

Beginning SQL

Paul Wilton and John W. Colby

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iii

01_577328 ffirs.qxd 1/28/05 11:22 PM Page ii

Beginning SQL

01_577328 ffirs.qxd 1/28/05 11:22 PM Page i

01_577328 ffirs.qxd 1/28/05 11:22 PM Page ii

Beginning SQL

Paul Wilton and John W. Colby

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iii

Beginning SQL
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7732-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/RW/QS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, email: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEB SITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993, or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Wilton, Paul, 1969-
Beginning sql / Paul Wilton and John W. Colby.

p. cm.
Includes bibliographical references and index.
ISBN 0-7645-7732-8 (paper/website : alk. paper)
1. SQL (Computer program language) I. Colby, John W., 1954- II. Title.
QA76.73.S67W57 2005
005.75'65--dc22

2004031057

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page iv

About the Authors

Paul Wilton
After an initial start as a Visual Basic applications programmer at the Ministry of Defense in the U.K.,
Paul found himself pulled into the Net. Having joined an Internet development company, he spent the
last three years helping create Internet solutions and is currently working on an e-commerce Web site for
a major British bank.

Paul’s main skills are in developing Web front ends using DHTML, JavaScript, VBScript, and Visual
Basic and back-end solutions with ASP, Visual Basic, and SQL Server. Currently, Paul is working on a
new Web-based application that will hopefully make him millions. . . well, thousands at least!

Paul Wilton contributed Chapters 1–9 and Appendixes A, B and C to this book.

John W. Colby
John Colby is an independent consultant who has specialized in Access development since 1994. He has
designed databases for companies in the U.S., Mexico, Canada, and Ireland. John is past president and
current board member of Database Advisors, Inc. (www.databaseAdvisors.com), a not-for-profit orga-
nization dedicated to providing fellow developers with a place to discuss Access, SQL Server, Visual
Basic, and other topics relative to modern database applications development. Database Advisors also
allows developers to showcase their talents by sharing databases, wizards, and various code packages.

John lives in northwestern Connecticut with his wife and two small children. He enjoys music, travel, and
all things computers, and he dreams of working from his laptop while enjoying travel with his family.

John W. Colby contributed Chapters 10–13 to this book.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page v

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Production Editor
Felicia Robinson

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Copy Editor
Publication Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
April Farling

Graphics and Production Specialists
Lauren Goddard
Jennifer Heleine
Amanda Spagnuolo

Quality Control Technician
John Greenough
Leeann Harney
Jessica Kramer
Brian H. Walls

Proofreading and Indexing
TECHBOOKS Production Services

01_577328 ffirs.qxd 1/28/05 11:22 PM Page vi

Paul Wilton: With lots of love to my darling Beci, who, now that the book’s finished, will get
to see me for more than ten minutes a week.

John W. Colby: Dedicated to my son Robbie and my daughter Allie, who give me so much
inspiration, and to my wife Mary, a wonderful soul mate and mother.

01_577328 ffirs.qxd 1/28/05 11:22 PM Page vii

01_577328 ffirs.qxd 1/28/05 11:22 PM Page viii

Contents

About the Authors v
Acknowledgments xvii

Introduction 1

Who This Book Is For 2
What This Book Covers 2
How This Book Is Structured 2
What You Need to Use This Book 3
Conventions 4
Source Code 4
Errata 5
p2p.wrox.com 5

Chapter 1: Introduction to SQL 7

A Brief History of Databases 7
Identifying Databases 8

Why and When to Use a Database 9
Database Management Systems Used in This Book 11

Structured Query Language (SQL) 11
Introducing SQL Queries 11
Comparing SQL to Other Programming Languages 12
Understanding SQL Standards 13

Database Creation 14
Organizing a Relational Database 14

SQL Syntax 16
Creating a Database 17
Understanding Data Types 18

Creating, Altering, and Deleting Tables 25
Creating a Table 25
Altering an Existing Table 26
Deleting an Existing Table 27

Good Database Design 28
Obtaining and Analyzing Your Data Needs 28
Dividing Data Logically 29

02_577328 ftoc.qxd 1/28/05 11:21 PM Page ix

x

Contents

Selecting Correct Data Types 32
Using a Primary Key 33

Creating the Example Database 35
Summary 39
Exercises 40

Chapter 2: Entering Information 41

Inserting New Data 41
Inserting Data into the Case Study Database 45
Updating Data 45

The WHERE Clause 47
The Logical Operators AND and OR 48

Deleting Data 49
Summary 50
Exercises 51

Chapter 3: Extracting Information 53

The SELECT Statement 53
Returning Only Distinct Rows 55
Using Aliases 56
Filtering Results with the WHERE Clause 56

Logical Operators and Operator Precedence 62
Introducing Operator Precedence 62
Using Logical Operators 65

NOT Operator 66
BETWEEN Operator 66
LIKE Operator 70
IN Operator 73

Ordering Results with ORDER BY 75
Joining Columns — Concatenation 82

MS SQL Server and MS Access 82
Oracle and IBM DB2 85
MySQL 88

Selecting Data from More Than One Table 90
Using Brackets around Inner Joins in MS Access 100
SQL Is Set-Based 102

Introducing NULL Data 113
Summary 115
Exercises 116

02_577328 ftoc.qxd 1/28/05 11:21 PM Page x

xi

Contents

Chapter 4: Advanced Database Design 117

Normalization 117
First Normal Form 118
Second Normal Form 119
Third Normal Form 121

Ensuring Data Validity with Constraints 123
NOT NULL Constraint 124
UNIQUE Constraint 125
CHECK Constraint 129
Primary Key and PRIMARY KEY Constraint 132
Foreign Key 135

Speeding Up Results with Indexes 139
Improving the Design of the Film Club Database 143

Reexamining the Film Club Database Structure 143
Improving Data Validation and Efficiency 145
Tips for Designing a Better Database 153

Summary 154
Exercises 155

Chapter 5: Manipulating Data 157

Understanding SQL Arithmetic 157
Basic Math Operators 157
Common Math Functions 159

The ABS() Function 159
The POWER() Function 160
The SQRT() Function 162
The RAND() Function 162

Rounding Numbers 163
The CEILING() Function 165
The FLOOR() Function 166
The ROUND() Function 166

Introducing String Functions 168
The SUBSTRING() Function 168
Case Conversion Functions 170
The REVERSE() Function 171
The TRIM() Functions 172
The LENGTH() Function 172
The SOUNDEX() and DIFFERENCE() Functions 175
Date Functions 178

Converting Different Data Types 179

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xi

xii

Contents

Re-examining NULL 180
NULLs and Math 180
NULLs and Strings 182
The COALESCE() Function 183

Using INSERT INTO with the SELECT Statement 185
Summary 187
Exercises 188

Chapter 6: Grouping and Aggregating Data 189

Grouping Results 189
Summarizing and Aggregating Data 191

Counting Results 192
Adding Results 196
Averaging Results 198
MAX() and MIN() in Results 200

Using the HAVING Clause with GROUP BY Statements 202
Summary 205
Exercises 205

Chapter 7: Selecting Data from Different Tables 207

Joins Revisited 207
Inner Joins: An In-Depth Look 208

Equijoins and Non-equijoins 208
Multiple Joins and Multiple Conditions 210
Cross Joins 213
Self-Joins 214

Outer Joins 218
Left Outer Join 219
Right Outer Join 221
Full Outer Join 225

Combining Results Sets with the UNION Operator 226
Summary 233
Exercises 233

Chapter 8: Queries within Queries 235

Subquery Terminology 235
Subqueries in a SELECT List 236
Subqueries in the WHERE Clause 240

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xii

xiii

Contents

Operators in Subqueries 242
Revisiting the IN Operator 242
Using the ANY, SOME, and ALL Operators 245

ANY and SOME Operators 245
ALL Operator 247

Using the EXISTS Operator 249
Using the HAVING Clause with Subqueries 252

Correlated Subquery 253
Subqueries Used with Other Statements 255

Using Subqueries with the INSERT Statement 255
Using Subqueries with the UPDATE Statement 257
Using Subqueries with the DELETE FROM Statement 259

Summary 261
Exercises 261

Chapter 9: Advanced Queries 263

Updating the Database 263
Tackling Difficult Queries 270

Work Out What You Want, What You Really, Really Want 270
Choosing the SELECT Column List 271
Creating the FROM Clause 271

Top Tips for Efficient Queries 283
Summary 285
Exercises 286

Chapter 10: Views 287

Introducing Views 287
Creating Views 288
Types of Views 290

Table Join Views 290
Base View 290
Row Views 291
Field Views 292
Filtered Windowed Views 292
Summary Views 293

Updating Views 294
Update Restrictions 295
Check Option 295

Dropping Views 298
Summary 299
Exercises 299

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xiii

xiv

Contents

Chapter 11: Transactions 301

Introducing Transactions 302
Example Data 303
ANSI Model 305

COMMIT 306
ROLLBACK 307

Transact-SQL 308
BEGIN TRANSACTION 308
COMMIT TRANSACTION 308
SAVE TRANSACTION 309
ROLLBACK TRANSACTION 310

Transaction Logs 312
Locks 313

Locking Granularity 313
Database 314
Table 314
Page 314
Row 314
Column 314

Locking Levels 314
Shared 315
Exclusive 315
Deadlocks 315

Setting Lock Parameters 316
Lock Size 316
Number of Locks 316
Escalation 316
Timeout 317

Isolation Levels 318
SET TRANSACTION 318
SERIALIZABLE 318
REPEATABLE READ 319
READ COMMITTED 319
READ UNCOMMITTED 319
Versioning 320

Problem Examples 320
The Lost Update 320
The Uncommitted Data 321
The Inconsistent Data 321
The Phantom Insert 322

Revisiting the Example Code 322
Summary 325
Exercises 325

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xiv

xv

Contents

Chapter 12: SQL Security 327

Security Concepts 327
User IDs 329

Creating User IDs 330
Alter User 330
Drop User 331

Group IDs (Roles) 332
Objects 335
Privileges 336

Extended Privileges 336
The USAGE Privilege 337
Ownership 337

Views and Security 337
Vertical and Horizontal Views 337
Grouped Views 340
Limitations on Views 341

Granting Privileges 341
Tables and Views 341
Columns 342
The GRANT OPTION Clause 343

Revoking Privileges 344
The REVOKE Statement 344
Revoking GRANT 345
The CASCADE and RESTRICT Options 346

Summary 348
Exercises 348

Chapter 13: Database Tuning 349

Tuning Hardware 349
Workstations 350
Database Files 351
Processors 351
Gigahertz Networks or Compartmentalized Networks 352
Caches 352

Processor Cache 352
Hard Disk Cache 352
Database Cache 354

Tuning SQL 355
What Does SQL Tuning Mean? 355
Why Do You Do It? 356

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xv

xvi

Contents

How Do You Do It? 357
Indexes — What Are They? 357
Indexes — When They Help, Hurt, or Don’t Matter 360
Table Scans — What Are They? 361
When Table Scans Help, Hurt, or Don’t Matter 362

Tuning Tips 363
Summary 364
Exercises 365

Appendix A: Exercise Answers 367

Appendix B: Setting Up and Using the Five Database Systems 391

Appendix C: Initial Data Setup 451

Index 475

02_577328 ftoc.qxd 1/28/05 11:21 PM Page xvi

xvii

Acknowledgments

Paul Wilton
Many thanks to Catherine who for many years supported me and ensured that my sanity chip remained
plugged in. I’d also like to thank Brian Herrmann, who has been a great editor to work with and has
done amazing work on the book and kept his professionalism and sense of humor even when faced with
another of my “just a few more days and I’ll get the chapter to you” emails! Thanks also to Jim Minatel
for allowing me to subject the world to yet another of my books. Finally, pats and treats to my German
shepherd Katie, who does an excellent job in warding off disturbances from door-to-door salespeople.

03_577328 flast.qxd 1/28/05 11:22 PM Page xvii

03_577328 flast.qxd 1/28/05 11:22 PM Page xviii

Introduction

Data, data, data! Data is where it’s at as far as computers go, whether processing millions of calcu-
lations or keeping a record of your Aunt Maude’s birthday. When it comes to storing data, the
database is the king. In almost eight years of professional programming, every single project I’ve
worked on has involved databases somewhere along the line — that’s how essential they are to
most business applications and projects. Admittedly, some areas, such as computer games, don’t
make the same use of databases. My guess is that “Mega Doom 99: The Final Bloody Massacre”
isn’t running an Oracle database in the background!

However, I have a confession! Around 10 years ago, when I first started learning about databases,
I initially found them very confusing. I’d been programming in my spare time for a few years
and was used to using text files to store information. I decided to leap right in and start creating
databases and writing SQL, and I got very confused and odd results. Databases, their design, and
their underlying concepts are very different from storing data in simple files, and the Structured
Query Language (SQL) used to access and manipulate data in databases is very different from any
procedural language. One of my first aims with this book is to soften the blow of new concepts
and ways of doing things. To that end, I explain all the underlying concepts and theory you’ll need
to get started with databases and in programming with SQL. How to get the answers you want
from a database and all the results you get will be fully explained, as SQL can throw up some sur-
prises if you’re not forewarned.

Another of my aims in writing this book is to get you quickly and effectively to the point where
you’re able to go off on your own and design your own databases and write your own SQL code
in a practical environment. Personally, I dislike books that waffle on about every small detail and
eventuality so that it takes months to be able to stand on your own feet and create your own work.
I stick with the stuff that you’ll find is used in most database applications, keeping the fine details
and more advanced stuff for the later chapters. The first few chapters’ aim is to get you up and
running in SQL quickly, but they do not skimp on essential concepts, code, and techniques, which
are all thoroughly discussed and backed up with lots of practical examples.

Finally, I’m a hands-on, practical person, and those are the sort of computer books I like to read,
rather than books that contain lots of theory. This book reflects my “put it into action” nature and
is full of examples and places where you can get hands-on experience. I do introduce and explain
theory where it’s necessary to build a foundation of understanding, but I do this only with the

04_577328 intro.qxd 1/28/05 11:23 PM Page 1

eventual aim of putting theory into practice. I use databases and SQL most days in my programming,
and I hope to bring that real-world experience to this book.

Who This Book Is For
This book starts right from the basics with databases and SQL. Prior database or SQL knowledge is not
necessary, as this book covers everything from database design to creating your first database and
understanding how the SQL language is used with databases.

If you have some previous experience with databases and SQL, then you’ll have a head start and you
may want to just skim Chapter 1. You’ll need to follow its instructions for creating the book’s example
database, as this is used for all the examples throughout the book.

What This Book Covers
This book will look at Structured Query Language, or SQL as it’s usually abbreviated. SQL works with a
database to create the database and to insert and extract data. Therefore, it’s essential to understand the
theory and concepts behind database systems. Hence, this book also covers database theory and
database design, so that you’re equipped to create an effective database.

The SQL code in this book reflects the modern SQL standards set by organizations such as the American
National Standards Institute (ANSI) and the International Standards Organization (ISO). However,
while standards are great, what’s available for practical use is what really counts. This book, then, con-
centrates on the sort of SQL supported by most modern database systems. You should that find most of
the code runs with little or no modification on most database systems released within the last six or
seven years.

How This Book Is Structured
This book has been split into two main parts. The first part, which consists of Chapters 1–3, provides the
foundations for understanding databases and SQL. The aim in this first part is to get you up to speed on
all the essential details. These chapters take you through the following:

❑ The essentials of database theory

❑ Writing SQL code

❑ Good database design

❑ Creating a database

❑ Entering, updating, and deleting data using SQL

❑ Extracting data using SQL — more specifically, how to answer the sort of questions often posed
of databases in real-life situations

2

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 2

By the time you’ve completed Chapter 3, you’ll be ready to go out and create your own databases and
write your own SQL code to a sufficient standard for many real-life programming situations. You may
want to go and create a few databases of your own before returning to the second part of the book.

The second half of the book, Chapters 4 onward, goes into more detail and looks at more advanced top-
ics. Its aim is to provide a fairly wide and thorough grounding in many aspects of SQL programming.
The sort of topics covered include the following:

❑ Advanced database design, taking a look at the theory and practical application of normaliza-
tion, and how to improve a database’s efficiency and reliability

❑ Using and manipulating data with SQL’s built-in data manipulation and calculation functions

❑ Selecting data from lots of different tables

❑ Database security

❑ Database optimization

The book also includes three appendixes. Appendix A contains the answers to the exercise questions in
each chapter, so no peeking until you’ve given the questions a go. Appendix B covers how to download,
install, and use each of the five supported database systems used by this book. Appendix C includes the
initial data for the example database, which is available to download from www.wrox.com if you want to
avoid aching fingers!

What You Need to Use This Book
To really make use of this book and run the examples, you need to have a database system on which to
practice. This book’s code has been thoroughly tested on the following five commonly available
database systems:

❑ MySQL

❑ Microsoft SQL Server

❑ IBM DB2

❑ Microsoft Access

❑ Oracle 10g

The good news is that almost all of those can be downloaded free off the Internet as full or trial versions.
In Appendix B, you’ll learn where to download them, how to install them, and how to use them.

It’s not a problem if you’re using a different database system, because as often as possible, I’ve avoided
database system-specific code and have kept to standard SQL supported by most database systems.
Where it’s impossible to have the same code for all the database systems, I’ve listed the ways around as
well as alternative syntax. You’ll likely find that one of the variations of syntax will work on your sys-
tem, possibly with a little modification.

3

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 3

Conventions
To help you get the most from the text and keep track of what’s happening, this book uses a number of
conventions throughout.

Try It Out
The Try It Out is an exercise that you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New terms and important words are italicized as they are introduced.

❑ Keyboard strokes are shown like this: Ctrl+A.

❑ Filenames, URLs, and code within the text are shown like so: persistence.properties.

❑ Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that’s less important in the present
context or that has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book, the
ISBN is 0-7645-7732-8.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

4

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 4

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the Book Details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.
shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

5

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 5

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

6

Introduction

04_577328 intro.qxd 1/28/05 11:23 PM Page 6

1
Introduction to SQL

A nice, gentle introductory chapter, this chapter begins by looking at databases in terms of what
they are and why and when you want to use them. Then the chapter turns to SQL and discovers
how it links in with databases and how it can be useful. After tackling the basics of SQL and how
it works in theory, you examine how to use it to create a database. This chapter also walks you
through creating the structure of the example database used throughout the book.

By the end of the chapter, you should understand how a database enables you to efficiently orga-
nize and retrieve the information you want, as well as how to create a fully functional database, all
ready and waiting to accept add data. But before diving headlong into writing lines of SQL code,
it’s helpful to know a little bit of background about databases.

A Brief History of Databases
Modern databases emerged in the 1960s thanks to research at IBM, among other companies. The
research mainly centered around office automation, in particular automating data storage and
indexing tasks that previously required a great deal of manual labor. Computing power and stor-
age had become much cheaper, making the use of computers for data indexing and storage a
viable solution. A pioneer in the database field was Charles W. Bachman, who received the Turing
Award in 1973 for pioneering work in database technology. In 1970, an IBM researcher named
Ted Codd published the first article on relational databases.

Although IBM was a leader in database research, Honeywell Information Systems, Inc., released
a commercial product in 1976 based on the same principles as the IBM information system, but
it was designed and implemented separately from IBM’s work.

In the early 1980s, the first database systems built upon the SQL standard appeared from compa-
nies such as Oracle, with Oracle Version 2, and later SQL/DS from IBM, as well as a host of other
systems from other companies.

Now that you have a brief idea of where databases came from, you can turn to the more practical
task of what databases are and why and when to use them.

05_577328 ch01.qxd 1/28/05 11:23 PM Page 7

Identifying Databases
What is a database, you ask?

The Free On-Line Dictionary of Computing (http://foldoc.doc.ic.ac.uk) defines a database as
“one or more large structured sets of persistent data, usually associated with software to update and
query the data. A simple database might be a single file containing many records, each of which contains
the same set of fields where each field is a certain fixed width.”

Breaking this definition down into something more manageable, first it says that a database consists of
structured sets of data, which means that a database contains collections of data. For example, the
database might contain the details of Uncle Bob’s golf scores or data about all the books in a library. You
probably wouldn’t want to mix these two collections of data, or else when you want to find data about a
book you’d have to look through irrelevant data on golf scores. In short, databases help you organize
your data. A database stores its collections of data in tables, a concept explored further in Chapter 2.

The definition goes on to say that databases are usually associated with software that allows the data
to be updated and queried. Real-life examples of database software include Microsoft’s Access, Oracle’s
10g, IBM’s DB2, MySQL AB’s MySQL, and Microsoft’s SQL Server 2000. Often these programs are
referred to as databases, but strictly speaking, they are database management systems (DBMS). A
database is the sets (collections of related data) grouped into one entity. You could, for example, create an
Access database, call it MyDatabase, include various data collections inside that one database, and man-
age the whole thing with the MS Access software.

Finally, the definition states that, as with the Access database example, a simple database might be just
one file with many records with each record broken down into fields. But what are records and fields? A
field is a single item of data about a specific thing. A thing could be a person, and a single item of data
about a person could be their date of birth. Or the thing might be the address of a house and the specific
item of data might be its street. Using the book example, the year a book was published is a specific
piece of data that can be stored in a field. Another field might be the book’s title; yet another could be
the author’s name. For this book, the fields would contain 2005 for the Year Published field, Beginning
SQL for the Title field, and Paul Wilton and John Colby for the Author field. All these fields refer to one
specific thing, a book called Beginning SQL. Collectively these fields are known as a record. Each book has
its own record, and all the records are stored collectively in a database in something called a table. A sin-
gle database can contain one or more tables. If all this information is a bit too much to absorb at once,
don’t worry: I’ll be revisiting the concepts of fields and records later in this chapter.

By now, hopefully you get the idea that a database helps you store, organize, and retrieve data. One last
thing to mention is the term relational database, which is a database containing data organized and linked
(related) to each other. All records in a database are organized into tables. Related data, such as details of
sales persons, are grouped in one table. You could put the details of cars they have sold in another table
and then specify a relationship between which salesperson sold which cars — for example, salesperson X
sold car Y on date Z. Figure 1-1 shows a table from the example database. On first glance, you may
notice its resemblance to a spreadsheet with rows being your records and columns containing the fields
for the records. In Chapter 3 you discover that you really need to think in terms of sets of data.

Most database management systems these days are relational, termed relational database management
system (RDBMS). These systems make storing data and returning results easier and more efficient.
They allow different questions to be posed of the database — even questions the original designer of the
database didn’t expect to be asked.

8

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 8

Figure 1-1

Why and When to Use a Database
When there are a huge number of alternative ways to store data, why should you trouble yourself creat-
ing a database? What advantages does a database hold?

The main advantage is fast and efficient data retrieval. A database helps you to organize your data in a
logical manner. Database management systems are fine-tuned to rapidly retrieve the data you want in
the way you want it. Databases also enable you to break data into specific parts. Retrieving data from a
database is called querying. You’ll often see the term SQL query, which briefly means any SQL code that
extracts data from the database. This topic is covered in more depth later in this chapter.

Relational databases have the further advantage of allowing you to specify how different data relates to
each other, as you saw in the car sales database example. If you store sales details and salesperson data
in related databases, the question “How many cars has salesperson X sold in January?” becomes very
easy to answer. If you just shoved all the information into a large text file, you’d find it one enormous
task to question, or query, the data and find out specific answers.

Databases also allow you to set up rules that ensure that data remains consistent when you add, update,
or delete data. Imagine that your imaginary car sales company has two salespeople named Julie Smith.
You can set up a database to ensure that each salesperson has a unique ID, called a unique identifier (so
that the Julies don’t get mixed up); otherwise, telling who sold which cars would prove impossible.
Other data storage systems, such as text files or spreadsheets, don’t have these sorts of checks and quite
happily allow you to store erroneous data. In later chapters you learn how to set up other rules to limit
the risk of data becoming corrupted. For example, you might specify that an employee’s social security
number must be unique in the database. Or if a car is sold and it’s listed as being sold by the employee
with an ID of 123, you might add a check to see that full details of employee 123 are held in one of the
database tables.

A properly set-up database minimizes data redundancy. Again using the car sales example, you can
store all the details of a salesperson just once in the database and then use a unique ID to identify each
salesperson. When you have other data that relates to a particular salesperson (for example, which cars
they’ve sold), you can use the unique ID to search for the data. The unique ID is often a number that
takes up less storage space than the person’s full name.

Databases store raw data — just the facts, so to speak, and no intelligence. A car sales database might
contain the make, model, and price of each car, but you wouldn’t normally store the average number of
cars sold in a month, because you can calculate that from the car sales information, the raw data.

9

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 9

A spreadsheet, however, may contain processed data, such as averages and statistical analysis. A
database simply stores the data and generally leaves data processing to a front-end program, or the
interface the user sees. Examples of front-end programs include a Web page that draws its data from
a database or a program that hooks into the database’s data and allows the user to view it.

Sharing data is also much easier using a database. You can share data among a number of users on the
same computer or among users on different computers linked via a network or the Internet. If the exam-
ple car sales company has branches in New York, Washington, and Boston, you could set up a computer
containing a database in one location that is accessible by all of the offices via a network. This is not only
possible but also safe because databases have a clearly defined structure and also enforce rules that pro-
tect the data contained. They also allow more than one person to access the database at the same time
and change the data stored; the database management system handles simultaneous changes. Imagine
the potential chaos if you used an Excel spreadsheet, and two salespeople change data simultaneously.
You want to keep both sets of changes, but whoever saves the spreadsheet last is the person whose
changes are stored, overwriting any earlier changes.

Databases also make sharing data between different systems much easier than using proprietary data
formats — that is, a format specific to a particular program, manufacturer, or operating system. An Excel
spreadsheet, for example, is easily read on a Windows machine with MS Office, but it is more of a chal-
lenge to read on a UNIX, Macintosh, or Linux machine because those computers handle data in a differ-
ent way. Even on a Windows machine, you need to have MS Office installed. You can house a database
on a central computer, put the database management system on there, and then enable access via a local
network or the Internet.

As an alternative to databases, text files and spreadsheets have one big advantage, which is also their
weakness: flexibility. Text files have no real rules. You can insert whatever text data you like wherever
you like. To a large extent, spreadsheets are the same. You can ask users to add data in a predefined
structure, but you have no real way to enforce such a request. Using databases limits user access to just
the data and does not allow users to change the structure.

One final significant advantage of databases is security. Most database management systems allow you
to create users in order to specify various levels of security. Before someone accesses the database, he or
she must log on as a specific user. Each user has various rights and limits. Someone who maintains the
database has full ability to edit data, change the database’s structure, add and delete users, and so on.
Other users may only have the ability to view data but not change it, or you may even want to limit
what data they can view. Many database management systems provide a granular level of security, that
is, they are very specific as to what a user can do. They are not just an all-or-nothing approach in which
the user either has access or has no access.

Databases are used pretty much everywhere. Data processing played a big part in the development of
computers, and even today it is one of their main roles. Nearly every walk of life or business requires a
database somewhere along the way. Databases are commonly used on personal computers to store data
used locally, and on company networks databases store and share company-wide information. The
Internet has seen a big rise in databases used to share information; most online shops of a reasonable
size use databases. When you visit online stores of any significant size, a database usually provides all
the information on the goods being sold. Rather than every page being created by hand, large merchants
use a template for book or CD details, and SQL retrieves the book information from the database.
Imagine how much work it’d be if Amazon created every single page by hand!

10

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 10

Databases are great at dealing with large amounts of data that need to be searched, sorted, or regularly
updated. As you find out in the next few chapters, databases combined with SQL allow you to get the
answers you want in the order you want.

Database Management Systems Used in This Book
Databases are great for storing data, the database management system provides ways of looking at the
data, and usually software provided allows you to view the data. But how do you use the data outside
of the database management software? The operating system, whether it’s Windows, UNIX, Linux, or
the Macintosh, provides ways of hooking into the database management system and extracting the data.
You need to write programming code to put inside a stand-alone application that the user runs on their
computer, or you could set up a Web page to extract data. You’re not restricted to certain languages, so
long as the language allows you to hook into the database management software.

You can buy any number of different relational database management systems off the shelf, but this
book’s aim is to present SQL that is standards compliant (more on the standards in the next section) and
that works with as wide a range of RDBMSs as possible. However, there are times when the standards
don’t allow you to do what you want. Other times, you may find that the various DBMS vendors
haven’t implemented them consistently. This book provides details specific to MS Access, MS SQL
Server 2000, IBM DB2, MySQL, and Oracle 10.

Structured Query Language (SQL)
The first questions to ask are what is SQL and how do you use it with databases? SQL has three
main roles:

❑ Creating a database and defining its structure

❑ Querying the database to obtain the data necessary to answer questions

❑ Controlling database security

Defining database structure includes creating new database tables and fields, setting up rules for data
entry, and so on, which is expressed by a SQL sublanguage called Data Control Language (DCL),
covered later in this chapter. The next section discusses querying the database.

Finally, DCL deals with database security. Generally, database security is something that database
administrators handle.

Creating SQL every time you want to change the database structure or security sounds like hard work,
and it is! Most modern database systems allow you to execute changes via a user-friendly interface
without a single line of SQL.

Introducing SQL Queries
SQL queries are the most common use of SQL. A SQL sublanguage called Data Manipulation Language
(DML) deals with queries and data manipulation. SQL allows you to pose a query (basically a question)

11

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 11

to the database, and the database then provides the data that answers your query. For example, with a
database that stores details of salespersons, car sales, type of cars sold, and so on, you might want to
know how many cars each salesperson sold in each month and how much money they made the com-
pany. You could write a SQL query that asks this question and the database goes away and gets the data
that answers it. A SQL query consists of various statements, clauses, and conditions. A statement is an
instruction or a command. For example, “Get me some data” is a statement. A clause specifies limits to a
statement, the limits being specified using conditions. For example, instead of “Get some data,” you
might say, “Get data only for the sales that were in the month of May,” where “only for” is the clause
that specifies which data to retrieve. The condition is “were in the month of May.” If the data doesn’t
meet the condition’s criteria, in this case, “month of May,” then you don’t want it. Written as actual SQL
code, this could be something like the following:

SELECT CarModel
FROM CarSales
WHERE CarSoldDate BETWEEN ‘May 1 2005’ AND ‘May 31 2005’;

The SELECT statement tells the database system that you want to select some data from the database.
You then list the data you want, in this case CarModel data, which is a field name. You then specify the
place the data needs to be taken from, in this case a table called CarSales. Finally, you have a condition.
The statement above specifies that you want only the data where certain conditions are true. In this case,
the condition is that the CarSoldDate is between the first and thirty-first of May 2005. Lots of SQL code
like that above is covered in Chapter 3’s discussion of statements, clauses, and conditions.

Comparing SQL to Other Programming Languages
Now that you know what SQL can be used for, you can compare it to other programming languages. To
be honest, SQL is quite different from the procedural languages such as C++, Visual Basic, Pascal, and
other third-generation programming languages, which allow the programmer to write step-by-step
instructions telling the computer exactly what to do to achieve a specified goal. Taking the car sales
example, your goal might be to select all the information about sales made in July from the New York car
showroom. Very roughly, your procedural language might be along the lines of the following:

1. Load the sales data into the computer’s memory.

2. Extract the individual items of data from the sales data.

3. Check to see if each item of data is from the month of July and from the New York showroom.

4. If it is, then make a note of the data.

5. Go to the next item of data and keep going until all items have been checked.

6. Loop through the data results and display each one.

SQL, however, is a declarative language, which means that instead of telling it what to do to get the
results you want, you simply tell it what you want, and it figures out what to do and comes back with
the results. In the car sales example, if you were using SQL, you’d specify the results you want, some-
thing like this:

SELECT all the data from the sales table WHERE the sales were in July and made at the New York
showroom.

12

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 12

The SQL language is actually fairly easy to read. The actual SQL could look like this:

SELECT * FROM SalesMade WHERE SaleDate = “July 2005” AND SalesOffice = “New York”

The asterisk simply means return the data from all the fields in the record.

You learn a lot more about how the SQL SELECT statement works in Chapter 3.

Understanding SQL Standards
As with databases, IBM did a lot of the original SQL work. However, a lot of other vendors took the
IBM standard and developed their own versions of it. Having so many differing dialects causes quite
a headache for the developer, and in 1986 it was adopted by the standards body the American National
Standards Institute (ANSI) and in 1987 by the International Standards Organization (ISO), who created
a standard for SQL. Although this has helped minimize differences between the various SQL dialects,
there are still differences between them.

The following table gives a brief summary of the various standards and updates to those standards.

Year Name Also Known As Changes

1986 SQL-86 SQL-87 (date when First publication of the ANSI/ISO
adopted by ISO) standard

1989 SQL-89 Only small revision of the original
standard

1992 SQL-92 SQL2 Major update of the original standard
and still the most widely supported
standard

1999 SQL-99 SQL3 Update of the 1992 standard adding
new ways of selecting data and new
rules on data integrity and introducing
object orientation

2003 SQL-2003 Introduced XML support and fields
with autogenerated values

This book concentrates on SQL-92, SQL-99, and SQL-2003 because most of their features have been
implemented by most relational database management systems (RDBMSs). The SQL you write works on
most RDBMSs with only minor modifications. There are times when the various RDBMSs do things so
differently that compatible code is impossible without big changes; however, these instances are few and
far between in this book.

Although standards are important to help bring some sort of commonality among the various RDBMSs’
implementation of SQL, at the end of the day what works in practice is what really counts. Instead of
endlessly debating standards, this book provides information to help you in the real world of databases.
That said, the next section shows you how to create your own SQL database.

13

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 13

Database Creation
So far, this chapter has examined what a database is and where you might use one. This section takes a
more in-depth look at the components of a database, its structure, and the accompanying terminology.
Finally, you put the theory into action and set up your own sample database.

Once you grasp the basics, this section discusses how to structure your database in an efficient and
easy-to-use manner. Good database design simplifies data extraction and reduces wastage by avoiding
data duplication.

By the end of this chapter, you’ll have a fully functioning database all ready to go for the next chapter
when you use SQL to insert, update, and delete data in a database. Not only that, but you’ll have the
knowledge to experiment on your own and create your own databases. Before any of that happens,
however, you need to know more about organizing and structuring a database.

Organizing a Relational Database
This section examines how database systems are organized and what structures they are made up of.
These structures include, among other things, databases, tables, and fields. In database terminology,
these structures are called objects.

The database management system is the overall program that manages one or more databases. Within
each database are the tables, which consist of fields. A field contains a specific item of data about
something — for example, the age of a person, their height, their eye color, and so on. A table contains
one or more fields, and it’s usual for a table to contain information about a specific thing or at least
data that is related in some way. For example, data about a person could be stored in the Person table.
If the information is about a type of person, for example, employee, you might call your table
Employees.

As illustrated by the heading, this section is about relational databases, the key word being relational.
This concept is explained in more detail shortly, but briefly stated, it means that there is some sort of link
between data in one table and data in another table, indicating some sort of relationship. For example,
the relationship between car sales and car sales employees could be that a particular salesperson sold a
particular car.

Figure 1-2 illustrates the basic structure of a relational database.

At the top of the diagram is the RDBMS. This is the application software that manages the various
databases. In Figure 1-2, the RDBMS creates two databases, but a RDBMS can be in control of as few as
one database to many, many thousands of databases. The RDBMS is the intelligence behind the database
system. The RDBMS does all the work involved in creating and maintaining databases and the struc-
tures inside them. Additionally, the RDBMS controls security; performs the actual data insertion, dele-
tion, and retrieval; and allows users to interact with the database system via a management console.

Below the RDBMS itself are the actual databases contained therein. Each database contains a collection
of one or more tables. Strictly speaking, your database could contain zero tables, but that would make
for a pretty useless database! Databases are self-contained, which means that what happens in one table
doesn’t affect another table. For example, you can create tables with the same names in each database if

14

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 14

you wish, and the database system doesn’t complain. Each database you create receives its own specific
name or identifier. How a database system manages databases and tables varies depending on your
RDBMS. Microsoft Access, for example, works on only one database at a time, although there are ways
of linking one database to another. Each Access database is contained in its own file. Other RDBMSs
allow you to manage more than one database from the same console.

Figure 1-2

Within each database is a collection of tables that contain the records, which hold the data. A good real-
world analogy is a train or bus timetable, for example. A simple train timetable could look something
like the table shown below:

Start Destination Departs Arrives

London Manchester 10:15 11:45

Cambridge Newcastle 9:30 13:55

Lands End John O’Groats 4:15 23:50

Chester Liverpool 15:45 16:30

Penzance Bristol 11:40 18:00

If this were an actual table in your database, you could create a table to hold this data and perhaps call it
something stunningly original like train_times. The rules as to what you can name tables are fairly
flexible but vary a little among RDBMSs. Generally, though, as long as the name doesn’t contain punctu-
ation (except things like underscores) and isn’t more than 128 characters or so, you are fairly safe.

Relational Database Management System

Database

Table Table Table

Table Field Field
R
e
c
o
r
d

Field Field Field

Field Field

Field

Database

Table Table

Field FieldR
e
c
o
r
d

Field Field

Field

15

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 15

From the preceding timetable, you can see that it contains four categories of information: start, destina-
tion, time of departure, and time of arrival. In database terminology, these categories are called fields,
and each field has its own unique name within the table.

Each line in the timetable contains data specific to one aspect of a train schedule. The row contains data
pertaining to the train leaving London at 10:15 and arriving in Manchester at 11:45. In a database, the
data collectively provided by the fields is called a record. The preceding table contains five records. A col-
umn is all the instances of a particular field from all records in a table. So, in the timetable example, the
start column is all the data from the start field for all the records in the table: London, Cambridge, Lands
End, Chester, Penzance.

To sum up relational database structure, a RDBMS manages one or more databases, each database con-
tains a collection of one or more tables, and each table contains zero or more records, each record being a
collection of fields.

Take what you’ve learned so far and use SQL to create a database and tables.

SQL Syntax
In programming, syntax is the rules to be followed when writing code and the terminology used. Syntax
is very much like rules of grammar in languages. For example, the rules of English grammar state that a
sentence should end with a period (or full stop as it’s known in British English). Of course, there are
exceptions to this rule. For example, if you end a sentence with a question, then you use a question mark
rather than a period. In SQL there are no sentences; instead there are statements. A statement is a self-
contained action. For example, you can use a statement to select certain data, to change the database by
adding a new table, and so on. A statement should end with a semicolon; even though many database
systems let you get away with leaving it off, it’s good practice to include the semicolon.

This book refers to three categories of syntax term: identifiers, literals, and keywords. An identifier is
something that uniquely identifies something in a database system, using an object such as a database, a
table, or field name. If you create a database called MyDatabase, then you would say that its identifier is
MyDatabase. If you create a table called SalesPeople, then its identifier is SalesPeople. If you need
to refer to the SalesPeople table, then you use its identifier:

SELECT PersonFirstName
FROM SalesPeople;

The previous statement selects data from the SalesPeople table. The database system knows from
which table to retrieve data because you used its identifier, SalesPeople.

A literal is an actual value, such as 120, Paul, or January 10, 2007. If, for example, you want a list of
all salespeople with a first name of Bob, you’d write the following statement:

SELECT PersonFirstName, PersonLastName
FROM SalesPeople
WHERE PersonFirstName = ‘Bob’;

This statement uses the literal value of Bob in its comparison. Don’t worry if the SQL is still a bit
unclear — you take an in-depth look at SELECT statements in Chapter 3.

16

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 16

A keyword is a word that has some meaning to the database system. For example, if you say, “flob-
badob,” people would no doubt wonder what on earth you were talking about! But if you use the word
“stop,” it’s a word you know and it has a certain meaning for you. So to the database system, “flob-
badob” means nothing, but SELECT has a special meaning that the database system acts on. It means,
“I want to select some data.” Each keyword has its own rules. If you use SELECT, then the database sys-
tem expects as a minimum a list of data you want to select and where that data is coming from. It also
has optional keywords, such as a WHERE clause, specifying what sort of results you want. As you meet
each new keyword in this book, you also meet what the database system expects as a minimum and
what optional parts can be added.

If you’ve come from other programming languages, you might be wondering about code layout. Some
languages allow only one statement per line. SQL, however, allows you to spread your statements over
one or more lines. For example, both of the following statements are valid:

SELECT CarModel FROM Cars WHERE CarMake = ‘Ford’;

SELECT CarModel;
FROM Cars
WHERE CarMake = ‘Ford’;

Spacing code over more than one line tends to make it more readable, if it’s done logically. The preced-
ing example puts the individual parts of the SELECT statement on their own lines.

Well, that’s enough boring syntax for now. You get more detailed syntax discussions on an as-needed
basis as you progress through the book. The discussion now turns to creating a database.

Creating a Database
The first step in databases is creating the database. There are two main ways to create a database.

First, many RDBMSs come with a nice, user-friendly front-end interface, which makes the task of creat-
ing a new database very easy. In fact, all it takes is a few mouse clicks, entering a name for the database,
and away you go. Systems such as MS Access, MS SQL Server, Oracle, and IBM DB2 all provide a front-
end interface. MySQL, however, doesn’t come with a default front end, but there are plenty of free ones
available, such as MySQL Control Center.

In the case of MS Access, using the program to create a database is the only way to do so. However,
other RDBMSs allow you to use SQL to create a database. Each RDBMS has its own way of allowing you
to enter and run SQL statements. For example, SQL Server has the Query Analyzer tool, DB2 has the
Command Center, and MySQL has the MySQL Control Center (among many other similar tools).
Regardless of the tool you choose to use, the SQL required to create a new database is as follows:

CREATE DATABASE myFirstDatabase;

It really is that easy! Once you become more advanced, you discover a plethora of options you can play
with, but for the purposes of this book, the default options used by the CREATE DATABASE statement
are fine.

The database is called myFirstDatabase, but you could have called it pretty much anything. Some
restrictions on the name exist, on its length, for example. DB2 limits name length to eight characters, and

17

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 17

SQL Server limits it to 123 characters. It’s safer to stick to letters, numbers, and the underscore character
and to avoid any punctuation in the name. For example, My_db is fine, but £$%^my&&&db is unlikely to
work or (and be honest) be easy to pronounce! Numbers are usually fine to include, but most RDBMSs
don’t allow a database’s name to begin with a number. Finally, and it may seem obvious, a database
name must be unique within the RDBMS. If you call two databases myDB, the RDBMS won’t know which
one you’re referring to when you’re writing your SQL code.

What if you want to delete the database? Again, most RDBMSs have a nice and easy user console that
allows you do that, but you can also drop a database using SQL. You don’t use delete database as you
might expect; instead you use the DROP DATABASE statement followed by the database’s name.

So to drop the myFirstDatabase you write the following:

DROP DATABASE myFirstDatabase

This isn’t a command to be used lightly, though! Dropping the database removes it from the RDBMS and
you could potentially lose all your data.

Oracle is a bit of an exception when it comes to dropping databases. Instead of the DROP DATABASE
command, you create the database again! If you already have a database called myFirstDatabase, the
RDBMS deletes it if you write

CREATE DATABASE myFirstDatabase

This is something to be very careful of.

After creating a database, the next stage is to add tables to it. However, before you can add tables, you
need to look at the concept of data types.

Understanding Data Types
Outside of the world of information technology, you categorize various bits of information into different
types quite naturally. You think of the price of goods in a shop as being numerical data. If you ask for
directions from New York to Washington, you expect to receive verbal instructions such as “turn left
at....” In databases, a data type is the classification of different sorts of data being stored, whether the data
are numbers, characters, or dates. It helps the database system make sense of the values being inserted
into a database. So just as in the world outside databases, you categorize different types of data, but you
do so in a more formal way. Returning to the train timetable example, the following table outlines what
type of data each field holds:

Field Data Type Example

Start Character data London, Chester

Destination Character data Manchester, Bristol

Departs Time 10:15, 11:40

Arrives Time 11:45, 18:00

18

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 18

A perfectly valid question to ask is, “Why have different data types?” Why not just treat everything as
text? The main reason is efficiency. The amount of storage space and the speed of access improve when
the database knows what sort of data it’s dealing with. For example, the number 243787452 can be
stored in as little as 4 bytes of computer memory. Storing the same number as text takes 9 bytes of mem-
ory for the character data.

In addition, the data type determines what the RDBMS expects users to do with the data. If you have
numerical data, then 123 + 123 calculates as addition with the answer being 246. If it were text data,
the RDBMS would interpret the plus sign as meaning that you want to join the two character strings
together to form 123123.

So what are the various data types available? Unfortunately, data type varies among RDBMSs. Added to
this conundrum is the problem that while the ANSI SQL standards such as SQL-92, SQL-99, and SQL-
2003 define standards for data types, they are far from fully and universally implemented by the various
RDBMS manufacturers. However, all is not lost. There’s enough support of the standards for the pur-
poses of this book. Once you have a handle on the basic ANSI SQL data types, researching the data types
that your particular RDBMS uses is fairly easy. You can then use them in addition to the data types
examined here.

The following table contains a subset of the more commonly used ANSI SQL data types and the name of
the same data type in other RDBMSs such as SQL Server, IBM DB2, and so on.

ANSI SQL MS Access SQL Server 2000 IBM DB2 MySQL Oracle 10

Character char char char char char

Character varying varchar varchar varchar varchar varchar

National character char nchar graphic char nchar

National character varchar nvarchar vargraphic varchar nvarchar
varying

Integer number (long int int int int
integer)

Smallint number smallint smallint smallint smallint
(integer)

Real number real real real real
(double)

Decimal number decimal decimal decimal decimal
(decimal)

Date date datetime date date date

Time time datetime time time date

19

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 19

Although this table includes only a small subset of all the possible data types for all the RDBMSs out
there, it’s more than enough to get you started. Note that although Oracle does support the nchar
and nvarchar types, it does so only if you create a new database and specify that the character set is
a Unicode character set such as AL16UTF16. Otherwise, by default it doesn’t support nchar and
nvarchar.

The following table describes each data type, roughly how much storage space it uses, and an example
of its use. The ANSI names have been used for the data type.

Data Type Description Storage Used Example

character Stores text data. A character One byte per char(8) allocates
can be any letter, number, character allocated. space for eight char-
or punctuation. You must acters and takes
specify how many characters up approximately
you want to store in advance. 8 bytes of space.
If you actually store fewer
than you allow for, the
RDBMS adds spaces to the
end to pad it out.

character varying Similar to character except One byte per nchar(8) allocates
the length of the text is vari- character stored. space for up to eight
able. Only uses up memory characters. However,
for the actual number of storing only one char-
characters stored. acter consumes only

1 byte of memory,
storing two characters
consumes 2 bytes of
memory, and so on; up
to 8 bytes allocated.

national character Similar to character, except Two bytes per nchar(8) allocates
it uses two bytes for each character allocated. space for eight char-
character stored. This allows acters and consumes
for a wider range of charac- 16 bytes of memory
ters and is especially useful regardless of the
for storing foreign characters. number of characters

actually stored.

national character Similar to character varying, Two bytes per nvarchar(8)
varying except it uses 2 bytes to store character stored. allocates space for

each character, allowing for eight characters.
a wider range of characters. How much storage
Especially useful for storing is used depends on
foreign characters. how many characters

are actually stored.

20

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 20

Data Type Description Storage Used Example

integer A whole number between Four bytes. int consumes 4 bytes
–2,147,483,648 and regardless of the
2,147,483,647. number stored.

smallint A whole number between Two bytes. smallint consumes
–32,768 and 32,767. 2 bytes of memory

regardless of the num-
ber stored.

real A floating-point number; Four bytes. real consumes
range is from –3.40E+38 4 bytes of memory
through 3.40E+38. It has regardless of the
up to eight digits after its number stored.
decimal point, for example,
87.12342136.

decimal A floating-point number. 5–17 bytes. decimal(38,12)
Allows you to specify the sets a number that
maximum number and is up to 38 digits
how many digits after the long with 12 digits
decimal place. Range is coming after the
from –10^38 + 1 through decimal point.
10^38 – 1.

date Stores the date. Four bytes. date, for example,
1 Dec 2006 or
12/01/2006. Be
aware of differences
in date formats. In the
U.K., for example,
“12/01/2006” is actu-
ally January 12, 2006,
whereas in the U.S.
it’s December 1, 2006.

time Stores the time. Three bytes. time, for example,
17:54:45.

Note that the storage requirements pertain only to the actual data. The RDBMS usually requires a little
bit of extra storage to make a note of where in its memory the data is stored. However, these internal
workings are not something you need to worry about unless you’re involved in very advanced database
work. Also, details may vary depending on the RDBMS system you use.

Although some of the data types are self-explanatory, some of them need a little more explanation. The
following sections explain some data types in greater depth, starting with character data types.

21

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 21

Characters
When you want to store text, you use one of the character data types. Note that the term string means
one or more characters together. There are four possible variations of character data type selection:

❑ Fixed length

❑ Variable length

❑ Standard 1 byte per character (char and varchar types)

❑ Standard 2 bytes per character (nchar or nvarchar types)

I’ll examine the difference between the fixed- and variable-length data types first. Note the follow-
ing code:

char(127)

If you use the preceding code, the RDBMS allocates enough memory to hold 127 characters. If you store
only 10 characters, then the other 117 allocated places in memory are filled with spaces, which is fairly
wasteful. If you’re using only 10 characters, you might wonder whether you can just write

char(10)

That’s fine, but sometimes you may fill all 127 character places.

By contrast, varchar(127) doesn’t allocate any memory; it simply says to the RDBMS, “I might want
to store up to 127 characters but I don’t know yet.” So if you store only 10 characters, you use only the
memory space required for 10 characters. Storing 127 characters is fine, too, though that uses memory
required for 127 characters.

At this point, it may seem like a bother to use the fixed character type. Why not always use varchar?
There are two main reasons. First, inserting and updating fixed character data types is quicker — not by
a huge amount, but some databases might be updating tens of thousands of records a second, in which
case very small differences can add to one big difference. So where you’re storing only a few characters
and where speed is of the essence, then the fixed data type wins out.

Second, if you store only a few characters, the memory savings between the two methods is fairly
insignificant.

The next variation is between the char/varchar data types that use just one byte to store a character
and the nchar/nvarchar that use 2 bytes. The 1-byte system originates from the ASCII character set.
ASCII (or American Standard Code for Information Interchange) was developed in the early 1960s as a
universal way of representing characters on a computer. Computers work only on bits and understand
only binary numbers, so characters are stored as numbers, where a number between 0 and 255 repre-
sents each letter. For example, the letter A has a numerical value of 65, B has a value of 66, and so on.
While this is more than enough to cover letters of the alphabet, numbers, and some punctuation, there
are plenty of other characters, especially ones common in foreign languages, that ASCII just can’t cope
with. To overcome this problem, the Unicode character set was developed. Unicode uses 2 bytes to rep-
resent each character and allows you to specify 65,536.

22

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 22

The char and varchar data types use the one-byte ASCII-based storage. The nchar and nvarchar sup-
port the 2-byte Unicode character set. Which data type you use depends on whether your database
requires compatibility with foreign characters. Whichever character set you choose, the usage in SQL
code is generally the same, unless the database system has a specific feature designed to work differently
based on Unicode or ASCII. The obvious downside of nchar and nvarchar is that they use twice as
much memory to store characters, because they use 2 bytes per character.

Before moving on, you should note something about maximum character storage. MS Access and
MySQL can store only a maximum of 255 characters in a character field. To get around this, use the
memo data type for MS Access, which can store up to 65,535 characters — more than enough for most
purposes. For MySQL, if you want to store large amounts of text, use the text data type, which also
stores a maximum of 65,535 characters. You don’t need to specify the maximum number of characters
either the memo or text data type can hold — it’s preset by the database system itself.

Numerical Data
The easiest numbers to understand and deal with are the integers: whole numbers rather than numbers
with decimal points. They are particularly useful as unique identifiers for a record, something you learn
more about later in this chapter when you create the example database and look at primary keys.
Fractional numbers are subject to rounding errors and therefore are best avoided if you want a unique
identifier for a record. Integer numbers are also less work for the RDBMS, and less work means more
speed. Therefore, they are more efficient unless you really do need the fractional part. For example,
you’d need the fractional part if you’re dealing with money and want to store dollars and cents.

The two integer data types used in this book are int and smallint. The difference between the two is
simply in the size of number they can store and in how many bytes of memory they require to store a
number. smallint can deal with a range between –32,768 and 32,767, whereas int can handle a range
between –2,147,483,648 and 2,147,483,647.

The final two numerical data types covered in this chapter can store the fractional parts of numbers:
real and decimal. The real data type can store a range of numbers between –3.40E+38 through
3.40E+38, though this varies from RDBMS to RDBMS. Note that 3.40E+38 is an example of scientific
notation. It means the same as 3.4×10 to the power of 38. For example, 539,000,000 could be stated in sci-
entific notation as 5.39E+8. This data type is very useful if you have huge numbers but are not too con-
cerned about preciseness. When you store numbers in a real data type, you can use either the scientific
notation or just the number itself. If the number is too large to store precisely in a real data type, the
database system converts it to the scientific notation for you, but quite possibly with some loss of accu-
racy. It’s not a data type you’ll find yourself using particularly often.

The decimal data type is similar to real in that it allows you to store floating-point numbers as
opposed to whole numbers. A floating-point number is a number with a fractional part — numbers after
a decimal point — and that decimal point is not fixed in any particular position (123.445 or 4455.4, for
example). Whole numbers, or integers as they are also known, can’t store fractional numbers, meaning
that they don’t store a decimal point. decimal is more accurate and flexible than the real data type.
How can the decimal data type be more accurate than the real data type, you ask? Surely the answer
is either right or wrong. After all, this is math and not sociology, so there’s no room for debate. Actually,
while the real data type can store huge numbers, it does so using scientific notation, so not all the digits
are actually stored if the data is over a certain size.

23

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 23

Look at an example to make this clearer. If you have the number 101236.8375 and try to store it as a
real data type, the RDBMS stores 101236.84. Why did the 75 at the end disappear? On some RDBMSs,
such as SQL Server and DB2, real can store only eight digits. The number above is 10 digits long, so
the RDBMS rounds off the number and chops off the last 2 digits. Say you have a very large number,
such as 101249986.8375. Even after rounding off, the number is still larger than 8 digits, so the RDBMS
uses scientific notation and displays 1.0124998E+8.

The decimal data type differs from the real data type in that it stores all the digits it can. If you store a
number larger than it can handle, the RDBMS throws an error saying that there is an overflow. Therefore,
the digits on the left of the decimal point are always correct. The decimal data type, however, rounds
up any digits to the right of the decimal point if it doesn’t have enough spare space to display them.

The decimal data type’s flexibility comes into play when it allows you to specify how many digits you
want to store, as well as how many digits can appear on the right side of the decimal point. The follow-
ing code tells the RDBMS to allocate space for 38 digits, with space reserved for 12 digits after the deci-
mal point:

decimal(38,12)

This means that the RDBMS stores 101249986.8375 correctly, though it adds zeros after the 8375 to fill in
12 reserved spaces.

The maximum number of digits many RDBMSs allow for the decimal data type is 38. The more digits
you ask the RDBMS to store, the more storage space you require. So decimal(9,2) requires 5 bytes,
whereas decimal(38,2) requires 17 bytes!

Date and Time
Time is fairly easy to deal with. You simply store the time in the format hours:minutes:seconds. For
example, 17:56:22 translates to 5:56 P.M. and 22 seconds.

Most RDBMSs uses the 24-hour clock, so to store 5:36 P.M., you write 17:36:00.

Some RDBMSs don’t have a separate date and time, but instead combine them into one, in which case
the date goes first and then the time in the format just mentioned of hh:mm:ss. For example, you may
encounter a date and time similar to the following: 1 Mar 2006 10:45:55.

Whereas the format for time is fairly standard, dates can have many possible variations. For example, all
of the following are valid in either the United States or Europe:

❑ 12 Mar 2006

❑ Mar 12, 2006

❑ 12 March 2006

❑ 12/03/2006

❑ 03/12/2006

❑ 03-12-2006

24

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 24

Most RDBMSs handle the most common variations, like the preceding examples. However, the biggest
problem arises when you specify the month by number instead of name — 03/12/2006, for example. An
American would read this as the 12th day of March 2006, and a resident of the United Kingdom would
see the date as the 3rd day of December 2006 — quite a difference! There is little else in database devel-
opment that produces bigger headaches than dates!

Even worse is when the computer the RDBMS is running is set to the American format and the com-
puter accessing the data from the database is set to the U.K. format. And with many companies having
U.S. and foreign-based offices, this can often happen.

Whenever possible, avoid the number format, such as 12/07/2006, and instead use the month’s name or
at least the abbreviation of its name (12 Jul 2006, for example). Unfortunately many RDBMSs return the
date format as 12/07/2006 even if you stored it as 12 Jul 2006. In this case, use formatting commands,
which are covered in Chapter 5, to circumvent this problem. Also try to make sure you know the format
that the RDBMS server is using.

Now that the brief introduction to data types is over with, you can move on to something a bit more
interesting and hands-on — creating tables!

Creating, Altering, and Deleting Tables
This section discusses the basics of creating a table using SQL. It shows you how to create a new table,
how to modify existing tables, and finally, how to delete tables that you no longer need. After that, using
what you’ve learned, you create the tables for the book’s example database.

Creating a Table
To create a table, use SQL’s CREATE TABLE statement. Creating a basic table involves naming the table
and defining its columns and each column’s data type.

More advanced table options and constraints are covered in Chapter 4.

The following is the basic syntax for creating a table:

CREATE TABLE name_of_table
(

name_of_column column_datatype
)

CREATE TABLE is the keyword telling the database system what you want to do — in this case, you want
to create a new table. The unique name or identifier for the table follows the CREATE TABLE statement.
Then in brackets comes the list defining each column in the table and what sort of data type it is. The
syntax becomes clearer with an example.

25

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 25

The following SQL creates a table based on the earlier train timetable example:

CREATE TABLE Train_Times
(

start_location varchar(75),
destination varchar(75),
departs time,
arrives time

);

MS SQL Server doesn’t have the time data type, so you need to change the data type to datetime.
For Oracle, you need to change the data type to date rather than time, because Oracle’s date data
type stores both date and time.

For this and all of the examples in this book, load up the tool that came with your RDBMS that allows
SQL code to be written and run. You can find installation details in Appendix B at the end of the book.

Examining the code line by line, first you specify that you want to create a table called Train_Times:

CREATE TABLE Train_Times

Then, inside brackets, you specify the four fields that make up each record. For each record, you need to
identify the field name and data type:

(
start_location varchar(75),
destination varchar(75),
departs time,
arrives time

)

A comma must separate each field definition. Notice the SQL’s neat layout, with the CREATE TABLE
statement and each field definition on separate lines. Such layout is not compulsory. In fact, you could
cram the whole lot on one line. However, laying out the code on separate lines makes the code a lot
more readable and therefore easier to write and makes it easier for you to fix errors, or debug, if things go
wrong.

You can see that creating tables is pretty easy. There are more complexities with table creation than listed
here, and these are examined in Chapter 4. The next issue is how to alter tables. Say you want to add a
new field, delete an existing one, or perform other routine table maintenance. The good news is that SQL
allows you to perform all of these functions with one statement: ALTER TABLE.

Altering an Existing Table
The key to changing an existing table is the ALTER TABLE statement. This one statement allows you to
add and delete columns in an existing table. What the ANSI SQL standard ALTER TABLE statement
doesn’t let you do, however, are things like changing the data type of an existing column. However,
many RDBMSs have extended the ALTER TABLE statement and include their own way of changing col-
umn definitions.

26

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 26

To add a new column, use the basic syntax shown below:

ALTER TABLE name_of_table
ADD name_of_field data_type

ALTER TABLE is the keyword that tells the database system what to do. After the ALTER TABLE state-
ment, you supply the name of the table being altered. Finally, the syntax above tells the database system
that you want to add a new column and then supplies the name of the column and its data type — in
much the same way that you define column name and data type when creating a table.

To delete an existing column, the syntax is identical except you now tell the database system that you
want to delete a column and supply that column’s name:

ALTER TABLE name_of_table
DROP COLUMN name_of_field

A couple of examples make this a bit clearer. In order to add a column called runs_at_weekend with
the data type char(1) to the Train_Times table, use the following SQL:

ALTER TABLE Train_Times
ADD runs_at_weekend char(1);

To delete the same column, you write the following:

ALTER TABLE Train_Times
DROP COLUMN runs_at_weekend;

IBM DB2 doesn’t support the DROP COLUMN statement.

Remember, as with dropping a table, dropping a column most likely permanently deletes the data in
that column. Use the DROP COLUMN statement carefully!

Finally, the next section discusses how to delete an existing table.

Deleting an Existing Table
By now you’re probably seeing a pattern emerge when it comes to deleting things, so yes, you guessed
it, deleting a table involves using the DROP TABLE statement. The basic syntax is

DROP TABLE name_of_table

To delete the Train_Times table, you write

DROP TABLE Train_Times

This section only scratches the surface of adding and altering tables and columns. Chapter 4 identifies
potential complications that may arise when dropping a table that contains data that another table
relies upon.

27

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 27

You should now know enough fundamentals to begin creating usable databases and tables. The final
section of this chapter walks you through creating the example database that you use throughout the
book. First, though, you need to know how to use good database design techniques to create an effective
database.

Good Database Design
This section examines some basic rules and ideas that help you develop an effective and well-designed
database. While Chapter 4 takes a more in-depth look, this chapter provides enough of the fundamentals
to get you started. Begin with the all-important first step: consider why you even need a database.

Obtaining and Analyzing Your Data Needs
Before you create the database and write a single SQL statement, you need to sit down and think about
why you’re creating the database in the first place. This doesn’t only mean because someone just paid
you huge piles of cash to do so, though that is a nice benefit! It means to ask yourself, or whomever the
database is for, what sort of data will be stored and what sort of answers the data needs to provide. For
example, imagine that you decide to set up a film club, and being a high-tech sort of person, you decide
that keeping membership details on the back of an old envelope is just too low-tech! So you decide that
you need a database to help run the club. First of all, you need to sit down and think about why you
need the database and what data you need to store. The club membership database may need to store
details of club members. You might also like to know how popular the club is by keeping details of
meetings and attendance. A good start would be to write a list of all the information you want to store.

Say you want to be able to contact each member to send out information by post and email. You also
want to send them a birthday card each birthday (how nice are you!). Finally, you want to make sure
that members pay their annual memberships fees, so you need to keep track of when they joined. The
following list summarizes what you want to store:

❑ Full name

❑ Date of birth

❑ Address

❑ Email address

❑ Date member joined club

The aim with meetings is to keep track of how popular meetings are at various locations and who
attends regularly. The following is the sort of data to store in order to keep track of such information:

❑ Meeting date

❑ Location

❑ Who attended the meeting

28

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 28

Now that you know what you want to store, the next step is to divide the data logically to get some idea
of your table structure.

Dividing Data Logically
For now, don’t worry about table names, column names, or data types; rather, just get a rough idea of
what table structure you want to use.

In a first attempt, you might decide to just lump the whole lot into one huge table, including the follow-
ing information:

❑ Full name

❑ Date of birth

❑ Address

❑ Email address

❑ Date member joined club

❑ Meeting date

❑ Location

❑ Whether member attended meeting

If you were to use the preceding example data, your records could look like the following table:

Date of Date of Meeting Did Member
Name Birth Address Email Joining Date Location Attend?

Martin Feb 27, 1 The Avenue, martin@some. Jan 10, Mar 30, Lower West Y
1972 NY com 2005 2005 Side, NY

Jane Dec 12, 33 Some Road, Jane@server. Jan 12, Mar 30, Lower West N
1967 Washington net 2005 2005 Side, NY

Kim May 22, 19 The Road, kim@mail. Jan 23, Mar 30, Lower West
1980 New Townsville com 2005 2005 Side, NY Y

Seems like a reasonable start. However, you do have one problem: How do you store details of more
than one meeting? One option would be to simply create a new record for each meeting, something akin
to the following table:

29

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 29

Date of Date of Meeting Did Member
Name Birth Address Email Joining Date Location Attend?

Martin Feb 27, 1 The Avenue, martin@some. Jan 10, Mar 30, Lower West Y
1972 NY com 2005 2005 Side, NY

Martin Feb 27, 1 The Avenue, martin@some. Jan 10, April 28, Lower North Y
1972 NY com 2005 2005 Side, NY

Jane Dec 12, 33 Some Road, Jane@server. Jan 12, Mar 30, Lower West N
1967 Washington net 2005 2005 Side, NY

Jane Dec 12, 33 Some Road, Jane@server. Jan 12, April 28, Upper North Y
1967 Washington net 2005 2005 Side, NY

Kim May 22, 19 The Road, kim@mail. Jan 23, Mar 30, Lower West Y
1980 New Townsville com 2005 2005 Side, NY

Kim May 22, 19 The Road, kim@mail. Jan 23, April 28, Upper North Y
1980 New Townsville com 2005 2005 Side, NY

Although that method seems to work fine, it’s bad news in terms of efficiency and becomes unmanage-
able later on as more members join and more meetings are held.

What’s so wrong with it?

First, you have unnecessary data duplication. Each time you hold a new meeting, you need to store not
only the meeting details, but also, because they are in the same record, the members’ details again. Your
database would become huge in size quite quickly. Additionally, a lot of work is involved in actually
updating the data. If Jane, for example, moves into a new house, then you need to update not just one
record, but every single record relating to her. Another problem arises when you try to retrieve member
details. Choosing which of the members’ records to retrieve the data from would be extremely difficult;
after all, you can choose from more than one record.

Rethinking your organization, you need to store details of more than one meeting, so instead of having
more than one record per person, instead create new columns for each meeting so that your fields
include the following:

❑ Full name

❑ Date of birth

❑ Address

❑ Email address

❑ Date member joined club

❑ Meeting date 1

❑ Location 1

❑ Whether member attended meeting 1

30

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 30

❑ Meeting date 2

❑ Location 2

❑ Whether member attended meeting 2

❑ Meeting date 3

❑ Location 3

❑ Whether member attended meeting 3

Organizing your columns like this saves some data duplication but results in inflexibility. Say you want
to keep records of the last 10 meetings. To do so, you need a total of 30 columns in the table, and you
would have to redesign the database every time you want to record more meetings. Such organization
also makes writing SQL statements to extract the data harder and more long-winded.

What you need to do is split apart the data into logical parts. In this case, you are collecting data about
two distinct things: club members and meeting attendance. An obvious relationship exists between the
two. After all, without any members, there is no point in having meetings! That said, split your data into
club member details in one table and meeting attendance data in a second table.

In the MemberDetails table, include the following:

❑ Full name

❑ Date of birth

❑ Address

❑ Email address

❑ Date member joined club

In the meeting attendance details table, include the following:

❑ Full name

❑ Date of the meeting

❑ Location

❑ Whether member attended meeting

Now the MemberDetails table might look something like this:

Name Date of Birth Address Email Date of Joining

Martin Feb 27, 1972 1 The Avenue, NY martin@some.com Jan 10, 2005

Jane Dec 12, 1967 33 Some Road, Jane@server.net Jan 12, 2005
Washington

Kim May 22, 1980 19 The Road, kim@mail.com Jan 23, 2005
New Townsville

31

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 31

The Attendance table could look like this:

Name Meeting Date Location Did Member Attend?

Martin Mar 30, 2005 Lower West Side, NY Y

Martin April 28, 2005 Lower North Side, NY Y

Jane Mar 30, 2005 Lower West Side, NY N

Jane April 28, 2005 Upper North Side, NY Y

Kim Mar 30, 2005 Lower West Side, NY Y

Kim April 28, 2005 Upper North Side, NY Y

Splitting member details and meeting details into two tables saves a lot of data redundancy. Member
details are stored only once, and the only redundant data is the name, which links the two tables
together. This is a reasonable start to database table design, so now turn your attention to defining the
data types.

Selecting Correct Data Types
After getting a rough idea of the table design, the next step is to choose the data types for each field.
Sometimes this is fairly obvious. For example, storing a person’s name in a numerical field doesn’t
make sense!

However, there are times when perhaps the data type is less obvious. For example, although a telephone
number is a number, you store it in a character field for a couple of reasons. First, telephone numbers are
rarely involved in mathematical calculations. Second, sometimes telephone numbers start with zeros.
For example, 077123333 would be stored as 77123333 in a numerical field; the RDBMS removes the lead-
ing zero because it’s not important to the number’s value as a number, though the zero is important to
the number’s value as a telephone number.

Consider these factors when choosing a data type to use:

❑ The data’s use: Is the data intended for mathematical calculations? Does the data represent date
or time situations? Does the data simply display text-based information?

❑ The data’s size: Choose a data type that covers the largest value you reasonably expect to store.
For example, if you expect people with names 100 characters long, then ensure that the charac-
ter field could handle it. If the data is a number, ensure that the largest number fits into the field.

❑ Correct information storage: For example, if you use an integer data type to store a monetary
value, then you lose any fractional parts. So, the integer data type stores $2.99 as 2. Even with
data types that store the fractional parts, you may find that the database rounds them up or
down, resulting in incorrect values — especially with the real data type. Use a field specific to
money if your RDBMS supports it, or at least use DECIMAL(10,2).

❑ Non-English characters: If you need to store non-English characters, choose one of the nchar or
nvarchar data types for your text data.

32

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 32

Generally speaking, picking a data type is common sense. Using the Film Club database’s
MemberDetails table, pick some names and data types:

Field Name Data Type

Name varchar(75)

DateOfBirth date

Address varchar(200)

Email varchar(200)

DateOfJoining date

As you can see, it’s mostly common sense when choosing data types. A name, a street address, or an
email address are text-based information, so you would choose the text data type. Likewise, date of
birth, a date, is stored in the date data type. The size of the fields, however, contains an element of
guesswork. You can’t be 100% sure that there isn’t someone out there with a name longer than 75 charac-
ters, but a good guess is that they are few and far between. To be on the safe side, go for an estimate that
holds more characters than you ever expect to be stored.

The data types for the Attendance table are the following:

Field Name Data Type

Name varchar(75)

MeetingDate date

Location varchar(200)

MemberAttended char(1)

Again it’s fairly easy to choose, with Name and Location being text-based data — so a character data
type, here varchar, is the best choice. MeetingDate is a date field, so the date data type has been cho-
sen. MemberAttended is unusual. You just want to store whether a member did or did not attend. To do
this, you can go for a yes or no choice, with yes represented by a Y, and no represented by an N. A charac-
ter data type is best, and because you only ever plan to store one character, it’s more efficient to use the
fixed char data type and specify that the field can hold just one character.

Using a Primary Key
A primary key is a field or fields that uniquely identify a record from the other records in the database
table. Continuing with the film club example, you might consider yourself the first club member, so
keeping a database record of membership is pretty easy. As a few more people join, you decide to create
a database and store their details as well, including name, age, address, and so on. When there are just a
few people in the club, and, hence, just a few records in the database, using members’ names to identify
people in the database is probably going to work fine. Imagine, though, that the club expands massively

33

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 33

to thousands of members. Suddenly the risk of there being two, three, or more identical names gets ever
higher, and your ability to select the right person from the database gets lower! In such cases, you need
some sort of unique identification. You could use name and age in combination, but the problem is that
people age, so the unique identifier changes, which makes keeping track of people quite hard. There’s
also the small risk of two people with the same name and age. You could use name and address, but
again, addresses change, and also addresses are quite long, which slows down the database in terms of
searching and sorting data.

You may have already guessed that the answer to the problem is to give everyone a unique identifier
that only they have. In a club, you might call the unique identifier something like the MemberId. And
this is all a primary key is — a unique identifier. You know that MemberId 1234432 applies to just one
person, and if you select that data from the database, you are guaranteed to get the record you want.

Primary keys also link one table to another. For example, if you have one table with member details in it
and a second table that contains details of meeting attendance, you could link the two tables together
with a primary key. For example, the MemberDetails table could look like this:

Field Name Data Type

MemberId integer

Name varchar(75)

DateOfBirth date

Address varchar(200)

Email varchar(200)

DateOfJoining date

Note that the MemberId column is the primary key column for this table.

Your Attendance table could look like this:

Field Name Data Type

MeetingDate date

Location varchar(200)

MemberAttended char(1)

MemberId integer

Note that the MemberId column is the foreign key column for this table. A foreign key contains the
value of a primary key in another table, allowing the second table to reference the first. In the film club

34

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 34

example, the MemberId field links the member in the Attendance table with their full details in the
MemberDetails table.

You have a primary key for the MemberDetails table, MemberId, but what about for the Attendance
table? The Attendance table has a unique identifier — the combination of MeetingDate and MemberId,
because it’s not possible for a member to attend the same meeting twice! Therefore, using those two
columns in combination to provide unique identification is safe. This provides a nice segue to the second
point about primary keys: They don’t have to be composed of just one column, as in the case of the
Attendance table. If you wanted to, you could create a unique meeting ID, but in this situation a unique
meeting ID is not necessary and wastes storage space. If speed of data retrieval were a vital issue, you
might consider using a primary key, but most of the time it’s not necessary.

A primary key simply involves having a column to store a unique value and then generating that value.
However, most RDBMSs also allow you to specify a column as a primary key, and in doing so, the
RDBMS manages data entry. In particular, you can apply constraints to exactly what data can go in the
field. For example, constraints prevent you from having two records with the same primary key value.
After all, the point of a primary key is that it’s unique. Chapter 4 delves deeper into the more advanced
and tricky aspects of primary keys and constraints, but now you have the requisite knowledge to create
your first full-fledged database. The database you create in the next section is the one you use through-
out the book.

Creating the Example Database
The example database continues the previous discussion of the Film Club database. You need to create a
database to store the tables. You can call your database something like Film Club, though for the pur-
poses of this book, the database’s name is not important. Appendix B has all the specifics needed for cre-
ating a blank example database in either Access, SQL Server, DB2, MySQL, or Oracle. Once you’ve
created the Film Club database, it’s time to start populating it with tables.

The basic premise is that you’re running a film club, and you want a database that stores the following
information:

❑ Club member details, such as name, address, date of birth, date they joined, and email address

❑ Meeting attendance details

❑ Film details

❑ Members’ film category preferences

These are the requirements now, though later in the book, you develop and expand the database.

You’ve already established the club membership’s details, but notice the additional fields in the follow-
ing table:

35

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 35

Field Name Data Type Notes

MemberId integer Primary key.

FirstName nvarchar(50) Change data type to vargraphic(50) in IBM DB2 and
to varchar(50) in MySQL and MS Access. In Oracle
nvarchar is not available with the default character set;
change to varchar. You must have selected Unicode
character set when creating the database to use nvarchar.

LastName nvarchar(50) Change data type to vargraphic(50) in IBM DB2 and
to varchar(50) in MySQL and MS Access. In Oracle
nvarchar is not available with the default character set;
change to varchar. You must have selected Unicode
character set when creating the database to use nvarchar.

DateOfBirth date Change data type to datetime in MS SQL Server.

Street varchar(100)

City varchar(75)

State varchar(75)

ZipCode varchar(12)

Email varchar(200)

DateOfJoining date Change data type to datetime in MS SQL Server.

Notice that the name and address fields are split into smaller parts. Name is split into FirstName and
LastName; address is split into Street, City, State, and ZipCode. Splitting name and address data makes
searching for specific data more efficient. If you want to search for all members in New York City, then
you simply search the City field. If you store street, city, state, and zip code in one address field, search-
ing by city is very difficult.

Create the SQL table creation code. If you prefer, you can use your RDBMS’s management console to cre-
ate the table.

CREATE TABLE MemberDetails
(

MemberId integer,
FirstName nvarchar(50),
LastName nvarchar(50),
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

);

36

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 36

Depending on which RDBMS you’re using, you need to change some of the data types as outlined in the
preceding table. Also, if you're using IBM's DB2 then varchar type is vargraphic. If you're using MS SQL
then date is datetime. In MYSQL and MS Access nvarchar needs to be varchar.

The next table to create is the Attendance table, which contains the following fields and data types:

Field Name Data Type Notes

MeetingDate date Change data type to datetime if using MS SQL Server

Location varchar(200)

MemberAttended char(1)

MemberId integer Foreign key linking to MemberDetails table

The Attendance table is unchanged from the previous discussion of the Film Club database. The SQL to
create the Attendance table is as follows:

CREATE TABLE Attendance
(

MeetingDate date,
Location varchar(200),
MemberAttended char(1),
MemberId integer

);

What could the unique primary key be for this table? If you assume that you have only one meeting a
day in any one location, then a combination of the meeting date and meeting location provides a unique
reference. If it were possible, there could be one or more meetings on the same day in the same location,
but at different times. In such an instance, you need to store meeting time as well as the meeting date —
by having an extra column called MeetingTime. You could then use MeetingDate, MeetingTime, and
Location to provide a unique key, or you could create a column called MeetingId containing a unique
integer for each meeting to use as the primary key. This sort of situation requires you to go back and ask
whomever the database is for what their requirements are and then design your database based on the
information they provide, because it’s better to get it right from the start.

You still have to add tables to store the following information:

❑ Film details

❑ Members’ film category preferences

A new table called Films needs to be created. The information to be stored in the Films table is as follows:

❑ Film name

❑ Year of release

❑ Brief plot summary

❑ Film’s availability on DVD

❑ User film ratings (for example, 1–5, where 1 is awful beyond belief and 5 is an all-time classic)

37

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 37

Finally, you need to assign each film a category — for example, horror, action, romance, and so on.

The following table outlines the Films table’s contents:

Field Name Data Type Notes

FilmId integer Primary key

FilmName varchar(100)

YearReleased integer

PlotSummary varchar(2000) Change to memo data type if using MS Access or to
the text data type if using MySQL

AvailableOnDVD char(1)

Rating integer

CategoryId integer Foreign key

Before going further, there are two points to note regarding the field definitions. First, the PlotSummary
field is a varchar data type, except when used in MS Access, which only supports varchar with a size
of up to 255 characters. Because you need to store up to 2000 characters, you must use Access’s memo
field, which allows you to store up to 65,536. You can’t specify length; it’s set at a maximum of 65,536
characters, which is equivalent to a varchar(65536) data type.

The second point to note pertains to the CategoryId field. It is a foreign key field, which means that its
value is the primary key field in another table, and it provides a way of relating the two tables. The table
containing the primary key to which the Films table links is the FilmCategory table, which you will cre-
ate shortly. First, though, the SQL to create the Films table is as follows:

CREATE TABLE Films
(

FilmId integer,
FilmName varchar(100),
YearReleased integer,
PlotSummary varchar(2000),
AvailableOnDVD char(1),
Rating integer,
CategoryId integer

);

After creating the Films table, you can create the FilmCategory table, which contains the following data:

Field Name Data Type Notes

CategoryId integer Primary key

Category varchar(100)

38

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 38

The FilmCategory table is very small and simple. The SQL you need to create it is likewise very simple:

CREATE TABLE Category
(

CategoryId integer,
Category varchar(100)

);

The final table you need to create is called FavCategory, and it stores each member’s favorite film
categories:

Field Name Data Type Notes

CategoryId integer Foreign key

MemberId integer Foreign key

As you can see, it’s a very simple table! Both CategoryId and MemberId are foreign keys, the first from
the Category table and the second from the MemberDetails table. Combined, they make up a unique pri-
mary key. The SQL to create the FavCategory table is as follows:

CREATE TABLE FavCategory
(

CategoryId integer,
MemberId integer

);

Creating the FavCategory table completes the basic database structure. As you can see, creating a
database is actually fairly easy! Chapter 4 covers more complex examples and options, but what you
learned in this chapter lays a good foundation of database creation.

Summary
This chapter walked you through the fundamentals of SQL and database design and provided you with
instruction on how to write the SQL code necessary to create a database’s structure. You now have
enough knowledge to start designing your own databases.

In this chapter, you discovered the following:

❑ Databases are an efficient way to store large amounts of raw data. They don’t process the data;
that’s left to the application that uses the data.

❑ Databases make sharing data easier than do other means, such as text files, spreadsheets, or
other documents. They also allow secure data sharing and allow you to define the levels of user
access. You can limit what you let others do to your database’s data.

❑ Relational databases contain tables and fields and provide ways of relating data in different
tables and ways of ensuring that any data entered is valid and doesn’t corrupt the database.

39

Introduction to SQL

05_577328 ch01.qxd 1/28/05 11:23 PM Page 39

❑ Databases are part of a larger software application called a database management system (DBMS).

❑ SQL is a declarative programming language, that is, you use it to specify the answers you want
and leave the DBMS to work out how to get them.

After getting the basics under your belt, you got down to some practical work. In particular, you created
a database and learned the basics of SQL and table creation. In doing so, you found out the following:

❑ How databases are organized. You saw that databases are composed of tables, which them-
selves are composed of records, and that each record is split into fields or columns.

❑ How to create a database. You learned that you can create a database either with the RDBMS’s
management tools or with SQL statements.

❑ Different types of data are stored differently. You learned that databases support a number
of different data types for storing text (char and varchar), numbers (integer, real, and
decimal), and time and dates (time and date). These are just the basic data types, and
most RDBMSs support many more data types.

❑ The principles of good database design.

Finally, at the end of the chapter, you created the book’s example database using the techniques and
code covered earlier in the chapter. In the next chapter, you learn how to add, update, and delete data
using SQL. Don’t forget to have a go at the exercises!

Exercises
1. As it happens, the film club holds meetings regularly in several different locations, which means

a lot of redundancy in the Attendance table. What changes could you make to the database table
structure?

2. Write the necessary SQL to complete the changes required by Exercise 1 and at the same time
split the location’s address details into street, city, and state.

40

Chapter 1

05_577328 ch01.qxd 1/28/05 11:23 PM Page 40

2
Entering Information

The last chapter examined creating a database and adding tables, so now you’re ready to start
adding data. Most RDBMSs provide management tools that allow you to view tables and the
records they hold, as well as allowing you to add, modify, and delete the data. These tools are very
convenient when you have small amounts of data or when you’re just testing the database.
However, you don’t generally enter data using the management tools. Much more common is
some sort of program or Web page that acts as a pleasant front end into which the user enters and
views data. This chapter’s focus is on how to use SQL statements to insert, update, or delete data
contained in a database.

This chapter covers the three SQL statements that deal with altering data. The first is the INSERT
INTO statement, which inserts new data. The UPDATE statement updates existing data in the
database. Finally, this chapter covers the DELETE statement, which (surprise, surprise) deletes
records.

Inserting New Data
The INSERT INTO statement makes inserting new data into the database very easy. All you need
to do is specify into which table you want to insert data, into which columns to insert data, and
finally what data to insert. The basic syntax is as follows:

INSERT INTO table_name (column_names) VALUES (data_values)

This line of code adds a record to the Category table:

INSERT INTO Category (CategoryId, Category) VALUES (1, ‘Thriller’);

You can see that inserting data is simply a matter of listing each column name (separated by a
comma) in the brackets after the table name. In the brackets after the VALUES statement, simply list
each item of data to go into the matching column and separate each with a comma. Character and
date data must be wrapped up inside single quotes. Delimiters are unnecessary around numerical
data; simply insert them as is. If you load your RDBMS’s SQL editor, connect to your Film Club
database, and then enter and execute the statement, the following record is added to the Category
table:

06_577328 ch02.qxd 1/28/05 11:29 PM Page 41

CategoryId Category

1 Thriller

To check whether it worked, either use your RDBMS’s management tools to view table data or use the
following SQL statement:

SELECT * FROM Category

This statement displays all the records in the Category table. Chapter 3 covers the full details of the
SELECT statement. For now, just use it to ensure that the INSERT INTO statement worked.

Once you make sure the first INSERT statement works, you can insert more values into your Category
table:

INSERT INTO Category (CategoryId, Category) VALUES (2, ‘Romance’);
INSERT INTO Category (CategoryId, Category) VALUES (3, ‘Horror’);
INSERT INTO Category (CategoryId, Category) VALUES (4, ‘War’);
INSERT INTO Category (CategoryId, Category) VALUES (5, ‘Sci-fi’);

Now your Category table should contain the following values:

CategoryId Category

1 Thriller

2 Romance

3 Horror

4 War

5 Sci-fi

Check whether yours does by using the following SELECT statement:

SELECT * FROM Category

You can specify the column names in any order you like, so you could also write the above SQL as
follows:

INSERT INTO Category (Category, CategoryId) VALUES (‘Historical’, 6);

Regardless of category order, SQL performs exactly the same way, as long as you match column names
in the first set of brackets with the correct data in the second set.

If you want to, you can leave off the column names altogether. You can write the code:

INSERT INTO Category (CategoryId, Category) VALUES (6, ‘Historical’)

42

Chapter 2

06_577328 ch02.qxd 1/28/05 11:29 PM Page 42

like this:

INSERT INTO Category VALUES (6, ‘Historical’)

The RDBMS interprets it as meaning the following:

INSERT INTO Category (CategoryId, Category) VALUES (6, ‘Historical’)

The RDBMS decides the columns’ order based on their order when you defined the table. Remember
that you defined the Category table with CategoryId first and Category second, like this:

CREATE TABLE Category
(

CategoryId integer,
Category varchar(100)

)

You defined your MemberDetails table like this:

CREATE TABLE MemberDetails
(

MemberId integer,
FirstName nvarchar(50),
LastName nvarchar(50),
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

)

Based on this information, the column order is MemberId, FirstName, LastName, DateOfBirth, Street,
City, State, ZipCode, Email, DateOfJoining.

Writing the following INSERT INTO statement:

INSERT INTO MemberDetails
VALUES
(
1,
‘Katie’,
‘Smith’,
‘1977-01-09’,
‘Main Road’,
‘Townsville’,
‘Stateside’,
‘123456’,
‘katie@mail.com’,
‘2004-02-23’

);

makes the MemberDetails table look like this:

43

Entering Information

06_577328 ch02.qxd 1/28/05 11:29 PM Page 43

Member First Last Date Zip Date
Id Name Name OfBirth Street City State Code Email OfJoining

1 Katie Smith 1977-01-09 Main Townsville Stateside 123456 Katie@ 2004-02-23
Road mail.com

Notice that dates in the preceding table are specified in the form year-month-day, so February 23, 2004,
is entered as 2004-02-23. The exact format acceptable to each database system varies not only with the
database system but also with the way the database was first created and installed, as well as the
date/time format specified by the computer itself. However, the format year-month-day works in most
circumstances. However, the year-month-day format doesn’t work on the default installation of Oracle.
For Oracle, use the format day-month_name-year. So you would write January 9, 1977, as 9 January 1977
and February 23, 2004, as 23 Feb 2004.

The advantages of not naming the columns in your INSERT statement are that it saves typing and makes
for shorter SQL. The disadvantage is that it’s not as easy to see what data goes into which columns. For
example, in the following INSERT statement, it’s easy to match up column names to data being inserted
without having to use the management tool to remind yourself of the column names.

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
2,
‘Bob’,
‘Robson’,
‘1987-01-09’,
‘Little Street’,
‘Big City’,
‘Small State’,
‘34565’,
‘rob@mail.com’,
‘2004-03-13’

);

Of course, while it’s all fresh in your mind it’s not that hard to match column name and data. However,
how about in six months or a year’s time when you’re asked to change the database structure or even to
identify bugs? Your code is a little more readable if the column names are in there.

That’s pretty much all there is to the INSERT INTO statement, so now you can finish it off by inserting
data into the Film Club database.

44

Chapter 2

06_577328 ch02.qxd 1/28/05 11:29 PM Page 44

Inserting Data into the
Case Study Database

You’ve already inserted six records into the Category table and two records into the MemberDetails
table. For the rest of the data to be inserted, you can turn to Appendix C to add the remaining data. Note
that Appendix C and the book’s downloadable files include for completeness the six records you already
added to the Category table and the two MemberDetails records, so if you’ve already added them, don’t
add them a second time. Note that some RDBMSs allow you to insert all the data at once; others, such as
MS Access, require you to insert one SQL statement at a time.

Now that you’ve got some data in the database, take a look at how you can alter it.

Updating Data
Not only do you need to add new records, but at some point you also need to change the records. To
update records, you use the UPDATE statement. Specifying which records to change is the main differ-
ence between inserting new data and updating existing data. You specify which records to update with
the WHERE clause, which allows you to specify that the only records to update are those where a certain
condition is true. For example, say film club member Steve Gee has changed his address. His MemberId
is 4, so you could tell the database to update the address where the MemberId is 4.

You don’t, however, have to update all the details in a record. As in the example of Steve’s change of
address, only his address changes, not his name, date of birth, and so on. The UPDATE statement allows
you to set which fields to update and with what data to update the field. The basic syntax of the UPDATE
statement is as follows:

UPDATE table_name
SET column_name = value
WHERE condition

Start with a simple example, where film club member Steve Gee’s new address is the following:

45 Upper Road
New Town
New State
99112

Keep in mind that Steve’s MemberId is 4. The SQL needed to make the changes is shown below:

UPDATE MemberDetails
SET
Street = ‘45 Upper Road’,
City = ‘New Town’,
State = ‘New State’,
ZipCode = ‘99112’
WHERE MemberId = 4;

45

Entering Information

06_577328 ch02.qxd 1/28/05 11:29 PM Page 45

Now Steve’s record looks like this:

Member First Last Date Zip Date Of
Id Name Name OfBirth Street City State Code Email Joining

4 Steve Gee Oct 5, 45 Upper New Town New State 99112 steve@ Feb 22
1967 Road gee.com 2004

Looking at the code, first you specified which table to update with the following UPDATE statement:

UPDATE MemberDetails

In the SET clause, you specified each column name and the new value each should hold:

Street = ‘45 Upper Road’,
City = ‘New Town’,
State = ‘New State’,
ZipCode = ‘99112’

As you can see in the example, with the UPDATE statement, you can use the SET clause to specify one or
more columns to be updated; you just need to separate each column and name/value pair with a
comma. Finally, you have the WHERE clause:

WHERE MemberId = 4

This clause says to update all records where the MemberId column has a value equal to 4. Because the
MemberId is the unique primary key value in the MemberDetails table, this means that only one record
is changed. However, if there is more than one match, then every matching record’s column values are
updated. For example, say the people of Big Apple City get bored with their city’s name and want to
change it to Orange Town. To make this update in your database, you’d write the following SQL:

UPDATE MemberDetails
SET City = ‘Orange Town’
WHERE City = ‘Big Apple City’;

Execute this SQL in your RDBMS’s SQL tool, and the two records in the MemberDetails table that have a
City column with the value Big Apple City are changed to Orange Town. However, it would be easy
to forget that the Location table also contains City names, one of which is Big Apple City. You also
need to update the Location table with this query:

UPDATE Location SET City = ‘Orange Town’ WHERE City = ‘Big Apple City’;

The ability to update more than one record at once is very powerful, but watch out! If you get your
WHERE clause wrong, you could end up corrupting your database’s data. And if you leave out the WHERE
clause altogether, all records are updated in the specified table.

For the most part, the UPDATE statement is pretty simple. However, you need to examine the WHERE
clause in more detail, because it’s significantly more complicated.

46

Chapter 2

06_577328 ch02.qxd 1/28/05 11:29 PM Page 46

The WHERE Clause
So far you’ve seen only a situation in which the database system performs an update if a column is equal
to a certain value, but you can use other comparisons as well. The following table details a few of the
fundamental comparison operators.

Comparison Example Matches All Records in
Operator Name Example Film Table Where Rating Is...

= Equals WHERE Rating = 5 5

<> Not equal to WHERE Rating <> 1 2, 3, 4, or 5

> Greater than WHERE Rating > 2 3, 4, or 5

< Less than WHERE Rating < 4 1, 2, or 3

>= Greater than WHERE Rating >= 3 3, 4, or 5
or equal to

<= Less than or WHERE Rating <= 2 1 or 2
equal to

The preceding table uses the Film table’s Rating column in the Example and Example Matches columns.
The comparison operators work with numerical fields, date fields, and text fields. In fact, they work with
most data types, though there are exceptions. For example, some RDBMSs support the Boolean data
type, which can be one of two values —true or false. It doesn’t make sense to use operators other than
the “equals” or “not equal to” operators with that data type.

With text-based data types, the operators >, <, >=, and <= make a comparison that equates to alphabeti-
cal order. For example, a is less than b in the alphabet, so to select all values in the column field where
the first letter is lower than f in the alphabet, you use the following clause:

UPDATE SomeTable SET SomeColumn = ‘SomeValue’ WHERE Column < ‘f’;

The same principle applies to dates: January 1, 2005, is less than February 1, 2005.

Continuing the film club example, imagine that Sandra Jakes marries Mr. William Tell and that you need
to update her surname to Tell.

UPDATE MemberDetails SET LastName = ‘Tell’ WHERE MemberId = 3;

This code fragment tells the database to update the MemberDetails table, changing the LastName field
to the text value Tell for all records where the MemberId is equal to 3. In this case, because the
MemberId field stores a unique number for each record, only one record is changed. Alternatively, you
could have used the following SQL to update the record:

UPDATE MemberDetails SET LastName = ‘Tell’ WHERE LastName = ‘Jakes’;

47

Entering Information

06_577328 ch02.qxd 1/28/05 11:29 PM Page 47

This would work fine with the records currently in the MemberDetails table, because at the moment
only one person has the surname Jakes, though there’s no guarantee that it will remain the only one. If
you have two or more member with the surname Jakes, the SQL would update each record to match the
WHERE statement.

So far your WHERE statement has just checked for one condition, such as LastName = 3. However, as you
see in the next section, you can check more than one condition.

The Logical Operators AND and OR
The AND and OR logical operators allow you to test more than one condition in a WHERE statement. Their
meanings in SQL and their meanings in English are almost identical. The AND operator means that both
the condition on the left-hand side of the operator and the condition on the right-hand side must be true.

WHERE MyColumn = 132 AND MyOtherColumn = ‘TEST’

The condition on the left-hand side of the operator is as follows:

MyColumn = 132

The following condition is on the right-hand side of the AND operator:

MyOtherColumn = ‘TEST’

For the overall WHERE statement to be true, both conditions must also be true. For example, MyColumn
must equal 132 and MyOtherColumn must equal TEST.

Returning to the example database and the MemberDetails table, the street New Lane in Big Apple City
has changed its name to Newish Lane. To update all the appropriate records in the MemberDetails table,
you need to check for records where the street name is New Lane and the city is Big Apple (after all,
there could be another New Lane in another city). Use this SQL to update the records:

UPDATE MemberDetails SET Street = ‘Newish Lane’ WHERE Street = ‘New Lane’
AND City = ‘Orange Town’;

Notice that the AND clause is on its own separate line. That’s not necessary; it’s done here simply to
improve readability. When the SQL is executed, any cities with the name Orange Town and the street
name New Lane have their Street column updated and set to the value Newish Lane. There are two
records in the MemberDetails table that match the criteria, and hence they are updated.

The other logical operator mentioned is the OR operator, which means that the condition is true and the
record updates where one or both of the expressions are true. For example,

WHERE MyColumn = ‘10’ OR MyOtherColumn = ‘TEST’

The WHERE clause is true and the record updates if MyColumn equals 10, MyOtherColumn equals TEST,
or both MyColumn equals 10 and MyOtherColumn equals TEST.

Now that you’re familiarized with the AND and OR logical operators, you can use them to update records
in your database.

48

Chapter 2

06_577328 ch02.qxd 1/28/05 11:29 PM Page 48

Try It Out Using Logical Operators to Update Database Records
A new president has decided that Small State and Stateside states should merge into one new state
called Mega State. You need to update the database to reflect these changes. Remember that you store
details of states in the Location and the MemberDetails tables, so you need to update both tables.

1. Enter this SQL to update the two records in the MemberDetails table:

UPDATE MemberDetails
SET State = ‘Mega State’
WHERE
State = ‘Small State’
OR
State = ‘Stateside’;

This statement updates the two records in the MemberDetails table. The SQL to do the same for
the Location table is identical except that the name of the table being updated has to be changed.

2. Enter the following SQL to update the records in the Location table:

UPDATE Location
SET State = ‘Mega State’
WHERE
State = ‘Small State’
OR
State = ‘Stateside’;

How It Works
The only difference between these two statements is the name of the table affected by the UPDATE state-
ments; otherwise, they are identical. The first bit of SQL tells the database to update the MemberDetails
table where the State column holds a value of either Small State or Stateside. The second SQL frag-
ment tells the database to update the Location table where the State column holds a value of either
Small State or Stateside. The State field in both tables should now be Mega State.

So far you’ve used only one AND or OR operator in each WHERE clause, but you can include as many,
within reason, as you like. You can also mix AND and OR operators in the same WHERE clause.

The WHERE clause is vital to selecting data from the database, something covered in great detail in
Chapter 3. Everything that applies to the WHERE clause in Chapter 3 also applies to the WHERE clause of
an UPDATE statement.

Deleting Data
So far in this chapter, you’ve learned how to add new data and update existing data, so all that remains
to learn is how to delete data. The good news is that deleting data is very easy. You simply specify which
table to delete the records from, and if required, you add a WHERE clause to specify which records to
delete.

49

Entering Information

06_577328 ch02.qxd 1/28/05 11:29 PM Page 49

If you want to delete all the records from a table, you simply leave out the WHERE clause, as shown in the
following statement:

DELETE FROM MemberDetails;

The preceding SQL fragment deletes all the records in the MemberDetails table. Don’t execute it or else
you’ll have to enter the records again. If you want to delete some of the records, you use the WHERE
clause to specify which ones:

DELETE FROM MemberDetails WHERE MemberId = 3;

Enter and execute this SQL. This SQL deletes all records from the MemberDetails table where the
MemberId column has a value of 3. Because it holds a unique value, only the details of Sandra Tell are
deleted — she is the only person whose MemberId is 3. Now that Sandra is gone from the membership,
you also need to delete her details from the FavCategory and Attendance tables. Use the following state-
ments to do so:

DELETE FROM Attendance WHERE MemberId = 3;
DELETE FROM FavCategory WHERE MemberId = 3;

Everything that applies to the WHERE clause when used with the UPDATE statement also applies to the
DELETE statement.

Summary
For now, that completes your introduction to adding, updating, and deleting data. This chapter covered
the following:

❑ How to add new records to a database using the INSERT INTO statement. To add a new record,
you must specify which table the record should go into, which fields you assign values to, and
finally the values to be assigned.

❑ Next you looked at how to update data already in the database using the UPDATE statement,
which specifies which table’s records receive updates, as well as the fields and new values
assigned to each record. Finally, you learned that the WHERE clause specifies which records in the
table receive updates. If you don’t use a WHERE clause, all records in the table receive updates.

❑ The final statement covered in this chapter was the DELETE statement, which allows you to
delete records from a table. You can either delete all records or use a WHERE clause to specify
which records you want to delete.

This chapter only touched on the basics; Chapter 3 shows you how to take data from one table and use it
to insert data from one table into a second table. Chapter 3 also examines the WHERE clause in greater
depth.

50

Chapter 2

06_577328 ch02.qxd 1/28/05 11:29 PM Page 50

Exercises
1. Three new members have joined the film club. Add the following details to the database:

Member ID: 7
First Name: John
Last Name: Jackson
Date of Birth: May 27, 1974
Street: Long Lane
City: Orange Town
State: New State
Zip Code: 88992
Email: jjackson@mailme.net
Date of Joining: November 21, 2005

Member ID: 8
First Name: Jack
Last Name: Johnson
Date of Birth: June 9, 1945
Street: Main Street
City: Big City
State: Mega State
Zip Code: 34566
Email: jjohnson@me.com
Date of Joining: June 2, 2005

Member ID: 9
First Name: Seymour
Last Name: Botts
Date of Birth: October 21, 1956
Street: Long Lane
City: Windy Village
State: Golden State
Zip Code: 65422
Email: Seymour@botts.org
Date of Joining: July 17, 2005

You need to ensure that the date format matches the format expected by your database system.
Remember that Oracle accepts day-month-year format (23 January 2004), whereas the other four
databases expect the format year-month-day, such as 2004-01-23.

2. Bob Robson, MemberId 2, took a job in Hollywood and left the club. Delete his details from
the database. Remember to delete not only his membership details but also his film category
preferences.

3. The government has decided to reorganize the boundaries of Orange Town. All residents living
on Long Lane in Orange Town now live in Big City. Update the database to reflect this change.

51

Entering Information

06_577328 ch02.qxd 1/28/05 11:29 PM Page 51

06_577328 ch02.qxd 1/28/05 11:29 PM Page 52

3
Extracting Information

So far you’ve learned how to set up a database and how to insert data into it, so now you can learn
how to extract data from your database. Arguably, SQL’s most powerful feature is its ability to
extract data, and extracting data can be as simple or complex as you require. You can simply
extract data in the same form in which it was entered into the database, or you could query the
database and obtain answers to questions that are not obvious from the basic data. In your exam-
ple database, you can use SQL to find out which meeting locations are most popular, or you could
find out which meeting locations are most popular for which film category. It might turn out that
Windy Village has a particularly large number of sci-fi fans. If the film club decides to show a film
at that location, you would be aware that a sci-fi film is likely to be popular. The ability to ask the
database questions and get answers via SQL queries makes SQL so popular and useful.

The key to getting data out is the SELECT statement, which in its basic form is very simple and
easy to use. However, as you go through this chapter and then the advanced chapters, you see lots
of extra options that make the SELECT statement very powerful. Before getting too complicated,
however, you need to familiarize yourself with the SELECT statement.

The SELECT Statement
At its simplest, the SELECT requires you to tell it which columns and from what table you want to
obtain data. The basic syntax is as follows:

SELECT column1, column2,.....columnx FROM table_name

Using the basic syntax, the SQL required to select the MemberId and FirstName columns from all
records in the MemberDetails table is

SELECT MemberId, FirstName FROM MemberDetails;

The order in which you list the columns in the SELECT statement determines the order in which
they are returned in the results. The preceding query returns this order:

07_577328 ch03.qxd 1/28/05 11:21 PM Page 53

MemberId FirstName

1 Katie

3 Sandra

4 Steve

5 John

6 Jenny

7 John

8 Jack

9 Seymour

The order of the results in the example database table usually reflects on the order in which the records
were first entered into the database, but the order is not guaranteed, so don’t worry if your order looks
different from what appears in the preceding table. Chapter 4 shows you how to create a columns index
on columns to determine the order of results. Later in this chapter, you learn how to use the ORDER BY
clause to specify the order in which records are returned.

Specifying which columns you want returned is fine, but sometimes you may want all of the columns,
which is a lot of typing if your table has many fields. The good news is that SQL provides a shorthand
way of selecting all the columns without having to type out all their names. Instead of typing the col-
umn names, just type an asterisk:

SELECT * FROM Location;

The preceding code fragment is the same as writing the following:

SELECT LocationId, Street, City, State FROM Location;

Both lines of code return the following results:

LocationId Street City State

1 Main Street Orange Town New State

2 Winding Road Windy Village Golden State

3 Tiny Terrace Big City Mega State

However, use shorthand only when you need all the columns, otherwise you make the database system
provide information you don’t need, which wastes CPU power and memory. Memory and CPU power
may not matter on a small database, but they make a huge difference on a large database being accessed
by many people.

54

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 54

Returning Only Distinct Rows
If you want to know all the unique values in a record, how would you go about retrieving them? The
answer is by using the DISTINCT keyword. The DISTINCT keyword is added to the SELECT statement’s
column listing, directly after the SELECT keyword. For example, if someone asks you which cities mem-
bers come from, you could try a query similar to the following:

SELECT City FROM MemberDetails;

Executing the query gives you the following results:

City

Townsville

Orange Town

New Town

Orange Town

Orange Town

Big City

Windy Village

As you can see, Orange Town is listed three times because there are three members from that city. But if
you simply want a list of the unique places that members live in, you could add the DISTINCT keyword:

SELECT DISTINCT City FROM MemberDetails;

Executing the modified query gives these results:

City

Big City

New Town

Orange Town

Townsville

Windy Village

This time, Orange Town is mentioned just once. The DISTINCT keyword works on all columns in combi-
nation; all the columns listed in the SELECT statement must be unique. If you change the previous query
to include MemberId, which is unique for every single row, and rerun the query, you end up with all
the rows:

SELECT DISTINCT City, MemberId FROM MemberDetails;

55

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 55

The results are as follows:

City MemberId

Big City 8

New Town 4

Orange Town 5

Orange Town 6

Orange Town 7

Townsville 1

Windy Village 9

Orange Town appears three times because MemberId is unique on each row. In fact, using the DISTINCT
keyword where one of the columns is always unique is pointless.

Using Aliases
Just as James Bond is also known by the alias 007, you can give column names an alias in the results. An
alias is simply a secondary or symbolic name for a collection of data. If, for example, instead of
LastName you want your results to return an alias called Surname, you would write the following
query:

SELECT LastName AS Surname FROM MemberDetails;

Specifying Surname with the AS keyword tells the database system that you want the results to be
known as the alias Surname. Using an alias doesn’t change the results returned in any way, nor does it
rename the LastName in the MemberDetails tables. It affects only the name of the column in the results
set. Using aliases may not seem that useful right now, but later on in the book you use aliases as a short-
hand way of referring to table names, among other uses.

So far all the data from tables has been returned, but what if you just want specific data — for example,
details of members older than 60 years old? In such a case, you need to use a WHERE clause, which is the
topic of the next section.

Filtering Results with the WHERE Clause
Although you may occasionally have to select all the records in a table, it’s much more common to filter
results so that you get only the information you want. For example, you could filter query results to find
out all the names of members living in New State. In Chapter 2 you saw how you can use the WHERE
clause to update or delete specific records. You can also use the WHERE clause with SELECT statements to
filter results so that you get back only the data you want.

56

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 56

The good news is that everything you learned in Chapter 2 about the WHERE clause can be applied to
WHERE clauses used with SELECT statements. This chapter delves even deeper into WHERE clauses and
looks at some of the more sophisticated stuff not covered in Chapter 2.

To recap briefly, the WHERE clause allows you to set one or more conditions that must be satisfied by each
record before it can form part of the results. So if you were asked for a list of members who live in Big
City, you would need to specify that the column City must be equal to Big City. The SQL for such a
request appears below:

SELECT FirstName + ‘ ‘ + LastName AS [Full Name]
FROM MemberDetails
WHERE City = ‘Big City’;

The query provides the following results:

Full Name

John Jackson

Jack Johnson

You can also use the operators you saw in Chapter 2 to find out the names of all the films released before
1977:

SELECT FilmName
FROM Films
WHERE YearReleased < 1977

This query gives these results:

FilmName

On Golden Puddle

Planet of the Japes

The Maltese Poodle

Soylent Yellow

However, if you want to find out which films were released in or before 1977, then change the “less
than” operator (<) to a “less than or equal to” (<=) operator:

SELECT FilmName
FROM Films
WHERE YearReleased <= 1977

57

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 57

The results to this query also include The Lion, the Witch, and the Chest of Drawers, a film released in 1977:

FilmName

On Golden Puddle

The Lion, the Witch, and the Chest of Drawers

Planet of the Japes

The Maltese Poodle

Soylent Yellow

Before moving on, you should note that while MS Access is happy inserting dates delimited (enclosed
by single quotes), when it comes to SELECT statements and WHERE clauses, Access requires any date
literals to be enclosed by the hash (#) symbol. For example, consider the following code:

WHERE DateOfBirth < #2005-12-23#

SQL queries are all about finding answers to questions. The following Try It Out provides a few ques-
tions and shows you how SQL can provide answers.

Try It Out Querying Your Database
Five new members have joined the club, so their details need to be added to the database. The following
steps detail how you would add the new members to the Film Club database:

1. Enter the SQL code into your database or download the code from www.wrox.com and then
execute it. Included are the new members’ information and INSERT statements to record their
favorite category of films. Note that if you’re using Oracle, the date formats must be changed
from their current format of year-month-day to the day-month-year format.

INSERT INTO
MemberDetails (MemberId,
FirstName,LastName,DateOfBirth,Street,City,State,ZipCode,Email,DateOfJoining)
VALUES
(

10, ‘Susie’,’Simons’,’1937-1-20’,’Main Road’,’Townsville’,
‘Mega State’,’123456’,’susie@mailme.com’,’2005-08-20’

);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (1, 10);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (3, 10);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (6, 10);

INSERT INTO

58

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 58

MemberDetails (MemberId,
FirstName,LastName,DateOfBirth,Street,City,State,ZipCode,Email,DateOfJoining)
VALUES
(

11, ‘Jamie’,’Hills’,’1992-07-17’,’Newish Lane’,’Orange Town’,
‘New State’,’88776’,’jamie@the_hills.com’,’2005-08-22’

);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (4, 11);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (3, 11);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (5, 11);

INSERT INTO
MemberDetails (MemberId,
FirstName,LastName,DateOfBirth,Street,City,State,ZipCode,Email,DateOfJoining)
VALUES
(

12, ‘Stuart’,’Dales’,’1956-08-07’,’Long Lane’,’Windy Village’,
‘Golden State’,’65422’,’sdales@mymail.org’,’2005-08-27’

);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (1, 12);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (4, 12);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (6, 12);

INSERT INTO
MemberDetails (MemberId,
FirstName,LastName,DateOfBirth,Street,City,State,ZipCode,Email,DateOfJoining)
VALUES
(

13, ‘William’,’Doors’,’1994-05-28’,’Winding Road’,’Big City’,
‘Mega State’,’34512’,’knockon@thedoors.com’,’2005-08-29’

);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (3, 13);

INSERT INTO

59

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 59

FavCategory (CategoryId, MemberId)
VALUES (5, 13);

INSERT INTO
MemberDetails (MemberId,
FirstName,LastName,DateOfBirth,Street,City,State,ZipCode,Email,DateOfJoining)
VALUES
(

14, ‘Doris’,’Night’,’1997-05-28’,’White Cliff Street’,’Dover’,
‘Golden State’,’68122’,’dnight@whitecliffs.net’,’2005-09-02’

);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (2, 14);

INSERT INTO
FavCategory (CategoryId, MemberId)
VALUES (6, 14);

2. Query the database to find the names and addresses of members who joined in January 2005
using this SQL:

SELECT FirstName, LastName, Street, City, State, ZipCode
FROM MemberDetails
WHERE DateOfJoining >= ‘2005-01-01’ AND DateOfJoining <= ‘2005-01-31’;

Remember to change the date format for Oracle. Also, for MS Access, you need to enclose date
literals inside the hash sign (#) rather than single quotes. Use the following statement for
Access:

SELECT FirstName, LastName, Street, City, State, ZipCode
FROM MemberDetails
WHERE DateOfJoining >= #2005-01-01# AND DateOfJoining <= #2005-01-31#;

3. Query the database to find the names of members over 16 years of age who live in New State
using this SQL:

SELECT FirstName, LastName
FROM MemberDetails
WHERE DateOfBirth <= ‘1989-05-01’ AND State = ‘New State’;

Again, remember to change the date format for Oracle and the single quotes around the date
value to the hash (#) symbol.

How It Works
In the first step, you inserted new data into the database using a series of INSERT INTO statements. You
added five new members, plus details of their favorite film categories. Next came the SQL SELECT state-
ments required to answer each of the three questions.

Begin your SELECT statement by choosing which columns and from what table it obtains its data. The
MemberDetails table contains information on members’ names, addresses, and joining dates. Within the

60

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 60

MemberDetails table, the columns FirstName, LastName, Street, City, State, and ZipCode contain all the
information you need. So the SELECT statement begins with the following:

SELECT FirstName, LastName, Street, City, State, ZipCode
FROM MemberDetails

As it stands, that statement returns all the records, but now add a WHERE clause to select only those
records where the joining date falls between January 1, 2005, and January 31, 2005. You need to check the
DateOfJoining column to see if the value is greater than January 1 but less than or equal to January 31:

WHERE DateOfJoining >= ‘2005-01-01’ And DateOfJoining <= ‘2005-Jan-31’

Adding the WHERE clause to the SELECT statement generates the following results:

FirstName LastName Street City State Zip

John Jones Newish Lane Orange Town New State 88776

Jenny Jones Newish Lane Orange Town New State 88776

The next query asks for the names of all members older than 16 years of age who live in New State. This
time the data you want is first name and last name, again from the MemberDetails table:

SELECT FirstName, LastName
FROM MemberDetails

Next comes the WHERE clause, which must specify that the member’s age is greater than 16 and that he
or she lives in New State. Assuming that today’s date is May 31, 2005, anyone born after that date is less
than 16 years old. So far, the WHERE clause looks like this:

WHERE DateOfBirth <= ‘1989-05- 31’

However, for the record to be included in the results, its State column must equal New State. So the
final query looks like this:

SELECT FirstName, LastName
FROM MemberDetails
WHERE DateOfBirth <= ‘1989-05- 31’ AND State = ‘New State’;

Both DateOfBirth and State conditions must be true; hence the use of the AND operator. The results of the
query are as follows:

FirstName LastName

John Jackson

Steve Gee

John Jones

Jenny Jones

61

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 61

Logical Operators and Operator Precedence
With the AND and OR operators out of the way, this section introduces a few more useful operators. This
section also examines operator precedence, or the rules that determine the order in which operators are
evaluated when there is more than one operator in a condition.

The effects of incorrect operator precedence are numerous, so you need to be familiar with operator
precedence before you can manipulate SQL to its full advantage.

Introducing Operator Precedence
The American Declaration of Independence states that all men are created equal, but it fails to mention
anything about operators. If it did, it would have to say that all operators are definitely not created
equal. A hierarchy of operators determines which operator is evaluated first when a condition has multi-
ple operators. If all the operators have equal precedence, then the conditions are interpreted from left to
right. If the operators have different precedence, then the highest ones are evaluated first, then the next
highest, and so on. The following table details all the logical operators. Their order in the table mirrors
their order of precedence from highest to lowest. Operators contained in the same row have the same
order of precedence; for example, OR has the same precedence as ALL.

Operator

Brackets ()

NOT

AND

ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

So far, you’ve experienced only the AND and OR operators. The next section details NOT, BETWEEN, LIKE,
and IN operators, and the remaining operators are covered in Chapter 7.

Remembering that the AND operator has precedence over the OR operator, can you guess how the follow-
ing SQL would be evaluated?

SELECT State, DateOfJoining
FROM MemberDetails
WHERE State = ‘New State’ OR State = ‘Golden State’
AND DateOfJoining >= ‘2005-08-01’;

If the AND and OR operators were of equal precedence, the preceding code would be evaluated as fol-
lows: State is equal to New State OR Golden State, AND the DateOfJoining must be greater than or equal
to August 1, 2005.

If such an interpretation were true, then it would give the following results:

62

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 62

State DateOfJoining

New State 2005-11-21

New State 2005-08-22

Golden State 2005-08-27

Golden State 2005-09-02

However, you won’t see the preceding results, because the AND operator has a higher precedence than
the OR operator, which is found in the WHERE clause of the SQL statement:

WHERE State = ‘New State’ OR State = ‘Golden State’
AND DateOfJoining >= ‘2005-08-01’;

The WHERE clause is actually evaluated like this: Is the State column equal to Golden State AND is the
DateOfJoining on or after August 1, 2005, OR is the State column equal to New State?

This interpretation gives quite different results:

State DateOfJoining

New State 2004-02-22

New State 2005-01-02

New State 2005-01-02

New State 2005-11-21

New State 2005-08-22

Golden State 2005-08-27

Golden State 2005-09-02

If you want the database to provide a list of members in New State or Mega State who joined on or after
August 1, 2005, then clearly the query results are wrong. To solve this problem, use brackets to increase
the precedence of the operators inside them, just as you would in math to differentiate between (1 + 1) _ 2
and 1 + 1 _ 2. Brackets are right at the top of the precedence hierarchy, so they are always evaluated first.
If you add brackets to the SQL statement, the condition inside the brackets is evaluated first:

SELECT State, DateOfJoining
FROM MemberDetails
WHERE (State = ‘New State’ OR State = ‘Golden State’)
AND DateOfJoining >= ‘2005-08-01’;

Because brackets are the highest precedence, the SQL statement now reads as follows: State is equal to
New State OR Golden State, AND the DateOfJoining must be greater than or equal to August 1, 2005.

63

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 63

The statement returns these results, which are exactly what you want:

State DateOfJoining

New State 2005-11-21

New State 2005-08-22

Golden State 2005-08-27

Golden State 2005-09-02

Using brackets is the key to ensuring operator precedence. Additionally, brackets can make the SQL eas-
ier to read because they make it clear which conditions are evaluated first, which is quite handy if the
conditions are quite complex. Otherwise you have to remember the order of operator precedence.

To illustrate operator precedence, try out a more complex WHERE statement where lots of brackets are
necessary. What’s required this time is a list of all the names, cities, and dates of birth of members who
live in either Townsville or Big City and are either older than 60 or younger than 16. Again, assume that
today’s date is May 31, 2005. Members under 16 years of age must have been born after May 31, 1989,
and members over 60 years of age must have been born on or before May 31, 1945.

Try It Out Increasing Operator Precedence Using Brackets
1. The film club chairperson wants to know which members live in either Townsville or Big City

and were born either before May 31, 1945, or after May 31, 1989. The SQL to answer this ques-
tion is as follows:

SELECT FirstName, LastName, City, DateOfBirth
FROM MemberDetails
WHERE
(City = ‘Townsville’ OR City = ‘Big City’)
AND
(DateOfBirth > ‘1989-05-31’ OR DateOfBirth <= ‘1945-05-31’)

If you’re using MS Access, then the date literals in the last line of code must be enclosed in hash
characters (#) rather than single quotes, as shown below. All other components of the statement
remain the same:

(DateOfBirth > #1989-05-31# OR DateOfBirth <= #1945-05-31#)

If you’re using Oracle, you may find that you need to change the date format in the last line of
code to day-month-year, as shown below. All other components of the statement remain the
same:

(DateOfBirth > ‘31 May 1989’ OR DateOfBirth <= ‘31 May 1945’)

How It Works
The SELECT part of the query is fairly straightforward:

SELECT FirstName, LastName, City, DateOfBirth
FROM MemberDetails

64

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 64

It simply tells the database system to retrieve the values from the FirstName, LastName, City, and
DateOfBirth columns of the MemberDetails table.

The WHERE clause is slightly trickier. This time, you’re looking for records where the member lives in
Townsville or Big City and is younger than 16 or older than 60. There are two main conditions: the city
the person lives in and their date of birth. You can start with the city condition:

(City = ‘Townsville’ OR City = ‘Big City’)

The other condition checks their ages:

(‘DateOfBirth’ > ‘1989-05-31’ OR DateOfBirth <= ‘1945-05-31’)

Both of the main conditions must be true for the record to be part of the results, so an AND operator is
required:

(City = ‘Townsville’ OR City = ‘Big City’)
AND
(‘DateOfBirth’ > ‘1989-05-31’ OR DateOfBirth <= ‘1945-05-31’)

You must enclose the conditions in brackets because the AND operator is of higher precedence than the
OR operator. If you don’t include brackets, SQL evaluates the AND operator first.

Putting the whole query together results in the final SQL shown below:

SELECT FirstName, LastName, City, DateOfBirth
FROM MemberDetails
WHERE
(City = ‘Townsville’ OR City = ‘Big City’)
AND
(DateOfBirth > ‘1989-05-31’ OR DateOfBirth <= ‘1945-05-31’)

Executing the query provides the following results:

FirstName LastName City DateOfBirth

Susie Simons Townsville Jan 20 1937

William Doors Big City May 28 1994

The next section examines the NOT, BETWEEN, LIKE, and IN logical operators in turn. The remaining
operators are covered later in Chapter 7.

Using Logical Operators
Now that you know how to use the AND and OR logical operators, you can learn how to use a few new
ones, starting with the NOT operator.

65

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 65

NOT Operator
Examples thus far have been filtered based on true conditions. The NOT operator, however, selects a
record if the condition is false. The following SQL selects records where the State field is not equal to
Golden State.

SELECT FirstName
FROM MemberDetails
WHERE NOT State = ‘Golden State’;

The preceding example is the same as this example:

SELECT FirstName
FROM MemberDetails
WHERE State <> ‘Golden State’;

The only difference is the use of the “not equal to” operator (<>) instead of the NOT operator. In this situ-
ation, the “not equal to” operator (<>) reads easier than the NOT operator.

You can also use the NOT operator with brackets:

SELECT City
FROM MemberDetails
WHERE NOT (City = ‘Townsville’ OR City = ‘Orange Town’ OR City = ‘New Town’);

The preceding SQL selects all records where the conditions inside the brackets are not true. In this case,
the condition inside the brackets is that the City is equal to Townsville or it is equal to Orange Town or
it is equal to New Town. Using the NOT operator is the same as saying “is not true,” which is the same as
saying “is false.” So, you could rephrase the explanation to say that the query is looking for values that
are false, that do not equal Townsville, Orange Town, or New Town. The results returned are shown
here:

City

Big City

Windy Village

Windy Village

Big City

Big City

As you see shortly, you can use the NOT operator in combination with other operators such as BETWEEN,
ANY, SOME, AND, OR, or LIKE.

BETWEEN Operator
The BETWEEN operator allows you to specify a range, where the range is between one value and another.
Until now, when you needed to check for a value within a certain range, you used the “greater than or
equal to” operator (>=) or the “less than or equal to” (<=) operator.

66

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 66

The BETWEEN operator functions exactly the same way, except it’s shorter — it saves on typing and also
makes the SQL more readable. The following SQL uses the BETWEEN operator to select films with a rating
between 3 and 5:

SELECT FilmName, Rating
FROM Films
WHERE Rating BETWEEN 3 AND 5

If you use the BETWEEN operator, you see that it provides exactly the same results as the “greater than or
equal to” (>=) and “less than or equal to” (<=) operators do. It is extremely important to remember that
the BETWEEN operator is inclusive, meaning that in the preceding code, 3 and 5 are also included in the
range.

You can use BETWEEN with data types other than numbers, such as text and dates. You can also use the
BETWEEN operator in conjunction with the NOT operator, in which case SQL selects a value that is not in
the range specified, as you see in the following Try It Out.

Try It Out Using the NOT and BETWEEN Operators
1. The film club has added more films to its database. The SQL to add the films is listed below and

must be executed against the database.

INSERT INTO Films
(FilmId, FilmName, YearReleased, PlotSummary, AvailableOnDVD, Rating, CategoryId)

VALUES
(9, ‘One Flew Over the Crow’’s Nest’,1975
‘Life and times of a scary crow.’, ‘Y’,2,3);

INSERT INTO Films
(FilmId, FilmName, YearReleased, PlotSummary, AvailableOnDVD, Rating, CategoryId)

VALUES
(10, ‘Raging Bullocks’,1980,
‘A pair of bulls get cross with each other.’, ‘N’,4,1);

INSERT INTO Films
(FilmId, FilmName, YearReleased, PlotSummary, AvailableOnDVD, Rating, CategoryId)

VALUES
(11, ‘The Life Of Bob’,1984,
‘A 7 hour drama about Bob’’s life. What fun!’, ‘Y’,1,1

INSERT INTO Films
(FilmId, FilmName, YearReleased, PlotSummary, AvailableOnDVD, Rating, CategoryId)

VALUES
(12, ‘Gone With the Window Cleaner’,1988,
‘Historical documentary on window cleaners. Thrilling’, ‘Y’,3,6);

INSERT INTO Films
(FilmId, FilmName, YearReleased, PlotSummary, AvailableOnDVD, Rating, CategoryId)

VALUES
(12, ‘The Good, the Bad, and the Facially Challenged’,1989,
‘Joe seeks plastic surgery in this spaghetti Western.’, ‘Y’,5,6);

Remember to commit the data if you’re using Oracle.

67

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 67

2. Using the following SQL, query the database to produce a list of all the films released in the
1980s that have a rating between 2 and 4 and are available on DVD. The answer should detail
the film name, date of release, rating, and availability on DVD.

SELECT FilmName, YearReleased, Rating, AvailableOnDVD
FROM Films
WHERE (YearReleased BETWEEN 1980 AND 1989)
AND
(Rating BETWEEN 2 AND 4)
AND
(AvailableOnDVD = ‘Y’);

3. Query the database to produce a list of films of any decade except the 1960s whose names are
between P and T. The answer should detail the film names. Use the following SQL to execute
the query:

SELECT FilmName
FROM Films
WHERE (YearReleased NOT BETWEEN 1960 AND 1969)
AND
(FilmName BETWEEN ‘P’ AND ‘T’);

How It Works
You begin by inserting five new films into the Films table using INSERT INTO statements. Remember to
commit the data if you’re using Oracle using the COMMIT command, unless you’ve already set the auto-
commit to on.

The SELECT clause of the first query is fairly straightforward. It simply asks the database to select
FilmName, YearReleased, Rating, and AvailableOnDVD from the Films database.

SELECT FilmName, YearReleased, Rating, AvailableOnDVD
FROM Films

Next comes the query’s WHERE clause. First, it requires that the film be from the 1980s, and therefore it
requires a range between 1980 and 1989. The BETWEEN operator is ideal for such a requirement:

WHERE YearReleased BETWEEN 1980 AND 1989

The next requirement is that the film must have a rating between 2 and 4. Again, a BETWEEN operator is
the obvious choice. Because both conditions (YearReleased and Rating) must be true, an AND operator is
required to link the two:

WHERE (YearReleased BETWEEN 1980 AND 1989)
AND
(Rating BETWEEN 2 AND 4)

Notice that each condition appears inside brackets. Using brackets is not strictly necessary, but it does
make things more readable: Brackets make it clear that an AND operator joins two unrelated conditions.

68

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 68

The final condition required is a check to see if the film is available on DVD. Again, the compulsory con-
dition is matched. If you want the right answer to the question, an AND statement must be used. This
condition is fairly simple, just a check if the AvailableOnDVD column contains a single character Y:

WHERE (YearReleased BETWEEN 1980 AND 1989)
AND
(Rating BETWEEN 2 AND 4)
AND
AvailableOnDVD = ‘Y’

Putting it all together, you have the following SQL:

SELECT FilmName, YearReleased, Rating, AvailableOnDVD
FROM Films
WHERE (YearReleased BETWEEN 1980 AND 1989)
AND
(Rating BETWEEN 2 AND 4)
AND
(AvailableOnDVD = ‘Y’)

Execute the SQL and the result is just one record:

FilmName YearReleased Rating AvailableOnDVD

Gone with the Window Cleaner 1988 3 Y

The SELECT clause of the second query is also quite straightforward. It simply asks the database system
to retrieve records from the FilmName column of the Films table:

SELECT FilmName FROM Films

The query’s first condition requires that the film must not have been released in the 1960s, or to rephrase
it, the film’s year of release must not be between 1960 and 1969. This condition requires a BETWEEN
operator:

WHERE (YearReleased NOT BETWEEN 1960 AND 1969)

The next condition requires that film’s name must begin with a letter in the range of P to T:

WHERE (YearReleased NOT BETWEEN 1960 AND 1969)
AND
(FilmName BETWEEN ‘P’ AND ‘T’)

Putting it all together provides the following SQL:

SELECT FilmName
FROM Films
WHERE (YearReleased NOT BETWEEN 1960 AND 1969)
AND
(FilmName BETWEEN ‘P’ AND ‘T’)

69

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 69

When you execute the query, you get the following results:

FilmName

Sense and Insensitivity

Raging Bullocks

Continuing the look at logical operators, the next section takes you through the LIKE operator.

LIKE Operator
The LIKE operator allows you to use wildcard characters when searching a character field. A wildcard
character is one that doesn’t match a specific character but instead matches any one character or any of
one or more characters. One example of its use would be finding out details of all members in the film
club whose surname begins with J.

The following table details the two available wildcard characters.

Wildcard Description

% Matches one or more characters. Note that MS Access uses the asterisk (*)
wildcard character instead of the percent sign (%) wildcard character.

_ Matches one character. Note that MS Access uses a question mark (?)
instead of the underscore (_) to match any one character.

The SQL to match all names beginning with a J is as follows:

SELECT LastName FROM MemberDetails
WHERE LastName LIKE ‘J%’;

Remember, if you’re using MS Access you need to change the percent sign (%) to an asterisk (*):

SELECT LastName FROM MemberDetails
WHERE LastName LIKE ‘J*’;

The preceding code fragment produces these results:

LastName

Jackson

Jones

Jones

Johnson

70

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 70

In some database systems, the LIKE operator is case-sensitive; in others it is not. Oracle, for example, is
case-sensitive, so LIKE ‘J%’ matches only an uppercase J followed by one or more characters. In SQL
Server, LIKE ‘J%’ matches an uppercase or lowercase J followed by one or more characters.

You can use as many or as few wildcard characters as you wish, and you can mix percent signs and
underscores (if required) when searching your database as well, as shown in the following code:

SELECT LastName FROM MemberDetails
WHERE LastName LIKE ‘D___s’;

The preceding SELECT statement matches any last name that starts with a D, ends with an s, and has any
three characters in between. The results from the example database are as follows:

LastName

Dales

Doors

Remember, on some database systems, the LIKE operator is case-sensitive, so LIKE D___s matches
only strings starting with a capital D. On other systems, it matches uppercase and lowercase Ds.
Oracle and DB2 are case-sensitive; MS SQL Server, MySQL, and MS Access are not. Also remember
that on MS Access you need to use a question mark instead of the underscore.

You can also use the NOT operator in concert with the LIKE operator, which produces a match when the
character and wildcard combination is not found. For example, the condition in the following WHERE
clause is true if the LastName column doesn’t start with a J followed by one or more characters:

SELECT LastName FROM MemberDetails
WHERE LastName NOT LIKE ‘J%’;

Executing the WHERE clause provides reverse results of what you saw in the earlier example:

LastName

Smith

Simons

Gee

Botts

Hills

Dales

Doors

Night

71

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 71

Now that you’re acquainted with LIKE and NOT LIKE, you can use them to query your Film Club
database to find specific information about your members. In the following Try It Out, see if you can
answer two questions.

Try It Out Querying a Database with LIKE and NOT LIKE
1. Using the following SQL, query the database to draw up a list of all members’ names and zip

codes where their zip code starts with 65.

SELECT FirstName, LastName, ZipCode
FROM MemberDetails
WHERE ZipCode LIKE ‘65%’

2. Use the following SQL to query the database to find out which people don’t live on a street
called Road or Street.

SELECT FirstName, LastName, Street
FROM MemberDetails
WHERE Street NOT LIKE ‘% Road’ AND Street NOT LIKE ‘% Street’

How It Works
Specify that the database provide results from the FirstName, LastName, and ZipCode fields from the
MemberDetails database:

SELECT FirstName, LastName, ZipCode
FROM MemberDetails

The LIKE clause is ideal to filter records that have a ZipCode column starting with 65 and ending with
any numbers:

WHERE ZipCode LIKE ‘65%’

The 65 matches the numbers 6 and 5, and the percent sign (%) is the wildcard that matches one or more
characters after the 65.

Putting all the elements together provides this SQL:

SELECT FirstName, LastName, ZipCode
FROM MemberDetails
WHERE ZipCode LIKE ‘65%’;

When you execute the SQL, the results are as follows:

FirstName LastName ZipCode

Seymour Botts 65422

Stuart Dales 65422

72

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 72

The second query is a negative, in that it requires that the Street field should not end in either Road or
Street. Using the NOT and LIKE operators in conjunction with one another is the obvious choice. Another
obvious choice is to use the AND operator, which tells the database to search the Street field for streets
that don’t end in Street and don’t end in Road.

SELECT FirstName, LastName, Street
FROM MemberDetails
WHERE Street NOT LIKE ‘% Road’ AND Street NOT LIKE ‘% Street’;

Executing the SQL provides the results you want:

FirstName LastName Street

John Jackson Long Lane

John Jones Newish Lane

Jenny Jones Newish Lane

Seymour Botts Long Lane

Jamie Hills Newish Lane

Stuart Dales Long Lane

IN Operator
So far you’ve used the OR operator to check whether a column contains one of two or more values. For
example, if you want to check whether a member lives in Townsville, Windy Village, Dover, or Big City,
you’d write the following:

SELECT City
FROM MemberDetails
WHERE
City = ‘Townsville’
OR
City = ‘Windy Village’
OR
City = ‘Dover’
OR
City = ‘Big City’;

That query is a bit long-winded, and that’s where the IN operator helps: it functions exactly like the OR
operator but requires much less typing!

Using the IN operator, you can rewrite the preceding SQL like this:

SELECT City
FROM MemberDetails
WHERE
City IN (‘Townsville’, ‘Windy Village’, ‘Dover’, ‘Big City’);

73

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 73

It’s as simple as that! The IN operator checks the database to see if the specified column matches one or
more of the values listed inside the brackets. You can use the IN operator with any data type, not just
text as shown above. The preceding SQL produces the following results:

City

Townsville

Townsville

Big City

Windy Village

Windy Village

Big City

Dover

Chapter 8 shows you how to use a SQL SELECT statement instead of a list of literal values. In the follow-
ing Try It Out, however, you stick with the IN operator and literal values.

Try It Out Using the IN Operator
1. Using the following SQL, query the Film Club database to see which films were released in

1967, 1977, or 1987 and have a rating of either 4 or 5. Include FilmName, YearReleased, and
Rating in the search.

SELECT FilmName, YearReleased, Rating
FROM Films
WHERE
YearReleased IN (1967, 1977, 1987)
AND
Rating IN (4,5);

2. Execute the SQL.

How It Works
The SELECT statement simply specifies the database and the fields to search:

SELECT FilmName, YearReleased, Rating
FROM Films

The WHERE clause employs the IN operator to search for a film’s year of release:

YearReleased IN (1967, 1977, 1987)

Use the IN operator again to search for films with a rating of either 4 or 5:

Rating IN (4,5)

74

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 74

Because both conditions (YearReleased and Rating) must be true, an AND statement is required to link
them:

YearReleased IN (1967, 1977, 1987)
AND
Rating IN (4,5)

Putting the whole statement together gives you the following SQL:

SELECT FilmName, YearReleased, Rating
FROM Films
WHERE
YearReleased IN (1967, 1977, 1987)
AND
Rating IN (4,5);

Executing the SQL statement provides the following results:

FilmName YearReleased Rating

On Golden Puddle 1967 4

Planet of the Japes 1967 5

Soylent Yellow 1967 5

That completes the look at logical operators for this chapter. Chapter 8 discusses logical operators in
greater depth. The next section focuses on how to order your query’s results.

Ordering Results with ORDER BY
So far, query results have come in whatever order the database decides, which is usually based on the
order in which the data was entered, unless the database is designed otherwise (as you see in later chap-
ters). However, listing query results in a certain order (a list of names in alphabetical order or a list of
years in numerical order) often comes in handy. SQL allows you to specify the order of results with the
ORDER BY clause.

The ORDER BY clause goes right at the end of the SELECT statement. It allows you to specify the column
or columns that determine the order of the results and whether the order is ascending (smallest to
largest) or descending (largest to smallest). For example, the following SQL statement displays a list of
film years, ordered from earliest to latest:

SELECT YearReleased
FROM Films
ORDER BY YearReleased;

By default, ORDER BY sorts into ascending order, which is why the results of the preceding SQL sort
from lowest to highest number:

75

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 75

YearReleased

1947

1967

1967

1967

1975

1977

1980

1984

1987

1988

1989

1989

1997

2001

2005

If you require descending order, however, you must add DESC after the list of columns in the ORDER BY
clause:

SELECT YearReleased
FROM Films
ORDER BY YearReleased DESC;

If you execute the preceding SELECT statement, the results are displayed from highest to lowest number,
as shown in the following table:

YearReleased

2005

2001

1997

1989

1989

1988

1987

76

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 76

YearReleased

1984

1980

1977

1975

1967

1967

1967

1947

Because ascending order is the default for ORDER BY, specifying ascending order is not necessary in the
SQL, but for completeness, adding ASC after the ORDER BY clause ensures that results display in ascend-
ing order:

SELECT YearReleased
FROM Films
ORDER BY YearReleased ASC;

The column used to order the results, however, doesn’t have to form part of the results. For example, in
the following SQL, the SELECT statement returns the FilmName and Rating, but the YearReleased col-
umn determines order:

SELECT FilmName, Rating
FROM Films
ORDER BY YearReleased;

The preceding SQL produces the following results:

FilmName Rating

The Maltese Poodle 1

On Golden Puddle 4

Soylent Yellow 5

Planet of the Japes 5

One Flew over the Crow’s Nest 2

The Lion, the Witch, and the Chest of Drawers 1

Raging Bullocks 4

The Life of Bob 1

The Dirty Half Dozen 2

Table continued on following page

77

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 77

FilmName Rating

Gone with the Window Cleaner 3

The Good, the Bad, and the Facially Challenged 5

15th Late Afternoon 5

Nightmare on Oak Street, Part 23 2

Sense and Insensitivity 3

The Wide Brimmed Hat 1

So far, you’ve sorted results with just one column, but you can use more than one column to sort results.
To sort by more than one column, simply list each column by which to sort the results and separate each
column with a comma, just as in the column list for a SELECT statement. The order in which the columns
are listed determines the order of priority in sorting. For example, the SQL to obtain a list of film names,
ratings, and years of release and to order them by rating, year of release, and name is as follows:

SELECT FilmName, Rating, YearReleased
FROM Films
ORDER BY Rating, YearReleased, FilmName;

The preceding SQL produces the following results set:

FilmName Rating YearReleased

The Maltese Poodle 1 1947

The Lion, the Witch, and the Chest of Drawers 1 1977

The Life of Bob 1 1984

The Wide Brimmed Hat 1 2005

One Flew over the Crow’s Nest 2 1975

The Dirty Half Dozen 2 1987

Nightmare on Oak Street, Part 23 2 1997

Gone with the Window Cleaner 3 1988

Sense and Insensitivity 3 2001

On Golden Puddle 4 1967

Raging Bullocks 4 1980

Planet of the Japes 5 1967

Soylent Yellow 5 1967

15th Late Afternoon 5 1989

The Good, the Bad, and the Facially Challenged 5 1989

78

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 78

First, the database system orders the results by the first column specified in the ORDER BY clause, in this
case the Rating column. You can see that the Rating column is in complete order from highest to lowest.
If multiple records in the Rating column contain two or more identical values, the database system looks
at the next column specified in the ORDER BY clause (YearReleased, in this case) and orders results by
that column.

Look at the results where the rating is 1. You can also see that the YearReleased column is in ascending
order for that rating. The same is true for the other ratings.

Finally, if the values for the first and second columns specified in the ORDER BY clause have the same
value as one or more other records, the final column specified in the clause determines order. In the pre-
ceding example, the FilmName column is the final column specified in the clause. If you look at the
results with a rating of 5, you notice that two of the films were released in 1967 and two were released in
1989. You also see that the two 1967 films appear in alphabetical order based on the FilmName column,
which is specified as the final sort column in the event that the other two columns are of the same value.
The same is true of the 1989 films, which again are ordered by FilmName.

You can use WHERE clauses in conjunction with the ORDER BY clause without any problem. You must
ensure that the ORDER BY clause goes after the WHERE clause. The following example produces a list of
films released in the 1960s and orders the results by FilmName:

SELECT FilmName, Rating, YearReleased
FROM Films
WHERE YearReleased BETWEEN 1960 AND 1969
ORDER BY FilmName;

The preceding SQL produces the results set shown here:

FilmName Rating YearReleased

On Golden Puddle 4 1967

Planet of the Japes 5 1967

Soylent Yellow 5 1967

Notice that the FilmName column appears in ascending alphabetical order. Curiously, the rating column
is in order as well, but this is just a fluke, a coincidence. When you don’t specify order, you can’t rely on
results being in any particular order, unless you set up the database to produce specific results. Chapter 3
explores such database setup in greater depth. In the meantime, use the following Try It Out to generate
a list of all film club members sorted in alphabetical order by last name, then by date of birth, and finally
by first name.

Try It Out Generating Ordered Results
1. Query the database to produce a list of all members ordered alphabetically by last name,

ordered next by date of birth, and finally by first name. Use the following SQL:

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
ORDER BY LastName, DateOfBirth, FirstName;

79

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 79

2. Add a WHERE clause to the preceding SQL to filter the list so that it includes only those members
who joined in 2005.

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
WHERE DateOfJoining BETWEEN ‘2005-01-01’ AND ‘2005-12-31’
ORDER BY LastName, DateOfBirth, FirstName;

3. Finally, query the database with the following SQL to produce a list of members’ names and
dates of birth sorted in descending order by date of birth.

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
ORDER BY DateOfBirth DESC;

How It Works
Write the SELECT statement to select the LastName, FirstName, and DateOfBirth fields from the
MemberDetails table:

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails ;

To return the results in the order you want, an ORDER BY clause is required. Because the ORDER BY clause
determines priority of ordering, be sure to list the columns in the order LastName, DateOfBirth, FirstName:

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
ORDER BY LastName, DateOfBirth, FirstName;

When you execute the preceding SQL, you get the results you want:

LastName FirstName DateOfBirth

Botts Seymour 1956-10-21

Dales Stuart 1956-08-07

Doors William 1994-05-28

Gee Steve 1967-10-05

Hills Jamie 1992-07-17

Jackson John 1974-05-27

Johnson Jack 1945-06-09

Jones John 1952-10-05

Jones Jenny 1953-08-25

80

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 80

LastName FirstName DateOfBirth

Night Doris 1997-05-28

Simons Susie 1937-01-20

Smith Katie 1977-01-09

To filter the results to include only members who joined in 2005, simply add a WHERE clause before the
ORDER BY clause. Using a BETWEEN clause is the easiest way to include only dates in 2005. Currently the
database contains only dates in 2004 and 2005, so it might be tempting to filter all dates with a >= 2005
operator, but if you add data later that includes 2006 dates and beyond, the SQL would no longer return
valid results. With the WHERE clause added, the SQL is now as follows:

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
WHERE DateOfJoining BETWEEN ‘2005-01-01’ AND ‘2005-12-31’
ORDER BY LastName, DateOfBirth, FirstName;

Remember that Oracle’s date format is day-month-year. Also remember that MS Access needs the hash
sign (#) rather than single quotes around the dates.

When executed, the preceding SQL provides these results:

LastName FirstName DateOfBirth

Botts Seymour 1956-10-21

Dales Stuart 1956-08-07

Doors William 1994-05-28

Hills Jamie 1992-07-17

Jackson John 1974-05-27

Johnson Jack 1945-06-09

Jones John 1952-10-05

Jones Jenny 1953-08-25

Night Doris 1997-05-28

Simons Susie 1937-01-20

Previously, results have appeared in ascending order, which is the ORDER BY clause’s default order. This
time, however, you want results to appear in descending order, so you must add DESC at the end of the
ORDER BY clause’s list of columns:

SELECT LastName, FirstName, DateOfBirth
FROM MemberDetails
ORDER BY DateOfBirth DESC;

81

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 81

Executing this SQL provides the following results:

LastName FirstName DateOfBirth

Night Doris 1997-05-28

Doors William 1994-05-28

Hills Jamie 1992-07-17

Smith Katie 1977-01-09

Jackson John 1974-05-27

Gee Steve 1967-10-05

Botts Seymour 1956-10-21

Dales Stuart 1956-08-07

Jones Jenny 1953-08-25

Jones John 1952-10-05

Johnson Jack 1945-06-09

Simons Susie 1937-01-20

The next section looks at how columns in the results set can be joined together, for example, returning
FirstName and LastName columns as one column called FullName.

Joining Columns — Concatenation
Not only does SQL allow you to query various columns, but it also allows you to combine one or more
columns and give the resulting column an alias. Note that using an alias has no effect on the table itself;
you’re not really creating a new column in the table, only one for the results set. When you join columns
together, you concatenate them. For example, if you have the data ABC and concatenate it to DEF, you get
ABCDEF.

This chapter only attempts to concatenate text literals or columns that have the char or varchar data
type. Joining text with a number can cause errors. Chapter 5 shows you how to convert data types and
use this to convert numbers to text and then concatenate.

So how do you go about concatenating text? Unfortunately, concatenating text varies depending on the
database system you’re using. Because there are significant differences among the five database systems
covered in this chapter, each is taken in turn, starting with SQL Server and MS Access. You simply need
to read the section relevant to the database system you’re using — feel free to skip over the others.

MS SQL Server and MS Access
Both SQL Server and Access concatenate columns and data in the same manner — with the concatena-
tion operator, which on these systems is the plus (+) sign. So, in order to return the full name, that is first
and last name, of members, you’d write the following:

SELECT FirstName + ‘ ‘ + LastName AS FullName FROM MemberDetails;

82

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 82

The preceding SQL returns the following results:

FullName

Katie Smith

Susie Simons

John Jackson

Steve Gee

John Jones

Jenny Jones

Jack Johnson

Seymour Botts

Jamie Hills

Stuart Dales

William Doors

Doris Night

Notice that not only can you join columns, but you can also join text. In the preceding example, you
added a space between the first name and last name to make it more readable; otherwise, results would
have been KatieSmith, SandraTell, and so on. When you join columns, you can add whatever text you
wish. Consider the following query:

SELECT ‘First name is ‘ + FirstName + ‘, last name is ‘ + LastName FullName
FROM MemberDetails;

The preceding code produces these results:

FullName

First name is Katie

First name is Susie

First name is John

First name is Steve

First name is John

First name is Jenny

First name is Jack

First name is Seymour

First name is Jamie

Table continued on following page

83

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 83

FullName

First name is Stuart

First name is William

First name is Doris

Likewise, you can assign more than one alias in the SELECT statement, as in the following code:

SELECT LastName AS Surname, FirstName AS ChristianName
FROM MemberDetails;

The results of the preceding SELECT statement are as follows:

Surname ChristianName

Smith Katie

Simons Susie

Jackson John

Gee Steve

Jones John

Jones Jenny

Johnson Jack

Botts Seymour

Hills Jamie

Dales Stuart

Doors William

Night Doris

Finally, if you want to use an alias that contains spaces or any other characters normally not permitted
for column names or aliases, then you must enclose the alias name inside square brackets, as shown in
the following statement:

SELECT LastName AS Surname, FirstName AS [Christian Name]
FROM MemberDetails;

Using this SQL, the alias Christian Name has a space, so it’s enclosed inside the square brackets.
Square brackets allow you to use names for columns or aliases that contain characters not normally con-
sidered legal. For example, you would receive an error if you tried to use the alias One***Two, as in the
following query:

SELECT DateOfBirth AS One***Two FROM MemberDetails;

84

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 84

If you put square brackets around it (as shown below), the database system is happy:

SELECT DateOfBirth AS [One***Two] FROM MemberDetails;

That covers concatenation in MS Access and SQL Server; now it’s time to look at Oracle and DB2’s way
of concatenating.

Oracle and IBM DB2
There are two ways of concatenating text data or text-based columns in Oracle and DB2. The first is to
use the concatenation operator, which in these systems is two vertical pipe (||) characters (see the fol-
lowing statement). The second is to use the CONCAT() function, which is covered later in this section.

SELECT FirstName || ‘ ‘ || LastName AS FullName FROM MemberDetails;

The preceding SQL returns the following results:

FullName

Katie Smith

Susie Simons

John Jackson

Steve Gee

John Jones

Jenny Jones

Jack Johnson

Seymour Botts

Jamie Hills

Stuart Dales

William Doors

Doris Night

As with SQL Server, not only can you join columns, but you can also join text. In the preceding example,
you added a space between the first name and last name to improve readability; otherwise, results
would have been KatieSmith, SandraTell, and so on. When you join columns, you can add whatever text
you wish, as shown in the following statement:

SELECT ‘First name is ‘ || FirstName || ‘, last name is ‘ || LastName FullName
FROM MemberDetails;

The preceding code produces these results:

85

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 85

FullName

First name is Katie, last name is Smith

First name is Susie, last name is Simons

First name is John, last name is Jackson

First name is Steve, last name is Gee

First name is John, last name is Jones

First name is Jenny, last name is Jones

First name is Jack, last name is Johnson

First name is Seymour, last name is Botts

First name is Jamie, last name is Hills

First name is Stuart, last name is Dales

First name is William, last name is Doors

First name is Doris, last name is Night

Likewise, you can assign more than one alias in the SELECT statement. For example, the following state-
ment uses the aliases Surname and ChristianName:

SELECT LastName AS Surname, FirstName AS ChristianName
FROM MemberDetails;

The results of the preceding SELECT statement are as follows:

Surname ChristianName

Smith Katie

Simons Susie

Jackson John

Gee Steve

Jones John

Jones Jenny

Johnson Jack

Botts Seymour

Hills Jamie

Dales Stuart

Doors William

Night Doris

86

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 86

Finally, if you want to use an alias that contains spaces or any other characters normally not permitted for
column names or aliases, then you must enclose the alias name inside square brackets, as shown below:

SELECT LastName AS Surname, FirstName AS [Christian Name]
FROM MemberDetails;

Using this SQL, the alias Christian Name has a space, so it’s enclosed inside the square brackets.
Square brackets allow you to use names for columns or aliases that contain characters not normally con-
sidered legal. For example, you would receive an error if you tried to use the alias One***Two, as shown
in the following statement:

SELECT DateOfBirth AS One***Two FROM MemberDetails;

But if you put square brackets around the alias, the database system is happy:

SELECT DateOfBirth AS [One***Two] FROM MemberDetails;

Both Oracle and DB2 support a second way of concatenating: the CONCAT() function. You pass the two
things you want to join, either columns or literal strings, as arguments to the function, and the function
returns them joined. For example, to join FirstName and LastName columns, you would write the fol-
lowing query:

SELECT CONCAT(FirstName, LastName) FROM MemberDetails;

Executing this query produces the following results:

KatieSmith

SusieSimons

JohnJackson

SteveGee

JohnJones

JennyJones

JackJohnson

SeymourBotts

JamieHills

StuartDales

WilliamDoors

DorisNight

Although CONCAT() does the same thing in Oracle and DB2, there are plenty of subtle differences. One
difference is that Oracle does its best to convert values into text. Although the following statement works
on Oracle, it produces an error in DB2:

SELECT CONCAT(DateOfBirth, LastName) FROM MemberDetails;

87

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 87

Even though DateOfBirth is a date column and not a character data type, if you try to execute the
same query in DB2, you get an error. For most of this book, you’ll find it easier to use the double vertical
pipe (||) to concatenate data.

That covers concatenation in Oracle and DB2. Now it’s time to look at MySQL’s way of concatenating.

MySQL
MySQL concatenates using one of two functions. The first is the CONCAT() function, which works in a
way similar to CONCAT() used with Oracle and DB2. However, unlike under those database systems, it
can take two or more arguments. So, if you want to join three columns, you would write a query similar
to the following:

SELECT CONCAT(MemberId,FirstName,LastName) FROM MemberDetails;

Executing the query gives these results:

1KatieSmith

4SteveGee

5JohnJones

6JennyJones

7JohnJackson

8JackJohnson

9SeymourBotts

10SusieSimons

11JamieHills

12StuartDales

13WilliamDoors

14DorisNight

Notice that a numeric data type column is concatenated. MySQL’s CONCAT() function will, if possible,
convert numeric data types to string values before concatenating.

As well as columns, CONCAT() can also join string literals. Consider the following code:

SELECT CONCAT(‘The member is called ‘,FirstName,’ ‘,LastName) AS ‘Member Name’ FROM
MemberDetails;

Executing the preceding query creates the following results:

88

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 88

Member Name

The member is called Katie Smith

The member is called Steve Gee

The member is called John Jones

The member is called Jenny Jones

The member is called John Jackson

The member is called Jack Johnson

The member is called Seymour Botts

The member is called Susie Simons

The member is called Jamie Hills

The member is called Stuart Dales

The member is called William Doors

The member is called Doris Night

Notice that the results returned by CONCAT() are given an alias of Member Name. Notice also that the
alias is enclosed in single quotes because there are spaces in the alias. The same is true if you want to use
characters such as punctuation in the alias.

In the preceding example, you can see that spaces are added to ensure that the sentence reads correctly.
A space should appear between a member’s first name and a member’s last name: “The member is
called Katie Smith,” not “The member is called KatieSmith.”

The second concatenation option provided by MySQL is the CONCAT_WS() function, which adds a sepa-
rator between each of the columns or literals to be concatenated. If you want a single space between each
column, you could write a query similar to the following:

SELECT CONCAT_WS(‘ ‘, ‘The member is called’,FirstName,LastName) AS ‘Member Name’
FROM MemberDetails;

Executing the query with the CONCAT_WS() function provides exactly the same results as the previous
example:

Member Name

The member is called Katie Smith

The member is called Steve Gee

The member is called John Jones

The member is called Jenny Jones

The member is called John Jackson

Table continued on following page

89

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 89

Member Name

The member is called Jack Johnson

The member is called Seymour Botts

The member is called Susie Simons

The member is called Jamie Hills

The member is called Stuart Dales

The member is called William Doors

The member is called Doris Night

That completes the look at concatenation. The next section shows you how to select data from more than
one table at a time.

Selecting Data from More Than One Table
Using the SQL you’ve learned so far, you can extract data from only one table in the database, which is
quite limiting because often answers require data from more than one table. The developers of SQL real-
ized this limitation and implemented a way of joining data from more than one table into one results set.
Using the word joining is no accident: in SQL the JOIN keyword joins one or more tables together in a
results set. Chapter 8 examines all the different types of joins, but this chapter covers the most com-
monly used (and also the easiest to use) join: the inner join.

To see why joins are necessary and useful, begin with a problem. Say that you want a list of all the film
names, years of release, and ratings for the Historical film category. Assume that you know the cate-
gory name but don’t know what the CategoryId value is for Historical.

If SQL didn’t support joins, your first task would be to look in the Category table for the CategoryId for
the category with a value Historical:

SELECT CategoryId
FROM Category
WHERE Category = ‘Historical’;

The preceding SQL returns just one result: 6. Now you know that the CategoryId for Historical is 6,
and that can be used with the CategoryId column in the Films table to get a list of films in the
Historical category:

SELECT FilmName, YearReleased, Rating
FROM Films
WHERE CategoryId = 6;

Running the preceding SQL returns the following results:

90

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 90

FilmName YearReleased Rating

Sense and Insensitivity 2001 3

15th Late Afternoon 1989 5

Gone with the Window Cleaner 1988 3

The Good, the Bad, and the Facially Challenged 1989 5

You might argue that if your database has only six categories, looking up each category is not that hard or
time-consuming. It’s a different story altogether, though, if your database contains 50 or 100 categories.
Also, while computers might be more at home with numbers, most humans prefer names. For example,
imagine that you create a film club Web site that contains a page allowing users to choose a category
and then display all the films for that category. It’s unlikely that the Web site user would want to choose
categories based on category IDs. What’s more likely is that users would choose by name and allow the
database to work out the ID and display the results.

That said, how can you use a join to obtain a list of films in the Historical category?

First, you need to determine which table contains category names and allows you to look up the
CategoryId. From the previous example, it’s clearly the Category table that provides this information.
Second, you need to determine which table or tables provide the results you want. Again, based on the
preceding example, you know that the Films table contains the data needed. The task now is to join
the two tables together. To join the tables, you need to find a link between the two tables. No prizes for
guessing that the CategoryId field, which is present in both tables, links the two!

The type of join to use in this case is an inner join. An inner join combines two tables and links, or joins,
them based on columns within the tables. The inner join allows you to specify which columns form the
join and under what conditions. For example, you could specify a condition that says the MemberId col-
umn in the MemberDetails table matches a value from the MemberId column in the FavCategory table.
Then only records where there is a matching MemberId in both tables are included in the results. To create
an inner join, you must specify the two tables to be joined and the column or columns on which the join is
based. The syntax looks like this:

table1 INNER JOIN table2 ON column_from_table1 = column_from_table2

Applying the syntax to the problem at hand yields the following code:

SELECT FilmName, YearReleased, Rating
FROM Films INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE Category.CategoryId = 6;

At the top is the SELECT statement’s list of the columns required to form the results. On the following
line are the tables from which the results are drawn. Specify them as normal, except this time the INNER
JOIN keyword specifies that the two tables should be joined. The ON keyword that follows specifies what
joins the tables; in this case, the CategoryId field joins them. Note that you must specify the table names
in front of the CategoryId, otherwise the database doesn’t know if you mean the CategoryId in the Films
table or the CategoryId in the Category table. In fact, the two columns don’t actually need to have the
same name, depending on the database’s design. Designing a database that way doesn’t make sense,
though; when someone looks at the database design, they should be able to see that CategoryId in each
table relates to the same set of values.

91

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 91

The preceding SQL produces the same results as before:

FilmName YearReleased Rating

Sense and Insensitivity 2001 3

15th Late Afternoon 1989 5

Gone with the Window Cleaner 1988 3

The Good, the Bad, and the Facially Challenged 1989 5

The INNER part of INNER JOIN is actually optional in most database systems: INNER JOIN is the default
join because it’s the most common. That said, you can write the SQL as follows:

SELECT FilmName, YearReleased, Rating
FROM Films JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE Category.CategoryId = 6;

Using INNER JOIN or simply JOIN to create an inner join between tables is not, in fact, the only way to
join tables. You may prefer it, though, because INNER JOIN and JOIN make explicit which tables are
being joined, and that in turn makes the SQL easier to read and understand. The alternative way of cre-
ating an inner join is simply to specify the link in the WHERE clause. Rewriting the preceding SQL by
specifying the link looks like this:

SELECT FilmName, YearReleased, Rating
FROM Films, Category
WHERE Films.CategoryId = Category.CategoryId AND
Category.CategoryId = 6;

The WHERE clause specifies that Films.CategoryId should equal Category.CategoryId, which creates the
join.

So far, you’ve used the equals operator (=) to join tables, which is termed equijoin. Equijoin is the most
common join type, but using any of the other operators is fine.

As mentioned earlier, you’re not limited to joining just two tables together in one SELECT statement;
within reason, it’s possible to join as many tables as you like. You are sure to encounter a problem that
requires joining multiple tables. For example, say you want to produce a list of each film club member’s
name and all the films they enjoy based on their favorite film category. In the results, you want to dis-
play the members’ first and last names, the name of each film, each film’s year of release, and finally the
category in which each film belongs.

Now this might seem like a fairly simple problem, but it actually involves the most complex SQL so far
in the book. When illustrated step-by-step, however, it’s not so bad at all.

Having a diagram of the database tables and their fields often helps when it comes to the more tricky
SQL queries. Shown in Figure 3-1 is a diagram of the Film Club database.

92

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 92

Figure 3-1

The first task when tackling tricky SQL problems is to work out what information is required and which
tables contain that information. The preceding scenario specifies that the results must contain the follow-
ing information:

❑ Members’ names

❑ All the films that are in the members’ favorite categories

❑ Film names

❑ Films’ year of release

❑ Category to which each film belongs

You can obtain the members’ first and last names from the MemberDetails table. Details of the film names
come from the Films table. The category each film belongs to is slightly trickier. Although the Films table
contains a CategoryId for each record of a film, this is just a number — the results need to display the cate-
gory’s name. Looking at the table diagram, you can see that the Category table contains the category name,
so the Category table provides the category name. But you need to link the Category table to the Films
table. The CategoryId field is in both tables, so the CategoryId field provides the link between the two.
Remember that when you set up the database, the CategoryId field was a primary key field in the Category
table and a foreign key field in the Films table; this field provides the link between the two data sets they
hold. Finally, the results ask for each film in a member’s favorite category. The FavCategory table contains
this information, but again it just contains MemberId and CategoryId, so in order to get the information in
a human-friendly format, you need to link these two tables to the MemberDetails and Category tables.

Below is a list summing up the tables you need to use to get the results you want:

❑ MemberDetails

❑ Films

93

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 93

❑ Category

❑ FavCategory

Now you need to work out how to link them all up. The results you’re after comprise a list of films in
each member’s favorite category, and the FavCategory table is central to the results, so the first step is to
link that table. You don’t need to use a WHERE clause in this SQL because you want all the results. Begin
with a simple SELECT statement to return all the results from the FavCategory table:

SELECT FavCategory.CategoryId, FavCategory.MemberId
FROM FavCategory;

That’s simple enough and returns the following results:

CategoryId MemberId

1 3

1 5

1 10

2 1

2 3

3 3

4 6

4 1

3 10

5 3

5 4

6 10

4 11

3 11

5 11

1 12

4 12

6 12

3 13

5 13

2 14

6 14

1 3

94

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 94

That’s all well and good, but so far your results are only numbers; you’re after the category’s name. To
get the category’s name, you need to link to the Category table via the CategoryId column, which links
both tables. To link them, use an INNER JOIN:

SELECT Category.Category, FavCategory.MemberId
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId;

The SQL produces the following results:

Category MemberId

Thriller 3

Thriller 5

Thriller 10

Thriller 3

Romance 1

Romance 3

Horror 3

War 6

War 1

Horror 10

Sci-fi 3

Sci-fi 4

Historical 10

War 11

Horror 11

Sci-fi 11

Thriller 12

War 12

Historical 12

Horror 13

Sci-fi 13

Romance 14

Historical 14

95

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 95

You’re one step further, but now you need to get rid of the MemberId and replace it with the members’
first and last names. To do this, you need to link to the MemberDetails table and get the data from there,
which involves a second INNER JOIN:

SELECT Category.Category, MemberDetails.FirstName, MemberDetails.LastName
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

The preceding code includes a second INNER JOIN statement after the first one. The ON statement links
to the first INNER JOIN by linking the FavCategory and MemberDetails tables. The ORDER BY statement
orders the results by last name and then first name to identify which member likes which categories.
Note that if you’re using MS Access, you must change the SQL slightly. Access is happy with just one
join but insists that you put brackets around each additional join. So the preceding code needs to be
rewritten as follows:

SELECT Category.Category, MemberDetails.FirstName, MemberDetails.LastName
FROM (FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId)
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

Notice the brackets around the first inner join. The second inner join, which joins to the results of the
first, doesn’t need brackets. Note that this code works on the other database systems but that the brack-
ets aren’t required around the additional joins.

The results so far are as follows:

Category FirstName LastName

Thriller Stuart Dales

War Stuart Dales

Historical Stuart Dales

Horror William Doors

Sci-fi William Doors

Sci-fi Steve Gee

War Jamie Hills

Horror Jamie Hills

Sci-fi Jamie Hills

96

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 96

Category FirstName LastName

War Jenny Jones

Thriller John Jones

Romance Doris Night

Historical Doris Night

Thriller Susie Simons

Horror Susie Simons

Historical Susie Simons

Romance Katie Smith

War Katie Smith

What you have at the moment is a results set that details each member’s favorite film categories. What
you need, though, is a list of all the films under each category for each member. To produce such a list,
you need to link to the Films table where all the film data is stored. The field that links the two tables is
the CategoryId field, which was a primary key field in the Category table and a foreign key field in the
Films table when you designed the database. You need to add the following INNER JOIN to the bottom
of the current INNER JOIN list:

INNER JOIN Films
ON Films.CategoryId = Category.CategoryId

This is the final link needed. It joins the Films table to the results and allows details such as FilmName
and YearReleased to be included in the results:

SELECT MemberDetails.FirstName, MemberDetails.LastName, Category.Category,
FilmName, YearReleased
FROM ((FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId)
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId)
INNER JOIN Films
ON Films.CategoryId = Category.CategoryId
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

Note the brackets around the joins, which ensures that the code works with MS Access. The other
database systems don’t need the brackets, and they can be left off. Notice also that the results of each join
are bracketed. The first join is bracketed on its own, then this is bracketed together with the second join,
and finally the third join links to these results and doesn’t need brackets

The final SQL provides the following results set that details all the films in each member’s favorite film
category:

97

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 97

FirstName LastName Category FilmName YearReleased

Stuart Dales Thriller The Maltese Poodle 1947

Stuart Dales Thriller Raging Bullocks 1980

Stuart Dales Thriller The Life Of Bob 1984

Stuart Dales War The Dirty Half Dozen 1987

Stuart Dales War Planet of the Japes 1967

Stuart Dales Historical Sense and Insensitivity 2001

Stuart Dales Historical 15th Late Afternoon 1989

Stuart Dales Historical Gone with the Window Cleaner 1988

Stuart Dales Historical The Good, the Bad, and 1989
the Facially Challenged

William Doors Horror The Lion, the Witch, and 1977
the Chest of Drawers

William Doors Horror Nightmare on Oak Street, Part 23 1997

William Doors Horror One Flew over the Crow’s Nest 1975

William Doors Sci-fi The Wide Brimmed Hat 2005

William Doors Sci-fi Soylent Yellow 1967

Steve Gee Sci-fi The Wide Brimmed Hat 2005

Steve Gee Sci-fi Soylent Yellow 1967

Jamie Hills War The Dirty Half Dozen 1987

Jamie Hills War Planet of the Japes 1967

Jamie Hills Horror The Lion, the Witch, and 1977
the Chest of Drawers

Jamie Hills Horror Nightmare on Oak Street, Part 23 1997

Jamie Hills Horror One Flew over the Crow’s Nest 1975

Jamie Hills Sci-fi The Wide Brimmed Hat 2005

Jamie Hills Sci-fi Soylent Yellow 1967

Jenny Jones War The Dirty Half Dozen 1987

Jenny Jones War Planet of the Japes 1967

John Jones Thriller The Maltese Poodle 1947

John Jones Thriller Raging Bullocks 1980

John Jones Thriller The Life of Bob 1984

98

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 98

FirstName LastName Category FilmName YearReleased

Doris Night Romance On Golden Puddle 1967

Doris Night Historical Sense and Insensitivity 2001

Doris Night Historical 15th Late Afternoon 1989

Doris Night Historical Gone with the Window Cleaner 1988

Doris Night Historical The Good, the Bad, and 1989
the Facially Challenged

Susie Simons Thriller The Maltese Poodle 1947

Susie Simons Thriller Raging Bullocks 1980

Susie Simons Thriller The Life of Bob 1984

Susie Simons Horror The Lion, the Witch, and 1977
the Chest of Drawers

Susie Simons Horror Nightmare on Oak Street, Part 23 1997

Susie Simons Horror One Flew over the Crow’s Nest 1975

Susie Simons Historical Sense and Insensitivity 2001

Susie Simons Historical 15th Late Afternoon 1989

Susie Simons Historical Gone with the Window Cleaner 1988

Susie Simons Historical The Good, the Bad, and 1989
the Facially Challenged

Katie Smith Romance On Golden Puddle 1967

Katie Smith War The Dirty Half Dozen 1987

Katie Smith War Planet of the Japes 1967

If you want only one member’s list of films based on their favorite film categories, all you need to do is
add a WHERE clause and specify their MemberId. The following SQL specifies Jamie Hills’s ID, which
is 11:

SELECT MemberDetails.FirstName, MemberDetails.LastName, Category.Category,
FilmName, YearReleased
FROM ((FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId)
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId)
INNER JOIN Films
ON Films.CategoryId = Category.CategoryId
WHERE MemberDetails.MemberId = 11
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

99

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 99

This time, you achieve more specific results:

FirstName LastName Category FilmName YearReleased

Jamie Hills War The Dirty Half Dozen 1987

Jamie Hills War Planet of the Japes 1967

Jamie Hills Horror The Lion, the Witch, and 1977
the Chest of Drawers

Jamie Hills Horror Nightmare on Oak Street, Part 23 1997

Jamie Hills Horror One Flew over the Crow’s Nest 1975

Jamie Hills Sci-fi The Wide Brimmed Hat 2005

Jamie Hills Sci-fi Soylent Yellow 1967

As you created the query, you probably noticed that each time you ran the query it produced a unique
set of results. That happens because each additional INNER JOIN linked to the results set created by the
previous SQL. Before moving on to the section that explains the set-based nature of SQL, you should
gain more familiarity with the use of brackets in MS Access.

Using Brackets around Inner Joins in MS Access
You can skip over this section if you’re not using MS Access. As mentioned previously, MS Access
requires brackets around joins when there’s more than one join. Each join creates a set of data, which is
discussed later. Each set of data needs to be enclosed in brackets, unless there’s only one set.

For example, the following statement involves only one join and therefore only one source set of data:

SELECT MemberDetails.MemberId
FROM MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId;

However, if you then join that set of data to another table, creating a second set of data, you must
enclose the first set of data inside brackets, like so:

SELECT MemberDetails.MemberId
FROM (MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON Category.CategoryId = FavCategory.CategoryId;

The following excerpt illustrates how the original join is enclosed inside its own brackets:

FROM (MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)

100

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 100

If you take this further and join the current sets of data to yet another table, then the first two joins must
be enclosed in brackets. The following is the original join:

FROM (MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)

Then add the join to the Category table. Note that the first join is enclosed in brackets:

FROM ((MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON Category.CategoryId = FavCategory.CategoryId)

Now you can add the third join:

FROM ((MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON Category.CategoryId = FavCategory.CategoryId)
INNER JOIN Films
ON Category.CategoryId = Films.CategoryId;

The full SQL is as follows:

SELECT MemberDetails.MemberId
FROM ((MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON Category.CategoryId = FavCategory.CategoryId)
INNER JOIN Films
ON Category.CategoryId = Films.CategoryId;

If you add a fourth join, you need to enclose the first three joins in brackets:

SELECT MemberDetails.MemberId
FROM (((MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON Category.CategoryId = FavCategory.CategoryId)
INNER JOIN Films
ON Category.CategoryId = Films.CategoryId)
INNER JOIN Attendance
ON MemberDetails.MemberId = Attendance.MemberId;

And so it would continue if you add a fifth join, a sixth join, and so on.

None of this adding of brackets is necessary for the other database systems, so the extra brackets aren’t
included in every example; be sure to add them if you’re using Access.

101

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 101

SQL Is Set-Based
You might remember from your high school math days the concept of the set, which is simply a collec-
tion, in no particular order, of items of the same type. SQL is set-based, the sets being sets of records. As
with sets in math, there is no particular order to SQL data sets unless you specify the order, using the
ORDER BY clause, for example. With the more straightforward queries (like the ones earlier in the chap-
ter), considering the set-based nature of SQL queries isn’t really necessary. However, with trickier
queries, especially those involving more than one table, thinking in terms of sets is helpful.

Taking the example from the previous section, examine how the first step looks as a set. The first step’s
SQL is as follows:

SELECT FavCategory.CategoryId, FavCategory.MemberId
FROM FavCategory;

Represented as a set diagram, the first step looks like Figure 3-2.

Figure 3-2

The set simply contains all the records and columns from the FavCategory table.

The next step joins the Category and FavCategory tables with this SQL:

SELECT Category.Category, FavCategory.MemberId
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId;

Figure 3-3 shows a set diagram of the SQL.

SELECT FROM FavCategory

CategoryId
1
1
1
2
2
3

2
6
1

MemberId
3
5
10
1
3
3

14
14
3

102

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 102

Figure 3-3

The circle on the left represents the set of records from the FavCategory table. Because the set isn’t
filtered (for example, with a WHERE clause), it includes all the FavCategory records, though the diagram
shows only a handful. The circle on the right is the set of records from the Category table, again unfil-
tered to include all the records. In the center is the overlap between the two sets, defined by the ON
clause in the INNER JOIN. The results set in the overlap is the final results obtained. It includes all
the records from the other two results sets, where there is a matching CategoryId in each table for
each record. As it happens, the CategoryId in every record in the FavCategory table finds a matching
CategoryId in the CategoryId column, so every record from the FavCategory table is included. The
SQL statement selects only two columns, Category and MemberId, to be returned in the results.
However, when the database performs the join, all the fields listed in the ON statement are also
considered.

In order to demonstrate that only records with matching CategoryId’s in both tables are included in the
joined results set, add another record to the Category table. First, though, here are the results without
the new record added:

SELECT * FROM Category

CategoryId
1
2
3
4
5
6

Category
Thriller
Romance
Horror
War
Sci-fi
Historical

SELECT * FROM FavCategory

CategoryId
1
1
1
2
2
3

2
6
1

MemberId
3
5
10
1
3
3

14
14
3

On FavCategory.CategoryId = Category.CategoryId

FavCategory Table
CategoryId MemberId
1
1
1
2
2
3

4
6
3
5
2
0

3
5
10
1
3
3

12
12
13
13
14
14

Category Table
CategoryId Category
1
1
1
2
2
3

4
6
3
5
2
6

Thriller
Thriller
Thriller
Romance
Romance
Horror

War
Historical
Horror
Sci-fi
Romance
Historical

103

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 103

Category MemberId

Thriller 5

Thriller 10

Romance 1

War 6

War 1

Horror 10

Sci-fi 4

Historical 10

War 11

Horror 11

Sci-fi 11

Thriller 12

War 12

Historical 12

Horror 13

Sci-fi 13

Romance 14

Historical 14

Note that there are 18 rows.

Now execute the following SQL to add a new record to the Category table:

INSERT INTO Category (CategoryId, Category)
VALUES (7, ‘Comedy’);

Next, re-execute the query:

SELECT Category.Category, FavCategory.MemberId
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId;

The re-execution provides the following results:

104

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 104

Category MemberId

Thriller 5

Thriller 10

Romance 1

War 6

War 1

Horror 10

Sci-fi 4

Historical 10

War 11

Horror 11

Sci-fi 11

Thriller 12

War 12

Historical 12

Horror 13

Sci-fi 13

Romance 14

Historical 14

Notice the difference? That’s right, there is no difference; even though you added an extra record to the
Category table, the addition doesn’t affect the results because no records exist in the FavCategory results
set that match the new CategoryId of 7. Now add a few new favorite categories to the FavCategory table
that have a CategoryId of 7:

INSERT INTO FavCategory (CategoryId, MemberId)
VALUES (7, 6);

INSERT INTO FavCategory (CategoryId, MemberId)
VALUES (7, 4);

INSERT INTO FavCategory (CategoryId, MemberId)
VALUES (7, 12);

Execute the SQL and then rerun the SELECT query:

SELECT Category.Category, FavCategory.MemberId
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId;

105

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 105

You should see the following results:

Category MemberId

Thriller 5

Thriller 10

Thriller 12

Romance 1

Romance 14

Horror 10

Horror 11

Horror 13

War 6

War 1

War 11

War 12

Sci-fi 4

Sci-fi 11

Sci-fi 13

Historical 10

Historical 12

Historical 14

Comedy 6

Comedy 4

Comedy 12

Because three new records appear in the FavCategory table with a matching record in the Category
table, the results appear in the resulting join.

The next stage joins the MemberDetails table to the current results set:

SELECT Category.Category, MemberDetails.FirstName, MemberDetails.LastName
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

106

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 106

Remember to add brackets around the first join if you’re using MS Access:

SELECT Category.Category, MemberDetails.FirstName, MemberDetails.LastName
FROM (FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId)
INNER JOIN MemberDetails
ON FavCategory.MemberId = MemberDetails.MemberId
ORDER BY MemberDetails.LastName, MemberDetails.FirstName;

Figure 3-4 shows the resulting diagram.

Figure 3-4

SELECT * FROM FavCategory

CategoryId
7
7
7
1

2
6
1

MemberId
6
4
12
3

14
14
3

ON FavCategory.CategoryId = Category.CategoryId
MemberDetails ON FavCategory.MemberId = MemberDetails.MemberId

FavCategory Table
CategoryId MemberId
7
1
4

5

12
12
12

3

Category Table
CategoryId
7
1
4

5

MemberDetails Table
MemberId
12
12
12

3

MemberId
1
10
3
4
5

13

FirstName
Katie
Susie
Sandra
Steve
John

William

LastName
Smith
Simons
Tell
Gee
Jones

Doors

Email
katie@mail.com
susie@mailme.com
sandra@her_mail.com
steve@gee.com
jj@jonesmail.org

knockon@thedoors.com

SELECT * FROM MemberDetails

SELECT * FROM Category

CategoryId
1
2
3
4
5
6
7

Category
Thriller
Romance
Horror
War
Sci-fi
Historical
Comedy

107

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 107

The overlapping portions of the three data sets form the final results set. The ON statements define the
overlap area, which is summarized as follows:

❑ Every record in the FavCategory table must have a matching record in the Category table with
the same value in the CategoryId field.

❑ Every record in the Category table must have a matching record in the FavCategory table with
the same value in the CategoryId field.

❑ Every record in the FavCategory table must have a matching record in the MemberDetails table
with the same value in the MemberId field.

❑ Every record in the MemberDetails table must have a matching record in the Category table
with the same value in the MemberId field.

Documenting the remaining steps in the SQL in diagram form would consume precious pages, so hope-
fully SQL’s set-based nature is clear.

By now, you should be familiar enough with sets and inner joins to try out a few.

Try It Out Using Inner Joins to Form Sets
1. Using the following SQL, generate a list for the film club chairperson of all the members who

don’t live in a city in which the club holds meetings. Don’t forget to create a set diagram.

SELECT MemberDetails.FirstName, MemberDetails.LastName,
MemberDetails.City, MemberDetails.State

FROM MemberDetails INNER JOIN Location
ON (MemberDetails.City <> Location.City AND MemberDetails.State = Location.State)
OR (MemberDetails.City = Location.City AND MemberDetails.State <> Location.State)
ORDER BY MemberDetails.LastName;

2. The club’s chairperson also wants a list of all the members who have attended meetings, the
date of attendance, and where the meeting was held. To create the list, use the following SQL:

SELECT
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName,
Attendance.MeetingDate,
Location.City

FROM
(MemberDetails INNER JOIN Attendance
ON MemberDetails.MemberId = Attendance.MemberId)
INNER JOIN Location ON Location.LocationId = Attendance.LocationId
WHERE Attendance.MemberAttended = ‘Y’
ORDER BY MeetingDate, Location.City, LastName, FirstName;

How It Works
First, you need to create a list of all members not living in a city in which club meetings are held. The
data for meeting locations resides in the Location table. This information provides one results set. Not

108

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 108

surprisingly, the MemberDetails table holds member details, the second results set. Now it’s necessary to
combine the two sets to get the result you want: a list of all members whose city is not listed in the
Location table. More than one city may have the same name, so assume that such cities in the same state
are the same. Therefore, you joined the MemberDetails table to the Location table using an INNER JOIN
based on the City and State columns:

FROM MemberDetails INNER JOIN Location
ON (MemberDetails.City <> Location.City AND MemberDetails.State = Location.State)
OR (MemberDetails.City = Location.City AND MemberDetails.State <> Location.State)
ORDER BY MemberDetails.LastName;

The ON clause is the key to this query, so you need results where the cities don’t match but the states do
(same state but different city name). You also want to include records where the city name is the same
but the state name is different (same city name but in a different state). It seems obvious when written
down, but oftentimes looking at the two results sets and making the comparison in your mind first is
helpful. The key fields in both tables are City and State, so you need to make your comparison with
those fields. Figure 3-5 shows the set diagram.

Figure 3-5

Check if the Townsville record at the top of the MemberDetails table appears in the City field in any of
the records in the Location set. Townsville doesn’t appear, so you know that Townsville is not a valid
meeting location, and therefore it should form part of the results. You also need to take into account data
that isn’t there but should be. For example, say that a city called Big City in Sunny State appears in the
Location table. In this case, simply comparing the City columns in each table means that Big City, Sunny
State, would not be included in the results even though clearly Big City, Mega State, and Big City, Sunny
State, are totally different cities.

SELECT City, State FROM Location

City
Big Apple City
Windy Village
Big City

State
New State
Golden State
Mega State

SELECT City, State FROM MemberDetails

City
Townsville
Townsville
Windy Village
New Town
Orange Town
Orange Town
Big City
Big City
Windy Village
Big Apple City
Windy Village
Big City
Dover

State
Mega State
Mega State
Golden State
New State
New State
New State
Mega State
Mega State
Golden State
New State
Golden State
Mega State
Golden State

109

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 109

More than one condition exists in your ON clause. ON clauses are very similar to a SELECT statement’s
WHERE clause in that you can use the same operators and OR and AND logical operators are allowed. The ON
clause in the preceding SQL contains two conditions linked with an OR operator. The first condition states

MemberDetails.City <> Location.City AND MemberDetails.State = Location.State

It matches a record where the City columns in MemberDetails and Location are not the same.
Remember, you want a list of members in cities that don’t match in the Location table. The states must
be the same, and only the City column must differ. This works so long as each state has cities with
unique names!

The second part of the ON clause, joined with the OR statement, checks for cities where the name is the
same but the state is different:

MemberDetails.City = Location.City AND MemberDetails.State <> Location.State

The final SQL is as follows:

SELECT MemberDetails.FirstName, MemberDetails.LastName,
MemberDetails.City, MemberDetails.State

FROM MemberDetails INNER JOIN Location
ON (MemberDetails.City <> Location.City AND MemberDetails.State = Location.State)
OR (MemberDetails.City = Location.City AND MemberDetails.State <> Location.State)
ORDER BY MemberDetails.LastName;

Executing the final SQL provide the results shown in the following table:

FirstName LastName MemberDetails.City MemberDetails.State

Steve Gee New Town New State

Doris Night Dover Golden State

Susie Simons Townsville Mega State

Katie Smith Townsville Mega State

Phew! That’s quite a query, but hopefully it helps to underline SQL’s set-based nature.

To find out which members attended which meetings and the dates and locations of attendance, you
need to decide which tables hold that data. In this case, the MemberDetails, Attendance, and Location
tables hold the data you need. Next, consider how to link the tables together. The Attendance table is
central to this query because it contains the LocationId field needed to find out location details, as well
as the MemberId field needed to find out member information.

Figure 3-6 shows the set diagram for this problem.

Note that the set in the left circle doesn’t contain all the records from a particular table; it contains only
records from the Attendance table where the MemberAttended column contains a Y. It reminds you that
set is not simply another word for table; sets contain a selection of a table’s records.

110

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 110

Figure 3-6

Start by linking the Location and Attendance tables:

SELECT
Attendance.MeetingDate,
Location.City
FROM Attendance
INNER JOIN Location ON Location.LocationId = Attendance.LocationId

SELECT * FROM Attendance
WHERE MemberAttended = 'Y'

LocationId
2
2
2
2
1
1
1

MeetingDate
2004-01-01
2004-01-01
2004-01-01
2004-01-01
2004-03-01
2004-03-01
2004-03-01

MemberAttended
Y
Y
Y
Y
Y
Y
Y

MemberId
1
3
5
6
1
3
4

SELECT * FROM Location

LocationId
1
2
3

Street
Main Street
Winding Road
Tiny Terrace

City
Big Apple City
Windy Village
Big City

State
New State
Golden State
Mega State

MemberId
1
10
3
4
5

13

FirstName
Katie
Susie
Sandra
Steve
John

William

LastName
Smith
Simons
Tell
Gee
Jones

Doors

Email
katie@mail.com
susie@mailme.com
sandra@her_mail.com
steve@gee.com
jj@jonesmail.org

knockon@thedoors.com

SELECT * FROM MemberDetails

111

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 111

Next, link the MemberDetails table:

SELECT
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName,
Attendance.MeetingDate,
Location.City

FROM
(MemberDetails INNER JOIN Attendance
ON MemberDetails.MemberId = Attendance.MemberId)
INNER JOIN Location ON Location.LocationId = Attendance.LocationId

ORDER BY MeetingDate, Location.City, LastName, FirstName

Order the results by meeting date, location, last name, and finally, first name. Remember, however, that
you require a list of members who have attended a meeting. Your results set from the Attendance table
should include only those records where the MemberAttended field contains a Y. So, to finalize your
query, add a WHERE clause:

SELECT
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName,
Attendance.MeetingDate,
Location.City

FROM
(MemberDetails INNER JOIN Attendance
ON MemberDetails.MemberId = Attendance.MemberId)
INNER JOIN Location ON Location.LocationId = Attendance.LocationId
WHERE Attendance.MemberAttended = ‘Y’
ORDER BY MeetingDate, Location.City, LastName, FirstName;

Executing the final query provides the results shown in the following table:

MemberId FirstName LastName MeetingDate City

6 Jenny Jones 2004-01-01 Windy Village

5 John Jones 2004-01-01 Windy Village

1 Katie Smith 2004-01-01 Windy Village

4 Steve Gee 2004-03-01 Orange Town

1 Katie Smith 2004-03-01 Orange Town

One final note before moving on: The vital point to remember is that SQL doesn’t compare just one
record in one set to just one record in the second set; SQL compares each record in one set to every record
in the other set, and vice versa. If the ON condition is true for a particular record, then the final results set

112

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 112

includes that record. You should always remember that SQL is set-based and compares all records in
each set to all the records in the other sets. Reducing set size in WHERE clauses is also worthwhile,
because smaller sets compare fewer records, which increases the efficiency of queries.

That’s it for this section. The next section delves into the unknown!

Introducing NULL Data
In the sections leading up to this one, you’ve dealt strictly with known data, but often that’s not possible.
Given that statement, you might assume that data with no specified value has no value at all. SQL, how-
ever, doesn’t allow for data to hold no value. Fields with no specified value actually do have a value:
NULL. NULL is not the same thing as nothing; NULL represents the unknown. If you were asked how
many hairs there are on your head, unless you’re bald, you’d have to say that you don’t currently know.
There is a value, and one day you might know it and be able to store it in a database, but right know it’s
unknown. This is where NULL comes into play. NULL represents, and allows you to search for, unknown
values.

The following is a SQL statement that inserts a new record into the MemberDetails table. Execute the
statement in your own database:

INSERT INTO MemberDetails
(MemberId, FirstName, LastName, Email, DateOfJoining)
VALUES (15, ‘Catherine’,’Hawthorn’, ‘chawthorn@mailme.org’, ‘2005-08-25’)

The MemberDetails table contains DateOfBirth, Street, City, and State fields, yet the SQL doesn’t specify
any values for these fields. This is perfectly acceptable, so the question is, what values are contained in
the fields where no value is specified? You might suggest that because you specified no values, the val-
ues in those fields are no value, or nothing at all. In fact, the database system considers the value not to
be nothing but instead to be unknown, or NULL.

You might be wondering why you should care about all this.

First of all, NULLs can lead to unexpected and overlooked results. For example, you might think that the
following SQL would return all the records in the MemberDetails database:

SELECT FirstName, LastName, DateOfBirth
FROM MemberDetails
WHERE DateOfBirth <= ‘1970-01-01’ OR DateOfBirth > ‘1970-01-01’;

After all, the statement selects all dates of birth on or before January 1, 1970, and also after January 1,
1970, and yet the record just added to the database for Catherine Hawthorn is not there because the date
of birth is NULL (see the following table). Don’t forget to change the date format for Oracle and the single
quotes to hash marks (#) for Access in the preceding SQL.

113

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 113

FirstName LastName DateOfBirth

Katie Smith 1977-01-09

Steve Gee 1967-10-05

John Jones 1952-10-05

Jenny Jones 1953-08-25

John Jackson 1974-05-27

Jack Johnson 1945-06-09

Seymour Botts 1956-10-21

Susie Simons 1937-01-20

Jamie Hills 1992-07-17

Stuart Dales 1956-08-07

William Doors 1994-05-28

Doris Night 1997-05-28

When the database looks at the records, it says for Catherine’s record, “Is NULL (unknown) less than
January 1, 1970, or is it greater than January 1, 1970?”

Well, the answer is unknown! Records that contain NULL values are always excluded from a results set.
The same principle applies to any comparison and to inner joins as well. Additionally, most database
systems consider unknowns equal when using an ORDER BY clause, so all NULL values are grouped
together.

In order to check for NULL values, you must use the IS NULL operator. To ensure that a value is not
NULL, use the IS NOT NULL operator, as in the following code:

SELECT FirstName, LastName, DateOfBirth
FROM MemberDetails
WHERE DateOfBirth <= ‘1970-01-01’ OR DateOfBirth > ‘1970-01-01’
OR DateOfBirth IS NULL;

The preceding SQL returns all records, shown in the following table:

FirstName LastName DateOfBirth

Katie Smith 1977-01-09

Susie Simons 1937-01-20

John Jackson 1974-05-27

Steve Gee 1967-10-05

John Jones 1952-10-05

114

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 114

FirstName LastName DateOfBirth

Jenny Jones 1953-08-25

Jack Johnson 1945-06-09

Seymour Botts 1956-10-21

Jamie Hills 1992-07-17

Stuart Dales 1956-08-07

William Doors 1994-05-28

Doris Night 1997-05-28

Catherine Hawthorn

Depending on your database system, it might list DateOfBirth for Catherine as NULL or it may just show
nothing at all, as in the preceding table.

Generally speaking, you are better off avoiding the NULL data type and instead using some default
value. For example, if you query for a numerical field, use a number that is never normally part of the
results, such as –1 for an age field. For a text field, use an empty string, and so on. Chapter 5 revisits the
NULL data type when looking at SQL math.

Summary
This chapter covered a lot of topics, some of which were quite challenging, but they all dealt with how to
get answers out of a database. At the end of the day, that’s what SQL and databases are all about — getting
answers. The key to extracting data with SQL is the SELECT query, which allows you to select which
columns and from what tables to extract data.

The chapter also discussed the following:

❑ How to filter results so that you get only the data you require. The WHERE clause allows you to
specify any number of conditions in order to filter your results to suit your particular query.
Only if your specific conditions are met does a record appear in the final results set.

❑ The logical operators AND, OR, NOT, BETWEEN, IN, and LIKE. Coverage of the AND and OR opera-
tors was a rehash from the previous chapter, but the rest were introduced in this chapter. NOT
allows you to reverse a condition. The BETWEEN operator allows you to specify a range of values
and proves a condition true when a column value is within the specified range. When you have
a list of potential values, the IN operator comes in handy. It proves a condition true when the
column has a value that is in the list of given values. Finally, you learned how to use the LIKE
operator with text. The LIKE operator allows the use of wildcard characters.

❑ After you learned how to get the results set you want, you learned how to use the ORDER BY
clause, which allows you to list the order of results in ascending or descending order, based on
one or more columns.

115

Extracting Information

07_577328 ch03.qxd 1/28/05 11:21 PM Page 115

❑ The slightly tricky topic of selecting data from more than one table. Up to that point, you could
use only one table to create the final results set. However, using the INNER JOIN statement
allows you to link two or more tables to form a new results set.

❑ The NULL value, which is not the same as no value or zero but in fact signifies an unknown
value. The NULL value can cause problems when selecting data, however, because when com-
paring an unknown value to any other value, the result is always unknown and not included in
the final results. You must use the IS NULL or IS NOT NULL operators in order to check for a
NULL value.

The next chapter returns to database design, this time looking at it in more depth and covering some of
the issues not yet covered. This chapter, however, completes the introductory portion of this book;
you’re now ready to get out there and create your own databases and get your own results! The second
half of the book covers more advanced topics, with the aim of developing your SQL skills.

Exercises
For each of the following exercise questions, write the SQL to list the answers:

1. What is William Doors’s (MemberId 13) address?

2. Which members have a surname beginning with the letter J?

3. Which members joined before December 31, 2004? Order the results by last name and then by
first name.

4. List all the members who attended meetings in Windy Village, Golden State.

116

Chapter 3

07_577328 ch03.qxd 1/28/05 11:21 PM Page 116

4
Advanced Database Design

This chapter is all about improving the design of a database in terms of ease of management, effi-
ciency, and limiting the risks of entering invalid data. The chapter begins with a bit of theory and
relates it to the practical, in particular the Film Club database. This covers improving efficiency in
terms of data storage and minimizing wasted space.

Next, the chapter covers various ways of ensuring that only valid data enters the database. The
database can’t check the accuracy of what you enter, but it can ensure that what you enter doesn’t
cause the database to stop working as expected. For example, the Attendance table in the Film
Club database relies on its relationship with the Location table. The Attendance table doesn’t store
the full address details of meetings; it just stores a unique ID that matches a record in the Location
table. If, however, no matching record exists in the Location table, then queries return incorrect
results. This chapter shows you, among other things, how to enforce the relationship between
tables and prevent such a situation from occurring.

You use the things you learn throughout the chapter to update and improve the Film Club
database. The chapter finishes off with some tips on things to look out for and things to avoid
when designing your database.

Normalization
Chapter 1 discussed how to design the database structure using tables and fields in order to avoid
problems such as unnecessary duplication of data and the inability to uniquely identify records.
Although not specifically called normalization in Chapter 1, that was the concept used. This section
explains normalization in more detail and how to use it to create well-structured databases.

Normalization consists of a series of guidelines that help guide you in creating a good database
structure. Note that they are guidelines and not rules to follow blindly. Database design is proba-
bly as much art as it is science, and your own common sense is important, too.

Normalization guidelines are divided into normal forms; think of form as the format or the way a
database structure is laid out. Quite a lot of normal forms exist, but this chapter examines only the
first three, because that’s as far as most people need to go in normalizing a database. Taken too far,

08_577328 ch04.qxd 1/28/05 11:22 PM Page 117

normalization can make database access slower and more complex. The aim of normal forms is to orga-
nize the database structure so that it complies with the rules of first normal form, then second normal
form, and finally third normal form. It’s your choice to take it further and go to fourth normal form, fifth
normal form, and so on, but generally speaking, third normal form is enough.

First Normal Form
Chapter 1 walked you through some basic steps for creating a well-organized database structure. In par-
ticular, it said that you should do the following:

❑ Define the data items required, because they become the columns in a table. Place related data
items in a table.

❑ Ensure that there are no repeating groups of data.

❑ Ensure that there is a primary key.

These rules are those of first normal form, so you’ve covered first normal form without even knowing it.
The Film Club database already complies with first normal form, but to refresh your memory, here is a
brief summary of first normal form.

First, you must define the data items. This means looking at the data to be stored, organizing the data
into columns, defining what type of data each column contains, and finally putting related columns into
their own table. For example, you put all the columns relating to locations of meetings in the Location
table, those relating to members in the MemberDetails table, and so on.

This gives a rough idea of table structures. The next step is ensuring that there are no repeating groups
of data. If you remember from Chapter 1, when you created the Film Club database, you began by defin-
ing a table that held members’ details and also details of meetings they had attended. An example of
how the table and records might look is shown below:

Date of Date Meeting Did Member
Name Birth Address Email Joined Date Location Attend?

Martin Feb 27, 1 The Avenue, martin@ Jan 10, Mar 30, Lower West Side, Y
1972 NY some.com 2005 2005 NY

Jane Dec 12, 33 Some Road, Jane@ Jan 12, Mar 30, Lower West Side, N
1967 Washington server.net 2005 2005 NY

Kim May 22, 19 The Road, kim@mail. Jan 23, Mar 30, Lower West Side, Y
1980 New Townsville com 2005 2005 NY

You find, though, that each time you want to add a record of details of another meeting you end up
duplicating the members’ details:

118

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 118

Date of Date Meeting Did Member
Name Birth Address Email Joined Date Location Attend?

Martin Feb 27, 1 The Avenue, martin@ Jan 10, Mar 30, Lower West Side, Y
1972 NY some.com 2005 2005 NY

Martin Feb 27, 1 The Avenue, martin@ Jan 10, April 28, Lower North Side, Y
1972 NY some.com 2005 2005 NY

Jane Dec 12, 33 Some Road, Jane@ Jan 12, Mar 30, Lower West Side, N
1967 Washington server.net 2005 2005 NY

Jane Dec 12, 33 Some Road, Jane@ Jan 12, April 28, Upper North Side, Y
1967 Washington server.net 2005 2005 NY

Kim May 22, 19 The Road, kim@mail. Jan 23, Mar 30, Lower West Side, Y
1980 New Townsville com 2005 2005 NY

Kim May 22, 19 The Road, kim@mail. Jan 23, April 28, Upper North Side, Y
1980 New Townsville com 2005 2005 NY

There are a number of problems with this approach. First, it wastes a lot of storage space. You only need
to store the members’ details once, so repeating the data is wasteful. What you have is repeating groups,
something that the second rule of first normal form tells you to remove. You can remove duplicated data
by splitting the data into tables: one for member details, another to hold location details, and a final table
detailing meetings that took place. Another advantage of splitting data into tables is that it avoids some-
thing called the deletion anomaly, where deleting a record results in also deleting the data you want to
keep. For example, say you want to delete details of meetings held more than a year ago. If your data
isn’t split into tables and you delete records of meetings, then you also delete members’ details, which
you want to keep. By separating member details and meeting data, you can delete one and not both.

After you split data into tables, you need to link the tables by some unique value. The final rule of the
first normal form — create a primary key for each table — comes into play. For example, you added a
new column, MemberId, to the MemberDetails table and made it the primary key. You don’t have to
create a new column, however; you could just use one or more of the existing columns, as long as, when
taken together, the data from each column you combine makes for a unique key. However, having an ID
column is more efficient in terms of data retrieval.

Second Normal Form
First normal form requires every table to have a primary key. This primary key can consist of one or
more columns. The primary key is the unique identifier for that record, and second normal form states
that there must be no partial dependences of any of the columns on the primary key. For example, imag-
ine that you decide to store a list of films and people who starred in them. The data being stored is film
ID, film name, actor ID, actor name, and date of birth.

You could create a table called ActorFilms using those columns:

119

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 119

120

Chapter 4

Field Name Data Type Notes

FilmId integer Primary key

FilmName varchar(100)

ActorId integer Primary key

ActorName varchar(200)

DateOfBirth date

This table is in first normal form, in that it obeys all the rules of first normal form. In this table, the pri-
mary key consists of FilmId and ActorId. Combined they are unique, because the same actor can hardly
have starred in the same film twice!

However, the table is not in second normal form because there are partial dependencies of primary keys
and columns. FilmName is dependent on FilmId, and there’s no real link between a film’s name and
who starred in it. ActorName and DateOfBirth are dependent on ActorId, but they are not dependent on
FilmId, because there’s no link between a film ID and an actor’s name or their date of birth. To make this
table comply with second normal form, you need to separate the columns into three tables. First, create a
table to store the film details, somewhat like the Films table in the example database:

Field Name Data Type Notes

FilmId integer Primary key

FilmName varchar(100)

Next, create a table to store details of each actor:

Field Name Data Type Notes

ActorId integer Primary key

ActorName varchar(200)

DateOfBirth date

Finally, create a third table storing just FilmIds and ActorIds to keep track of which actors starred in
which films:

Field Name Data Type Notes

FilmId integer Primary key

ActorId integer Primary key

08_577328 ch04.qxd 1/28/05 11:22 PM Page 120

Now the tables are in second normal form. Look at each table and you can see that all the columns are
tied to the primary key, except that both columns in the third table make up the primary key.

Third Normal Form
Third normal form is the final step this book illustrates. More normal forms exist, but they get more
complex and don’t necessarily lead to an efficient database. There’s a trade-off in database design
between minimizing data redundancy and database efficiency. Normal forms aim to reduce the amount
of wasted storage and data redundancy. However, they can do so at the cost of database efficiency, in
particular, the speed of getting data in and out. Good practice is to ensure that your database tables are
in second normal form. Third normal form is a little more optional, and its use depends on the circum-
stances.

A table is in third normal form when the following conditions are met:

❑ It is in second normal form.

❑ All nonprimary fields are dependent on the primary key.

The dependency of nonprimary fields is between the data. For example, street name, city, and state are
unbreakably bound to the zip code. For example, New Street, New City, Some State, has an assigned and
unique zip code. If you mail a letter, in theory supplying the street address and zip code is enough for
someone to locate the house. Another example is social security number and a person’s name. No direct
dependency exists, however, between zip code and a person’s name. The dependency between social
security number and name and between zip code and address is called a transitive dependency.

Take a look at the Film Club database. Can you see any tables not in third normal form?

Check out the MemberDetails table:

Field Name Data Type

MemberId integer

FirstName nvarchar(50)

LastName nvarchar(50)

DateOfBirth date

Street varchar(100)

City varchar(75)

State varchar(75)

ZipCode varchar(12)

Email varchar(200)

DateOfJoining date

121

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 121

The Street, City, and State fields all have a transitive dependency on the ZipCode field. To comply with
third normal form, all you need to do is move the Street, City, and State fields into their own table,
which you can call the ZipCode table:

Field Name Data Type

ZipCode varchar(12)

Street varchar(100)

City varchar(75)

State varchar(75)

Then alter the MemberDetails table and remove the Street, City, and State fields, leaving the ZipCode
field as a way of matching the address details in the ZipCode table:

Field Name Data Type

MemberId integer

FirstName nvarchar(50)

LastName nvarchar(50)

DateOfBirth date

ZipCode varchar(12)

Email varchar(200)

DateOfJoining date

The advantages of removing transitive dependencies are mainly twofold. First, the amount of data
duplication is reduced and therefore your database becomes smaller. Two or more people living on the
same street in the same city in the same town have the same zip code. Rather than store all that data
more than once, store it just once in the ZipCode table so that only the ZipCode is stored more than
once.

The second advantage is data integrity. When duplicated data changes, there’s a big risk of updating
only some of the data, especially if it’s spread out in a number of different places in the database. If
address and zip code data were stored in three or four different tables, then any changes in zip codes
would need to ripple out to every record in those three or four tables. However, if it’s all stored in one
table, then you need to change it in only one place.

There is a downside, though: added complexity and reduced efficiency. Before changing the database,
the query for a member’s name and address would be as follows:

SELECT FirstName, LastName, Street, City, State, ZipCode
FROM MemberDetails;

122

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 122

After changing the database so that the MemberDetails table is in third normal form, the same query
looks like this:

SELECT FirstName, LastName, Street, City, State, ZipCode.ZipCode
FROM MemberDetails INNER JOIN ZipCode
ON ZipCode.ZipCode = MemberDetails.ZipCode;

In addition to being a little more complex, the code is also less efficient. The database takes longer to
retrieve the data. In a small database with a few records, the difference in speed is minimal, but in a
larger database with more records, the difference in speed could be quite significant.

Leave the Film Club database’s structure intact for now, and make any necessary changes in the section
later in this chapter that re-examines the database’s structure.

Ensuring Data Validity with Constraints
When creating database tables and fields, you can specify constraints that limit what data can go in a field.
It might sound a bit odd — why constrain things? Imagine that a database user is working late, entering
data into the database. He’s all bleary-eyed and kind of keen to get home. When entering primary key
data, he accidentally enters the same value twice. Now the unique primary key is no longer unique, caus-
ing data corruption in the database and causing queries, which rely on the uniqueness of the primary key,
to fail. Sorting out corrupted data can be quite tricky, especially if you’re dealing with a huge database
and lots of records. Preventing data corruption in the first place is much better — for example, by defining
a constraint when creating the table that specifies that a column must contain unique values. If someone
tries to add two identical values, the database throws an error and stops them.

Using the DBMS to protect data integrity is not the only way, but it’s probably the best. An alternative is
having an external program ensure that the data is valid, as most databases are not accessed directly by
the user but via some third-party front-end interface. For example, if you buy a program off the shelf to
help catalog and organize your CD and record collection, it’s quite unlikely that all you’d get is a
database! Instead, the program installs a nice, easy-to-use front-end program on the user’s computer
that accesses a database in the background without the user ever seeing it. This program can control the
data and ensure that no data corruption occurs. However, preventing data corruption using the DBMS
has its advantages. For example, the check has to be done in only one place: in the database itself.
Additionally, the DBMS can run the check more efficiently than can an external program.

This section covers the following constraints:

❑ NOT NULL

❑ UNIQUE

❑ CHECK

❑ PRIMARY KEY

❑ FOREIGN KEY

123

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 123

MySQL versions prior to 5.0.2 support the constraints mentioned here but don’t enforce them, which
somewhat reduces their effectiveness. The code described in the following sections works in MySQL, but
when you enter data prohibited by a particular constraint, MySQL won’t reject it as other database sys-
tems would. Discussion of constraints and invalid data as they relate to MySQL is beyond the scope of
this book. Be sure to check the MySQL product documentation for specific information.

NOT NULL Constraint
Chapter 3 briefly covered the NULL data type. If you recall, NULL is not the same as no data; rather, it rep-
resents unknown data. However, the NULL data type can cause problems with query results. It makes
sorting columns with NULL values difficult, because one NULL is the same as the next, so all the NULLs
appear at the start of any sorted results set. You may also want to ensure that a particular column has a
value — that it’s a compulsory column when inserting a new record. This is where the NOT NULL con-
straint comes in. It ensures that the column must have a value or else the record cannot be inserted.

Whether a column in a table can contain NULLs is something that you need to define when you first cre-
ate the table. SQL allows NULLs by default, so only when you don’t want NULLs do you need to specify
such in the table creation SQL. Add the constraint to the column definition, immediately after the data
type. For example, the following SQL creates a new table called MyTable and adds three columns, two of
which, Column1 and Column3, specify not to accept NULLs:

CREATE TABLE MyTable
(
Column1 int NOT NULL,
Column2 varchar(20),
Column3 varchar(12) NOT NULL
)

What if you decide later on, after you create a table, that you want to make one or more of the columns
subject to a NOT NULL constraint? Answering this question is a little trickier, and this is another good
reason for planning database table creation in advance of creating the tables. Some DBMSs, such as
Oracle, allow users to modify columns in an existing table with the ALTER TABLE MODIFY statement.
For example, to add a NOT NULL constraint to Column1 in Oracle and MySQL, you would write a state-
ment similar to the following:

ALTER TABLE MyTable
MODIFY Column2 varchar(20) NOT NULL;

However, many database systems don’t allow this statement, so you must take a different approach:
alter the column definition itself and re-create it with the NOT NULL constraint:

ALTER TABLE MyTable
ALTER COLUMN Column2 varchar(20) NOT NULL;

The ALTER COLUMN statement changes Column2, specifying the same data type but adding the NOT
NULL constraint.

124

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 124

IBM’s DB2 doesn’t allow you to alter a column so that it doesn’t allow NULLs. You can either delete the
table and redefine it, this time making sure the column has a NOT NULL constraint, or add a CHECK con-
straint. The CHECK constraint is covered later in this chapter, but to add a NOT NULL CHECK constraint in
DB2, the syntax is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
CHECK (column_name IS NOT NULL)

So, to add a NOT NULL CHECK constraint for Column2 of MyTable, you would write the following code:

ALTER TABLE MyTable
ADD CONSTRAINT Column2_NotNull
CHECK (Column2 IS NOT NULL);

With the NOT NULL constraint added to the database systems, test it out by executing the following SQL:

INSERT INTO MyTable(Column1,Column3)
VALUES (123,’ABC’);

You should get an error message similar to Cannot insert the value NULL into column
‘Column2’. The new record isn’t added to the table.

Consider this final issue. What if the column in your table that you want to make subject to a NOT NULL
constraint already contains NULL records? You can easily deal with that by using a bit of SQL, (like that
shown in the following example) to update all those records containing NULLs and set them to whatever
default value you think best:

UPDATE MyTable
SET Column2 = ‘’
WHERE Column2 IS NULL;

You must do this prior to adding a NOT NULL clause in order to avoid error messages.

If you ran the examples against the Film Club database, delete MyTable from the database, as it’s not
needed:

DROP TABLE MyTable;

UNIQUE Constraint
The UNIQUE constraint prevents two records from having identical values in a particular column. In the
MemberDetails table, for example, you might want to prevent two or more people from having identical
email addresses.

You can apply the UNIQUE constraint in two ways: add it when creating the table, or add it after creating
the table.

125

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 125

Except for IBM’s DB2, when creating a table, add the UNIQUE constraint to the table definition immedi-
ately after the column’s type definition:

CREATE TABLE MyUniqueTable
(

Column1 int,
Column2 varchar(20) UNIQUE,
Column3 varchar(12) UNIQUE

);

The preceding SQL creates a new table called MyUniqueTable and adds the UNIQUE constraint to
Column2 and Column3. If you’re using DB2, you can’t create a UNIQUE constraint unless the column is
also defined as NOT NULL. For DB2, make the following changes to the code:

CREATE TABLE MyUniqueTable
(

Column1 int,
Column2 varchar(20) NOT NULL UNIQUE,
Column3 varchar(12) NOT NULL UNIQUE

);

Execute the SQL that’s right for your database system, and then try to insert the following values with
the SQL shown here:

INSERT INTO MyUniqueTable(Column1,Column2, Column3)
VALUES (123,’ABC’, ‘DEF’);

INSERT INTO MyUniqueTable(Column1,Column2, Column3)
VALUES (123,’XYZ’,’DEF’);

You should find that the first INSERT INTO executes just fine and adds a new record, but the second
INSERT INTO tries to add a second record where the value of Column3 is DEF, violating the UNIQUE con-
straint that you added to the column definition. An error message should appear, which says something
like Violation of UNIQUE KEY constraint ‘UQ__MyUniqueTable__3A81B327’. Cannot
insert duplicate key in object ‘MyUniqueTable’. The statement has been terminated.

The error message’s text varies between database systems, but the message is the same: If the value is
not unique, you can’t add it.

Setting the UNIQUE constraint by simply adding UNIQUE after a column is nice and easy, but there’s
another way that has two advantages. In this alternative, you add the constraint at the end of the column
listing in the table definition, which allows you to specify that two or more columns must in combina-
tion be unique. The other advantage is that you can give the constraint a name and you can delete the
constraint using SQL. You’re done with MyUniqueTable, so you can delete it:

DROP TABLE MyUniqueTable;

126

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 126

The following code creates a new table, AnotherTable, and adds a unique constraint called
MyUniqueConstraint. Remember that it needs to be changed on IBM’s DB2. This constraint specifies
that Column2 and Column3 must in combination be unique:

CREATE TABLE AnotherTable
(

Column1 int,
Column2 varchar(20),
Column3 varchar(12),
CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3)

);

On DB2 you need to ensure that the column doesn’t accept NULLs:

CREATE TABLE AnotherTable
(

Column1 int,
Column2 varchar(20) NOT NULL,
Column3 varchar(12) NOT NULL,
CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3)

);

Try running the preceding SQL for your database system to create the table and then try inserting data
with the following INSERT INTO statements:

INSERT INTO AnotherTable (Column1, Column2, Column3)
VALUES (1,’ABC’,’DEF’);

INSERT INTO AnotherTable (Column1, Column2, Column3)
VALUES (2,’ABC’,’XYZ’);

INSERT INTO AnotherTable (Column1, Column2, Column3)
VALUES (3,’DEF’,’XYZ’);

INSERT INTO AnotherTable (Column1, Column2, Column3)
VALUES (4,’ABC’,’DEF’);

The first three INSERT INTO statements execute and insert the records. Even though the first two
INSERT statements add records where Column2 has the value ABC, the record is allowed because the
value is unique in combination with Column3. The final INSERT statement fails because the first INSERT
statement already entered the combination of ABC for Column2 and DEF for Column3 into the table.
Therefore, the combination is no longer unique and violates the constraint MyUniqueConstraint,
which states that the combination of Column2 and Column3 must be unique. Delete AnotherTable:

DROP TABLE AnotherTable;

127

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 127

You can add more than one constraint to a table, so long as each constraint has a different name and is
separated by a comma:

CREATE TABLE AnotherTable
(

Column1 int,
Column2 varchar(20),
Column3 varchar(12),
CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3),
CONSTRAINT AnotherConstraint UNIQUE(Column1, Column3)

);

If you’re using DB2, you would write the following statement:

CREATE TABLE AnotherTable
(

Column1 int NOT NULL,
Column2 varchar(20) NOT NULL,
Column3 varchar(12) NOT NULL,
CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3),
CONSTRAINT AnotherConstraint UNIQUE(Column1, Column3)

);

You can delete AnotherTable from the database:

DROP TABLE AnotherTable;

So far you’ve learned how to add a UNIQUE constraint at the time of a table’s creation. However, using
the ALTER TABLE statement, you can add and remove a UNIQUE constraint after the table’s creation.
Chapter 1 discussed the ALTER TABLE statement in relation to adding and removing columns in a table.
To add a constraint, you specify which table to alter and then state that you want to ADD a constraint.
The SQL code required to define a constraint with an ALTER TABLE statement is identical to how you
create a constraint at table creation.

The following code demonstrates how to add a constraint called MyUniqueConstraint to a table called
YetAnotherTable:

CREATE TABLE YetAnotherTable
(

Column1 int,
Column2 varchar(20),
Column3 varchar(12)

);

ALTER TABLE YetAnotherTable
ADD CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3);

128

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 128

If you’re using DB2, the code is as follows:

CREATE TABLE YetAnotherTable
(

Column1 int,
Column2 varchar(20) NOT NULL,
Column3 varchar(12) NOT NULL

);

ALTER TABLE YetAnotherTable
ADD CONSTRAINT MyUniqueConstraint UNIQUE(Column2, Column3);

This constraint is identical to the one created earlier for AnotherTable. Again, you can add more than one
constraint to a table, just as you did with the constraint definition when you defined the table.

Use ALTER TABLE to delete the constraint, and simply drop it as shown below, unless you’re using
MySQL:

ALTER TABLE YetAnotherTable
DROP CONSTRAINT MyUniqueConstraint;

If you’re using MySQL, the code is as follows:

ALTER TABLE YetAnotherTable
DROP INDEX MyUniqueConstraint;

You can also use the preceding code to drop constraints created at the time of a table’s creation, as long
as the constraint has a name.

The table YetAnotherTable can be deleted:

DROP TABLE YetAnotherTable;

CHECK Constraint
The CHECK constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn’t entered into the table. For example,
allowing a column storing an age to contain a negative value doesn’t make sense. After all, how many
people do you know who are minus 35 years old? The CHECK condition can be any valid SQL condition,
similar to those found in a WHERE clause, although SQL can check only the table into which you insert a
record. Note that although MS Access supports the CHECK constraint, its implementation is outside the
scope of this book, and the code examples can’t be executed from the main MS Access query designer.

You can add a CHECK constraint either at the time of a table’s creation or when you alter a table. The fol-
lowing Try It Out shows you how to use the CHECK constraint.

129

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 129

Try It Out Adding a CHECK Constraint
1. Using the following SQL, add a CHECK clause to the Age column:

CREATE TABLE NamesAges
(

Name varchar(50),
Age int CHECK (Age >= 0)

);

2. Execute the table creation SQL from Step 1, and then execute the following INSERT INTO
statements:

INSERT INTO NamesAges (Name, Age)
VALUES (‘Jim’, 30);

INSERT INTO NamesAges (Name)
VALUES (‘Jane’);

INSERT INTO NamesAges (Name, Age)
VALUES (‘Will’, -22);

How It Works
Whenever you add a record to the table, the condition on the Age column must evaluate to true or
unknown for the database to accept the record. If Age is 22, the condition is true and the database inserts
the record. If you try to insert -22, the record violates the CHECK clause and is not inserted. If you insert
no value, the clause evaluates to unknown and is valid.

The first INSERT INTO statement works because the CHECK condition evaluates to true. Indeed, 30 is
greater than or equal to zero.

The second INSERT INTO is successful because the CHECK condition evaluates to unknown, or NULL,
because NULL >= 0 is unknown.

The final INSERT INTO fails because the CHECK condition evaluates to false: -22 >=0 is false because
Age values can’t be negative numbers.

Given that NULL data types are always considered valid, you can prevent them by adding a NOT NULL
constraint. Drop the NamesAges table:

DROP TABLE NamesAges;

Now that you’re through with the Try It Out, consider the following table definition:

CREATE TABLE NamesAges
(

Name varchar(50),
Age int NOT NULL CHECK (Age >= 0)

);

130

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 130

The NOT NULL constraint prevents this INSERT INTO statement from being considered valid:

INSERT INTO NamesAges (Name)
VALUES (‘Jane’);

The statement is considered invalid because only the Name column is having data inserted into it; the
Age column is left off, so NULL is inserted, causing an error because it conflicts with the NOT NULL con-
straint. Drop the table:

DROP TABLE NamesAges;

A problem with adding a CHECK clause to an individual column definition is that the condition can
check only that column. For example, the CHECK clause added to AvgMonthlyWage below is invalid and
causes the DBMS to throw an error because it contains the column HourlyRate in the condition:

CREATE TABLE Employee
(

EmployeeName varchar(50),
AvgMonthlyWage decimal(12,2) CHECK (AvgMonthlyWage > HourlyRate),
HourlyRate decimal(12,2)

);

If you want your CHECK condition clause (the clause defined following the CHECK statement) to include
multiple columns from the table, you need to define it at the end of the column definitions. Rewrite the
preceding SQL like this:

CREATE TABLE Employee
(

EmployeeName varchar(50),
AvgMonthlyWage decimal(12,2),
HourlyRate decimal(12,2),
CONSTRAINT HourlyLess CHECK (AvgMonthlyWage > HourlyRate)

);

This SQL creates a table constraint called HourlyLess, which contains a condition that checks that
AvgMonthlyWage is greater than HourlyRate.

You can see that adding a CHECK constraint is nearly identical to adding a UNIQUE constraint. Another
similarity is the way in which you add a CHECK constraint after you create a table. As with the UNIQUE
constraint, you use the ALTER TABLE statement along with ADD CONSTRAINT, the constraint’s name, the
type of constraint, and in this case, the CHECK constraint’s condition.

The following code adds an HourlyLess constraint to the Employee table, though its name conflicts
with the constraint of the same name defined when the table was created:

ALTER TABLE Employee
ADD CONSTRAINT HourlyLess CHECK (AvgMonthlyWage > HourlyRate);

131

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 131

Obviously, if the table included a constraint called HourlyLess, which it does in this case, the DBMS
will throw an error. To delete an existing constraint, simply use the DROP statement as shown below.
Unfortunately, this won’t work on MySQL:

ALTER TABLE Employee
DROP CONSTRAINT HourlyLess;

With the old constraint gone, you can now run the ALTER TABLE code and add the constraint with the
name HourlyLess. You can now drop the Employee table:

DROP TABLE Employee;

The constraint covered in the next section is the very important PRIMARY KEY constraint.

Primary Key and PRIMARY KEY Constraint
Of all the constraints, PRIMARY KEY is the most important and most commonly used. In fact, every table
should have a primary key because first normal form requires it. A primary key provides a link between
tables. For example, MemberId is the primary key in the Film Club database’s MemberDetails table and
is linked to the FavCategory and Attendance tables.

In order for the relationship to work, the primary key must uniquely identify a record, which means that
you can include only unique values and no NULLs. In fact, the PRIMARY KEY constraint is essentially a
combination of the UNIQUE and NOT NULL constraints.

Whereas you can have more than one UNIQUE or CHECK constraint on a table, only one PRIMARY KEY
constraint per table is allowed.

Given its importance, you should decide on a primary key at the database design state, before you create
any tables in the database. Creating the PRIMARY KEY constraint is usually easiest when writing the
table creation SQL. The format is very similar to the UNIQUE and CHECK constraints. You can specify the
primary key as either a single column or more than one column. To specify a single column, simply
insert PRIMARY KEY after its definition, like this:

CREATE TABLE HolidayBookings
(

CustomerId int PRIMARY KEY,
BookingId int,
Destination varchar(50)

);

Note that with IBM DB2, the primary key column must also be defined as NOT NULL. The following
code works on the other database systems but isn’t strictly necessary:

CREATE TABLE HolidayBookings
(

CustomerId int NOT NULL PRIMARY KEY,
BookingId int,
Destination varchar(50)

);

132

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 132

In the preceding code, CustomerId is the primary key. Alternatively, more than one column can act as
the primary key, in which case you need to add the constraint at the end of the table, after the column
definitions.

The following Try It Out shows you how to use the PRIMARY KEY constraint.

Try It Out Establishing a PRIMARY KEY Constraint
1. Execute the following SQL to create the MoreHolidayBookings table:

CREATE TABLE MoreHolidayBookings
(

CustomerId int NOT NULL,
BookingId int NOT NULL,
Destination varchar(50),
CONSTRAINT booking_pk PRIMARY KEY (CustomerId, BookingId)

);

2. Now try executing the following SQL to insert data into the MoreHolidayBookings table:

INSERT INTO MoreHolidayBookings (CustomerId, BookingId, Destination)
VALUES (1,1,’Hawaii’);

INSERT INTO MoreHolidayBookings (CustomerId, BookingId, Destination)
VALUES (1,2,’Canada’);

INSERT INTO MoreHolidayBookings (CustomerId, BookingId, Destination)
VALUES (2,2,’England’);

INSERT INTO MoreHolidayBookings (CustomerId, BookingId, Destination)
VALUES (1,1,’New Zealand’);

INSERT INTO MoreHolidayBookings (CustomerId, Destination)
VALUES (3,’Mexico’);

How It Works
In Step 1, the booking_pk constraint is a PRIMARY KEY constraint, and the columns CustomerId and
BookingId are the primary key columns. Remember that the PRIMARY KEY constraint is a combination
of the UNIQUE and NOT NULL constraints, which means that the CustomerId and BookingId columns
cannot contain NULL values. They must also be unique in combination. Thus, you can have the same
value a number of times in CustomerId as long as BookingId is different each time, and vice versa. Note
that the NOT NULL constraint following the primary key columns is strictly necessary only with DB2, but
the code works fine on the other database systems even though NOT NULL isn’t needed.

The first three INSERT INTO statements work fine, but the fourth one doesn’t because it tries to insert
the same combination of values for CustomerId and BookingId, which the first INSERT INTO statement
already inserted. Because the primary key constraint doesn’t allow duplicates, you receive an error
message.

The final INSERT INTO also fails because it doesn’t assign a value for BookingId when inserting a new
record, so BookingId is NULL. Likewise, you receive an error message because the primary key constraint
does not allow NULL values.

133

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 133

Drop the MoreHolidayBookings table:

DROP TABLE MoreHolidayBookings;

Returning to the regular discussion, although good practice is to create the primary key upon table cre-
ation, it’s also possible to add a primary key to an existing table. The method of doing so is very similar
to adding a UNIQUE constraint: you use the ALTER TABLE statement. However, there is one proviso: The
columns forming part of the primary key must already contain the NOT NULL constraint. If you try to
add a primary key to a column that allows NULLs, you receive an error message.

With that in mind, if theCustomerId and BookingId columns of the MoreHolidayBookings table already
defined the NOT NULL constraint when the table was created:

CREATE TABLE MoreHolidayBookings
(

CustomerId int NOT NULL,
BookingId int NOT NULL,
Destination varchar(50)

);

Then with the NOT NULL constraint already defined, you can add the PRIMARY KEY constraint:

ALTER TABLE MoreHolidayBookings
ADD CONSTRAINT more_holiday_pk PRIMARY KEY (CustomerId, BookingId);

The constraint is called more_holiday_pk and it defines CustomerId and BookingId as the primary key
columns. If the NOT NULL constraint weren’t defined prior to altering the table, you would receive an
error.

If you have an existing table without a column or columns to which you want to add a primary key, but
that weren’t created with the NOT NULL constraint, then you must add the NOT NULL constraint, as
shown earlier in the chapter. As an alternative to adding the NOT NULL constraint, simply save the data
in a temporary table and then re-create the table with a PRIMARY KEY constraint. Your RDBMS may
have other ways around the problem that are specific to that system.

Finally, deleting a PRIMARY KEY constraint is the same as deleting the UNIQUE and CHECK constraints.
Except on MySQL, use an ALTER TABLE statement coupled with a DROP statement:

ALTER TABLE MoreHolidayBookings
DROP CONSTRAINT more_holiday_pk;

On MySQL, the code is as follows:

ALTER TABLE MoreHolidayBookings
DROP PRIMARY KEY;

The MoreHolidayBookings table is no longer needed, so you should drop it:

DROP TABLE MoreHolidayBookings;

134

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 134

Foreign Key
Foreign keys are columns that refer to primary keys in another table. Primary and foreign keys create
relations between data in different tables. Chapter 1 very briefly covered foreign keys, and the Film Club
database was designed with a number of tables with primary and foreign keys. When you designed the
Film Club database, you didn’t set up any PRIMARY KEY constraints, but they link tables nevertheless.
For example, the MemberDetails table contains all the personal data about a member, their name,
address, and so on. It also has a primary key column, MemberId. Other tables, such as Attendance and
FavCategory, also contain data about members, but rather than repeat personal details about the mem-
ber, you created a foreign key, MemberId, that links a record in one table to a record containing a mem-
ber’s personal details in the MemberDetails table. Figure 4-1 illustrates this relationship.

Figure 4-1

Each of the lines linking the tables represents a relationship between the tables. For example, Attendance
doesn’t store all the location details; it simply stores the primary key value from the Location table for
that particular location. LocationId in Attendance is therefore a foreign key, and LocationId in the
Location table contains the primary key to which the foreign key refers.

When discussing the primary key, you learned how important it is for it not to contain NULLs and for
it to contain unique values; otherwise you lose the relationship, and queries return invalid data. The
PRIMARY KEY constraint helps ensure that duplicate primary key values never occur and prevents
NULLs being entered. But so far there’s nothing stopping someone from entering a value in a foreign
key table that doesn’t have a matching value in the primary key table. For example, in the Film Club
database, the Location table’s primary key column is LocationId. Currently the Location table holds only
three records, with the values in the records’ primary key column having the values 1, 2, and 3:

LocationId Street City State

1 Main Street Orange Town New State

2 Winding Road Windy Village Golden State

3 Tiny Terrace Big City Mega State

135

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 135

If you want to return a results set detailing meeting dates, the MemberId of each member who attended,
and the street, city, and state of the meeting, you need to get the information from the MemberDetails
and Location tables. To ensure that the data is linked — that the member who attended and the location
where they attended are correctly matched in each row — you need to join the Location and Attendance
tables with an INNER JOIN:

SELECT MemberId, MeetingDate, Street, City, State
FROM Location INNER JOIN Attendance
ON Attendance.LocationId = Location.LocationId;

Doing so returns the results in the following table:

MemberId MeetingDate Street City State

1 2004-01-01 Winding Road Windy Village Golden State

4 2004-01-01 Winding Road Windy Village Golden State

5 2004-01-01 Winding Road Windy Village Golden State

6 2004-01-01 Winding Road Windy Village Golden State

1 2004-03-01 Main Street Orange Town New State

4 2004-03-01 Main Street Orange Town New State

5 2004-03-01 Main Street Orange Town New State

6 2004-03-01 Main Street Orange Town New State

The following SQL inserts a record into the Attendance table where the LocationId has no matching
LocationId in the Location table:

INSERT INTO Attendance (LocationId, MeetingDate, MemberAttended, MemberId)
VALUES (99,’2005-12-01’,’Y’,3);

Running the preceding query again produces the results in the following table:

MemberId MeetingDate Street City State

1 2004-01-01 Winding Road Windy Village Golden State

4 2004-01-01 Winding Road Windy Village Golden State

5 2004-01-01 Winding Road Windy Village Golden State

6 2004-01-01 Winding Road Windy Village Golden State

1 2004-03-01 Main Street Orange Town New State

136

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 136

MemberId MeetingDate Street City State

4 2004-03-01 Main Street Orange Town New State

5 2004-03-01 Main Street Orange Town New State

6 2004-03-01 Main Street Orange Town New State

Notice the difference? That’s right, there is no difference! The new attendance record doesn’t show up in
the results because the added data is invalid, and the relationship between the Location and Attendance
tables has been broken for that record. How can you prevent the relationship between tables from break-
ing? SQL has the FOREIGN KEY constraint for this very purpose. It allows you to specify when a column
in a table is a foreign key from another table — when a column in one table is really just a way of refer-
encing rows in another table. For example, you can specify that LocationId in the Attendance table is a
foreign key and that it’s dependent on the primary key value existing in the Location table’s LocationId
column.

The basic syntax to create a foreign key is shown in the following code:

ALTER TABLE name_of_table_to_add_foreign_key
ADD CONSTRAINT name_of_foreign_key
FOREIGN KEY (name_of_column_that_is_foreign_key_column)
REFERENCES name_of_table_that_is_referenced(name_of_column_being_referenced)

The following Try It Out walks you through the process of creating a FOREIGN KEY constraint.
Unfortunately, the code won’t work on IBM’s DB2, as before a primary key constraint can be added, the
column must have the NOT NULL constraint. This can be added in DB2 only at the time the table is cre-
ated, not after it. Although a CHECK clause can be added to stop NULLs, it’s not the same as a NOT NULL
constraint. The only option is to delete a table and re-create it, this time with the appropriate columns
with a NOT NULL constraint. However, deleting and re-creating the table will result in the loss of the data
in the dropped table, unless you transfer it to another table, something not covered until Chapter 5. The
code is included here, but it is more fully explained in the next chapter.

Try It Out Creating a FOREIGN KEY Constraint
1. First, delete the invalid record in the Attendance table:

DELETE FROM Attendance
WHERE LocationId = 99;

2. Add the NOT NULL constraint:

ALTER TABLE Location
ALTER COLUMN LocationId int NOT NULL;

If you’re using Oracle or MySQL, the SQL code is as follows:

ALTER TABLE Location
MODIFY LocationId int NOT NULL;

137

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 137

If you’re using IBM DB2, you need to use the following code:

CREATE TABLE TempLocation
(

LocationId integer NOT NULL,
Street varchar(100),
City varchar(75),
State varchar(75)

);

INSERT INTO TempLocation SELECT * FROM Location;

DROP TABLE Location;

CREATE TABLE Location
(

LocationId integer NOT NULL,
Street varchar(100),
City varchar(75),
State varchar(75)

);

INSERT INTO Location SELECT * FROM TempLocation;
DROP TABLE TempLocation;

You must add a NOT NULL constraint before any attempt to add a primary key, lest you receive
an error message.

3. Next, add the primary key:

ALTER TABLE Location
ADD CONSTRAINT locationid_pk PRIMARY KEY (LocationId);

4. Finally, add the FOREIGN KEY constraint:

ALTER TABLE Attendance
ADD CONSTRAINT locationid_fk
FOREIGN KEY (LocationId)
REFERENCES Location(LocationId);

How It Works
In the first step, you simply deleted the erroneous record in the Attendance table, the record with a
LocationId of 99.

Next, you specified which table you want to alter, much as with the other constraints. Before you can create
a FOREIGN KEY constraint, however, you need to ensure that the column you specify as the primary key is
actually subject to a PRIMARY KEY constraint. However, you can add a PRIMARY KEY constraint to only a
column that has a NOT NULL constraint, and the LocationId column has no such constraint. Therefore, the
second step added the ADD CONSTRAINT followed by the constraint name and set the primary key.
The IBM DB2 syntax is particularly convoluted. It creates a temporary table identical in structure to the
Location table. Then data from the existing Location table is copied to this temporary table. After that,
the Location table is dropped and then re-created, but with a NOT NULL constraint on the LocationId col-
umn, the one to which you want to add a primary key. Finally, the temporary table is dropped.

138

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 138

The third step had you create the primary key on the Location table’s LocationId column.

The third line of the fourth step stated the type of constraint, FOREIGN KEY, and the brackets following
contain all the columns that in combination make up the foreign key. On the final line of code, the
REFERENCES statement established which table the foreign key references. Following that is the name of
the table that holds the primary key and, in brackets, a list of the primary key columns that the foreign
key references.

In the preceding example, the primary key, and therefore the matching foreign key, consists of just one
column; however, they can consist of more than one column. For example, three columns form the pri-
mary and foreign keys in the following SQL:

ALTER TABLE SomeTable
ADD CONSTRAINT SomeTable_fk1
FOREIGN KEY (EmployeeName, EmployeeId, MemberShipId)
REFERENCES SomePrimaryKeyTable(EmployeeName, EmployeeId, MemberShipId)

Now that the FOREIGN KEY constraint is in place, try the INSERT INTO statement from earlier:

INSERT INTO Attendance (LocationId, MeetingDate, MemberAttended, MemberId)
VALUES (99,’2005-12-01’,’Y’,3);

It isn’t entered into the database, and you receive an error message.

So far, you’ve learned how to add a FOREIGN KEY constraint to an existing table, but it can be defined at
the time the table is created, in a similar manner to the CHECK and UNIQUE constraints. As demonstrated
in the following code, you add the constraint definition at the end of the table definition, just after the
column definitions:

CREATE TABLE Attendance
(

LocationId integer,
MeetingDate date,
MemberAttended char(1),
MemberId integer,
CONSTRAINT SomeTable_fk1
FOREIGN KEY (LocationId)
REFERENCES Location(LocationId)

);

Those are all the constraints covered in this book. The next section examines how to speed up results
using an index.

Speeding Up Results with Indexes
Indexes are special lookup tables that the database search engine can use to speed up data retrieval.
They also organize the way in which the database stores data. A good real-world example is a book,
much like this one, that has an index at the back that helps you find where the important information is.
It saves a lot of flicking through the pages randomly trying to find the topic you want. Given that an

139

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 139

index helps speed up SELECT queries and WHERE clauses, why not always have one? First of all, while it
speeds up data retrieval, it slows down data input, with UPDATE and INSERT statements, for example.
Additionally, it adds to a database’s size, albeit not massively, though it is a consideration. Using indexes
is good practice, but it is best done judiciously — for example, using them to help your most common
queries.

Creating an index involves the CREATE INDEX statement, which allows you to name the index, to spec-
ify the table and which column or columns to index, and to indicate whether the index is in ascending or
descending order. Indexes can also be unique, similar to the UNIQUE constraint, in that the index pre-
vents duplicate entries in the column or combination of columns on which there’s an index. The basic
format of the statement is as follows:

CREATE INDEX <index_name>
ON <table_name> (<column_names>)

The following code adds an index called member_name_index on the MemberDetails table, and it
indexes the FirstName and LastName columns:

CREATE INDEX member_name_index
ON MemberDetails (FirstName, LastName);

If you execute the following SELECT statement, you notice something interesting:

SELECT FirstName, LastName
FROM MemberDetails;

The results, shown in the following table, appear in ascending order, by first name and then last name,
even though you did not add an ORDER BY clause:

FirstName LastName

Catherine Hawthorn

Doris Night

Jack Johnson

Jamie Hills

Jenny Jones

John Jackson

John Jones

Katie Smith

Seymour Botts

Steve Gee

Stuart Dales

Susie Simons

William Doors

140

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 140

The results are ordered because, by default, the index orders results in ascending order. The default
order is based on the order in which you list the columns in the index definition’s SELECT statement. To
delete the index, you need to use the DROP INDEX statement, specifying the index name in the state-
ment. Note that in some RDBMSs, such as MS SQL Server, you need to specify the table name in addi-
tion to the index name. So, the SQL to drop the index just created in MS SQL Server is as follows:

DROP INDEX MemberDetails.member_name_indx;

In IBM DB2 and Oracle, the DROP INDEX statement simply requires the index name without the table
name prefixed:

DROP INDEX member_name_indx;

In MySQL, the code to drop the index is as follows:

ALTER TABLE MemberDetails
DROP INDEX member_name_indx;

MS Access has yet another way of dropping the index:

DROP INDEX member_name_indx ON MemberDetails;

After dropping the index, run the same SELECT statement:

SELECT FirstName, LastName
FROM MemberDetails;

You find that the results are no longer necessarily in order:

FirstName LastName

Katie Smith

Susie Simons

John Jackson

Steve Gee

John Jones

Jenny Jones

Jack Johnson

Seymour Botts

Jamie Hills

Stuart Dales

William Doors

Doris Night

Catherine Hawthorn

141

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 141

The results you get may be in a slightly different order, depending on your DBMS. When results are not
ordered, there’s no real guarantee of what the order might be.

You can set two other options when creating an index. The first, the UNIQUE option, prevents duplicate
values from being entered and works very much like the UNIQUE constraint. The second option deter-
mines the column order. Recall that the default results order is ascending, but you can also order results
in descending order.

The following SQL creates a unique index that orders results by last name in descending order and then
by first name. Using the DESC keyword, execute the following SQL:

CREATE UNIQUE INDEX member_name_indx
ON MemberDetails (LastName DESC, FirstName);

After executing the preceding code, execute this query:

SELECT LastName, FirstName
FROM MemberDetails;

Query results are provided in the following table:

LastName FirstName

Botts Seymour

Dales Stuart

Doors William

Gee Steve

Hawthorn Catherine

Hills Jamie

Jackson John

Johnson Jack

Jones Jenny

Jones John

Night Doris

Simons Susie

Smith Katie

You can see that LastName now goes in order from the lowest to the highest — from a to z in the alphabet.

142

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 142

The index is no longer needed, so delete it with the following code. If using MS SQL Server, write the
following DROP INDEX statement:

DROP INDEX MemberDetails.member_name_indx;

In IBM DB2 and Oracle, the DROP INDEX statement simply requires the index name without the table
name prefixed:

DROP INDEX member_name_indx;

In MySQL, the code to drop the index is as follows:

ALTER TABLE MemberDetails
DROP INDEX member_name_indx;

MS Access has yet another way of dropping the index:

DROP INDEX member_name_indx ON MemberDetails;

You’ve learned a lot of useful stuff for improving the design and efficiency of your databases. The next
section takes that knowledge and applies it to the Film Club database.

Improving the Design of the Film Club Database
This section revisits the Film Club database, taking into account the topics discussed in this chapter: nor-
malization, ensuring data integrity with constraints, and using indexes to speed up data retrieval.

The discussion begins with an examination of the database structure and then turns to constraints and
indexes.

Reexamining the Film Club Database Structure
Generally speaking, the database is in third normal form, with the exception of the MemberDetails table.
The Street, City, and State columns are all transitively dependent on the ZipCode column. Therefore, the
MemberDetails table is still in second normal form. The question now, however, is one of common sense,
because the amount of duplication reduced by going to third normal form is going to be quite small. It’s
unlikely that many people from the same street would join the club, and with a small database, storage
size is not usually an issue. In addition, changing the table to comply with third normal form involves
creating another table, and as a result any SELECT queries require another JOIN statement, which
impinges on database efficiency. Therefore, in this instance, the database is fine as it is, and moving the
MemberDetails table to third normal form is probably unnecessary and only adds complexity without
really saving any storage space.

However, one area of the database design needs altering: the Attendance table. Consider the following
query:

SELECT * FROM Attendance;

143

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 143

The results of the query are shown in the following table:

MeetingDate MemberAttended MemberId LocationId

2004-01-01 Y 1 2

2004-01-01 N 4 2

2004-01-01 Y 5 2

2004-01-01 Y 6 2

2004-03-01 Y 1 1

2004-03-01 Y 4 1

2004-03-01 N 5 1

2004-03-01 N 6 1

For each meeting, the Attendance table stores each film club member and their attendance status. Rather
than store a record regardless of whether a member attended or not, you can save space by storing a
record only if a member actually attends a meeting. Getting a list of members who attended a meeting is
simple enough. The SQL to find out who didn’t attend, however, is a little more involved and is covered
in greater detail in Chapter 7.

To make the changes, delete all the records where the member didn’t attend, that is, where
MemberAttended equals N. Then delete the MemberAttended column.

Use this SQL to delete all the records where MemberAttended equals N:

DELETE FROM Attendance
WHERE MemberAttended = ‘N’;

Once you delete those records, you can drop the whole column:

ALTER TABLE Attendance
DROP COLUMN MemberAttended;

Dropping the column deletes all the data stored in that column for all rows. Unfortunately, IBM’s DB2
doesn’t support dropping a column. The only option, as you saw earlier, is to delete the whole table and
re-create it from scratch, having first saved the data:

CREATE TABLE TempAttendance
(

MeetingDate date,
LocationId integer,
MemberId integer

);

INSERT INTO TempAttendance (MeetingDate, LocationId, MemberId)
SELECT MeetingDate, LocationId, MemberId FROM Attendance

144

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 144

WHERE MemberAttended = ‘Y’;

DROP TABLE Attendance;

CREATE TABLE Attendance
(

MeetingDate date NOT NULL,
LocationId integer NOT NULL,
MemberId integer NOT NULL

);

INSERT INTO Attendance (MeetingDate, LocationId, MemberId)
SELECT MeetingDate, LocationId, MemberId FROM Attendance;
DROP TABLE TempAttendance;

As in the earlier example, the data from the table that you need to change is saved in a temporary table.
The MemberAttended column is being deleted, so there’s no need to save data from that. The original
table is deleted and then re-created, but without the MemberAttended column. The data is then copied
back from the TempAttendance table, which is then dropped.

The changes made to the Attendance table have an additional consequence as far as SELECT queries go.
Displaying all members who attended is now easier. You don’t need to include a WHERE clause specifying
that MemberAttended equals Y; a basic SELECT * FROM Attendance statement now suffices. However,
finding out lists of members who didn’t attend meetings is harder and involves subqueries, a topic cov-
ered in Chapter 7.

Often, however, the downside to more efficient data storage is more complex SQL queries, covered in
more detail in Chapter 7. The next section deals with ensuring data validation in your more efficient
database.

Improving Data Validation and Efficiency
This section employs the various constraints discussed earlier to help reduce the risk of data corruption.
A good first step is to enforce the primary keys in each table by adding a PRIMARY KEY constraint.

The Location table already has a PRIMARY KEY constraint, added when you learned about the FOREIGN
KEY constraint. Begin by adding a PRIMARY KEY constraint to the MemberDetails table. First, however,
you need to add a NOT NULL constraint because the PRIMARY KEY constraint can’t be added to a column
that allows NULLs:

ALTER TABLE MemberDetails
ALTER COLUMN MemberId int NOT NULL;

If using Oracle or MySQL, you need to change the code to the following:

ALTER TABLE MemberDetails
MODIFY MemberId int NOT NULL;

145

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 145

Remember, IBM DB2 doesn’t support adding NOT NULL after the table has been created, so you have to
go the long-winded route of copying the data to a temporary table, dropping the MemberDetails table,
and then re-creating it with the NOT NULL constraint, as shown in the following code:

CREATE TABLE TempMemberDetails
(

MemberId integer,
FirstName vargraphic(50),
LastName vargraphic(50),
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

);

INSERT INTO TempMemberDetails
SELECT * FROM MemberDetails;

DROP TABLE MemberDetails;

CREATE TABLE MemberDetails
(

MemberId integer NOT NULL,
FirstName vargraphic(50),
LastName vargraphic(50),
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

);

INSERT INTO MemberDetails
SELECT * FROM TempMemberDetails;

DROP TABLE TempMemberDetails;

Having added the NOT NULL constraint, via whichever means your database system requires, now exe-
cute the following code, which adds the actual PRIMARY KEY:

ALTER TABLE MemberDetails
ADD CONSTRAINT memberdetails_pk PRIMARY KEY (MemberId);

146

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 146

Primary keys must be unique and cannot contain NULLs, so if by accident your table contains NULLs or
duplicate values for the MemberId column, then you need to edit and correct them before the statement
can work.

Next, add a PRIMARY KEY constraint to the Films table. First, you need to add a NOT NULL constraint.
Use the following code for MS Access and SQL Server:

ALTER TABLE Films
ALTER COLUMN FilmId int NOT NULL;

If you’re using Oracle or MySQL, use the following statement:

ALTER TABLE Films
MODIFY FilmId int NOT NULL;

Again, with IBM’s DB2, you need to add the NOT NULL constraint by re-creating the whole table:

CREATE TABLE TempFilms
(

FilmId integer,
FilmName varchar(100),
YearReleased integer,
PlotSummary varchar(2000),
AvailableOnDVD char(1),
Rating integer,
CategoryId integer

);

INSERT INTO TempFilms
SELECT * FROM Films;

DROP TABLE Films;

CREATE TABLE Films
(

FilmId integer NOT NULL,
FilmName varchar(100),
YearReleased integer,
PlotSummary varchar(2000),
AvailableOnDVD char(1),
Rating integer,
CategoryId integer

);

INSERT INTO Films
SELECT * FROM TempFilms;
DROP TABLE TempFilms;

Be sure to check all columns for duplicate entries in order to avoid errors in creating the PRIMARY KEY
constraint. In this case, the FilmId column contains duplicate values. It’s surprisingly easy for invalid
data to occur, which makes defining a PRIMARY KEY constraint essential. To rid the FilmId column of
duplicates, execute the following three UPDATE statements:

147

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 147

UPDATE Films
SET FilmId = 13
WHERE FilmId = 12 AND
FilmName = ‘The Good, the Bad, and the Facially Challenged’;

UPDATE Films
SET FilmId = 14
WHERE FilmId = 2 AND
FilmName = ‘15th Late Afternoon’;

UPDATE Films
SET FilmId = 15
WHERE FilmId = 2 AND
FilmName = ‘Soylent Yellow’;

Execute the following SQL to create the PRIMARY KEY constraint:

ALTER TABLE Films
ADD CONSTRAINT films_pk PRIMARY KEY (FilmId);

Next, add a PRIMARY KEY constraint to the Category table. The steps are identical to those described
previously. First, add a NOT NULL constraint. If you’re using MS Access or SQL Server, the code is as
follows:

ALTER TABLE Category
ALTER COLUMN CategoryId int NOT NULL;

If you’re using MySQL or Oracle, use the following statement:

ALTER TABLE Category
MODIFY CategoryId int NOT NULL;

Once again, with IBM’s DB2, you need to re-create the table:

CREATE TABLE TempCategory
(

CategoryId integer,
Category varchar(100)

);

INSERT INTO TempCategory
SELECT * FROM Category;

DROP TABLE Category;

CREATE TABLE Category
(

CategoryId integer NOT NULL,
Category varchar(100)

);
INSERT INTO Category
SELECT * FROM TempCategory;
DROP TABLE TempCategory;

148

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 148

Then add the PRIMARY KEY constraint:

ALTER TABLE Category
ADD CONSTRAINT category_pk PRIMARY KEY (CategoryId);

Just two more tables to go to an efficient database. First, update the FavCategory table. This time,
though, the primary key is based on two columns, CategoryId and MemberId, so you need to make sure
to add both to the list of columns defining the PRIMARY KEY constraint. First, add the NOT NULL con-
straint to both columns. In MS Access and SQL Server, the code is as follows:

ALTER TABLE FavCategory
ALTER COLUMN CategoryId int NOT NULL;

ALTER TABLE FavCategory
ALTER COLUMN MemberId int NOT NULL;

If you’re using Oracle or MySQL, the preceding code should read as follows:

ALTER TABLE FavCategory
MODIFY CategoryId int NOT NULL;

ALTER TABLE FavCategory
MODIFY MemberId int NOT NULL;

In IBM DB2, you should use the following statement:

CREATE TABLE TempFavCategory
(

CategoryId integer,
MemberId integer

);

INSERT INTO TempFavCategory
SELECT * FROM FavCategory;

DROP TABLE FavCategory;

CREATE TABLE FavCategory
(

CategoryId integer NOT NULL,
MemberId integer NOT NULL

);
INSERT INTO FavCategory
SELECT * FROM TempFavCategory;

DROP TABLE TempFavCategory;

Now you can add the PRIMARY KEY constraint:

ALTER TABLE FavCategory
ADD CONSTRAINT favcategory_pk PRIMARY KEY (CategoryId, MemberId);

149

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 149

Finally, you do the same thing for the Attendance table, beginning with the NOT NULL constraint:

ALTER TABLE Attendance
ALTER COLUMN LocationId int NOT NULL;

ALTER TABLE Attendance
ALTER COLUMN MemberId int NOT NULL;

Again, for Oracle or MySQL, change the code to the following:

ALTER TABLE Attendance
MODIFY LocationId int NOT NULL;

ALTER TABLE Attendance
MODIFY MemberId int NOT NULL;

Then you add the PRIMARY KEY constraint:

ALTER TABLE Attendance
ADD CONSTRAINT attendance_pk PRIMARY KEY (LocationId, MemberId);

Your next objective in improving the database is to prevent columns containing NULL values where
necessary. Good practice is to add the NOT NULL constraint when creating the table. For example, if
the FilmName column contains no value, it makes the whole record rather pointless, as the name is so
essential. On the other hand, having a missing rating is not as much of a problem. Begin by adding a NOT
NULL constraint to the FilmName column. In MS Access or SQL Server, use the following code:

ALTER TABLE Films
ALTER COLUMN FilmName varchar(100) NOT NULL;

In Oracle or MySQL, type this statement:

ALTER TABLE Films
MODIFY FilmName varchar(100) NOT NULL;

Finally, in IBM DB2, use the following SQL:

CREATE TABLE TempFilms
(

FilmId integer NOT NULL,
FilmName varchar(100),
YearReleased integer,
PlotSummary varchar(2000),
AvailableOnDVD char(1),
Rating integer,
CategoryId integer

);

INSERT INTO TempFilms
SELECT * FROM Films;

DROP TABLE Films;

CREATE TABLE Films

150

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 150

(
FilmId integer NOT NULL,
FilmName varchar(100) NOT NULL,
YearReleased integer,
PlotSummary varchar(2000),
AvailableOnDVD char(1),
Rating integer,
CategoryId integer

);

INSERT INTO Films
SELECT * FROM TempFilms;
DROP TABLE TempFilms;

Next up is the MemberDetails table. Again, the person’s first and last names are pretty much essential to
track the person, and therefore these columns should not remain incomplete.

Add the NOT NULL constraints in MS SQL Server or Access with this code:

ALTER TABLE MemberDetails
ALTER COLUMN FirstName varchar(50) NOT NULL;

ALTER TABLE MemberDetails
ALTER COLUMN LastName varchar(50) NOT NULL;

Change the code in Oracle or MySQL to the following:

ALTER TABLE MemberDetails
MODIFY FirstName varchar(50) NOT NULL;

ALTER TABLE MemberDetails
MODIFY LastName varchar(50) NOT NULL;

In DB2, use the following statement:

CREATE TABLE TempMemberDetails
(

MemberId integer,
FirstName vargraphic(50),
LastName vargraphic(50),
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

);

INSERT INTO TempMemberDetails

151

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 151

SELECT * FROM MemberDetails;

DROP TABLE MemberDetails;

CREATE TABLE MemberDetails
(

MemberId integer NOT NULL,
FirstName vargraphic(50) NOT NULL,
LastName vargraphic(50) NOT NULL,
DateOfBirth date,
Street varchar(100),
City varchar(75),
State varchar(75),
ZipCode varchar(12),
Email varchar(200),
DateOfJoining date

);

INSERT INTO MemberDetails
SELECT * FROM TempMemberDetails;
DROP TABLE TempMemberDetails;

Once the NOT NULL constraints are in place, you can add the index again:

CREATE UNIQUE INDEX member_name_indx
ON MemberDetails (LastName DESC, FirstName);

Finally, define the relationships between tables by adding FOREIGN KEY constraints. Figure 4-1 shows
the foreign key links, and the following list reiterates them.

❑ The CategoryId column in the Films table is a foreign key linking to the CategoryId column in
the Category table.

❑ The CategoryId column in the FavCategory table is a foreign key linking to the CategoryId col-
umn in the Category table.

❑ The MemberId column in the FavCategory table is a foreign key linking to the MemberId column
in the MemberDetails table.

❑ The LocationId column in the Attendance table is a foreign key linking to the LocationId column
in the Location table.

❑ The MemberId column in the Attendance table is a foreign key linking to the MemberId column
in the MemberDetails table.

In an earlier Try It Out, you defined the relationship between the Attendance and Location tables. The
Location table is the primary table to which the Attendance table links via the LocationId column.
The Attendance table also links to the MemberDetails table, so you need to define that relationship
as well.

If you’ve already added the constraint in the earlier Try It Out, then don’t execute the code again or
you’ll receive an error. If you didn’t execute the code, then the SQL used in an earlier Try It Out to add
the constraint was as follows:

152

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 152

ALTER TABLE Attendance
ADD CONSTRAINT attend_loc_fk
FOREIGN KEY (LocationId)
REFERENCES Location(LocationId);

The Attendance table is the one being altered; the FOREIGN KEY constraint doesn’t affect the Location
table. This constraint, for example, is named attend_loc_fk, a mixture of the two tables involved in
the relationship, where fk denotes its status as a foreign key. You can name your constraints anything
you like; just make sure the name is something that identifies the relationship between tables. Finally,
the statement specifies the table and the column or columns being referenced.

The following SQL adds a second FOREIGN KEY constraint to the Attendance table, this time for the rela-
tionship between the Attendance and MemberDetails tables:

ALTER TABLE Attendance
ADD CONSTRAINT attend_memdet_fk
FOREIGN KEY (MemberId)
REFERENCES MemberDetails(MemberId);

The next table that contains a foreign key is the FavCategory table, but defining that relationship is one
of the exercise questions at the end of the chapter. That leaves just one more relationship to define:
between the Category and Film tables. The Category table is the primary table to which the Films table
links. The link is between the CategoryId columns present in both tables. The following code formally
defines this relationship:

ALTER TABLE Films
ADD CONSTRAINT films_cat_fk
FOREIGN KEY (CategoryId)
REFERENCES Category(CategoryId);

That completes the changes to the database. Innumerable ways to improve a database exist, and these
depend on how you intend to use the database. Apart from the index on the MemberDetails table’s
FirstName and LastName fields, you didn’t create any new indexes. If in live use you find that some
queries take too long to return results, simply review the database structure again and look at changing
tables or adding an index to speed things up. Quite a lot of RDBMSs have tools that help monitor perfor-
mance and tweak settings to ensure the best possible results.

Now that you can design a relatively complex normalized database, complete with constraints and pri-
mary and foreign keys, here are some things to keep in mind any time you design or modify a database.

Tips for Designing a Better Database
Keeping the following subjects in mind helps ensure that your database design and updates go smoothly.

❑ Don’t design a database that copes with the norm. Tempting as it is to design a database that
covers most situations, doing so is dangerous. The unexpected happens just when you least
expect it, so make sure you design your database to cover all situations that could arise, or at
least ensure that it can cope with the unusual situations. Even if a client tells you not to worry
about the possibility of two people attempting to reserve the same holiday cottage at the same
time, assume that it will happen.

153

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 153

❑ Choose meaningful names for tables and fields. Try to use field and table names that help give
an idea of what data they store. For example, the MemberDetails table stores members’ details,
which makes it fairly obvious without further explanation what the table holds. Name tables so
that further explanation or looking into the table is unnecessary. The same applies to column
names.

❑ Try to keep names simple. Maybe this seems to contradict the previous point, but it doesn’t:
Names should be as descriptive as possible, but they shouldn’t be overly long or complex. Long
names increase the likelihood of errors.

❑ Be consistent in your naming and choice of data type. To prevent confusion, don’t call a field
ZipCode in one table and PostalCode in another if they refer to the same data. Also make sure
that both fields are the same data type and can store the same width of data. If you define one as
varchar(12) in one table and varchar(8) in another, you risk truncation if you ever insert
from one table into another.

❑ Analyze your data needs on paper first. It’s very tempting when asked to create a database to
rush off and start designing on the fly, as it were. However, take time out first to sit down with
pen and paper and consider what data needs to be stored and, most importantly, what answers
the database is expected to supply. If the person needing the database already operates some
other system (for example, a paper-based storage system), take a look at that and use it as your
starting point for the data input.

❑ Pick your primary key carefully. Choose a field that is unlikely to change and preferably one
that is a whole-number-based field. The primary key must always be unique. If no field is obvi-
ous, then create your own whole-number field for the purpose of creating a unique primary key.

❑ Create an index. Indexes help speed up searches, so adding them to fields that are regularly
used in searches or joins is worthwhile. Indexes are especially worthwhile where you have lots
of different values — for example, the ZipCode field in the MemberDetails table. Including an
index is not a good idea, however, if you have only a few values, such as the MemberAttended
column in the Attendance table. Indexes also slow down data entry, something particularly
important to note if the column is likely to have lots of inserts or updates.

❑ Add a multicolumn index. Multicolumn indexes come in particularly handy in fields where
users often search more than one column. For example, if you often search for City and State
together, add an index based on both columns.

❑ Avoid using reserved words as table or field names. Reserved words are words used by the
SQL language and are therefore reserved for its use only. For example, words such as select, join,
and inner are exclusive to SQL. Although you can sometimes use reserved words by putting
square brackets around them, avoiding them altogether is easier.

❑ Consider storage space requirements. When selecting a field’s data type, allow for the maxi-
mum storage space likely to be required, and then add a little bit! If you think the greatest num-
ber of characters to be stored is probably 8, make your definition 10, or varchar(10). Doing so
adds a little bit of a safety net. The same goes with numbers.

Summary
This chapter covered all facets of improving your database designing skills. It looked at normalization
and the ways in which it provides steps to follow to minimize redundant data storage, as well as the fol-
lowing topics:

154

Chapter 4

08_577328 ch04.qxd 1/28/05 11:22 PM Page 154

❑ You learned the importance of ensuring that data in a database remains valid — for example,
ensuring that there are no duplicated values in primary key columns. The mechanism that disal-
lows duplicate data is the constraint, which includes NOT NULL, UNIQUE, CHECK, PRIMARY KEY,
and FOREIGN KEY.

❑ You learned how to speed up query results by using indexes.

❑ Using the chapter’s topics, you improved the Film Club database’s design, making it leaner,
more efficient, and less likely to fall afoul of invalid data.

The next chapter examines how to manipulate data returned by a query and covers such subjects as
arithmetic in SQL.

Exercises
1. Your friend runs a bookstore and uses a simple database to store details of books, authors, and

booksellers. She thinks the database might need a bit of a tune-up. Figure 4-2 shows its current
structure, which consists of just one table containing two columns: Column Name and Data Type.
Using what you learned about normalization, see if you can improve the current structure.

Figure 4-2

2. When improving the Film Club database, you added various constraints as well as primary and
foreign keys. You didn’t, however, add a FOREIGN KEY constraint to the FavCategory table.
Create and execute the SQL required to enforce all its relationships with the other tables.

155

Advanced Database Design

08_577328 ch04.qxd 1/28/05 11:22 PM Page 155

08_577328 ch04.qxd 1/28/05 11:22 PM Page 156

5
Manipulating Data

In Chapter 3, you looked simply at getting raw data from the database using SQL queries. This
chapter, however, examines how to use, alter, and manipulate data using SQL. It starts off with a
look at math in SQL, though don’t worry if math isn’t your favorite subject, as SQL math is fairly
basic! The chapter then turns to the manipulation of character data and takes you through a whole
host of functions that cover everything from reversing the order of characters in a string to match-
ing columns based on words that sound alike. After that, coverage dives into another look at NULL,
in particular how it can alter results in unexpected ways and how to deal with those altered
results. Finally, this chapter finishes with a look at copying data from one table to another using
INSERT INTO and SELECT statements.

Understanding SQL Arithmetic
The available math functions in SQL are fairly limited, which reflects SQL’s use as a tool for
pulling out the raw data to answer questions. Any actual processing of the answers is really some-
thing left to high-level programming languages in middleware or front-end applications. For
example, a Web server might connect to a database to pull back a customer’s name and credit card
details, but you wouldn’t expect the database to process the card details.

You start by looking at the four basic math functions supported by all flavors of SQL, and then you
look at some more sophisticated math functions, which, although not part of the SQL standards,
are commonly available on most database systems.

Basic Math Operators
It’s no great surprise to learn that the four basic math operators are multiplication, division, sub-
traction, and addition, which are listed in the following table, along with the operators SQL uses to
represent them:

09_577328 ch05.qxd 1/28/05 11:20 PM Page 157

Function Operator

Multiply *

Divide /

Add +

Subtract -

What’s not obvious from this list is the order of precedence of the operators. If you remember back to
Chapter 3, you’ll recall the discussion of the order of precedence of logical operators and that some oper-
ators are evaluated first.

You can see the effects of operator precedence in the following SQL:

SELECT MemberId, MemberId + 2 * 3
FROM MemberDetails
WHERE MemberId < 10;

Running this query gives the following results:

MemberId MemberId + 2 * 3

1 7

4 10

5 11

6 12

7 13

8 14

9 15

Rather than adding the MemberId to the number 2 and multiplying the sum by 3, the multiplication
operator has higher precedence, so 2 is multiplied by 3 and the result of this, 6, is then added to the
value in MemberId. This is very similar to the order of operations in algebra, where multiplication and
division take precedence over addition and subtraction when they appear in the same equation. So if
you want MemberId + 2 to be evaluated first and then multiplied by 3, you need to raise the order of
precedence of that part by using brackets:

SELECT MemberId, (MemberId + 2) * 3
FROM MemberDetails
WHERE MemberId < 10;

158

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 158

The results of this query are as follows:

MemberId (MemberId + 2) * 3

1 9

4 18

5 21

6 24

7 27

8 30

9 33

As you can see, this time the operations inside the brackets are evaluated first, so for the first row in the
preceding table, the equation reads as follows:

(MemberId + 2) = (1 + 2) = 3

Then the results of the operations inside the brackets are multiplied by 3, as evidenced in the following
equation:

(1 + 2) * 3 = (3) * 3 = 9

So far you’ve used only whole numbers, and nothing with a decimal point. Fractional numbers present
the potential problem of rounding errors. These occur when the number of digits after the decimal point
exceeds either the limitations of a field’s storage type or simply the limitations of the database itself.

Before dealing with fractional numbers, however, you need to have a basic understanding of SQL’s four
basic math functions.

Common Math Functions
The SQL standard (and almost every SQL implementation) contains four basic math functions. However,
a number of other math functions exist, which, while not in the ANSI SQL standard, are found in
enough database implementations that it’s worth listing them here, although you have to find out for
yourself which functions your database system supports. While the basic math functions are not earth-
shattering in their extent, you should remember that SQL and databases are suppliers of raw data and
are not intended to do significant data processing.

The ABS() Function
The ABS() function returns the absolute value of a number — a number without any positive or negative
sign. Basically, it makes negative numbers positive but leaves positive numbers as they are. The func-
tion’s basic format is shown below, where x is the expression to be converted to its absolute value:

ABS(x)

159

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 159

Consider the following SQL query:

SELECT MemberId, MemberId - 10, ABS(MemberId - 10)
FROM MemberDetails;

Executing the query provides the results shown in the following table:

MemberId MemberId - 10 ABS(MemberId - 10)

1 -9 9

4 -6 6

5 -5 5

6 -4 4

7 -3 3

8 -2 2

9 -1 1

10 0 0

11 1 1

12 2 2

13 3 3

14 4 4

15 5 5

Look at the first row in the preceding table (remember that the order of your results may well be differ-
ent). The way the equation is worked out for the second column is as follows: MemberId – 10 = 1 –
10 = -0.

Results for the third column are worked out as shown here: ABS(MemberId – 10) = ABS(1 – 10) =
ABS(-9) = 9.

In the third column, the negative result has its sign removed, and therefore -9 becomes simply 9.

The POWER() Function
The POWER() function is an exponential function that raises a number by the power of a second number.
For example, it could be used to find the square of a number — a number multiplied by itself. The func-
tion takes two parameters. The first is the expression to be raised to a power, and the second is the
power to which it is raised. The basic syntax is as follows:

POWER(expression, power_raise_to)

160

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 160

You can raise a number to any power, from 1 to whatever the database system can handle; some huge
numbers, however, will be too large for the database system to handle. For example, if you want to
know what the results are when the MemberId is squared (raised to the power of 2), cubed (raised to the
power of 3), and raised to the power of 7, you’d write the following SQL

SELECT MemberId, POWER(MemberId,2), POWER(MemberId, 3) , POWER(MemberId, 7)
FROM MemberDetails
ORDER BY MemberId;

Executing the statement gives the results in the following table:

MemberId POWER(MemberId,2) POWER(MemberId, 3) POWER(MemberId, 7)

1 1 1 1

4 16 64 16384

5 25 125 78125

6 36 216 279936

7 49 343 823543

8 64 512 2097152

9 81 729 4782969

10 100 1000 10000000

11 121 1331 19487171

12 144 1728 35831808

13 169 2197 62748517

14 196 2744 105413504

15 225 3375 170859375

For the first and second rows in the preceding table, the columns were calculated as shown in the fol-
lowing table:

MemberId POWER(MemberId,2) POWER(MemberId, 3) POWER(MemberId, 7)

1 1 * 1 = 1 1 * 1 * 1 = 1 1 * 1 * 1 * 1 * 1 * 1 * 1 = 1

4 4 * 4 = 16 4 * 4 * 4 = 64 4 * 4 * 4 * 4 * 4 * 4 * 4 = 16384

Now that you’ve learned how to raise to the power of 2, you can put that in reverse and find the square
root of a number.

161

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 161

The SQRT() Function
The SQRT() function finds the square root of an expression, the opposite of what the POWER() function
does. It takes just one parameter, the expression that you want to find the square root of, as shown in the
basic syntax:

SQRT(expression_to_square_root)

So, in order to find the square root of the MemberId column of the Films table, you would use the fol-
lowing SQL:

SELECT MemberId, SQRT(MemberId)
FROM MemberDetails
ORDER BY MemberId;

Executing the query gives the following results:

MemberId SQRT(MemberId)

1 1

4 2

5 2.236068

6 2.44949

7 2.645751

8 2.828427

9 3

10 3.162278

11 3.316625

12 3.464102

13 3.605551

14 3.741657

15 3.872983

The SQRT() function is simple enough. Now you can move on to a more complex SQL math function.

The RAND() Function
The RAND() function, which is short for random, generates a fractional random number between 0 and 1.
It’s the sort of thing computer game writers love, but perhaps it’s a bit less essential in SQL. Be very
wary of using the RAND() function to generate unique primary keys, because there’s no guarantee that
they’ll generate a unique number.

Note that in MS Access the function is called RND(). Oracle, however, doesn’t support the RAND()
function, but it does support a function RANDOM inside an additional package called DBMS_RANDOM.
It’s more sophisticated than the RAND() function, and its scope is beyond this chapter.

162

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 162

To demonstrate the sort of results RAND() gives, execute the following SQL:

SELECT MemberId, MemberId + RAND(), RAND() FROM MemberDetails
ORDER BY MemberId;

The code returns MemberId, MemberId plus a random number, and finally a random number that the
database system generates on its own.

The query produces 13 results, one for each record in the table:

MemberId MemberId + RAND() RAND()

1 1.133239 0.142173

4 4.311148 0.129218

5 5.712648 0.175588

6 6.739993 0.173202

7 7.64603 0.710545

8 8.614636 0.941545

9 9.863819 0.494457

10 10.88083 0.920768

11 11.96136 0.044484

12 12.33835 0.558281

13 13.77636 0.206976

14 14.70579 0.908012

15 15.4227 0.389447

Because it’s random, your results will be different from the ones shown here. Note that in MS SQL
Server, the RAND() function generates the fractional part, and it also generates only one random number
for each RAND() used in a results set. Most databases (IBM’s DB2, for example) create a new random
number for each record. Such long fractional numbers are not really that useful, but you can make them
whole numbers by multiplying them and then using one of the rounding functions (discussed in the
next section) to cut off the fractional part.

Rounding Numbers
The final three math functions covered here are all related, the relationship being that they all remove all
or part of the fractional part of a floating-point number. The difference among the three is how they
decide to remove the part after the decimal point. The three rounding functions are CEILING(), FLOOR(),
and ROUND(), each covered in its own section.

Before continuing with the discussion of the rounding functions, you need to add some data to the
Film Club database. In addition to keeping track of whether a film is available on DVD, the film club

163

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 163

chairperson now also requires that you store the price of the DVD. This requires a new column in the
Films table, to be called DVDPrice. Executing the following SQL creates this column:

ALTER TABLE Films
ADD DVDPrice DECIMAL(12,2);

In MS Access, use the following ALTER TABLE statement:

ALTER TABLE Films
ADD DVDPrice NUMBER DECIMAL;

After executing the ALTER TABLE statement, add the prices of DVDs with the following UPDATE statements:

UPDATE Films
SET DVDPrice = 12.99
WHERE FilmId = 2;

UPDATE Films
SET DVDPrice = 9.99
WHERE FilmId = 4;

UPDATE Films
SET DVDPrice = 15.99
WHERE FilmId = 6;

UPDATE Films
SET DVDPrice = 12.99
WHERE FilmId = 7;

UPDATE Films
SET DVDPrice = 2.99
WHERE FilmId = 8;

UPDATE Films
SET DVDPrice = 8.95
WHERE FilmId = 9;

UPDATE Films
SET DVDPrice = 12.99
WHERE FilmId = 11;

UPDATE Films
SET DVDPrice = 9.99
WHERE FilmId = 12;

UPDATE Films
SET DVDPrice = 12.99
WHERE FilmId = 15;

UPDATE Films
SET DVDPrice = 8.95
WHERE FilmId = 13;

With all the proper information in place, you can follow along with all the examples in this section. The
first function covered here is the CEILING() function.

164

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 164

The CEILING() Function
The CEILING() function removes all the numbers after the decimal point and rounds up to the next
highest integer. For example, 3.35 would be rounded up to 4, 5.99 rounded up to 6, and -3.35
rounded up to -3. If the rounding of negative numbers seems strange (why not -4 rather than -3?), just
remember that the CEILING() function rounds up to the next highest integer; negative numbers that are
closer to 0 are higher in value, so -3 is higher than -4.

In Oracle, the CEILING() function is called CEIL(), but it works the same way — only the name is
different. Note also that the CEILING() function isn’t supported in MS Access.

The CEILING() function’s basic syntax is as follows:

CEILING(number_to_be_rounded)

The following SQL shows the CEILING() function used in practice:

SELECT DVDPrice, CEILING(DVDPrice)
FROM Films
ORDER BY DVDPrice;

Executing the query provides the following results:

DVDPrice CEILING(DVDPrice)

NULL NULL

NULL NULL

NULL NULL

NULL NULL

NULL NULL

2.99 3

8.95 9

8.95 9

9.99 10

9.99 10

12.99 13

12.99 13

12.99 13

12.99 13

15.99 16

Some of the values in the DVDPrice column are NULL, and so the CEILING() function returns NULL as a
result. After all, NULL is simply an unknown value, so there’s no way of knowing what to round up to!
Note that MySQL may show only one digit after the decimal point in the DVDPrice column.

165

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 165

The FLOOR() Function
The FLOOR() function works in the opposite way as CEILING() in that it rounds down to the next lowest
integer value. For example, 3.35 would be rounded down to 3, 5.99 rounded down to 5, and -3.35
rounded down to -4, as -4 is lower than -3. Again, the FLOOR() function is not supported by MS Access’s
version of SQL.

The following is the basic syntax for the FLOOR() function:

FLOOR(number_to_be_floored)

Rewrite the SQL used in the previous section and replace CEILING() with FLOOR():

SELECT DVDPrice, FLOOR(DVDPrice)
FROM Films
ORDER BY DVDPrice;

Running the SQL provides the results shown in the following table:

DVDPrice FLOOR(DVDPrice)

NULL NULL

NULL NULL

NULL NULL

NULL NULL

NULL NULL

2.99 2

8.95 8

8.95 8

9.99 9

9.99 9

12.99 12

12.99 12

12.99 12

12.99 12

15.99 15

This time, the FLOOR() function has removed the decimal point but reduced the number to the next low-
est integer; so 2.99 becomes 2, whereas with CEILING() it would become 3.

The ROUND() Function
The last of the rounding functions rounds in a more traditional way: to the nearest whole-number value.
Rather than always rounding up like CEILING() or down like FLOOR(), the ROUND() function rounds

166

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 166

based on the digits after the decimal point. If the digit after the decimal point is 4 or less, then it’s simply
removed. If the digit after the decimal point is 5 or more, then the number is rounded up to the next
highest whole number and the digit is removed. For example, 3.55 rounded to a whole number using
the ROUND() function would be 4, whereas 3.42 rounded to a whole number would be 3. It’s important
to remember that with negative numbers, lower means a higher number (-5 is lower in value than -4).
So, -4.6 rounded to the next highest integer is -5. Unlike CEILING() and FLOOR(), the ROUND() func-
tion is supported by MS Access.

Many implementations of the ROUND() function in SQL work along these lines: If the number to be trun-
cated, or cut off, is 4 or less, then it’s removed and the remaining number isn’t changed; if the number is 5
or more, then the remaining number is rounded up. This method of rounding is called the scientific
method. An alternative but less common method is the commercial method of rounding. In the commercial
method, if the digit to be removed is 4 or less, then it is rounded down. If the digit is 6 or more, then it is
rounded up. However, if the digit is 5, then it’s rounded up half the time and rounded down the other half
to prevent rounding errors. All the databases in this book use the scientific method of rounding.

One more difference exists between the ROUND() function and the CEILING() and FLOOR() functions.
The ROUND() function allows you to specify how many digits are permitted after the decimal point,
whereas the FLOOR() and CEILING() functions remove all digits. The ROUND() function, therefore,
requires two values to be passed to it: first, the number to be rounded, and second, the number of digits
allowed after the decimal point. The ROUND() function’s basic syntax is as follows:

ROUND(number_to_be_rounded, number_of_decimal_places)

If you want to limit the results from the DVDPrice field to one decimal place, you would write the fol-
lowing SQL:

SELECT DVDPrice, ROUND(DVDPrice,1)
FROM Films
ORDER BY DVDPrice;

Executing the preceding query produces the following results:

DVDPrice ROUND(DVDPrice,1)

NULL NULL

NULL NULL

NULL NULL

NULL NULL

NULL NULL

2.99 3.00

8.95 9.00

8.95 9.00

9.99 10.00

Table continued on following page

167

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 167

DVDPrice ROUND(DVDPrice,1)

9.99 10.00

12.99 13.00

12.99 13.00

12.99 13.00

12.99 13.00

15.99 16.00

You might wonder why all the values have been rounded up to the nearest whole number. That’s
because all the amounts end in either .99 or .95. The query specifies that the first digit after the decimal
point should remain, so the second digit is removed. In every case, the second digit is either 5 or 9, and
therefore the remaining digit is rounded up. Because 9 is as high as you can go in decimal math, the first
digit before the decimal point is rounded up.

That covers manipulation of numbers. The next section covers manipulation of character data.

Introducing String Functions
This section walks you through a number of very useful functions that enable you to manipulate and
search string-based data. String data is a collective name for a group of characters, such as a person’s
name or a group of numbers. Although each character is stored in its own memory location, the
database allows you to manipulate a column of characters at the same time. Human beings tend to think
and work in terms of words and sentences, rather than individual characters, and the database system’s
support of string functions reflects that. This section also touches on powerful functions that allow you
to match words that sound alike, such as Smith and Smythe, even though the spellings are different.

The SUBSTRING() Function
The SUBSTRING() function allows you to obtain just part of a string — one or more characters out of the
whole string of characters. When using this function, it’s important to remember that a string is simply a
chain of individual characters. For example, Wrox Press is a string, and the individual characters are as
follows:

Character Position in the String 1 2 3 4 5 6 7 8 9 10

Character W r o x P r e s s

The preceding table shows how characters in a column are stored, and although the column’s data is
usually treated as a whole, each character can be identified by its position inside the string of characters.
So, if you have a varchar column and store the characters Wrox Press, you would call Wrox Press
your string. The first character in that string is W, so when you want to refer to it on a character level, it is
known by its position in the string: 1. The P in Wrox Press is the sixth character in the string, so its char-
acter index (its position within the string) is 6.

168

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 168

The SUBSTRING() function works at the character level. The function takes three parameters: the string
out of which the substring is obtained, the first character to be obtained, and how many total characters
are required. Consider the following syntax:

SUBSTRING(string, start_character_position, length_of_string_to_obtain)

MS Access doesn’t utilize the SUBSTRING() function. Instead, it employs the MID() function, which
has exactly the same syntax and works in the same way as does the SUBSTRING() function. So if you’re
using MS Access, wherever you see SUBSTRING(), simply replace it with MID(). Oracle and IBM’s
DB2 support SUBSTRING(), but they call it SUBSTR(). If you’re using DB2 or Oracle, wherever you
see SUBSTRING(), replace it with SUBSTR().

As previously stated, the position of each character within the string is often called the character index. If
you want to extract the substring rox from the string Wrox Press, you would write the following function:

SUBSTRING(‘Wrox Press’,2,3)

Wrox Press is the string from which the substring is extracted. 2 is the character index for the first char-
acter to be extracted, in this case the letter r. Finally, 3 is the number of characters to be extracted, in this
case rox.

The following code uses SUBSTRING() to find out the first letter of each member’s last name and the
first two letters of the name of their state of residence:

SELECT LastName, SUBSTRING(LastName,1,1), State, SUBSTRING(State,1,2)
FROM MemberDetails;

Executing the query provides the following results:

LastName SUBSTRING(LastName,1,1) State SUBSTRING(State,1,2)

Smith S Mega State Me

Gee G New State Ne

Jones J New State Ne

Jones J New State Ne

Jackson J New State Ne

Johnson J Mega State Me

Botts B Golden State Go

Simons S Mega State Me

Hills H New State Ne

Dales D Golden State Go

Doors D Mega State Me

Night N Golden State Go

Hawthorn H NULL NULL

169

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 169

Note that, as with all the string functions, if the string passed is NULL, the result returned by the function
is always NULL.

Some database systems, such as earlier versions of MySQL, support a different version of SUBSTRING().
The syntax for this version is shown here:

SUBSTRING(string FROM start_character_position)

You can specify only the start of the substring, not how many characters will be returned. Consider the
following SQL:

SUBSTRING(“ABC123456789” FROM 4)

This function would return 123456789, all the characters from the fourth character to the last character.
Earlier versions of MySQL support only this more limited syntax version of the SUBSTRING() function.

The next section looks at converting the character case of strings.

Case Conversion Functions
This section covers two functions, UPPER() and LOWER(), which change the case of a string. Both are
very simple to use and work only with character-based data types. All you need to do is pass the string
that needs its case converted, and the function returns the same string, but with all uppercase or lower-
case letters. For example, UPPER(‘abc’) returns ABC, and LOWER(‘ABC’) returns abc.

Note that MS Access doesn’t support the UPPER() or LOWER() functions. Instead, they are called
UCASE() and LCASE(), respectively.

The following code uses the UPPER() and LOWER() functions to change the case of the results from the
LastName column:

SELECT LastName, UPPER(LastName), LOWER(LastName)
FROM MemberDetails;

Executing the code provides these results:

LastName UPPER(LastName) LOWER(LastName)

Smith SMITH smith

Simons SIMONS simons

Night NIGHT night

Jones JONES jones

Jones JONES jones

Johnson JOHNSON johnson

Jackson JACKSON jackson

Hills HILLS hills

170

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 170

LastName UPPER(LastName) LOWER(LastName)

Hawthorn HAWTHORN hawthorn

Gee GEE gee

Doors DOORS doors

Dales DALES dales

Botts BOTTS botts

Now that you know how to change a string’s case, the next section looks at how to turn a string backward.

The REVERSE() Function
The REVERSE() function reverses the order of the characters in a string. For example, ABC becomes
CBA. It takes just one argument, the string to be reversed. MS Access calls its REVERSE() function the
StrReverse() function, and it works the same. IBM DB2 doesn’t support the REVERSE() function.

The following SQL returns LastName and LastName reversed:

SELECT LastName, Reverse(LastName)
FROM MemberDetails;

The results of the query appear in the following table:

LastName REVERSE(LastName)

Smith htimS

Simons snomiS

Night thgiN

Jones senoJ

Jones senoJ

Johnson nosnhoJ

Jackson noskcaJ

Hills slliH

Hawthorn nrohtwaH

Gee eeG

Doors srooD

Dales selaD

Botts sttoB

171

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 171

The TRIM() Functions
Trimming involves removing unwanted characters from the beginning or end of a string. In most
database implementations, the only character that can be trimmed is the space. However, trimming
spaces is very useful with a character data type column. A variable character column stores only the
number of characters you ask it to store; however, a nonvarying character column pads out the string
with spaces if the string being stored is less than the maximum number of characters the column can
store.

For example, define a new table using the following SQL:

CREATE TABLE MyTable
(

first_column char(80)
);

The column first_column can hold up to 80 characters. Now, consider this INSERT statement:

INSERT INTO MyTable (first_column)
VALUES (‘ABC’);

ABC plus seven blank spaces is stored. If you want the results to return only the characters you inserted and
no spaces, you can trim off the spaces with one of the two trim functions: LTRIM() or RTRIM(). LTRIM()
removes any spaces on the left of the characters, while RTRIM() removes any spaces on the right of the
characters. So, if you want to remove the trailing spaces from the example table defined previously, you
would use RTRIM():

SELECT first_column, RTRIM(first_column)
FROM MyTable;

The results for this are as follows:

first_column RTRIM(first_column)

ABC ABC

Notice that first_column is a lot wider than RTRIM(first_column) due to the extra spaces. Note also
that some database systems don’t display the spaces even when they’re there. You no longer need
MyTable, so delete it by running the following code:

DROP TABLE MyTable;

Your next stop on the tour of string functions is the function to find how many characters there are in a
string — finally, a definitive answer to the question, “How long is a piece of string?”

The LENGTH() Function
Sometimes it can be very useful to find out how many characters there are in a string. Oracle, IBM, and
MySQL use the LENGTH() function to find out how long a string is. MS Access and MS SQL Server use
the LEN() function, which does the same thing and works the same way.

172

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 172

The LENGTH() function takes just one argument, the string for which the length is required. So to find
out how long each member’s last name is, use the following query:

SELECT LastName, LENGTH(LastName)
FROM MemberDetails;

Remember to use LEN(), and not LENGTH(), if your database system is MS Access or SQL Server.

The query’s results are as follows:

LastName LENGTH(LastName)

Smith 5

Simons 6

Night 5

Jones 5

Jones 5

Johnson 7

Jackson 7

Hills 5

Hawthorn 8

Gee 3

Doors 5

Dales 5

Botts 5

The LENGTH() function is especially useful when used in combination with other functions. For exam-
ple, you can use it to make sure that the members’ surnames start with a capital letter. As it happens, all
the last names are correctly entered with capital letters, so you won’t see any difference. The following
example demonstrates the code converting strings to lowercase by using the LOWER() function so that
you can see the LENGTH() function actually working. In SQL Server, the code is as follows:

SELECT LastName, LOWER(SUBSTRING(LastName,1,1)) +
SUBSTRING(LastName,2,LEN(LastName) - 1)

FROM MemberDetails;

If you’re using MySQL, use the following code:

SELECT LastName, CONCAT(LOWER(SUBSTRING(LastName,1,1)),
SUBSTRING(LastName,2,LENGTH(LastName) - 1))

FROM MemberDetails;

173

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 173

In Oracle and IBM’s DB2, the following SQL is correct:

SELECT LastName, CONCAT(LOWER(SUBSTR(LastName,1,1)),
SUBSTR(LastName,2,LENGTH(LastName) - 1))

FROM MemberDetails;

Although the function names are different among the different database systems, the principles are the
same, so the examples here concentrate on the SQL Server version. The tricky part of the SQL is the line
shown below, so it’s helpful to break it down into parts:

LOWER(SUBSTRING(LastName,1,1)) + SUBSTRING(LastName,2,LEN(LastName) - 1)

The first part is as follows:

LOWER(SUBSTRING(LastName,1,1))

This is the bit that changes the case of the first letter to lowercase. SUBSTRING(LastName,1,1) extracts
the first character, and then the LOWER() function converts that character to lowercase.

The second part is as follows:

SUBSTRING(LastName,2,LEN(LastName) - 1)

This part extracts all the characters from the string except the first one. The code uses the function to find
out how many characters there are and passes as its argument of the SUBSTRING() function that value
minus 1 as the number of characters to be extracted.

The two parts are then concatenated, or joined together, using the + concatenation operator.

Executing the query yields the following results:

LastName LOWER(SUBSTRING(LastName,1,1)) + SUBSTRING(LastName,2,LEN(LastName) - 1)

Smith smith

Simons simons

Night night

Jones jones

Jones jones

Johnson johnson

Jackson jackson

Hills hills

Hawthorn hawthorn

Gee gee

174

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 174

LastName LOWER(SUBSTRING(LastName,1,1)) + SUBSTRING(LastName,2,LEN(LastName) - 1)

Doors doors

Dales dales

Botts botts

The SOUNDEX() and DIFFERENCE() Functions
So far, all searching and matching with strings have been based on their actual characters. The following
SQL, for example, matches only the FirstName Jack:

SELECT FirstName
WHERE FirstName = ‘Jack’;

Sometimes, however, the exact spelling of a name might not be known; you might have only an idea of
what it sounds like. It’s exactly this problem that the SOUNDEX() and DIFFERENCE() functions are
designed to conquer. Unfortunately MS Access doesn’t support SOUNDEX() or DIFFERENCE(). MySQL,
on the other hand, supports SOUNDEX() but doesn’t support DIFFERENCE().

The SOUNDEX() function converts a string into a special four-character code representing the way the
string sounds rather than how it is spelled. Its basic syntax is as follows:

SOUNDEX(name_to_be_converted_to_code);

Note that MS Access doesn’t support the SOUNDEX() function.

The first character in the code is always the first character of the original string. Following that is a three-
digit number representing how the word sounds based on the SOUNDEX() guidelines. SOUNDEX() was
actually first developed long before database systems, for use with the U.S. census and patented in 1918.
For example, the following SQL returns the SOUNDEX() values for first names in the MemberDetails table:

SELECT FirstName,SOUNDEX(FirstName)
FROM MemberDetails;

The query results are as follows:

FirstName SOUNDEX(FirstName)

Katie K300

Susie S200

Doris D620

Jenny J500

John J500

Jack J200

Table continued on following page

175

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 175

FirstName SOUNDEX(FirstName)

John J500

Jamie J500

Catherine C365

Steve S310

William W450

Stuart S363

Seymour S560

Note that you may get slightly difference results because different database systems implement slightly
different versions of the SOUNDEX() algorithm.

Admittedly, the results are perhaps not that useful without an in-depth understanding of SOUNDEX()
and the algorithm, whose rules are fairly complex. You can learn all about the SOUNDEX() system at
www.archives.gov/research_room/genealogy/census/soundex.html.

However, the good news is that the DIFFERENCE() function interprets SOUNDEX() values and returns a
number between 0 and 4 comparing how two strings sound. The more similar they sound, the higher the
number. DIFFERENCE() takes two arguments: the two strings to be compared. The DIFFERENCE() func-
tion’s syntax is as follows:

DIFFERENCE(some_name, comparison_name)

Note that Oracle, MySQL, and MS Access don’t support the DIFFERENCE() function.

Say, for example, that you want the details of all members whose first name sounds like Katherine or
Johnny. You could use the DIFFERENCE() function to help you find those details. The following is a SQL
statement that returns the difference value for Katherine and Johnny compared to values from the
FirstName column:

SELECT FirstName,DIFFERENCE(FirstName, ‘Katherine’),
DIFFERENCE(FirstName, ‘Johnny’)

FROM MemberDetails;

The query results are shown in the following table:

FirstName DIFFERENCE(FirstName, ‘Katherine’) DIFFERENCE(FirstName, ‘Johnny’)

Katie 2 2

Susie 0 2

Doris 1 1

Jenny 1 4

176

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 176

FirstName DIFFERENCE(FirstName, ‘Katherine’) DIFFERENCE(FirstName, ‘Johnny’)

John 1 4

Jack 0 3

John 1 4

Jamie 1 4

Catherine 3 1

Steve 1 1

William 1 2

Stuart 2 0

Seymour 1 2

From the results, you can see that a difference value of 3 or 4 means that the two strings sound either
identical or quite similar. For example, a comparison of John and Johnny gives a difference value of 4,
but a comparison of Johnny and Stuart gives a value of 0.

Using the DIFFERENCE() function in the WHERE clause makes more sense, because doing so limits
results to just those names that sound the most similar. Consider the following query:

SELECT FirstName
FROM MemberDetails
WHERE
DIFFERENCE(FirstName, ‘Katherine’) >= 3 OR DIFFERENCE(FirstName, ‘Johnny’) >= 3

The preceding code compares the value returned by DIFFERENCE() functions, if the value returned is
greater than or equal to 3, with the assumption that the names are reasonably similar.

On SQL Server, the query provides the following results:

FirstName

Jenny

John

Jack

John

Jamie

Catherine

The results have returned names that are similar, or at least vaguely similar, to either Johnny or
Katherine. For example, Katherine is very similar to Catherine. All these results are due to the
comparison made by the DIFFERENCE() function returning a value of 3 or more. You may get different
results depending on which database system you use.

177

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 177

Date Functions
Sometimes it’s quite useful to be able to extract individual parts of a date, such as day of the month,
month, or year. To do this, SQL provides the DAY(), MONTH(), and YEAR() functions. These are sup-
ported by all of the database systems except Oracle.

These functions perform in the same manner, and the syntax for each is as follows:

DAY(date)

MONTH(date)

YEAR(date)

The following code displays the DateOfBirth of each film club member, as well as the day of the month,
month, and year of their birth:

SELECT DateOfBirth, DAY(DateOfBirth), MONTH(DateOfBirth), YEAR(DateOfBirth)
FROM MemberDetails
ORDER BY YEAR(DateOfBirth);

Executing the preceding statement provides the following results:

DateOfBirth DAY(DateOfBirth) MONTH(DateOfBirth) YEAR(DateOfBirth)

1937-01-20 20 1 1937

1945-06-09 9 6 1945

1952-10-05 5 10 1952

1953-08-25 25 8 1953

1956-08-07 7 8 1956

1956-10-21 21 10 1956

1967-10-05 5 10 1967

1974-05-27 27 5 1974

1977-01-09 9 1 1977

1992-07-17 17 7 1992

1994-05-28 28 5 1994

1997-05-28 28 5 1997

Notice the use of a date function in the ORDER BY clause, which allows you to order the results (by year
in this case). The first row of the results is empty because the DateOfBirth column in one of the rows
contains a NULL value.

Most database systems contain a large number of date- and time-related functions, so it’s worth check-
ing the database help files or product documentation to see what particular functions your system has.

178

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 178

Converting Different Data Types
This section examines how to convert from one data type to another, such as from characters to numbers
or from dates to strings, and so on. For example, if you want to form a sentence that includes a column
defined as a numerical data type, then you should convert the data from numerical to character.
Often the database system converts data types without needing to be asked. Take a look at the following
example:

SELECT ZipCode, MemberId, ZipCode / MemberId
FROM MemberDetails;

Given that ZipCode is actually a string, dividing it by MemberId surely shouldn’t work, right? In fact, it
does, as the following results show:

ZipCode MemberId ZipCode / MemberId

123456 1 123456

65423 3 21807

99112 4 24778

88776 5 17755

88776 6 14796

88992 7 12713

34566 8 4320

65422 9 7269

123456 10 12345

88776 11 8070

65422 12 5451

34512 13 2654

68122 14 4865

NULL 15 NULL

The query works because although the ZipCode column was defined as a character data type, the val-
ues stored in ZipCode are digits, and the database system can convert them into a number. It does this
conversion without being told to.

However, there are times when you might want to specify the conversion yourself, where, for example,
it’s not obvious what data type the system should convert to. Alternatively, the system could fail to con-
vert; for example, if you’re using IBM’s DB2, the preceding SQL example fails because you need to tell it
to convert ZipCode into a number. Some database systems are more helpful and convert the data for
you. Others, like DB2, require you to do the conversion yourself. In this situation, you need to convert to
a specific data type using the CAST() function.

179

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 179

The syntax for the CAST() function consists of the expression to be cast and what data type you want to
cast it as:

CAST(expression AS data_type)

The code example at the beginning of this section doesn’t work with DB2 because ZipCode is a charac-
ter data type column, and DB2 doesn’t automatically try to convert the data type to a number, unlike
other systems such as SQL Server.

In order to rewrite the earlier example so that it works with IBM’s DB2, you need to cast the ZipCode
column as an int data type, as illustrated in the following SQL, which will work with all the database
systems including DB2:

SELECT ZipCode, MemberId, CAST(ZipCode AS int) / MemberId
FROM MemberDetails;

Note that CAST() works only with later versions of MySQL, from 4.02 onward, and that only some of the
data types can be cast. To make the preceding code work in MySQL, you need to change it to the following:

SELECT ZipCode, MemberId, CAST(ZipCode AS signed integer) / MemberId
FROM MemberDetails;

You can convert most data types to another data type, so long as the data can be converted. For example,
ZipCode contains digits, so conversion to an integer data type works fine. If you try converting ZipCode
to a date data type, as shown in the following SQL, you would receive errors because the values contained
in ZipCode simply can’t be converted to a date:

SELECT ZipCode, MemberId, CAST(ZipCode AS date)
FROM MemberDetails;

MS Access SQL doesn’t support CAST(), but its Visual Basic language does have a number of conversion
functions, which are beyond the scope of this book.

This section covered how to convert values of a specific data type to another data type. The next section
returns to the problematic question of the NULL data type.

Re-examining NULL
NULLs can be a bit problematic and can lead to unexpected results when used with functions, in compar-
isons, or in math. Whereas Chapter 3 covered the concept of NULL being unknown data, this section cov-
ers some of the issues that NULLs can throw up when used with math functions, string functions, and
concatenation. The section also introduces the NULLIF() and COALESCE() functions.

NULLs and Math
If NULL appears in any of your SQL math, then the result is always NULL. To illustrate this point, use the
following SQL to create a temporary table called MyTable and insert a few NULL values:

180

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 180

CREATE Table MyTable(FirstColumn int, SecondColumn int);

INSERT INTO MyTable(FirstColumn,SecondColumn)
VALUES (3,2);

INSERT INTO MyTable(FirstColumn)
VALUES (5);

INSERT INTO MyTable(SecondColumn)
VALUES (7);

Now try the following query:

SELECT FirstColumn, SecondColumn, 10 + (SecondColumn * 1.175) + FirstColumn - 5
FROM MyTable;

The query calculates SecondColumn * 1.175, then adds 10, and then adds the value of FirstColumn
minus 5. You get results that are mostly NULL because of NULL values in FirstColumn or SecondColumn:

FirstColumn SecondColumn 10 + (SecondColumn * 1.175) + FirstColumn - 5

3 2 10.350

5 NULL NULL

NULL 7 NULL

The last column in the first row of the table is calculated like this: 10 + (SecondColumn * 1.175) +
FirstColumn – 5 = 10 + (2 * 1.175) + 3 – 5 = 10 + (2.35) + 3 – 5 = 10.35.

The third column in the second row is calculated like this: 10 + (SecondColumn * 1.175) +
FirstColumn – 5 = 10 + (NULL * 1.175) + 5 – 5 = 10 + (NULL) + 5 – 5 = NULL.

The final answer is NULL because any time NULL data is involved the answer comes out NULL. If you
were asked to compute 1 plus 1, the answer is obviously 2. However, if you were asked to add 1 to some
unknown number, all you can say is that you don’t know — the answer is unknown. Remember, NULL
represents unknown data rather than any specific value.

It’s easy to forget that if NULL is involved at any point in a math calculation, the result always comes out
NULL, so you need to make sure the program using the data can handle NULLs. Otherwise, if the data is
displayed directly to a user, they may wonder what NULL means!

To circumvent these problems, you can choose either to filter out NULL results or to use one of the func-
tions (discussed shortly) to change NULL to something the end user can understand.

The same problem of unexpected NULL results applies if you use the math functions, such as POWER(),
ABS(), and so on. A NULL value causes the function to return NULL, which propagates to the whole
expression, leaving a final result of NULL.

MyTable is no longer needed and can be dropped from the database:

DROP TABLE MyTable;

181

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 181

NULLs and Strings
NULL data causes unexpected results in strings just as it does in math calculations. This section takes you
through some of the effects of NULL data as it relates to string functions, and the following section looks
at how to deal with it. For example, the following SQL uses the CONCAT() function to detail which city a
person lives in:

SELECT FirstName, LastName, City, CONCAT(CONCAT(FirstName,’ ‘),
CONCAT(CONCAT(LastName, ‘ lives in ‘), City))
FROM MemberDetails;

If you’re using MS SQL Server or MS Access, the SQL is as follows:

SELECT FirstName, LastName, City, FirstName + ‘ ‘ + + LastName + ‘ lives in ‘ +
City
FROM MemberDetails;

Either statement provides the same results, shown here:

FirstName LastName City CONCAT(CONCAT(FirstName,’ ‘),
CONCAT(CONCAT(LastName, ‘ lives in ‘), City))

Katie Smith Townsville Katie Smith lives in Townsville

Steve Gee New Town Steve Gee lives in New Town

John Jones Orange Town John Jones lives in Orange Town

Jenny Jones Orange Town Jenny Jones lives in Orange Town

John Jackson Orange Town John Jackson lives in Orange Town

Jack Johnson Big City Jack Johnson lives in Big City

Seymour Botts Windy Village Seymour Botts lives in Windy Village

Susie Simons Townsville Susie Simons lives in Townsville

Jamie Hills Orange Town Jamie Hills lives in Orange Town

Stuart Dales Windy Village Stuart Dales lives in Windy Village

William Doors Big City William Doors lives in Big City

Doris Night Dover Doris Night lives in Dover

Catherine Hawthorn NULL NULL

Everything’s fine with the results until you hit the last one, which just says NULL, despite the other text
and the fact that FirstName and LastName contain values. The NULL value in City has propagated,
resulting in the whole result being NULL.

The next section looks at how to deal with this problem of NULL propagation to produce a more accept-
able result.

182

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 182

The COALESCE() Function
The COALESCE() function returns the first non-NULL value from the list of values passed to it as argu-
ments. If all the arguments are NULL, then the function passes back NULL. Note that MS Access does not
support the COALESCE() function.

The following is the basic syntax for the COALESCE() function:

COALESCE(first_expression, second_expression,.....,last_expression)

Note that each argument passed to COALESCE() must be either the same data type (a string or number)
or one that can be converted. If you get an error when passing different data types as arguments, then
use the CAST() function discussed earlier in the chapter to explicitly convert to the same data type.

For example, to return either a city name or Not Known, you would use COALESCE() as shown below:

SELECT City, COALESCE(City, ‘Not Known’)
FROM MemberDetails;

Executing the query provides the following results:

City COALESCE(City,’Not Known’)

Townsville Townsville

New Town New Town

Orange Town Orange Town

Orange Town Orange Town

Orange Town Orange Town

Big City Big City

Windy Village Windy Village

Townsville Townsville

Orange Town Orange Town

Windy Village Windy Village

Big City Big City

Dover Dover

NULL Not Known

If you use the COALESCE() function with the earlier example, instead of getting NULL results, you get
something a little more user-friendly — that is, a sentence rather than just Not Known. The MS SQL
Server version of the query is as follows:

183

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 183

SELECT FirstName,
LastName, City,
COALESCE(FirstName + ‘ ‘ + LastName + ‘ lives in ‘ + City,

‘We have no details for ‘ + FirstName + ‘ ‘ + LastName,
‘No data available’)

FROM MemberDetails;

For the other database systems — IBM DB2, MySQL, and Oracle — the query should read as follows:

SELECT FirstName, LastName, City,
COALESCE(

CONCAT(CONCAT(FirstName,’ ‘), CONCAT(CONCAT(LastName, ‘ lives in ‘), City)),
CONCAT(‘We have no details for ‘,CONCAT(CONCAT(FirstName,’ ‘),LastName)),
‘No data available’)

FROM MemberDetails;

Running either query gives the following results:

FirstName LastName City COALESCE(
CONCAT(CONCAT(FirstName,’ ‘),
CONCAT(CONCAT(LastName, ‘ lives in ‘), City)),
CONCAT(‘We have no details for
‘,CONCAT(CONCAT(FirstName,’ ‘),LastName)),
‘No data available’)

Katie Smith Townsville Katie Smith lives in Townsville

Steve Gee New Town Steve Gee lives in New Town

John Jones Orange Town John Jones lives in Orange Town

Jenny Jones Orange Town Jenny Jones lives in Orange Town

John Jackson Orange Town John Jackson lives in Orange Town

Jack Johnson Big City Jack Johnson lives in Big City

Seymour Botts Windy Village Seymour Botts lives in Windy Village

Susie Simons Townsville Susie Simons lives in Townsville

Jamie Hills Orange Town Jamie Hills lives in Orange Town

Stuart Dales Windy Village Stuart Dales lives in Windy Village

William Doors Big City William Doors lives in Big City

Doris Night Dover Doris Night lives in Dover

Catherine Hawthorn NULL We have no details for Catherine Hawthorn

To explain this relatively complex SQL, consider the three arguments passed to the COALESCE() func-
tion. The first argument appears below:

CONCAT(CONCAT(FirstName,’ ‘), CONCAT(CONCAT(LastName, ‘ lives in ‘), City)),

184

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 184

Ideally, this first argument is the result you want returned. If it turns out to be NULL, however, then you
want the next argument to be the value that COALESCE() returns:

CONCAT(‘We have no details for ‘,CONCAT(CONCAT(FirstName,’ ‘),LastName))

This argument won’t return NULL so long as FirstName and LastName don’t contain NULL values.
However, if they do, then the final argument you pass is returned, and because the argument is a literal
string, it’s guaranteed to not be NULL:

‘No data available’

You can pass a considerable number of arguments to COALESCE(), though obviously each system has an
upper limit to the number of arguments that can be passed. That limit is fairly high, however.

Using INSERT INTO with
the SELECT Statement

This final section details how a SELECT statement can supply the data to be inserted into a table using
the INSERT INTO statement. Using these two statements in conjunction with one another is useful for
copying data from one table to another. For example, if you decide to restructure a database’s table
design but need to retain all the data, you would use the combination of INSERT INTO and SELECT
statements. You could create your new tables and then use INSERT INTO with SELECT to copy the data
over. The combination is also useful if you want to create a new identical copy of a database — for exam-
ple, for backup purposes or if you need to move the database to a new computer.

The basic syntax is as follows:

INSERT INTO destination_table_name
SELECT column_list FROM
source_table_name
WHERE condition

If you use this syntax, the destination columns and source columns must match. The number of columns
and appropriate data types must match, although there’s no need for column names to match. The
WHERE clause is optional and is needed only if you don’t want to copy over all records. For example, if
you want to create a copy of the Location table, first you need to create the table:

CREATE TABLE AnotherLocation
(LocationId int,

Street varchar(50),
City varchar(50),
State varchar(50)

);

After creating the table, you can copy over the data:

INSERT INTO AnotherLocation
SELECT LocationId, Street, City, State
FROM Location
WHERE State IN (‘New State’ ,’Golden State’);

185

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 185

This SQL copies over all records where State equals either New State or Golden State. You can check
it for yourself by using the following SELECT statement:

SELECT * FROM AnotherLocation;

You should see results similar to the following:

LocationId Street City State

1 Main Street Orange Town New State

2 Winding Road Windy Village Golden State

Note that the table receiving the data must have columns defined that can accept the size of the data
being transferred. For example, imagine that you defined your table as outlined in the following CREATE
TABLE definition, with the Street column accepting a maximum of only five characters:

CREATE TABLE AnotherLocation
(LocationId int,

Street varchar(5),
City varchar(50),
State varchar(50)

);

You might find in this instance that your database system reports an error saying something like, “String
or binary data would be truncated. The statement has been terminated.”

You receive this error because you made the definition of Street varchar(5), so it can hold only five
characters, and yet the data you’re trying to insert is more than five characters long. Some database sys-
tems, such as MySQL, don’t report an error but simply store the first five characters and get rid of the
rest. The important point to learn from this is to make sure that the table being copied to can handle the
data being copied. With strings, this means making sure there’s enough space for all the characters; with
numbers, this means making sure they are not too large to fit.

If you want to copy across only some of the columns, you need to specify which columns you want to
copy in the INSERT INTO statement, making sure the order in the INSERT INTO matches the order in
the SELECT column list. To copy over only data from the LocationId and State columns, include those
columns in parentheses after the table:

INSERT INTO AnotherLocation(LocationId, State)
SELECT LocationId, State
FROM Location
WHERE State = ‘Mega State’;

Specifying the columns means that the AnotherLocation table contains the following records (note the
change to the WHERE clause in the preceding code to prevent data duplication):

186

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 186

LocationId Street City State

1 Main Street Orange Town New State

2 Winding Road Windy Village Golden State

3 NULL NULL Mega State

AnotherTable isn’t used again, so you can delete it from the database:

DROP TABLE AnotherLocation;

That’s it for INSERT INTO with SELECT for this chapter, though it returns in Chapter 8 when you learn
about subqueries.

Summary
This chapter covered a number of topics relating to manipulating the results returned by SQL queries.
Specifically you discovered that SQL has the basic four math functions dealing with addition, subtrac-
tion, multiplication, and division. Although SQL’s mathematical ability is fairly basic, it also includes a
number of other math functions in addition to the fundamental four. These additional functions vary
considerably among various database systems, but this chapter covered a few of the more common ones
including the following:

❑ ABS(), which finds the absolute value of a number

❑ POWER(), which raises a number to a specified power (for example, squared means that a num-
ber is raised to the power of 2)

❑ SQRT(), which finds the square root of a number

❑ RAND(), which produces a fractional random number between 0 and 1

In addition to math functions, you learned that SQL also contains functions such as CEILING, FLOOR,
and ROUND, which all deal with rounding up or down fractional numbers either to create a whole num-
ber or, in the case of ROUND, to reduce the number of decimal places.

Furthermore, you learned that SQL has a number of functions that enable you to manipulate character-
based data. Each database system usually has a huge number of these functions, and this chapter cov-
ered the ones most commonly found in database systems including the following:

❑ SUBSTRING(), which allows you to extract part of a string from a larger string

❑ CASE() functions, which change the case of a string

❑ REVERSE(), which reverses the order of characters in a string

❑ LTRIM() and RTRIM() functions, which trim off spaces from the start or end of a string

❑ LENGTH(), which counts how many characters there are in a string

❑ SOUNDEX() and DIFFERENCE() functions, which deal with matching based on how a word
sounds rather than its exact spelling

187

Manipulating Data

09_577328 ch05.qxd 1/28/05 11:20 PM Page 187

You also learned that math and string functions can throw up unexpected results when dealing with
NULL values. In particular, NULL propagates so that if a query finds just one occurrence of NULL in an
expression, the whole expression evaluates to NULL. The COALESCE function can help deal with that by
returning a different value if NULL is found.

Finally, this chapter covered copying a whole table, or selected columns in a table, to another table by
using INSERT INTO in conjunction with SELECT statements.

That’s it for this chapter. The next chapter looks at more complex joins.

Exercises
1. The film club chairperson wants a list of members’ names and addresses. She needs only the

street and zip code. If either the Street column or the ZipCode column is NULL, make sure that
the address is listed as No address details available for this member.

2. This question is for MS SQL Server and IBM DB2 users. After speaking to a member at a club
meeting last night, the film club chairperson wants to contact the member again but can’t quite
remember her name. She thinks it sounds something like Jilly Johns. Can you help track down
the person using a SQL query?

188

Chapter 5

09_577328 ch05.qxd 1/28/05 11:20 PM Page 188

6
Grouping and Aggregating

Data

So far, results returned by SELECT queries have been a list of records, that is, specific data rather
than summaries or overviews. This chapter examines two main things: sorting data into groups
and returning the data for that group as a whole, and aggregation functions available in SQL.
Aggregation is another way of saying a summary of data. For example, aggregating data might
involve finding the average age of film club members or counting how many members live in a
particular state. What you’ve learned so far allows you to answer questions pertaining to which
film categories each member likes or what John Jones’s favorite film category is. However, by the
end of this chapter, using a combination of groups and aggregation will enable you to answer
questions such as how many members like thrillers. The difference between grouping and aggre-
gation is that grouping finds out information about a particular record, whereas aggregation sum-
marizes more than one record.

Specifically, this chapter covers the GROUP BY clause, which groups results according to the
parameters set forth in the clause. Additionally, this chapter examines the COUNT() function,
which counts records; the SUM() function, which adds the value of records together; the AVG()
function, which finds averages; and finally, the MAX() and MIN() functions, which find the lowest
and highest values in a set of records, respectively. The chapter begins by looking at grouping
results with the GROUP BY clause.

Grouping Results
This section examines the GROUP BY clause, which is used in conjunction with the SELECT state-
ment. It allows you to group identical data into one subset rather than listing each record. The
GROUP BY clause is at its most powerful when used with SQL’s summarizing and aggregating
functions, which are covered in the next section. The GROUP BY clause is also very useful with
subqueries, a concept examined in Chapter 7. The aim of this section is to get a handle on how
GROUP BY works; the next section shows you how to use it more effectively.

10_577328 ch06.qxd 1/28/05 11:21 PM Page 189

Begin by looking at how GROUP BY can answer the question, “Which states do members of the film club
live in?”

The answer doesn’t require a list of every member and the state they live in; you simply want a list of
the specific different states. Use the GROUP BY clause to answer this question, even though strictly
speaking SELECT DISTINCT would work just as well:

SELECT State
FROM MemberDetails
GROUP BY State;

The GROUP BY clause must go after any FROM or WHERE clauses in the SELECT statement. All the columns
you want to be grouped must be listed in the GROUP BY column list. For example, the preceding code
groups by the State column. If you want to include more than one column in the GROUP BY clause, then
separate the columns with commas, in the same way that you would separate columns in a SELECT
statement’s column list.

The preceding SQL produces the results shown in the following table. One of the values in the table is
NULL, so you end up with one group that is NULL:

State

NULL

Golden State

Mega State

New State

When dealing with a GROUP BY clause, the database system first creates a temporary results set based on
the FROM and WHERE clauses. So, in the preceding example, the results set is created from the following
SELECT statement:

SELECT State
FROM MemberDetails;

The DBMS then uses these results and looks for groups of identical records based on the column or
columns specified in the GROUP BY clause. In this case, State is the only column, so it’s just a matter of
grouping all the identical states into one row. If your query includes a WHERE clause, like the one shown
below, the grouping is based on the results returned by the WHERE clause:

SELECT State
FROM MemberDetails
WHERE State IN (‘Mega State’, ‘Golden State’,’New State’)
GROUP BY State;

190

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 190

Running the query, complete with a WHERE clause, produces the following final results:

State

Golden State

Mega State

New State

The GROUP BY clause isn’t limited to just one column; it can be two or more as the following query shows:

SELECT City, State
FROM MemberDetails
WHERE State IN (‘Mega State’, ‘Golden State’,’New State’)
GROUP BY City, State;

Executing the query produces the results in the following table:

City State

Big City Mega State

Dover Golden State

New Town New State

Orange Town New State

Townsville Mega State

Windy Village Golden State

The order of the columns in the GROUP BY clause affects the order of results, but it doesn’t change the
results as a whole, just the order in which they arrive.

Both examples include the same columns in the SELECT results set, as in the GROUP BY clause, and this is
no accident. Most DBMSs don’t allow the columns that appear in the results to differ from the columns
in the GROUP BY clause. The reason for this is that if you specify no group for a column in the SELECT
statement, then the DBMS has no way of deciding which value to include for a particular group.
Remember, your results can include only one identical record per group; each row represents the results
from a group of records and not the individual records themselves. You can’t include an ungrouped col-
umn; otherwise there may be more than one row for each group, which isn’t allowed.

Summarizing and Aggregating Data
Until now, results obtained from the database have all consisted of a set of individual records rather than
records that have been summarized by, say, including an average or counting records. Queries have
answered questions such as “Who are the members of the film club and which state do they live in?”

191

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 191

This section covers queries that provide more of a summary, or aggregation, of results. You learn how to
use SQL to answer questions such as “How many members come from each state?” “What’s the average
film rating of all the films in the Film Club database?” and “How old is the oldest person in the club?”

The section begins by looking at the COUNT() aggregate function.

Counting Results
You can use the COUNT() function to count the number of records in the results. It’s used in the SELECT
statement along with the column list. Inside the brackets, insert the name of the column you want counted.
The value returned in the results set is the number of non-NULL values in that column. Alternatively, you
can insert an asterisk (*), in which case all columns for all records in the results set are counted regardless
of whether the value is NULL or not. The COUNT() function can also accept expressions, for example
COUNT(MemberId + CategoryId).

Execute the following SQL:

SELECT COUNT(*)
FROM MemberDetails;

You get the answer 14, which is how many records the SQL returns, which, given the lack of a WHERE
clause, represents all the records in the MemberDetails table. However, if you execute the following SQL,
you get the answer 13:

SELECT COUNT(Street)
FROM MemberDetails;

Why 13 and not 14? After all, it’s the same SQL with no WHERE clause, so surely it has the same number
of records regardless of which column is counted. The difference is that when a column name is speci-
fied in the COUNT() function’s arguments, only the columns where the value is not NULL are counted. As
you can see from the following table, which is the result of SELECT MemberId, Street,City,State
FROM MemberDetails, one of the records in the Street, City, and State columns contains a NULL value:

MemberId Street City State

1 Main Road Townsville Mega State

4 45 Upper Road New Town New State

5 Newish Lane Orange Town New State

6 Newish Lane Orange Town New State

7 Long Lane Orange Town New State

8 Main Street Big City Mega State

9 Long Lane Windy Village Golden State

10 Main Road Townsville Mega State

192

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 192

MemberId Street City State

11 Newish Lane Orange Town New State

12 Long Lane Windy Village Golden State

13 Winding Road Big City Mega State

14 White Cliff Street Dover Golden State

15 NULL NULL NULL

You can also see that the MemberId column contains no NULLs, so if you change the column counted to
MemberId (by including MemberId inside parentheses), you get the value 13, because 13 records in the
MemberId column contain values that are not NULL.

You can include more than one aggregate function in the SELECT statement. Consider the following
statement:

SELECT COUNT(City), COUNT(LastName)
FROM MemberDetails;

Executing the preceding SQL returns the following results:

COUNT(City) COUNT(MemberId)

12 13

Remember, the City column does contain one record with a NULL value; hence the value above is 12. The
MemberId column contains no NULLs in any of the records, so its value is 13, or all the records in the
results set.

Trying to combine an aggregate function and a nonaggregate column is not allowed by the rules of SQL.
For example, the following SQL results in an error:

SELECT City, COUNT(MemberId)
FROM MemberDetails;

The reason for this rule is that City might return more than one row, whereas COUNT() only ever returns
one row.

In this situation, the GROUP BY clause comes in quite handy. For example, if you want to know how
many members live in each state based on information from the MemberDetails table, run the following
query:

SELECT State, COUNT(LastName)
FROM MemberDetails
GROUP BY State;

193

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 193

This query gives the results in the following table:

State Count(State)

NULL 1

Golden State 3

Mega State 4

New State 5

A GROUP BY clause essentially splits off results into groups, each being a subset of the full results. The
COUNT() function in this case counts the results from each subset of the main results. Things might be a
bit clearer if you look at the following table, which contains a list of States and LastNames returned by
the FROM MemberDetails clauses:

State LastName Notes

NULL Hawthorn Null group

Golden State Botts Golden State group

Golden State Dales

Golden State Night

Mega State Doors Mega State group

Mega State Johnson

Mega State Simons

Mega State Smith

New State Gee

New State Hills New State group

New State Jackson

New State Jones

New State Jones

The different groups in the preceding table are highlighted with different shading. If you count each
group, you’ll find that they match the results from the COUNT(State) results table.

Just as the SELECT statement has a DISTINCT option, so do aggregate functions. The DISTINCT option
counts only the number of unique records; any duplicates are counted just once. Also, NULLs are not
counted at all. For example, the following SQL counts how many distinct values the CategoryId column
of the FavCategory table contains. Note that MS Access doesn’t support the DISTINCT keyword:

SELECT COUNT(DISTINCT CategoryId)
FROM FavCategory;

194

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 194

Executing the SQL returns seven distinct values. The following Try It Out puts your knowledge of count-
ing and grouping results to the test.

Try It Out Counting and Grouping Results
The film club’s chairperson wants to know which film categories are most popular among club mem-
bers. The list must be in order from the most popular category to the least popular category.

1. Execute the following SQL to obtain the grouped results:

SELECT Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category
ORDER BY Popularity DESC;

Note that the preceding code won’t work in MS Access unless you change the ORDER BY clause
as shown here:

ORDER BY COUNT(FavCategory.CategoryId) DESC;

How It Works
This SQL statement is a little trickier than what you’ve seen so far. Perhaps the hardest part with SQL is
not the actual code but rather working out how to get the information you want, determining where it’s
coming from, and then translating that into SQL. If you find that the SQL necessary to answer a particu-
lar question is a little bit tricky, it’s best to start simple and build the code up. For example, a good start
in answering the film club chairperson’s query could be simply to select all the CategoryIds in the
FavCategory table:

SELECT FavCategory.CategoryId
FROM FavCategory;

After selecting the categories, you can count the categories:

SELECT COUNT(FavCategory.CategoryId)
FROM FavCategory;

This query returns 21, which tells you nothing except that there are 21 rows in the table. However, you
want to know how many rows there are in each category, so you need to group the results by CategoryId:

SELECT COUNT(FavCategory.CategoryId)
FROM FavCategory
GROUP BY FavCategory.CategoryId;

Executing this code gives a count for each category, but it contains only the CategoryId, so you need to
join the FavCategory and Category tables together to get the names of the category groups:

SELECT Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category;

195

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 195

You’re almost there. You have the right results, but the categories aren’t ordered from most popular to
least popular. You need to add an ORDER BY clause. ORDER BY clauses can order on aggregate functions
as well as on columns, so you just need to add the clause and the alias you gave the aggregate function
in the SELECT list:

SELECT Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category
ORDER BY Popularity DESC;

The preceding code gives the final results with the data ordered as required:

Category Popularity

War 4

Sci-fi 3

Thriller 3

Comedy 3

Historical 3

Horror 3

Romance 2

Note, however, that using an alias for the COUNT(FavCategory.CategoryId) in the SELECT clause
isn’t essential. You could have achieved the same results with this SQL, which is in fact the only SQL that
MS Access will accept:

SELECT Category.Category, COUNT(FavCategory.CategoryId)
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category.Category
ORDER BY COUNT(FavCategory.CategoryId)

However, giving a meaningful name to the aggregate function’s results makes the code more readable. If
you return to this SQL statement in a year’s time, you’ll know exactly what the
COUNT(FavCategory.CategoryId) represents.

Adding Results
The SUM() function adds up all the values for the expression passed to it as an argument, either a col-
umn name or the result of a calculation. The basic syntax is as follows:

SUM(expression_to_be_added_together)

196

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 196

For example, the following code adds up all the values in the CategoryId column for all records in the
Category table:

SELECT SUM(CategoryId)
FROM Category;

The result of the statement is 28. Given that the CategoryId column is simply a primary key column, the
result is not that meaningful. SUM() can also contain expressions and calculations:

SELECT SUM(CategoryId * MemberId)
FROM FavCategory
WHERE CategoryId < 4;

The preceding code sums up CategoryId multiplied by MemberId for each record and then sums up the
results for all records where CategoryId is less than 4; the final answer is 159.

You can use SUM() only with numerical fields. The SUM() function counts only actual values; NULL values
are ignored. As with COUNT(), the SUM() function contains a DISTINCT option, so that your results include
the sum of only distinct values. The Try It Out that follows shows you how to use the SUM() function.

Try It Out Using the SUM() Function
1. The club chairperson is feeling quite generous and has decided to buy a copy of all the films

available on DVD. Use the following SQL to calculate the total cost, including sales tax of 10%:

SELECT SUM(DVDPrice * 1.1) FROM Films
WHERE AvailableOnDVD = ‘Y’;

2. After seeing how much each DVD costs, the chairperson has a change of mind and wants to buy
only the films available on DVD that cost less than $10. Using the following SQL, calculate the
total cost, including sales tax of 10%:

SELECT SUM(DVDPrice * 1.1) FROM Films
WHERE AvailableOnDVD = ‘Y’ AND DVDPrice < 10;

How It Works
First, you created the SQL to extract the total price for all DVDs in the database:

SELECT SUM(DVDPrice * 1.1) FROM Films
WHERE AvailableOnDVD = ‘Y’;

Running the query provides the result 119.702, except on MySQL, where it returns 118.80.

The SUM() function is used in the SELECT clause and a calculation passed as an argument, which is the
DVDPrice column multiplied by the value 1.1, which increases the value of DVDPrice by 10% to reflect
sales tax. The WHERE clause includes only those records where the AvailableOnDVD column contains a
value of Y. After all, there’s no point adding up the cost of a DVD where it’s not even available. Strictly
speaking, the WHERE clause is not necessary because NULL values are not included by the SUM() function,
but it’s better to make it explicit that DVDs that are unavailable are not included. After all, perhaps a
DVD is due for release in a few months’ time, the expected price being known and therefore entered into

197

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 197

the database even though the DVD isn’t currently available for purchase. Limiting the number of unnec-
essary results that the database has to deal with is also good practice. It’s worth mentioning once again
that aggregate functions take their records from the results set as a whole, including the effect of WHERE
clauses, not just from the tables specified.

The second SQL query (shown again below) finds out the total cost of all DVDs under $10:

SELECT SUM(DVDPrice * 1.1) FROM Films
WHERE AvailableOnDVD = ‘Y’ AND DVDPrice < 10;

This query is identical to the previous SQL, except you added an extra condition to the WHERE clause
that states that only records where the DVDPrice is less than $10 are included when doing the SUM()
calculation.

Now that you have a grasp of the SUM() function, you can move on to the next aggregate function, AVG(),
which allows you to average results.

Averaging Results
If you want to find out the average for a column or expression in a results set, you need to use the AVG()
function. This works in the same way as the SUM() function, with the obvious difference that it obtains
an average value.

If you want to find out the average price of a DVD, write the following SQL:

SELECT AVG(DVDPrice)
FROM Films
WHERE AvailableOnDVD = ‘Y’;

Executing this query gives the result 10.882. The AVG() function, as with the SUM() function, ignores
NULL values. So if you remove the WHERE clause in the preceding SQL so that NULL values appear in
DVDPrice where the DVD is not available, you get exactly the same result.

As with COUNT() and SUM() functions, you can use the DISTINCT keyword so that only unique values
are counted. The DBMS ignores values that appear twice or more in the results set. Change the preceding
code and add DISTINCT:

SELECT AVG(DISTINCT DVDPrice)
FROM Films
WHERE AvailableOnDVD = ‘Y’

Executing this query provides the answer 10.182 because values such as 12.99, 9.99, and 8.95 appear
more than once in the results.

As well as columns, the AVG() function takes expressions. For example, the following SQL finds out the
average price of DVDs with sales tax of 10% added:

SELECT AVG(DISTINCT DVDPrice * 1.1)
FROM Films
WHERE AvailableOnDVD = ‘Y’

198

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 198

Running the query gives the answer 11.2002. The following Try It Out puts the AVG() function to prac-
tical use.

Try It Out Using the AVG() Function
1. Produce a list of categories and average prices for DVDs in each category.

SELECT Category, AVG(DVDPrice)
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category;

How It Works
With more complex queries, it’s often better to start simple. First, work out where the data comes from.
In this case, DVD prices are in the Films table, and category names are in the Category table. Start by
joining the two tables:

SELECT Category
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’;

The query so far provides only a list of categories for each film in the Films table:

Category

Romance

Horror

Historical

War

Thriller

Horror

Thriller

Historical

Historical

Sci-fi

You now need to group them by category and find out the average price for the films in each group,
which leads you to the final step of adding a GROUP BY clause and AVG() function to the SELECT list:

199

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 199

SELECT Category, AVG(DVDPrice)
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category;

The AVG price result receives the alias Average Price, which although not strictly needed, does help
identify what the result means.

Executing this query produces the results in the following table:

Category Average Price

Historical 11.643333

Horror 9.470000

Romance 12.990000

Sci-fi 12.990000

Thriller 7.990000

War 12.990000

MAX() and MIN() in Results
The MAX() and MIN() aggregate functions return the lowest and highest values found in a results set,
respectively. Basically, it’s the same as if the results were ordered and the first and last results were
picked from the list. Unlike the SUM() and AVG() functions, you can use MAX() and MIN() with data
types other than numerical data types. For example, you can use MAX() and MIN() to find the earliest
or latest date or time in a date or time field.

The following SQL finds the youngest and oldest members in the MemberDetails table:

SELECT MAX(DateOfBirth), MIN(DateOfBirth)
FROM MemberDetails;

It provides the following results:

MAX(DateOfBirth) MIN(DateOfBirth)

1997-05-28 1937-01-20

In addition to a date or time field, you can also choose a character field. Again, the MIN() and MAX() are
the values for the specified column for the first and last records in an ordered results set. For example,
the following SQL finds the MIN() and MAX() values for the LastName column in the MemberDetails
table where MemberId is less than 3:

200

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 200

SELECT MAX(LastName), MIN(LastName)
FROM MemberDetails
WHERE MemberId > 3;

Executing the code gives the results in the following table:

MAX(LastName) MIN(LastName)

Simons Botts

In the following SQL, the MAX() and MIN() functions have been removed, and executing the code will
show only the results set ordered using an ORDER BY clause

SELECT LastName
FROM MemberDetails
WHERE MemberId > 3
ORDER BY LastName;

You can see that MAX(LastName) is simply the last item in the list and MIN(LastName) is the first item
in the list:

LastName

Botts

Dales

Doors

Gee

Hawthorn

Hills

Jackson

Johnson

Jones

Jones

Night

Simons

You can also see that generally ORDER BY, and therefore MAX() and MIN(), are based on alphabetical order,
although this isn’t always the case, especially when numbers and punctuation appear in strings. The next
Try It Out uses the MAX() and MIN() functions to gather birth dates for the film club’s chairperson.

201

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 201

Try It Out Selecting Data with MAX() and MIN()
1. The film club chairperson wants to know the dates of birth of the youngest and oldest members

in each state. Use the following SQL:

SELECT State, MAX(DateOfBirth), MIN(DateOfBirth)
FROM MemberDetails
WHERE State IS NOT NULL
GROUP BY State;

How It Works
This query is a little easier than the other examples because all the data comes from the same table; there
is no need for joins. The SELECT statement lists the columns and expressions that form the final results:

SELECT State, MAX(DateOfBirth), MIN(DateOfBirth)

The FROM part is easy: everything comes from the MemberDetails table. However, some values in the
State and DateOfBirth columns are NULL, so you use an IS NOT NULL operator in the WHERE clause to
exclude them:

FROM MemberDetails
WHERE State IS NOT NULL

Finally, you want results grouped based on the State column, so you add a GROUP BY clause:

GROUP BY State

Although it’s true that all columns listed in the SELECT statement must also appear in the GROUP BY
clause, it’s not true of aggregate functions like MAX() and MIN(), so they don’t appear in the GROUP BY
clause. Executing the entire statement produces the following results set:

State MAX(DateOfBirth) MIN(DateOfBirth)

Golden State 1997-05-28 1956-08-07

Mega State 1994-05-28 1937-01-20

New State 1992-07-17 1952-10-05

So far, you’ve learned how to group and summarize results with aggregation functions. The next section
explains how to use the HAVING clause to limit which groups are displayed and how to use the HAVING
clause with the aggregation functions.

Using the HAVING Clause with
GROUP BY Statements

The HAVING clause enables you to specify conditions that filter which group results appear in the final
results. In some ways, the HAVING clause resembles a WHERE clause for groups, in that you place it

202

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 202

immediately after the GROUP BY statement. For example, the following SQL creates a list of cities that
have three or more members in them:

SELECT City
FROM MemberDetails
GROUP BY City
HAVING COUNT(MemberId) >= 3;

The HAVING clause applies on a per-group basis, filtering out those groups that don’t match the condi-
tion, whereas the WHERE clause applies on a per-record basis, filtering out records. The results for the
preceding SQL are shown in the following table:

City

Orange Town

If you take away the HAVING clause and add details of the COUNT(MemberId), your SQL is as follows:

SELECT City, COUNT(MemberId)
FROM MemberDetails
GROUP BY City;

You can see how the database gets its results:

City COUNT(MemberId)

NULL 1

Big City 2

Dover 1

New Town 1

Orange Town 4

Townsville 2

Windy Village 2

You can see from the list that only Big City and New Town have three or more members. It’s important
to note that the WHERE clause restricts the record set that the GROUP BY clause works with. However, the
HAVING clause affects only the displayed final results. Now that you’re acquainted with the HAVING
clause’s functions, the following Try It Out shows you how to use it in SQL statements.

Try It Out Working with the HAVING Clause
1. In an earlier example, the film club’s chairperson wanted to know how many members listed

each film category as their favorite. The chairperson also wanted the list ordered from the most
popular to the least popular category. However, now the chairperson wants the list to include
only those categories where four or more members listed that category as their favorite. Execute
the following SQL to answer the chairperson’s question:

203

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 203

SELECT Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category.Category
HAVING COUNT(FavCategory.CategoryId) > 3
ORDER BY Popularity DESC;

If you’re using MS Access, you need to change the ORDER BY clause as shown below:

ORDER BY COUNT(FavCategory.CategoryId) DESC;

How It Works
The best way to deal with queries that seem a bit tricky at first (recall the discussion of the COUNT()
function) is to break them up into smaller stages.

You know that the FavCategory table contains data on each member’s favorite film categories, so that is
your starting point; this leads you to the following SQL:

SELECT FavCategory.CategoryId, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory
GROUP BY FavCategory.CategoryId;

While numbers are fine for a computer, humans prefer names. In order to make the answer more readable,
you need to display the category name. To obtain the category name, you need to access the Category table,
linking the results set so far with the data in the Category table via the CategoryId field. To do this, you
need to join the tables with an inner join, resulting in the following SQL:

SELECT Category.Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category.Category;

Next, to ensure that the results are ordered correctly (by popularity of category), add an ORDER BY
clause:

SELECT Category.Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category.Category
ORDER BY Popularity DESC;

Remember, though, that you want only groups where four or more members chose that category as their
favorite, which is where a HAVING clause comes in. You can use a HAVING clause to restrict the final
results to just those groups with four or more records inside them by adding HAVING
COUNT(FavCategory.CategoryId) > 3:

SELECT Category, COUNT(FavCategory.CategoryId) AS Popularity
FROM FavCategory INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId
GROUP BY Category.Category
HAVING COUNT(FavCategory.CategoryId) > 3
ORDER BY Popularity DESC;

204

Chapter 6

10_577328 ch06.qxd 1/28/05 11:21 PM Page 204

Executing the final SQL provides the final results, shown in the following table:

Category Popularity

War 4

Notice also that the ORDER BY clause must come last in the SELECT statement, otherwise an error occurs.

Summary
This chapter was all about summarizing and aggregating data, rather than getting results based on indi-
vidual records. Central to this concept was the GROUP BY statement, which does the following:

❑ Enables results to be based on groups of common data

❑ Allows the aggregation and summary of those groups when used in conjunction with SQL’s
aggregate functions such as COUNT(), SUM(), AVG(), MAX(), and MIN()

The chapter examined thoroughly each of the aggregation functions, including the following:

❑ COUNT(), which counts the number of record in the results set.

❑ SUM(), which adds together the value of the specified column or expression for each record in
the results set. SUM() works only with numerical data types.

❑ AVG(), which finds the average value for a particular column for each record in a results set.
Like SUM(), AVG() works only with numerical data types.

❑ MAX() and MIN(), which find the lowest or highest value for a column in a results set. MAX()
and MIN() work with date, time, character, and numerical data types.

Finally, this chapter explored the HAVING clause, which filters out the result of groups using various con-
ditions, much like a WHERE clause does for a FROM statement. Whereas the WHERE clause filters records,
the HAVING clause filters groups found by the GROUP BY clause.

The next chapter returns to joining tables, looks at subqueries, and shows you how to create complex
queries.

Exercises
1. The film club’s chairperson decides that she’d like a list showing all the film costs broken down

by film category and detailing how many films the club would have to buy in each category.
She also wants you to factor in a 10% sales tax into the cost of each DVD. Change the results to
list only those categories where one DVD is listed.

2. Write a SQL query that finds out the highest and lowest ratings for each film category.

205

Grouping and Aggregating Data

10_577328 ch06.qxd 1/28/05 11:21 PM Page 205

10_577328 ch06.qxd 1/28/05 11:21 PM Page 206

7
Selecting Data from

Different Tables

In Chapter 3, you learned how to use inner joins to create results sets formed from more than one
table. In this chapter, to use the words of Chef Elzar from Futurama, you take it up a notch and
look at how you can deal with more complex problems using more sophisticated inner joins, and
you also something you’ve not yet encountered: outer joins. Ultimately, this chapter is all about
finding a way to get the data you need to answer a question, and you can expect to see lots of
practical examples in this chapter.

Joins Revisited
In Chapter 3, you learned about inner joins and how they enable you to retrieve related data from
different tables and display that data in one results set.

Remember, an inner join consists of the INNER JOIN keyword, which specifies which two tables
are to be joined. After the INNER JOIN keyword, you specify an ON clause, which identifies the
condition that must be true for a row from each table to be included in the final joined results. The
basic syntax of an inner join is as follows:

name_of_table_on_left INNER JOIN name_of_table_on_right
ON condition

For example, the Attendance table doesn’t contain the name and address of each person attending
a meeting; rather, it contains only the MemberId. However, the MemberDetails table contains
matching MemberIds as well as members’ full details. So if you want to produce results that con-
tain a meeting date and the name of the member attending, you’d have to create a SELECT state-
ment (similar to the following) that produces a results set joining the two tables together:

SELECT MeetingDate, FirstName, LastName
FROM Attendance INNER JOIN MemberDetails
ON Attendance.MemberId = MemberDetails.MemberId;

11_577328 ch07.qxd 1/28/05 11:28 PM Page 207

The INNER JOIN links the Attendance and MemberDetails tables together in the results. Remember that
the link is only for the results produced here; it doesn’t change the database structure in any way. The
glue that binds them, as it were, is the MemberId columns contained in each table. Strictly speaking, the
column names don’t have to be the same; it’s just the way the database has been designed. In the Film
Club database, they are linked so that a MemberId in the Attendance table must have a matching value
in the MemberId column in the MemberDetails table.

Executing the statement provides the results you want:

MeetingDate FirstName LastName

2004-01-01 Katie Smith

2004-01-01 John Jones

2004-01-01 Jenny Jones

2004-03-01 Katie Smith

2004-03-01 Steve Gee

This is an inner join, which requires each result in one table to match a result in the other table. For
example, in the preceding table, Katie Smith’s record has been matched by a record in the Attendance
table, based on Katie’s MemberId having an equal MemberId in the Attendance table, a condition that
was specified in the ON clause. Shortly, this chapter examines outer joins, which don’t require a matching
record in every table involved in the join. However, before moving on to outer joins, you need to take a
more in-depth look at inner joins.

Inner Joins: An In-Depth Look
Although Chapter 3 covered inner joins, it detailed only fairly simple ones. In fact, the fairly simple ones
are also the most common. Occasions arise, though, when you can’t obtain the necessary results with a
basic inner join. This section refreshes your memory about inner joins but also covers more complex inner
joins such as cross joins and self-joins. The section begins by looking at equijoins and non-equijoins.

Equijoins and Non-equijoins
An equijoin is simply the correct terminology for an inner join where the ON clause’s condition contains an
equals (=) operator. Although you haven’t encountered the terminology equijoin before, Chapter 3 demon-
strated them, and almost all of the joins in the book so far have been equijoins; they are far and away the
most common and useful of all joins. An equijoin is simply an inner join where the join clause’s condition
specifies that a field in one table must equal a field in the other table. Consider this basic syntax:

one_table INNER JOIN another_table
ON one_table.some_field = another_table.another_field

A non-equijoin is, as you’ve probably already guessed, a join where the condition is not equal, which
means that the condition uses operators such as less than (<), greater than (>), less than or equal to (<=),
and greater than or equal to (>=). In theory, you can use most operators, even ones such as LIKE, which
would be a bit unusual but perfectly legal. The syntax of a non-equijoin is identical to that of the equi-
join, which you’ve been using throughout the book.

208

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 208

You could use a non-equijoin if, for example, you want a list of films released on or after the year of birth
of each member living in Golden State. The SQL required for this example is as follows (note that the
example won’t work on Oracle, as Oracle doesn’t support the YEAR() function):

SELECT FilmName, FirstName, LastName, State, YearReleased, YEAR(DateOfBirth) AS
YearOfBirth
FROM MemberDetails INNER JOIN Films
ON Films.YearReleased >= YEAR(MemberDetails.DateOfBirth)
WHERE State = ‘Golden State’
ORDER BY LastName, FirstName;

The ON statement joins the two tables by the YearReleased column of the Films table and the result of the
YEAR() function when passed to the DateOfBirth field in the MemberDetails table. (To refresh your
memory about the YEAR() function, see Chapter 5.) The statement extracts the year as part of a date
from a date expression. Non-equijoins often produce a lot of results — in this case, 31 records:

FilmName FirstName LastName State YearReleased YearOfBirth

The Life of Bob Seymour Botts Golden State 1984 1956

The Dirty Half Dozen Seymour Botts Golden State 1987 1956

The Good, the Bad, and Seymour Botts Golden State 1989 1956
the Facially Challenged

The Lion, the Witch, and Seymour Botts Golden State 1977 1956
the Chest of Drawers

Soylent Yellow Seymour Botts Golden State 1967 1956

Planet of the Japes Seymour Botts Golden State 1967 1956

Raging Bullocks Seymour Botts Golden State 1980 1956

Sense and Insensitivity Seymour Botts Golden State 2001 1956

Gone with the Window Seymour Botts Golden State 1988 1956
Cleaner

The Wide-Brimmed Hat Seymour Botts Golden State 2005 1956

On Golden Puddle Seymour Botts Golden State 1967 1956

15th Late Afternoon Seymour Botts Golden State 1989 1956

Nightmare on Oak Seymour Botts Golden State 1997 1956
Street, Part 23

One Flew over the Seymour Botts Golden State 1975 1956
Crow’s Nest

15th Late Afternoon Stuart Dales Golden State 1989 1956

Nightmare on Oak Stuart Dales Golden State 1997 1956
Street, Part 23

Table continued on following page

209

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 209

FilmName FirstName LastName State YearReleased YearOfBirth

One Flew over the Stuart Dales Golden State 1975 1956
Crow’s Nest

The Life of Bob Stuart Dales Golden State 1984 1956

The Dirty Half Dozen Stuart Dales Golden State 1987 1956

The Good, the Bad, and Stuart Dales Golden State 1989 1956
the Facially Challenged

The Lion, the Witch, and Stuart Dales Golden State 1977 1956
the Chest of Drawers

Soylent Yellow Stuart Dales Golden State 1967 1956

Planet of the Japes Stuart Dales Golden State 1967 1956

Raging Bullocks Stuart Dales Golden State 1980 1956

Sense and Insensitivity Stuart Dales Golden State 2001 1956

Gone with the Window Stuart Dales Golden State 1988 1956
Cleaner

The Wide-Brimmed Hat Stuart Dales Golden State 2005 1956

On Golden Puddle Stuart Dales Golden State 1967 1956

Sense and Insensitivity Doris Night Golden State 2001 1997

The Wide-Brimmed Hat Doris Night Golden State 2005 1997

Nightmare on Oak Doris Night Golden State 1997 1997
Street, Part 23

Originally, this example didn’t include the WHERE clause, but that generated a whopping 130 results! The
Film Club database actually has very few records, but if your database contains a large amount of
records, be aware that you could end up with unmanageable numbers of results unless you use a WHERE
clause in your non-equijoins.

Multiple Joins and Multiple Conditions
To reiterate a point from Chapter 3, you can have more than one join in a query, which is essential when
you need to join more than two tables at a time. For example, if you want a list of members’ names and
the names of their favorite film categories, you need to join the MemberDetails, Category, and
FavCategory tables with the following query:

SELECT FirstName, LastName, Category.Category
FROM MemberDetails INNER JOIN FavCategory

ON MemberDetails.MemberId = FavCategory.MemberId
INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId

ORDER BY LastName, FirstName;

210

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 210

Note that MS Access insists that you place brackets around joins where there are multiple joins, so you
need to rewrite the preceding SQL as follows:

SELECT FirstName, LastName, Category.Category
FROM (MemberDetails INNER JOIN FavCategory

ON MemberDetails.MemberId = FavCategory.MemberId)
INNER JOIN Category
ON FavCategory.CategoryId = Category.CategoryId

ORDER BY LastName, FirstName;

Notice the inner join on the MemberDetails and FavCategory tables. The results of that inner join are
then joined with the Category table. This query produces the following results:

FirstName LastName Category

Stuart Dales Thriller

Stuart Dales War

Stuart Dales Historical

Stuart Dales Comedy

William Doors Sci-fi

William Doors Horror

Steve Gee Sci-fi

Steve Gee Comedy

Jamie Hills War

Jamie Hills Sci-fi

Jamie Hills Horror

Jenny Jones War

Jenny Jones Comedy

John Jones Thriller

Doris Night Romance

Doris Night Historical

Susie Simons Historical

Susie Simons Horror

Susie Simons Thriller

Katie Smith Romance

Katie Smith War

211

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 211

As mentioned, that works just fine for MS SQL Server 2000, IBM DB2, MySQL, and Oracle, but MS
Access can’t handle it. In order for this query to work in MS Access, you have two options. You saw the
first in Chapter 3: using brackets to isolate the inner joins. Consider the following statement:

SELECT FirstName, LastName, Category.Category
FROM Category INNER JOIN

(MemberDetails INNER JOIN FavCategory
ON MemberDetails.MemberId = FavCategory.MemberId)

ON FavCategory.CategoryId = Category.CategoryId
ORDER BY LastName, FirstName;

This is called nesting a query. The results are the same and it seems to keep MS Access happy!

The second option is to rewrite the query in a different syntax, with the explicit INNER JOIN statements
removed, and instead join the tables with a WHERE clause, as shown in the following statement:

SELECT FirstName, LastName, Category.Category
FROM Category, MemberDetails, FavCategory
WHERE MemberDetails.MemberId = FavCategory.MemberId
AND FavCategory.CategoryId = Category.CategoryId
ORDER BY LastName, FirstName;

Executing this statement produces the same results; they’re simply written differently (based on pre-ANSI
92 syntax). It’s preferable, however, to use the INNER JOIN keywords, because they make explicit what’s
happening and make the SQL easier to read and understand. As soon as you see the INNER JOIN key-
words, you know that more than one table is involved in the query and that the tables are joined in
some way.

Although there is no strict limit to the number of inner joins allowed in a query, you’ll find that, depend-
ing on the circumstances, more than a dozen or so start to significantly slow down data retrieval.

Before moving on to cross joins, it’s worth mentioning that the ON statement is not limited to just one
condition; it can contain two or more. For example, the following SQL has two conditions in the ON
clause, which join on the State and City fields in the Location and MemberDetails tables:

SELECT MemberDetails.City, MemberDetails.State
FROM Location INNER JOIN MemberDetails
ON Location.State = MemberDetails.State AND Location.City = MemberDetails.City;

The query provides the following results:

City State

Orange Town New State

Orange Town New State

Orange Town New State

Big City Mega State

Windy Village Golden State

212

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 212

City State

Orange Town New State

Windy Village Golden State

Big City Mega State

It may be easier to think of the ON clause as a WHERE clause that joins tables. The preceding SQL uses an
AND operator to join the two conditions, but you can use any of the logical operators.

Cross Joins
A cross join is the most basic join, as there’s no ON clause to join the tables. Instead, all the rows from all
the tables listed in the join are included in the results set. Only the usual filtering clauses associated with
SELECT statements, such as a WHERE clause, limit the results set. You can define a cross join in two ways.
The first way of creating a cross join uses the CROSS JOIN statement, as shown in the following code,
where the Category and Location tables are cross-joined:

SELECT Category, Street
FROM Category CROSS JOIN Location
ORDER BY Street;

The preceding syntax is supported by Oracle, MySQL, and SQL Server, but not by IBM’s DB2 or MS
Access. An alternative syntax for a cross join is simply to list all the tables to be cross-joined in the FROM
clause, as shown here:

SELECT Category, Street
FROM Category, Location
ORDER BY Street;

Virtually all databases support the second way of cross joining, so it’s likely the best way to perform a
cross join. Both of the preceding queries do the same thing and produce the same results, which are
shown here:

Category Street

Thriller Main Street

Romance Main Street

Horror Main Street

War Main Street

Sci-fi Main Street

Historical Main Street

Comedy Main Street

Thriller Tiny Terrace

Table continued on following page

213

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 213

Category Street

Romance Tiny Terrace

Horror Tiny Terrace

War Tiny Terrace

Sci-fi Tiny Terrace

Historical Tiny Terrace

Comedy Tiny Terrace

Thriller Winding Road

Romance Winding Road

Horror Winding Road

War Winding Road

Sci-fi Winding Road

Historical Winding Road

Comedy Winding Road

As you can see, the queries produce a lot of results given that the Location table has only three records
and the Category table has only seven records. Why so many results? The results set is the Cartesian
product of the two tables, which in plain English means all the rows from one table combined with all
the rows from the other. This means that every single combination of the two tables appears in the
results set. If you look at the results in the preceding table, you’ll see Main Street combined with
Thriller, Main Street combined with Romance— indeed, Main Street combined with every record
in the Category table. The number of records in a results set will always be the number of records in one
table multiplied by the number of records in the other table, In this case, three records in the Location
table multiplied by seven records in the Category table equals 21 total records.

Generally speaking, cross joins are not that useful. Inner joins are much more common when joining two
or more tables.

Self-Joins
A self-join occurs when a table is joined to itself rather than to another table. Okay, the idea of joining a
table to itself might sound a bit crazy, but there are uses for it. The main use is for finding matching pairs
of records in a database. However, self-joins are also very useful in conjunction with subqueries, which
are covered later in Chapter 8.

How to use a self-join becomes clearer shortly when you see an example. First, though, is the syntax nec-
essary for a self-join. As a self-join is like any other join, the syntax is identical but with just one differ-
ence: When joining a table to itself, you must give the table an alias. (Aliases are discussed in Chapter 3.)
To recap, to give a table or column an alias, you simply put the keyword AS after the table or column
name and specify what you want the table to be known as. It doesn’t change the table name in the
database, only its name when the database system is generating the results set. For example, in the fol-
lowing SQL, the Films table receives the alias FM1:

214

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 214

SELECT FM1.FilmName
FROM Films AS FM1;

Self-joins require an alias because the same table is being used twice, so you need some way to distin-
guish between the same table that is included twice. An alias is also sometimes referred to as the correla-
tion name. Note that while Oracle supports aliases, it does not use the AS keyword. Instead, simply put
the alias after the table name but without the AS keyword, as shown here:

SELECT FM1.FilmName
FROM Films FM1;

To demonstrate how a self-join works, imagine that the film club’s chairperson has asked you to provide
a list of all members who are living in the same house as another member. For the purposes of this
example, you can assume that the house is the same if the street and zip code are the same. Strictly
speaking, you need the street address, but in the example database this is not recorded.

Is there any way you could do this example without resorting to a self-join? In short, the answer is no. In
order to find out if the Street and ZipCode fields in one record are the same, you need to compare them.
If you try this without a self-join, then all you’re doing is comparing the Street and ZipCode fields for
the same record, and obviously they’ll be the same, as you can see from the following SQL:

SELECT FirstName, LastName
FROM MemberDetails
WHERE Street = Street AND ZipCode = ZipCode;

For example, taking just one row, if Street is Main Road and ZipCode is 123456, then the preceding SQL
reads as follows:

SELECT FirstName, LastName
FROM MemberDetails
WHERE ‘Main Road’ = ‘Main Road’ AND ‘123456’ = ‘123456’;

This statement always evaluated to true, as the same column from the same row always equals itself! So
you just end up with all the records in the table, just as if there were no WHERE clause.

If you need to compare the same fields but different records, you need a self-join. The following SQL is a
first attempt at doing a self-join, but it doesn’t produce the results you need. Remember to remove the
AS keywords if you’re using Oracle:

SELECT MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName,
MD1.ZipCode,MD2.ZipCode, MD1.Street,MD2.Street
FROM MemberDetails AS MD1 INNER JOIN MemberDetails AS MD2
ON MD1.Street = MD2.Street AND MD1.ZipCode = MD2.ZipCode;

There’s nothing wrong with the syntax; it’s a perfectly valid self-join. In the inner join, you have joined
the MemberDetails table (giving it an alias of MD1) with the MemberDetails table, giving the second
occurrence of MemberDetails the alias MD2. You can choose any alias name so long as it contains valid
characters. The MD1 and MD2 tables are joined on the Street and ZipCode fields. However, while it’s a
valid query, you can see that it has gone wrong somewhere when you execute it to get the results:

215

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 215

MD1.First MD1.Last MD2.First MD2.Last MD1.Zip MD2.Zip MD1. MD2.
Name Name Name Name Code Code Street Street

Katie Smith Katie Smith 123456 123456 Main Road Main Road

Katie Smith Susie Simons 123456 123456 Main Road Main Road

Steve Gee Steve Gee 99112 99112 45 Upper 45 Upper
Road Road

John Jones John Jones 88776 88776 Newish Newish
Lane Lane

John Jones Jenny Jones 88776 88776 Newish Newish
Lane Lane

John Jones Jamie Hills 88776 88776 Newish Newish
Lane Lane

Jenny Jones John Jones 88776 88776 Newish Newish
Lane Lane

Jenny Jones Jenny Jones 88776 88776 Newish Newish
Lane Lane

Jenny Jones Jamie Hills 88776 88776 Newish Newish
Lane Lane

John Jackson John Jackson 88992 88992 Long Lane Long Lane

Jack Johnson Jack Johnson 34566 34566 Main Main
Street Street

Seymour Botts Seymour Botts 65422 65422 Long Lane Long Lane

Seymour Botts Stuart Dales 65422 65422 Long Lane Long Lane

Susie Simons Katie Smith 123456 123456 Main Road Main Road

Susie Simons Susie Simons 123456 123456 Main Road Main Road

Jamie Hills John Jones 88776 88776 Newish Newish
Lane Lane

Jamie Hills Jenny Jones 88776 88776 Newish Newish
Lane Lane

Jamie Hills Jamie Hills 88776 88776 Newish Newish
Lane Lane

Stuart Dales Seymour Botts 65422 65422 Long Lane Long Lane

Stuart Dales Stuart Dales 65422 65422 Long Lane Long Lane

William Doors William Doors 34512 34512 Winding Winding
Road Road

Doris Night Doris Night 68122 68122 White Cliff White Cliff
Street Street

216

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 216

Just looking at the first line, you can see that Katie Smith lives with Katie Smith! If you look at the
ZipCode and Street fields, you can see why this record appears. The ON clause specifies that the Street
and ZipCode fields should be the same and, of course, they are for the same person. What you’re look-
ing for is the same Street and ZipCode for two different people, so you need to add this to your query:

SELECT MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName,
MD1.ZipCode,MD2.ZipCode, MD1.Street,MD2.Street
FROM MemberDetails AS MD1 INNER JOIN MemberDetails AS MD2
ON MD1.Street = MD2.Street AND

MD1.ZipCode = MD2.ZipCode AND
MD1.MemberId <> MD2.MemberId;

This statement adds the necessary condition to the ON clause, though you could add a WHERE clause and
add it there; it’s the same thing, just a different syntax. The new condition at the end of the ON clause
checks to see that MD1 table’s MemberId column doesn’t equal MD2 table’s MemberId column; you want
to make sure you’re getting a different member and not including the same member twice. Now when
you execute the query, you almost get the results you want:

MD1.First MD1.Last MD2.First MD2.Last MD1.Zip MD2.Zip MD1. MD2.
Name Name Name Name Code Code Street Street

Katie Smith Susie Simons 123456 123456 Main Road Main Road

John Jones Jenny Jones 88776 88776 Newish Newish
Lane Lane

John Jones Jamie Hills 88776 88776 Newish Newish
Lane Lane

Jenny Jones John Jones 88776 88776 Newish Newish
Lane Lane

Jenny Jones Jamie Hills 88776 88776 Newish Newish
Lane Lane

Seymour Botts Stuart Dales 65422 65422 Long Lane Long Lane

Susie Simons Katie Smith 123456 123456 Main Road Main Road

Jamie Hills John Jones 88776 88776 Newish Newish
Lane Lane

Jamie Hills Jenny Jones 88776 88776 Newish Newish
Lane Lane

Stuart Dales Seymour Botts 65422 65422 Long Lane Long Lane

But if you look closely, you’ll notice that there are still doubled-up rows. For example, the top row and
the second from the bottom row contain the same data. First, Katie Smith’s record from MD1 is matched
to Susie Simons’s in MD2, and then Susie Simons’s record in MD1 is matched to Katie Smith’s in MD2. You
want only the one result, so you need to determine how to prevent both results from appearing in the
results set. The easiest way to prevent both records from appearing is to include only the row where the
MemberId field in MD1 is less than the MemberId field in MD2. Remember that the MemberId field is
unique, so they can never be the same value, which means that one must be smaller than the other:

217

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 217

SELECT MD1.MemberId, MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName,
MD1.ZipCode,MD2.ZipCode, MD1.Street,MD2.Street
FROM MemberDetails AS MD1 INNER JOIN MemberDetails AS MD2
ON MD1.Street = MD2.Street AND

MD1.ZipCode = MD2.ZipCode AND
MD1.MemberId < MD2.MemberId;

The only change made from the previous version of the query is the last part of the ON clause. It had
been the following:

MD1.MemberId <> MD2.MemberId

This ON clause applies only where the MemberId fields in both tables must be different.A row is
included from MD1 or MD2 as long as the MemberId fields are different. It led to doubling up, though,
as you saw.

However, the ON clause has been changed to the following:

MD1.MemberId < MD2.MemberId

Now a row from MD1 table appears in the results only if MemberId is less than MemberId from a row in
MD2 table. This ensures that a member only ever appears once in the final results, and finally you get the
results you want and only the results you want:

MD1.First MD1.Last MD2.First MD2.Last MD1.Zip MD2.Zip MD1. MD2.
Name Name Name Name Code Code Street Street

1 Katie Smith Susie Simons 123456 123456 Main Road

5 John Jones Jenny Jones 88776 88776 Newish Lane

5 John Jones Jamie Hills 88776 88776 Newish Lane

6 Jenny Jones Jamie Hills 88776 88776 Newish Lane

9 Seymour Botts Stuart Dales 65422 65422 Long Lane

If you didn’t have that unique ID column, you would have needed to do the same comparison after
choosing another unique column or a set of columns that in combination are unique.

As you can see from this section, inner joins can be complicated, but they can also aid you in retrieving
exactly the results you want to retrieve. The next section deals with creating outer joins, which are
another useful SQL tool.

Outer Joins
So far, this book has discussed only inner joins. As you certainly recall, an inner join requires that both
tables involved in the join must include matching records; indeed, the ON clause must evaluate to true.

An outer join, however, doesn’t require a match on both sides. You can specify which table always returns
results regardless of the conditions in the ON clause, although the results are still subject to the filtering

218

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 218

effects of any WHERE clause. There are three types of outer join: right outer join, left outer join, and full
outer join. The syntax for outer joins is identical to that for inner joins. The only elements that change are
the OUTER JOIN keyword and the difference in results produced.

A word of warning: When using outer joins, MS Access requires that each column name be prefixed
with the name of the table. For example, you would write MemberDetails.Street and not just
Street. Other database systems require the table name only if two or more tables have a column or
columns with the same name, as in the preceding example where Street is a field in both Location and
MemberDetails. While this is true of GROUP BY and WHERE clauses, it’s not strictly necessary in the
column selection part of the SELECT statement unless it’s not clear which table the column is from,
such as when two or more tables have columns with the same name.

The discussion begins with the left outer join.

Left Outer Join
In a left outer join, all the records from the table named on the left of the OUTER JOIN statement are
returned, regardless of whether there is a matching record in the table on the right of the OUTER JOIN
statement. The syntax for the left outer join is as follows:

SELECT column_list
FROM left_table LEFT OUTER JOIN right_table
ON condition

The following SQL is a left outer join that returns records from the Location and MemberDetails tables:

SELECT Location.Street, MemberDetails.Street
FROM Location LEFT OUTER JOIN MemberDetails
ON Location.Street = MemberDetails.Street;

Executing this query returns three results:

Location.Street MemberDetails.Street

Main Street NULL

Winding Road Winding Road

Tiny Terrace NULL

There are only three records in the Location table (the table on the left), and all of them are included in
the results even when there’s no match in the condition in the ON clause. When there’s no match in the
table on the right of the outer join, NULL is returned, though in your database system you might just see
a blank space; either way, the value returned is NULL.

In another example, imagine that the film club chairperson asks for a list of all the film categories and all
the films, if any, under each category. Because she wants all the film categories regardless of whether
there are matching films, you need to use an outer join. Since this is the section on left outer joins, why
don’t you try a left outer join! Consider the following statement:

219

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 219

SELECT Category, FilmName
FROM Category LEFT OUTER JOIN Films
ON Category.CategoryId = Films.CategoryId;

It’s a left outer join, so all records in the table on the left of the join statement are included in the results,
even if the condition in the ON statement is false:

Category FilmName

Thriller The Maltese Poodle

Thriller Raging Bullocks

Thriller The Life of Bob

Romance On Golden Puddle

Horror The Lion, the Witch, and the Chest of Drawers

Horror Nightmare on Oak Street, Part 23

Horror One Flew over the Crow’s Nest

War The Dirty Half Dozen

War Planet of the Japes

Sci-fi The Wide-Brimmed Hat

Sci-fi Soylent Yellow

Historical Sense and Insensitivity

Historical Gone with the Window Cleaner

Historical The Good, the Bad, and the Facially Challenged

Historical 15th Late Afternoon

Comedy NULL

The results include every row from the Category table, and if there’s more than one film of that category,
then the category name is included for each film. The Comedy category includes no matching films,
so NULL is returned for the FilmName, though it might simply be displayed as an empty cell in your
database system.

Don’t forget that while a left outer join includes all records from the table on the left of the join, it pro-
vides just the initial results set. The database system then applies WHERE and GROUP BY clauses. Change
the previous query and add a WHERE clause that includes only records from the Films table where the
film is available on DVD:

SELECT Category, FilmName
FROM Category LEFT OUTER JOIN Films
ON Category.CategoryId = Films.CategoryId
WHERE AvailableOnDVD = ‘Y’;

220

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 220

Now re-execute the query. You get a much smaller results set due to the filtering effect of the WHERE
clause:

Category FilmName

Romance On Golden Puddle

Horror Nightmare on Oak Street, Part 23

Historical Sense and Insensitivity

War Planet of the Japes

Thriller The Maltese Poodle

Horror One Flew over the Crow’s Nest

Thriller The Life of Bob

Historical Gone with the Window Cleaner

Historical The Good, the Bad, and the Facially Challenged

Sci-fi Soylent Yellow

Notice that there is no Comedy category in this results set. Although the left outer join returns all the
records in the Category table, the WHERE clause filters these records and returns only the results where
the Films table’s AvailableOnDVD field equals Y. Because no films match the Comedy category, no
results are returned.

Right Outer Join
A right outer join is simply the reverse of a left outer join, in that instead of all the records in the left table
being returned regardless of a successful match in the ON clause, now records from the table on the right
of the join are returned. The following is the basic syntax for a right outer join:

SELECT column_list
FROM left_table RIGHT OUTER JOIN right_table
ON condition

If you modify the earlier query joining the Location and MemberDetails tables from a left outer join to a
right outer join, you can see the effects, where every row in the table on the right — MemberDetails — is
included even where there is no matching row in the Location table:

SELECT Location.Street, MemberDetails.Street
FROM Location RIGHT OUTER JOIN MemberDetails
ON Location.Street = MemberDetails.Street;

Execute the query and you can see that this time every record from the MemberDetails table is returned,
regardless of whether the ON clause is true and the Location table contains a matching record:

221

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 221

Location.Street MemberDetails.Street

NULL Main Road

NULL 45 Upper Road

NULL Newish Lane

NULL Newish Lane

NULL Long Lane

NULL Main Street

NULL Long Lane

NULL Main Road

NULL Newish Lane

NULL Long Lane

Winding Road Winding Road

NULL White Cliff Street

NULL NULL

Because only one street name matches in the Location table, all the rows except one return NULL for
Location.Street.

Given that you could simply change the table names so that Location is on the right and MemberDetails
is on the left, is there really any need or advantage to using a left outer join compared to a right outer
join? Not really. Just use whatever makes sense to you at the time — whichever outer join is easiest to
read. Performance differences often occur between inner and outer joins, but between left and right
outer joins, it’s just a matter of personal preference.

The discussion continues with another demonstration of a right outer join, except this time it also uses a
second left outer join in the query as well. Imagine that the chairperson wants a list of all the film cate-
gories and the members who like films in each category. She wants all the categories listed, even if no
member has selected the category as one of their favorites.

Before starting, however, add a new category that no member has listed as his or her favorite, just to
demonstrate that the query works and shows all categories even if no member has selected them as a
favorite:

INSERT INTO Category (CategoryId, Category) VALUES (9,’Film Noir’);

The Category table contains a list of all the categories, so this is the table from which you want all the
rows to be returned, regardless of whether there are matches in any other tables to which you might join
it. Clearly, this is going to be the outer join table.

The FavCategory table contains data on who likes which film categories, and each member’s details
come from the MemberDetails table. You need to outer-join Category and FavCategory together to get

222

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 222

the category list and a list of which members like each category. To get details of the members’ names,
you need to join the results of the first join to the MemberDetails table, but again, you want the results
from the previous join even if the MemberDetails table contains no match.

Start simple and create a query that returns all the categories and a list of IDs of members who chose
that category as a favorite:

SELECT Category.Category, FavCategory.MemberId
FROM FavCategory
RIGHT OUTER JOIN Category ON FavCategory.CategoryId = Category.CategoryId
ORDER BY Category;

The Category table is on the right of the join, and as it’s the table whose rows you want regardless of a
match in FavCategory, the Category table requires a RIGHT OUTER JOIN. Executing the query so far
produces the following results:

Category MemberId

Comedy 4

Comedy 6

Comedy 12

Film Noir NULL

Historical 10

Historical 12

Historical 14

Horror 10

Horror 11

Horror 13

Romance 1

Romance 14

Sci-fi 4

Sci-fi 11

Sci-fi 13

Thriller 5

Thriller 10

Thriller 12

War 1

War 6

Table continued on following page

223

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 223

Category MemberId

War 11

War 12

Comedy 6

Comedy 12

Film Noir NULL

The results include the Film Noir category despite no one having selected it as their favorite, which is
why its MemberId value is NULL.

Finally, you need to display each member’s name and not just his or her ID. To do this, you need to join
to the MemberDetails table. Remember, you want the first outer join to produce the previous results,
regardless of whether there is a match in the MemberDetails table. Add the new join after the existing
join, but make it a left outer join so that the results to the left of the join are preserved even if no match-
ing records are found in the MemberDetails table, which is the table on the right:

SELECT Category.Category, FirstName, LastName
FROM FavCategory
RIGHT OUTER JOIN Category ON FavCategory.CategoryId = Category.CategoryId
LEFT OUTER JOIN MemberDetails ON FavCategory.MemberId = MemberDetails.MemberId
ORDER BY Category;

Note that this query won’t work on MS Access databases unless you add brackets around the results
from the first join. In some instances, using brackets can help us humans see the different results sets
and how they all link — and it appears Access needs that help, too.

The results of the query are as follows:

Category FirstName LastName

Comedy Steve Gee

Comedy Jenny Jones

Comedy Stuart Dales

Film Noir NULL NULL

Historical Susie Simons

Historical Stuart Dales

Historical Doris Night

Horror Susie Simons

Horror Jamie Hills

224

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 224

Category FirstName LastName

Horror William Doors

Romance Katie Smith

Romance Doris Night

Sci-fi Steve Gee

Sci-fi Jamie Hills

Sci-fi William Doors

Thriller John Jones

Thriller Susie Simons

Thriller Stuart Dales

War Katie Smith

War Jenny Jones

War Jamie Hills

War Stuart Dales

You’ve covered all the joins now apart from one — the full outer join — which is the topic of the next
section.

Full Outer Join
The final join examined in this chapter is the full outer join. Of all the joins, this is the least well sup-
ported by database systems, and indeed, neither MS Access nor MySQL supports it. To be honest, it’s not
a huge loss, and you rarely need to use a full outer join. A full outer join is essentially a combination of
left and right outer joins in that records from the table on the left are included even if there are no match-
ing records on the right, and records from the table on the right are included even if there are no match-
ing records on the left. Aside from the FULL OUTER JOIN keywords, the full outer join syntax is
identical to that of the other joins:

SELECT column_list
FROM left_table FULL OUTER JOIN right_table
ON condition

Go back to the original example, which obtains records from the Location and MemberDetails tables,
and modify it so that it’s a full outer join:

SELECT Location.Street, MemberDetails.Street
FROM Location FULL OUTER JOIN MemberDetails
ON Location.Street = MemberDetails.Street;

225

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 225

Look at the results that this query gives when executed:

Location.Street MemberDetails.Street

NULL Main Road

NULL 45 Upper Road

NULL Newish Lane

NULL Newish Lane

NULL Long Lane

NULL Main Street

NULL Long Lane

NULL Main Road

NULL Newish Lane

NULL Long Lane

Winding Road Winding Road

NULL White Cliff Street

NULL NULL

Main Street NULL

Tiny Terrace NULL

If you look back at the examples of a left outer join and a right outer join, notice that a full outer join is a
combination of the two. These results display all the records from the Location table and all the results
from the MemberDetails table. Where there isn’t a matching record in the other table, a NULL value is
returned.

That completes the look at all the joins supported by SQL. The most useful is the inner join, but left outer
and right outer joins have their uses as well. The next section looks at how to combine two totally sepa-
rate results sets using the UNION operator. Whereas joins link the different results from each table, a
UNION operator simply combines them with no particular link.

Combining Results Sets with
the UNION Operator

At times, you might want to combine the results of two quite distinct queries. There may be no link
between the results of each query; you just want to display them all in one results set.

226

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 226

You can join the results from two or more SELECT queries into one results set by using the UNION opera-
tor. There are, however, a few ground rules. For starters, each query must produce the same number of
columns. For example, the following statement is allowed:

SELECT myColumn, myOtherColumn, someColumn FROM MyTable
UNION
SELECT anotherColumn, yetAnotherColumn, MoreColumn FROM MyOtherTable;

Both queries have three columns in their results. The UNION operator is placed between the two queries
to indicate to the database system that you want the results from each query to be presented as one
results set.

However, this statement doesn’t work because one query returns one column and the other returns three:

SELECT myColumn FROM MyTable
UNION
SELECT anotherColumn, yetAnotherColumn, MoreColumn FROM MyOtherTable;

Another ground rule is that the columns’ data types must be the same, or at least the database system
must be able to convert the data types to be the same. The data type for each column was determined
when you created the table. If you’re not sure what data type a column has, you can find out by looking
at the database. For example, the following union works because both SELECT queries return columns
with matching data types; in this case, FilmId and MemberId are integer data types, and FilmName
and LastName are both varchar data types:

SELECT FilmName, FilmId FROM Films
UNION
SELECT LastName, MemberId FROM MemberDetails;

Smith 1

The Dirty Half Dozen 1

On Golden Puddle 2

The Lion, the Witch, and the Chest of Drawers 3

Gee 4

Nightmare on Oak Street, Part 23 4

Jones 5

The Wide-Brimmed Hat 5

Jones 6

Sense and Insensitivity 6

Jackson 7

Planet of the Japes 7

Johnson 8

Table continued on following page

227

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 227

The Maltese Poodle 8

Botts 9

One Flew over the Crow’s Nest 9

Raging Bullocks 10

Simons 10

Hills 11

The Life of Bob 11

Dales 12

Gone with the Window Cleaner 12

Doors 13

The Good, the Bad, and the Facially Challenged 13

15th Late Afternoon 14

Night 14

Hawthorn 15

Soylent Yellow 15

The results have returned a combination of the results based on the parameters set forth in the SELECT
statements joined by the UNION operator. The results comprise a list of film names and IDs, as well as
member last names and IDs. The order is based on the MemberId and FilmId columns, as these are both
primary key columns and therefore are ordered.

Remember, though, that the data types and order of the columns must match. For example, the follow-
ing query doesn’t work:

SELECT FilmName, FilmId FROM Films
UNION
SELECT MemberId, LastName FROM MemberDetails;

The query doesn’t work because the first column in the results set is a varchar data type in the first
SELECT statement and an integer data type in the second. You can’t tell this just by looking at the
query; the data type is set during the design of the database.

Try the following query:

SELECT FilmId FROM Films
UNION
SELECT MemberId FROM MemberDetails;

The preceding query is identical to the first example, except that it returns only the MemberId and
FilmId columns in the results set. So the results, shown in the following table, should include all the
MemberIds and FilmIds. However, when executed, the results are as follows:

228

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 228

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

But how can that be? When you ran the query earlier it returned 29 rows, and many of the FilmId and
MemberId values were the same, and yet there’s no duplication of MemberId and FilmId in this results set.
These results are different from the previous results because, by default, the UNION operator merges the
two queries but includes only rows that are unique. If you want all rows returned in the results set, regard-
less of whether they are unique, you need to use the ALL statement, as illustrated in the following SQL:

SELECT FilmId FROM Films
UNION ALL
SELECT MemberId FROM MemberDetails;

When you execute this query, you get all the rows even if some are identical:

1

2

3

4

5

6

7

8

Table continued on following page

229

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 229

9

10

11

12

13

14

15

1

10

14

6

5

8

7

11

15

4

13

12

1

You can also order the results by adding an ORDER BY clause. However, only one ORDER BY clause is
allowed, and it must be after the last SELECT statement. In addition, you can use only column names
from the first SELECT statement in your ORDER BY clause, although the clause orders all the rows in all
the SELECT statements. The following query obtains the union of three queries and orders them by the
FilmName column. Note that this query won’t work in Oracle because Oracle doesn’t support the
YEAR() function and has a different ORDER BY syntax:

SELECT FilmName, YearReleased FROM Films
UNION ALL
SELECT LastName, YEAR(DateOfBirth) FROM MemberDetails
UNION ALL
SELECT City, NULL FROM Location
ORDER BY FilmName;

There are a few things to note about this query. First, even though the YearReleased and DateOfBirth
columns have a different data type, the value returned by the YEAR() function is an integer data type,
so this will match the YearReleased column, which is also an integer data type. Remove the YEAR()

230

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 230

function and the query still works, except you might find that YearReleased is converted from an integer
into a date data type with some quite odd results. The YEAR() function is covered in Chapter 5, as is a dis-
cussion of data type conversion. Although normally CAST() can be used to convert data types, it’s not nec-
essary here because YEAR() returns the correct data type for the results.

Also notice that the ORDER BY clause comes at the end of the UNION statements and refers to the first
SELECT query. Again, this doesn’t work on IBM’s DB2, which allows the ORDER BY statement to come
last only if the name of the column being ordered appears in all the queries. Likewise, the ORDER BY
syntax when using UNION is different in Oracle. Rather than specifying the name of the column to be
ordered, you specify the position in which the column appears in the SELECT list. If you want to order
by FilmName, which is the first column, the ORDER BY clause would look like the following:

ORDER BY 1;

If you want to order by the second column, change the 1 to a 2. If you want to order by the third column,
then change the 1 to a 3, and so on.

Also note that the query includes only the City column from the Location table and that NULL is substi-
tuted for the second column. This works on many database platforms but not IBM DB2. Change the
value from NULL to an integer value that makes it clear that the value is not a genuine piece of data (-1,
for example).

Executing the query provides the following results:

15th Late Afternoon 1989

Big City NULL

Botts 1956

Dales 1956

Doors 1994

Gee 1967

Gone with the Window Cleaner 1988

Hawthorn NULL

Hills 1992

Jackson 1974

Johnson 1945

Jones 1952

Jones 1953

Night 1997

Nightmare on Oak Street, Part 23 1997

Table continued on following page

231

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 231

On Golden Puddle 1967

One Flew over the Crow’s Nest 1975

Orange Town NULL

Planet of the Japes 1967

Raging Bullocks 1980

Sense and Insensitivity 2001

Simons 1937

Smith 1977

Soylent Yellow 1967

The Dirty Half Dozen 1987

The Good, the Bad, and the Facially Challenged 1989

The Life of Bob 1984

The Lion, the Witch, and the Chest of Drawers 1977

The Maltese Poodle 1947

The Wide-Brimmed Hat 2005

Windy Village NULL

The results are a combination of the three individual SELECT statements. The first statement is as follows:

SELECT FilmName, YearReleased FROM Films

It produces a list of film names and years of release. The second SELECT statement is shown here:

SELECT LastName, YEAR(DateOfBirth) FROM MemberDetails

This statement produces a list of members’ last names and years of birth. The third and final statement is
as follows:

SELECT City, NULL FROM Location

This particular statement produces a list of city names, and in the second column, it simply produces the
value NULL.

That completes the look at the UNION operator, and you should know how to produce one single set of
results based on the results of more than one query. While the UNION operator is in some ways similar to
joins, the biggest difference is that each query is totally separate; there’s no link between them.

232

Chapter 7

11_577328 ch07.qxd 1/28/05 11:28 PM Page 232

Summary
This chapter advanced your knowledge of joins far beyond the simple inner joins covered in Chapter 3.
You can now answer questions that were impossible to answer with a basic inner join. The chapter
started off by revisiting inner joins. It looked at how to achieve multiple joins with multiple conditions.
Additionally, this chapter covered the difference between equijoins, which use the equals operator, and
non-equijoins, which use comparison operators such as greater than or less than.

The chapter then turned to outer joins. Whereas inner joins require the ON condition to return true,
outer joins don’t. The chapter covered the following types of outer joins:

❑ Left outer joins, which return rows from the table on the left of the join, whether the ON clause is
true or not

❑ Right outer joins, which return rows from the table on the right, regardless of the ON clause

❑ Full outer joins, which return rows from the tables on both sides, even if the ON clause is false

In the final part of the chapter, you learned about how you can use the UNION statement to combine the
results from two or more SELECT queries into just one set of results.

The next chapter introduces the topic of subqueries and shows you how you can include another query
inside a query.

Exercises
1. List pairs of people who share the same favorite film category. The results set must include the

category name and the first and last names of the people who like that category.

2. List all the categories of film that no one has chosen as their favorite.

233

Selecting Data from Different Tables

11_577328 ch07.qxd 1/28/05 11:28 PM Page 233

11_577328 ch07.qxd 1/28/05 11:28 PM Page 234

8
Queries within Queries

This chapter examines how you can nest one query inside another. SQL allows queries within
queries, or subqueries, which are SELECT statements inside SELECT statements. This might sound
a bit odd, but subqueries can actually be very useful. The downside, however, is that they can
consume a lot of processing, disk, and memory resources.

A subquery’s syntax is just the same as a normal SELECT query’s syntax. As with a normal SELECT
statement, a subquery can contain joins, WHERE clauses, HAVING clauses, and GROUP BY clauses.
Specifically, this chapter shows you how to use subqueries with SELECT statements, either return-
ing results inside a column list or helping filter results when used inside a WHERE or HAVING
clause; to update and delete data by using subqueries with UPDATE and DELETE statements; and
with operators such as EXISTS, ANY, SOME, and ALL, which are introduced later in this chapter.

Subqueries are particularly powerful when coupled with SQL operators such as IN, ANY, SOME,
and ALL, which are covered shortly. However, the chapter begins with a few easy examples of
subqueries. Before starting, you should note that versions of MySQL prior to version 4.1 do not
fully support subqueries and many of the examples in this chapter won’t work on early versions
of MySQL.

Subquery Terminology
Throughout this chapter, you’ll notice references to the outer and inner subqueries. The outer
query is the main SELECT statement, and you could say that so far all of your SELECT statements
have been outer queries. Shown below is a standard query:

SELECT MemberId FROM Members;

Using the standard query, you can nest — that is, place inside the outer query — a subquery, which
is termed the inner query:

SELECT MemberId FROM MemberDetails
WHERE MemberId = (SELECT MAX(FilmId) FROM Films);

12_577328 ch08.qxd 1/28/05 11:27 PM Page 235

A WHERE clause is added to the outer query, and it specifies that MemberId must equal the value
returned by the nested inner query, which is contained within brackets in the preceding example. It’s
also possible to nest a subquery inside the inner query. Consider the following example:

SELECT MemberId FROM MemberDetails
WHERE MemberId = (SELECT MAX(FilmId) FROM Films

WHERE FilmId IN (SELECT LocationId FROM Location));

In the preceding example, a subquery is added to the WHERE clause of the inner query.

In this chapter, a subquery inside a subquery is referred to as the innermost query. Topics are explained
more clearly as the chapter progresses, but you will start by looking at subqueries inside SELECT column
lists.

Subqueries in a SELECT List
You can include a subquery as one of the expressions returning a value in a SELECT query, just as you
can include a single column. However, the subquery must return just one record in one expression, in
what is known as a scalar subquery. The subquery must also be enclosed in brackets. An example makes
things a bit clearer:

SELECT Category,
(SELECT MAX(DVDPrice) FROM Films WHERE Films.CategoryId = Category.CategoryId),
CategoryId
FROM Category;

The SELECT query starts off by selecting the Category column, much as you’ve already seen a hundred
times before in the book. However, the next item in the list is not another column but rather a subquery.
This query inside the main query returns the maximum price of a DVD. An aggregate function returns
only one value, complying with the need for a subquery in a SELECT statement to be a scalar subquery.
The subquery is also linked to the outer SELECT query using a WHERE clause. Because of this link,
MAX(DVDPrice) returns the maximum price for each category in the Category table.

If you execute the whole query, you get the following results:

Category DVDPrice Category.CategoryId

Thriller 12.99 1

Romance 12.99 2

Horror 9.99 3

War 12.99 4

Sci-fi 12.99 5

Historical 15.99 6

Comedy NULL 7

Film Noir NULL 9

236

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 236

There are no films with a value in the DVDPrice columns for the Comedy or Film Noir categories, so
NULL is returned.

Conceptually speaking, it’s worth taking a little time to go over how the results were formed. Each
DBMS has its own way of creating the results, but the underlying concept is the same.

Starting with the first row in the results, the Category is Thriller and the CategoryId is 1. The sub-
query is joined to the outer query by the CategoryId column present in both the Films and Category
tables. For the first row, the CategoryId is 1, so the subquery finds the maximum DVDPrice for all films
in the Films table where the CategoryId is 1. Moving to the next row in the outer query, the Category is
Romance and the CategoryId is 2. This time, the subquery finds the maximum DVDPrice for all records
where the CategoryId is 2. The process continues for every row in the Category table.

Without the WHERE clause in the subquery linking the subquery to the outer query, the result would sim-
ply be the maximum value of all rows returned by the subquery. If you change the SQL and remove the
WHERE clause in the subquery, you get the following statement:

SELECT Category,
(SELECT MAX(DVDPrice) FROM Films),
CategoryId
FROM Category;

Executing this query provides the following results:

Category MAX(DVDPrice) Category.CategoryId

Thriller 15.99 1

Romance 15.99 2

Horror 15.99 3

War 15.99 4

Sci-fi 15.99 5

Historical 15.99 6

Comedy 15.99 7

Film Noir 15.99 9

MAX(DVDPrice) is now simply the maximum DVDPrice for all records in the Films table and is not
specifically related to any category.

Although aggregate functions such as MAX, MIN, AVG, and so on are ideal for subqueries because they
return just one value, any expression or column is suitable as long as the results set consists of just one
row. For example, the following subquery works because it returns only one row:

SELECT FilmName, PlotSummary, (SELECT Email FROM MemberDetails WHERE MemberId = 1)
FROM Films;

MemberId is unique in the MemberDetails table, and therefore WHERE MemberId = 1 returns only one
row, and the query works:

237

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 237

FilmName PlotSummary Email

The Dirty Half Dozen Six men go to war wearing unwashed uniforms. katie@mail.com
The horror!

On Golden Puddle A couple finds love while wading through a puddle. katie@mail.com

The Lion, the Witch, and A fun film for all those interested in zoo/
the Chest of Drawers magic/furniture drama. katie@mail.com

Nightmare on Oak Street, The murderous Terry stalks Oak Street. katie@mail.com
Part 23

The Wide-Brimmed Hat Fascinating life story of a wide-brimmed hat katie@mail.com

Sense and Insensitivity She longs for a new life with Mr. Arcy; he longs katie@mail.com
for a small cottage in the Hamptons.

Planet of the Japes Earth has been destroyed, to be taken over by katie@mail.com
a species of comedians.

The Maltese Poodle A mysterious bite mark, a guilty-looking poodle. katie@mail.com
First-class thriller.

One Flew over the Life and times of a scary crow. katie@mail.com
Crow’s Nest

Raging Bullocks A pair of bulls get cross with each other. katie@mail.com

The Life of Bob A seven-hour drama about Bob’s life. What fun! katie@mail.com

Gone with the Window Historical documentary on window cleaners. katie@mail.com
Cleaner Thrilling.

The Good, the Bad, and Joe seeks plastic surgery in this spaghetti Western. katie@mail.com
the Facially Challenged

15th Late Afternoon One of Shakespeare’s lesser-known plays katie@mail.com

Soylent Yellow Detective Billy Brambles discovers that Soylent katie@mail.com
Yellow is made of soya bean. Ewwww!

The preceding results are a combination of FilmName and PlotSummary from the Films table and the
results of the subquery, which is the email address of the member with an ID of 1.

If, however, you change the MemberDetails table to the Attendance table, where MemberId appears
more than once, you get the following query:

SELECT FilmName, PlotSummary,
(SELECT MeetingDate FROM Attendance WHERE MemberId = 1)

FROM Films;

Executing this query results in an error message similar to the following:

“Subquery returned more than 1 value. This is not permitted when the subquery
follows =, !=, <, <= , >, >= or when the subquery is used as an expression.”

238

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 238

The error wording depends on the database system you’re using, but the overall message is the same:
More than one value — can’t do that with a subquery!

An alternative to using a literal value would be to link the inner query to the outer query, so long as the
result of the inner query produces only one row. For example, the following query shows the CategoryId
from the FavCategory table, and in the subquery, it shows FirstName from the MemberDetails table. The
MemberId in the subquery is linked to the FavCategory table’s MemberId for each row in the outer
query — thereby ensuring that the subquery returns only one row, as MemberIds are unique in the
MemberDetails table:

SELECT CategoryId,
(SELECT FirstName FROM MemberDetails WHERE MemberId = FavCategory.MemberId)
FROM FavCategory;

The results of executing this query are as follows:

CategoryId FirstName

1 John

1 Susie

1 Stuart

2 Katie

2 Doris

3 Susie

3 Jamie

3 William

4 Katie

4 Jenny

4 Jamie

4 Stuart

5 Steve

5 Jamie

5 William

6 Susie

6 Stuart

6 Doris

7 Steve

7 Jenny

7 Stuart

239

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 239

If you think that your join would work just as well as and more efficiently than a subquery, then you’re
right; it would make more sense to use a join, but unfortunately, doing so wouldn’t demonstrate how to
use a subquery!

Hopefully you have a good feel for how subqueries work. So far, this chapter has examined only sub-
queries inside a SELECT statement’s column selection. In the next section, you look at subqueries used in
conjunction with a WHERE clause, which is actually the more common use for subqueries. After that, you
learn about some useful operators that you can use with subqueries.

Subqueries in the WHERE Clause
As far as subqueries are concerned, the WHERE clause is where it’s at! Terrible pun, but it is true that sub-
queries are at their most useful in WHERE clauses. The syntax and form that subqueries take in WHERE
clauses are identical to how they are used in SELECT statements, with one difference: now subqueries are
used in comparisons. It’s a little clearer with an example. Imagine that you need to find out the name or
names, if there are two or more of identical value, of the cheapest DVDs for each category. You want the
results to display the category name, the name of the DVD, and its price.

The data you need comes from the Category and Films tables. Extracting film and category data is easy
enough; the problem is how to choose only the cheapest DVD from each category. You could use a
GROUP BY clause, as shown in the following query:

SELECT Category, MIN(DVDPrice)
FROM Category INNER JOIN Films
ON Category.CategoryId = Films.CategoryId
GROUP BY Category;

The query’s results, however, don’t supply the name of the film, just the category name and the price of
the cheapest DVD:

Category MIN(DVDPrice)

Historical 8.95

Horror 8.95

Romance 12.99

Sci-fi 12.99

Thriller 2.99

War 12.99

The results are correct, but they don’t contain a film name. Add FilmName to the list of columns in the
SELECT statement, as shown in the following query:

SELECT Category, FilmName, MIN(DVDPrice)
FROM Category INNER JOIN Films
ON Category.CategoryId = Films.CategoryId
GROUP BY Category;

240

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 240

Now execute the query. You receive an error message because both Category and FilmName must
appear in the GROUP BY clause:

SELECT Category, FilmName, MIN(DVDPrice)
FROM Category INNER JOIN Films
ON Category.CategoryId = Films.CategoryId
GROUP BY Category, FilmName;

Execute the preceding query and you get the wrong results:

Category FilmName MIN(DVDPrice)

Historical 15th Late Afternoon NULL

Historical Gone with the Window Cleaner 9.99

Horror Nightmare on Oak Street, Part 23 9.99

Romance On Golden Puddle 12.99

Horror One Flew over the Crow’s Nest 8.95

War Planet of the Japes 12.99

Thriller Raging Bullocks NULL

Historical Sense and Insensitivity 15.99

Sci-fi Soylent Yellow 12.99

War The Dirty Half Dozen NULL

Historical The Good, the Bad, and the Facially Challenged 8.95

Thriller The Life of Bob 12.99

Horror The Lion, the Witch, and the Chest of Drawers NULL

Thriller The Maltese Poodle 2.99

Sci-fi The Wide-Brimmed Hat NULL

The results are wrong because they’re grouped by Category and FilmName, so the MIN(DVDPrice)
value is not the minimum price for a particular category but rather the minimum price for a particular
film in a particular category!

Clearly what you need is a list of all the lowest prices for a DVD per category, and this is where a sub-
query comes in. In the SQL query, you need to compare the price of a DVD with the minimum price for a
DVD in that category, and you want the query to return a record only if they match:

SELECT Category, FilmName, DVDPrice
FROM Category INNER JOIN Films
ON Category.CategoryId = Films.CategoryId
WHERE Films.DVDPrice =

(SELECT MIN(DVDPrice) FROM Films WHERE Films.CategoryId = Category.CategoryId);

241

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 241

In the query, the Category and Films tables are joined with an inner join based on CategoryId. The query
then restricts which films form the results by use of a subquery in the WHERE clause. The subquery returns
the lowest-priced DVD for a particular category. The category returned by the subquery is linked to the
CategoryId of the Category table in the outer query. Note that Films.CategoryId inside the subquery
refers to the Films table in that subquery, not to the Films table outside the subquery. Then in the WHERE
clause of the outer query, Films.DVDPrice is compared with the minimum price for that category, which
is returned by the subquery. If there’s a match, then clearly the film’s price matches the value of the mini-
mum price.

The results are as follows:

Category FilmName DVDPrice

Thriller The Maltese Poodle 2.99

Romance On Golden Puddle 12.99

Horror One Flew over the Crow’s Nest 8.95

War Planet of the Japes 12.99

Sci-fi Soylent Yellow 12.99

Historical The Good, the Bad, and the Facially Challenged 8.95

Now that you have a good handle on how subqueries function and how you can include them in
SELECT lists and WHERE clauses, you can move on to more complex subqueries that employ various
operators, including IN, ANY, SOME, and ALL.

Operators in Subqueries
So far, all the subqueries you’ve seen have been scalar subqueries — that is, queries that only return only
one row. If more than one row is returned, you end up with an error. In this and the following sections,
you learn about operators that allow you to make comparisons against a multirecord results set.

Revisiting the IN Operator
You first learned about the IN operator in Chapter 3. Just to recap, the IN operator allows you to specify
that you want to match one item from any of those in a list of items. For example, the following SQL
finds all the members who were born in 1967, 1992, or 1937:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) IN (1967, 1992, 1937);

Note that this code, and any code that contains the YEAR() function, won’t work in Oracle because it
doesn’t support the YEAR() function.

242

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 242

The query provides the following results:

FirstName LastName YEAR(DateOfBirth)

Steve Gee 1967

Susie Simons 1937

Jamie Hills 1992

What you didn’t learn in Chapter 3, however, is that you can also use the IN operator with subqueries.
Instead of providing a list of literal values, a SELECT query provides the list of values. For example, if
you want to know which members were born in the same year that a film in the Films table was
released, you’d use the following SQL query. Again, these examples won’t work in Oracle because it
doesn’t support the YEAR() function:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) IN (SELECT YearReleased FROM Films);

Executing this query gives the following results:

FirstName LastName YEAR(DateOfBirth)

Katie Smith 1977

Steve Gee 1967

Doris Night 1997

The subquery (SELECT YearReleased FROM Films) returns a list of years from the Films table. If a
member’s year of birth matches one of the items in that list, then the WHERE clause is true and the record
is included in the final results.

You may have spotted that this is not the only way to get the result. You could have used an INNER
JOIN coupled with a GROUP BY statement instead, as shown in the following SQL:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails JOIN Films ON YEAR(DateOfBirth) = YearReleased
GROUP BY FirstName, LastName, YEAR(DateOfBirth);

Running this query gives the same results as the previous query. So which is best? Unfortunately, there’s
no definitive answer; very much depends on the circumstances, the data involved, and the database sys-
tem involved. A lot of SQL coders prefer a join to a subquery and believe that to be the most efficient.
However, if you compare the speed of the two using MS SQL Server 2000, in this case, on that system, the
subquery is faster by roughly 15 percent. Given how few rows there are in the database, the difference
was negligible in this example, but it might be significant with a lot of records. Which way should you go?
You should go with the way that you find easiest, and fine-tune your SQL code only if problems occur
during testing. If you find on a test system with a million records that your SQL runs like an arthritic snail
with heavy shopping, then you should go back and see whether you can improve your query.

243

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 243

There is one area in which subqueries are pretty much essential: when you want to find something is not
in a list, something very hard to do with joins. For example, if you want a list of all members who were
not born in the same year that any of the films in the Films table were released, you’d simply change
your previous subquery example from an IN operator to a NOT IN operator:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) NOT IN (SELECT YearReleased FROM Films);

The new query gives the following results:

FirstName LastName YEAR(DateOfBirth)

John Jones 1952

Jenny Jones 1953

John Jackson 1974

Jack Johnson 1945

Seymour Botts 1956

Susie Simons 1937

Jamie Hills 1992

Stuart Dales 1956

William Doors 1994

Now a match occurs only if YEAR(DateOfBirth) is not found in the list produced by the subquery
SELECT YearReleased FROM Films. However, getting the same results using a join involves using an
OUTER JOIN, as shown in the following SQL:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
LEFT OUTER JOIN Films
ON Films.YearReleased = Year(MemberDetails.DateOfBirth)
WHERE YearReleased IS NULL;

The query produces almost identical results, except in the case of Catherine Hawthorn, whose date of birth
is NULL. The way the query works is that the left outer join returns all rows from MemberDetails, regardless
of whether YearReleased from the Films table finds a match in the MemberDetails table. From the discus-
sion of outer joins in Chapter 7, you know that NULL is returned when a match isn’t found. NULLs indicate
that YEAR(DateOfBirth) isn’t found in the Films table, so by adding a WHERE clause that returns rows
only when there’s a NULL value in YearReleased, you make sure that the query will find all the rows in
MemberDetails where there’s no matching year of birth in the Films table’s YearReleased column. The
following query modifies the SQL to remove the WHERE clause and show the YearReleased column:

SELECT FirstName, LastName, YearReleased
FROM MemberDetails
LEFT OUTER JOIN Films
ON Films.YearReleased = Year(MemberDetails.DateOfBirth)

ORDER BY YearReleased;

244

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 244

If you execute this query, you can see how the results came about:

FirstName LastName YearReleased

John Jones NULL

Jenny Jones NULL

John Jackson NULL

Jack Johnson NULL

Seymour Botts NULL

Susie Simons NULL

Jamie Hills NULL

Stuart Dales NULL

William Doors NULL

Catherine Hawthorn NULL

Steve Gee 1967

Steve Gee 1967

Steve Gee 1967

Katie Smith 1977

Doris Night 1997

The advantage of using an outer join in this situation is that it’s quite often more efficient, which can
make a big difference when there are a lot of records involved. The other advantage if you’re using
MySQL before version 4.1 is that subqueries are not supported, so an outer join is the only option. The
advantage of using subqueries is that they are easier to write and easier to read.

Using the ANY, SOME, and ALL Operators
The IN operator allows a simple comparison to see whether a value matches one in a list of values returned
by a subquery. The ANY, SOME, and ALL operators not only allow an equality match but also allow any com-
parison operator to be used. In this section, I’ll detail each of the ANY, SOME, and ALL operators, starting
with ANY and SOME.

ANY and SOME Operators
First off, ANY and SOME are identical; they do the same thing but have a different name. The text and
examples refer to the ANY operator, but you can use the SOME operator without it making one iota of dif-
ference. For ANY to return true to a match, the value being compared needs to match any one of the val-
ues returned by the subquery. You must place the comparison operator before the ANY keyword. For
example, the following SQL uses the equality (=) operator to find out whether any members have the
same birth year as the release date of a film in the Films table:

245

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 245

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) = ANY (SELECT YearReleased FROM Films);

The WHERE clause specifies that YEAR(DateOfBirth) must equal any one of the values returned by the
subquery (SELECT YearReleased FROM Films). This subquery returns the following values, which
you may remember from an earlier example:

YearReleased

1987

1967

1977

1997

2005

2001

1967

1947

1975

1980

1984

1988

1989

1989

1967

If YEAR(DateOfBirth) equals any one of these values, then the condition returns true and the WHERE
clause allows the record into the final results. The final results of the query are as follows:

FirstName LastName YEAR(DateOfBirth)

Katie Smith 1977

Steve Gee 1967

Doris Night 1997

Seem familiar? Yup, that’s right, the results from = ANY are the same as using the IN operator:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) IN (SELECT YearReleased FROM Films);

246

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 246

To obtain the same results as you would with the NOT IN operator, simply use the not equal (<>) opera-
tor, as shown in the following code:

SELECT FirstName, LastName, YEAR(DateOfBirth)
FROM MemberDetails
WHERE YEAR(DateOfBirth) <> ANY (SELECT YearReleased FROM Films);

Before you write off the ANY operator as just another way of using the IN operator, remember that you
can use ANY with operators other than equal (=) and not equal (<>). The following example query finds a
list of members who, while they were members, had the opportunity to attend a meeting:

SELECT FirstName, LastName
FROM MemberDetails
WHERE DateOfJoining < ANY (SELECT MeetingDate FROM Attendance);

The query checks to see whether the member joined before any one of the meeting dates. This query uses
the less than (<) operator with ANY, and the condition evaluates to true if a member’s DateOfJoining is
less than any of the values returned by the subquery (SELECT MeetingDate FROM Attendance).

The results are shown in the following table:

FirstName LastName

Katie Smith

Steve Gee

ALL Operator
The ALL operator requires that every item in the list (all the results of a subquery) comply with the con-
dition set by the comparison operator used with ALL. For example, if a subquery returns 3, 9, and 15,
then the following WHERE clause would evaluate to true because 2 is less than all the numbers in the
list:

WHERE 2 < ALL (3,9,15)

However, the following WHERE clause would evaluate to false because 7 is not less than all of the num-
bers in the list:

WHERE 7 < ALL (3,9,15)

This is just an example, though, and you can’t use ALL with literal numbers, only with a subquery.

Put the ALL operator into an example where you select MemberIds that are less than all the values
returned by the subquery (SELECT FilmId FROM Films WHERE FilmId > 5):

SELECT MemberId
FROM MemberDetails
WHERE MemberId < ALL (SELECT FilmId FROM Films WHERE FilmId > 5);

247

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 247

The subquery (SELECT FilmId FROM Films WHERE FilmId > 5) returns the following values:

FilmId

6

7

8

9

10

11

12

13

14

15

Essentially, this means that the WHERE clause is as follows:

MemberId < ALL (6,7,8,9,10,11,12,13,14,15);

MemberId must be less than all of the listed values if the condition is to evaluate to true. The full results
for the example query are displayed in the following table:

MemberId

1

4

5

There is something to be aware of when using ALL: the situation when the subquery returns no results at
all. In this case, ALL will be true, which may seem a little weird, but it’s based on fundamental principles
of logic. So, if you change the subquery so that it returns no values and update the previous example,
you end up with the following code:

SELECT MemberId
FROM MemberDetails
WHERE MemberId < ALL (SELECT FilmId FROM Films WHERE FilmId > 99);

You know for a fact that there are no FilmIds with a value higher than 99, so the subquery returns an
empty set. However, the results set for the example is shown in the following table:

248

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 248

MemberId

1

10

14

6

5

8

7

11

15

4

13

12

9

The table represents every single row in the MemberDetails table; indeed, MemberId < ALL (SELECT
FilmId FROM Films WHERE FilmId > 99) has evaluated to true every time due to an empty results
set returned by the subquery.

That completes the look at the related operators ANY, SOME, and ALL. The next section continues the dis-
cussion of using operators with subqueries by examining the EXISTS operator.

Using the EXISTS Operator
The EXISTS operator is unusual in that it checks for rows and does not compare columns. So far you’ve
seen lots of clauses that compare one column to another. On the other hand, EXISTS simply checks to see
whether a subquery has returned one or more rows. If it has, then the clause returns true; if not, then it
returns false.

This is best demonstrated with three very simple examples:

SELECT City
FROM Location
WHERE EXISTS (SELECT * FROM MemberDetails WHERE MemberId < 5);

SELECT City
FROM Location
WHERE EXISTS (SELECT * FROM MemberDetails WHERE MemberId > 99);

SELECT City
FROM Location
WHERE EXISTS (SELECT * FROM MemberDetails WHERE MemberId = 15);

249

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 249

Notice the use of the asterisk (*), which returns all columns, in the inner subqueries. EXISTS is row-
based, not column-based, so it doesn’t matter which columns are returned.

The first example uses the following SELECT query as its inner subquery:

(SELECT * FROM MemberDetails WHERE MemberId < 5);

This subquery provides a results set with three rows. Therefore, EXISTS evaluates to true, and you get
the following results:

City

Orange Town

Windy Village

Big City

The second example uses the following inner subquery:

SELECT * FROM MemberDetails WHERE MemberId > 99

This returns no results because no records in MemberDetails have a MemberId greater than 99.
Therefore, EXISTS returns false, and the outer SELECT statement returns no results.

Finally, the third example uses the following query as its inner subquery:

SELECT * FROM MemberDetails WHERE MemberId = 15

This query returns just one row, and even though some of the columns contain NULL values, it’s still a
valid row, and EXISTS returns true. In fact, even if the whole row contained NULLs, EXISTS would still
return true. Remember, NULL doesn’t mean no value; it means an unknown value. So, the results for the
full query in the example are as follows:

City

Orange Town

Windy Village

Big City

You can reverse the logic of EXISTS by using the NOT operator, essentially checking to see whether no
results are returned by the subquery. Modify the second example described previously, where the sub-
query returns no results, adding a NOT operator to the EXISTS keyword:

SELECT City
FROM Location
WHERE NOT EXISTS (SELECT * FROM MemberDetails WHERE MemberId > 99);

250

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 250

Now NOT EXISTS returns true, and as a result the WHERE clause is also true. The final results are
shown in the following table:

City

Orange Town

Windy Village

Big City

These examples are very simple and, to be honest, not that realistic in terms of how EXISTS is used. One
issue with the examples is that the subqueries don’t link in any way with the outer SELECT query,
whereas normally you’d expect them to do so. The following Try It Out example is a lot more realistic.
The task is to find out which categories have been chosen by three or more members as their favorite cat-
egory of film, but these favorite categories must contain at least one film with a rating higher than 3.

Try It Out Using the EXISTS Operator
Build the necessary query by following these steps:

1. First of all, formulate a SELECT statement that returns the values you want. In this case, you just
want the Category from the Category table:

SELECT Category
FROM Category

2. Now you need to add a WHERE clause to ensure that you get only categories that have films
rated 4 or higher and that have also been selected as a favorite by three or more members.

SELECT Category
FROM Category
WHERE EXISTS (SELECT * FROM Films

WHERE Category.CategoryId = Films.CategoryId
AND Rating > 3
)

3. Finally, you just want categories that three or more members have chosen as their favorite.

SELECT Category
FROM Category
WHERE EXISTS (SELECT * FROM Films

WHERE Category.CategoryId = Films.CategoryId
AND Rating > 3
AND (SELECT COUNT(CategoryId)

FROM FavCategory
WHERE FavCategory.CategoryId = Category.CategoryId)

>= 3
);

251

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 251

4. You should receive the following results:

Category

Thriller

War

Sci-fi

Historical

How It Works
In the first step, you simply selected all the category names from the Category table — the main table
from which the data is extracted. The subqueries come in Step 2 to filter the results.

In Step 2, begin with the rating first. Information about films’ ratings is contained in the Films table, but
all you want to know is whether there are films in a particular category that have a rating higher than 3.
You’re not interested in knowing the names of the films, so you used an EXISTS operator with a sub-
query that returns a list of films rated higher than 3.

Next, you linked the outer and inner queries using the CategoryId column in the Category and Films
tables. Now, if for a particular category there are films rated higher than 3, the subquery returns rows
and EXISTS evaluates to true.

Finally, you used another subquery, nested inside the other subquery. This innermost subquery counts
how many members like a particular category; then in the WHERE clause of the outer subquery, you check
to see whether that value is 3 or more.

Using the HAVING Clause with Subqueries
Chapter 5 first introduced the HAVING clause, which is used to filter the groups displayed in a results set
when a GROUP BY clause has been used. For example, to get a list of cities where the average year of
birth of members in each city is greater than 1990, you could use the HAVING clause like this:

SELECT City
FROM MemberDetails
GROUP BY City
HAVING AVG(YEAR(DateOfBirth)) > 1990;

The preceding query compares against an actual value, 1990. A subquery is useful where you want to
compare against a value extracted from the database itself rather than a predetermined value. For exam-
ple, you might be asked to create a list of cities where the average year of birth is later than the average
for the membership as a whole. To do this, you could use a HAVING clause plus a subquery that finds out
the average year of birth of members:

SELECT City
FROM MemberDetails
GROUP BY City
HAVING AVG(YEAR(DateOfBirth)) >

(SELECT AVG(YEAR(DateOfBirth)) FROM MemberDetails);

252

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 252

This is the same as the query just mentioned, except 1990 is replaced with a subquery that returns the
average year of birth of all members, which happens to be 1965. The final results table is as follows:

City

Big City

Dover

New Town

Orange Town

Sometimes it’s necessary to refer to the outer query, or even a query nested inside a subquery. To do this,
you must give aliases to the tables involved, which is the topic of the next section on correlated subqueries.

Correlated Subquery
A correlated subquery is a subquery that references the outer query. A correlation variable is an alias given to
tables and used to reference those tables in the subquery. In Chapter 3 you learned how to give tables a
correlation, or alias name.

The following example demonstrates a correlated subquery. This example isn’t necessarily the only way
to get the result, but it does demonstrate a nested subquery. The query obtains from each category the
cheapest possible DVD with the highest rating:

SELECT FilmName, Rating, DVDPrice, Category
FROM Films AS FM1 INNER JOIN Category AS C1 ON C1.CategoryId = FM1.CategoryId
WHERE FM1.DVDPrice =

(SELECT MIN(DVDPrice)
FROM Films AS FM2
WHERE FM2.DVDPrice IS NOT NULL

AND FM1.CategoryId = FM2.CategoryId
AND FM2.Rating =

(SELECT MAX(FM3.Rating)
FROM Films AS FM3
WHERE FM3.DVDPrice IS NOT NULL

AND FM2.CategoryId = FM3.CategoryId
GROUP BY FM3.CategoryId)

GROUP BY FM2.CategoryId)
ORDER BY FM1.CategoryId;

If you’re using Oracle, remove the AS keywords because Oracle doesn’t require or support them when
creating an alias.

This is a big query, but when broken down it’s actually fairly simple. There are three queries involved:
the outer query and two inner subqueries. Begin with the most nested inner query:

(SELECT MAX(FM3.Rating)
FROM Films AS FM3
WHERE FM3.DVDPrice IS NOT NULL

AND FM2.CategoryId = FM3.CategoryId
GROUP BY FM3.CategoryId)

253

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 253

This inner query returns the highest-rated film within each category. Films that have no price (where
DVDPrice is NULL, for example) are excluded, because you don’t want them forming part of the final
results. The Films table is given the alias FM3. The query also refers to the FM2 table, which is the alias
given to the subquery in which this query is nested. The CategoryId columns of FM2 and FM3 are inner-
joined to ensure that the MAX rating and MIN price are both from the same category. If you expand the
SQL and now include the innermost query just described, and also the nested subquery that it was
inside, you arrive at the following SQL:

(SELECT MIN(DVDPrice)
FROM Films AS FM2
WHERE FM2.DVDPrice IS NOT NULL

AND FM1.CategoryId = FM2.CategoryId
AND FM2.Rating =

(SELECT MAX(FM3.Rating)
FROM Films AS FM3
WHERE FM3.DVDPrice IS NOT NULL

AND FM2.CategoryId = FM3.CategoryId
GROUP BY FM3.CategoryId)

GROUP BY FM2.CategoryId)

The outer query here returns the minimum DVD price for the highest-rated film in each category.
Remember that the innermost subquery returns the rating of the highest-rated DVD. The outer query’s
WHERE clause is set to specify that the film should also have a rating equal to the one returned by the
subquery — thereby ensuring that it has a rating equal to the highest in the same category. Note that
although an inner query can refer to any alias of a table outside the query, an outer query can’t reference
any tables in a query nested inside it. For example, this SQL won’t work:

(SELECT MIN(DVDPrice)
FROM Films AS FM2
WHERE FM2.CategoryId = FM3.CategoryId

...

...

...

The table with alias FM3 is referenced, but that table is a nested subquery inside, and therefore it can’t be
referenced.

Finally, the entire query, with the outermost SELECT statement, is as follows:

SELECT FilmName, Rating, DVDPrice, Category
FROM Films AS FM1 INNER JOIN Category AS C1 ON C1.CategoryId = FM1.CategoryId
WHERE FM1.DVDPrice =

(SELECT MIN(DVDPrice)
...
...
...
ORDER BY FM1.CategoryId;

The outermost query is a join between the Films table with an alias of FM1 and the Category table with
an alias of C1. A WHERE clause specifies that FM1.DVDPrice must be equal to the DVD price returned by
the subquery, the lowest price of a DVD in that category. This inner query, as you’ve seen, has a WHERE

254

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 254

clause specifying that the film’s rating must be equal to the highest-rated film for that category, as
returned by the innermost subquery. So, three queries later, you have the lowest-priced, highest-rated
film for each category. The results are displayed in the following table:

FilmName Rating DVDPrice Category

The Maltese Poodle 1 2.99 Thriller

On Golden Puddle 4 12.99 Romance

One Flew over the Crow’s Nest 2 8.95 Horror

Planet of the Japes 5 12.99 War

Soylent Yellow 5 12.99 Sci-fi

The Good, the Bad, and the Facially Challenged 5 8.95 Historical

That completes this chapter’s coverage of subqueries used with SELECT statements. The next section
looks at other SQL statements with which you can use subqueries.

Subqueries Used with Other Statements
So far, all the attention as far as subqueries go has been lavished on the SELECT statement. However, you
can also use subqueries with statements inserting new data, updating data, or deleting data. The princi-
ples are the same, so what you’ve learned so far about subqueries pretty much applies the same to
INSERT, DELETE, and UPDATE statements.

Using Subqueries with the INSERT Statement
Chapter 5 covered using SELECT and INSERT INTO statements. You no longer have to insert literal val-
ues, like this

INSERT INTO FavCategory (CategoryId, MemberId) VALUES (7,15)

Instead, you can use data from the database:

INSERT INTO FavCategory (CategoryId, MemberId) SELECT 7, MemberId FROM
MemberDetails WHERE LastName = ‘Hawthorn’ AND FirstName = ‘Catherine’;

You can take this one step further and use subqueries to provide the data to be inserted. The film club
chairperson has discovered that no one has selected the Film Noir category as their favorite. She’s
decided that people who like thrillers might also like film noir, so she wants all members who put the
Thriller category down as a favorite to also now have Film Noir added as one of their favorite categories.

Film Noir has a CategoryId of 9; Thriller has a CategoryId of 1. You could use SQL to extract these val-
ues, but to keep the SQL slightly shorter and clearer for an example, use the CategoryId values without
looking them up.

255

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 255

It’s quite important not to make a mistake when using INSERT INTO with SELECT queries, or else a
whole load of incorrect data might get inserted. Unless your query is very simple, it’s preferable to cre-
ate the SELECT part of the SQL first, double-check that it is giving the correct results, and then add the
INSERT INTO bit, which is very simple anyway.

For the SELECT part of the query, you need to extract a MemberId from the MemberDetails table, where
that member has selected the Thriller category, that is, where CategoryId equals 1. To prevent errors, you
need to make sure that the member hasn’t already selected the Film Noir category, a CategoryId of 9. It’s
playing safe, as currently no one has selected the Film Noir category, but just in case someone updates
the database in the meantime, you should check that a member hasn’t selected CategoryId 9 as a favorite
before trying to make CategoryId 9 one of their favorites.

Try It Out Nesting a Subquery within an INSERT Statement
In order to create the necessary statement, follow these steps:

1. Begin by building the outer part of the SELECT query:

SELECT 9, MemberId FROM MemberDetails AS MD1;

This portion of the query returns all the rows from the MemberDetails table. Oracle doesn’t sup-
port the AS keyword as a way of defining an alias — it just needs the alias name — so remove
the AS after MemberDetails if you’re using Oracle.

2. Now add the first part of your WHERE clause that checks to see whether the member has selected
Thriller as one of their favorite categories:

SELECT 9, MemberId FROM MemberDetails AS MD1
WHERE EXISTS

(SELECT * from FavCategory FC1
WHERE FC1.CategoryId = 1 AND FC1.MemberId = MD1.MemberId);

3. Now modify the subquery so that it returns rows only if the member hasn’t already selected
CategoryId 9 as one of their favorites:

SELECT 9, MemberId FROM MemberDetails AS MD1
WHERE EXISTS

(SELECT * from FavCategory FC1
WHERE FC1.CategoryId = 1 AND FC1.MemberId = MD1.MemberId

AND NOT EXISTS
(SELECT * FROM FavCategory AS FC2
WHERE FC2.MemberId = FC1.MemberId AND
FC2.CategoryId = 9));

Notice the nested subquery inside the other subquery that checks that there are no rows
returned (that they do not exist), where the current MemberId has selected a favorite
CategoryId of 9. Execute this query and you get the following results:

Literal Value of 9 MemberId

9 5

9 10

9 12

256

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 256

4. Next, quickly double-check a few of the results to see whether they really are correct. Having
confirmed that they are, you can add the INSERT INTO bit:

INSERT INTO FavCategory (CategoryId, MemberId)
SELECT 9, MemberId FROM MemberDetails AS MD1
WHERE EXISTS

(SELECT * from FavCategory FC1
WHERE FC1.CategoryId = 1 AND FC1.MemberId = MD1.MemberId

AND NOT EXISTS
(SELECT * FROM FavCategory AS FC2
WHERE FC2.MemberId = FC1.MemberId AND
FC2.CategoryId = 9));

The INSERT INTO inserts the literal value 9 (representing the Film Noir’s CategoryId) and
MemberId into the FavCategory table. When you execute the SQL, you should find that four
rows are added. Execute it a second, a third, or however many times, and no more rows will be
added as the query checks for duplication, a good safeguard.

How It Works
In the first step, you selected 9, or the CategoryId of the Thriller category, and also MemberId from the
MemberDetails table.

In the next step, you added a WHERE clause that uses a subquery. Using the EXISTS operator, it checks to
see whether there are any rows when selecting records from the FavCategory table where the MemberId
is the same as that in the MemberDetails table and where CategoryId is equal to 1 (the Thriller ID).
Using FC1.MemberId = MD1.MemberId joins MemberDetails and FavCategory, making sure that the
current rows in the MemberDetails and FavCategory tables are the same; otherwise the subquery would
just return rows where any member had selected a CategoryId of 1. You also gave an alias to the
FavCategory table of the inner query. The alias is then used in the inner query’s WHERE clause and in the
third step when another query is nested inside the inner query from Step 2.

Step 3 sees an inner, inner query added to the previous subquery’s WHERE clause. Its role is to look for
members who already have category 9 as one of their favorites. It does this by checking that the inner-
most query doesn’t return rows where the CategoryId is 9. The inner subquery, with its FavCategory
table with an alias of FC1, is linked to the innermost query where the FavCategory table has been given
the alias FC2. They are linked by MemberId, because you want to make sure when checking for a mem-
ber’s current favorites that it’s the same member. The second condition in the innermost query’s WHERE
clause checks to see whether the favorite category is one with an ID of 9.

In the final step, the outer query is used to provide the data for an INSERT INTO statement that adds
favorite category 9 as a member’s favorite.

Using Subqueries with the UPDATE Statement
As with INSERT INTO, you can use subqueries to supply values for updating or to determine the WHERE
clause condition in the same way that subqueries can be used with regular queries’ WHERE clauses. An
example makes this clear. Imagine that the film club chairperson has decided to boost profits by selling
DVDs. To maximize profits, she wants films that are rated higher than 3 and that appear in four or more
members’ favorite categories to have their prices hiked up to that of the highest price in the database.

257

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 257

To tackle this query, you need to break it down. First, the new DVDPrice is to be the maximum price of
any film in the Films table. For this, you need a subquery that returns the maximum DVDPrice using the
MAX() function. Note that neither MS Access nor MySQL support updating a column using a subquery:

SELECT MAX(DVDPrice) FROM Films;

This query is used as a subquery in the UPDATE statement’s SET statement, but before executing this
statement, you need to add the WHERE clause:

UPDATE Films
SET DVDPrice = (SELECT MAX(DVDPrice) FROM Films);

You should create and test the WHERE clause inside a SELECT query before adding the WHERE clause to
the UPDATE statement. A mistake risks changing, and potentially losing, a lot of DVDPrice data that
shouldn’t be changed.

Now create the WHERE clause. It needs to limit rows to those where the film’s rating is higher than 3 and
where the film is in a category selected as a favorite by three or more members. You also need to check
whether the film is available on DVD — no point updating prices of films not for sale! The rating and
availability parts are easy enough. You simply need to specify that the AvailableOnDVD column be set
to Y and that the Films.Rating column be greater than 3:

SELECT CategoryId, FilmName FROM Films
WHERE AvailableOnDVD = ‘Y’ AND Films.Rating > 3;

Now for the harder part: selecting films that are in a category chosen as a favorite by three or more
members. For this, use a subquery that counts how many members have chosen a particular category as
their favorite:

SELECT CategoryId, FilmName FROM Films
WHERE (SELECT COUNT(*) FROM FavCategory

WHERE FavCategory.CategoryId = Films.CategoryId) >= 3
AND AvailableOnDVD = ‘Y’ AND Films.Rating > 3;

The COUNT(*) function counts the number of rows returned by the subquery; it counts how many mem-
bers have chosen each category as their favorite. The WHERE clause of the subquery makes sure that the
Films table in the outer query is linked to the FavCategory table of the inner query.

Execute this query and you should get the following results:

CategoryId FilmName

4 Planet of the Japes

6 The Good, the Bad, and the Facially Challenged

5 Soylent Yellow

258

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 258

Now that you’ve confirmed that the statement works and double-checked the results, all that’s left to do
is to add the WHERE part of the query to the UPDATE statement you created earlier:

UPDATE Films SET DVDPrice = (SELECT MAX(DVDPrice) FROM Films)
WHERE (SELECT COUNT(*) FROM FavCategory WHERE FavCategory.CategoryId =
Films.CategoryId) >= 3

AND AvailableOnDVD = ‘Y’ AND Films.Rating > 3;

Execute the final SQL and you should find that three rows are updated with DVDPrice being set to
15.99. This SQL won’t work on MySQL or MS Access, as they don’t support using subqueries to update
a column, so you’ll need to change the query to the following if you want the results displayed to match
those shown later in the book:

UPDATE Films SET DVDPrice = 15.99
WHERE (SELECT COUNT(*) FROM FavCategory WHERE FavCategory.CategoryId =
Films.CategoryId) >= 3

AND AvailableOnDVD = ‘Y’ AND Films.Rating > 3;

Using Subqueries with the DELETE FROM Statement
The only place for a subquery to go in a DELETE statement is in the WHERE clause. Everything you’ve
learned so far about subqueries in a WHERE clause applies to its use with a DELETE statement, so you can
launch straight into an example. In this example, you want to delete all locations where one or fewer
members live and where a meeting has never been held.

As before, create the SELECT queries first to double-check your results, and then use the WHERE clauses
with a DELETE statement. First, you need a query that returns the number of members living in each city:

SELECT COUNT(*), City
FROM MemberDetails
GROUP BY City, State;

This query is used as a subquery to check whether one or fewer members live in a particular city. It pro-
vides the following results:

COUNT(*) City

1 NULL

1 Dover

2 Windy Village

2 Big City

2 Townsville

1 New Town

4 Orange Town

259

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 259

Now you need to find a list of cities in which a meeting has never been held:

SELECT LocationId, City
FROM Location
WHERE LocationId NOT IN (SELECT LocationId FROM Attendance);

The subquery is used to find all LocationIds from the Location table that are not in the Attendance table.
This subquery provides the following results:

LocationId City

3 Big City

Now you need to combine the WHERE clauses and add them to a DELETE statement. Doing so combines
the WHERE clause of the preceding query, which included the following condition:

LocationId NOT IN (SELECT LocationId FROM Attendance);

Likewise, it combines the SELECT statement of the first example as a subquery:

SELECT COUNT(*), City
FROM MemberDetails
GROUP BY City, State;

The condition and the subquery are merged into the WHERE clause of the DELETE statement:

DELETE FROM Location
WHERE (SELECT COUNT(*) FROM MemberDetails

WHERE Location.City = MemberDetails.City
AND
Location.State = MemberDetails.State
GROUP BY City, State) <= 1

AND
LocationId NOT IN (SELECT LocationId FROM Attendance);

In the first subquery, you count how many members live in a particular location from the Location table.
If it’s one or less, then that part of the WHERE clause evaluates to true. Note that the Location table of the
DELETE statement and the MemberDetails tables of the subquery have been joined on the State and City
fields:

Location.State = MemberDetails.State

This is absolutely vital, otherwise the subquery returns more than one result.

The second condition in the WHERE clause specifies that LocationId must not be in the Attendance table.
Because an AND clause joins the two conditions in the WHERE clause, both conditions must be true.

If you execute the query, you find that no records match both conditions, and therefore no records are
deleted from the Location table.

260

Chapter 8

12_577328 ch08.qxd 1/28/05 11:27 PM Page 260

Summary
This chapter covered the nesting of a query inside another query, a powerful tool that you can use when
faced with tricky data extraction questions. Specifically, this chapter covered the following topics:

❑ A subquery is just like a normal query, with SELECT clauses, WHERE statements, and GROUP BY
and HAVING clauses.

❑ Subqueries can be included in a SELECT statement’s column listing, or they can be used inside a
WHERE statement to enable results to be filtered.

❑ Aggregate functions are commonly used with subqueries because a subquery must normally
return just one record for each record in the main query.

❑ A subquery can return multiple rows when used with an IN, ANY, ALL, or EXISTS operator.
These operators function as follows:

❑ The IN operator is used to find out whether a value is in one of the values returned by a
subquery.

❑ The ANY operator allows a comparison between a value and any of the values returned
by a subquery. Comparisons are not limited to just equals (=); rather, you can use any
comparison operator, such as greater than (>), less than (<), and so on.

❑ The ALL operator requires that every item in the list, or all the results of a subquery,
comply with the condition set by the comparison operator used with ALL.

❑ Whereas the other operators work on a column basis, EXISTS simply checks that a sub-
query returns one or more rows. It doesn’t make any comparison of column values.

❑ Although queries are the main place where subqueries are used, you can also use them with
INSERT INTO, UPDATE, and DELETE statements, either to filter what’s changed or deleted or to
provide the data to be inserted or changed.

That concludes this chapter’s coverage of writing queries. This book has covered many of the things
you’ll encounter in your everyday SQL programming. The next chapter tackles all the theory and prac-
tice learned so far and puts it to use with some tricky query writing. That chapter also shows you how to
tackle those mind-boggling queries and come out sane!

Exercises
1. The film club chairperson decides that she’d like a list of the total cost of all films for each cate-

gory and the number of members who have chosen each category as their favorite.

2. List all towns that have two or more members but are not currently listed in the Location table.

261

Queries within Queries

12_577328 ch08.qxd 1/28/05 11:27 PM Page 261

12_577328 ch08.qxd 1/28/05 11:27 PM Page 262

9
Advanced Queries

In database programming, you’ll find that roughly 95 percent of queries are fairly straightforward
and are just a matter of working out what columns are required and including a simple WHERE
clause to filter out the unwanted results. This chapter is all about how to tackle the other 5 percent,
which are difficult and complex queries. This chapter also presents a number of questions and
examines how to write the SQL to answer them. Specifically, this chapter covers the following:

❑ Tackling complex queries

❑ Formulating precise SELECT column lists and FROM clauses

❑ Writing ruthlessly efficient queries

Before getting into the specifics of the chapter, you need to begin by making some additions to the
Film Club database.

Updating the Database
In order to give more scope for tricky queries and avoid repeating examples from previous chap-
ters, this chapter extends the Film Club database and adds some new tables and data. Imagine that
the film club chairperson wants to sell DVDs to members; the film club will employ salespeople to
contact members and sell them DVDs. Therefore, you want to store details of the salespeople,
details of orders taken, and details of what each order contains. In order to do this, you need to
create three new tables (Orders, OrderItems, and SalesPerson), as shown in Figure 9-1:

13_577328 ch09.qxd 1/28/05 11:26 PM Page 263

Figure 9-1

The SQL needed to create the new tables is shown subsequently. Note, however, that MS SQL Server
doesn’t support the date data type but instead uses the datetime data type. Therefore, you need to
change the data type for the OrderDate column in the Orders table from date to datetime.

CREATE TABLE SalesPerson
(

SalesPersonId integer NOT NULL PRIMARY KEY,
FirstName varchar(50) NOT NULL,
LastName varchar(50) NOT NULL

);

CREATE TABLE Orders
(

OrderId integer NOT NULL Primary Key,
MemberId integer,
SalesPersonId integer,
OrderDate date,
CONSTRAINT SalesPerOrders_FK
FOREIGN KEY (SalesPersonId)
REFERENCES SalesPerson(SalesPersonId),
CONSTRAINT MemberDetOrders_FK
FOREIGN KEY (MemberId)
REFERENCES MemberDetails(MemberId)

);

CREATE TABLE OrderItems
(

OrderId INTEGER NOT NULL,
FilmId INTEGER NOT NULL,
CONSTRAINT Orders_FK

264

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 264

FOREIGN KEY (OrderId)
REFERENCES Orders(OrderId),
CONSTRAINT Films_FK
FOREIGN KEY (FilmId)
REFERENCES Films(FilmId),
CONSTRAINT OrderItems_PK PRIMARY KEY (OrderId, FilmId)

);

You need to execute this SQL against the database before continuing with the chapter. As well as creat-
ing the tables, also notice that primary keys and foreign keys are specified where appropriate. For exam-
ple, MemberId in the Orders table is actually taken from the MemberId in the MemberDetails table — it’s
a foreign key. Therefore, a foreign key relationship is specified between MemberId in the Orders and
MemberDetails tables to ensure that no invalid data is entered.

You also need to add some salesperson data to the SalesPerson table:

INSERT INTO SalesPerson(SalesPersonId, FirstName, LastName)
VALUES (1,’Sandra’,’Hugson’);

INSERT INTO SalesPerson(SalesPersonId, FirstName, LastName)
VALUES (2,’Frasier’,’Crane’);

INSERT INTO SalesPerson(SalesPersonId, FirstName, LastName)
VALUES (3,’Daphne’,’Moon’);

Likewise, you need to add some Orders and OrderItems. Again, you can save a whole lot of typing by
downloading the following code from www.wrox.com. Remember, if you’re using Oracle, you need to
change the date format for the OrderDate column to day-month_name-year

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (10,7,1,’2006-07-30’);

INSERT INTO OrderItems(OrderId,FilmId) Values (10,4);
INSERT INTO OrderItems(OrderId,FilmId) Values (10,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (11,4,1,’2006-08-06’);

INSERT INTO OrderItems(OrderId,FilmId) Values (11,13);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (12,6,1, ‘2006-08-18’);

INSERT INTO OrderItems(OrderId,FilmId) Values (12,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (12,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (13,4,1,’2006-09-29’);

INSERT INTO OrderItems(OrderId,FilmId) Values (13,12);

265

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 265

INSERT INTO OrderItems(OrderId,FilmId) Values (13,9);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (14,11,1,’2006-09-30’);

INSERT INTO OrderItems(OrderId,FilmId) Values (14,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (15,15,1, ‘2006-10-01’);

INSERT INTO OrderItems(OrderId,FilmId) Values (15,11);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (16,14,1,’2006-10-01’);

INSERT INTO OrderItems(OrderId,FilmId) Values (16,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (16,8);
INSERT INTO OrderItems(OrderId,FilmId) Values (16,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (17,9, 1,’2006-11-23’);

INSERT INTO OrderItems(OrderId,FilmId) Values (17,4);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (18,6,1, ‘2006-11-27’);

INSERT INTO OrderItems(OrderId,FilmId) Values (18,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (18,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (19,9,1,’2006-11-29’);

INSERT INTO OrderItems(OrderId,FilmId) Values (19,13);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (20,4,1,’2006-12-02’);

INSERT INTO OrderItems(OrderId,FilmId) Values (20,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (20,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (20,13);
INSERT INTO OrderItems(OrderId,FilmId) Values (20,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (21,9,1, ‘2006-12-12’);

INSERT INTO OrderItems(OrderId,FilmId) Values (21,11);

266

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 266

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (22,8,1,’2006-12-19’);

INSERT INTO OrderItems(OrderId,FilmId) Values (22,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (22,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (23,9,1,’2007-01-01’);

INSERT INTO OrderItems(OrderId,FilmId) Values (23,2);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (24,6,1, ‘2007-01-09’);

INSERT INTO OrderItems(OrderId,FilmId) Values (24,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (25,7, 1,’2007-01-13’);

INSERT INTO OrderItems(OrderId,FilmId) Values (25,8);

--

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (1,7,2,’2006-10-23’);

INSERT INTO OrderItems(OrderId,FilmId) Values (1,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (1,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (2,4,2,’2006-10-30’);

INSERT INTO OrderItems(OrderId,FilmId) Values (2,4);
INSERT INTO OrderItems(OrderId,FilmId) Values (2,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (2,13);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (3,9,2, ‘2006-10-11’);

INSERT INTO OrderItems(OrderId,FilmId) Values (3,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (4,7,2,’2006-11-12’);

INSERT INTO OrderItems(OrderId,FilmId) Values (4,11);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)

267

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 267

VALUES (5,7, 2,’2006-12-02’);

INSERT INTO OrderItems(OrderId,FilmId) Values (5,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (5,8);
INSERT INTO OrderItems(OrderId,FilmId) Values (5,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (5,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (5,2);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (6,10,2, ‘2006-12-11’);

INSERT INTO OrderItems(OrderId,FilmId) Values (6,8);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (7,4,2,’2006-10-23’);

INSERT INTO OrderItems(OrderId,FilmId) Values (7,6);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (8,4,2,’2006-10-30’);

INSERT INTO OrderItems(OrderId,FilmId) Values (8,13);
INSERT INTO OrderItems(OrderId,FilmId) Values (8,6);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (9,10,2, ‘2006-10-11’);

INSERT INTO OrderItems(OrderId,FilmId) Values (9,13);
INSERT INTO OrderItems(OrderId,FilmId) Values (9,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (9,4);

--

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (26,11,3, ‘2006-11-09’);

INSERT INTO OrderItems(OrderId,FilmId) Values (26,6);
INSERT INTO OrderItems(OrderId,FilmId) Values (26,15);
INSERT INTO OrderItems(OrderId,FilmId) Values (26,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (26,4);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (27,13,3,’2006-11-19’);

INSERT INTO OrderItems(OrderId,FilmId) Values (27,6);
INSERT INTO OrderItems(OrderId,FilmId) Values (27,15);
INSERT INTO OrderItems(OrderId,FilmId) Values (27,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (27,4);
INSERT INTO OrderItems(OrderId,FilmId) Values (27,9);

268

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 268

INSERT INTO OrderItems(OrderId,FilmId) Values (27,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (27,12);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (28,4,3,’2006-12-12’);

INSERT INTO OrderItems(OrderId,FilmId) Values (28,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (28,4);
INSERT INTO OrderItems(OrderId,FilmId) Values (28,15);
INSERT INTO OrderItems(OrderId,FilmId) Values (28,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (28,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (28,13);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (29,9,3, ‘2006-12-20’);

INSERT INTO OrderItems(OrderId,FilmId) Values (29,13);
INSERT INTO OrderItems(OrderId,FilmId) Values (29,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (29,11);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (30,12,3,’2006-12-21’);

INSERT INTO OrderItems(OrderId,FilmId) Values (30,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,4);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,6);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,8);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,9);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,12);
INSERT INTO OrderItems(OrderId,FilmId) Values (30,13);

INSERT INTO OrderItems(OrderId,FilmId) Values (30,15);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (31,1,3,’2007-01-14’);

INSERT INTO OrderItems(OrderId,FilmId) Values (31,2);
INSERT INTO OrderItems(OrderId,FilmId) Values (31,15);
INSERT INTO OrderItems(OrderId,FilmId) Values (31,11);
INSERT INTO OrderItems(OrderId,FilmId) Values (31,4);

INSERT INTO Orders(OrderId, MemberId, SalesPersonId, OrderDate)
VALUES (32,5,3, ‘2007-01-21’);

INSERT INTO OrderItems(OrderId,FilmId) Values (32,6);
INSERT INTO OrderItems(OrderId,FilmId) Values (32,2);

269

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 269

Now that you’ve added the necessary data to the Film Club database, you can start writing and executing
complex, difficult queries.

Tackling Difficult Queries
In this section, you learn some tips and techniques for writing difficult queries. Unfortunately, there’s no
quick fix, but hopefully by the time you’ve finished this section you’ll be ready and raring to go solve
some mind-bending queries.

The following list details the basic principles you should follow when creating a complex query:

❑ Decide what data you want. You might find that it helps to actually write a small portion of data
on paper. That way, you know what results you’re expecting and roughly how to get them.

❑ Create the SELECT clause and populate its column list. When you know what columns you’re
after, writing queries becomes much easier.

❑ Work out which tables to get your data from and create the FROM clause of the SELECT statement.

❑ Work through the FROM clause a bit at a time. Don’t try to create all the table selections and joins
all at once. Start simple and test the code at each stage to see if it works and gives the results
that you expect. Then work out the FROM clause using a database diagram, and determine where
you need to get your next column’s data from and where the next join links to.

❑ Query elements that don’t affect the final results (such as the ORDER BY clause) can wait until
the end.

Considering the preceding list, the first tip might seem strange, but it’s this: Ask yourself whether you
really need to write a complex query? While it’s quite satisfying to spend a day writing a query so complex
that it confounds even the most gifted database guru, doing so might not always suit your needs. If you’re
in a project under tight deadlines, it might be a whole lot easier to write a few simple queries and do the
data manipulation from a high-level language such as Visual Basic, C++, Java, or whatever language you
use for application development. Writing multiple simple queries is sometimes quicker and the code is eas-
ier to understand.

Work Out What You Want, What You Really, Really Want
Leaping right into the middle of writing a query can be tempting, but in fact the first step is working out
what the query’s requirements are. You need to sit down and analyze what’s been asked for and what
the end results should be. A simple example might be if you’re asked to delete a member from the
MemberDetails table. On the face of it, this is just a simple DELETE FROM MemberDetails and a WHERE
clause ensuring that only the member you want deleted is deleted. However, it has a ripple effect, as refer-
ences to the member are also contained in the FavCategory table, in the Attendance table, and the Orders
table. If the database is set up correctly, as the Film Club one is, then trying to delete a member but not
deleting references to them in other tables will throw up an error. That’s because constraints were set up
to stop this from happening. However, if restraints don’t exist, then it’s all too easy to end up with
orphaned data — for example, references to a member’s favorite category for a member who doesn’t exist!

270

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 270

A more complex question could be, “Who’s the most successful salesperson?” Sounds easy enough —
surely the most successful is the person who obtained the most orders. Or is it the person who sold the
most number of DVDs? Or is it the salesperson who sold the most DVDs per order? Perhaps the most
successful salesperson got the highest number of repeat customers?

The possibilities are endless, but hopefully you can see that deciding what data you’re actually obtain-
ing from the database is vital. The following example uses the total value of orders for each sales-
person for each month. Having decided what you want, you need to look at where you’re going to
get the data.

Choosing the SELECT Column List
Now that you know the question, it’s time to work out what data supplies the answer and where that
data comes from. In order to answer the question, “What is the total value of orders for each salesperson
for each month,” you first need to work out what data is to be returned and populate the SELECT col-
umn list. The question asks for each salesperson’s total value of orders for each month, so you need to
know which salesperson, which month and year, and the total cost of orders placed. Your SELECT list
should include the following:

SELECT FirstName, LastName, MONTH(OrderDate), Year(OrderDate), SUM(DVDPrice)

FirstName and LastName are those of the salesperson. You use the MONTH() and YEAR() functions to
extract the month and year from the OrderDate table. Finally, you add together all the DVDPrice values
using the SUM() function. The next task is to work out where the data is going to come from and create
the FROM clause.

Creating the FROM Clause
You know what you want, so now you need to work out which tables supply the data. For the salesper-
son’s first and last names, this is easy — the data comes from the SalesPerson table. Start by including
these details in the SELECT column list and then add the FROM clause:

SELECT FirstName, LastName
FROM SalesPerson

That’s easy enough. Now you need details of when the orders were placed. This data can be found in
the Orders table. However, you also need to link each order in the Orders table to the appropriate sales-
person, whose details are found in the SalesPerson table. Use an inner join to link the SalesPersonId
in the SalesPerson table with the SalesPersonId in the Orders table, as shown in the following statement:

SELECT FirstName, LastName,MONTH(OrderDate)AS Month, YEAR(OrderDate) As Year
FROM Orders INNER JOIN SalesPerson

ON Orders.SalesPersonId = SalesPerson.SalesPersonId;

Note that this example won’t work in Oracle because it does not support the YEAR() function.

If you run this SQL, you end up with details of every order placed:

271

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 271

FirstName LastName Month Year

Frasier Crane 10 2006

Frasier Crane 10 2006

Frasier Crane 10 2006

Frasier Crane 11 2006

Frasier Crane 12 2006

Frasier Crane 12 2006

Frasier Crane 10 2006

Frasier Crane 10 2006

Frasier Crane 10 2006

Sandra Hugson 7 2006

Sandra Hugson 8 2006

Sandra Hugson 8 2006

Sandra Hugson 9 2006

Sandra Hugson 9 2006

Sandra Hugson 10 2006

Sandra Hugson 10 2006

Sandra Hugson 11 2006

Sandra Hugson 11 2006

Sandra Hugson 11 2006

Sandra Hugson 12 2006

Sandra Hugson 12 2006

Sandra Hugson 12 2006

Sandra Hugson 1 2007

Sandra Hugson 1 2007

Sandra Hugson 1 2007

Daphne Moon 11 2006

Daphne Moon 11 2006

Daphne Moon 12 2006

Daphne Moon 12 2006

Daphne Moon 12 2006

Daphne Moon 1 2007

Daphne Moon 1 2007

272

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 272

What you really want, however, is to group the orders according to the month and year in which they
were placed, necessitating a GROUP BY clause:

SELECT FirstName, LastName,MONTH(OrderDate)AS Month, YEAR(OrderDate) As Year
FROM Orders INNER JOIN SalesPerson

ON Orders.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY FirstName,LastName,MONTH(OrderDate), YEAR(OrderDate);

Executing the preceding query groups the results by salesperson, month, and year, as shown in the fol-
lowing table:

FirstName LastName Month Year

Daphne Moon 1 2007

Daphne Moon 11 2006

Daphne Moon 12 2006

Frasier Crane 10 2006

Frasier Crane 11 2006

Frasier Crane 12 2006

Sandra Hugson 1 2007

Sandra Hugson 7 2006

Sandra Hugson 8 2006

Sandra Hugson 9 2006

Sandra Hugson 10 2006

Sandra Hugson 11 2006

Sandra Hugson 12 2006

So far, you have a list of salespeople as well as month and year values. There’s no link to the items con-
tained in each order. Your next task is to link the current tables, SalesPerson and Orders, to items in each
order. This data is contained in the OrderItems table, which is the next table to which you must create a
link. The value that links the current tables and OrderItems is the OrderId present in the Orders and
OrderItems tables. Join OrderItems to the current tables using an inner join, as illustrated in the follow-
ing statement:

SELECT FirstName, LastName,MONTH(OrderDate)AS Month, YEAR(OrderDate) AS Year
FROM (Orders INNER JOIN SalesPerson ON Orders.SalesPersonId =
SalesPerson.SalesPersonId)
INNER JOIN OrderItems ON OrderItems.OrderId = Orders.OrderId
GROUP BY FirstName,LastName,MONTH(OrderDate), YEAR(OrderDate);

If you run this query, you won’t see any difference between these results and the previous results. Also,
what you’re really after is the total cost of all orders placed in each month by each salesperson, which is
represented by the SUM(DVDPrice) data in the original SELECT list described previously. However, the

273

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 273

DVDPrice column is in the Films table, so you need to find a link between the currently included tables
in the FROM clause, which are the SalesPerson, Orders, OrderItems, and Films tables. That link is pro-
vided by the OrderItems table, which has the FilmId of the film purchased. Begin by adding the Films
table and linking it with the current tables using an inner join:

SELECT FirstName, LastName, MONTH(OrderDate)AS Month, YEAR(OrderDate) AS Year
FROM (((Orders INNER JOIN SalesPerson ON Orders.SalesPersonId =
SalesPerson.SalesPersonId)
INNER JOIN OrderItems ON OrderItems.OrderId = Orders.OrderId))
INNER JOIN Films ON Films.FilmId = OrderItems.FilmId
GROUP BY FirstName,LastName,MONTH(OrderDate), YEAR(OrderDate);

Finally, you can add the total sales per month to the SELECT clause:

SELECT FirstName, LastName, MONTH(OrderDate)AS Month, YEAR(OrderDate) AS Year,
SUM(DVDPrice) AS Total
FROM ((Orders INNER JOIN SalesPerson ON Orders.SalesPersonId =
SalesPerson.SalesPersonId)
INNER JOIN OrderItems ON OrderItems.OrderId = Orders.OrderId)
INNER JOIN Films ON Films.FilmId = OrderItems.FilmId
GROUP BY FirstName,LastName,MONTH(OrderDate), YEAR(OrderDate);

Remember that the SQL groups orders placed by salesperson and by month, so the SUM(DVDPrice) is
the sum of all the DVDs sold by salesperson and by month. The results are as follows:

FirstName LastName Month Year Total

Daphne Moon 1 2007 80.94

Daphne Moon 11 2006 141.85

Daphne Moon 12 2006 221.74

Frasier Crane 10 2006 151.88

Frasier Crane 11 2006 12.99

Frasier Crane 12 2006 50.90

Sandra Hugson 1 2007 31.97

Sandra Hugson 7 2006 12.98

Sandra Hugson 8 2006 27.93

Sandra Hugson 9 2006 21.93

Sandra Hugson 10 2006 44.96

Sandra Hugson 11 2006 37.92

Sandra Hugson 12 2006 92.89

The query is nearly complete, save two things. First, what if two or more salespeople have the same
name? This would mean that all their results would be lumped together because you’ve grouped by

274

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 274

FirstName and LastName. You need to add SalesPersonId, which is unique to each salesperson, to the
GROUP BY clause, as well as display it in the final results:

SELECT SalesPerson.SalesPersonId, FirstName, LastName, MONTH(OrderDate)AS Month,
YEAR(OrderDate) AS Year, SUM(DVDPrice) AS Total
FROM ((Orders INNER JOIN SalesPerson ON Orders.SalesPersonId =
SalesPerson.SalesPersonId)
INNER JOIN OrderItems ON OrderItems.OrderId = Orders.OrderId)
INNER JOIN Films ON Films.FilmId = OrderItems.FilmId
GROUP BY SalesPerson.SalesPersonId, FirstName,LastName,MONTH(OrderDate),
YEAR(OrderDate);

Executing the query provides the following results:

SalesPersonId FirstName LastName Month Year Total

1 Sandra Hugson 1 2007 31.97

1 Sandra Hugson 7 2006 12.98

1 Sandra Hugson 8 2006 27.93

1 Sandra Hugson 9 2006 21.93

1 Sandra Hugson 10 2006 44.96

1 Sandra Hugson 11 2006 37.92

1 Sandra Hugson 12 2006 92.89

2 Frasier Crane 10 2006 151.88

2 Frasier Crane 11 2006 12.99

2 Frasier Crane 12 2006 50.90

3 Daphne Moon 1 2007 80.94

3 Daphne Moon 11 2006 141.85

3 Daphne Moon 12 2006 221.74

The second slight issue is the order of the results. They would be easier to read if they were ordered by
salesperson and then by month and year, as shown in the ORDER BY clause of the following statement:

SELECT SalesPerson.SalesPersonId, FirstName, LastName, MONTH(OrderDate)AS Month,
YEAR(OrderDate) AS Year, SUM(DVDPrice) AS Total
FROM ((Orders INNER JOIN SalesPerson ON Orders.SalesPersonId =
SalesPerson.SalesPersonId)
INNER JOIN OrderItems ON OrderItems.OrderId = Orders.OrderId)
INNER JOIN Films ON Films.FilmId = OrderItems.FilmId
GROUP BY SalesPerson.SalesPersonId, FirstName,LastName,MONTH(OrderDate),
YEAR(OrderDate)
ORDER BY LastName, FirstName, YEAR(OrderDate), MONTH(OrderDate);

The final results are as follows:

275

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 275

SalesPersonId FirstName LastName Month Year Total

2 Frasier Crane 10 2006 160.83

2 Frasier Crane 10 2006 151.88

2 Frasier Crane 11 2006 12.99

2 Frasier Crane 12 2006 50.90

1 Sandra Hugson 7 2006 12.98

1 Sandra Hugson 8 2006 27.93

1 Sandra Hugson 9 2006 21.93

1 Sandra Hugson 10 2006 44.96

1 Sandra Hugson 11 2006 37.92

1 Sandra Hugson 12 2006 92.89

1 Sandra Hugson 1 2007 31.97

3 Daphne Moon 11 2006 141.85

3 Daphne Moon 12 2006 221.74

Hopefully this example has given you an idea of how to tackle slightly more complex queries. The fol-
lowing Try It Out puts your knowledge to the test, asking you to write a complex query that identifies
how many repeat customers each salesperson has had.

Try It Out Identifying Repeat Customers
1. Although total sales is a good indicator of a salesperson’s success, the film club chairperson is

interested to know how many people have ordered again from the same salesperson. First, the
chairperson wants to know details of orders where the customer had ordered more than once
from the same salesperson. The SQL to do this is as follows:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

FROM (Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON Orders.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY SalesPerson.SalesPersonId,

SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

HAVING COUNT(Orders.MemberId) > 1
ORDER BY SalesPerson.SalesPersonId;

276

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 276

2. The film club chairperson also wants to know how many repeat orders each customer placed
with the salesperson. The SQL to do this is shown below:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName,
COUNT(*) - 1

FROM (Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON Orders.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY SalesPerson.SalesPersonId,

SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

HAVING COUNT(Orders.MemberId) > 1
ORDER BY SalesPerson.SalesPersonId;

How It Works
First, you need to think about what the question involves. Basically, it involves counting how many
times a customer has ordered from the same salesperson. If the customer makes repeat orders from the
same salesperson, then display that record in the results.

Now you need to work out where the data to answer the question comes from. Details about orders are
found in the Orders table. Start simple and create a SELECT list that obtains the SalesPersonId and
MemberId — the customer who placed the order:

SELECT SalesPersonId, MemberId
FROM Orders;

This basic query gives the following results:

SalesPersonId MemberId

2 7

2 4

2 9

2 7

2 7

2 10

2 4

2 4

Table continued on following page

277

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 277

SalesPersonId MemberId

2 10

1 7

1 4

1 6

1 4

1 11

1 15

1 14

1 9

1 6

1 9

1 4

1 9

1 8

1 9

1 6

1 7

3 11

3 13

3 4

3 9

3 12

3 1

3 5

Using this table, how would you manually work out the answer? You would group the data into each
salesperson and customers who ordered from them and then count how many identical customers
each salesperson had. To do this in SQL, you need to add a GROUP BY clause grouping salespeople
and customers:

SELECT SalesPersonId, MemberId
FROM Orders
GROUP BY SalesPersonId, MemberId
ORDER BY SalesPersonId

278

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 278

Executing the preceding query provides these results:

SalesPersonId MemberId

1 4

1 6

1 7

1 8

1 9

1 11

1 14

1 15

2 4

2 7

2 9

2 10

3 1

3 4

3 5

3 9

3 11

3 12

3 13

Identical SalesPersonId and MemberId records are now grouped, but the results still include members
who placed only one order with a salesperson. You want only those customers who ordered more than
once, so you need to count the number of customers in each group who ordered from a specific salesper-
son. If the MemberId appears more than once, that particular customer has ordered more than once from
that salesperson:

SELECT SalesPersonId, MemberId
FROM Orders
GROUP BY SalesPersonId, MemberId
HAVING COUNT(MemberId) > 1
ORDER BY SalesPersonId

Each group contains all the rows with the same salesperson and customer. The COUNT(MemberId) func-
tion counts the number of rows in each group, and the HAVING clause restricts the display of groups to
only those where the count is more than 1 — that is, more than one order by the same customer with the
same salesperson. This query provides the following results:

279

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 279

SalesPersonId MemberId

1 4

1 6

1 7

1 9

2 4

2 7

2 10

Although you now have the answer to the question, it would be a whole lot nicer to see the names rather
than SalesPersonId and MemberId. To display the names, create a join between the SalesPerson and
MemberDetails tables:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

FROM (Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON Orders.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY SalesPerson.SalesPersonId,

SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

HAVING COUNT(Orders.MemberId) > 1
ORDER BY SalesPerson.SalesPersonId

Although you added a lot of new code, it’s just a result of joining two new tables, MemberDetails and
SalesPerson. The various names and IDs of the salespeople and members have been added to the
SELECT column list, as shown in the following:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

The column names appear in more than one of the tables, so each has to be prefixed by the name of the
table the column comes from. The GROUP BY clause requires that columns in the SELECT column list also
appear in the GROUP BY list, so you added them there also:

280

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 280

GROUP BY SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

The FROM clause has two INNER JOIN statements added to it, joining the MemberDetails and
SalesPerson tables:

FROM (Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON Orders.SalesPersonId = SalesPerson.SalesPersonId

Finally, you updated the ORDER BY clause so that it orders by the SalesPerson table’s SalesPersonId col-
umn, because this column appears in the GROUP BY clause, and only columns in GROUP BY can be ordered.

ORDER BY SalesPerson.SalesPersonId

The final results are shown in the following table:

SalesPersonId FirstName LastName MemberId FirstName LastName

1 Sandra Hugson 4 Steve Gee

1 Sandra Hugson 6 Jenny Jones

1 Sandra Hugson 7 John Jackson

1 Sandra Hugson 9 Seymour Botts

2 Frasier Crane 4 Steve Gee

2 Frasier Crane 7 John Jackson

2 Frasier Crane 10 Susie Simons

That completes the first part of the Try It Out — on to the second part.

The second step asked you to find out how many repeat orders each customer placed with each
salesperson.

It’s fairly easy to modify the SQL from the first step so that in addition to the current results it also
shows the number of total repeat orders in each group. Remember that each group consists of a
SalesPerson and the orders by the same Customer. However, the question asks for the number of repeat
orders each customer made, not the total number of orders. The first order made doesn’t count, so you
need to add COUNT(*) but then deduct 1 from it:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,

281

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 281

MemberDetails.FirstName,
MemberDetails.LastName,
COUNT(*) - 1

FROM (Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON Orders.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY SalesPerson.SalesPersonId,

SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

HAVING COUNT(Orders.MemberId) > 1
ORDER BY SalesPerson.SalesPersonId

There’s very often more than one way to write a query. This section shows you one alternative way of
writing the same query you wrote in the previous Try It Out, though there may be even more ways. This
alternative way uses a self-join, with the Orders table joined to itself. Consider the following statement:

SELECT SalesPerson.SalesPersonId,
SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName,

COUNT(*) AS “Repeat Orders”
FROM ((Orders O1 INNER JOIN Orders O2
ON O1.MemberId = O2.MemberId AND O1.SalesPersonId = O2.SalesPersonId
AND O1.OrderId > O2.OrderId)
INNER JOIN MemberDetails
ON O1.MemberId = MemberDetails.MemberId)
INNER JOIN SalesPerson
ON O1.SalesPersonId = SalesPerson.SalesPersonId
GROUP BY SalesPerson.SalesPersonId,

SalesPerson.FirstName,
SalesPerson.LastName,
MemberDetails.MemberId,
MemberDetails.FirstName,
MemberDetails.LastName

ORDER BY SalesPerson.SalesPersonId;

The SELECT column list is virtually identical, except that repeat order values are now obtained using
COUNT(*), whereas before they were obtained with COUNT(*) – 1. The reason for this change is that
this query, you see shortly, returns only the repeat orders and not the first order placed by a member.
Also, because of this change, you don’t need a HAVING clause that limits records where each group has
more than one member.

The difference between this query and the query you previously wrote is in the FROM clause and its use
of a self-join. The Orders table is joined to itself, the first table being given an alias of O1 and the second
an alias of O2. The MemberId and SalesPersonId columns are joined on the basis of being the same, and
the OrderDate column is joined on the basis of O1’s OrderDate being after O2’s, which ensures that only
the repeat orders are included. If there’s only one order, then clearly O1.OrderDate can never be higher
than O2.OrderDate, as the order in O2 is the same record with identical values.

282

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 282

Executing the preceding SQL creates the following results set:

SalesPersonId FirstName LastName MemberId FirstName LastName Repeat Orders

1 Sandra Hugson 4 Steve Gee 3

1 Sandra Hugson 6 Jenny Jones 3

1 Sandra Hugson 7 John Jackson 1

1 Sandra Hugson 9 Seymour Botts 6

2 Frasier Crane 4 Steve Gee 3

2 Frasier Crane 7 John Jackson 3

2 Frasier Crane 10 Susie Simons 1

As you would expect, these results are identical to the previous SQL’s results. So which query is best?
First, it depends on which query you find easiest to use. Programmer time is often more expensive than
computer time, so if one way of writing a query is easier for you, then stick with it unless there’s a good
reason to do it another way.

The other side of things is efficiency — which query runs faster? In the two different ways shown, the
first is slightly more efficient. It has one less join than the second way, because the second way has to
have an INNER JOIN of the Orders table to itself. The first way gets the same results but filters out
nonduplicate orders using a HAVING clause.

You may even be able to think of a third or fourth (or fifth or sixth) way of writing the same query, one
that might be even faster. In the real world, however, most programmers don’t have the time to write the
same code in five different ways in a bid to save fractions of a second. Unless, of course, efficiency is
absolutely paramount — for example, where there are millions and millions of records and your initial
SQL runs with all the speed of a tortoise through molasses.

To help you speed up your queries, the next section covers some tips on writing efficient queries.

Top Tips for Efficient Queries
❑ When using AND, put the condition least likely to be true first. The database system evaluates

conditions from left to right, subject to operator precedence. If you have two or more AND opera-
tors in a condition, the one to the left is evaluated first, and if and only if it’s true is the next con-
dition evaluated. Finally, if that condition is true, then the third condition is evaluated. You can
save the database system work, and hence increase speed, by putting the least likely condition
first. For example, if you were looking for all members living in New State and born before
January 1, 1940, you could write the following query:

SELECT FirstName, LastName
FROM MemberDetails
WHERE State = ‘New State’ AND DateOfBirth < ‘1940-01-01’;

283

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 283

The query would work fine; however, the number of members born before that date is very
small, whereas plenty of people live in New State. This means that State = New State will
occur a number of times and the database system will go on to check the second condition,
DateOfBirth < ‘1940-01-01’. If you swap the conditions around, the least likely condition
(DateOfBirth < ‘1940-01-01’) is evaluated first:

SELECT FirstName, LastName
FROM MemberDetails
WHERE DateOfBirth < ‘1940-01-01’ AND State = ‘New State’;

Because the condition is mostly going to be false, the second condition will rarely be executed,
which saves time. It’s not a big deal when there are few records, but it is when there are a lot of
them.

❑ When using OR, put the condition most likely to be true first. Whereas AND needs both sides to
be true for the overall condition to be true, OR needs only one side to be true. If the left-hand
side is true, there’s no need for OR to check the other condition, so you can save time by putting
the most likely condition first. Consider the following statement:

SELECT FirstName, LastName
FROM MemberDetails
WHERE State = ‘New State’ OR DateOfBirth < ‘1940-01-01’;

If New State is true, and it is true more often than DateOfBirth < ‘1940-01-01’ is true, then
there’s no need for the database system to evaluate the other condition, thus saving time.

❑ DISTINCT can be faster than GROUP BY. DISTINCT and GROUP BY often do the same thing:
limit results to unique rows. However, DISTINCT is often faster with some database systems
than GROUP BY. For example, examine the following GROUP BY:

SELECT MemberId
FROM Orders
GROUP BY MemberId;

The GROUP BY could be rewritten using the DISTINCT keyword:

SELECT DISTINCT MemberId
FROM Orders;

❑ Restrict join results. The less information the database has to pull out, the better. This is partic-
ularly true with joins, which are very expensive time-wise. Put the restrictive condition on the
outer table of the join. The outer table is the table on the right of the INNER JOIN keyword. For
example, in the following code, the table with the restriction — a condition in the WHERE clause
restricting results — is the MemberDetails table, which is the outer table in the join:

SELECT MemberDetails.MemberId, FirstName, LastName
FROM Orders INNER JOIN MemberDetails
ON Orders.MemberId = MemberDetails.MemberId
WHERE MemberDetails.DateOfBirth BETWEEN ‘1900-01-01’ AND ‘1970-12-31’;

284

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 284

❑ Use IN with your subqueries. When you write a query similar to the following, the database
system has to get all the results from the subquery to make sure that it returns only one value:

SELECT FirstName, LastName
FROM MemberDetails
WHERE MemberId = (SELECT MemberId FROM Orders WHERE OrderId = 2);

If you rewrite the query using the IN operator, the database system only needs to get results
until there’s a match with the values returned by the subquery; it doesn’t necessarily have to get
all the values:

SELECT FirstName, LastName
FROM MemberDetails
WHERE MemberId IN (SELECT MemberId FROM Orders WHERE OrderId = 2);

❑ Avoid using SELECT * FROM. Specifying which columns you need has a few advantages, not all
of them about efficiency. First, it makes clear which columns you’re actually using. If you use
SELECT * and actually use only two out of seven of the columns, it’s hard to guess from the SQL
alone which ones you’re using. If you say SELECT FirstName, LastName...then it’s quite
obvious which columns you’re using. From an efficiency standpoint, specifying columns reduces
the amount of data that has to pass between the database and the application connecting to the
database. This is especially important where the database is connected over a network.

❑ Search on integer columns. If you have a choice, and often you don’t, search on integer columns.
For example, if you are looking for the member whose name is William Doors and whose
MemberId is 13, then it makes sense to search via the MemberId because it’s much faster. In the
Film Club database, it’s also the primary key column, so there’s even more of a speed boost.

Summary
This chapter looked at how to tackle difficult query writing. You examined some fairly involved queries
and learned how to break them down into manageable chunks, and then you saw a few tips on how to
increase the efficiency of your queries. Specifically, this chapter covered the following topics:

❑ Working out what the question is and what it actually involves

❑ How to create complex queries by following a basic process:

❑ Creating the SELECT list first

❑ Looking at the FROM clause and how you need to obtain your data

❑ Tackling difficult queries

❑ Using tips to write more efficient queries

By now, you should be familiar enough with SQL to design databases; populate tables and columns in
those databases; add, insert, retrieve, and delete data from your databases; and write complex queries
that obtain exactly the information you want. The chapters that follow cover topics more tangentially
related to SQL, such as views, transactions, security, and methods for tuning your database so that it per-
forms optimally. The next chapter covers views and discusses how to use them to pull specific data for
specific users and create coherent data sets that are of interest to a particular user or application.

285

Advanced Queries

13_577328 ch09.qxd 1/28/05 11:26 PM Page 285

Exercises
Assume that a new table called FilmStars has been added to the Film Club database and that it has been
populated with the following values:

CREATE TABLE FilmStars
(
StarId integer,
StarName varchar(100),
StarAge integer

);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (1,’Boris Carlot’,102);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (1,’Scarlet O’’Hairpin’,89);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (3,’Boris Carlot’,102);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (4,’Michael Hourglass’,56);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (5,’Dusty Hoffperson’,48);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (6,’Boris Carlot’,102);

INSERT INTO FilmStars(StarId, StarName, StarAge)
VALUES (7,’Dusty Hoffperson’,48);

You can either type the code in yourself or download this file from the book’s Web site, found at
www.wrox.com.

1. As you can see, there are quite a few duplicate entries. Write the SQL to remove the unneeded
duplicate rows, leaving just the one row.

286

Chapter 9

13_577328 ch09.qxd 1/28/05 11:26 PM Page 286

10
Views

Views, as the name implies, are queries used to provide users with a specific view of the data in
the database. In doing so, views serve a variety of purposes. They may tie related tables together
and then pull selected fields out that specific users need, or they may pull selected interesting
rows of data from a table that contains other rows of no interest to specific users. They may sum-
marize large data sets, returning averages, counts, and the like. Relational databases are sets of
data in tables, which, taken alone, are rarely of any use to anyone. Views allow the database
administrator (DBA) to pull fields of interest from tables of interest and return a coherent data set
useful to some specific user or application.

In this chapter, you learn how to build and save views for reuse, how to use views to tie related
data back together, how to use views to narrow or limit the data that users are allowed to see, and
how views may be used for security purposes.

Introducing Views
A normalized database is created by designing tables for each object or event being modeled, with
the fields of each table representing an attribute of the object or event. Once the developer creates
the normalized structure, it becomes necessary to allow users to view specific pieces of data. The
users rarely understand the structure, so the DBA is often tasked with building the views that vari-
ous users require. A view is nothing more than a SQL statement that is stored in the database with
an associated name. Views allow the DBA to do the following:

❑ Structure data in a way that users or classes of users find natural or intuitive

❑ Restrict access to the data such that a user can see and (sometimes) modify exactly what
they need and no more

❑ Simplify the DBA’s job by building base data structures that the DBA can use to build
other views in a natural progression

❑ Summarize data for reports

14_577328 ch10.qxd 1/28/05 11:25 PM Page 287

Now that you know what views allow the DBA to do, the following list shows you how views can be
enormously useful and provide a variety of benefits to the DBA.

❑ Views are often used to provide security, limiting results sets to exactly the fields and records
needed by a particular user. This security allows the DBA to set up results sets for users that
prevent them from seeing data intended for other users or that allow them to see sensitive data
that other users are not allowed to see.

❑ Views can provide the basis for other views or queries. Once a results set is defined, you can
manipulate that base data set using column functions such as Sum(), Avg(), Count(), Max(),
and Min(). You can also sort or filter base data in another query or view. Views can thus be
built up, layer after layer, each layer performing some specific function to transform the base
data in some way.

❑ Views can provide personalization of data, turning a bewildering array of normalized tables
into one or more views of the data familiar to a user.

❑ Views can rename fields so that users with different backgrounds can view data in familiar terms.

❑ Because a view is just a saved query, they can often be used interchangeably with queries.

Although they provide a variety of benefits, views also impose some limitations on what you can do
with the data sets they create, and they may create performance problems.

❑ Views are nothing more than queries saved with a query name. As such, if you base your query
on a view, the view name must be looked up and the SQL statement retrieved and then executed.
Creating views based on views based on views can eventually cause performance problems.

❑ Each view can cause its own restrictions in updating data. As you build up views based on
views, the results may not allow you to update the data. It may not matter for a given purpose,
but you must keep this in mind when your intent is to create views that allow updates, and you
should always test extensively.

❑ Used improperly, views may allow users to add or delete records that are not part of the view,
causing data integrity and security issues.

Creating Views
A view is often called a virtual table because the view has the appearance of a table, but the data set is
not physically stored in the database but rather pulled from the underlying tables on demand. The
view’s data set doesn’t exist anywhere until the moment that the view is used. When the view is exe-
cuted, the DBMS pulls the data and performs any operations or calculations required by the SQL state-
ment, and then it presents that data to the user.

To the user, the view looks exactly like a table, with columns and rows of data, but usually the data is
not persisted. A view can be as simple as a handful of fields from a single table or as complex as a sys-
tem of joined tables pulling fields from any or all tables in a database.

The following Try It Out shows you how to create a simple view.

288

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 288

Try It Out Building a View
1. The process of building a view begins with building a syntactically correct SQL statement.

SELECT LastName, FirstName, Email, DateOfJoining
FROM MemberDetails;

2. Once you have the SQL statement, you can save the view in some database systems by adding
the following SQL as the top line of the statement:

CREATE VIEW MyViewName AS

3. Executing the following statement causes the database to save the view:

CREATE VIEW MemberNameEmail AS
SELECT LastName, FirstName, Email, DateOfJoining
FROM MemberDetails;

Notice that the CREATE VIEW statement does not pull data from the tables and display it, but
rather causes the database to store the SELECT statement as a view named MemberNameEmail.

How It Works
As you become fluent in SQL, you do not need to do things in this manner, but when you are learning to
create views, it is useful to create the SQL statement that actually pulls the data that you are interested in
as demonstrated in the first step of the preceding Try It Out. This process is often iterative — tweak, run,
view results, tweak, run, view results, and so forth — until you have the results you need. Of course, not
every view you create needs to be saved; sometimes you just need to look at data, print it, and move on.
The second step is used to save a view permanently in the database so that it can be reused at a later date.

Having created the view, you can now use it in a SELECT statement:

SELECT *
FROM MemberNameEmail

Executing the statement gives you results similar to what appears in Figure 10-1.

Figure 10-1

Note that the CREATE VIEW works in only some databases. Microsoft Access, for example, does not rec-
ognize the keywords but has other methods for creating stored queries. This brings up an important
point: SQL syntax is very platform-specific even when the platform supposedly conforms to a given
standard. Be aware that differences exist and be prepared to read up on the platform of your choice.

289

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 289

Types of Views
Given that most SQL statements can be coerced into a view, you can build up many different types of views
to fit your needs. But first, for the purposes of simplifying your life, build a base view that pulls all of the
fields you need from a set of tables. Later in the chapter, you build other views based on that original view.

Suppose that you need to analyze meeting attendance. The first, or base, view pulls data from
MemberDetails, Attendance, and Location. The user is generally not interested in the table’s primary
and foreign keys, so you just pull all the data fields from each table. You are not going to perform any fil-
tering or ordering on the base data; you will just pull the required data. This may not be efficient for
large tables or results sets. This strategy is not recommended in general, but it makes your results sets
more interesting for your limited data.

Table Join Views
Table join views are views that join related tables back together in order to pull specific fields out of the
related tables and display a view across more than one table. Getting all of the tables joined, with lookup
tables, outer joins where needed, and all the other little things required to gather data from a half dozen
or more tables, can take a while to get correct. Once correct, there may be little need to do it over and
over again. Queries that join multiple tables are called base queries because they form the base of other
queries that simply need to use all this data. A single base query may serve to gather data for dozens of
other queries.

Base View
The SQL for a base view might look like the following (in SQL Server):

SELECT dbo.MemberDetails.LastName, dbo.MemberDetails.FirstName,
dbo.MemberDetails.DateOfBirth, dbo.MemberDetails.Street, dbo.MemberDetails.City,
dbo.MemberDetails.State, dbo.MemberDetails.ZipCode, dbo.MemberDetails.Email,
dbo.MemberDetails.DateOfJoining, dbo.Attendance.MeetingDate,
dbo.Attendance.MemberAttended, dbo.Location.Street AS [Meeting Street],
dbo.Location.City AS [Meeting City], dbo.Location.State AS [Meeting State]
FROM dbo.MemberDetails
INNER JOIN dbo.Attendance
ON dbo.MemberDetails.MemberId = dbo.Attendance.MemberId
INNER JOIN dbo.Location
ON dbo.Attendance.LocationId = dbo.Location.LocationId

Notice that SQL Server places a ton of qualifier data in the SQL statement, the dbo.MemberDetails
part. In some instances, the table qualifiers are a necessity, specifically when you pull identical field
names from different tables, such as City from MemberDetails and from Location. In any event, SQL
statements like this can be a little tough to wade through.

Once you have the SQL statement working, however, you can now add the CREATE VIEW statement and
use this SQL to build a named view.

CREATE VIEW dbo.MemberAttendance AS
SELECT dbo.MemberDetails.LastName, dbo.MemberDetails.FirstName,
dbo.MemberDetails.DateOfBirth, dbo.MemberDetails.Street, dbo.MemberDetails.City,
dbo.MemberDetails.State, dbo.MemberDetails.ZipCode, dbo.MemberDetails.Email,
dbo.MemberDetails.DateOfJoining, dbo.Attendance.MeetingDate,
dbo.Attendance.MemberAttended, dbo.Location.Street AS [Meeting Street],
dbo.Location.City AS [Meeting City], dbo.Location.State AS [Meeting State]

290

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 290

FROM dbo.MemberDetails
INNER JOIN dbo.Attendance
ON dbo.MemberDetails.MemberId = dbo.Attendance.MemberId
INNER JOIN dbo.Location
ON dbo.Attendance.LocationId = dbo.Location.LocationId

Having run this SQL statement, you now have a view named MemberAttendance. If you build a query
selecting all the fields from that view, you end up with a much more readable statement:

SELECT LastName, FirstName, DateOfBirth, Street, City, State, ZipCode, Email,
DateOfJoining, MeetingDate, MemberAttended, [Meeting Street], [Meeting City],
[Meeting State]
FROM MemberAttendance

Executing this statement provides the following results shown in Figure 10-2.

Figure 10-2

More important, you now have a base upon which you can build the various queries you might want.

The name of the base view, MemberAttendance, is used in the subsequent query just as if it were a real
table, and the field names from that view are used just as if they were real field names in a real table. In
appearance, MemberAttendance is a table. As you have just seen, however, it is not, but rather a query
pulling specific fields from specific tables. Because the view definition is saved in the database, the
DBMS can perform all the necessary work required to translate the SQL statement into a data set, which
is then presented to the new query to use as if it really were a table.

Row Views
Using a WHERE clause to filter down a results set is often useful when pulling all of the fields for a given
set of records. Row views are views that select a subset of all the rows in the larger dataset. Perhaps you
want to pull the records for all the members who attended any meetings.

SELECT MemberAttendance.*
FROM MemberAttendance
WHERE (MemberAttended = ‘Y’)
ORDER BY LastName, FirstName, MeetingDate

Should you need to build other views of members who actively attend meetings, you could simply save
this query as a view:

CREATE VIEW ActiveMemberAttendance AS
SELECT MemberAttendance.*
FROM MemberAttendance
WHERE (MemberAttended = ‘Y’)
ORDER BY LastName, FirstName, MeetingDate

291

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 291

Perhaps you need to view attendance for all active members in Golden State.

SELECT ActiveMemberAttendance.*
FROM ActiveMemberAttendance
WHERE (State = ‘Golden State’)
ORDER BY LastName, FirstName

The preceding results sets (illustrated in Figure 10-3) give you all of the fields from all three base tables,
filtered by attendance and sorted by name and meeting attended. Because you are basing the results on
one or more base queries, the SQL is easy to work with and easy to read. As you can see, you built a base
query that joins all the required tables together. Once you did that, you could easily filter out only the
active members or only the active members in Golden State.

Figure 10-3

Field Views
Another type of view is the field view, which selects all of the records but only some of the fields. For
example, suppose you need to build a list of all members, meeting dates, and meeting addresses.

SELECT LastName, FirstName, MeetingDate, MemberAttended, [Meeting Street],
[Meeting City], [Meeting State]
FROM MemberAttendance
ORDER BY LastName, FirstName

This query provides exactly the fields you requested and does so for every row of the view, ordered by
last name, as shown in Figure 10-4

Figure 10-4

Filtered Windowed Views
Windowed views display selected columns from selected rows. In other words, they limit the view of data
in both the number of columns displayed as well as the number of rows displayed. The limitation on the
number of columns is created by specifying only a subset of all the columns in the SELECT clause of the
statement. The limitation on the number of rows is created by the WHERE clause, which specifies a subset
of all the rows in the table. Thus, you create a rectangular window into the larger possible data set.

292

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 292

For example, you might want a list of all the members who did not attend a specific meeting, with their
email addresses so that you could send an email outlining what you did at that meeting and inviting
them to attend the next meeting.

SELECT LastName, FirstName, Email, MeetingDate, MemberAttended
FROM MemberAttendance
WHERE (MemberAttended = ‘N’) AND (MeetingDate = CONVERT(DATETIME, ‘2004-01-01’,
102))

Executing this SELECT statement provides the results shown in Figure 10-5.

Figure 10-5

Or perhaps you need the names and birth dates of members who have attended any meeting so that you
can invite active members to a birthday bash to thank them for their participation.

SELECT DISTINCT LastName, FirstName, Email
FROM MemberAttendance
WHERE (MemberAttended = ‘Y’)

Figure 10-6 displays the results of this query.

Figure 10-6

As you can see, windowed queries are trivial to build when you have a good base view to work with.

Summary Views
Finally, you might wish to perform data analysis, perhaps determining the most (or least) active
members.

SELECT COUNT(MemberAttended) AS CntOfAttendance, FirstName, LastName
FROM Attendance INNER JOIN

MemberDetails ON Attendance.MemberId = MemberDetails.MemberId
WHERE (MemberAttended = ‘Y’)
GROUP BY FirstName, LastName

Executing this statement gives you the results depicted in Figure 10-7.

293

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 293

Figure 10-7

Summary views actually perform various operations on entire sets of rows, returning a single row repre-
senting some operation on the set. These views are never updateable.

Notice that because MemberAttendance does all the grunt work of joining tables, such as aliasing field
names, and so on, you can concentrate on the work you want to get done, filtering out a small set of
fields from a small set of records. You no longer need to worry about what fields to join or look at ID
field data (although the primary keys might be useful for joins further up the line).

Updating Views
If you need to update data through your views, as opposed to simply reporting data sets, things can get
a little trickier. A variety of things can cause a view to become non-updateable. Begin with what can be
updated.

Suppose you need to update member addresses from a sign-up list passed around during a meeting. The
following view simply pulls records from the MemberDetails table.

CREATE VIEW MemberUpdate
AS
SELECT FirstName, LastName, DateOfBirth, Street, State, City, ZipCode, Email,
DateOfJoining
FROM MemberDetails

The preceding CREATE VIEW statement provides the results shown in Figure 10-8.

Figure 10-8

You can expect to edit the records, add new records, or delete existing records because it is straightforward
for the DBMS to translate this request and figure out where the data came from and which table and fields
need to be updated.

In general, you can expect to be able to update most views against a single table, whether the entire row
or just a few fields. These views can always be traced back to specific rows or columns in real tables, and
there will almost never be a problem with these updates. The view may not be possible, however, if the
view contains calculated fields. Many DBMSs allow this operation as long as you do not attempt an
update to the calculated field itself.

294

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 294

However, if you take the case of MemberAttendance, where you pulled fields from three different tables,
an attempt to edit that view gives errors in SQL Server. In general, views containing multiple joined
tables probably will not be updateable. Remember that one database may be able to handle some things
that others can’t. In any event, by joining three tables together, you ended up with a view that was not
updateable in at least one major DBMS.

Another type of view that is just never updateable is the summary query. Obviously, these queries pull
data from many rows and summarize them in some manner. Calculations occur over entire data sets,
and it simply doesn’t make sense to try to update a calculated field, an OrderBy field, and so on.

Update Restrictions
The ANSI standard defines restrictions (see the following list) that may cause an update to fail. Again,
remember that each major DBMS may be able to work around some of the restrictions, but there are oth-
ers that are simply hard-and-fast rules — no summary functions, for example.

❑ The SELECT clause may not contain the keyword DISTINCT.

❑ The SELECT clause may not contain summary functions.

❑ The SELECT clause may not contain set functions.

❑ The SELECT clause may not contain set operators.

❑ The SELECT clause may not contain an ORDER BY clause.

❑ The FROM clause may not contain multiple tables.

❑ The WHERE clause may not contain subqueries.

❑ The query may not contain GROUP BY or HAVING.

❑ Calculated columns may not be updated.

❑ All NOT NULL columns from the base table must be included in the view in order for the INSERT
query to function.

Obviously, a view that breaks any of these rules is not updateable.

Check Option
A view containing a WHERE clause retrieves only data meeting the search conditions. Many rows in the
table may not be visible through the view. Because one of the functions of a view is to assist in securing
data, it is necessary to ensure that updates and additions cannot occur through a view that would impact
records not included in the view. For example, suppose you build a view to display all members with a
birth date before January 1, 1970.

CREATE VIEW MemberBirthdayFiltered AS
SELECT MemberId, FirstName, LastName, DateOfBirth
FROM dbo.MemberDetails
WHERE (DateOfBirth >= CONVERT(DATETIME, ‘1970-01-01’, 102))

Having created the view, you can now execute a SELECT * statement:

SELECT *
FROM MemberBirthdayFiltered

295

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 295

This statement gives you the following results shown in Figure 10-9.

Figure 10-9

Suppose you then edit a member’s birth date such that the date is before January 1, 1970:

UPDATE MemberBirthdayFiltered
SET DateOfBirth = 1 / 1 / 1969
WHERE MemberId = 1

The UPDATE query modifies the birthday to a date in 1969, but MemberBirthdayFiltered pulls only records
for members with birthdays after January 1, 1970. Therefore, the record no longer matches the criteria and
disappears from the records pulled in the view, and the record would disappear from the view.

SELECT *
FROM MemberBirthdayFiltered

Figure 10-10

While it would still be in the table, the result would be disconcerting to the user, to say the least.

Another problem associated with views is that you could potentially insert or delete records that you are
not supposed to edit. Assume that the membership is divided by state with different people assigned to
maintenance of member records according to state. Build a view for birthdays in Golden State:

CREATE VIEW MemberBirthdaysGoldenState
AS
SELECT MemberId, FirstName, LastName, DateOfBirth, Street, City, State,
ZipCode, Email, DateOfJoining
FROM MemberDetails
WHERE (State = ‘Golden State’)

Having created the view, you can now execute the following SELECT * statement:

SELECT *
FROM MemberBirthdaysGoldenState

Executing the statement provides the results shown in Figure 10-11.

Figure 10-11

296

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 296

However, someone writes a query that mistakenly inserts a member in another state:

INSERT INTO MemberBirthdaysGoldenState
(MemberId, LastName, FirstName, DateOfBirth, Street, City,

State, ZipCode, Email, DateOfJoining)
VALUES (7, ‘Smith’, ‘Marty’, ‘3/23/1974’, ‘123 North Rd’, ‘Idlewild’, ‘New
State’, 65421, ‘msmith@SmithSonJonSon.com’, ‘3/01/2004’)

This is a perfectly valid SQL statement, however, and the query inserts a new record into the
MemberDetails table in a state that is not visible in the view, and which does not belong to the user
doing the update. This user cannot see the new record and thinks that the DBMS ignored his request,
and some other user now finds a record in his state for a member he didn’t add.

In order to prevent this kind of problem, you might want to disallow these updates from occurring
through the view. The DBMS can do this for you using the CHECK OPTION keyword in the CREATE VIEW
statement, as shown below in the new version of the view:

CREATE VIEW MemberBirthdaysGoldenStateCheckOption AS
SELECT MemberId, FirstName, LastName, DateOfBirth, Street, City, State,
ZipCode, Email, DateOfJoining
FROM dbo.MemberDetails
WHERE (State = ‘Golden State’)
WITH CHECK OPTION

When you specify the CHECK OPTION keyword in a CREATE VIEW statement, the DBMS stores the
CHECK OPTION with the view. Whenever a user performs an UPDATE, INSERT, or DELETE on the view,
the DBMS checks each operation to ensure that it meets the WHERE criteria. Any operations failing to
meet the WHERE criteria are not performed. For example, an attempt to execute the following statement
would fail:

INSERT INTO MemberBirthdaysGoldenStateCheckOption
(MemberId, LastName, FirstName, DateOfBirth, Street, City, State, ZipCode,

Email, DateOfJoining)
VALUES

(7, ‘Smith’, ‘Marty’, ‘3/23/1974’, ‘123 North Rd’, ‘Idlewild’, ‘New State’,
65421,

‘msmith@SmithSonJonSon.com’, ‘3/01/2004’)

You would see results similar to Figure 10-12.

Figure 10-12

As you might imagine, CHECK OPTION can add significant overhead to an action query. Each record
being updated has to be checked for conformance with the view. Additionally, you can build views
based on other views, and each may have a CHECK OPTION. Each level must be checked to ensure that
the requested operation passes its check.

297

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 297

The CHECK OPTION plays an important role in security and data integrity. You certainly don’t want to
allow updates on data that the user is not supposed to see or modify. Furthermore, if the update is valid,
it should usually not occur through that view. Thus, whenever you create a view to use for updates, it is
a good idea to seriously consider whether to use CHECK OPTION.

Dropping Views
Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The syntax
is simple enough:

DROP VIEW MYVIEWNAME

Dropping a view can be a bit hazardous, however, because other views might be based on the view
being dropped. Suppose that you have a view of all members in Golden State:

CREATE VIEW MembersFromGoldenState AS
SELECT *
FROM MemberDetails
WHERE (State = ‘Golden State’)

You then build a view based on that view:

CREATE VIEW MembersFromGoldenStateBirthdays AS
SELECT FirstName, LastName, DateOfBirth
FROM MembersFromGoldenState

What happens now if you attempt to drop MembersFromGoldenState?

DROP VIEW MembersFromGoldenState

In order to explicitly specify what to do, there are two additional keywords: CASCADE and RESTRICT.

DROP VIEW MembersFromGoldenState CASCADE

The CASCADE keyword tells the DBMS that if you attempt to drop a view and other views depend on
that view, it should delete the dependent views as well. The DBMS searches through all other views,
looking for references to the view being dropped. If it finds any, then the DBMS drops that view as well.
Because you can build layered views, using the CASCADE keyword can result in entire chains of views
being dropped because views depend on views being dropped.

The RESTRICT keyword, on the other hand, tells the DBMS that the drop should fail if any other views
depend on the view being dropped.

DROP VIEW MembersFromGoldenState RESTRICT

The DROP command (shown above) should fail with an error.

A DROP VIEW statement with no qualifiers may be valid syntax because early versions of SQL did not
support RESTRICT and CASCADE, so for backward compatibility some DBMSs may accept the statements.
Specifying exactly what you want to happen when you drop a view, however, is highly advisable.

298

Chapter 10

14_577328 ch10.qxd 1/28/05 11:25 PM Page 298

Summary
As you learned, views are little more than specific SQL statements stored in a database that is associated
with a particular data set. You can use views to provide security, to build other views, or to personalize
data. In this chapter, you learned the following:

❑ A view is a virtual table allowing users to view and sometimes update specific pieces of data.
The database stores the view definition, but the data that the view displays is created at the
moment the view is executed.

❑ Views can be built on other views to build up queries that might be tough to construct or
extremely confusing to work with if attempted in a single view.

❑ Typically a view supplies data in a format familiar to the user and restricts access to data that
the user should not see or update. A view can be a simple row or set of columns, pulled from a
single table, or it can contain data from literally dozens of tables, joined behind the scenes in
other views, with calculated fields, groupings, and summations.

❑ Updates may be possible through views but often cannot be performed due to restrictions in
how updates are performed. If views are used for updates, checks must be performed to ensure
that the updates do not compromise the security that may very well be the purpose of the view.

The next chapter covers transactions, another aspect of data security, which are used to ensure that multi-
ple related changes to the database are correctly written as a group or backed out as a group if something
prevents the write.

Exercises
1. Build a saved field view named vFirstLastDOB to display the first name, last name, and birth

date for all members in the MemberDetails table.

2. Build a saved row view named vGoldenStateMembers displaying all the fields from the
MemberDetails table for all members in Golden State.

3. Build a windowed view named vGoldenStateMembersFirstLastDOB building on
vGoldenStateMembers, pulling only the first name, last name, and birth date fields.

4. Drop all the views just created.

299

Views

14_577328 ch10.qxd 1/28/05 11:25 PM Page 299

14_577328 ch10.qxd 1/28/05 11:25 PM Page 300

11
Transactions

When you move out of the realm of single-user databases, ensuring the validity of the data from
the time you start to make modifications to the time you finally finish making modifications
becomes critical. Modern databases may host hundreds or even thousands of users and even host
programs running autonomously and automatically without human input or intervention. If each
of these users and programs can independently make changes to data throughout the database,
the probability of collisions between users updating the data becomes almost a certainty.

Even in so-called small databases, it isn’t uncommon for the majority of users to all be using a
small segment of the data, typically the most recent data. In many cases, older data is used for his-
torical purposes only, examined only for reports about past performance. In many databases, the
data entered in the last month or even the last few days is far more likely to be updated and exam-
ined than data from a year ago. An insurance company has thousands or even millions of claim
records but is actively working on only a few hundred or thousand right now. A manufacturing
company may have hundreds of thousands of orders over the last 10 years but only a few hundred
that are currently being processed. A hospital has thousands of patient records in their database
but only a couple hundred people currently in the hospital and a few hundred more being seen on
a daily or weekly basis.

Most users need to see only these active records. Users add new records, other users immediately
use these new records to cause related processes to occur, other records in other tables are updated,
or new records are created, all causing a big ripple effect caused by some triggering event such as
an accident claim, a product order, or a patient admission. Everybody needs concurrent access to
this small set of new data, and then as the claim is processed, the product is manufactured, the
order is shipped, or the patient is treated and released, these records tend to go dormant with little
or no activity for long periods of time. Perhaps a few reports are run to show how many claims
were processed or a warranty claim is processed by the manufacturer, but this is often a tiny per-
centage of the total processing volume and tends to occur on a more random data set.

Now think about most of the database users all trying to update records, add new records, delete
records, and report on the last month’s (or even week’s) data at once, and you can see that a small
handful of records is often used many times by many users at any given time. Which records are
being used changes as the data ages and new claims or orders are processed, but the fact remains
that with all of this emphasis on a small percentage of the data, collisions are virtually inevitable.
It is critical, therefore, that the DBMS be capable of ensuring that such collisions are handled so
that data loss does not occur. For exactly this reason, you use transactions.

15_577328 ch11.qxd 1/28/05 11:25 PM Page 301

The information that follows comes with a huge caveat: Virtually everything that follows varies depend-
ing on your specific implementation. Transaction and locking implementation is very specific to a partic-
ular vendor’s product and the details vary, sometimes immensely. The best you can expect from this
book is to get a feeling for what is possible, and then you should read the documentation for the DBMS
you are working with for the exact details of how that product works.

Introducing Transactions
In SQL, a transaction is a group of SQL statements taken together as a logical unit of work. Oftentimes,
the process of entering data requires adding data into several different tables and perhaps modifying data
in a couple of tables. If any of those operations fail, then the entire set of operations must be undone. In
order to ensure that you perform all of the operations or none of the operations, you use transactions.

In order for a group of statements to be considered a transaction, it must pass the ACID test. ACID is an
acronym that stands for the following:

❑ Atomic: This property refers to the all-or-none behavior of the group of statements. If any of the
statements fail, then the entire group of statements must be undone or rolled back. Only when
all of the statements execute without error are the results of the entire group of statements saved
to the database. When a patient checks in to the hospital, a new patient record may need to be
created or an existing record updated. A check-in record needs to be created. A bed needs to
be assigned to that patient. It would not be good to get the patient all the way checked in but
not assign a bed to the patient. Losing patients is considered very bad practice.

❑ Consistent: The database must be in a consistent state at the end of the transaction. The SQL
statements must be applied without error, and all database structures must be correct and
saved. A consistent state really means that as the DBMS makes decisions on available data,
updates to data do not overwrite previous updates, and records are not added or deleted based
on data that is not a real, permanent part of the database.

❑ Isolated: Data that transactions change must not be visible to other users before or during the
changes being applied. Other database users must see the data as it would exist at the end of the
transaction so that they do not make decisions or errors based on data that is no longer valid. If
a product order is rolled back because the customer decides at the last minute to order a differ-
ent part, another order should not be back-ordered because the first order was momentarily vis-
ible and there appeared to be insufficient stock to fill the next order.

❑ Durable: At the end of the transaction, the database must save the data correctly. Power out-
ages, equipment failures, or other problems should not cause partial saves or incomplete data
changes. Most DBMSs manage this requirement through the use of transaction logs kept on an
entirely different drive from the main database.

In order to use transactions in a meaningful way, you need to build some data not included in the origi-
nal database. In the next section, you build tables with inventory to implement a very simple rental
database. You examine how these tables are created and how data is inserted, and you start to think
about which pieces should use transactions. Later on, after you have learned a great deal more about
transactions, you learn how to wrap some of these operations in transactions and why you would do so.

302

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 302

Example Data
This section creates example code to demonstrate the concepts you are about to learn. This section intro-
duces some SQL statements that modify the database structure itself by adding tables. Further, you add
initial data to some of the tables and then use that data and existing data from other tables to add entirely
new data to the new tables. The following discussion shows you the importance of using transactions
when they are useful but likewise how it is necessary to avoid using transactions when there is no reason
to do so. Transactions have costs, primarily in locks and processing time, and you need to avoid these
costs where they simply don’t add any value to your process. The database changes are introduced here
so that you can think about them as this chapter discusses the issues that come with the use of transac-
tions. Later sections, after you know how and why things work, reexamine these database changes and
discuss which should use transactions, which should not, and why.

On to the example. The film club has started renting movies to its members as a way to earn money. To
do this, several new tables have to be added to the database structure; when in use, several different
tables have to be updated as a unit, or the database could be left in an inconsistent state.

In order to track rentals, you need to add a few new tables to the database.

Use the following SQL to add the Movie Format table:

CREATE TABLE [Format] (
[FormatId] [int] IDENTITY (1, 1) NOT NULL,
[Format] [char] (10))

This SQL adds the Inventory table:

CREATE TABLE [Inventory] (
[InventoryId] [int] IDENTITY (1, 1) NOT NULL ,
[FilmId] [int] NOT NULL ,
[FormatId] [int] NOT NULL ,
[CheckedOut] [char] (1))

Finally, the following SQL adds the Rentals table:

CREATE TABLE [Rentals] (
[RentalId] [int] IDENTITY (1, 1) NOT NULL ,
[InventoryId] [int] NOT NULL ,
[MemberId] [int] NOT NULL ,
[DateOut] [datetime] NOT NULL ,
[DateIn] [datetime] NULL ,
[Charge] [money] NULL

) ON [PRIMARY]

Once you add the tables to the database, you need to add initial data to the Movie Format and Inventory
tables. Each of these processes involves SQL statements, and they depend on the previous operation suc-
ceeding or the next operation is not valid. For example, you need to build the Movie Format table and
place two records in that table. The three formats are DVD, VHS, and Beta. If the statement that builds
the table fails, obviously the process of placing the three records in the format table fails as well. Next,
you need to build the Inventory table and then place several inventory records in the table, which tell
you what movies are available for rental and in what format. Then you can start renting movies.

303

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 303

This SQL adds formats (data) to the format table:

INSERT INTO [Format]([Format])
VALUES(‘VHS’)
INSERT INTO [Format]([Format])
VALUES(‘Beta’)
INSERT INTO [Format]([Format])
VALUES(‘DVD’)

The primary key of this table is an identity, which means it automatically creates a number for the key
(1, 2, and 3). Thus, 1, 2, and 3 are used as the foreign key in the next table.

This SQL adds data to the Inventory table:

INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(1,1,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(1,2,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(2,1,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(2,2,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(2,3,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(3,2,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(4,2,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(4,3,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(5,2,’N’)
INSERT INTO Inventory(FilmId, FormatId, CheckedOut)
VALUES(5,3,’N’)

The process of renting movies consists of running a query to find out what is available, selecting a spe-
cific inventory item and marking it as rented, and building a new record in the Rentals table with the
member ID, the inventory ID, and the date rented.

Try It Out Renting Movies without Transactions
1. Select all available inventory records so that you can pick a movie:

SELECT Inventory.InventoryId, Films.FilmName, Films.PlotSummary, Format.Format
FROM (Inventory
INNER JOIN Films ON Inventory.FilmId = Films.FilmId)
INNER JOIN Format ON Inventory.FormatId = Format.FormatId
WHERE (((Inventory.CheckedOut)= ‘N’));

2. Select a specific movie and mark it as rented:

UPDATE Inventory
SET Inventory.CheckedOut = ‘Y’
WHERE (((Inventory.InventoryId)=7));

304

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 304

3. Build a record in the Rentals table:

INSERT INTO Rentals (InventoryId, MemberId, DateOut)
SELECT 7 AS InventoryId, 3 AS MemberId, ‘3/21/2004’ AS dateout;

4. When the movie is returned, the rental record has to be updated with the date returned:

UPDATE Rentals
SET Rentals.DateIn = ‘3/23/2004’, Rentals.Charge = 5
WHERE (((Rentals.InventoryId)=7) AND ((Rentals.MemberId)=3));

5. Also update the record with the amount paid, and update the inventory record to indicate that
the movie is back in stock:

UPDATE Inventory SET Inventory.CheckedOut = ‘n’
WHERE (((Inventory.InventoryId)=7));

How It Works
Some of these operations are examples of transactions that should be completed only if all the operations
succeed. A rental consists of finding an available inventory item, marking that item as rented, and creat-
ing the rental record. If any of these operations fail, they should all fail, and the entire set should be
performed again. If the inventory item was marked as rented, but the rental record was not created,
then that unit would never be updated as available later and would “disappear” from the list of avail-
able movies. Likewise, upon returning the movie to inventory, the rental record is marked with the date
returned and the amount paid, and then the inventory record is updated to indicate that the unit is back
in stock. Furthermore, what would happen if two database users tried to rent the same movie at the
same time? As you can see, doing things as you did previously with no transactions could quickly lead
to chaos, with the database left in an indeterminate state.

On the other hand, creating a new table and initializing that table with new records may not require a
transaction. If the table has never existed before, and the processes are not in place to use that data, then
no other users would attempt to add, delete, or modify the records in or the structure of the table, so
why perform all the overhead associated with a transaction?

As you soon discover, it is critical to learn when to use transactions and when not to. Transactions have
overhead associated with them and can cause serious performance issues if not used judiciously.

ANSI Model
The ANSI SQL standard defines a specific transaction model, the COMMIT and ROLLBACK statements, and
their roles in ensuring data integrity. Many commercial DBMS products use this model, while other
products add enhancements or refinements to the model that allow better control over the processing of
transactions. This is one area where finding out what your DBMS provides is beneficial. Enhancements
almost always provide additional flexibility and make using transactions easier or more powerful in
some way.

The idea behind transactions is to bracket sets of SQL statements with transaction keywords such that all
the statements between the keywords are processed as a unit. Either they all succeed or they all fail.
Furthermore, they can be used to prevent or allow other users to see changes that you are making in cer-
tain circumstances. In the ANSI model, only COMMIT and ROLLBACK are specifically defined. The BEGIN

305

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 305

TRANSACTION statement is not defined but is implied to be executed as the first SQL statement and the
first statement following every COMMIT statement. In Transact-SQL, BEGIN TRANSACTION is a defined
keyword and there is no such implied first BEGIN TRANSACTION statement.

One problem with an implied BEGIN TRANSACTION as the first SQL statement, and as the first statement
after every COMMIT statement, is that it is not possible to have SQL statements that are not part of a trans-
action. Transactions have costs, and not to be able to turn them on or off is an inconvenience.

COMMIT
The COMMIT statement tells the DBMS that all the statements executed since the last COMMIT statement
have completed successfully and that the database is consistent. At this point, the data modifications
caused by the previous SQL statements are actually written to disk. After the COMMIT statement, you
cannot undo the changes made to the data without running more SQL statements to perform the undo.
Figure 11-1 shows you a series of SQL statements, which taken together constitute a transaction. At any
point up to the COMMIT, a ROLLBACK can be performed, which undoes all the changes to the database
caused by the SQL statements. Once the COMMIT occurs, the changes are written to the disk and you can
no longer undo the previous statements.

Figure 11-1

Select

Database
Before
Transaction

Database
After

Completed
Transaction

All Changes Saved

Update

Insert

Delete

Insert

Commit

306

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 306

The other statement that the ANSI SQL standard defines is the ROLLBACK statement.

ROLLBACK
If for any reason you need to undo the transaction as a whole, execute the ROLLBACK statement.
ROLLBACK tells the DBMS that all changes to data caused by all SQL statements since the last COMMIT
statement must be undone. It is very important to understand where the transaction begins. Many
interactive applications perform a COMMIT after each statement the user enters, which essentially
means that ROLLBACK is unavailable. On the other hand, many of these same DBMSs when used
programmatically start a transaction with the first SQL statement executed by the program and never
perform a COMMIT until explicitly told to do so. Thus, a ROLLBACK statement undoes every statement
since the program began or back to the first statement after the last COMMIT. Figure 11-2 shows a set
of three SQL statements occurring and then a ROLLBACK statement. The ROLLBACK causes the previous
three statements to be undone. After the ROLLBACK, the database is left in the same state as if the first
three SQL statements had never even been performed.

Figure 11-2

COMMIT and ROLLBACK are executable SQL statements, which for this discussion are called transaction
statements or keywords. In the ANSI model, either of these transaction statements is valid after at least one
nontransaction statement such as SELECT, INSERT, DELETE, and so on.

In fact, many DBMSs perform a COMMIT after every statement entered directly into the user interface.
This is known as autocommit and can be turned on or off in some products. In other words, you receive
a COMMIT immediately after each SQL statement typed in, and a ROLLBACK is not valid in that environment.

Select

Database

Rolled Back
Transaction

Undo All
Changes

Update

Insert

Roll Back

307

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 307

Additionally, if a DBMS is used programmatically and does not COMMIT until told to do so, it is critical that
your program perform this explicit COMMIT as often as is reasonable. If you fail to do so, all the records you
update (or in some instances even look at) become locked and other transactions cannot update (or in some
instances even look at) any data used inside your transaction. In these environments, the rule of thumb is
COMMIT early and COMMIT often.

The ANSI model does not provide an explicitly defined keyword for beginning a transaction. A BEGIN
TRANSACTION statement is assumed as the first statement and as the first statement following each
COMMIT. This is a bit confusing and additionally does not allow the programmer to create statements
that are not part of a transaction. As you see in a moment, all transactions have costs, and there are cases
where transactions simply aren’t necessary. For these and other reasons, many DBMSs have added
extensions to the SQL language to allow explicit BEGIN TRANSACTION statements and other enhance-
ments. These extensions are generally known as Transact-SQL.

Transact-SQL
Transact-SQL is an extension to the SQL syntax that some DBMSs use to allow a finer degree of control
over processing transactions. In essence, whereas the ANSI standard assumes a BEGIN TRANSACTION
before the first SQL statement and immediately after a COMMIT or ROLLBACK, Transact-SQL requires a
BEGIN TRANSACTION statement to initiate a transaction.

BEGIN TRANSACTION
The BEGIN TRANSACTION statement tells the DBMS that the SQL statements that follow form a transac-
tion group and must be processed as an atomic unit, either all processed or none processed. Unlike the
ANSI transaction model, which assumes an automatic BEGIN TRANSACTION and must receive a COMMIT
or a ROLLBACK statement at some point, Transact-SQL acts as if a COMMIT is performed after every SQL
statement unless a BEGIN TRANSACTION is processed. This is a very different model with very different
results from the SQL model.

COMMIT TRANSACTION
The COMMIT TRANSACTION statement is identical in function to COMMIT from the ANSI model. It causes
all SQL statements since the opening BEGIN TRANSACTION to be written to the database as an atomic
unit. Unlike the ANSI model, Transact-SQL does not automatically assume a new BEGIN TRANSACTION.
Any SQL statements between the COMMIT TRANSACTION and the next BEGIN TRANSACTION are commit-
ted individually as they occur. Figure 11-3 shows a series of SQL statements where the first two state-
ments are outside of any transaction. These statements are committed immediately with no opportunity
to undo or roll them back. Then a BEGIN TRANSACTION is explicitly executed telling the DBMS that
everything that follows should be considered part of a transaction until either a ROLLBACK or a COMMIT
is encountered. In this figure, a COMMIT is executed, and at that point, the INSERT and UPDATE state-
ments are actually saved to the disk.

308

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 308

Figure 11-3

SAVE TRANSACTION
The SAVE TRANSACTION statement allows you to create named Savepoints that mark points inside of a
large transaction. This allows the ROLLBACK TRANSACTION to perform partial rollbacks by providing a
Savepoint name to the ROLLBACK statement. The SAVE TRANSACTION statement does not perform a save
(that is the function of the COMMIT TRANSACTION statement); rather it simply sets up markers within the
transaction. Figure 11-4 shows a series of SQL statements with SAVE TRANSACTION statements inserted
along the way. In this case, a COMMIT is eventually performed, but if required, a ROLLBACK could be per-
formed back to either of these two named Savepoints.

Select

Database

Database

Update

Begin
Transaction

Insert

Update

Commit
Transaction

309

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 309

Figure 11-4

ROLLBACK TRANSACTION
The ROLLBACK TRANSACTION statement causes the DBMS to roll back, or undo, some or all of the changes
made to the database. If any SAVE TRANSACTION statements have been executed, then the ROLLBACK
TRANSACTION can be performed back to one of these Savepoints, or all the way back to the BEGIN
TRANSACTION. In Figure 11-5 you see a partial rollback as the second-to-last statement. This ROLLBACK
causes a rollback to the Savepoint named B, and then the COMMIT that follows causes all the SQL state-
ments up to that named Savepoint to be stored to disk.

Begin
Transaction

Database

A

B

Update

Delete

Save
Transaction

Update

Insert

Save
Transaction

Delete

Commit
Transaction

310

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 310

Figure 11-5

The next section discusses the log file, the key to being able to perform a rollback. A transaction log is
generally a text file that is written outside of the database, usually on a completely different physical
drive. All potential changes to the database are written to the log file, and then that file is used to actu-
ally write the data changes back into the database when a COMMIT is encountered. Should a catastrophic
failure occur, such as an abrupt shutdown caused by power loss, the log file holds all changes to that
point in time.

Begin
Transaction

Database

A

B

Delete

Update

Save
Transaction

Insert

Save
Transaction

Roll back
To B

Update

Commit

311

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 311

Transaction Logs
How does a DBMS perform this magic of making changes to many different records in different tables,
guaranteeing that all or none of these operations occur, when hundreds or even thousands of other users
are doing the same kinds of things at the same time? The answer lies in locks, which are will be discussed
in a moment, and something called a transaction log.

Conceptually, a transaction log is basically a record of what the data looks like before the operation and
what the data looks like after the operation, all written to a separate file. As you execute each SQL state-
ment, the original data is copied to the log, and then the modified data is also copied to the log. As you
execute each SQL statement, its resulting pre- and post-state information is copied to the transaction log.
Because you know what the data looked like before the modification, you can undo the modification if
necessary.

Figure 11-6 shows a conceptualization of the process. As each SQL statement is executed, the DBMS
writes the state of the data before the change is applied and then the state after it is applied. The UPDATE
causes a before/after state, the DELETE causes a before/after state, and so on. When the COMMIT state-
ment is finally encountered, the after data is written to the disk. Should a ROLLBACK be encountered, the
before data is used to undo any changes and restore the unmodified state to the database.

Figure 11-6

Logs should also generally be saved on a different physical drive from the main database so that if the
database drive fails, the logs are available to bring the database current from the last backup point.

As you might imagine, transaction logs have a huge impact on performance since all modifications are
written to the log, with pre- and post-modification data states, as well as to the actual database records.
These logs generally just accumulate forever, getting larger and larger. The DBMS usually allows you to
specify things such as maximum size, percentage of database, and so on. You also usually have tools for
backing up the logs and then truncating them to save on disk space.

Update Before

SQL Seq TRANS LOG

After

Data Before
Data After

Data Before Each
Record

Each
Record

Each
Record

Data After

Delete

Insert

Commit

312

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 312

In spite of all of these performance issues, there are very real and powerful benefits that result from having
a transaction log. Usually a machine failure, power outage, or other catastrophe has little or no effect on the
database since the transaction logs record modifications. If you need to roll back changes, everything
required to perform this function is available in the transaction log. Oftentimes the DBMS automatically
recognizes a failure and looks at the transaction logs to figure out what needs to be done to restore the
database to a consistent state. Sometimes you must use a special recovery utility to perform this function.

Remember that this discussion is just conceptual. The exact implementation details will vary dramati-
cally from DBMS to DBMS, and in fact you do not need to be concerned with these details. Turning on
and off transaction logs, tuning their size, and so forth are the domain of the database administrator
(DBA). If you have such a person, you are not normally allowed to even touch these database properties
yourself, and you need to go through the DBA if you need them changed for some reason. What you
should take away from this discussion is the concept of automatically recording every change in the
transaction log and then using these log files to roll back a transaction when required.

And finally, realize that the smaller database products, such as Microsoft Access, do not use transaction
logs, even though they do implement transactions. If you have a catastrophic failure in the middle of a
transaction, you have nothing to fall back on to help you out.

Locks
Locks are the key to implementing transactions in all DBMSs, and as such, the following sections spend
considerable time discussing locks, how they function, how they can help ensure consistency, and espe-
cially how they can affect performance. The term lock means much the same thing in a database that it
does in life, to make some thing unavailable to some people at some times. In the case of a database, it
specifically means to make some data or data structure unavailable to other valid users of that data or
structure for some period of time. Perhaps you need to make the entire MemberDetails table unavailable
to every other user because you need to add or drop a field. Or perhaps you need to lock the data in the
Inventory table so that you can select and update specific records without other users seeing inconsistent
data as you do so.

Locks have nothing to do with user-level security, specifically, preventing a specific user or group of
users from accessing data. Their function is simply to prevent other users from momentarily accessing
data while an update or other critical usage of data is under way. Furthermore, in general you don’t
apply locks yourself; the DBMS applies the locks as it sees fit, although there is a LOCK TABLE syntax for
acquiring a lock of an entire table. Even though you don’t generally apply locks yourself, you still need
an understanding of how they operate so that you can understand how transactions impact system per-
formance because of the locks the system applies.

Locking Granularity
The term granularity refers to the level or size of the structure to which a lock is applied. Most DBMSs
have the ability to apply locks at many different levels within the database, and it is useful to under-
stand what these levels are. Every lock has the potential to inconvenience other users, so you really want
to apply locks to the smallest unit possible so that you minimize the inconvenience. The following sec-
tions examine granularity from the largest data unit (the entire database) down to the smallest common
unit (the record).

313

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 313

Database
There are perfectly valid reasons for locking the entire database. Perhaps a process requires making
changes to most of the tables in the database, perhaps even the structure of a large number of tables.
Getting locks to each table to be modified, in the correct order, can take a long time. It might make sense
in this instance just to lock the entire database, but of course you should do this as seldom as possible.
Do so at times when you have the fewest users trying to access data, and make your updates as quickly
as possible.

Table
The next level of locking is an entire table. Say a manufacturer wants to update the price on every item
they sell by 5 percent. Rather than locking each record, locking the table that contains the record, running
an UPDATE query on every record in a single SQL statement, and then releasing the lock would be far
faster.

Page
DBMSs tend to work with the physical medium that they are stored on to help them manage the data.
The DBMS may break its table data down into chunks that fit in a sector on the disk. These chunks are
called pages, and of course the page size often corresponds to the sector size of the hard disk. Thus, if the
disk has a sector size of 16K, the DBMS applies locks to an entire page since this maps easily to lock
requests sent to the operating system. For this reason, disks used for storing databases may be most effi-
cient if formatted with the smallest sector size available (within reason). Obviously, a 2K sector locks
fewer data rows than an 8K or a 32K sector. In the end, a record in a given table usually holds a specific
number of bytes. If a record has five fields that hold 400 bytes, then a 2K sector locks roughly five or six
such records (assuming page locks are used), but an 8K sector locks 20 records, and a 32K sector locks 80
records. As you can see, large sector sizes lock very large chunks of a table even if you need to lock only
a small part of the table.

Row
Many modern databases allow locking to the row, or record, level. This means that other users without
interactions may use adjacent records in the database. Of course, this is good, but remember that each
lock requires manipulation by the DBMS. If 40 percent of all the records in a table need to be updated by
a mass update, and the table contains a million records, it makes much more sense to just lock the table
rather than apply for 400,000 record-level locks. On the other hand, if only 100 of those million records
need updating, asking for 100 record locks minimizes the inconvenience to other users who still need to
use the table.

Column
Although it is theoretically possible to lock data at the column level, few if any DBMSs do so. The over-
head to track the locks at this granularity is simply too high and the benefit too small.

Locking Levels
In addition to the granularity or size of the data unit being locked, locks also have a property known as
the level. The level determines how rigidly the lock is applied and whether any other user can use the
data in any manner. The first locking level is the shared lock.

314

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 314

Shared
A shared lock essentially means that no one can modify the data, but other users may look at and use the
data for any purpose not requiring an update. A user may need to run a report that asks different ques-
tions about a set of records. If any of those records were to be updated by another user, then the ques-
tions would not provide consistent answers since the data provided at the end would not be the same as
the data at the beginning. On the other hand, it is perfectly valid for other users to ask questions about
that same set of data. It is not necessary to lock the data such that no one else can see it.

Exclusive
An exclusive lock means that other users should not be allowed to see the data because the data is about
to be changed. If one user is updating the price of every inventory item by 5 percent and another user is
running a report about the value of all the items in the inventory, the report would return a different
answer depending on when the report started running and how many items had already been updated.

Deadlocks
If you think about users locking different records in different tables, it becomes obvious that the database
could get in a situation where user 1 is waiting for data locked by user 2, and user 2 is waiting for data
locked by user 1. Each user needs the data locked by the other user before they can finish their process
and release their locks. This situation is known as a deadlock. Deadlocks inevitably occur, and the DBMS
must have a means to identify a deadlock and then must have a strategy for breaking the deadlock and
allowing one of the users to gain control of the data they need in order to release the locks they applied.
Unless the DBMS intervenes, both user requests wait forever for the other to unlock the necessary data.
This is a simple two-way deadlock, but of course deadlocks can occur between many different users at
once. Figure 11-7 shows a situation where two different transactions have locks applied, and each is wait-
ing for the data locked by the other transaction in order to continue. Transaction A has locked record 2 in
the Products table, and Transaction B is waiting to use record 2 in the Products table. Transaction B has
locked record 79 in the Orders table, and Transaction A is waiting for record 79 in the Orders table.
Neither transaction can continue until it gains control of the record locked by the other transaction.

Figure 11-7

1
2
3
4
5
6
7

78

Products
Transaction

A

Locks
Record 2

Orders

79
80
81
82
83
84
85

Waiting

for rec
79 in order

to finish

Transaction
B

Waiting for
rec 2

in order to
finish

Locks

Record 79

315

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 315

In order to find and fix such situations, most DBMSs periodically scan for deadlocks by checking all the
locks held by the active transactions. If it detects a deadlock, the DBMS simply picks one transaction at
random and rolls it back, thereby releasing the locks it applied. That transaction is considered the “loser”
of the deadlock since the work already applied for that transaction is undone and must be rerun. The
other user can now gain control of the data they need to finish their transaction and release their locks.
The losing transaction receives an error message informing it of the deadlock loss and the ensuing roll-
back. Of course, this is a highly simplified scenario. It is not only possible but also likely that a DBMS
sees deadlocks involving several different users, necessitating multiple rollbacks so that a single transac-
tion can proceed and release its locks.

This method of breaking deadlocks means that any transaction could potentially be rolled back even if
all of its SQL statements are perfectly valid and would otherwise process without error. Any statement,
even a simple SELECT statement, could be a deadlock loser and be rolled back. The statement is rolled
back not because of any fault of its own, but simply because it is involved in a deadlock and loses the
coin toss for which transaction gets rolled back. This is a small price to pay given the alternatives: a
deadlock or a database corruption.

If the deadlock loser is an actual person in an interactive program, the user can simply reenter the SQL
statements. In any program using SQL, the program must be prepared to handle the error codes that the
DBMS returns informing the code of the deadlock loss and consequent rollback. Typically, just as would
happen with a live user, the program simply resubmits the transaction.

In addition to lock levels, the next section discusses how you can also set parameters to your locks.

Setting Lock Parameters
Over time, the DBMSs from various vendors have evolved capabilities not necessarily provided in the
original SQL specifications. These capabilities may or may not be present in a given platform, and even
if present, they may act differently. Locks affect many different operations, and efficient locking is an
area that every vendor takes seriously. The vendors have provided the DBMS administrator various
parameters to use in adjusting the database, which are covered here.

Lock Size
As discussed earlier, most modern databases can lock data at various levels of granularity; thus a DBMS
may offer database-, table-, page-, and row-level locking.

Number of Locks
The DBMS typically has a lock pool with a finite number of locks available to all the transactions concur-
rently processing. Thus, the total number of locks is distributed to and recovered from transactions as
the transactions begin and end. The administrator may need to adjust the total number of locks to allow
for very complex transactions or very large numbers of transactions. Likewise, limiting the number of
locks can force the DBMS to escalate locking earlier, increasing the efficiency of the database.

Escalation
The process of requesting locks, checking the locks against requests for data by other users, and other
such overhead can be very time-consuming. In an effort to minimize the overhead, the database may
escalate a set of locks. Escalation refers to the database’s ability to consolidate many locks at one level of
granularity into a single lock at a higher granularity. For example, if a transaction applies for hundreds

316

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 316

of record locks, the DBMS may decide that it is more efficient to simply lock pages of the database
instead, or even the entire table. If a transaction locks records in dozens of tables, it may make sense to
attempt to lock the entire database. In Figure 11-8, you see a situation where an extreme percentage of
the records in a table are locked individually. In a situation like this, the DBMS may promote the many
individual locks into a single lock on the entire table.

Figure 11-8

Escalation is simply an automatic process by the DBMS to attempt to consolidate many locks into a
smaller number of locks. Even though it is an automatic process, the administrator may have some con-
trol over the process.

Timeout
As the number and complexity of transactions climb, the time required to obtain the locks necessary for
any given transaction to proceed can mount, and any given transaction may have to wait a very long
time to process. Most DBMSs have parameters that the administrator can set that cause a transaction to
time out and return an error if the locks cannot be obtained in a reasonable time.

Escalation

Orders

Transaction

Locks

on

Individual

Records

Transaction

Locks

Escalates to

Entire Table

Orders

317

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 317

When discussing locking, the phrases optimistic and pessimistic inevitably come up. Optimistic locking
generally presumes that transactions do not interfere with each other and thus prefer less restrictive
locking strategies. Pessimistic locking assumes that transactions definitely interfere with each other and
thus presumes more restrictive locking strategies. In general, locks work very well as long as the locks
are of short duration, usually milliseconds or seconds. If locks last hours or days, they can tie a database
up in knots, which is where versioning (discussed shortly) comes into play.

Isolation Levels
With some DBMSs, you can set the isolation level, which simply means the level of isolation between users
of the database and their transactions and how much they are allowed to interfere with each other. To this
point, this chapter has discussed transactions as if they were absolutely isolated from each other, but this
may not be necessary or even desirable. Remember that transactions and locks have costs associated with
them, and to force absolute isolation at all times would cause maximum cost. However, insufficient isola-
tion between transactions can cause serious problems, displaying inconsistent views of the data and even
causing data corruption. It is important to understand the issues that insufficient isolation can cause, as
well as issues that unnecessary isolation causes.

SET TRANSACTION
The SQL2 standard provides an actual SET TRANSACTION statement that tells the DBMS which isolation
level the transaction that follows uses. You can use this statement only as the first statement of a transac-
tion, and thus you cannot change it in the middle of a transaction. It is possible to change levels at the
beginning of any transaction, allowing different processes the freedom to select the isolation level neces-
sary for the transaction that follows. Each level has its uses and should be used where applicable. After
all, the lower the isolation level, the lower the impact on the database, on other users and processes, and
on the hardware and software that implement the database platform.

Isolation levels are set using SQL code as shown below. Only one of the isolation levels can be set at any
given time, and it remains in effect until explicitly changed. Generally, if no SET TRANSACTION state-
ment is issued, the SERIALIZABLE level is in effect.

SET TRANSACTION ISOLATION LEVEL ISOLATION LEVEL
BEGIN TRANSACTION

The four isolation levels are discussed in the following sections.

SERIALIZABLE
A SERIALIZABLE isolation is essentially the maximum isolation possible. At this level, the DBMS guar-
antees that concurrently processing transactions operate as if they occurred in sequence (serially). SERI-
ALIZABLE isolation is the default level in the ANSI standard, and this is how most database users expect
transactions to perform. If a transaction sequence needs to be able to read a specific set of data twice dur-
ing the transaction and return exactly the same set of data, SERIALIZABLE is the level that you need to
use. It is implemented by using the following statement:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION

318

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 318

No updates, additions, or deletions to the record set by other transactions are allowed while your trans-
action is processing. SERIALIZABLE transactions are absolutely required where multiple transactions
occur on the same table, with updates and deletes that could cause data corruption if not handled prop-
erly. This scenario is covered in greater detail in the lost update and uncommitted data examples later in
this chapter.

REPEATABLE READ
REPEATABLE READ is the second most rigorous level of isolation and essentially states that updates by
other transactions to the existing records involved in your transaction must not be seen. However, inser-
tions are allowed. In other words, existing data rows that your transaction reads may not be modified or
deleted, but additional rows may be added. You set REPEATABLE READ by using the following statement:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRANSACTION

A multirow query run by your transaction at the beginning of your transaction may return additional
records late — the phantom insert problem discussed a little bit later.

READ COMMITTED
READ COMMITTED is the third isolation level. READ COMMITTED guarantees that your transaction cannot
see uncommitted updates from other transactions. This prevents the lost updates and uncommitted data
problems discussed later. Use the following statement to specify the READ COMMITTED isolation level:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRANSACTION

However, any transactions committed between reads of a data set may be seen. A process reading a row
of data twice could see changed data in the second read since another process could commit a change to
that data which would be seen the second time the data is read. If your process attempts to write updates
to data updated by another process, your update is automatically rolled back to prevent the lost update
problem, which is discussed later.

READ UNCOMMITTED
READ UNCOMMITTED is the last isolation level specified by the ANSI standard. In READ UNCOMMITTED,
any updates performed by other transactions affect your transaction, either committed or uncommitted.
This allows the uncommitted data, inconsistent data, and phantom data problems, which are all dis-
cussed in detail later in this chapter. However, the DBMS prevents the lost update problem (also dis-
cussed later) by causing a rollback of your changes if it would cause lost updates. The following
statement shows you how to set the isolation level to READ UNCOMMITTED:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
BEGIN TRANSACTION

The SET TRANSACTION statement also allows you to specify READ ONLY, which means that the transac-
tion only reads data. You can also specify READ WRITE, in which case, the transaction expects to update,
add, or delete records. Specifying READ WRITE allows the DBMS to optimize the transaction since it
knows in advance how the transaction may impact other processes and transactions.

319

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 319

Usually, the default isolation level is SERIALIZABLE. If you specify READ UNCOMMITTED, then the DBMS
assumes READ ONLY, and you cannot specify READ WRITE. If not otherwise specified, the DBMS assumes
READ WRITE. The purpose of these assumptions is twofold: to allow the DBMS to optimize its operation
and to protect inexperienced programmers from suffering the problems associated with transactions,
which are detailed in the next section.

Versioning
Versioning is a method of working around the issue of locks. The idea is that as modifications to records
are performed, versions of the data are made available to other users. Instead of just locking a user out,
the DBMS decides whether the other users need to see the modified or the unmodified version of the
data. There may in fact be several different versions of the data. The DBMS tracks the isolation levels
of the various transactions and makes decisions as to which version of the data any given transaction
should be allowed to see based on its isolation level. As far as I know, of all the major DBMSs, only
Oracle uses versioning.

Locks are inherently restrictive in nature and limit concurrent operations on data. If one transaction has
a write lock on data and another transaction has a SERIALIZABLE isolation level set, that transaction
cannot even see the locked data. Thus that transaction simply halts processing until the data it needs
to see is finally written. In a versioning system, as soon as the first transaction makes its modifications to
the data, the second transaction may be allowed to see the modified or unmodified data, depending on
what the DBMS decides is applicable to the operations the transaction is doing and its isolation level.
Thus the second transaction can keep right on processing.

Versioning databases can, under the right circumstances, increase the number of concurrent transactions
executing in parallel. Because the transactions do not wait for locks to release, they can continue what-
ever they are doing as if each process had exclusive access to the data. Unfortunately, there is significant
overhead in tracking whether the various processes did in fact interfere with each other, and in those
cases, the system must undo the damage and start over from the point where the interference occurred.

Problem Examples
In order to understand some of the problems that transactions help to prevent and that isolation levels
address, it is useful to discuss a well-known set of problems. These problems are so well known, in fact,
that they have been given names and are routinely discussed when learning transactions. The following
text identifies these problems, provides you with a scenario in which you might encounter each one, and
classifies the isolation level you should set in order to prevent them from occurring. Following the dis-
cussion of the problems is a table that summarizes the problems and how the various isolation levels
affect the problem.

The Lost Update
The lost update problem illustrates what can occur when two programs read the same data from a table,
use that data in calculations, and then try to update that data. A SERIALIZABLE isolation level helps you
to prevent the lost update. The following situation gives you an idea of how the lost update can pop up
in the real world.

320

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 320

International Board Manufacturer has a data entry system that the company uses for entering orders into
its database. Sue takes a call for 100 vt-50 video cards from her client. Checking the Inventory table, she
finds 175 vt-50 cards in stock. Meanwhile, John receives a call from his client who wants to order 130 of
the vt-50 cards. John also checks the stock level and, finding 175 vt-50 cards in stock, assures his client that
there is no problem filling the order. John enters his order for 130 cards in the Order table, and his order
entry program deducts 130 from the 175 shown in the Inventory table, leaving 45 in stock. A few seconds
later, Sue creates a new record in the Order table for 100 vt-50 cards and then updates the Inventory table,
subtracting 100 from the 175 that her copy showed in the table, leaving 75 vt-50 video cards in stock.

The improper use of transactions leaves the database in an inconsistent state. John’s update to the
Inventory table for 130 vt-50 video cards was lost when Sue’s update overwrote the previous update.
Both Sue and John assured their clients that they would receive the product ordered, when in fact there
were not enough video cards in stock to fill both orders. There are orders in the Order table for 230 vt-50
boards, but there are only 175 boards available to fill the two orders. Even worse, the Inventory table
shows 75 boards still in stock after filling these orders!

The Uncommitted Data
Later that same day, John receives an order for 80 vt-100 video cards. Checking stock, John discovers that
there are 95 cards in stock. He enters the order and updates the Inventory table to reflect the order, leav-
ing 15 cards in inventory. As John was entering the order, his customer starts asking about the latest and
greatest vt-150.

Meanwhile, Sue gets a call for 75 of that same vt-100 video card. Looking in the Inventory table, she sees
that there are only 15 cards in stock, so she tells her customer that she will back-order the part and ship
the whole order when the parts are in stock.

John’s client finally makes up his mind and decides to order 45 of the vt-150. John rolls back his order for
the vt-100, leaving the original 95 cards in stock.

In this case, because Sue was able to view uncommitted data from John’s transaction, she has mistakenly
told her client that there was insufficient inventory to fill their order, and she has placed a back order for
even more stock. Had Sue decided to ship the 15 cards, the situation would have been even worse because
John’s subsequent rollback would have set the Inventory record back to 95, when in fact 15 of those cards
had actually been ordered.

The Inconsistent Data
John receives an order for 100 vt-150 video cards and starts entering the order. Sue’s customer calls and
asks how many of the vt-150 can be sent to him overnight. Sue executes a query and discovers 135 cards
in stock. Sue’s customer asks about a couple of different cards, keeping Sue busy checking inventory
about different products. John finishes his order for 100 of the cards and commits the order transaction,
leaving 35 cards in stock. Sue’s customer finally decides to just take the available vt-150s. Sue queries the
Inventory table again, only to discover that the quantity in stock has changed from 135 to 35.

In this case, the database is left in a consistent state; no problem was created in the data itself. Sue saw
the actual quantity left; there really are only 35 cards in stock because the rest of the stock was ordered in
a transaction that managed to correctly save its data. She did not place an order for inventory that didn’t
exist, and she didn’t overwrite John’s data.

321

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 321

From Sue’s perspective, however, the data appeared inconsistent. Two reads of the same record a few
moments apart returned different results. Even though this did not cause an issue, in this case it might
very well have. Suppose that Mary had been running reports that showed sales by office and then sales
by salesperson. The two reports would not return usable data for John’s office because his office would
show sales figures without the sale he just made, whereas the Salesperson report would show that sale.
If Sue’s manager were to see such a report, his faith in the database would no doubt be diminished, and
with good reason. Furthermore, explaining the differences would be extremely difficult.

The Phantom Insert
The sales manager for John’s office is running a transaction that scans the Order table and generates a
long series of reports showing sales by region, sales by salesperson, and so forth. The report by region is
finished, but several more reports are still running. While this transaction is running, John receives an
order for $20,000, which he finishes entering just as the queries begin running for sales by salesperson.
Because the transaction is allowed to see the new order, the data by salesperson is $20,000 higher than
the sales by region would indicate possible.

As in the previous example, the problem is that the data is inconsistent between views of the data. The
database itself is in a consistent state at any given instant, but the data in the database is changing over
the time that the reports are being generated. Reads of two supposedly identical sets of records return
a different number of rows. In the previous example, an update to a record between reads caused the
problem. In this case, the insertion of a new record between reads caused the problem. Both of these prob-
lems cause the same symptom: data that appears to be (and in fact is) different between points in time.

Now that you understand isolation levels and the most common problems associated with them, the fol-
lowing table gives you a snapshot of how each isolation level helps you deal with each specific problem.

Isolation Level Lost Update Uncommitted Data Inconsistent Data Phantom Data

SERIALIZABLE Prevented Prevented Prevented Prevented

REPEATABLE READ Prevented Prevented Prevented Possible

READ COMMITTED Prevented Prevented Possible Possible

READ UNCOMMITTED Prevented Possible Possible Possible

Revisiting the Example Code
Remember that it is important to use transactions when they are required and to avoid them or set the
isolation level correctly when the highest level of isolation is not required. In the majority of common
DBMSs, locks enforce transactions, and locks inevitably cause performance issues. Using your admit-
tedly simple example, this section discusses which code you might want to wrap in transactions and
which you probably wouldn’t.

The first process you need to do is to create a handful of new tables. Using a transaction at all when cre-
ating an entirely new table is probably not necessary. No other users know about the new tables, and
since they simply don’t even exist until the CREATE TABLE is executed, there is no chance of lock or data

322

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 322

contention. You could wrap your new tables in a transaction, but that would only tie up valuable locks
for a process that really doesn’t need locking at all. Therefore, you do not wrap the statements that create
the tables in transaction statements. Once the tables are added to the database, you need to add initial
data to the Movie Format table and the Inventory table. Each of these processes entails writing SQL
statements, and they depend on the previous operation succeeding or the next operation is not valid. For
example, you need to build the Movie Format table and place two records in that table. The three for-
mats are DVD, VHS, and Beta. If the statement that builds the table fails, obviously the process of plac-
ing the three records in the format table also fails. Again, transactions are not necessary, and you receive
errors if the previous CREATE TABLE statements fail.

Next, you need to build the Inventory table and then place several inventory records in the table, which
tells you what movies are available to be rented and in what format. Then you can start renting movies.

The process of renting movies consists of running a query to find out what is available, selecting a spe-
cific inventory item and marking it as rented, and building a new record in the Rentals table with the
member ID, the inventory ID, and the date rented.

Try It Out Renting Movies with Transactions
Select all available inventory records so that you can pick a movie. To do this, you really should wrap
the stuff that follows in a transaction. You are filling an order and don’t want the items you are modify-
ing to also be modified by other users.

1. Remember that in ANSI SQL you have to specifically end the previous transaction in order to
begin another transaction, so the first thing you do is run a COMMIT statement:

COMMIT

In Transact-SQL (SQL Server for example) this would not be required since you never explicitly
started a transaction.

In addition, for Transact-SQL you would need to explicitly start a transaction:

BEGIN TRANSACTION

2. For non-Transact-SQL you do not need to run a BEGIN TRANSACTION statement because it is
implicit.

SELECT Inventory.InventoryId, Films.FilmName, Films.PlotSummary, Format.Format
FROM (Inventory
INNER JOIN Films ON Inventory.FilmId = Films.FilmId)
INNER JOIN Format ON Inventory.FormatId = Format.FormatId
WHERE (((Inventory.CheckedOut)= ‘n’));

3. Select a specific movie and mark it as rented:

UPDATE Inventory
SET Inventory.CheckedOut = ‘Y’
WHERE (((Inventory.InventoryId)=7));

4. Build a record in the Rentals table:

INSERT INTO Rentals (InventoryId, MemberId, DateOut)
SELECT 7 AS InventoryId, 3 AS MemberId, ‘3/21/2004’ AS dateout;

323

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 323

5. At this point, you need to run a COMMIT statement to cause your modifications to be committed
or written to the database. In SQL Server (Transact-SQL) the TRANSACTION keyword is optional
and thus can be dropped.

COMMIT

How It Works
Transactions always have a BEGIN, whether it be implicit, as in the ANSI standard, or an explicit BEGIN
TRANSACTION, as in the Transact-SQL extension. If you are not using Transact-SQL, then you need to
perform a COMMIT to explicitly end one transaction and begin the next. Using Transact-SQL, you explic-
itly executed a BEGIN TRANSACTION.

Having told the DBMS that a transaction is desired, you then executed the statements that need to be
executed as a unit. View and select a record, mark it as rented, and then create a rental record. Once all of
these statements are finished, a COMMIT statement causes the entire sequence to be written to disk and
the transaction is finished.

Likewise, the statements checking the movie back in to inventory should probably be a transaction.
Again, use a simple COMMIT statement for users on ANSI SQL:

COMMIT

Users of Transact-SQL should use an explicit BEGIN TRANSACTION statement:

BEGIN TRANSACTION

When the movie is returned, the rental record has to be updated with the date returned and the amount
paid, and the inventory record must be updated to indicate that the movie is back in stock:

UPDATE Rentals
SET Rentals.DateIn = ‘3/23/2004’, Rentals.Charge = 5
WHERE (((Rentals.InventoryId)=7) AND ((Rentals.MemberId)=3));
UPDATE Inventory SET Inventory.CheckedOut = ‘n’
WHERE (((Inventory.InventoryId)=7));

At this point, you need to run a COMMIT statement to cause your modifications to be committed or writ-
ten to the database.

COMMIT

In SQL Server (Transact-SQL) the TRANSACTION keyword is optional and thus can be dropped if desired.

Using transactions in this manner prevents potential problems such as another database user trying to
rent the same movie at the same time or a movie being marked as returned in the Rentals table but never
being marked as available to be rented in the Inventory table.

324

Chapter 11

15_577328 ch11.qxd 1/28/05 11:25 PM Page 324

Summary
Transactions ensure that users who need to modify data don’t see data that is about to be modified or in
the process of being modified. Transactions lock data sets so that you can perform modifications to
records without overwriting other users’ changes or allowing other users to overwrite your changes.

In this chapter, you learned the following:

❑ That in order to be considered a transaction, the set of statements must pass the ACID test:
Atomic, Consistent, Isolated, and Durable.

❑ That the original ANSI standard used only COMMIT and ROLLBACK statements, but the various
database vendors have extended the standards, in particular adding the BEGIN TRANSACTION
and SAVE TRANSACTION statements to add flexibility to the process of starting a transaction and
allowing partial rollbacks.

❑ How transaction logs allow the DBMS to record the transaction and how the statements in the
transaction affect the data to protect against catastrophic failures that could corrupt the database.

❑ How to use locks to control access to different levels of objects in the database, starting at the
database level and working down to the individual record in a specific table. You learned that
locks have an associated significant overhead, and that hundreds or thousands of users trying to
get locks can cause database slowdown and general efficiency issues.

❑ How locking levels can allow you to reduce the impact of locks by allowing users to see or not
see locked records only when appropriate.

❑ How to prevent or minimize the four common problems with concurrent data access through a
good understanding of the issues involved, through an understanding of how transactions and
locks work, and by the careful use of isolation levels.

This has been a very technical chapter, one that is difficult to demonstrate in the typical tutorial method
because of that fact that transactions and their implementation are so very vendor- and product-specific.
At the same time, transactions are a key concept to correctly handling concurrency in a multiple-user
database. Failure to understand the issues can lead to huge consistency problems.

The next chapter covers SQL security, how users are created, and once created, how users are restricted
from using or are allowed to use objects of the database. Security allows you to determine who gets to
see what, as well as who is allowed to modify data in the tables that make up the database.

Exercises
1. Rewrite the update to the Inventory and insert data into the Rentals table using a READ

COMMITTED isolation level.

2. Write a SELECT statement to view all titles in the Films table using the READ UNCOMMITTED iso-
lation level.

3. Write an UPDATE query to update all inventory to CheckedOut (= ‘Y’) using the
SERIALIZABLE isolation level.

325

Transactions

15_577328 ch11.qxd 1/28/05 11:25 PM Page 325

15_577328 ch11.qxd 1/28/05 11:25 PM Page 326

12
SQL Security

In today’s world, the security of the data in your database is a primary concern. Privacy concerns
and laws often make exposure of corporate data a catastrophic problem. Exposure of personal
information such as social security numbers or medical information can bring costly lawsuits or
even government fines and litigation. In the Internet age, the theft or exposure of such information
can be performed from half a world away. No longer can you just lock the door to the server and
remove the floppy disks from the workstations and consider yourself secure. The security issues
that you must deal with in the database world involve who can see what when, and they break
down into a handful of basic situations:

❑ The data in a specific table should be accessible to some users but not others.

❑ Some users should be able to modify particular tables, but other users should not.

❑ In some instances, access to tables should be broken down into columns of the tables. One
set of users should be able to see columns a, b, and d, while another set of users should be
able to access only columns c, e, and f.

❑ In other instances, the access to tables should be limited by rows. Perhaps department
managers should be able to see data about their department but not data about other
departments.

This chapter describes the methods that SQL provides to implement this security.

Security Concepts
Implementing the security system and enforcing the required restrictions are the responsibility of
the DBMS. The SQL language implements a security framework and provides a rather basic syn-
tax used to specify security restrictions. SQL grants access to objects by users; it does not restrict
access. In other words, a user cannot perform any action without first being granted the power to
do so.

16_577328 ch12.qxd 1/28/05 11:25 PM Page 327

SQL security is centered around three concepts or ideas:

❑ Users: Users, or more correctly user IDs, represent people or programs performing actions on
objects in the database. Whenever the DBMS creates a new table, inserts or deletes records in
that table, or modifies the records in that table, it does so on behalf of a user ID. The DBMS
grants user IDs privileges to perform specific actions on specific tables.

❑ Objects: The SQL standards define specific objects in the database that users can manipulate.
Originally the only objects were tables and views, but the standard has been expanded to
include specific columns in tables as well as domains and character sets, and the individual
DBMS often adds its own objects that it allows users to manipulate.

❑ Privileges: The third leg of SQL security comprises privileges that allow users to manipulate
objects. These privileges start with SELECT, INSERT, DELETE, and UPDATE for tables and views
but have been expanded to include privileges appropriate to non-data objects.

Setting up security on a database involves creating objects such as tables and views, creating users, and
finally granting authority to perform specific actions on specific objects to specific users. Previous chap-
ters have described the SQL syntax that creates the tables and fields; this chapter focuses on the process
of creating users and granting authority.

In Figure 12-1, Mary has been granted full privileges on the Personnel table, but Sue has been granted
only SELECT, UPDATE, and INSERT privileges on specific columns. Likewise, an Order Entry group has
been created and full access given to this group on the Orders table, while a Shipping group was created
and granted only UPDATE privileges and only on some columns.

Figure 12-1

Users

Personnel

Mary Sue

Select Update
Insert Some
Columns

Full
Access

Groups

Orders

Order Entry Shipping

Update
Some
Columns

Full
Access

328

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 328

Setting up security begins with creating user IDs and passwords. How this is done varies enormously
from DBMS to DBMS. In fact, some DBMSs can have the operating system itself perform all user/pass-
word validations for it and simply use the operating system username in the DBMS. For the purposes of
this chapter, you can assume that user IDs and passwords are created in the DBMS. You may need to do
a little digging to determine specifically how it is done in your OS and DBMS.

User IDs
Users IDs are the foundation of SQL security. At least one user ID is created by the database, known var-
iously as the database owner (DBO), system administrator (SA), or something similar. This user is a supe-
ruser who starts the ball rolling, typically creating the first tables and creating the user IDs of all the
other users allowed in the table.

In simple databases, it is quite common for all users to log in as the system administrator, which means
that every user has all privileges to all objects. Anyone can do anything to any database object. In a small
office where there is no one capable of understanding and maintaining database security, this may be an
appropriate model, but for large corporations this is a recipe for disaster.

In a secure DBMS, a user ID is a name/password pair that allows some entity to perform actions in the
database. The entity may be a person, a program, or a program directly manipulated by a person, but
the end result is that the entity has to log in to the database, providing a valid username and password.
The DBMS looks up the username and password, performs validation to ensure that that pair is legal in
the system, and then determines what the user is allowed to do in the database.

In a database where security is implemented, a user is typically assigned a user ID and the user ID is
assigned a password. The user ID then becomes the central character in the security system. Every SQL
statement is executed on behalf of a user ID, and the privileges assigned to a user ID determine which
statements can legally be performed by that user ID. User IDs are not necessarily used by people, how-
ever; machines quite often add, delete, and update records in databases with no input from any specific
person. Machines in factories log production or assembly of objects, airplanes log sensor inputs from
throughout the aircraft, and so forth.

In Figure 12-2, Mary, Sue, and John from the Personnel department are all given a common user ID and
password. In some respects, this emulates the creation of a group with users assigned to the group.
Betty, the personnel manager, has been given a unique user ID and password. Likewise, Cyndi has been
given her own user ID and password.

Technically, the user ID is the object internal to the database, and the user is someone or something in
the real world using a user ID to manipulate data. For ease of discussion, user is equated to user ID, but
understand that they are not the same thing.

DBMSs vary widely in how a user is validated. For example, the user may be required to log in to the
DBMS directly, providing a username and password. On the other hand, the DBMS may accept user
validation performed by the operating system: The user logs in to Windows, and the DBMS then accepts
the username and password from Windows and looks up that username to determine whether to allow
privileges.

However, before a user can do anything in the DBMS, the system administrator must create the user and
define which privileges he or she has.

329

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 329

Figure 12-2

Creating User IDs
The system administrator (SA) sets up users and defines the privileges those users have. In many cases,
this is done through a program interface to the DBMS, where the SA simply opens a form and starts cre-
ating users, typing their initial password and telling the DBMS whether the user can change their pass-
word, whether they must change their password the first time they log on, and so forth. In fact, some
DBMSs can allow all of the user/password validation to be performed by the OS, which means no user
IDs or passwords are required inside of the database itself.

Some DBMSs have SQL statements, extensions to the SQL standard specific to that DBMS, to allow creat-
ing users. For example, in Oracle the statement looks like this:

CREATE USER username
IDENTIFIED {BY password | EXTERNALLY | GLOBALLY AS external_name}
Options

After creating users and determining privileges for those users, the SA can then alter users and privileges.

Alter User
The SA can always modify the user by changing the password and, in some systems, by making a user
inactive or setting times of day or days of the week that the user can log in to the database. Some
DBMSs provide SQL statements for these functions. For example, in Oracle, the statement may look
like the following:

Personal Depot
Group ID

User ID : usr Personnel

Mary Sue John

Personnel
Manager

User ID : usr Betty

Betty

Personnel
Dept Head

User ID : usr Cyndi

Cyndi

330

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 330

ALTER USER username options
ALTER USER username,... {GRANT|REVOKE} proxy_options

In other cases, the DBMS provides other methods of doing this, oftentimes using a dedicated form or
stored procedures.

Drop User
And finally, what the SA can do, the SA can always undo, in this case completely deleting a user if
required. Again, in Oracle, the following statement drops a user from the database:

DROP USER username [CASCADE]

In SQL Server, all of these functions and more are performed using stored procedures, which in this case
are pre-existing functions provided by the system, such as the following:

❑ sp_addlogin: Creates a new login that allows users to connect to SQL Server using SQL Server
authentication

❑ sp_grantlogin: Allows a Windows NT/2000 user account or group to connect to SQL Server
using Windows authentication

❑ sp_droplogin: Drops an SQL Server login

❑ sp_revokelogin: Drops a Windows NT/2000 login/group from SQL Server

❑ sp_denylogin: Prevents a Windows NT/2000 login/group from connecting to SQL Server

❑ sp_password: Adds or changes the password for an SQL Server login

❑ sp_helplogins: Provides information about logins and their associated users in each database

❑ sp_defaultdb: Changes the default database for a login

❑ sp_grantdbaccess: Adds an associated user account in the current database for a SQL Server
login or Windows NT/2000 login

❑ sp_revokedbaccess: Drops a user account from the current database

❑ sp_helpuser: Reports information about the Microsoft users and roles in the current database

Security is an area where implementation is completely dependent on a variety of factors such as the
operating system itself, as well as the DBMS system you are using. In fact, this is the job of the database
administrator, and in a large show, you will never be allowed to perform these tasks. For these reasons,
it is impossible to provide a generalized operation for setting up a user that works for everyone. In the
following section, you learn how users are set up in SQL Server so that you can see how it is done on one
of the major OSs as well as one of the major DBMSs. After that, you need to read up on your specific
platform and try it there. For example, the information in the following Try It Out can be found in Books
Online for SQL Server.

Try It Out Implementing Security in SQL Server
Follow these steps to implement security in Microsoft SQL Server:

1. If SQL Server manager is not started, open it and start the service.

2. Open Query Analyzer.

331

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 331

3. In the SQL window, type in this command:

USE FilmClub

This tells SQL Server that the commands to follow are to be used in the Film Club database. This
syntax is useful only for users of SQL Server, and the details of the syntax can be found in Books
Online.

4. The sp_addlogin stored procedure creates a new Microsoft SQL Server login that allows a user
to connect to an instance of SQL Server using SQL Server authentication. It does not give per-
missions for that user to do anything.

sp_addlogin [@loginame =] ‘login’
[, [@passwd =] ‘password’]
[, [@defdb =] ‘database’]
[, [@deflanguage =] ‘language’]
[, [@sid =] sid]
[, [@encryptopt =] ‘encryption_option’]

5. In the SQL window, type the following:

EXECUTE sp_addlogin @loginame = ‘John’, @passwd = ‘ASDFG’
EXECUTE sp_addlogin @loginame = ‘Joe’, @passwd = ‘qwerty’
EXECUTE sp_addlogin @loginame = ‘Lynn’, @passwd = ‘zxcvbn’
EXECUTE sp_addlogin @loginame = ‘Fred’, @passwd = ‘mnbvc’
EXECUTE sp_addlogin @loginame = ‘Amy’, @passwd = ‘lkjhg’
EXECUTE sp_addlogin @loginame = ‘Beth’, @passwd = ‘poiuy’

EXECUTE sp_adduser ‘John’, ‘John’
EXECUTE sp_adduser ‘Joe’, ‘Joe’
EXECUTE sp_adduser ‘Lynn’, ‘Lynn’
EXECUTE sp_adduser ‘Fred’, ‘Fred’
EXECUTE sp_adduser ‘Amy’, ‘Amy’
EXECUTE sp_adduser ‘Beth’, ‘Beth’

How It Works
The sp_addlogin stored procedure simply adds a new user to the SQL Server login system, allowing a
user to log in to SQL Server using a specific username and password. After executing these two statements,
a user can log in using the name John and the password ASDFG or the name Joe and the password
qwerty.

Group IDs (Roles)
Given a large database with hundreds or thousands of users, administration of user privileges becomes
extremely complex and unwieldy. If every user has to be assigned every privilege they need, the process
soon becomes unmanageable. In order to deal with this problem, the concept of groups or roles has evolved.

Groups or roles build on the idea of users, when more than one user needs the same privileges to the
same objects. Users in Accounting need access to salary information for all employees, while users in
Manufacturing need access to inventory data. In order to provide this logical grouping, group IDs are
created and privileges are then granted to the group. A group can access tables and columns of tables,
add records, and so forth. Once the group is defined and the privileges assigned, users are added to
the group.

332

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 332

In Figure 12-3, three different groups are created, and privileges are assigned to the groups. The
Personnel group is given SELECT, INSERT, and UPDATE privileges on tblPersonnel. The Order Entry
group is given SELECT, INSERT, UPDATE, and DELETE privileges on tblOrders, whereas the Shipping
group is given only UPDATE privileges on tblOrders. Once groups are created, user IDs are added to
and deleted from the groups as required. Users belonging to groups inherit the privileges of the group to
which they belong.

Unfortunately, SQL does not directly support groups. Under ANSI/ISO SQL security, you have two
options for handling such needs:

❑ You can assign the same user ID to all the users in the logical group as shown in Figure 12-1.
This simplifies database administration because you can specify privileges once for a large num-
ber of people, but there is no way to determine who is logged in to the database. Furthermore,
you have problems with security when people leave and should no longer have access to the
database. Using this scheme, the only way to handle this is to issue a new password to all the
users of the ID.

Figure 12-3

Belong to
Group

Users

TBL Personnel

Group
Personnel

Select
Insert
Update

Privileges

Belong to
Group

Group
Shipping

Update
Fields Privileges

Users

Belong to
Group

Group
Order Entry

Select
Insert
Update
Delete

Privileges

Users

333

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 333

❑ You can assign a different user ID for each user in the group. This distinguishes the users in the
database, allows you to assign different privileges as needed later, and allows locking that user
out when the user leaves or is no longer allowed access to the database. Unfortunately, this
option causes large headaches in administration when many users need access to the database.

Many modern DBMSs address this problem by implementing the group or role concept. Privileges can be
granted to individual users if needed, but privileges can also be granted to groups, and then users can be
added to the groups. Users of the groups inherit the privileges of the group. Users can then perform activ-
ities allowed by their individual user ID or by the group or groups to which they belong. Because the SQL
standard does not support group IDs, using them leads to non-portability between DBMS systems.

IBM DB2 takes a different approach to the problem. A user ID can be associated with other user IDs.
When a user logs in to a specific ID, the DBMS looks up all the associated IDs and builds a merged set of
privileges based on the sum of all privileges of all these associated IDs. This neatly sidesteps the porta-
bility issue since there is no group ID per se, only user IDs with privileges that any other user ID can
associate with.

The following Try It Out walks you through the process of adding a new role to your database.

Try It Out Adding Roles in SQL Server
In order to add a new role, follow these steps:

1. The sp_addrole stored process creates a new Microsoft SQL Server role in the current
database. It does not grant privileges to any objects in the database. This syntax is useful only
for users of SQL Server, and the details of the syntax can be found in Books Online.

sp_addrole [@rolename =] ‘role’
[, [@ownername =] ‘owner’]

2. In the SQL window, type the following:

EXECUTE sp_addrole @rolename = ‘DataEntry’
EXECUTE sp_addrole @rolename = ‘Management’
EXECUTE sp_addrole @rolename = ‘Supervisor’

Once the role has been created, members are added to the role. This step allows members to
inherit privileges for the roles that they play in the database.

3. The sp_addrolemember stored process adds a security account as a member of an existing
Microsoft SQL Server database role in the current database. This syntax is useful only for users
of SQL Server, and the details of the syntax can be found in Books Online.

sp_addrolemember [@rolename =] ‘role’ ,
[@membername =] ‘security_account’

4. In the SQL window, type the following:

EXECUTE sp_addrolemember @rolename = ‘DataEntry’, @membername = ‘John’
EXECUTE sp_addrolemember @rolename = ‘Management’, @membername = ‘Lynn’

334

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 334

How It Works
After you run this statement, you will see a role in the database called DataEntry that can be used to
assign privileges allowing users to add data to tables. The role Management can be used to run reports to
view data entered by DataEntry. Once the roles are created, you then add one or more members to each
role. All that’s left is to assign privileges to roles (and members if desired).

Objects
The SQL standard defines security in terms of objects on which actions can be performed. In the SQL1
standard, the only objects that security applied to were tables and views. Thus, privileges were assigned
to a user ID to perform an action on a table or a view. If a user is not granted a privilege to an object,
then that user can’t access that object. SQL2 extended the security syntax and added new objects such as
user-defined character sets and domains.

Figure 12-4 shows that user ID Fred is granted SELECT privileges on tblPersonnel, whereas user ID
John is granted SELECT privileges on tblPersonnel as well as UPDATE privileges on tblOrders.

Figure 12-4

Modern DBMSs have added additional objects to the security syntax to cover objects such as stored pro-
cedures in SQL Server. Stored procedures are programming functions that can be created by users and
that can perform all sorts of tasks. The ability to create and drop these functions can be controlled by the
security system, with certain user IDs granted permission to create or drop stored procedures, while
others are not. In some cases, the physical tablespaces where tables are created and stored are treated
as security objects, with user IDs granted permission to create tables in a given tablespace. In essence,
the modern DBMS has simply extended the SQL syntax to allow granting of privileges to objects not
considered by the SQL standard. These extensions vary from DBMS to DBMS, and because the exten-
sions are specific to the DBMS, the methods used to grant these privileges vary considerably.

TBL Personnel

Grant Select

Fred

TBL Orders

Grant Select

Grant Update

John

335

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 335

Privileges
Privileges are the ability to perform some action on some object. The SQL1 standard defines only privi-
leges on tables and views and thus defines only four basic privileges that work on these objects:

❑ The SELECT privilege allows the user to create data sets of columns and rows from tables or
views. With this privilege, the user can specify a view or table name in the FROM clause of a
SELECT query. The SELECT privilege means that the user is allowed to view or use data from
the table or view on which the SELECT privilege is granted.

❑ The INSERT privilege allows the user to insert new rows into the table or view on which the
INSERT privilege is granted; thus they can use that table or view name in the INTO clause of an
INSERT statement.

❑ The DELETE privilege allows the user to delete rows from the table or view on which the DELETE
privilege is granted; thus they can use the name of that table or view in the FROM clause of a
DELETE statement.

❑ The UPDATE privilege allows the user to update rows from the table or view on which the DELETE
privilege is granted; thus they can use the name of that table or view in the UPDATE statement.

These four privileges are all that the SQL1 standard allowed, and these privileges are implemented in all
commercial SQL-compliant DBMSs.

Extended Privileges
SQL2 expanded on the concepts of SQL1 in several ways. First, it added the ability to the INSERT and
UPDATE statements to operate on specific columns instead of on the entire table. Suppose that a new vice
president is hired. The Personnel department is tasked with setting up all new personnel records, enter-
ing the name, address, personnel ID, and so forth. The salary and compensation information is not their
department, however, and they should not have access to this information. Only the personnel manager
is allowed to edit these fields. In SQL1, in order to get this capability, you had to implement views that
retrieved the columns of interest and then use those views in an INSERT or UPDATE statement. Although
this works, it leads to dozens of views whose sole purpose is to enforce security and makes administer-
ing security unnecessarily complex. In SQL2, however, you can directly create INSERT statements that
insert only specific columns of the new record and then UPDATE statements that allow other users to
update the columns for which they are responsible.

Unfortunately, the SQL2 standard does not allow the SELECT statement to specify only selected columns,
so for these statements you are back to creating views that pull specific columns and use them instead of a
SELECT statement on the table directly. Many of the major DBMSs allow applying privileges to columns as
an extension to the SQL2 syntax, using the same syntax as is used in the INSERT and UPDATE statements.

In addition to the new column-specific privileges, the SQL2 standard adds the REFERENCES privilege,
which addresses some rather subtle issues dealing with using foreign keys and check constraints. The
issue here is that by including valid foreign keys in a SQL statement, a user can determine whether
the key is valid or not, even if they are not supposed to have any access to the table from which the for-
eign key comes. An INSERT statement can be constructed that successfully inserts a record. Then the
foreign key is added as a column to the statement. If a statement succeeds, the key is valid; if the state-
ment fails, then the key is not valid. Suppose that the foreign key was the social security number (SSN)
of an employee. The user would now be able to determine whether an employee existed with that
SSN even though they are not supposed to be able to see the SSNs of the Employee table. Likewise,

336

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 336

check constraints can be used in a similar manner. Because check constraints do not expose data to view-
ing, update, and deletion, they are often treated differently by the DBMS when it comes to security.
Thus, a user could include tables and fields in a check constraint to which he otherwise wouldn’t have
access. This opens up a similar security hole in that a user could try different values in a check constraint
to discover the values of a field that he isn’t supposed to be able to see.

To eliminate this hole in security, the REFERENCES keyword was added. The REFERENCES privilege is
assigned to specific rows of tables. Unless assigned a REFERENCES privilege, a user cannot reference that
column in that table in any manner.

The USAGE Privilege
The USAGE privilege is used to control access to domains, or the sets of legal values in a given column, as
well as user-defined character sets, translations, and collating sequences. USAGE is a simple true/false
property that says a user has access to one of these objects for individual user ID. This privilege is aimed
at the corporate developer more than the individual database user.

Ownership
When you create a table in SQL using the CREATE TABLE statement, you become the owner of that table
and control security on that table. You have full privileges for SELECT, INSERT, DELETE, and UPDATE for
that table. You also are able to grant privileges to that table to other user IDs. In fact, other users have no
privileges on that table until you specifically grant those privileges to those users.

The situation for views is a little different, however. In order to create a view, you must have specific
privileges on the table or tables from which you pull data. You must at least have SELECT privileges to
the underlying tables. Thus, the DBMS automatically gives you SELECT privileges to the resulting view.
The other privileges (INSERT, DELETE, and UPDATE) depend on your privileges in the underlying tables
for the view, and you must have each privilege for every table in the view before you are granted that
privilege in the resulting view. Furthermore, you can grant privileges to other user IDs for the view only
if you have been granted the privilege to grant those privileges. You learn about granting privileges in a
later section of this chapter, but first you learn more about the relationship between views and security.

Views and Security
Views are often used to enforce security on viewing data. By creating views that display specific columns
from specific tables, a user can be granted SELECT privileges for that view but not for the underlying
table. Using this strategy makes it possible to determine exactly what information a specific user is
allowed to view.

Vertical and Horizontal Views
Vertical views represent select columns of one or more tables such that the user can see only portions of a
table or tables. This allows you to hide sensitive data columns from certain users while allowing access
to those columns to other users.

For example, suppose you had a business rule that states that employees in the Personnel department
should be able to see the names and addresses of all employees, but not the SSN or salary. You might
implement this view with a SQL statement similar to the following:

CREATE VIEW vEmployeeNonSensitive AS
SELECT Name, Address, City, State, ZIP, Phone FROM tblEmployees

337

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 337

You could then give SELECT privileges to the usrPrsnl user ID. That user can now view any of the non-
sensitive fields from tblEmployees, as shown in Figure 12-5.

In order to give Payroll access to the SSN and Salary fields, you might implement a view with a SQL
statement similar to the following:

CREATE VIEW vEmployeeSensitive AS
SELECT Name, SSN, Salary FROM tblEmployees

Figure 12-5

Name Addr City

TBL Employee

View Non Sensative

Usr Personnel

Can
Access

Cannot
 Access
 Sensitive
 Fields

State Zip Phone SSN Salary Age

Name Addr City State Zip Phone

338

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 338

You could then give SELECT privileges to vEmployeeSensitive to the usrPayroll user ID. Figure 12-6
illustrates that the user usrPayroll can now view only the person’s name, SSN, and salary fields while
hiding address and phone numbers.

Horizontal views, on the other hand, allow the user to view all the fields in the table but only for selected
sets of records.

For example, suppose you had a business rule that states that a department manager should be able to
view all personnel information for only the employees in their department.

Figure 12-6

Name Addr City State Zip Phone SSN Salary Age

Name SSN

Payroll

Select
Update

Can view &
update sensitive
info

Salary

339

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 339

You might implement this view with the following SQL statement:

CREATE VIEW vEngineeringEmployee AS
SELECT * FROM tblEmployees
WHERE Department = ‘Engineering’

This view creates a horizontal view of all the fields in the Personnel table for any employee in the
Engineering department, thus restricting the user to only data about the employees in that department.
You can now give SELECT privileges to this view to the EngMgr user ID.

Grouped Views
Grouped views refer to summary data where totals and counts are rolled up into a query that summarizes
large quantities of data in a small set of records. These views represent a many-to-one relationship to the
source table and allow managers to get an overview of performance for some business unit, sales for
sales areas, production for a manufacturing facility by month, and so forth. SELECT privileges on these
views can be granted to only those in management that need access to the data.

Figure 12-7

Name Addr City State Zip Phone Salary Dept

John Eng

Mary Personnel

Nancy Shipping

Pat Eng

Joan Eng

Cyndi

Name Addr City State Zip

John

Dept

Nancy

Pat

Cyndi

Eng

All Priveleges
Select
Update
Insert
Delete

Eng

Eng

Eng

Personnel

340

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 340

Limitations on Views
Views are by their nature SELECT statements and thus are read-only in most security schemes. If the user
needs to be able to modify, insert, or delete the data in the view, the user must be granted those privileges
to the underlying tables. If more than a single table is used in the view, it may not be possible to perform
updates on the view even with privileges, depending on the complexity of the view and the specific
implementation of the DBMS that you are using.

Remember also that views have a negative impact on the performance of the database since the view has
to be translated into queries on the underlying tables.

Granting Privileges
The basic GRANT statement is used to grant security privileges on database objects to specific users or, in
some DBMS implementations, to groups. For SQL2 compatibility, the GRANT statement works only for
user IDs; groups don’t exist. When you create a table, you are the owner of that table and you can use
the GRANT statement to grant privileges to any user you want. With views, you can use the GRANT ALL
statement to grant all privileges on the view. However, if you don’t own the underlying tables, the
GRANT you give is only as good as the privileges you hold on the underlying tables; furthermore, you
have to hold a WITH GRANT OPTION on the privileges you are granting, as explained later in this section.

Tables and Views
In SQL1, GRANT dealt only with tables. Users are granted privileges on the entire table. The GRANT state-
ment looks similar to the following:

GRANT SELECT, INSERT, DELETE, UPDATE
ON tblPersonnel
TO usrPersonnel

This statement gives all privileges on tblPersonnel to the user ID usrPersonnel.

The statements to allow an order entry clerk to add orders but to allow only shipping to view the orders
might look like this:

GRANT SELECT, INSERT
ON tblOrders
TO usrOrderEntry

GRANT SELECT
ON tblOrders
TO usrShipping

Instead of specifically listing SELECT, INSERT, DELETE, and UPDATE for an object (as illustrated in the
preceding code), the GRANT syntax also has a shortcut used to grant ALL PRIVILEGES to a specific user
or group:

GRANT ALL PRIVILEGES
ON tblPersonnel
TO usrPersonnel

341

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 341

Another shortcut, using the PUBLIC keyword, grants privileges to all users:

GRANT SELECT
ON tblHolidays
TO PUBLIC

Using the PUBLIC keyword has the advantage of not having to explicitly grant privileges to users, since
any current or even future authorized users are automatically in the listed privilege.

Try It Out Using the GRANT Statement
The GRANT statement creates an entry in the security system that allows a user in the current database to
work with data in the current database or execute specific Transact-SQL statements.

In the SQL window, type the following statement:

GRANT SELECT, INSERT, UPDATE
ON Attendance
TO DataEntry
GO
GRANT SELECT
ON Attendance
TO Management
GO

How It Works
Once the role is created, members are added to the role. This step allows members to inherit privileges
for the roles that they play in the database. By running a GRANT statement on a given table or object, you
assign specific privileges to that group (role in SQL Server) or user for that specific object. In this case,
you have granted SELECT, INSERT, and UPDATE privileges to the DataEntry group, and you have
granted only SELECT privileges to the Management group.

Columns
The SQL1 standard allowed GRANT UPDATE privilege on individual columns of a table or view, while the
SQL2 standard expanded that to include INSERT and REFERENCES privileges. The syntax lists the
columns after the PRIVILEGE keyword, and they must be between parentheses and comma-delimited
(separated by commas) if there are more than one. As an example, to give shipping personnel privileges
to specific columns in the order item table, you could write a GRANT statement similar to the following:

GRANT UPDATE (ShipDate, Quantity)
ON tblOrderItem
TO usrShipping

As you have already seen, the SQL standard does not permit a column list for a SELECT privilege. The
SELECT privilege must apply to all columns of the table or view. The normal method of handling this
restriction is simply to create a view of the desired columns and then grant a SELECT privilege on the
view. Of course, this forces you to design views that wouldn’t be necessary if a column list were allowed.
For this reason, many of the DBMSs provide extensions to the standard to allow column lists in the
SELECT grant statements. These extensions allow you to write statements like this:

342

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 342

GRANT SELECT (NAME, SSN, SALARY)
ON tblPersonnel
TO usrPayroll

This eliminates the requirement for the view described in Figure 12-6, and the availability of SELECT col-
umn lists eliminates the need for many views used to restrict access to column data. Unfortunately the
extension is not in the SQL standard, so it may or may not be available on the DBMS you use.

The GRANT OPTION Clause
When you create a table, you own all privileges to that table, and it is your responsibility to grant privileges
to any other users that require access to the data. When you grant privileges to these other users, they can
access the data as specified in the GRANT statement you create, but in general they cannot pass on these
privileges to other users. This provides tight control to the owner of the table over who can access the data
and how they can access it. However, it is occasionally useful to allow other users to pass on privileges to
others. Suppose, for example, that you create a view of Production with the following SQL:

CREATE VIEW vProductionEastCoast AS
SELECT * FROM tblProduction
WHERE Region = ‘EAST’

You want to allow the East Coast production manager to be able to view the data, so you create a GRANT
statement to allow her to use the view:

GRANT SELECT
ON vProductionEastCoast
TO usrMary

Suppose, however, that Mary needs to allow her office staff to use the view. The GRANT statement as
written does not allow transferring privileges to other users. In order to accomplish this, you need to
add the WITH GRANT OPTION clause, as shown in the following:

GRANT SELECT
ON vProductionEastCoast
TO usrMary
WITH GRANT OPTION

Because of the WITH GRANT OPTION clause, Mary now has the right to assign the privilege she was
given to anyone she chooses. Thus, she could create a GRANT statement similar to the following:

GRANT SELECT
ON vProductionEastCoast
TO usrBob, usrSharon

Because she used no WITH GRANT OPTION clause in that statement, usrBob and usrSharon do not have
the authority to pass on the GRANT to anyone else. However, if Mary adds WITH GRANT OPTION to the
statement (as shown below), Bob and Sharon can also pass the privileges along:

GRANT SELECT
ON vProductionEastCoast
TO usrBob, usrSharon
WITH GRANT OPTION

343

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 343

As you can imagine, giving GRANT OPTION privileges to other users allows them unlimited ability to
pass on the privileges to other users, which can be very dangerous in some circumstances, particularly
for the UPDATE and DELETE privileges. You should use GRANT OPTION with discretion.

Revoking Privileges
If you’ve granted privileges that you need to revoke, you do so using the REVOKE statement. Revoking
privileges can yield unexpected results depending on the implementation used by your DBMS, whether
more than one user granted privileges on an object, and the time sequence of the grants. You see that in a
little while, but first you need to learn the REVOKE statement’s basic syntax.

The REVOKE Statement
The REVOKE syntax looks very similar to the GRANT syntax. The REVOKE statement can take away some or
all of the privileges assigned in a GRANT statement, to some or all of the user IDs. For example, suppose
you granted some privileges on the Personnel table:

GRANT SELECT, UPDATE, INSERT
ON tblPersonnel
TO usrTom, usrJim

You can then use the following statement to revoke various INSERT privileges from Tom:

REVOKE INSERT
ON tblPersonnel
FROM usrTom

You can likewise revoke SELECT and INSERT privileges from Jim using this statement:

REVOKE SELECT, INSERT
ON tblPersonnel
FROM usrJim

Revoking UPDATE privileges from Jim and Tom requires a statement similar to the following:

REVOKE UPDATE
ON tblPersonnel
FROM usrJim, usrTom

You can revoke only privileges that you granted. If the user was granted privileges on the same object by
another user, only the privileges you granted are revoked. Thus, if the user you are revoking privileges
for was granted privileges on the same object by another user, they are still able to access that object
using any privileges that the other user gave them.

You grant Jim privileges on tblPersonnel with this statement:

GRANT SELECT, UPDATE, INSERT
ON tblPersonnel
TO usrJim

344

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 344

Betsey also grants privileges to Jim on tblPersonnel using this statement:

GRANT UPDATE, DELETE
ON tblPersonnel
TO usrJim

The first thing to notice is that usrJim now has all privileges on tblPersonnel and can select, update,
insert, or delete records in tblPersonnel. You subsequently revoke some of the privileges that you
granted to Jim with the following statement:

REVOKE UPDATE
ON tblPersonnel
FROM usrJim

Notice that even though you revoked the UPDATE privilege that you gave Jim, he still has full privileges
on tblPersonnel because Betsey also gave him UPDATE privileges. You subsequently revoke the rest of
the privileges you gave Jim:

REVOKE SELECT, INSERT
ON tblPersonnel
FROM usrJim

Jim still has all the privileges that Betsey granted him and can still perform updates and deletes on
tblPersonnel using those privileges.

Another scenario, however, must be considered, which is how the GRANT chain is handled by the DBMS.

Revoking GRANT
Suppose that Jim issues a GRANT to Sue WITH GRANT OPTION:

GRANT SELECT
ON tblPersonnel
TO usrSue
WITH GRANT OPTION

Sue now has the ability to grant the SELECT privileges to another user and does so, issuing a GRANT to
Frank:

GRANT SELECT
ON tblPersonnel
TO usrFrank

Jim now revokes the GRANT from Sue:

REVOKE SELECT
ON tblPersonnel
FROM usrSue

In this case, it can be clearly established that Frank received his privileges because Sue had GRANT OPTION
privileges, and therefore when Sue loses her privileges on tblPersonnel, Frank also loses his privileges.

345

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 345

The situation gets a little sticky, though, when Sue has received GRANT OPTION on a table from two dif-
ferent sources and has issued a GRANT to Frank.

Jim issues a GRANT to Sue WITH GRANT OPTION:

GRANT SELECT
ON tblPersonnel
TO usrSue
WITH GRANT OPTION

Sue now issues a GRANT to Frank:

GRANT SELECT
ON tblPersonnel
TO usrFrank

Mary comes along and issues GRANT OPTION to Sue as well:

GRANT SELECT
ON tblPersonnel
TO usrSue
WITH GRANT OPTION

Jim now revokes the GRANT from Sue:

REVOKE SELECT
ON tblPersonnel
FROM usrSue

What happens to the privileges that Sue granted to Frank? In this case, some DBMSs would revoke
Frank’s privileges because it can be demonstrated that he was granted privileges derived from Jim
because Mary had not yet granted GRANT OPTION privileges to Sue at the time Sue issued the GRANT
privilege to Frank. On the other hand, Sue still has the right to issue privileges from the GRANT OPTION
given her by Mary, so it is not a cut-and-dry case that Frank’s privileges should be revoked, and some
DBMSs leave Frank with his privileges.

As you can see, it is not always a simple case of who issued the WITH GRANT OPTION but may also be a
matter of timing, and how this scenario is handled may vary from DBMS to DBMS.

In the SQL1 standard, the REVOKE statement is missing from the syntax. Access to tables and views is
determined by GRANT statements at the time the database is set up, and there is no mechanism for
changing the privileges once the database structure is defined. In spite of this, almost all commercial
DBMSs provided the REVOKE statement. The next section covers a couple of syntax extensions that pro-
vide you more flexibility when using the REVOKE statement.

The CASCADE and RESTRICT Options
The SQL2 standard added the REVOKE statement and in fact added some extensions to give the REVOKE
statement more flexibility. The CASCADE extensions gave the user the ability to determine how privileges
are revoked when the privileges have been further granted down to other users. The other extension,
RESTRICT, allows revoking the GRANT OPTION without revoking the privileges themselves.

346

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 346

The CASCADE option tells the DBMS that a REVOKE of the GRANT OPTION should cause a ripple down the
chain and also revoke any privileges issued because of the GRANT OPTION.

Suppose Jim issues a GRANT to Sue WITH GRANT OPTION:

GRANT SELECT
ON tblPersonnel
TO usrSue
WITH GRANT OPTION

Sue now issues a GRANT to Frank:

GRANT SELECT
ON tblPersonnel
TO usrFrank

Jim now issues a REVOKE to Sue:

REVOKE SELECT
ON tblPersonnel
FROM usrSue CASCADE

In this case, both Sue and Frank lose their SELECT privilege on tblPersonnel because Jim placed the
CASCADE option on the REVOKE statement.

Assume that Jim issued the same GRANT to Sue, and Sue issued the same GRANT to Frank. Jim later issues
the following REVOKE:

REVOKE SELECT
ON tblPersonnel
FROM usrSue RESTRICT

In this case, the REVOKE fails and issues an error warning Jim that there are privileges cascading down
from the GRANT that he issued, and that he may be revoking privileges that he doesn’t intend to revoke.
If Jim does decide to revoke Sue’s privileges, he can simply issue the REVOKE again with the CASCADE
option. The RESTRICT option is just a way to let a user know that the REVOKE will cause a cascade
REVOKE.

In addition, the SQL2 syntax now includes the ability to specify the privilege in the REVOKE GRANT state-
ment instead of just revoking all GRANT privileges. Consider the following statement:

REVOKE GRANT OPTION ON INSERT, DELETE
ON tblPersonnel
FROM usrSue CASCADE

This statement revokes the ability to GRANT OPTION on these privileges but does not take away the priv-
ileges themselves.

347

SQL Security

16_577328 ch12.qxd 1/28/05 11:25 PM Page 347

Summary
Database security is a subject that simply cannot be ignored. The SQL standard contains statements
designed to enforce privileges to use objects in the database, primarily tables and views but also other
objects. This chapter covered the following topics:

❑ SQL security centers around users (or user IDs) that can grant privileges on database objects
such as tables and views.

❑ Data in specific tables and views, and even columns of specific tables and views, should be
available to some users but not available to others.

❑ Views may be required to restrict access to specific columns in some DBMSs where an extension
to the SELECT syntax is not available.

❑ The GRANT statement grants SELECT, UPDATE, INSERT, and DELETE privileges to specific users.

❑ The GRANT OPTION allows a user to extend the privileges she has been granted down the line to
other users.

❑ The REVOKE statement is used to revoke privileges granted to a user as well as revoke the GRANT
OPTION itself.

In the next chapter, you learn about optimizing your database and how to write efficient SQL queries to
speed up data retrieval.

Exercises
1. Create DataEntry, Supervisor, and Management groups.

2. Create users John, Joe, Fred, Lynn, Amy, and Beth.

3. Add John, Joe, and Lynn to the DataEntry group, add Fred to the Supervisor group, and add
Amy and Beth to the Management group.

4. Give the DataEntry group SELECT, INSERT, and UPDATE privileges on the Attendance table.

5. Give the Supervisor group SELECT and DELETE privileges on the Attendance table.

6. Give the Management group SELECT privileges on the Attendance table.

348

Chapter 12

16_577328 ch12.qxd 1/28/05 11:25 PM Page 348

13
Database Tuning

SQL is a language that describes how you retrieve data from a database. Just as in any language,
you can say things that make sense but that may not mean what you intend or that can be misin-
terpreted and cause results that are not what you expect. By now you should be pretty good at
expressing yourself in SQL and you should be getting the results, or at least the data, that you
intend. On the other hand, you might get exactly the data you expect but it takes a long time to get
the data back. That is the subject that this chapter addresses. Specifically, this chapter addresses
the following questions:

❑ Why does your query take so long to execute?

❑ Is this just normal, or is there something you can do to get the results faster?

❑ When does it matter?

In fact, tuning SQL is just one piece of the bigger puzzle, which is tuning the system itself. In-
depth system tuning is outside the scope of this chapter, but an overview of the subject is useful
since it is possible to get large improvements in speed at this level. You may find that the database
is administered by professionals and that they have already done all that can be done at this level.
On the other hand, you may find yourself playing system administrator and realize that you are
the only one around who can look at whether some of these issues can be addressed. Or you may
find that the database is being administered by a network administrator with no real experience as
a database administrator and that a little friendly advice to him will get you a long way. For all
these reasons, this chapter covers some subjects that you might not expect to find in a book on
basic SQL.

Tuning Hardware
If you have any control over the subject, the first place to start tuning is at the hardware level. It is
a common misconception that servers don’t necessarily need to be extremely powerful machines,
and so you may find that while the workstations are the latest and greatest multi-gigahertz
machines with a half-gigabyte of RAM, the server is a five-year-old machine running at a few hun-
dred megahertz with a few hundred megabytes of memory. Indeed, since servers tend to be

17_577328 ch13.qxd 1/28/05 11:26 PM Page 349

robust, fault-tolerant machines that cost a lot of money when new, they end up being used well past
their prime and tend to be overloaded running many different types of server applications such as Web
servers, firewalls, database servers, Dynamic Host Configuration Protocol (DHCP) servers assigning
Internet Protocol addresses, and so forth, all too often all on the same machine.

One of the problems is that depending on the type of server and the number of users, older machines
may indeed be very useful as servers. Older and slower Web servers handling only a handful of simulta-
neous users can easily handle the load. After all, they are probably only translating requests for Web
pages and transmitting out a small piece of text or a few graphics. System administrators with no
database experience may simply believe that since all the other servers run just fine on this old machine,
the database server should, too.

Unfortunately, databases are not one of the applications where old and slow works very well. Database
servers, particularly client servers, have to be able to handle tremendous processing loads to find the
requested data and then transmit large quantities of data back to the client machine. Database servers
probably need to be as fast as the organization can afford and have copious amounts of memory for rea-
sons discussed in a moment.

By no means is this chapter arguing that tuning the application (and SQL) itself should not be done; it
simply looks at this from a cost-benefit basis. If you pay a consultant $100 per hour for 50 hours to tune a
database application, you have just spent $5000 and all you have for your money is a single tuned
database application. If you spend that same $5000 for more memory, more or faster hard disks, or a
faster processor or machine, you have purchased faster execution of every application that runs on that
machine. Back in the day when the machine cost one million dollars and memory was a quarter million
dollars per megabyte, tuning made much more sense than buying faster hardware. The situation is very
much reversed now. Highly skilled labor is more expensive than ever and hardware is many orders of
magnitude cheaper.

In terms of hardware specific to databases, the following sections discuss subjects that you should have
at least a basic understanding of in case you need to argue for the upgrade of the hardware. You may not
have the expertise to determine exactly what is needed, but at least you can be aware of what is possible
and some of the issues involved. The objective is to start with the obvious (and cheap) changes that can
mean real speed increases in many cases.

Workstations
If the users of old, slow machines have to multitask, keeping a lot of different applications open all the
time — the database, Word, Excel, a browser — it may pay big dividends to just upgrade memory in their
machines. Adding a 256M memory module to an old 128M workstation costs almost nothing but can
make the machine useable again until new systems can be budgeted.

Depending on the application, specific users may benefit from workstation upgrades. With low-end but
very powerful computers available for $500 or even less sans monitor, it may make sense to target spe-
cific users with new machines. Suppose that one of your clients has the vast majority of their worksta-
tions running 450MHz processors and Windows 98. They target one specific area of the company that
has a high call load with new machines, replacing all of those workstations with new 2.8GHz machines
and Windows XP. Ten new machines would cost them around $4000–$5000, and the productivity
increase just from new hardware would be pretty impressive. Even after making tuning modifications to
the application, it still runs radically faster on those machines than for the rest of the users.

350

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 350

Perhaps this doesn’t sound remotely like application tuning, but the application runs on machines. If the
machines don’t support the application, you are never going to tune it enough to make a difference!

Database Files
Client server DBMSs (as opposed to file server DBMSs such as Microsoft Access) often allow you to dis-
tribute the database across many different hard disks. The objective is to split the database into files,
with each disk holding a single file containing one or a set of tables, or even sets of indexes. By splitting
the database up like this, you can get the physical input/output (I/O) distributed across many electronic
channels, you get the disks accessing their pieces of the data in parallel so that the data from one disk
can be read while the other disks are looking for data being requested, and finally you get cache on each
hard drive holding a piece of the database.

DBMSs like SQL Server and Oracle have tools that allow you to set up complex, time-consuming queries
and then watch the physical IO (disk access) to see if you are saturating the data channel(s), in other
words transferring the maximum amount of data that the disk is capable of putting out. If this happens,
then you have discovered a bottleneck and should consider splitting the database down into more files,
one file per hard disk, which means adding hard disks to the system. Correctly implemented, adding
hard disks to the system raises the amount of data that can be read out of the database. When the point
is reached where the hard disks can feed data faster than the processor can handle it, you have elimi-
nated one bottleneck and can look elsewhere for the next bottleneck.

Processors
DBMSs are one of the applications that are specifically written to utilize multiprocessor systems.
Multiprocessing simply means having more than a single central processing unit (CPU) in the server box.
While they are not cheap, adding processors to a database server can in certain circumstances make the
database significantly faster. The reason is that queries can be broken down into pieces, and those pieces
assigned to different processors. The individual processors handle pulling the indexes for their individ-
ual piece of the puzzle, narrowing down the data and finally returning a small data set to a processor
that puts all the pieces back together into the original query. Just like breaking the database itself down
into files on different hard disks, the net effect is to get parallel processing happening so that the whole
process is executed faster.

Unfortunately you usually can’t simply pop in an additional processor to upgrade your server. The
motherboard has to be designed to hold multiple CPUs before you can do this. Even if you can add a
new processor (there is an empty CPU socket), if the machine is old, adding the new processor may be
difficult or impossible. Getting your hands on the processor for a five-year-old machine may be difficult,
and even if you manage to do so, the slow speed of the processor may make the performance boost less
than you might hope for compared to buying a new multi-gigahertz machine. On the other hand, if you
can find a processor to pop into your multiprocessor machine, doing so almost certainly would provide
some performance increase and would almost assuredly be better than no upgrade at all.

If your current database server system has a clock speed of less than 1GHz, and certainly if it is a single-
processor system with a clock speed of less than 1GHz, moving up to a modern machine (possibly with
multiprocessors) would almost assuredly provide large efficiency gains over what you have now. It isn’t
cheap, but if the budget allows it, this may go a long way toward speeding up almost any slow database
application.

351

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 351

Gigahertz Networks or Compartmentalized Networks
Another area where you can sometimes get large speed increases is by analyzing how your network is
holding up to the load. Companies tend to grow haphazardly, adding employees all over the building
and plopping down new workstations with little thought to what is happening to network traffic. In the
Internet age, employees may be logging in to their workstations or the server using remote access, which
can cause significant network overhead. Internet music and video downloads also cause massive con-
gestion. It is not uncommon to end up with overloaded networks that can no longer keep up with the
traffic being encountered.

Oftentimes, new workstations can be purchased with gigahertz network cards. If the network is
approaching saturation, moving up to gigahertz networks can open up the bandwidth enough to allow
the applications to breathe again. Another thing that you can do is to compartmentalize the network
such that different sections of the company come in to the server on separate routers, switches, or net-
work interface cards (NICs). This is another area where there are tools to allow you to accurately mea-
sure whether the network is a bottleneck. Networks require expert assistance if you need to modify
them, but if they are a bottleneck, then making those modifications can pay huge dividends.

Caches
A cache is a place where data is stored for fast access after it is retrieved from a location that takes signifi-
cantly longer to access. This definition is flexible enough to work for all the various caches that you find
on your computer, and there are many of them. The reason that you need to have at least a basic under-
standing of caches is that your queries are filling the caches with data, and your queries are also flushing
the data out of the caches and replacing the old data with newer data. You might optimize a query and
discover that it becomes lightning fast. The reason it becomes fast, however, may have less to do with
your prowess as a SQL optimizer than because what you did allowed the data being worked on to
remain in one of the caches. If this is the case, then if the amount of data suddenly exceeds the size of the
cache, your query slows right back down again as the data needed gets flushed from the cache and
replaced with other necessary data.

Processor Cache
The processor has a cache for instructions and data. This is typically a small cache, often as little as 8K
for instructions and 32K for data, but in modern processors that amount may be in the hundreds of kilo-
bytes or even megabytes. The processor caches are the fastest caches in the system. Getting data from the
processor cache into the processor happens typically in a matter of one to a few clock cycles. At current
processor speeds of 3GHz, a clock cycle is 0.33 billionths of a second, or one-third of one-billionth of a
second. If your data fits in the processor cache, you are golden, and you get your results in the smallest
possible time.

Hard Disk Cache
The physical disk storage medium tends to require milliseconds (thousandths of a second) to access.
Thus, getting data off the physical disk and into the disk cache (or into the system) takes as much as 10
milliseconds, or one-hundredth of a second — and that assumes that the disk is just sitting idle waiting
for you to ask for data, a very rare occurrence. Thus, accessing data on the physical disk is more than 10
million times slower than accessing data in the processor cache. Remember that this is the time it takes
to even start seeing the data.

352

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 352

When an application asks for data from the disk subsystem, the disk often reads a much larger block of
data than asked for on the theory that the data around the data that was asked for is eventually
requested as well. The hard disk or disks used to store data have a small cache that holds large blocks of
data read off of the disk. This cache is typically 2M or 8M and physically resides on the circuit board
inside of the hard disk. While this doesn’t sound like a lot, remember that it is quite common for
databases to be split up into files stored on different hard disks. Thus, if a database is physically split
into four different files and each file is the only thing on its disk, the disk subsystem itself is caching any-
where from 8M to 32M of the database at any one time. Figure 13-1 illustrates the relationship between
the cache and the hard disk.

Figure 13-1

As data is read off the disk, it is placed into memory in blocks, typically of the sector size. If any block of
memory is requested by the system, that block is logically moved to the head of the cache using pointers
to indicate the location of the blocks in the cache. Thus, blocks of cache asked for frequently stay in the
cache, whereas blocks asked for less frequently move toward the tail end of the cache. If any block gets
to the tail end, it is dropped out of the cache. This happens when the latest data being read into the cache
fills the data block and is placed at the front of the cache.

Once the data is in the hard disk cache, getting at it is still a lot slower than accessing the processor
cache, but it is definitely much faster than physical disk access. The amount of time required to move
data from the disk cache to memory depends on a slew of things, such as how the disks physically inter-
face to the machine, but assuming a transfer rate of 50M per second, a good ballpark today is that you
can get the entire contents of an 8M hard disk cache moved to memory in about one-sixth of a second.
That doesn’t tell the whole story, however, because you can start to access it instantly — instantly being
defined as a few hundred millionths of a second. Thus, you can see that the hard disk cache plays a very
important role in speeding up disk-intensive applications, and a database is about as disk-intensive as
applications get. Even so, it takes thousands and perhaps tens of thousands of processor cycles to start
getting data from the disk cache into the processor itself so that it can be used by your application.

Physical
Hard Disk

Head End Tail End
Blocks of Data

Move to Front

Data Sent To
Processor

Main Memory

Back to Head
of Cache

Bit
Bucket
(trash)

353

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 353

Database Cache
In addition to the processor and disk caches, databases build their own cache that resides in system
memory. The database cache (illustrated in Figure 13-2) is the only cache discussed so far that you have
any direct control over, and you can in fact often tell the DBMS how much memory to request from the
system to reserve for caches. In fact, it is often the other way around. With SQL Server, you must specify
how much main memory not to use — to leave for the server and other applications running on the
server. SQL Server takes all of the memory less this amount to use for its own purposes, and those pur-
poses are mainly caching data.

Figure 13-2

The database cache looks very similar to the hard disk cache. The biggest difference is the location of the
cache. Whereas the hard disk cache physically resides on the hard disk and has to be read into main
memory over the cables connecting the disk to the computer, the database cache resides in main mem-
ory. When data is read out of this database cache, it is on its way to the processor cache, and from there
to the processor itself.

Caches in system memory are second only to the processor cache in terms of speed. In today’s hardware,
main system memory is approximately 25 to 100 times slower than processor cache; if the processor
cache can move data into the processor in a single clock cycle, main memory takes 25 to 100 clock cycles
to get the data into the processor. While this sounds a lot slower than processor cache (and it is), it is also
the only cache that you have any direct control over, and so it is extremely useful to be aware of this
level of caching. If your database is running on a machine with too little main memory, you can often get
immense speed gains simply by throwing memory at the problem. At the price of memory today, it may
very well cost less to double or quadruple the amount of main memory than for you to spend a week on
query optimization. When it comes to databases, the more main memory, the better.

Hard Disk
Cache

Head of Cache

Blocks of Data

Data Sent
To Processor

Cache

Back to Head
of Cache

Tail of Cache

Bit
Bucket
(trash)

354

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 354

The point of all the discussion of cache is simply that you can tune your application to your heart’s con-
tent, but if the hardware infrastructure doesn’t support the application, all of your work yields minus-
cule improvements in the application speed and could cost a lot of money to get that minuscule
improvement. It is critical to look at the big picture and understand exactly where the bottlenecks lie.
Attack the bottlenecks in order of severity, quitting when the application runs at an acceptable speed.

Okay, so you have determined that application bottlenecks exist in the application itself, and your hard-
ware is sufficient. What next?

Tuning SQL
There is an axiom in programming that says that 90 percent of the time is spent in 10 percent of the code.
If you want to make your program run faster, you only need to optimize that 10 percent of the code. SQL
is programming and thus can be viewed in the same manner, and it is very useful to do so. Very few
databases have only a few queries. Databases often service entire applications, and those applications
have pieces and parts that query the database. Often the applications have entire subprograms, each
with their own sets of queries. You need to do a little investigative work and discover which specific
piece is causing the slowdown.

You might be saying, “Yes, but that doesn’t matter, just show me how to optimize a query,” but that is
very much putting the cart before the horse. Optimizing a query involves a set of techniques and uses a
set of tools, which you get to shortly, but before you do, it is important to understand that you should
not just take a shotgun approach to the subject of optimization. In the end, the intent is usually to make a
process run faster, which in the end may mean making a query run faster, but which query? Since a pro-
cess may be made up of dozens of subqueries, simply starting at the top and attempting to optimize
every query in the process is an exercise in frustration, and perhaps in futility.

Given the nature of applications, it’s impossible to tell you specifically where to look to discover what
needs to be optimized, so you need to always keep the preceding advice in mind and your stopwatch in
hand. As you get into production systems, you may find that you are trying to make a whole process run
faster, and that involves breaking that process down into pieces and then timing the pieces. As you dis-
cover the high-cost pieces, you may very well be able to break those down into smaller pieces looking
for high-cost pieces, and so forth, until you end up with one or a small number of queries that represent
that 10 percent where the process is spending 90 percent of its time. Once you get there, what you learn
next in this chapter becomes useful.

What Does SQL Tuning Mean?
Tuning an individual query means examining the structure of the query (and subqueries), the SQL syn-
tax, to discover whether you have designed your tables to support fast data manipulation and written
the query in an optimum manner, allowing your DBMS to manipulate the data efficiently. Queries do
many things, from adding entirely new records to tables, to updating existing records, to pulling data
out of multiple related tables for reporting purposes. It is this last part that many people think of when
discussing optimizing queries, but in fact, a database must be viewed as a whole entity or you risk
speeding up one piece while crippling another. As this chapter demonstrates, there are techniques (par-
ticularly when optimizing other people’s queries) that are essentially free, while others (specifically cre-
ating new indexes) can be applied only at a price.

355

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 355

Again, the shotgun approach just as often causes problems as solves them. Adding indexes may very
well speed up whatever it is you are trying to speed up, but it may cripple some other piece of the appli-
cation. Deleting an index may speed up one part of the application but cripple another.

The intention here is not to cripple you with fear of doing anything because you may cause more prob-
lems than you fix, but simply to cause you to always think about the implications of your changes,
beyond the area you are working on. Whenever you make a change, particularly on a large system, you
need to keep your ears open to users complaining that the application seems slower lately. Where possi-
ble, record the changes that you make so that they can be backed out if necessary.

Why Do You Do It?
The answer to this question is always “because someone complains that a process is too slow.” It is nev-
ertheless useful to ask the question because thinking about the answer puts the problem squarely into
perspective. There is never just one task to do in a system; as a developer, you are always juggling your
time trying to get the most important things accomplished first, then moving down the list to less impor-
tant things.

I once had the honor of redesigning a call center application. Since there is never enough time, I took
some things that worked and just used them with as little modification as I could get away with and
concentrated on getting other more important tasks accomplished. The application had a search screen
that looked up a person on a variety of conditions — claim number, social security number, last name,
and first name. Any of these were supposed to be searchable on just pieces — the first few characters of
the last name plus the first few pieces of the first name, any number of characters of the SSN, and so on.
Once the data search was entered, a set of matching records was pulled. The user would then select one
of those records and pull the information about that person.

The original application had only a few thousand claim records to search through and the database was
horribly normalized, so the application designer just pulled all of the records out into a record set that
the form could display, left the form open, and then moved back and forth in that record set, keeping the
form open and the data set loaded. Once a primary key of the record was found using the search algo-
rithm, it was lightning fast to get to that record.

Having correctly normalized the database, the process of pulling all that data was a tad more complex
and took a lot longer, and it also took a lot longer to move the form to the right record. It became much
faster to just ask the database for and display a single record at a time. In the end, I used almost exactly
the same query for the data entry form, but I placed a WHERE on the primary key that retrieved only a
single record instead of all the records and then asked the form to move to the right record for each
search.

The point is that, yes, I did optimize the query, but not in the way you might expect. I didn’t add any
indexes; I didn’t modify any joins. I actually examined the process and discovered that a different way of
performing the process was in order.

356

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 356

How Do You Do It?
And herein lies the heart of the matter: How do you optimize a query? As you discovered previously,
optimizing the query may in fact be a matter of optimizing the application itself. There are, however, cer-
tain generally accepted methods for optimizing a query, and in the sections that follow, you start to
examine these specific methods. Indexes are often touted as the be-all and end-all of optimization,
knowing what to index and why. Before you examine these methods, though, it is helpful to get an
overview of how indexes work and how they speed up (or slow down!) a database.

Indexes — What Are They?
The first thing to understand about indexes is that they are not necessary; they are a convenience used to
speed up accessing data. They are simply a means of getting at a data item in a table without having to
start at the beginning of the table and examine every item in the table. Indexes on static data tables are
essentially free (other than storage costs), but indexes on frequently changing data have very high costs,
as this section explains.

Database indexes are often compared to indexes in a book — a set of references in a table that tell where
in the physical database to go to find a specific item. While it is true that indexes function in the same
manner in databases as they do in books, they are implemented very differently. A book index takes a
word or phrase and gives you a list of pages on which you can find the word.

In databases, however, indexes are usually implemented as a balanced-tree (b-tree) structure, so called
because it looks like an upside-down tree, and the number of data items in each page is kept balanced by
the b-tree engine (see Figure 13-3). In any b-tree, there is a root page that holds pointers to other pages
(called leaves), which hold pointers to other pages, and so forth. Each page holds the data items from the
column being indexed, plus a pointer to the data record holding that item out in the table. To search for
data, the DBMS comes in to the top (root) page and looks for its data there. If it doesn’t find the data, it
looks up which leaf to go to that has data most similar to the data being searched for and then looks
through that leaf page. If it doesn’t find the data there, the DBMS looks for the next leaf down, and so
on. Once the data item is found, the actual pointer to the data record is available to pull the entire record.
By placing a few hundred data items in each page (with pointers to the actual data record for each item
in that page), the total depth of the structure is usually very small. I have heard numbers thrown about
indicating that each page points to as many as 300 other leaves, which means that finding a single record
in a table with up to 27 million records requires searching through only three levels of leaves.

357

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 357

Figure 13-3

As mentioned, an index holds a copy of the data being searched for. This has a couple of implications
that you need to be aware of. The first is that every index created increases the storage requirements of
the database by the amount of data in the indexed column plus the pointers to the real data. The next is
that, as mentioned, indexes cause issues with updating or deleting data.

Deleting a record causes its slot in the index page to be emptied. If there are a lot of deletes, you end up
with lots of empty slots in the pages, which of course causes the DBMS to look through empty slots on
its way to finding the requested data. As data is deleted, the DBMS tracks these empty slots, and if they
pile up, eventually the DBMS has to do a compact or balance of the tree. Any maintenance of that nature
requires locks on the index pages, which will slow down accesses to the indexes by the application while
the balance is in progress.

Updating data causes a similar issue, perhaps even larger in terms of performance hit. As you can visu-
alize from knowing the tree structure, if an indexed data item changes, the item has to be moved from
one position in the tree to another. If the movement causes the item to move from one index page to
another, then a hole is left in the old page, but even worse, the data has to be muscled into the new page
where it now belongs. Even if there are “holes” in the destination page, the existing slots have to be
relinked to insert the data in the correct place. If there are no holes in the destination page, a major rebal-
ance has to be performed, which involves moving items out of the page to other pages to open up holes.

Index Item

Top Page

Index Item

Leaf

Index Item
Index Item
Index Item

Index Item

Leaf

Index Item

Leaf

Leaf LeafLeaf

358

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 358

The slots are often implemented as a doubly linked list (illustrated in Figure 13-4). A doubly linked list is
a structure where each container holding data has two pointers to other containers, one to the previous
container and another to the next container. This structure allows very fast movement or sorting of data
since the data itself is never physically moved; rather the two links are simply modified to point to dif-
ferent neighbors. Of course, the old neighbors’ pointers also have to be modified since they no longer
point to this data item, and the new neighbors’ links have to be updated to point to this data item.

Figure 13-4

Implementing a doubly linked list means finding the two slots that the new data belongs between,
adjusting the pointers of each of these neighbor slots to point to the new data item, and then adjusting
the pointers of the empty slot into which the data was placed to point to the data slots on either side. All
of this is just grunt work that the DBMS has to go through, and it isn’t a reason not to build an index
where one is needed, but just keep in mind that every index causes these data shuffles any time the data
in that indexed column changes or is deleted.

Perhaps you’ve heard the advice, “It may be faster to drop an index and rebuild it after a bulk insert.”
This data shuffle is exactly the reason why that may be the case. If the number of records added, deleted,
or modified is a very high percentage of the number of records already in the table, then moving the
index items around may be slower than just deleting the index and rebuilding it from scratch. This is
also the reason why you want to do large bulk imports during off hours (if any) so that the overhead of
shuffling index items or rebuilding indexes does not impact the users.

If you are going to be doing large inserts or other modifications of data to indexed tables, it can be bene-
ficial to drop the indexes before doing the insert and then rebuild the index after the data is inserted.
Obviously, given the example database used in this book, you will not be able to really see the effects.
However, in a production database with millions of records already in a table and deletes or inserts of
large quantities of records, you may find dropping indexes very beneficial.

Data Item
Pointer to Prev
Pointer to Next
Pointer to Rec

Index Item

Data Item
Pointer to Prev
Pointer to Next
Pointer to Rec

Index Item

Data Table

Data Item
Pointer Prev
Pointer Next
Pointer Data

Index Item

359

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 359

Try It Out Dropping Indexes
Follow these steps to drop an index and perform a bulk import:

1. The assumption here is that an index was created on the ZipCode field of the MemberDetails
table using the following SQL syntax:

USE FILMCLUB
CREATE INDEX IND_ZIP
ON MemberDetails (ZipCode)

2. You are getting ready to merge thousands of new members from a membership drive that the
club held last month. Before performing the bulk import, you want to remove the index on the
table. Use the following SQL to remove the index:

USE FILMCLUB
DROP INDEX MemberDetails.IND_ZIP

3. Now you can perform the bulk import of the new members. Having done that, you now want
to replace any indexes that you dropped. To do so, use this SQL:

USE FILMCLUB
CREATE INDEX IND_ZIP
ON MemberDetails (ZipCode)

How It Works
The DROP INDEX statement completely deletes all traces of the index mentioned in the statement.
Having done that, any subsequent data changes to the column that previously had the index on it no
longer cause the data shuffle slowdown issue, as that slowdown was caused by shuffling the data item
pointers in the index that you deleted. Once all the massive data manipulations have been accom-
plished, the index is created from scratch using the CREATE INDEX statement.

If you are going to delete indexes, just be very sure that you re-create them all. If you are not the only
developer in the database, the index you drop may be used by other developers’ queries, and forgetting
to re-create the indexes would wreak havoc with your associates.

Indexes — When They Help, Hurt, or Don’t Matter
The generic advice on indexes is to index any column used in a table join or in any WHERE clause. Join
columns probably should always be indexed. The WHERE clause advice is more iffy and plays back into
the question of whether the good outweighs the bad.

Indexes are extremely useful when they are on a field containing data with relatively small data duplica-
tion. A social security number index is an example where an index returns a single row (hopefully), and
it is the best return on investment you can get. In a database of 60 million U.S. addresses, a zip code
index returns a few thousand records, which is a tiny percent of the total records in the database, again a
great return on investment.

360

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 360

On the other hand, an index on a true/false field is not so useful, again depending on the data in the
field. If the distribution is 50/50, then you return half of the records. If the distribution is 5% true and
95% false, and you are searching for true, then the index might help. The problem in a case like this is
that the DBMS may incorrectly assume that the index is going to return so many records that it simply
ignores the index when it performs the query optimize phase. If that happens, then you have a query
that takes up space on the disk (and has to be updated on inserts or changes) but is never used.

I have read that in cases where the distribution is 50/50, it is better just to leave the column nonindexed
and use a table scan to find the data. I find this difficult to believe, at least on large tables, since the disk
I/O to search through an index and pull out all of the pointers to the records on the disk would seem to
be much less than the disk I/O to search through every record. Remember that any index column has
just the column data plus the pointer to the record, and therefore an index tends to be very compact rela-
tive to the table itself and thus can stay in the cache longer.

If you are using this index by itself and you are pulling a 50/50 mix, then that may very well be true
since you have to perform the disk I/O anyway to retrieve all those records. However, if you are using
the index in conjunction with other indexes to narrow down and pull only a small set of records off the
disk, then having the index saves the work of actually looking in each data record to see whether it
matches the search criteria.

Indexes in general tend to be used often, and thus they stay in the cache. In addition, the actual data
pulled from using indexes tends to be cached better since only those rows actually used get pulled into
the cache. Since you aren’t pulling huge blocks of data, you aren’t inadvertently flushing the cache of
useful data. Indexed reads only examine the exact pieces of the bigger data block containing the data
records, reducing the amount of CPU time spent examining the data. And finally, indexed reads can
scale up as the table size grows, giving stable and consistent results for data retrieval, even when the
table itself grows huge.

Table Scans — What Are They?
As the name implies, a table scan is where the DBMS has to physically retrieve every record in the table
to examine one or more columns to see whether the data in that column matches a join or WHERE condi-
tion. A table scan is what happens when no index exists on a column that has to be compared to some-
thing else in a query. In the absence of an index, the DBMS scans the table, looking at the data item in
that field in every record in the table.

Data is usually organized in sectors, with multiple grouped sectors called extents. In SQL Server, for
example, it is common for the database to use 8K blocks (the maximum size of a data record) with eight
of these blocks read or written at one time by the database, resulting in 64K of data being read or written
at once. See Figure 13-5 for an illustration of a table scan.

361

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 361

Figure 13-5

Table scans can cause absolutely huge performance hits or may not impact performance much at all.
Imagine a table of 60 million records with dozens of fields, where the DBMS has to read every data
record off the disk to examine the contents of a single field looking for matches. This operation could
take hours or even days and of course trashes the various system caches. In another case, however, you
may be scanning a table of just 100 records with only two or three columns. Again, the DBMS has to pull
all the records, but the size of the task is so much smaller that the impact on the query may be negligible.
In the first case, the probability of the data being in any of the various caches is negligible; in fact, it is
simply impossible. In the second case, the data may very well be in a cache, and in fact if the table is
scanned repeatedly, the data may very well stay in a cache permanently.

Another impact that sometimes is not considered is the impact of a large table scan on the various sys-
tem caches. Because so much data is being read off the disk, it is possible to flush data that would other-
wise have remained in the cache forever and replace it with data used only this one time. Obviously, all
that other data is reread and placed back in the cache once the table scan is finished since the normally
cached data is used so often.

When Table Scans Help, Hurt, or Don’t Matter
Table scans can be useful when the table is small, and particularly when the table is used often enough
to remain in the cache. Table scans tend to cause linear performance degradation as the table size grows.
Thus, table scans might work perfectly well when a particular table is new with not much data, but they
get slower and slower as new records are added to the table. Keep this in mind if you build queries with
WHERE conditions or joins on nonindexed columns of active tables. Performance may be quite acceptable
initially, but it may worsen over time. If the table is a static table, such as a state or country lookup table,
the performance might be fine and never changes since new states are so rarely added to the table.

Record 8k
Record 8k

Data Table

64k Block

64k Block

362

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 362

Tuning Tips
The following list contains some helpful database tuning tips:

❑ Reduce the amount of data pulled. Avoid using SELECT * queries; instead pull exactly and only
the fields that you need. It is very easy to get lazy and use the asterisk (*), figuring that as new
columns are needed they will already be there and the query will not have to be revisited.
Although this is true, you are also forcing the DBMS to retrieve data that will never be used,
flushing useful data out of caches, loading the network with data that will never be used, and
burdening the workstation with unused data.

❑ Think carefully before creating new indexes, particularly indexes on columns other than pri-
mary keys or foreign keys. Indexes may negatively impact other areas of the application.
Unfortunately, if you work in a large database with other developers, you cannot simply delete
indexes, even if you created them, since you can never be sure that queries you didn’t create
don’t use the index you did create to good effect.

❑ Watch for filter redundancy, conditions where a filter on one column guarantees values in a dif-
ferent column. This problem is not uncommon and often occurs where a single condition did
not provide a narrow-enough match, so a second or even third condition was added to the filter.

❑ WHERE conditions such as NOT NULL may cause the optimizer to assume that the number of
rows matched will be too large to be useful. Remember that optimizers try to look at the entire
query and figure out how to minimize the work required to return the data. Particularly if you
have a lot of filter conditions, the optimizer may simply ignore some of the conditions if the fil-
ter in that condition is too broad.

❑ Use pattern matching judiciously. LIKE COL% is a valid WHERE condition, reducing the returned
set to only those records with data starting with the string COL. However, COL%Y does not fur-
ther reduce the returned results set since %Y cannot be effectively evaluated; the effort to do the
evaluation is too large to be considered. In this case, the COL% is used, but the %Y is thrown
away. For the same reason, a leading wildcard %COL effectively prevents the entire filter from
being used.

❑ Avoid number-to-character conversions with pattern matching, particularly with the < and >
operator. Numbers and characters compare differently and can lead to odd behaviors.

❑ The “not equal” operators can cause the optimizer to throw out the WHERE condition since it
may consider the range of values returned to be too broad to be useful.

❑ Be very careful of equality operators with real numbers and date/time values. Both of these can
have small differences that are not obvious to the eye but that make an exact match impossible,
thus preventing your queries from ever returning rows.

❑ Cartesian joins are actually a non-join — where two tables are selected, but no join is specified.
The result of Cartesian joins is that a row is returned for the product of the two tables — one row
for each row in the first table and one row for each row in the second table. If each table has 10
rows, 100 rows are returned. If each table has 100 rows, 10,000 rows are returned. Such queries
are occasionally useful but are most often a simple mistake in syntax. Luckily, they are usually
easy to spot since the results set has far more records than expected or processes very slowly.
This assumes that the results set ever comes back, of course. If the two tables are large, the
results set can be so huge that the query simply can’t complete in a reasonable time. The DBMS
may very well time out the query.

363

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 363

❑ Inner joins look like an equality on a pair of fields, and in fact if you are doing such an equality
compare between fields in two tables, an inner join (with an index on each field) may be a more
efficient method of expressing the query.

Summary
Performance tuning is not a simple matter of timing sections of code. You may find that the application
isn’t the problem at all; perhaps old, slow workstations are just inadequate for the job. Or perhaps you
have other hardware issues, such as too little workstation memory, network saturation, or insufficient
server horsepower. You may find that the database needs to be split into pieces so that more disks can
shovel data at the processor, keeping it busy. If you have these issues, you may find that it is cheaper to
throw money at hardware rather than throwing money at the developer. Money spent on hardware
affects everything the user does rather than just making a single application faster.

On the other hand, if the hardware is adequate, then it is time to look at the application itself. In order to
understand application tuning, it is useful to have at least a passing knowledge of the various caches
that buffer the application, understand how they interact, and know what you can do to keep the cache
filled with the most-used data.

It also helps to understand how indexes work so that you understand the trade-offs of indexing versus
table scans. Be sure to remember the following points when deciding between indexes and table scans:

❑ Index pages with index items using doubly linked list algorithms have to be updated for any
inserts, deletes, or updates.

❑ On static tables, there is virtually no downside to indexes, but on very active tables, the CPU
time required to update these links between index items can cause major performance prob-
lems, particularly with large data inserts but also with large deletes or updates.

❑ Periodic index maintenance by the DBMS causes index locks, which affect database users. Try to
schedule large block operations to take place during off hours to reduce the impact on users.

❑ Table scans can help prevent index locks since they do not use indexes, and table scans can
work quite well on small tables, particularly when these tables are active, often-used tables and
can fit entirely in one of the various caches.

❑ Large table scans, on the other hand, cause a variety of serious performance issues, starting with
expensive physical disk I/O, and cause caches to flush often-used data to be replaced with the
mass of data being read off the disks.

There is usually no single thing that you can do to tune an application. You must keep a variety of issues
in mind and always ask, “Where’s the bottleneck?” Be prepared to accept whatever answer comes up,
whether hardware or software.

364

Chapter 13

17_577328 ch13.qxd 1/28/05 11:26 PM Page 364

Exercises
1. Create an index on the LastName and FirstName columns in the MemberDetails table.

2. Create an index on the State column in the MemberDetails table.

3. Create a unique index on the MemberId column in the MemberDetails table.

4. Delete all the indexes on the MemberDetails table.

5. Rebuild all the indexes on the MemberDetails table.

365

Database Tuning

17_577328 ch13.qxd 1/28/05 11:26 PM Page 365

17_577328 ch13.qxd 1/28/05 11:26 PM Page 366

A
Exercise Answers

Chapter 1

Exercise 1 Solution
A separate table, which you can call the Location table, with a primary key field of integer data
type should hold the meeting location details. The table should look like the table shown below:

Field Name Data Type Notes

LocationId integer Primary key

Location varchar(200)

You need to alter the Attendance table so that instead of storing the whole address in the Location
field for every record, the table stores the integer value from the Location table shown above. The
new Attendance table looks like this:

Field Name Data Type Notes

MeetingDate date Change to datetime data type if using MS
SQL Server

LocationId integer Foreign key

MemberAttended char(1)

MemberId integer Foreign key linking to MemberDetails table

18_577328 appa.qxd 1/28/05 11:26 PM Page 367

Exercise 2 Solution
The Location field is no longer needed and needs to be deleted. First, drop the Location field and add a
LocationId field to the Attendance table. The SQL to do so is as follows:

ALTER TABLE Attendance
DROP COLUMN Location;

ALTER TABLE Attendance
ADD LocationId integer;

IBM’s DB2 doesn’t support the dropping of individual columns. One way around this is to drop the
whole table and then re-create it with the new LocationId column:

DROP TABLE Attendance;
CREATE TABLE Attendance
(

MeetingDate date,
LocationId integer,
MemberAttended char(1),
MemberId integer

);

Now you need to create the Location table. The fields that compose the table are as follows:

Field Name Data Type Notes

LocationId integer Primary key

Street varchar(100)

City varchar(75)

State varchar(75)

The SQL to create the Location table is as follows:

CREATE TABLE Location
(

LocationId integer,
Street varchar(100),
City varchar(75),
State varchar(75)

);

Using a separate Location table to store details of meeting locations that members have attended saves
on storage space used by the database.

368

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 368

Chapter 2

Exercise 1 Solution
There are two different solutions to this exercise (both displayed subsequently) because of the way in
which Oracle requires you to write dates.

Non-Oracle Solution
If you’re using SQL Server, IBM DB2, MySQL, or MS Access, use the following solution:

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
7,
‘John’,
‘Jackson’,
‘1974-05-27’,
‘Long Lane’,
‘Orange Town’,
‘New State’,
‘88992’,
‘jjackson@mailme.net’,
‘2005-11-21’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES

369

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 369

(
8,
‘Jack’,
‘Johnson’,
‘1945-06-09’,
‘Main Street’,
‘Big City’,
‘Mega State’,
‘34566’,
‘jjohnson@me.com’,
‘2005-06-02’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
9,
‘Seymour’,
‘Botts’,
‘1956-10-21’,
‘Long Lane’,
‘Windy Village’,
‘Golden State’,
‘65422’,
‘Seymour@botts.org’,
‘2005-07-17’

);

Oracle Solution
If you’re using Oracle, the date format needs to be different, so use the following solution:

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,

370

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 370

Email,
DateOfJoining

)
VALUES
(
7,
‘John’,
‘Jackson’,
‘27 May 1974’,
‘Long Lane’,
‘Orange Town’,
‘New State’,
‘88992’,
‘jjackson@mailme.net’,
‘21 Nov 2005’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
8,
‘Jack’,
‘Johnson’,
‘9 June 1945’,
‘Main Street’,
‘Big City’,
‘Mega State’,
‘34566’,
‘jjohnson@me.com’,
‘02 June 2005’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,

371

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 371

ZipCode,
Email,
DateOfJoining

)
VALUES
(
9,
‘Seymour’,
‘Botts’,
‘21 Oct 1956’,
‘Long Lane’,
‘Windy Village’,
‘Golden State’,
‘65422’,
‘Seymour@botts.org’,
‘17 July 2005’

);

Exercise 2 Solution
First, remove Bob Robson’s details from the database. His member details are stored in the
MemberDetails table, and his favorite film categories are in the FavCategory table. Each record in the
FavCategory table contains only the MemberId and the CategoryId. Remember from Chapter 1 that the
MemberId field in this table is a foreign key; its value is referenced from the MemberDetails table, where
it’s a primary key. Therefore, you must delete the records from the FavCategory and Attendance tables
first:

DELETE FROM FavCategory WHERE MemberId = 2;
DELETE FROM Attendance WHERE MemberId = 2;

Once you delete Bob from the FavCategory table, you can delete him from the MemberDetails table:

DELETE FROM MemberDetails WHERE MemberId = 2;

Exercise 3 Solution
Update the database to reflect the Orange Town boundary changes. You need to change the City field
from Orange Town to Big City where the street is Long Lane and the city is Orange Town.
Remember that there is also a Long Lane in Windy Village, so you can’t just check the street name. You
need to update only if the street is in Orange Town:

UPDATE MemberDetails SET City = ‘Big City’
WHERE Street = ‘Long Lane’ AND City = ‘Orange Town’;

372

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 372

Chapter 3

Exercise 1 Solution
First of all, you need to consider which columns and from what table or tables you need to get the
answer. In this case, you get answers from the MemberDetails table and the Street, City, State, and
ZipCode columns. Because you already know the MemberId (13), all you need to do is filter results by
adding a WHERE clause that contains only rows where MemberId equals 13:

SELECT Street, City, State, ZipCode
FROM MemberDetails
WHERE MemberId = 13;

Executing this query provides the following results:

Street City State ZipCode

Winding Road Big City Mega State 34512

Exercise 2 Solution
You need to find the names of the members, so the FirstName and LastName columns from the
MemberDetails table need to be selected. Now you need to add a WHERE clause with a condition that
checks for last names starting with J. The LIKE operator will do this:

SELECT FirstName, LastName
FROM MemberDetails
WHERE LastName LIKE ‘J%’;

The percent sign (%) means one or more of any character. Note that in MS Access you need to use an
asterisk (*) instead of the percent sign (%).

Executing the final query provides the following results:

FirstName LastName

John Jackson

John Jones

Jenny Jones

Jack Johnson

373

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 373

Exercise 3 Solution
First, decide which columns you want. In this case, you want the LastName and FirstName columns
from the MemberDetails table:

SELECT LastName, FirstName
FROM MemberDetails

Now you need to ensure that only members whose date of joining was on or before December 31, 2004,
are included in the results set. Use a WHERE clause and specify that the DateOfJoining column be before
(or less than) that date:

SELECT LastName, FirstName
FROM MemberDetails
WHERE DateOfJoining <= ‘2004-12-31’;

If you’re using Oracle, don’t forget that you might need to change the date format to day-month-year:

SELECT LastName, FirstName
FROM MemberDetails
WHERE DateOfJoining <= ‘31 Dec 2004’;

If you’re using MS Access, then you need to use the hash sign (#) to delimit the date:

SELECT LastName, FirstName
FROM MemberDetails
WHERE DateOfJoining <= #2004-12-31#;

Finally, to obtain results in the correct order, use an ORDER BY clause:

SELECT LastName, FirstName
FROM MemberDetails
WHERE DateOfJoining <= ‘2004-12-31’
ORDER BY LastName, FirstName;

The final results are as follows:

LastName FirstName

Gee Steve

Smith Katie

Exercise 4 Solution
First, you need to identify which tables and which columns from those tables will form the results. The
three tables supplying the data are Attendance, Location, and MemberDetails. These need to be joined
using an INNER JOIN in order to join the three tables into one results set. The LocationId field links the
Attendance and Location tables. The MemberId field links the Attendance and MemberDetails tables.

374

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 374

As well as joining the tables, you also need to restrict the results set to only the location Windy Village,
Golden State. The member also must have attended the meeting, so MemberAttended must be Y. The
WHERE clause filters the results as required:

SELECT FirstName, LastName
FROM Attendance INNER JOIN Location
ON Attendance.LocationId = Location.LocationId
INNER JOIN MemberDetails
ON Attendance.MemberId = MemberDetails.MemberId
WHERE Location.City = ‘Windy Village’ AND Location.State = ‘Golden State’
AND Attendance.MemberAttended = ‘Y’;

Executing the query provides the following results:

FirstName LastName

Katie Smith

John Jones

Jenny Jones

If you’re using MS Access, don’t forget that you need to wrap the first inner join inside brackets:

SELECT FirstName, LastName
FROM (Attendance INNER JOIN Location
ON Attendance.LocationId = Location.LocationId)
INNER JOIN MemberDetails
ON Attendance.MemberId = MemberDetails.MemberId
WHERE Location.City = ‘Windy Village’ AND Location.State = ‘Golden State’
AND Attendance.MemberAttended = ‘Y’;

Chapter 4

Exercise 1 Solution
Although the field definitions are fine, all the data is lumped into one table, which leads to a huge
amount of data redundancy.

First normal form is partially complete. The data is defined, a table is set up, and columns are created.
However, there are repeating groups, such as book authors. Also, you must create a primary key for the
table. Figure A-1 creates two new tables: Author and WrittenBy. The Author table contains a list of
authors and their details, and the WrittenBy table contains a list of books and their authors:

375

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 375

Figure A-1

ISBN is a unique reference that identifies books and makes up part of the primary key. BookSellerId
uniquely identifies a bookseller and provides the second part of the primary key. Finally, PublisherCode
is the third part of the primary key for Table1. For the WrittenBy table, the primary key is the ISBN and
AuthorId. In Authors, the AuthorId is the primary key, a newly created column that Table1 references.

So far, the database is roughly in first normal form. Second normal form specifies that no partial depen-
dencies can exist between any of the columns on the primary key. In Table1, BookTitle and
YearPublished are dependent on ISBN but not dependent on BookSellerId or PublisherCode.
BookSellerName and BookSellerTelNo are dependent only on the BookSellerId and not on any of the
other parts of the primary key. Finally, PublisherCode determines PublisherName and
PublisherAddress, but no dependency exists between any of the other parts of the primary key.
Therefore, in order to make the table comply with second normal form, the three independent parts
need to be split up into three tables, which you can call something like Books, BookSellers, and
Publishers. Figure A-2 illustrates how this might look:

376

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 376

Figure A-2

Notice that Table1 is renamed BooksForSale and that all the columns except ISBN, PublisherCode, and
BookSellerId are deleted. The database is now in second normal form.

Exercise 2 Solution
The FavCategory table links to two other tables: Category and MemberDetails. They are both the pri-
mary tables, the columns in FavCategory being foreign keys. Therefore, you must create two FOREIGN
KEY constraints:

ALTER TABLE FavCategory
ADD CONSTRAINT favcat_cat_fk
FOREIGN KEY (CategoryId)
REFERENCES Category(CategoryId);

ALTER TABLE FavCategory
ADD CONSTRAINT favcat_member_fk
FOREIGN KEY (MemberId)
REFERENCES MemberDetails(MemberId);

377

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 377

Chapter 5

Exercise 1 Solution
To prevent NULLs from displaying, you need to use the COALESCE() function. The first argument is the
column name; the second is the message to be displayed if the column for that record contains NULL
values:

SELECT FirstName,
LastName,
COALESCE(Street, ‘No address details available for this member.’),
COALESCE(ZipCode,’’)

FROM MemberDetails;

The results from this query are as follows:

FirstName LastName Street ZipCode

Katie Smith Main Road 123456

Steve Gee 45 Upper Road 99112

John Jones Newish Lane 88776

Jenny Jones Newish Lane 88776

John Jackson Long Lane 88992

Jack Johnson Main Street 34566

Seymour Botts Long Lane 65422

Susie Simons Main Road 123456

Jamie Hills Newish Lane 88776

Stuart Dales Long Lane 65422

William Doors Winding Road 34512

Doris Night White Cliff Street 68122

Catherine Hawthorn No address details available for this member

Exercise 2 Solution
Write a query that cuts down the results into something manageable. Given that the exact spelling of the
name is unknown, you have to find some alternative way of searching. The following SQL uses the DIF-
FERENCE() function to match names that sound like Jilly Johns:

SELECT MemberId,
FirstName,
LastName

FROM MemberDetails
WHERE DIFFERENCE(LastName,’Johns’) >= 3 AND DIFFERENCE(FirstName, ‘Jilly’) >= 3;

378

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 378

Executing the query provides the following results on SQL Server; you may get slightly different ones
with DB2 or Oracle:

MemberId FirstName LastName

6 Jenny Jones

5 John Jones

8 Jack Johnson

7 John Jackson

Because the chairwoman knows she spoke to a woman, she could deduce that she’s looking for Jenny
Jones. Keeping track of gender in the MemberDetails table would make getting these results even easier.

How should you decide a good value for the results returned by the DIFFERENCE() function? It’s a mat-
ter of guesswork based on how many results are returned and whether those results are likely to contain
the one result you want. Any value 3 or higher has a strong possibility of being a close match, and you
can usually rule out anything below that.

Chapter 6

Exercise 1 Solution
The first part of the question’s answer is as follows:

SELECT Category, COUNT(DVDPrice), SUM(DVDPrice * 1.1)
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category;

The preceding SQL provides the following results:

Category COUNT(DVDPrice), SUM(DVDPrice * 1.1)

Historical 3 38.423

Horror 2 20.834

Romance 1 14.289

Sci-fi 1 14.289

Thriller 2 17.578

War 1 14.289

379

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 379

You might receive slightly different results after the decimal point due to rounding errors by database
systems.

As with all of the more complex queries, start simple and build up. The first job is identifying which
tables contain the data needed to answer the question. With this example, the Films table contains the
price and film category information. However, you want to display the category name rather than just
an ID, and name data comes from the Category table. Use a FROM statement to join the two tables, linked
by the CategoryId, which is the primary key in the Category table and a foreign key in the Films table:

FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’;

Add a WHERE clause that includes only records where the AvailableOnDVD field is Y, as there’s no point
counting films that are not available on DVD.

The question requires that the results be grouped into categories and that the results should return the
category name, the number of DVDs in the category, and the total price for the DVDs in each category
group. Therefore, you need to add a GROUP BY clause, grouping by Category:

FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category;

Finally, add the columns and expressions that make up the final results: the Category column, the count of
the number of DVDs per group, and the total price of the DVDs in that group including a 10% sales tax:

SELECT Category, COUNT(DVDPrice), SUM(DVDPrice * 1.1)
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category;

The second part of the question asks you to limit the results to just those groups where the number of
DVDs is just one. To do this, add a HAVING clause with a condition that allows only groups with one
record in them to be included in the final results:

SELECT Category, COUNT(DVDPrice), SUM(DVDPrice * 1.1)
FROM Films
INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE AvailableOnDVD = ‘Y’
GROUP BY Category
HAVING COUNT(DVDPrice) = 1;

The final SQL provides the results in the following table:

380

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 380

Category COUNT(DVDPrice), SUM(DVDPrice * 1.1)

Romance 1 14.289

Sci-fi 1 14.289

War 1 14.289

Exercise 2 Solution
The SQL required is as follows:

SELECT Category, MAX(Rating) AS “Highest Rated”, MIN(Rating) AS “Lowest Rated”
FROM Films INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
GROUP BY Category;

Executing the query produces the results shown in the following table:

Category Highest Rated Lowest Rated

Historical 5 3

Horror 2 1

Romance 4 4

Sci-fi 5 1

Thriller 4 1

War 5 2

The necessary data comes from the Films and Category tables, which have been joined using an INNER
JOIN on the CategoryId field. The results are grouped by the Category column, and the highest and low-
est values for each group are obtained using the MAX() and MIN() functions.

Chapter 7

Exercise 1 Solution
The following is the SQL that answers the question:

SELECT C1.Category, MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName
FROM FavCategory FC1 INNER JOIN FavCategory FC2
ON FC1.CategoryId = FC2.CategoryId
INNER JOIN Category C1 ON C1.CategoryId = FC1.CategoryId
INNER JOIN MemberDetails MD1 ON MD1.MemberId = FC1.MemberId
INNER JOIN MemberDetails MD2 ON MD2.MemberId = FC2.MemberId
WHERE FC1.MemberId < FC2.MemberId;

381

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 381

You should use the following SQL if you’re using MS Access:

SELECT C1.Category, MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName
FROM (((FavCategory AS FC1 INNER JOIN FavCategory AS FC2
ON FC1.CategoryId = FC2.CategoryId)
INNER JOIN Category AS C1 ON C1.CategoryId = FC1.CategoryId)
INNER JOIN MemberDetails MD1 ON MD1.MemberId = FC1.MemberId)
INNER JOIN MemberDetails MD2 ON MD2.MemberId = FC2.MemberId
WHERE FC1.MemberId < FC2.MemberId;

It might look horrendously long, but broken down into its parts it’s not that bad. The very first step is to
pair up people with the same favorite category. To get pairs of people in the same row, you need to use a
self-join of the FavCategory table:

SELECT FC1.CategoryId, FC1.MemberId, FC2.MemberId
FROM FavCategory FC1 INNER JOIN FavCategory FC2
ON FC1.CategoryId = FC2.CategoryId
WHERE FC1.MemberId < FC2.MemberId;

The WHERE clause is there to prevent the same person from being listed as a pair of themselves on the
same row. This gives you the CategoryId and MemberIds involved, but the question requires the cate-
gory name and the first and last names of the people. First, get the category title from the Category table
by joining it to the current results:

SELECT C1.Category, FC1.MemberId, FC2.MemberId
FROM FavCategory FC1 INNER JOIN FavCategory FC2
ON FC1.CategoryId = FC2.CategoryId
INNER JOIN Category C1 ON C1.CategoryId = FC1.CategoryId
WHERE FC1.MemberId < FC2.MemberId;

Now you need to get the first and last names. For this, you need to join the MemberDetails table to the
current results. However, on the same row are two different MemberIds: for FC1 and for FC2. You can’t
just join MemberDetails once; you need two copies of the table joined. The first copy provides the first
and last names for FC1’s MemberId, and the second copy provides the lookup for the first and last
names from FC2’s MemberId:

SELECT C1.Category, MD1.FirstName, MD1.LastName, MD2.FirstName, MD2.LastName
FROM FavCategory FC1 INNER JOIN FavCategory FC2
ON FC1.CategoryId = FC2.CategoryId
INNER JOIN Category C1 ON C1.CategoryId = FC1.CategoryId
INNER JOIN MemberDetails MD1 ON MD1.MemberId = FC1.MemberId
INNER JOIN MemberDetails MD2 ON MD2.MemberId = FC2.MemberId
WHERE FC1.MemberId < FC2.MemberId;

382

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 382

This is the final SQL and gives the following results:

C1.Category MD1.FirstName MD1.LastName MD2.FirstName MD2.LastName

Thriller John Jones Susie Simons

Thriller John Jones Stuart Dales

Thriller Susie Simons Stuart Dales

Romance Katie Smith Doris Night

Horror Susie Simons Jamie Hills

Horror Susie Simons William Doors

Horror Jamie Hills William Doors

War Katie Smith Jenny Jones

War Katie Smith Jamie Hills

War Katie Smith Stuart Dales

War Jenny Jones Jamie Hills

War Jenny Jones Stuart Dales

War Jamie Hills Stuart Dales

Sci-fi Steve Gee Jamie Hills

Sci-fi Steve Gee William Doors

Sci-fi Jamie Hills William Doors

Historical Susie Simons Stuart Dales

Historical Susie Simons Doris Night

Historical Stuart Dales Doris Night

Comedy Steve Gee Jenny Jones

Comedy Steve Gee Stuart Dales

Comedy Jenny Jones Stuart Dales

Exercise 2 Solution
The SQL that answers the question is as follows:

SELECT Category.Category
FROM FavCategory
RIGHT OUTER JOIN Category ON FavCategory.CategoryId = Category.CategoryId
WHERE FavCategory.CategoryId IS NULL;

383

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 383

Your answer may differ, as there’s more than one way to answer this question, but that doesn’t matter as
long as the results are the same. The right outer join obtains all rows from the Category table, regardless
of whether there is a matching CategoryId in the FavCategory table. If there is no matching CategoryId
in the FavCategory table, then it means that no member has chosen that category as their favorite. When
this happens, FavCategory.CategoryId has a NULL value, so all you need to do is add a WHERE clause
that specifies that FavCategory.CategoryId must be NULL, and you ensure that only those categories
not picked as a favorite are included in the results. The final results are as follows:

Category

Film Noir

Chapter 8

Exercise 1 Solution
Obtaining the CategoryId, name, and total cost of films in a particular category is fairly easy. The diffi-
cult part is obtaining the count of how many members put that category down as one of their favorites.
For this, you should use a subquery in the SELECT statement’s column listing.

SELECT Category.Category,
SUM(DVDPrice) AS “Total Cost For Category”,
(SELECT COUNT(*) FROM FavCategory
WHERE FavCategory.CategoryId =

Category.CategoryId) AS “Members Favorite Category”
FROM Films INNER JOIN Category
ON Films.CategoryId = Category.CategoryId
WHERE Films.AvailableOnDVD = ‘Y’
GROUP BY Category.CategoryId, Category.Category;

In the preceding query, the following subquery obtains the count of how many members listed that cate-
gory as their favorite:

(SELECT COUNT(*) FROM FavCategory
WHERE FavCategory.CategoryId = Category.CategoryId)

The subquery is joined to the outer query on the CategoryId columns in the FavCategory and Category
tables.

Notice that because the subquery references the CategoryId from the Category table in the main query,
you must include it in the GROUP BY clause.

384

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 384

The results from the query are as follows:

Category Total Cost For Category Members Favorite Category

Thriller 15.98 3

Romance 12.99 2

Horror 18.94 3

War 15.99 4

Sci-fi 15.99 3

Historical 41.97 3

Exercise 2 Solution
All the hard work in creating this query is in the WHERE clause. There are two important conditions for
the WHERE clause: that a town must have two or more members, and that the town must not currently be
listed in the Location table. The WHERE clause is broken down into two subqueries, one nested inside the
other. The outer subquery returns the number of members living in a particular city. The inner subquery
returns all rows from the Location table that match the city name and state:

SELECT City, State FROM MemberDetails MD1
WHERE (SELECT COUNT(*) from MemberDetails MD2
WHERE NOT EXISTS (SELECT * FROM Location L1 WHERE L1.City = MD2.City AND L1.State =
MD2.State)
AND MD1.City = MD2.City AND MD1.State = MD2.State
GROUP BY City, State) >= 2
GROUP BY City, State;

The nested inner subquery is this:

(SELECT * FROM Location AS L1 WHERE L1.City = MD2.City AND L1.State = MD2.State)

If this returns rows, then it means that the city already exists in the Location table, but because you want
only cities not already in that table, use a NOT EXISTS operator in the outer subquery to remove those
cities from the results.

The outer subquery is as follows:

(SELECT COUNT(*) from MemberDetails MD2
WHERE NOT EXISTS (SELECT * FROM Location L1 WHERE L1.City = MD2.City AND L1.State =
MD2.State)
AND MD1.City = MD2.City AND MD1.State = MD2.State
GROUP BY City, State)

This SQL returns the number of members living in a city, where the city does not exist in the Location
table. In the main query, you then check to see that this value is 2 or more:

385

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 385

WHERE (SELECT COUNT(*) from MemberDetails MD2
WHERE NOT EXISTS (SELECT * FROM Location L1 WHERE L1.City = MD2.City AND L1.State =
MD2.State)
AND MD1.City = MD2.City AND MD1.State = MD2.State
GROUP BY City, State) >= 2

The final query gives the following results:

City State

Townsville Mega State

Chapter 9

Exercise 1 Solution
The easiest and safest way to delete data is first to write a SELECT query that selects the data you want
to delete and then to change the SELECT statement to a DELETE statement.

Begin with the SELECT column list and FROM clause:

SELECT StarId, StarName, StarAge FROM FilmStars S1;

This query simply returns all rows and columns from the table. The table has a primary key and the
StarId column, and luckily enough, the values entered there are unique. However, the star’s name
should be unique, but it isn’t. Therefore, you need to search for instances where there are duplicate
names but where the StarId is different. To do this, you can use an IN operator and a subquery that sim-
ply returns all rows:

SELECT StarId, StarName, StarAge FROM FilmStars S1
WHERE StarName IN (SELECT StarName FROM FilmStars);

If you run this query, you get the following results:

StarId StarName StarAge

1 Boris Carlot 102

1 Scarlet O’Hairpin 89

3 Boris Carlot 102

4 Michael Hourglass 56

5 Dusty Hoffperson 48

6 Boris Carlot 102

7 Dusty Hoffperson 48

386

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 386

Clearly this query hasn’t returned just the duplicates. That’s because you need to add a link between the
subquery and the outer query. Remember, you want only those rows where the name is the same but the
StarId is different. You have the same names, but you need to add a link between the query and sub-
query that ensures that the StarIds are different:

SELECT StarId, StarName, StarAge FROM FilmStars S1
WHERE StarName IN (SELECT StarName FROM FilmStars S2
WHERE S2.StarId < S1.StarId)
ORDER BY StarName;

In the preceding code, a clause is added to the subquery that ensures that only rows where the StarIds
are different between the subquery and outer query are returned. This is done by specifying that
S2.StarId— the subquery’s StarId column — should have a value that is less than the StarId column in
S1 (the outer query’s StarId table).

The ORDER BY clause is there only to make the results easier to read, and it isn’t needed for the final
DELETE query. When you run this query, you get the following results:

StarId StarName StarAge

3 Boris Carlot 102

6 Boris Carlot 102

7 Dusty Hoffperson 48

As you can see, the query has selected the unwanted duplicate data. Having confirmed that the query
works, you can now convert it to a DELETE statement:

DELETE FROM FilmStars
WHERE StarName IN

(SELECT StarName FROM FilmStars S2 WHERE S2.StarId < FilmStars.StarId);

All you have to do is change SELECT to DELETE. You can also remove the alias, as some database sys-
tems don’t allow aliases with DELETE statements. In the subquery, S1 is changed to FilmStars, which
references the outer FilmStars table mentioned in the DELETE FROM statement. Execute the query and
you should find that three rows are deleted.

Chapter 10

Exercise 1 Solution
CREATE VIEW vFirstLastDOB AS
SELECT FirstName, LastName, DateOfBirth
FROM MemberDetails

387

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 387

Exercise 2 Solution
CREATE VIEW vGoldenStateMembers AS
SELECT *
FROM MemberDetails
WHERE State = ‘Golden State’

Exercise 3 Solution
CREATE VIEW vGoldenStateMembersFirstLastDOB AS
SELECT FirstName, LastName, DateOfBirth
FROM vGoldenStateMembers

Exercise 4 Solution
DROP VIEW vGoldenStateMembersFirstLastDOB
DROP VIEW vGoldenStateMembers
DROP VIEW vFirstLastDOB

Chapter 11

Exercise 1 Solution
USE FILMCLUB
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRANSACTION
UPDATE Inventory
SET Inventory.CheckedOut = ‘Y’
WHERE (((Inventory.InventoryId)=7));
INSERT INTO Rentals (InventoryId, MemberId, DateOut)
SELECT 7 AS InventoryId, 3 AS MemberId, ‘3/21/2004’ AS DateOut;
COMMIT

Exercise 2 Solution
USE FILMCLUB
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
BEGIN TRANSACTION
SELECT * from Films

Exercise 3 Solution
USE FILMCLUB
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION
UPDATE Inventory
SET Inventory.CheckedOut = ‘Y’
COMMIT

388

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 388

Chapter 12

Exercise 1 Solution
EXECUTE sp_addrole @rolename = ‘DataEntry’
EXECUTE sp_addrole @rolename = ‘Management’
EXECUTE sp_addrole @rolename = ‘Supervisor’

Exercise 2 Solution
EXECUTE sp_addlogin @loginame = ‘John’, @passwd = ‘ASDFG’
EXECUTE sp_addlogin @loginame = ‘Joe’, @passwd = ‘qwerty’
EXECUTE sp_addlogin @loginame = ‘Fred’, @passwd = ‘mnbvc’
EXECUTE sp_addlogin @loginame = ‘Lynn’, @passwd = ‘zxcvbn’
EXECUTE sp_addlogin @loginame = ‘Amy’, @passwd = ‘lkjhg’
EXECUTE sp_addlogin @loginame = ‘Beth’, @passwd = ‘poiuy’

EXECUTE sp_adduser ‘John’, ‘John’
EXECUTE sp_adduser ‘Joe’, ‘Joe’
EXECUTE sp_adduser ‘Fred’, ‘Fred’
EXECUTE sp_adduser ‘Lynn’, ‘Lynn’
EXECUTE sp_adduser ‘Amy’, ‘Amy’
EXECUTE sp_adduser ‘Beth’, ‘Beth’

Exercise 3 Solution
EXECUTE sp_addrolemember @rolename = ‘DataEntry’, @membername = ‘John’, ‘Joe’,
‘Lynn’
EXECUTE sp_addrolemember @rolename = ‘Management’, @membername = ‘Amy’, ‘Beth’

Exercise 4 Solution
GRANT SELECT, INSERT, UPDATE
ON Attendance
TO DataEntry

Exercise 5 Solution
GRANT SELECT, DELETE
ON Attendance
TO Supervisor

Exercise 6 Solution
GRANT SELECT
ON Attendance
TO Management

389

Exercise Answers

18_577328 appa.qxd 1/28/05 11:26 PM Page 389

Chapter 13

Exercise 1 Solution
USE FILMCLUB
CREATE INDEX IND_Name
ON MemberDetails (FirstName, LastName)

Exercise 2 Solution
USE FILMCLUB
CREATE INDEX IND_State
ON MemberDetails (State)

Exercise 3 Solution
USE FILMCLUB
CREATE UNIQUE INDEX IND_MemberId
ON MemberDetails (MemberId)

Exercise 4 Solution
USE FILMCLUB
DROP INDEX MemberDetails.IND_State
DROP INDEX MemberDetails.IND_Name
DROP Index MemberDetails.IND_MemberId

Exercise 5 Solution
USE FILMCLUB
CREATE INDEX IND_Name
ON MemberDetails (FirstName, LastName)

CREATE INDEX IND_State
ON MemberDetails (State)

CREATE UNIQUE INDEX IND_MemberId
ON MemberDetails (MemberId)

390

Appendix A

18_577328 appa.qxd 1/28/05 11:26 PM Page 390

B
Setting Up and Using the
Five Database Systems

This appendix covers how to install the five database systems supported by this book. It also cov-
ers enough detail on using each database system to enable you to create the example database
used throughout the book. This appendix also shows you how each database system allows you to
enter and run SQL queries. With the knowledge gained here, you’ll be in a position to create the
example database and try out all of the SQL examples in the book. The coverage of each database
system is quite brief, and although it is sufficient for this book, each of the database systems comes
with help files and tutorials that help you learn more.

Installing and Using MySQL Version 4.1
The first thing you need to do is download the MySQL database installation files from
www.mysql.com. The direct link is http://dev.mysql.com/downloads/mysql/4.1.html.

At the time of writing, version 4.1 is the latest version for new developments. You often find beta
versions of the MySQL software, but these are not 100 percent stable, and so they carry risks. The
front-end interface for MySQL is fairly limited, but there are a number of add-on consoles you can
install that make administering MySQL and writing queries much easier. In addition to the
MySQL binaries, there are helpful tools such as MySQL Administration console and the MySQL
Query Browser, all of which can be downloaded from http://dev.mysql.com/downloads/.
Also available is MySQL Control Center. This tool is slightly older and no longer in development,
but at the time of writing, it was more reliable than MySQL Query Browser. In addition, MySQL
Control Center allows more than one query to be executed simultaneously. However, Query
Browser gives more details when there are errors in your SQL, and as it’s developed, Query
Browser is likely to get more and more reliable. In fact, there’s no harm in installing both if you
wish, though this book uses MySQL Query Browser.

Begin by installing MySQL database, which is based on the Windows version and shows the
Windows screenshots. Most of what’s said here also applies to other operating systems.

Having downloaded the install files, click Start ➪ Run and browse to the MySQL database install file.

19_577328 appb.qxd 1/28/05 11:27 PM Page 391

Click the database install file, usually called mysql and then its version number. For example, in my sys-
tem, the install file is called mysql-4.1.5-gamma-essential-win. Then click the Open button, and the
Run dialog box appears.

Click the OK button to start the MySQL installation, and the screen displayed in Figure B-1 appears:

Figure B-1

Click the Next button to continue. The next screen displays the license agreement, and you need to click I
agree. Click Next and you’re taken to a screen containing notes about MySQL that you might want to
read. Click Next once you’ve read them, and you are presented with the option of where to install the
database system. Leave it at the default setting (shown in Figure B-2) if you have no particular preference:

Figure B-2

392

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 392

Next, you come to a screen that gives you the choice of whether you want to customize the installation
components of MySQL. See Figure B-3.

Figure B-3

For the purposes of this book, the default Typical option is fine. Ensure that Typical is selected and click
Next to continue. You’re presented with a summary screen (shown in Figure B-4).

Figure B-4

393

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 393

Click Install to begin installation, which usually takes a few minutes, depending on how fast your PC is.
When installation is finished, you’re returned to a screen giving you the option to create a MySQL.com
account or to log in with an existing account. This account is purely for the use of certain members-only
features of the www.mysql.com Web site and isn’t related to the installed database system. You can select
the Skip Sign-Up option, as shown in Figure B-5.

Figure B-5

Click Next to proceed to the final screen of the installation, shown in Figure B-6.

Figure B-6

394

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 394

Leave the check box for “Configure the MySQL Server now” checked, and then click Finish. The installa-
tion is over, but you’re now taken to the first of the Configuration Wizard screens, illustrated in Figure B-7.

Figure B-7

Click Next to configure the new MySQL installation. You’re now presented with a screen (shown in
Figure B-8) allowing you to choose a detailed configuration or a standard configuration.

Figure B-8

395

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 395

Select the Detailed Configuration option and click Next. The screen displayed (shown in Figure B-9) now
allows you to choose the role of your PC — that is, what you use it for. For this book, you’re using it as a
developer, and it’s likely that you use your PC for other development work, and therefore you don’t
want MySQL hogging all the memory and CPU resources. If that sounds like your situation, go for the
first option, Developer Machine.

Figure B-9

The other options dedicate increasing amounts of system resources to MySQL, which means less mem-
ory for other programs to run, which is fine if the PC is dedicated to MySQL usage. Click Next and
you’re presented with the screen shown in Figure B-10, which allows you to choose how you plan to use
your database.

Figure B-10

396

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 396

For this book, the default option of Multifunctional Database is fine, so ensure that this option is
selected, and then click Next, whereupon you’re taken to a screen (see Figure B-11) allowing you to spec-
ify a drive for the InnoDB tablespace.

Figure B-11

Leave it at the default option and click Next to continue. You’re taken to the screen shown in
Figure B-12, which allows you to set the number of concurrent connections to your server.

Figure B-12

397

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 397

Leave it at the default Decision Support option and click Next for the following screen (see Figure B-13),
which allows you to set networking options.

Figure B-13

Again, leave it at the default settings, shown in Figure B-13. Click Next to continue. Now you’re asked
which character set you want to use for storing text-based data. The standard character set is fine in
many circumstances, but it doesn’t support characters from languages such as Chinese. If you’re plan-
ning to use the database for Web-based applications, then you could have people from all over the world
accessing and possibly inputting data. In the screen shown in Figure B-14, choose the Best Support For
Multilingualism option.

Figure B-14

398

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 398

Now click Next to continue. In the next screen (see Figure B-15), you’re asked whether you want MySQL
to run as a Windows service:

Figure B-15

Leave it at the default setting, as shown in Figure B-15, and click Next. Now you come to the user pass-
word screen (shown in Figure B-16), where you must enter a password of your choice in the password
box and confirm the password in the second box:

Figure B-16

399

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 399

Having entered your new password, click the Next button. This takes you to the final screen, depicted in
Figure B-17. If you’re happy with the settings you’ve set so far, click Execute:

Figure B-17

Once MySQL has finished configuring the database system, you should get a success confirmation mes-
sage, shown in Figure B-18:

Figure B-18

400

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 400

Click Finish, and congratulate yourself — the database install is now complete!

Click Start ➪ Programs, and browse to the new folder containing the MySQL programs. As evident in
Figure B-19, there’s a command line interface, the default way of managing and accessing MySQL, and
there is also the configuration wizard, the wizard you just ran. You may also see an option for the
MySQL Manual.

Figure B-19

Although using only the command line interface to access MySQL is fine, you may prefer nice, easy-to-
use consoles and user interfaces. The next section shows you how to install very useful tools for manag-
ing the MySQL system.

Installing the MySQL Tools
As mentioned previously, the MySQL Administration console and the MySQL Query Browser are avail-
able to download and provide excellent user interfaces for managing MySQL. Both the Administration
console and the Query Browser can be downloaded from http://dev.mysql.com/downloads/.

The Administration console is very handy but not essential for this book, and discussing its use could
easily fill another book. However, once you’ve completed this book, you might want to go back and
install the console because it does make life a lot easier than does the default command line interface.

To start installing the Query Browser interface, which is extremely useful for this book, click Start ➪

Run and browse to where you downloaded the Query Browser installation file.

If you download the Windows installer version, then you need to make sure to select All Files from the
Files of Type drop-down box, or else you won’t see the installation file listed. Click Open, and then Click
OK to start the installation. You should see the initial installation screen depicted in Figure B-20:

401

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 401

Figure B-20

The installation is very simple. All the default options are fine, so installation is just a matter of clicking
Next, apart from the license agreement screen where you must ensure that you agree to the license for
installation to continue. On the final screen, click Finish, and the installation takes place.

Once it is installed you should find a MySQL Query Browser icon on your desktop. Double-click the
icon to launch the program.

The first time you run the program, simply fill in the username, password, and hostname boxes as
shown in Figure B-21:

Figure B-21

Click OK, and you get a box (see Figure B-22) warning you that you didn’t enter a schema name:

402

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 402

Figure B-22

Click Ignore to continue. You’re now into the main program and should see a screen like that shown in
Figure B-23:

Figure B-23

403

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 403

At the very top of the program screen is a large textbox, which is where you enter your SQL. Once it’s
entered and you’re happy with it, you need to click the Execute button (the button with a flash through
it directly to the right of the textbox). This then runs or executes the SQL. The first task is to create the
Film Club database. Enter the following SQL into the SQL box:

CREATE DATABASE FILMCLUB;

Figure B-24 shows the SQL in the SQL box:

Figure B-24

This is not a query returning information; rather, it is SQL that changes the database system, in this case,
adding a new database. Therefore, you don’t see any results as such, but if you right-click in the
Schemata box (on the right-hand side of the window) and select Refresh Schemata List, you see that the
database, or what MySQL calls a schema, called filmclub now appears (see Figure B-25):

Figure B-25

Now close down Query Browser and reopen it. The same login-type screen appears, but this time you
need to create a connection to the Film Club database. Click the button with three dots inside it next to
the Connection drop-down box. The screen shown in Figure B-26 should appear:

404

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 404

Figure B-26

Click the Add New Connection button to add a new connection and fill in the Connection, Password,
Port, Type, Schema, and Notes boxes as shown in Figure B-27:

Figure B-27

405

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 405

Having done that, make sure that you click the Apply Changes button, and then click Close to close the
window. You’re returned to the Query Browser’s default login screen, and the details for connection
BegSQLDB are already entered, as shown in Figure B-28:

Figure B-28

Every time you start up, you can select the login details by simply selecting the connection name from
the Connections drop-down box. It saves filling in the details every time because you only need to enter
the password.

Click OK to continue and open Query Browser.

Because you selected the BegSQLDB connection, any queries or SQL is run against the Film Club
database. Also note that unlike MySQL Control Center, only one SQL statement can be executed at one
time. Chapter 1 contains all the SQL for adding tables to the example database, and Chapter 2 covers
how to insert data. So this appendix simply demonstrates how to create one new table, add two rows to
it, and then delete the table from the database. Don’t worry if the SQL itself doesn’t make sense; it will
once you’ve read Chapters 1 through 3.

Type the following SQL into the SQL box at the top of Query Browser, the same box in which you previ-
ously entered CREATE DATABASE FilmClub:

CREATE TABLE MyTable (MyColumn int)

Now click the Execute button to create the table. Now refresh the schemata by right-clicking the
Schemata box and choosing the Refresh Menu option. A small triangle now appears next to the film-
club database name in the schemata. Click the triangle and you can see that it lists the addition of
MyTable, as shown in Figure B-29:

406

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 406

Figure B-29

Click the triangle next to MyTable to see the column named MyColumn listed under MyTable.

Now you need to insert some data. There are two records to be inserted. If you enter the statements in
the query box, then each INSERT statement must be entered and executed separately, so first type the fol-
lowing into the SQL entry box:

INSERT INTO MyTable(MyColumn) VALUES(123);

Then click the Execute button, and the data is entered into MyTable. Now clear the SQL entry box and
type the following command, and click Execute:

INSERT INTO MyTable(MyColumn) VALUES(888);

However, an easier alternative when you have to write more than one SQL statement is to write the code
in the script box. Choose New Script Table from the File menu. Now type both lines into the script box,
which is the large lower textbox that has now been created. Make sure that you end each statement with
a semicolon, as shown in the preceding code. Once you’ve entered both lines, click the Execute button on
the toolbar just above the script textbox.

To see what data is in MyTable, clear the SQL entry box and execute the following SELECT statement:

SELECT * FROM MyTable

You should see the screen that appears in Figure B-30:

407

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 407

Figure B-30

MyTable isn’t needed again in this book, so delete it by entering the following statement into the SQL
entry box and clicking Execute:

DROP TABLE MyTable

Refresh the schemata view, and you can see that MyTable is no longer listed under the Film Club
database.

If you decide to download the SQL text files for this book, you can open them by selecting File ➪ Open
Script. By default, SQL files have the .sql extension, so make sure that All Files is selected from the
Files of Type drop-down box when you’re loading plaintext files.

One final thing to note is the very handy SQL reference guide in the bottom-right corner of Query
Browser; there you can find a wealth of useful information specific to MySQL’s implementation of SQL.
The reference guide contains details pertaining to all the SQL statements and operators used in MySQL.
For example, click on Syntax, then on Data Manipulation, and then on the SELECT statement, and you
have a whole lot of information on the SELECT statement and all the possible usage variations. The refer-
ence may look like gibberish until you’ve read the first few chapters of this book, but it’s invaluable for
your later SQL adventures.

408

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 408

Installing and Using IBM DB2
A free trial version of IBM DB2 for development purposes can be downloaded from the IBM Web site.
The good news is that it’s free to download; the bad news is that it’s a huge, huge download even if you
have a broadband connection. The current URL for the download page is www14.software.
ibm.com/webapp/download/product.jsp?id=TDUN-49EVGU&q=%20DB2+Personal+Developer.

Download the DB2 Personal Developer’s Edition suitable for your operating system.

Having downloaded the installation, you’ll almost certainly find that it’s a single compressed file that
needs to be uncompressed before installation can take place. Simply run the downloaded file and select
where you want to extract it. Anywhere on your hard drive is fine; just make sure you have plenty of
space because it’s a big file.

This appendix guides you through the Windows installation, but the principles are the same for
whichever operating system you’re using. To start the installation you need to run the setup program.
Click Start ➪ Run and browse to where you extracted the setup files.

Double-click setup.exe, and then click OK in the Run dialog box to start the installation.

It might take a little while depending on how fast your computer is, but eventually the first screen (see
Figure B-31) of the installation appears:

Figure B-31

You may wish to double-check that your PC has the required prerequisites; once you’ve done that, click
on the Install Product link. A screen (shown in Figure B-32) allowing you to choose which product to
install appears, though usually it’s an option of one!

409

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 409

Figure B-32

Click Next to continue. Again, it might take a little while, but eventually the next install screen, shown in
Figure B-33, opens:

Figure B-33

Click Next to continue to the ubiquitous license agreement where selecting “I accept” is the only option
if you want to continue.

Select “I accept,” and click Next to continue to the screen that allows you to choose which components
you want to install, as shown in Figure B-34:

410

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 410

Figure B-34

The default option of Typical is fine. Click Next and you get to choose where you want the database sys-
tem to be installed (see Figure B-35):

Figure B-35

If the default location is fine, go for that; otherwise just choose somewhere with lots of free disk space!

411

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 411

Click Next to continue. The next screen (shown in Figure B-36) allows you to choose the user who
administers the database:

Figure B-36

For the purposes of this book, you should enter the username and password of the local user with which
you normally log in. This might not be ideal for security reasons on a live server, but it’s fine in a test
environment. Enter your login details as shown in Figure B-37, making sure to select details appropriate
to your PC:

Figure B-37

412

Appendix B

19_577328 appb.qxd 1/28/05 11:27 PM Page 412

Click Next to continue to the contact details screen, which is depicted in Figure B-38:

Figure B-38

Leave it at the default settings shown in Figure B-38 and click Next. You receive a message (shown in
Figure B-39) warning you that the Notification SMTP service isn’t specified, but that’s something for
administrators of live servers to worry about:

Figure B-39

413

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:27 PM Page 413

Click OK to clear the message and continue. The next screen, displayed in Figure B-40, allows you to
configure protocol details:

Figure B-40

The default values are fine for the purposes of this book, so just click Next to continue. The next screen
allows you to set up DB2’s task scheduler, but because you don’t need it for this book, just accept the
default shown in Figure B-41 and click Next:

Figure B-41

414

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 414

The screen in Figure B-42 allows you to enter contact details for DB2’s database system health monitor.
Select the “Defer the task...” option:

Figure B-42

Click Next to continue, and finally you’re on the installation summary (shown in Figure B-43), just one
button press from installing DB2:

Figure B-43

415

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 415

If you’re ready and happy with the options chosen, pull up a comfy seat, grab a magazine, click the
Install button, and wait while DB2 installs. If everything goes fine, you should see the screen depicted in
Figure B-44:

Figure B-44

Click Finish, and installation is now complete and the IBM First Steps screen appears with helpful tutori-
als and sample databases. The next section introduces the Command Center tool and creates the Film
Club database.

Using the Command Center Tool
To create this book’s example database and run the examples, you need to use the Command Center
tool. Having installed DB2, you can access the Command Center by clicking Start ➪ Programs ➪ IBM
DB2 ➪ Command Line Tools, as shown in Figure B-45:

Once the program is loaded, you should see the screen depicted in Figure B-46:

There are 4 tabs near the middle of the screen, and by default the program loads up with the Script tab
selected. The Script tab allows more than one SQL statement to be executed at once. Each statement
must be separated by a semicolon at the end of the statement. You can load files of SQL statements into
the Script textbox, edit them, and then execute them by either clicking the Execute icon in the toolbar
(the icon on the far left that looks like two cogs next to each other) or choosing Execute from the Script
menu.

416

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 416

Figure B-45

Figure B-46

417

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 417

You can also enter and execute SQL statements one at a time in the Interactive tab. Click the Interactive
tab, and you’ll see the screen change to that shown in Figure B-47:

Figure B-47

To select a database connection (to choose which database the SQL queries are executed against), you
can type the following SQL:

CONNECT TO database_name

Alternatively, you can click the button to the right of the database connection line, which allows you to
browse the database system for databases to connect to. Currently there are no databases on the system,
so you can start by creating the Film Club database. Type the following SQL into the Command box (as
shown in Figure B-48) and click Execute or click the Execute icon from the Interactive menu.

CREATE DATABASE FILMCLUB USING CODESET UTF-8 TERRITORY US

418

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 418

Figure B-48

Depending on the speed of your computer, it may take a while to complete the database creation, but
eventually you should see what appears in Figure B-49:

419

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 419

Figure B-49

The Film Club database is now created, but you haven’t actually connected to it. If you try executing any
SQL, you receive an error message (similar to the one shown in Figure B-50) telling you to connect to a
database first:

420

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 420

Figure B-50

You must reconnect to the database each time you open the Command Center. To connect to the Film
Club database, you can either type the following SQL or browse to the database using the database con-
nection button discussed previously:

CONNECT TO FILMCLUB

Chapter 1 already contains all the SQL for adding tables to the example database, and Chapter 2 covers
how to insert data. So this appendix demonstrates creating one new table, adding two rows to it, and
then deleting the table. Don’t worry if the SQL itself doesn’t make sense; it does once you’ve read
Chapters 1 through 3.

Ensure that you’re still in the Interactive tab and connected to the Film Club database, and then type the
following statement into the Command textbox:

CREATE TABLE MyTable (MyColumn int)

Now click Execute, and the table is created.

421

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 421

Now you need to insert some data. You can either use the interactive screen to insert data one statement
at a time, clicking Execute after each statement, or you can click the Script tab and enter all the state-
ments at once, making sure that you put a semicolon after each. There are two records to be inserted:

INSERT INTO MyTable(MyColumn) VALUES(123);
INSERT INTO MyTable(MyColumn) VALUES(888);

Enter the code into the Command window and click Execute. Note that you must have previously exe-
cuted a CONNECT TO statement, either in the Interactive screen or in the Script screen, before you can
execute SQL against the database.

To see what data is in the MyTable, return to the Interactive screen and type the following SQL in the
SQL entry box:

SELECT * FROM MyTable

Click Execute, and you should see a screen similar to what appears in Figure B-51:

Figure B-51

422

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 422

You can see that DB2 automatically takes you to the Results screen whenever a query is executed.

The MyTable isn’t needed again in this book, so delete it by switching back to the Interactive screen,
entering the following code into the SQL entry box, and then clicking Execute:

DROP TABLE MyTable

The table is now removed from the Film Club database.

Installing and Using Microsoft Access XP
Unfortunately, there’s no free trial software to download if you don’t have Microsoft Access, but you can
order a CD with a trial version of Microsoft Office, which includes Access, from the Microsoft Web site.

The installation of Access is fairly straightforward. All the default or typical options are acceptable for
the purposes of this book, and when given a choice, you should simply select typical options. Otherwise,
installation is mostly a matter of clicking Next.

Once installed, click Start ➪ Programs and select the Access icon. Once it’s loaded and activated, you
should see the default screen, which appears in Figure B-52:

Figure B-52
423

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 423

In Access it’s not possible to create a new database using SQL, so you need to click the Blank Database
link under the New File tab on the right of the screen. Click the link and you’re presented with the New
Database dialog box, shown in Figure B-53:

Figure B-53

The only option is to select the location and name of the new database’s file. Enter FilmDatabase for
the name of the file and then click the Create button. The database is created and opened and the default
view displayed as depicted in Figure B-54:

Figure B-54

424

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 424

The box in the middle of the screen shows a list of possible database objects, such as tables, queries,
forms, reports, and so on. Currently the Tables tab is selected and the list of tables in the database is
shown, which at the moment contains no tables. You can create a new table by ensuring that the Tables
tab is selected and then clicking the New icon in the Tables tab. Because this book is all about SQL, this
appendix shows you how to use SQL to create a table. To enter SQL queries and code, you must click on
the Queries tab and then double-click the Create Query in Design View option, which causes the screen
shown in Figure B-55 to be displayed:

Figure B-55

Click Close to clear the dialog box. Now the view currently displayed is the MS Access Query Design
view. To enter SQL code, you need to switch to the SQL Editor view. From the Design view, this can be
achieved by either clicking the SQL icon on the far left of the toolbar or selecting the SQL View option
from the View menu. Once you’ve switched to SQL view, a textbox is displayed (see Figure B-56) where
you can enter SQL code:

425

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 425

Figure B-56

You need to use the SQL view in order to try out the SQL code in this book. Access allows you to create
more than one query, and you can save each query under a unique name. The SQL needed to create all
the tables in the database is discussed in Chapter 1. So, this appendix takes you through a brief example
of how to create a table, insert data, and then delete the table. However, because this is a book on SQL,
you use SQL code to do all this, but you can use the user interface to perform these actions if you prefer.

Type the following SQL into the Query textbox:

CREATE TABLE MyTable (MyColumn int)

Now execute the query by clicking the Run icon (a dark red exclamation mark) in the middle of the tool-
bar. Alternatively, from the main menu bar, you can select Run from the Query menu. Executing the
query results in the creation of MyTable. If you switch back to the Tables view, you can see that MyTable
has been added to the table list, as shown in Figure B-57:

Figure B-57

426

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 426

If you select MyTable from the list, you can view its design by clicking on the Design icon, or you can
open it for entering data by clicking on the Open icon. Figure B-58 shows you MyTable in Design view:

Figure B-58

Design view is MS Access’s way of letting you see what each table looks like and change each table’s
design. Because this book is about using SQL to make design changes, return to the Query view and
back to the query where you entered the table creation SQL.

After creating the table, you need to insert some data. Although there are two records to be inserted,
each INSERT statement must be entered and executed separately, so first type the following code into the
SQL entry box:

INSERT INTO MyTable(MyColumn) VALUES(123);

427

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 427

Then click the Run icon and you’re warned that you’re about to append one row to the table. Click Yes
and the data is entered into MyTable. Now clear the SQL entry box, type the following statement, and
click Run:

INSERT INTO MyTable(MyColumn) VALUES(888);

To see what data is in MyTable, clear the SQL entry box and type the following statement:

SELECT * FROM MyTable

Click Execute, and you should see the screen that appears in Figure B-59:

Figure B-59

To return to the Code view, you need to either select SQL View from the main menu’s View menu or
click on the Design icon on the far left of the toolbar and hold down the mouse button and select the
SQL icon. MyTable isn’t needed again in this book, so delete it by entering the following statement into
the SQL entry box and clicking Execute:

DROP TABLE MyTable

Close the query, saying no to saving it. Return to Table view, and you can see that MyTable is no longer
listed.

428

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 428

Installing and Using Microsoft SQL Server 2000
If you have access to a full, licensed copy of Microsoft SQL Server, that’s great news. If you don’t have
one, a 120-day evaluation version can be downloaded from: www.microsoft.com/downloads/
details.aspx?FamilyID=d20ba6e1-f44c-4781-a6bb-f60e02dc1335&DisplayLang=en

If the hefty price tag of the full MS SQL Server is off-putting, you may be pleased to know that SQL
Server 2005 Express Edition is due out in 2005, and it’s free! It has many of the features of the full SQL
Server and is ideal for learning SQL with this book. The main difference between the Express Edition
and the full SQL Server is scalability; SQL Server 2005 Express Edition is not designed for very heavy
workloads, like sites such as Amazon.com might get. As the time of this writing, SQL Server 2005
Express Edition is still in beta 2, which means it’s not 100% stable, so it’s not a good idea to install it
on any essential machine. SQL Server 2005 Express Edition can be downloaded from the Microsoft.com
Web site: www.microsoft.com/downloads/details.aspx?FamilyID=62b348bb-
0458-4203-bb03-8be49e16e6cd&DisplayLang=en.

You can learn more about SQL Server 2005 Express Edition at the following Web site:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnsse/html/sseoverview.asp.

If you’re installing the downloaded evaluation version, you have downloaded a single file,
SQLEval.exe, that needs to be run so that it decompresses itself. Select Start ➪ Run, and then browse
to the file and run it. Extract the file’s contents to a convenient location on your hard drive. Once the files
are unpacked, the installation is pretty much the same whether you downloaded the evaluation or the
full version.

To start the SQL Server installation, select Start ➪ Run and browse to the setup.bat file. You should
be presented with the screen shown in Figure B-60. Click Next to continue installation:

Figure B-60

429

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 429

The next screen (see Figure B-61) allows you to choose the computer on which you want to install SQL
Server:

Figure B-61

Ensure that the Local Computer option is selected and click Next, and you’re presented with the screen
shown in Figure B-62:

Figure B-62

Select “Create a new instance...” and click Next. You’re asked to enter your username and company
name, as shown in Figure B-63:

430

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 430

Figure B-63

What you enter here is not that important. You’re not selecting a database system username; you’re sim-
ply letting the system know your personal name. Enter your name and click Next, and you’re taken to
the usual license agreement screen.

Click Yes if you agree and want installation to continue. The next screen (see Figure B-64) allows you to
choose what part of the database system you’re installing. You want to install both the database system
itself and the tools that allow you to manage it and run queries, so select the Server and Client Tools
option and click Next:

Figure B-64

431

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 431

On the next screen, shown in Figure B-65, you get to choose the name given to your particular installa-
tion of the database server. For the purposes of this book, leave the default box checked and let the
installation choose a name for your database server. The name is based on the name of your computer.
Click Next to continue:

Figure B-65

The next screen (see Figure B-66) allows you to customize which parts of the database system are
installed. For the purposes of this book, and for most general purposes, the default Typical option is fine.
If you’re short on hard drive space, the Minimum install should also be sufficient for this book:

Figure B-66

432

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 432

Click Next to continue. Figure B-67 shows you the screen that asks you whether you want to install SQL
Server to use a Local System account or whether you want to use a specific Domain User account. For the
purposes of this book, Local System account is fine. However, the Local System account prevents access to
SQL Server’s more advanced features, which you might want to use later. It’s advisable to use a Domain
User account. The installation selects a suitable account, so you simply need to enter the password:

Figure B-67

Obviously your system has different accounts and users. For this book, choosing “Use the same account
for each service” at the top of the dialog box is the easiest option. Click Next to continue. The more
secure option on the screen displayed in Figure B-68 is to choose the default option, Windows
Authentication Mode:

Figure B-68

433

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 433

Click Next to proceed to the final screen (see Figure B-69), and you’re ready for installation to start:

Figure B-69

If you’re happy with all the settings made so far, click Next and wait for the installation to do its thing.
Installation takes a while, so you can grab a cup of coffee.

Once installation is complete, you should see the screen depicted in Figure B-70:

Figure B-70

Click Finish and everything is almost ready to go, but it’s advisable to download and install SQL
Server 2000 Service Pack 3a, which fixes a few bugs and increases security. You can download it from
www.microsoft.com/sql/downloads/2000/sp3.asp.

434

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 434

Although it’s not strictly essential, you may want to restart your PC after installation. Now that you’ve
installed SQL Server, you can learn how to use some of the tools included with it.

Using SQL Server Tools
The two main tools for administering the database system and running SQL queries are Enterprise
Manager and Query Analyzer. You can access both by clicking Start ➪ Programs ➪ Microsoft SQL
Server. Enterprise Manager provides an easy-to-use user interface for managing the database system.

In order to run SQL queries, you need to use Query Analyzer, which is the tool you need to use for this
book, so a brief discussion of how it works follows.

Load Query Analyzer by clicking Start ➪ Programs ➪ Microsoft SQL Server, and you’re pre-
sented with the database system login screen, shown in Figure B-71:

Figure B-71

Select the Windows Authentication option. You need to log in to the PC as the same user as you entered
when installing the database system and it asked for a Domain User name and password. If you log in
with a different username, you receive a login error. Alternatively, you can select the SQL Server
Authentication option and enter sa for the username and whatever password you set for the username;
if you installed Service Pack 3, you probably already set a password for the sa user. If you’ve never set a
password for the sa user, just leave it blank — no spaces, just blank. Having a blank password for the sa
user is not considered particularly secure, but it’s not so important if your PC is only a development
machine. New users can be added and changes to existing users of the database system can be made
using Enterprise Manager, which is a topic beyond the scope of this book.

Having successfully logged in, the screen shown in Figure B-72 appears:

435

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 435

Figure B-72

The huge textbox is where you can enter your queries. The drop-down box in the middle of the toolbar
(currently set to master) shows which database the queries are executed against. The master database
records important database system information and is best left untouched unless you’re sure of what
you’re doing. If you click the database selection drop-down box, you see a few more of the databases
installed, as shown in Figure B-73:

436

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 436

Figure B-73

Most of the databases are system-related, except Northwind, which is a handy example database. The
tempdb is just that: a temporary database. Any tables you create there are lost when the database system
is restarted — for example, if you restarted your computer.

An additional window that usefully shows details of databases and tables in the system is the Object
Browser window (see Figure B-74). In order to view the Object Browser window, select Tools ➪ Object
Browser ➪ Show/Hide or press the F8 key:

437

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 437

Figure B-74

Notice that six databases are already installed; four of them are related to the database system in some
way and best left alone unless you’re sure of what you’re doing. However, the Pubs and Northwind
databases are both example databases that you can play around with and modify. Click the plus sign
next to the Northwind database to reveal more details. Click the plus sign next to User Tables to see the
tables that the database contains. Click next to a particular table to see the columns in the table.

The second half of the Object Browser, called Common Objects, shows the various functions that the
database system supports and acts as quite a handy reference guide.

438

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 438

Query Analyzer allows you to enter one or more queries and to save and load queries to or from a file.
Each statement must end with a semicolon. Once a statement is entered and you’re happy with it, click
the Execute button; usually this is the second icon to the left of the database selector drop-down menu,
and although you can’t see it from the screenshot, it’s actually an icon with a green triangle. You can also
hit the F5 key to execute a query. The first task is to create the Film Club database. Enter the following
SQL into the SQL box, as shown in Figure B-75:

CREATE DATABASE FILMCLUB;

Figure B-75

This is not a query that returns information; rather, it is SQL that changes the database system, in this
case adding a new database. After a few seconds, the database is created and the results screen (see
Figure B-76) lets you know whether your attempt was successful:

439

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 439

Figure B-76

The Object Browser view on the left doesn’t show the changes unless you refresh it by right-clicking one
of the items in the box and selecting Refresh, as demonstrated in Figure B-77:

440

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 440

Figure B-77

Notice in Figure B-78 that the database called FILMCLUB appears in the Object Browser:

441

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 441

Figure B-78

Chapter 1 already contains all the SQL for adding tables to the example database, and Chapter 2 covers
how to insert data. This appendix simply demonstrates how to create one new table, add two rows to it,
and then delete the table. Don’t worry if the SQL itself doesn’t make sense; it does once you’ve read
Chapters 1 through 3.

Some commands, such as CREATE DATABASE, affect the database system rather than a particular
database. However, nearly all of the SQL in this book is aimed at the Film Club database. To ensure that
queries are executed against the Film Club database, you can either select Film Club from the drop-
down menu in the middle of the toolbar or type and execute the following command:

USE FILMCLUB;

Type the following statement into the large textbox at the top of the Query Browser:

CREATE TABLE MyTable (MyColumn int)

442

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 442

Click the Execute icon and the table is created. Now you need to insert some data. Type the following
statements into the SQL entry box and click Execute:

INSERT INTO MyTable(MyColumn) VALUES(123);
INSERT INTO MyTable(MyColumn) VALUES(888);

In order to see what data is contained in MyTable, clear the SQL entry box and execute the following
statement:

SELECT * FROM MyTable

You should see a screen similar to Figure B-79:

Figure B-79

443

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 443

You don’t need MyTable again in this book, so delete it by entering the following statement into the SQL
entry box and clicking Execute:

DROP TABLE MyTable

If you refresh the Object Browser view, MyTable is no longer listed under the Film Club database.

Installing and Using Oracle 10g
A fully working evaluation version of Oracle 10g can be downloaded from the Oracle Web site; it’s a
massive download (more than 500MB), so patience is definitely a virtue necessary for that download!

The current link to the download page is www.oracle.com/technology/software/products/
database/oracle10g/index.html.

Once you’ve downloaded Oracle 10g, you need to run the single file download so that it’s decompressed
to a convenient location. After decompressing the file, select Start ➪ Run and browse to the setup.exe
file from where you decompressed the files. Figure B-80 depicts the first screen in the installation process:

Figure B-80

444

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 444

From the Installation Type drop-down menu, select Standard and enter filmclub into the Global
Database Name textbox. Choose and enter a password of your choice into the Database Password box,
as shown in Figure B-81:

Figure B-81

When Oracle has finished installing, it creates the Film Club database, which you use throughout this
book. Click Next, and shortly the Summary screen (see Figure B-82) is displayed:

445

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 445

Figure B-82

To begin the installation, simply click Install. Once installation is complete, you see the screen shown in
Figure B-83:

Click OK to close the Database Configuration screen, whereupon the Installation Complete screen is
shown (see Figure B-84):

Click Exit. Oracle is now installed and you’ve created this book’s example database. This appendix fin-
ishes off by demonstrating how to use the Oracle SQL*Plus Tool to enter SQL statements, create an
example table, and fill that table with data.

446

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 446

Figure B-83

Figure B-84

447

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 447

Using Oracle’s SQL*Plus Tool
Oracle 10g is a very powerful and extremely complex database system. Oracle’s documentation alone
runs longer than 50,000 pages! This section shows you enough to be able to run the examples in the
book.

You can use a number of tools to write SQL queries in the Oracle system, namely the SQL*Plus tool.
First, launch SQL*Plus by selecting Start ➪ Programs ➪ Oracle ➪ OraDB10g_home1 ➪ Application
Development. You should see the window shown in Figure B-85:

Figure B-85

Type system in the User Name field and the password you selected during installation in the Password
field. Click OK and you should be logged in to the Film Club database, which is the only database on the
system. When you log in to the SQL*Plus command line tool, you should see a screen similar to Figure
B-86. It’s all ready and waiting for you to enter some SQL code.

448

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 448

Figure B-86

You enter SQL queries in the command line. Type the following statement:

CREATE TABLE MyTable (MyColumn int);

Press Enter to execute the SQL and create MyTable. You should receive a confirmation message from the
console. After creating MyTable, you need to insert some data. Type the following statement and press
Enter:

INSERT INTO MyTable(MyColumn) VALUES(123);

Enter and execute the following line of SQL code:

INSERT INTO MyTable(MyColumn) VALUES(888);

In order to see what data is contained in MyTable, clear the SQL entry box and type the following state-
ment:

SELECT * FROM MyTable;

Press Enter and you should see a screen similar to what appears in Figure B-87:

It’s vital to note that none of the data is permanently stored in the database unless you tell Oracle to
store the data by issuing a COMMIT command. If you don’t issue a COMMIT command, the data you
entered is deleted when you close the SQL*Plus tool. Type the COMMIT command as shown below in the
command line:

COMMIT;

449

Setting Up and Using the Five Database Systems

19_577328 appb.qxd 1/28/05 11:28 PM Page 449

Figure B-87

Another option is to select Options ➪ Environment and set the autocommit option to On.

You don’t need MyTable again in this book, so delete it by executing the following statement:

DROP TABLE MyTable;

You add all the example tables and data to the Film Club database in Chapters 1 and 2. Note that if you
download the book’s code files, you need to load them into SQL*Plus using the START command. The
files contain more than one SQL statement, each separated by a semicolon. If you load the files by select-
ing File ➪ Open, then SQL*Plus treats all lines in the file as one big statement and you receive an illegal
character error message where the first semicolon appears. Instead, to load a file, type the following
statement:

START file_name

For example, if the file to insert film data is called FilmsTable_Data.txt and is located in your Z:
drive under the BeginningSQL\Chapter2 directory, you would need to type the following command:

START Z:\BeginningSQL\Chapter2\FilmsTable_Data.txt

Doing so loads and executes the SQL statements in that file.

450

Appendix B

19_577328 appb.qxd 1/28/05 11:28 PM Page 450

C
Initial Data Setup

In Appendix B and Chapter 1, you created the Film Club database, this book’s example database.
In this appendix, you insert some initial data into the Film Club example database. Before reading
this appendix, you should have read and executed the code in Appendix B and Chapter 1 and the
first part of Chapter 2, up to and including the section entitled “Inserting Data into the Case Study
Database.”

This appendix walks you through the data to be inserted table by table. Generally speaking, the
SQL is the same for all five database systems supported by this book; instances when the SQL dif-
fers are noted in subsections containing the SQL for the database system that requires changed
SQL code.

If you want to save yourself a whole lot of typing, don’t forget that you can download this code
from www.wrox.com. Under each table is a reference to the correct file. All files are contained in
the directory AppendixC. Note that when you do a file open operation — either from a menu or a
toolbar — the dialog box to select a file usually displays only files with .sql extensions. Because
this book’s downloadable files are saved as text files (.txt), you need to make sure to change the
dialog box so that it shows all file types. The downloadable files are saved as text files because you
might be working with a database system (such as Microsoft Access) that doesn’t load .sql files,
so you need to use a text editor instead.

Most of the database systems allow you to load in a whole file and execute it all at once. MS
Access, however, doesn’t allow you to load an entire file at once, so you need to cut and paste one
SQL statement at a time into a new query — though you can just reuse and execute the same query
and cut and paste over the text. If you’re using Oracle, then don’t load the file using the Open
command under the File menu; instead, use the START command as in the following:

START C:\temp\CategoryTable_Data.txt

Note, however, that you need to modify the START command to reflect wherever you’ve stored the
downloaded files on your hard drive.

20_577328 appc.qxd 1/28/05 11:28 PM Page 451

Category Table
The following SQL inserts data into the Category table, and it runs on all 5 of the database systems:

INSERT INTO Category (CategoryId, Category) VALUES (1, ‘Thriller’);
INSERT INTO Category (CategoryId, Category) VALUES (2, ‘Romance’);
INSERT INTO Category (CategoryId, Category) VALUES (3, ‘Horror’);
INSERT INTO Category (CategoryId, Category) VALUES (4, ‘War’);
INSERT INTO Category (CategoryId, Category) VALUES (5, ‘Sci-fi’);
INSERT INTO Category (CategoryId, Category) VALUES (6, ‘Historical’);

You can find this text in the file CategoryTable_Data.txt.

MemberDetails Table
The default installation of Oracle usually requires dates in the following format:

day_of_the_month month_name year

For example, you would type January 23, 2004, as 23 Jan 2004.

The other four database systems are happy with the following format:

year-month-day_of_the_month

You would type January 23, 2004, as 2004-01-23.

Since there are two different date formats, this section is divided into two subsections: non-Oracle
databases and Oracle databases.

Database Systems Other Than Oracle
If you’ve downloaded the code, the file named MemberDetailsTable_Data.txt contains the informa-
tion that populates the MemberDetails table in SQL Server, MS Access, MySQL, and IBM DB2.

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES

452

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 452

(
1,
‘Katie’,
‘Smith’,
‘1977-01-09’,
‘Main Road’,
‘Townsville’,
‘Stateside’,
‘123456’,
‘katie@mail.com’,
‘2004-02-23’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
2,
‘Bob’,
‘Robson’,
‘1987-01-09’,
‘Little Street’,
‘Big City’,
‘Small State’,
‘34565’,
‘rob@mail.com’,
‘2004-03-13’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES

453

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 453

(
3,
‘Sandra’,
‘Jakes’,
‘1957-05-15’,
‘The Avenue’,
‘Windy Village’,
‘Golden State’,
‘65423’,
‘sandra@her_mail.com’,
‘2004-04-13’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
4,
‘Steve’,
‘Gee’,
‘1967-10-05’,
‘The Road’,
‘Windy Village’,
‘Golden State’,
‘65424’,
‘steve@gee.com’,
‘2004-02-22’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES

454

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 454

(
5,
‘John’,
‘Jones’,
‘1952-10-05’,
‘New Lane’,
‘Big Apple City’,
‘New State’,
‘88776’,
‘jj@jonesmail.org’,
‘2005-01-02’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
6,
‘Jenny’,
‘Jones’,
‘1953-08-25’,
‘New Lane’,
‘Big Apple City’,
‘New State’,
‘88776’,
‘jj@jonesmail.org’,
‘2005-01-02’

);

Oracle
This SQL, which is used to populate the MemberDetails table if you’re running an Oracle database sys-
tem, is contained in the book’s download file called Oracle_MemberDetailsTable_Data.txt.

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,

455

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 455

ZipCode,
Email,
DateOfJoining

)
VALUES
(
1,
‘Katie’,
‘Smith’,
‘9 Jan 1977’,
‘Main Road’,
‘Townsville’,
‘Stateside’,
‘123456’,
‘katie@mail.com’,
‘23 Feb 2004’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
2,
‘Bob’,
‘Robson’,
‘9 Jan 1987’,
‘Little Street’,
‘Big City’,
‘Small State’,
‘34565’,
‘rob@mail.com’,
‘13 Mar 2004’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,

456

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 456

Email,
DateOfJoining

)
VALUES
(
3,
‘Sandra’,
‘Jakes’,
‘15 May 1957’,
‘The Avenue’,
‘Windy Village’,
‘Golden State’,
‘65423’,
‘sandra@her_mail.com’,
‘13 Apr 2004’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
4,
‘Steve’,
‘Gee’,
‘05 Oct 1967’,
‘The Road’,
‘Windy Village’,
‘Golden State’,
‘65424’,
‘steve@gee.com’,
‘22 Feb 2004’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,

457

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 457

DateOfJoining
)
VALUES
(
5,
‘John’,
‘Jones’,
‘05 Oct 1952’,
‘New Lane’,
‘Big Apple City’,
‘New State’,
‘88776’,
‘jj@jonesmail.org’,
‘02 Jan 2005’

);

INSERT INTO MemberDetails
(

MemberId,
FirstName,
LastName,
DateOfBirth,
Street,
City,
State,
ZipCode,
Email,
DateOfJoining

)
VALUES
(
6,
‘Jenny’,
‘Jones’,
‘25 Aug 1953’,
‘New Lane’,
‘Big Apple City’,
‘New State’,
‘88776’,
‘jj@jonesmail.org’,
‘02 Jan 2005’

);

Location Table
The SQL that you use to insert information into the Location table works on all five database systems. Its
filename is LocationTable_Data.txt.

INSERT INTO Location
(

LocationId,

458

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 458

Street,
City,
State

)
VALUES
(
1,
‘Main Street’,
‘Big Apple City’,
‘New State’

);

INSERT INTO Location
(

LocationId,
Street,
City,
State

)
VALUES
(
2,
‘Winding Road’,
‘Windy Village’,
‘Golden State’

);

INSERT INTO Location
(

LocationId,
Street,
City,
State

)
VALUES
(
3,
‘Tiny Terrace’,
‘Big City’,
‘Small State’

);

FavCategory Table
The SQL that is used to populate the FavCategory table works on all five database systems. Its filename
is FavCategoryTable_Data.txt.

INSERT INTO FavCategory
(

CategoryId,
MemberId

)

459

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 459

VALUES
(
1,
3

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
1,
5

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
1,
2

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
1,
3

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
2,
1

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)

460

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 460

VALUES
(
2,
3

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
3,
3

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
4,
6

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
4,
1

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
5,
2

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)

461

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 461

VALUES
(
5,
3

);

INSERT INTO FavCategory
(

CategoryId,
MemberId

)
VALUES
(
5,
4

);

Films Table
The SQL that you use to insert data into the Films table works on all five database systems. One point to
note is that the film description for the film 15th Late Afternoon contains the word Shakespeare’’s—
the second apostrophe tells the database systems that the first apostrophe isn’t the end of the text. The
code to populate the Films table is contained in the download file called FilmsTable_Data.txt.

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
1,
‘The Dirty Half Dozen’,
1987,
‘Six men go to war wearing unwashed uniforms. The horror!’,
‘N’,
2,
4

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,

462

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 462

Rating,
CategoryId

)
VALUES
(
2,
‘On Golden Puddle’,
1967,
‘A couple find love while wading through a puddle.’,
‘Y’,
4,
2

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
3,
‘The Lion, the Witch, and the Chest of Drawers’,
1977,
‘A fun film for all those interested in zoo/magic/furniture drama.’,
‘N’,
1,
3

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
4,
‘Nightmare on Oak Street, Part 23’,
1997,
‘The murderous Terry stalks Oak Street.’,
‘Y’,
2,

463

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 463

3
);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
5,
‘The Wide-Brimmed Hat’,
2005,
‘Fascinating life story of a wide-brimmed hat’,
‘N’,
1,
5

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
6,
‘Sense and Insensitivity’,
2001,
‘She longs for a new life with Mr. Arcy; he longs for a small cottage in the

Hamptons.’,
‘Y’,
3,
6

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,

464

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 464

AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
7,
‘Planet of the Japes’,
1967,
‘Earth has been destroyed, to be taken over by a species of comedians.’,
‘Y’,
5,
4

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
8,
‘The Maltese Poodle’,
1947,
‘A mysterious bite mark, a guilty-looking poodle. First class thriller.’,
‘Y’,
1,
1

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
2,
‘15th Late Afternoon’,
1989,
‘One of Shakespeare’’s lesser-known plays’,
‘N’,

465

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 465

5,
6

);

INSERT INTO Films
(

FilmId,
FilmName,
YearReleased,
PlotSummary,
AvailableOnDVD,
Rating,
CategoryId

)
VALUES
(
2,
‘Soylent Yellow’,
1967,
‘Detective Billy Brambles discovers that Soylent Yellow is made of soya bean.

Ewwww!’,
‘Y’,
5,
5

);

Attendance Table
Again, because of the date issue, there are separate code listings for Oracle and non-Oracle systems.

Database Systems Other Than Oracle
The download file AttendanceTable_Data.txt contains the following code:

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘Y’,
1

);

INSERT INTO Attendance
(

466

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 466

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘N’,
2

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘Y’,
3

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘N’,
4

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘Y’,

467

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 467

5
);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘2004-01-01’,
‘Y’,
6

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘2004-03-01’,
‘Y’,
1

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘2004-03-01’,
‘N’,
2

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)

468

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 468

VALUES
(
1,
‘2004-03-01’,
‘Y’,
3

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘2004-03-01’,
‘Y’,
4

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘2004-03-01’,
‘N’,
5

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘2004-03-01’,
‘N’,
6

);

469

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 469

Oracle
To save some typing, you can find the following code in the download file called
Oracle_AttendanceTable_Data.txt:

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘1 Jan 2004’,
‘Y’,
1

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘1 Jan 2004’,
‘N’,
2

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘1 Jan 2004’,
‘Y’,
3

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

470

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 470

)
VALUES
(
2,
‘1 Jan 2004’,
‘N’,
4

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘1 Jan 2004’,
‘Y’,
5

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
2,
‘1 Jan 2004’,
‘Y’,
6

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘Y’,
1

);

INSERT INTO Attendance
(

471

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 471

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘N’,
2

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘Y’,
3

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘Y’,
4

);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘N’,

472

Appendix C

20_577328 appc.qxd 1/28/05 11:28 PM Page 472

5
);

INSERT INTO Attendance
(

LocationId,
MeetingDate,
MemberAttended,
MemberId

)
VALUES
(
1,
‘1 Mar 2004’,
‘N’,
6

);

473

Initial Data Setup

20_577328 appc.qxd 1/28/05 11:28 PM Page 473

20_577328 appc.qxd 1/28/05 11:28 PM Page 474

In
de

x

Index

Symbols
+ (addition operator), 82, 158
* (asterisk), 54, 70, 192
/ (division operator), 158
= (equals operator), 47
> (greater than operator), 47
(hash symbol), 58, 60, 113
< (less than operator), 47
* (multiplication operator), 158
% (percent sign), 70
| (pipe character), 85
? (question mark), 70
- (subtraction operator), 158
_ (underscore), 70

A
ABS() function, 159–160, 181
absolute values, numbers, 159–160
Access databases (Microsoft)

concatenation, 82–85
data type comparisons, 19
installing

blank database link, 424
code views, 428
default screen, 423
design views, 427

new table creation, 425
query execution, 426
SQL code, 425–426

overview, 3
access, group IDs, 332–334
account information, MySQL installation, 394
ACID (Atomic, Consistent, Isolated, Durable),

302
active records, transactions, 301
ADD CONSTRAINT constraint, 137
adding results, 196–197
addition operator (+), 82, 158
addresses

database creation example, 36
UPDATE statement, 45–46

administrators
DBAs (database administrators), 313
SAs (system administrators), 329

advanced design
indexes

b-tree structure, 357–358
character, 168–169
CREATE INDEX statement, 140
doubly linked lists, 359
dropping, 360
multicolumn, 154
results, speeding up, 139–143
when to use, 360–361

21_577328 bindex.qxd 1/28/05 11:24 PM Page 475

advanced design (continued)
normalization guidelines

discussed, 117
first normal form, 118–119
second normal form, 119–121
third normal form, 121–123
transitive dependency, 121

validation
CHECK constraint, 125, 129–132
design improvement, 153–154
FOREIGN KEY constraint, 135–139
NOT NULL constraint, 124–125
performance improvement, 145–149
PRIMARY KEY constraint, 132–134
UNIQUE constraint, 125–129

aggregation
AVG() function, 198–200
COUNT() function, 192–194
defined, 189
GROUP BY clause, 189–191
MAX() function, 200–202
MIN() function, 200–202
SUM() function, 196–198

aliases
column names, 56
correlation names, 216
correlation variable, 253
spaces between, 87

ALL operator
discussed, 62
subqueries, 247–249
UNION operator, 229

alphabetical order, comparison operators, 47
ALTER COLUMN statement, 124
ALTER TABLE MODIFY statement, 124
ALTER TABLE statement, 26–27
ALTER USER statement, 331
American Standard Code for Information Inter-

change (ASCII), 22
AND operator

discussed, 62
WHERE clause, 48, 63

ANSI (American National Standards Institute)
discussed, 2
transaction model, 305
view update restrictions, 295

ANY operator, 245–247
applications, stand-alone, 11
arithmetic operations

addition (+) operator, 82, 158
division (/) operator, 158
functions
ABS(), 159–160, 181
CEILING(), 165
FLOOR(), 165
POWER(), 160–161, 181
RAND(), 162–163
RND(), 162
ROUND(), 163–167
SQRT(), 162

multiplication (*) operator, 158
subtraction (-) operator, 158

AS keyword, 56
ascending sorting order, 77
ASCII (American Standard Code for Informa-

tion Interchange), 22
asterisk (*), 54, 70, 192
Atomic, Consistent, Isolated, Durable (ACID),

302
Attendance table

example code, 37
initial data setup, 466–469

authentication mode, Microsoft SQL Server
installation, 433, 435

author and peer discussions, 5–6
autocommit, transactions, 307
averages, results, 198–200

B
Bachman, Charles W. (Turing Award), 7
balanced-tree (b-tree) structure, 357
base queries, 290
base views, 290–291

476

advanced design (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 476

BEGIN TRANSACTION statement, 306, 308
BETWEEN operator, 62, 66–67
blank database link, Microsoft Access, 424
Book Details page, Book Errata link, 5
boxes, surrounding text, 4
brackets

data types, 25
INNER JOIN keyword, 100–101
operator precedence, 63

b-tree (balanced-tree structure), 357

C
caches

database, 354–355
hard disk, 352–353
processor, 352

CASCADE keyword, 298, 346–347
case

case-sensitivity, LIKE operator, 71
conversion functions, 170–171

CAST() function, 179–180
categories

data types, 18
database creation example, 38

Category table, initial data setup, 452
CEILING() function, 165
central processing units (CPUs), 351
char data type, 20, 22
character data type, 88
character index, 168–169
character set configuration

MySQL installation, 398
Unicode character sets, 20

character string data types
ASCII (American Standard Code for Informa-

tion Interchange), 22
Unicode character set, 22–23

characters
data type selection considerations, 32
fixed-length, 22

non-English, 32
number-to-character conversions, 363
trimming, 172
variable length, 22
wildcard characters

* (asterisk), 70
multiple use, 71
% (percent sign), 70
? (question mark), 70
_ (underscore), 70

CHECK constraint, 125, 129–132
CHECK OPTION keyword, 295–298
clauses. See also statements

defined, 12
FROM, 271
GROUP BY

HAVING clause, 202–205
overview, 189–191

HAVING

GROUP BY clause, 202–205
subqueries, 252–253

ORDER BY

date functions, 178
NULL value, 113
SELECT statement, 54, 75
sorting orders, 75–79
UNION operator, 230–231

SET, 46
WHERE

AND operator, 48, 63
comparison operators, 47
DELETE statement, 49–50
DIFFERENCE() function, 177
filtering results with, 56–58
IN operator, 74
logical operators, 48
operator precedence, 64
OR operator, 48, 63
SELECT statement, 56–57
subqueries, 236, 240–242
UPDATE statement, 45–46

477

clauses

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 477

COALESCE() function, 180, 183–185
Codd, Ted (IBM database research), 7
code. See also syntax
ADD CONSTRAINT constraint, 137
aliases, 56
ALL operator, 247–248
ALTER TABLE statement, 27
ALTER USER statement, 331
ANY operator, 246–247
Attendance table, 37, 466–469
AVG() function, 198
BETWEEN operator, 67
brackets, around joins, 100–101
Category table, 452
CHECK constraint, 130–132
COALESCE() function, 183–185
comparison operators, 47–48
concatenation

IBM databases, 85–88
Microsoft Access, 82–84
Microsoft SQL Server, 82–84
MySQL Server databases, 88–89
Oracle databases, 85–88

correlated subqueries, 253–254
COUNT() function, 192–193
CREATE DATABASE statement, 17
CREATE INDEX statement, 140
CREATE USER statement, 330
cross joins, 213
data

deleting, 50–51
insertion, 41–44
selecting, 53–54
updates, 45–46
validation, 145–149

data type conversions, 179–180
decimal data type, 24
DROP DATABASE statement, 18
DROP INDEX statement, 141
DROP TABLE statement, 27
DROP USER statement, 331

EXISTS operator, 249–250
FavCategory table, 39, 459–461
fixed-length data types, 22
FOREIGN KEY constraint, 137
FROM clause, 271
GRANT OPTION statement, 343
GROUP BY clause, 190–191
HAVING clause, 200–201
IN operator, 73–74
indexes

creating, 140–143
dropping, 360

inner queries, 235–236
LIKE operator, 70–71
literals, 16
Location table, 458–459
logical operators, 48–49
math operations
ABS() function, 159–160
CEILING() function, 165
FLOOR() function, 166
POWER() functions, 160–161
RAND() function, 163
ROUND() function, 164
SQRT() function, 162

MAX() function, 199–200
MemberDetails table, 452–455
MIN() function, 200–201
NOT NULL constraint, 124–125
NOT operator, 66
NULL values, 181–182
ORDER BY clause, 75–79
PRIMARY KEY constraint, 132–134
queries, 58–60
READ COMMITTED statement, 319
READ UNCOMMITTED statement, 319
REPEATABLE READ statement, 319
results, filtering, 57
REVOKE statement, 344–345
rows, returning values from, 55–56
self-joins, 215

478

COALESCE () function

21_577328 bindex.qxd 1/28/05 11:24 PM Page 478

SERIALIZABLE statement, 318
SET TRANSACTION statement, 318
sets, records, 102, 104–107
spaces between, 17
SQL syntax, 16
string functions

case conversion, 170
DAY(), 178
DIFFERENCE(), 176–177
LENGTH(), 173–174
LOWER(), 170
MONTH(), 178
REVERSE(), 171
SOUNDEX(), 175–176
SUBSTRING(), 169–170
TRIM(), 172
UPPER(), 170
YEAR(), 178

subqueries, 236–238
SUM() function, 196–197
table creation, 36–38
timetable example, 26
UNION operator, 227–230
UNIQUE constraint, 126–129
variable-length data types, 22
views

base, 290–291
check option, 295–297
creating, 289
dropping, 298
field, 292
horizontal, 340
row, 291–292
summary, 293
tables and, 341–342
updating, 294
vertical, 337–338
windowed, 293

code views, Microsoft Access installation,
428

columns, table
aliases, 56
ALTER COLUMN statement, 124
deleting, 27
discussed, 16
dropping, 27
good design example, 30–31
joining, 91
locking, 314
multicolumn, 154
organization, 31
sorting order, 75–79

combining result sets, 226–230
Command Center tool

downloading, 416
Interactive tab, 418–420
Results tab, 422–423
Script tab, 416–417

command line interface access, MySQL
installation, 401

commands, START, 451
commas

delimiters, 41
sorting using, 78

COMMIT statement, 306–308
COMMIT TRANSACTION statement, 308
comparison operators, 47–48
compartmentalized networks, database

tuning, 352
compression, 5
computer selection, Microsoft SQL Server

installation, 430
CONCAT() function, 85–86, 88–89
concatenation

IBM databases, 85–88
Microsoft Access databases, 82–85
Microsoft SQL Server databases, 82–85
MySQL databases, 88
Oracle databases, 85–88
tables, joining, 82

CONCAT_WS() function, 89

479

CONCAT_WS() function

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 479

conditions, 12
configuration options

MySQL installation, 395–396
Oracle installation, 446–447

confirmation message, MySQL installation,
400

connection information
MySQL installation, 397
Query Browser tool, 402, 404–405

constraints
ADD CONSTRAINT, 137
CHECK, 125, 129–132
FOREIGN, 135–139
NOT NULL, 124–125
overview, 123
PRIMARY KEY, 132–134
UNIQUE, 125–129

contact details screen, IBM installation, 413
conventions, 4
conversions

data types, 179–180
number-to-character, 363

copying data in tables, 185
correlated subqueries, 253–255
correlation names, 216
correlation variable, 253
corruption, relational databases, 39
COUNT() function, 192–194
CPUs (central processing units), 351
CREATE DATABASE statement, 17
CREATE INDEX statement, 140
CREATE TABLE statement, 25–26
CREATE USER statement, 330
CREATE VIEW statement, 290
cross joins, 213–214

D
data

copying, 185
deleting from databases, 49–50

duplication, 30
efficiency improvements, 145–149
entering in databases

new data inserts, 41–44
updates, 45–46
WHERE clause, 47–49

extracting from databases
aliases, 56
BETWEEN operator, 66–67
concatenation, 82
IN operator, 73–75
LIKE operator, 70–72
NOT LIKE operator, 72
NOT operator, 66
NULL values, 113–115
operator precedence, 62–65
ORDER BY clause, 75–79
results, filtering, 56–60
rows, returning values from, 55–56
SELECT statement, 53–54

inconsistent data problems, 321–322
logical division, 29–32
numerical, delimiters around, 41
redundancy, well designed databases, 9
sharing, database design structure, 10
splitting into tables, 119
summaries, 189
uncommitted data problems, 321
validation
CHECK constraint, 125, 129–132
design improvement, 153–154
FOREIGN KEY constraint, 135–139
NOT NULL constraint, 124–125
performance improvement, 145–149
PRIMARY KEY constraint, 132–134
UNIQUE constraint, 125–129

Data Control Language (DCL), 11
Data Manipulation Language (DML), 11
data sets

combining, 226–230
joins, 102–106

480

conditions

21_577328 bindex.qxd 1/28/05 11:24 PM Page 480

data types
brackets, 25
categories, 18
char, 20, 22
character, 88
character string, 22–23
conversions, 179–180
database comparisons, 19
database creation example, 37
date, 21, 264
datetime, 264
decimal

numerical data, 23–24
storage allocation, 21

defined, 18
descriptions, 20–21
fixed-length, 22
floating-point numbers, 23
int

discussed, 180
storage allocation, 21
UNION operator, 227

naming considerations, 154
nchar, 20
numerical, 23–24, 179
nvarchar, 20
real

numerical data, 23–24
storage allocation, 21

reasons for, 19
selection considerations, 32–33
smallint, 21
storage space used, 20–21
text-based, 47
time, 21
varchar, 22
variable length, 22

database administrators (DBAs), 313
database caches, 354–355
database management systems (DBMS), 8
database owner (DBO), 329

databases. See also tables
alternatives to, 10
creation
CREATE DATABASE statement, 17
data type fields, 18–22
example database, 35–38
name punctuation, 18
Query Analyzer tool, 17
relational database organization, 14–16
requirement details, 35
SQL syntax, 16–17

data redundancy, 9
data sharing capabilities, 10
defined, 8
deleting

data deletion, 49–50
discussed, 18

design principles
data division specifics, 29–32
data needs, obtaining and analyzing, 28–29
data type selection considerations, 32–33
efficiency, 30
primary key fields, 33–35
validation and efficiency, 153–154

entering information in
new data inserts, 41–44
updates, 45–46
WHERE clause, 47–49

extracting information from
aliases, 56
BETWEEN operator, 66–67
concatenation, 82
IN operator, 73–75
LIKE operator, 70–72
NOT LIKE operator, 72
NOT operator, 66
NULL values, 113–115
operator precedence, 62–65
ORDER BY clause, 75–79
results, filtering, 56–60
rows, returning values from, 55–56
SELECT statement, 53–54

481

databases

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 481

databases (continued)
fields

defined, 14
field views, 292

front end programs, 10
history of, 7
Honeywell Information Systems, Inc., 7
IBM

Command Center tool, 416
concatenation, 85–88
contact details screen, 413
data type comparisons, 19
discussed, 3
history of, 7
installation summary details, 415
license agreement, 410
login information, 412
product links, 409–410
protocol details, 414
setup program, 409
task scheduler options, 414
Ted Codd (IBM research), 7
tutorial information, 416
typical installation option, 411

identification, 8
identifiers, 9, 16
keywords, 17
literals, 16
locking, 314
Microsoft Access

blank database link, 424
code views, 428
concatenation, 82–85
data type comparisons, 19
default screen, 423
design views, 427
discussed, 3
new table creation, 425
query execution, 426
SQL code, 425–426

Microsoft SQL Server
authentication mode, 433
computer selection, 430
concatenation, 82–85
data type comparisons, 19
discussed, 3
downloads, 429
Enterprise Manager, tool, 435
installation types, 431
instance creation, 430
instance name selection, 432
Query Analyzer, 435–439
services accounts, 433
typical installation option, 432
welcome screen, 429

MySQL
account information, installation process,

394
character set configuration, 398
command line interface access, 401
concatenation, 88–89
concurrent connection selection, 397
configuration options, 395–396
confirmation message, installation options,

400
data type comparisons, 19
database install file, 391–392
discussed, 3
drive specification, 397
execution options, 400
license agreement, 392
networking options, 398
password information, 399
Query Browser tool, 401–405
typical installation option, 393
usage options, 396–397
Windows service options, 399

networks, 10
objects, 14
operating systems, 11

482

databases (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 482

Oracle
concatenation, 85–88
configuration options, 446–447
data type comparisons, 19
discussed, 3
download link, 444
history of, 7
installation types, 445
SQL*Plus tool, 448–450
welcome screen, 444

personal use, 10
queries

defined, 9
results, database extraction, 58–60

reasons for, 9–11
records, 8, 16
relational

advantages of, 9
corruption, 39
defined, 8
groups, 8
organization, 14–16
security control, 14
structure of, 15

rows
locking, 314
returning values from, 55–56
row views, 291

security advantages, 10
simple, 8
theory, 2
tuning

caches, 352–355
compartmentalized networks, 352
files, 351
filter redundancy, 363
gigahertz networks, 352
hardware, 349–350
indexes, 357–361
number-to-character conversions, 363
pattern matching, 363

processors, 351
queries, 355–356
reasons for, 356
table scans, 361–362
workstations, 350–351

well designed, 9
when to use, 9–11

date
date and time data types, 24–25
date data type, 21, 264
datetime data type, 264
day month_name year formats, 44
literals, 58
variations, 24–25
year-month-day formats, 44

DAY() function, 178
day month_name year date formats, 44
DBAs (database administrators), 313
DBMS (database management systems), 8
DBMS_RANDOM package, 162
DBO (database owner), 329
DCL (Data Control Language), 11
deadlock locking level, 315–316
debugging, error messages, 26
decimals
decimal data type

numerical data, 23–24
storage allocation, 21

decimal points, rounding numbers, 167
declarative languages, 12–13
default screen, Microsoft Access, 423
DELETE statement

subqueries, 259–260
WHERE clause, 49–50

deleting
columns from tables, 27
data from databases, 49–50
databases, 18
tables, 27–28
users, 331

deletion anomaly, 119

483

deletion anomaly

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 483

delimiters, 41
DESC keyword, 142
descending sorting order, 76
design

efficiency, 30
good database design principles

data division specifics, 29–32
data needs, obtaining and analyzing, 28–29
data type selection considerations, 32–33
primary key fields, 33–35
validation and efficiency, 153–154

indexes
b-tree structure, 357–358
character, 168–169
CREATE INDEX statement, 140
doubly linked lists, 359
dropping, 360
multicolumn, 154
results, speeding up, 139–143
when to use, 360–361

normalization guidelines
discussed, 117
first normal form, 118–119
second normal form, 119–121
third normal form, 121–123
transitive dependency, 121

validation
CHECK constraint, 125, 129–132
design improvement, 153–154
FOREIGN KEY constraint, 135–139
NOT NULL constraint, 124–125
performance improvement, 145–149
PRIMARY KEY constraint, 132–134
UNIQUE constraint, 125–129

design views, Microsoft Access installation,
427

DHCP (Dynamic Host Configuration Protocol),
350

DIFFERENCE() function, 175–177
discussion groups, author and peer, 5–6

DISTINCT keyword
SELECT statement, 55–56, 194
SUM() function, 197

division operator (/), 158
DML (Data Manipulation Language), 11
doubly linked lists, indexes, 359
downloading

Command Center tool, 416
Microsoft SQL Server, 429
Oracle, 444
Query Analyzer tool, 435
Query Browser tool, 401
source code, 4–5

drive specification, MySQL installation, 397
DROP COLUMN statement, 27
DROP DATABASE statement, 18
DROP INDEX statement, 141, 143
DROP TABLE statement, 27
DROP USER statement, 331
DROP VIEW statement, 298
dropping indexes, 360
duplication, data

duplicated values, avoiding, 142
overview, 30

Dynamic Host Configuration Protocol (DHCP),
350

E
efficiency improvements

data, 145–149
database design, 30

Enterprise Manager tool, Microsoft SQL Server
database, 435

entries, data
new data inserts, 41–44
updates, 45–46
WHERE clause, 47–49

equals operator (=), 47
equijoins, 92, 208–210
errartas, 5

484

delimiters

21_577328 bindex.qxd 1/28/05 11:24 PM Page 484

error messages
debugging, 26
subqueries, 238–239

escalation lock parameter, 316–317
Europe, date variations, 24
examples

database creation, 35–38
normalization

first normal form, 118–119
second normal form, 120
third normal form, 121–122

timetables, 26
transactions, 303–304

Excel spreadsheets, database alternatives, 10
exclusive locking level, 315
execution options

Microsoft Access installation, 426
MySQL installation, 400

EXISTS operator, 249–252
expressions, subqueries as, 238
extended privileges, 336–337
extraction, from databases

aliases, 56
BETWEEN operator, 66–67
concatenation, 82
IN operator, 73–75
LIKE operator, 70–72
NOT LIKE operator, 72
NOT operator, 66
NULL values, 113–115
operator precedence, 62–65
ORDER BY clause, 75–79
results, filtering, 56–60
rows, returning values from, 55–56
SELECT statement, 53–54

F
fault-tolerance, 350
FavCategory table

example code, 39
initial data setup, 459–462

fields
defined, 8, 14
field views, 292

files
comma-delimited, 41
database tuning, 351
.txt, 451

filtered windowed views, 292–293
filtering results, with WHERE clause, 56–58
first normal form, 118–119
fixed-length data types, 22
floating-point numbers, 23
FLOOR() function, 165
foreign keys

defined, 34
FOREIGN KEY constraint, 135–139

foreign-based offices, date variations, 25
form formats, normalization

normal forms
discussed, 117
first normal, 118–119
second normal, 119–121
third normal, 121–123

transitive dependency, 121
forums, author and peer discussions, 5–6
fractions, floating-point numbers, 23
Free Online Dictionary of Computing, 8
FROM clause, 271
front end programs, 10
FULL OUTER JOIN keyword, 225–226
functions
ABS(), 159–160, 181
AVG(), 198–200
case conversion, 170–171
CAST(), 179–180
CEILING(), 165
COALESCE(), 180, 183–185
CONCAT(), 85–86, 88–89
CONCAT_WS(), 89
COUNT(), 192–194
DAY(), 178

485

functions

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 485

functions (continued)
DIFFERENCE(), 175–177
FLOOR(), 165
LEN(), 172
LENGTH(), 172–174
LOWER(), 170
LTRIM(), 172
MAX(), 200–202
MID(), 169
MIN(), 200–202
MONTH(), 178
NULLIF(), 180
POWER(), 160–161, 181
RAND(), 162–163
REVERSE(), 171
RND(), 162
ROUND(), 163–167
RTRIM(), 172
SOUNDEX(), 175–177
sp_addlogin, 331
sp_defaultdb, 331
sp_denylogin, 331
sp_droplogin, 331
sp_grantdbaccess, 331
sp_grantlogin, 331
sp_helplogins, 331
sp_helpuser, 331
sp_password, 331
sp_revokedbaccess, 331
sp_revokelogin, 331
SQRT(), 162
SUBSTR(), 169
SUBSTRING(), 168–170
SUM(), 196–198
TRIM(), 172
UPPER(), 170
YEAR(), 178

G
gigahertz networks, database tuning, 352
granting privileges
GRANT ALL statement, 341
GRANT OPTION statement, 342–343
PUBLIC keyword, 342
tables and views, 341–342

granularity, locks, 313–314
greater than operator (>), 47
GROUP BY clause
HAVING clause, 202–205
overview, 189–191

grouped views, 340
grouping results, 189–191
groups

group access, 332–334
relational databases, 8

H
hard disk caches, 352–353
hardware, database tuning, 349–350
hash symbol (#), 58, 60, 113
HAVING clause
GROUP BY clause, 202–205
subqueries, 252–253

historical values, data selection, 90–94
history, databases, 7
Honeywell Information Systems, Inc.

(database research), 7
horizontal views, 339–340
hours, date and time data types, 24

I
IBM databases

Command Center tool
downloading, 416
Interactive tab, 418–420
Results tab, 422–423
Script tab, 416–417

486

functions (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 486

concatenation, 85–88
data type comparisons, 19
discussed, 3
history of, 7
installing

contact details screen, 413
license agreement, 410
login information, 412
product links, 409–410
protocol details, 414
setup program, 409
summary details, 415
task scheduler options, 414
tutorial information, 416
typical installation, 411

Ted Codd (IBM research), 7
identification

databases, 8
group access, 332–334
user security, 329–332

identifiers
defined, 9
naming considerations, 25
objects and, 16
primary keys and, 34

IN operator
discussed, 62
OR operator and, 73
subqueries, 242–245
WHERE clause, 74

inconsistent data problems, 321–322
indexes

b-tree structure, 357–358
character, 168–169
CREATE INDEX statement, 140
doubly linked lists, 359
dropping, 360
multicolumn, 154
results, speeding up, 139–143
when to use, 360–361

INNER JOIN keyword
brackets around, 100–101
as default join, 92
linked tables, 95
ON keyword, 91, 96
results returned by, 94
syntax, 91, 207

inner queries, 235–236
innermost queries, 236
input/output (I/O), 351
INSERT INTO statement

overview, 43–44
SELECT statement, 185–187
subqueries, 255–257
syntax, 41

insert problems, transactions, 322
installation

IBM
contact details screen, 413
license agreement, 410
login information, 412
product links, 409–410
protocol details, 414
setup program, 409
summary details, 415
task scheduler options, 414
tutorial information, 416
typical installation option, 411

Microsoft Access
blank database link, 424
code views, 428
default screen, 423
design views, 427
new table creation, 425
query execution, 426
SQL code, 425–426

Microsoft SQL Server
authentication mode, 433
computer selection, 430
downloads, 429
installation types, 431

487

installation

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 487

installation (continued)
Microsoft SQL Server (continued)

instance creation, 430
instance name selection, 432
services accounts, 433
setup complete screen, 434
typical installation option, 432
welcome screen, 429

MySQL
account information, 394
character set configuration, 398
command line interface access, 401
concurrent connection selection, 397
configuration options, 395–396
confirmation message, 400
database install file, 391–392
drive specification, 397
execution options, 400
license agreement, 392
networking options, 398
password information, 399
typical installation option, 393
usage options, 396–397
Windows service options, 399

Oracle
configuration options, 446–447
download link, 444
installation types, 445
welcome screen, 444

instances, Microsoft SQL Server installation,
430, 432

int data type
discussed, 180
storage allocation, 21
UNION operator, 227

Interactive tab (Command Center tool),
418–420

I/O (input/output), 351
IS NOT NULL operator, 114
IS NULL operator, 114
ISO (International Standards Organization), 2

isolation levels, transactions
READ UNCOMMITTED statement, 319–320
REPEATABLE READ statement, 319
SERIALIZABLE statement, 318–319
SET TRANSACTION statement, 318
versioning, 320

italicized text, 4

J
joins

cross, 213–214
data sets, 102–106
diagram, 93
equijoins, 92, 208–210
INNER JOIN keyword

brackets around, 100–101
as default join, 92
linked tables, 95
ON keyword, 91, 96
results returned by, 94
syntax, 91, 207

JOIN keyword, 90
multiple, 210–213
non-equijoins, 209
ON keyword, 209
OUTER JOIN keyword

discussed, 218
FULL OUTER JOIN keyword, 225–226
LEFT OUTER JOIN keyword, 219–221
RIGHT OUTER JOIN keyword, 221–225

reasons for, 90
record sets, 102–106
self, 214–218
syntax, 91

K
keys

foreign keys
defined, 34
FOREIGN KEY constraint, 135–139

488

installation (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 488

primary keys
database creation example, 37
defined, 33
identifiers and, 34
NULL values, 132
PRIMARY KEY constraint, 132–134
uses for, 34

keywords
AS, 56
CASCADE, 298, 346–347
CHECK OPTION, 295–298
defined, 17
DESC, 142
DISTINCT, 55–56, 194
INNER JOIN

brackets around, 100–101
as default join, 92
linked tables, 95
ON keyword, 91, 96

JOIN, 90
ON

INNER JOIN keyword, 91, 96
joins, 209
results returned by, 94
syntax, 91, 207

OUTER JOIN

discussed, 218
FULL OUTER JOIN, 225–226
LEFT OUTER JOIN, 219–221
RIGHT OUTER JOIN, 221–225

PUBLIC, 342
RESTRICT

discussed, 298
revoking privileges, 346–347

rules, 17
transaction, 307

L
languages

comparisons between, 12–13
DCL (Data Control Language), 11

declarative, 12–13
DML (Data Manipulation Language), 11
procedural, 12–13
SQL (Structured Query Language)

procedural language comparisons, 12–13
queries, 11–12
SQL-86 updates, 13
SQL-89 updates, 13
SQL-92 updates, 13
SQL-99 updates, 13
SQL-2003 updates, 13
SQL*Plus tool, Oracle database, 448–450

leaves, b-trees, 357
LEFT OUTER JOIN keyword, 219–221
LEN() function, 172
LENGTH() function, 172–174
less than operator (<), 47
levels, locks, 314–316
license agreements

IBM installation, 410
MySQL installation, 392

LIKE operator
case-sensitivity, 70–72
discussed, 62

literals
dates, 58
defined, 16

loading
Command Center tool, 416
Microsoft SQL Server, 429
Oracle, 444
Query Analyzer tool, 435
Query Browser tool, 401
source code, 4–5

Location table, initial data setup, 458–459
locks, transactions

granularity, 313–314
levels, 314–316
optimistic, 318
parameters, setting, 316–318
pessimistic, 318

489

locks, transactions

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 489

logical operators, 48–49
login information, IBM installation, 412
logs, transaction, 312–313
lost update problems, 320–321
LOWER() function, 170
LTRIM() function, 172

M
main program screen, Query Browser tool, 403
master database records, Query Analyzer tool,

435
math operations

addition (+) operator, 158
division (/) operator, 158
functions
ABS(), 159–160, 181
CEILING(), 165
FLOOR(), 165
POWER(), 160–161, 181
RAND(), 162–163
RND(), 162
ROUND(), 163–164, 166–168
SQRT(), 162

multiplication (*) operator, 158
subtraction (-) operator, 158

MAX() function, 200–202
MemberDetails table, initial data setup,

452–455
memory

data types, 19
database caches, 354–355

methods. See functions
Microsoft Access databases

concatenation, 82–85
data type comparisons, 19
installing

blank database link, 424
code views, 428
default screen, 423
design views, 427

new table creation, 425
query execution, 426
SQL code, 425–426

overview, 3
Microsoft SQL Server databases

concatenation, 82–85
data type comparisons, 19
discussed, 3
Enterprise Manager tool, 435
installing

authentication mode, 433
computer selection, 430
downloads, 429
installation types, 431
instance name selection, 432
services accounts, 433
setup complete screen, 434
typical installation option, 432
welcome screen, 429

instance creation, 430
Query Analyzer tool

authentication options, 435
downloading, 435
master database records, 435
multiple queries, 439
Object Browser window, 437–438
temporary databases, 437

MID() function, 169
MIN() function, 200–202
minutes, date and time data types, 24
MONTH() function, 178
multiplication operator (*), 158
multiprocessing, processors, 351
MySQL Server databases

concatenation, 88–89
data type comparisons, 19
discussed, 3
installing

account information, 394
character set configuration, 398
command line interface access, 401

490

logical operators

21_577328 bindex.qxd 1/28/05 11:24 PM Page 490

concurrent connection selection, 397
configuration options, 395–396
confirmation message, 400
database install file, 391–392
drive specification, 397
execution options, 400
license agreement, 392
networking options, 398
password information, 399
typical installation option, 393
usage options, 396–397
Windows service options, 399

Query Browser tool
connection information, 402, 404–405
downloading, 401
main program screen, 403
reference guide, 408
schema information, 404
SQL execution information, 404

N
naming considerations

data types, 154
database creation example, 36
identifiers, 25
punctuation issues, 18
tables, 154

nchar data type, 20
nesting

queries, 212
subqueries, 256

networks
database tuning, 352
network databases, 10
networking options, MySQL installation, 398

NICs (network interface cards), 352
non-English characters, 32
normalization

normal forms
discussed, 117
first normal, 118–119

second normal, 119–121
third normal, 121–123

transitive dependency, 121
NOT IN operator, 244
NOT LIKE operator, 72
NOT NULL constraint, 124–125
NOT operator, 62, 65–66
NULL values

data extraction values, 113–115
IS NOT NULL operator, 114
IS NULL operator, 114
NULLIF() function, 180
numerics, 180–181
ORDER BY clause, 113
primary keys, 132
strings and, 182
UNION operator, 232
unknown values, 113

numbers
absolute values, 159–160
data type selection considerations, 32
floating-point, 23
NULL values, 180–181
number-to-character conversions, 363
random, 162–163
rounding, 163–167

numerical data
data types, 23–24, 179
delimiters around, 41

nvarchar data type, 20

O
Object Browser window, Query Analyzer tool,

437–438
objects

defined, 14
security, 328, 335

ON keyword
INNER JOIN keyword, 91, 96
joins, 209

operating systems, 11

491

operating systems

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 491

operators
addition (+), 158
ALL

discussed, 62
subqueries, 247–249
UNION operator, 229

AND

discussed, 62
WHERE clause, 48, 63

ANY, 245–247
BETWEEN, 62, 66–67
comparison, 47–48
division (/), 158
EXISTS, 249–252
IN

discussed, 62
OR operator and, 73
subqueries, 242–245
WHERE clause, 74

IS NOT NULL, 114
IS NULL, 114
LIKE, 62, 70–72
logical, 48–49
math, 157–159
multiplication (*), 158
NOT, 62, 66
NOT IN, 244
NOT LIKE, 72
operator precedence, 62–65
OR

discussed, 62
IN operator and, 73
WHERE clause, 48, 63

SOME

discussed, 62
subqueries, 245–247

subtraction (-), 158
UNION

ALL statement, 229
discussed, 226
int data type, 227

NULL value, 232
ORDER BY clause, 230–231
SELECT statement, 228

optimistic locking, 318
OR operator

discussed, 62
IN operator and, 73
WHERE clause, 48, 63

Oracle databases
concatenation, 85–88
data type comparisons, 19
discussed, 3
history of, 7
installing

configuration options, 446–447
download link, 444
installation types, 445
welcome screen, 444

SQL*Plus tool, 448–450
ORDER BY clause

date functions, 178
NULL value, 113
SELECT statement, 54, 75
sorting orders, 75–79
UNION operator, 230–231

organization
columns, 31
database design techniques, 28–32
relational databases, 14–16

OUTER JOIN keyword
discussed, 218
FULL OUTER JOIN keyword, 225–226
LEFT OUTER JOIN keyword, 219–221
RIGHT OUTER JOIN keyword, 221–225

outer queries, 235
ownership, privileges, 337

P
pages, locking, 314
parameters, locks, 316–318

492

operators

21_577328 bindex.qxd 1/28/05 11:24 PM Page 492

passwords
group access, 333
IBM installation, 412
MySQL installation, 399
SQL*Plus tool, 448

pattern matching, database tuning, 363
peer and author discussions, 5–6
percent sign (%), 70
performance improvement

table scans, 362
validation, 145–149

personal use databases, 10
pessimistic locking, 318
pipe character (|), 85
POWER() function, 160–161, 181
precedence, operator, 62–65
primary keys

database creation example, 37
defined, 33
identifiers and, 34
NULL values, 132
PRIMARY KEY constraint, 132–134
uses for, 34

privileges
discussed, 328
extended, 336–337
granting
GRANT ALL statement, 341
GRANT OPTION statement, 342
PUBLIC keyword, 342
tables and views, 341–342

ownership, 337
revoking
CASCADE keyword, 346–347
with GRANT OPTION statement, 345–346
RESTRICT keyword, 346–347
REVOKE statement, 344–345

problems, transactions
inconsistent data, 321–322
inserts, 322
lost updates, 320–321
uncommitted data, 321

procedural languages, SQL comparisons,
12–13

processor caches, 352
product links, IBM installation, 409–410
programs, front end, 10
protocol details, IBM installation, 414
protocols, DHCP (Dynamic Host Configuration

Protocol), 350
P2P forums, author and peer discussions, 5–6
PUBLIC keyword, 342

Q
queries

base, 290
clauses, 12
conditions, 12
database tuning, 355–356
defined, 9
examples of, 11–12
executing, Microsoft Access installation, 426
inner, 235–236
innermost, 236
nesting, 212
outer, 235
results, database extraction, 58–60
statements, 12
subqueries
ALL operator, 247–249
ANY operator, 245–247
correlated, 253–255
DELETE statement, 259–260
discussed, 235
error messages, 238–239
EXISTS operator, 249–252
as expressions, 238
HAVING clause, 252–253
IN operator, 242–245
INSERT INTO statement, 255–257
nesting, 256
scalar, 236
SELECT statement, 236–240

493

queries

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 493

queries (continued)
subqueries (continued)
SOME operator, 245–247
UPDATE statement, 257–259
WHERE clause, 236, 240–242

writing queries
difficult queries, 270–274
good queries, 283–285

Query Analyzer tool
authentication options, 435
database creation example, 17
downloading, 435
master database records, 435
multiple queries, 439
Object Browser window, 437–438
temporary databases, 437

Query Browser tool, MySQL
connection information, 402, 404–405
downloading, 401
main program screen, 403
reference guide, 408
schema information, 404
SQL execution information, 404

question mark (?), 70

R
RAND() function, 162–163
random numbers, 162–163
range of values, retrieving, 66–67
READ UNCOMMITTED statement, 319–320
real data type

numerical data, 23–24
storage allocation, 21

records
active, 301
defined, 8, 16
sets

combining, 226–230
joins, 102–106

updating, 48

redundancy
normalization, 121
well designed databases, 9

reference guide, Query Browser tool, 408
REFERENCES statement

discussed, 139
extended privileges, 336–337

registration, P2P forums, 5
relational databases

advantages of, 9
corruption, 39
defined, 8
groups, 8
organization, 14–16
security control, 14
structure of, 15

REPEATABLE READ statement, 319
requirement details, database creation, 35
RESTRICT keyword

discussed, 298
revoking privileges, 346–347

restrictions, updating views, 295
results

adding, 196–197
averages, 198–200
combining, 226–230
counting, 192–194
database extraction, 56–60
filtering, 57
grouping, 189–191
indexes, 139–143
ordering, 75–79

Results tab (Command Center tool), 422–423
REVERSE() function, 171
revoking privileges
CASCADE keyword, 346–347
with GRANT OPTION statement, 345–346
RESTRICT keyword, 346–347
REVOKE statement, 344–345

RIGHT OUTER JOIN keyword, 221–225
RND() function, 162

494

queries (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 494

ROLLBACK statement, 307–308
ROLLBACK TRANSACTION statement,

310–311
ROUND() function, 163–167
rows, databases

locking, 314
returning values from, 55–56
row views, 291

RTRIM() function, 172

S
SAs (system administrators), 329
SAVE TRANSACTION statement, 309
savepoints, 309
scalar subqueries, 236
schema information, Query Browser tool, 404
Script tab (Command Center tool), 416–417
second normal form, 119–121
seconds, date and time data types, 24
security

authentication, 433, 435
concepts, 328
database advantages, 10
DCL (Data Control Language), 11
objects, 328, 335
privileges

discussed, 328
extended, 336–337
granting, 341–343
ownership, 337
revoking, 344–347
usage, 337

relational databases, 14
user security
ALTER USER statement, 331
CREATE USER statement, 330
deleting users, 331
discussed, 328
DROP USER statement, 331

group access, 332–334
user IDs, 329–332

validation
CHECK constraint, 125, 129–132
design improvement, 153–154
FOREIGN KEY constraint, 135–139
NOT NULL constraint, 124–125
performance improvement, 145–149
PRIMARY KEY constraint, 132–134
UNIQUE constraint, 125–129

views and
grouped views, 340
horizontal views, 339–340
limitations, 341
vertical views, 337–338

SELECT statement
AS keyword, 56
difficult queries, 271
DISTINCT keyword, 55–56, 194
INSERT INTO statement, 185–187
ORDER BY clause, 54, 75
subqueries, 236–240
syntax, 53
UNION operator, 228
WHERE clause, 56–57

self-joins, 214–218
SERIALIZABLE statement, 318–319
services accounts, Microsoft SQL Server

installation, 433
SET clause, 46
SET TRANSACTION statement, 318
sets, records

combining, 226–230
joins, 102–106

setup complete screen, Microsoft SQL Server
installation, 434

setup program, IBM installation, 409
shared locking level, 315
sharing data, 10
simple databases, 8

495

simple databases

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 495

size, locking parameters, 316
smallint data type, 21
SOME operator

discussed, 62
subqueries, 245–247

sorting orders
ascending, 77
descending, 76
ORDER BY clause, 75–79
random numbers, 163
using commas, 78

SOUNDEX() function, 175–177
source code, downloading, 4–5
spaces

between aliases, 87
between code, 17

sp_addlogin function, 331
sp_defaultdb function, 331
sp_denylogin function, 331
sp_droplogin function, 331
sp_grantdbaccess function, 331
sp_grantlogin function, 331
sp_helplogins function, 331
sp_helpuser function, 331
splitting data into tables, 119
sp_password function, 331
spreadsheets, database alternatives, 10
sp_revokedbaccess function, 331
sp_revokelogin function, 331
SQL (Structured Query Language)

procedural language comparisons, 12–13
queries, 11–12
SQL-86 updates, 13
SQL-89 updates, 13
SQL-92 updates, 13
SQL-99 updates, 13
SQL-2003 updates, 13
SQL*Plus tool, Oracle database, 448–450

SQRT() function, 162
square root functions, 162
stand-alone applications, 11

standards
ANSI (American National Standards Institute),

2, 305
ASCII (American Standard Code for Informa-

tion Interchange), 22
ISO (International Standards Organization), 2

START command, 451
statements. See also clauses
ALTER COLUMN, 124
ALTER TABLE, 26–27
ALTER TABLE MODIFY, 124
ALTER USER, 331
BEGIN TRANSACTION, 306, 308
COMMIT, 306–308
COMMIT TRANSACTION, 308
CREATE DATABASE, 17
CREATE INDEX, 140
CREATE TABLE, 25–26
CREATE USER, 330
CREATE VIEW, 290
defined, 12, 16
DELETE

subqueries, 259–260
WHERE clause, 49–50

DROP COLUMN, 27
DROP DATABASE, 18
DROP INDEX, 141, 143
DROP TABLE, 27
DROP USER, 331
DROP VIEW, 298
GRANT ALL, 341
GRANT OPTION, 342–343
INSERT INTO

overview, 43–44
SELECT statement, 185–187
subqueries, 255–257
syntax, 41

READ UNCOMMITTED, 319–320
REFERENCES

extended privileges, 336–337
overview, 139

496

size, locking parameters

21_577328 bindex.qxd 1/28/05 11:24 PM Page 496

REPEATABLE READ, 319
REVOKE, 344–345
ROLLBACK, 307–308
ROLLBACK TRANSACTION, 310–311
SAVE TRANSACTION, 309
SELECT

AS keyword, 56
difficult queries, 271
DISTINCT keyword, 55–56, 194
INSERT INTO statement, 185–187
ORDER BY clause, 54, 75
subqueries, 236–240
syntax, 53
UNION operator, 228
WHERE clause, 56–57

SERIALIZABLE, 318–319
SET TRANSACTION, 318
UPDATE

addresses, 45–46
SET clause, 46
subqueries, 257–259
syntax, 45
WHERE clause, 45–46

USAGE, 337
VALUES, 41

storage
data types

discussed, 20–21
selection considerations, 32

databases, history of, 7
design practices, 28
indexes, 358

stored procedures, 331
strings

case conversion functions, 170–171
character string data types, 22–23
date functions, 178
DIFFERENCE() function, 175–177
LENGTH() function, 172–174
LOWER() function, 170
LTRIM() function, 172

NULL values and, 182
REVERSE() function, 171
RTRIM() function, 172
SOUNDEX() function, 175–177
SUBSTR() function, 169
SUBSTRING() function, 168–170
TRIM() function, 172
UPPER() function, 170

Structured Query Language. See SQL
styles, text, 4
subqueries
ALL operator, 247–249
ANY operator, 245–247
correlated, 253–255
DELETE statement, 259–260
discussed, 235
error messages, 238–239
EXISTS operator, 249–252
as expressions, 238
HAVING clause, 252–253
IN operator, 242–245
INSERT INTO statement, 255–257
nesting, 256
scalar, 236
SELECT statement, 236–240
SOME operator, 245–247
UPDATE statement, 257–259
WHERE clause, 236, 240–242

SUBSTR() function, 169
SUBSTRING() function, 168–170
subtraction operator (-), 158
SUM() function, 196–198
summaries

summary details, IBM installation, 415
summary of data, 189
summary views, 293–294

symbols, aliases, 56
syntax. See also code
CAST() function, 180
CEILING() function, 165
CREATE TABLE statement, 25

497

syntax

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 497

syntax (continued)
cross joins, 213
DAY() function, 178
defined, 16
DIFFERENCE() function, 176
DROP TABLE statement, 27
DROP VIEW statement, 298
equijoins, 208
FLOOR() function, 165
FOREIGN KEY constraint, 137
FULL OUTER JOIN keyword, 225
INNER JOIN keyword, 91, 207
INSERT INTO statement, 41, 185
joins, 91
LEFT OUTER JOIN keyword, 219
MONTH() function, 178
POWER() function, 160
RIGHT OUTER JOIN keyword, 221
ROUND() function, 167
SELECT statement, 53
SOUNDEX() function, 175
SQRT() function, 162
SUBSTRING() function, 168
SUM() function, 196
UPDATE statement, 45
YEAR() function, 178

system administrators (SAs), 329

T
table scans, 361–362
tables. See also databases

altering, 26–27
Attendance

example code, 37
initial data setup, 466–469

Category, initial data setup, 452
columns

aliases, 56
ALTER COLUMN statement, 124
defined, 16

deleting, 27
dropping, 27
good design example, 30–31
joining, 91
locking, 314
multicolumn indexes, 154
organization, 31
sorting order, 75–79

creating, 25–26, 39
data

copying, 185
summaries, 189

defined, 8
deleting, 27–28
example of, 14
FavCategory, initial data setup, 459–462
good design example, 29–30
joining

cross joins, 213–214
multiple joins, 210–213
self-joins, 214–218

Location, initial data setup, 458–459
locking, 314
MemberDetails, initial data setup, 452–455
naming considerations, 154
normalization

first normal form, 118–119
second normal form, 119–121
third normal form, 121–123

privileges, granting, 341–342
records, sets, 102–106
relationships between, 135
splitting data into, 119
table join views, 290
views and, 341
virtual, 288

tabs, Command Center tool
Interactive tab, 418–420
Results tab, 422–423
Script tab, 416–417

task scheduler options, IBM installation, 414

498

syntax (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 498

telephone numbers, data type selection
considerations, 32

temporary databases, Query Analyzer tool,
437

text
italicized, 4
styles, 4
text-based information, data type selection

considerations, 32
text-based operators, 47

text files, database alternatives, 10
third normal form, 121–123
time

date and time data types, 24–25
time data type, 21
timetable example, 26

timeout lock parameter, 317–318
tools

Command Center
downloading, 416
Interactive tab, 418–420
Results tab, 422–423
Script tab, 416–417

Query Analyzer
authentication options, 435
database creation example, 17
downloading, 435
master database records, 435
multiple queries, 439
Object Browser window, 437–438
temporary databases, 437

Query Browser
connection information, 402, 404–405
downloading, 401
main program screen, 403
reference guide, 408
schema information, 404
SQL execution information, 404

SQL*Plus, 448–450

transactions
ACID (Atomic, Consistent, Isolated, Durable)

test, 302
active records, 301
ANSI standard, 305
autocommit, 307
BEGIN TRANSACTION statement, 306, 308
COMMIT TRANSACTION statement, 308
example data, 303–304
isolation levels
READ UNCOMMITTED statement, 319–320
REPEATABLE READ statement, 319
SERIALIZABLE statement, 318–319
SET TRANSACTION statement, 318
versioning, 320

keywords, 307
locks

granularity, 313–314
levels, 314–316
optimistic, 318
parameters, setting, 316–318
pessimistic, 318

overview, 301
problems

inconsistent data, 321–322
inserts, 322
lost updates, 320–321
uncommitted data, 321

ROLLBACK statement, 307–308
ROLLBACK TRANSACTION statement,

310–311
SAVE TRANSACTION statement, 309
savepoints, 309
transaction logs, 312–313

transitive dependency, 121
TRIM() function, 172
tuning databases

caches
database, 354–355
hard disk, 352–353
processor, 352

499

tuning databases

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 499

tuning databases (continued)
compartmentalized networks, 352
files, 351
filter redundancy, 363
gigahertz networks, 352
hardware, 349–350
indexes

b-tree structure, 357–358
database storage requirements, 358
doubly linked lists, 359
dropping, 360
when to use, 360–361

number-to-character conversions, 363
pattern matching, 363
processors, 351
queries, 355–356
reasons for, 356
table scans, 361–362
workstations, 350–351

Turing Award (Charles W. Bachman), 7
tutorial information, IBM installation, 416
.txt files, 451
typical installation option

IBM database, 411
Microsoft SQL Server installation, 432
MySQL database, 393

U
uncommitted data problems, 321
underscore (_), 70
Unicode character set, 20, 22
UNION operator
ALL statement, 229
discussed, 226
int data type, 227
NULL value, 232
ORDER BY clause, 230–231
SELECT statement, 228

UNIQUE constraint, 125–129
United Kingdom, date variations, 25

United States, date variations, 24
unknown values, NULL values, 113
UPDATE statement

addresses, 45–46
SET clause, 46
subqueries, 257–259
syntax, 45
WHERE clause, 45–46

updates
database records, logical operators and, 49
lost update problems, 320–321
SQL, 13
views
CHECK OPTION keyword, 295–298
restrictions, 295

upgrades, workstations, 350
UPPER() function, 170
U.S. (United States), date variations, 24
usage options, MySQL installation, 396–397
USAGE statement, 337
user security
ALTER USER statement, 331
CREATE USER statement, 330
deleting users, 331
discussed, 328
DROP USER statement, 331
group access, 332–334
user IDs, 329–332

V
validation
CHECK constraint, 125, 129–132
design improvement, 153–154
FOREIGN KEY constraint, 135–139
NOT NULL constraint, 124–125
performance improvement, 145–149
PRIMARY KEY constraint, 132–134
UNIQUE constraint, 125–129

values
absolute, 159–160
duplicate, avoiding, 142

500

tuning databases (continued)

21_577328 bindex.qxd 1/28/05 11:24 PM Page 500

historical, data selection, 90–94
NULL values

data extraction values, 113–115
IS NOT NULL operator, 114
IS NULL operator, 114
NULLIF() function, 180
numerics, 180–181
ORDER BY clause, 113
primary keys, 132
strings and, 182
UNION operator, 232
unknown values, 113

retrieving
ranges, 66–67
from rows, 55–56

VALUES statement, 41
varchar data type, 22
variable length data types, 22
versioning, isolation levels, 320
vertical views, 337–338
views

base, 290–291
benefits, 287–288
CREATE VIEW statement, 290
creation, 288–289
defined, 287
dropping, 298
field, 292
grouped, 340
horizontal, 339–340
limitations, 287, 341
privileges, granting, 341–342
row, 291
summary, 293–294
table join, 290
tables and, 341
updating
CHECK OPTION keyword, 295–298
overview, 294
restrictions, 295

vertical, 337–338
windowed, 292–293

virtual tables, 288

W
welcome screen

Microsoft SQL Server installation, 429
Oracle installation, 444

WHERE clause
AND operator, 48, 63
comparison operators, 47
DELETE statement, 49–50
DIFFERENCE() function, 177
filtering results with, 56–58
IN operator, 74
logical operators, 48
operator precedence, 64
OR operator, 48, 63
SELECT statement, 56–57
subqueries, 236, 240–242
UPDATE statement, 45–46

wildcard characters
* (asterisk), 70
multiple use, 71
% (percent sign), 70
? (question mark), 70
_ (underscore), 70

Window service options, MySQL installation,
399

windowed views, 292–293
workstations, database tuning, 350–351
Wrox, P2P forums, 5–6

Y
YEAR() function, 178
year-month-day data formats, 44

501

year-month-day data formats

In
de

x

21_577328 bindex.qxd 1/28/05 11:24 PM Page 501

	Beginning SQL
	About the Authors
	Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	1: Introduction to SQL
	A Brief History of Databases
	Identifying Databases
	Why and When to Use a Database
	Database Management Systems Used in This Book

	Structured Query Language (SQL)
	Introducing SQL Queries
	Comparing SQL to Other Programming Languages
	Understanding SQL Standards

	Database Creation
	Organizing a Relational Database
	SQL Syntax
	Creating a Database
	Understanding Data Types

	Creating, Altering, and Deleting Tables
	Creating a Table
	Altering an Existing Table
	Deleting an Existing Table

	Good Database Design
	Obtaining and Analyzing Your Data Needs
	Dividing Data Logically
	Selecting Correct Data Types
	Using a Primary Key

	Creating the Example Database
	Summary
	Exercises

	2: Entering Information
	Inserting New Data
	Inserting Data into the Case Study Database
	Updating Data
	The WHERE Clause
	The Logical Operators AND and OR

	Deleting Data
	Summary
	Exercises

	3: Extracting Information
	The SELECT Statement
	Returning Only Distinct Rows
	Using Aliases
	Filtering Results with the WHERE Clause

	Logical Operators and Operator Precedence
	Introducing Operator Precedence
	Using Logical Operators
	NOT Operator
	BETWEEN Operator
	LIKE Operator
	IN Operator

	Ordering Results with ORDER BY
	Joining Columns-Concatenation
	MS SQL Server and MS Access
	Oracle and IBM DB2
	MySQL

	Selecting Data from More Than One Table
	Using Brackets around Inner Joins in MS Access
	SQL Is Set-Based

	Introducing NULL Data
	Summary
	Exercises

	4: Advanced Database Design
	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Ensuring Data Validity with Constraints
	NOT NULL Constraint
	UNIQUE Constraint
	CHECK Constraint
	Primary Key and PRIMARY KEY Constraint
	Foreign Key

	Speeding Up Results with Indexes
	Improving the Design of the Film Club Database
	Reexamining the Film Club Database Structure

	Improving Data Validation and Efficiency
	Tips for Designing a Better Database

	Summary
	Exercises

	5: Manipulating Data
	Understanding SQL Arithmetic
	Basic Math Operators
	Common Math Functions
	The ABS() Function
	The POWER() Function
	The SQRT() Function
	The RAND() Function

	Rounding Numbers
	The CEILING() Function
	The FLOOR() Function
	The ROUND() Function

	Introducing String Functions
	The SUBSTRING() Function
	Case Conversion Functions
	The REVERSE() Function
	The TRIM() Functions
	The LENGTH() Function
	The SOUNDEX() and DIFFERENCE() Functions
	Date Functions

	Converting Different Data Types
	Re-examining NULL
	NULLs and Math
	NULLs and Strings
	The COALESCE() Function

	Using INSERT INTO with the SELECT Statement
	Summary
	Exercises

	6: Grouping and Aggregating Data
	Grouping Results
	Summarizing and Aggregating Data
	Counting Results
	Adding Results
	Averaging Results
	MAX() and MIN() in Results

	Using the HAVING Clause with GROUP BY Statements
	Summary
	Exercises

	7: Selecting Data from Different Tables
	Joins Revisited
	Inner Joins: An In-Depth Look
	Equijoins and Non-equijoins
	Multiple Joins and Multiple Conditions
	Cross Joins
	Self-Joins

	Outer Joins
	Left Outer Join
	Right Outer Join
	Full Outer Join

	Combining Results Sets with the UNION Operator
	Summary
	Exercises

	8: Queries within Queries
	Subquery Terminology
	Subqueries in a SELECT List
	Subqueries in the WHERE Clause
	Operators in Subqueries
	Revisiting the IN Operator
	Using the ANY, SOME, and ALL Operators
	ANY and SOME Operators
	ALL Operator

	Using the EXISTS Operator
	Using the HAVING Clause with Subqueries

	Correlated Subquery
	Subqueries Used with Other Statements
	Using Subqueries with the INSERT Statement
	Using Subqueries with the UPDATE Statement
	Using Subqueries with the DELETE FROM Statement

	Summary
	Exercises

	9: Advanced Queries
	Updating the Database
	Tackling Difficult Queries
	Work Out What You Want, What You Really, Really Want
	Choosing the SELECT Column List
	Creating the FROM Clause

	Top Tips for Efficient Queries
	Summary
	Exercises

	10: Views
	Introducing Views
	Creating Views
	Types of Views
	Table Join Views
	Base View
	Row Views
	Field Views
	Filtered Windowed Views
	Summary Views

	Updating Views
	Update Restrictions
	Check Option

	Dropping Views

	Summary
	Exercises

	11: Transactions
	Introducing Transactions
	Example Data
	ANSI Model
	COMMIT
	ROLLBACK

	Transact-SQL
	BEGIN TRANSACTION
	COMMIT TRANSACTION
	SAVE TRANSACTION
	ROLLBACK TRANSACTION

	Transaction Logs
	Locks
	Locking Granularity
	Database
	Table
	Page
	Row
	Column

	Locking Levels
	Shared
	Exclusive
	Deadlocks

	Setting Lock Parameters
	Lock Size
	Number of Locks
	Escalation
	Timeout

	Isolation Levels
	SET TRANSACTION
	SERIALIZABLE
	REPEATABLE READ
	READ COMMITTED
	READ UNCOMMITTED
	Versioning

	Problem Examples
	The Lost Update
	The Uncommitted Data
	The Inconsistent Data
	The Phantom Insert

	Revisiting the Example Code
	Summary
	Exercises

	12: SQL Security
	Security Concepts
	User IDs
	Creating User IDs
	Alter User
	Drop User

	Group IDs (Roles)
	Objects
	Privileges
	Extended Privileges
	The USAGE Privilege
	Ownership

	Views and Security
	Vertical and Horizontal Views
	Grouped Views
	Limitations on Views

	Granting Privileges
	Tables and Views
	Columns
	The GRANT OPTION Clause

	Revoking Privileges
	The REVOKE Statement
	Revoking GRANT
	The CASCADE and RESTRICT Options

	Summary
	Exercises

	13: Database Tuning
	Tuning Hardware
	Workstations
	Database Files
	Processors
	Gigahertz Networks or Compartmentalized Networks
	Caches
	Processor Cache
	Hard Disk Cache
	Database Cache

	Tuning SQL
	What Does SQL Tuning Mean?
	Why Do You Do It?
	How Do You Do It?
	Indexes-What Are They?
	Indexes-When They Help, Hurt, or Don't Matter
	Table Scans-What Are They?
	When Table Scans Help, Hurt, or Don't Matter

	Tuning Tips
	Summary
	Exercises

	Appendix A: Exercise Answers
	Appendix B: Setting Up and Using the Five Database Systems
	Appendix C: Initial Data Setup
	Index

