start to design something that
will work.

Code Monkeys 313

The system
Due to massive NASA cutbacks, you are the entire team writing control
software for the next Mars probe. It must be able to:

Drive around

Take pictures

Measure atmospheric conditions

Communicate with Earth control

Be very reliable

The time limit
Here’s the fun part. You’ve only got five minutes. Of course, this is totally
unreasonable, but it’s a good metaphor for our project timescales. (Just
watch the slippage. . . .)

Afterward
Look at how well people worked together. Which teams were most suc-
cessful? Which failed? Why was this? How did different people approach
the task? The outcome of this task is nowhere near as important as how
people attempted to perform it.

Answering these kinds of questions will show quite clearly which type
of code monkey each team member is most like.

T O G E T H E R
W E S T A N D

Teamwork and the
Individual Programmer

17

In this chapter:

Developing software in teams

The types of development
team

Tips and techniques for
effective teamwork

The most important single ingredient in the formula of
success is knowing how to get along with people.

—Theodore Roosevelt

It’s Saturday night, and you’re settling down with
popcorn and drinks to watch a film. Perhaps you’ve
persuaded some unsuspecting, non–computer
nerds to watch it with you. You didn’t tell them it
was The Matrix, did you?

The production that you’re watching is the
result of enormous effort by dedicated teams of
people, all working together to create the final
movie. Although you can’t necessarily see it, there
have been many, many man-hours (man-days, and
“mythical” man-months) put into the production.

When you see some films, though, you have to
wonder if they really should have bothered.

316 Chapter 17

Compare that vast coordination of effort to how we write software. If
you tried to create a movie on your own, the result would be poor. No one
person can make a film on his or her own—or at least, not a film that’s any
good. To get a complete, edited movie to your television takes more effort:
marketing, manufacture, distribution, retailing, and more. Perhaps you
could create an entire “professional” software package yourself, but it would
take a phenomenally long time. In the commercial world, who would give
you such a risky contract?

In most professions, good products are the result of good teamwork.
Software development is no exception. In fact, teamwork is vital to the
survival of a project. An ineffective team will quickly stifle any software
development activity, leaving progress to the heroic efforts of a few
dedicated individuals working against huge odds. Being a good software
engineer means more than just being a good programmer. You might be
able to compute PI to ridiculous accuracy in less than five lines of code.
Well done. But there are many other skills required, and one of these is
teamworking.

KEY CONCEPT Teamwork is an essential skill of a high-quality software developer.

In this chapter, we’ll examine teamwork as it applies to us, as programmers.
We’ll look at what constitutes good teamwork and how we can be more effective
in our teams.

Our Teams—The Big Picture

Over the years, many types of teams have worked together to produce soft-
ware products. They range from the highly formal teams (suits in offices),
with rigid structures and defined processes, to the new frontier work of the
open source movement, where anyone can contribute and changes are
incorporated on merit.

Both methods of working have had great successes, and both have had
great failures. The IBM OS/360 and the Linux kernel are notable successes
for each camp, respectively. The Ariane 5 is a legendary flop—this European
launcher exploded during its maiden take-off because two software teams mis-
understood the formally defined interface. Mozilla is an interesting open
source flop—when Netscape open sourced its code, they expected rapid devel-
opment and improvement. Years of Mozilla development were disappointing
compared to other open source projects.

A software developer typically participates in various levels of teams, each
with different dynamics and requiring different levels of contribution. Consider
this scenario:

You’re creating a distinct software component that is part of a larger
project. You may develop it by yourself or as part of a team of program-
mers: Team One.

Together We Stand 317

The component will fit into a wider product. All the people involved with
this product (including any hardware designers, software developers,
testers, and other non-engineering roles such as management and mar-
keting) form Team Two.

You are also part of a company that may be working on many different
products simultaneously—Team Three.

In reality, there are more levels of teamwork in any reasonably large
software-development company. These are shown in Figure 17-1, along with
an example of the different dynamics at play. Inter-team dynamics, when
separate teams interact, introduces the most complex teamwork considera-
tions: Politics and managerial mistakes plague intra-organizational collab-
oration. Although a company is effectively one large team, it’s not unusual
for it to be layered with a “them and us” mentality between departments and
groups. This is not an ideal atmosphere for effective product development.

Figure 17-1: The levels of teamwork

As programmers, we are directly involved in the smaller level of team
activity: in our day-to-day development teams. We have the most control and
influence over this world. It is the level we are responsible for, where we have
authority to make design and implementation decisions and to report on
team progress. Programmers are less responsible for the effects of higher
level teams, but we are affected by teamwork “in the large” as much as we are
by teamwork “in the small,” even if it’s not as immediately obvious.

Development team size dictates the dynamic and nature of shared soft-
ware construction work as much as the team’s place in the organizational food
chain. A lone engineer is given responsibility for all software architecture,
design, and implementation work. In really small outfits, they may also have
to work on gathering requirements and create and run a thorough test plan.

318 Chapter 17

As soon as more developers are added to this mix, the nature of the
programming task changes. It’s no longer just about coding skill; it requires
social interaction, coordination, and communication skills. This is where
your teamworking skills will affect the software you build—for better or worse.

KEY CONCEPT Both the interactions within and outside your development team will affect the code you
produce. Notice how they affect your work.

Team Organization

The structure of a software development team is inevitably shaped by the
management approach and the division of responsibility among its members.
These two factors will naturally determine the amount of code and the size of
the units that you work on. This shows us that the code we produce is shaped
by the organization of our teams.

Management Approach

A project may be managed on a peer basis, with no coder considered more
important than any other, or under the leadership of an über–programmer/
manager. The programming team could be considered part of a software
production line: Fed designs from a team upstream, they produce code to
specification.1 Enlightened software engineers are given more autonomy and
responsibility.

Tasks may be allotted months in advance on long-range plans (which can
rapidly become out of date and inaccurate), or just-in-time by assigning each
work package when a developer finishes his previous one. Programmers
might work alone on their individual parts of the system, or work collabor-
atively via pair programming to spread responsibility and knowledge.

Division of Responsibility

The axis of responsibility determines how each line of development is split
amongs programmers:

With a vertical team organization, you employ a team of generalists who are
skilled in a wide number of roles. They are each given a piece of work
and implement it end-to-end—from the architecting and designing,
right through implementation and integration, to development testing
and documentation.

The main advantage of this approach is that developers gain a wider
range of skills and become more experienced in the whole software
system. With one key developer per feature, there is cohesion in its
design and implementation. However, generalists are expensive and hard
to find. They don’t have expertise in all areas and therefore take longer

1 Here, management expects replaceable, commodity—grunt—programmers. See “The Code
Monkey” on page 298.

Together We Stand 319

to solve some problems. There is likely to be less cohesion between
separate features, since they are implemented by different developers.
The customer has to work with more people, since there’s no specific
liaison point—each developer needs to give input to scope the
requirements and validate the design.

To make this kind of team work, you must define common standards
and guidelines. You must have good communication to prevent people
from reinventing the wheel. A common architecture must be agreed
upon early on, or a chaotic and haphazard system will ensue.

In contrast, a horizontally organized team is built from a team of specialists,
and every development task is split between them, using their respective
talents at the appropriate times. Because each aspect of work (require-
ments gathering, design, coding, etc.) is done by a specialist, it should be
of a higher quality.

This has many opposite characteristics to the vertical arrangement:
We build cohesion between separate work packages, but there’s a danger
that each set of work holds together less well because more people have

I T ’ S A L L G O I N G P A I R S H A P E D

Pair programming is a collaborative software development approach, especially
fashionable in agile development circles. It has claimed to make programmers more
efficient: producing code faster, with fewer faults.

Two developers code together—at the same time, at the same terminal. While
one (the driver) types, the other (the navigator) thinks about what’s being done and
acts as second pair of eyes, removing many mistakes before they have a chance to
bite. The pair periodically swaps roles. The navigator sees consequences that the
driver would miss, removing the common danger of being focused narrowly on the
code as it’s typed. Two people think of more than two ways to solve any problem, so
you’re far more likely to hit upon the best code design. Because of this unusually
close collaboration, pair programming best suits talented programmers who have
positive attitudes.

Studies claim that, once trained, two programmers are more than twice as
productive on any given task. According to data published in The Economist,
“Laurie Williams of the University of Utah in Salt Lake City has shown that paired
programmers are only 15 percent slower than two independent individual program-
mers, but produce 15 percent fewer bugs. Since testing and debugging are often
many times more costly than initial programming, this is an impressive result.”
(Economist 01)

Pair programming has many advantages. It promotes knowledge transfer and
aids mentoring, increases your focus (you are less likely to daydream, take long
phone calls, or tune out), increases discipline, and reduces interruptions (you’re less
likely to interrupt two people working closely together than a single programmer
staring vacantly into space). It works as an early real-time inspection mechanism—
an instant code review—and brings the benefits of better code. It’s a social process;
with the right people, it improves morale (although it can be disastrous when two
people grate against each other). The programmers get to know each other more
closely and better understand how to work together. Pair programming promotes
collective code ownership, spreads good coding culture and values, and emphasizes
the development process.

320 Chapter 17

worked on it. Interaction outside the team (with customers or other com-
pany factions) is made by a small number of specialists. This is easier to
manage for the team itself and the external contacts.

You must take care to ensure that the specialists are well coordinated
and that they see right through to the end of each work package, or their
work will be narrow-sighted. With many people involved in each develop-
ment procedure, the team is harder to manage; there is more workflow.
This arrangement requires good communication, defined processes,
and smooth handoffs between developers.

There is no “right” kind of organization. Which one is most appropriate
depends on the team members, the size of the team, and the nature of the
work produced. The pragmatic arrangement is probably somewhere in the
middle.

Organization and Code Structure

A team’s organization has an inevitable affect on the code it produces. This is
enshrined in software folklore as Conway’s Law. Simply stated, it says, “If you
have four groups working on a compiler, you’ll get a four-pass compiler.”
Your code inevitably takes on the structure and dynamics of your interacting
teams. The major software components lie where teams gather, and their
communications follow the team interactions. Where groups work closely,
component communication is simple and well defined. When teams separate,
the code interacts clumsily.

We naturally aim to create well-defined interfaces between each team’s
work to facilitate our interaction with that team. We do so even in cases where
reaching into some internal part of another component might be a valid and
better approach. In this way, teams can foster arbitrary divisions; despite our
good intentions, design decisions are forced by team composition.

Of course, there’s nothing wrong with encapsulation and abstraction;
but they must be designed in for the right reasons. If anything, you should let
the code you are building define the team membership and organization.

KEY CONCEPT Organize your team around the code you’re building, not your code around the team.

Teamwork Tools

There are foundational tools that help us to organize a functioning software
team. They facilitate collaboration and help to elevate joint development
from chaos to a well-oiled machine. On their own, they won’t make you a
team of commando programmers, but they’re the arsenal every crack outfit
relies on—the prerequisites for effective software developer interaction.

Source control
A development team revolves around the source code, and this is
where it is held. Source control helps to marshal who is doing what

Together We Stand 321

and when, provides the definitive latest code snapshot, and allows
you to manage changes, undo mistakes, and make sure that no one
misses source code updates. You need it equally on a 100-strong team
and on a one-man project.

Faults database
We’ve already looked at how this aids development (see “Fault-Tracking
System” on page 147), but notice how it facilitates interaction between
teams: A fault-tracking system acts as the pivot between test and develop-
ment. It helps to organize test and repair work, prioritize faults, assign
problems to individuals, and track pending fixes in the software. It iden-
tifies which faults are currently a developer’s responsibility and which
are a tester’s.

Groupware
A team needs effective communications infrastructure, especially when
geographically separated. A centralized calendar, address book, and
meeting booking system provide a digital administrative backbone.

You also need a mechanism to share and collaborate on documents.
Consider using wikis (web-based community documentation tools) and
internal newgroups (email discussion boards with permanent storage) to
facilitate group interaction.

A methodology
It’s important to establish a defined and universally understood develop-
ment methodology, or else work will be chaotic and performed on an ad
hoc basis. One developer will release code, while another will refuse to
let go until it has been thoroughly tested and debugged. One developer
will halt all coding until an intricately detailed specification has been
produced, while another will rush straight into prototyping the code.
Holy Wars are made of smaller things than this.

A methodology defines the development process details, who is
responsible for what work, and how work is passed along. With this, each
developer knows what’s expected and how to work as a part of the team.
You must pick an appropriate methodology, based on the size of the team,
the kind of code you are producing, and the talent, experience, and
dynamics of people. This is described in Chapter 22.

Project plan
To produce any work in a predictable, timely manner you need some
organization. This is provided by the project plan, detailing who is doing
what over the course of development. To be of any use, the plan must be
based on sound estimates and kept up to date with any changes required.

Programmers are notoriously poor at estimating, and managers are
notoriously poor at planning. We must not be pressured to work to an
unrealistic project plan. This is a geniunely hard problem that we dissect
in Chapter 21.

322 Chapter 17

Team Diseases

Recovering from failure is often easier
than building from success.

—Michael Eisner

Even with good programmers and wonderful organization, you can still
have a dysfunctional team. Teams fail to produce results for many reasons,
and just as we stereotyped different species of programmer, we can also
identify categories of doomed development teams—to see what we can learn
from them.

Here are some of the classic team disasters. In each case we’ll see:

The particular road to ruin

The warning signs (so you can recognize when you’re headed in this
direction)

How to turn around a team stuck in that particular rut

How to be a successful programmer in that team situation (sometimes
despite the team)2

Hopefully you won’t recognize your current team in the following list.

Tower of Babel

The original Babel builders were fragmented by multiple spoken
languages.3 However, multinational projects rarely suffer from Babel

2 I don’t claim that these strategies will solve the team’s general problem; they’re deliberately
shortsighted ways to get your work done now, with minimum risk of problems.

Just like the Biblical builders, a Babel-
esque team suffers a massive communi-
cation breakdown. Once programmers
fail to communicate, development
work is doomed—if anything works,
then it’s more likely by luck than by
design.

With ineffective communication,
people make incorrect assumptions.
Bits of work fall between the cracks,
potential error cases are ignored, faults
are forgotten about, programmers
duplicate effort, interfaces are mis-
used, problems aren’t addressed, and
small slippages, unnoticed, grow into
mammoth project delays because no
one’s monitoring progress.

3 Genesis 11:1–9

Together We Stand 323

syndrome—with language barriers to cross, people make more of an
effort to communicate well.

It’s not only different spoken languages that can separate developers.
Different backgrounds, methodologies, programming languages, and even
different personalities cause team members to misunderstand one another.
A small seed of confusion, unchecked, will eventually grow; resentment and
frustration will build up. At worst, Babel teams end up not talking at all, with
each programmer sitting in his own corner, doing his own thing.

This problem can brew within the immediate software team and also
between interacting teams. Extra-team Babel syndrome occurs when devel-
opers fail to talk to testers or the management team is disconnected from
development.

Warning Signs
You can tell that your team is headed toward Babel when one developer
can’t be bothered to ask another about something, feeling it’s not
worth the effort. It creeps in with a lack of detailed specifications and
with ambiguous code contracts. You see too few or too many emails fly-
ing about. Too many emails means that everybody’s shouting, and no
one’s listening: Nobody has time to keep up with the constant barrage
of information.

On the road to Babel, there are no team meetings, and no one
person knows exactly what’s going on in the project. If you pick someone
at random, they can’t tell you whether development is on course or not.

Turnarounds
Talk to people. Go on—open the floodgates! Soon they’ll all be doing it.

Babel attitudes are difficult to redress once the rot has set in, because
morale has been dragged to an all time low, apathy is rampant, and no
one believes that change is possible. The most effective strategy is to
work at boosting team morale, to bring the developers closer together.
Do something social to shake the team up: Consider a team-building
exercise, even a simple trip out for a drink together. Buy pizza one day
for lunch, and share with the team.

Then develop some strategies to force people to talk to one another.
Create small focus groups to scope new features. Put two people in charge
of a piece of design work. Introduce pair programming.

Success Strategies
To write good code in the face of such problems, you have to be very
disciplined. Before you start a work package, ensure that it’s rigorously
defined. Write the specification yourself if you have to, and mail it to
all the people involved to get their buy-in (provide a time limit for
comments, stating that no feedback is assumed to be agreement).
Then it’s clear when you’ve succeeded because you have fulfilled the
agreed spec.

Lock down all your external code interfaces fully, so there’s no confusion
about what you’re relying on or what people can expect of your code.

324 Chapter 17

Dictatorship

Brooks. (Brooks 95) The surgical team places the most highly qualified
technical individual, the lead surgeon,4 at the top of the pile: acting as a
code writer, not a manager. He performs the bulk of the development and
has ultimate responsibility if bad things happen (if the patient dies). He is
backed up by a deliberately chosen team. This includes a junior surgeon
who performs smaller, lower-risk tasks, supports the lead surgeon, and
learns the trade. The team also involves the software equivalent of
anaesthetists, nurses, and perhaps more junior surgeons learning skills
(e.g., sewing up the patient).

There are two dangers with this kind of team. The first comes when
external pressures force the Dictator to become more of a manager; his
technical specialism almost guarantees a lack of management skills. His focus
will shift away from the software and the project will collapse. The second
danger is a self-appointed Dictator, who isn’t recognized by the team. Work-
flow will stall as the team is neither structured nor prepared to support his
leadership.

Warning Signs
This team structure tends to develop slowly and subtly, as a would-be
Dictator slowly modifies the focus of his work role and presumes his
level of authority. You can see a Dictated team brewing when you often
find yourself saying:

I can’t do this without consulting . . .

Oh, . . . will moan if we do it like that.

But . . . says we must do . . . first.

This is the original one-man show, a team led by a
strong-willed, strong personality who is (usually) a
highly skilled programmer. Other programmers are
required to be yes men, even if they don’t want to be,
following the Dictator’s mandates without question.

In some teams this works fine—with a well-
chosen benevolent leader and a team who respects
him. Problems loom when a Dictator’s personality
doesn’t support his position, or when he is tech-
nically substandard (see “The Demiguru” on
page 300). If his ego gets in the way, the team is
in trouble: They will resent him and grind to a
frustrated halt.

When fashioned on purpose, this kind of team
is a hierarchy, with lines of defined authority. This
structure was likened to a surgical team by Frederick

4 Usually this guy is a technology specialist, as defined by Belbin’s team roles.

Together We Stand 325

Turnarounds
If you have a Dictator who is not a worthy team leader, then you must
address the situation. Otherwise, the team will petrify under this authori-
tarian tyrant. Either work the issues through with him (in all honesty,
this is unlikely to work—change is hard, especially for people with an
inflated ego), or unseat him from the throne by confronting a manager
on the issue.

After overthrowing the king, you either need a team restructure or a
new king. Lead surgeons are hard to come by, so it’s probably better to
restructure the team.

Success Strategies
In a (functional or dysfunctional) Dictatorship, determine your level of
authority and responsibility. Confer on this with the person whose opin-
ion really counts—your manager or team leader.

However, once you’ve asserted your rightful development role, you
(and the other programmers) must still listen to and work with the
Dictator, even if you don’t like his current position. Otherwise, you
won’t work well together and won’t write complementary code. There
must be consensus in the design, or the software will not work.

Don’t be disrespectful or rude toward a Dictator; it’ll just bring down
the team morale and make you more angry.

Development Democracy

based on whose skills are most in demand at this stage of the project. Often
there is not a clear leader, and all decisions are taken by consensus. Open
source development often follows this pattern.

We tend to forget the other half of that proverb: All men are created
equal, but by practice grow apart. It takes a special set of individuals to make
this team culture work. The danger with a team founded on this laudable
principle is that as it grows, or when a certain member leaves (the one who
crystallizes the group into making decisions), things begin to drift. The team
can lose its focus, failing to agree on anything, and failing to produce results
in a timely fashion. In the worst case, the team ends up arguing forever about
a single issue, contemplating its navel, and never actually achieving anything.

With endless meetings and circular discussions, the team is in danger
of analysis paralysis: of becoming focused on process, not on delivery of

An old proverb says, All men are created equal, and
here this is outworked. This is a team of peers—
programmers with similar levels of skill and
complementary personalities—who organize
themselves in a nonhierarchical fashion. It’s
an unusual beast in the corporate world, which
expects that someone must be boss. The idea of
a self-organizing team seems heretical. However,
it has been shown to be a team model that
can work well. Some democratic teams run by
periodically electing a leader from their ranks,

326 Chapter 17

the project. Like a real democracy, the genuine team business can get
lost in a sea of politicking.

You can accidentally end up with a Development Democracy if you have
a ineffective team leader who is incapable of making decisions. This kind of
bumbling leader will slowly phase himself out without realizing it. The
frustrated team ends up jointly taking over his role—forcing decisions to
be made and choosing the direction of development.

Democracy is a particularly difficult team structure in a crisis, even when
established on purpose. If personality friction prevents the election of the
right leader for a situation, then an outside leader must be brought in to
steer the project.

Warning Signs
You can smell a sick Democracy a mile off: The rate of decision making
drops like a stone. If there is a software team leader, then everyone
bypasses him, rather than be stalled by his dithering. He is now a leader
in name only; no one recognizes his authority or his ability to achieve
anything.

Without leadership, no one is assigned responsibility for each task;
it’s never clear who should be ensuring a task’s completion, and so
nothing gets done. Weeks can go by without a specification being
completed and with no visible progress.

In a rampant Development Democracy, the smallest decision forces
the team into committee mode, and it takes days to conclude. Or a
decision is made: Let’s say yes until we decide to do something else.
“Let your ‘yes’ be yes, and your ‘no’ be no,”5 otherwise you’ll spend ages
ripping up old code and redoing it whenever someone changes his mind.

You might also notice that junior programmers feel alienated
because they’ll never be elected leader.

Turnarounds
Democracies aim to remove a specific bottleneck: where all decisions
must be made by the boss, who is not always the most appropriate person
to make them (especially when the boss isn’t technical). In a dysfunc-
tional Democracy, there is no decision-making process, and no decisions
are made at any level. To return to a healthy Democracy, ensure that
leadership can move around the team freely and that replacing the
leader is easy. Don’t attempt to run a Democracy unless you have
enough potential leaders.

As with any other slipping project, make sure that problems are
visible to everybody, both developers and managers. Make sure that it’s
clear who’s responsibility this problem is—especially if it’s not yours!

You can attempt to correct indecisive Democracies by showing some
strong will; don’t be content to let matters continually slide. You’ll prob-
ably be named as a troublemaker, but eventually you’ll also be named
as someone who achieves results. Beware, though, of the danger of
becoming a demi-Dictator as a backlash.

5 Matthew 5:37, unless you’re a Babel builder, in which case your “yes” might be Oui and your
“no,” Nein!

Together We Stand 327

Success Strategies
For your own sanity, avoid ditherers—the people who cannot decide the
simplest thing.

Ensure that you are allotted a well-defined part of the project and
have clear and realistic deadlines. This is a major anchor against the ebb
and flow of uncertain leadership.

Satellite Station

office elsewhere, but since they have little input on day-to-day programming
activities, this isn’t problematic. However, if part of the development team is
many miles away, then you need to put measures in place to ensure that the
project succeeds. You must be deliberate about this—split teams don’t work
together by accident.

Programming requires close team interaction because our individual
pieces of code must interact closely. Anything that threatens our human
interactions also threatens our code. Satellite teams present these threats:

Physically disjointed development teams lose the informal, spontaneous
conversations that spring up beside the coffee machine. The chance for
easy dynamic cooperation disappears. With it goes a level of shared
insight and the group understanding of the code.

There is a lack of cohesion in development. Each site’s local practices
and development culture will differ (even if only slightly). Inconsistent
methodologies make handing over work more complex.

Since you don’t know people in the Satellite very well, there is an inevita-
ble lack of trust and familiarity. A them and us attitude emerges.

An old proverb says, “Out of sight, out of mind.” When you don’t see
Satellite programmers regularly, you’ll forget them, you won’t know
their progress, and you won’t think about whether or not your work
impacts them (technically or procedurally).

A Satellite team—split from the main
development team—presents its own
world of potential pain and pitfalls.
It’s hard to work as a cohesive unit
when part of the team is physically
separated, like a severed limb.

The Satellite might be an entire
peripheral department, or a part of
your immediate software team sepa-
rated off in a different location. Tele-
commuting (working from home) is a
special case, with only one person in
the Satellite.

It’s not unusual for members of
upper management to be in a head

328 Chapter 17

Satelites make the simplest conversation difficult. You need greater
awareness of other programmers’ schedules; when they’re in meetings
or on vacation.

Cross-country projects introduce time zone problems. There is a smaller
communication window between teams and a larger eclipse period.

Warning Signs
Geographically split teams are obvious, but also be wary of separated
teams within the same office. Splitting developers into different rooms
or even across corridors imposes an artificial divide that can impede col-
laboration.

Watch out for separation between departments too. It can be just as
damaging. For example, test teams are often hived off separately from
the developers, sometimes in a different office or section of the building.
This is a real shame; it hinders essential interaction between the teams,
with the result that the QA process is not very fluid.

Turnarounds
A Satellite Station team is not necessarily doomed; it just requires careful
monitoring and management. The problems are not insurmountable,
but definitely inconvenient—avoid them if you can.

An essential survival strategy is to get all team members meeting
face-to-face early in the project. This helps to build a rapport, trust, and
understanding. Regular meetings are even better. Provide food and
drink when the team assembles; this sets people at ease and creates a
more social atmosphere.

Arrange the Satellite so that its work requires the least collaboration
and coordination with the mothership. This will minimize the impact of
any communication problems.

Avoid code interaction problems by defining interfaces between the
separate sites’ work early on. But beware of designing your code around
the team; you might not be creating the most appropriate design. Pro-
gramming is a process of making pragmatic choices, so choose well.

Groupware becomes an essential tool in a Satellite to make commu-
nication effective. Also consider using instant message communication
between sites. And remember: Don’t be scared of the telephone!

Success Strategies
If you have to work with off-site people, make sure that you know them
well—personally and professionally. It makes a big difference. You’ll know
how they react and when they are being sincere or sarcastic. Make an
effort to be friendly to Satellite programmers—it’s easy to be mistaken
for a grumpy idiot when they only ever phone you at inconvenient times.

Make sure that you know exactly who is off site. Learn everyone’s
names, and find out what they do and how to contact them. Work at
improving your communications skills. Don’t be afraid to contact
someone when you need to: Think about whether or not you’d talk to
them if they were sitting beside you.

Together We Stand 329

The Grand Canyon

programmers socialize among themselves. This isn’t helped when the senior
developers sit in one enclave, and the junior developers in a separate ghetto.

The reason for Grand Canyon culture is often historical: A project starts
with a small number of crack developers who must quickly establish an archi-
tecture and get proof-of-concept code out the door. They are naturally seated
together and learn to work as a swift, cohesive unit. As the project progresses,
more programmers are required, and junior members are brought in. Because
of the existing office layout, they are seated on the periphery and then given
smaller programming tasks in order to learn the structure of the system.

Without careful checking, the senior developers adopt a superior
attitude and look down on the junior developers. They hand over small,
tedious chunks of work and continue with the interesting grand design work.
The senior developers reason that it would take a prohibitively long time to
teach a junior about the bigger picture, and there is an element of truth there.
In this way, the junior developers never get a chance to gain responsibility
and do more fun programming. They become frustrated and disillusioned.

Junior programmers want to learn the trade, have a youthful enthusiasm,
and have a passion for programming. Senior programmers may have a very
different (more jaded?) worldview, with aspirations for management or more
senior development roles. These different personal motivations pull the
factions in different directions.

Warning Signs
Watch your team as it grows. Look carefully at the demographics of the
members and watch how work is allotted among them. Monitor the
social dynamics of your team; unhealthy teams develop cliques.

Turnarounds
The Grand Canyon problem is the team not mixing; there are polarized
factions. The fix is simple: Adopt strategies that will mix them up. For
example:

Change the seating plan so that the factions are interspersed. This
might consume valuable development time, but a day of desk mov-
ing might win weeks of productivity.

This team is comprised of
members whose skill levels and
experience lie at oppostite ends
of the spectrum. There is a clear
skills gap; the chasm between the
senior developers and the junior
developers has not been bridged,
and so two distinct factions have
grown. In almost every Grand
Canyon team, this is both a social
and technical phenomenon: The
junior programmers socialize
among themselves, and the senior

330 Chapter 17

Introduce team meetings to spread information.

Start pair programming, mixing senior and junior programmers.
Get the junior one to drive, while the senior navigates. This is a disci-
pline for the senior and educational for the junior.

Begin a mentoring scheme to train junior developers. Although
this will emphasize the skills divide, it will also force the factions
closer.

Look at all the developers’ job titles—do they foster a dangerous and
unnecessary pecking order?

Success Strategies
Treat everyone as an equal, as a peer.

If you’re a senior programmer, recognize that the juniors need to
learn. You were once a novice too and didn’t understand how the
world worked. Don’t hog all the interesting programming tasks. Be
willing to let others take responsibility.

If you’re a junior programmer, ask for more challenging tasks. Seek
to learn. Perform your current task as well as you can; this will prove
that you are ready for greater responsibility.

Quicksand

A technically incompetent programmer (probably the Cowboy coder we saw
on page 302) is on board. This guy isn’t easy to spot immediately, and no
one will notice while he’s writing poor code. The time bomb has been
laid, and the project will be stalled later until his mess has been purged
and replaced.

A morale drain is sitting under a little black cloud and demoralizes the
entire team, sucking out all enthusiasm and cheer. Within a few weeks,
no one can bring themselves to write any code, and they’re all consider-
ing jumping off the nearest bridge.

It takes just one person, one sour
apple, one loose cannon, to bring a
team to its knees. You need a group
of good programmers to make a good
team, but you only need one bad
programmer to make a bad one.
A team stuck in Quicksand has
unwittingly fallen foul of a rogue
member. This can be subtle: Maybe
no one has spotted where the prob-
lem starts, and the culprit has no
intention of causing any harm.

You might get stuck in Quicksand
for a number of reasons:

Together We Stand 331

A mis-manager is performing the exact opposite actions of a good man-
ager, constantly changing decisions, altering priorities, shifting times-
cales, and promising the impossible to customers. The team members
don’t know where they stand because the ground is always moving under
their feet.

A time warp programmer is bending the laws of relativity so that time
slows down around him. Anything coming his way takes a phenome-
nally long time to process. Decisions stall on his input, his coding
work doesn’t get done, and meetings always start late because he
can’t make the start. There’s always a good reason—perhaps he is
doing other very important jobs—but he amasses a backlog of tasks
and never gets around to anything. Eventually other programmers
get fed up and bypass him.

In a Quicksand team, one member’s weakness can quickly destroy the
entire team’s productivity. This is especially dangerous when the culprit is
high up on the food chain. The more responsibility he has, the more dire
the consequences.

Warning Signs
Look for the one guy who doesn’t fit in with the team. He’s the person
that everyone complains about6 or the programmer who always works
alone (because everyone avoids him).

Turnarounds
The most drastic but probably the easiest fix is to get rid of the
Quicksand cause. But first you have to identify him, and sometimes
that’s quite difficult. Calls of unfair dismissal frighten managers,
who will be reluctant to fire someone because a few people can’t get
along with him. It takes some major league incompetence to make
this plan happen.

So you’ve got to find a way to minimize the chaos he can cause, or
work out ways to integrate him into the team better.

Success Strategies
Most importantly: Don’t be the Quicksand!7

Presuming you’re not, try to insulate yourself as much as possible
from the effects of a Quicksand team member. Limit interaction with
him, for the sake of your blood pressure. Don’t rely on his code too
much, and try to avoid his input as much as possible. Don’t get sucked
into his bad practices, and don’t over-react to him—acting the exact
opposite and making matters worse.

6 They’ll complain behind his back, which is a part of what drags the team into Quicksand. No
one addresses the problem head on. No one likes to rock the boat. It will take more effort to
confront him than anyone can be bothered to invest.
7 Luke 6:42

332 Chapter 17

Lemmings

required—the team is in constant danger of delivering what was asked but
not what was needed.

Lemming teams are particularly vulnerable to the demands of startup
companies. The disease starts when managers say, “Write this code quickly;
we’ll redo it properly later.” Later never comes; instead the Lemmings hear,
“The company needs more code, fast, so just bolt this on quickly too.” Before
long, the team culture is to dance when someone plays music. The work
slowly becomes more and more difficult, with ever-more herculean tasks and
an ever-decaying codebase.

Eventually, the team finds itself a broken mess at the bottom of a 60-foot
cliff. Game over.

Warning Signs
If you’re not happy with the specification you’re currently working to,
you may be in a team of Lemmings. Without faith in your current
project, you’re a mere code mercenary. When you find yourself listen-
ing to vacuous promises and being committed to unreasonable work,
and when no one argues or points out flaws in the plan, you’re defi-
nitely in Lemming country. We hope you enjoy your stay.

Like a group of cute, furry animals with an
insane urge to launch themselves off the
nearest cliff, this team is far too willing—
even eager—to accommodate the brief
they’ve been given. Even when it’s bogus.

The team is comprised of very trusting,
very loyal members. They are technically
competent but don’t see beyond their
specific instructions. Their enthusiasm and
eagerness are commendable, but without a
visionary member—someone who asks why,
who looks beyond the spec to what’s really

T H E M I S - M A N A G E R A T W O R K

The developers were a good team. They enjoyed their work. They were working
really hard. Sadly, they had (at best) mediocre management.

Early one morning, the manager (who looked like he was having a particularly
bad day) called a meeting to complain that the developers didn’t understand the
“real world,” that they were slacking, and that they never met the (impossible) dead-
lines he set them (having already sold products that didn’t exist). He’d noticed that
people were somtimes not at work between the core hours, and that from now on
everyone had to be. Or else.

It went down really well.
The programmers did no work at all that afternoon. Nothing. They decided to

work strictly to the core hours: no more unpaid overtime. I estimate that manager
killed productivity and morale by at least 50 percent in one fell swoop.

Together We Stand 333

Turnarounds
Review what your team is doing right now. Don’t stop working, but take a
look, from the customer requirements right through to final delivery.
Will the code you’re working on provide what is ultimately needed? Is it
a short-sighted hack that won’t stand the strain of many years in your
codebase or many years of use?

Success Strategies
Question the work you are given. Understand the motivation for it.
Stand up for good programming principles, and never believe that you’ll
be allowed to fix code later unless you can see it scheduled on a plan that
you believe in.

Personal Skills and Characteristics for Good Teamwork

It is amazing what can be accomplished when
nobody cares about who gets the credit.

—Robert Yates

Of course, not every team is doomed. Now, let’s see how to make some sense
of this mess and how to do things right. In the rest of this chapter, we’ll look
at techniques that will improve your software development team and hopefully
avoid these pitfalls. Although tools and technology do help to improve pro-
ductivity, the largest gains are related to the human aspects of relationships
between people and their work.

Every software team is comprised of individuals. To start improving your
team’s performance, you can begin close to home—by addressing your attitudes
toward the team and the joint development effort. We’re not all managers,
so this is really the main area that we have any influence over.

To be a high-quality programmer, you must be a high-quality team
player. There are number of nontechnical skills, characteristics, and
attitudes that an effective team member must develop before we can even
consider his or her programming language dexterity or design capability.

Communication

Teamwork is dead without communication. Individual parts cannot move as
a whole without communication. The goal and vision cannot be shared
without communication. Projects really do fail because of a lack of good
communication.

Intra-team communication occurs in several ways: conversations between
individual engineers, phone calls, meetings, written specifications, email
correspondence, reports, and instant messaging. Sometimes we even com-
municate in pictures! Each medium has a particular usage dynamic and is
most appropriate for a specific kind of discussion.

The most effective communication should involve (or at the very least be
visible to) all relevant parties. It should be sufficiently detailed but shouldn’t
consume too much time or effort. It should be performed in a suitable

334 Chapter 17

medium—for example, design decisions should be captured in a written
specification, not verbally agreed upon and shared by word of mouth.

We’ve already seen how code itself is a form of communication. A pro-
grammer must be able to communicate well. This requires both good input
and good output—the ability to:

Write unambiguous specifications, to describe ideas clearly, and keep
things succinct.

Read and comprehend specifications correctly, to listen carefully, and to
understand what you are told.

In addition to intra-team communication, we must also consider
communication between teams. The classic example of bad communication
seen in most companies exists between the marketing department and the
engineers. If marketing doesn’t ask the engineers what is possible, then it will
sell products that the company can’t make. This problem is cyclical: once it
has occurred and people have been burned, the two teams are less likely to
talk to each other (due to resentment). It will then happen again and again.

KEY CONCEPT Clear lines of effective communication are vital to a well-functioning team. They must
be established and cultivated. A good programmer is able to communicate well.

Humility
This is an essential characteristic and one that is often lacking in our
profession.

Humble programmers want to make a contribution to serve the team.
They don’t slack off to let others do all the work. They don’t believe that they
are the only talented people capable of making a worthwhile contribution.

You can’t hoard all the good work for yourself; it’s just not possible for
one person to do everything. You have to be willing to let another team
member contribute—even if it’s something you want to do.

You should listen to and value the opinions of other people. Yours is not
the only point of view, not the only solution. You don’t necessarily know the
only or the best way to solve every problem. Listen to others, respect them,
value their work, and learn from them.

Dealing with Conflict
We have to be realistic: Some people can’t help winding each other up. In
this situation, we must be mature and responsible in our attitudes and learn
to avoid (or learn to resolve) conflict situations. Conflict and animosity will
severely degrade the performance of a team.

However, harnessed and channeled conflict can be a major success
factor in your teamwork. Teammates who stimulate and provoke each other
produce the best designs. Disagreement can act as a refining process, ensuring
that ideas are valid. Knowing that your work will be cast under a critical eye
keeps you focused.

It’s important to keep this kind of conflict constructive—on a strictly
professional, not personal, level.

Together We Stand 335

Learning and Adaptability

You must continually learn new technical skills, but you must also learn to
work as a team. It’s not a God-given gift. A new team has to learn how to work
together, how each member reacts, each member’s strengths and weaknesses,
and how to capitalize on individual skills to the group’s benefit (see “Team
Growth” on page 341 for more on this).

C O M M U N I C A T I O N B R E A K D O W N

There are many communication methods in our highly connected world, and we
must learn to use them effectively to support and facilitate our team interaction. The
key to this lies in understanding their particular dynamics, etiquette, and individual
merits.

Telephone
Best used for communication that requires an urgent response, a phone call inter-
rupts what you are doing. For this reason, it’s inconvenient to be called for non-
urgent matters: Use another method instead. With mobile phones, we are far more
connected than we used to be; this is a blessing and a curse at the same time.

Being audio only, you can’t see the other person’s face or their subtle body
language cues. It’s easy to misinterpret someone on the phone and draw an
incorrect conclusion.

Too many techies are scared of using the phone. Don’t be: For urgent commu-
nication it’s invaluable.

Email
An asynchronous, out-of-band communication medium. You can specify a level of
urgency, but email is never immediate; it’s not a real-time conversation. It’s a rich
medium, allowing you to quickly send attachments and compose replies when it’s
convenient for you. It is often used for memo-style broadcasts to many recipients.
Your email history provides a reasonably permanent record of communications.
Email is an immensely powerful communication mechanism.

You must learn to use email as a tool instead of becoming a slave to it. Don’t
open every new mail as it arrives; your coding will be interrupted far too often and
your productivity will take a hit. Designate email reading times, and stick to them.

Instant messaging
A quick, conversational medium that requires more attention than email, yet one
that can be ignored or sidelined more easily than the telephone. It is an interest-
ing and useful middle ground.

Written report
A written report is less conversational than email communication and more perma-
nent. Written reports and specifications are formal documents (see Chapter 19).
They take longer to prepare, and are consequently harder to misinterpret. Written
reports are generally reviewed and agreed on, so they are more binding.

Meetings
Desipte all this modern techno-wizardry, it’s hard to beat good, old fashioned,
face-to-face conversations for getting things sorted out quickly and effectively. All
too often, programmers try to avoid human interaction (we’re not a social species
by nature!), but meetings have a valuable place in our teamwork. We’ll look at
this in more detail in “Meeting Your Fate” on page 340.

336 Chapter 17

Emerson wrote, “Every man I meet is in some way my superior.” Look at
what you can gain from your peers. Learn from what they know, learn what
they’re like, and learn how they react. Learn to communicate with them.
Seek criticism from them at all levels, from the formal code review to their
passing opinions offered in conversation.

Adaptability is tied closely with learning. If the team has a need that no
developer can currently fulfill and it’s not possible to bring in an outside
resource, then a solution needs to be found. Adaptable programmers learn
new skills quickly to fill the gap and serve the team.

Know Your Limitations

If you are committed to work that you know you can’t do or work you discover
you’re unable to complete, then you should make your manager aware of
this as soon as possible. Otherwise, you will fail to deliver your piece of the
project, and the whole team will suffer as a consequence.

Many people feel that admitting inability is a sign of weakness. It’s not.
It’s better to admit your limitations than to be a point of failure in the team.
A good manager will provide extra resources to help you do the work, and
along the way, you will learn the new skills that you previously lacked.

Teamwork Principles

Here are the key team precepts that, once absorbed into your group’s DNA,
will change the way you write software. They shift focus away from individuals
to the software and its collaborative development. Remember: For these
principles to be effective in your team, you must make a purposeful change
toward them; don’t just agree they’re good ideas and carry on coding as you
always have.

Collective Code Ownership

Many programmers are territorial about their work. This is natural: Program-
ming is a very personal, creative act. We’re proud when we craft an elegant
module, and we don’t want anyone to trample all over it, destroying the
masterpiece. That would be sacrilege.

But effective teamwork demands that we shed egos before entering the
software factory. Don’t complain that “Fred fiddled with my code.” It’s a team
effort: The code is not owned by you; it’s owned by the team. Without this
attitude, each programmer builds his or her own empire, not a successful
software system.

KEY CONCEPT No programmer owns any part of the codebase. Everyone in the team has access to the
whole code and can modify it as is appropriate.

With this culture in place, the team immunizes itself from the danger
of little Programmer Kings, each ruling their own islands of code. If no
one has ever been allowed to see a certain person’s code, what happens

Together We Stand 337

when that person leaves the project? Losing a local expert will severely
disadvantage the team.

It’s not wrong to feel a sense of parental responsibility for the code you
produce, to be protective of it, and to want to nurture it. But this must be
connected to a healthy team focus. Instead of ownership, consider code
stewardship. Stewards don’t own their charges, they are appointed to maintain
them on behalf of the owner. A steward has primary responsibility for a piece
of code’s upkeep, weeding it, and tending the borders. Usually the steward
makes all changes, although trusted team members can also make changes
that would ultimately be verified by the steward. This is a constructive
approach to your code and one that will serve the team well.

Respect Other People’s Code

Even in an enlightened development culture without code ownership, you
must still respect other people’s code. Don’t tinker with it at random. This
holds especially true if they’re working on it right now. You can’t change some-
thing under another programmer’s feet; it will cause untold confusion.

Respect for others’ code means that you should honor the presentation
style and design choices currently in place. Don’t make gratuitously inappro-
priate modifications. Honor the method of error handling. Comment your
changes appropriately.

Avoid making quick hacks that you’d be embarrassed to see in a code
review. They slip in when you need to get your code working quickly and one
small tweak elsewhere makes your stuff compile. If you forget to tidy the
tweak, then you’ve just degraded someone else’s code. Even temporary
modifications must show respect.

Code Guidelines

For collaborative development to produce reasonable code, your team must
have a set of code guidelines. These are dictates on the standard of code a
programmer must write, ensuring that everything in the system reaches a
certain minimum quality.

It’s important not to stir arguments over code layout (although it is better
if all code follows one style). However, there must be consensus on the stand-
ard and mechanism for code documentation, for language use and common
idioms, for the act of interface creation, and for architectural design.

Teams that get by without such guidelines still do have them: just as
unwritten conventions. The problem with such implicit knowledge is that a
new team member’s code won’t match the existing codebase until he or she
has been integrated into the code culture.

Define Success

To feel like they’re achieving something and that they’re working well
together, the team members need a clear set of targets and goals. This must
be more than milestones on a project plan, although milestones can be

338 Chapter 17

good motivators: Define lots of small milestones as short-term goals,
and celebrate when you hit them.

You must define the criteria for success, so the team knows what it looks
like and how to reach it. What does success mean for your current project? Is
it work delivered on time, to a certain quality,8 with a satisfied customer,
bringing in a particular revenue, or with a certain bug count? Prioritize these
factors, and let the programmers know the main motivator behind their
development work. It will change what they do and how they do it.

Define Responsibility

All effective teams have a well-defined structure with clear responsibilities.
This doesn’t mean that your team has to be hopelessly hierarchical with a
strict pecking order and multiple levels of management. The team structure
must just be clear and recognizable. It should be clear:

Who has the final say on important decisions? Who maintains the bud-
get, who makes hire/fire decisions, who prioritizes tasks, who approves
designs, signs off code releases, manages the schedules, and so on? These
are not all necessarily roles within the team, but they are all roles that the
team must know about.

Where does the buck stop, and whose head will roll if the project is an
unmitigated disaster?

What are the members’ responsibilities and accountability? What have they
been assigned individual authority for, what is expected of them, and to
whom are they accountable?

Avoid Burnout

No team should have impossible goals. Sanity check the project you’re
embarking on—there’s nothing less motivating than knowing failure is
inevitable.

Watch how the work is split between programmers. Avoid giving all the
difficult work or all the high risk work to a few individuals. This is a common
fault, especially when a team cultivates Programmer Kings. If they burn them-
selves out working many extra hours or worrying about the implications of a
mistake, they’ll jeopardize the project and demoralize the team.

Congratulate the team when it does well and works hard. Do it publicly.
Keep feeding the team members praise and encouragement. It’s surprising
how refreshing some support and enthusiasm is.

Mix up people’s jobs; don’t force someone to repeatedly do the same
kind of task until they get bored and give up. Give everyone a chance to learn
and to develop new skills. “A change is as good as a rest.” Even if there’s no
chance to slacken the development pace, a little variety can prevent program-
mer burnout.

8 And how will you measure this?

Together We Stand 339

The Team Life Cycle

Coming together is a beginning, staying together
is progress, and working together is success.

—Henry Ford

It’s important to see our software teams in the light of their entire lives.
Teams don’t spring out of holes in the ground, and they don’t last forever.

KEY CONCEPT Successful teams are grown and run on purpose; they don’t happen by accident.

There are four distinct stages of a team’s life: creation, growth, work, and
closure. At each stage, the focus of activities is different. Sometimes you might
iterate through these a few times in different orders, but every team will go
through each stage. Subteams within the main development project team
will undergo a similar process; this is a recursive model. We’ll look at the
details of each stage in the next few sections.

Team Creation
There is a new project looming. It needs a development team. On your marks.
Get set. Go. A leader is appointed by the powers that be, and it is his responsi-
bility to pull the team together. Members may be drawn from other teams or
hired specifically for this project. Wherever people come from, they have to
fit together as an effective team—the success of the project (and the leader’s
job) depends on it!

So it all starts here. Formation establishes the core team members. At
this early stage, the team has not begun working in earnest yet, nor has it
jelled together properly. There are a number of important considerations as
the team is forged:

You must establish where the team sits in the organizational food chain.
Which other teams will it interface with? Set up communications chan-
nels with them, so it’s clear how work will flow between departments and
who the contacts are.

Think about this carefully, and try to minimize communication
across team boundaries to make work as simple as possible. At this
stage, you can design your team to have the most chances for success by
eliminating unnecessary bureaucratic overhead.

To be effective, the team requires competent, talented members who have
the potential to become a single high-performance unit. They must cover
all critical areas of experience and expertise before it’s needed; otherwise
development will stall while another person is sought. Plan to grow the
team as required, and figure out when you’ll need to start looking for
more people.

Choose and communicate an appropriate teamwork model; otherwise
the team will adopt an ad hoc structure and chaotic working practices.
Arrange the team structure to eliminate management overhead and
internal communication paths, keeping things as nimble as possible.

340 Chapter 17

M E E T I N G Y O U R F A T E

Programmers trapped in the software factory quickly develop an aversion to meetings
for the simple reason that they are forced to go to countless meetings, all of which
are awful. Meetings absorb huge amounts of valuable time that could be spent pro-
gramming to prevent project disaster. The same few points are debated endlessly
until the meeting disbands, then everyone forgets what was said and repeats it all at
the next meeting.

To run effective software teams, we must learn to run effective meetings. It’s not
that hard; it just requires a little planning and discipline. Here’s a seven-point guide
to getting the most out of meetings: the rules of combat. Responsibility for this is
placed on the person calling the meeting:

1. Meetings are important and inevitable. Don’t shy away from calling a meeting
when it’s needed. However, don’t call one when an informal chat in the hallway
would resolve the problem more quickly and with less overhead.

2. Give plenty of notice of a meeting—days, not hours. Invite the right people: not
too few people (no work can get done because the decision makers are absent),
and not too many (no work can get done because everyone’s struggling to make
themselves heard).

3. Convene the meeting at a reasonable time. Not ridiculously early in the morning
when only half of the attendees are normally awake, and not so late in the day
that everyone’s tired, fed up, and itching to get home.

4. Set a strict time limit, and declare it up front. Stick to it. This way, attendees know
how much of their day remains to do other work. If you overrun, defer business to
another meeting.

5. Make sure that everyone knows what the meeting is about and why they have
been asked to attend. Distribute an agenda with the meeting announcement. Ensure
that everyone who needs to make prior preparation is aware of their expected
input.

6. Make sure that everyone knows where the meeting is being held. Ensure that the
location has appropriate facilities: a whiteboard, a computer, and even enough
chairs (this sounds silly, but is often overlooked).

7. Define roles before the meeting begins. You must have at least:

A chairman
This person leads the meeting, keeps discussion on topic, and to the agenda.
He or she makes sure the meeting concludes on time, with a suitable resolution
(perhaps this is the scheduling of another meeting).

A secretary
This person takes minutes of the proceedings, writes them up afterward, and
circulates them to the appropriate audience (this is probably a larger group
than the meeting attendees).

Decision maker(s)
These people have the final say on each issue. Without a defined authority,
discussions go around and around with no conclusions.

Understand the purpose of the meeting. Most meetings are either informational (to
disseminate information; attendees are largely a captive audience), or for conflict
resolution (to work out a solution to a pressing problem). To run an effective meeting,
everyone must understand this and act appropriately. Personal agendas can quickly
steer an informational meeting in a random direction; the chairman must spot this
and prevent people from hijacking a meeting for their own purposes.

Together We Stand 341

The initial aim when forming a team is to create more than a mere group.
You don’t need another collection of people or a little social club; you need a
cohesive, working unit of people who are motivated and aiming for a single
common goal.

Don’t bring a team together until you really know what it exists to do. If
people are asked to start working without actually being given anything to do
and they are left awaiting further instructions, then the team’s long-term
ethos will be to hold back; there will forever be untapped potential. If the
team can’t begin working from the outset, don’t bring it together yet.

Team Growth
After creation, once the team is populated with a core staff, the project begins
to gain momentum. The team must grow to accommodate the increased work-
load. There are several facets to this: The team must grow in numbers, but
also in experience and in vision. It must grow inward and grow outward.

Inward Team Growth

As they work together, the members get to know each other on a personal
and professional level. The team settles into a work pattern, and a coding
culture is established. At first, this must be subtly guided so the culture is
healthy and will serve the team structure and goals. This is dubbed jelling
by Tom DeMarco; the point where individual members jell into a cohesive
team. (DeMarco 99)

This stage aligns personal and team objectives and determines the indi-
vidual roles and relationships. The team’s feel at this point sets the tone for
the whole project, so watch out for skepticism or bad will.

If it hasn’t already been provided, the team infrastructure is laid down as
the work builds up. Tools like source control and groupware are deployed.
The project specifications are written, objectives are solidified, and the scope
of the work is determined.

Outward Team Growth

Outward growth sees the accretion of more members. This is the visible kind
of team growth. At its zenith, the team contains each of the following roles.
These are not necessarily individual job titles; it depends on the size of the
team. In a small team, individual members take on more than one role, either
full or part time. Large projects may have whole departments per role.

Analyst
The liaison between the programming team and the customer. The
analyst (also called a problem domain specialist) studies and understands
the Real World problem well enough to write a specification that the
developers can implement.

Architect
A high-level design authority who devises a system structure based on the
analyst’s requirements.

Database administrator
Designs and deploys the database infrastructure for the project.

342 Chapter 17

Designer
Works below the architect to design components of the system. This is
often a facet of the programmer’s job.

Programmer
Naturally the most important person on the entire team!

Project manager
Takes overall responsibility for the project, making crucial decisions. The
manager balances contending project forces (e.g., the budget, dead-
lines, requirements, feature set, and software quality).

Project administrator
Supports the manager, deals with the day-to-day running of the
project team.

Software quality assurance engineer
Produces QA plans and ensures the code produced is of an appropriate
standard.

User educator
Writes product manuals, ensures marketing is accurate, draws up train-
ing schedules, and so on.

Product delivery specialist
Otherwise known as a release engineer, plans how to package, manufac-
ture, distribute, and install the final product.

Operations/support engineer
Supports the product in the field, once it’s in the hands of end users.

A successful project must make sure that all these activities are covered.
As the need for each role is felt, but before the need is acute, people must be
brought in. Appointing members needs management insight, both of a candi-
date’s personality type, his or her technical skills, and the job requirements.
Once the team is established, new people must match the working practices
and complement existing team members.

Teamwork

This is the point of performance when the team is functioning fully with
everyone in place. The cogs turn, and the software construction process
grinds relentlessly onward.

The majority of a team’s life is spent in this phase, working out the pro-
ject’s objectives. To do this, the single large task is decomposed into a series
of smaller tasks. Team members are assigned their own work packages and
kept synchronized (perhaps by a project meeting or by close communication).
Their work is integrated as it’s completed. Slowly, the software takes shape.

Although working to a predetermined development process, the team
must adapt to changes as they arise: handling unforeseen problems, changes
in the team, or the dreaded Shifting Requirements Syndrome. As work pro-
gresses, each member must identify and manage outstanding issues and risks.

Together We Stand 343

The team must get into a development groove—finding the appropriate
pace of work, and meeting targets at each step of the way. However, you must
prevent the groove from turning into a rut. Don’t be frightened to shake up
working practices—if required—to ensure that the team doesn’t get compla-
cent or lazy or to counter ineffective team members who might jeopardize
progress.

Team Closure
Eventually, even the most delayed project will come to an end. That end
might be successful software that makes the customer happy; it might be a
doomed product and prematurely abandoned development. Either way, the
project concludes, and the team is removed from it.

From the very beginning of development, a clear end point must be in
sight. No team can continue forever or plan to work indefinitely. The lure of
completion actually motivates people, and many programmers won’t invest
much effort until confronted with a hard deadline.

For this reason, every team must plan to disband, dissolve, or transition
to a different kind of team (perhaps a maintenance or support team) upon
project completion. This plan must cover both normal and abnormal
completion conditions.

Team disbanding doesn’t happen suddenly. Projects don’t halt without
warning; they slowly ramp down. We usually transition people off a project
gradually as they become surplus to requirements. No team needs people
kicking around doing nothing, absorbing resources. As each person leaves
the team, ensure that all his or her important knowledge and work products
are captured. It’s easy for information to leak between the cracks of a
splitting team.

KEY CONCEPT Don’t lose information when people leave a team. Perform a hand-over, and capture
all important knowledge from team members. Include all code documentation, test har-
nesses, and maintenance instructions.

What happens once a team gets to the end of a project? You could take
one of the following steps:

Move the team into support mode, maintaining the product.

Start some new development work (perhaps a new version of the same
software).
Instigate a post mortem if the project was a failure.

Split the team up to work on separate projects (or release them if their
contract expires).

Whether a team is recycled or disbanded is a difficult choice, and one
that’s often made badly. Just because a team was successful on one project
doesn’t mean that they will be on the next. A new project may require a
different mix of skills or a different development approach. However, it’s
wise to keep a good team together. Well-integrated teams with competent
members and an effective work culture are rare. Don’t throw them to the
wind needlessly.

344 Chapter 17

When there’s a choice, it should be made based on the characteristics of
the next project. Sometimes this choice is made for you: In small development
organizations the project team is the whole development team. It’s simply
not possible to mix and match programmers, and you are forced to use the
same people on the next project.

P E O P L E P O W E R !

Here are a few simple guidelines for managing and maintaining a team of software
developers. Without programmers you don’t get programs, so we need techniques
that release the potential in people and help them to work together. Even if you’re
not in a leadership position right now, you can use these as a simple yardstick to
judge how your team is run and how people are treated. They distill a lot of the
wisdom we’ve already seen into practical bite-sized chunks.

Use fewer and better people.
Larger teams require more lines of communication and more management,
provide more potential points of failure, and are harder to share vision with.

Fit tasks to capability, and also to motivation.
Avoid the Peter Principle:* Excellent programmers should not be promoted to
managerial positions they are not suited for or interested in.

Invest in people.
You’ll get more out of them if you build something into them. Technology moves
fast; don’t leave their skills out of date. Otherwise they’ll move somewhere where
they will gain better experience.

Don’t cultivate experts.
It’s dangerous when one programmer becomes the only expert in a certain area.
That person becomes a single point of failure.** Some people actively try to
become Programmer Kings, while others are forced into it, not being allowed to
work on anything else. When your expert needs a new challenge, he’ll leave.
How will you maintain the software now?

Select complementary people.
The team members can’t all be world-class experts. Equally, they can’t all be inex-
perienced programmers. You need a healthy skills mix. You also need a healthy
interpersonal mix, with personalities that jell and work together well.

Remove failures.
Someone who doesn’t fit should be removed. It’s not easy to do, but a rotten part
can quickly spoil the whole—and the consequences of procrastination can be dire
(see “Quicksand” on page 330). Don’t wait to see how things will pan out or just
hope they’ll improve. Deal with the problem.

Team members make or break a development team. A successful organization
chooses them well and uses each person to his or her full potential.

* A theory that originated from Dr. Laurence J. Peter: Successful people are promoted to their
highest level of competence and, as they can do that job, then promoted one step more—to the
level at which they are not competent.
** Project managers joke about a project’s truck number: the number of people who could be hit
by a truck without the project collapsing.

Together We Stand 345

In a Nutshell

The important thing to recognize is that it takes a team,
and the team ought to get credit for the wins and the losses.

Successes have many fathers, failures have none.
—Philip Caldwell

Programmers only really care about writing good code, so does all this
matter? Yes: The health and structure of our software teams has a direct
affect on the health and structure of our code. They are inextricably linked.
Software is written by humans. Just as the software components have to fit
together, communicate well, and form a cohesive structure, so must the
programmers building it.

Good teamwork comes from more than a well-defined process or a fixed
structure. Good teamwork stems from good individuals. “The whole is greater
than the sum of its parts,” or so the saying goes. This is, of course, only true if
all the parts are working well. If any single part is failing, then the whole will
be compromised. Our individual attitudes affect the quality of our teams,
and therefore the code produced. We must address these attitudes to create
good code. Understanding your natural attitudes and responses will help to
improve your programming skills.

A professional programmer has to be able to work in a team. Alongside
technical skills, you must be able to create a piece that will fit into the larger
jigsaw. This means being able to communicate and work with others. It means
understanding your role and carrying it out appropriately, working to the
best of your ability. It means cooperating with other team members and
being team-focused, not self-focused.

Later chapters develop some of these collaborative themes further: We
will cover source control, development methodologies, and estimation and
planning techniques.

Good programmers . . . Bad programmers . . .

Are not territorial about the
code they write
Will perform any kind of devel-
opment task if it advances the
software system
Learn and grow while contrib-
uting to the team; they have
personal objectives without
sacrificing the team
Are good communicators; they
always listen to other team
members
Are humble, serve the team,
and respect and value the
other members

Try to build code empires and
make themselves invaluable
Want to do their own thing and
search for the most glamorous
assignments
Work their personal agendas
at the expense of the team’s
effectiveness
Always want to assert their per-
sonal opinions
Believe the team exists to serve
them and that they’re the best
member of the team—God’s
gift to the coding community

346 Chapter 17

See Also

Chapter 16: Code Monkeys
The personal skills and characteristics of good programmers.

Chapter 18: Practicing Safe Source
Software teams collaborate on code, and without a source control system
this is almost impossible.

Chapter 22: Recipe for a Program
Development methodologies: how teams interact and develop code
together.

Together We Stand 347

Action Sheet

Look at the following action sheet. Take some time to fill it in, and figure out
how to put what you’ve learned into practice.

o

Teamwork ACTION SHEET
Take some time to fill in this form thoughtfully. Answer honestly.
Team infrastructure

Rate your team’s use of the following tools. Check yes/no
answers, or rate your team on a scale of 1 (very bad) to 5
(very good). W

e
ha

ve
 it

(y
es

/n
o)

Team members

Team structure and work

Code structure vs. team structure
� Our code design shapes the team structure
� Our team structure shapes the code design

 (reverse scoring: 1 = strongly agree, 5 = disagree)

� We share documentation well, using revision control
� We record meeting minutes and design decisions

Working practices
� We have a mentoring scheme in place
� We perform pair programming
� We perform code reviews
� We perform document reviews
� We don’t have a ‘code ownership culture’
� We have a clear set of code guidelines

Management
� We are managed well
� My needs are valued, as well as the team’s success

About the plan
� There is a development plan

� Everyone knows where it is

� Everyone knows when the next deadline is
� The deadlines are realistic

� We know what we’re aiming for
� We know how we’re achieving this

Team health
� The team is motivated
� The team is growing (should it be?)
� The team is shrinking (should it be?)

� Team communication is effective
� We have good meetings, run well
� I know what everyone else is doing
� I know who is in charge of each technical area

The big picture
For each separate team in the organization, rate the
following statements from 1 (strongly disagree) to 5
(strongly agree).

Add to this list any other teams that you work with W
e

ha
ve

 g
oo

d
co

m
m

un
ic

at
io

n
w

ith
 th

em

W
e

ha
ve

 a
 g

oo
d

re
la

tio
ns

hi
p

w
ith

th
em

W
e

w
or

k
to

ge
th

er
ef

fe
ct

iv
el

y

W
e

kn
ow

 w
ho

 is
in

 th
e

te
am

Other development teams
Test

Marketing
Management
The customer

Review
Finally, review all the answers you have given.

Did you achieve predominantly high or low scores?

Communication

Source control
Fault/bug tracking

Groupware
Methodology/development process

A project plan
Specifications

* If any items don’t contribute to effective teamwork: Why?

W
e

ha
ve

 a
n

ad
m

in
is

tra
to

r/
ow

ne
r f

or
 it

(y
es

/n
o)

W
e

al
l k

no
w

ho
w

 to
 u

se
 it

(y
es

/n
o)

It’
s

ea
sy

 to

us
e

(1
−5

)

W
e

us
e

its
fe

at
ur

es
w

el
l

(1
−5

)

It
co

nt
rib

ut
es

to
 e

ffe
ct

iv
e

te
am

w
or

k
*

(1
−5

)

Rate each of the following statements from 1 (strongly
disagree), through 3 (neutral), to 5 (strongly agree).

� All necessary roles are covered (look at the Team
Growth section), and
� These roles are formally defined and recognized
� All team members are competent
� We couldn’t live without any team members
� No one is overloaded with work
� There are problem members
(1 = big problems, 5 = no problem members)
 − What are the problems?
 − How can you resolve them?

Documentation

What do these answers tell you about your team?

What measures will improve problem areas?

� We have team members with a good range of skills

� There is a low turnover of coding staff

� Adequate training is provided

� It’s up to date

348 Chapter 17

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 533.

Mull It Over

1. Why write software in teams? What are the real advantages over writing a
system on your own?

2. Describe the telltale signs of good and bad teamwork. What are the pre-
requisites for good teamwork, and what characterizes bad teamwork?

3. Compare software teamwork with the construction metaphor (see “Do
We Really Build Software?” on page 177). Does it reveal insights into our
teamwork?

4. Will external or internal factors do the most to ruin the effectiveness of a
software development team?

5. How does a team’s size affect the team dynamics?

6. How can you insulate a team from problems caused by inexperienced
members?

Getting Personal

1. What kind of team are you working in right now? Which of the stereotypes
on pages 322 through 332 is it most like?

a. Is it like this by design?

b. Is it a healthy team?

c. Does it need to be changed?

What factors have you encountered that prevent good teamwork?
If you haven’t done so already, fill out the action sheet on the

previous page carefully. Make sure you work out how to improve your
team and start to make the changes.

2. Are you a good team player? How could you work better with your team-
mates and build better software?

3. What is the exact responsibility of a software engineer on your cur-
rent team?

P R A C T I C I N G
S A F E S O U R C E

Source Control and Self-Control

18

In this chapter:

Safeguarding your
source code

Source control and configu-
ration management

Backups

Software licensing

The superior man, when resting in safety, does not forget
that danger may come. When in a state of security he does
not forget the possibility of ruin. When all is orderly, he
does not forget that disorder may come. Thus his person
is not endangered, and his States and all their clans are
preserved.

—Confucius

No master jeweler crafts an exquisite diamond
necklace and then leaves it in an unlocked work-
shop where it could be stolen by a passing thief.
When a car manufacturer brings a new model to
market, it doesn’t instantly forget how to support
and service the old models. Both would be pro-
fessional (and financial) suicide, reckless attitudes
toward valuable work.

The code we write is similarly precious: With
our time and effort invested, it is both financially
valuable and also emotionally important. We must
safeguard source code like any other precious
object and adopt working practices to ensure that
we don’t break, endanger, or lose it.

350 Chapter 18

KEY CONCEPT Code is valuable. Treat it with respect and care.

In this chapter, we’ll play minder, bodyguard, and warden, working out
essential techniques to keep our code well protected. Who (or what) are we
protecting it from? With varying degrees of melodrama, we’re fighting against:

Ourselves and our own silly mistakes

Our teammates and their silly mistakes

Inherent problems in the collaborative development process

Mechanical failure (exploding computers and evaporating hard disks)

Thieves who want to exploit the software

Your sanity, your happiness, and even your livelihood depend on the
contents of this chapter. Those of you nodding off in the back should pay
attention!

Our Responsibility

As conscientious software craftsmen, we must take responsibility for our work.
Not only must we write high-quality code, we must ensure that our work is:

Safe and secure
It won’t be accidentally lost after three months of development, and it
can’t be leaked out of the company as top secret information.

Accessible
The appropriate people can modify it easily. It is visible to the appropriate
people and not to anyone else.

Reproducible
Once released, the source isn’t lost or thrown away. It can still be used to
build exactly the same application image 10 years later, when tool versions
have changed and the original language isn’t supported anymore.

Maintainable
This doesn’t just include using good programming idioms, but also ensur-
ing that the code can be modified by the whole programming team. Can
more than one programmer work on it simultaneously without courting
disaster? Is it possible to make fixes and updates to older products while
developing a new product version?

We achieve these aims by adopting safe development practices. In this
chapter, we’re not considering the security of our running executables;1

we’re looking at our development techniques. These issues might seem
tediously removed from the act of writing code, but we should not discount
their importance. A craft involves the process of creation as much as the
final product.

1 That’s covered in Chapter 12.

Pract ic ing Safe Source 351

Source Control

For team members to collaborate on code development, they must all be able
to work on the codebase at the same time. This isn’t as easy as it would first
appear—you must ensure that concurrent code modifications don’t interfere
and that no work is lost on the way. There are some low-tech ways to collabo-
rate on code:

The most basic is to share a single computer and take turns to edit code.
Two programmers won’t fit in the same chair without a struggle, and so
no code edits will conflict. However, you’ll suffer a massive productivity
loss, since only one person can code at a time.

You can put two chairs in front the machine and pair program for a
potential productivity gain (see “It’s All Going Pair Shaped” on page 319).
But this doesn’t work when three, four, or more programmers all try to
work on the same code at the same time.

Alternatively, you could share the code on a network fileserver. Then
other developers can see source files and even edit them alongside each
other. But this is far from ideal. The code is shared but not safe, because
you can’t prevent two people from working on the same file at the same
time. This will cause all sorts of confusion—and lost work—when they both
hit the Save button. What happens if someone edits a central header file
halfway through your build? The answer: An inconsistent executable that
will either crash or behave in wildly unpredictable ways.

For this reason, when programming teams evolved from the primordial
digital soup, they invented the source control tool to act as a central storehouse
for, provide access to, and marshal concurrent modification of their source
code. But source control is important even if you’re working by yourself; as
we’ll see, a central code repository is an incredibly useful facility.

KEY CONCEPT Source control is an essential tool for software development. It is vital for teams to work
together safely.

Source control enables one or more people to work on the same repository
of source code in a controlled manner, avoiding all these problems. It allows
each developer to create (or check out) his or her own personal copy of a
common source repository and work on it in isolation. This copy is known as a
sandbox, since local code changes cannot escape to pollute others’ work. The
sandbox can be brought up to date with other users’ changes—as and when
required—by asking the tool to resynchronize with the repository. When
complete, changes are committed (or checked in) to the main repository for
other developers to see.

To achieve this, source control systems will follow one of two access
models:

Strict locking
Some systems physically prevent users from editing the same file at
the same time, using a file reservation mechanism. At first, all files
in the sandbox are read-only; you can’t edit them. You must tell the

352 Chapter 18

system that you want to edit foo.c; it becomes writeable, and no one
else can edit the file until you commit your changes or release the file
unmodified.2

Optimistic locking
More sophisticated systems allow users to edit the same files concurrently.
There is no reservation step, and the sandbox files are always writeable.
Changes are merged together as they are checked in. Merges usually
happen automatically. Occasionally, conflicts occur and the developer
has to merge manually (this is not generally a difficult task). This is
known as optimistic locking (although there’s really no locking at all).

People hold passionate beliefs about which mode of operation is best and
swear by one approach or the other. Concurrent modification works best for
a widely distributed set of developers, working over the Internet. When people
are harder to shepherd, lower process hurdles are preferable; locking files
for modification can become frustrating.

Revision Control

Source control systems don’t just hold the latest revision of each file. The
repository records the differences made at each check-in. With this impor-
tant revision information, you can obtain any version of a file over its entire
development history. For this reason, we also talk about version (or revision
or change) control systems. This is a very powerful weapon: Any change can be
fully reversed—you have a code time machine! The repository’s file version-
ing means that you can:

Undo any change that you make, at any point in history

Track changes made to the source as you are working on it

See who changed each file and when they did it (and even do complex
searches to see how much work a single developer has done on a particular
product—useful when development spans many years)

Check out a copy of the repository as it stood at some particular date

2 It’s therefore considered bad practice to lock a file for too long—it might prevent other
programmers from carrying on with their work. This is an inherent limitation of this access model.

A W A R S T O R Y

Poor source code management can combine with source control to produce painful
development headaches. Seemingly sane, simple rules can accidentally stifle soft-
ware development.

One large project in a well-known company had a policy of strict locking—all
code checkouts were exclusive, preventing developers from modifying the same file
at the same time. Unfortunately, the coding policy dictated that all enums must be
placed in the same source file. This file grew and grew and grew.

The net result was not hard to predict: The file became a checkout bottleneck. The
developers were constantly hanging around waiting for this file to become available.

Pract ic ing Safe Source 353

All good source control systems allow you to create named labels (or tags)
and apply them to specific versions of a set of files. This allows you to mark
important repository states: You can identify all the files that comprised a
specific code release and retrieve them easily with this label at a later date.
This is helpful when you’re working on product version 3, but an important
customer finds a critical bug in the first release, and you need the code ASAP.

With each check-in, you can attach metadata: at the very least, a textual
description of the change you have made. Using these messages, you can get
an overview of development by viewing a file’s revision log. More sophisticated
tools allow you to add arbitrary metadata to file revisions, including references
to fault reports, supporting documentation, test data, and so on.

Good source control tools version directories as well as files. This enables
you to track modifications made to the file structure, including the creation,
deletion, moving, and renaming of files. Some source control tools record
changes on a file-by-file basis; when you check in many files at once, each one
is versioned individually. Other tools implement changesets: They record each
batch of file changes as an atomic modification. This helps you to visualize
how one piece of work affected many files simultaneously.

Access Control
A source code repository can be held locally on your computer or on a remote
machine, accessed over a network connection. With the appropriate security
measures, it can be accessed by developers worldwide via the Internet, remov-
ing the burden of developers in different time zones coordinating their work.

C O N T R O L F R E A K

What kinds of files should you put into a source control system? To manage and
version your software effectively, you must collect your entire source tree in one
repository. This includes:

• All source code

• The build scaffolding

• Unit test code and any test harnesses

• Any other assets required to create a packaged distribution (graphics, data files,
configuration files, and so on)

The ultimate goal is to perform an entire build out of the repository. Starting with
just the build toolchain and the source control tool, you should be able to generate a
complete product in a few simple steps (i.e., check out the repository and type make)—
without needing to supply any more files or modify anything by hand. If you have to
add anything else to the source tree, then your software is not under change control.

But why stop there? We can extend this list to be really thorough:

• Consider placing the whole development environment under change control.
Check in every build tool update, and keep these files synchronized with each
release version of your software.

• Revision control all documentation: specifications, release notes, manuals,
and so on.

354 Chapter 18

The source control tool also governs which users have access to which
parts of the codebase. With this you can enforce visibility rules and modifica-
tion rights. A project’s buildmaster is usually responsible for administering
the source control tool, assigning these access rights, and ensuring that the
repository is kept tidy. It’s important to have a designated source control
administrator. If all developers are given admin privileges to the repository,
it will encourage them to fiddle with it and make careless administrative
changes. Even with the best intentions, things will go wrong.

Working with the Repository

There are two ways to develop code in a revision-controled repository:

In the little and often check-in approach, each file is checked in whenever
a small change is made. The repository therefore contains many, many
revisions of each file. Doing this makes it easy to track the changes you
make during development and helps you to visualize all the modifications
made in the file’s lifetime. However, you’ll see a proliferation of file
revisions which are potentially confusing.

The alternative approach (presumably called big and seldom) is to only check
in the important changes: to check in a revision for each release of the
product or whenever you’ve successfully added an entire feature to a code
module. This makes it easier to obtain a particular previous version of the
code but much harder to track all the individual changes that it comprised.

Favor the little and often approach. Repository labels allow you to mark
each major milestone, so it lacks none of its counterpart’s capabilities.

You must be disciplined when checking in code modifications. Your work
can be seen immediately by every other developer, so test your code thoroughly
first: Don’t check in anything that will break the build or make automated
unit tests fail. You won’t be popular if your fault brings the entire team to a
grinding halt. Many teams enforce a penalty for this kind of antisocial check-in
to encourage people to work carefully. This is nothing severe—perhaps public
ridicule by email or buying the next round of drinks.

KEY CONCEPT Treat the repository with respect. Never check in broken code that will stall other
developers.

Leave Branching to the Trees

One of the most powerful source control facilities is branching : a mechanism
to make multiple parallel streams of development on a file or a set of files.
Branches have many applications, including:

Adding multiple features to the codebase concurrently

Providing personal workspace for a developer to check in potentially
broken work in progress, without breaking the main codebase

Maintaining an old software version while working on a new one

Pract ic ing Safe Source 355

Suppose you sell an image processing application, and you need to add
some new drawing tools. You also want to start a second development effort
on the same source files to port the code to a new operating system. The two
tasks must begin separately, but eventually they will merge back together. This
is a common development scenario. For each task, you create a branch in the
repository, and commit code revisions onto the branch rather than onto the
main line of code development. This keeps the two tasks in separate worlds.
One developer works on the drawing tools, another concentrates on the
porting effort. Their work does not interfere.

As the name implies, branches create a tree structure of parallel file revi-
sions in the repository. There is always at least one line of code development
called the trunk (for obvious reasons). Figure 18-1 shows this in practice for a
particular file being branched. It was created (at version 1) and intially devel-
oped on the trunk—the center column. At version 2, we create the first feature’s
branch (for new drawing tools) and perform a number of check-ins down it.
None of these affect code in the trunk at all. Work on the trunk continues
concurrently, and at version 3, a second branch is created to accommodate
the porting task.

Figure 18-1: Branching a project under version control

Branch 2
porting work

“Trunk”
Main line of
development

Branch 1
drawing tools

Version 1

Version 2

Version 3

Version 4

Version 5

Version 6

Version 3.1

Version 3.2

Version 3.3

Version 2.1

Version 2.2

Version 2.9

Version 2.10

Create new branch

Merge branch down
to main code line

Continue developing
on branch

Create new branch

356 Chapter 18

Work progressing down a branch can be merged with any other branch or
back down onto the trunk. This means, for example, that you can try some
exploratory bugfix work in a branch and, when proven stable, you can merge
it back into the main code. If it was a development dead end, then you can
abandon the branch—with no effect on the trunk. Very useful. In our exam-
ple, the first branch is merged at version 2.9 into main’s version 4. This results
in main’s version 5. Later, the second branch is also merged down to main.

Even if you’re not simultaneously developing features in your codebase,
branching can be usefully applied to single-track development. This scheme
leaves the trunk version stable: always a complete, tested product—probably
the latest release version of the code. Each feature is developed on its own
feature (or release) branch, and the product itself is released from this branch.
When complete, we merge it back down to the trunk and create a new branch
from there for the next feature. This keeps the mainline code free from poten-
tially broken work in progress and keeps all related work collated together on
a development branch rather than scattered down the mainline alongside a
host of other feature development work.

A Brief History of Source Control

There are many different source control systems available with both open and
proprietary licenses. Often, the choice of source control system is enforced
by company practice. (“We’ve always used . . . , and we know how it works.”)
Sadly, this does not necessarily mean that it is the right, or best, tool for the
job. Many companies run legacy systems; the investment and complication of
migrating large chunks of code out of one source control system to another
is prohibitive.

The father of all version control systems is SCCS (Source Code Control
System), developed at Bell Labs in 1972. It was superseded by RCS (Revision
Control System). The most commonly used source control tool in the open
source world is currently CVS (Concurrent Versions System), although it is begin-
ning to show its age. CVS was originally built upon RCS and introduced a
collaborative environment where several developers could work on the same
file at the same time. Whereas RCS implements the file reservation model
(described in “Strict locking” on page 351), CVS is concurrent. The modern
successor to CVS is called Subversion, and it improves on most of CVS’s
shortcomings.

Although they have subtle functional differences, most source control
tools have both command-line and GUI façades. They can all be embedded
in popular IDEs. If you’re looking for a source control tool to begin to use
on private projects, take a look at Subversion and one of the available GUI
front ends.

Configuration Management

Software configuration management is a subject bound closely with, although
often mistaken for, source control. It’s actually a world beyond the storage
of source code.

Pract ic ing Safe Source 357

We’ve seen that the aims of source control are to:

Store your source code centrally

Provide a historical record of what you have done to the files

Allow developers to work together without interfering with each
other’s work

Allow developers to work on separate tasks in parallel, merging their
efforts later

Configuration management builds on this foundation to manage
software development throughout a project’s life. It encompasses source
control and adds a development procedure to its use. Software CM is formally
defined as “The discipline of identifying the configuration of a system at
discrete points in time for purposes of systematically controlling changes
to this configuration and maintaining the integrity and traceability of this
configuration throughout the system life cycle.” (Bersoff et al. 80) It controls
the project’s artifacts (the things you put in source control) and its develop-
ment processes.

Some source control tools provide configuration management capabili-
ties and can integrate with project workflow tools; for example, managing
fault reports and change requests, tracking their progress, and linking them
to physical changes in the codebase.

T E R M S A N D D E F I N I T I O N S

Source control is our primary weapon in the battle to safeguard code. It’s an essential
tool that no software craftsman could live without. We’ve already seen the various
names used to describe it. They are used interchangeably, but each one reveals a
specific aspect of its operation:

Source control
Also known as source code management, this is a mechanism to manage the files
of code that we write. It maintains the files and their directory structure; it also
marshals concurrent access to and modification of the code.

Version control
Otherwise known as revision control or change control, this is a source control
system that records the changes you make to a file. It allows you to inspect,
retrieve, and compare any version of the file over its entire development history.

Version control usually works best for text-based file formats—they can be
easily scanned for differences—but you can version other kinds of files too:
documents, graphic files, and so on. The source files for this book are held in
a revision control system so I can track development history.

Configuration management
Builds on version control to provide a reliable environment in which software
development is carefully managed and processes are enforced.

Some commonly-used source control acronyms are: SCMS (source code
management system), VCS (version control system), and RCS (revision control
system).

358 Chapter 18

Configuration management involves:

Defining all the individual software components in a system and which
artifacts are required to construct them (this is especially useful when
one codebase can be configured to generate multiple product variants
or can target several platforms).

Managing the released versions of a product, and which versions of the
constituent components each release comprises.

Tracking and reporting the status of the code and its components. Is it in
a beta state or is it now a release candidate? (See “Alpha, Beta, Gamma . . .”
on page 140.)

Managing formal code change requests, tracking which ones have been
prioritized and approved for development; tying change requests to the
necessary design work, investigation, code modification, testing, and
review work.

Determining which documentation relates to specific product variants
and what sort of compilation environment is required.

Verifying the completeness and correctness of software components.

How do you currently manage the configuration of your codebase?

Backups

This is good old-fashioned common sense. Backups are your insurance
policy, guarding against the accidental deletion of a file, computer system
failure and, if held offsite, loss of data when the office burns down. They
don’t yet cure the common cold, but some enterprising backup company is
probably working on it.

Everyone knows that they should make regular backups of their work.
But we’re human; just because it is both rational and sensible to perform a
task doesn’t mean we will—there are far more pressing (and fun) things to
do. Hindsight isn’t helpful: When you’re sitting amidst the smouldering
ruins of your computer, with hardware beyond hope of repair and all data
lost in digital purgatory, you’ll curse the day you decided to play solitaire
instead of back up your code. Days’ worth of work must be rewritten, and
while you’ll remember most of it, it always seems harder and more tedious
(and certainly soul destroying) the second time around. If you’re near a
deadline, this could be a real disaster.

Think about it: Is all of your source code backed up? I’m frightened when
I discover how much work is done on computer systems and workstations
that aren’t backed up. The level of risk is preposterous.

KEY CONCEPT Back up your work. Don’t wait for disaster to strike before you think about a recovery
strategy.

Pract ic ing Safe Source 359

You must establish a sound backup procedure. Don’t rely on a manual
backup plan, like performing file copy operations by hand. One day you will
forget to kick off that critical backup, leave it too long between backups, or
manually copy the wrong thing. Remember Murphy’s Law (on page 5): If it
can go wrong, it will. That goes double for anything you do! Instead, ensure
that all important files are placed on a filesystem that is being backed up.
When using a workstation that is not backed up, I will save my code on a
network-mounted fileserver that is backed up rather than on the unsafe
local disk.3

To be useful, backups must be:

Done regularly

Checked and audited

Easily retrievable

Automatic (both automatically initiated and able to run without
intervention)

Critically, all source code repositories must be held on a server that is
backed up. Otherwise, you’re putting things in a safe but not shutting the
door. In fact, “little and often” check-ins reduce reliance on personal com-
puter backups—most of the work you’ve done is checked into a backed up
repository. The loss of files on your workstation will not be critical to the
entire project.

The bottom line is: Your work is not safe unless it’s retrievable in the
event of human or mechanical failure. Even if it’s “only” code for personal
use, protect it with backups. A small investment in some backup software, the
extra storage, and a little administration time is immeasurably worthwhile.
The cost and hassle of a failure far outweighs this meager outlay.

Releasing Source Code

Source code sometimes needs to leave your tight grip and set off to explore
the Big Wide World. Perhaps you sell a library: Your shipping product is the
source code itself. Perhaps you’ve been contracted to ship code alongside an
executable. Even if you don’t intend to release your source code, it might one
day be sold to a new owner, or you might need to collaborate with outsiders
on a new feature. We must take reasonable measures to ensure code safety
and accessibility in these situations too.

The scale of horror that this entails depends on the nature of your code.
Proprietary source code—written specifically for internal use in a company’s
products—is closely guarded intellectual property, and it’s generally considered
commercial suicide to release it openly, where your competitors can find it

3 Of course, there’s a trade-off. This simple approach makes file access slower, since network
latency and fileserver delays have been introduced. But I can live with this (usually) minor
inconvenience.

360 Chapter 18

and exploit it. The polar opposite is open source or free code, written specifically
to be released: freely viewable and modifiable. The choices and nature of a
software release differ in each case:

If you are releasing some closed proprietary code then you need to
obtain a signed non-disclosure agreement (NDA) before you let the third
party see it. This is a standard contractual agreement to ensure that they
don’t abuse, share, or use the code in a way that violates the agreement.
It is legally binding, and its main purpose is to keep the company’s law-
yers at bay while the technical staff gets on with the important business of
creating exciting software.

If the people you are releasing to will exploit the code for commer-
cial gain, you must also enforce a licensing agreement to ensure that
you profit, too. This really concerns the marketing or sales staff, and
mere mortal programmers need not worry about this side of corporate
wrangling.

Open source developers must choose an appropriate license to dictate
what users can do with the code and whether they must share any deriva-
tive works. For more on software licensing, see the sidebar.

In both cases, you must ensure that the source files are presentable. The
code must be all your own work, or you must own redistribution rights to all
the parts that aren’t. This is why a lot of old commercial code can’t be open
sourced: if a company doesn’t hold all rights to its source code, then they
can’t release it freely without costly modification.

To stand on firm legal ground, ensure that every source file contains a
copyright notice attributing it to the correct owner (the author or company)
and a short description of the license it is released under. Then, if someone
finds the code, it’s obvious that it is confidential material. See “File Header
Comments” on page 83 for more on file header comments.

Beware of an accidental source release: Prevent easy reverse engineering
of your executables. It is sometimes possible to reconstruct source code from
a distributed binary. This is a particular problem in byte-code compiled lan-
guages like Java and C#. Consider obfuscating the byte code; there are tools
that can do this for you.

Wherever I Lay My Source

Finally, think about where you put your source code. Top-secret company
work shouldn’t be left on a laptop in an unlocked car. Likewise, source code
should not be left on a publicly accessible network.

Ensure that your login passwords are kept secret. Outsiders (or mali-
cious coworkers) should not be able to sabotage work using inappropriate
access rights.

Pract ic ing Safe Source 361

In a Nutshell

We must respect the past, and mistrust the present,
if we wish to provide for the safety of the future.

—Joseph Joubert

It’s not the size of your code, it’s what you do with it that counts.
In this chapter, we’ve looked at various working methods to ensure that

we take responsibility for the source code we create, developing it in a safe
and controlled manner. These things really do matter; a mishap at the wrong

L I C E N S E S

A software license defines the rights that users have over it. This holds for both
binary distributed programs and the source code that creates it. Most proprietary
licenses withdraw the rights of copying, modification, lending, renting, and use on
more than one machine. On the other hand, open source licenses strive to protect
your right to copy and distribute the software at will.

Software authors choose their licenses based on specific goals and ideologies.
Indeed, an author can chose to release software under multiple licenses, covering
different usage patterns and permitting different price and support models. There are
many types of source code licenses, although only a few are commonly used. They
differ in:

Permitted use
Can the licensed code be exploited commercially, or may it only be used in free
software? It’s not really making money that’s the issue, but whether proprietary
closed products can incorporate your work without permission. Some open source
licenses require the user to release any code built with their software. A typical
commercial license lets you do what you want, as long as you pay.

Terms of modification
If you change the code, must you publish those changes? Or can you ship derived
works without any further obligation? Some open source licenses are described
as “viral” because any change you make must also be released under the same
open source license, and likewise any code you ship using it.

Commercial licenses are drawn up by company lawyers to suit their nefarious
purposes (that is, protecting the company’s commercial investment). However, there
are many common free or open source licenses. Open source is a term coined by
the Open Source Initiative (OSI), an organization that certifies software licenses. The
availability of source is not enough to characterize a product as open source. It must
provide certain rights: to allow free modification and redistribution of the code or
any modifications, but with the restriction that these rights must be given to all and
be non-revocable.

Open source conflicts with the Free Software Foundation’s concept of free software.
The FSF (steward of the GNU Project) is rather more ideological and promotes soft-
ware licenses that are free, as in speech, not just free, as in beer—the word free is
used in the sense of the French libre. OSI accept some free-as-in-beer licenses, which
does not endear them to the GNU faithful. GNU’s famous licenses are the GNU
General Public License (GPL) and the GNU Lesser General Public License (LGPL).
The latter is a more lax “library” version that allows linking with proprietary code.

362 Chapter 18

moment could spell disaster for your development project. You must protect
your mission-critical codebase.

Source control is the essential weapon in our battle to develop code safely.
It facilitates team interaction, ensures that group development is predictable
and safe, helps to manage product revisions and configurations, and acts as a
historical archive of all development work. It’s a development safety harness,
and your life would be considerably worse without it.

See Also

Chapter 7: The Programmer’s Toolbox
The tools we use to develop software effectively.

Chapter 10: The Code That Jack Built
The accessibility of your code affects how easy it is to perform a build—
either of the cutting-edge codebase or a historical version that needs to
be reworked.

Chapter 12: An Insecurity Complex
The other safety concern—security issues within running programs, rather
than in the development process.

Good programmers . . . Bad programmers . . .

Take responsibility for their work
and know how to safeguard code
development

Use source control carefully,
ensuring that the repository
is always in a consistent and
usable state

Never check broken code in to
source control

Use all tools thoughtfully, with
the intent to produce maintain-
able, accessible code

Wait for disaster to strike before
considering their code’s security
and accessibility

Presume that someone else will
think about backups and security
for them

Don’t care about updating
documentation

Don’t consider the state of their
code in the repository—they check
in broken code and leave a mess
behind them for others to clean up

Pract ic ing Safe Source 363

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 539.

Mull It Over

1. How can you reliably release your source code to other people?

2. Of the two models for repository file editing (locking file checkouts or
concurrent modification), which is best?

3. How do the requirements for version control systems differ between a
distributed and a single-site development team?

4. What is a sound rationale for selecting a source code management system?

5. How can you separate bleeding-edge code under active development from
stable code during team development?

Getting Personal

1. Does your development team make effective use of source control?

2. Is your current work backed up? How important are backups to your
development team? When are backups made?

3. On which computers is your source code held?

PART V
P A R T O F T H E

P R O C E S S

Writing high-quality software isn’t just about churning
out good code. Obviously, good code helps. A little.
But there’s much more to it than that. Good software
is created intentionally; it takes planning, foresight,
and a robust battle plan. We’ll see exactly what this battle plan looks like
in the next section. However, before we assemble the troops, we must
know what they should do. It helps to point them all in the same direction.

This section looks at some specific parts of the development process, the
extra activities we schedule time for that help us to intentionally craft excellent
code. We’ll see:

Chapter 19: Being Specific
How to write and read software specifications. The correct approach to
recording what you will do, and what you have done. This chapter shows
how specifications can make your life easier, rather than get on your
nerves.

Chapter 20: Review to a Kill
A discussion of code reviews—an important practice that ensures you are
writing high-quality code.

366 Par t V

Chapter 21: How Long Is a Piece of String?
Software timescale estimation—an essential activity in the planning
process, yet still one of the mystic black arts of the software development
community. This chapter busts some estimation myths and provides
practical advice to use on the front line.

The relentless pressures of the software factory continually drive us to
work faster and harder. The only way to cope is to learn ways to work smarter.
We need to employ each of these pracices to stand a chance in the endgame.

B E I N G
S P E C I F I C

Writing Software Specifications

19

In this chapter:

Why we need specifications

The types of specifications
we write

What they contain

Why are they ignored?

I’ve never known any trouble that an hour’s reading didn’t
assuage.

—Charles De Secondat

Almost everything worth using is documented.
Your DVD player has an instruction manual. Your
car has a maintenance manual. A contract has
small print. Chocolate cake has a recipe. There are
books and magazines dedicated to practically every
pursuit known to man. If your software is worth
using, it also should be well documented.1

We all know that the carefully tested software
we give to our customers needs to have documen-
tation. Just how much documentation is a moot
point. The user of an office suite certainly thinks
there should be more than the publisher does.
Without a manual to describe the usage mechanics
of your software, whatever form it takes, people
will falsely assume that it can do more than it
was designed to, or use it for purposes no sane
programmer would have ever imagined.

1 Of course, that’s no excuse to craft a bad interface; it must still
be easy and intuitive to use.

368 Chapter 19

Developers can just as easily make the same kinds of mistakes during
coding. Just as the final software product needs documentation, so do the
intermediate development steps. This is the sort of documentation that the
end user will (usually) never see. These are the definitions of how the program
will be designed and built. These are the software specifications.

Writing and working with specifications is an important skill of the practic-
ing programmer. Communicating in English (or any other natural language)
is just as important as communicating in code.2 Like eating your vegetables
and exercising regularly, specifications are “good for you” and good for your
software. However, like cabbage and the gym, we avoid them, feel guilty, and
then live to regret the consequences: We end up with unhealthy, flabby
software development.

The traditional notion of a software specification involves a huge wedge
of paper filled with dense text, cryptic tables, and meaningless terminology.
It’s a highly uninspiring prospect: a document that requires more mainte-
nance effort than the code it describes. Developers live in perpetual fear of
being forced to work with the spec.

But it doesn’t have to be this way. Used correctly, specifications oil the
development process. They reduce development risk, help you to work
effectively, and make your life a lot easier. In this chapter, we’ll investigate
the sorts of specifications we need, what should be in them, and why reality
differs so greatly from this ideal.

What Are They, Specifically?

Apply your heart to instruction and
your ears to words of knowledge.

—Proverbs 23:12

Specifications are formal documents that form part of the development proc-
ess, providing internal software documentation. There are many different types
of specification (we’ll see them shortly) containing different information and
targeted at different audiences. Each one is appropriate to a particular stage of
the software construction process, from the conception of a project to its final
deliverable. We use them to capture exactly what the user requires (or exactly
what they are going to get, if the two differ—they usually do), to detail the
architecture of a software solution, the interface of a particular code module,
the design and implementation decisions for a piece of code, and more.

Specifications help you to work smarter and to produce better software.
But a bad specification can do quite the opposite. Like your code, the quality
of a software specification is vital. Good specifications and documentation
are generally taken for granted, whereas poor specifications rapidly become
loathed; a millstone around the project’s neck.

KEY CONCEPT Not just the existence, but also the quality of software specifications is vital to the soft-
ware development process.

2 Indeed, Dijkstra once remarked, “Besides a mathematical inclination, an exceptionally good
mastery of one’s native tongue is the most vital asset of a competent programmer.”

Being Speci f ic 369

Specifications are a form of inter- and intrateam communication.
We’ve seen that projects can die from a lack of communication. We should
therefore exploit specifications as a communication medium—where appro-
priate. (Projects can just as easily fail because too much time is spent writing
documents, and not enough time is actually spent writing software!)

Specifications become increasingly important as the size of a project
increases. This is not because specifications are unimportant in smaller
projects but because larger projects have more to lose—there are more
people whose lack of communication and coordination will have a greater
negative impact on the outcome of the software development process.

KEY CONCEPT Specifications are an important communication mechanism for software developers.
Use them to capture information that must not be lost or forgotten.

Writing specifications helps to make your information:

Safer
Information isn’t stored in people’s heads where it can be lost, forgotten,
or remembered incorrectly. With all important facts written down, there’s
less risk when people leave the project: The amount of information loss
will be minimized, and there will be a solid base to help any replacement
programmer get up to speed.

Thorough, complete specifications reduce the risk of two people mak-
ing different sets of assumptions—the classic reason why two separately
created modules do not work together when first integrated. Specifications
help to prevent subtle bugs.

Accessible
All information is conveniently recorded in a known place. New people
can join your project and understand what each component does and
how they fit together, just by reading the documentation. They don’t have
to search for the information in a hundred different people’s heads
before they become productive.

More accurate
When all information is gathered and captured, you are more likely to
see problems, to indentify missing parts of the design, and to spot any
unfortunate consequences or side effects. A few disconnected thoughts
floating around your brain are not as easy to validate.

The Types of Specification

Each type of specification forms an intermediate gate of the software process:
A method of handover between separate parts of the development process.
For example, a specification for the API of a software component is written
by the group of people who are scoping its functionality and interface. The
programmer works to this specification; it is complete enough to implement

370 Chapter 19

all the code. The same specification is a contract detailing how the systems
integrator can stitch it into the system and how other programmers can use it.
It also describes expected behavior, so the test department can validate that
the software is working correctly.

In this way, the output of one specification flows naturally into the con-
tents of the next, leaving a trail of documents in the wake of the rapidly
evolving software. An example of this paper trail is shown in Figure 19-1.
We see a natural hierarchy of documents generated as a project matures—
each subcomponent has a similar set of documents to the overall project;
its development can be managed as a mini-project.

Since software design is an iterative process, this is not a one-way flow of
information (otherwise you’re trapped in a waterfall methodology straight-
jacket—see “Waterfall Model” on page 427). As you discover missing infor-
mation or need to adjust the software design, the specifications must be
updated accordingly. If your documents are not malleable and maintainable,
your software development will suffer. Bureaucratic development processes
try to stifle good software development by ensuring that all work is performed
to The Specification, even if it’s 10 years old and completely out of date.
Good programmers consider their specifications to be just as malleable as
their code.

Figure 19-1: The typical specification paper trail

Let’s look at the different types of software specifications and see how they
enhance your code-writing lifestyle. Unfortunately, in the Real World, these
documents are called by many different names. A requirements specification is var-
iously called a user requirements specification and a functional constraints specification
by different people.

Architecture
specification

Functional
specification

Requirements
specification

Design
specification

UI
specification

Functional
specification

Functional
specification

Functional
specification

Specifications for
all subsystems

Architect/design
subsystems

Test
specification

Test
specification

Design
specification

Test
specification

Design
specification

Test
specification

Design
specification

Software unit
testing plan

Plan for testing
component integration
and final product

Being Speci f ic 371

Requirements Specification

If all other specifications disappeared in a software development process
meltdown, this is the one document that you should fight for. It’s the head of
the merry software development parade and the stumbling block for many
failing projects. The information in here is vital. It will keep you sane.

The requirements for a project are never clear at first; customers can’t
tell you exactly what they want their software to do (they’re not computer
experts, so they don’t know). This can cause all kinds of problems, so there
must be a single document that pins down what your software is supposed to
do and the characteristics of an acceptable implementation: the requirements
specification. It lists in great detail (or at least appropriate detail, which will
usually be great) how the code is expected to behave. It must cover all the
important, high-risk, high-value areas of system behavior, comprehensively
and unambiguously.

The requirements are usually written as a series of numbered sentences
each containing a single factual piece of information. For example:

1.3.5 The user interface shall consist of a black rectangle containing the
words Don’t Panic in a red sans-serif typeface at 13pt.

Uniquely numbering each requirement enables easy cross-referencing in
subsequent documents and helps you to trace a particular design or imple-
mentation decision back to a single requirement.

We must consider:

Functional requirements
These requirements detail what the program must do. For example:
Must process BMP images and convert them to either JPEG or GIF format.

Performance requirements
These requirements show how fast it must work and whether there are
operations with deadlines. For example: The user must receive feedback for
every operation within one second, and all operations must complete within five
seconds.

Interoperability requirements
These requirements describe the other software, hardware, and external
systems that it must interact with. For example: Must support HTTP and
RS232 communication with an upgrade server.

Future operation requirements
These requirements determine what functionality must be accommodated
now, even if it’s not implemented right away. For example: Must provide
a skinnable UI so that the user can customize the look and feel.

These requirements fall into two camps. Discrete requirements are binary.
You can easily check whether your program meets them by looking at the
source: There will be a chunk of code dedicated to each bit of functionality.
You can write specific tests to ensure that each discrete requirement is honored.

372 Chapter 19

Nondiscrete requirements are less tangible. You can’t check whether your
program meets them just by inspecting the source. These include the required
fault-tolerance of a system, the required uptime of a server, a program’s mean
time between failure, its security, or its scalability. These kinds of requirements
can be massively important and remarkably hard to verify.

The process for creating a requirements specification will differ from
company to company, and often depends on the project characteristics and
the customers (how smart and competent they are). The requirements speci-
fication is collated by the marketing team, a future product focus group,
or a business analyst whose job is to understand the problem domain and
scope the work required. Usually the customer, or a representative of the
customer, is involved.

The customer must agree to and sign off on the requrements specifica-
tion; it forms an effective contract between the software developer and its
client. The supplier agrees to ship a product whose functionality meets these
requirements; the customer agrees to pay for it. Without an agreed specifica-
tion, the customer can refuse the product on a whim, and the developers will
have spent a lot of effort to no avail. Sadly, this is a common problem in the
software factory that I have seen many times, especially when the customer is
not a technical expert and doesn’t know what a good software solution looks
like. When the requested software is finally built, the customer realizes that
what it asked for wasn’t what it actually wanted: Rewrite it in pink. You’re back
to square one. This sort of thing happens all the time; the requirements
specification is your insurance policy.

Sadly, many software factories skip requirements gathering or do not give
it sufficient import. It’s vital to agree on the requirements early on, before
software design has started and certainly before any code has been written.
We use the functional requirements specification:

To keep the project on track and on time—by preventing (or at least
reducing) the tardy addition of new features that will postpone delivery.

To improve customer satisfaction—by setting expectations up front.

To reduce bugs—by restricting feature creep, we avoid last-minute code
additions, which helps to avoid scary bugs.

To maintain your sanity—without requirements specifications, developers
rapidly lose their hair.

Depending on the type of development methodology you employ, a single
monolithic requirements specification might be written up front before any
software development begins, or it might be developed incrementally along-
side the code. Understand how your requirements are gathered from the
customer and how this impacts the way you develop code.

KEY CONCEPT Software requirements must be captured early to set expectations, to prevent feature creep,
and to reduce developer angst.

Also consider your developmental requirements: the things that you as a
developer must have in order to develop the software. For example, you
might require a certain kind of internal architecture to provide adequate

Being Speci f ic 373

future extensibility, and you need version control to develop software
(it is not optional). Some of these might justifiably belong in a require-
ments specification.

Functional Specification

Perhaps the document most frequently used by programmers, the functional
specification describes the observable behavior of a piece of software. It is
derived from—and must satisfy—the requirements specification. There are
usually a number of functional specifications in one project: one for the
overall product and then individual specifications for individual software
components.

For a software component, the functional specification includes a com-
plete and unambiguous description of its public interface. This equates to a
list of every method or function in the module’s API, together with a descrip-
tion of what they do and how to use them. It contains details of all external
data structures and formats, and all dependencies on other components,
work packages, or specifications.

This is more than a user guide to a piece of software. There is enough
detail to build the component from it. Two teams could read the document
and work separately on implementions. Although the implementations will
differ, both components should behave identically.

This fact is exploited in practice: Some NASA spacecraft employ five
computers to do the job of one; four computers implement the specification
for a particular computation, running independently developed implementa-
tions. The fifth computer is used to average the results of the four calculations
(or to decide if one computer wildly disagrees with the others).

If you’re writing a software component without a functional specification,
begin by writing one yourself. Show it to all interested parties so they can agree
that what you’ll build is sufficient and so they won’t be surprised when it is
delivered.

KEY CONCEPT If your software task is not adequately specified, don’t start coding until you’ve written
a functional specification, and people agree that it’s correct.

System Architecture Specification
The architecture specification describes the overall shape and structure of the
software solution. It encompasses such things as:

Physical computer layout. (Is it distributed client/server software or a
single user desktop application?)

Software componentization. (How is it split up? Which parts do we need
to write; which can we buy in?)

Concurrency. (How many threads run at the same time?)

Data storage (including database design).

All other aspects of the system’s architecture (redundancy, communica-
tion channels, and more).

374 Chapter 19

It is important to specify these things in detail before too much develop-
ment work happens. The architecture affects the later stages of development;
a mistake or ambiguity here will filter down to become serious flaws in later
phases. Of course, nothing is set in stone: If you discover a flaw in the archi-
tecture specification, then it must be fixed, regardless of how much work has
already occurred. Don’t accept a bad architecture specification as a millstone
around your neck. However, it is important to perform adequate architectural
design up front. We discuss software architecture in detail in Chapter 14.

User Interface Specification

This document contains information about the user interface: what it will
look like and how it will react. This is how we present the system’s capabilities
to the user. It might describe a GUI application or a web-based interface,
an audible phone menu system, a braille accessibility interface, or a simple,
single-LED display.

Sometimes the user’s view of the system is very different from the
implementation behind the shiny façade. Here are two examples:

A highly networked system can be deployed on a single box and hidden
behind a unified UI.

The available functionality can be simplified for ease of use or to create
a cut-down cheaper version.

The UI specification describes the interface conventions and metaphors
and shows how the user sees the functions interact. It is comprised of a textual
description, with pictures and screenshots. It often contains a storyboard repre-
sentation of the UI in action—a pictorial map of each UI state, its transitions,
and what is displayed in each. It includes every screen that the user will see and
all detail (that is, all graphics, fields, lists, buttons, and the on-screen layout
of each). It will also detail acceptable response times for each operation
and the behavior in common error cases (this isn’t exhaustive—trying to
enumerate all possible error conditions is a practically endless task!).

This work may include or lead to a UI prototype. Prototypes can be made
with varying levels of detail and accuracy; this depends on the application
and how much testing and review will be done. Inevitably, the UI design is
incomplete at this stage, but this is your first chance to see what the finished
product will look like. Although prototypes help to envision how the interface
will behave, it’s not until the system is integrated that the UI can be properly
reviewed and tweaked.

Design Specification

A design specification (or technical specification) documents the internal design
of a component. It describes how a functional specification will be, or has
been, implemented. The design specification describes all internal APIs, data
structures, and formats. It should detail all key algorithms, execution paths,

Being Speci f ic 375

and thread interactions. It describes the choice of programming language and
the tools used to build the code. All of this is critical information for the code
implementers and maintainters.

Many heavyweight development processes mandate the production of
a design specification prior to implementation; it is reviewed before coding
begins to prevent work from progressing down a dead end. However, in most
software factories, this document is written alongside, or after, the code.

It sounds like such a good idea, but most design specifications are a big
waste of time! They need continual maintenance to stay in sync with the code
being described. Without care, they quickly rot and are left inaccurate and
incomplete—potential snares for unwary readers. For this reason, I suggest
that you don’t write a design specification!

But wait, before you run off unencumbered, there’s more. Replace it with
something that contains the same information but is easier to keep accurate.
Literate programming tools (see “Practical Self-Documentation Methodologies”
on page 66) are a great documentation mechanism that can replace heavy-
weight design specifications by generating documentation from the code
itself. You need only supply any extra commentary in specially formatted
code blocks.

KEY CONCEPT Use literate programming tools to write your technical documentation. Don’t write
a word-processed document that will quickly go stale.

You don’t need the complete production code to use literate documen-
tation tools in this way. You can document your intended code structure in the
same manner: Mock up some code and run the tool over it. This automatically
generates design documentation, serves as prototype proof-of-concept code
and, with care, can evolve into the production code.

Test Specification

The test specification describes the testing strategy for a particular piece of
software. It shows how to validate the implementation against its functional
specification so you know when the software is acceptable for release. Naturally,
the size and scope of this task depends on what is being tested: whether it’s a
single software component, an entire subsystem, a desktop application, or an
embedded consumer product.

The test specification contains a list of every test that must be performed.
Each test is detailed in a test script: a set of simple steps to run the test, together
with its acceptance criteria and the environment in which the test will run.
The scripts themselves may be written in separate documents or included in
this one.

As we’ve seen in Chapter 8, many code-level tests can be performed in
code themselves and run as an automated part of the development process.
These tests stand distinct from high-level tests that can only be performed
by running the software in its final context with scripted human input.

376 Chapter 19

Wherever you can create programmatic unit tests for your software, prefer
to do this rather than create a lengthy test specification. Just as design speci-
fications can rapidly become out of date, test specifications written at the code
level will rot as the system evolves around them. Use programatic test code as
the documentation of your testing strategy—you can write literate test code
as easily as literate normal code. Automated test cycles will also force you to
keep the tests up to date with the code; your tests will fail if you don’t!

What Should Specifications Contain?

The contents of each type of specification are naturally very different. However,
the information in any specification must be:

Correct
This might seem obvious, but it is absolutely vital. An incorrect specifica-
tion can cause days of wasted effort. It must be kept up to date or it will
become dangerously misleading: It will waste readers’ time, cause confu-
sion, and may lead to bugs being introduced as a consequence.

If a specification can be interpreted in more than one way, then the
“specification” isn’t specific—it’s not doing its job. Two readers could make
different interpretations of the ambiguous information, with inevitable
unfortunate consequences. Make sure that your specifications can only
be interpreted as you intended.

D E V I L ’ S A D V O C A T E

Specifications are expensive: Reading and writing them requires both time and
effort. They require extra work. Are all of these documents really necessary? Yes,
they are—to write high-quality software, you need to consciously generate all this
information and then record it somewhere where it can be retrieved when necessary.
Specifications encourage us to follow good development practices—to track
requirements, perform design, and construct a test plan—and we’ve seen how they
facilitate communication.

Agile processes (see “Agile Methodologies” on page 433) place far less emphasis
on writing specifications, but they don’t advocate coding by the seat of your pants.
Since specifications don’t write themselves, can easily get out-of-date, and require
extra work to maintain, and programmers have more than enough to do already,
it’s sensible to only write as many documents as necessary. We should always
avoid lengthy procedural hurdles. But any specification you remove must be replaced
by an equivalent store of information. Don’t skip a specification unless you have
conciously replaced it with something of equal quality containing the same set of
information.

Extreme Programming doesn’t produce a lengthy requirements specification, but it
captures all requirements in an equivalent set of user stories, held on a stack of story
cards. Design specifications are eschewed: The code is its own documentation.

Agile practice also promotes test-driven design, where codified tests act as addi-
tional documentation of the code and its behavior. This full and clear suite of unit
tests can replace the test specification for individual components but is seldom
suitable to verify the final product against its validation criteria.

Being Speci f ic 377

The text must not contradict itself. When a specification gets reason-
ably large, it becomes difficult to ensure consistency. This becomes a
particular problem when a maintainer (different from the original author)
makes modifications—it can be very easy to alter information in one
place and not change any subsequent sections that allude to the same
information.

A specification should be carefully written to comply with all relevant
standards (for example, language definitions and company coding stand-
ards). It should follow the document standards/conventions of your
company and use any document templates that exist.

Comprehensible
An effective specification is inviting to read and easy to understand.
It makes sense to every reader. If it’s so technical that only engineers can
understand it, then non-techie departments (like marketing and manage-
ment) will not feel part of the audience and will not look at it carefully.
Problems won’t be spotted until it’s too late.

Like good code, the best specifications are written from the perspec-
tive of the reader, not the writer. The information is organized to make
it comprehensible to a newcomer, rather than convenient for the author.
Blaise Pascal once apologized, “I made this letter longer than usual
because I lack the time to make it short.” Good writing is concise and
doesn’t hide the main point behind a wall of words. This does require
more work and will take more time, but it’s worth it if the result is simpler
to understand.

Don’t feel compelled to write reams of boring prose in a specifica-
tion. Consider using devices to compress it and make it easier to read.
Bulleted and numbered lists, diagrams, headings and subheadings, tables,
and judicious use of whitespace break up the flow and help the reader to
create a mental map of the material.

Complete
A specification should be self-contained and complete. That doesn’t
mean it should contain all possible information; it is perfectly acceptable
to reference other relevant documents, as long as the reference is precise
(consider document revisions in your references) and will allow the
reader to easily locate the document.

The level of detail in a specification should be significantly less than the
detail in the implementation; otherwise it is either overly prescriptive or too
dense to understand. People tend to ignore complicated specifications,
so they become abandoned. Left festering in a corner, they only serve to
confuse readers who don’t realize that they’re no longer authoritative.

Verifiable
A specification for a software component interface will lead to the pro-
duction of two things: the software implementation and a test harness
to verify it. The contents of a specification must, therefore, be verifiable.
In practice, this largely equates to being correct, unambiguous, and
complete.

378 Chapter 19

Modifiable
Nothing is set in stone, neither code nor documents. If a specification
needs updating (perhaps to correct a factual error) then this should be
easy. A cast-iron specification prevents the world changing underneath
your feet. However, it’s no use if the specification is wrong. The document
must be editable (i.e., you should be able to get to the source, not just
a PDF copy), and its release and update procedure must not be too
troublesome.

In order to make modifications easily, the document must be carefully
structured and no bigger than absolutely necessary.

Self-describing
Each specification must contain at least:

A frontsheet, clearly showing the document title, subtitle, author(s),
revision number, date last modified, and document release status
(e.g., company confidential, supplied externally under NDA, or a
public release).

An introduction to the document, providing a brief summary of its
aims, scope, and the target audience.

All relevant terms and definitions that the reader needs in order to
understand the contents. (But don’t patronize the reader: If your
audience is made up of software engineers, don’t explain what
RAM stands for.)

A set of references to other related or cross-referenced documents.

A history section that lists all important modification and revision
information.

Traceable
There should be a document control procedure (akin to a source man-
agement system) and a central file store in which all documents reside.
Every release version of a specification should be lodged in the repository
and must remain be accessible, so you can discover which version of a spec
you were working to a year ago; one day you’ll need it again. Consider
using a revision control system—it’s a great tool for versioning any sort
of file.

The document frontsheet contains control information (version
number, date, author, etc.) so you can check that you have the most
up-to-date copy.

KEY CONCEPT Think about the contents of your specification as you write it. Choose a structure and
vocabulary that the audience will understand, and make sure that the document is
correct, complete, and self-describing.

Being Speci f ic 379

The Specification-Writing Process

What is written without effort is in
general read without pleasure.

—Samuel Johnson

Now knowing the types of specification we must produce and what should go in
them, we’re armed and ready. It’s time to write something! The specification-
writing process is simple:

1. Select the appropriate document template to start from. This may be
provided as part of a defined project development process. If there is no
template, base it on an existing specification.

2. Write the document. Okay, this is the hard part. What you write naturally
depends on the type of specification.

3. Arrange for the document to be reviewed. Include all the people with an
interest in it.

4. Once it’s agreed upon (and, if your process demands, formally signed off
on), put a versioned copy in the document repository and release it to
the appropriate audience.

5. If there are any later problems, raise a change request for the specifica-
tion and make sure that you understand how the modification affects the
scope of your development work. If you don’t, then the coding effort will
double without anyone noticing.

This is a simple procedure to list, but it isn’t simple to do. It’s easy to
focus only on step 2—we skip the rest for an easy life. But without these other
actions, you haven’t created a formal identifiable document; this may cause
problems later.

Consider these spec-writing guidelines when composing your literary mast-
erpiece. The first few relate to authorship and to your artistic sensibilities:

Writing usually works best when there is one author per document. It’s
hard to coordinate multiple authors and accommodate different writing
styles. If you are documenting a big system, then split the specification
into parts and give one to each person to work on separately. Create an
umbrella document that links them all together.

Contrary to some opinions, it is not at all egotistical to have one
person’s name on the front of a specification. Someone needs to take
credit for it—praise when it’s a good job and blame when it’s not.

If you significantly extend someone else’s document, don’t feel
embarassed to add yourself to the list of authors. But don’t remove
someone from the author list unless his or her original input has now
been removed.

380 Chapter 19

The author must be the right person. The marketing department
doesn’t write your functional specification; it provides requirements.
Managers don’t design the code; the developer with the right skill and
knowledge does it. The author must be capable of writing—it’s a skill
that’s learned, a muscle that requires exercise.

Each document must have a defined owner who takes responsibility for it.
The owner may be different from the original author; it might be the
technical authority or the document’s maintainer now that the primary
author has moved on.

L A N G U A G E B A R R I E R S

I hate definitions.
—Benjamin Disraeli

Compose your specification’s text very carefully. Compared to code, the English
language is full of ambiguity and complexity. These genuine newspaper headlines
show just how ambiguous seemingly simple English statements can be: “Stolen
painting found by tree,” “Kids make nutritious snacks,” “Red tape holds up new
bridge,” and “Hospitals are sued by 7 foot doctors.”

Specifications are formal documents and they must not be chatty or verbose; this
tends to hide the important facts behind a wall of words. Non-native English readers
may struggle. However, a terse document is hard to follow. This is a delicate balance,
and document review helps to determine the correct style of writing.

Formal documents are written in the third person, in present tense. An accurate
selection of words is very important. A useful convention is defined in the Internet
RFC document #2119. This defines the following key terms for protocol specifica-
tions (which are also very useful in requirements specifications):

Must
The word must (or shall or is required to) means that the following definition is an
absolute requirement of the specification.

Must not
The words must not (or shall not) signify an absolute prohibition of the specification.

Should
Use should (or the adjective recommended) to indicate an optional requirement—
behavior that may be ignored, but only when the full implications are understood
and have been carefully considered.

Should not
Use should not (or the adjective not recommended) to describe a particular
behavior that should be avoided unless there are valid reasons to choose it—
again, the consequences must be fully understood.

May
Using may (or the adjective optional) means that an item is truly optional. An
implementer can choose to support it or ignore it but, when applied to protocols,
it must interoperate with another implementation that made a different choice.

This is the word that should often be used when people write can. Can is a
commonly misused word in specifications and standards; it is ambiguous and,
depending on the reader’s interpretation, could be taken to mean must or may.

Being Speci f ic 381

Here are some tips for the document writing process:

It’s good to have a best practice example of each kind of specification. This
will help authors to understand what is expected of them as they write.

Early drafts of a specification should be marked as such, with a disclaimer
stating that it is incomplete. This will prevent people from mistakenly
interpreting it as complete—they can’t moan at you about the content
(yet). Maintain a list of the incomplete sections and open issues within
the document itself.

Document review is important: It checks that the contents are correct
and well presented. It is a mechanism to get others’ agreement with your
decisions and to thereby bestow authority on the document. This is espe-
cially important for specifications that are sent outside the project: to the
customer or to other departments.

Once you’ve finished the specification, don’t forget about it. Keep it
alive and up to date. A functional specification is not complete when the
design phase is over. Requirements inevitably change, and we continue
to learn more about the system’s operation. Capture all of this in revised
specifications.

Why Don’t We Write Specifications?

I do not understand what I do. For what
I want to do I do not do, but what I hate I do.

—Romans 7:15

Decent specifications are conspicuous by their absence in the Real World.
We know it’s not good practice to avoid them, so hasty developers gloss over
their absense and pretend that there’s no problem. It’s not unusual to be
given a coding task without an adequate requirements or functional speci-
fication. (This is a procedural problem that must be overcome by persistent
moaning, education, and abuse of the powers that be.)

But it’s equally common for sloppy programmers to sidestep their own
document writing. Why is this? There are a few excuses we meet repeatedly.
Developers don’t write specifications because:

They don’t know that they should

They forget

They don’t have the time

They consciously decide not to, thinking they can get by without them
(“Who reads specifications, anyway?”)

None of these reasons are defensible. An experienced developer certainly
shouldn’t fall foul of the first two if a specification is an expected deliverable
of his or her work.

382 Chapter 19

Programmers like to program, not write long documents. Most pro-
grammers don’t have good writing skills; they write elegant code but awful
English. It’s hardly surprising that they try to avoid writing specs: It’s hard
work, uninteresting, or they just don’t like doing it. Often it’s seen as a
time wasting activity that isn’t really necessary. Or they think, I’ll code first,
then come back to the documentation later. Bitter experience shows that this
does not happen.

The depressing thought that no one will ever read my beautiful specification
puts many more programmers off of the idea of committing their brainwaves
to prose. And it’s probably true: No other soul may ever read your literary
masterpiece. But so what? The act of specification writing forces you to engage
your brain: a very important step. Sure, a few Gurus can code on the run and
produce excellent work. But most programmers, whether they admit it or not,
simply can’t. We need to design. Carefully. First. That design should then be
captured: in a document. Potentially, this document will be for your eyes only.
But, if one day you hear a higher calling and run off to become a Croatian
monk, how can a maintenance programmer pick up your work? The speci-
fication will outlive you. Think of it as your legacy.

Not having time is the only scenario that you don’t have control over:
Sometimes a coding task lands in front of you and there genuinely isn’t
enough time to write a good specification for it. If you have no time to write
a specification, then you probably don’t have time to write the code properly
either. Make sure you’re aware of when you’re doing things properly and
when you’re rushing code out without any real discipline—that sort of code
really doesn’t belong in a production release.

Saving time by avoiding specifications is almost certainly a false economy;
specifications help to save time communicating. When you write a specifica-
tion, you only have to describe how the program works once. If you skip this
step, at least the same amount of communication happens anyway, but on an
ad hoc basis—over a longer space of time and in a less controlled manner.
This communication is far less effective and will actually take longer, because
you will have to explain the same things over and over again with a slightly
different spin for each audience.

KEY CONCEPT It is dangerous and unprofessional to avoid writing specifications. If there isn’t enough
time to write a specification, there probably isn’t enough time to write the code.

Of course, few people write detailed specifications at home for their own
personal pet projects. This is an extreme case of an appropriately detailed
specification. Any reasonably large project (which could be determined by
the number of source files, modules, developers, or customers) really does
require specification support.

Being Speci f ic 383

In a Nutshell

Words are, of course, the most
powerful drug used by mankind.

—Rudyard Kipling

They’re not the most glamorous part of a software developer’s life, but
specifications are an important part of our code-writing routine. Learn to
read and write them effectively—to record the right information in the right
place, in a way that will save time and hassle later. But don’t become enslaved
by a paper-chain bureaucracy.

See Also

Chapter 4: The Write Stuff
Self-documenting code is a solid technique that helps to eliminate some code
documentation. Good code is so easy and intuitive to work with that it
doesn’t need a long manual.

Chapter 18: Practicing Safe Source
Consider change control and a backup strategy for your specifications—
they’re as vital as your code and need protecting.

Chapter 20: A Review to a Kill
Just like your code, any document you write should be reviewed to ensure
that it’s correct and of a high quality.

Chapter 22: Recipe for a Program
Specifications are an essential part of the software development process
and are often the gates between development phases.

Good programmers . . . Bad programmers . . .

Understand the importance of
specifications and use them to
make their development lives
easier

Know the appropriate level of
documentation required

Want to improve their writing
skills and seek reviews and
chances to practice

Dive headlong into a code task
without a thought for design,
documentation, or review

Don’t think about the text
they are writing; they produce
unstructured, hard-to-follow
specifications

Avoid writing documents, thinking
it’s boring and pointless

384 Chapter 19

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 544.

Mull It Over

1. Is a poor specification better than no specification at all?

2. How detailed does a good specification have to be?

3. Is it important that all the documents in a company/project have a
common presentation style?

4. How should you store documents? Should you provide an index of them
(by type or by project), for example?

5. How should you conduct a specification review?

6. Does self-documenting code render all specifications useless? Specific ones?

7. How can a document be collaborated on by more than one author?

Getting Personal
1. Who decides on the contents of your documents?

2. Consider your current project. Do you have:

a. A requirements specification?

b. An architecture specification?

c. A design specification?

d. A functional specification?

e. Any other specification?

Are they up to date? Are they complete? Do you know how to get the
latest versions? Can you access historical revisions?

3. Do you revision control your documents? If so, how?

A R E V I E W
T O A K I L L
Performing Code Reviews

20

In this chapter:

What are code reviews?

What do they achieve?

How do you run one?

Reviewing has one advantage over suicide: in suicide you
take it out on yourself; in reviewing you take it out on
other people.

—George Bernard Shaw

How do you learn to be a good carpenter? You
become a carpenter’s apprentice. You watch the
master work, help him daily, gradually take on
more responsibility, and learn from his advice.
You don’t jump in feet first without any practical
ability and expect to churn out quality woodwork
right away.

We don’t have a version of that in the coding
world, even though programming is as much a craft
as it is an engineering discipline (possibly more so).
A good programmer learns the difference between
good and bad code by experiencing it firsthand,
discovering what works in Real Life and what

386 Chapter 20

doesn’t. This is the stuff that books can’t teach you, and only a lucky few ever
learn these things from a mentor. Code reviews are about as close as most of us
will ever come to this ideal.

Code reviews (also called inspections or walkthroughs) are similar to the
open source model of software development—providing a structured oppor-
tunity for others to eyeball your precious code and for you to inspect others’
work. They facilitate knowledge interchange. But their primary goal is to
increase software quality. They help you to spot faults before they become
raging disasters.

Code reviews also have another subtle advantage: They encourage you to
take greater responsibility for your handiwork. When you know that the code
isn’t just for you to look at, but that it will be viewed, used, maintained, and
criticized by others, your approach tends to change. You’re less likely to make
the quick-and-dirty fix that you’ll never have time to revise. The account-
ability brought on by code reviews brings a greater quality to your coding.
They help to establish the “collective code ownership” culture described in
“Collective Code Ownership” on page 336.

Sound good, don’t they? Let’s pop the hood and see how they work. . . .

What Is a Code Review?

A review places source code under the microscope—really aiming to criticize
and verify it. This is not to ridicule or get at the author, but to improve the
quality of software that the team produces. The process normally generates a
list of must-fix issues (the size of the list is a reflection of the quality of your
programming skills!). Sometimes you will spot improvements that are not
worth making now; chalk up those discoveries for future experience.

We look for bugs and any code that could be improved. The code review
weeds out problems at several levels:

The overall design (we check the choice of algorithms and external
interfaces).

The expression of that design in the code (its breakdown into classes
and functions).

The code in each semantic block (we check that each class, function, and
loop is correct, follows appropriate language idioms, and is a practical
implementation choice).

Each individual code statement (each must follow project coding stan-
dards and best practices).

Code reviews can be:

Personal
The author carefully and methodically reviews his or her own work to
make sure that it’s good. Don’t get this confused with casually reading
your code after typing it; a personal code review is a more detailed and
involved task.

A Review to a Ki l l 387

One-on-one
You walk another programmer through your code. The other programmer
checks the logic and looks out for faults as you lead through it. These
reviews tend to be informal, driven by the author. The code is therefore
approached from the author’s perspective: with his or her set of assump-
tions, rather than from a more objective, outside view.

Formal
Involving other programmers brings new expertise, more experience,
and more eyeballs to the task and shifts the perspective from which the
review is run. Large-scale reviews are consequently harder to coordinate
and require greater overall effort, but they are more likely to root out
problems. It’s difficult to delve this deeply in a personal review; often the
author is too close to the code, and it’s easy to overlook flaws.

This usually takes place in a formal meeting, but it can be run as a
virtual review: online, with no physical meeting.

Each type of review can be used at a different time in the development
process. One-to-ones might be used daily throughout code development, as
an integration review before modifications are committed to the main source
tree. Formal reviews are brought in toward the end of code development, as
a final software quality audit.

Apart from the obvious benefits of correct code, reviews have other useful
side effects. The cross fertilization that comes from looking at each other’s
code ensures that coding style is more uniform across a whole project. A
review also spreads knowledge about the inner workings of core bits of code,
so there is less risk of losing information when people leave a project (a very
real problem—see “Team Closure” on page 343).

KEY CONCEPT Code reviews are excellent tools to detect and eliminate hard-to-find bugs, to increase
code quality, to enforce collective code responsibility, and to spread knowledge.

When Do You Review?

If you are not criticized, you may not be doing much.
—Donald H. Rumsfeld

In an ideal world, every bit of code would be carefully reviewed prior to
release. According to the Software Engineering Institute at Carnegie Mellon
University, a thorough code review should take at least 50 percent or more of
coding time (personal code review is included in this statistic). (Humphrey 98)
That would take longer than most Real World projects are prepared to invest.1

KEY CONCEPT As we write a system, we need to ask whether to review the code and, if so, exactly
which code to review.

1 The fact that they’re rarely prepared to invest any time in code review is a more serious
problem.

388 Chapter 20

Whether to Review

We’ve seen that bugs are inevitable, and that you can be sure your code
contains some classic mistakes. There will be obvious flaws that you’ll find
quickly and many more subtle problems that would only be spotted by a
fresh pair of eyes approaching the code with no preconceptions. It’s hard for
the original author to see the inherent faults in his own work—he’s too close
to the codeface, suffering the psychological cognitive dissonance described in.
(Weinberg 71) If your code is at all important (clue: it is, or you wouldn’t
have written it) and if you care about its quality (clue: you do, or you’re a
disgrace), then you must review it.

Not reviewing code drastically increases the chance of faults slipping into
your production software. That could spell your embarrassment, a lot of
expensive rework and in-the-field upgrades and, in extreme cases, your
company’s financial ruin. The effort of a code review pales in comparison
to the consequences. According to Humphrey, “Students and engineers
typically inject 1 to 3 defects per hour during design and 5 to 8 defects when

R E V I E W I N G T H E A L T E R N A T I V E S

There are a number of development techniques that have been argued to make formal
code reviews redundant. These are:

Pair programming
When you pair program (described in “It’s All Going Pair Shaped” on page 319),
your code is effectively reviewed on the fly. Two pairs of eyes are better than one
and will find many, many more faults—as they are entered. However, code reviews
can catch even more problems by employing reviewers who are physically and
emotionally removed from the implementation work.

Open source
Opening and freely releasing the source code allows anyone to see it, to judge
the code’s quality, and to fix problems. Some call this the ultimate code review.
However, it doesn’t actually guarantee that anyone will inspect the source. Only
really popular open projects have actively maintained codebases. Making your
code open source will not instantly bring code review–like benefits.

Unit tests
These are an automatic means to show that a modification hasn’t degraded the
correctness of your code’s output (see “Look! No Hands!” on page 144), but they
don’t help to increase the overall quality of the written code statements. Your code
could be a jumbled mess of spaghetti, but if it passes the unit tests, no one will
notice. If the unit tests aren’t rigorous, bugs could still slip through, regardless.

Not reviewing
Alternatively, you can just trust the programmer to get it right—that’s his job
after all. If this is a winning strategy, then you don’t need to test the code either.
Good luck!

None of these, on their own, can honestly replace the code review. Perhaps a
combination of them and a particularly effective development team culture would
render reviews less necessary, but I’ve yet to meet a team where that has been
the case.

A Review to a Ki l l 389

writing code. They only remove about 2 to 4 defects per hour in testing but
find 6 to 12 per hour during code review.” (Humphrey 97)

People often make excuses to justify avoiding reviews. They say, “The
code’s too large to review fully,” or “It’s too complex; no one person could
ever understand it—there’s no point in even trying to review it.” If a project
can muster enough man-hours to write a large program, it can find enough
time to review it. If the code is too complex, then it desperately needs to be
reviewed! In fact, it probably needs something a little more drastic. Well-
written code is decomposed into self-contained sections that can undergo
separate reviews.

Which Code to Review

Any project will quickly produce a ton of source code. For all but the most
stringent development processes, there simply isn’t enough time to review
every last scrap of code. So how do you decide which parts to review? That
isn’t easy.

You must select the code that will benefit most from review. This is the
code that is most likely to be bad or that is most important to the correct
functioning of your system. You could try these strategies:

Select core bits of code in the central components.

Run a profiler to see where most CPU time is spent, and review those
parts of code.

Run compexity analysis tools, and review the worst offending code.

Target areas that have already exhibited a high bug count.

Pick on code written by programmers you don’t trust (a code review
vendetta!).

The most practical approach is probably a hybrid of all of the above.
Pick the best code candidates based on a sober assessment of your team,
the codebase, and the current system characteristics (performance, bug
count, etc.).

KEY CONCEPT Select the code you review carefully. If you can’t review everything, make informed
choices about review candidates. Don’t guess—you might waste your precious time.

Performing Code Reviews

That which we persist in doing becomes easier,
not that the task itself has become easier, but that

our ability to perform it has improved.
—Ralph Waldo Emerson

Simply having a code review is not enough. It’s not going to solve all the
problems itself. You also need to make sure that you review properly. The next
few sections describe how to do this.

390 Chapter 20

Code Review Meetings
The most common review setting (at least in high-ceremony development
processes) is the formal code review meeting. There is a fixed agenda (to ensure
that no action is forgotten) and a defined ending (not necessarily a time limit,
but a definition of exactly which code you are reviewing, and which you
aren’t—it’s very easy to be unclear about this).

An example code review meeting procedure is described below.

Where?

The best place to hold a code review meeting is in a quiet room. The review-
ers should not be disturbed. There should be coffee (and, for those who must,
tea) available.

A suite of networked laptops with code editors may be useful, as may a
computer hooked up to a projector. Old-school programmers swear by print-
outs and pen-and-paper notetaking—detaching from the computer screen
can help to find new faults. This really depends on how much respect you
have for trees and electricity consumption.

When?

Obviously, at a mutually convenient time. Common sense tells us that Friday
at 5 PM is not a good time. You need to devote serious time to this, so make
sure that you won’t be disturbed or distracted.

If the code is too large, split the review into a number of separate sessions.
You can’t sit people in an enclosed space for hours on end and expect the
quality of their review to remain high.

Roles and Responsibilities

One of the most important factors contributing to the success of a code
review meeting is who attends. Each attendee should be assigned a specific
role; in small groups it is likely that people will take on multiple roles. These
roles will include:

Author
Obviously the person who wrote the code should attend the review to
describe what he or she has done, refute unfair or incorrect criticism,
and listen to (and subsequently act on) valid, constructive feedback.

Reviewers
The reviewers should be carefully picked, people with available time and
skill to review. It helps if the code is within their area of expertise or if
they are involved with it in some way. For instance, the writer of a library
should be invited to review a program that uses the library to diagnose
incorrect API usage.

There should be an appropriate number of experienced software
engineers present. There should possibly be a representative from the
QA or testing department (see “Quality Assurance” on page 132) so QA
can be assured of the software’s quality and of the quality of the develop-
ment process.

A Review to a Ki l l 391

Chairman
Any meeting needs a chairman, or chaos will ensue (see “Meeting Your
Fate” on page 340). This person leads the review and guides the discus-
sion. He or she ensures that the conversation keeps to the point and that
the meeting doesn’t get sidetracked. Any minor issues that don’t need to
be discussed in the meeting should be quickly taken offline by the chair-
man. Given half a chance, programmers will discuss a minute technical
detail for hours at the expense of the rest of the code review.

Secretary
The secretary takes minutes. This means writing down all points that
arise, to make sure that nothing is forgotten after the review. If there
is a review checklist (see the example on page 398), the secretary fills
it in. The secretary role should not be fulfilled by the same person who
acts as chairman.

Before arrival, everyone is expected to have familiarized themselves with
the code. Everyone must have read the supporting documentation (any
relevant specifications, etc.)2 and must be aware of any project coding stand-
ards. Whoever organizes the meeting should highlight these documents in
the meeting announcement to prevent misunderstanding.

Agenda

To organize the code review meeting:

The author signals that their code is ready for review.

The chairman arranges the meeting (booking an appropriate location,
setting the time, and assembling the correct set of reviewers).

All required resources (computers, a projector, printouts, etc.) are
arranged.

The meeting must be called sufficiently ahead of time to allow the
reviewers to prepare.

After the meeting announcement, the author cannot change the code
gratuitously—this is not fair to the reviewers.

The code review meeting is run as follows:

The chairman arranges for the room to be prepared beforehand so the
review can start on time.

The author takes a few minutes (no longer!) to explain the purpose
of the code and a little bit about its structure. This should be prior
knowledge, but it’s surprising what misunderstandings can be caught
at this first stage.

Structural design comments are invited. These are comments relating to
the structure of the implementation—not the code at statement level.
This could include the breakdown of functionality into classes, the split

2 Naturally, all supporting documentation will have been thoroughly reviewed beforehand.

392 Chapter 20

of code into files, and the style of function writing. (Is it sufficiently
defensive, and are there good tests?)

General code comments are invited. These may relate to a consistent
incorrect coding style, bad application of design patterns, or incorrect
language idioms.

The code is carefully stepped through in detail, a line or block at a time,
to look for flaws. The things to look out for are described later (in “Code
Perfection” on page 395).

A number of example scenarios of code usage are considered, and the
flow of control is investigated. If there is a complete suite of unit tests
(there should be) then these detail all the scenarios to explore. This
helps the reviewers cover all execution paths.

The secretary notes all changes required (recording the filename and
line number).

Any issue that might percolate out to the wider codebase is recorded for
further investigation.

When the review has finished, a follow-up step should be agreed upon.
The possible scenarios are:

Okay
The code is fine, no further work is necessary.

Rework and verify
The code needs some rework, but another code review meeting is
unnecessary. The chairman nominates someone to act as verifier.
When the rework is complete, the verifier checks it against the
recorded minutes of the code review meeting.

A reasonable deadline should be imposed for any rework, so
that the detail of and reasons for actions stay fresh in people’s minds.

Rework and re-review
The code needs a lot of rework, and another code review is deemed
necessary.

Remember, the aim here is to identify problems, not to fix them during
the meeting. Some problems require considerable thought to fix, and this is
a job for the author (or modifier) after the review has finished.

You may find it useful to use the code review checklist at the end of this
chapter when conducting your reviews.

Integration Reviews

Code review meetings are a high-ceremony review method. They’re hard
work, but they undoubtedly find many problems that would otherwise go
undetected.

Other, less intense review procedures exist, providing most of the
benefits of code review meetings but packaged in an easier-to-swallow pill.
Perhaps the most effective is the integration review, performed whenever new
code is integrated onto a mainline code branch.

A Review to a Ki l l 393

This could be when:

A new piece of code is about to be checked into source control

A new piece of code has just been checked into source control

A code package is merged from a feature development branch onto
the main release branch

At such a point, the code in question is marked for review, and a suitable
reviewer is picked: either someone responsible for that module (the code
integrator or maintainer3) or a shadow (or code buddy) who is assigned to
verify that author’s work in a one-on-one review session.

These gated code check-ins are often implemented with a software tool
that is integrated with the source control system. They’re quite hard to arrange
manually and are usually left as a check-in discipline: You are not supposed
to check any code in until it has been peer reviewed. This approach is quite
hard to police; errors can slip past in hurried, last-minute check-ins.

The actual review step here is usually a lot less formal than the meetings
described earlier. The reviewer scans the code to check that it isn’t obviously
broken, tests it (perhaps reviewing the available unit tests to ensure that
they’re valid), and then authorizes it for inclusion in the mainline. Only then
will the code integrator migrate the verified code into the release tree. For
more serious projects, or at more sensitive times (just before a major release
milestone, for example) this review step may become much more stringent—
requiring more eyeballs and more effort.

Since the reviewer and author don’t need to actually meet face to face
(although it is preferable to do so), this can be considered a form of virtual
review process.

Review Your Attitudes

Do to others as you would have them do to you.
—Luke 6:31

Code reviews require a constructive attitude—you need to approach a review
with the correct mindset, or it will be unsuccessful. This works two ways: for
the author and the reviewer.

The Author’s Attitude
Many people shy away from a code review for fear it will expose their inade-
quacies. Don’t do this. Having your code reviewed is a good way to learn new
techniques. You must be humble enough to admit that you’re not perfect and
are willing to accept criticism from others. Your coding style will improve as
you learn from the changes made to your work.

3 Compare this with an open source project’s maintainer, who collates patches submitted by
other hackers and integrates them into the main source tree, performing periodic software
update releases.

394 Chapter 20

KEY CONCEPT No one’s code is above review and peer scrutiny. Actively invite review of your code.

As an author, do not be defensive about your code. There is a natural
tendency to take all criticism personally and assume that it’s an assault on
your abilities. To cope with a code review, you need to reduce ego and personal
pride. Understand that no one writes perfect code: Even the most awesome
programmer’s code will be criticized for tedious little problems in a code
review.

This is egoless programming, described by Gerald M. Weinberg in his 1971
book The Psychology of Computer Programming: a timeless description of the
critical attitude that makes reviews work. (Weinberg 71) Programmers
who aren’t afraid of bugs in their code or of others finding those bugs will
generate better, safer, more correct software. A willingness for others to help
find faults in your work is an essential attribute of the master programmer.

When you’re in the hotseat, try not to waste other people’s time. Before
you present your code for review, run a dummy review by yourself first.
Imagine you’re presenting your work to the others. You’ll be surprised by
how many little flaws you’ll filter out, and it will help you to be more confi-
dent in the real review. Don’t rush out half-baked code and expect others to
review the flaws away for you.

The Reviewer’s Attitude
When reviewing code and making criticism, you must be sensitive. Comments
must always be constructive and not intended to lay blame. Do not launch

M E T H O D I N O U R M A D N E S S

Code reviews are a universally acknowledged technique and have been around
since people punched their programs into stacks of cards. We’ve looked at two
review procedures in detail, but there are many subtle variants. Programming teams
pick a review mechanism to suit their members and the nature of their work. (Poor
teams perform no code review at all.)

Here are two other common review methods:

Fagan inspections
This is a well-respected process for formal reviews, much as described in this
chapter, defined by Michael Fagan in his Defect Free Process. (Fagan 76) Fagan
emphasizes the importance of an ability to review and shows how to improve
review skills. Fagan inspections identify problems both with the work product and
with the process that created it.

Shadowing
This is a a halfway house between pair programming and code reviews. Each
code module has a lead developer who works on the code. A shadow developer
is also assigned; periodically the shadow reviews the module with the lead. As
design solidifies, the shadow developer verifies the decisions that are made. As
the code fills out, the shadow reviews progress and offers constructive advice.

In more formal settings, the shadow is given authority to approve the code for
release. No module can be integrated until the shadow developer agrees that it’s
ready for inclusion in the release build.

A Review to a Ki l l 395

personal attacks on the author. Diplomacy and tact are important. Address
your comments to the code, rather than the coder; prefer to say The code does
this . . . rather than You always do this. . . .

Code review is a peer process: Every reviewer is considered equal. Seniority
doesn’t matter, and all views are considered. It is interesting that even the
least experienced programmer will have something worth mentioning in a
code review. And just as the author learns from the review, so may a reviewer.

Over time, you will perform many, many reviews (especially if you perform
integration reviews). Be careful that your review process doesn’t become a
mundane chore; it’ll soon be an ineffective waste of everyone’s time. Maintain
a positive approach to your code reviewing. As a reviewer, always try to have
something useful to say at each review. Sometimes this is easy; sometimes it is
very difficult to say anything interesting. But by forcing yourself to make com-
ments, you won’t fall into the easy review rut, becoming a yes man who adds
nothing to the process.

KEY CONCEPT The success of a code review depends heavily on the author and reviewers adopting a
positive attitude. The aim of a review is to collaboratively improve the code, not to
apportion blame or to justify implementation decisions.

Code Perfection

When perfection comes, the imperfect disappears.
—1 Corinthians 13:10

We haven’t yet considered what type of code will pass review and what code
will fail. It’s beyond the scope of this chapter to describe what good code
looks like—the first 15 chapters of this book describe important aspects of high-
quality code. As we look for bad code design and hunt software bugs, there
are a few recurring themes. The reviewed code must be:

Bug free
Bugs are our enemy, the nemesis of good software development. We must
be confident about the quality of our work and need to find faults as
early as possible in the development process. The earlier we try to find
problems, the more we are likely to find and fix and the less cost and
hassle they incur (see “The Economics of Failure” on page 157).

Correct
The code must meet all relevant standards and its requirements. Ensure
that all variables are of the correct type (e.g., there is no chance of numeric
overflow). Comments must be completely accurate. The code must meet
any memory size or performance requirements (especially important for
embedded platforms). Check that there is appropriate use of libraries
and that all function parameters are correct.

The code is validated to conform with its requirements and functional
specifications. The content of its specification is taken to be correct; if it
wasn’t, then the task would be herculean! Sometimes code review

396 Chapter 20

comments might feed up to the specification (for example, where
clarification is needed), but this is not our goal at code review—don’t get
sidetracked into discussions on whether the specification is wrong; the
secretary should record the issue in the minutes, and the review should
continue.

Complete
The code must implement the entire functional specification. It must
have been integrated and debugged satisfactorily and pass all test suites.
The test suites must be comprehensive.

Well structured
Check that the implementation’s design is sound, that the code is easy to
understand, and that there is no duplication or redundant code. Look
for any obvious cut-and-paste programming, for example.

Predictable
There must be no unnecessary complexity and no unexpected surprises.
The code should not be self-modifying, must not rely on magic default
values, and must not contain the subtle chance of infinite loops or
recursion.

Robust
The code is defensive. Wherever possible, it protects against detectable
run-time errors (divide by zero, number-out-of-range errors, etc.). All
input should be checked (both function parameters and program input).
The code handles all error conditions and is exception safe. All appro-
priate signals are caught.

Data checking
Bounds checking is performed on C-style array access. Other similarly
insidious data access errors are avoided. Multithreaded code has correct
use of mutexes to prevent race conditions and deadlock. The return
values of all system/library calls are checked.

Maintainable
The programmer has been wise in his or her use of comments. The code
is kept under correct revision control. There is appropriate configura-
tion information. The code formatting meets house standard. It compiles
quietly, without spurious warnings.

KEY CONCEPT If you don’t know what good code looks like, then you can’t make a valid judgment of
other people’s work.

Beyond the Code Review

A review process is key to the production of any high-quality item, so it is not
solely useful for source code development. A similar review process is used
for specification documents, lists of requirements, and so on.

A Review to a Ki l l 397

In a Nutshell
It is easier to be critical than to be correct.

—Benjamin Disraeli

Code reviews are an essential part of the software development process and
help us to maintain a high quality of code. Just as an apprentice learns a
trade from knowledge passed on, code reviews spread knowledge and teach
coding capability. As more of a peer-to-peer than master-apprentice activity,
they provide a learning opportunity for author and reviewer alike.

Write your code to be reviewed. Remember that it’s never just for you to
read; other people must be able to maintain it as well. The author is always
accountable for the quality of his or her work. A good programmer cares
more about crafting great code than his or her own pride.

See Also

Chapters 1 through 15
Each of the opening chapters of this book describes important aspects
of good code.

Chapter 9: Finding Fault
A description of the types of bugs that may exist in your code.

Chapter 19: Being Specific
Code is reviewed against its specification. The specification also requires
careful reviewing.

Good programmers . . . Bad programmers . . .

Desire code reviews and
are confident in their code
quality

Accept others’ opinions and
learn from them

Can sensitively and accu-
rately comment on other
people’s code

Are scared of code reviews and
frightened of others’ opinions

Take criticism badly; they are
defensive and easily offended

Use reviews to demonstrate
their superiority over lesser
abled coders; their comments are
unduly harsh and unconstructive

398 Chapter 20

Checklist

Many review processes involve a checklist—a set of characteristics of good
(passable) code to check off as you go along. If your code doesn’t meet these
criteria, then it has failed the review. These checklists vary in detail, length,
and subject matter.

The following code review checklist is an example. You can use it to help
direct your review work. Unlike some checklists, it doesn’t systematically list
every potential problem in every possible language; it just helps to guide the
review process and figure out when to continue to the next review step.

.

Code review CHECKLIST
Use this form to help you perform a code review.
About the code
Module name:
Version reviewed:
Code author:

Automated inspection
� The code compiles without errors
� The code compiles without warnings
� There are unit tests
� They are sufficient (include all boundary cases, etc.)
� The code passes them

Design
� The code is complete (against its specification)
� There is a good choice of algorithms
� Optimizations are necessary and appropriate
� Any missing functionality is marked clearly in the code

General code comments
Style
� The code layout is clear
� It follows project style guidelines
� There is a good (unambiguous) public API
� There is a good choice of names

Defensive programming
� Array access is guarded and safe (C/C++)
� There is a correct choice of types
� All input is validated
� There is no use of compiler-specific features

General comments

Statement-level review

File Line Issue

Follow-up
Conclusion:
� Code OK
� Rework and verify
� Rework and re-review

Reviewed by:
Date:

Language:
Number of files:

� The code is kept under source control
� The code has been tested with inspection tools

Tool name Results

� Continue to next section � Stop review here

General observations about the code’s design

� The code is well structured
� There is design documentation
� The code matches the documentation

� Continue to next section � Stop review here

General comments about the quality of the written code

Error handling
� Error conditions are routinely handled
� Assertions are used to validate logic
� The code is exception safe
� Errors are propogated, not hidden
� There are no resource leaks

� The code uses multiple threads
� It is thread safe
� There isn’t potential for deadlock

Structure
� There is no redundant code
� There is no cut-and-paste programming

� Continue to next section � Stop review here

Fill out the table below, and move on to a new sheet
as required. Rate issues on a scale from 0 (cosmetic/
nice to have) to 5 (must fix).

Rating

Continue on a separate sheet (or mark up a paper copy of the code)

Record the outcome of the review here

Complete work by:

Assigned verifier:

A Review to a Ki l l 399

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 547.

Mull It Over

1. Does the required number of reviewers depend on the size of the code
being reviewed?

2. Which tools are useful aids for code reviewing?

3. Should you perform a code review before or after running it through
source code checking tools?

4. What preparation is required for a code review meeting?

5. How do you differentiate review comments to be acted upon immediately
from those to chalk up for experience on the next project?

6. How do you run a virtual review meeting?

7. How useful are informal code reviews?

Getting Personal

1. Does your project perform code reviews? Does it perform enough code
reviews?

2. Do you work with any programmers whose code is considered to be
above review?

3. What percentage of your code has ever been subject to code review?

H O W L O N G I S A
P I E C E O F S T R I N G ?

The Black Art of
Software Timescale Estimation

21

In this chapter:

Why do we need timescale
estimation?

Why is estimation hard?

Practical ways to estimate

Keeping to schedules

I never guess. It is a shocking habit—destructive to the
logical faculty.

—Sherlock Holmes (Sir Arthur Conan Doyle)

How long is a piece of string? Or for our purposes,
how long does a piece of string take? It’s as simple
a question to answer, and it makes about as much
sense.

This chapter is about software timescale
estimation, an important skill of the professional
programmer. It’s one of the mystical black arts
of development, based more on hunches than
science, with frequently inaccurate results. It’s
complicated, but an essential part of the software
development process, and is something that every
programmer must learn to do.

402 Chapter 21

The rules of the software factory are necessarily governed by economics:
the flow of money. Timing estimates are important, since the bulk of the cost
of software development is manpower—programmers aren’t cheap. Develop-
ment environments and hardware costs pale into insignificance. To make a
software product, we must know how much work is involved, how many people
are required to build it, and when it will be completed and ready to make
money. This tells us how much construction will cost. The marketing depart-
ment will predict how much it will make in sales. These two predictions go
head-to-head in a dramatic fight to the death; the bean counters draw up
budgets to work out whether a project is financially viable.

This is an odd thing called planning, something at which most program-
mers don’t excel. Don’t worry: That’s why we have managers. But you have to
understand the rules of the game if you really want to play well. Writing
commercially successful software requires a huge amount of foresight and
planning. Oh, and nerves of steel.

To construct a development plan, we perform a high-level design of the
software system, break it into components, and estimate how long each com-
ponent will take to write. There’s rarely enough time to seriously scope and
design each one, so this is a very rough science. Choosing a software develop-
ment model (see “Development Processes” on page 425), we assemble the
estimates on a plan, spread across a number of programmers, and use this to
work out the economics. The quality of this plan is clearly founded on the
quality of the timescale estimates. Catastrophically bad guesses could spell
financial ruin, so it’s important stuff!

Without plans, you’re creating products by luck, not on purpose. Estima-
tion is an integral part of the project planning process—but that doesn’t mean
that it’s done by the project planners! The only people able to provide time-
scale information are the programmers who have to do the work. That’s you!
This is part of the commercial reality of life in the software factory.

A Stab in the Dark

In any company, on any project, at any point in time, software timescale esti-
mates are nothing more than educated guesses—or else they wouldn’t be
estimates. Guesswork doesn’t sound very professional, does it? But it’s the
best you can do: You’ll never know exactly how long a task will take until it’s
complete, when it’s generally too late for the information to be useful.1

The quality of an estimate is primarily determined by how well you
understand the task being estimated. That is, how well you really understand
it, not how well you think you do. It also depends on how much time you have
to create the estimate, and therefore how much effort you can put into a
realistic design effort or feasibility review. With a very precise specification,
you can make an estimate in a short time; with a vague specification, it could

1 Except, of course, as experience to base future estimates on.

How Long Is a P iece of S t r ing? 403

take ages. A reasonable, justified estimate might require several prototypes to
investigate implementation choices—different options could have radically
different time consequences and levels of inherent risk.

Without enough time to do this, you need to concoct a worst-case figure
that development should not exceed. The less effort you put into a timescale
estimate, the less the confidence you may have in the figure, and the greater
the likely variance of reality from the estimate. Development could take half
of the estimate, the full period or—even worse—could require more time.
We manage this risk by building contingency into the development plan to
balance risky areas. How much contingency do you provide? You have to
guess! We’ll look at this later.

KEY CONCEPT Software timescale estimation requires educated guesswork. Each estimate should
come with a gauge of your confidence in it.

While good estimates are reasoned and justified, bad estimates are little
more than a stab in the dark. This is a standard engineering issue, requiring
a perceptive and flexible management. It has been an engineering issue for
centuries.2 Managers and planners deal with estimations for the whole project.
That’s exceptionally hard. We’ll just look at estimating single programming
jobs. Thankfully, that’s not exceptionally hard, just really hard.

Why Is Estimation So Hard?

I live in Cambridge, UK; my family lives in Bristol. Software timescale estima-
tion is like estimating how long it will take me to visit them. Given a strong
tailwind and no traffic, I can tell you how long the drive takes. But if there is
road work or a traffic jam, if my car breaks down, I leave late, or I travel at
rush hour, then this estimate becomes a lot less reliable. Foreseeing some of
these problems, I will commit to a likely arrival window. I know the best-case
journey time; I have an idea of the worst case (I’ve had some nightmare trips).
I can judge an expected arrival time somewhere between the two. However, I
can’t ever fully account for the unforeseen—if my car breaks down, I’m stuck.
Mobile phones are helpful in this situation: If I’m going to be late, I can call
and let my folks know to keep dinner heated (and preferably out of the
dog’s bowl).

The software development process follows a similar pattern. When
planning software, there are foreseeable potential problems to account for,
third-party dependencies to manage, and a need for contingency to cope
with the unforeseen. You can give a best-case development time for a slice of
work, and you need to consider a worst-case time. Of course, the impact of a
bad guess isn’t just your dinner inside the family pet—it’s the success or
failure of a project, and possibly the solvency of your company.

2 For a Biblical example, see Luke 14:28!

404 Chapter 21

This begins to show us why estimating the length of a development task
is so hard and so crucial. There are plenty of things conspiring to make this a
tricky task:

There are lots of variables to consider. They come with the inherent
complexity of the problem, the implications of your code design, and
the existing software ecosystem it must fit into. Some of those variables
may change from day to day.

Requirements will change under your feet, leading to software scope
increases. As the feasibility of a project is investigated, new problems and
user-level requirements are unearthed at a phenomenal rate. This makes
the estimation job tricky—you’ve got to work hard to keep up with it all
(see “Requirements Specification” on page 371 for strategies to man-
age this).

You can’t give an accurate estimate without knowing all the work involved.
Perhaps you’ll need to rework existing libraries that don’t provide enough
functionality or refactor to enable safe extension of existing code. If you
haven’t discovered this, then your estimate will be too low.

Few projects start on a blank canvas. You must learn the existing system
before you can estimate how long work will take. You seldom have time
to do this properly before the estimate is delivered.

If the task is something that has not been attempted before, then it is
harder to figure how long it will take. You have no prior experience to
base the estimate on.

Many projects rely on third parties, and these dependencies can prove to
be nightmarish. The source of the dependency could be an operating
system vendor, a small but significant code library, an external specifica-
tion, even the customer. You can’t control the third-party delivery; your
estimates depend on it shipping on time. This increases the risk of delay
and must be monitored carefully.

Estimation is hard. But that doesn’t absolve us from responsibility. We
must account for the things that are genuinely foreseeable: Like road work
or bad weather, we can reasonably expect some of these pitfalls. You need to
find the right balance of pessimism, optimism, and—somewhere in the
middle—realism.

KEY CONCEPT Creating timescale estimates is a genuinely hard task. Don’t underestimate how much
work is involved. Appreciate the repercussions of making a bad estimate.

T H E W E A K E S T L I N K

Unforeseen problems can trip you up in unexpected places. Recently, my linker
couldn’t cope with the size of executable image I was generating, and I needed
to go off and fix the linker before I could run my code. The development time
more than tripled its original estimate.

How Long Is a P iece of S t r ing? 405

The story doesn’t end there: It’s not just making the estimate that’s hard.
Living with the consequences can be just as painful.

Estimates become contractual, used to set delivery schedules with cus-
tomers. Once set in concrete, these dates are hard to move and costly to
get wrong.

It is hard to work to someone else’s estimate—were you not up to the
task if you miss a deadline, or was the estimate wrong?

New tasks are often discovered during development which need account-
ing for and slotting into the schedule, pushing everything else back.
Similarly, you’ll only discover specification problems once the develop-
ment work is actually under way. These specification changes will affect
the amount of work required, and therefore the time estimate.

There are always unforeseen problems. You can absorb the impact of
small problems by working a little harder to stay on schedule. You didn’t
need to sleep this month, did you? But large problems introduce buckets
of extra work and cause schedule mayhem.

The estimate is just another responsibility: You are not only accountable
for creating the code, and for it to be good, well-designed, maintainable
code; you also have to deliver it to a timescale that you have promised.
Pity the poor programmers!

Under Pressure

The software factory is not a reasonable place, and the temptation to give
optimistic estimates is strong. Programmers new to the estimation game are
particularly vulnerable. There is pressure from above to promise short
schedules so that we can win contracts, announce new releases, maintain
internal political stability, and so on. This is an understandable, sad reality;
no company exists in a vacuum, and the shareholders want to be kept in
caviar and champagne.

But the pressure isn’t entirely from above. It also comes from a program-
mer’s personal pride. Techies like to promise an optimistic timescale; we are
motivated people who are proud of what we deliver and how fast we can do
it. It’s tempting to think, “Oh, it shouldn’t take too long.” But there’s a very
real difference between a quick code hack or prototype effort and a full,
production-ready piece of work. Our timescales must be grounded in reality,
not in hopeful ideals.

KEY CONCEPT Everyone (including you) wants shorter development timescales. Don’t kid yourself
about what is technically possible in the given development time. Don’t promise a hack
timescale when you must deliver production code.

We must be aware of this pressure and react to it carefully. Beware of the
danger of an extreme opposite reaction. It is easy to be a pessimistic doom-
sayer, to imagine a task lasting indefinitely, and compensating with a stupidly
large timescale estimate. The very real danger of an overestimate is that
projects inevitably expand to fit the available time! You’ll always find bits of
code to polish when there are a few days spare.

406 Chapter 21

In an ideal world, project deadlines are established after a feasibility
review that proves the project is possible in reasonable time. The Real World
is rarely that kind. Instead, you are given a deadline (“Get it shipping by
Christmas”), and then have to figure out how to deliver. If the work doesn’t
fit, you must negotiate how you’ll get there: Remove features, add program-
mers, outsource risky parts, or perhaps provide a later upgrade with more
functionality. Sometimes this planning becomes more of a marketing
exercise and gets quite creative!

No one said that it was supposed to be easy.

Practical Ways to Estimate

With the increasing pressure to be prophets as much as programmers, how
do we meet expectations? Estimation, like many other skills, is something you
get better at it with experience. It’s not an old man’s game, but if you don’t
work against a backdrop of schedules and set yourself targets to work toward,
then you won’t grow in the skill. Practice makes perfect.

In the Real World, we rarely have the luxury of practice projects or a
sandbox to experiment with timescale estimation. Somewhere along the
road from junior programmer to guru, you have to pick up this skill! Sadly
there is no magic formula or easy recipe for coming up with an estimate. But
following these simple steps will immeasurably improve your accuracy:

1. Break the task down into the smallest blocks possible, effectively
performing a first pass of system design.

2. When you reach a fine resolution with suitably comprehensible parts,
provide a timescale estimate for each block in man-hours or man-days.

3. Once you’ve estimated all of the individual timescales, place them back-
to-back, add up their durations, and voilà: an instant timescale estimate.

A W A R S T O R Y

The company had just taken the biggest and most strategically important order in its
five-year history. This one was make or break. Sales fought hard to close the deal,
agreeing to a hard customer deadline: The software must ship by the end of the
year. With contracts signed, everyone patted themselves on the back.

But no one had the time (or wit) to confer with the technical staff to ensure that the
project was feasible. It wasn’t. Managers started panicking, but with an immobile
deadline and fixed feature set, there wasn’t much they could do. The engineers com-
plained and waved their project plans aloft, but were told to “just make it fit.” They
worked hard day after day, late into the night, and were soon exhausted. Each week
saw them slip further away from the hopelessly optimistic schedule.

In one last herculean effort, they completed the code by their deadline, only to
be tripped up by an unforeseen hardware problem that delayed the project by two
months. There was no contingency in the plan to account for this disaster.

The project was a failure, the engineers got burned out, nerves were fraught, and
the customer was unhappy. Not long into the next project, most of the development
team quit.

How Long Is a P iece of S t r ing? 407

This strategy works because you can fully comprehend and accurately
estimate a series of smaller activities more easily than one gargantuan task.
Estimates should never be made in units larger than man-days: Such large
tasks show that you don’t really understand the problem yet; your estimate
cannot be at all reliable. Mercilessly decompose large tasks until you end up
with fine-grained—estimatable—work units.

KEY CONCEPT Time estimates should be made for small tasks whose individual scope is easy to under-
stand. The measurement should be in units of man-hours or man-days.

Of course, development work can often be parallelized between people;
by breaking it into small comprehensible parts, we can juggle tasks around
and work out how to run them concurrently, bringing forward the completion
date. This becomes a project planning issue.

Set aside a reasonable amount of time to make an estimate. The requisite
high-level design is not immediate; don’t presume that timescales can be
guessed easily. You’ll fool yourself by producing a finger-in-the-air estimate
with no foundation on prior experience and no basis in a system design.

It is vital to consider every activity that will be required to deliver the
software. This means including time for:

Performing adequate thoughtful design

Any exploratory work or prototyping required

The actual code implementation work

Debugging

Writing unit tests

Integration testing

Writing the documentation

Any research or training you’ll be undertaking in the period

This list shows that less time than you might expect is spent writing code,
compared to other peripheral activities. Programming isn’t just about cutting
code; don’t forget to include testing and documentation in your timescale
estimates. They are essential. Without testing and documentation, you’ll
deliver code that doesn’t work properly and can’t be fixed later because no
one knows how to use it.

Don’t try to calculate elapsed time (by incorporating distractions from
other projects, reading email, browsing the web, drinking coffee, and
answering the call of nature). It will inevitably be very different from the
actual time spent on the task. The task may run concurrently with another,
or be interrupted to provide space for another project. We deal with this
on a project plan (described in “The Planning Game” on page 409).

How conservative should your estimate be? Should you veer toward
optimism or pessimism? The correct answer is: The estimate must be realistic.
Anticipate likely problems and factor them in, but don’t invent 1,000 ways a
simple task could fail and use it as an excuse to give an inflated estimate.
Don’t overestimate just to cover your tracks, or to give yourself more slack to

408 Chapter 21

fill with games of solitaire. Our individual task estimates can’t mitigate for
everything that can go wrong. Risk should be managed at the project level; the
scheduler takes our estimates and works them into a reasonable plan with
suitable contingency.

To make more accurate estimates, consider these important issues:

The more concrete and specified a project is, the easier it is to estimate.
Have you been given a good spec?

Without a specification, there is no traceability, and a lot of the work
involved in each package will be assumed. Two people could assume very
different things about the project scope and expect different things at
the project deadline. Rigorous specifications avoid this problem.

Delivering the wrong system on time can be just as damaging as
delivering the right one, late. If there is no specification, write one and
get it approved by the task stakeholders.3 At the very least, document all
assumptions that you have made about the work.

The more functionality requested, the harder the estimate is to make. Try
to shave off all unnecessary work. An excellent approach is to stage the
delivery of the software, giving estimates for each deliverable iteration.

Feed estimate information back upstream. The project decision-
makers can then balance the importance of each requirement against
its technical difficulty. It helps to see which small feature requests will
double development time.

If you don’t fully comprehend the entire problem, then you’ll make a
very bad estimate. Spend time getting to know exactly what the software
must do. If you need more time to make an estimate, then ask for it, or
indicate your confidence in the time values. Never guess an estimate
and hope that it’s about right—if you can’t justify an estimate, then
don’t give it.

If the task depends on third-party input, then it is harder to estimate.
Who is responsible for chasing the third party for delivery? You may
need to factor this into your development estimate. Get the third party’s
estimated delivery date, and then add time to integrate its work with your
codebase (it never “just slots in”). Consider how much you trust the third
party, and include a suitable amount of contingency as a buffer to
accommodate problems.

Different people will work on the same task at different rates. This is
natural; everyone has a different set of skills, level of experience, confi-
dence level, and relative number of distractions (e.g., older projects
vying for attention or home commitments). You need to gauge how
fast you work, and have a good understanding of the task you’re
embarking on. Estimation is personal.

KEY CONCEPT Understand whether you’re creating an estimate for work that you will do (on a system
you understand well) or that someone else will do (who might have to learn it first).

3 Of course, that will take time you didn’t plan for!

How Long Is a P iece of S t r ing? 409

Don’t accept pressure from above to be optimistic. Don’t promise
unrealistic timescales, thinking you can make it up if you work over-
time. Have an appropriate response to managers who say, “It just has
to be done faster.”

Perhaps most importantly, never plan up front on working overtime.

A simple way to improve your estimates is to ask for help with them. If
you don’t understand a problem, then find someone who does, and ask for
his or her opinion. James Surowiecki’s book The Wisdom of Crowds describes
how large groups of people can be smarter than an elite few. Taking this
extreme approach, get all the developers in your team to give rough esti-
mates for all tasks on the plan, and then take the average of their individual
estimates. That estimate might not be too far off!

KEY CONCEPT Don’t make estimates in isolation. Solicit other people’s opinions to help improve your
estimates.

The Planning Game

A few disconnected timescale estimates are no use to anyone. You have to
join them up and convert them into something useful: a project plan with
which you can manage the development schedule. Based on their individual
timescale estimates, tasks are assembled on a timeline and allotted to devel-
opers. Dependencies between tasks are identified and factored in to the plan
(obviously, dependent tasks cannot start before their dependencies have
completed). The final result is a pictorial chart with time running along the
horizontal axis and tasks positioned concurrently on it, looking something
like Figure 21-1 (a variant of the classic Gantt chart).

Figure 21-1: A Gantt chart

Project planning is about allocating tasks to developers and working out
how to schedule development effort. But that’s the easy half of the game. The
important part is risk management—creating a safe and sensible plan in the
face of uncertainty and hidden traps.

The safest project plans:

Reduce the critical path
This is the single line of back-to-back tasks that trace from the start to the
end of the project, shown by the darker blocks in the diagram above. A
slip in any one of these tasks will force back all the tasks depending on it
and push out the final deadline.

Fred

Hilda

Gertrude

Harold

Task A

Task B

Task D

Project
begins

Project
ends

Task C

Task E

Task F

410 Chapter 21

There is always—by definition—a critical path on the plan. This is
what gives project planners grey hair! We aim for the optimum juxta-
position of tasks to provide the smallest (or least risky) critical path.

Are not massively parallel
The standard planning misconception when trying to compress a large
project is that throwing more developers at a problem will speed it up.
This rarely works. An extra burden is imposed when managing more
people—there are more lines of communication, more people to coordi-
nate, and more points of failure. This is the subject of Brooks’s seminal
essay, “The Mythical Man-Month.” (Brooks 95)

You mustn’t over-parallelize a project plan, and you shouldn’t
parallelize individual developers, either. If you put one developer against
two tasks concurrently, you can’t expect them to finish in the same length
of time as those two tasks serialized. This sounds obvious, but it often
happens in practice: You might be asked to support an old project and
simultaneously start development work on another. Significant time is
taken up switching between tasks, which reduces your overall efficiency.
If you did the two tasks back to back, then you’d complete faster (but
probably fail to meet the business requirements of your organization).

Are not too long
A lengthy project plan is too ambitious. One small problem on the
critical path at any point could jeopardize the entire project.

This is where iterative and incremental development (see “Iterative
and Incremental Development” on page 432) brings benefits, by break-
ing large development schedules into smaller, less risky iterations that
can be more easily managed. This makes the plan more dynamic; it is
effectively re-created at each delivery point. Although this approach is
inherently safer and will highlight problems earlier in the development
process, it consequently involves more work overall. Many managers don’t
like this—they like the illusion of an up-front waterfall plan that cannot
be deviated from.

Good plans don’t just butt timescale estimates back to back. They
account for the reality of the software factory and build in important risk-
reducing structures. This includes accounting for:

Vacation
The amount of vacation allocated to each developer is known in advance
and must be built in to the schedule. We must also include public holi-
days and any company shutdown over a Christmas break. On average, a
developer takes half a day a week as vacation.

Loading
To be realistic, the plan must factor in normal interruptions (meetings,
training, sickness, and so on). It’s normal to employ an 80 percent load-
ing on the plan for each developer to accommodate this. People who are
in more demand are spread more thinly. You must be honest about this,
or the “popular” developers will slip against the schedule, despite their
hard work, and will quickly become frustrated.

How Long Is a P iece of S t r ing? 411

Contingency
This is the biggie. You have to account for the problems seen looming on
the horizon and provide space for the unforeseen disasters that might
stand between you and your release date. This is where the risk manage-
ment rubber hits the road.

Risk is best managed at this project level, rather than within individual
timescale estimates. On a development plan, we can accommodate poten-
tial problems by making informed judgments in full sight of the whole
development process. The alternative, a series of pessimistic estimates
placed on a plan, will inevitably be wildly out.

The million dollar question is: How much contingency should you
add in? You can’t simply multiply the plan by three and call it contingency!
A good strategy is to give each task a confidence value. Based on this,
provide an extra pseudo-task on the plan for the riskiest tasks as “danger
time.” Make this a fraction of the original task length, based on your
confidence value.

Integration
A task is not done once a component is code complete and unit tested.
Reserve adequate time to glue all of the components together, and to
test that the entire system works as expected. There will be debugging
required and issues that only surface when components meet (perfor-
mance issues or interface mismatches, for example).

Support
The longer people have been within an organization, the more call there
will be on them to support old projects, answer bug reports from the field,
and so on. Ensure that this is incorporated into their loading, and that
they then stick to the plan, highlighting when other projects are demand-
ing more of their time.

Projects slip subtly when key people are stretched in all directions.

Mopping up
Provide time to tidy up at the end of your plan. In the battle to release
software, corners are cut to meet the deadline. This is known as amassing
technical debt. Despite our preaching about good design and coding prac-
tices, this isn’t necessarily evil; it’s quite pragmatic. However, you must
set aside time to tidy up and maintain a good, clean codebase. Otherwise,
the next development iteration will build upon a broken, crufty codebase.
Left unaddressed, this increasing pile of short-term hacks will become a
burden to your programmers.

Think of this exercise as part of the previous job (despite occurring
after the release deadline), and not as the beginning of the next one.
Pay off your debt in the project that accrued it.

Never let these tidy-ups been viewed as optional extras; they are an
important integral part of the project. In the frantic world of the software
factory, optional tasks placed at the end of the schedule simply will not
happen. Guard these tasks carefuly.

412 Chapter 21

KEY CONCEPT Create development schedules that will leave your codebase in a clean state. Plan to
repay your technical debt.

An in-depth investigation of project planning is outside the scope of this
book; it’s a large, complex task. But it is important to understand the basic
principles. You must be able to develop software according to a plan, and
must understand the rationale behind a plan to truly understand what you’re
asked to do.

The are many planning models: formal methods of making educated
guesses. Program Evaluation and Review Technique (PERT) is a classic planning
method developed in the 1950s by the US Navy. It’s like my arrival window
calculation when driving to Bristol. For each task, you estimate three times
corresponding to different likelihoods of meeting delivery dates: a best case,
worst case, and likely case. This ties into a scheduling procedure that identi-
fies the critical path and calculates the best- and worst-case project completion
time. The bigger the gap between each task’s estimate, the bigger the risk
associated with the task. Perhaps it will need more careful management or
to be given to a more experienced member of the staff.

Boehm’s Constructive Cost Model (COCOMO) dates from 1981 and is an
estimation model based on analysis of real software projects. It has evolved
into COCOMO II, which more accurately reflects the nature of modern soft-
ware projects. (Boehm 81) Projects in Controlled Environments (known by the
rather contrived acronym PRINCE) is a classic British piece of bureaucracy
embodied in project management form; if it could mandate standing in
queues, it would!4 Its scope is the entire project life cycle, from start to closure.
The PRINCE planning process comprises seven steps, covering designing
the plan, through estimation and scheduling, to plan completion. It too has
evolved, into a method imaginatively called PRINCE2.

Keep Up!

How does a project get to be a year late?
. . . One day at a time.
—Frederick P. Brooks Jr.

As work slips and the project deadline looms, engineers work very hard and
get little credit. The idea of rigorous testing is squeezed out in a mad rush
to get something passable out the door on time. Bad estimates are a prime
cause of this software circus. They foster managers’ incorrect assumptions
about the difficulty of the development work, since they have no way to
know the schedule was incorrect in the first place. When we make an
estimate, it is therefore essential to get it right.5

4 Queueing is a popular British pastime, like drinking tea and playing cricket.
5 Ironically, good estimates can also cause this problem. DeMarco and Lister recount a genuine
episode where a project lead reported their 100 percent confidence that the project would
complete on time and to budget. (DeMarco 99) The managers, taken aback by this unexpected
piece of good news, consequently decided to bring the deadline forward! No matter how good
the engineer, you can always build a better manager to destroy his or her hard work!

How Long Is a P iece of S t r ing? 413

Given a realistic estimate for a software task, there are a few key ways to
keep to schedule and prevent this kind of last-minute squeeze:

When starting a new task, check whether or not the allotted timescale
really is practical—especially if you didn’t have the luxury of making the
estimate yourself. Even if you did make the estimate, start by verifying it.
Don’t rush headlong into a code editor, hoping that you can complete on
time; be sure that you are genuinely able to deliver. A little sanity check-
ing up front can save you from a world of pain and embarrassment later.

Refer to the schedule—it matters. Keep a constant eye on how long
you’re taking against scheduled time. Write down your timescales and
keep them close at hand. Add personal estimates for any intermediate
tasks that don’t figure on the main software plan, and run yourself as a
mini-project. If you hit your internal milestones, you’ll have more chance
of keeping on track with your externally visible timescales. Repeatedly
review your list—at least once a day.

If you discover that you won’t hit the deadline, make this known as
soon as possible so the plan can be adjusted. Like phoning ahead when
I’m traveling to Bristol, it is better to get this fact out in the open as soon
as possible. If the possibility of overrun is foreseen, then different sched-
uling decisions can be made to minimize the impact of the overrun.

This happens far too rarely in practice. If an important project has
five programmers who must all report their progress, then none of them
wants to be the first one to admit falling behind the schedule. This is
known as playing schedule chicken. The result is everything seems to be
fine, but then suddenly the project is hugely late. It was getting late one
day at a time, but no wanted to admit it. Break this cycle and broadcast a
warning as early as possible.

KEY CONCEPT Continually monitor your progress against the plan. Then you will never be surprised
that your task has slipped.

I T ’ S A L L A B O U T P L A N N I N G

The development team was getting quite large, and our working space had become
really cramped. After a lot of effort, a new office was found and the team was told
on Friday that we’d be working in the new location on Monday. Over the weekend,
all the computers, servers, cables, routers, printers—everything—would be manhan-
dled into vans and transported to the new location. We were assured that it would
be seamless and that everything would be ready on Monday morning.

On Monday morning, we turned up at the new office and, sure enough, everything
had been set up and worked perfectly! All the IT infrastructure had been installed.
The servers were back online and fully operational. Everyone’s workspace had been
set up. A truly herculean effort.

But there was one small problem: There were no chairs. Not one. They had
somehow been forgotten in the move plan, had gotten lost, and couldn’t be found
anywhere! We had no chairs for three days.

Now that’s what you call planning.

414 Chapter 21

Do as much work as necessary, and no more. It might be fun to add that
cute extra feature. But don’t. There are more important—planned—
things to be done. Ask for important extras to be scheduled in later if
they aren’t really needed now. An ill-chosen detour on my route to Bristol
will really set back my arrival time—even if it is a lovely scenic drive—so
I take the sensible straight route to arrive on time.

Careful design exploiting modularity tends to reduce component depen-
dency, and so reduces the ill effects of slippage and the bunching up of
tasks on the schedule. Agree on component interfaces early on, and
provide stub components so development can continue while others
parts of the system are being built.

Write good code, with a thorough set of unit tests. As keen craftsmen,
this should be self-evident! It helps to reduce debug and maintenance
time radically.

Don’t forget to finish coding with time to document and test
thoroughly. Don’t build up to a final coding sprint in the last few
days of the schedule. You need time to prove that your code works.
Otherwise, you’ll slip as debugging inches out beyond your deadline.
If you don’t have time to complete all this work, say so and get the
timescale extended. Don’t skip these things—they’ll bite you later.

Watch out for changing requirements and specifications and track how
this will affect your timescales. If it’s an adverse change, report it immedi-
ately. Don’t silently absorb functionality changes.

Be strict with distractions. Don’t work on other tasks unless they are
accounted for on a plan. Learn to say no to old projects, extra work from
other departments, and intrusions from the phone and email.

Guard against these external distractions, even the short ones that
seem harmless; they can really lower the quality of your work. It takes
time to get into the zone, that productive place where your mind is on the
task and the code is flowing freely from your fingertips (psychologists
call this state flow). Even short distractions interrupt this effectiveness,
and when you return to work, you must spend more time getting back
into the zone. The impact of interruptions can be more than three times
their duration. (DeMarco 99)

Foster a development culture that’s conducive to getting work done.
Respect each other’s brain-space: a person’s time to think and work. Make
sure that every meeting really is necessary—don’t pull developers into
random, time-wasting get-togethers.

Maintain a positive and optimistic approach. Believing a project is
doomed is a surefire way to make that happen in reality.

How Long Is a P iece of S t r ing? 415

In a Nutshell

Good luck is a lazy man’s estimate of a worker’s success.
—Anonymous

Timescale estimation and planning help us to develop commercially
successful software. However, there is no rigorous method to accurately
determine software timescale values. That’s why it’s estimation.

Aim to develop your estimation techniques, and become wary of potential
problems that can ruin your neatly scheduled development plan. Learn how
to work to a schedule and to identify when your schedules are impractical.

See Also

Chapter 13: Grand Designs
Good timescale estimates can only be based on a sound initial code
design.

Chapter 19: Being Specific
Making an estimate requires a well-defined scope of work, which must be
captured unambiguously in a specification.

Chapter 22: Recipe for a Program
Development methodologies determine how tasks are slotted together
and placed on a project plan.

Good programmers . . . Bad programmers . . .

Create good timescale esti-
mates by considering all parts
of the development process,
based on a sound component
breakdown

Try to produce tested code
with full documentation, prop-
erly integrated within the
timescales

Highlight timescale problems
early on so that they can be
dealt with

Produce hopeful estimates,
based solely on hunches and
gut feelings

Can hack out some code within
their timescale estimates but
will not produce production
quality, bug-free code

Think that admitting a time-
scale problem is a sign of weak-
ness, and work themselves silly
trying to catch up—when they
fail, they look silly (and tired)

416 Chapter 21

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 550.

Mull It Over

1. How can you rescue a slipping project and bring it back on track?

2. What’s the correct response to having a deadline imposed on you before
feasibility or planning work commences?

3. How do you ensure that a development plan is genuinely useful?

4. Why do different programmers work at different rates? How can you
reflect this on the plan?

Getting Personal

1. What percentage of the projects that you’ve worked on have run to
schedule?

a. For those that did: What contributed to the success of the planning
effort?

b. For those that failed: What were the main problems?

2. How accurate are your timescale estimates? How far off target are you
normally?

PART VI
V I E W F R O M T H E T O P

The air’s getting thinner, but the view’s getting better.
Several hundred pages ago we started our journey at
the lowest level, grubbing around the seedy underbelly
of source code construction. In this last section we complete our journey
by climbing to the very top of the software development mountain and
surveying the territory below. I hope you’re not afraid of heights.

Here we’ll look at how the final parts of the jigsaw fit together.

Chapter 22: Recipe for a Program
The code cookbook: how we actually write software in our development
teams. This chapter describes both software development methodologies
and software development processes. It shows how we manage to pro-
duce programs in a predictable, timely manner (or, at least, attempt to).

Chapter 23: The Outer Limits
A look at the different code-writing disciplines out there: applications
programming, games programming, distributed programming, and
more. Each of these branches of programming has its own special
problems and important skills. Understanding these will equip you
to write the most suitable code for each occasion.

Chapter 24: Where Next?
The end is in sight. . . . This is the final, tearful farewell. We look at where
to go next in your continuing study of code craft. This book is just the
beginning.

R E C I P E F O R A
P R O G R A M

Code Development
Methodologies and Processes

22

In this chapter:

Programming styles

Software development
processes

How they affect our code

They always say time changes things, but you actually have
to change them yourself.

—Andy Warhol

Ingredients
1 bunch programmers (preferably fresh)

1–2 tsp language

1 target platform

1 project manager

1 pinch luck

1 sachet dehydrated training

Various industry buzzwords

Instructions
Marinade programmers in training. Add lan-
guage, target platform, and season with project
manager. Stir briskly until well mixed. Add
buzzwords to taste. Sprinkle evenly with luck
and leave to cook in a hot software oven until
deadline. Remove, tip onto wire rack, and allow
to cool before handing on to customer.

420 Chapter 22

I know at least four recipes for sponge cake. They vary depending on
whether you want a fat-free or an egg-free cake and also on the method you
want to prepare with. Writing software is like that. There is no one recipe or
magic formula; the same system could be built in many different ways, with
no one necessarily better than any other. There are different ingredients that
you may choose to feed the development process and different methods to
follow. Likely as not, they will each produce a slightly different cake; different
in terms of features, structure, stability, extensibility, maintainability, and more.
These recipes describe the software life cycle : the phases of development rang-
ing from the very beginning (conceptualizing the software) to its very end
(decommissioning it).

As software engineers, we should be able to predictably (and to some
extent reproducibly) create software by following a defined procedure. As
software craftsmen, we should be able to harness a particular development
procedure as a tool to help fashion the best software possible. In this chapter,
we’ll investigate some of the recipes for creating software; we’ll compare,
contrast, criticize, and see how they affect the way we code.

We programmed a ZX spectrum differently from a modern palmtop PDA,
and that differently from a mainframe stock control system with a high-capacity
web interface. We program differently alone than we would working in a pair,
and differently than we would in a 200-strong worldwide project team. Differ-
ences in the target platform and development team (and their levels of
experience) will shape the choice of recipe. The art of programming is much
more than just edit, compile, link, and run.

KEY CONCEPT Good programmers are aware of how they program—the methods and practices that
shape their work.

What are these programming recipes?

Programming Styles

A programming style describes how a software problem is mapped out and
how its solution is decomposed and then modeled by the target language.
We have to model a solution, since useful systems can’t be entirely held in the
mind of a single developer. The programming style shapes how we split a proj-
ect up into manageable pieces; it is the design paradigm used to express your
code’s intent.

Different programming languages support different programming styles.
Some are tailored to a specific one; some cater for a number of them. The
programming styles fall into two main camps: imperative and declarative.

Imperative (or procedural) languages allow you to specify the explicit
sequence of steps to follow to produce the program’s output. It’s what
most programmers are used to.

Declarative languages describe relationships between variables in
terms of inference rules (or functions), and the language executor

Recipe for a P rogram 421

applies some fixed algorithm to these rules to produce the result.
(This description might turn into understandable English once
when we take a look at functional and logic programming.)

The programming language you choose will go some way to determine
the style you design with. (However, it would be better to select a language
that supports the style you want to use.) The programming language is not
the ultimate determinant, though. It is perfectly possible to build structured
code in an object-oriented language, in the same way that it is possible to write
hateful code in any language. The next few sections describe the popular
programming styles.

Structured Programming

This common imperative design method applies algorithmic decomposition—
a process of breaking a system into parts, each of which represents a small
step in the larger process. Design decisions focus on the flow of control and
create a hierarchy of functional structure. As Dijkstra observed, “Hierarchical
systems seem to have a property that something considered as an undivided
entity on one level is considered as a composite object on the next lowest
level of greater detail: as a result, the natural grain of space or time that is
applicable at each level decreases by an order of magnitude when we shift
our attention from one level to the next lower one. We understand walls in
terms of bricks, bricks in terms of crystals, crystals in terms of molecules, etc.”
Indeed, it was Dijkstra’s seminal paper “Go To Statement Considered Harmful”
that popularized structured programming. (Dijkstra 68)

Structured programming is a control-centered model and follows a
top-down design technique. You start with the whole program in mind
(e.g., do_shopping). Then you decompose it into sequential sub-blocks (e.g.,
get_shopping_list, leave_house, walk_to_shop, collect_items, pay_at_checkout,
return_to_house, put_shopping_away). In turn, each sub-block is decomposed
until it is at a level that can be easily implemented in code. The blocks are
assembled into a whole, and the design is complete.

The implications of a structured approach are:

Each step of the decomposition should be within the programmer’s
intellectual understanding. (Dijkstra said, “I now suggest that we confine
ourselves to the design and implementation of intellectually manageable
programs.”)

Control flow should be carefully managed: Avoid the dreaded goto state-
ment (an unstructured jump in the code to some arbitrary place), and
instead prefer functions to have a single entry and single exit point (this
is known as SESE code).

Looping constructs and conditional statements are used within func-
tional blocks to provide code structure. Short-circuit jumping out of the
middle of a loop or from within a nested block of code is held in similar
disdain to goto.

422 Chapter 22

Common structured programming languages are C, Pascal, BASIC, and
more venerable languages like Fortran and COBOL. Most other imperative
languages can be easily used to write structured code, although it’s not their
design specialism; structured programmers often adopt new fashionable
languages without adopting new idioms.1

Object-Oriented Programming

Booch describes OO programming as “A method of implementation in which
programs are organized as co-operative collections of objects, each of which
represents an instance of some class, and whose classes are all members of
a hierarchy of classes united via inheritance relationships.” (Booch 94) It is
another imperative style, but one that allows us to more naturally model the
world in our code designs; we focus on the interacting entities being modeled
rather than on the notion of a particular flow of execution.

This is very much a data-centred model (as opposed to structured pro-
gramming’s process-centric view). We think about the life of our data and
how it moves about, rather than the sequence of steps that need to be taken
to get the job done. Objects (the data) have behavior (they do things) and
states (which change when they do things). This is implemented at language
level by methods on classes of objects. We think of OO programs as sets of collabo-
rating software components, rather than as monolithic lists of CPU instructions.
OO design has allowed us to effectively model larger systems.

Object-oriented programming exploits the following computer science
concepts:

Abstraction
The art of selective ignorance—abstraction allows us to design code
so that the higher levels of control can ignore gory implementation
details below. Who cares whether get_next_item does a binary search in
a list, indexes an array, or makes a phone call to Frankfurt? It returns
the next item (whatever that is), and that’s all the calling code has to
care about.

Dijkstra’s earlier exposition of hierarchy—go back and read it again—
revealed a form of abstraction.

Encapsulation
Encapsulation is the placing of cohesive units of execution into
one tightly bound package that can only be accessed through a
well-defined API: a code capsule. Users of that capsule can only call
the defined API and cannot tinker directly with internal state. This
provides a clear separation of concerns, helps us to reason about
metaphysical questions like What is an object? and provides some
assurance that no evil programmer can tinker with your innards
when you’re not looking.

1 This is not necessarily a Bad Thing, unless the programmer believes that he’s moved beyond
structured coding without changing the way he designs code.

Recipe for a P rogram 423

Inheritance
A mechanism to create an object type that is a specialized version of a
parent object. Consider a parent type called Shape, with inherited child
types Square, Circle, and Triangle. The inherited types provide more detail,
specializing behavior (for example, knowing the exact number of sides
the shape has). Like any other programming concept, inheritance can
be abused to create unfathomable, surprising programs or leveraged to
create logically sound, elegant code. Good OO programmers know how
to create appropriate inheritance hierarchies.

Polymorphism
This allows the same code to use different underlying data types (what
most OO programming languages call classes) depending on the context
in which it runs. This technique emphasizes programming to explicitly
defined interfaces, not to an implicit implementation—polymorphism
provides a clear separation of concerns as you write code. There are two
types of polymorphism, dynamic and static.

Dynamic polymorphism, as the name suggests, determines the actual
operation to be performed at run time, based on the type of an operand
or target object. This often exploits inheritance hierarchies: a client that
deals with Shape types might currently be using a Square or a Triangle
object—which one is figured out at run time.

Static polymorphism determines the exact code to be run at com-
pile time. Language features that provide static polymorphism include:
function overloading (functions with the same name accept different param-
eter lists—the compiler deduces the correct function to invoke from the
arguments supplied), operator overloading (where you can define certain
operations on types—including +, !=, <, and &—these functions are called
when the types of operands match), and generic programming facilities like
C++’s template specialism (where you can overload a template based on the
template parameter type).

These facilities are all possible to use in non-OO languages, using non-
OO practices. However, OO languages express them directly and OO designs
exploit them to create a cohesive system.

Object-oriented programming started with Simula around 1970 and has
been recently popularized by C++ and Java. One of the few pure OO program-
ming languages is Smalltalk. These days, OO is en vogue, and there are many
OO languages; a number are structured languages with fashionable OO
bolt-ons.

Functional Programming
This is a declarative programming style based on typed lambda calculus, a more
mathematical model of programming. You work with values, functions, and
functional forms. Functional programs are generally compact and elegant,

424 Chapter 22

although seldom compiled. They are therefore reliant on a language executor.
The program’s performance is governed by these executors—they can be
quite slow and memory hungry.2

The structured and OO styles are far more popular in mainstream use
than any declarative languages, although that doesn’t diminish the useful-
ness of this breed of programming. They have different strong points and
uses. Functional programs require a totally different approach to code design
from the procedural methods.

Common functional programming languages are Lisp (although it does
contain nonfunctional elements), Scheme, ML, and Haskell.

Logic Programming
This is another declarative style, in which you provide the executor with a set
of axioms (rules) and a goal statement. A set of built-in inference rules (over
which the programmer has no control) are applied to determine whether the
axioms are sufficient to ensure the truth of the goal statement. Program
execution is essentially the proof of the goal statement.

Interest in artificial intelligence was a huge boost to the development of
logic programming languages. They are widely used for automatic theorem
proving and in expert systems (which model large problem domains and gen-
erate specific answers based on the amassed body of knowledge).

The best known logic programming language is Prolog.

Recipes: The How and the What
There are two different aspects we’ll investigate. Software “recipes” employ
a development process and also a programming style. The two are separate and
connected:

The process is the larger picture: It describes the steps taken to construct
software. This encompasses the entire development organization, not just
the programmers. Most software construction is not a one-person job; the
process explains how to get a number of people to build a coherent whole.
Or at least, it should attempt to.

The programming style is the smaller picture: It is an underlying approach
for dissecting, building, and gluing software components together. It will
quite likely be influenced by the choice of development process, but
doesn’t have to be.3 It’s more likely to be influenced by a target language
or the designer’s prior experience.

2 This is not a problem solely encountered by declarative languages (for example Java has an
executor, the JVM). However, comparatively less optimization effort has gone into the declarative
breed of language executors—they’re more often backed by academic institutions than wealthy
corporations.
3 For example, OO styles are often picked in “iterative and incremental” processes; this is mostly by
convention. (If you don’t know what this means, don’t panic! It will all be explained in “Iterative
and Incremental Development” on page 432.)

Recipe for a P rogram 425

You’ll see both of these construction aspects called methodologies, so it’s
easy to get them confused.4 We’ll look in turn at styles and then development
processes. It’s important to have a grasp of the different development methods
out there, to give you a better programming worldview and to help you choose
a process, should you ever have the opportunity.

KEY CONCEPT Our software development efforts are molded by the styles and processes we employ.
These have an inevitable effect on the shape and quality of our code.

The following sections do not provide a textbook description of these
topics; they provide a suitably hand-wavy overview to help us compare and
contrast. If you want or need more detail, you can easily find a hard-core
software engineering textbook.

Development Processes

There are as many development processes as there are people who feel like
inventing them. Many are slight evolutions of one or two basic development
models. We’ll look here at those basic variants. Some of them are closely
related, as you will see.

Your choice of development processes determines how projects are
planned, how work flows between phases, and how the project team interacts.
Processes vary along a number of axes:

Thick/thin
A thick development process is heavyweight and bureaucratic. It generates a
lot of paperwork, regiments developer behavior, and presumes a certain
team structure. It’s characterized by the ISO 9000 organizational model,
where every work procedure is slavishly written down in great detail,
without regard for whether the process is flawed or appropriate.

At the other end of the process spectrum, thin development processes
eschew unnecessary bureaucracy, favoring leaner, people-centric princi-
ples. Agile processes, described in “Agile Methodologies” on page 433,
are built around thin practices.

Sequencing
Some development processes sensibly recognize that the world is not a
predictable place and attempt to model and plan for this by running a
number of iterations around a process loop. This provides an opportu-
nity for the developers to incorporate feedback from one iteration into
the work of the next. They can adapt to the natural changes that occur
as software develops (changing customer requirements, unexpected
problems encountered, etc.).

Other processes are more regimented and linear—predicting a formal
progression of development from one phase to the next. They involve
heavy up-front planning efforts and try to foresee the future in great detail.
These predictions make it hard to change direction late in development.

4 If you want to make a distinction, then what I call programming styles are often called
methodologies (with a lowercase m). Development processes are often called Methodologies
(with an uppercase M); a kind of high-church/low-church classification. That’s far too subtle.
In this chapter I’ll stick to styles and processes.

426 Chapter 22

Design direction
A top-down design creates the system from an initial undetailed overview.
Each top-level package is refined and split into subcomponents. This
process iterates until the software is specified sufficiently to begin work.
Top-down design emphasizes planning and a good understanding of the
final system, and presumes that few requirements change en route.

The opposite, bottom-up design, specifies individual parts of the system
in detail and then determines how best to connect them to form a cohesive
whole. This helps us to leverage existing software components in a new
design. Modern processes tend to blend these two polar opposites—some
idea of the entire system is required to begin initial planning, then the
design progresses by identifying and coding low-level components and
objects.

No one style of development process is better than any other. Extreme
religious views are held about the correct position on any one of these axes.
The correct methodology for any project is determined by a number of factors,
including the development culture of the organization, the type of product
being developed, and the experience of the development team.

Now please buckle your seat belts for our roller coaster ride through the
range of software development processes. Hold on tight.

Ad Hoc
This is a starting point, but it’s really an anti-process. Here there is no process,
or else it is undocumented. Everybody works to his or her own agenda, no one
knows what anyone else is doing, and hopefully something useful will drop
out at the end. Perhaps your team works like Figure 22-1?

If an organization doesn’t know how it builds software, then it’s in an
unforgivable state, even if it’s a small outfit and it doesn’t think it needs a
process. In this state, there is no guarantee that the software will be delivered
on time, since there’s no accountability. Who can guarantee that all the
features will be implemented?

A lot of open source software is created using this chaotic method.5 If you
have an infinite number of monkeys and an infinite number of computers,
you might eventually get a program out—however it isn’t feasible to wait the
requisite infinite amount of time. Even back-of-napkin designs are a step
toward a more formal, predictable development process.

KEY CONCEPT Without a development process, your team is in a state of anarchy. Your software will be
produced by luck, not on purpose.

This case is development anarchy. Individual programmers may work
hard, and their heroic efforts might eventually produce something of value.
Such an outcome cannot be seriously relied upon, though. The team is likely
to be very inefficient and will probably never deliver anything of value.

5 And there, perhaps, it doesn’t matter so much, since there’s no paying customer and no formal
set of requirements—a lot of open source software is developed because the programmer feels
like it. However, applying some development process to ad hoc open source work will almost
certainly yield better programs.

Recipe for a P rogram 427

Figure 22-1: Engineering a release

Waterfall Model
The waterfall model is the classic software development life cycle model. It has
been much criticized for its simplicity (even for being old fashioned). How-
ever practically every other development process is in some way based on it.
It has numerous flaws, and yet it is still an instructional starting point in
process study. It’s modeled after a more conventional engineering life cycle
and was described by W.W. Royce in 1970. (Royce 70) It’s the most predictive
of the development processes.

Are all the
important bits

complete?

Code like mad

DEADLINE

Is the code
complete?

Does it do
what it’s supposed

to do?

Can you fudge
the spec?

Fudge spec

Is it at all
useful?

Does it pass
all unit tests?

You’re doomed

Have QA
noticed? Learn to write

better tests

Will
management

notice? Call all problems
“features”

Congratulations!
How did you ever

manage that?

Will you be
executed if you slip

the deadline?

Was it a stupid
idea in the first

place?

Do the
customers still

want it?

Was it to
budget?

Do you think it’s
good enough?

PROJECT CANNED

Can you blame
someone else?

You’re really
doomed

Do you have
another job
lined up?

Does your
company have
another project

lined up?

Tell the users
it’s a “beta”

release

Invent a new
deadline

It probably isn’t So what?
Liar (or

management
potential)

Quit You’re fired Move on to
another project

Return to start Ship it Write your own
methodology

No

What unit
tests?

Maybe

Will it pass
QA testing?

What QA
testing?

No, it
should
have

worked

It was a
complete
waste of

time

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

428 Chapter 22

It is a simple idea; the development process is broken up into a number of
stages, which run one after the other. This is likened to a waterfall because
of the steady, irreversible flow from one stage to another. Just as water always
flows downward toward the river, the development always flows downward
through each stage toward release.

The traditional waterfall model is shown in Figure 22-2.6 You can see
the five standard stages; these are described in the “Stages of Development”
text box. Once a stage is successfully completed, progression is made via
some gating process (usually a review meeting) to the next stage. The output
of most stages is a document; a requirements specification, a design specifi-
cation, or something similar. If the review finds an error or problem, it is fed
back upstream, setting that stage back again.

6 This is a common simplicifcation of Royce’s original paper. Royce did allow feedback up the
waterfall, but didn’t actively encourage it. Zealous managers imagined software development to
be a strictly linear process, and soon removed these upstream paths; the waterfall was tarnished.

S T A G E S O F D E V E L O P M E N T

The waterfall model describes five stages in the life of a software development process.
Many other processes identify the same phases but order them differently or change
their relative emphasis.

Requirements analysis
First, the requirements for the software project are established. This scopes its
goals, the services it will provide, and what constraints it needs to work within.
This step is often preceded by a feasibility study to kick the project off, or feasibility
is done at the same time. The feasibility study asks questions like: Will this project
work? Should we develop this software? What are the alternatives?

Design and specification
The established requirements flowing from the first stage are converted into software
or hardware requirements. The software requirements are then transformed into a
form that can be readily implemented in a computer program, perhaps by splitting
into separately developed components.

Implementation
This is where the programs are created. Each program or subcomponent is a unit,
and is unit tested. The unit test ensures that each unit meets its specification as
defined in the previous step.

Integration and testing
All units are combined and the whole system is tested. We test that the code
integrates correctly, that the entire system behaves as it should, and that it
implements all system requirements. When successfully tested, the software is
considered complete.

Maintenance
Finally, the product is delivered. We should never presume software is finished
when it ships; it is naïve to do so. The largest phase of the software lifecycle is
maintenance (see “Maintenance of Existing Code” on page 288). There will be
bugs to fix, unnoticed requirements to accommodate, evolution of the original
requirements, and other product support work for software deployed in the field.

Recipe for a P rogram 429

Following this model, you can’t easily backtrack to make changes; it’s like
a salmon expending massive amounts of time and energy swimming back
upstream. While salmon are genetically programmed to do this, program-
mers aren’t. This means that the process is not helpful when changes are
made late in the development process. The requirements must be fixed
before system design, and it is difficult to accommodate too many alterations
after the process is underway. Generally, problems at the design stage are not
discovered until system testing.

In its defense, though, it is simple to manage—at least conceptually—
and is the basis for most other development models. The waterfall doesn’t
scale well to very large projects; it works fine for a two-week project. Other
development models exploit this by running many, smaller, waterfalls over
the life of a large project.

Figure 22-2: The traditional waterfall model

SSADM and PRINCE

Although SSADM sounds like development only partaken by consenting
adults, it actually stands for Structured Systems Analysis and Design Methodology.
It is a structured and rigorous method following the waterfall approach,
perhaps the most regimented waterfall variant you’ll encounter.

It covers analysis and design, not implementation and testing, and is a
well-defined open standard, heavily used in UK government organizations.
SSADM consists of five main steps (each subdivided into many other proce-
dures), which for our purposes are self-descriptive:

Feasibility study

Requirements analysis

Requirements specification

Logical system specification

Physical design

Projects In a Controlled Environment (PRINCE) and its imaginatively named
successor, PRINCE2, were created in 1989 and 1996 to supercede SSADM.
Like SSADM, they define a heavyweight, document-centric model. They list
regimented steps (this time in eight separate phases) that can be followed
to produce a product, aiming to meet identified requirements and quality
standards.

Requirements

Design

Implementation

Integration/Testing

Maintenance

430 Chapter 22

V Model

This process model derives from the classic waterfall and was developed to
regulate the software development process within German administration
and military. It shares much in common with the waterfall model (including
a propensity to attract criticism) but rather than model the processes as a
cascade, it is visualized as a V, as shown in Figure 22-3.

Figure 22-3: The V model

On the left, we see the development phases leading up to software con-
struction: the planning, design, and implementation work. The right-hand
stream governs testing and approval.7 Each level of test work is measured
against the specification generated from the corresponding left-hand phase.

The V model’s difference from the waterfall is more than the orientation
of a diagram. The testing phases (in the right branch) can begin in parallel
to the development work (the left branch), and are given an equal impor-
tance. This is good because:

Traditionally, testing is squeezed out during the dying stages of a slipping
project. This is dangerous. Emphasizing testing as a keystone of the devel-
opment process highlights this fact and helps to ensure product quality.

We should always test more than the final software: reviewing and validat-
ing at all stages of development work, from the requirements specification
through to the completed software. The V model highlights this.

In the Real World, testing and bug fixing often take up more than
half of a project’s total time. The waterfall model doesn’t accurately
reflect this.

This model can shave time from the entire development process, since
the test plans can be drawn up as soon as each development phase is com-
plete. This streamlined, parallelized work will bring forward the project’s
end date because we don’t need to wait for the waterfall’s implementa-
tion phase to end before beginning test activity.

Prototyping

Despite our many years of research and experience in software develop-
ment processes, the waterfall is still a standard reference model since it
has a clear logic to it—you obviously can’t perform useful implementation

7 Note how development flows downward, like the waterfall, but testing is seen as an uphill
effort—a reasonably accurate model of software development!

Requirements

High-level design

Low-level design

Code

Acceptance tests

System tests

Integration tests

Unit tests

Recipe for a P rogram 431

before requirements analysis or any design work. However, the waterfall
makes it hard to evaluate a software system until development is complete.
It is also hard to demonstrate the software to your customer until the inte-
gration phase has completed and the system is ready to alpha test.

The prototyping approach attempts to work around this limitation. It helps
to explore and evaluate implementation as development progresses and to
refine unknown or ambiguous requirements (users never know what they
really want).

The essence of the prototyping process is to create a number of throw-
away prototypes of the software system. Each prototype is evaluated, shown
to the customer, and customer feedback is used to shape the next prototype.
This continues until enough is known to develop and deploy the real product.

We see an analogy with other industries here. If you were developing a
new car, you’d create many prototypes until you hit on exactly the right design.
We aim to do the same with our software. However, there is an important
difference that must be observed. When building a car, the major cost is in
the manufacturing, not the development. It works the other way around with
software. You can make multiple copies of the code for free; the development
is the costly part. For this reason, the prototyping cycle needs to be controlled;
it can’t be repeated an unlimited number of times.

The prototypes are developed quickly in very high-level languages. Some-
times they are simply drawn: The use of automated tool support8 can speed
prototype production immensely. The prototypes are proofs-of-concept, so
efficiency, stability, or a complete feature set are not primary concerns. For
this reason, prototyping works best for systems with an emphasis on the user
interface.

Prototypes help us to manage risk. We can use them to ensure that
customers really do want what they say they want. We can also use prototypes
to explore the use of a new technology or to check that our design decisions
will stand up to real use.

8 For example, Rapid Application Development (RAD) tools with simple GUI builders.

P R O T O T Y P E B L U E S

Releasing prototypes can cause severe maintenance problems.
I did some work for a company that had a policy of only using one GUI library for

its Java front ends. But in practice, it had some systems that used the library and some
that didn’t. Whenever a bug cropped up, the maintenance programmers had to jump
through hoops to work out what the front end code was doing. They didn’t understand
the other GUI libraries, and often their fixes introduced yet more problems. The more
this happened, the less respected the company’s products became.

It didn’t take much software archeology to discover the cause of this problem:
The front ends that didn’t use the correct GUI library had been prototypes that
“accidentally” became products. A little time spent releasing correct code would
have saved months of work later on and wouldn’t have destroyed the company’s
reputation.

432 Chapter 22

The danger with prototyping is the temptation to continue developing
the inefficient, quickly produced, not fully thought-out prototype code into a
real release. This is especially true when a project is running out of time and
the real development might not fit the schedule. Without education, customers
will confuse the prototype with the finished product and be surprised that it
takes a lot longer to receive their completed software. It needs very careful
management to work. The best way to avoid this problem is to leave your
prototypes deliberately rough around the edges, and to never get them near a
releasable state. A prototype that has too much functionality is not a prototype!

Iterative and Incremental Development
All the recent advances on the waterfall approach are basically variations on
a theme. The major improvement is performing development in an iterative
and incremental manner. That is, many trips (iterations) around a small devel-
opment life cycle run back to back (incrementally), with each cycle adding
more and more functionality to the system until it is complete. Each single
run of a mini lifecycle tends to follow the waterfall model and may last a num-
ber of weeks or months (depending on the scale of the project). Each phase
of the waterfall therefore gets executed more than once. At each iteration
end is a software release.

Incremental development is neither a top-down nor a bottom-up approach.
A complete version of the code is created for each code release, with all
requisite high- and low-level components. During each iteration, the system
grows, and subsequent design work can be done based on the existing design
and implementation. There is a parallel to prototyping here, but we’re not so
focused on quick demonstrative hacks. With this approach each stage is less
complex and easier to manage—and process progress is more easily monitored;
you know how much of the system is built and integrated.

This kind of process works well for projects whose requirements are less
understood at the start. Let’s face it: That encompasses most projects in the
Real World. It is more resilient to change, and it saves the lengthy redesign
and reimplementation of the entire system that you’d encounter in the water-
fall approach. Iterative and incremental development works well because it
fits the fundamental nature of software development, it consequently helps
us to better control the inherent chaos. Because iterative cycles are much
shorter, there is greater opportunity for feedback and correction; you don’t
have to wait until the end of your project to find out that it’s failing.

Spiral Model
The spiral model, proposed by Barry Boehm in 1988 (Boehm 88), is a good
example of the iterative and incremental approach.9 The development process
is modeled as a spiral, like Figure 22-4. It starts in the center and fans outward
toward the later stages of the process. We start working on a very rough notion
of the system, becoming more detailed over time, as we enter later stages of
the spiral. Each 360-degree turn of the spiral sees us go through a single
waterfall, and each iteration typically lasts six months to two years.

9 Boehm’s process wasn’t the first iterative model, but he was the first to popularize and emphasize
the importance of iteration.

Recipe for a P rogram 433

Features are defined and implemented in order of decreasing priority;
the most important facilities are created as soon as possible. This is a way of
managing risk; it’s safer because as you inch toward the ship date, you can be
sure that the majority of the system is complete. In fact, it is very pragmatic
approach; the programmers will not be spending 80 percent of their time on
the trifling (but fun) 20 percent of the system.

Figure 22-4: The spiral model

Boehm splits the spiral into four quadrants or four distinct phases:

Objective setting
Specific objectives for this phase are identified.

Risk assessment and reduction
The key risks are identified and analyzed, and information is sought
to reduce these risks.

Development and validation
An appropriate model is chosen for next phase of development.

Planning
The project is reviewed, and plans are drawn up for the next round
of the spiral.

Agile Methodologies
These were developed as a backlash against the bureaucratic and heavyweight
methodologies that tried to straitjacket the software development process.
Agile practitioners observed that software development cannot easily be made
a predictable process; they claim that it is very different from the established
engineering procedures, like constructing a bridge.10 The old-fashioned,

10 This is a religious debate: Many programmers believe that it is possible to make the software
development process a repeatable, predictable thing, but the industry is currently not mature
or disciplined enough to do so.

Progress through steps

Start

Generate plans
 Recycle plan
 Development plan
 Integration plan
 Test plan

Testing

Risk
analysi

s

Prototypes
Specification for work

Im
plem

entation

(e.g., code/w
rite spec)

Manage riskSet objectives

Development validationPlan next phases

434 Chapter 22

monumental methodologies only serve to get in the way of people trying to
write good software, and so they should be thrown away.

Agile methodology is an umbrella term that describes a number of devel-
opment processes, including the much-hyped Extreme Programming, as well
as Crystal Clear and Scrum. Agile processes focus on nimbleness and risk
reduction rather than on long-term planning or forcing (pretending to have)
predictability.

Agile processes share these central tenets:

Minimize risk by performing many small iterative development cycles.
The software and all process artifacts are complete, consistent, and of
releasable quality at the end of each cycle. Although the software seldom
is released, it can be passed on to the customer to review and to comment
on. This gives the customer reassurance of the team’s progress.

Agile process iterations tend to be much smaller than iterative and
incremental process loops (typically lasting a number of weeks, rather
than months).

Minimize risk by placing far more emphasis on a suite of automated
regression tests that are run continually, rather than on a lengthy test
cycle at the end of development.

Reduce the documentation that plagues heavyweight processes. Agile
processes view the code itself as the design and as the implementation
documentation. Good code stands on its own and doesn’t need to be
lumbered with bureaucratic documentation processes.

Emphasize people and aim to facilitate communication, preferably
face-to-face rather than through documents. This keeps the customer
(or a customer representative) as close to the development team as
possible, to take part in implementation and prioritization decisions.

Consider working software as the measure of progress and performance,
not specification writing or a manager’s opinion of the team’s position
in a fictitious development cycle. The developers meet problems and
respond to changes by modifying the code as development progresses.

The agile approach is not always appropriate. It tends to work best on
smaller projects, with teams of less than 10 high-quality programmers who
are geographically co-located. Agile processes excel in domains with a high
degree of requirements change. They are hard to run in companies with a
heavy process culture.

Other Development Processes
There are many other development processes: variations on these themes,
each with its own distinct features. There are modified waterfall processes
that overlap certain phases or contain subprojects, managed as mini-waterfalls.
The evolutionary prototyping approach starts with an initial concept, designs
and implements a prototype, iteratively refines the prototype until it is accept-
able, and then releases this, perhaps planning to include some throw away
prototypes in the process.

Recipe for a P rogram 435

Staged delivery follows a sequential process up to architectural design
and then implements the separate components showing them to the customer
as each is completed, going back to previous development steps if needed.
Evolutionary delivery is essentially a cross between evolutionary prototyping
and staged delivery.

Rapid Application Development (RAD) emphasizes user involvement
and small development teams, and it makes heavy use of prototyping and
automated tools. In a slight twist on other processes, the development time
frame is established up front and considered immovable. Then as many
features as feasible are incorporated into the design to accommodate the
deadline—some features may be sacrificed.

The Rational Unified Process (RUP) is a notable commercial methodology
that stems from Ivar Jacobson’s 1987 Objectory Process. It’s a heavyweight but
flexible object-oriented process that leans heavily on UML diagrams, with use
case–driven design (a use case describes a single user activity or interaction with
the software system). It favors iterative development, continuous testing, and
careful change management. As a commercial process, it is supported by a
suite of commercial tools.

Enough, Already!

If you’ve read this far and haven’t gotten bored yet, then you’re doing well.
Finally, and perhaps more importantly, what are the key points to draw from
all this? A software craftsman has a good working understanding of develop-
ment processes and programming styles, but anyone can get this from the
right books. How do we apply this stuff usefully to our work? How can it
improve our skill set?

All of these processes share some common threads. The phases described
in “Stages of Development” on page 428 are present in each. The processes
really only differ in the length and relative positioning of these stages. Each
activity is vital to the production of good-quality software. The better proc-
esses ensure that testing is not left as an afterthought, but is carried out
continuously—and monitored—throughout the development process.

It’s hard to compare or evaluate the different processes and program-
ming styles. Which is best? Which will ensure that a high-quality product is
shipped on time and to budget? There is no answer, because those are not
the right questions. Which process is suitable depends on the nature of the
project and the culture of your company. If you have 20 programmers who
know nothing of object-oriented development and only ever use C, then
trying to build an OO Java product is clearly a stupid idea.

KEY CONCEPT You’ll pick a software recipe for a number of reasons—make sure they’re good ones. The
motivation for your choice of process says a lot about the maturity of your organization.

We can see two procedural extremes: The anarchy of the ad hoc method
contrasts with the strict regime of a rigid process. In the latter, any experimen-
tation that could yield a more elegant architecture is discouraged. The user’s
real requirements may never filter down to a developer since it’s lost in a sea

436 Chapter 22

of bureaucracy; the programmer just codes to a specification that’s passed on
to him from the previous process phase.

Following the Goldilocks prinicple, the most flexible approach is somewhere
in between. You do need to know the process you’re working to and where
it’s defined. Effective development requires discipline; you need a coherent
strategy to get something out of the door on time (having a realistic schedule
is another topic in its own right—see “The Planning Game” on page 409).
Experienced programmers know the value of their development processes,
as well as the faults. They know how to work with it and when to step outside
it. Good programmers don’t just program. They understand their recipes
and how to adapt them as appropriate. This is why our science is still a craft.

It’s important not to be uptight and legalistic about the process you follow,
but you must have an agreed framework for producing software. It must be
appropriate for your development team—not every organization needs a high-
ceremony process with many hoops and hurdles to navigate and lengthy forms
to fill in.

KEY CONCEPT The process you adopt doesn’t have to be high-ceremony and hard to follow. In fact, the
exact opposite characteristics are generally hallmarks of a good process. You must have
a defined process, though.

New methodologies spring up (or rather evolve) from time to time. They
tend to arrive with a big fanfare and a spurt of fireworks; they’re claimed to
be the silver bullet, the panacea that will make development better for our
children and our children’s children. Sadly, it’s never the case. When it comes
down to it, no matter which life cycle you follow, the programming team is only
as good as its programmers. If there is no intuition, no flair, no experience,
and no motivation present then, regardless of the development process you
use, you won’t reliably produce good code. You might be better able to track
how far behind schedule you are, though.

Pick a Process

Many factors contribute to a good choice of development process. However,
the choice is seldom made on sensible grounds; a development process is
used because It’s the way we always do it, It works well enough, or It was the first
thing we could think of.

How do you know what development method is appropriate? Ultimately,
if the process works for your team—if you collaborate well and produce good
software on time—then you have a good development approach.

A good choice of process is based on the type and size of the project. Small
modifications to an existing codebase don’t need a large iterative development
cycle; three-year industrial projects starting from scratch probably do. A good
process choice suits the experience of the existing team members, has the
developers willing (even eager) to use it, and is something that the project
manager really understands.

Recipe for a P rogram 437

On the flip side, there are plenty of bad reasons to choose a develop-
ment process. There’s no point in moving to a new process just because
you feel like a change; a new process must be introduced to fix a problem
with the current development model. There’s no point in trying to make a
political statement (I know people who’ve tried to foster an open develop-
ment culture, just to swing the organization toward open sourcing their
internal codebase). The ultimate bad motivation for picking a particular
process is fashion. More buzzwords do not necessarily mean a more useful
process.

This is important: An inappropriate process really can ruin the quality
of your code; you’ll spend more time pandering to the demands of a pro-
cedural straitjacket than delivering software. A good process does not get
in your way. Indeed, it enables your team to create more software, better
and faster.

KEY CONCEPT Process is vital. Most projects fail for nontechnical reasons. And bad process is almost
always high on the list of reasons.

In a Nutshell

Building software is like crime: It’s better when it’s organized. Every now
and again, an undisciplined team will pull off something spectacular and
create a software masterpiece. However, that is the exception. The develop-
ment process needs to be defined and understood and carried out by team
members with appropriate skills to stand a chance of working well. Otherwise,
you’ll end up with software that’s criminal.

We need to use proven development processes and established design
styles to allow us to build software that meets expectations against a backdrop
of timescales, budgets, and changing requirements. Building software is hard—
and we’ve just looked at another way to make it easier.

Good programmers . . . Bad programmers . . .

Understand the programming
style and development process
they are expected to work
within

Exploit their development
process to shape interactions
with other software factory
inhabitants; when the process
becomes constraining, they’ll
sidestep it

Appreciate the pros and cons
of different development
recipes and can pick the
appropriate one for any
given situation

Ignore development process
issues, and attempt to do things
their own way

Do not know how the process
shapes their interaction with
other developers

Avoid thinking about this kind
of stuff—it’s for managers to
worry about

438 Chapter 22

See Also

Chapter 8: Testing Times
Testing is a key phase of the development process. Often the pressures
of Real World deadlines try to squeeze out room for it.

Chapter 17: Together We Stand
Teamwork: the cornerstone of large scale software development.

Chapter 19: Being Specific
Specifications are often the gates between phases of the development
process.

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 553.

Mull It Over

1. How do the choices of programming style and development process
influence one another?

2. Which is the best programming style?

3. Which is the best development process?

4. Where does each development process listed in this chapter fall on the
classification axes we saw in “Development Processes” on page 425?

5. If development processes and programming styles are recipes, what
would a software development cookbook look like?

6. With a suitable process, can software construction become a predictable,
repeatable task?

Recipe for a P rogram 439

Getting Personal

1. What development process and programming language style are you
currently using?

a. Has it been formally agreed upon by the development team, or do
you use it by convention?

b. How was it chosen? Was it chosen specifically for this project, or is it
the recipe you always use?

c. Is it documented anywhere?

d. Does the team stick to the process? When problems arise and your
back is against the wall, do you maintain the process, or is all ivory
tower theory ignored in a rush to produce something—anything?

2. Are your current processes and styles appropriate? Are they the best way
for you to develop your software right now?

3. Does your organization appreciate that there are other development
models that might be worth investigating?

T H E O U T E R
L I M I T S

The Different Programming Disciplines

23

In this chapter:

Comparing programming
disciplines

Working effectively in your
discipline

The skills that are required
in each

Everything that irritates us about others can lead us to an
understanding of ourselves.

—Carl Jung

I like sweeping generalizations and tenuous meta-
phors. Sue me. I’ve also been doing my research. I
found that there are over 40 churches in the city I
live in. Each one of these is subtly different; differ-
ent types of people attend, and they do different
things. They have different concerns and ways of
working. They’re located in different areas. How-
ever, they’re all doing roughly the same thing.

What on earth has this got to do with programming?
I hear you ask. If you forgive the tenuous link,
software development works in pretty much the
same way. Okay, we don’t all file into a building
every Sunday morning (well, most of us don’t).
But, to outsiders, we do appear to engage in
bizarre rituals and invoke arcane rites to get our
own way with things that are out of the control
of normal human beings.

442 Chapter 23

The real comparison I draw, though, is that there is no single way to
program, no one methodology that solves every problem. There is no one
programming language. There are different classes of problems to be solved
in many, many different arenas. The work in each differs by more than mere
technology (i.e., which tools and code libraries are available); they differ by
technique. Each requires a different skill set, a particular mindset, and subtly
different ways of working. The differences might seem slight, but there is no
replacement for specific experience of programming a particular type of
system—if there was, job advertisements for programmers would be a lot more
vague. It’s important to know your field well and to appreciate its unique
concerns. In a particular programming arena, the craftsman knows how to
ply his trade, how to work his medium, and how to best use his tools.

KEY CONCEPT There are various types of programming, in different problem domains. Each presents
its own unique problems and requires specific skills and experience.

In this chapter, we’ll explore this. We’ll take a guided tour of the vast
field that is computer programming, discover some of the common problem
domains we program in, see how they differ, and learn the particular problems
and challenges of each.

Some of these arenas overlap. That’s natural. Nothing is ever quite
as clear-cut as you’d imagine. The following descriptions are necessarily
general, since each of these is a big field with lots of variations within.
Nonetheless, this should give you a taste of what’s going on out there.

Applications Programming

This is what most non-techies think of when you mention the word program-
ming.1 It’s probably the broadest category we’ll consider in this chapter.

It is programming applications—self-contained programs—typically for
single-user, workstation-like computers. This world focuses on end users and
how they use their desktop machines. For commercial reasons, we usually
target the mainstream platforms—currently Windows and Mac OS. Although
you hear a lot about Linux programming these days, that’s still not where the
applications work is (at least, at the time of writing). As portable devices become
more powerful and their application development environments become
richer, mobile applications work has moved from the embedded realm (see
“Embedded Programming” on page 447) into this class of more general-
purpose applications programming; the specific embedded hurdles have
largely been removed.

There are many languages and environments for this kind of work;
C and C++ are common. We also see common use of Visual Basic and Delphi,
Java, and .NET, plus a number of libraries and frameworks like MFC and Qt.
This choice is made according to what is convenient for the developers—
something that’s well-enough known and provides all required features.

1 Which, of course, you don’t. Admitting your job at a party can be an instant conversation killer.
Well, unless it’s a party full of nerds, in which case you’re probably trying to escape, anyway!

The Outer L imi ts 443

Modern applications programming has advanced rapidly since the dawn
of personal computing. We now have rich development environments to work
in with helpful framework code that automates a lot of tedious boilerplate stuff.
We have threading support, libraries of standard user interface components,
and facilities for network transparency. There is a lot of operating system
support provided to make applications programming easier, but this also
means that there’s a lot to learn as you get started. You have to know a lot to
really understand what’s going on around you.

All this extra support raises the bar to determine what a good application
is. What was acceptable application behavior years ago is not today. People
expect high-quality, robust programs, with a standard interface and look-and-
feel, good responsiveness, user-friendliness (the ability to cope with the most
inept user), and a plethora of features (even if the user will only take advantage
of a fraction of them). The huge professional applications marketed today
are the results of large development teams with departments specifically
focusing on usability issues.

We are seeing a move toward web-based systems, applications that run on
browsers, over a network. We’ll look at them separately; this also cuts into the
enterprise or distributed programming arenas somewhat (see “Distributed
Programming” on page 450).

There are two main markets for applications programming: shrink-wrap
software and custom applications.

Shrink-Wrap Software

Shrink-wrap software is developed for the mass market. It’s used by a large
number of people, or at least that’s what the marketing departments are
praying for. This is key: The market is speculative, so the software has to
appeal to the broadest cross-section of consumers possible in order to make
money. Since no customer commissions or pays for the development of
shrink-wrap software, you must establish a profitable market before you
begin work, or else you’re throwing away time and effort. The software
needs to differentiate itself from competing products in terms of features,
performance, or a unique approach to the problem.

Shrink-wrap software might be bought over the counter in a box neatly
wrapped in cellophane (hence the name), or it could be downloaded from
the Internet. It could even be a subscription-based web service. The key point
is the way you sell it and how that forces you to develop it.

Life is hard for shrink-wrap applications programmers. You can’t con-
trol the environment the code runs in. It must gracefully handle all versions
of the operating system, on different machine configurations, with different
libraries and other apps installed, and it has to cope reliably with them all.
That’s a testing nightmare! Web applications programmers win half the battle
(as we’ll see later)—you have control over the server deployment. But you
still have the headache of browser compatibility to contend with: Your web
pages must render correctly on a wide range of target platforms.

444 Chapter 23

Custom Applications

Custom applications are made-to-order—developed to a specific brief for a
specific customer. Therefore, the focus isn’t so much on an inviting UI, a
never-ending feature list, or even to get it perfect and bug free. There’s no
commercial imperative to do this. Get it working. Get it shipped. Get the cash.
This is a more certain business model.

Since a customer commissions this work, it will use this software or use
nothing. With no real competition, the software only needs to be good enough.
Given half a chance, programmers will keep tinkering and improving their
code until it reaches some mythical state of perfection. But in this situation,
it doesn’t make commercial sense to do so. It doesn’t really matter if the
program works fine, but crashes once a week; it costs less to restart it period-
ically than to engage in a lengthy bug hunt (assuming that it doesn’t trash
any data as it goes down).

T H E R U N D O W N

Application work is fun. Modern PCs are powerful, so you
don’t have to worry too much about code size or

performance, and you can concentrate on writing neat,
elegant code. It’s a buzz to know your application is used

by tens of thousands of people around the world.
—Steve (applications programmer for a major company)

Typical products
Typical shrink-wrap products are desktop applications like web browsers, spread-
sheets, and so on. Custom software could be anything—a highly tailored inventory
management system for a large retailer, for example.

Target platform
This tends to be the same kind of machine you are doing the development on
(more often than not, an x86 Windows PC).

Development environment
You’ll normally build code on the same workstation you run the program on.
Modern integrated development environments (IDEs) provide comfortable working
environments, bringing the editor, compiler, debugger, and help systems together
in a single unified point-and-click interface. Many third-party components are
available to simplify the development of common tasks. The full gamut of lan-guages
is employed here: from low-level C/C++, through BASIC and Java, to scripting
languages.

Common problems and challenges
Users expect high-quality programs that conform to standard interface principles.
More features than any person could remember are the order of the day; this is a
serious commercial requirement, and usually what differentiates one product from
the next. New product revisions these days tend to introduce more features (and
bugs) than any problems they might solve. This is what the market demands.

The Outer L imi ts 445

Games Programming

The exciting and glamorous world of games programming is a specific form
of applications work, usually developing shrink-wrap software. A lot of the
battle is waged with captivating marketing and a very good initial concept for
the game play. This is a fine line that differentiates a great, successful game
from the also-rans.

These games often involve first-person, massive, immersive, 3D environ-
ments. To provide an absorbing experience, the graphics capability of the
hardware is fully exploited, and the CPU is maxed out managing maps,
enemies, and puzzles, while performing serious modeling of the physics of
moving objects. This must all be coordinated in real time and stresses the
hardware to its limits. A significant portion of games programming is opti-
mizing the code to the execution platform. As faster hardware is released,
the problem doesn’t lessen; to stand out from other games, more optimi-
zation is required to squeeze a better experience out of the new platforms.
This field is very much about staying on the cutting edge and using the
latest state-of-the-art technology to do the coolest thing.

T H E R U N D O W N

Professional games development is about fun, but it’s a
hugely competitive industry where developers are expected
to keep up with the latest technologies, furious deadlines,
and nonnegotiable, last-minute change requests. Sweat,
blood, and tears are required to write the software, only
for it to meet the harsh public glare of a highly critical
specialist press. But it can be hugely rewarding—once
finished, you’ve made something that people can see,

understand, and enjoy.
—Thaddeus (professional games programmer)

Typical products
First-person, immersive, 3D games, strategy games, online puzzles.

Target platform
Desktop PC, games consoles, mobile devices (PDAs and mobile phones), arcade
machines.

Development environment
Dedicated games platforms (including high-end graphics cards in standard PCs)
have tailored development environments to help exploit their power. It still takes
very talented developers to fully capitalize on the platform’s functionality.

Common problems and challenges
Getting excellent game play; balancing features, user response, aesthetics, atmo-
sphere, and difficulty. A good game unfolds very much like a story, and draws
the player in.

Optimization is required to capitalize on the execution platform.

446 Chapter 23

Modern games development teams often have a cast more akin to Holly-
wood movie production than to standard bean-counting software. We see
teams including graphics artists and level designers and the development of
storyboards, concept art, and proof-of-concept designs.

The software might target a (suitably souped-up) PC platform or dedicated
games consoles. These machines have specific hardware to accelerate the
many graphics operations required per second and special tools to help you
harness their power. Console manufacturers provide development kits
(special versions of the hardware and tailored software tools) to help you
create products, assisting with code loading, testing, and debugging, while
helping to avoid security features on production hardware that would
impede development.

Multiplayer games provide richer game play. This brings network collab-
oration into the mix and requires some skill to get acceptable real-time
performance out of slow Internet connections.

The quality of the ultimate product is determined by the feel of the
game play. Everything is tweaked until the game feels right: the level design,
the physics models, the graphics, the color of your underwear. Nothing is
sacred. You might write the most beautiful code in the world; the program
might never crash; it might do everything it was specified to do; it might be
highly efficient. But if it lacks that special spark that makes it a compelling,
addictive game, it will not be successful. Tricky stuff.

Systems Programming

Applications sit atop rich system libraries: layers of code for networking,
graphical interfaces, multitasking, file access, multimedia, peripheral control,
inter-process communication, and more. If applications programmers receive
a lot of support from the underlying system, then someone’s got to supply
that underlying system. This is systems programming.

It is generally for workstation machines too, but it’s not aimed at the end
users. Systems software is aimed at the application developer; the public façade
is a set of APIs to be used by software layers higher up the food chain. Systems
software is concerned with the low-level logic that interacts with the computer
at a very basic level, and also middle-level support frameworks that don’t
interface directly to hardware but provide important services to the rest of
the system.

Work in this arena typically includes writing device drivers (controlling
devices such as printers, storage media, output devices, etc.), writing common
shared libraries and utilities for managing scarce resources, implementing
the actual operating systems controlling the computer, and providing com-
ponents such as filing systems and network stacks. Even compilers and
installation tool suites can come under this heading, as they are support
services for application programmers and are often intimately entwined
with the program run-time environment.

The Outer L imi ts 447

Embedded Programming

Computer technology shows up everywhere in our daily lives, whether we’re
aware of it or not. We’re constantly using devices and gizmos, from micro-
waves to watches, radios to thermostats. These consumer electronics products
require software for control and operation. More often than not, this software
is invisible to the device’s user. It’s not just consumer electronics appliances
that contain embedded software: Anything with a microcontroller (e.g.,
laboratory instruments or the machines that issue parking tickets) is software
driven. We must write programs that are embedded in the hardware devices:
embedded software.

T H E R U N D O W N

I wrote the USB stack for a proprietary operating system.
I had to understand the OS, USB hardware, and the USB
protocol, so there was a lot to take in. I had to keep up
performance so the system worked well. Acting as the
middleman, I was abstracting the hardware interfaces

and providing a neat API for applications to use. I had to
make this platform agnostic, which added extra

complexity.
—Dave (systems component writer)

Typical products
Operating systems, device drivers, a window manager, or a graphics subsystem.

Target platform
Since every execution environment needs some form of run-time support, there is
system-level software in almost every electronic device. Systems software is
required in the smallest embedded device and the largest mainframe computer.

Development environment
Writing device drivers and operating system components tends to screw with the
computer and make your system unstable, so it’s common to develop on one
machine and run the code on a second system. C is by far the most common
language in this arena, although some library-level work is done in other lan-
guages (C++ is popular, as it aims to be a systems-capable language).

Common problems and challenges
The key here is stability, since these are foundational blocks of the entire computing
environment. While an application might crash and have a chance to save work
and gracefully recover, a device driver rarely has such a luxury; it is required to
work correctly the entire time it runs. This could be an awfully long time, so even
small memory leaks can become major problems.

The code must be efficient (enough), both in terms of space and speed, and will
need to be appropriately tailored to the particular operating environment.

448 Chapter 23

Embedded developers work under tight constraints:

There are usually very scarce resources: restricted CPU power and/or
strict memory limits. Memory limitations concern both ROM (for the
program image) and RAM (space for the code to execute and to store
information). On platforms without much capacity, you have to shoe-
horn a lot of software into the available device space. Sometimes this
requires quite creative (and heroic) solutions, like decompressing pro-
gram code or data on the fly.

The opportunities for user interface are quite limited: how do you pack
all user interaction into two buttons and an LED? Indeed, there may be
no user interface at all; there may be no direct interaction with a user—
the software is expected to just work.

These constraints have a profound impact on the nature of the code you
write. Sadly, in the embedded environment (more than others), we end up
sacrificing the purity of our code to get something working. Fast code that
fits into the device’s ROM and works is more important than theologically
correct but large and slow software.

Embedded systems are designed to do one job and to do it reliably. It
should appear as if the software is not there; the embedded device should
just work, all the time. Failure is rarely an option; it might physically break
the hardware. Contrast this to a desktop computer—it’s a general-purpose
machine. It has to be able to word process, play movies, browse websites,
read email, manage your accounts, and so on. As users, we’ve been con-
ditioned to accept the odd crash and a bit of instability. We’ll sacrifice a
little convenience for power and flexibility. Embedded work is a totally
different ballpark.

A good example is the modern car industry. We see vehicles manufactured
with many embedded systems, controlling all sorts of things: engine manage-
ment, ABS brakes, safety features like air bags and seat belt pre-tensioners,
climate control, the odometer, and so on. However, the users (in this case
the driver and/or passengers) don’t have to be at all aware that there are any
microprocessors whirring away under the hood. They expect the car to just
work. When an engine management system fails, the user becomes acutely
aware of the software! Think also about mobile phones. They are obviously
computer-driven devices, but few consumers think of them as a computer.
We pack a lot of power into these small packages, but there are still strict
operational limits that the software must work within.

An embedded system is typically the combination of a small computer,
some dedicated hardware, and either a real-time operating system or a simple
controlling program. It will have direct control over the hardware on the
device. Embedded systems are usually made-to-order: developed for specific
hardware, for a specific purpose. Simple embedded systems have only one
piece of software running on them; no highly complex threaded program-
ming environments are used—not even an operating system.

The Outer L imi ts 449

The code is usually stored in firmware, permanently held in a read-only
memory chip. It is seldom updatable, so it has to work correctly the first time.
There’s no chance to get it wrong and ship a version 1.1. One simple mistake
can render your miracle product a failure.

Recently, memory and CPU power have become a lot cheaper as more
and more mass market devices are created. Embedded environments have
become more powerful and the constraints are widening. However, there
will always be the need for very small devices with little horsepower that
achieve just what they need to. Just.

You might consider that programming applications for handheld devices
like PDAs is embedded-level or applications-level work, depending on where
you stand.

T H E R U N D O W N

I like working near the metal—it really forces you to think
about what’s going on. You need tight code and a good
understanding of what the hardware’s doing. It can be
tricky to debug problems, but these challenges are what

makes it interesting.
—Graham (embedded software developer)

Typical products
Control software for washing machines, hi-fis, mobile phones.

Target platform
Small, custom-made devices with very limited resources and meager UIs.

Development environment
Since you work with custom-made devices, the toolchain is also often custom made.
Frequently, it’s not very advanced at all, compared to the relative luxury of the
applications programmer. (As the market broadens, we are seeing improvements
here.) The code is developed in a cross-compilation environment, where the target
platform is different from host compilation environment. (Clearly you can’t compile
C on a washing machine . . . yet.)

We write specialized software for each specific device. Embedded program-
ming almost universally uses C, apart from really low-level work, which resorts to
assembly code. C++ is making inroads into this area, and ADA has also been used.

Common problems and challenges
There are all sorts of problems you can encounter, largely depending on whether
you are working with a commodity, off-the-shelf embedded platform or building
your own. There are issues of real-time programming (for example, timely handling
of hardware events and interrupts), direct hardware interfacing, and controlling
peripheral connections, plus tedious low-level concerns like byte endianness and
physical memory layout.

To ensure the system is robust, there must be a great emphasis on product testing.*

* Of course any good software development—not just embedded work—needs a great
emphasis on testing. In all environments, testing tends to suffer as it is squeezed out by over-
zealous marketing and management departments who do not really understand the nature of
software. However, desktop applications can be more easily updated than the firmware in an
embedded device.

450 Chapter 23

Distributed Programming

Distributed systems are comprised of more than one computer. As we’ll see
later, the World Wide Web is effectively a huge distributed system with infor-
mation being stored on many computers across many continents and with
applications delivered remotely via your web browser. It’s not all about web
browsers, though. Multimachine architectures are used in many situations.
Working with and designing distributed systems ushers in a whole new world
of problems.

You might need to distribute a software system for a number of reasons.
Perhaps some types of computers are more suited to particular tasks than
others. Perhaps the system is in high demand, and you can share the work-
load among many machines on a network to improve performance. Perhaps
there are physical location restrictions for certain machines that mandate
distributing the system. Perhaps you need to interoperate a new installation
with a legacy system or some old hardware.

The goal is to design a system that is composed of a number of programs
on different machines that all work as a cohesive whole. Tied together by a
network connection, they might be physically co-located in a corporate server
room or scattered across the globe, communicating over the Internet.

The disparate parts need to be glued together somehow; each of the pro-
grams needs to communicate, and it is desirable to call functions on remote
machines as if they were locally linked to the code. This is known as remote
procedure call (RPC), and such facilities are provided by a number of available
middleware technologies. These act as brokers for data transfer between machines;
they describe how you discover and talk to services on other machines and
how you publish your services for other programs to call. Middleware manages
the policies involved with interoperability: there are security issues (Who’s
allowed to call whom?), network latency issues (What happens if a remote
function call takes too long or a computer goes down?), considerations
for balancing synchronous remote function calls with asynchronous calls,
and more.

Some middleware systems employ object-oriented technologies; some
take more of a procedural approach. The middleware is simply connectivity
software and allows some degree of platform neutrality. As long as the middle-
ware runs on a given platform, the client code shouldn’t care what platform
it’s calling into—it could even be a ZX spectrum—the function calls all look
the same. Of course, in the design of a distributed system, you will select the
appropriate hardware for each task. It’s doubtful you’ll see any ZX spectrums
hanging around!

Commonly used middlewares are CORBA, the Java RMI, Microsoft’s
DCOM, and .NET remoting. Using these, we split the system between user
interface elements, the business logic (real workhorse code), and any storage
required (e.g., a database and query engine). The user interface client may
be a GUI program or a web-based front end. This is the classic tiered architecture
approach (described in “Client/Server Architecture” on page 271). We also
see the emergence of web APIs—communications methods for services that use
standard web protocols.

The Outer L imi ts 451

Grid computing and clustered systems are specific distribution mechanisms
that help numerical programming work (more on this later), enabling the
creation of high performance, distributed computational algorithms. Clusters
are tightly coupled systems; usually all the machines are in the same room,
using the same hardware and OSes, linked by a specific cluster middleware.
Grids are loosely coupled; they could be geographically scattered and run
heterogeneous environments. They communicate via standard web protocols
(e.g., HTTP/XML).

Web Application Programming

In 1990, Tim Berners-Lee created the first HTML browser and server, and
the World Wide Web was born. Today it is a pervasive technology, and servers
can not only deliver static pages of information, but they can dynamically
create pages based on programs running on the webserver. This is a very
specific form of distributed computing, where the user interface is hosted on
a remote client: the web browser.

T H E R U N D O W N

The Smallpox project, completed in 2003, was a grid com-
puting project to help find a cure for smallpox by screening
a huge number of potential drug molecules. It was a collabo-

ration between scientists, universities, and businesses that
identified 44 strong candidates for treatment of the disease.

Typical products
An online purchase system, splitting work between front-end applications (web
interface, in-shop kiosk, and/or phone ordering system), business logic (manages
stock control, implements ordering system and secure billing) and the shared
storage.

Target platform
Many different computer systems connect via a middleware, almost always sitting
on top of standard networking protocols.

Development environment
Many and varied. This will depend on languages used, the nature of each computer
in the system, and the type of middleware employed. Remotely callable interfaces
are often defined in some form of interface definition language (IDL) and compiled
to an implementation language representation that provides all the calling glue
and provides hooks for each function implementation to be slotted in to.

Common problems and challenges
Designing the correct split of services between computers and streamlining the
communications involved. This can severely affect the scalability of a distributed
system. What works for a few transactions per day may not work efficiently for
100 transactions per minute. This calls for a real need to design carefully. You
also have to deal with computer availability and cope gracefully if one of the
computers in the system becomes unavailable.

452 Chapter 23

Examples of this kind of application include:

Online shopping

Bulletin boards, messaging services, and web-based email packages

Ticket availability and booking systems

Internet search engines

Most people now use web applications without thought; it’s as natural as
a local word processor. These programs clearly have different characteristics
from ordinary (so-called rich client) desktop applications. There are different
things that each can do well. Without heroic JavaScript coding, interaction in
a browser-based application UI is a lot more limited.

The web application operational model is different from vanilla
applications programming—session state is held on a remote machine,
which must manage numerous simultaneous client connections, storing their
state between HTTP interactions and gracefully handling clients that stop
connecting. To facilitate this, some information is stored on the server (e.g.,
the items each customer is ordering are placed in a database) and some on
the local client (using web browser cookies—nuggets of stored session state—
to record the current user/session ID). Frameworks like ASP.NET and

T H E R U N D O W N

A web app makes you treat the web browser as your OS.
All good web developers start by learning client-side

browser technologies inside out. Then you learn to write
good server-side code (i.e., fast, concurrent, transactional,

distributed, and correct). The best thing about the Web is that
it is constantly evolving and users’ expectations are always
rising. The bad thing about the Web is that users’ expecta-
tions are always rising and your code never stands still.

—Alan (web applications programmer)

Typical products
Interactive services that require up-to-date infomation and feedback: ticket booking
or shopping systems.

Target platform
The back end is a webserver (commonly Apache or IIS). This choice is under your
control, since you deploy the web app. The clients are web browsers, and there
are many variants. Each has its own quirks, and you have no control over what is
used. You have to produce web pages that are compatible with most of these.

Development environment
The environment consists of the specific webserver and the applications program-
ming language you write the system in, running on that server. Common languages
are Perl and PHP.

Common problems and challenges
Coping with different browsers; scalability.

The Outer L imi ts 453

Java Servlets exist to speed web application development. Numerous off-
the-shelf systems exist, such as content management systems and shopping
cart systems.

Many open standard protocols and encoding systems are used to repre-
sent and transfer information. HTTP is the common data transfer mechanism,
and XML is often used to encode data packets (e.g., SOAP is a web-based
communication protocol based on an XML schema).

The problems faced by web application programmers mainly revolve
around interoperability with the many types of browsers that might be used,
handling their HTML peculiarities and their odd JavaScript quirks. It’s not
unusual to develop tortuous HTML output to cope with all manners of flaws
in the popular browsers. Web programmers often have to interface with
legacy systems (customer databases, existing order management systems, etc.)
to generate their information; this can get quite messy. Scalability is a real
concern: A system might work fine when tested by five simultaneous users.
But when it goes live, it must withstand 500 users accessing it at the same
time. Load testing is important here (see “Load testing” on page 139).

Enterprise Programming

Enterprise is one of those tedious buzzwords that floats around, more
management-speak than any programmer dialect. An enterprise is literally a
business organization. So enterprise programming provides systems for entire
companies, gluing all their separate systems together to form a unified,
cohesive whole. Enterprise programming almost always means the develop-
ment of large distributed systems.

They’ll commonly be deployed on a company intranet (internal network)
and link the different departments of the business together to improve work-
flow. The systems may or may not be customer facing. Once the organization
is running an integrated computer system, it’s generally not too hard to have
automated customer interaction—for example, through a web-based shop
interface. Perhaps an enterprise system will need to interface to other
companies’ systems too, to track the delivery status of goods being shipped,
for example.

Enterprise programming shares a lot of characteristics with made-to-order
applications software. The product only really needs to be good enough, since
it’s developed under contract for a specific customer, rather than speculatively
for a general-market release. Quality here is not the measure of success (at
least as determined by general stability and a larger feature set than any
competitor); meeting the customer’s objectives is.

Enterprise systems are written for installation on specific machines in a
company’s server room or on locked-down desktop machines. You have
reasonable control over the execution environment, so you don’t need to
worry about making the code work on every release of the operating system
and under every conceivable hardware configuration. This deftly sidesteps a
lot of the headaches that applications programmers suffer.

454 Chapter 23

Numerical Programming

This kind of work involves scientific, highly technical tasks making heavy use
of mathematics. This is a very specialized area that requires writing applica-
tions specifically targeted at particular numerical problems. The programs
are often aimed at supercomputers, the fastest type of computers, capable of
massive number-crunching operations. Although we’re living in times when
the fastest computer changes from year to year, these are very expensive
platforms, employed for specialized applications that require immense
mathematical calculations.

Weather forecasting, for example, requires a supercomputer (or perhaps
a gift of prophesy!). We also see supercomputers used for animated graphics,
fluid dynamic calculations, and other areas that require highly complex
mathematical investigation and calculation.

A supercomputer is not a mainframe. The latter is a high-performance
computer designed to concurrently execute as many programs as possible,
often used as a centralized computing resource in a business setting. A super-
computer channels all its power into executing a few programs as fast as
possible. There are a number of different supercomputer architectures
exploiting different technological advances, each requiring different algo-
rithmic approaches to fully exploit their power. General-purpose machines
are now becoming powerful enough for serious numerical work—clustered,
they can respectably make a poor man’s supercomputer.

Numerical work requires high-performance algorithms that execute
calculations rapidly, to capitalize on the performance of the computing
platform. It is common to make use of carefully designed, heavily optimized
numerical libraries and to make explicit use of parallel processing, designing
this into the computational algorithms and processes. This will involve both

T H E R U N D O W N

I work in the IT department of a large city bank. We write soft-
ware to solve specific business needs. It’s mission critical; what
we do makes a real difference to the company’s profits, so we
have to take it seriously. With many thousands of dollars going

through the system every hour, there’s no room for error.
—Richard (Enterprise programmer)

Typical products
Business systems for an entire company, managing its commercial operations.

Target platform
A tailored distributed system.

Development environment
Same as for distributed systems. We’ll probably be working with huge data stores,
perhaps various database technologies from previous internal systems (legacy
systems in manager-speak). XML is all the rage here.

Common problems and challenges
Same as for distributed systems.

The Outer L imi ts 455

task and data parallelism: either performing many similar tasks on many
CPUs at once or pipelining the algorithm, performing different parts of it on
different CPUs.

This branch of programming requires heavy optimization to the character-
istics of the target platform to achieve acceptable performance.

So What?

Freedom from the desire for an answer is essential
to the understanding of a problem.

—Jiddu Krishnamurti

How do these programming niches affect us? What do they make us do
differently? To be a good programmer, a true craftsman, you must know:

What your discipline is—the kind of software you’re producing.

How the discipline affects your architecture. (Is it a tiered enterprise
system or tightly woven ball of embedded code? See Chapter 14.)
What is an appropriate code design in this field and what isn’t. (For
example, should you sacrifice clarity and elegance for performance, try
to squeeze the executable image into the smallest size possible, or per-
haps incorporate many hooks for future extensibility?)
The tools you use—what’s available and what isn’t.

Which is the most appropriate choice of programming language and
which coding idioms you should employ.

T H E R U N D O W N

I work on software systems for an engineering firm. We
model large mechanical installations to figure out where

physical problems might lie now or in the future. I have to
represent the real world in a mathematical way, figuring
out how things (should) work. Once I’ve done this, it’s a
case of finding the right mathematical constructs to repre-

sent the systems in an acceptable, accurate way.
—Andy (Numerical programming expert)

Typical products
Fields involving highly complex mathematical investigation like nuclear energy
research or petroleum exploration.

Target platform
Supercomputers or grid-based computing clusters.

Development environment
Although there is work on advancing numerical programming support in C++,
and some of this work is performed in C, a lot of numerical programming is done
in Fortran, which has excellent numeric support (that was what it was designed
for: formula translation).

Common problems and challenges
Crafting efficient algorithms to really exploit the power of the supercomputer.

456 Chapter 23

KEY CONCEPT Know your discipline. Learn its intricacies. Understand how to write excellent software
that appropriately meets its requirements.

In a Nutshell

Still round the corner there may wait,
A new road or a secret gate.

—J.R.R. Tolkien

We’ve dipped a toe in the water and sampled the different flavors of program-
ming going on out there. Of course, there are other areas than those we’ve
seen: some well defined, others more ephemeral. For example, safety-critical
software drives high-reliability systems like medical equipment and aircraft
control. Here failure is not an option, and the code must be provably correct;
this has a profound affect on the way you design and write it.

What have we learned? These fields all have one thing in common: their
differences. Each requires fundamental design decisions to be made to suit
software to them. Application-level code is not generally suited to an embed-
ded environment. A workstation application design may not scale when
applied to a distributed system.

This means that software developers tend to specialize in particular fields
and learn to think in particular patterns that suit their worlds. Understanding
the very real concerns of each environment will make you a more flexible
and mature programmer. Ultimately, you must know your programming
church and practice its rites and rituals well.

See Also

Chapter 7: The Programmer’s Toolbox
Different niches have different qualities and ranges of development tools.

Chapter 14: Software Architecture
Different problem domains call for very different software solutions.

Good programmers . . . Bad programmers . . .

Understand the nature
of the problems they face

Tailor their code and
designs to the problem
domain

Have a naïvely narrow software
worldview; they don’t understand
the forces that drive other types of
software development

Write code ill-suited for the problem
domain (choosing unsympathetic
architectures or inappropriate code
idioms)

The Outer L imi ts 457

Get Thinking

A detailed discussion of these questions can be found in the “Answers and
Discussion” section on page 557.

Mull It Over

1. Which of the programming niches we’ve looked at here are particularly
similar or share common characteristics? Which are particularly different?

2. Which of these programming disciplines is hardest?

3. Is it important to be an expert in one particular area or to have a good
grounding in all of them without a particular specialism?

4. Which programming niche should trainee programmers be introduced to?

Getting Personal

1. What programming arena are you working in right now? How does it
affect the code that you’re writing? What specific design and implemen-
tation decisions has it led you to make?

2. Do you have experience working in more than one programming disci-
pline? How easy was it for you to switch mindsets and apply appropriate
techniques in a different world?

3. Are any of the people you work with unaware of the forces that shape the
particular kind of code you write? Do you have embedded software being
written by programmers who only understand applications work? What
can you do about this?

W H E R E
N E X T ?

All’s Well
That Ends Well

What we call the beginning is often the end. And to make an
end is to make a beginning. The end is where we start from.

—T.S. Eliot

Congratulations! You’ve reached the end of this book. Either that, or you’re
the kind of person who likes to spoil an ending by reading the last page first.
(If you are: The butler did it.) Presuming that you’ve read every chapter, by
now you should have:

Learned many practical code-writing techniques that have already
improved your source code.

Gained an understanding of how to write code in the Real World and
the tricks that help you to produce useful code in the madness of the
software factory.

Worked out some personal ways to improve your skill set. (You did
attempt the questions, didn’t you? If not, try them now.)

Discovered how to write effective code as part of a team, establishing
practical steps to improve the way your team currently works together.

Found out more about cartoon monkeys than you ever really needed to.

24

460 Chapter 24

But more importantly, you should now appreciate that an exceptional
programmer is one with the right attitude: one who always seeks to write the
best code in any situation, who works well with others, and who can make
pragmatic decisions in the heat of the software factory. The craftsman knows
how to manage technical debt and seeks to address problems early, before
they become software snares.

KEY CONCEPT Becoming a good programmer requires you to adopt effective attitudes—the angle of
approach you take to software construction.

But What Now?

The important thing is not to stop questioning. Curiosity
has its own reason for existing. One cannot help but be in
awe when he contemplates the mysteries of eternity, of life,
of the marvelous structure of reality. It is enough if one

tries merely to comprehend a little of this mystery every day.
Never lose a holy curiosity.

—Albert Einstein

As a code craftsman, you’ll never reach perfection; the best you can ever
achieve is a continual state of improvement. There’s always more to learn.
So what should you do now? The very fact that you’re asking that question is
pivotal—one of the most important charateristics of a code craftsman is a
desire to improve.

If I wanted to become a skilled soccer player, I might find some books on
soccer, buy a soccer training video, and then sit down with some popcorn
and a few beers to learn how to play the game. Great. Ask me how it’s going
two months later. If I say, “I’ve read loads about it, and I know all the top
moves of the premier players,” then you won’t be at all impressed: How well
can I actually play? It is a geniunely good idea to read about the game and to
study it, but couch potato soccer skills aren’t any real use.

I can only learn soccer by doing it—by getting dirty, out on a field, play-
ing the game. Practice makes perfect. I need to play with people who are skilled
and who can train me well. I need to expend energy, feel the burn, and
perhaps make a fool of myself in front of others. Slowly, gradually, painfully,
I’ll get better.

I hate to break it to you, but that’s the only way to get good at code
craft too. Just reading this book won’t cut it. You have to get out there and
do it. Properly. So how can we translate this into practice? Here are a few
simple ideas:

Place this book on your bookshelf. Put what you’ve learned into practice
as best you can right now. You can always refer to a specific chapter when
you run into problems later on.

After a few months of working with this advice, pull out the book
once more and give it another read. Pay particular attention to the

Where Next? 461

questions in the “Getting Personal” sections—work out what your next
steps must be to improve your code. Each time you go through this pro-
cess, you’ll identify new ways to improve your skills.

Maneuver your career into the path of great coders, and glean all you
can from them. Learn what makes their code good and their attitudes
constructive, and how you can apply these characteristics to yourself.
Seek their advice, criticism, review, and opinion. Ask them to mentor
you. (Bribe them with popcorn and alcohol if you have to!)

Keep programming, and expand your horizions. Write more code. Try
out new techniques. Tackle new problems, different languages, and
unfamiliar technologies.

Don’t be afraid of making mistakes; you won’t become a perfect pro-
grammer overnight. As you learn, you will almost certainly make many
embarrassing faux pas. Don’t let these stunt your growth or define you as
a programmer. Unless you try out new techniques, you’ll never learn and
won’t improve. George Bernard Shaw wrote, “A life spent making mis-
takes is more useful than a life spent doing nothing.”

Receive advice and code review comments with a constructive attitude.
Look back at what you’ve done, and see how it can be improved.

Develop outside interests that you can use as a frame of reference for
technical knowledge. If all you ever study is programming, then you will
become a very two-dimensional person and will not be able to fit code
craft into the context of the Real World.

Find the classic books in your field. (Code Craft is obviously one of them!)
Get a copy of each, and digest it well. Every disicpline and every language
has its renowned gurus—ensure you know who they are and what they’ve
written.

Read the classic software tomes, like:

The Mythical Man-Month (Brooks 95)

The Psychology of Computer Programming (Weinberg 71)

Peopleware: Productive Projects and Teams (DeMarco 99)

The Pragmatic Programmer (Hunt Davis 99)

Code Complete (McConnell 04)

The Practice of Programming (Kernighan Pike 99)

Design Patterns: Elements of Reusable Object-Oriented Software
(Gamma et al. 94)

Refactoring: Improving the Design of Existing Code (Fowler 99)

Ask your peers which books they have found valuable. Seek out
relevant magazines, websites, and conferences.

Teach. Mentor a lesser abled programmer. You’ll learn a lot more by
passing on your wisdom.

462 Chapter 24

Broaden your skills base by joining a professional organization like
the British Computer Society (BCS), the Association for Computing
Machinery (ACM), or the ACCU (www.accu.org). Then join in—
contribute. The more you participate, the more you’ll invest in your-
self. The ACCU, for example, is highly contributory. It runs mentored
developer projects and encourages members to write for its periodicals.
These organizations run programming contests, provide forums for
social networking, and often have local chapters where you can meet
like-minded people who care about the craft of programming.

Have fun! Enjoy cutting code to solve tricky problems. Produce software
that makes you proud. Confucius said, “If you enjoy what you do, you’ll
never work another day in your life.”

KEY CONCEPT Take responsibility for improving your skills. Never lose your passion for programming
or your desire to do it with excellence.

Principles for the Development of a Complete Mind:
Study the science of art. Study the art of science. Develop

your senses—especially learn how to see. Realize that
everything connects to everything else.

—Leonardo DaVinci

This part contains my musings on the questions at the
end of each chapter. It’s not a straight answer set—
few of the questions have a definite yes or no response.
Compare your answers with these.

The point of these questions is simply to get you thinking, to make you
delve deeper into each subject, and to spur you to improve your
programming skills.

If you’re thinking of reading this just to get the “answers” without having
thought about the questions first, I’d really encourage you not to. Spending
even a little time mulling things over and getting personal will really pay off.
As Confucius said, “I hear and I forget. I see and I remember. I do and I
understand.”

Chapter 1: On the Defensive

Mull It Over

1. Can you have too much defensive programming?

Yes—just as too many comments can degrade code readability, so can many
defensive checks, if they are bad. Redundant checks can be avoided with
careful coding; for example, by making a good choice of types.

ANSWERS AND
DISCUSSION

464 Answers and Discuss ion

2. Should you add an assertion to your code for every bug you find and fix?

Fundamentally, it’s not a bad practice. But think about where you’d add the
assertions. Many, many faults are due to incorrect honoring of API contracts.
If you passed garbage into a function, you would want to put some precondition
checking inside that function, rather than put a test at the call site. If the
function returned garbage, you would either fix the function so that it won’t
again (and prove it’s fixed) or write some postconditions.

It would be more beneficial to add a new unit test for every bug you find
and fix.

3. Should assertions conditionally compile away to nothing in production
builds? If not, which assertions should remain in release builds?

People hold passionate beliefs on this subject. The answer isn’t black and
white; there are powerful arguments for both sides. There are always some
very nit-picky assertions that really don’t need to be left in production builds.
But some assertion occurrences may still interest you in the field.

Now, if you do leave any constraint checks in releases, they must change
behavior—the program shouldn’t abort on failure, just log the problem and
move on.

Remember: Genuine run-time error checks should never be removed;
they should never be coded in assertions anyway.

4. Are exceptions a better form of defensive barrier than C-style assertions?

They can be. Exceptions behave differently; while propagating back up the
call stack, an exception can be caught and ignored—suppressing its effect.
This makes exceptions more flexible tools. You can’t ignore an assert that
aborts execution; assertions are lower-level mechanisms.

5. Should the defensive checking of pre- and postconditions be put inside
each function, or around each important function call?

In the function, without a doubt. This way, you only need to write tests once.
The only reason you’d want to move them out is to gain flexibility, to choose
what happens when a constraint fails. This isn’t a compelling gain for such
an explosion in complexity and potential for failure.

6. Are constraints a perfect defensive tool? What are their drawbacks?

No, they are nowhere near perfect. Redundant constraints can be pests at
best and hindrances at worst. For example, you could assert that a function
parameter i >= 0. But it’s much better to make i an unsigned type that can’t
contain invalid values anyway.

Treat constraints that can be compiled out with a certain degree of
suspicion: We must carefully check for any side effects (assertions can have
subtle indirect consequences) and for timing issues in the debug build that

Chapter 1: On the Defens ive 465

alters its behavior from a release build. Ensure that assertions are logical
constraints and not genuine run-time checks that mustn't be compiled out.
It is possible to put bugs in the bug-defense code!

But carefully used, constraints are still far better than dancing barefoot
over the hot coals of chance.

7. Can you avoid defensive programming?

a. If you designed a better language, would defensive programming still
be necessary? How could you do this?

b. Does this show that C and C++ are flawed because they have so many
areas for problems to manifest?

Some language features certainly could be designed to avoid errors. For
example, C doesn’t check the index of any array lookup you perform. As a
result, you can crash the program by accessing an invalid memory address.
The Java run time, on the other hand, checks every array index before lookup,
so such an catastrophe will never arise. (Bad indexes will still cause an error
though, just a better defined class of failure.)

Despite the long list of “improvements” you could make to the liberal C
specification (and I urge you to think of as many as you can), you’ll never be
able to create a language that doesn’t need defensive programming. Functions
will always need to validate parameters, and classes will always need invariants
to check that their data is internally consistent.

Although C and C++ do provide plenty of opportunity for things to go
wrong, they also provide a great deal of power and expression. Whether that
makes the languages flawed depends on your viewpoint—this is a topic ripe
for holy war.

8. What sort of code do you not need to worry about writing defensively?

I’ve worked with people who refused to put any defensive code into an old
program because it was so bad that their defenses would make no difference.
I managed to resist the urge to whack them with a large mallet.

You might argue that a small, stand-alone, single-file program or a test
harness doesn’t need this sort of careful defensive code or any rigorous
constraints. But even in these situations, not being careful is just being
sloppy. We should aim to be defensive all the time.

Getting Personal

1. How carefully do you consider each statement that you type? Do you
relentlessly check every function return code, even if you’re sure a
function will not return an error?

I bet you don’t check everything. It’s far too easy to overlook certain function
return codes, especially since some are deemed more important than others.
How many C programmers check the return value of printf? How many
actually know that it returns anything?

466 Answers and Discuss ion

2. When you document a function, do you state the pre- and postconditions?

a. Are they always implicit in the description of what the function does?

b. If there are no pre- or postconditions, do you explicitly
document this?

No matter how obvious you think a contract is (from the function name or its
description), explicitly stating the constraints removes any ambiguity—
remember, it’s always better to remove areas of assumption. Explicitly writing
Preconditions: None will document a contract explicitly.

Of course, you don’t want every function to explicitly restate a global
precondition. It would be laborious and tedious. If an entire API expects
that pointer values mustn’t be null, it’s arguably better to document this
once, globally.

3. Many companies pay lip service to defensive programming. Does your
team recommend it? Take a look at the codebase—do they really? How
widely are constraints codified in assertions? How thorough is the error
checking in each function?

Very few companies have a culture of excellent code with the right level of
defense. Code reviews are a good way to bring a team’s code up to a reasonable
standard; many eyes see many more potential errors.

4. Are you naturally paranoid enough? Do you look both ways before cross-
ing the road? Do you eat your greens? Do you check for every potential
error in your code, no matter how unlikely?

a. How easy is it to do this thoroughly? Do you forget to think about
errors?

b. Are there any ways to help yourself write more thorough
defensive code?

No one finds it naturally easy—thinking the worst of your carefully crafted
new code is contrary to a programmer’s instincts. Instead, expect the worst of
any people who will be using your code. They’re nowhere near as
conscientious a programmer as you are!

A very helpful technique is to write unit tests for each function or class.
Some experts strongly advise doing this before writing a function, which makes
a lot of sense. It helps you to think about all the error cases, rather than
happily trusting that your code will work.

Chapter 2: The Best Laid Plans

Mull It Over

1. Should you alter the layout of legacy code to conform to your latest code
style? Is this a valuable use of code reformatting tools?

Chapter 2: The Bes t Laid P lans 467

It’s usually safest to leave legacy code however you find it, even if it’s ugly and
hard to work with. I’d only entertain reformatting if I was absolutely sure that
none of the original authors would ever need to return.

By reformatting, you lose the ability to easily compare a particular
revision of the source with a previous one—you’ll be thrown by many, many
formatting changes which may hide the one important difference you really
need to see. You also risk introducing program errors in the reformatting.

As far as code reformatting tools go, they’re nice curiosities, but I don’t
advocate the use of them. Some companies insist on running source files
through beautifiers before checking any code into their repository. The
advantage is that all code is homogenized, pasteurized, and uniformly
formatted. The major disadvantage is that no tool is perfect; you’ll lose
some helpful nuances of the author’s layout. Unless all the programmers
on your team are gibbons, don’t use a reformatting tool.

2. A common layout convention is to split source lines at a set number of
columns. What are the pros and cons of this? Is it useful?

As with many presentation concerns, there is no absolute answer; it is a
matter of personal taste.

I like to split my code up so that it fits on an 80-column display. I’ve
always done that, so it’s a matter of habit as much as anything else. I don’t
disagree with people who like long lines, but I find long lines hard to work
with. I set my editor up to wrap continuous lines rather than provide a
horizontal scrollbar (horizontal scrolling is clumsy). In this environment, long
lines tend to ruin the effect of any indentation.

As I see it, the main advantage of fixed column widths is not printability,
as some would claim. It’s the ability to have several editor windows open side
by side on the same display.

In practice, C++ produces very long lines. It’s more verbose than C; you
end up calling member functions on objects referenced by another object
through a templated container. . . . There are strategies to manage the many,
many, long lines this may lead to. You can store intermediate references in
temporary variables, for example.

3. How detailed should a reasonable coding standard be?

a. How serious are deviations from the style? How many limbs should
be amputated for not following it?

b. Can a standard become too detailed and restrictive? What would
happen if it did?

Six limbs should be amputated for deviations from any coding standard.
The correct answer really depends on the exhaustiveness of the coding

standard and the coding culture you work in. There are usually much bigger
software problems to address than a misplaced bracket, but brackets are
easier to moan about. I have seen many coding standards that are so pre-
scriptive and paralyzing that the poor programmers have just plain ignored

468 Answers and Discuss ion

them. To be useful and to be accepted, a coding standard should provide a
little room for maneuvering, perhaps with a best practice approach given as an
example.

4. When defining a new presentation style, how many items or cases need
layout rules? What other presentation rules must be provided? List them.

If you write out each layout rule individually, there will be an awfully large
number of cases to consider. Coding style is a delicate interplay of many forces:
indentation, yes, but also internal spacing, naming, positioning of operators,
presentation of parentheses, contents of files, use and ordering of header
files, and more, and more.

The following list of presentation items is long, but it’s far from complete.
It’s a good starting point for a style checklist. In practice, some items are
more important to standardize than others. As you read this list, make sure
that you have considered a personal preference for each item. Also make
sure that you know the correct convention for your current software project.

Code margins

The number of spaces per indent shapes the left edge of the code. It’s
common to see two- or four-space indents, though some programmers
diplomatically choose three spaces. Smaller indents mean that you don’t
run into the right margin as quickly, but they look cluttered and make it
harder to differentiate among levels. Larger indents are more distinct,
but you run out of space more quickly.

Whether to indent with tabs or spaces is a long-running debate that has
driven many programmers to therapy. Spaces are more portable; they’ll
display the same width in any editor. When displaying code using a vari-
able width font,1 tabs can give better alignment.

Page width determines how you format the right-hand code edge. You
can limit lines to a fixed number of columns or let them grow forever,
requiring horizontal window navigation. Fixed pages are often 79 or 80
characters wide. This is historic; 80 characters is a common terminal
width, but the last column was not always usable for display.

There are choices for aligning certain constructs. At which level do you
put public:, private:, and protected: in a class declaration? Where do case
labels go in switch statements? How do you format labels for the goto
statements you never use?2

Spacing and separation

You can line up pieces of code with an internal tabular layout; for
example, aligning operators in the same column across subsequent
lines. This provides visual emphasis for the function of a block of

1 More common in published code than in a source code editor.
2 Because, of course, no high-quality programmer will use gotos in these enlightened times—see
“Structured Programming” on page 421.

Chapter 2: The Bes t Laid P lans 469

statements. However, it does require extra typing and maintenance
effort, and some programmers don’t feel it is justified. A tabular
horizontal layout would look something like:

int cat = 1;

int dog = 2;

char *mouse = "small and furry";

Whitespace can appear pretty much anywhere, and there are different
ways to space out individual code statements. It’s a good idea to put spaces
around operators, like this: hamster = "cute". It’s akin to having spaces
between words when you write. The alternative, hamster="ugly", looks
cramped and dense.

Similarly, function calls can be spaced in various ways. You might employ
one of the following formats:

feedLion(mouse)

feedLion(hamster)

feedLion (motherInLaw)

Many view the latter option as bad—a mathematical equation
wouldn’t have a space after the function name. (The mother-in-law,
however, might be a genuinely edible commodity.)

Should you follow a similar convention for keywords? How does
while(lionIsAsleep) look? Cramped. Keywords aren’t functions; they
read more like words, so it’s most common to see spaces around them.

If code gets too long for a single line, it must be split, but where to split is
another choice. Naturally, you’d break in the most logical place, but one
man’s logic is another man’s folly. Lines are generally broken around an
operator, but whether before or after it—whether the operator appears
on the end of the previous or beginning of the next line—is a matter
of taste.

Variables

A classic C/C++ contention is where to put the asterisk in a pointer dec-
laration (a battle often called Star Wars). You can chose between these
three:

int *mole;

int* badger;

int * toad;

The first two associate the “pointeryness” with the variable and with
the type, respectively. The problem with associating with type is it doesn’t
work as expected for statements like this: int* weasel, ferret;. The third
version is a reasonable fence-sitting alternative, but isn’t as common.

470 Answers and Discuss ion

Some C/C++ standards mandate that all constant names should be in
uppercase letters to make them clear. Some argue that only preproces-
sor macro names should be capitalized.

Lines of code

Exactly what goes on each line is a layout concern; it is often mandated
that every individual statement goes on its own line, making each one
distinct and clear.

This leads on to the issue of side effects in statements; should you allow
code like index[count++] = 2 or permit assignments in ifs?

Some presentation styles will place code on the same line as an opening
brace:

for (...) { ostrich++;

buryHead(ostrich);

}

Constructs

Should you always include braces, even if there’s only one statement
within them? You might allow braces to be missed when the code follows
on the same line, like this:

if (weAreAllDoomed) startPanicking();

It’s common to see else clauses aligned in the same column as their
respective if, but you’ll sometimes see them placed at a subordinate
indent level.

How important is it to make special cases clear? Some coding standards
mandate that fall-throughs between switch statement cases should be
flagged with comments. Similarly, no-ops in loops should be flagged to
avoid confusion; otherwise, this little bodiless loop that finds the end of a
C string str may confuse the unwary:

char *end;
for (end = str; *end; ++end);

Should C++ inline methods be put inside the class declaration, outside it
(directly afterward), or in a separate source file?

Files

The most basic decision is how to split a project into files and what infor-
mation to put into each one. Is there one file per class or per function?
Or can you split files into smaller or larger units than this, perhaps per
library or section of code? What if there are a lot of very small related
classes? Do you really want lots of very small related files?3

3 Java answers this by mandating the physical mapping of classname to filename.

Chapter 2: The Bes t Laid P lans 471

Conventions for splitting a file into sections differ. Some programmers
like to insert a number of blank lines as a separator, some prefer com-
ment blocks, some like reams of ASCII art.

In C/C++, the exact order of #included files may be fixed by a presen-
tation style. There are different schools of thought here. Some prefer
to neatly order system includes first, then project includes, then file-
specific includes. Others feel that the exact opposite is safer; it can
prevent one header file from accidentally relying on headers normally
included before itself. Some standards suggest that no header file should
ever #include another, leaving it to be done long-hand in every imple-
mentation file.

Misc
There will always be plenty of other issues specific to particular coding
situations. How do you format embedded SQL commands in code that
performs database access? Do you require consistent formatting in a
project across different languages?

5. Which is more important—good code presentation or good code
design? Why?

This is really a very artificial question. Both are fundamental for good code,
and you should never be asked to sacrifice one for the other. If you ever are,
beware. However, which one you just chose may say a lot about you as a
programmer.

Bad formatting is certainly easier to fix than bad design, especially if you
use clever tools to homogenize your code’s formatting.

There is an interesting connection between presentation and design:
Bad presentation often shows that the code was produced by a bad pro-
grammer, which probably means that it suffers from bad internal design too.
Or it may imply that the code has been maintained by a series of different
programmers, with a subsequent loss of the initial code design.

Getting Personal

1. Do you write in a consistent style?

a. When you work with other people’s code, which layout style do you
adopt—theirs or your own?

b. How much of your coding style is dictated by your editor’s auto-for-
matting? Is this an adequate reason for adopting a particular style?

If you can’t alter the way your editor positions the cursor for you, you
shouldn’t be using it (either you’re too inept, or your editor is).

If you can’t write code in a consistent style, you should have your
programmer’s license revoked. If you can’t follow someone else’s
presentation style, you should be forced to maintain BASIC for the rest of
your career.

472 Answers and Discuss ion

Guard your attitude: The typical programmer cares more about his code,
personal practices, and individual layout fetishes than the overall health of
the project. Too often, there is an individual versus team dilemma. If a
programmer rebels against an imposed house style or can’t maintain code
using its existing presentation style, it is a bad sign. This suggests that the
programmer can’t see the big picture.

2. Tabs: Are they a work of the devil, or the best thing since sliced bread?
Explain why.

a. Do you know if your editor inserts tabs automatically? Do you know
what your editor’s tab stop is?

b. Some hugely popular editors indent with a mixture of tabs and
spaces. Does this make the code any less maintainable?

c. How many spaces should a tab correspond to?

Since this is such a religious issue, I’ll just say Tabs suck! and back away
quickly. Well, actually I’ll add that the only thing more evil than indenting
with tabs is indenting with tabs and spaces—a nightmare!

If your editor is inserting tabs (and probably spaces) without you
noticing, try using another editor for a while to appreciate how frustrating it
is. Try setting your tab stop to a different value, and see what a mess it makes
of the code. Everyone uses the same editor, so it doesn’t matter is not a professional
attitude. Everyone doesn’t use the same editor, so it does matter.

You’ll hear people recommend their choice of tab-stop length and
carefully justify their opinions. That’s all very well; in fact a respected study
claims that a three- or four-space tab stop provides optimum readability. (I
favor four spaces because I don’t like odd numbers!) However, a tab should
correspond to no fixed number of spaces. A tab is a tab, which is not a space
or any multiple thereof. For code laid out using tabs, it shouldn’t matter
exactly how many spaces the tab is displayed as—the code should read well,
regardless. Unfortunately, I have rarely seen tab-indented code that works
this way. All too often, tabs and spaces are mixed together to make code line
up neatly. This works fine with a tab stop set as the author intended. But it
makes an unholy mess with any other setting.

3. Do you have a preferred layout style?

a. Describe it in a series of simple statements. Be complete. Include,
for example, how you format switch statements and split up long
lines.

b. How many statements did it take? Is that what you expected?

c. Does your company have a coding standard?

d. Do you know where it is? Is it advertised? Have you read it?

i. If yes: Is it any good? Perform an honest critique, and feed your
comments back to the document owners.

Chapter 2: The Bes t Laid P lans 473

ii. If no: Should it? (Justify your answer.) Is there a common
unwritten code style that everyone adopts? Can you drive the
adoption of a standard?

e. Is there more than one standard used, perhaps one per project? If so,
how is code shared among projects?

Make sure you are aware of any style guides (or undocumented conventions)
that you should work to.

This question was partly motivated by personal experience: I was working
in a large organization with several isolated departments, each following its
own set of guidelines. As the separate products slowly converged, it made
technological (and sound financial) sense to combine some parts of the
codebases. The result was a mess of code with different styles of interface,
different presentation, even different language use. It looked unorganized
and unprofessional and was very hard to work with. It was painful.

4. How many different layout styles have you followed?

a. Which did you feel most comfortable with?

b. Which was the most rigorously defined?

c. Is there a link?

After a few years of programming, it’s easy to settle into your own peculiar
layout style without really thinking about how or why you arrived at it.
Undoubtedly, it was a result of other code you’ve read and worked with,
mixed with your own personal tastes. Take some time to consider this, and
ensure that your coding style is sound. Perhaps now is the time to modify and
improve it.

Changing your style isn’t straightforward. There will still be your old
legacy code to deal with—should you convert it to the new style, or leave it in
the previous state?

Grab a text editor and type in this bit of code; it calculates the nth prime
number. It’s written in one particular coding style. Present it as you’d like to
see it. Don’t try to change the implementation at all.

/* Returns whether num is prime.*/

bool

isPrime(int num) {

for (int x = 2; x < num; ++x) {

if (!(num % x)) return false;

}

return true;

}

/* This function calculates the 'n'th prime number.*/

int

prime(int pos) {

if (pos) {

int x = prime(pos-1) + 1;

474 Answers and Discuss ion

while (!isPrime(x)) {

++x;

}

return x;

} else {

return 1;

}

}

That is a representative bit of Real World code, so don’t dismiss this as a
stupid and tedious exercise.

Note that I haven’t given any suggested answer here. My reformatting is
just as valid as yours, and indeed as valid as the original format. That’s why
this is a Getting Personal question.

If you’re reading these answers without chewing over the questions at all,
go on—give this one a try. The book can wait while you type in a few lines. . . .

Now, take a look at what you’ve written.

How different is your version? How many specific changes did you make?

For each change, ask yourself: Is it a personal aesthetic preference, or
can you justify the change with some rationale? Question this rationale—
is it truly valid? How strongly would you be prepared to defend it?

How comfortable were you with the original format? Did it bother you to
read? Could you work in that coding style if you encountered code like
it? Should you be able to become comfortable with it?

Give yourself bonus points if you wanted to reimplement the code to be
more efficient, and extra bonus points if you resisted the temptation. (Pre-
mature optimization is a Bad Thing—see “The Nuts and Bolts” on page 206.)

Chapter 3: What’s in a Name?

Mull It Over

1. Are these good variable names? Answer with either yes (explain why, and
in what context), no (explain why), or can’t tell (explain why).

a. int apple_count

b. char foo

c. bool apple_count

d. char *string

e. int loop_counter

The quality of a name depends on its context, and we can’t honestly tell
whether any of these are good or bad names. That’s why the question asks for
example contexts. There are some obvious contexts where the names might
be bad: apple_count wouldn’t be a particularly good name for a grapefruit
counter.

Chapter 3: What ’s in a Name? 475

foo is never a good name. I’ve yet to see anyone counting foos. loop_counter
is also bad; even if a loop gets too big for a short counter name, you can still
pick a more descriptive name, one that reflects the actual use of the variable
rather than its role as a loop counter.

We can’t really tell whether bool apple_count is a good name, but it looks
like it isn’t—a boolean cannot hold a number. Perhaps it’s recording whether
a separate count of apples is valid, but if this was the case, it ought to be called
something like is_apple_count_valid.

2. When would these be appropriate function names? Which return types
or parameters might you expect? Which return types would make them
nonsensical?
a. doIt(...)

b. value(...)

c. sponge(...)

d. isApple(...)

What each of these might mean depends on where you find them. A name
depends on its context for meaning; that context is provided by the
enclosing scope of the function. Context information can also be given by
function parameters or return variables.

3. Should a naming scheme favor the easy reading or easy writing of code?
How would you make either easy?

a. How many times do you write a single piece of code? (Think about
it.) How many times do you read it? Your answers should give some
indication as to the relative importances.

b. What do you do when naming conventions collide? Say you’re working
on camelCase C++ code and need to do STL (using_underscore)
library work. What’s the best way to handle this situation?

I’ve worked on C++ codebases that used such a collision of naming con-
ventions to their advantage. The internal logic used camelCase, whereas
libraries and components that extended the standard library followed STL
naming_conventions. It actually worked quite well, neatly marking separate
parts of the project.

Unfortunately, it doesn’t always work that nicely. I’ve seen plenty of incon-
sistent code where there was no rhyme or reason behind the changing styles.

4. How long should a loop be before you need to give a meaningful loop
counter name?

This depends on how long your piece of string is. It’s clear, though, that a
100-line loop with a counter called i is not best practice.4 Whenever you
insert new code into a loop, check the counter name to see if it now needs
adjustment.

4 But generally a 100-line loop itself is not best practice.

476 Answers and Discuss ion

5. In C, if assert is a macro, why is its name lowercase? Why should we
name macros so they stand out?

assert isn’t capitalized because assert isn’t capitalized. In an ideal world it
would be, but standards being what they are, we have to live with this second-
rate macro name. Sigh.

Fire is useful, but it can also be very dangerous. Macros are the same.
Macros and #defined constant definitions are dangerous—adopting the
UPPERCASE name convention will prevent nasty collisions with ordinary
names. It’s as sensible as wearing safety goggles when a lunatic is walking
around with a big pointy stick.

Because macros can be so painful, you should choose names that are
very unlikely to cause headaches. More importantly, avoid using the
preprocessor as much as humanly possible.

Long calculations can be made more readable by putting intermediate
results in temporary variables. Suggest good naming heuristics for these
types of variables.

Bad temporary names are tmp, tmp1, tmp2, and so on, or a, b, c, and so on.
These, unfortunately, are all common intermediate names.

Like any other item, temporary names should be meaningful (like
circle_radius in a trigonometric calculation or apple_count in an arboreal
analysis routine). In fact, in a complex calculation, good names can really
serve to document the internal logic and show what’s going on.

If you find a value that really has no nameable purpose, if it truly is an
arbitrary intermediate value that’s hard to name, then you’ll begin to under-
stand why tmp is so popular. Avoid calling anything tmp if possible—try to break
the calculation in some other way that makes more sense.

6. What are the pros and cons of following your language’s standard library
naming conventions?

Standard libraries are often a source of language best practice, so it can be
valuable to follow their conventions. Other programmers are used to the
naming style, so they will have fewer nasty reading surprises and will feel at
home with your code.

On the other hand, the library might not always present best practices,
so think first! C’s horribly named assert macro is a good example of this.

7. Can you wear out a name? Is it okay to repeat a local variable name in
many different functions? Is it okay to use local names that override (and
hide) global names? Why?

It is perfectly acceptable to repeat a local variable name in many different
contexts. Sometimes it’s good practice to: Why use a different loop index
counter name all the time? It would only serve to make your code harder
to read.

Don’t hide global names with local variable names; it’s really confusing.
This is an indicator of brittle code.

Chapter 3: What ’s in a Name? 477

8. Describe the mechanics of Hungarian Notation. What are the pros and
cons of this naming convention? Does it have a place in modern code
design?

Hungarian Notation is a naming convention that adorns variable and
function names with cryptic prefixes to denote type. It’s seen predominantly
in C code. There are several subtly different dialects, but the most common
Hungarian prefixes are shown in Table 1.

Hungarian Notation was relatively unbearable in C (not to mention
unnecessary once the language became more strongly typed), and is rapidly
nauseating in C++, since it doesn’t really scale up to the many new type
definitions you can introduce.

If you really want to confuse a maintenance programmer, use Hungarian
Notation and then, a few months later, change the types of all the variables
without correcting every single variable name (since it would take far too
long to do that). This is a real weakness with the naming scheme.

KEY CONCEPT Avoid Hungarian Notation like the plague.

Some naming conventions have diluted Hungarian leanings. Witness the
foo_ptr and m_foo ideas mentioned earlier in the chapter. There are other
cute conventions with similar intent: Some programmers call their global
variables theFoo and their member variables myFoo. Perhaps this shows that
some Hungarian Notation is a good idea in principle; but taken to its logical
extreme, it’s a dictatorial tyrant of a convention. Be on your guard.

Table 1: Common Hungarian Notation Prefixes

Prefix Which means . . .

p pointer to . . . (lp means long pointer, an old architectural issue—if you don’t know,
don’t ask)

r reference of . . .

k constant . . .

rg array of . . .

b boolean (bool or some C typedef)

c char

si short int

i int

li long int

d double

ld long double

sz zero-terminated char string (Note: not p)

S struct

C class (You can define your own class abbreviations, too.)

478 Answers and Discuss ion

9. We see many classes containing member functions acting as getters and
setters; reading and writing the value of certain properties. What are the
common naming conventions for these functions, and which is the best?

While some argue that the existence of get and set methods shows a weak
design, we nonetheless see a lot of classes written like this. Some languages
actually have built-in support for these operations.

There are several naming conventions to choose from. If you’re writing
in C++, using camelCase, and have some property called foo of type Foo, you
might pick:

Foo &getFoo();
void setFoo(const Foo &) const;

or

Foo &foo();
void setFoo(const Foo &) const;

or perhaps

Foo &foo();
void foo(const Foo &) const;

Your choice may be dictated by a coding standard; otherwise, it’s down
to your sense of aesthetics. This is a case where I’d violate the Function name
should always contain a verb rule and go for the second option, since it reads
the most naturally in code. Try it and see.

If a “getter” method has to perform a long calculation the first time it’s
run (even if it can cache the answer for future invocations), then I’d be wary.
It’s no longer a simple retrieval function, and these naming schemes don’t
imply this. Tree::numApples is a good getter name, unless the operation could
block for a minute while an image recognition system detects all the apples.
In that case, I’d like to see the behavior implied by name. Tree::countApples()
hints at some greater activity—it’s the verb in the name.

Getting Personal

1. How good are you at naming? How many of these heuristics do you
follow already? Do you consciously think about your naming and these
sorts of rules, or do you just do it all naturally? In which areas can you
improve?

Go back over the section “The Nuts and Bolts” on page 44. Compare
those guidelines with the last piece of code you wrote. How does it
match up? How much of your naming necessarily follows existing

Chapter 3: What ’s in a Name? 479

coding conventions (as you’re exhorted to do on page 50), and how
much have you established from scratch?

2. Does your coding standard mention naming at all?

a. Does it cover all the cases we’ve looked at here? Is it sufficient? Is it
useful, or just superficial?

b. How much naming detail is appropriate in a coding standard?

Sometimes a coding standard with comprehensive naming mandates can
make it harder to invent names—you have so many rules to try to satisfy that
it’s hard to remember and reconcile them all. Look with caution at anything
more prescriptive than the guidelines laid out in Chapter 3.

Good code craftsmen habitually name well, and don’t need coding
standards to “help” them. The standards-setters often claim that their stand-
ards will help less-experienced programmers to name well. But more often
than not, these standards are not that helpful—inexperienced programmers
commit more programming sins than just bad naming. Code reviews are
required to ensure that their work is appropriate.

3. What’s the worst name you’ve come across recently? How have names
ever misled you? How would you have changed them to avoid future
confusion?

Did you spot this in a formal review of someone else’s work, or while trying to
maintain some old, long-forgotten code?5 Finding and correcting bad names
just after they’ve been written (when you still know what the thing should
really be called) is best. And it takes the least effort. Working it out months
later can sometimes be quite painful.

4. Do you have to port code between platforms? How has this affected file-
names, other names, and the overall code structure?

Older filesystems limited the number of characters you could use in a
filename. This made file naming much messier (and more cryptic). Unless
you have to port code to such an archaic system, this kind of limitation can
be safely ignored.

File-based polymorphism is a cunning way to exploit filenames to achieve
code substitutability at build time. It’s often used to select platform-specific
implementations in portable code. You can set up header file search paths,
allowing one #include to pull in a different file depending on the current
build platform.

5 Obviously, it would never be a problem you found in your own code!

480 Answers and Discuss ion

Chapter 4: The Write Stuff

Mull It Over

1. Grouping related code will make its relationships clear. How can we
perform this grouping? Which methods document the relationships most
strongly?

Obvious grouping devices are common name prefixes and suffixes; file-
system location; and putting items in the same class or structure, C++/C#
namespace, Java package, source file, or code library. Can you think of more?

Relationships enforced by the language are the strongest—both obvious
to read and also automatically checked for you. However, proximity of code
layout is a more potent association than you’d think. Ordering also implies a
lot—you’ll think that the first item is more important than subsequent
items. Exploit these facts to document your code.

2. We should avoid using magic numbers in our code. Is zero a magic number?
What should you call a constant value representing zero?

The number zero has magic properties in many different contexts; in C code
it is used as a null pointer value, and the initial value for most loops. What
could you replace 0 with?

A single shared constant called ZERO is no better than writing 0; it’s just as
magic. The name doesn’t imply what any zero actually means—is it a null
pointer value, or a loop initialization value? This approach would defeat
the purpose.

A different name for each zero constant would get very tedious
because you’d have to create many similar variations on the theme of
for (int i = SOME_ZERO_START_VALUE; i < SOME_END_VALUE; ++i). None of
these zero constant names gives any new meaningful information, anyway.

You’d have to think carefully about names for zero constants. The
obvious choice would be something like NO_BANANAS, meaning no bananas
counted. But this NO_ prefix could be confused as an abbreviation for
number (like NUM_).

3. Self-documenting code makes good use of context to convey informa-
tion. Show how you do this, and give an example of how a particular
name would lead to a different interpretation in different functions?

There are many ways to exploit context to your documentation’s advantage.
Consider a Cat class. Inside it, member functions don’t need to be called set-
CatName, setCatColor, and so on; the cat part is implicit from the class context.

Chapter 4: The Wri te S tu f f 481

Many English words have a dual meaning. You’d expect the count
variable in a search function to hold different information than one in a
vampire database schema. More practically, a name variable in our Cat class
clearly holds the cat’s name, whereas one in an Employee class is more likely
to hold a human’s—with first name, last name, and title information. Same
variable name, different contents. Exploit context information as much as
possible, but ensure that the context in which you write is truly obvious.

4. Is it realistic to expect a newcomer to pick up some self-documenting
code and understand it totally?

Yes, that’s our aim—it is realistic. However, the reader will still need overview
and design documents describing the entire system, what it does, and how
it’s structured. If the code comments try to explain this, then they’re in the
wrong place (or it’s a very small system).

With good code documentation, a newcomer should find it perfectly
clear what a particular section of code is doing. Comprehensive API docs show
the meaning of any function call the newcomer may come across.

5. If code is truly self-documenting, how much other documentation is
required?

It depends on the size and scope of the project. You’ll require functional
specifications and design documents. You may still need an implementation
overview, and will definitely require thorough test specifications.

To document the design of a single piece of code, good literate comments
mean that you shouldn’t need any other documentation.

6. Why must more people than the original author understand any piece
of code?

It’s a reality of the software factory. Being the only person who understands
some code is good job security for the unscrupulous programmer. Writing
code that’s worse than a cryptic crossword puzzle will guarantee you a job
for life (or until the company folds, whichever happens first). The
downside is that you’ll spend your days immersed in your own foul
concoctions.

In reality, code is dangerous if it can’t be understood by anyone else. If
you leave the company, move to another department, get promoted, or no
longer have time to perform maintenance, then someone else must be able to
take over. And if it doesn’t come down to that, sometime down the road,
when you’ve forgotten how your code works, a fatal fault will turn up that
must be fixed by last Tuesday.

Code reviews can help to ensure that code is well understood and
adequately documented.

482 Answers and Discuss ion

7. This simple C bubblesort function could use some improvement. What
specific things are wrong with it? Write an improved, self-documenting
version.

void bsrt(int a[], int n)

{

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--)

if (a[j-1] > a[j])

{

int tmp = a[j-1];

a[j-1] = a[j];

a[j] = tmp;

}

}

The first problem is that a bubblesort algorithm should never be used.
There are plenty of better sorts. There’s also probably a much better,
generic language library function available; in C you can call qsort, for
example. I’ve used bubblesort here as a simple code example.

The function’s interface isn’t clear at all. The function name is too cryptic,
and the parameter names mean nothing. I’d like to see an API documentation
comment provided too, but I’ll leave that out in the rewrite below.

Internally, the code is a mess. Its intent would be much clearer if the
code that transposes array values is split out as a swap function. Then the
reader can see what’s going on. A little more massaging leads to this:

void swap(int *first, int *second)

{

int temp = *first;

*first = *second;

*second = temp;

}

void bubblesort(int items[], int size)

{

for (int pos1 = 0; pos1 < size-1; pos1++)

for (int pos2 = size-1; pos2 > pos1; pos2--)

if (items[pos2-1] > items[pos2])

swap(&items[pos2-1], &items[pos2]);

}

This is adequate C, although there are some more changes you might
prefer. Depending on your religion, you might want braces around the
loops. swap could be made into a macro for efficiency. This isn’t a clever
optimization though; you should really choose a more efficient sort
algorithm.

In C++, I’d consider making swap inline, and take its parameters by
reference (documenting the fact that they will be changed). The best choice
would be to use the std::swap facility available in the language libraries.

Chapter 4: The Wri te S tu f f 483

8. Working with code documentation tools brings up some interesting
issues. What’s your opinion on these?

a. When you review the documentation, should you perform a
code review, looking at the comments in the source files, or a
specification review, looking at the generated documents?

b. Where do you put documentation of protocols and other non-API
issues?

c. Do you document private/internal functions? In C/C++, where do you
place this documentation—in the header file or implementation file?

d. In a large system, should you create a single, large API document or
several smaller documents, one per area? What are the advantages of
each approach?

My thoughts on these questions are:

a. Review the generated spec; don’t get too hung up about the layout of the
comments in the source file. You’re reviewing the content, not the code.

b. Don’t be fooled into thinking documentation must be put in a header file
or in an implementation file. Even if documentation tools are a Good Thing,
it’s not evil to have some separate “traditional” documents as well. Write
about your protocol there.

c. Document any internal functions that need documentation. You don’t nec-
essarily have to write exhaustive docs on all private parts. These docs
should be hived off into the implementation file if they’re reasonably
large, to keep the public interface neat and simple.

d. Both! Use different invocations of the tool to generate a single, large
document and documents for each subsystem.

9. If you’re working on a codebase that isn’t literately documented, and you
need to alter or add new methods or functions, is it a good idea to give
them literate documentation comments, or should you leave them
undocumented?

The craftsman wants to document and automatically feels the need to write
comment blocks. Now, if the code has a separate specification document,
then your documentation should go in there alongside everything else.
Otherwise, it’s not too bad to start adding literate comments. Make sure
that the original programmer isn’t going to take offense, though!

10. Is it possible to write self-documenting assembly code?

You can give it your best shot, but it’s not going to be easy. Assembly code
isn’t particularly expressive; you’re not programming at the level of intent,
more at the level of do this, you dumb microprocessor. Your code will be mostly
comment blocks (probably good practice for assembly, anyway). Except for
subroutine labels, there’s not much else to self-document with.

484 Answers and Discuss ion

Getting Personal

1. What do you consider to be the best documented code you’ve come
across? What made it so?

a. Did this code have a large number of external specifications? How
many of them did you read? How can you be sure you knew enough
about the code without reading them all?

b. How much of this do you think was due to the author’s programming
style, and how much was because of any house style or guidelines he
or she worked to?

Well-documented code does not necessarily have any separate description
documents. Internally, it employs good naming, logical modularization,
simple techniques, clear layout, documented assumptions, and good
commenting. House styles help, but they are no substitute for astute,
sensitive programming. An idiot can follow the most stringent guidelines
and still produce shabby shreds of code.

2. If you write in more than one language, how does your documentation
strategy differ in each?

Different languages are more or less expressive, and so what can and can’t be
documented within the language syntax varies. As much as anything else, this
will affect how many comments you’d write.

You’re probably better at writing self-documenting code in your most
familiar programming language.

3. In the last code you wrote, how did you make the important stuff stand
out? Did you hide private information away appropriately?

Think carefully about this—the natural tendency is to dismissively say,
Yeah, I wrote it okay. Look at your code as if it had been written by some
other muppet. Criticize it.

4. If you’re working on a team, how often do others come to you to ask you
how something works? Could you avoid this with better-documented code?

A good two-pronged strategy to cope with this is:

a. If the question is genuinely about something unclear in your code, after
having explained it to the curious programmer (and learned what he
really needed to know), capture the information in some appropriate doc-
umentation. You can email this to him afterward, too, to ensure he took
away the right information.

b. If the question was about something that was already explained in the
documentation, point him at it, shout RTFM,6 and give him a poke in
the eye.

6 Read The (ahem . . .) Manual.

Chapter 5: A Pass ing Comment 485

Chapter 5: A Passing Comment

Mull It Over

1. How might the need for and the content of comments differ in the
following types of code:

a. Low-level assembly language (machine code)

b. Shell scripts

c. A single-file test harness

d. A large C/C++ project

Assembly language is less expressive, providing fewer opportunities for self-
documenting code. Therefore, you’d expect more comments in assembly
code, and you’d expect those comments to be at a much lower level than
comments in other languages—assembly language comments generally
would explain how as well as why.

There isn’t an enormous a difference between the remaining three.
Shell scripts can be quite hard to read back; they are proto-Perl in this respect.
Careful commenting helps. You’re more likely to use literate programming
techniques on a large C/C++ codebase.

2. You can run tools to calculate what percentage of your source code lines
are comments. How useful are these tools? How accurate a measure is
this of comment quality?

This kind of metric will give insight into the code, but you shouldn’t get too
concerned about it. It isn’t an accurate reflection of code quality. Well-
documented code might not contain any comments. Enormous revision
histories or large corporate copyright messages can dominate small files,
affecting this metric.

3. If you come across some incomprehensible code, which is the better way
to factor in some intelligibility: adding comments to document what you
think is going on, or renaming variables/functions/types with more
descriptive names? Which approach will most likely be easier? Which
approach will be safer?

You should do both, as appropriate. Renaming is arguably the best approach,
but it’s dangerous if you don’t know exactly what a function does. You might
be giving it another equally bad name. When renaming, you must be sure
you know the nature of the item you’re changing.

Use the code’s unit tests to ensure that your modifications don’t break
any behavior.

486 Answers and Discuss ion

4. When you document a C/C++ API with a code comment block, should
it go in the public header file that declares the function or the source
file containing the implementation? What are the pros and cons of each
location?

This question was the cause of a big fight at one place I worked. Some argued
for descriptions to go in the .c file. Being close to the function means that
it’s harder to write an incorrect comment and harder to write code that
doesn’t match the documentation. The comment is also more likely to be
changed in line with any code changes.

However, when placed in a header file, the description is visible along-
side the public interface—a logical location. Why should someone have to
look into the implementation to read any public API docs?

A literate programming documentation tool should be able to pull
comments out of either place, but sometimes it’s quicker to just read com-
ments in the source instead of using the tool—a bonus of the literate code
approach. I favor placing the comments in header files.

Of course, in Java and C#, there’s only one source file anyway; you’d
conventionally use the Javadoc or C# XML comment format.

Getting Personal

1. Look carefully at the source files you’ve recently worked on. Inspect
your commenting. Is it honestly any good? (I bet as you read through the
code you’ll find yourself making a few changes!)

When you read and review your own code, it’s very easy to skip the
comments, presuming they’re correct or at least adequate. It is a good idea
to spend some time looking at them and assess how well you’ve written them.
Perhaps you could ask a trusted colleague to give you his or her
(constructive) opinion on your commenting style.

2. How do you ensure that your comments are genuinely valuable and not
just personal ramblings that only you can understand?

Some considerations for this are: write whole sentences, avoid abbreviations,
and keep comments neatly formatted and in a common language (both the
native language and the selection of words used from the problem domain).
Avoid inside jokes, throw-away statements, or anything that you’re not
entirely sure about.

Code reviews will highlight weaknesses in your comment strategy.

3. Do the people you work with all comment to the same standard, in about
the same way?

a. Who’s the best at writing comments? Why do you think that? Who’s
the worst? How much of a correlation does this bear to these individ-
uals’ general quality of coding?

Chapter 6: To Er r I s Human 487

b. Do you think any imposed coding standards could raise the quality
of the comments written by your team?

Use code reviews to inspect the comment quality of your peers and to move
your team toward a consistent quality of commenting.

4. Do you include history logging information in each source file? If yes:

a. Do you do maintain it manually? Why, if your revision control system
will insert this for you automatically? Is the history kept particularly
accurate?

b. Is this really a sensible practice? How often is this information
needed? Why is it better if placed in the source file than in another,
separate mechanism?

It’s human nature not to keep a history accurate, even with the best
intentions in the world. It requires a lot of manual work that gets skipped
when time is tight. You should use tools to help maintain a history and put
the right information in the right place (which I don’t believe is the source
file at all).

5. Do you add your initials to or otherwise mark the comments you make in
other people’s code? Do you ever date comments? When and why do you
do this—is it a useful practice? Has it ever been useful to find someone
else’s initials and timestamping?

For some comments, this is a useful practice. In other places, it’s just
inconvenient—extra comment noise that you have to read past to get to the
really interesting stuff.

It’s most useful with temporary FIXME or TODO comments, marking work
in progress. Released production code probably shouldn’t have these; no
finished code should need a reader to understand the author or date of a
particular change.

Chapter 6: To Err Is Human

Mull It Over
1. Are return values and exceptions equivalent error reporting mechanisms?

Prove it.

Return values are equivalent to global status variables because the same
reason code information can be sent back by both mechanisms (although
it is easier to ignore a status variable). You can write code that works in a
similar manner using both of these approaches.7

7 They are not quite the same, though. In C++ you can return a proxy value type that has behavior
in its destructor. This infuses extra magic into the return code mechanism.

488 Answers and Discuss ion

Exceptions are a very different beast. They involve a new control flow,
something very different from simple reason codes. They are tightly bound
into the language and program run time. While you can simulate exceptions
by hand-crafting code that propagates errors, you’d have to carefully
consider:

How to represent errors as arbitrary objects, not just as integer reason
codes

Supporting exception class hierarchies and providing the ability to catch
by base class

Propagating exceptions through any function, even those without try,
catch, or throw statements

It’s that final point which shows most clearly why the two are not equiva-
lent. Implemented at a language level, exceptions are not at all intrusive in
your code. A hand-crafted facsimile must manage the possibility of failure
at every point. Every function is forced to return an error code—even if it
cannot fail itself—just to propagate other error information. This requires
serious adaptation of the code.

2. What different implementations of tuple return types can you think of?
Don’t limit yourself to a single programming language. What are the pros
and cons of using tuples as a return value?

In C you can create a struct for every return type, linking it with an error
reason code. This would look something like:

/* Declare the return type */

struct return_float

{

int reason_code;

float value;

};

/* A function using it ... */

return_float myFunction() { ... }

This is messy, tedious to write, cumbersome to use, and hard to read.
You can exploit C++ templates or Java/C# generics to automatically build
this scaffolding, or you can use C++’s std::pair class. Both approaches are
seen in production C++ code. Both are tedious to use, with the extra declara-
tions and the machinery necessary to return these types. Some languages,
like Perl, support lists of arbitrary types; this is a much easier implementation
mechanism. Functional languages also provide such a facility.

We’ve just seen some of the disadvantages of this technique: It’s very
intrusive in the code and not at all sympathetic to the reader. It is also not an
idiomatic coding practice. There may be a performance hit when returning
more than one argument, but this is not a compelling argument, unless
you’re working at the machine code level. The notable advantage is that a
separate reason code doesn’t interfere with any return value.

Chapter 6: To Er r I s Human 489

3. How do exception implementations differ between languages?

The four main implementations we’ll consider are: C++, Java, .NET, and
Win32 structured exceptions. Win32 exceptions are bound to the operating
platform, the others to their languages. Languages may be implemented in
terms of such underlying platform facilities, or they may not be.

They all follow a similar approach; you can throw an exception, which is
later handled by a catch statement placed after code wrapped in a try block.
They all follow the termination model’s behavior.

Java, .NET, and Win32 also have a finally construct. It contains code that
is run whether execution leaves the try block normally or abnormally. This
can be a good place to put cleanup code to ensure that it always gets called.
finally can be simulated in C++, but it isn’t pleasant.

The raw Win32 exceptions (minus any language support provided by
compilers) don’t clean up as they unwind the stack, because the OS has no
concept of destructors. They must be used with care—they are intended to
handle situations more akin to signals than code logic errors.

Java exceptions (deriving from Throwable) and C# exceptions (deriving
from Exception) automatically provide a diagnostic backtrace—very helpful in
later debugging. .NET’s CLI allows anything to be thrown, but C# does not
expose the ability to do so (it does expose the ability to catch them, though).
Other .NET languages can throw whatever they like.

4. Signals are an old-school Unix mechanism. Are they still needed now that
we have modern techniques like exceptions?

Yes, they are still needed. Signals are a part of the ISO C standard, and so
they aren’t easy to remove, anyway. Signals date from (pre) System-V Unix
implementations. They are an asynchronous mechanism to report system-
level problems/events. Exceptions solve a different problem, reporting code
logic errors that can percolate up to a handler. It makes no sense to throw an
exception for signal-type events, especially using the termination model—it
doesn’t provide asynchronous handling.

5. What is the best code structure for error handling?

There is simply no answer to this question. Different code strategies will work
best in different situations. What’s important is to reliably detect and handle
errors with clear, readable, maintainable code.

6. How should you handle errors that occur in your error-handling code?

Errors signaled within error handlers should be dealt with as you would any
other error. It gets nasty fast, though—you end up with error handlers
nested within error handlers nested within error handlers. Be very careful
about this, and check for a neater way to structure your code.

A better approach is to only perform operations that are guaranteed to
succeed (or that honor the nothrow exception guarantee) in your error
handlers. That way, your world is a much nicer place to be.

490 Answers and Discuss ion

Getting Personal

1. How thorough is the error handling in your current codebase? How does
this contribute to the stability of the program?

There is a direct correlation between good error handling and stable code.
Either your program is not required to be robust, or it must systematically
detect and handle all error conditions. If this isn’t deeply rooted in the
program’s philosophy, then you will not have a reliable system.

2. Do you naturally consider error handling as you write code, or do you
find it a distraction, preferring to come back to it later?

It’s natural to dislike error handling; no one wants to focus on the negative
aspects of program functionality all the time.8 However, heed this important
advice: Don’t put it off until later. If you do, some potential errors will inevi-
tably be missed, one day causing unexpected program behavior. Get into the
habit of thinking about errors now.

3. Go to the last (reasonably sized) function you wrote or worked on, and
perform a careful review of the code. Find every abnormal occurence
and potential error situation. How many of these were actually handled
in your code?

Now get someone else to review it. Don’t be shy! Did they find any
more? Why? What does this tell you about the code you’re working on?

This is a telling insight into how thorough a programmer you really are.
Make sure that you perform this exercise carefully—and do ask someone else.
Even the most accomplished programmer will miss some error cases.9 If
these are unlikely to manifest as bugs, you’ll probably never notice and live
forever in the shadow of potentially weird behavior.

When using exceptions, you can’t easily ignore an error case—exceptions
force their own way up the call stack, regardless of whether you handle
them or not. You can still write bad code if it isn’t exception safe (it may
exit in a bad state, or with leaked resources) or if it performs over-eager
catches (consuming errors that can’t actually be handled at that level—for
this reason, don’t write catch(...) to catch all exceptions).

4. Do you find it easier to manage and reason about error conditions using
return values or exceptions? Are you sure you know what is involved in writ-
ing exception-safe code?

To some extent, this depends on what you’re used to. Exceptions com-
plement and extend return values. An exception user can also understand
return values, but the opposite doesn’t necessarily hold. Return values are
more obvious, hence easier to use properly.

8 If you are inclined that way, you’d probably make a very good software tester. But don’t change
careers just yet—really thorough programmers are few and far between.
9 How often does anyone check for errors from C’s printf, for example?

Chapter 7: The Programmer’s Toolbox 491

If you do use exceptions, it’s important to know what issues to be aware
of. Exception safety affects all of your code, not just the parts that raise and
catch errors. Exception safety is a large and involved subject that needs much
study. Don’t underestimate how seriously it affects the way you program.

Chapter 7: The Programmer’s Toolbox

Mull It Over

1. Is it more important for everyone in a development team to use the same
IDE, or for each person to pick the one that suits him or her best? What
are the implications of different people using different tools?

All professional programmers should be responsible and informed enough
to select the tools that make them most productive. No two programmers
are the same, and different people will naturally prefer different tools. As
long as the choice is made based on practical considerations, the team’s
overall effectiveness will be improved. But forcing strong-minded techies to
use particular tools rarely enthuses them to work well.

If the people on a team are all using different development environments,
then they must work together properly. They must build identical code, and
each editor mustn’t fight the others’ layout rules every time a source file is
edited.

2. What is the minimum set of tools that any programmer should have at his
or her disposal?

You can’t get by without at least:

Some rudimentary form of editor

The minimum language support required (either a compiler, an inter-
preter, or both—it depends on the language)

A computer to run them on

But that minimum set won’t make a very productive programmer. You
need a toolbox of other tools to get any serious work done.

There must be a revision control system, or work is downright
dangerous.

A reasonable set of libraries will prevent reinventing wheels and lower
the risk of introducing avoidable bugs.

You also need a build tool to help construct the software system.

That’s a more realistic minimum set. The more fundamental tools you
add in, the easier it is to develop, and the better the code that will be
produced.

492 Answers and Discuss ion

3. Which are more powerful: command-line or GUI-based tools?

I should break your arm if you even began to answer this question.
Command-line and GUI tools are different. End of story.

An interesting philosophical question is: In this context, how do you define
“powerful?” Does it mean having more esoteric features? Does it mean how
easy the tool is to use? Does it mean how fast it runs? Or does it determine
how well a tool fits into the rest of the toolchain? Decide on a definition,
and then try justifying your answer in terms of that. Then I might not break
your arm.

4. Are there construction tools that aren’t programs?

We already categorized languages and libraries as tools, so the answer is yes.
Other good examples to consider are:

Regular expressions

Graphical components (GUI “widgets”)

Network services

Common protocols and formats (like XML)

UML diagrams

Design methodologies (like CRC cards)

5. What’s most important for a tool?

a. Interoperability

b. Flexibility

c. Customization

d. Power

e. Ease of use and learning

Each of these is important. The balance probably changes for different types
of tools and the situations in which you’ll use them.

Power is important; your tools must be powerful enough for the tasks you
set them to, or your life will be hell. If this weren’t the case, programmers
would edit their source code using Notepad or vi.

Getting Personal

1. What are the common tools in your toolbox? Which do you use every
day? Which do you use a few times a week? Which do you only call on
occasionally?

a. How well do you know how to use them?

b. Are you getting the most from every tool?

Chapter 7: The Programmer’s Toolbox 493

c. How did you learn to use them? Did you ever spend any time
improving your skill with them?

d. Are these the best tools you could be using?

The last question in that list is critical. Honestly appraise whether there are
any better tools you could be using. It really is worth spending some time
looking around. If there are better tools, get your hands on them and start
experimenting.

2. How up to date are your tools? Does it matter if they’re not the latest
cutting-edge versions?

Out-of-date tools can cause nasty problems, but so can the latest tool
versions. The nastiest problems occur when one tool version is out of sync
with rest of the toolchain. There may be a subtle functional mismatch
because of the version skew, causing the toolchain not to work together
properly. The symptom is seldom a toolchain failure, but code that behaves
in surprising ways.

Out-of-date tools may miss important bug fixes. An update might not
seem important until you’ve been bitten by the bug it addresses. Hindsight is
a wonderful thing. If you get out of date, you could end up relying on tools
that are no longer supported, written by companies that no longer exist. This
can become a serious problem in a critical project.

Of course, you can’t always download and install a new tool version on a
whim. It may not be practical to upgrade for a number of reasons. It may cost
more than you can afford. The upgrade may force you to upgrade your OS
or other critical parts of your toolchain, when this isn’t practical.

3. Do you favor an integrated tool set (like a visual development environ-
ment) or a discrete toolchain? What are the advantages of the other
approach? How much experience do you have with both ways of working?

A careless answer here might cost you your arm (see the answer to question 3
in the “Mull It Over” section on page 492). Try to come up with a serious list
of the benefits of the other way of working—to ensure you avoid a narrow-
minded and opinionated view.

4. Are you a Default Dan or a Tweaker Tom? Do you accept the default set-
tings in your editor, or do you customize them to within an inch of their
lives? Which is the “better” approach?

You learn to use and get the most out of your editor by discovering how to
configure it. In that case, Tom might have the most sensible approach. A
pragmatic stance is probably somewhere between the two (a good example
of the Goldilocks principle; behavior at the extremes is rarely best). There’s
no point configuring features you’ll never touch. Some things really don’t

494 Answers and Discuss ion

matter—I’m not all that worried about the color scheme an editor uses. But
others things do matter—I don’t want to be forced to accept a default code
layout style if it’s grotesque.

It’s far better to code to your carefully chosen layout style than have it
dictated by the editor’s default settings. Indeed, your house coding style may
require it. I’d rather configure my editor to automatically format code as I
want, rather than fight its cursor positioning every time I hit ENTER.

This kind of discussion scales beyond editors to any kind of configurable
software tool.

5. How do you determine your budget for software tools? How do you
know whether a tool is worth its cost?

It depends on what kind of organization you’re working for and the kind of
work you’re doing. If your project has the tools budget of a small country’s
GDP, then the cost of tools is of no consequence—buy the best tools (which
may not necessarily be the most expensive ones) and enjoy them. But a lone
hacker working at home can’t justify the same kind of expense for a top-
notch toolchain. Often the freely available tools are more than adequate
for this kind of home use.

Indeed, the freely available tools are often of a very high quality, which
makes it hard to draw the line as to when paying for tools is worthwhile. Pay-
ing for a toolchain usually means that you can expect good product support
and demand future bug fixes or development work. However, this doesn’t
always pan out—companies go out of business and products are discontinued.
This is perhaps an argument for picking the most popular, widely used tools.
There’s safety in numbers.

If all reasonable criteria fail, the more expensive a tool is, the larger its
box should be. If it costs a fortune but comes in a small box, don’t buy it!

Chapter 8: Testing Times

Mull It Over

1. Write a test harness for the greatest_common_divisor code example earlier
in this chapter. Make it as exhaustive as you can. How many individual
test cases have you included?

a. How many of these passed?

b. How many failed?

c. Using these tests, identify any faults and repair the code.

There are a large number of tests you should run, even though there are very
few invalid input combinations. Thinking of invalid inputs first: Test for zero.
It may or may not be an invalid value (we’ve seen no spec, so we can’t tell),
but you’d expect the code to cope reasonably with it.

Chapter 8: Tes t ing T imes 495

Next, write tests considering combinations of usual inputs (say of 1, 10,
and 100 in all orders). Then try numbers with no common multiple, like
733 and 449. Test for some very large numbers and for some negative
numbers.

How do you write these test cases? Write a simple unit test function, and
then place it into an automated test framework. For each test, don’t pro-
gramatically calculate what the correct output value should be;10 just check
against a known constant value. Keep your test code as simple as possible:

assert(greatest_common_divisor(10, 100) == 10);

assert(greatest_common_divisor(100, 10) == 10);
assert(greatest_common_divisor(733, 449) == 0);

... more tests ...

There are a surprisingly large number of tests for this simple function.
You could argue that for such a small piece of code, it’s easier to inspect,
review, and prove correctness rather than laborously create a set of tests.
This seems like a valid argument. But—what if later on, someone makes
modifications? Without the tests, you’d have to carefully reinspect and
revalidate the code, an easy task to overlook.

Did you find the mistake in greatest_common_divisor? There’s a clue coming
up. If you don’t want the puzzle spoiled, then look away now. . . . Try feeding it
a negative argument. This is a more robust (and more efficient) version written
in C++:

int greatest_common_divisor(int a, int b)

{

a = std::abs(a);

b = std::abs(b);

for (int div = std::min(a,b); div > 0; --div)

{

if ((a % div == 0) && (b % div == 0))

return div;

}

return 0;

}

2. How should the testing of a spreadsheet application and an automatic
aircraft pilot differ?

In an ideal world, there would be no faults in either. In this utopia, both
would be exhaustively tested and not released until perfect. Reality is some-
what different. Whereas you expect spreadsheets to crash from time to time,11

you expect an autopilot to contain no errors at all. When human lives hang in
the balance, software is developed in a very different way—far more formally
and with much greater care. It is tested rigorously. There are safety standards
at play here.

10 This would open the door to more coding errors—imagine the pain of bugs in the test code!
11 It’s sad we’ve been conditioned to accept this.

496 Answers and Discuss ion

3. Should you test all of the test code that you write?

If you think about this for long enough it will give you a headache. You can’t
keep testing test code—how can you be sure the test code for your test code’s
test code is correct? The trick is to keep tests as simple as possible. This way, the
most likely testing errors will be lack of important test cases, not problems
with the actual lines of test code.

KEY CONCEPT Keep test code as simple as possible to prevent the introduction of errors.

4. How does a programmer’s testing differ from a QA department
member’s testing?

Testers are more concerned with the black box style of testing and usually only
perform product testing. It’s rare to have testers working at the code level,
because most products are executable software; there are comparatively few
code library vendors.

Programmers are more concerned with white box tests, making sure
their masterful creations work as they planned them to.

The secret aim of any programmer writing tests is to prove that his code
works, not to find cases where it doesn’t! I can easily write a load of tests to
show how perfect my code is by deliberately avoiding all the bits I know are
problematic. This is a good argument for getting someone other than the
original programmer to create test harnesses.

5. Is it necessary to write a test harness for every single function?

You don’t need to be quite so extreme. Some functions are easy enough to
verify by inspection. Be careful not to get sloppy, though—remember to read
the code cynically. Simple getter and setter functions don’t need a slew of
individual tests.

At what code size do test harnesses become attractive? Generally when
the code becomes sufficiently complex to require it. When a single glance
can’t prove the code is correct, write some test cases.

6. Test-driven development encourages you to write tests first, before any
code. What sort of tests should you write?

Without having written any code, these can only be black box tests. Either
that, or test-driven developers need a gift of prophecy.

7. Should you write C/C++ tests to check for the handling of NULL (zero)
pointer parameters? What’s the value of such a test?

If zero is an expected input value, then of course you must test for it.
But you don’t always need to test for null pointers. If you don’t specify

magic behavior for a zero pointer value, then your function is quite within its
rights to fall over when you pass it a bad pointer. In this case, zero could be as
bad as a pointer to deallocated or invalid memory. It’s rarely possible to test
that the code will survive all bad pointers.

Chapter 8: Tes t ing T imes 497

However, it can be valuable to write code that is robust in the face of zero
pointers, since they tend to fly around a lot. Many allocation routines return
zero pointers for failure, and undefined pointers are often set to zero. If the
dog might bite, it’s a good idea to put a muzzle on it.

8. Your early code tests might not be on the final platform—you may not
yet have access to it. Is it safest to defer testing until you do have a target
test platform, or to steam ahead now?

If the code is intended to run in a different environment (perhaps on
a high-capacity server, or some embedded device), how can you be sure
that your tests are representative and adequate?

It depends on the nature of the code you’re testing—whether it’s a simple
function doing housekeeping work or some hardware access logic. You
must understand the differences between the development platform and
the target environment. Memory constraints or processor speed may affect
how the code runs. This probably isn’t a big deal for the majority of the code
you write, for which it is perfectly possible to create local test harnesses.

If your code exploits particular target platform features (parallel
processors or particular hardware facilities), then you can’t test fully with-
out them. There may be simulators to check that the code runs; they are
helpful, but not the definitive answer.

Putting all testing off until you have a target platform is a dangerous
practice. By then you’ll have a large body of code that you will have neither
the time nor the inclination to test fully. For maximum confidence, test as
early as you reasonably can.

9. How do you know when you’ve finished and can stop testing? How much
is enough?

Since testing can’t prove the absence of faults, you can never really tell when
you’re done. The task is potentially endless, and we’re trying to come up with
a test plan to make it a realistic exercise.

For simple blocks of code under black box testing, successfully running
all the test cases in “Choosing Unit Test Cases” on page 142 is sufficient.
The larger your code gets, the more work you have to do.

You can measure the adequacy and exhaustiveness of your tests by the
angle of attack you’re taking. There are a few key strategies:

Coverage-based testing
The test plan is specified in terms of coverage of the software. For example:
You may plan to execute every line of code at least once, execute every
conditional branch both ways, or ensure that all system requirements are
exercised at least once.

Fault-based testing
This is based on weeding out a certain percentage of program faults. You
start with a hypothetical number of faults, generally picked from prior
experience. You then aim to detect and remove, say, 95 percent of them.

498 Answers and Discuss ion

Error-based testing
This approach focuses on the common points of error, where the soft-
ware is likely to be brittle. For example, you’d eliminate off-by-one errors
by testing all boundary values.

Based on this, here are some good reasons to stop testing:

Regression test cases complete with a certain percentage passed (and no
major show-stopping failures remaining).

Coverage of code, functionality, or requirements reaches a specified
point.

Exhibited bug rate falls below a certain level.

Beyond these are some physical barriers, seldom movable, which will
have a final say in determining an end point:

Hitting scheduled deadlines (testing deadlines or release deadlines).
Development work has a nasty habit of overrunning and eating into the
scheduled test time; this requires very careful management.

The test budget is depleted (a very sad criteria for stopping).

The beta or alpha testing period ends.

In most organizations, the decision to stop testing and ship the product
comes at a deadline. It’s a compromise based on the remaining known faults,
their severity, and the frequency of their occurrence, pitched against the
need to get to market. The tests allow an informed judgment to be made
about how acceptable the software is.

Getting Personal

1. For what percentage of your code do you write tests? Are you happy with
this? Are your tests an automated part of the build process? What sort of
testing do you give the remaining code? Is this adequate? What will you
do about it?

Don’t feel obliged to write a test harness for every scrap of code. But don’t
forget to use your brain, either. The implementation of a small function is
often a no-brainer—so you tend to code it with no brain—and voilà: stupid
errors. Since a simple function only needs a simple test, it’s probably
valuable to write it. In my code shop, we have a simple rule: Every piece of
code has a unit test, or it’s not in the codebase.

Be sure that you are performing the adequate and appropriate testing for
which you are responsible, not just skipping an unpleasant task. Ask yourself
this: How many of the errors that have bitten you recently could have been
prevented by a good set of tests? Make sure you do something about it.

If your tests are not a part of the build system, then how do you ensure
that the tests are ever run and that all the code passes them?

Chapter 8: Tes t ing T imes 499

2. How good is your relationship with the people in your QA department?
What personal reputation do you think you have with them?

It is vital to establish good working relationships between the QA department
and the software developers. Rivalry often brews; the testing department is
seen as a bunch of people who aim to get in the way of developers and hinder
the path to release, rather than as a team who is helping to build a stable
product. Usually the test and development departments sit far, far away from
one another, only taking orders from their individual tribal chieftains.

Forget that.
Make them coffee. Take them out for lunch. Head down to the bar with

them. Anything to prevent fostering a them and us attitude.
Develop a professional working relationship. Make sure that you

provide them with good, well-tested code—not just any old hurried junk.
Throwing them your scraps to mop up will give the impression that you
see them as servants working for you, not colleagues working with you.

3. What’s your usual response to finding an error in your code?

There are several possible reactions:

Disgust and disappointment

An urge to blame someone else

Happiness, if not downright excitement

Pretending you didn’t find it, ignoring it, and hoping it will go away
(as if that’s likely)

Some of those are so plainly wrong that I’ll assume you can rise above
them. Does it seem a little crazy to suggest that you might be happy to find a
fault? Surely that’s the reasonable reaction for a quality-conscious engineer—
it’s far better to find faults during development than for a user to find them
in the field.

Your level of excitement will depend on where in the development life
cycle the fault is found. Discovering a show-stopping bug the day before
release won’t make anyone smile.

4. Do you file a fault report for every code problem you uncover?

It’s not really necessary to do this for every single fault: If no one’s seen your
code yet and it’s not been integrated into the wider system, then you don’t
need to broadcast your incompetence! If you don’t report a fault in the
database, then you must make methodical notes so that you don’t forget
about it. For this reason, you might find it easier to use the fault-tracking
system from the outset. You might be forced to raise fault reports if delivery
is so late that people need visibility of the remaining problems.

As soon as any code is released, you should make all of its faults public;
you have to file fault reports. This shows that you have identified each issue
and have a plan to deal with it.

500 Answers and Discuss ion

Whenever you discover a code fault, you should write a test case that
excercises it and incorporate it into your suite of automatic tests to be run as
a regression check. This acts as a form of documentation for the fault and
ensures that it won’t be reintroduced accidentally, later on.

5. How much testing are the project engineers expected to do?

It’s important to know what’s expected of you and to deliver that level of
testing. But above this, don’t just do what’s expected—do what needs to be done.

Write a unit test for every piece of code you create. If you need to modify
someone else’s work, write a test for it first if there isn’t one. That way, you
will know how well it currently works, what needs to be fixed, and how to
prove that your modifications haven’t busted anything.

Chapter 9: Finding Fault

Mull It Over
1. Is it best for faults to be fixed by the original programmer who wrote the

code? Or is the programmer who discovered the problem better placed
to make a fix?

It’s always helpful to approach any problem with a fresh pair of eyes. When
debugging, this method avoids the common problem of a programmer
reading what he meant to write, not what the code actually says—too many
bugs stay hidden that way.

On the other hand, the original programmer is probably best placed to
make the fix. He understands the code inside out (hopefully). He knows
what repercussions a particular change will have. He’ll be the quickest to
pinpoint the location of a fault.

In Real World organizations, the choice of who makes a fix may be
determined by individual free time and what other commitments the team
has. For bugs that have been in the program since time immemorial, the
original programmer is probably no longer available. He may have left the
company, moved projects, or (worst of all) been promoted to management.

2. How can you tell when to use a debugger and when to use your brain?

Obviously, even the use of a debugger should be with your brain engaged.
(Remember the golden rule of debugging?)

My rule of thumb is: Don’t fire up a debugger until you know exactly what
information you need to get out of it. The danger lies in using a debugger to
putter around in the running code, not really knowing what you are looking
for. You can waste hours doing this, with no real reward.

Chapter 9: F inding Faul t 501

3. You should learn unfamiliar code before you start trying to find and fix
faults in it. But the time pressures of the software factory often dictate
that you can’t spend any serious time studying and understanding the
program you’re repairing. What’s the best way forward?

In your dreams, you’d slap the people who wrote the schedule and take as
long as necessary to fix the fault properly. Wake up, Alice. . . .

The best you can do is try to learn the code as you go along. Proceed
with extra caution when working through it, and don’t trust what you think is
happening—always make sure that the code is doing what you expect it to.
When you think that you’ve found the cause of the bug, see if anyone on
your team knows about the offending section of code. Discuss with them
what you’re going to do. Often when you describe the situation, you’ll
explain to yourself the obvious thing you’ve just missed.

4. Describe good techniques to avoid memory-leak bugs.

These are some good approaches:

a. Use a language where you’re less likely to be bitten by them, such as
Java or C#. (You can still be bitten by memory leaks in these languages.
Do you know how?)

b. Use “safe” data structures that manage memory for you, so you don’t
have to worry about it.

c. Employ helpful language idioms, such as C++’s auto_ptr, to avoid
problems.

d. Be rigorous and methodical in your handling of memory. For every
allocation point, make sure there is a balancing deallocation point
and that it will always be called.

e. Run your code through memory validator tools to ensure no bugs have
crept through.

5. When is it justifiable to have a quick stab at finding and fixing a fault,
rather than adopting a more methodical approach?

You always need to think about what you’re doing. Even quick fiddling
should be done with your brain firmly in gear. Don’t blindly pepper the code
with breakpoints to start digging around in the internals; try to think about
how the code is designed and what it should be doing.

Gut feelings and your instant reactions may find a fault quickly in
very small programs (say, a few tens of lines). But in a program that’s many
thousands of lines long, you really need to know what’s going on. There is
no substitute for insight. There’s nothing wrong with tracing the program’s
execution in a debugger to examine what it’s doing, but chose the test points
methodically.

502 Answers and Discuss ion

Getting Personal

1. How many debugging techniques/tools do you routinely use? What
others have you seen that you might find useful?

Obviously the answer is none. You always write perfect code the first time!

2. What are the common problems and pitfalls in your language(s) of
choice? How do you guard against these kinds of bugs in your own code?

It’s important to know this kind of thing. It’s what sets mediocre pro-
grammers apart from the experts. If you don’t know where the dragons live,
then you don’t know how to avoid them.

3. Are most of the bugs that occur in your code sloppy programming
errors, or are they more subtle issues?

If you get bitten over and over again by little language snafus, it shows that you
should write code more carefully. Take time with your code. Proofread it, and
then reread it—you’ll save time overall. A classic mistake is fixing one fault,
not testing that it works, and then being bitten by undesirable side effects of
your “fix.”

There’s no shame in having bugs in your code. Everyone gets them. Just
make sure they’re not stupid mistakes that you could have easily prevented.

4. Do you know how to use a debugger on your platform? How routinely do
you use it? Describe how to:

a. Produce a backtrace

b. Inspect variable values

c. Inspect value of fields within a structure

d. Run an arbitrary function

e. Swap thread contexts

If you use a debugger all the time, then that’s too much. If you never use one,
then that’s too little. Don’t be afraid of your debugger, but don’t use it as a
crutch, either. Intelligent use of a debugger will allow you to hone right in to
the location of a fault in little to no time.

Chapter 10: The Code That Jack Built

Mull It Over

1. Why should people with nice integrated development environments
worry about using a command-line make utility, when they can just hit
a single button to build their project?

Chapter 10: The Code That Jack Bui l t 503

Besides learning what’s really going on behind the build button, knowing how
to use make is a route to more powerful, flexible software construction.
Rarely does a GUI build tool compare to the capabilities and malleability of
makefiles. Simplification often is a good thing, and GUI tools can help devel-
opers to create software quickly, but this simplicity comes at an expense.

GUI build tools simply do not scale well and are of little use on really
large projects. Make does have a cryptic syntax, but it lets you do far, far
more. For example, makefiles allow nesting of directories, creating a build
hierarchy. Simplistic GUI tools only provide one level of depth, the nesting
of projects inside a workspace.

People complain about make’s complexity and that you can foul things
up using it. This is a valid concern, but it is the same as with any power tool—
you might injure yourself if you don’t use it properly.

This doesn’t mean that you should throw away all GUI build tools and start
writing a raft of replacement makefiles. On the contrary: Use the right tool
for the job. Balance simplicity and integration with power and extensibility;
choose the tool that’s required each time.

2. Why is it important to treat the extraction of source code as a separate
step from building it?

The two are logically different steps. In a properly crafted build system, you
should be able to check out any version of the software, no matter how old,
and then issue the same make instruction to build it. Later you should be
able to clean the tree and rebuild it using the same instruction, without
checking everything back out again.

It’s no loss to have these as two separate steps. You can easily wrap a script
around them to make a single-step retrieve/build procedure—this will then be
useful for an overnight build script. For these overnight scripts, it’s vital to start
from a fresh source tree each time (to avoid being caught out by problems
carried over from the last tree). This is a good test of your source tree; by
deleting it and performing a complete rebuild, you’ll check that no files are
missing or out of date (you might have forgetten to check something in).

Other problems with binding source extraction into the build step
include the following:

You don’t want the build system to automatically check files out of the
source repository as you do a build. You rarely want the whole world
changing under your feet each time you rebuild. It’s important to be in
control of the code you’re working on, not a slave to the build system
behavior.

There is a bootstrapping problem: If extraction is a part of the build
process, where do you get a source tree from in order to start the build?
You’d have to check it out manually anyway! Or you’d have to recite more
magic incantations to partially check out the build portions of the tree in
order to perform a real checkout and build. Don’t go there.

504 Answers and Discuss ion

3. Where should the intermediate files from construction steps (e.g., object
files) be put?

Some build systems dump object files beside the source file that generated
them. Advanced build systems can create a parallel directory tree and build
objects into there, leaving the source directories intact. This keeps things neat,
distinguishing source files from the build-generated files. There are downsides,
though: It’s harder to search around the hierarchy. You might want to force
a source file recompilation by deleting a .o file, but with split trees you have
to navigate further from the source to do so.

Another neat approach for object file placement is to put intermediate
files within the source tree, but in their own subdirectory; out of way of the
source files, but still close to hand. You’d end up with a directory hierarchy
looking like Figure 1.

This is a good way to support the building of multiple targets from
one source tree—each target has its own build subdirectory. Without this
mechanism, you could start a debug build, finish it off in release mode, and
have a link stage that’s a disaster. Adopting this approach leads to a build
tree looking Figure 2.

4. If you add an automated test suite to the build system, should it run auto-
matically after the software is built, or must you fire a separate command
to invoke the tests?

Figure 1: Putting built object
files in a subdirectory

Figure 2: Even better: Putting object
files in a named subdirectory

Chapter 10: The Code That Jack Bui l t 505

You can easily provide a separate command (something like a tests makefile
target; you’d type make tests after make all). However, this extra step would be
less likely to be performed—there’s no requirement to do so. The tests may
be overlooked. This is quite likely, human nature being what it is. The
untested code could cause all sorts of problems, making the effort of writing
tests fruitless. Ensure your unit tests are a part of the main build procedure.

Automated stress tests and load tests probably shouldn’t be part of this
build step, though. They might take too long to execute, only intended to be
run on the overnight build. In this case, make an automated scaffold to run
them, but don’t trigger it during a normal build.

5. Should the overnight build be a debug or release build?

Both. It’s very important to test the release build configuration as early
as possible. Debug builds shouldn’t be released to the QA department, let
alone outside the company.

It’s important to test that both release and development build processes
work—not just once when the build system is created, but on an ongoing
basis. It’s remarkably easy to make a minor update that breaks one or other
build. If a build isn’t tested until the last minute, you’re going to be very
angry when it fails with a deadline looming.

There may be serious differences between executables generated
by debug and release builds. Some compilers exhibit markedly changed
behavior in debug and release mode. One popular compiler is happy to pad
out data buffers in debug builds, so memory overruns are harmless and go
undetected—hardly a good debugging aid. If you only ever tested the debug
build, switching to release mode just before the product ships means that
you are bound to run into problems.

6. Write a make rule to automatically generate dependency information
from your compiler. Show how to use this information in the makefile.

There are several ways to achieve this, depending in part on how you get
dependency information from your compiler. Say the hypothetical compiler
takes an extra -dep parameter that cajoles it to create a dependency file as
well as the object file. Let’s say that the format of this generated file is already
in make’s dependency format.12 Using GNU Make, you can specify a com-
pilation rule that has the side effect of generating dependencies:

%.o: %.c
compiler -object %.o -dep %.d %.c

You can then incorporate all generated dependency files directly into
the makefile by putting this at the bottom of Makefile:

 include *.d

12 These are quite reasonable assumptions; many systems work like this.

506 Answers and Discuss ion

It’s that easy! Of course, this is the simplest mechanism that will work.
There are many refinements to clean this up. For example:

You can direct the dependency files into a separate directory. This pre-
vents them from cluttering up the working directory and covering up the
important files.

You can write an include rule to only pull in the correct .d files. There may
be other .d files lying around that you shouldn’t include, making the
wildcard include line dangerous: The inclusion of random information
from invalid files will confuse make. This problem can crop up easily: If
you remove a source file from the makefile but don’t clean the build tree
first, the old .o and .d files will hang around in the working directories
until you remove them manually.

If the compiler permits, you can write a separate rule to create .d files,
making them first-class citizens of the build system. This has the down-
side of slowing down the build process—the compiler will now be
invoked twice for each source file.

7. Recursive make is a popular method of creating a modular build system
spanning several directories. However, it is fundamentally flawed.
Describe its problems and suggest alternatives.

Conventional wisdom suggests that all large codebases built with makefiles
should use the recursive make technique. Yet as powerful as recursive make
is, it’s fundamentally flawed. Don’t ignore it, though. It’s important to
understand how recursive make works (or doesn’t work) because it’s so
prevalent (many codebases employ recursive make), and you need to you
know its problems to understand what makes a better solution.

What renders recursive make a liability? It has a number of pitfalls:

Speed
It’s so slooooooow. If you try to rebuild a source tree that’s already up to
date, a recursive build still has to trawl faithfully through each directory.
For a reasonably sized project this takes ages, which is nonsensical when
no action is necessary.

Each directory is built as a separate make invocation.13 This circumvents
many potential optimizations; shared include files will be inspected over
and over and over again. Although filesystems can cache information,
this is still an unnecessary overhead. A sensible build system would only
need to inspect each file once.

Dependencies
Recursive make cannot follow dependencies correctly; subdirectory
makefiles have no way of determining all dependency information.
Your module makefile can observe that its local func1.c source file
depends on a shared.h header in another directory. It will happily
rebuild func1.c every time shared.h is changed. But what happens if

13 Just think of the overhead of starting up all those child processes!

Chapter 10: The Code That Jack Bui l t 507

shared.h is automatically generated by a separate module, based on
some template file shared.tmpl? Your module can’t know about this extra
dependency. Even if it could, it doesn’t know how to rebuild shared.h—
that isn’t its job. So if shared.tmpl is changed, func1.c will not be rebuilt
appropriately.

The only way to plaster over this crack is to arrange for shared.h to be
built first, before func1.c’s module. The programmer must carefully define
the order of recursion to make sure the software rebuilds correctly.14 The
more indirect dependencies that exist, the worse the mess gets.

Faced with this problem, programmers devise nefarious work-
arounds, like making several build passes over the tree or manually
removing certain files to force a rebuild every time. These hacks only
serve to slow the build down more and unnecessarily complicate the
procedure.

Puts onus back on the developer
Make was created to manage the complexity of rebuilding code. Recur-
sive make turns this inside out and forces you to get involved in the build
process again. We’ve seen how the programmer has to manage the order
of recursion, kludging each makefile to work around limitations.

Subtlety
Recursive make’s problems are not at all obvious. That’s why many
people still think it’s a good idea. When things go wrong, they do so in
strange ways. The cause of a problem is rarely clear, so it’ll be dismissed
as “one of those freak events.”

This adds up to a build system that is dangerously brittle.

These are all problems people wrongly attribute to make itself, arguing
that it is defective. But in this respect, make is an innocent bystander. It’s our
use of make that is at fault. The recursion introduces each of these problems;
it inhibits make from doing its proper job.

So what’s the solution to this mess? Clearly we don’t want to throw away
the nesting in our source trees. We need a build process that supports nest-
ing but doesn’t split up the build process recursively. This isn’t too hard;
we’ll call the technique nested make. It simply involves putting all build infor-
mation in one master makefile. There is no longer a need for individual
subdirectory makefiles. The über-makefile manages all source nesting
internally.

KEY CONCEPT Contrary to popular belief, recursive make is a bad build technique. Avoid it in favor
of a more robust nested make approach.

You might be thinking that this is a more complex and less flexible
approach. How can you manage a large build tree with just a single
makefile?

14 This is a one-up for GUI tools—without recursive make, they tend to manage dependencies
properly.

508 Answers and Discuss ion

A number of practical implementation techniques make it easy:

Use make’s include file mechanism. Put the list of each directory’s
source files in that directory—it’s far more maintainable and clear that
way. Place this list in a file called something like files.mk, and include
that from the master Makefile.

You can retain recursive make’s modularity—entering any component
subdirectory to type make—by defining more intermediate targets. These
targets construct specific parts of the project. Constructing modular
builds this way can be more meaningful than recursive make’s arbitrary
directory-based approach, and it ensures that each intermediate target
is always built properly.

Nested make is no more complex than recursive make; in fact it can be
less complex. It produces more reliable, accurate, speedy builds.

Getting Personal

1. Do you know how to perform different types of compilation using your
build system? How can you build a debug or release version of the appli-
cation from the same sources, with the same makefiles?

In an earlier answer, we saw a good solution to this problem: Build objects into
different subdirectories, created by the build script, based on the type of
build (one directory for debug files and one for release files).

You can achieve this in GNU Make by massaging filenames. Here’s an
example:

Define the source files

SRC_FILES = main.c func1.c func2.c

Default build type (if none specified)

BUILD_TYPE ?= release

Synthesize the object filenames

(This is a magic GNU Make incantation that swaps

the .c file suffix for .o)

OBJ_FILES = $(SRC_FILES:.c=.o)

Now the clever bit: add the build-type directory

prefix to object filenames (more GNU Make magic)

OBJ_FILES = $(addprefix $(BUILD_TYPE)/, $(OBJ_FILES))

You’ll obviously be doing more with the selected BUILD_TYPE, altering the
compiler flags, for example. Don’t forget that you’ll need a rule to create
the subdirectories, or your compiler will complain when it tries to generate
output. Here’s how to do this on Unix:

$(BUILD_TYPE):
mkdir -p $(BUILD_TYPE)

Chapter 10: The Code That Jack Bui l t 509

Now you can type these two commands, one after the other, knowing the
build system will cope perfectly:

BUILD_TYPE=release make all
BUILD_TYPE=debug make all

You can create a simpler system without this subdirectory technique, but
it will rely on doing a cleanout whenever you change the BUILD_TYPE.

2. How good is your current project’s build process? Does it rate well
against the characteristics in this chapter? How could you improve it?
How easy is it to:

a. Add a new file to a library?

b. Add a new directory of code?

c. Move or rename a file of code?

d. Add a different build configuration (say, a demo build)?

e. Build two configurations in one copy of the source tree without
doing a clean in between?

This shows both how well you know the build process and how maintainable
it is. Comparing your build mechanism to other projects’ is a good idea—it will
show where your processes are inadequate and need improvement.

Consider moving and renaming source files. Both are common during
refactoring and are very easy to overlook. These simple actions can cause
build systems to calculate dependencies incorrectly and build flawed code.
I’ve been bitten more than once by such a problem; it takes a while to notice
when this goes wrong.

Often there is “no time” in the programmers’ busy schedules to spend on
improving the build system; they are all far too busy trying to get a product
out the door. This is a dangerous misconception. The build scripts are a part
of the code and require as much maintenance and careful extension as any
other source file. A safe and reliable build system is so important that time
spent sorting it out is not time wasted. It’s time invested in the future of the
codebase.

3. Have you ever created a build system from scratch? What drove you to its
particular design?

As with any programming task, the shape of your solution is influenced by a
number of factors:

Your prior experience

What you know

Your understanding of the problem at the moment

The limitations of the technology available

The amount of time you have to set it up

510 Answers and Discuss ion

Generally, a little time and a little usage will tell how good your design
decisions were. You never appreciate all the requirements at first, and things
change that no one can anticipate:

Requirements change—if the product becomes really successful, you
may need to build different internationalized versions or target a new
processor architecture. The build system must accommodate extension.

The code may need to be moved across to a new build toolchain, when
no one ever anticipated that this should be a selectable option.

How easily these modifications can be incorporated is a testament to
the quality of your design. You’ll learn with each change, gaining valuable
experience for the next build system you craft.

4. Everyone suffers from flaws in a build system from time to time. When
programming a build script, you’re as likely to introduce bugs as you are
when programming real code.

What kinds of build errors have you been bitten by, and how could
you fix, or even prevent, them?

Common build errors include:

Picking up dependency information incorrectly

Not coping gracefully with file system failures, like running out of disk
space or incorrect file permissions; the build may continue with no indi-
cation that one of the steps failed

Source control problems: merges go wrong, or the wrong version of
some source code is checked out

Library configuration errors, often using incompatible or out of date
versions

Programmers not understanding how to use the build system, and mak-
ing silly mistakes

When something’s not going as expected, step back and consider
whether or not the build system is playing a part in the problem.

Chapter 11: The Need for Speed

Mull It Over

1. Optimization is a process of making trade-offs—sacrificing one quality
of code for another desirable quality. Describe the kinds of trade-offs
that lead to a performance increase.

The kinds of decisions that profoundly influence a program’s
performance are:

Number of features versus size of code

Program speed versus memory consumption

Chapter 11: The Need for Speed 511

Storage and caching versus computation on demand

Guarded approach versus unguarded; optimistic versus pessimistic

Approximate calculations versus exact calculations

Inline versus function call; monolithic versus modular

Indexing an array versus searching a list

Passing a parameter by reference or address versus passing a copy

Implemented in hardware versus software

Hard-coded, direct access versus indirect access

Predetermined, fixed value versus variable and configurable

Compile-time work versus run-time work

Local function call versus remote call

Lazy computation versus eager computation

“Clever” algorithm versus clear code

2. Look at each of the optimization alternatives listed in “Why Not Opti-
mize?” on page 202. Describe what trade-offs are being made, if any.

Some of these alternatives could be considered optimizations, depending on
how much of the system is under your control. If you specify the hardware
platform that your program will run on, using a faster machine is an
optimization. If not, it’s more of a work-around.

Many of the alternatives have hidden complexity costs. For example,
relying on a certain host platform configuration (i.e., what services or
background programs are running) leads to specific environmental
dependencies that are hard to capture and easy to miss during installation
or later maintenance.

3. Explain these terms and their exact relationship:

Performance

Efficiency

Optimized

The efficiency of code determines its performance. Optimizing is the act of
improving the code’s efficiency in order to improve performance. Notice that
none of these terms directly describe speed of execution; the quality required
may not be speed, but rather memory footprint or data throughput.

4. What are the likely bottlenecks in a slow program?

It’s common fallacy to think that everything is contending for the CPU and
that bad code will be consuming all the processor time. Sometimes the CPU
can be running almost idle, yet performance is dire. A program may stall for
a number of reasons:

Memory is being thrashed to and from swap space on the hard disk.

It is waiting on disk access.

512 Answers and Discuss ion

It is waiting on slow database transactions.

There is bad locking behavior.

5. How can you avoid the need to optimize? What methods will prevent you
from writing inefficient code?

We’ve seen how important it is to design performance into a software system
from the very beginning. You can only do this if you already have a firm idea
of what the required performance characteristics are.

Once you have a sound design in place, write your code sensibly. Be
aware which constructs are most efficient in your language, and avoid using
the inefficient ones. For example, in C++, pass const references rather than
expensive temporary copies.15

It’s useful to have a rough idea of the relative costs of different operations.
If we scale time so that a processor executes one instruction a second, then a
function call typically takes a few seconds, a virtual function call takes 10 to
30 seconds, a disk seek takes a few months, and the time between keystrokes
of an average typist is several years. Try to work out this kind of measure for
operations like a memory allocation, claiming a lock, creating a new thread,
and a simple data structure lookup.

6. How does the presence of multiple threads affect optimization?

Threading can cause as many problems as it’s supposed to solve. Naïvely
threaded designs can introduce extra bottlenecks, particularly when locks
are used badly, leading to long periods of deadlock.

Multithreaded programs are harder to profile, unless the profiler has
good thread support; you need to interpret the profiler’s results based on
the relative thread priorities. If the threads are supposed to cooperate, you
have to work out how the overall execution is progressing as several threads
of control weave around one another.

7. Why don’t we write efficient code? What stops us from using high-
performance algorithms in the first place?

There are many perfectly valid reasons for not writing optimized code on the
first attempt:

You don’t know the final pattern of usage. With no Real World test data,
how can you choose the code design that will work best?

It’s hard enough to get the program working, let alone working fast. To
prove it’s feasible, we choose designs that are easy to implement so that
prototypes get finished quickly.

15 Conversely, this reference might inhibit other performance gains. Copies are guaranteed not
to have aliasing issues; some compiler optimizations cannot be performed if there are potential
variable aliases. As always, you must measure and work out what works best.

Chapter 11: The Need for Speed 513

“High-performance” algorithms can be more complex and daunting to
implement. Programmers naturally shy away from them, since it’s an
area where faults can be easily introduced.

Programmers often think that the time taken to run some code is
proportional to the amount of effort spent writing it.16 You might have
written some file-parsing code in hours, but it will always takes ages to
execute, because disks are slow. The complex code you spent half a week
getting right may only consume a few hundred processor cycles. In fact,
neither the efficiency of a piece of code nor the amount of time you need
to spend optimizing it bears any relation to the amount of time you spent
writing it.

8. A List data type is implemented using an array. What is the worst case
algorithmic complexity of each of the following List methods?

a. The constructor

b. append—places a new item on the end of the list

c. insert—slides a new item in between two existing list items, at a
given position

d. isEmpty—returns true if the list contains no items

e. contains—returns true if the list contains a specified item

f. get—returns the item with a given index

The worst cases are:

a. The constructor is O(1) since it only needs to create an array; the list is
initially empty. However, it’s worth considering that the size of this array
will affect the complexity of the constructor—most languages create
arrays fully populated with objects, even if you don’t plan to use them
yet. If the constructors for these objects are nontrivial, then the List
constructor will take some time to execute.

The array size might not be fixed—the constructor could take a
parameter to determine this size (effectively setting the maximum
possible list size). The method then becomes O(n).

b. The append operation is O(1) on average: It simply has to write an array
entry and update the list size. But, if the array is full, it will have to reallo-
cate, copy, and deallocate—a worst case complexity of O(n), at least (it
depends on the performance of your memory manager).

c. insert is O(n) on average. You might be asked to insert an element at the
very beginning of the list. This requires all the elements in the array to
be shuffled down one place before writing the first element. The more
items in the List, the longer this will take. However, the worst case, again,
involves memory reallocation and could be much more than O(n).

16 That looks stupid when you see it written down, but it’s a very easy trap to fall into at the
codeface.

514 Answers and Discuss ion

d. Unless you have a ridiculously bad implementation, isEmpty is O(1). The
list size will be known, so the return value is a single calculation based on
this number.

e. contains is O(n), presuming the list contents are unordered. In the worst
case, you will be asked to look for an item that doesn’t exist and will have
to traverse every single list item.

f. get is O(1), thanks to the array implementation. Indexing an array is a
constant time operation. If List had been implemented as a linked list,
then this would have been an O(n) operation.

Getting Personal

1. How important (honestly) is code performance in your current project?
What is the motivator for this performance requirement?

The performance requirements should not be arbitrarily chosen. They
should be justified, not just a time limit pulled out of thin air. Every perfor-
mance requirement is important; there are no specifications that don’t
matter. How much concern a particular requirement generates depends on
how hard it is to meet. Whether it’s hard or not, you still have to come up
with a design that satisfies it.

2. In your last optimization attempt:

a. Did you use a profiler?

b. If yes, how much improvement did you measure?

c. If no, how did you know whether you made any kind of improvement?

d. Did you test that the code still worked after optimizing?

e. If yes, how thoroughly did you test?

f. If no, why not? How could you be sure the code still worked properly
for all cases?

Only the most dramatic performance improvements can be detected without
a profiler or some other good timing tests. Human perception is easily
fooled—when you’ve just slaved to speed up the program, it will always appear
faster to you.

Test performance improvements carefully, and discard those that are
not worthwhile. It’s better to have clear code than a minuscule speed
increase and unmaintainable logic.

3. If you’ve not yet attempted to optimize the code you’re currently
working on, take a guess at which parts are the slowest and which
bits consume the most memory. Now run it through a profiler—how
accurate were you?

You’ll probably be quite surprised at the results. The larger the program you
profile, the less likely you are to correctly judge these bottlenecks.

Chapter 12: An Insecur i ty Complex 515

4. How well specified are your program’s performance requirements? Do
you have a concrete plan to test that you meet these criteria?

Without a clear specification, no one can really complain that your program
isn’t fast enough!

Chapter 12: An Insecurity Complex

Mull It Over

1. What is a “secure” program?

A secure program is able to stand up against attempts to abuse it, to break
into it, or to use it for a purpose it was not intended for. This is more than a
robust program; robust code meets its specification and doesn’t crash when
you apply a little pressure. However, a robust program might not have been
designed with security in mind and could still leak sensitive information
under some extreme conditions. Sometimes it’s preferable to crash when
used wrongly, rather than provide unintended output. So secure code might
crash!

The definition of a secure program depends on the security requirements
for the application. These are defined in part by what you can expect from
the supporting services (the OS and other applications). Given these, your
application’s objectives could be any of the following:

Confidentiality
The system will not disclose information to the wrong people. They will
get an access denied message, or will have no idea that the information
exists in the first place.

Integrity
The system won’t allow unauthorized changing of information.

Availability
The system works continually—even while being attacked. It’s hard to
guard against all possible attacks (what if someone removes the power?),
but it’s possible to resist many attacks by including a level of redundancy
in the design, or by providing a rapid restart after attack.

Authentication
The system ensures that users are who they say they are, usually with a
login and password mechanism.

Audit
The system records information about all important operations, to catch
or monitor the activities of attackers.

2. What input must be validated in a secure program? What sort of valida-
tion is required?

516 Answers and Discuss ion

All input must be validated. This includes command-line parameters,
environment variables, GUI inputs, web form inputs (even those with client-
side JavaScript checking), CGI-encoded URLs, cookie contents, file contents,
and filenames.

You should check the input’s size (if it’s not a simple numeric variable),
the validity of its format, and the actual contents of the data (that numbers
are in range, and there are no embedded query strings).

3. How can you guard against attacks from the pool of trusted users?

Not very easily. They have been given a specific level of privilege because they
are trusted not to abuse it. Most users will not intentionally abuse your
software, but a small number will try to subvert programs for their own
advantage.

There are a few techniques to manage this:

Log every operation so you know who made what change and when.

Require two users to authenticate all really important operations.

Wrap each operation in an undoable transaction so it can be unrolled.

Back up all data stores periodically so you can retrieve lost data.

4. Where can an exploitable buffer overrun occur? What functions are
particularly prone to buffer overrun?

Buffer overrun is probably the biggest security vulnerability, and it is a simple
problem that is easy for an attacker to exploit. It can occur anywhere that a
multi-location structure is addressed—either by copying data into or out of it
or by indexing into it to access a specific item. Arrays and strings are the most
common culprits.

It is most often seen in user input routines, although this is not the only
habitat—it can exist within any data manipulation code. Exploitable buffers
can be situated both on the stack (where function-local variables are placed)
or on the heap (the pool of dynamically allocated memory).

5. Can you avoid buffer overruns altogether?

Yes—as long as you are diligent in validating each function’s input and can
be sure that the stack of software leading up to each input (possibility imple-
mented in the OS input routines or your language’s run-time library) is safe.

Here are some key techniques to safeguard your code:

Use a language with no fixed-size buffers—for example, a language that
has automatically extending strings. It’s not just strings that are danger-
ous, though: Look for bounds-checked arrays and safe hash maps.

If you can’t rely on language support, you must bounds check all input.

In C, always use the safer standard library functions strncpy, strncat,
snprintf, fgets, and so on. Don’t use stdio routines like printf, and
scanf—you can’t guarantee their safety.

Chapter 12: An Insecur i ty Complex 517

Never use third-party libraries that aren’t provably safe.

Write your code in a managed execution environment (like Java or C#).
Then buffer overrun attacks become almost nonexistent—the executive
traps most overruns automatically.

6. How can you secure the memory in use by your application?

There are three times to think about memory security:

a. Before you use it. When you claim some memory, it contains arbitrary
values. Don’t write code that accidentally relies on the contents of
uninitialized memory. A cracker could exploit this to attack your code.
To be extra safe, zero all allocated memory before you use it.

b. During use. Lock memory containing sensitive information so it can’t be
swapped to disk. Obviously you must be using a secure OS—if one appli-
cation can read any other’s memory, then you’ve already lost!

c. After use. Often forgotten by application programmers is that when you
release memory, it should be cleaned before you hand it back for the OS
to recycle. If you don’t do this, a rogue process could mine memory for
the secret data you leave behind.

7. Are C and C++ inherently less secure than alternative languages?

C and C++ produce more than their fair share of insecure applications and
allow you to write code containing classic security vulnerabilities. You
definitely have to keep your brain switched on; even experienced developers
must pay attention when writing C/C++ code to avoid buffer overruns. These
languages don’t exactly encourage secure programming.

However, other languages don’t avoid all security problems either, just
the ones C and C++ have made famous. A different language will most likely
avoid potential buffer overruns, but you shouldn’t have a false sense of
security; many other problems that can’t be avoided in the language itself
remain. You must be aware of security issues when using any language—you
can’t pick a “safe” language and forget all about security.

Indeed, buffer overrun is a vulnerability that can be very easily audited
and worked around. If you need to program secure applications, then the
language you use is a small concern among all the other problems.

8. Has the experience of C led to C++ being a better, more securely
designed language?

C++ has gained an abstract string type that manages its own memory
internally. This goes a long way toward avoiding buffer overruns, although
traditional C-style char arrays remain for those who still want to shoot them-
selves in the foot. The vector is another handy device: a memory managing
array. However, it is possible to overrun both of these structures—do you
know how?

518 Answers and Discuss ion

C++ could be considered more dangerous than C, because it stores a lot
of function pointers on the heap (this is where virtual function tables are
stored). If an attacker can overwrite one of those pointers, then he can
redirect operation to his own evil code.

In many ways, C++ is more secure, or rather, it is more easy to use
securely. However, it was not designed with security solely in mind, and
provides its own set of security problems that the developer must be aware of.

9. How do you know when your program has been compromised?

Without detection measures, you’ll have no idea—and you will just have to
keep an eye out for unusual system behavior or different patterns of activity.
This is hardly scientific. A hacked system can remain a secret indefinitely.
Even if a victim (or his software vendor) does spot an attack, he probably
doesn’t want to release detailed information about it to invite more intruders.
What company would publicize that its product has security flaws? If it is
conscientious enough to release a security patch, not everyone will upgrade,
leaving a well-documented security flaw in many operational systems.

Getting Personal

1. What are the security requirements for your current project? How were
these requirements established? Who knows about them? Where are they
documented?

Answer this honestly. It’s not too hard to make up something that sounds
plausible. But unless the security requirements are formally documented,
security has not really been addressed by your project. This should be some-
thing that every developer is aware of and knows how to fulfill.

2. What’s the worst security bug in one of your shipped applications?

It’s important to know about this, even if it’s now ancient history. You have to
know what you’ve got wrong in the past to stand any chance of avoiding it in
the future. If you don’t know of any past security vulnerabilities, then you’ve
probably not been thorough in security testing—you’ve not been paying
attention, or you’ve been very lucky to have nothing discovered.

3. How many security bulletins have been posted against your application?

Have these been caused by silly developer mistakes like stupid code errors, or
do they stem from larger design problems? Most common problems that get
documented in bulletins are the former.

4. Have you ever run a security audit? What kinds of flaws did it reveal?

Unless you have a professional security specialist running this test, it will
surely miss some security vulnerabilities. However, the audit will still uncover
many glaring problems and is very worthwhile.

Chapter 13: Grand Designs 519

5. What kind of person is most likely to attack your current system? How is
this influenced by

Your company

The type of user

The type of product

The popularity of the product

The competition

The platform you run on

The connectedness and public visibility of the system

Everyone is a target to someone: a malicious user, unscrupulous competitors,
and even terrorist organizations. Who do you trust?

Chapter 13: Grand Designs

Mull It Over
1. How does project size affect your software design and the work involved

in creating it?

The larger a project gets, the more architectural design it requires in
proportion to low-level code design. More time needs to be spent up front
ensuring the design is right, because bad choices will have more serious
consequences.

2. Is a well-documented bad design better than an undocumented
good one?

Documentation is part of what makes a design good. A well-documented
bad design provides a route in to the code, even if it’s a brightly illuminated
dirt track to a cesspit. At the very least, it will teach you never to touch the
code again.

A sufficiently simple piece of code shouldn’t need reams of documenta-
tion, but any reasonably complex piece of software becomes hard to work
with when there isn’t adequate description.

Which is better? The undocumented good design is best: If it is a truly
high-quality design, then it should be obvious and self-documenting.

3. How can you measure the design quality of a piece of code? How can you
quantify its simplicity, elegance, modularity, and so on?

Quality is difficult to quantify; it’s largely an aesthetic judgment for design.
What makes a picture beautiful? The kind of thing you can’t hold in your
hand and count. Hindsight will show how easy the code was to pick up or to
modify. But that doesn’t really help when you first come across some code.

520 Answers and Discuss ion

If I have two designs A and B, and I think A is more elegant, but in practice
B turns out to be more usable and copes with the pressures of reuse much
better, then it is hard to argue that A is the better design.

The only way to judge design quality is to look at the code. Reading a
little code generally gives a good impression of overall quality; if one small
bit appears good, then the rest is likely to be of reasonable quality too. This
doesn’t always hold, but it’s a handy yardstick. A realistic approach is this:
If that little bit of code is bad, expect the whole codebase to be terrible. If
the little bit is any good, then just suspect the codebase of harboring more
subtle problems.

Running code tools that inspect the source, producing diagrams and
documentation, can also help to gauge design quality.

4. Is design a team activity? How important are teamworking skills in
creating a good design?

Very important. Programming tasks are seldom a lone activity. In the soft-
ware factory, most large-scale design activities involve more than one designer.
Even if the work is split into separate areas, those areas interface at some
point—so the designers must interface. If there is only one designer, he or
she must still be able to document and communicate the design effectively.

5. Are different methodologies more suitable to different projects?

Yes, the scope of some projects will render certain design approaches
unnecessary. If you are writing a set of device drivers, you won’t find much use
in a full-blown OO design process.

If you are working on a very formal project, perhaps for a government
agency, you’ll need to use a very formal process that documents every stage
and provides accountability for every design decision made. This may be
quite different from an exploratory R&D project in a software lab.

6. In what ways can you determine whether a design is highly cohesive or
weakly coupled?

Ultimately you have to look at the code and see how it fits together, but that’s
boring! You can get a good feel for coupling in a C or C++ project by looking
at the #includes at the top of the file. If there are tons of them, the coupling is
probably disastrous. Alternatively, you can run inspection tools that produce
pretty pictures of your code.

7. If you’ve solved a similar design problem in the past, how good an
indicator is it of how difficult this problem will be?

Experience teaches you how to design, so learn and then exploit your
knowledge. But employ wisdom with this knowledge; don’t run on autopilot.
Different situations present different challenges—don’t presume that one
problem is the same as another just because it looks like it on the surface.

If you know how to use a hammer, don’t make every problem into a nail.

Chapter 13: Grand Designs 521

8. Is there a place for experimentation in design?

Yes, any design is experimental until it has been implemented and found
acceptable. Consider the “build one to throw away” approach that Frederick
Brooks described. (Brooks 95) There’s a lot to be said for experimentation.

Design is an iterative process; during each iteration you can try out
design alternatives and decide which is most sensible. The more iterations
you go through and the smaller in scope you make each one, the less painful
any bad design decisions will be.

Getting Personal

1. Look back and think about how you learned to design code. How could
you convey the knowledge you’ve gained to a total novice?

How much do you honestly think you could teach, and how much would
have to come from the novice’s inherent abilities and experience? Could
you create a set of exercises based on your experience that would help
someone else?

You wouldn’t give a novice a large system to design at first. You’d start
him off on a small self-contained project, and then perhaps get him to make
extensions to existing programs, all the time keeping a mentoring eye on
what he’s doing.

Most programmers didn’t get this kind of help themselves when they
were learning to design. They learned through a process of trial and error.
Do consider teaching and mentoring a novice—it really helps you to grow in
your own abilities.

2. What experience do you have with using particular design methodologies?
Were these good or bad experiences? What was the resulting code like?
What might have worked better?

Was the taste left in your mouth by a methodology influenced by your prior
experience and preferences? If you don’t know how to use a particular meth-
odology, it will be hard work and uncomfortable. A hard-core C programmer
may dislike any form of object-oriented design, and his OO designs will be
appalling. But that doesn’t make OO a flawed approach.

3. Do you find it important to stick rigidly to the methodology you’re using?

The design approach is a tool, a utility, like a programming language—you
should only use it up to the point it remains useful. If it stops being useful, it’s
no longer a utility! A methodology won’t work if no one on the team knows
how to perform it; use something they do know, or teach them first.

4. What was the best designed code you’ve ever seen? What was the worst
designed?

I bet you’ll easily remember the worst designed code. Bad code sticks out
like a sore thumb, and likewise sticks in your memory. Well-designed code

522 Answers and Discuss ion

looks simple and obvious, so you probably won’t step back and say, “What a
great design!” You probably won’t even notice there was much design work
involved.

5. A programming language is essentially a tool to implement your design,
not a religion to argue about. How important is it really to know language
idioms?

It’s very important, or you’ll end up with code that doesn’t make sense.
Some architectural decisions may be language independent, but low-

level code design is heavily influenced by the implementation language. An
obvious example: Don’t create a flat procedural design when you’re coding
in Java—it’s just plain wrong.

6. Do you think programming is an engineering discipline, a craft, or an art?

Quite simply, it depends on how you do it. It has elements of all three.
I prefer to think of programming as a craft—it requires skill, workman-

ship, discipline, and experience. Its products can be at once functional and
beautiful. There is an element of artistry in it; it’s a creative process. Allied
with this artistry is the mastery of tools and techniques. These are the hall-
marks of a craft.

Chapter 14: Software Architecture

Mull It Over

1. Define where architecture ends and software design begins.

In truth, both terms can be defined to whatever suits you. In their common
usage, the distinctions are as follows:

Architecture is the high-level structural design. It looks at the wide-
ranging implications of its choices, seeing how it will impact construction
and maintenance costs, overall system complexity, ability to accommodate
future extensions, and marketing concerns. The architecture is devised
at the start of a project. It has serious consequences, at the very least on
the further software design.

Software design is the next level down, a more refined and focused
activity. It’s concerned with code details—data structures, function
signatures, and the exact flow of control through modules. Software
design is conducted on a per-module basis. Its consequences are
nowhere near as significant to the system as a whole.

Exactly where the two meet depends in part on the size of the project.
Software construction is an iterative and incremental process—although archi-
tecture is created first, design results can feed back up to the architecture.

Chapter 14: Sof tware Archi tec ture 523

2. In what ways can a bad architecture affect a system? Are there parts that
wouldn’t be affected by architectural flaws?

Bad architecture will undermine any effort to write good software. It is
fundamental to the quality of your code. If some code isn’t affected by the
flawed architecture, then it’s probably either a stand-alone library or it never
really belonged in the system in the first place.

3. How easy is it to repair architectural deficiencies once they become
apparent?

During the early formative stages of a project, it’s relatively easy to massage the
architecture. But once development is committed to that architecture, with
sufficient investment (design and code) slotted into its scaffold, it’s very, very
hard to change. You might as well try rewriting the entire product from
scratch.

This is why it is so important to get the architecture right the first time.
You can refactor small bits of code, but not an entire structural foundation.

Of course, it is easier for us to rip up software and start it afresh than it is
in the physical construction industry, but economics dictate that we can’t do
it. We usually only have one chance to get the architecture right, and if we
don’t, we will have to live with the consequences for the entire lifetime of the
software system.

4. To what extent does architecture affect the following things?

a. System configuration

b. Logging

c. Error handling

d. Security

The architecture has a profound impact on each of these, or more correctly,
each of these has a profound impact on the architecture. You need to establish
requirements for these areas before embarking on serious architectural
design. It will be hard to graft such features into the code at a later date, let
alone into the overriding architecture.

a. The architecture determines what should be configurable (a lot or a
little) and how it should be configured. The kind of configuration
mechanism is determined by several factors: the importance of a
shared “configuration manager” component, whether or not the
system supports remote configuration, and who has rights to perform
configuration (is it just the developers; should the software be tweaked
by installers, maintainers, or users?). All of these concerns are funda-
mental architectural issues.

b. The separate components may log information using some shared facil-
ity, or they might use their own custom mechanisms. The architecture
will define which approach is acceptable, how you access the logs, and

524 Answers and Discuss ion

also the sort of logging information that’s important. This needs to
address the requirements of the software developers as well as the soft-
ware users. Should development logging information be produced by
release versions?

c. Architectural error management concerns include whether or not there
is a central error-logging service and the error-reporting scheme (how
does an error propagate from the seedy back-end components to the
user’s sanitized GUI interface?). It also defines what kind of error mecha-
nisms are used: perhaps a centralized table of error codes shared across all
components or a common exception hierarchy. It will address how
errors from third-party code are incorporated into the system.

d. Security issues will depend on the kind of software under development.
A distributed Internet-based shop-front system has different security
requirements from a small piece of code that will only ever be deployed
on a stand-alone computer. Security is an important topic and can’t be
grafted in at the last minute; it must be addressed in the early architec-
tural designs.

5. What experience or qualifications are required to be called a software
architect ?

You can decide to call yourself an architect, but you can’t gain insight and
experience overnight or magically conjure up the wisdom to make good
design decisions.

Good architectural design requires a wealth of prior experience—
learning from, devising, and refining real software systems. This can only be
learned by actually doing it, not by watching someone else. Be wary of people
who call themselves architects after working on just one release of software.

You can work on software architecture and not be called an architect; the
use of this moniker often depends on company structure and culture. No
formal qualifications are required before you claim the title—however in
some countries, it is illegal to call yourself any kind of architect without
professional accreditation.

6. Should sales strategy influence architecture? If so, how? If not, why?

Yes, commercial concerns will inevitably affect the technical architecture.
Otherwise, you’ll build a system that is not a viable product; you’ll rapidly
find yourself out of a job and your company in receivership.

We must address the commercial implications of our designs—for
example, considering the consequences of failure modes and the cost
associated with return-to-base or on-site system support. The architecture
must minimize these events if they are problems (you can provide remote
access and rich diagnostics to avoid such intense product support).

Commercial concerns also affect these architectural areas: customer
support facilities (including how easy the system is to administer), the installa-
tion approach (performed by trained personnel or by an automated CD
installer), and maintenance support and fee structures.

Chapter 14: Sof tware Archi tec ture 525

7. How would you architect for extensibility? How would you architect for
performance? How do these design goals affect the system, and how do
they complement one another?

There are a number of architectural decisions that follow from these two
requirements.

Extensibility can be supported through architectural devices such as plug-
ins, programmatic access to code (reflection), more language bindings,
scripting capabilities, and extra levels of indirection.

Performance is achieved by streamlining the architecture, keeping it
mean and lean. You must remove all unnecessary components and ensure
the connections provided are timely and adequate. Perhaps caching
layers must be incorporated to boost data throughput.

As you can see, these two have little in common; every hook for extensi-
bility will consume some, no matter how little, performance. Extra indirection
has a cost—the indirection. If your goal is extensibility, this is an appropriate
price to pay. A good architecture makes the correct high-level compromises
to suit the perceived requirements.

Getting Personal

1. How diverse is the range of architectural styles to which you are
accustomed? What do you have the most experience with—how does
it affect the software you write?

Architecture affects us in many ways. Different architectural styles lead to
different design and coding techniques. We are creatures of habit, and these
techniques will shape how we think and code, even when working within a
different architecture later on.

It is healthy to be exposed to a number of different architectures and
to be able to work with them. In practice, you will focus on one particular
style. Make sure you understand how your code is shaped by this architec-
ture, and check that you’re writing sympathetic code when you do change
architectures.

2. What personal experience do you have of architectures that succeeded
or failed? What made them winning solutions or a hindrances?

First, we must define what architectural success means. Is it an architecture with
technical merit? Is it a system that achieves commercial profitability? Is it a bit
of both? Place your answer here.

Software that buckles under the weight of inappropriate architecture
usually suffers because the architecture was not suitably extensible. Important
features cannot be accommodated. This inevitably means the product loses
market share to the more nimble competitors. History is strewn with software
products that have fallen by the wayside like this.

526 Answers and Discuss ion

Another danger is legacy; a huge investment in architectural baggage
is a great hindrance. It requires real insight and a fair bit of courage to throw
away an old system or architecture and start from scratch. A rework must
always learn lessons from the previous version.

An over-engineered architecture is just as dangerous as an insufficient
one. If the architecture supports too much, it will make the product overly
complex, cumbersome, and unacceptably slow. It usually means that even
the simplest change requires modifying many components.

3. Get every developer on your current project to draw a picture of the sys-
tem architecture—individually (without talking to anyone) and without
any reference to system documentation or the code. Compare the pic-
tures. See what strikes you about each developer’s efforts—aside from
the relative artistic merit!

Be fearful if the pictures bear no resemblance to one another. Don’t worry
if there are minor variations; different people will miss different small com-
ponents, and each may be focused on different parts of the system. But if the
diagrams contain wildly different components or the communication paths
are not similar, then the team does not have the same mental model of the
code. This will almost certainly lead to disaster. Pull the developers together
and make sure they know what the system really looks like.

If all the diagrams do look similar, then give yourselves a pat on the back.
You get bonus points if the components are positioned similarly on each sheet
of paper. This is a hint that there is a central architecture specification and,
more importantly, that everyone understands it.

4. Do you have an architectural description that’s commonly available for
your current project? How up to date is it? Which kinds of view are you
using? If you needed to explain the system to a newcomer or a potential
customer, what would you really need to have documented?

Note how far your ideal documentation is from reality. What opportunities do
you have to improve this situation? In a busy commercial environment, you’ll
rarely be able to schedule specific time to document the entire architecture,
but you can plan to capture parts during the design and specification of new
modules. In this way, you can construct a good architectural overview, piece
by piece.

5. How does your system’s architecture compare to the architecture of your
competitors in the marketplace? How has your architecture been defined
to determine your project’s success?

It’s important to understand how your architecture is designed to meet all
your requirements and to ensure your success. (If it has not been designed
with this in mind, then you’re in trouble.) We’ve seen how architecture has
the most fundamental affect on the shape and quality of a software system—
it therefore really does have a large influence on your product’s success or

Chapter 15: Sof tware Evolu t ion or Sof tware Revolu t ion? 527

failure. You’ll rarely see software products thriving despite their bad archi-
tecture. If you do know of a successful one, it probably won’t be around for
very much longer.

An architecture must be able to support at least the same core functionality
as competing systems and provide good support for the unique features that
will cause someone to choose your product over anyone else’s. The simple
features that don’t require architectural support are rarely as compelling as
core functionality embedded deeply in the system.

Chapter 15: Software Evolution or Software Revolution?

Mull It Over

1. What is the best metaphor for software growth?

There is none. In the immortal words of Forrest Gump, “Software is as
software does.” (Groom 94) Code construction has many correlations, yet
no metaphor fully conveys its subtleties, just as you could never fully describe
the beauty of a sunrise in words.

Analogies can be misleading; software is a very different substance from
any physical item, and building it is accordingly different. There are fewer
physical constraints, and you can manipulate it in many more ways.

There is a glimpse of truth in each metaphor. Learn what you can from
them, but don’t be tunneled into an incorrect view of software.

2. Looking at a program’s development through the colorful lifetime
metaphor I talked about in the introduction, what Real World events
correspond to a program’s:

Conception

Birth

Growth

Coming of age

Sending out into the Big Wide World

Middle age

Growing tired

Retirement

Death

Although we’ve seen that metaphors are imperfect, investigating this one
does teach us a lot about the lifetime of a software system. It’s certainly not
practical to try to place one developmental stage before the preceding steps—
you can’t release software until it has come of age. Well, you can, but the
consequences are dire.

528 Answers and Discuss ion

Conception
The company observes an opening for a new product. The market
requirements are established. The decision is made to build it.

Birth
A project is initiated to build the software. Designers and programmers
are drafted in. An architecture is established. The code is started.

Growth
The code develops, and the program matures. It becomes more and
more functionally complete. Deadlines loom.

Coming of age
Finally, the code is complete. It passes all tests to QA’s satisfaction.
It’s considered a job well done, and hopefully it wasn’t too far behind
schedule.

Sending out
The program is released as version 1.0. It successfully meets the market’s
needs.

Middle age
The program is heavily used by clients and has been deployed for some
time. Now, several revisions later, it has accumulated extra functionality
and a degree of bloating.

Growing tired
Eventually, more nimble competition overtakes the program, with a
greater feature set and better performance. No new customers choose
our program, but existing customers clamor for upgrades. The software
has become hard (even uneconomical) to extend.

Retirement
Finally, the company decides to give up on development and cease
support. It announces support is ending in x months: a formal end-of-
life statement. Development stops, although some maintenance work
continues.

Death
We reach the inevitable: All development and maintenance stops.
There is no longer anything offered by way of support. The world has
moved on; soon, no one will remember what the program was called,
let alone how to use it.

3. Is there a limit to software life—how long can you keep developing and
working on a program before you have to start afresh?

This depends more on the market for the program than the quality of the
software itself. Code can last indefinitely if it’s well maintained and extended
carefully. However, technologies go out of date rapidly, and trends change.
Operating systems evolve quickly, hardware platforms become obsolete, and

Chapter 15: Sof tware Evolu t ion or Sof tware Revolu t ion? 529

something that began as state-of-the-art, market-leading functionality will be
given away for free a few years later. You must work hard to maintain the
program’s competitive advantage. Perhaps you’ll have to continually add
new functions, or port the software to new platforms.

Open source software is not immune to these competitive and market-
related issues; in some cases the problem is worse. There may be little or no
money involved, but there is a still a real market with advancing technology,
lower barriers to entry, and greater chances to switch products.

4. Does the size of a codebase correspond to the maturity of the project?

 No. On many occasions, I have vastly improved a system by removing code
from it. Duplication can lead to massive code growth with little functional
gain. The use of external libraries provides a lot of functionality without
any discernible increase in project code size.

Many people quote lines of code as a good measurement of development
progress. Such metrics are useless unless interpreted correctly. This is merely
a view of the amount of code written, not of its quality or the purity of its design.
It is certainly not a measure of its functionality.

5. How important is backward compatibility when maintaining code?

 This depends on the individual project and how it has been deployed. More
often than not, it is very important to retain backward compatibility when
you change code—especially with regard to file formats, data structures, and
communication protocols. Few applications can justifiably break this rule—
only systems with small deployments and no need to store, retrieve, or
communicate legacy data.

You should also consider forward compatibility. That is, designing code for
extension and ensuring that future events will not render it inoperable. The
Y2K bug is a good example of this rule being ignored, with expensive and
potentially disastrous consequences.

6. Is code likely to rot more quickly if you alter it or if you leave it alone?

Code rots quickest when you attempt to alter it. It’s true that leaving a
program to slowly stagnate will ensure your competitors gain an advantage,
eventually rendering your code worthless. Your product will hear its death
knell, but the code itself is as beautiful as it ever was.

Careless maintenance and sloppy extension will really cripple code.
New faults are introduced all too easily as other problems are cleaned
up. The pressure for rapid turnaround leads to modifications that
degrade code clarity and structure. Maintaining code often renders it
unmaintainable.

It takes good programmers and informed project management to
avoid this.

530 Answers and Discuss ion

Getting Personal
1. Is the majority of the code you write brand new or a modification of

existing source?

a. If it’s brand-new code, do you create entirely new systems or new
extensions to existing systems?

b. Does this affect how you write? In what ways?

Different forces come into play in these different scenarios. When
extending existing code or fitting new software into an old framework, you
have to do a lot of investigation up front to understand how all the existing
stuff works. If you don’t, you’ll end up writing bad code that doesn’t fit in
properly, causing headaches in the future.

Brand-new code must be created with a view to future modification. It
must be clear, extensible, and malleable to prevent such problems from
cropping up later.

2. Do you have experience of working with preexisting codebases? If so:

a. How has it shaped your current skill set? What lessons did you learn?

b. Was it predominantly good or bad code? What did you have to judge
it against?

A few years experience helps you to judge what’s good software and what’s
bad. The telltale signs become clear, and you’re able to quickly detect code
that must be handled with care.

Although vaguely masochistic, it can be good experience to work with
someone else’s trashy code—it teaches you what not to do, how one program-
mer’s shortsightedness can make other programmer’s lives painful later on.
It helps you to appreciate the importance of taking responsibility for the
code you write.

3. Have you ever made changes that degraded the quality of code? Why?

Common reasons (or excuses) are:

I didn’t know any better at the time.

I was pressed for time and had to ship the code quickly.

It was too much work to do any other way.

I could only modify code that was under our control—the problem was
in another team’s code or in third-party library code that we only had
binaries for.

None of these reasons are satisfactory.
For bonus points, come up with counter arguments against each of

those excuses and find ways to avoid each situation. For example, if you’re

Chapter 15: Sof tware Evolu t ion or Sof tware Revolu t ion? 531

pressured to ship a code release quickly, you can make a simple hacky
change now, and revise the work once the software is released to create
a more engineered solution.

4. How many revisions has your current project gone through?

a. How much changed functionally between revisions? How did the
code change?

b. Has it grown by luck, by design, or something between the two? How
is this evident now?

Here are some important things to consider.

a. The two are not necessarily connected. Even some very simple functional
changes may require fundamental code rewrites. I’ve seen many projects
where this was the case, where the system architecture didn’t support
future requirements and had to be radically altered.

And I’ve also seen the opposite: releases that were functionally
identical to their predecessor, but where almost everything had changed
under the covers. There is no point in performing a complete project
rewrite if the system is spiraling toward its death, but when it has a
viable commercial future and the current code cannot accommodate
future requirements, such action may be justified.

It might be commercial suicide to release a new version with no new
features—customers will refuse to upgrade unless it’s worth their while.
Therefore, a few minor features tend to be thrown in as bait, or the
revision is released with a certain amount of spin (i.e., This revision
includes significant bug fixes).

b. You must know the history of your codebase to understand how it grew
to this current shape and to be able to make informed modifications and
appropriate tidy-ups.

5. How does your team safeguard code so that it can’t be changed by more
than one programmer at once?

Employ a revision control system to manage code changes. Blocking file
checkouts prevent more than one person from modifying a file at once. How-
ever, this is not enough. One change can be checked in with a contradictory
change immediately following. You need to manage the development carefully,
so that each developer with access to the source code understands what his
or her peers are doing and who is responsible for making which changes.
Code reviews help to detect and correct when this kind of problem has
occurred.

A good suite of regression tests will ensure that any modification you
make does not break functionality.

532 Answers and Discuss ion

Chapter 16: Code Monkeys

Mull It Over
1. How many programmers does it take to change a light bulb?

The question’s wrong. It’s a hardware problem, not a software one. Get the
hardware engineers to fix it. Of course, the hardware engineers will want to
work around the problem in software. . . .

2. Is it better to be enthusiastic and less skilled (not incompetent) or to be
incredibly talented and unmotivated?

a. Who will write the better code?

b. Who is the better programmer? (Not the same thing.)

Which does more to shape the code you write: your technical
competence or your attitude?

There are various types of software systems, and the creation of each requires
a different set of skills. That’s how programmers can carve out niches in
embedded programming, web services, financial systems, and so on. The
coding task also differs with the heritage of the code. You might write:

Simple “toy” programs

New systems from scratch

Extensions of existing systems

Maintenance work on old codebases

Each task requires a different level of skill and discipline, and a very
different development approach. We’ll see this in the next question. Not
every programmer who can write a personal “toy” can create a brand-new,
industrial-strength system.

For all of these, the quality of the resulting code is determined as much
by your technical competence as your attitude regarding the task—indeed,
the two must complement one another. If you lack some technical skills, then
you must have an attitude that acknowledges this and compensates for it.

Your attitude can do more to shape the code you write than your
current skill set can. If you’re less skilled but desire to do a good job, then
you’re more likely to work well. You’re also more likely to learn and to
improve your skills.

3. There are various different types of programs we write, differentiated by
code “heritage.” How does writing the following types of code differ?

a. A “toy” program

b. A brand-new system

c. Extensions to an existing system

d. Maintenance work on an old codebase

Chapter 17: Together We Stand 533

It might not look like there’s a great different between these code scenarios,
but they require surprisingly different approaches.

A toy program
This might be a small fun hack for your own use or a little utility to help
develop a larger system. This program doesn’t need to be bulletproof, have
in-depth design, or have exhaustive features. It just needs to do enough
to solve the immediate problem. Then it’s thrown away.

Speed and ease of development is probably more important than
design elegance or the theological purity of the construction process.

A new system
Creating a brand-new professional system from scratch requires serious
design and careful planning. You must take into account future use and
extensions, and ensure that the whole system is adequately documented.

Extensions
Few projects create a new system from the ground up. More often, we
extend existing code, adding new features to an old codebase. The new
work must knit correctly into the existing system. This can’t be done prop-
erly without a thorough understanding of the original code and the ability
to make changes that sit well alongside existing work.

Maintenance
The most common software activity is the maintenance of existing code,
fixing any remaining faults, and ensuring that it remains operational as
the world around it changes. This needs a careful methodical approach.
It probably requires a lot of exploratory work; it will stretch your deduc-
tive powers since few systems are ever documented well enough to easily
maintain, especially as they grow old and near obsolescence.

4. If programming is an art, what is the correct balance of consideration
and planning versus intuition and gut instinct? Do you program by gut
or by plan?

As we’ve seen, effective programmers use both approaches. Intuition and the
artist’s aesthetic sensibilities will help craft elegant code. Thoughtful plan-
ning works alongside to ensure the code is sound, pragmatic, and delivered
on time.

We can’t formulate an exact ratio or formula for the optimum balance.
Effective programmers have both and know how to moderate the use of each.

Chapter 17: Together We Stand

Mull It Over

1. Why write software in teams? What are the real advantages over writing a
system on your own?

534 Answers and Discuss ion

Software development might be easier on your own; you don’t have to work
with other weird programmers, you don’t need to coordinate work or suffer
ineffective management. However, it isn’t hard to see the many benefits of
software development in teams.

In a team you can solve larger problems by decomposing them between
individual members. And you can create code faster too. Groups of developers
combine talents to make something greater than the sum of their parts. In
cases where there is no well-established design or prior art, the wider skill set
and knowledge of the group has a distinct advantage; a collaborative approach
will filter ideas and generate better solutions. Peer reviews ensure that work
is sound.

There is also a personal motivation: Techies like working on cool projects.
You can work on systems well beyond your own ability when developing in a
team. This might be software that is much larger than an individual could
tackle, which requires specialized skills, or that provides the chance to work
alongside more experienced programmers.

In a Real World organization, even a lone developer is part of a larger
team. If you’re not working with other software developers, you are still part
of a corporate team, working to create a final polished product. Without
those other people, your software would never be released.

2. Describe the telltale signs of good and bad teamwork. What are the pre-
requisites for good teamwork, and what characterizes bad teamwork?

For effective teamwork, all of these factors must be in place:

The correct spread of people, with a range of appropriate technical
skills.

Team members with a range of experience, who are each able to learn
from others. A whole team of trainees will clearly be very unlikely to
succeed. (However, they’d be much easier to mold and manage than a
bunch of Demigurus who are far more set in their ways.)

Team member personality types must be complementary. To succeed,
the team needs encouragers and motivators, not people who will drag
morale down.

A clear and realistic goal (even better if it’s an exciting project that the
team members really want to see completed).

Motivation (whether financial or emotional).

Suitable specifications provided as soon as possible, so all members
understand what they are building and to ensure that the individual
pieces of work fit together.

Good management.

As small a team as realistically possible, but no smaller. Adding more
people makes teamwork harder: There are more lines of communica-
tion, more people to coordinate, and more points of failure. We should
try not to make things unnecessarily difficult.

Chapter 17: Together We Stand 535

A clear and universally understood software engineering process for the
team to follow.

Backing from the company, not hindrances and unnecessary bureaucracy.

In contrast, these are sure indicators of a team that is not able to work
effectively. Note that this list includes a mix of internal and external factors:

Unrealistic schedules with deadlines established before the team has
scoped their work.

Unclear project objectives and a lack of project requirements.

Communication failures.

Bad or unqualified team leaders.

Badly defined individual roles and responsibilities—who’s responsible
for doing what?

Individual bad attitudes and personal agendas.

Incompetent team members.

Management not valuing individual engineers, and treating them like
minions instead.

Individual appraisals based on criteria that don’t match the team
objectives.

Rapid turnover of team members.

No change in management procedure.

A lack of training or mentoring.

3. Compare software teamwork with the construction metaphor (see “Do
We Really Build Software?” on page 177). Does it reveal insights into our
teamwork?

There are a number of different metaphors that can be used to describe our
work (for example, DeMarco’s sports team or choral society and the factory we
joke about here). (DeMarco 99) The problem with any metaphor is that it
can only tell a partial truth. Software engineering has its own problems and
challenges. Chemical engineering is different from civil engineering, which
is different from making a movie, which is different from writing software.

While not perfect, building construction is a useful metaphor. After all, we
construct software according to a plan, from different components (some of
which we build ourselves, others which we buy or bring in). These are the
useful parallels:

You need a team: You can’t single-handedly build a skyscraper or an
enterprise-level highly complex software superstructure.

The team has a goal: It works to finish the construction on time and
on budget.

Someone commissions the work, for a purpose: There is an end-purpose
for the work.

536 Answers and Discuss ion

Each team member does something different: Different roles help to get
the job done. There are architects, builders, carpenters, plumbers, elec-
tricians, foremen, office staff, security guards, and more. Each makes a
valuable contribution.

There are team members with responsibility: The foreman is the people
manager.

But of course, buildings are very different from programs. Buildings
can’t be developed in an iterative and incremental manner. Any change to a
building’s specification will result in costly demolition prior to rebuilding. In
our world of pure thought stuff, we can tear down and rebuild with very little
material cost (but with the costs of time and labor). In software, we are better
able to build abstract interfaces between blocks. The engineering discipline
is different, but that doesn’t mean we can’t learn from the parallels with
other professions.

4. Will external or internal factors do the most to ruin the effectiveness of
a software development team?

They’ll both conspire to destroy your development work. Internal
factors like:

Ineffective team members

Conflict

Confusion

Show-stopping bugs late in development

Inaccurate plans

Mix with external factors like:

Unclear or shifting requirements

Unrealistic deadlines

Bad management

Corporate bureaucracy

This makes the life of a software developer incredibly difficult. Internal
and external pressures are equally likely to destroy your teamwork, although
it’s widely recognized that most projects fail for nontechnical reasons.

One thing is certain: There are far more detrimental influences on team
performance than there are success factors. For this reason, you must guard
your team’s work closely, attempting to insulate yourself from both internal
and external attacks.

5. How does a team’s size affect the team dynamics?

With more people, the team members suffer increased

Coordination effort

Communication effort (more people introduce more separate paths of
communication; this grows exponentially)

Chapter 17: Together We Stand 537

Cooperation effort

Dependency on others (direct and indirect)

Each of these can make your work harder. However, it’s clear that a team
of programmers can produce greater software than a single coder. This means
that there must be an appropriate balance of team size versus size of task; this
will change depending on the kind of system being developed.

As a team gets bigger, there is more likelihood that individual program-
mers will slacken the effort they put in, since they can be carried by the rest
of the team. Brooks’s The Mythical Man-Month shows that adding people to a
project does not necessarily make it complete sooner. (Brooks 95)

With a larger project, there is more chance that management talent will
differentiate success from failure and more scope for management to
provoke catastrophic failure.

In general, smaller development teams are better; but they must still be
large enough to accomplish the task.

6. How can you insulate a team from problems caused by inexperienced
members?

There will always be inexperienced programmers. This is the same in any
field of endeavor. In many professions, new recruits undergo some form of
apprenticeship period and must complete a stage of academic study. This
ensures that their skills are already honed to a reasonable level. Although
ripe with academic programming courses (of varying quality), our software
profession doesn’t recognize any formal form of apprenticeship. Mentoring
new programmers is a fantastic way to quickly bring fresh recruits to a reason-
able standard.

A few techniques contribute to making inexperienced coders’ work
less risky:

Have realistic expectations; don’t expect miracles from them. Allot
trainees appropriate tasks.

Monitor their progress, and ensure they aren’t afraid to raise questions
and problems.

Don’t require too much prior experience: Use popular languages and
tools that will require less time to get up-to-speed.

Don’t use bleeding edge technologies and techniques.

Standardize tools across teams so trainees only need to learn a
toolset once.

Train them.

Review their code.

Mentor them.

Pair program with them.

538 Answers and Discuss ion

Getting Personal

1. What kind of team are you working in right now? Which of the stereotypes
on pages 322 through 332 is it most like?

a. Is it like this by design?

b. Is it a healthy team?

c. Does it need to be changed?

What factors have you encountered that prevent good teamwork?
If you haven’t done so already, fill out the earlier action sheet care-

fully (see “Action Sheet” on page 347). Make sure you work out how to
improve your team and start to make the changes.

Work out how you will carry out any required changes. Set goals and review
the team’s health in a few months’ time.

Common team problems include:

Unbalanced team composition

Ineffective team members

Bad management

Unrealistic deadlines

Shifting requirements

Communication failure

2. Are you a good team player? How could you work better with your team-
mates and build better software?

Look again at the personal characteristics in “Personal Skills and
Characteristics for Good Teamwork” on page 333. Determine how closely
you model each of these and how you can improve.

3. What is the exact responsibility of a software engineer on your
current team?

How much responsibility and authority does a software developer have? Are
there several ranks of programmer job titles—if so, how do these roles differ?
Does a development role involve any of the following activities?

Forming the project scope and objectives

Analysis

Estimating timescales

Architecture

Design

Review

Project management

Being a mentor

Chapter 18: Pract ic ing Safe Source 539

Investigating and implementing performance

Documentation

Integrating systems

Testing (to what level?)

Interaction with the customer

Planning enhancements or the next software revision

This detail will differ from company to company and from project to
project. Are there clear lines of accountability in your team? Are there
technical and pastoral managers to whom developers are assigned?

Do you have a job description? Do you have a set of personal objectives?
If so, are you fulfilling them right now, or are they actually incorrect?

Chapter 18: Practicing Safe Source

Mull It Over

1. How can you reliably release your source code to other people?

The easiest option for proprietary source code is not to release it—then you’ll
avoid all sorts of problems. If you must ship code, don’t forget to sort out
licensing and get NDAs in place first. Know the size and extent of your
audience and, if it’s important to you, take measures to ensure that the code
doesn’t leak further afield.

For open source projects, this is not such a big concern; by their nature,
they ship as source.

Before release, make sure that there are clear copyright and license
notices in every source code file.

There are several mechanisms for a source code release, with differing
abilities to guard against your code getting into the wrong hands:

Allow the external viewer to have access to your source control system.
You can lock this down through an account that is granted read-only
access, possibly using a shared anonymous account if your code is publicly
available.

Obviously, to see your VCS server, users must have some level of
privilege and network access to your development environment, so this
must be closely managed—both so that they don’t do anything untoward
and so that crackers can’t get in to look at your code.

Tarball the source tree (create a compressed archive of files—this term is
named after Unix’s tar command). This tarball can be emailed, FTPed,
or sent on a CD. Ensure that your method of dispatch is appropriately
secure.

Include a set of release notes with your code, and clearly display the
source tree revision information (usually a source control version or build
number) for later reference. Mark the released code in your source control
repository with a label so that you can retrieve it at a later date.

540 Answers and Discuss ion

2. Of the two models for repository file editing (locking file checkouts or
concurrent modification), which is best?

Neither model of operation is better or worse than its counterpart. Each
hides different file editing problems and forces users to work differently when
modifications might collide.

The locking model requires you to check out a file to reserve it before
making any modifications. You can be sure that no other developer’s
change will interfere with your work and that you have sole access to that
file until you check it back in or release the file unchanged. The downside
is that a reserved file is blocked until the owner has relinquished control.
You have no immediate way of knowing how long this will take.

If the owner sits at the desk next to you, then it’s annoying but not
hard to work out. However, if the owner is on another continent, works
different hours, or accidentally leaves the file checked out while on vaca-
tion, then you’re stuck. The best you can do is subvert the checkout by
fiddling with the owner’s computer to release the file. This will undoubt-
edly cause hassle and confusion later.

The concurrent model avoids this problem and ensures that you can
continue coding unhindered at all times. The hidden danger is the pos-
sibility of conflicting file modifications. If Fred alters lines 10 through 20
of foo.c, while George alters lines 15 through 25, a race is on! The first
developer to check in the file won’t have any problems, so if Fred wins,
his work on lines 10 through 20 will be put into the repository. But when
George tries to check in, the SCMS will tell him that his source tree is out
of date—he has to merge Fred’s change into his copy of foo.c first. The
five conflicting lines will need to be merged manually; George must do
extra work to understand Fred’s change and integrate it with his own.
Only then can he check his work in.

This isn’t ideal, but it happens very rarely in reality, and most con-
flicts are not at all contentious. The more common case is when Fred
modifies lines 10 through 20 and George modifies lines 40 through 50;
the two modifications don’t conflict and the SCMS can merge the changes
automatically. If you do encounter conflicting concurrent modifications,
it’s often a sign that the code needs some refactoring.

Neither mode of operation is perfect; but each works fine. Which you
choose depends on the operation of your source control tool and the devel-
opment process and culture you work in.

3. How do the requirements for version control systems differ between a
distributed and a single-site development team?

If a SCMS can accommodate remote sites, it will definitely be able to cope
with a single-site development team, so we’re mostly considering a set of extra
requirements for multisite operation. These extra requirements include:

There must be a scaleable client/server architecture.

The tool must work effectively over low-bandwidth network links (which
are common for satelite sites), or your deployment must include a really

Chapter 18: Pract ic ing Safe Source 541

high-quality intersite connection. Low-bandwidth links require intelligent
data compression and sensible communications protocols (for example,
the tools should send small file differences, rather than entire files).

There must be a centralized method to administer user accounts so that
collaboration is seamless across sites.

There are two main designs: wide area network communication and
remote repository replication. The first performs all client communication
with a central server hosted at the parent location. This requires a sufficiently
fast and reliable communication channel between sites. The latter method
reduces communication overhead by replicating the repository onto a remote
server at low-load times. However, this adds a lot complication to the devel-
opment process; you need to understand that the two repositories are not
costantly synchronized, and you must work out sensible branching strategies
to avoid conflicting lines of development work.

When evaluating source control systems, don’t ignore these requirements,
even if you only have one development site. In the future, you may need to
add a secondary site or support for telecommuters. Bear this in mind as you
scope your system.

4. What is a sound rationale for selecting a source code management system?

Good criteria for selecting a SCMS include:

Reliability
Check that it is proven technology and won’t suddenly lose your source
files. The server must be robust and not prone to crashing every few days.

Capacity
The tool must scale up well, handling large teams and large projects as
well as small ones. In more demanding situations, does it consume a lot
of disk space, soak up all network bandwidth, or take an excruciating
time to run? Perhaps you require multisite repository synchronization,
or does it work well enough on a low-bandwidth link?

Flexibility
Does it provide all the operations and reports that you need? Does it
handle all the filetypes that you want to control? Can it manage binary
files? Does it support Unicode? Does it version directories, allowing the
renaming and moving of files? Does it manage atomic change sets, or is
each file individually versioned?

Branching
To support more than one release, product variants, concurrent feature
work, or to help with logical development, the tool must support branch-
ing. Does it support sub-branches? Is merging easy, or is it prohibitively
difficult?

Platforms
Make sure that it works on all the platforms, hardware configurations,
and operating systems that you work with.

542 Answers and Discuss ion

Costs and licensing
The SCMS must meet your budget constraints (remember, there are
some very free source systems). Consider whether there are extra license
costs per client. Sometimes these are hidden extra costs; as your team
grows, you must pay an SCMS tax.

Audit
The repository must record who makes each change: Don’t force every-
one into one SCMS user account. The system must support your access
policies, allowing you to restrict modification rights as required. Do you
want it to provide automatic notification of changes?

Simplicity
The tool must be easy to use, configure, and deploy. This is especially
important if you don’t have a full-time designated SCMS administrator.

5. How can you separate bleeding-edge code under active development
from stable code during team development?

You need a strategy to separate the two in the source control repository. Your
choices are:

Don’t separate them. Everyone has bleeding-edge code and must learn
to cope with it. Don’t check in anything that is obviously broken or
nonfunctional.

Employ branches. Perform each line of development work on a separate
branch, and merge the branches down at appropriate stable points. With
this scheme, integration problems are only discovered on a merge; this
places the burden of maintenance on the branch merger (which might
be the developer working on the branch or a separate system integrator).

Use a stable label, applied to the entire source tree as a baseline. Develop-
ers check out this labeled baseline and then move the components they
are developing to the latest version. They can then work and commit
changes without affecting anyone else’s stable source tree. When new
development work is deemed stable (fit for public consumption) the
label is moved. This change is picked up by other developers when they
next synchronize to the baseline.

Which you chose depends on the facilities of your SCMS and your
development culture.

Getting Personal
1. Does your development team make effective use of source control?

Ultimately, does your SCMS help you to develop software easily, and does
it facilitate collaboration better than any alternative? Consider tool setup
issues like:

Are you using the right tool with the right feature set?

Do you have an SCMS administrator, or is it managed on an ad hoc basis?

Chapter 18: Pract ic ing Safe Source 543

Does everyone know how to use it? Is there an appropriate training
scheme?

Is the repository integrated with your defect management or fault-
tracking tool?

Consider asset management issues like:

Is there agreement over the contents of check-in messages and the use
of other revision metadata?

Do you have a consistent labeling scheme to mark important source
tree revisions?

Do you have a defined (and documented) branching strategy, with
provably correct merging?

Can you automatically create release notes from the source repository?

Are you able to re-create old builds? Have you addressed when the build
toolchain altered, affecting code compatibility?

Can you build a product entirely from the contents of the repository, or
do you need to supply any extra files?

How important are each of these issues to your development team?

2. Is your current work backed up? How important are backups to your
development team? When are backups made?

If you can be bothered to write some code, it must be important, and so it
must be backed up. There are several levels at which backups can be employed:

Personal workstation backups. These will ensure that no work is lost from
your local hard drive or from your source tree sandbox.

The server holding the source control repository. This ensures that you
won’t lose the central source tree files and their revision histories.

The latter is the most important: It’s criminally insane not to back up a
source repository. If your workstation only contains sandbox development
areas, then it’s not as critical to back it up; there should be little work at any
time that isn’t checked in (remember to perform little and often check-ins), so
a loss of a local disk is not critical.

Consider also how you back up documents and any other non--source
tree items you produce. Either check them in to the repository somewhere or
make sure that they are stored in logical places on a shared fileserver, some-
where that is backed up. Without revision control, you will have to perform
manual document versioning—it’s as important to keep historical versions of
specifications as it is to version the source code.

In a multiuser environment, the systems administrator will determine
when backups are made. This is usually during the night when there is less
computer activity and less information changing on the filesystems being
backed up. (But what about multi-continent projects with massive time
zone delays?)

544 Answers and Discuss ion

3. On which computers is your source code held?

Obviously, it is held on the development servers and workstations within
the company network. These sit safely in the office behind a corporate
firewall. But also consider whether your code is held on laptops or on the
home machines of telecommuters. How sensitive is the work? How should
these machines be digitally and physically protected?

Chatper 19: Being Specific

Mull It Over

1. Is a poor specification better than no specification at all?

A factually incorrect or painfully out-of-date specification is definitely worse.
It will send readers down a blind alley and waste a lot of their time. The false
information it contains could easily lead to broken code that will cost a lot of
time, energy, and money to fix later on.

If a specification is ambiguous or misses important information, then
you’re hoping that the readers are experienced enough to recognize the
problem and interpret the information carefully. Hopefully they’ll all make
the same set of assumptions about the missing information. A specification
should really stand on its own and not require the intuition of its readership.

If a specification is too verbose and hides information, then it is probably
better (in the long run) to rewrite it.

The number of factual inaccuracies in your company’s specifications will
probably frighten you! In my experience, very few companies have a set of
consistently good specifications.

2. How detailed does a good specification have to be?

The answer is: appropriately detailed, where the value of “appropriate”
depends on the project, the team, the contents, the quality of related
documents, and the lunar phase. Too much detail can definitely be counter-
productive: Clearly, if a design specification was too detailed it would be the
code itself. However, ambiguity in key areas is a road to disaster.

3. Is it important that all the documents in a company/project have a
common presentation style?

This is about as important as a uniform code style. That is, there are plenty of
more important things to worry about, even if this is the most immediately
visible problem with a specification. The importance of visual consistency
depends (in part) on whether the documents are released outside the
company or not. It looks more professional to ship consistent documents,
all written in a similar style with the same template.

Ultimately, the content of your documents is far more important than
their appearance.

Chatper 19: Being Speci f ic 545

4. How should you store documents? Should you provide an index of them
(by type or by project), for example?

You must be able to quickly locate and retrieve a document that has been
written. The actual storage scheme is unimportant, provided that it’s well
known and universally followed.

It usually makes sense to store all documents on a single central filestore,
and group them by work package (this could be by project, by customer, by
component, or by feature). It’s helpful to maintain a central list of all stored
documents to aid retrieval. However, this adds management overhead, and if
not maintained, it will quickly fall out of use.

Large companies employ people to deal with the storage and retrieval of
documents. Though experts at this task, their presence adds more steps to the
working procedure and more links in the development process chain.

It’s essential to keep documents under some form of revision control and
to monitor which versions of the documents apply to which versions of the
code. This is part of a configuration management strategy (see “Configuration
Management” on page 356).

5. How should you conduct a specification review?

Document reviews work similarly to code reviews. They generally take place
in a meeting, in which case there are some important prerequisites: the
correct set of reviewers must be selected, and the material for review should
be distributed with enough time for reviewers to adequately prepare.

Alternatively, the review can be run virtually by soliciting email feedback
or by giving a printed copy to each reviewer and receiving his or her marked-
up copies for inspection.

The review will address a number of things; the importance of each should
be agreed upon up front:

The quality of the contents. (Is it complete, correct, and so on? This is
paramount.)

The quality of the presentation style. (Does the document conform to
project guidelines?)

The quality of the writing style. (Does the author write like Shakespeare
or a five year old? For software specifications, both are bad!)

In a meeting context, it’s best to discuss general comments about the
material and the overall approach first. (But be careful here: It’s very easy to
get waylaid by more specific technical issues at this stage.) Then the specifics
of the material can be discussed. Since all the reviewers have looked at the
material beforehand and have already amassed their comments, stepping
through, section by section, is usually appropriate. Long sections might be
traversed paragraph by paragraph if necessary.

6. Does self-documenting code render all specifications useless?
Specific ones?

Not entirely. Self-documenting code can avoid the need for design specifica-
tions or other maintenance documents. Literate API documentation placed

546 Answers and Discuss ion

in code comments can even replace functional specifications in some cases, if
the docs are really thorough. Be careful, though: If you try to write a lot of
documentation in literate comments, you’d probably find it easier to type the
same information into a word processor. Literate code documentation can
never replace a requirements specification or a test specification.

A comprehensive set of automated test cases could replace a software com-
ponent’s test specification, if the test were sufficiently clear and maintainable.
However, they are seldom sufficient to replace final product validation tests.

7. How can a document be collaborated on by more than one author?

With difficulty—few documentation systems provide the same collaborative
facilities as a source code control tool. Look at wiki-webs for shared text editing,
if you can cope with your documents being in an HTML-derivative form.

Otherwise, you have to split the document into sections and give one
section to each person. Each section will have an inevitable difference in
writing style, quality of content, and will be based on a different set of assump-
tions; check for this as the work is stitched back together. You might find it
easier to split the sections into their own documents and put an umbrella
document over the top of them. A leader must be appointed to coordinate
the work of several people—to guide the writing process, collate the parts,
and encourage people to complete their sections on time.

An alternative approach is to give one person overall writing responsibil-
ity, but with a strong element of peer review. The document’s content and
structure is agreed upon in meetings beforehand, then the writer retires to
craft the document alone, before offering it for group review.

Be careful with any of these approaches, as writing by committee can
produce laborious documents and can take a very long time.

Getting Personal

1. Who decides on the contents of your documents?

This is defined by a company’s development process, by a document
template, or by convention. But just because there is a convention doesn’t
mean that it’s actually good practice. Check that the types of documents you
write, as well as their contents, are genuinely valuable to your software develop-
ment process.

2. Consider your current project. Do you have:

a. A requirements specification?

b. An architecture specification?

c. A design specification?

d. A functional specification?

e. Any other specification?

Are they up to date? Are they complete? Do you know how to get the
latest versions? Can you access historical revisions?

Chapter 20: A Review to a Ki l l 547

If you don’t have some of these or they’re substandard, why? How can you
remedy the problem?

Whose job is it to keep the documents up to date? Document versioning
is an important aspect of specification generation—make sure that you have
a clear plan for doing this.

3. Do you revision control your documents? If so, how?

Several techniques for managing document revisions are seen in the field:

Store them in an SCMS alongside the code.

Use a document (or even a workflow) management system.

Use the filesystem: Encode the document revision in its filename (possibly
archiving old versions in a separate old directory).

Store old revisions in an email attachment sent to a “magic” user
(grotesque, but—yes—I have seen a company do this).

Whichever scheme you use, it must address these issues:

Ease of use and document accessibility

How to prevent two people from editing the same document at the
same time

Differentiating the latest release version from the copy currently under
development

How to avoid accidental deletion or overwriting the wrong document
version

How to maintain the document history with each change

The ease of referencing a specific document revision

Chapter 20: A Review to a Kill

Mull It Over

1. Does the required number of reviewers depend on the size of the code
being reviewed?

Not really. If your code is particularly important, then you might consider
inviting a few more reviewers, or you might make a particular effort to select
reviewers with the most experience.

However, if the code is too large, you don’t need more reviewers—you
need a rewrite!

2. Which tools are useful aids for code reviewing?

Common sense, a keen pair of eyes, and an alert brain!
A number of software tools are also useful. Many different tools can

inspect your code and help you to gauge its quality and relative risk to the
entire codebase. They can trace the flow of execution, work out which code

548 Answers and Discuss ion

is executed most often, and calculate a value for each function’s code com-
plexity. This last metric is very useful when identifying which pieces of code
need to be reviewed as soon as possible. A visual design program may help
you to understand the code structure and its dependencies (particularly
useful for reviewing class hierarchies in object-oriented languages).

3. Should you perform a code review before or after running it through
source code checking tools?

After. Reviewers should probably use these tools themselves during review
preparation, but authors must perform all possible checking on their own
code before releasing it for review. They’d be foolish not to. It makes no
sense to waste reviewers’ time on code that could have been easily improved.
Reserve review time to find more interesting problems.

If an issue is detected during a review, thought should be given to whether
the same issue can be automatically detected in the future using a tool.

4. What preparation is required for a code review meeting?

The author has completed the code satisfactorily (otherwise he or she is
wasting the reviewers’ precious time). The chairman has arranged the
meeting properly so that it will run smoothly. More interestingly, before
the meeting, each reviewer must have already:

Read (and understood) the specification

Become familiar with the code

Drawn up a list of issues and questions (this step enforces discipline; if
you don’t force yourself to do this, it’s easy to superficially skim the code
and not really know it well enough to review thoroughly)

There will always be things you’ll find during methodical inspection in a
review meeting that you missed beforehand. Even so, this prior preparation
is essential to prevent the meeting from wasting a lot of people’s time.

5. How do you differentiate review comments to be acted upon immediately
from those to chalk up for experience on the next project?

You must make a decision based on:

How important the identified problem is

Whether it’s a matter of personal aesthetics or it breaks an agreed
best practice

How much work is involved in the fix

How serious the effect of the change is on the rest of the code

How wrong (or misleading) the code is without the fix

How fragile or dangerous the change work is

Where the project is in the development cycle—you only want to make
essential changes near a release deadlin.

Chapter 20: A Review to a Ki l l 549

There is no easy rule. If there is any ambiguity in a review meeting,
then the chairman makes the ultimate choice. Sometimes problems are
rated between must fix and nice to have—the author implements as many
high priority fixes as feasible in the available time. Other issues may be
deferred to the next iteration of the component’s development.

6. How do you run a virtual review meeting?

Virtual reviews are commonly run by email. The review is organized by a
chairman, who is usually the hub of communications. Certainly, the author
must not be the hub of communications; it would be too easy for him to select
which comments are important and to ignore all the things he doesn’t like.
This is obviously a bad idea.

There is an important question with this approach: Do the reviewers get
to see each other’s comments? In a virtual review, debate is much harder to
facilitate, especially if emails are directed only to the chairman. However, a
1,000-email conversation broadcast to all reviewers quickly becomes irritating
and diverting. As an alternative, you could meet in a virtual chat room, use
an instant messenger, a dedicated newsgroup, or a mailing list.

An alternative virtual review mechanism is to distribute printouts of
the code in question. The reviewers scribble comments on their copies
and return them to the author. You can run a similar scheme using a wiki:
Post your code on the wiki and let reviewers add comments to the page.
The format of how you conduct a review is less important than simply
doing it somehow.

7. How useful are informal code reviews?

Informal reviews are much better than no review at all, but since they are less
thorough, they’ll inevitably find fewer faults (for the same quality of code
reviewer).

Although terms are not officially defined, McConnell describes two types
of informal review: (McConnell 96)

Walkthroughs
These are very informal gatherings where programmers look over the
code together. This could be in front of an editor, with changes made on
the fly.

Code reading
The author distributes copies of the code to a set of reviewers, who make
comments on it and send them back to the author.

Getting Personal

1. Does your project perform code reviews? Does it perform enough code
reviews?

Even if it makes a vaguely regular event of code reviews, there probably still
isn’t enough reviewing going on. Too little value is put on this practice; if the

550 Answers and Discuss ion

code seems to work, then people think that there’s no point wasting valuable
time reviewing it.

This attitude is careless. The time taken to track lingering code faults is
often far greater than the effort of review. Code reviews are a sensible and
pragmatic way to take control of your development process and ensure that
your software is of high quality.

What can you do to improve on this in your current project?

2. Do you work with any programmers whose code is considered to be
above review?

A respected Guru programmer (see “The Guru” on page 299) is often held
in awe, and no one ever suggests that his work should be reviewed. No one
probably dares. This reverence is misguided and dangerous.

In my experience, Gurus write some of the most review-worthy code you’ll
ever see: full of deep, incomprehensible, unmaintainable magic. The fact that
they never put their code forward for review illustrates their incorrect attitude
toward the task and the team. No one’s code is above review; all code should
be carefully scrutinized.

3. What percentage of your code has ever been subject to code review?

Unless you’re a very unusual beast, this amount is undoubtedly small. How
formal have the reviews been? How useful was each review, and how much
did it contribute to the final quality of the code?

How much of your unreviewed code was pair programmed? How much
should have been reviewed? How much unreviewed code was critically impor-
tant commercial code? How many bugs slipped through into production
software, and how many of those bugs caused later problems?

Even if it’s not a part of your project culture to run code reviews, make
a point of inviting formal review for your work. Don’t worry if no one else
does it—your code will be exceptional by comparison!

Chapter 21: How Long Is a Piece of String?

Mull It Over

1. How can you rescue a slipping project and bring it back on track?

One technique to protect yourself from a failing project is to run, fast, like a
rat from a sinking ship. It’s not very professional, though!

Once a project is behind schedule, there’s rarely anything you can do
to bring it back on track—that is, unless there was a monster amount of
contingency allocated. You might instead consider these strategies:

Reschedule the project; see if you can agree a later delivery date with
the customer.

Chapter 21: How Long Is a P iece of S t r ing? 551

De-scope the first release, possibly agreeing to a later release with the
missing functionality. It’s better to commit to doing less stuff, but doing
it better and within the allotted time, than to implement loads of
unnecessary functionality and slip badly.

Don’t blindly throw more developers at the project to speed things up.
Brooks lucidly described how bad this idea is, especially when a project is
failing. (Brooks 95) It would take the existing developers time to get the new
guys up to speed, and there would then be extra overhead in managing the
larger team. Any benefit would almost certainly be outweighed by the costs
of new personnel.

2. What’s the correct response to having a deadline imposed on you before
feasibility or planning work commences?

 Tact! The fixed delivery deadline might be a valid business requirement:
You’ll make money if you ship software on time; you’ll make nothing if you
don’t. You can’t always do the theologically correct thing and move a deadline
or adjust the scope of the work.

Sometimes it helps your design effort to have early visibility of the anti-
cipated project deadline. This information shows you how pure and well-
thought-out your design can be, and it will help you to scope out the amount
of code required and whether future flexibility can be considered. Ultimately,
it will show you whether or not you need to hack out a quick-fix solution or
the elegantly engineered code you always want to write. It might help you to
make buy versus build decisions and to set the final quality expectations for
the delivered software.

Make it clear that this is not an ideal way to develop software. Hopefully
someone will listen, and the managers will learn to stop promising such risky
deadlines—it’s a careless form of gambling with the success of a project and
the future of an organization.

3. How do you ensure that a development plan is genuinely useful?

 High-quality development plans are:

Accurate
They include all the tasks required to build the software and are based
on sound timescale estimates.

Fine-grained
There aren’t a few large tasks with rough estimates, but many small tasks
carefully sequenced. Our confidence in the accuracy of a small task’s
timescale is higher, so the quality of the overall plan will be higher.

If you think that a task comprises several parts (e.g., it is dependent
on a third party and splits into the third-party release milestone, followed
by a period of integration and bug fixing) then make this explicit on
the plan.

552 Answers and Discuss ion

Agreed
Everyone buys into the plan: Management is happy with the level of
inherent risk, while programmers agree that the timescales are accurate,
no tasks are missing, and all the dependencies are correctly mapped out.

Visible
They are used to make important decisions by individual developers and
by managers. Timescale changes are communicated through the plan.
The plan is versioned, and progress against the plan is recorded clearly.

Monitored
If the schedule is poorly monitored, the timescale estimates become a
worthless statistic. Progress must be checked against the plan. The
course of the development effort is steered by this measurement.

4. Why do different programmers work at different rates? How can you
reflect this on the plan?

Programmers differ in many ways:

They have different technical abilities and reason about problems in
different ways. This affects the quality of work produced.

Different levels of experience lead to different design choices.

People have different levels of commitment: responsibility for old projects,
levels of enthusiasm for the company or project, respect for the craft of
software construction, and external commitments (family pressures,
socializing, etc.).

Some people are highly motivated and prepared to put in hours of over-
time to get a project finished. Others want to work their minimum hours
and then go party.

It’s not just the duration of a work package that differs between program-
mers. The quality of their code, the soundness of their design, and the bug
count of their programs will differ too. It will even differ when the same
programmer attempts the same task multiple times—with more experience,
a programmer will work better the second time.

To reflect this on a project plan, check which developer each task is
allocated to. If the task is not within his or her core competency, then increase
the timescale estimate, or add in a block of contingency to the end. Consider
putting in an extra up-front task to get the developer up to speed with the
work, and make sure that you include any training that might be required.

Getting Personal

1. What percentage of the projects that you’ve worked on have run to
schedule?

a. For those that did: What contributed to the success of the planning
effort?

b. For those that failed: What were the main problems?

Chapter 22: Recipe for a P rogram 553

It’s easier to characterize failure than success; you’ll identify the single
reason that something went wrong far more easily than a delicate balance of
things working together well. When everything on a project is healthy, the
whole thing appears to just work.

Iterative and incremental development helps to accommodate problems
and de-risk the plan. Well-understood work packages, a fine-grained plan, and
a good initial design are also key. High-quality testing performed early and
often makes development much safer. Talented developers are also very useful!

2. How accurate are your timescale estimates? How far off target are you
normally?

This is a skill that you can continually improve. Experience is a great teacher.
Hopefully, your later estimates have been more accurate than your earlier
ones. Is this the case?

If you haven’t yet been asked to make timescale estimates, start practicing
now! Make a mini-plan for your current development task. Estimate time-
scales for the small parts of this mini-plan and see how accurate you are. This
has the added benefit of making you think carefully about what you’re doing,
putting a good initial design into place. It will also force you to leave enough
time for testing, debugging, and documentation—all good things.

Chapter 22: Recipe for a Program

Mull It Over

1. How do the choices of programming style and development process
influence one another?

They don’t need to have any bearing on one another, but hopefully they’re the
kinds of things you think about together as you begin a project.

Iterative processes are easier to implement with programming method-
ologies that support componentization—the object-oriented paradigm. Linear
processes are suitable for all types of programming styles, but are not necessar-
ily the best match.

The developers’ prior experiences and their personal preferences for
programming style will have the greatest affect on these choices.

2. Which is the best programming style?

Trick question! If you actually gave an answer, put down this book and give
yourself 30 lashes with a wet noodle.

3. Which is the best development process?

You can’t possibly have fallen for this too? Electric shock therapy with a 9-volt
battery is your only option.

554 Answers and Discuss ion

4. Where does each development process listed in this chapter fall on the
classification axes we saw in “Development Processes” on page 425?

First, a quick recap: The thick/thin classification relates to the bureaucracy
and paperwork involved in a process, sequencing describes how linear and
predictive the process is, and the design direction determines whether design
starts from the minuscule implementation details or from the grand overview:

Ad hoc
Who knows how to classify this mess? An ad hoc process could be any-
where on any axis, even constantly moving. Ad hoc developers are typically
low on bureaucracy, but with no discipline at all, things fall through the
cracks or are repeated time and time again. There’s no sequencing
whatsoever, so this anti-process rates off the scale, and if there is any
design, then it probably has nothing to do with what is actually being
built, anyway!

Waterfall model
This is a reasonably thick, very linear process. It generally leads to a top-
down design, although it doesn’t enforce this.

SSADM
This scores full marks on the thick scale—there’s paperwork and heavily
documented steps aplenty here. The sequencing axis is full throttle
toward linear.

V model
Another thick, linear process (although some parts of this process are
explicitly parallelized for efficiency). As with other waterfall variants,
it leans toward top-down design.

Prototyping
An explicitly cyclical process (although by fixing the number of prototypes
anticipated, we can enforce some level of linearity on the development
process). This tends to edge toward the thin camp, sometimes too much so:
Prototypes by themselves are not sufficient to capture user requirements or
design decisions, so when prototyping, it’s dangerously easy to avoid
capturing decisions in specifications.

Iterative and incremental
Again nonlinear by design, this process can be as bureaucratic as you
like, but some variants (especially as seen in the agile movement) can be
quite thin. Iterative and incremental processes tend to stick in the middle
of the design direction axis—at each iteration, we perform high-level
design right through to low-level design. These design decisions are
revised in the next cycle, and additional work repeat the top-level and
bottom-level design.

Spiral model
A thick version of an iterative and incremental process.

Chapter 22: Recipe for a P rogram 555

Agile methodologies
Agile processes are thin and nonlinear. They do not fix a design direction;
you are constantly redirecting the design. Compare design to driving to
Paris: In a traditional process, you would point your car at Paris and drive;
in an agile process, you’d start driving and make constant streering tweaks.
You might even map out sections of the middle of the journey before
determining the best route out of your hometown.

Remember that an organization’s implementation of a specific process
model will be inevitably tailored to its particular ways of working. (This is per-
fectly healthy.) These tweaks can make a significant difference. For example,
you might base your development around the V model but aim to make the
interphase handoff procedure as lightweight as possible, to reduce unnecessary
bureaucracy.

5. If development processes and programming styles are recipes, what
would a software development cookbook look like?

It would probably look dangerously like a software engineering textbook.
There probably wouldn’t be that many mouth-watering pictures! Just as
the Naked Chef’s17 recipes differ from Rachael Ray’s, you could imagine
a number of different approaches to a mythical software development
cookbook.

You don’t really see that many software development cookbooks because
people don’t shop around for new recipes that often. These things only tend
to spring up when a marketing machine can gather sufficient momentum
behind the next big thing.

6. With a suitable process, can software construction become a predictable,
repeatable task?

We’re still not in a position where the software industry is able to make this
claim. No matter how hard we try to homogenize the development process,
the quality of code produced is ultimately determined by the quality (e.g.,
experience, ability, intuition, and flair) and the particular mood (e.g., ability
to concentrate, being in the zone or constantly interrupted, see page 414)
of the programmers doing the work. A master craftsman will produce more
elegant, robust, and well-fashioned designs than a fresh apprentice.

With such variance, it’s hard to reproducibly create software, even with
the most prescriptive process. Using the same programmers, the same process,
and trying to produce the same piece of software, you’ll never get the exact
same result. On different days, the team will make different choices, which
will lead to radically different software with different inherent faults and
strengths. (This point is hypothetical anyway; the same team would learn
from its mistakes the first time around and create a different—probably
better—piece of software on its second attempt.)

17 If you think that sounds rude, see www.jamieoliver.com.

556 Answers and Discuss ion

Agile methods exploit this, and celebrate the unpredictability of software
construction. They attempt to address uncertainty by choosing pragmatic
approaches that minimize the inherent risk of an unpredictable task.

Getting Personal
1. What development process and programming language style are you

currently using?

a. Has it been formally agreed upon by the development team, or do
you use it by convention?

b. How was it chosen? Was it chosen specifically for this project, or is it
the recipe you always use?

c. Is it documented anywhere?

d. Does the team stick to the process? When problems arise and your
back is against the wall, do you maintain the process, or is all ivory
tower theory ignored in a rush to produce something—anything?

This question is probing how organized your development team is—and
whether you develop software on purpose or by accident. Do you really know
how you produce software, or do you still rely on the heroic efforts of a few
key team members to get your work done?

Can you point to a specific reference for your way of working? Is it docu-
mented? Is it understood? Is it understood by all the developers, by all the
process managers, and by all those who play some part in the construction
process?

2. Are your current processes and styles appropriate? Are they the best way
for you to develop your software right now?

If you don’t know how you’re producing software, or if you’re not using the
best approach, what would be better, and why?

Watch for the danger of ad hoc methods. I’ve seen numerous organiza-
tions where there is no agreed method; one person produces wholly OO
designs while another avoids OO and performs structural design. The code
produced is ugly and inconsistent.

3. Does your organization appreciate that there are other development
models that might be worth investigating?

Understand who makes decisions about this kind of thing—is it the
developers, the software team leader, or the managers? Are these people
sufficiently informed about software development processes? Understand
why they’ve chosen to work in the current way: what problems have they
already solved? Often the reason for an odd development procedure is
historical—organizations evolve a set of working practices, they don’t
fashion them consciously.

What would it take to persuade your organization to adopt another
process model?

Chapter 23: The Outer L imi ts 557

Chapter 23: The Outer Limits

Mull It Over

1. Which of the programming niches we’ve looked at here are particularly
similar or share common characteristics? Which are particularly different?

There is more in common than you might think. Crossovers include:

Games and web applications could both be considered specific forms of
applications programming.

Web programming is a form of distributed programming.

Some enterprise work can take the form of web applications.

Some systems implementation is for embedded platforms.

Numerical work is sometimes optimized by parallelizing and distributing
the computation.

2. Which of these programming disciplines is hardest?

Each type of programming presents a different set problems, and every
individual program is complex in its own way. Otherwise, programming
would take very little skill and any idiot could do it. (The fact that many
idiots do program doesn’t bear discussion here!)

The “harder” programming worlds could be considered to be the ones
that demand more formal processes to ensure adequate quality is met. For
example, the world of safety-critical software (mentioned in “In a Nutshell”
on page 456) is particularly fraught. Watertight specifications, very formal
development and testing models, and certification to regulated standards are
essential in this world, along with the inclusion of reliable failsafes.

Numerical work, in particular, would be hard for someone who doesn’t
have a head for math and designing complex algorithms. It requires extra
statistical or scientific skills.

3. Is it important to be an expert in one particular area or to have a good
grounding in all of them without a particular specialism?

An understanding of each area is helpful. However, to truly excel in a given
area requires specific skills and expertise that can only be gained from experi-
ence in the trenches. To get this good experience, you’ll probably have to
focus on one particular work area. Vincent van Gogh remarked, “If one is
the master of one thing and understands one thing well, one has at the same
time insight into and understanding of many things.” Learn the particular
intricacies that set your discipline apart from the others.

4. Which programming niche should trainee programmers be introduced to?

This is seldom thought about by the writers of programming courses. It’s a
sad oversight; many courses are not tailored to programming in the Real

558 Answers and Discuss ion

World—more to some theoretical, androgynous branch of programming.
Of course, this makes teaching programming much easier, and there are
fewer issues to confuse the trainee with. But it is important to understand
how to make appropriate coding choices when you’re in the thick of the
software factory, and someone has to teach this.

Compared to the other programming areas, applications programming
is relatively unencumbered by specific rituals and practices, so this is presum-
ably the easiest area to introduce programmers to. Because trainees rarely
appreciate the wider world of software development, this is probably what
they’d expect to learn anyway.

Getting Personal

1. What programming arena are you working in right now? How does it
affect the code that you’re writing? What specific design and implemen-
tation decisions has it led you to make?

It’s important to understand the type of code you write so you can make the
correct programming decisions. If you can’t explain how your code has been
shaped by the demands of the problem domain, then you may not have been
thinking hard enough about what you’re doing. Software has to survive in—
and must therefore be shaped by—its environment.

2. Do you have experience working in more than one programming disci-
pline? How easy was it for you to switch mindsets and apply appropriate
techniques in a different world?

Be careful of the temptation to dismiss these differences and hop thoughtlessly
from one domain to another. It can lead you to write bad code. You probably
won’t realize that your code isn’t appropriate until the end of the game, when
you’re working on tedious bugs or trying to optimize your system to get it to
meet the original requirements (e.g., code size or scalability). If that’s when
you realize your work isn’t molded to its environment, then you’re in a sticky
position.

3. Are any of the people you work with unaware of the forces that shape
the particular kind of code you write? Do you have embedded software
being written by programmers who only understand applications work?
What can you do about this?

Programmers who don’t tailor their work to the requirements of the problem
domain endanger your project. If they don’t understand the inherent con-
straints (scalability, performance, code size, interoperability, and so on), their
code will not match the specifications, and they will be weak links in the
development chain.

Code and design review will help to catch this, as would pair programming.

B I B L I O G R A P H Y

(Alexander 79)
Alexander, Christopher. The Timeless Way of Building. Oxford University Press,

1979. 0195024028.

(Aristotle)
Aristotle (384–322 BC). Rhetoric. Book 1, Chapter 11, Section 20. 350 BC.

(Beck 99)
Beck, Kent. Extreme Programming Explained. Addison-Wesley, 1999.

0201616416.

(Belbin 81)
Belbin, Meredith. Management Teams: Why They Succeed or Fail. Butterworth

Heinemann, 1981. 0750659106.

(Bentley 82)
Bentley, Jon Louis. Writing Efficient Programs. Prentice Hall Professional,

1982. 013970244X.

(Bersoff et al. 80)
Bersoff, Edward, Vilas Henderson, and Stanley Siegel. Software Configuration

Management: An Investment in Product Integrity. Longman Higher Educa-
tion, 1980. 0138217696.

(Boehm 76)
Boehm, Barry. “Software Engineering.” IEE Transactions on Computers.

Vol. C-25, No. 12, pp. 1,226–1,241. 1976. http://www.computer.org/tc.

560 Bibl iography

(Boehm 81)
Boehm, Barry. Software Engineering Economics. Prentice Hall, 1981. 0138221227.

(Boehm 87)
Boehm, Barry. “Improving Software Productivity.” IEEE computer, Vol. 20,

No. 9. 1987.

(Boehm 88)
Boehm, Barry. “A Spiral Model of Software Development and Enhancement.”

IEEE computer, Vol. 21. May 5, 1988.

(Booch 97)
Booch, Grady. Object Oriented Analysis and Design With Applications. Benjamin/

Cummings, 1994. Second Edition. 0805353402.

(Briggs 80)
Briggs Myers, Isabel. Gifts Differing: Understanding Personality Type. Consulting

Psychologist’s Press, 1980. 0891060111.

(Brooks 95)
Brooks, Frederick P., Jr. The Mythical Man Month. Addison-Wesley, 1995.

Anniversary Edition. 0201835959.

(DeMarco 99)
DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and Teams.

Dorset House, 1999. Second Edition. 0932633439.

(Dijkstra 68)
Dijkstra, Edsger W. “Go To Statement Considered Harmful.” Communications

of the ACM, Vol. 11, No. 3, pp. 147–148. 1968.

(Doxygen)
van Heesch, Dimitri. Doxygen. http://www.doxygen.org.

(Economist 01)
“Agility counts.” The Economist. September 20, 2001.

(Fagan 76)
Fagan, Michael. “Design and code inspections to reduce errors in program

development.” IBM Systems Journal, Vol. 15, No. 3. 1976.

(Feldman 78)
Feldman, Stuart. “Make—A Program for Maintaining Computer Programs.”

Bell Laboratories Computering Science Technical Report 57. 1978.

(Fowler 99)
Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999. 0201485672.

(Gamma et al. 94)
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994. 0201633612.

Bibl iography 561

(Gosling et al. 94)
Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification. Addison-Wesley, 2000. Second Edition. 0201310082. http://
java.sun.com.

(Gould 75)
Gould, John. “Some Psychological Evidence on How People Debug Com-

puter Programs.” International Journal of Man-Machine Studies. 1975.

(Groom 94)
Groom, Winston. Forrest Gump. Black Swan, 1994. 0552996092.

(Hoare 81)
Hoare, Charles. “The Emperor’s Old Clothes.” Communications of the ACM,

Vol. 24, No 2. ACM, 1981.

(Humphrey 97)
Humphrey, Watts S. Introduction to the Personal Software Process. Addison-

Wesley, 1997. 0201548097.

(Humphrey 98)
Humphrey, Watts S. “The Software Quality Profile.” Software Quality

Professional. December 1998. http://www.sei.cmu.edu/publications/
articles/quality-profile/.

(Hunt Davis 99)
Hunt, Andrew, and David Thomas. The Pragmatic Programmer. Addison-Wesley,

1999. 020161622X.

(IEEE 84)
IEEE Standard Glossary of Software Engineering Terminology. ANSI/IEEE, 1984.

ANSI/IEEE Standard 729.

(ISO 84)
ISO7498:1984(E) Information Processing Systems—Open Systems Interconnection—

Basic Reference Model. International Standard for Information Systems,
1984. ISO Standard ISO 7498:1984(E).

(ISO 98)
ISO/IEC 14882:1998, Programming Languages—C++. International Standard

for Information Systems, 1998. ISO Standard ISO/IEC 14882:1998.

(ISO 99)
ISO/IEC 9899:1999, Programming Languages—C. International Standard for

Information Systems, 1999. ISO Standard ISO/IEC 9899:1999.

(ISO 05)
ISO/IEC 23270:2003, Information technology—C# Language Specification.

International Standard for Information Systems, 2005. ISO Standard
ISO/IEC 23270:2003.

(Jackson 75)
Jackson, M.A. Principles of Program Design. Academic Press, 1975. 0123790506.

562 Bibl iography

(Javadoc)
Javadoc. Sun Microsystems, Inc. http://java.sun.com/products/jdk/javadoc.

(Kernighan Pike 99)
Kernighan, Brian W., and Rob Pike. The Practice of Programming. Addison-

Wesley, 1999. 020161586X.

(Kernighan Plaugher 76)
Kernighan, Brian W., and P.J. Plaugher. Software Tools. Addison-Wesley, 1976.

020103669X.

(Kernighan Plaugher 78)
Kernighan, Brian W., and P.J. Plaugher. The Elements of Programming Style.

McGraw-Hill, 1978. 0070341990.

(Kernighan Ritchie 88)
Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language.

Prentice Hall, 1988. Second Edition. 0131103628.

(Knuth 92)
Knuth, Donald. Literate Programming. CSLI Publications, 1992. 0937073806.

(Kurlansky 99)
Kurlansky, Mark. The Basque History of the World. Jonathan Cope, 1999.

0224060554.

(McConnell 96)
McConnell, Steve. Rapid Development. Microsoft Press, 1996. 1556159005.

(McConnell 04)
McConnell, Steve. Code Complete: A Practical Handbook of Software Construction.

Microsoft Press, 2004. Second Edition. 0735619670.

(Meyers 97)
Meyers, Scott. Effective C++. Addison-Wesley, 1997. Item 34: Minimize compli-

cation dependencies between files. 0201924889.

(Miller 56)
Miller, George A. “The Magical Number Seven, Plus or Minus Two: Some

Limits on our Capacity for Processing Information.” First published in
Psychological Review, 63, pp. 81–97. 1956.

(Myers 86)
Myers, Ware. “Can software for the Strategic Defense Initiative ever be error-

free?” IEEE computer. Vol. 19, No. 10, pp. 61–67. 1986.

(Page Jones 96)
Page-Jones, Meilir. What Every Programmer Should Know About Object-oriented

Design. Dorset House Publishing Co., 1996. 0932633315.

(Royce 70)
Royce, W.W. “Managing the Development of Large Software Systems.”

Proceedings of IEEE WESCON, August 1970.

(Simpsons 91)
Simpsons, The. “Do the Bart Man.” Geffen, 1991. GEF87CD.

Bibl iography 563

(Stroustrup 97)
Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley, 1997.

Third Edition. 0-201-88954-4.

(UML)
Unified Modeling Language. Object Management Group. http://www.uml.org.

(Vitruvius)
Vitruvius Pollio, Marcus (c. 70–25 BC). De Architectura. Book 1, Chapter 3,

Section 2.

(Weinberg 71)
Weinberg, Gerald. The Psychology Of Computer Programming. Van Nostrand

Reinhold, 1971. 0932633420.

(Wulf 72)
Wulf, William A. “A Case Against the GOTO.” Proceedings of the twenty-fifth

National ACM Conference, 1972.

I N D E X

Numbers
80/20 rule, 207

A
abstraction, 45, 249, 422
acceptance test, 132, 375
accessibility, 350
accountability, 338, 386, 426
accretion, 284

of code, 80, 280
of people, 341

accuracy, 200
estimates, 407
sacrificing for speed, 211

acronym, 45, 52
ad hoc process, 426, 554
adaptability, 335
agile development, 134, 157, 319,

376, 433, 555
Alexander, Christopher, 177, 255
Algol, 24
algorithmic

complexity, 212, 513
decomposition, 421

algorithms, 212, 244, 263, 374
bubblesort, 482
and comments, 76

Allman indentation, 27. See also
code, layout styles

alpha software, 140, 498
analysis paralysis, 325
analyst, 341, 372
anarchy, 426
Apache, 452
API, 248, 272, 281, 373

applications
building, 193
client/server, 271
frameworks, 274
programming, 442

architect, 265, 341
architecture, 243, 261, 275

and marketing, 267
and performance, 210
security, 229, 234
specification, 264, 373
styles, 269

client/server, 271
component-based, 273
frameworks, 274
layered, 241, 270
no architecture, 269
patterns, 275
peer-to-peer, 273
pipe and filter, 271
three-tier, 273
tiered, 271, 450
two-tier, 273

and team dynamics, 264
Ariane 5, 316
Arrogant Genius, 300
ASP, 452
Assembly language, 217, 449,

483, 485
assert, 18, 19, 135, 476, 495
assertions, 17, 21, 77, 104, 464
assets, 353
assumptions, 4, 16, 369, 408
attitudes, 295, 310, 393, 414, 472
author, 83, 378, 390, 393

multiple, 384, 546
specification, 379

awk, 119

566 INDEX

B
Babel, Tower of, Teams 322–323
backups, 233, 358, 359
backwards compatibility, 529
bar, 44
baseline, 542
BASIC, 422, 442
batch files, 126, 178
baz, 44
behavior, 422, 423

incorrect, 130, 155. See also bugs
and naming, 40
programmer, 301
specification, 373
substitutable, 250
testing, 140
unexpected, 156

beta software, 140, 498
big and seldom approach, 354
Big O notation, 212
bison, 120
black box testing, 140
black hat hacker, 228
books

code reads like, 60
published code, 28
recommendations, 461

bottom-up design, 254, 426. See also
design

boundary testing, 143
braces, 24, 26, 29, 156
branching, 354
breakwater comments, 82
brevity, 10, 43
bubblesort, 212, 482
buffer overrun, 12, 159, 229, 516
bugs, 130, 153, 155, 171, 395. See also

debugging
compile-time errors, 155, 162
cost of, 155
finding, 162
fix notice, 85
fixing, 145, 147, 167
golden rule of debugging, 161
optimization and, 203
preventing, 169
as review trigger, 389

run-time errors, 155, 156, 160, 164
semantic errors, 158, 160
syntactic errors, 156
types, 155, 160

build log, 191
building, 175, 195

atomic, 186, 190
automation, 190
build errors, 157, 187. See also bugs
build tree, 193
and cleaning, 189
configuration, 191
dependencies, 189, 506
Java, 189
as metaphor, 177, 262, 535
nested make, 507
overnight, 190
recursive make, 192, 506
release, 192, 206
silent, 12, 187
targets, 187
and teamwork, 348, 535

buildmaster, 194
bureaucracy, 31, 412, 425, 536
burnout, 338
business logic, 273, 274, 450
byte

code, 179, 360
compilers, 179

byte-compiled languages, 176,
179, 360

C
C, 14, 26, 66, 107, 259, 422, 488, 520

bugs, 108, 159, 396, 490
comments, 75
macros, 48
preprocessor, 74
and security, 517
standard, 42, 107, 121, 489

C#, 92, 179, 360, 486, 501
comments, 75
garbage collection, 14
standard, 121

C++, 14, 103, 163, 252, 259, 423,
488, 520

comments, 75
exceptions, 93, 104, 107, 489

INDEX 567

macros, 48
preprocessor, 74
and security, 517
standard, 42, 121

cake metaphor, 179
camelCase capitalization

convention, 46
CASE (computer-aided software

engineering) tools, 257
casting, 15, 232
chairman, 149, 340, 391
change, 180, 279, 351

code design, 244
licences, 361
maintenance, 288
personal, 309. See also

self-improvement
requests, 357, 379

change control, 351, 352, 356. See
also source control

check-ins/checkouts, 351
child types, 423
chmod, 231
churches, 441
clarity, 10, 43, 61, 65, 282

of published code, 28
class, 46, 47, 422

hierarchy, 250, 272, 422
client

code, 272
customer, 372
interface, 248

client/server architecture, 271
clusters, 451
COBOL, 25, 422
COCOMO (Constructive Cost

Model) II, 412
code

audience for, 25, 58
book-like, 60
buddy, 393
comments. See comments
as communication, 25, 334
complexity, 389
dead code elimination, 215
documenting, 57, 70, 367
external, 32. See also third-

party code
formatting, 24, 36

good, 4, 395
growth, 279, 290
layout styles, 23, 26, 29, 38, 80,

81, 120, 468
legacy, 4, 288, 450, 467, 526
lines of, 124, 138, 470, 529
maintenance, 66. See also

maintenance
naming, 39. See also naming
ownership, 336
presentation, 9, 23, 24, 26, 36, 38,

61, 289, 337, 468
quality, 289
readable, 14, 17, 41, 73, 203. See

also naming, transparently
reading, 549
reviews, 133, 337, 385.

how to, 389
in meetings, 390
one-on-one, 387
open, 387
personal, 386
shadowing, 393, 394
tools, 547
virtual, 549

rot, 85–86, 281, 283
self-documenting, 59, 70, 75

376, 545
comments, 75
errors, 98
example, 60
techniques, 61

testable, 144
third-party, 32, 193, 408
types, 312, 532

code monkeys, 295, 298, 310
Arrogant Genius, 300
Code Monkey, 298
Cowboy, 302
Demiguru, 300
Eager Coder, 297
Guru, 299
Hacker, 302
Ideal Programmer, 308
Monocultured Programmer, 305
Old Timer, 303
Planner, 302

568 INDEX

code monkeys, continued
Reluctant Team Leader, 306
Slacker, 306
Zealot, 304

coding
guidelines, 337
standards, 24, 30, 42, 337

best, 30
creating, 33
house style, 31

cognitive dissonance, 388
cohesion, 144, 248, 268
collaboration, 351. See also teamwork
COM, 272, 274.
comments, 65, 73, 87, 396

aesthetics, 80
appearance, 75
breakwater, 82
contents, 76
number, 75
rot, 85
working with, 84, 337
writing, 79

committee, designing by, 34,
285, 546

common subexpression
elimination, 215

communication, 25, 265, 333–334,
368, 369, 434

specifications, 369
and split teams, 327–328

compatibility, 529
compilers, 120, 176, 178, 182

cross, 178
errors from, 155
just-in-time (JIT), 178
optimization, 194
options, 194
warnings, 9, 11, 121, 156, 187,

283, 396
complexity, 202, 203, 282. See also

simplicity
components, 125, 247, 262, 266,

268, 272, 273, 422
testing, 138

compression, 45, 250
computer-aided software engineer-

ing (CASE) tools, 257
conceptual view, 263

Concurrent Versions System
(CVS), 356

configuration management, 356, 357
conflict, 334
connections, 267
consistency, 26, 31, 49, 50, 80
constant

folding, 214
time, 212

constraints, 16, 19
Constructive Cost Model

(COCOMO) II, 412
context, 65
continuous integration, 134, 190
contract, 17, 46, 91, 243, 250

with customer, 372, 405
Conway’s Law, 248, 320
cookies, 453
copy-on-write (COW)

optimization, 218
copyright, 360
CORBA, 270, 272, 274, 450
core dump, 170
cost of change, 157
coupling, 144, 211, 248, 268
coverage, 497
coverage-based testing, 497
COW (copy-on-write)

optimization, 218
Cowboy, 302
crackers, 8, 226, 228
critical path, 409
cross-site scripting, 231
Crystal Clear, 434
curly brackets, 24, 26, 29, 156
custom software, 444
customer, 372, 431
cut-and-paste programming, 252, 396
CVS (Concurrent Versions

System), 356

D
dangerous

comments, 86
data types, 12
languages, 238, 517. See also

security
names, 40
optimization, 217

INDEX 569

data
compatibility, 529
formats, 272
as a name, 44
security, 224
structures, 213, 263
types, 12, 213, 217, 231, 243, 272

database, 341
faults, 147, 321

DCOM, 450
dead code elimination, 215
deadlines, 343, 498, 551
deadlock, 137, 160, 211
debugging, 6, 18, 19, 153, 171.

See also bugs
attitudes toward, 297
debuggers, 123, 169
golden rule of, 161
and planning, 407
vs. testing, 131, 146

declarative languages, 420
default case, 15
defensive programming, 3, 6, 20,

90, 396
deciding when to use, 11
and security, 235
techniques, 8

Demiguru, 300
dependencies, 403, 409, 414

build systems, 506
testing, 136

deployment view, 264
design, 9, 241, 257, 261, 386, 428

architectural, 243, 261
bad, 202
bottom-up, 254, 426
by committee, 285
by contract, 17
direction, 426
documentation, 253
elegance, 247
extensibility, 251
functions, 244
good, 245
for growth, 285
high-level, 262
interfaces, 248

method, 254
notations, 255
object-oriented, 254, 422. See also

object-oriented programming
over-design, 285
paradigm, 420
patterns, 47, 52, 255–256, 392
for performance, 210, 217
and planning, 402, 406, 407, 414
process, 245, 254
security, 229, 234
specification, 242, 374
structured, 254
and team structure, 320
for test, 144
tools, 255
top-down, 254, 421, 426

development
phases of, 428
process, 425. See also processes
safety, 349, 362

Development Democracy, 325
diagnostics, 15
Dictator, 324
diff, 119
digital signal processing (DSP)

programming, 205
disassembler, 124
disciplines, 259, 441, 522

applications, 442
distributed, 263, 450
embedded, 263, 447
enterprise, 453
games, 445
numerical, 454, 557
safety-critical, 456, 557
web, 451

discrete requirements, 371
distributed programming, 263, 450
divide and conquer approach,

166, 254
documentation, 46, 57, 67, 125,

253, 289, 367, 383, 434. See
also Code, Documenting;
Code, Self-documenting;
Specifications

Doxygen, 68, 119
dry run method, 166

570 INDEX

DSP (digital signal processing)
programming, 205

duplication, 251
dynamic polymorphism, 423

E
Eager Coder, 297
economics, 157, 402
editors, 28, 36, 118

cut-and-paste, 252
efficiency, 199. See also optimization
egoless programming, 394
electronics, 61
elegance, 10, 247
email, 335
embedded

programming, 122, 205, 263, 447
query strings, 230

encapsulation, 211, 422
endless loops, 160, 396
enemies, 226
enterprise programming, 453
errno, 13, 93, 95
error-based testing, 498
errors, 13, 65, 89, 106, 130, 153,

271, 396. See also bugs
code examples, 100
detecting, 95

estimation, 401. See also timescale
estimation

evolution, 5, 137, 279, 280, 290
exceptional circumstances, 90
exceptions, 93, 96, 98, 103, 104, 211

basic guarantee, 94
handling, 96, 100
locality of error, 91
logging, 98
managing, 105
neutral, 94
nothrow guarantee, 94
programmer, 90
propagation, 100
raising, 104
recovery, 99
reporting, 91, 99, 101
resumption model, 93
return values, 92, 95
safety, 94, 103

signals, 96
specification, 96
status variables, 95
strong guarantee, 94
termination model, 93
type, 90
user, 90

exdented indentation, 27. See also
code, layout styles

expectations, 89
experience, 5, 442
exploit, 227
extensibility, 203, 251, 268
extreme programming, 4, 243,

286, 376, 434. See also agile
development

F
Fagan inspections, 394
failures, 130, 153. See also bugs
faults, 130, 153, 282, 289. See also bugs

management procedure, 147
reports, 147, 164, 357
tracking system, 124, 147, 321

fault-based testing, 497
feasibility study, 428
feature creep, 372. See also

requirements
Fibonacci sequence, 60
field trials, 139
files, 193

auto-generated, 83
handling, 13, 159, 236
header comment, 60, 64, 83, 360
header file, 48, 49, 50, 83, 88, 193,

471, 486
dependency, 180, 506

naming, 48, 547
filter

architecture, 271
tools, 113

find, 119
firmware, 449
fixed-point arithmetic, 211
FIXME, 83
flaw, security, 227
floating point arithmetic, 211
flow, 414

INDEX 571

flowcharts, 256
foo, 44
formatting, 24. See also code,

formatting
Fortran, 24, 422, 455
forwards compatibility, 529
frameworks, 274
free software, 361, 388. See also open

source
Free Software Foundation (FSF), 361
functional

decomposition, 254, 421
programming, 423
specification, 373
testing, 140

functions, 62, 244
naming, 45
return values, 13
Single Entry, Single Exit (SESE),

17, 24, 62, 102, 421
functors, 47

G
games programming, 205, 445
Gantt chart, 409
garbage collection, 14, 159
Garbage In, Garbage Out (GIGO)

principle, 105
General Public License (GPL), 361
getters and setters, 54, 478
GIGO (Garbage In, Garbage Out)

principle, 105
glass box testing, 141
GNU, 361

code standard, 30
indentation, 29. See also code,

layout styles
goals, 337
Goldilocks principle, 436, 493
goto, 24, 468

in error handling, 102
and structured programming, 421

GPL (General Public License), 361
Grand Canyon team, 329
grep, 119
grid computing, 451
grouping, 64

groupware, 321
growth, 279, 280, 290

and teams, 341
guesswork, 402
GUI, 44

response, 204
specification, 374
tools, 113, 181, 492, 503

Guru, 299, 550

H
hackers, 228, 302. See also crackers
hardware, 137, 532

optimization, 204, 511
header file, 48, 49, 50, 83, 88, 193,

471, 486
dependency, 180, 506

heap, 230, 516, 518
hierarchy, 250, 421. See also class,

hierarchy
of abstractions, 249
file, 193
layers, 270
structure, 421
team, 324

high-level design, 262
hit-and-run programming, 9
holiday, accounting for, 410
Holy Wars, 35, 465
honeypot, 234
horizontal organization, 319
house interface, 250
house style, 31
HTML, 384, 451, 546
humility, 300, 334
Hungarian Notation, 44, 45, 51, 477

I
IBM OS/360, 316
IDE (integrated development

environment), 28, 60,
113, 176, 444

Ideal Programmer, 308
identity, 40
idioms, 43, 252, 255, 392
IDL (interface definition language),

272, 273, 451

572 INDEX

if-then-else, 15, 61
imperative language, 420
implementation

file, 50
view, 264

important stuff, 64
improvement, 308
incremental development, 432, 554.

See also iterative and incre-
mental development

Incompetent Programmer, 330
indentation, 29, 81, 468. See also

code, layout styles
Indian Hill Recommended C Style

and Coding Standards, 30
indirection, 202, 211, 525

extra levels of, 251
infinite loops, 160, 396

monkeys and, 298, 426
infinite recursion. See recursion,

infinite
inheritance, 250, 423. See also class,

hierarchy
inline, 214
input, 230, 234
inspections, 386. See also code,

reviews
instant messaging, 335
integer overflow, 231
integrated development environ-

ment (IDE), 28, 60, 113,
176, 444

integration, 408, 411, 428
testing, 139

intellectual property, 359
interaction, 40
interface definition language (IDL),

272, 273, 451
interfaces, 47, 248, 251, 272
interoperability, 371
interpreters, 125, 177
intranet, 453
invariants, 17, 19, 105, 216
ISO 9000 organizational model, 425
iterative and incremental develop-

ment, 410, 432, 554

J
Java, 19, 50, 92, 160, 177, 179, 189,

274, 360, 423, 486, 501
comments, 75
documentation, 68
exceptions, 93, 96, 104, 107, 489
garbage collection, 14
standard, 121

JavaBeans, 274
javac, 189
Javadoc, 68, 486
JavaScript, 177
just-in-time (JIT) compilation, 178

K
K&R indentation, 27. See also code,

layout styles
Keep It Simple, Stupid (KISS), 288.

See also complexity; simplicity
Knuth, Donald, 66

L
labels, 353
language, 124

byte-compiled, 179
compiled, 178
interpreted, 177
methodology, 420, 424
object-oriented (OO), 177
scripting, 178
structured, 178
types, 176

lawyers, 360
layers, 241, 270
layout, 23. See also code, layout styles
lead developer, 394
learning, 335
legacy code, 4, 288, 450, 467, 526
lemming team, 332
Lesser General Public License

(LGPL), 361
libraries, 122, 125, 182, 191, 193
licenses, 361
life cycle, software, 420
limitations, identifying, 336
linear time, 212

INDEX 573

linkers, 122, 182
lint, 12, 123
literate programming, 46, 66
little and often approach, 354
load testing, 139, 453
locate, 119
locks, 13, 211
logging, 98, 170, 233
logic programming, 424
London Underground, 262
lookup tables, 216
loop

counter, 43
endless, 160, 396
for, 64
infinite, 160, 396
and structured programming, 421
unrolling, 214

M
machine code, 182. See also assembly

language
macros, 18, 48
made-to-order software, 444
magic numbers, 63, 396
magnetism, 61
mainframe, 272, 454
maintainable code, 350
maintenance, 31, 66, 82, 203, 288,

428, 533
of comments, 86

make, 176, 181, 183
nested, 507
recursive, 192, 506

makefiles, 181, 183
management, 318, 338

bad, 331
man-in-the-middle attack, 225
margins, 468
marketing

and architecture, 267
department, 148, 334, 360, 402

meetings, 335, 340, 414
bug reviews, 148
code reviews, 390

memory, 13, 226, 517

errors, 159, 160
exhaustion, 159
leak, 159, 173, 501
overrun, 159. See also buffer

overrun
mentoring, 537
metadata, 353
metaphor

building as, 177, 262, 348, 535
evolution as, 280
lifetime as, 280, 527
naming as, 50
plant growth as, 280

method, 422
methodology, 321, 420, 424

declarative, 420
functional, 423
imperative, 420
logic, 424
object-oriented, 422
procedural, 420
structured programming, 421

metrics, 124, 289, 485, 529
middleware, 274, 450
Miller number, 41
mindlessness, 154
MISRA (Motor Industry Software

Reliability Association), 30
modeling, 420
modularity, 243, 247, 272, 414
modules, 138, 262
money, 402
Monocultured Programmer, 305
morale, 330
motivation, 405
multithreading, 204. See also threads
Murphy’s Law, 5, 359

N
name collisions, 47
naming, 39, 53, 62, 75

adornment in, 44
capitalization in, 46, 49
consistently, 49, 50
context and, 51
files, 48

suffixes, 50

574 INDEX

naming, continued
foo bar (baz) 44
functions, 45, 63
Hungarian Notation and, 45, 47.

See also Hungarian Notation
macros, 48
namespaces, 47
packages, 47
types, 45, 46
variables, 44

NDA (non-disclosure agreement),
360, 363, 539

NDEBUG, 18
nested make, 507
nesting, 62, 64
.NET

building with, 181
exceptions, 93, 104, 107, 489
garbage collection, 13

non-disclosure agreement (NDA),
360, 363, 539

non-discrete requirements, 371
notation, 255

complexity of, 212
flowcharts as, 256
Hungarian, 45, 477
UML, 255

numerical programming, 205,
454, 557

O
object, 47, 254, 422

code, 182
file, 182, 183, 187, 189, 508

object-oriented programming
(OOP), 11, 202, 215, 254,
273, 422

naming conventions, 44
optimization and, 215

Objectory Process, 435
offensive programming, 19
Old Timer, 303
OOP (object-oriented program-

ming), 11, 202, 215, 254,
273, 422

open source, 361, 386, 388, 529. See
also free software; Open
Source Initiative (OSI)

development, 325, 426
security, 233

Open Source Initiative (OSI), 361
network model, 270

optimistic locking, 352
optimization, 62, 194, 199, 219,

288, 455
alternatives to, 204
avoiding, 217
code changes and, 213
design changes and, 210
laws of, 200
procedure for, 206
profiling code and, 207. See also

profilers
organization, 316, 318. See also

teams, organization
OSI (Open Source Initiative), 361

network model, 270
overflow, 231
overruns

buffer, 229
memory, 159
schedule, 413

overtime, 409
ownership, 336

P
packages, 64, 243, 480

naming, 47
pair programming, 167, 319, 388, 394
paperwork, 425
parallelization, 407
paranoia, 5
parent types, 423
parsers, 120
partitioning, 249
Pascal, 28, 422

Blaise, 246, 377
Case, 46

passwords, 226, 235, 236, 360, 515
patterns

architectural, 255, 275
design, 275. See also design patterns

INDEX 575

PDL (Program Design
Language), 256

peer-to-peer, 273
performance, 199, 268, 371, 525. See

also optimization
Perl, 126, 177, 452, 488

mantra, 295
as write-once code, 59

personal skills, 65, 308, 333
PERT (Program Evaluation and

Review Technique), 412
pessimizations, 218
PHP, 452
physics, 61, 445
Pimpl idiom, 11, 64
pipe

architecture, 271
tools, 116

planner, 302
planning, 302, 409, 425, 551

contingency and, 411
deadlines and, 551
dependencies and, 409
integration and, 411
parallelization and, 407, 410

plans, 318, 321, 402, 409, 551
pointers, 103. See also smart pointers

bugs involving, 159
invalid, 16, 92, 143, 150, 496
naming, 45
presentation of, 469

polymorphism, 249, 423
dynamic, 423
file-based, 479
static, 423

portability, 179, 252, 479
postconditions, 17
PRAT, 308
preconditions, 16
preprocessor, 18, 124, 214, 470
presentation, 23. See also code,

presentation
prevention, 6
PRINCE (Projects in Controlled

Environments), 412, 429
printf, 108, 160, 230, 490, 516
privilege escalation, 225
problem domain, 263

procedural language, 11, 215, 420
process(es), 356, 425, 435

ad hoc, 426, 554
agile, 433, 555
choosing, 436
documentation, 368
evolutionary delivery, 435
evolutionary prototyping, 434
iterative and incremental, 432, 554
phases of, 428
prototyping, 430, 554
RAD (Rapid Action Develop-

ment), 435
RUP (Rational Unified Process),

435
spiral model, 432, 554
SSADM (Structured Systems

Analysis and Design Meth-
odology), 429

staged delivery, 435
thick/thin, 425
V model, 430, 554
view, 264
waterfall model, 427, 434, 554

product
testing, 131
variants, 188

profilers, 123, 207, 389
program

types, 312, 532
Program Design Language

(PDL), 256
Program Evaluation and Review

Technique (PERT), 412
programmer, 342

quality, 408, 552
types of, 296

Programmer King, 342
programming language, 420. See

also language
Projects in Controlled Environments

(PRINCE), 412, 429
ProperCase capitalization

convention, 46
proprietary source, 361
protection

faults, 158
security, 232, 360

576 INDEX

prototype
evolutionary, 434
process, 430, 554
UI, 374

pseudocode, 256
Python, 177

Q
QA (quality assurance), 131, 132,

133, 342, 390
quadratic time, 212
quality

assurance, 131, 132, 390. See
also QA

code, 289, 395
comments, 73
programmer, 408, 552
specifications, 368
tools, 113

Quicksand team, 330
quicksort, 212

R
race conditions, 160, 231, 236
RAD (Rapid Application Develop-

ment), 431, 435
RAII (Resource Acquisition Is Ini-

tialization), 103, 252
Rational Unified Process (RUP) 435
RCS (Revision Control System), 356
real time, 139, 205
reason code, 92
recipe, 419, 437
recognition, 40
recursion, 105, 192, 214

infinite, 396. See also infinite
recursion

recursive make, 192, 506
is bad, 506

refactoring, 209, 285
regression testing, 139, 145, 190,

289, 434, 498
relationship, 40
release, 190, 342, 375

candidate, 140, 358
note, 148, 194, 539
source code, 359

religion, 35. See also Holy Wars
remote procedure call (RPC), 450
repetition, 202
reports

communication, 335
error, 91
fault, 147, 164

repository, 351
requirements, 404, 414, 428, 431

architecture and, 267
discrete, 371
non-discrete, 371
security, 233, 515
specification, 371

Resource Acquisition Is Initializa-
tion (RAII), 103, 252

respect, 334, 337
responsibility, 318, 338, 350, 386
return values, 92, 95
reverse engineering, 360
reviews, 288, 385. See also code

reviews
revision control, 120, 183, 185, 192,

351, 352, 356, 547. See also
source control

Revision Control System (RCS), 356
rewriting, 66, 284, 288. See also

refactoring
RFC document #2119, 380
rich client, 452
risk, 408, 409, 434
RMI, Java, 450
roles and responsibilities, 106,

249, 263
rot, 281. See also code, rot;

comment, rot
RPC (remote procedure call), 450
RTFM, 484
RTTI, 211
run-time errors, 164. See also bugs,

run-time errors
RUP (Rational Unified Process), 435

S
safety, 8, 93, 246, 349, 362. See also

defensive programming;
threads, safety

safety critical systems, 30, 456, 557

INDEX 577

sales team, 360. See also marketing,
department

salmon, 429
sandbox, 351
Satellite Station team, 327
scalability, 451, 452, 453
scanf, 159, 229, 516
scarce resource, 13, 159

ye olde days, 223
SCCS (Source Code Control

System), 356
schedules, 409, 412
scientific method, 164
SCMS (source code management

system), 357
scope, 11
scripting language, 126, 178
Scrum, 434
secretary, 340, 391
security, 223, 349

audits, 235
code implementation, 235
compromises, 225
designing for, 229, 234
exploits, 227
flaws, 227
vs. functionality, 233
through obscurity, 235
privilege escalation and, 225
procedures and, 236
requirements, 233, 515
specifications, 381, 384, 545
system installation and, 233
tapping into data, 225
vulnerabilities, 227, 229

sed, 119
segmentation faults, 158
self-documenting code, 59, 70,

376, 545
comments in, 75
errors in, 98
example of, 60
techniques for writing, 61

self-improvement, 65, 308
semantic errors, 158
server, 272
SESE (Single Entry, Single Exit)

functions, 17, 24, 62, 102, 421

seven, 41
seven-layer trifle reference

model, 270
shadowing, 393, 394
shell scripts, 126, 178
short circuit evaluation, 216
shrink-wrap software, 443
side effects, 17, 63, 470
signals, 95, 96
Simonyi, Charles, 45
simplicity, 10, 61, 203, 226, 242, 246,

268, 288. See also complexity
Single Entry Single Exit (SESE), 24.

See also SESE functions
singleton, 144, 255
slacker, 306
Smallpox, 451
smalltalk, 46, 423
smart pointers, 103, 218
soak testing, 139
SOAP, 453
social engineering, 226
software

architect, 265
architecture, 261. See also

architecture
licenses, 361
life cycle, 420

solution domain, 263
source code, 182
source control, 31, 320, 351, 356, 357

access control and, 353
backups and, 359
baseline, 542
branching, 354
change control and, 352
check in/out, 351
check-in schemes, 354
history, 356
labels, 353
repository, 351
revision control and, 352
stable labels and, 363, 542
tags, 353
version control and, 352
what you control and, 353

Source Code Control System
(SCCS), 356

578 INDEX

source code management system
(SCMS), 357

source management, 357
source tree, 193
spaces, 468. See also whitespace

vs. tabs, 24
spam, 224
specification, 67, 242, 367, 383, 395

architecture, 264, 373
authors, 379
avoidance, 381
contents, 376
design, 374
functional, 373
owners, 380
planning and, 407, 408, 414
quality, 368
requirement, 371
reviewing, 131
test, 375
user interface, 374
writing, 379

spiral process, 432, 554
sponge cake, 420
spyware, 226
SQL, 231
SSADM (Structured Systems

Analysis and Design
Methodology), 429, 554

stable label, 363, 542
stack, 230, 516
staged delivery, 408, 435
static analysis, 12, 123
static polymorphism, 423
status variables, 93, 95
std namespace, 43
stewardship, 336
strength reduction, 215
stress testing, 139
strict locking, 351
string, 401
structural testing, 141
structured programming, 254, 421
Structured Systems Analysis and

Design Methodology
(SSADM), 429, 554

substitutability, 250

success, 337
supercomputer, 454
supplier, 248
surgical team, 324
switch, 15, 470
syntactic errors, 156
syntax highlighting, 74

T
tabs, 24, 82, 468. See also spaces, vs.

tabs; whitespace
tags, 353
tarball, 539
targets, 337
Tcl, 178
team leader, 306
teams, 315, 345. See also teamwork

diseases, 322
levels of, 316, 317
lifecycle of, 339
management approach, 318
organization of, 318

code structure and, 320
horizontal, 319
vertical, 318

people and, 344
size of, 317, 536
types of

Democracy, 325
Dictatorship, 324
Grand Canyon, 329
Lemmings, 332
Quicksand, 330
Satellite Station, 327
Tower of Babel, 322

teamwork, 315, 345. See also teams
architecture and, 264
code ownership and, 336
communication and, 265
dynamics of, 317

inter-team, 317
personal skills and, 333
principles for performance, 336
stewardship and, 336
tools for, 320

technical debt, 411
telecommuting, 327
telephone, 335

INDEX 579

templates, 423
test-driven development, 157,

376, 496
testing, 6, 129, 149, 393

automated, 144
boundaries, 143
bug reviews, 148
cases, 142

choosing, 142, 151, 497
code for, 133
vs. debugging, 131, 146
department, 132
designing for, 144
during optimization, 208
dynamic, 141
fault report, 147
fault tracking system, 147
harness, 133, 145
inspections, 133
load, 453
maintenance and, 289
planning for, 407, 414
process, 146, 428, 430
quality of, 138
regression, 289, 434
responsibility, 133, 147
script, 375
specification, 375
static, 141
tools, 122
types, 138, 497
unit, 122, 428

TeX, 66
them and us mentality, 317
THICK, 309
third-party

code, 32, 193, 408
dependency, 404

threads, 137, 204, 211, 231, 512. See
also race conditions

safety, 93
threats, 350
three-tier architecture, 273
tiered architecture, 271, 450
time zone, 328
timescale estimation, 401, 415

accuracy, 407
attitudes toward, 297

contingency, 411
deadlines, 551
difficulty, 403
how to, 406
keeping to schedule, 412
planning, 409
pressure, 405
purpose of, 401

TODO, 83
tools, 111, 127, 255

code construction, 120
command line, 113
debugging, 123
finding, 121
IDE, 113. See also IDE
importance of, 114
integration of, 113
investigative, 123
language support, 124
source control, 356
source editing, 118
for teamwork, 320
types of, 117, 126
upgrading, 117
using well, 115
writing, 126

top-down design, 426. See also
design, top-down

Tower of Babel, 322. See also Babel
trade-offs, 246, 263
trifle reference model, 270
Trojan, 226
truck number, 344
trust, 389
tuple, 92
two-tier architecture, 273
type checking, 15
typedef, 46
types

choice of, 12, 63, 231
designing, 243
interfaces for, 272
naming, 46

U
UI. See user interface
UML (Unified Modeling

Language), 255, 435, 492
undefined behavior, 14

580 INDEX

underscore capitalization
convention, 46

uninitialized variable, 158
unit tests, 138, 375, 388, 414, 428
usability testing, 139
use case, 435
use your brain!, 161, 169, 173, 207,

310, 498, 500
user interface (UI), 374

bugs, 163
prototypes, 374
specification, 374. See also GUI
testing, 137

users, 516

V
V model process, 430, 554
vacation, accounting for, 410
validation, 132, 265
variables

build/make, 191
declaration, 14
error status of, 93
global, 11, 94, 136, 144
initialization, 14
naming, 44
scope, 11, 52, 476
uninitialized, 158

verb, 45, 47
verification, 132
version control, 193, 351, 352, 356,

357. See also source control
vertical organization, 318
views, 263
virtual

machine, 125, 179
memory, 235

virus, 226, 233
vulnerability, 227

W
walkthroughs, 386, 549. See also

code reviews
warnings, 9, 11, 121, 156, 187,

283, 396
waterfall process, 427, 434, 554
WEB, 66
web programming, 451
white box testing, 141
white hat hacker, 228
Whitesmith indentation, 29. See also

code, layout styles
whitespace, 42, 469
wibble, 44
Wiki, 321, 549
Win32

exceptions, 107, 489
naming, 46

wizards
code generation, 120
programmer, 299

World Wide Web, 450, 451

X
XML, 453, 492
XXX, 83

Y
Y2K bug, 25, 282, 529
yacc, 120

Z
Zealot, 304
zero, 143, 480, 494

divide by, 16, 160, 396
as invalid pointer, 16, 92, 150, 496

zone, 414, 555

	Code Craft: The Practice of Writing Excellent Code
	CONTENTS
	Preface
	PART 1 AT THE CODEFACE
	Chapter 1: On the Defensive
	Chapter 2: The Best Laid Plans
	Chapter 3: What’s in a Name?
	Chapter 4: The Write Stuff
	Chapter 5: A Passing Comment
	Chapter 6: To Err Is Human

	PART 2 THE SECRET LIFE OF CODE
	Chapter 7: The Programmer’s Toolbox
	Chapter 8: Testing Times
	Chapter 9: Finding Fault
	Chapter 10: The Code That Jack Built
	Chapter 11: The Need for Speed
	Chapter 12: An Insecurity Complex

	PART 3 THE SHAPE OF CODE
	Chapter 13: Grand Designs
	Chapter 14: Software Architecture
	Chapter 15: Software Evolution or Software Revolution?

	PART 4 A HERD OF PROGRAMMERS?
	Chapter 16: Code Monkeys
	Chapter 17: Together We Stand
	Chapter 18: Practicing Safe Source

	PART 5 PART OF THE PROCESS
	Chapter 19: Being Specific
	Chapter 20: A Review to a Kill
	Chapter 21: How Long Is a Piece of String?

	PART 6 VIEW FROM THE TOP
	Chapter 22: Recipe for a Program
	Chapter 23: The Outer Limits
	Chapter 24: Where Next?

	Index

