

 - 2 -

Developing Time-Oriented Database Applications in SQL
by Richard T. Snodgrass ISBN: 1558604367

Morgan Kaufmann Publishers © 2000, 504 pages

An enjoyable plunge into the how-to of time and data, with
real-world situations and code.

Table of Contents Colleague Comments
Back Cover

Synopsis by Rebecca Rohan

What's true today may not be tomorrow -- and data may only be useful if it
comes from a period with specific parameters. If you're wrestling with time-
related monsters in DBMS, this book will help you understand them, and if
you're trying to tame those beasts with SQL, this book is a quick whip and
chair to chase them into their cages. For example, if you want to define a
period, you'll see that, while SQL3 supports periods, SQL-92 doesn't, and
you'll learn to use various pairs of instants instead.

Good, friendly writing, real-world situations, and plenty of code examples
make it fun to explore valid time versus transaction time, sequenced and non-
sequenced queries, sequenced updates, instants, intervals, now, and much
more. While Developing Time-Oriented Database Applications in SQL may
not make you Master of Time, it will probably make you a happier developer
during those minutes, hours, and days you're bringing temporal concepts to
data with SQL.

Table of Contents

 Developing Time-Oriented Database Applications in SQL - 3
 Foreword - 5
 Foreword
 Preface
 Chapter 1 - Introduction - 9
 Chapter 2 - Fundamental Concepts - 15
 Chapter 3 - Instants and Intervals - 25
 Chapter 4 - Periods - 73
 Chapter 5 - Defining State Tables - 90
 Chapter 6 - Querying State Tables - 120
 Chapter 7 - Modifying State Tables - 152
 Chapter 8 - Retaining a Tracking Log - 193
 Chapter 9 - Transaction-Time State Tables - 223
 Chapter 10 - Bitemporal Tables - 245
 Chapter 11 - Temporal Database Design - 313

 - 3 -

 Chapter 12 - Language Directions - 365
 Chapter 13 - Prospects - 435
 Glossary - 435
 Bibliography - 441
 Author Index
 Subject Index
 List of Figures - 447
 List of Tables - 448
 List of Code Fragments and Examples - 450
 List of Sidebars - 450

Back Cover
Whether you're a database designer, programmer, analyst, or manager, you've probably encountered some
of the challenges -- and experienced some of the frustrations -- associated with time-varying data. Where
do you turn to fix the problem and see that it doesn't happen again? In Developing Time-Oriented Database
Applications in SQL, a leading SQL researcher teaches you effective techniques for designing and building
database applications that must integrate past and current data. Written to meet a pervasive, enduring
need, this book will be indispensible if you happen to be part of the flurry of activity leading up to Y2K

Features

• Offers advice on recording temporal data using SQL data types, defining appropriate integrity
constraints, updating temporal tables, and querying temporal tables with interactive and embedded
SQL.

• Provides case studies detailing real-world problems and solutions in areas such as event data,
state-based data, partitioned data, and audit logs.

• Contains over 400 code fragments with detailed explanations.

About the Author

Richard T. Snodgrass is professor of computer science at the University of Arizona. His work on time-
varying databases is well known through his heavily cited books and papers, his column in Database
Programming & Design, and his contributions to the SQL3 standard. Snodgrass also codirects TimeCenter,
an international center for the support of temporal database applications in traditional and emerging DBMS
technologies.

Developing Time-Oriented Database Applications in
SQL
T. SNODGRASS RICHARD

Morgan Kaufmann Publishers
San Francisco, California

Series Editor, Jim Gray

Senior Editor Diane D. Cerra

Director of Production & Manufacturing Yonie Overton

Production Editor Edward Wade

Editorial Coordinator Belinda Breyer

 - 4 -

Cover Design Ross Carron Design

Cover Illustration Michael Bloomenfeld, AEC

Text Design Mark Ong, Side By Side Studios

Technical Illustration Cherie Plumlee

Composition Ed Sznyter, Babel Press

Copyeditor Ken DellaPenta

Proofreader Jennifer McClain

Indexer Steve Rath

Printer Courier Corporation
Chapter opener art based on illustrations from the following sources: Chapters 1, 12, and 13 from
Brackin, A. J., Clocks: Chronicling Time, Encyclopedia of Discovery and Invention, Lucent Books, 1991;
Chapters 2, 3, 4, 5, and 6 from Woodward, P., My Own Right Time: An Exploration of Clockwork
Design, Oxford University Press, 1995; Chapters 7, 8, and 9 from Britton, F. J., The Escapements: Their
Action, Construction, and Proportion, Geo. K. Hazlitt & Co., reprinted by Arlington Book Co, 1984; and
Chapters 10 and 11 from Headrick, M. V., Clock and Watch Escapement Mechanics, self-published,
1997.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
Editorial and Sales Office

340 Pine Street, Sixth Floor

San Francisco, CA 94104-3205

USA

Telephone 415-392-2665

Facsimile 415-982-2665
Email <mkp@mkp.com>
WWW http://www.mkp.com

Order toll free 800-745-7323

Copyright © © 2000 by Morgan Kaufmann Publishers

All rights reserved

Printed in the United States of America

04 03 02 01 00 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written
permission of the publisher.
Library of Congress Cataloging-in-Publication Data.

Snodgrass, Richard T.

Developing time-oriented database applications in SQL / Richard T. Snodgrass.

 - 5 -

p. cm.

Includes bibliographical references.
ISBN 1-55860-436-7
1. SQL (Computer program language) 2. Database design.I. Title.

QA76.73.S67S56 2000

005.75'6-dc21 99–14298

CIP

Á Merrie Ce jour, et toujours

Mach' es wie die Sonnenuhr

Zähl' die heiteren Stunden nur

Do like the sundial:

Count only the bright hours
— German proverb

Foreword
by Jim Gray
Microsoft Research

Precise clocks were developed so that seafarers could find their longitude. Precise temporal data
techniques were recently developed to help database designers record and reason about temporal
information. It is paradoxical that we are only now coming to understand how to think about time and
represent it in formal systems. After all, time is the fourth dimension; it is at the core of existence. Yet, it
is only recently that we have come to understand the fundamental concepts of instants, intervals,
periods, sequenced changes, valid time, transaction time, and a bitemporal view of information.

Richard Snodgrass and his colleagues have explored temporal data concepts over the last two
decades. They now have a fairly complete solution to the problems. Indeed the concepts are now being
added to the SQL language standard. This book summarizes their work and presents it in a very
accessible and useful way.

Temporal databases, viewed from this modern perspective, are surprisingly simple and powerful. The
book gives examples of 85-line SQL programs that collapse to 3-line programs when the new concepts
are applied. It introduces the concepts using concrete examples and conventional SQL. I found this mix
of theory and practice very instructive and very easy to follow.

The book explains that temporal databases can be designed in two steps. First, the static database can
be designed. Then, in a second pass, each table and constraint is given its temporal attributes. This
makes design much more tractable. This approach is made all the more attractive by the fact that the
temporal SQL language extensions are just modifiers to standard queries and updates—this very
elegant approach makes temporal issues orthogonal to the other language issues.

I highly recommend this book to anyone interested in temporal data—either designing and building
databases that record information over time, or just understanding the concepts that underlie
representing temporal information. This book does an excellent job of organizing and summarizing this
important area.

Preface
This is how it goes.

 - 6 -

We develop a database application, and initially the project proceeds smoothly enough. There are
alternatives to weigh during the schema design, problems to contend with while writing the SQL code,
and constant reconfiguration and interaction with other programs and legacy data, but all in all the
project is under control. Then we decide that one of the tables needs another DATE column, recording
when the row was valid. (After all, we added a birth date column a few weeks ago, with no surprises.)
So we rework the part of the application that maintains that table, noticing that the code is getting more
complicated. During testing, we discover that the primary key no longer is sufficient. We add the DATE
column to the primary key, acknowledging that this is only a stopgap measure, and hope that the input
data will be well formed, as there isn't time to write code that checks those constraints properly. In the
back of our mind is the lingering doubt that perhaps referential integrity checking isn't working quite right
either.
We soon realize that we need another DATE column to record when the row was no longer valid. In
doing so we encounter a raft of off-by-one bugs, in which some less-than comparisons should have
been '<=', and other places where we need to add "+ '1' DAY". We think we've found all the code
locations that need to be changed, but we're not sure. And we now know for a fact that the primary and
foreign keys are wrong, but we don't know how to even approach that mess.

The code to modify the database is becoming increasingly convoluted. Each modification has to at least
consider changing the DATE columns, but it isn't at all clear how to approach such changes in a
systematic fashion. And even the most trivial queries, such as "Who was Aaron's manager when he
worked on the Capital account?", which before we could code in our sleep, now become painful to even
contemplate writing in SQL.

Around this time, users start complaining that reports aren't consistent, that copies of the end-of-the-
year summary have different numbers in them. Looking into this anomaly, we finally figure out that the
reports were run at different times, and the data had been changed in the meantime. We then realize
that there is no way to correlate the end-of-the-year report with the cash flow report, unless they are run
at the same time. Users are adopting an irreverent view of these reports: if you wait a few days, maybe
the numbers will fix themselves.
To address the inconsistencies in the reports, someone suggests a quick fix: add another DATE
column. The development group responds with astonishment and chagrin. How can we possibly get the
code working with another DATE column, when we all know how much work resulted from adding the
previous column? In fact, some in the group despair of ever getting the code as is, with just two DATE
columns, working correctly—there are just too many arbitrary decisions, each layered on other equally
ill-motivated quick fixes.

Looking back on the history of the development process, everyone has a vague idea that the problems
started when that pesky DATE column was first added. How could one column flummox the whole
system? And why do some columns, such as the birth date column, slide in smoothly, and other DATE
columns cause no end of problems?

A PARADIGM SHIFT
Thomas Kuhn, in his insightful and highly influential book, The Structure of Scientific Revolutions [64],
argued that science does not proceed in a linear, monotonic accumulation of knowledge, but rather
exhibits intellectually jarring discontinuities, as radical ideas become the established world view,
replacing the now-discredited prior conceptual foundation.
Two decades of research into temporal databases have unequivocally shown that a time-varying table,
containing certain kinds of DATE columns, is a completely different animal than its cousin, the table
without such columns. Effectively designing, querying, and modifying time-varying tables requires a
different set of approaches and techniques than the traditional ones taught in database courses and
training seminars. Developers are naturally unaware of these research results (and researchers are
often clueless as to the realities of real-world applications development). As such, developers often
reinvent concepts and techniques with little knowledge of the elegant conceptual framework that has
evolved and recently consolidated, and researchers continue to conceal this framework with overly
formal prose, never bothering to make the connection with existing tools at hand.
This book is an attempt to recast the insights from some 1600 papers in the research literature into
terms usable by those brave SQL application coders working in the trenches. These concepts are
integrated with the state-of-the-art approaches utilized by forward-thinking developers, as showcased in
the case studies that form the bulk of the book. The result is, to use Kuhn's phrase, a paradigm shift in
how we think about time-varying data. This shift impacts how such tables are specified, how they are
maintained, and how they are queried.

 - 7 -

PREREQUISITES
I assume you are comfortable with the SQL query language. This book is not a primer on that language,
though I do cover the temporal data types and temporal constructs of SQL-92 in depth. There are many
excellent books that serve as introductions to SQL.

It helps if you have implemented an application involving time-varying data, if only to realize firsthand
how difficult and confusing such a project can be, and thus to appreciate the degree to which the
approach presented here helps clear out the undergrowth and achieve an elegant and unfettered
design. One chapter assumes familiarity with the entity-relationship model; the rest of the book focuses
solely on the relational model.

The conceptual tools introduced here are in a specific and fundamental way extensions of existing
strategies, so everything you've learned until now (well, almost everything) will be useful in this brave
new world. The hardest part, for which I'll provide careful guidance, is to jettison the notion that this
DATE column "is just another column." Operating under the old assumptions unhappily doesn't work, as
project after project after project has shown. Paradigm shifts are always scary, but the benefits are there
for those willing to make the jump.

WHAT TO READ
The best way to understand the principles of time-varying applications and their expression in SQL is to
work through a series of tangible examples. By examining the design issues that arise and the kinds of
constraints, queries, and modifications that we wish to express in implementing these specific
applications, you will gain an appreciation of the abstract principles at play. For this reason, the bulk of
this book is comprised of case studies.

Each case study sets the stage with a discussion of the application domain, which includes oil field
records, cattle location information, and cadastral data. The relevant tables are introduced, followed by
a discussion of the design, querying, and modification of these (time-varying) tables. While the
applications and the people mentioned in the case studies all exist, the specific SQL examples have
been tailored to bring out the issues under discussion.
The case studies were easy to locate. It seems that most database applications involve time-varying
data. Indeed, applications that are inherently not temporal are about as prevalent as the proverbial
hen's teeth. In fact, the only places you encounter nontemporal examples are in books and seminars, a
phenomenon that unintentionally emphasizes the inherent complexity of time-varying applications.
To understand the fundamental concepts, you are encouraged to read all the chapters, even if you
aren't an oil field engineer or a veterinarian. Each case study brings out a new category of temporal
data, with its unique characteristics and demands. In fact, by studying other fields, you are relieved of
the minutiae of your current environment. By studying a foreign language or culture, a deeper
understanding of your own language or culture often follows as an additional, or even sometimes
primary, benefit. After you have read the book, a productive approach to address a new set of
requirements is to ask, To which case study is the application under development most closely related?
Then the relevant code fragments can be customized to the problem at hand.

A few sections are marked with an asterisk to indicate advanced material. Feel free to skip these
sections on a first, or even second, reading.

CASE STUDIES
Befitting the book's categorization as nonfiction, the people and their situations are as described herein.
The specifics of their solutions to the problems presented by time-varying data have been adapted to
better illustrate general approaches that I wish to emphasize. Most of the SQL code was written by use
for the book, but it is reminiscent of that appearing in the actual applications. In the discussion, I have
attempted to not oversimplify. Much of the complexity inherent in these applications is cleverly hidden in
the details, and any realistic solution must ultimately confront the enterprise in all its glory and intricacy.

CD-ROM
The included CD-ROM contains the code fragments implemented in a variety of commercial systems,
including IBM DB2 Universal Database (UDB), Ingres, Informix-Universal Server, Microsoft Access,

 - 8 -

Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and UniSQL. While these code fragments
have been tested, the author and the publisher make no claims as to the suitability or correctness of
these code fragments.
Also included are versions of some of the systems discussed in Chapter 12.

ERRORS
I would appreciate hearing about any errors that you find in the book, as well as receiving any other
constructive suggestions you may have. (I'd especially like to hear of better ways to write individual
code fragments.) Please email your comments to the author at <snodgrass@mkp.com>

ACKNOWLEDGMENTS
The specific content of this book, as well as its overall composition, came about through collaboration
with my dear friend and colleague Christian S. Jensen, who has assembled and directs the world's
strongest temporal database research group at the University of Aalborg in Denmark. He is present on
every single page, looking over my shoulder, probing, clarifying, generalizing, exemplifying. While the
words in this book are mine (well, except for "exemplifying," which is definitely one of his words!), the
ideas are jointly ours, comingled with the contributions of the many authors discussed in the "Readings"
sections. Research is primarily an excuse to play with ideas, and concepts provide opportunities to
interact on a deep level with others. Much of the joy I have experienced in this crazy business has
directly or indirectly involved Christian, whether in the heady probing of trying to get at core truths, or in
appreciating the shimmering simplicity of the resulting insights that, once uncovered, are in retrospect
obvious.

Many others helped with the case studies, tested the code fragments, read drafts of this book, and
offered nontechnical sustenance.

Cheryl Bach, Jim Barnett, Nigel Corbin, Brad De Groot, Jens Gadgaard, and Chris Janton were
generous with their time in explaining the details of their applications, which provided the impetus for the
case studies.

I thank Anindya Datta, Igor Viguier, and the Department of Information Systems at the University of
Arizona for access to the Sybase DBMS. Cliff Leung from IBM, Paul Brown from Informix, Nick Kline
and Goetz Graefe from Microsoft, Rafi Ahmed from Oracle, and Jack Reid from UniSQL Customer
Support Services provided help with their respective DBMS products.
I appreciate comments on the manuscript from Rafi Ahmed, John Bair, Paul Brown, Jim Gray, Brad De
Groot, Jeff Gross, Robert Brett Gulledge, Christian S. Jensen, and Dennis Shasha. Jim Melton went
above and beyond the call of duty in providing two detailed reviews of the entire manuscript.

Amad Arsalan, Scott Calvert, Wen-Ke Chen, Brad De Groot, Alvin Gendrano, Bruce Huang, Vijaykumar
Immanuel, Jie Li, Wei Li, Giedrius Slivinskas, Helen Thomas, Brad Traweek, and Ines F. Vega-Lopez
provided corrections to the code fragments. Alan Brucks provided information on the year 2000
problem.

I thank the following people who created the content of the CD-ROM: HTML templates (Christopher
Cooper, Jose Alvin Gendrano, Rachana Shah, and Jian Yang), data types: IBM DB2 UDB (Brad
Traweek and Giedrius Slivinskas), Informix-Universal Server (Jason Cox and Anand Wagle), Ingres
(Wen-Ke Chen), Microsoft Access (Ines F. Vega-Lopez, Lincoln Turner, and Ze-Yuan Zou), Microsoft
SQL Server (Ines F. Vega-Lopez and Giedrius Slivinskas), Sybase SQLServer (Robert Brett Gulledge
and Miltos Vafiadis), Oracle8 Server (Christopher Cooper and Jose Alvin Gendrano), and UniSQL (Qing
Yan); valid-time state tables: IBM DB2 UDB (Vijaykumar Immanuel and Giedrius Slivinskas), Informix-
Universal Server (Jason Cox), Microsoft Access (Ahmad Arsalan and Ines F. Vega-Lopez), Microsoft
SQL Server (Ines F. Vega-Lopez and Giedrius Slivinskas), Sybase SQLServer (Wenmin Chen), Oracle8
Server (Jose Alvin Gendrano, Bruce Huang, and Wei Li), and UniSQL (Lincoln Turner and Carlos
Ugarte); temporal join and coalescing: Access (Yuji Nishimura, Dhumil Sheth, and Lincoln Turner), IBM
DB2 UDB (Jie Li and Kristin Tolle), Oracle8 Server (Jose Alvin Gendrano), and Sybase SQLServer
(Sameer Verkhedkar and Xianjin Yang); tracking logs: IBM DB2 UDB (Helen Thomas and Giedrius
Slivinskas), Microsoft SQL Server (Ines F. Vega-Lopez and Giedrius Slivinskas), Sybase SQLServer
(Yi-Jin Shi), Oracle8 Server (Scott Calvert and Wei Li), and UniSQL (Rachana Shah); transaction-time
state tables: Microsoft SQL Server (Ines F. Vega-Lopez and Giedrius Slivinskas) and Oracle8 Server
(Scott Calvert and Wei Li); bitemporal tables: Oracle8 Server (Scott Calvert and Wei Li); the capstone
case: Oracle8 Server (Wei Li); TIMEDB: Andreas Steiner; TIGER: Michael Böhlen; Synchrony: John

 - 9 -

Bair, Hollis Chin, and Michael Soo; and the white papers: W. L. A. Derks, Heidi Gregersen, Christian S.
Jensen, Leo Mark, Janne Skyt, and Jeroen Wijnands. Jian Yang superbly assembled all the files into a
coherent and consistent whole. I also appreciate the support over the years from the National Science
Foundation, recently via grants IRI-9632569 and ISI-9817798, and from AT&T Corporation, DuPont
Corporation, IBM Corporation, and NCR Corporation, which enabled the research that provides the
foundation for this book.

My editor, Diane Cerra, was wonderful throughout the involved process of writing and producing this
book. I especially appreciate her constant quest for quality. I've written for several editors and
publishers, and Diane and Morgan Kaufmann are by far the most authorand book-friendly.
The design of this book is considerably more complex than that of my other books. Edward Wade
worked closely with me on this design. Although I would not have thought it possible, Edward cared as
much as I did about getting the design just so, putting his heart into the project. The design feels right,
and Edward deserves most of the credit. Edward, it was truly a joy to work with you.

Finally, I thank my wife, Merrie, and my two children, Eric and Melanie, for continually emphasizing by
their example that life is so much more than book writing. They provided delightful distractions—how
could I resist rambling through the park, or reading a poem by Shel Silverstein, or helping out on a
pinewood derby car?
One of the oft-unexpected benefits of taking photographs, whether as a hobby or as a profession, is that
you see more vividly. The veins within a fallen leaf become all-absorbing, and shadows on a building
are suddenly profound and evocative. My experience in writing this book has been similar, in that the
words I have been fortunate to encounter in my reading and listening have particularly resonated with
me. During the course of the last two years, I have enjoyed the unwitting companionship of many fine
writers, of books and of music, including Beth Nielsen Chapman, Mary Chapin Carpenter, Iris DeMent,
Louise Erdrich, Nanci Griffith, Stephen Jay Gould, Lucy Kaplansky, Barbara Kingsolver (a fellow
Tucsonan!), William Langewiesche, Alison Moore (another Tucsonan), Ron Querry (Tucson is blessed
with accomplished writers), Anna Quindlen, Dava Sobel, Dar Williams, and Lucinda Williams. Their
prose and poetry has enriched and sustained me on this at times arduous yet ultimately gratifying
journey. My hope is that our paths continue to cross.

Chapter 1: Introduction
OVERVIEW
It was "as if you fired a 15-inch naval shell at a piece of tissue paper and the shell came right back and
hit you." Thus Ernest Rutherford described his astonishment at the result of his undergraduate student's
experiment in 1911. The experiment was a simple one: expose thin foils of gold to α particles and watch
for appreciable scattering. The then-current model of matter was that it was a "bunch of electrons and
some nondescript smeared out jelly of positive charge." The α particle weighs some 8000 times more
than an electron, yet was unexpectedly deflected by the jelly. This observation led to a radical change in
our conception of matter, resulting in the Rutherford atom, a tight nucleus surrounded by orbiting
electrons.
The scattering of particles and waves such as X rays provides much information on the inner structure
of matter. Diffraction patterns are stunningly beautiful in their regularity, reflecting in a highly indirect
fashion the ordering of atoms of the crystalline solids (such as TaSe2, shown in Figure 1.1) exposed to
the beam. These patterns can be analyzed to understand this geometric structure and other properties.
Indeed, much of what is known about the structure of solids is due to analysis of diffraction patterns.
Such a study was critical, for example, in understanding the spiral staircase of DNA's double helix.
The diffraction patterns are emphatically not magnifications of the crystalline structure; rather, the
various distances and angles of the blips can be translated back via sophisticated calculations to the
unseen lining up of atoms stuck in a three-dimensional gridlock. Only by understanding the
phenomenon of diffraction of wave motion, and the impact of a periodic array of barriers on the
impinging wave, can physicists accurately orient the atoms and piece together the underlying pattern.

An SQL table containing dates and times also exhibits a pleasing regularity, with dates in one column
recurring in other rows in another column, and the dates in many rows marching forward almost in
lockstep. This regularity is indeed suggestive

 - 10 -

Figure 1.1: Electron diffraction pattern of Tase2. (Image reprinted, by permission from structural and
Chemical Analysis of Materials, Figure 11.5(b), by J.P. Eberhart. © 1991 John Wiley & sons, Ltd.)

of an inner structure, which SQL so effectively masks. Only by understanding the ways in which time-
varying behavior can be modeled, and by studying the mapping of this information into tabular form, can
an SQL table in a time-varying application be effectively designed, queried, and maintained.

1.1 A TRIAD OF TRIPLES
It is human nature to differentiate, to tease apart, to contrast. Identifying dichotomies, partitioning into
two mutually exclusive groups, seems to be a fundamental strategy for contending with diversity. We
favor black and white, this and that, us and them, over shades of grey, a spectrum of possibilities, a
global community. We stereotype ourselves and others and all things by membership in identified
groups: plant or animal, minority or majority, right or wrong. Logic and libraries emphasize the distinction
between true (nonfiction) and false (fiction). Much of the prevalence of computers in today's society
derives from the clarifying simplicity of strings of just two values, 0 and 1, encoding everything from
names to the relative strength of a chess configuration.
As prevalent as this binary structure is, a collection of three items of similar import seems to resonate
even deeper. While a division into two parts is appealing in its reductionism and simplicity, a trichotomy
is attractive precisely because it is not either-or. A triad cannot be reduced to black and white, but is
forever resigned to contain ambiguity and complexity. Three-level logics embrace the value of
"unknown." The Greeks viewed the world as comprising the earth, the sea, and the sky (heaven).
Christians rejoice in the Trinity; they also speak of earth, heaven, and hell. In Buddhism, there are the
three roots of evil: lust, hatred, and delusion. Many religions differentiate the mind, the body, and the
soul. Pythagoras celebrated the triangle, the simplest geometric figure. We perceive three spatial
dimensions. Rainbows are combinations of three primary colors. Many governments are partitioned into
three branches, for a similar reason that a stool has three legs. The harmonic basis of Western music is
a chord of three tones consisting of a root with its third and fifth. A literary trilogy carries with it a
satisfying completeness.

In this book we examine how to implement a time-varying application in the SQL structured query
language. We focus on three sets of orthogonal concepts:

 Temporal data types
 Kinds of time
 Temporal statements

These concepts are encountered in every time-varying application. If SQL adequately supported these
concepts, our task, and yours in actually developing the application, would have been much easier: just
use SQL in the appropriate fashion to bring forth the desired behavior. Despite the near universality of
time and the time-varying nature of the enterprise being modeled—a static and unmalleable
configuration is rare and uninteresting—SQL quite frankly does a lousy job in capturing those aspects
that are changing in time, or in providing constructs to effectively model, query, or modify such
information. Instead, you, the application developer, are saddled with the task of transforming these
concepts into something that SQL can deal with. This book will emphasize the best way to think about

 - 11 -

time-varying data and will show with many examples how to map these concepts into a temporally
unfriendly SQL.

Each of these concepts itself consists of three orthogonal elements. There are three fundamental
temporal data types:

 Instant: something happened at an instant of time (e.g., "now," which happens to be
June 29, 1998, 4:06:39 P.M., when I am writing this, or sometime, perhaps much later,
when you are reading this)

 Interval: a length of time (e.g., three months)
 Period: an anchored duration of time (e.g., the fall semester, August 24 through

December 18, 1998)

SQL-92 includes support for instants and intervals, though in places it confounds the two. Most DBMS
products, though, only support instants, with intervals being simulated with integers or floating-point
numerics. Periods are always left to the application developer to simulate using supplied data types.
There are three fundamental kinds of time. We'll define more precisely and illustrate these terms shortly,
in the next chapter.

 User-defined time: an uninterpreted time value
 Valid time: when a fact was true in the modeled reality
 Transaction time: when a fact was stored in the database

These kinds of time are orthogonal: a table can be associated with none, one, two, or even all three
kinds of time. Understanding each kind of time and determining which is present in an application is
absolutely critical. We will characterize each in detail. SQL-92 has rudimentary support only for user-
defined time; the language provides no help whatsoever with the other two types of time. That is left for
you to manage, manually, in your application. We'll see exactly how to do so.

There are three basic kinds of time-oriented statements:
 Current: now
 Sequenced: at each instant of time
 Nonsequenced: ignoring time

The trichotomy applies equally well to queries, modification statements, views, and integrity constraints.
The most useful is sequenced, for which SQL-92 provides absolutely no help. In fact, getting SQL to
express a sequenced statement is often quite painful, yet that is usually what is required by the
application. We will show exactly how to write all three kinds of statements. SQL-92 provides some
support for nonsequenced statements; current statements are again entirely up to the programmer.

So, the several hundred pages of this book attempt to convey three sets of three orthogonal concepts,
most of which SQL is woefully ignorant. Those notions foreign to SQL must be transformed from their
clean, crisp manifestation into an often baroque expression in SQL. To add to the challenge, no DBMS
supports the SQL standard in its entirety; instead, there are infuriating inconsistencies and substitutions
each vendor has chosen to impose on its users. We help you navigate these treacherous waters, and
avoid the ever-present shoals.

1.2 THE SQL STANDARD
SQL is actually a series of standards. SQL-86 included no temporal data types, even though some
commercial implementations in the late 1980s did support such data types. SQL-89 added support for
referential integrity; no temporal data types were added. Several temporal data types were introduced in
SQL-92: DATE, TIME, TIMESTAMP, and INTERVAL. SQL3 is currently in draft form (and has been so
for several years; the path from draft to final accepted standard is a ponderous one). Portions of SQL3
are expected to be approved as a standard in late 1999. Part 7, SQL/Temporal, introduced a new
constructor, PERIOD. In this book, "SQL" refers to SQL-92, and "SQL/Temporal" refers to this draft part
of SQL3. We emphasize facilities currently available in database products, but also mention features on
the horizon.

1.3 CONVENTIONS
In the case studies, for each kind of query (modification, assertion, constraint, view), the general
principle behind the query is discussed. For some complex queries, pseudocode may be provided.
Following the pseudocode, a particular query is given as a code fragment. Notable features of the query
are then examined. Code fragments are often referenced later in the discussion. The references are

 - 12 -

abbreviated as, for example, CF-1.1. Important points are emphasized as pull quotes (those pieces of
information set off from text and extending into the page margins).

Tip "At least one" queries can be easily stated using an additional correlation name in
the FROM clause.

As an illustration of the stylistic conventions used throughout this book, consider (conventional) queries
of the form "… at least one …"—for example, "Which manager makes less than at least one of their
subordinates?" This query must find a suitable subordinate for each manager listed. Such queries can
be written with an EXISTS or IN subquery.

Code Fragment 1.1: Which managers make less than at least one of their subordinates?

SELECT DISTINCT EID

FROM Employee AS M

WHERE EXISTS (SELECT *

 FROM Employee AS E

 WHERE E.Mgr = M.EID AND E.Salary > M.Salary)

While this query in some ways parallels the English version, the effect can be more easily obtained by
augmenting the FROM clause and the WHERE clause.

"At least one" queries

Mention the table providing the sought-after entity in the FROM clause. Reference that table in the
WHERE clause to locate the entity.

Here, the sought-after entity is a subordinate (in the Employee table).
Code Fragment 1.2: Which managers make less than at least one of their subordinates (without using
EXISTS)?

SELECT DISTINCT M.EID

FROM Employee AS M, Employee AS E

WHERE E.Mgr = M.EID AND E.Salary > M.Salary

The nested correlation name has been moved up to the main FROM clause, resulting in a more
succinct query, a process termed "decorrelation."
A stylized image of an escapement (the critical component of a mechanical clock) is displayed on the
opening page of each chapter in this book. Such clocks have an escape wheel connected to a weight

 - 13 -

(such as in a grandfather clock) or a coiled spring (such as in a wristwatch). The escape wheel, which is
connected by gears to the hands of the clock, would spin continuously if not retarded by the
escapement, which periodically stops and releases the escape wheel.

Over the last 500 years, horologists have devised all manner of ingenious escapements. Examples
include Arnold's chronometer escapement, Bond's gravity escapement, Brocot's pin pallet escapement,
Congreve's extreme detached escapement, the Debaufre escapement, Froment's electrical
escapement, Graham's dead-beat escapement, Grimthorpe's gravity escapement (used in Big Ben),
Harrson's grasshopper escapement, and the very early verge and foliot escapement, some of which are
illustrated in the chapter openers.

Interspersed throughout the case studies will be brief sidebars on a multitude of calendars and on the
fascinating alchemy of art, science, and engineering that characterizes the development of increasingly
accurate clocks through the ages. The clock descriptions are accompanied by a stylized "sun" icon, the
calendar descriptions by a "moon" icon.

Calendars
Calendars are mankind's way of contending with years and lunar months composed of a nonintegral
number of days. As Stephen Jay Gould so eloquently writes "If God were Pythagoras in Galileo's
universe, calendrics would never have become an intellectual subject at all. The relevant cycles for
natural timekeeping would all be nice, crisp, easy multiples of each other…. But God, thank goodness,
includes both Loki and Odin, the comedian and the scholar; the jester and the saint. God did not
fashion a very regular universe after all. And we poor sods of his image are therefore condemned to
struggle with calendrical questions till the cows come home." [35, p. 134]

Finally, each chapter ends with a section on implementation considerations, identifying ways in which
commercial systems deviate from the standard and providing adaptations of the chapter's code
fragments that will run on these systems. A final section, Readings, provides pointers that elaborate on
the material in that chapter and in the clock and calendar sidebars, indicating the correspondence to the
sidebars with the sun and moon icons, respectively.

Gnomonics
Man's first subdiurnal clock was most likely his shadow: when it started getting longer, the day was
half over. The next advance was to substitute a gnomon, or staff of known length whose shadow can
be measured (gnomon is a Greek word for "pointer"). Obelisks at town centers, which provide a more
accurate designation of noon, by virtue of their height, were used in Egypt by around 1450 B.C.E. for
the measurement of time and the construction of calendars, thereby signaling the beginning of the
science of sundials, or gnomonics.
In the third century B.C.E., a Chaldean priest by the name of Berossos hollowed out a half-sphere in a
rectangular block of stone, positioned a gnomon in the center, and inscribed lines dividing the arc of
the shadow into 12 hours, in accordance with the 12 constellations crossed successively by the sun,
the zodiac (Figure 1.2). This hemispherium was the first sundial to measure hours. Berossos then
realized that the bottom half of the sphere was never used, so he removed this useless portion,
resulting in the lighter and thus more portable hemicyclium (Figure 1.3).

 - 14 -

Figure 1.2: Berossos's hemispherium. (From Rohr, R. R. J., Sundials: History, Theory, and Practice. Dover
Publications, NY, 1996.)

Figure 1.3: Berossos's hemicyclium. (From Rohr, R. R. J., Sundials: History, Theory, and Practice. Dover
Publications, NY, 1996.)

1.4 IMPLEMENTATION CONSIDERATIONS
The SQL code for the fragments is almost entirely in standard SQL-92 (any exceptions will be clearly
noted). Unfortunately, due to the noncompliance of all existing DBMSs, a few of these fragments run on
no existing platform. Hence, each case study concludes with a discussion of how the general approach
can be applied to various specific DBMSs, including IBM DB2 Universal Database (UDB), Informix-
Universal Server, Microsoft Access and Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and
UniSQL. Each of these products supports a different variant of SQL, introducing limitations that must be
worked around and extensions that can be exploited. Each also implements the various constructs in
SQL differently, so an approach that is impractical on one product may be the preferred one on another
product.

The included CD-ROM contains the code fragments implemented on one or more DBMSs. The specific
versions on which the fragments were tested were IBM DB2 UDB; Informix-Universal Server 9.12;
Microsoft Access 95, Access 97, and Access 2000; Microsoft SQL Server 6.5 and 7.0; Sybase
SQLServer 10; Oracle8 Server; and UniSQL. However, because vendors work very hard to ensure their
products are upward compatible, these fragments can be expected to continue to apply in future
versions of these systems.

The descriptions of the specific DBMSs parallel each other, so each can be read independently of the
rest. Indeed, it is expected that you will be using only one DBMS; the material on the other products
may be safely skipped.

1.5 READINGS
The official designation of SQL-86 is American National Standards Institute (ANSI) X3.135–1986 and
International Organization for Standardization (ISO) 9075-1987, "Database Language SQL." This
standard, at 110 pages, is relatively brief. SQL-89 is ANSI X3.135–1989 and ISO/IEC 9075:1989; this
language added referential integrity. In addition, ANSI published X3.168–1989, "Database languages—
Embedded SQL," which made specifications for embedding SQL in conventional programming
languages normative (required); ISO chose not to publish an analogous standard. SQL-92, which does
have normative embedding, is ANSI X3.135–1992 and ISO/IEC 9075:1992, "Database languages SQL"
[44]. Melton and Simon provide a comprehensive, readable presentation of SQL-92, including a

 - 15 -

thorough explanation of the SQL standardization process (Jim Melton is the editor of the SQL
standards) [71]. The standard itself is a precise, though soporific 580 pages.
In 1995 ISO standardized ISO/IEC 9075-3:1995, "Database languages—SQL-Part 3: Call-Level
Interface"; the next year, ISO/IEC 9075-4:1996, "Database languages—SQL-Part 4: Persistent Stored
Modules," appeared. These were originally considered parts of the draft SQL3 specification, but were
standardized before the core part of that language. There is also a 150-page "Database language
SQL—Technical Corrigendum 3" that provides (mostly minor) corrections and disambiguations to SQL-
92, Part 3, and Part 4 [19].

SQL3 is an evolving document, with 10 parts, two of which have achieved standardization, as just
mentioned. The core portions of the language, SQL/Framework (Part 1), SQL/Foundation (Part 2),
SQL/CLI (Call Level Interface: Part 3), SQL/PSM (Persistent Stored Modules: Part 4), and
SQL/Bindings (Host Level Bindings: Part 5) are nearing the FDIS ballot stage, when the SQL
committees of the member countries will vote on the question of whether the specification is ready to be
an international standard. SQL/Temporal (Part 7) will not go into balloting until the next millennium.
SQL/Foundation by itself is 850 pages; together all 10 parts of this specification exceed a back-straining
2000 pages.
A page maintained by Keith Hare (www.jcc.com/sql_stnd.html) is a central source of information about
the SQL standard. The information available there includes the current status of the standard,
information about the standards committees and the standards process, and pointers to other standards
pages. Eisenberg and Melton provide a crisply written overview of database standards [29].
Ernest Rutherford, whose model of the atom constituted an essential step toward our current
understanding of matter, did not receive the Nobel Prize for that contribution, only because he had
already received this ultimate recognition some three years earlier in 1908, at the ripe old age of 37, for
his work with radioactive elements and X rays. The context of these experiments is ably described by
Abraham Pais (who provides the second quote in the first paragraph of this chapter) in his superb
biography of the Danish physicist Neils Bohr [77, p. 123]. Bohr refined and extended Rutherford's model
to arrive at our current understanding (which is often called the "Bohr atom"), attaining the Nobel Prize
in 1922, also at the age of 37. Rutherford's undergraduate student, Henry G. J. Moseley, subsequently
used Rutherford's model, Bohr's theory, and his own X-ray diffraction studies to understand the periodic
table of the elements in terms of atomic numbers.

Stephen Jay Gould has written a delightful and highly recommended monograph entitled
Questioning the Millennium: A Rationalist's Guide to a Precisely Arbitrary Countdown. "If we regard
millennial passion in particular, and calendrical fascination in general, as driven by the pleasure of
ordering and the joy of understanding, then this strange little subject … becomes a wonderful
microcosm for everything that makes human beings so distinctive, so potentially noble, and often so
actually funny" [35, pp. 157–158].

René Rohr's Sundials: History, Theory, and Practice provides just that: a fascinating 2500syear
chronology, a readable explication of the mathematics behind sundial design, and sage advice on
positioning the gnomon and drawing the arcs [80]. Along the way, 51 photographs and over 100 figures
illustrate the myriad forms sundials have taken over this period.

Chapter 2: Fundamental Concepts
OVERVIEW
We wend our way through the fundamental concepts of time-varying database applications via our first
case study, temporarily skirting the complexities of the actual implementation. These concepts will be
examined in depth, along with their expression in SQL, in subsequent chapters.
They started getting sick in early June of 1997. Some just had a bad stomachache; others had severe
cramping and were passing blood. They suffered from a potentially lethal strain of the bacterium
Escherichia coli (0157:H7). By mid-August some dozen-odd cases, all in Colorado, were traced back to
a processing plant in Columbus, Nebraska. The plant's operator, Hudson Foods, eventually recalled 25
million pounds of frozen hamburger to attempt to stem the outbreak.

That particular plant processes about 400,000 pounds of hamburger daily. Ironically, this plant had
received high marks for its cleanliness and adherence to federal food-processing standards. What led to
the recall of about one-fifth of the plant's annual output was the lack of a database that could track the

 - 16 -

patties back to the slaughterhouses that supply carcasses to the Columbus plant. It is believed that the
meat was contaminated in one of these slaughterhouses, but without such tracking, all were suspect.

Put simply, the lack of an adequate time-varying database cost Hudson Foods $25 million.

Dr. Brad De Groot is a veterinarian working in Clay Center, Nebraska, about 60 miles southeast of
Columbus. He is interested in improving the health maintenance of cows on their way to your freezer.
He hopes to establish the temporal relationships between putative risk factor exposure (e.g., a
previously healthy cow sharing a pen with a sick animal) and subsequent health events (e.g., the
healthy cow later succumbs to a disease). These relationships can lead to an understanding of how
disease is transferred to and among cattle, and ultimately to better detection and prevention regimes.
As input to this epidemiologic study, Brad is collecting data from commercial feed yard record-keeping
systems to extract the movement of some 55,000 head of cattle through the myriad pens of large
feedlots in Nebraska.

2.1 VALID-TIME STATE TABLES
It's present everywhere, but occupies no space.

We can measure it, but we can't see it, touch it, get rid of it, or put it in a container.

Everyone knows what it is and uses it every day, but no one has been able to define it.

We can spend it, save it, waste it, or kill it, but we can't destroy it or even change it, and there's never
any more or less of it.
—Jespersen and Fitz-Randolph, From Sundials to Atomic Clocks
In a feed yard, cattle are grouped into "lots", with subsets of lots moved from pen to pen. One of Brad's
tables, the LOT_LOC table, records how many cattle from each lot reside in each pen of each feed yard.
The full schema for this table has nine columns; we'll just consider a few of them.
Brad wishes to capture the history of which cattle were coresident, to study how disease moves from
cow to cow. He adds two columns, FROM_DATE and TO_DATE, to this table:
LOT_LOC(LOT_ID_NUM, PEN_ID, HD_CNT, FROM_DATE, TO_DATE)
These two columns will enable many interesting queries to be expressed (some of considerable
intricacy), while enormously complicating previously innocuous constructs such as primary and foreign
keys. These columns render the table a "validtime state table": it records information valid at some time
in the modeled reality, and it records states, that is, facts that are true over a period of time. The
FROM_DATE and TO_DATE columns delimit the "period of validity" of the information in the row. The
"temporal granularity" of this table is a day.
The first three columns are integer columns. The last two columns are of type DATE. SQL supports
three kinds of instants, DATE, TIME, and TIMESTAMP, which differ in their range of values (e.g.,
DATEs range over 9999 years, whereas TIMEs range over only 24 hours) and their temporal granularity
(a day for DATE and a second for default TIMEs). Chapter 3 covers these and the INTERVAL data
types in all their glory (and grubbiness).
The last two columns denote the starting instant (actually, the starting day) of the period of validity of the
row and the terminating instant of the period of validity. Unfortunately, SQL-92 does not support periods,
so the period of validity must be implemented with two delimiting instants. Chapter 4 lists the various
ways periods can be implemented with the data types that SQL does provide, and the operations
(predicates and constructors) that may be applied to periods.
Table 2.1 records the movement of three lots of cattle in the feed yard. In this

Table 2.1: The LOT_LOC table.
LOT_ID_NUM PEN_ID HD_CNT FROM_DATE TO_DATE
137 1 17 1998-02-

07
1998-
02-18

219 1 43 1998-02-
25

1998-
03-01

219 1 20 1998-03-
01

1998-
03-14

219 2 23 1998-03-
01

1998-
03-14

219 2 43 1998-03- 9999-

 - 17 -

14 12-31
374 1 14 1998-02-

20
9999-
12-31

table we see that 17 head of cattle were in pen 1 for 11 days, moving inauspiciously off the feed yard on
February 18 (SQL-92 DATE literals are expressed as year-month-day). Also, 14 head of cattle from lot
374 are still in pen 1 (we use "forever" to denote currently valid rows), and 23 head of cattle from lot 219
were moved from pen 1 to pen 2 on March 1, with the remaining 20 head of cattle in that lot moved to
pen 2 on March 14, where they still reside.
Without the timestamp columns (FROM_DATE and TO_DATE), the primary key of LOT_LOC is the pair
(LOT_NUM_ID, PEN_ID), which can be informally expressed as "the (lot identifier, pen identifier) pair is
unique to a single row" With the timestamp columns, this can be generalized to "at any point in time, the
(lot identifier, pen identifier) pair is unique to a single row" It is unfortunate that SQL's PRIMARY KEY
construct is inadequate for valid-time state tables; expressing this manifest constraint in SQL-92
requires a complex assertion, as will be shown in Chapter 5, which covers all manner of definitional
requirements of valid-time state tables.

2.1.1 Queries
Queries over conventional tables ask, "What is?" Queries over time-varying tables can be placed in
three broad classes. For each conventional (nontemporal) query over a table without these two DATE
columns, there exist "current" ("What is now?"), "sequenced" ("What was, and when?"), and
"nonsequenced" ("What was, at any time?") variants over the corresponding valid-time state table.
Consider the nontemporal query "How many head of cattle from lot 219 in feed yard 1 are in each pen?"
The current analog over the LOT_LOC valid-time state table is "How many head of cattle from lot 219
are (currently) in each pen?" For such a query, we only are concerned with currently valid rows, and we
need only to add a predicate requesting such rows. This query returns the following result, stating that
all the cattle in the lot are currently in a single pen:
PEN_ID HD_CNT
2 43

The sequenced variant is "Give the history of how many head of cattle from lot 219 were in each pen."
The result (Table 2.2) provides the requested history. We see that lot 219 moved around a bit.
The nonsequenced variant is "How many head of cattle from lot 219 were, at some time, in each pen?"
Here we don't care when the data was valid. Note that the query doesn't ask for totals; it is interested in
whenever a portion of the requested lot was in a pen. Table 2.3 shows the result. Nonsequenced
queries are often awkward to express in English, but can sometimes be useful.

As another example, consider the nontemporal query "Which lots are coresident in a pen?" Such a
query could be a first step in determining exposure to putative risks. Indeed, the entire epidemiologic
investigation revolves around such queries, which turn out to be notoriously difficult to express in SQL-
92.
The current version, "Which lots are currently coresident in a pen?", will return the empty table when
evaluated on Table 2.1, as none of the lots are currently coresident (lots 219 and 374 are currently in
the feed yard, but in different pens).
The nonsequenced variant is "Which lots were in the same pen, perhaps at different times?" The result
is Table 2.4: all three lots had once been in pen 1.
Note however that at no time were any cattle from lot 137 coresident with either of the other two lots. To
determine coresidency, the sequenced variant is used: "Give the history of lots being coresident in a
pen." This requires the cattle to actually be in the pen together, at the same time. The result of this
query on Table 2.1 is the following:
L1 L2 PEN_ID FROM_DATE TO_DATE

219 374 1 1998-02-
25

1998-
03-01

As we will see in Chapter 6, current and nonsequenced queries are relatively easy to express in SQL,
but sequenced queries, which are prevalent, are surprisingly arduous. That chapter provides many
examples to illustrate how such queries are phrased in SQL.

 - 18 -

2.1.2 Modifications
Modifications (that is, insertions, deletions, and updates) comprise the bulk of many applications and
are challenging when applied to time-varying data. We'll illustrate modifications on the LOT table, which
captures the gender of the cattle in each lot. Surprisingly (especially to the cattle!), the gender attribute
is time-varying. As an aside on terminology, a "bull" is a male bovine animal (the term also denotes a
male moose). A "cow" is a female bovine animal (or a female whale). A "calf" is the young of a cow (or a
young elephant). A "heifer" is a cow that has not yet borne a calf (or a young female turtle). "Cattle" are
collected bovine animals.

Table 2.2: The history of lot 219.
PEN_ID HD_CNT FROM_DATE TO_DATE
1 43 1998-02-

25
1998-
03-01

1 20 1998-03-
01

1998-
03-14

2 23 1998-03-
01

1998-
03-14

2 43 1998-03-
14

9999-
12-31

Table 2.3: Result of a nonsequenced query.
PEN_ID HD_CNT
1 43
1 20
2 23
2 43

Table 2.4: Result of another nonsequenced query.
L1 L2 PEN_ID
137 219 1
137 374 1
219 374 1

A "steer" is a castrated male of the cattle family. To steer an automobile or a committee is emphatically
different from steering a calf. Cows and heifers are not steered, they are "spayed", or generically,
neutered, rendering them a "neutered cow" There is no single term for neutered cow paralleling the term
"steer", perhaps because spaying is a more invasive surgical procedure than steering, or perhaps
because those doing the naming are cowboys.

Bulls are steered to reduce injuries to themselves (bulls are quite aggressive animals) as well as to
enhance meat quality. Basically, all that fighting reduces glycogen in the muscle fibers, which increases
the water content of the meat, which results in less meat per pound. Heifers are spayed only if they will
feed in open fields, because calving in the feed yard is expensive and dangerous to the cow.
Figure 2.1 illustrates the transitions in gender that are possible, all of which are irreversible. (And you
thought that this book was going to be about databases!)
Capturing the (time-varying) gender of cattle is important in epidemiological studies, for the gender can
affect disease transfer to and between cattle. Hence, in Brad's feed yard database schema, LOT is a
valid-time state table.

 - 19 -

Figure 2.1: Gender transitions.

A slice of the LOT table is shown in Table 2.5 (in this excerpt, we've omitted several columns not
relevant to this discussion). The GNDR_CODE is an integer code. For expository purposes, we will use
single letters, with c indicating the lot consists of bull calves, h indicating the lot are heifers, and s
indicating the lot are steers. The FROM_DATE and TO_DATE in concert specify the time period over
which the values of all the other columns of the row were valid.
In this table, on March 23, 1998, a rather momentous event occurred for the cattle in lot 101: they were
steered. Lot 234 consists of calves; a TO_DATE of forever denotes a row that is currently valid. Lot 234
arrived in the feed yard on February 17; lot 799 arrived on March 12.
Brad collects data from the feed yard to populate his database. In doing so he makes a series of
modifications to his tables, including the LOT table. As with queries, there are three general classes of
modifications: current, sequenced, and nonsequenced.
"Lot 433 arrives today" is a current insertion. "Lot 101 leaves the feed yard today" is a current deletion.
The two modifications in concert result in Table 2.6. All information on lot 234 after today has been
deleted. (As this is being written on January 13, 1999, "today" is shown in SQL as 1999-01-13, exposing
the nonlinear fashion in which this book evolved.)
"The cattle in lot 799 are being steered today" is a current update, with the result shown in Table 2.7.

A current modification applies from "now" to "forever" A sequenced modification generalizes this to
apply over a specified period, termed the "period of applicability" This period could be in the past, in the
future, or overlap "now"

"Lot 426, a collection of heifers, was on the feed yard from March 26 to April 14" is a sequenced
insertion. "Lot 234 will be absent from the feed yard for the first three weeks of October, when the
steering will take place" is a sequenced deletion.

Table 2.5: The LOT table.
LOT_ID_NUM GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-

01
1998-
03-23

101 s 1998-03-
23

9999-
12-31

234 c 1998-02-
17

9999-
12-31

799 c 1998-03-
12

9999-
12-31

Table 2.6: Result of a current insertion and deletion.
LOT_ID_NUM GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-

01
1998-
03-23

101 s 1998-03-
23

9999-
12-31

433 c 1999-01-
13

9999-
12-31

 - 20 -

234 c 1998-02-
17

1999-
01-13

799 c 1998-03-
13

9999-
12-31

Table 2.7: Lot 799 was steered today.
LOT_ID_NUM GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-

01
1998-
03-23

101 s 1998-03-
23

9999-
12-31

433 c 1999-01-
13

9999-
12-31

234 c 1998-02-
17

1999-
01-13

799 c 1998-03-
12

1999-
01-13

799 s 1999-01-
13

9999-
12-31

A sequenced update is the temporal analog of a nontemporal update, with a specified period of
applicability. "Lot 799 was steered only for the month of March" is a sequenced update. (Something
magical happened on April 1. The idea here is to show how to implement sequenced updates in
general, and not just on cattle.)

As with queries, a nonsequenced modification treats the timestamps identically to the other columns
and often mentions the period of validity of the rows to be deleted. An example is "Delete the records of
lot 234 that have duration greater than three months."

Most modifications will be first expressed as changes to the enterprise being modeled (some fact
becomes true, or will be true sometime in the future; some aspect changes, now or in the future; some
fact is no longer true). Such modifications are either current or sequenced modifications. Nonsequenced
modifications, while generally easier to express in SQL, are rare.
Chapter 7 shows that current and nonsequenced modifications are not that hard to express in SQL, but
sequenced modifications, which are often the most useful, are doggedly obstinate, almost to the point of
intractability. In that chapter we provide abundant guidance on the care and feeding of modifications of
time-varying tables.

2.2 TRANSACTION-TIME STATE TABLES
The LOT_LOC and LOT tables capture the history of reality. The first row of Table 2.6 says that had we
checked the cattle in lot 101 anytime during the first three months of 1998, we would have seen that
they were calves.
Brad's database also includes the LOT_CONTAINS table, with the following schema (again, we omit
mention of some of the columns):
LOT_CONTAINS (LOT_ID_NUM, BKP_ID, A_NAME)
The primary key of this table is LOT_ID_NUM, so at any time, this value uniquely identifies one row,
which records the backup identifier and application name for that lot.
Brad copies the files from the feed yard system, then later processes the information. The
LOT_CONTAINS table stores for each lot the backup file from which the current information on that pen
was extracted. Because this data tends to be dirty, containing inconsistencies and omissions, Brad
would like to track the information in the LOT_CONTAINS table. In particular, he would like to reconstruct
its state at any date in the past. He adds two columns, a START_DATE indicating when that row was first
inserted into the table, and a STOP_DATE indicating when that row was updated or deleted. We should
emphasize that rows are logically deleted, because physically deleting old rows would prevent past

 - 21 -

states from being reconstructed. A table that can be reconstructed as of a previous date is termed a
"transaction-time state table", as it captures the transactions applied to the table.

The Tropical Year
The earth orbits around the sun, requiring a tropical year to return to the same point in space, which
has been measured to take 365.2422 days. The fact that the tropical year is not an exact multiple of
days, or even a simple fractional multiple of days, such as 365¼, has caused all manner of difficulty in
designing calendars. Calendars are expected to be synchronized with both the rising of the sun and
the seasons, and sometimes with the waxing and waning of the moon.

As Table 2.8 shows, a row concerning lot 101 was first inserted on January 1, 1998. The BKP_ID was
incorrect, and so was changed on February 5 from 17 to 18. A row concerning lot 433 was inserted on
January 13 and is still considered to be correct (as signaled by a STOP_DATE of "forever").

Table 2.8: The LOT_CONTAINS table.
LOT_ID_NUM BKP_ID A_NAME START_DATE STOP_DATE
101 17 'ADE' 1998-01-01 1998-02-

05
101 18 'ADE' 1998-02-05 9999-12-

31
433 23 'SMP' 1998-01-19 9999-12-

31

While Tables 2.5 and 2.8 both have two DATE columns, the interpretation of these columns is
dramatically divergent. Valid-time tables capture a history of reality, while transaction-time tables
capture a history of the changing state of a table. We cannot ask the LOT table what its state was three
days ago, but we can ask the LOT_CONTAINS table that question. Similarly, we cannot ask the
LOT_CONTAINS table what was true in reality three days ago, but we can ask the LOT table that
question. While any row of the LOT table may change, as we correct mistakes about the captured
history, the LOT_CONTAINS table grows monotonically, with old rows remaining unchanged in
perpetuity.
The most relevant query on a transaction-time state table is to reconstruct a past state. "Provide the
state of the LOT_CONTAINS table on January 12, 1998" yields the following result:
LOT_ID_NUM BKP_ID A_NAME
101 17 'ADE'

Note that the BKP_ID for lot 101 was (erroneously) thought to be 17 on that Monday, and lot 433 hadn't
yet arrived.
Now we ask, "Provide the state of the LOT_CONTAINS table on February 12, 1998", with the following
result:
LOT_ID_NUM BKP_ID A_NAME
101 18 'ADE'
433 23 'SMP'

The BKP_ID for lot 101 is now the correct value of 18.
Only current modifications are permitted on transaction-time state tables, as past states cannot be
changed. Modifications must permit subsequent reconstructions. The modification "Correct the backup
identifier for lot 433 to 37" produces the result shown in Table 2.9.
Chapters 8 and 9 discuss transaction-time tables in detail, emphasizing various representations, some
requiring only one timestamp column.

Table 2.9: The corrected backup identifier.

 - 22 -

LOT_ID_NUM BKP_ID A_NAME START_DATE STOP_DATE
101 17 'ADE' 1998-01-01 1998-02-

05
101 18 'ADE' 1998-02-05 9999-12-

31
433 23 'SMP' 1998-01-19 1999-01-

13
433 37 'SMP' 1999-01-13 9999-12-

31

Table 2.10: The LOT bitemporal table.
LOT_ID_
NUM

GNDR_
CODE

FROM_
DATE

TO_
DATE

START_
DATE

STOP_
DATE

101 c 1998-
01-01

9999-
12-31

1998-
01-03

1998-
03-19

234 c 1998-
02-17

9999-
12-31

1998-
02-17

9999-
12-31

799 c 1998-
03-12

9999-
12-31

1998-
03-12

9999-
12-31

101 c 1998-
01-01

1998-
03-23

1998-
03-19

9999-
12-31

101 s 1998-
03-23

9999-
12-31

1998-
03-19

9999-
12-31

2.3 BITEMPORAL TABLES
Valid time, capturing the history of a changing reality, and transaction time, capturing the sequence of
states of a changing table, are orthogonal, and can thus be separately utilized or applied in concert. A
table supporting both is termed a "bitemporal table."
The LOT table is critical to Brad's epidemiological analysis, so he also tracks the changes made to this
table. This table already supports valid time; he adds two columns, START_DATE and STOP_DATE, to
capture transaction time.
Table 2.10 has four timestamps, befitting its bitemporal nature. There is a wealth of information in such
tables, if care is taken in reading them. Let's examine this table row by row.

 Row 1: On January 3 (the START_DATE), the fact that lot 101, a group of calves,
arrived in the feed yard two days previously, on January 1 (the FROM_DATE), is
recorded. The valid time for this fact is January 1 to forever (the TO_DATE), indicating
that they are expected to remain calves. We'll return to the STOP_DATE when we
discuss the fourth row.

 Row 2: On February 17 (the START_DATE), the fact that lot 234, also a group of
calves, arrived in the feed yard that day (the FROM_DATE) is recorded. A STOP_DATE
of forever indicates that the fact is still considered to be correct.

 Row 3: On March 12, the fact that lot 799, a group of calves, arrived in the feed yard
that day is recorded.

Table 2.11: The history as known on March 15.
LOT_ID_NUM GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-

01
9999-12-
31

234 c 1998-02-
17

9999-12-
31

799 c 1998-03-
12

9999-12-
31

Table 2.12: The history as known on April 1.

 - 23 -

LOT_ID_NUM GNDR_CODE FROM_DATE TO_DATE
234 c 1998-02-

17
9999-12-
31

799 c 1998-03-
12

9999-12-
31

101 s 1998-03-
23

9999-12-
31

 Row 4: On Thursday, March 19, unbeknownst to the cattle in lot 101, these cattle were

scheduled to be steered early the next week, on Monday, March 23. So we logically
update the first row by setting its STOP_DATE to the current date, insert row 4,
indicating that lot 101 consisted of calves from January 1 to March 23, and insert row
5.

 Row 5: On Thursday, March 19, the fact that lot 101 is a collection of steers from
March 23 to forever was recorded, and that fact is still considered correct.

Since this table supports transaction time, we can reconstruct its state in the past. "Provide the history
of the LOT table as best known on March 15, 1998" (the Ides of March, beware!) would generate the
result shown in Table 2.11. As of March 15, we hadn't yet scheduled lot 101's steering. "Provide the
history as best known on April 1" yields a different result (Table 2.12).

Interactions between valid and transaction time are especially interesting, as in "When were steerings
scheduled (as opposed to being recorded after the fact)?" which would identify one such steering:
LOT_ID_NUM When_Scheduled When_Recorded
101 1998-03-23 1998-03-19

As bitemporal tables include transaction time, all modifications are transactiontime current. However, we
can still provide the period of applicability for modifications, as in "Lot 234 will be absent from the feed
yard for the first three weeks of October."
Chapter 10 explores the glorious expressiveness of bitemporal tables, as well as the intricacies of
expressing queries and modifications on such tables.

2.4 SUMMARY
This chapter has introduced what we want to do with time-varying tables and has provided a glimpse of
how to do them: add one or more timestamp columns. Chapter 3 through Chapter 10 furnish the
intellectual tools to code applications in SQL over temporal tables.
On the inside front cover, a Concept Map provides guideposts for our journey through the triad of triples.
In this map, the sections that explicate each concept are listed in italics, following the concept.
The three temporal data types—instants, intervals, and periods—are covered first. Valid-time state
tables are the focus of Chapter 5–7. Chapter 5 considers how such tables may be specified in the
schema; integrity constraints are used heavily, as the existing SQL constructs of UNIQUE, PRIMARY
KEY, and FOREIGN KEY are inadequate for time-varying tables.
The three kinds of queries—current, sequenced, and nonsequenced—are the topic of Chapter 6; the
analogous kinds of modifications are examined in Chapter 7.
Chapter 8 and 9 consider transaction-time tables, emphasizing the critical distinction between valid time
and transaction time (SQL unfortunately completely blurs this distinction). Chapter 8 considers instant-
stamped tables, and Chapter 9 considers period-stamped tables.
Chapter 10 introduces bitemporal tables, supporting both valid and transaction time. Again, we delve
into the intricacies of defining, querying, and modifying these tables.

Hours
A day is demarcated by a physical change, the peaking of the sun in the sky, indicating noon. Not so
for an hour; it is a purely arbitrary division. The ancients studied the stars closely and knew that the
sun crossed 12 constellations: Aquarius, Pisces, Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra,
Scorpio, Sagittarius, and Capricorn. This sequence is called the zodiac, from the Greek word zodios,
meaning "figure of an animal" The Chaldeans thus divided the day (that is, the time between sunrise

 - 24 -

and sunset) into 12 portions, or hours. However, because the daylight is shorter in winter than in
summer, these were considered horae temporariae, or "temporary hours"

We then return to Brad's feed yard application in Chapter 11, as a thorough review of these strategies.
Finally, Chapter 12 indicates where future versions of SQL are headed vis-a-vis temporal support and
shows that constructs proposed for SQL3 offer a dramatic reduction in both the number of lines of SQL
code and the mental gymnastics required, thereby ending this exploration on an optimistic note.
We now have sufficient background to understand the metaphor of the cover illustration. The sphere on
the cover is machined in such a way that it projects shadows of three different clock faces. The sphere
represents a fact in a bitemporal table, say, an employee table. The shadow on the left shows the time
10:25 A.M., indicating that the fact became true in reality (the valid FROM_TIME) in midmorning. The
shadow on the right shows the time 12:35 P.M., indicating that the fact was stored in the database (the
transaction START_TIME) about a half hour after noon. Part of the fact is the time of birth (a user-
defined time) of 6:05 P.M. We see that a particular fact in the database may include a user-defined time
and may be associated with both a valid time and a transaction time.

2.5 READINGS
Other terms have been applied to the valid-time, transaction-time, and bitemporal tables introduced in
this chapter. They have been called temporal tables. The term time-varying has been used, but this is a
misnomer, as all tables in practice vary over time, as rows are added, removed, and changed. The term
time-oriented tables is also not quite precise; just what does it mean to be "time-oriented?" (For that
reason, the title of this book is unfortunate. To be honest, I originally preferred Developing Temporal
Database Applications in SQL, but felt that title might confuse people who did not know the technical
definition of "temporal", which no longer characterizes you, gentle reader.) Such tables have also been
called historical tables, but this implies that they record information only about the past. Valid-time
tables often store information about the future, for example, in planning or scheduling applications. The
accepted terminology then is to refer to such tables as temporal tables, or more specifically as, say, a
valid-time table.
The official definition of a temporal database is "a database that supports some aspect of time, not
counting user-defined time" [49]. The intuition here is that adding a user-defined time column such as
birth date to an employee table does not render it temporal, especially since the birth date of an
employee is presumably fixed and applies to that employee forever. The presence of a DATE column
will not a priori render the database a temporal database; rather, the database must record the time-
varying nature of the information managed by the enterprise.
It is perhaps surprising that the discipline of temporal databases is a very active area within database
research. There have been some 1600 (!) papers written about this topic over a 20-year period. The
number of papers has been rising exponentially; several hundred now appear each year. Many are
included in the most recent bibliography, which has pointers to six prior bibliographies over the past 17
years [105]. Three brief surveys [56, 76, 103] provide entry into this research field. The most complete
exposition, albeit somewhat dated by now, is Tansel et al. [102]; a more recent text provides an updated
summary [107].
The cover illustration was inspired in part by the cover of Hofstadter's Godel, Escher, Bach [40], which
showed two pieces of wood carved to project shadows of the letters G, E, and B on the three planes.

2.5 READINGS
Other terms have been applied to the valid-time, transaction-time, and bitemporal tables introduced in
this chapter. They have been called temporal tables. The term time-varying has been used, but this is a
misnomer, as all tables in practice vary over time, as rows are added, removed, and changed. The term
time-oriented tables is also not quite precise; just what does it mean to be "time-oriented?" (For that
reason, the title of this book is unfortunate. To be honest, I originally preferred Developing Temporal
Database Applications in SQL, but felt that title might confuse people who did not know the technical
definition of "temporal", which no longer characterizes you, gentle reader.) Such tables have also been
called historical tables, but this implies that they record information only about the past. Valid-time
tables often store information about the future, for example, in planning or scheduling applications. The
accepted terminology then is to refer to such tables as temporal tables, or more specifically as, say, a
valid-time table.

 - 25 -

The official definition of a temporal database is "a database that supports some aspect of time, not
counting user-defined time" [49]. The intuition here is that adding a user-defined time column such as
birth date to an employee table does not render it temporal, especially since the birth date of an
employee is presumably fixed and applies to that employee forever. The presence of a DATE column
will not a priori render the database a temporal database; rather, the database must record the time-
varying nature of the information managed by the enterprise.
It is perhaps surprising that the discipline of temporal databases is a very active area within database
research. There have been some 1600 (!) papers written about this topic over a 20-year period. The
number of papers has been rising exponentially; several hundred now appear each year. Many are
included in the most recent bibliography, which has pointers to six prior bibliographies over the past 17
years [105]. Three brief surveys [56, 76, 103] provide entry into this research field. The most complete
exposition, albeit somewhat dated by now, is Tansel et al. [102]; a more recent text provides an updated
summary [107].
The cover illustration was inspired in part by the cover of Hofstadter's Godel, Escher, Bach [40], which
showed two pieces of wood carved to project shadows of the letters G, E, and B on the three planes.

Chapter 3: Instants and Intervals
OVERVIEW
At the core of a temporal application are temporal values, indicating when something happened.There
are three basic temporal types. Instants and intervals are covered in this chapter; periods, which enjoy
much less support in most versions of SQL, are the topic of the next chapter.

We examine in depth the variants of instants and intervals (SQL-92 supports five instant variants and
two interval variants) and the operations permitted on these types. The highly idiosyncratic temporal
facilities of prevalent DBMSs are compared in detail with the SQL-92 standard. The language facilities
supporting temporal values are similar in one way to assembly language facilities: you can (generally)
do what you want, but it is often far from easy.

Jim Barnett is the quintessential Texan: barrel-chested, sporting a thick mustache, a graduate of the
University of Texas, an oil man. His speech has an easy cadence, peppered with humor. He is an
engineer for GeoQuest, a data management company owned by Schlumberger, a Paris-based
instrumentation company. (This name is of Germanic origin, but is pronounced as a French word.)

The oil and gas business is a dynamic, worldwide industry, with its practitioners transferred far and
wide, and often. September of 1995 found Jim working in Dubai, U.A.E., 8000 miles from his home base
in Houston, Texas, working with the Arabian Oil Company (AOC) to systematize its records on wells
and oil and gas production and distribution. Several of his clients are in Al Khafji, a company town
immediately south of the Saudi border with Kuwait. Al Khafji saw action in the Gulf War, with the AOC
workers leaving scant hours before the town was invaded.

Jim helped design the database underlying GeoQuest's FINDER product. FINDER implements the
industrial standard Public Petroleum Data Model (PPDM) via some 300 tables on the Oracle DBMS.

The enterprise (here, wells, production, land, lithography, and seismic data) must be modeled using the
available data types, such as numerics, character strings, and dates. Character strings record the
names of things, numerics record the values that have been measured or noted, and dates record the
when of things.
As this book considers the time-varying nature of data, we focus here on the date columns. FINDER
utilizes all manner of dates. Many tables have Start_Date and End_Date columns, denoting a period
of time; we will examine this usage in detail in the next chapter. Other tables have Start_Date and
Next_Event_Date columns, recording a succession of events.
FINDER also uses other approaches to capture time-varying data. The Fac_Daily_Prod table tracks
daily production of a facility. Each row of this table records a month's worth of production. The
PRODUCTION_YEAR column (of type NUMBER(4,0)) and MONTH column (of type VARCHAR(3)) denote
the particular month, and 31 columns, DAY1 through DAY31, of type NUMBER(12,4), provide the daily
production.
Duration data is also present in the FINDER schema. In the Well_Core_Hdr table, the Dry_Time
column (of type NUMBER(7,2)) and the Dry_Time_Unit (of type VARCHAR(12)) in concert capture
the drying time of the chemical analysis of a well core (a sample extracted from a known depth from the
well).

 - 26 -

Jim found that addressing the AOC requirements involved adding even more date columns. To most
tables he added the following columns: Created_By, Create_Date, Updated_By, and
Last_Update, to track more carefully who effected a change and when the change was made. Other
temporal columns were needed by particular tables, such as the Sample_Date, Dispatch_Date,and
Return_Date columns of the Well_Core_Sample table.

SQL defines several temporal types for use in columns. Any respectable DBMS provides similar data
types, though few compliant with the standard. SQL also provides useful predicates, constructors, and
functions for manipulating time values. Again, DBMSs include somewhat similar, though usually
incompatible, operators. This chapter summarizes the temporal support that SQL and prevalent DBMSs
provide, and shows how to use these facilities to perform common tasks.

Jim's task was made easier (or perhaps more difficult) by the fact that Oracle supports but one temporal
data type, DATE, of a fixed granularity, to a second. This often shifted the decision from which temporal
type was best to which other available type, for example, NUMBER, should be used.
As in all data modeling, the first question that must be asked is, What is the semantics, that is, the
meaning, of the enterprise to be captured? In this sense, the Dry_Time column of the
Well_Core_Hdr table is of a fundamentally different nature than the Core_Date column of that table,
even if both are to a precision of seconds. And both are fundamentally different than the Star_Date
and End_Date columns. How these columns are typed and correctly manipulated in SQL depends
critically on determining their underlying semantics. In this and the next chapter, we examine the
different temporal semantics that are available, and explore how Jim made these distinctions when
specifying the AOC extensions to the FINDER data model.

3.1 INSTANTS
An instant is an anchored location on the time line. I am writing this on the instant of 2:38 P.M., January
14, 1997, two days after HAL's birth. (From 2001: A Space Odyssey: "I am a HAL 9000 computer,
production number 3. I became operational at the HAL plant in Urbana, Illinois, on January 12, 1997.")
An instant occurs but once, and then is forever in the past.

Tip An instant is an anchored location on the time line. An SQL-92 datetime denotes
an instant.

This data type is most fundamental. Other types can be implemented by, or simulated to some degree
with, instants; indeed, most DBMSs provide no other temporal data types.
SQL terms instants datetimes and provides three specific forms and two variations.

3.1.1 The DATE Type
An SQL-92 DATE stores the year, month, and day values of an instant. The year value must be in the
range 0001 C.E. (Common Era, formerly called A.D.) through 9999 C.E. Note that a DATE value cannot
denote B.C.E. (Before the Common Era, formerly called B.C.) dates. While the SQL designers point to
some technical issues in justifying this design decision (such as there being no year 0 C.E., or year 0
B.C.E.), its true rationale may lie in initial use of relational products primarily in administrative data
processing rather than in scientific applications. Both uses could have been accommodated much better
by centering this 10,000-year range at, say, 1 C.E., rather than favoring the years 5000 C.E. through
9999 C.E. over B.C.E. dates.

The month value is limited to the values 1 through 12, denoting the 12 Gregorian months. The day value
is limited to the values 1 through 31, although the month and year value can apply additional restrictions
limiting the maximum to 28, 29, or 30. For example, February 29, 1996, is legal, as is February 29,
2000, but February 29, 1900, is not. None of these fields can be negative. This notation is derived from
the ISO 8601 standard.

A.D.VERSUS B.C.

There is no 0 A.D.; 1 A.D. follows 1 B.C. The reason for this seeming anomaly is that when the
bifurcation into B.C. and A.D. was proposed, by a sixth-century monk named Dionysius Exiguus,
under instruction by Pope St. John I, the concept of zero had not been invented. That epic event
would have to wait several centuries, first for Arabic mathematicians to devise the notion of zero as a

 - 27 -

placeholder and as a value unto itself, then for farsighted Pope Sylvester II, reigning over the last
millennial transition from 999 to 1003, to advocate this concept in Western usage.

Date literals consist of the year as four digits, followed by a hyphen, followed by the month as two digits,
followed by a hyphen, followed by the day as two digits, in descending granularity (thereby presumably
allowing less-than comparisons to be implemented via lexicographic comparisons). HAL'S birth date is
then DATE '1997-01-12'. Note that this literal requires 10 characters. The length of a DATE is
specified as 10 positions, which is defined as "the number of characters from the character set
SQL_TEXT that it would take to represent any value" in the DATE type. SQL does not prescribe what
internal format an implementation employs for such values.

3.1.2 The TIMESTAMP Type
Should the user desire a finer precision than day, the TIMESTAMP data type is available in SQL. This
variation stores the year, month, and day, as in DATE, along with the hour, minute, and second, and a
number of fractional digits of the second. The default is six fractional digits, corresponding to
microseconds. None of the fields may be negative.
The timestamp's precision, or number of fractional digits, can be specified in parentheses when this
data type is used; the precision defaults to 6. A precision of 3 (i.e., TIMESTAMP(3)), indicates a
granularity of milliseconds; a precision of 0, seconds; a precision of 15, femtoseconds. The maximum
precision is defined by the implementation; a negative precision is not allowed. Twenty-four hour clock
time is used, so the hour value ranges from 0 to 23. The minute value ranges from 0 to 59, and the
second value from 0 to 61 (more on this shortly).

SQL uses Coordinated Universal Time (UTC), based on atomic clocks.
The time portion of a timestamp literal is denoted in descending granularity: hour, minute, second, each
two digits and separated with colons, followed by a period and fractional digits, if the precision is greater
than zero. Hence the present time, as near as I can tell from my watch, is TIMESTAMP '1997-01-15
11:35:29.123456'. The length of a TIMESTAMP value is 26 positions (the length includes the period
character); the length of TIMESTAMP(0) is 19 positions.

3.1.3 The TIME Type
Will there really be a morning?

Is there such a thing as day?

.

Oh, some scholar! Oh, some sailor!

Oh, some wise man from the skies!

Please to tell a little pilgrim

Where the place called morning lies!
—Emily Dickinson, "Will there really be a morning?"

Tip The SQL-92 datetime types DATE, TIME, AND TIMESTAMP differ in the fields
(year, month, day, hour, minute, and second) they contain.

The SQL TIME data type stores the hour, minute, and second, and a number of optional fractional digits
of the second. The default is no fractional digits, corresponding to integral seconds; a nonzero precision
is denoted, as with TIMESTAMP, in parentheses.
TIME literals are as one would expect: in descending granularity, separated with colons (e.g., TIME
'11:35:29'). The length of a TIME value is eight positions; if the precision is nonzero, then it is nine

 - 28 -

positions (for the decimal point) plus the precision. Unlike DATE and TIMESTAMP values, TIME values
include a zero element: '00:00:00'.
As we will see in Section 3.7, and as hinted in Emily Dickinson's poem, TIME is not really an instant
data type at all; it is a funny kind of interval (to be discussed below), representing a number (between 0
and 86,400) of seconds (along with optional fractional seconds).

3.1.4 Time Zone Variants
Greenwich Mean Time ensures that the sun, on those days it is visible, is directly overhead Greenwich,
England, each noon. Locales distant from England, shift UTC by a certain number of hours and minutes
so that the sun is approximately overhead locally at noon. Mountain Standard Time subtracts 7 hours
from UTC. We would expect 24 time zones, each corresponding to 60 minutes of longitude, but as with
all things political, there are many exceptions. Nepal's time zone is 15 minutes off from India's as an
expression of independence. Many locales also change the offset, advancing their clocks by one hour in
the summer and turning them back in the winter, at specified days. Arizona, unlike the other states in
the Mountain Time Zone, does not adopt this adjustment, called daylight saving time, presumably as an
expression of independence from the federal government. The Navajo Indian reservation, located within
Arizona, does use daylight saving time, perhaps to be different than Arizona. And the Hopi Indian
reservation, which is completely surrounded by the Navajo Indian reservation, does not adopt daylight
saving time, perhaps to differentiate themselves from the Navajos. So you can drive a few hours in
Arizona and go in and out of daylight saving time four times.

Tip The time zone can be stored with SQL-92 TIME and TIMESTAMP values.

Each SQL session has an associated default offset from UTC that is used in that session. This offset
can range from −12:59 to +13:00 (the reason for the additional hour on each side is daylight saving
time). The offset is assumed for TIME and TIMESTAMP values manipulated within the SQL session.
Hence, time literals denote the local time, whereas times are stored as UTC time (with no time zone,
i.e., Greenwich Mean Time).
The TIME WITH TIME ZONE data type includes with the stored value an explicit offset from UTC. This
is written as a sign (the hyphen character for a minus sign, or the plus character) followed by the offset
hour as two digits, a colon, and the offset minute as two digits (e.g., TIME '11:08:27-07:00'). This
added information requires an additional six positions: four digits, a hyphen, and a colon. Fractional
seconds appear before the time zone (e.g., TIME '11:08:27.123456-07:00').
The TIMESTAMP WITH TIME ZONE data type is also available. Without fractional digits, the length of
this type is 25 positions, more with fractional digits. An example is TIMESTAMP'1997-01-15
11:35:29.123456-07:00', requiring 32 positions.

3.2 INTERVALS
… and an ocean tumbled by with a private boat for Max

and he sailed off through night and day

and in and out of weeks

and almost over a year

to where the wild things are.
—Maurice Sendak, Where the Wild Things Are

And which of you by being anxious can add one cubit to his span of life?
—Matthew 6:27
An interval is an unanchored contiguous portion of the time line. An interval is relative; an instant is
absolute. An interval can be added to an instant, yielding another instant. Intervals cannot be added to
spatial points, nor spatial intervals (such as cubits) to temporal intervals, except as (often highly
effective) literary devices, as the above quotes illustrate.

Tip An interval is an unanchored, directional duration of the time line.

The distance between two instants is an interval. Unlike instants, intervals have direction. An interval
can be positive or negative, denoting a shift to the future or to the past.

 - 29 -

Intervals are less prominent in the FINDER schema than instants. Some are signaled with "duration" or
"interval" in their name, examples being the Period_Durtn column in Well_Test_Period and the
Sampling_Interval column of the Seis_Survey_Hdr table, or by mentioning the time during which
something was happening, as in the Time_String_In_Hole column of the Well_Log_Service
table. Other interval columns are more obscure, such as the Incrmnt_Time column of the
Stage_Flowback table (other columns having a name with that suffix denote instants, e.g.,
Start_Time). It appears that in the FINDER schema, all intervals are positive. As we'll see, while SQL
has an interval type, Oracle8 Server does not support this type, relying on the designer to differentiate
instants from intervals in other ways.

3.2.1 The INTERVAL Type
Solid stone is just sand and water, …

Sand and water, and a million years gone by
—Beth Nielsen Chapman, "Sand and Water"

Sundials
A sundial, or more ostentatiously, a heliochronometer, in contrast to most other clocks, does not
measure an interval of time; rather, it indicates a given instant of time. A sundial can be moved to
another longitude and remain accurate; a mechanical watch must be reset when moved—hence the
presence of multiple time zones on many modern watches.
Sundials, when adjusted for the correct latitude, are exceedingly accurate, measuring true solar time
(see page 95), at least when the sky is not cloudy. There is no drift with a sundial, unlike mechanical
clocks.

The SQL-92 interval type is complex. Whereas the other SQL types require but a few lines to describe,
intervals require over three pages just to specify the syntax. Even then, some details are left unstated
(as will be discussed in Section 3.7.3).
SQL differentiates year-month intervals and day-time intervals. The first can be considered to be
equivalent to an integral number of years or months; the latter considered equivalent to an integral
number of days, hours, minutes, seconds, or fractions of a second. This distinction is due to varying
month lengths in the Gregorian calendar. The individual units (months, hours, microseconds) are
termed granules, so an interval value is a (signed) integer number of granules.

Tip Intervals have a qualifier that specifies the leading field, an optional trailing field,
and an optional precision for the leading and trailing fields.

Intervals are combinations of the fields year, month, day, hour, minute, and second, though not all
combinations are allowed, as we will see. Intervals have a qualifier associated with them that specifies
the leading field, an optional trailing field, and an optional precision for the leading and trailing fields. If
no trailing field is present, the interval contains only the leading field.

3.2.2 Year-Month Intervals
For year-month intervals, the only fields available are year and month. Such an interval can contain only
years (INTERVAL YEAR), only months (INTERVAL MONTH), or both (INTERVAL YEAR TO MONTH).
For the leading or only field, a precision, specifying the maximum number of digits, is permitted
(INTERVAL YEAR(p), INTERVAL MONTH(p), INTERVAL YEAR(p) to MONTH); the precision
defaults to two digits and must be positive. Nonleading fields can have up to two digits.

Tip Year-month intervals contain a year, a month, or both fields.

Year-month literals are denoted with the year (e.g., INTERVAL '3' YEAR), the month (e.g., INTERVAL
'7' MONTH), or the year followed by a hyphen followed by the month (e.g., INTERVAL '3–7' YEAR
TO MONTH, for three years and seven months). Note that the fields must be specified in literals, but the

 - 30 -

precision need not be. If years and months are present, then the number of months must be between 1
and 12. The length, in positions, of a year-month interval is the precision of the year field if alone, the
precision of the month field if alone, or the precision of the year field plus three, for the hyphen and two
digits of the month, if both are present.
The hyphen in intervals is not a minus sign; it serves instead to separate field values. An interval literal
can have a sign preceding the quoted portion. A positive interval literal is indicated by the absence of a
sign or by a plus sign (e.g., INTERVAL '3–4' YEAR TO MONTH = INTERVAL +'3–4' YEAR TO
MONTH). A negative interval literal is indicated with a minus sign (a hyphen) preceding the string portion
of the literal (e.g., INTERVAL -'3–7' YEAR TO MONTH, for three years and seven months going back
into the past). The one exception is the zero element, for which positive and negative literals denote the
same value: INTERVAL+'0–0' YEAR TO MONTH = INTERVAL '0–0' YEAR TO MONTH =
INTERVAL -'0–0' YEAR TO MONTH.
We note in passing that the Technical Corrigendum 3, currently in draft form, permits a sign to also
appear within the quoted portion. In fact, two signs can be present, with the normal mathematical
interpretation—for example, double negation results in a positive literal. Hence, INTERVAL+'3–4'
YEAR TO MONTH = INTERVAL'+3–4' YEAR TO MONTH = INTERVAL+'+3–4' YEAR TO MONTH
= INTERVAL -'-3–4' YEAR TO MONTH = INTERVAL '3–4' YEAR TO MONTH.

3.2.3 Day-Time Intervals
The gods confound the man who first found out

How to distinguish hours. Confound him, to,

Who in this place set up a sundial,

To cut and hack my days so wretchedly

Into small pieces!
—Plautus (quoted by David S. Landes), Boeotia

Tip Day-time intervals contain day, hour, minute, and second fields, in any contiguous
sequence.

Day-time intervals may contain up to four fields: day, hour, minute, and second, with optional fractional
seconds. All fields between the leading and trailing fields are included. Hence, INTERVAL DAY TO
SECOND contains four fields, while INTERVAL DAY TO HOUR contains two fields, and INTERVAL DAY
(or, equivalently, INTERVAL DAY TO DAY) contains only one field. As with year-month intervals, we
can specify a precision for the leading field, which defaults to two digits. Examples include INTERVAL
DAY(4) TO HOUR, which can represent up to 9999 days, and up to 24 hours; INTERVAL HOUR(3)
TO SECOND, which can represent up to approximately 40 days; and INTERVAL MINUTE(4) TO
SECOND, which can represent almost a week (within a few minutes), to the granularity of seconds.
Day-time interval types and literals are even more complex when seconds are involved because the
standard wished to accommodate fractional seconds (no other field can have a fractional value). If the
leading (i.e., only) field is SECOND, then it can have a precision, which defaults to two digits (e.g.,
INTERVAL SECOND(8), which can represent three years). (A bit of trivia: there are π×107 seconds in a
year, to an accuracy of greater than 1 in 100.) If the trailing (or only) field is SECOND, it can also have a
fractional precision, which defaults to six (e.g., INTERVAL DAY (3) TO SECOND(3), which
represents a count of milliseconds). A single SECOND field can thus have two precisions, separated
with a comma (e.g., INTERVAL SECOND(5,3), which can represent milliseconds up to a little more
than a day). Such intervals require nine positions, including the period.
Day-time literals are just what you might expect, making the correspondence with timestamp literals
(e.g., INTERVAL '1 23:45:12' DAY TO SECOND). In all cases, the length in positions of an interval
type is identical to the number of characters required by any literal of that type.

3.3 PREDICATES
For such a diverse set of types (DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE, TIMESTAMP
WITH TIME ZONE, and two variants of INTERVAL: year-month and day-time), SQL-92 supports only
four classes of temporal predicates: equality, lessthan, is null, and overlaps.

 - 31 -

There are several variants of the equality predicate; these variants apply to all the data types. When
applied to two expressions, '=' determines whether the values of these expressions are identical. When
applied to a value and a set of values (of the same type), =ANY determines if the left-hand value is
identical to at least one of the values in the right-hand set. =SOME and IN are nonorthogonal
equivalents. MATCH also relies on equality testing. The queries in CF-3.1 are identical in meaning.

Code Fragment 3.1: Seven ways to ask for information on those born on January 1, 1970.

SELECT * FROM Employee

WHERE BirthDate = DATE '1970-01-01'

SELECT * FROM Employee

WHERE BirthDate =ANY (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE BirthDate =ALL (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE BirthDate =SOME (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE BirthDate IN (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE NOT BirthDate NOT IN (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE BirthDate MATCH (VALUES ((DATE '1970-01-01')))

Here, VALUES constructs a table with one row consisting of one column. More variations are possible
using the UNIQUE and PARTIAL reserved words available with MATCH. (We mention MATCH for
completeness. This construct, particularly with its options, is intended for determining whether or not
candidate rows would satisfy referential integrity constraints.)
In all of the above examples, the two values being compared are of a specific type (DATE). Two
datetimes can be compared if they are comparable, which is defined as having the same fields.
Intervals are compared by first converting to a common base granularity, then converting to integers,
then doing the integer comparison. So INTERVAL '3–7' YEAR TO MONTH can be compared to

 - 32 -

INTERVAL '43' MONTH (and in fact these two intervals are equal), while neither of these intervals can
be compared with INTERVAL '23' DAY, as the two intervals are incomparable.
Since every SQL-92 data type, including the temporal types, is ordered, less-than is defined on them all.
The operators '<', '<=', '>', '>=', and '<>' comprise the available combinations. Each combination is a
disjunction, OR-ing the two possibilities, so '<=' means "less than or equal to." The last, '<>', means
"less than or greater than," or equivalently, "not equal to."

Code Fragment 3.2: Four more ways to ask for information on those born on January 1, 1970.

SELECT * FROM Employee

WHERE NOT BirthDate <> DATE '1970-01-01'

SELECT * FROM Employee

WHERE NOT BirthDate <> ANY (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE NOT BirthDate <> ALL (VALUES ((DATE '1970-01-01')))

SELECT * FROM Employee

WHERE NOT BirthDate <> SOME (VALUES ((DATE '1970-01-01')))

There are yet other ways to test for equality of temporal values in SQL; the following discussion will
provide more than a dozen.

The BETWEEN construct is a useful form of inequality. The predicate
value1 BETWEEN value2 AND value3

is equivalent to
value2 <= value1 AND value1 <= value3
Note that the BETWEEN predicate is ordered, in that value2 <= value3 is required.

Code Fragment 3.3: Two more ways to ask for information on those born on January 1, 1970.

SELECT * FROM Employee

WHERE BirthDate BETWEEN DATE '1970-01-01' AND DATE '1970-01-01'

SELECT * FROM Employee

WHERE NOT BirthDate NOT BETWEEN

 DATE '1970-01-01' AND DATE '1970-01-01'

 - 33 -

These exploit the fact that equality is allowed on both sides of the BETWEEN.
As with other data types, the value of any temporal column can be NULL. And as with other data types,
predicates on null temporal values have the value unknown, except for value IS NULL, which returns
true when the value is null and false otherwise, and value IS NOT NULL, which naturally returns true if
the value is not null.
The final temporal predicate, OVERLAPS, differs from the rest, in that it only applies to temporal values,
and then only to values of particular temporal types. As we'll see in Chapter 4, OVERLAPS is a way to
get periods in the back door.

The format of this predicate is
period information1 OVERLAPS period information2
Either period information is constructed either via
(start time, duration)

or
(start time, end time)
where start time and end time are instants, that is, SQL datetimes, and duration is an interval
that can be added to start time (we'll cover adding intervals to datetimes in more detail in the next
section). These two forms can be mixed and matched at will.
The predicate returns true if period information1 overlaps period information2, that is, if they
share at least one instant, or, equivalently, if the start of period information1 is less than the end of
period information2 and the start of period information2 is less than the end of period
information1 (try it!). By using a zero duration, or identical start and end instants, we can construct
periods of one granule, as the following illustrate.

Code Fragment 3.4: Yet four more ways to ask for information on those born on January 1,1970.

SELECT * FROM Employee

WHERE (BirthDate, INTERVAL '0' DAY)

 OVERLAPS (DATE '1970-01-01', INTERVAL '0' DAY)

SELECT * FROM Employee

WHERE (BirthDate, BirthDate)

 OVERLAPS (DATE '1970-01-01', INTERVAL '0' DAY)

SELECT * FROM Employee

WHERE (BirthDate, INTERVAL '0' DAY)

 OVERLAPS (DATE '1970-01-01', DATE '1970-01-01')

SELECT * FROM Employee

WHERE (BirthDate, BirthDate)

 - 34 -

 OVERLAPS (DATE '1970-01-01', DATE '1970-01-01')

NULL can be used in either position within a period information; often the predicate will return true (or
false) anyway.

Code Fragment 3.5: Three more ways to ask for information on those born on January 1, 1970.

SELECT * FROM Employee

WHERE (BirthDate, NULL)

 OVERLAPS (DATE '1970-01-01', INTERVAL '0' DAY)

SELECT * FROM Employee

WHERE (BirthDate, NULL)

 OVERLAPS (DATE '1970-01-01', NULL)

SELECT * FROM Employee

WHERE (BirthDate, NULL)

 OVERLAPS (NULL, DATE '1970-01-01')

3.4 CONSTRUCTORS
A temporal constructor is an expression that returns a temporal value. (Some might consider a
predicate to be a boolean constructor, but we find it helpful to differentiate predicates and other
constructors.)

The Gregorian Calendar
The Gregorian calendar was necessitated by the fact that a year is not an integral number of days.
The tropical year is roughly 365.242191 days, or equivalently, 365 days, 5 hours, 48 minutes, and
45.96768 seconds. ("Nature, apparently, can make a gorgeous hexagon, but she cannot (or did not
deign to) make a year with a nice ever number of days or lunations" [35, p. 137].) The Julian calendar
starts off with 12 months of various lengths that add up to 365 days. It then makes a correction of
imposing a leap day every fourth year, as a sequence of 365, 365, 365, 366 days, averaging out at
365.25 days per year. This is pretty close: it makes the year about 11 minutes and 154 seconds longer
than it actually is. But 11 minutes a year can add up, and the civil calendar got more and more out of
step from the solar calendar. By 1581, the vernal equinox was on April 2, rather than the accepted
March 21. So Pope Gregory XIII appointed a committee, with the Jesuit mathematician Christopher
Clavius as chair. His committee came up with two solutions, both imposed by Pope Gregory in a papal
bull issued on February 24, 1582. First, to get the civil and solar calendars back in sync, 10 days,
October 5 through 14, 1582, were simply dropped—they never existed! Second, the definition of leap
years (a year divisible by 4) was amended to not include a century year (multiple of 100), but to still
include years divisible by 400. So, every 25th leap year was removed, but every 100th was restored.
1900 is not a leap year, but 2000 is, a fact still misunderstood by some software packages. This yields
the Gregorian year to be 365.2425 days long, departing from the solar calendar by some 25.96
seconds; pretty darned close! At this rate, a discrepancy of one day accumulates every 2800 years or
so.

 - 35 -

3.4.1 Datetime Constructors
SQL provides seven constructors returning datetimes (DATE, TIME, TIMESTAMP, TIME WITH TIME
ZONE, and TIMESTAMP WITH TIME ZONE). We discuss each in turn, after providing an example.

 DATE '1996-02-24' + INTERVAL '7' DAY This expression evaluates to DATE
'1996-03-02', as 1996 was a leap year. The instant is shifted forward (or back,
for negative intervals) by the length of the interval. For expressions involving an
interval and a datetime, the interval must contain only fields that are also contained
in the datetime. DATE '1996-02-24'+ INTERVAL '12:30' HOUR TO MINUTE
is thus disallowed, as is DATE '1996-02-24'+ INTERVAL '2 12' DAY TO
HOUR.

 INTERVAL '7' DAY + DATE '1996-02-24' This expression also evaluates to
DATE '1996-03-02', as addition of intervals and datetimes is commutative.

 DATE '1996-03-02' - INTERVAL '7' DAY This expression evaluates to DATE
'1996-02-24' and is not commutative.

 TIMESTAMP '1996-02-24 12:34:56' AT LOCAL This expression assumes that
the value is expressed in terms of GMT and applies the local time zone offset to get
the local time. As Tucson, Arizona is always at Mountain Standard Time (MST),
seven hours behind Greenwich, this evaluates to TIMESTAMP '1996-02-24
19:34:56'. As another example, TIMESTAMP '1996-02-24
12:34:56+02:00' AT LOCAL takes the Danish TIMESTAMP WITH TIME ZONE,
specifically, at Mean European Time with daylight saving (MET DST), normalizes it
to UTC (i.e., 10:34:56), then applies the Tucson, Arizona time zone offset, yielding
TIMESTAMP '1996-02-24 03:34:56'. This construct may not be applied to
DATE values. If we use a value without specifying an AT clause, AT LOCAL is
assumed.

 TIMESTAMP '1996-02-24 12:34:56' AT TIME ZONE INTERVAL '-7:00'
HOUR TO MINUTE The expression allows the user to specify a particular time zone
offset, which must be an hour to minute interval. It returns TIMESTAMP '1996-02-
24 19:34:56'. As with the previous example, this construct may not be applied to
DATE values.

 CURRENT-DATE returns the current date (the date of the current instant).
CURRENT_TIME and CURRENT_TIMESTAMP function analogously. All such so-called
datetime value functions within a statement are effectively performed
simultaneously. Such functions appearing in two separate statements are allowed to
return different results.

 CAST('1996-02-24' AS DATE) The CAST function converts a value in a source
data type (here, CHARACTER) to the specified target data type. When the target
data type (here, DATE) is a temporal type, then the cast may be regarded as a
temporal constructor. In this case, the function returns DATE '1996-02-24'. While
only character strings may be cast to (and from) datetimes in SQL-92, products
often extend this to integers and other types.

The following types can be converted to a datetime value.
 CHARACTER A character string can be converted to a DATE, TIME, or TIMESTAMP

value. The string must be identical to a literal of the datetime type. The example
above converts a character string to a DATE. CAST('12:34:56' TO TIME) is
another example.

 TIME A time value may be converted to a TIME or TIMESTAMP value, the latter
filling in the year, month, and day with the value of CURRENT_DATE. If the target
type has a time zone, then these fields are set to the current time zone of the
session. This is being written on Wednesday, July 23, 1997. CAST(TIME
'12:34:56' AS TIMESTAMP WITH TIME ZONE) results in TIMESTAMP '1997-

 - 36 -

07-23 12:34:56-07:00'. If the target has a smaller precision than the source,
the additional digits are discarded. If the target has a greater precision than the
source, the needed digits are set to 0. Hence, CAST(TIME '12:34:56.123' AS
TIME (6)) results in TIME '12:34:56.123000'; casting this value to TIME(1)
results in TIME '12:34:56.1'.

 TIMESTAMP A timestamp value may be converted to a DATE, TIME, or
TIMESTAMP value, by extracting the requested fields and adjusting, if necessary,
the precision. Hence, CAST(TIMESTAMP '1997-07-23:56.123' AS TIME
(6)) results in TIME '12:34:56.123000'; casting this value to DATE results in
DATE '1997-07-23'.

 DATE A date value may be converted into a DATE by simply copying the value or
into a TIMESTAMP by setting the hour, minute, and second to 0. CAST (DATE
'1997-01-01' AS TIMESTAMP (4)) yields '1997-01-01 00:00:00.0000'.

Note that when a TIME value is cast to a TIMESTAMP, the current date provides the missing fields, but
when a DATE value is cast to a TIMESTAMP, the missing fields are set to zero.

3.4.2 Interval Constructors
SQL provides a variety of constructors that return year-month or day-time intervals. We summarize all
but the cast function, which warrants closer scrutiny.

 INTERVAL '3' DAY + INTERVAL '4' DAY evaluates to INTERVAL '7' DAY.
The result is at a precision so that information is not lost and contains the fields of
both arguments. Hence, INTERVAL '3' DAY + INTERVAL '4' HOUR yields
INTERVAL '3 4' DAY TO HOUR, and INTERVAL '3' DAY + INTERVAL '8
4' DAY TO HOUR yields INTERVAL '11 4' DAY TO HOUR. The SQL-92
semantics treats INTERVAL '3' DAY as exactly 3 days (72 hours).

 INTERVAL '3' DAY - INTERVAL '4' DAY yields INTERVAL -'1' DAY. As
with addition, subtraction results in the union of the fields, to the necessary
precision. INTERVAL '3' DAY - INTERVAL -'8 4' DAY TO HOUR results in
INTERVAL '11 4' DAY TO HOUR.

 (DATE '1997-01-01' - DATE '1996-01-01') DAY yields INTERVAL '366'
DAY, as 1996 was a leap year. Note that both the parentheses and a qualifier must
be specified; this provides the granularity of the result. The subtraction is done at the
least significant field of the qualifier, then the interval is converted to an interval of
that field as the end field, with a start field chosen to not lose any information. So
(DATE '1997-01-01' - DATE '1996-01-01') YEAR TO MONTH will convert
both to months (23,952 and 23,940, respectively, though it turns out the origin
doesn't matter), then the difference is taken, resulting in INTERVAL '12' MONTH,
then the result is converted to the requested qualifier, or INTERVAL '1−0' YEAR
TO MONTH.

 INTERVAL '4' DAY * 3 yields INTERVAL '12' DAY. Multiplication is symmetric;
this result is also obtained from 3 * INTERVAL '4' DAY. Multiple fields can be
accommodated; the interval is first converted to a scalar at the smallest field, then
converted back after the multiplication. INTERVAL '12:30' HOUR TOMINUTE *
3 yields 750 minutes times 3, or 2250 minutes, or INTERVAL '37:30' HOUR TO
MINUTE.

 INTERVAL '4' DAY / 2 yields INTERVAL '2' DAY. This is similar to
multiplication, though it is not symmetric. Hence, 2 / INTERVAL '4' DAY is not
permitted.

 INTERVAL '4' DAY yields, naturally, INTERVAL -'4' DAY. Unary plus is also
provided: + INTERVAL '4' DAY yields itself.

The final constructor is CAST. Datetimes cannot be cast to intervals, nor intervals to datetimes. In fact,
year-month intervals cannot be cast to day-time intervals, nor vice versa. The only casts that result in
year-month intervals are from three sources:

 CHARACTER As with datetimes, a character string may also be cast to a year-month
interval, assuming the character string would have been acceptable as a literal.

 - 37 -

CAST ('2' AS INTERVAL MONTH) works, but CAST ('3–7' AS INTERVAL
MONTH) does not.

 year-month interval The source interval is first converted to a scalar in units of the
least significant field of the target type. For CAST(INTERVAL '8–7' YEAR TO
MONTH AS INTERVAL MONTH(2)), the source value would be converted to 103
months. This value is then normalized (a term not defined in the standard) to
conform to the target type. If the precision is not sufficient, as here, an exception is
raised. As another example, CAST(INTERVAL '3' YEAR AS INTERVAL YEAR
TO MONTH), the source value would be converted to 36 months, then normalized to
3 years and 0 months, resulting in INTERVAL '3-0' YEAR TO MONTH.

 exact numeric Here, the target interval must contain a single field, YEAR or MONTH.
The source value is interpreted as a number of such units. CAST(103 AS
INTERVAL MONTH) would evaluate to INTERVAL '103' MONTH; CAST(103 AS
INTERVAL MONTH (2)) would raise an overflow exception.

Similarly, the only casts that result in day-time intervals are as follows:
 CHARACTER CAST('2 12:34' AS INTERVAL DAY TO MINUTE) works, but

CAST('12:34' AS INTERVAL DAY TO MINUTE) does not.
 day-time interval As before, the source interval is first converted to a scalar in units of

the least significant field of the target type. For CAST('85 23:59:60' AS
INTERVAL HOUR TO SECOND), the source value is converted to 7,434,060
seconds. This value is then normalized to conform to the target type, resulting in
INTERVAL '2065:00:00' HOUR TO SECOND. Had a target type of INTERVAL
HOUR(3) TO SECOND been specified, an overflow exception would have been
raised.

 exact numeric Here, the target interval must contain a single field, DAY, HOUR,
MINUTE, or SECOND. The source value is interpreted as a number of such units.
To convert an exact numeric to a multifield interval, two casts are required.
CAST(CAST(7434060 AS INTERVAL SECOND) AS INTERVAL DAY TO
SECOND) would evaluate to our original value INTERVAL '86 00:00:00' DAY
TO SECOND.

3.4.3 Other Constructors
Temporal values can also participate in casts to other types. We list these here for completeness:

 CAST(DATE '1997-01-01' AS CHARACTER) returns the character string '1997-
01-0101'. All temporal types can be cast to fixed- or variable-length character
strings.

 CAST(INTERVAL '743060' SECOND AS INTEGER) returns the value 743,060.
The source interval must have a single field. Intervals with multiple fields can be
converted to exact numerics via two casts; for example, CAST(CAST(INTERVAL
'2064:60:60' HOUR TO SECOND AS INTERVAL SECOND) AS INTEGER)
yields the same value.

Finally, individual fields can be extracted from datetimes and intervals:
 EXTRACT(YEAR FROM DATE '1970-01-01') returns the integer value 1970.
 EXTRACT(MINUTE FROM INTERVAL '12:34:56' HOUR TO SECOND) returns

34.
 EXTRACT(TIMEZONE_HOUR FROM TIME '12:34:56-07:00') returns-7.
 EXTRACT(TIMEZONE_MINUTE FROM TIME '12:34:56-07:00') returns 0.

The last two exemplify new reserved words that were required to obtain these additional fields from
datetimes with time zones.

Code Fragment 3.6: Yet another four ways to ask for information on those born on January 1,1970.

SELECT * FROM Employee

WHERE CAST(BirthDate AS CHAR) = '1970-01-01'

 - 38 -

SELECT * FROM Employee

WHERE CAST(BirthDate AS CHAR) LIKE '1970-01-01'

SELECT * FROM Employee

WHERE CAST((DATE '1971-01-01' - BirthDate) DAY AS INT) = 365

 AND CAST((DATE '1971-01-01' - BirthDate) YEAR AS INT) = 1

SELECT * FROM Employee

WHERE EXTRACT(YEAR FROM BirthDate) = 1970

 AND EXTRACT(MONTH FROM BirthDate) = 1

 AND EXTRACT(DAY FROM BirthDate) = 1

The resulting data type (fields and precision) varies among the operators. Table 3.1 summarizes the
cases. Here, d denotes a datetime value, i an interval value, and n a numeric (exact or approximate)
value. Union (∪) is shorthand for combining the fields of both operands. This table lists all the
constructors involving temporal values.

Table 3.1: Result type of SQL-92 expressions involving temporal values.

Expression
Result
type

d + i type of d
i + d type of d

d − i type of d

d AT LOCAL type of d
d AT TIME ZONE i type of d
CAST(type1 AS
type2)

type2

EXTRACT(field
FROM d)

n(exact
numeric)

CURRENT_DATE DATE
CURRENT_TIME TIME
CURRENT_TIMESTAMP TIMESTAMP
i1 + i2 type of i1∪

type of i2

i1 − i2 type of i1∪
type of i2

(d − d) qual qual

i * n type of i
n * i type of i
i1 / i2 n (integer)
i / n type of i

 - 39 -

+ i type of i

− i type of i

EXTRACT (field
FROM i)

n (exact
numeric)

3.5 IMPLEMENTATION CONSIDERATIONS

Tip

No vendor supports SQL-92 at the Full SQL level of conformance. All products
include idiosyncrasies in their temporal support that render porting to other
DBMSs difficult.

Although temporal types have been in the SQL standard since 1992 and were defined in the mid-1980s,
it is surprising, and unfortunate, that unlike other portions of SQL, the types and their predicates and
constructors are not supported by most DBMSs. Instead, each vendor has defined an incompatible and
idiosyncratic set of temporal types and operators, replete with inconsistencies and seemingly arbitrary
design decisions. Temporal types are among the most variable features of commercial DBMSs.
Coupled with this is the often poor documentation available from the vendors of temporal features of
their products. Determining the operations supported on temporal type(s) can be a frustrating exercise,
with the information, if present at all, spread across the documentation. The following is an attempt to
gather in one place the information about temporal support in a few prominent DBMSs. We make no
claim for comprehensiveness, but then, neither do most vendors. Interestingly, only Informix-Universal
Server supports a type that provides partial support for intervals; all of the other DBMSs require
intervals to be simulated with integers, fixed-point, or floating-point numbers.

3.5.1 IBM DB2 Universal Database
We start with IBM DB2 Universal Database (UDB), as it is closest to the SQL-92 standard in its support
of temporal data types.
IBM DB2 UDB supports the DATE, TIME, and TIMESTAMP instant types, with a few deviations from
SQL-92. The TIME type has a fixed precision of 0, indicating a granularity of seconds. The TIMESTAMP
type has a fixed precision of 6, indicating a granularity of microseconds. Time zone information is not
included in DB2 instant values; however, the current time zone is available in the CURRENT TIMEZONE
register. Instant literals are specified as a conversion function of the name of the data type operating on
a character string, for example, DATE('1997-01-15') or CAST('1997-01-15' AS DATE), which is
preferred, because DATE ()D could be a user-defined function. Timestamp literals replace the space
between the day and hour with a dash, for example, TIMESTAMP('1997-01-15-
11.35.29.123456').
There is no INTERVAL data type in DB2 UDB. Instead, DB2 UDB supports specialized versions of the
DECIMAL data type, termed durations.

 A date duration, in the format YYYYMMDD, is a DECIMAL(8,0) number
representing an interval of days, with a range of 10,000 years.

 A time duration, in the format HHMMSS., is a DECIMAL(6,0) number representing
an interval of seconds, with a range of one day. Note that the decimal point is
required in a time duration.

 A timestamp duration, in the format YYYYMMDD.HHMMSSZZZZZZ, is a DECIMAL
(20,6) number representing an interval of microseconds, with a range of 10,000
years.

These values can be stored in DECIMAL columns and represented by DECIMAL constants. Hence,
"DATE('1997-11-08') + 00010101." adds one year, one month, and one day to the indicated
instant, resulting in the date 1998-12-09.
DB2 UDB also supports a kind of highly restricted interval literal, termed a labeled duration, which is a
numeric expression followed by a time unit (singular or plural). Labeled durations can only be used in an
addition or subtraction with an instant type. An example is DATE('1997-11-08') + 1 MONTH. The
available units are YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND, and plural
versions of these keywords.
The function TIMESTAMPDIFF takes two parameters, a code specifying the granularity (e.g., 256
denotes years, 16 denotes days), and a character string that is the result of subtracting two timestamps
and converting the result to character form. Note that there are many datetime functions provided.
Table 3.2 shows how the facilities in SQL-92 can be simulated, to some degree, in IBM DB2 UDB. In
the SQL-92 column, d denotes a datetime value, i an interval value, and n a numeric (exact or

 - 40 -

approximate) value. In the IBM DB2 UDB column, d denotes a datetime value, i denotes a DB2
timestamp duration, and itype is an integer denoting an interval type.

3.5.2 Informix-Universal Server
Informix-Universal Server supports two instant types, DATE and DATETIME, and an interval type,
INTERVAL. Time zones are not supported. An Informix DATE is stored internally as an integer denoting
the number of dates since December 31, 1899; for example, day 1 is January 1, 1900. DATEs occupy
four bytes, so the maximum date is sometime after 5 million C.E. Informix DATE literals are inconsistent
with SQL-92; in Informix, the month is first, followed by the day, followed by the year, all separated with
dashes, with the entire string delimited with double quotes. However, an Informix DATE literal only
supports two digits, for example, DATE("10/01/98"), with the year 00 being 1900. To denote the
years after 1999, you have to add an INTERVAL explicitly. Hence, to designate January 1, 2000, you
have to use something like DATE("12/01/99") + INTERVAL(0–1) YEAR TO MONTH or
DATE("01/01/99") + INTERVAL 1−0) YEAR TO MONTH.
The Informix DATETIME type is equivalent to TIMESTAMP in SQL-92 and can have a user-specified
precision, such as YEAR TO MONTH or YEAR TO SECOND. SQL-92's TIME type is identical to
Informix's DATETIME HOUR TO SECOND. Fractional seconds are denoted with FRACTION(n). SQL-
92's TIMESTAMP type is then equivalent to Informix's DATETIME YEAR TO FRACTION(6).
Interestingly, Informix DATETIME literals are consistent with SQL-92 (except that Informix DATETIME
literals don't use quotes) but are inconsistent with Informix DATEs. Specifically, in an Informix
DATETIME literal, the year comes first, as a four-digit number, followed by the month and day, then
hour, minute, and second, without quotes (!). At this second, my watch reads DATETIME(1998-04-08
12:13:52), about time for lunch; my calendar reads DATE("04/08/98").
Informix-Universal Server supplies utilities such as DATE, MDY (month/day/year), YEAR, and
WEEKDAY for formatting and converting dates. The current DATE is given by TODAY; the current
DATETIME is given by CURRENT. The EXTEND function can be used to alter the precision of instants.
This function extracts the year and month from the corresponding values of CURRENT; the minutes and
the seconds are set to zero if not provided. Hence, EXTEND(DATETIME(16 19) DAY TO HOUR,
YEAR TO SECOND)returns DATETIME(1997-01-01 19:00:00). It can also be used to convert
strings into instant types. The standard predicates are also available on instants.

As in SQL-92, an Informix INTERVAL must be either a year-month interval or a day-time interval. Note
that intervals can be added to instants (yielding an instant),

Table 3.2: SQL-92 operations in IBM DB2 UDB.

SQL-92 IBM DB2 UDB Equivalent
Types:

DATE DATE
TIME TIME (precision fixed at 0)
TIMESTAMP TIMESTAMP (precision fixed at 6)
TIME WITH TIME ZONE no equivalent
TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH A date duration (DECIMAL(8,

0)) with a 0 DAY field
INTERVAL DAY TO SECOND A timestamp duration with 0

YEAR, MONTH, and
MICROSECOND fields, negative
values not available

Literals:
DATE '1997-01-01' DATE('1997-01-01')
TIME '12:34:56' TIME('12:34:56')
TIMESTAMP '1997-01-01 12:34:56' TIMESTAMP('1997-01-01

12.34.56.000000')

INTERVAL '3–4' YEAR TO MONTH 40 MONTHS, 00030400(only in
an expression)

INTERVAL '1 23:45:12' DAY TO 00000001234512.000000,

 - 41 -

SECOND 171912 SECOND (only in an
expression)

predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3
i1 = i2 i1 = i2
i1 < i2 i1 < i2
i1 <> i2 i1 <> i2
i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3
d IS NULL d IS NULL
i IS NULL i IS NULL
(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < (d1+i)

Datetime Constructors:
d +i d + i
i + d i + d

d − i d − i
d AT i d + i
d AT LOCAL d + CURRENT TIMEZONE
CURRENT_DATE CURRENT DATE
CURRENT_TIME CURRENT TIME
CURRENT_TIMESTAMP CURRENT TIMESTAMP

Interval Constructors:
i1 + i2 not possible

i1 − i2 not possible

(d1 − d2) qual TIMESTAMPDIFF(itype,

CHAR(d1 − d2))

(d1 − d2)MONTH TIMESTAMPDIFF(64, CHAR(d1
− d2))

i * n not possible
n * i not possible
i1 / i2 not possible
i / n not possible
+i i

−i not possible
Other Operators:

CAST(d AS DATE) CAST(d AS DATE)
CAST(d AS TIME) CAST(d AS TIME)
CAST(d AS TIMESTAMP) CAST(d AS TIMESTAMP)
CAST(i AS INTERVAL YEAR TO MONTH) not possible
CAST(i AS INTERVAL DAY TO SECOND) not possible
CAST(d AS CHAR) CHAR(d)
CAST(i AS CHAR) not possible
CAST(i AS INTEGER)

 - 42 -

i is YEAR TO DAY

JULIAN_DAY(DATE('001-01-
01') + i
JULIAN_DAY(DATE('001-01-
01-00))

i is DAY TO HOUR

24*DAY(i) + HOUR(i)

i is DAY TO MINUTE

1440*DAY(i) + 60*HOUR(i)
+ MINUTE(i)

i is DAY TO SECOND

86400*DAY(i)+3600*HOUR(i)
+ 60*MINUTE(i) +
SECOND(i)

EXTRACT(DAY FROM d) DAY(d)
EXTRACT(DAY FROM i) DAY(i)
EXTRACT(HOUR FROM i) HOUR(i)

Operators not in SQL-92: convert d to Julian day JULIAN_DAY (d)

but instants can't be added to intervals, the reason being that the resulting type must be an interval.
Table 3.3 shows how the facilities in SQL-92 can be simulated, to some degree, in Informix-Universal
Server.

Table 3.3: SQL-92 operations in Informix-Universal Server.

SQL-92 Informix-Universal Server Equivalent
Types:

DATE DATE
TIME DATETIME HOUR TO SECOND
TIMESTAMP DATETIME YEAR TO FRACTION(6)
TIME WITH no equivalent
TIMESTAMP WITH

TIME ZONE no equivalent

INTERVAL YEAR TO
MONTH

INTERVAL YEAR TO MONTH

INTERVAL DAY TO
SECOND

INTERVAL DAY TO SECOND

Literals:
DATE '1997-01-01' DATE("01/01/97")
TIME '12:34:56' DATETIME(12:34:56) HOUR TO SECOND
TIMESTAMP '1997-

01-01 12:34:56'
DATETIME(1997-01-01-12:34:56) YEAR TO
SECOND

INTERVAL '3–4'
YEAR TO MONTH

INTERVAL(3–4) YEAR TO MONTH

INTERVAL '1
23:45:12' DAY TO
SECOND

INTERVAL(1 23:45:12) DAY TO SECOND

Predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3
i1 = i2 i1 = i2

 - 43 -

i1 < i2 i1 < i2
i1 <> i2 i1 <> i2
i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3
d IS NULL d IS NULL
i IS NULL i IS NULL
(d1, i) OVERLAPS

(d2, d3)
d1 < d3 AND d2 < (d1 + i)

Datetime Constructors:
d + i d + i
i + d d + i

d − i d − i
d AT i not supported
d AT LOCAL not supported
CURRENT_DATE TODAY
CURRENT_TIME CURRENT HOUR TO SECOND
CURRENT_TIMESTAMP CURRENT

Interval Constructors:
i1 + i2 i1 + i2

i1 − i2 i1 − i2

(d1 − d2) qual d1 − d2 (if both have the same precision)

(d1 − d2) MONTH not supported
i * n i * n
n * i i * n
i1 / i2 not possible
i / n not possible
+ i + i

− i − i
Other Operators:

CAST(d AS DATE) DATE(d)
CAST(d AS TIME) EXTEND(DATE(d), HOUR TO SECOND)
CAST(d AS

TIMESTAMP)
EXTEND(d, YEAR TO SECOND)

CAST(i AS
INTERVAL YEAR TO
MONTH)

INTERVAL(i) YEAR TO MONTH

CAST(i AS
INTERVAL DAY TO
SECOND)

INTERVAL(i) DAY TO SECOND

CAST(d AS CHAR) not possible
CAST(i AS CHAR) not possible
CAST(i AS

INTEGER) not supported

EXTRACT(DAY FROM
d)

DAY(d) (returns an integer)

EXTRACT(DAY FROM
i) not possible

EXTRACT(HOUR FROM not possible

 - 44 -

i)
Operators not in SQL-92:

extract weekday from
d (where d is DATE)

WEEKDAY(d)

3.5.3 Microsoft Access
While SQL-92 supplies six temporal types (DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE,
TIMESTAMP WITH TIME ZONE, and INTERVAL), Microsoft Access supplies just one, Date/Time,
which is similar to SQL-92's TIMESTAMP type. Access Date/Time values are stored as an IEEE 8-byte
floating-point number, with the integral portion denoting days since December 30, 1899, and the
fractional portion denoting fractions of a day, to a precision of eight decimal places, or equivalently, a
granularity of slightly less than one millisecond. The range is restricted to 1 C.E. to 9999 C.E.; dates
before 1899 are represented with negative values.
Literals are delimited with '#', for example, #5/10/96#, which uses the "U.S. format" (month, day,
year), even on international versions of Microsoft Windows. To have the format depend on the locale,
use DateValue. For example,

The Hijri Calendar

The Hijri is an Islamic calendar based on lunar cycles, with one year consisting of 12 (purely lunar)
months. It was first introduced in 638 C.E. by Umar ibn Al-Khattab. The first day of this calendar,
Muharram 1 (New Year), 1 A.H. ("Anno Hegirae") corresponds to June 16, 622 C.E.

Since the Islamic calendar is purely lunar, as opposed to solar or lunar-solar, the Hijri year is shorter
than the Gregorian year by about 11 days. Also contrary to most calendars, months in the Hijri year
are not related to seasons, which are themselves tied to the solar cycle. Important Muslim festivals,
which always fall in the same Hijri month, may occur in different seasons. For example, the Hajj and
Ramadan can take place in the summer as well as the winter. It is only over a roughly 33-year cycle
that lunar months resynchronize with the solar year.

Interestingly, the start of a Hijri month is defined not by an astronomical new moon, but rather by an
actual singhting of the crescent moon at a particular locale. This implies that a month will start at
different Gregorian times in different locales, and indeed the start is affected by weather conditions
and various optical factors of the atmosphere.

DateValue('5/10/96') when evaluated in the U.S. will return the same date as DateValue(
'10/5/96') when evaluated in the U.K.
In an effort to address the year 2000 problem, Access 2000 has a special interpretation of two-digit
years. #1/1/00# through #12/31/29# are interpreted as the dates January 1, 2000, through
December 31, 2029. #1/1/30# through #12/31/99# are interpreted as the dates January 1, 1930,
through December 31, 1999. Of course, this just moves the year 2000 problem ahead 30 years, as well
as invalidating previous data from the first third of this century. More detail may be found in Section
3.6.5.
The format of a literal is specified in a format property setting. Custom formats may be specified using
some thirty-odd multicharacter symbols, such as "ww," which specifies a number between 1 and 53
denoting the week of the year. The format routine allows a format to be used once, for example,
format("1/10/99", "dd/mm/yy"). Predefined formats, set in the properties, may also be used
within this function, for example, format("1/10/99", "short date"). The Windows 95 system

 - 45 -

settings (in "Regional Settings") dictate the initial values for these format properties. The CDate()
function takes a string and attempts to convert it into a date, using context to determine which fields are
where in the string.

The equality and inequality predicates are available for Access Date/Times. OVERLAP is not available.
Extraction of fields is accomplished through a variety of functions, such as Day() and Second().
There is also an extraction function, DatePart(), for example, DatePart("yyy", [OrderDate])
would return a four-digit year.
Intervals are simulated with two functions, DateAdd and DateDiff.DateAdd takes a string
expression specifying the interval granularity ("yyyy" denotes year, "q" denotes quarter, "m" denotes
month, "y" denotes day of year, "d" denotes day, "w" denotes weekday, "ww" denotes week, "h"
denotes hour, "m" denotes minute, and "s" denotes second), a numeric expression (positive or
negative) denoting the number of granules, and a date to be shifted. As an example, DateAdd("d",
7, #2/24/96#) yields the date March 2, 1996. Analogously, DateDiff takes the parameters of a
string expression denoting the granularity, as well as two days, and returns a long integer specifying the
number of time intervals between these dates. For example, DateDiff("d", #3/2/96#,
#2/26/96#) evaluates to the value 7.
The weekday granularity depends on which day is considered the first day of the week. Several of the
functions, including DateDiff, take an optional parameter specifying a particular day (1 = Sunday
through 7 = Saturday, with Sunday being the default). The week granularity depends on which week is
considered the first week of the year. Several of the functions take an optional parameter specifying this
detail (1 = start with the week in which January 1 occurs, 2 = start with the first week that has at least
four days in the year, 3 = start with the first full week of the year, with 1 being the default).
Table 3.4 shows how the facilities in SQL-92 can be simulated, to some degree, in Access. In the
Access column, d denotes an Access Date/Time value and j denotes an Access FLOAT, indicating a
(fractional) count of Julian days.

3.5.4 Microsoft SQL Server
Microsoft SQL Server supplies two temporal data types, DATETIME and SMALLDATETIME, with
precisions of 1/300 second and 1 minute, respectively. The range of these two types is January 1,1753
to December 31, 9999 for the DATETIME type, and from January 1, 1900 to June 6, 2079 for the
SMALLDATETIME type. A DATETIME requires eight bytes, four bytes for the number of days since the
base date and four bytes for the time of day. A SMALLDATETIME requires only four bytes, two bytes for
the number of days since the base date and two bytes for the number of minutes since midnight.

Intervals can be represented as SQL Server integers, of an integral number of granules in the required
granularity.
Table 3.5 shows how the facilities in SQL-92 can be simulated, to some degree, in Microsoft SQL
Server. In the SQL-92 column, d denotes a datetime value, 'i' an interval value, and n a numeric
(exact or approximate) value. In the Microsoft column, dd denotes an SQL Server DATETIME value,
and i denotes an SQL Server integer representing an integral number of seconds.
Microsoft SQL Server automatically handles certain data type conversions; in such cases, the convert
function is optional. For example, when a character expression is compared with a DATETIME
expression, the character expression is implicitly converted to a DATETIME.

Table 3.4: SQL-92 operations in Microsoft Access 2000.

SQL-92
Microsoft Access 2000
Equivalent

Types:
DATE Date/Time, ignoring the

hour, minute, and second
fields

TIME Date/Time, ignoring the
century, year, month, and
day fields

TIMESTAMP Date/Time
TIME WITH TIME ZONE no equivalent

 - 46 -

TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH INTEGER (months)
INTERVAL DAY TO SECOND INTEGER (seconds) or

FLOAT (days)
Literals:

DATE '1997-01-01' DateValue('1997-01-
01') or #1997-01-01#

TIME '12:34:56' TimeValue('12:34:56',
'HH:MI:SS') or
#12:34:56#

TIMESTAMP '1997-01-01 12:34:56' Format("1997-01-01
12:34:56", "YYYY-MM-DD
HH:NN:SS") or #1997-
01-01 12:34:56#

INTERVAL '3–4' YEAR TO MONTH 40 (months)

INTERVAL '1 23:45:12' DAY TO SECOND 171912 (seconds) or
1.9897222 (Julian days)

Predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3
i1 = i2 j1 = j2
i1 < i2 j1 < j2
i1 <> i2 j1 <> j2
i1 BETWEEN i2 AND i3 j1 BETWEEN j2 AND j3
d IS NULL d IS NULL
I IS NULL j IS NULL
(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 <

DateAdd("m", j, d1)
Datetime Constructors:

d +i DateAdd("d",d, j)
i + d DateAdd("d",d, j)

d − i DateAdd("d",d, −j)
d AT i time zones not supported
d AT LOCAL time zones not supported
CURRENT_DATE Date() The time part is

set to 0
CURRENT_TIME Time() The date part is

set to 0 (i.e., December 31,
1899)

CURRENT_TIMESTAMP Now()
Interval Constructors:

i1 + i2 j1 + j2

i1 − i2 j1 − j2

(d − d) qual d1 − d2 (result is a fractional
number of days)

d − d MONTH DateDiff("m", d2, d1)
(result is an integral number

 - 47 -

of months)
i * n j * n
n * i n * j
i1 / i2 Trunc(j1 / j2
i / n Trunc(j / n)
+i j

− i −j
Other Operators:

CAST(d AS DATE) DateValue(d) or
Format(d, "YYYY-MM-
DD")

CAST(d AS TIME) TimeValue(d) or
Format(d, "HH:MI:SS")

CAST(d AS TIMESTAMP)
d is a DATE d
d is a TIME not possible
CAST(i AS INTERVAL YEAR TO MONTH) not possible
CAST(i AS INTERVAL DAY TO SECOND) not possible
CAST(d AS CHAR) Cstr(d)
CAST(i AS CHAR) Cstr(j)
CAST(i AS INTEGER)
i is DAY CLng(j)
i is HOUR CLng(j * 24)
i is MINUTE CLng(j * 1440)
i is SECOND CLng(j * 86400)
EXTRACT(DAY FROM d) Day(d)
EXTRACT(DAY FROM i) Day(j)
EXTRACT(HOUR FROM i) Hour(j)

Table 3.5: SQL-92 operations in Microsoft SQL Server.

SQL-92 Microsoft SQL Server Equivalent
Types:

DATE DATETIME or SMALLDATETIME, ignoring the
hour, minute, and second fields

TIME DATETIME or SMALLDATETIME, ignoring the
century, year, month, and day fields

TIMESTAMP DATETIME (to second granularity)
TIME WITH TIME ZONE no equivalent
TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH int (integral number of months)
INTERVAL DAY TO SECOND int (integral number of seconds)

Literals:
DATE '1997-01-01' convert(datetime, "1997-01-01", 102)
TIME '12:34:56' "12:34:56" or convert(datetime,

"12:34:56")
TIMESTAMP "1997-01-01 "1997-01-01 12:34:56" or

 - 48 -

12:34:56" convert(datetime, "1997-01-01
12:34:56") or convert(datetime, "1997-
01-01 12:34:56", 102)

INTERVAL '3–4' YEAR TO
MONTH

40 (months)

INTERVAL '1 23:45:12' DAY
TO SECOND

171812 (seconds)

Predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3
i1 = i2 i1 = i2
i1 < i2 i1 < i2
i1 <> i2 i1 <> i2
i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3
d IS NULL d IS NULL
I IS NULL I IS NULL
(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < dateadd(second,i,d1)

Datetime Constructors:
d + i dateadd(second, i, d)
i + d dateadd(second, i, d)

d − i dateadd(second, −i, d)
d AT i not supported
d AT LOCAL not supported

Datetime Constructors, cont.:
CURRENT_DATE convert (datetime

 (convert(char(3),
 datename(month,getdate())) +

""
 + convert(char(2)
 datename(day,getdate())) +

","
 + convert(char(4),
 datename(year,getdate()))))

 CURRENT_TIME convert (datetime,
 convert(char(2),
 datename(hour,getdate())) +

":"
 + convert(char(2),
 datename(minute,getdate()))

+":"
 + convert(char(2),
 datename(second,getdate())))

CURRENT-TIMESTAMP getdate()
Interval Constructors:

i1 + i2 i1 + i2

i1 − i2 i1 − i2

 - 49 -

(d1 − d2) qual datediff(qual, d1, d2) (result is an
integral number at the indicated granularity)

(d1 − d2) MONTH datediff(month, d1, d2)

i * n i * n
n * i n * i
i1 / i2 convert(int, i1 / i2
i / n convert(int, i / n)
+ i i

− i −i
Other Operators:

CAST (d AS DATE) convert (datetime,
 (convert (char(3),
 datename(month, d)) + ""
 + convert(char(2),
 datename(day, d)) + ","
 + convert(char(4),
 datename(year, d))))

CAST(d AS TIME) convert (datetime,
 convert(char(2),
 datename(hour, d)) + ":"
 + convert(char(2),
 datename(minute, d)) + ":"
 + convert(char(2),
 datename(second, d)))
CAST(d AS TIMESTAMP)

d is a DATE d
d is a TIME convert (datetime,

 (convert(char(3),
 datename(month,getdate())) + ""
 + convert(char(2),
 datename(day,getdate())) + ","
 + convert(char(4),
 datename(year,getdate())) + ""
 + convert(char(2),
 datename(hour, d)) + ":"
 + convert(char(2),
 datename(minute, d)) + ":"
 + convert(char(2),
 datename(second, d))))

CAST(i AS INTERVAL YEAR
TO MONTH) not possible

CAST(i AS INTERVAL DAY TO
SECOND) not possible

CAST(d AS CHAR) convert(char,d)
CAST(i AS CHAR) convert(char,i)
CAST(i AS INTEGER) i already an integer
EXTRACT(DAY FROM d) datename(day,d) (returns a string)
EXTRACT(DAY FROM i) convert(int, i/86400)

 - 50 -

EXTRACT(HOUR FROM i) convert(int, i/3600

3.5.5 Sybase SQLServer
Support for time in Sybase SQLServer is essentially identical to that of Microsoft SQL Server because
they started from the same code base. For details, see the discussion on that system, in Section 3.5.4.
Table 3.6 shows how the facilities in SQL-92 can be simulated, to some degree, in Sybase SQLServer.
In the SQL-92 column, d denotes a detetime value, i an interval value, and n a numeric (exact or
approximate) value. In the Sybase SQLServer column, d denotes an SQLServer DATETIME value, and
i denotes an SQLServer integer representing an integral number of seconds.

3.5.6 Oracle8 Server
As with Access, Oracle8 Server provides but one temporal type, here called DATE. An Oracle DATE
comprises seven fields, century, year, month, day, hour, minute, and second, each as one byte. Oracle8
Server can store dates from January 1, 4712 B.C.E. (Julian Day 1) to December 31, 4712 C.E., while
disallowing the nonexistent

Table 3.6: SQL-92 operations in Sybase SQLServer.

SQL-92 Sybase SQLServer Equivalent
Types:

DATE DATETIME or SMALLDATETIME, ignoring the
hour, minute, and second fields

TIME DATETIME or SMALLDATETIME, ignoring the
century, year, month, and day fields

TIMESTAMP DATETIME (to second granularity)
TIME WITH TIME

ZONE no equivalent

TIMESTAMP WITH
TIME ZONE no equivalent

INTERVAL YEAR TO
MONTH

int (integral number of months)

INTERVAL DAY TO
SECOND

int (integral number of seconds)

Literals:
DATE '1997-01-01' convert(datetime, "1997-01-01", 105)
TIME '12:34:56' convert(datetime, "12:34:56")
TIMESTAMP '1997-

01-01 12:34:56'
convert(datetime, "1997-01-01
12:34:56",105)

INTERVAL '3–4'
YEAR TO MONTH

40 (months)

INTERVAL '1
23:45:12' DAY TO
SECOND

171812 (seconds)

Predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d2 <= d1 AND d1 <= d3
i1 = i2 i1 = i2
i1 < i2 i1 < i2
i1 <> i2 i1 <> i2

 - 51 -

i1 BETWEEN i2 AND i3 i2 <= i1 AND i1 <= i3
d IS NULL d IS NULL
i IS NULL i IS NULL
(d1, i) OVERLAPS

(d2, d3)
d1 < d3 AND d2 < dateadd(second,i,d1)

Datetime Constructors:
d + i dateadd(second,i,d)
i + d dateadd(second,i,d)

d − i dateadd(second,−i,d)
d AT i not supported
d AT LOCAL not supported
CURRENT_DATE convert (datetime,

 (convert(char(3),
 datename(month,getdate())) +

""
 + convert(char(2),
 datename(day,getdate())) +

","
 + convert(char(4),
 datename(year,getdate()))))

CURRENT_TIME convert (datetime, convert(char(2),
 datename(hour,getdate())) +

":"
 + convert(char(2),
 datename(minute,getdate()))

+ ":"
 + convert(char(2),
 datename(second,getdate())))

CURRENT_TIMESTAMP getdate()
Interval Constructors:

i1 + i2 i1 + i2

i1 − i2 i1 − i2
(d1 − d2) qual datediff(qual, d1, d2) (result is an

integral number at the indicated granularity)

(d1 − d2) MONTH datediff(month, d1, d2)

i * n i * n
n * i n * i
i1 / i2 convert(int, i/1 i2)
i / n convert(int, i / n)
+ i i

− i −i
Other Operators:

CAST(d AS DATE) convert (datetime,
 (convert(char(3),
 datename(month,d)) + ""
 + convert(char(2)
 datename(day,d)) + ","
 + convert(char(4),

 - 52 -

 datename(year,d))))
CAST(d AS TIME) convert (datetime),

 convert(char(2),
 datename(hour,d))+":"
 + convert(char(2),
 datename(minute,d)) + ":"
 + convert(char(2),
 datename(second,d)))

CAST(d AS
TIMESTAMP)

d is a

DATE

d

CAST(d AS
TIMESTAMP)

d is a

TIME

convert (datetime,

 (convert(char(3),
 datename(month,getdate())) +

""
 + convert(char(2),
 datename(day,getdate())) +

","
 + convert(char(4),
 datename(hour,d)) + ":"
 + convert(char(2),
 datename(minute,d)) + ":"
 + convert(char(2),
 datename(second,d))))

CAST(i AS
INTERVAL YEAR TO
MONTH)

not possible

CAST(i AS
INTERVAL DAY TO
SECOND)

not possible

CAST(d AS CHAR) convert(char,d)
CAST(i AS CHAR) convert(char,i)
CAST(i AS

INTEGER)
i already an integer

EXTRACT(DAY FROM
d)

datename(day,d) (returns a string)

EXTRACT(DAY FROM
i)

convert(int, i/86400)

EXTRACT(HOUR FROM
i)

convert(int, i/3600)

year 0000. It is thus superior to SQL's TIMESTAMP type in permitting B.C.E dates, but is inferior in not
permitting fractions of a second and in stopping about halfway to the year 9999.

 - 53 -

SQL-92's INTERVAL DAY can be simulated using Oracle NUMBER, which provides a day count.
Smaller granularities can partially simulated with fractional days. NUMBER(12,5) is sufficient for
seconds; NUMBER(18,11) will support microseconds. Both support the full range of 4700 years. It is
not possible to simulate SQL-92 year-month intervals, though subtraction to the months granularity is
possible via MONTHS_BETWEEN. NEXT_DAY gives the date of the next day of the week (specified as a
character string such as 'Monday') after a specified date value.
The predicates that Oracle8 Server supports on DATEs are '=', '<', '<=', '>', '>=','<>',
and BETWEEN. These are based on the seven-byte internal representation of dates. For not equals,
Oracle9 Server also allows '!=', '^ =', and '⇁=' (on some systems).
Oracle dates can be converted to character strings via the TO_CHAR function, which takes as a second
argument the format desired. SQL-92's CAST (value AS CHARACTER) may thus be simulated with
TO_CHAR (value, 'YYYY-MM-DD HH24:MI:SS') (HH24 requests military time, that is, a 24-hour
clock). This format string is quite flexible, with over 30 options available. As an example, TO_CHAR
(value, 'DY Month DD, YYYY') will produce a string looking like 'THU July 24, 1997'. A third
parameter to this function specifies other aspects of the output, such as the language, for example,
TO_CHAR(BirthDate, 'Month DD, YYYY, HH12:MI A.M.', 'NLS_DATE_LANGUAGE =
American').
The TO_CHAR function can also extract individual fields; for example, TO_CHAR(BirthDate, 'MM')
returns the month. Finally, the Julian day number can be computed via TO_CHAR(BirthDate, 'J'),
returning an integer (2,440,588, for January 1, 1970).
The TO_DATE function produces a date value from a character string, via a format string, for example,
TO_DATE('January 15, 1989, 11:00 A.M.', 'Month DD, YYYY, HH12:MI A.M.'). This function
can also convert an integer (containing the Julian number) to a date, for example, TO_DATE(2440588,
'J'). The Julian number identifies a particular day, so the hour, minute, and second fields are set to 0.
There seems to be no way to extract fractional days from an Oracle DATE, nor convert fractional days
to a DATE value. However, an Oracle (fractional) NUMBER, representing a day-time interval, can be
added (or subtracted) from a DATE, yielding a DATE.
Oracle8 Server provides a variety of other date functions. ADD_MONTHS adds an integer number of
months to a DATE value. By using a negative integer, months can be subtracted. GREATEST picks the
latest date from alist of dates; LEAST is analogous. LAST_DAY returns the date of the last day of the
month that the provided date is in.
The NEW_TIME function allows you to shift a DATE from one specified time zone to another. The source
and target time zones are three-character strings; only a few time zones are supported. There seems to
be no way within Oracle8 Server to find out your own time zone.
The TRUNC function removes the hour, minute, and second fields from a DATE value, resulting in a day
starting at midnight. TRUNC also accepts an optional string parameter, specifying a field below which
truncation should occur; for example, TRUNC(BirthDate, 'HH24') would zero out the minute and
second fields. An analogous ROUND function is also available for DATEs.
Finally, the current date and time is returned by SYSDATE.
Table 3.7 shows how the facilities in SQL-92 can be simulated, to some degree, in Oracle8 Server. In
the SQL-92 column, d denotes a datetime value, i an interval value, and n a numeric (exact or
approximate) value. In the Oracle8 Server column, d denotes an Oracle DATE value and j denotes an
Oracle NUMBER representing Julian days.

So, how did Jim Barnett represent instants and intervals in the FINDER schema? Well, for the most part
he used Oracle DATEs. In fact, in the resulting schema one of every five columns is a DATE column.
The fundamental distinction between instants and intervals is hidden in the Oracle schema; column
names and comments

Table 3.7: SQL-92 operations in Oracle8 Server.

SQL-92 Oracle8 Server Equivalent
Types:

DATE DATE, ignoring the hour, minute,
and second fields

TIME DATE, ignoring the century, year,
month, and day fields

TIMESTAMP DATE (to second granularity)
TIME WITH TIME ZONE no equivalent

 - 54 -

TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH no equivalent
INTERVAL DAY TO SECOND NUMBER(12, 5)

Literals:
DATE '1997-01-01' TO_DATE('1997-01-01',

'YYYY-MM-DD')
TIME '12:34:56' TO_DATE('12:34:56',

'HH24:MI:SS')
TIMESTAMP '1997-01-01 12:34:56' TO_DATE('1997-01-01

12:34:56', 'YYYY-MM-DD
HH24:MI:SS'

INTERVAL '3–4' YEAR TO MONTH not possible
INTERVAL '1 23:45:12' DAY TO SECOND TO_NUMBER(SUBSTR('1

23:45:12', 1,LENGTH('1

23:45:12')−9)) +
TO_NUMBER(SUBSTR('1
23:45:12', LENGTH('1

23:45:12')−7,2))/24 +
TO_NUMBER(SUBSTR('1
23:45:12', LENGTH('1

23:45:12')−4,2))/1440 +
TO_NUMBER(SUBSTR('1
23:45:12', LENGTH('1

23:45:12')−1,2))/86400
(result is a fractional Julian day)

Predicates:
d1 = d2 d1 = d2
d1 < d2 d1 < d2
d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3
i1 = i2 j1 = j2
i1 < i2 j1 < j2
i1 <> i2 j1 <> j2
i1 BETWEEN i2 AND i3 j1 BETWEEN j2 AND j3
d IS NULL d IS NULL
i IS NULL j IS NULL
(d1, i) OVERLAPS (d3, d4) d1 < d4 AND d3 < (d1 + j)

Datetime Constructors:
d + i d + j, ADD_MONTHS(d, j)
i + d j + d, ADD_MONTHS(d, j)

d− i d − j, ADD_MONTHS(d, −j)
d AT i not supported
d AT LOCAL not supported
CURRENT_DATE TRUNC(SYSDATE)
CURRENT_TIME TO_DATE(

 TO_CHAR(SYSDATE,
'HH24:MI:SS'),
'HH24:MI:SS')

CURRENT_TIMESTAMP SYSDATE
Interval Constructors:

 - 55 -

i1 + i2 j1 + j2

i1 − i2 j1 − j2

(d1 − d2) qual d1 − d2 (result is a (fractional)
Julian number)

(d1 − d2) MONTH MONTHS_BETWEEN(d1, d2)
(result is a (fractional) number of
months)

i * n j * n
n * i n * j
i1 / i2 j1 / j2
i / n j / n
+ i + j

− i − j
Other Operators:

CAST(d AS DATE) TRUNC(d)
CAST(d AS TIME) TO_DATE(TO_CHAR(d,

'HH24:MI:SS'),
'HH24:MI:SS')

CAST(d AS TIMESTAMP)

d is a DATE

TRUNC (d)

d is a TIME

TRUNC

(SYSDATE)+(d−TRUNC(d))
CAST (i AS INTERVAL YEAR TO MONTH) not possible
CAST (i AS INTERVAL DAY TO SECOND) j
CAST(d AS CHAR) TO_CHAR(d, 'YYYY-MM-DD' ∥

'HH24:MI:SS')
CAST(i AS CHAR) TRUNC (j, 0) ∥ TO_CHAR(j

+ TO_DATE(1, 'J'),
'HH24:MI:SS')

CAST (i AS INTEGER)

i is DAY

TRUNC(j, 0)

i is HOUR

TRUNC(j * 24, 0)

i is MINUTE

TRUNC(j * 1440, 0)

i is SECOND

TRUNC(j * 86400, 0)

EXTRACT(DAY FROM d) TRUNC(d, 'DD') − TRUNC(d,
'MM') + 1

EXTRACT(DAY FROM i) TRUNC(j,0)
EXTRACT(HOUR FROM i) TRUNC(j*24, 0) −

(TRUNC(j,,0)*24)
Operators not in SQL-92:

convert d to Julian day TO_CHAR(d, 'J')
convert Julian day n to DATE n + TO_DATE(1, 'J')

 - 56 -

pick the earliest date LEAST(d1, …, dn)

pick the latest date GREATEST(d1, …, dn)

pick the last day of the month LAST_DAY(d)

get the next day of the week NEXT_DAY(d, 'Monday')

are necessary to highlight these differences. So a Start_Time is an instant, but an Incrmnt_Time is
an interval (the comment states that the "Increment Time is taken in reference to the start of the
period").
Intervals were represented with numerics. The Time_String_In_Hole column of the
Well_Log_Service table is of type NUMBER(8,2); the granularity must be inferred from other
information. For example, the comment for the Sample_Interval column of the Seis_Trace_Hdr
table specifies "sampling interval in milliseconds."
When he needed more control over the granularity, Jim found that Oracle was of little help. Most of
these values were expressed as a pair of columns. Although the Start_Time is a DATE, thereby
utilizing a possible granularity of seconds, the Incrmnt_Time is a NUMBER(7,2) column, coupled with
an Incrmnt_Time_Unit column, of type VARCHAR(12). The Well_Test_Hdr table specifies the
Start_Time, with the Well_Test_Incrmnt providing a specific observation (ordered by the
Incrmnt_Obs_No column). Consider though how you would calculate in SQL the starting time of a
particular observation. The Incrmnt_Time is a fractional number of units, which must be multiplied by
the size of the unit, determined from the name of that unit, then added to the Start_Time. This
calculation must be done in terms of fractional days, so it is important that the size of the units are
stored in that manner (Oracle8 Server will blithely permit this calculation without this requirement being
satisfied, with incorrect results).

3.5.7 UniSQL
UniSQL supports the DATE, TIME, and TIMESTAMP data types. TIMESTAMPs are constrained to a
granularity of a second; their range is only January 1, 1970 through 03:14:07 January 19, 2038. TIMEs
also are to a granularity of one second. Subtracting two dates yields an integral number of days;
subtracting two TIME or TIMESTAMP values will yield an integral number of seconds.
Table 3.8 shows how the facilities in SQL-92 can be simulated, to some degree, in UniSQL. In the SQL-
92 column, d denotes a datetime value, i an interval value,

The Start of the Millennium
Given that there is no 0 A.D. (see page 27), the issue is then raised of when the millennium starts,
2000 A.D. or 2001 A.D. Those of a more mathematical constitution generally insist on the latter, an
example being the Royal Greenwich Observatory in Cambridge, England, as reported in the New York
Times on December 8, 1996. Pop culture clearly sides with the former; we can effectively argue that
the millennium has already arrived months before the end of 2000 A.D. But in that case, the first
millennium was but 999 years long, thereby belying its etymological basis ("one thousand years," in
Latin, see page 86), and raising the questions of how long is a century, or even a decade? Stephen
Jay Gould is unapologetic on this—it is clear his sentiments lie with the solution that a (nay, every)
millennium is 10 centuries long, a century consists of 10 decades, and all decades are 10 years, save
the first, which was 9 years in length, thus, by incontrovertible logic, the first century contained 99
years and the first millennium (but thankfully, not the present one) comprised 999 years.

 - 57 -

and n a numeric (exact or approximate) value. In the UniSQL column, d denotes a UniSQL
TIMESTAMP value (to the granularity of seconds), and i denotes a UniSQL INTEGER representing an
integral number of granules (seconds).

3.6 THE YEAR 2000 PROBLEM*
(We remind you that the asterisk in this section heading—and in some later section headings—indicates
advanced material that may be skipped on a first reading.)

The year 2000 problem has often been abbreviated to the "Y2K problem" by those who love acronyms,
and termed the "Millennium Bug" by those who want a more catchy name. The problem involves
software that stores dates using only two digits for the year. That raises the issue of determining what
the year 00 denotes. If it denotes 2000, then everything will generally be fine when that year arrives. On
the other hand, if it denotes 1900, then all manner of difficulties will arise. A phone call that starts the
night of December 31, 1999, and extends a little past midnight, could be charged for 100 years of air
time, resulting in a horrendous bill. A bill due in December 1999 but not paid until the next month could
result in an interest fee of gigantic proportions. Or the software might just fail, freezing bank accounts
and leaving flight controllers with no information on their tracking screens. Indeed, consumers are
already being affected. The expiration date on Mastercard and Visa credit and debit cards is listed as
MM/YY. Recently, cards were issued with an expiration date of 01/00, and these cards are being
denied, as having expired some 98 years ago. While the larger authorization centers have updated their
software, some smaller authorization centers still cannot accept those cards (as of June 1998).

Table 3.8: SQL-92 operations in UniSQL.

SQL-92
UniSQL
Equivalent

Types:
DATE DATE
TIME TIME
TIMESTAMP TIMESTAMP

(to second
granularity)

TIME WITH TIME ZONE no equivalent
TIMESTAMP WITH TIME

ZONE no equivalent

INTERVAL YEAR TO
MONTH no equivalent

INTERVAL DAY TO
SECOND

INTEGER
(integer
number of
seconds or
days)

Literals:
DATE '1997-01-01' DATE

'01/01/1997
'

TIME '12:34:56' TIME
'12:34:56'

TIMESTAMP '1997-01-01
12:34:56'

TIMESTAMP
'01/01/1997
12:34:56'

INTERVAL '3–4' YEAR TO
MONTH

not possible

INTERVAL '1 23:45:12'
DAY TO SECOND

171812
(seconds)

Predicates:
d1 =d2 d1 =d2
d1 < d2 d1 < d2

 - 58 -

d1 <> d2 d1 <> d2
d1 BETWEEN d2 AND d3 d1 BETWEEN

d2 AND d3
i1 = i2 i1 = i2
i1 < i2 i1 < i2
i1 <> i2 i1 <> i2
i1 BETWEEN i2 AND i3 i1 BETWEEN

i2 AND i3
d IS NULL d IS NULL
i IS NULL i IS NULL
(d1, i) OVERLAPS (d2, d3) d1 < d3 AND

d2 < d1 + i
Datetime Constructors:

d + i d + i
i + d i + d

d − i d − i
d AT i not supported
d AT LOCAL not supported
CURRENT_DATE not supported
CURRENT_TIME not supported
CURRENT_TIMESTAMP not supported

Interval Constructors:
i1 + i2 i1+ i2

i1 − i2 i1 − i2

(d1 − d2) qual d1 − d2(result
is an integer
number at the
indicated
granularity)

(d1 − d2) MONTH not possible
i * n i * n
n * i n * i
i1 / i2 j1 / j2
i / n j / n
+ i i

−i −i
Other Operators:

CAST(d AS DATE) CAST(d AS
DATE)

CAST(d AS TIME) CAST(d AS
TIME)

CAST(d AS TIMESTAMP) CAST(d AS
TIMESTAMP)

CAST(i AS INTERVAL
YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY
TO SECOND)

i

CAST(d AS CHAR) CAST(d AS
CHAR)

 - 59 -

CAST(i AS CHAR) CAST(i AS
CHAR)

CAST(i AS INTEGER) i already
an integer

EXTRACT(DAY FROM d) EXTRACT(DAY
FROM d)

EXTRACT(DAY FROM i) not possible
EXTRACT(HOUR FROM i) not possible

The year 2000 problem is but one instance of a more general problem, that of making assumptions that
are invalidated purely by the course of time. Here, the assumption was that two digits suffice for the
year, which is a valid assumption if all the information is contained in a single century. Indeed, one digit
suffices if the information is contained in a particular decade. What has captured the imagination of the
public and the press about the year 2000 problem is due to four factors:

Tip The year 2000 problem is a specific instance of a more general problem of an
(often unstated) assumption that will be invalidated purely by the course of time.

1. The underlying assumption was made, sometimes implicitly, in so many software
systems.

2. The problem was ignored until (almost) too late, despite being recognized for
decades: the 1965 Multics system used a 71-bit microsecond representation.

3. The assumption is invalidated at exactly the same time (well, within a single 24-hour
period) for these systems.

4. The systems involved are generally legacy systems, with underlying source code a
much-modified mess, or worse, simply unavailable.

These factors conspire to make fixing the problem exceedingly expensive, yet the third factor imposes
an unavoidable deadline for coming up with an acceptable solution, with often disastrous consequences
if this deadline is not met. The classic movie High Noon comes to mind, with Gary Cooper in almost
every scene glancing at that pendulum clock inexorably ticking away the minutes. I, as author of this
book, which contains material on the Y2K problem, am similarly constrained by this approaching
deadline.
The year 2000 problem may be found in hardware, specifically physical clocks, and all manner of
software, from programming languages to operating systems, from DBMSs to applications. As the
present book considers time-varying applications and SQL, we will limit our discussion to those topics.
In particular, we will eschew discussion of the extremely important and challenging task of identifying,
repairing, and testing legacy code. At the same time, we will examine the phenomenon more generally,
by highlighting time-dependent assumptions that involve both the year 2000 and other dates. As we will
emphasize, it is effectively impossible to completely avoid these problems, but we can minimize them,
and be aware of those that are present.

3.6.1 Year 2000 Compliance and Certification
Each organization must develop its own definition of compliance, termed "year 2000 compliance," or in
the general case, "century compliance." The following language is recommended by the Chief
Information Officers Council Sub-Committee on the Year 2000 for voluntary use by federal agencies in
their solicitations and contracts for year 2000 compliant products.

The contractor warrants that each hardware, software, and firmware product delivered under this
contract and listed below shall be able to accurately process date/time data (including, but not limited to,
calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first
centuries, and the years 1999 and 2000 and leap year calculations to the extent that other information
technology, used in combination with the information technology being acquired, properly exchanges
date/time data with it.

Year 2000 certification is defined by Mitre as "a measure of assurance by a designated Y2K authority
(or their representative), that an item is operationally ready. Any company working toward Year 2000
compliance must ultimately be concerned with Year 2000 certification."

 - 60 -

For database products, vendors generally certify, viewing themselves as a Y2K authority, that their
products are (or are not) year 2000 compliant, generally based on their specific definition of year 2000
compliance.
To address the problem of two-digit dates, vendors generally define a "window" of 100 years within
which a two-digit date is interpreted. This interpretation is often called the "implied century rule." The
window is sometimes dependent on when the date is interpreted. In many cases, the window is xx00–
xx99, meaning that a two-digit date is interpreted as being in the current century. So, 34 would then be
interpreted in 1998 as 1934, and in 2001 as 2034; the window jumped in the year 2000. The year 2000
problem can be rephrased as the "window ending at 99 and jumping at 00 problem," in that the window
goes from 1900 to 1999, and jumps to the next century (2000–2099) in the year 2000. Products vary on
where this window is located and when it jumps (in the best scenario, the jump and the window
boundary should be far apart).

It would have been to the consumer's benefit for vendors to come up with a common approach to the
year 2000 problem: specify a common window, specify a common jump point, and specify a common
mechanism to ensure backward compatibility. Vendors in their wisdom have taken exactly the opposite
tack: every approach is unique. Would it be cynical to think that this is intentional?

Two-digit dates, and indeed, any finite representation, imply that eventually the range will be exhausted,
and some kind of discontinuity will result. All that the windowing approaches do is delay the discontinuity
at the jumps. In scanning the various extant DBMSs, we see difficulties with the years 2000, 2030,
2050, 2079, 2100, 4712, and 10,000. This implies that programmers will be kept busy both fixing
applications as these notable years approach and converting applications from one DBMS to another
that takes a different approach.

3.6.2 SQL-92
SQL-92 DATEs and TIMESTAMPs both use four digits to represent the year. Applications using this
standard are fine until the year 9999 C.E., and thus exhibit the "year 10,000 problem," but are
fortunately not affected by the year 2000 transition.

As will be discussed in the following section, an SQL-92 TIME value is actually a funny kind of interval.
An alternative characterization is that TIME has a midnight problem: its meaning changes every
midnight. In the above terminology, a TIME value has a window of 24 hours (from midnight to midnight)
and a jump time of midnight.

Concerning leap years, the question could be phrased several ways.
 "Is the value of DATE '2000-02-29' valid?" The standard states "Within the

definition of a <datetime literal>, the <datetime value >s are constrained by the
natural rules for dates and times according to the Gregorian calendar" [44, p. 75]. As
the contribution of the namesake of this calendar, Pope Gregory XIII, was to specify
that century years not divisible by 400 would no longer be leap years, this clearly
indicates that the "natural rules" would consider the year 2000 to be a leap year.

 "Is (DATE '2000-03-01' - DATE '2000-02-01') DAY the value 29 days?"
The SQL-92 standard specifies datetime subtraction as "a) A [here, DATE '2000-
03-1'] and B [here, DATE '2000-02-1'] are converted to integer scalars A2 and
B2, respectively, in units Y [here, DAY] as displacements from some implementation-
dependent start datetime. b) The result is determined by effectively computing A2–
B2 …" [44, p. 137]. Is this year 2000 compliant? It all depends on what is meant by
the word "converted." Jim Melton has told me that those on the standards committee
would agree that the value 29 is correct and intended, but I counter that the
standard itself should be unambiguous and clear, especially on such an important
question.

 "Is DATE '2000-03-01' - INTERVAL '29' DAY the value DATE '2000-02-
01'?" The SQL-92 standard specifies such expressions as "Arithmetic is performed
so as to maintain the integrity of the datetime data type that is the result of the
<datetime value expression>. This may involve carry from or to the immediately next
more significant <datetime field>" [44, p. 133]. Here, we are concerned about the
carry from the DAY field to the MONTH field. Presumably the "integrity of the
datetime data type" refers back to the definition of a DATE literal, which we saw
above treats the year 2000 as a leap year.

 - 61 -

My conclusion: since the conversion for date difference is not explicitly spelled out, we don't know that
the conversion will treat the year 2000 as a leap year, and so the SQL-92 standard should not be
considered year 2000 compliant.
What should programmers do to ensure that new code being written does not exhibit the year 2000
problem? Quite simply, use four-digit years, as the SQL-92 standard mandates. Of course, this
aphorism ignores the requirement that new code work with and indeed be compatible with existing
legacy programs, which might themselves use only two-digit years. As Mark Haselkorn said in an
interview published in the February 1998 issue of the Institute of the IEEE:
Y2K is not about hardware, firmware and operating software (platforms). It is not even about application
software and even data. It is not even about users, organizations, economies and nations—it's about all
of them together. You cannot change your computer to a Y2K-safe one and think you have fixed the
problem. You still have software that runs on it and, more importantly, data you have accumulated that
has great value to you that must be part of the fix.

With that chastening fresh on our mind, we now turn to specific DBMS products. A critical disclaimer:
these products and their level of compliance are highly fluid, with new techniques being developed daily
to achieve compliance. The remarks below reflect the situation as this is being written, in June 1998.
This material will surely be somewhat out of date when it appears in print. You are urged to contact your
vendor for information on year 2000 compliance.

3.6.3 IBM DB2 Universal Database
IBM DB2 UDB DATEs and TIMESTAMPs both use four-digit years, and so are year 2000 compliant.
The year 2000 is considered a leap year by DB2 UDB.

 DATE ('2000-02-29') is a valid DB2 UDB DATE.
 DATE ('2000-02-01') + 1 MONTH yields March 1, 2000.
 DATE ('2000-03-01') - 1 MONTH yields February 1, 2000.
 DATE ('2000-02-01') + 00000100. yields March 1, 2000.
 DATE ('2000-03-01') - 00000100. yields February 1, 2000.
 DATE ('2000-02-28') + 1 DAY yields February 29, 2000.
 DATE ('2000-03-01') - 1 DAY yields February 29, 2000.

3.6.4 Informix
Informix defines "year 2000 compliant" as
… the use or occurrence of the dates on or after January 1, 2000, will not adversely affect the
performance of the Informix products with respect to four-digit data dependent data or the ability of such
products to correctly create, store, process, and output information related to such date data.

The internal formats of Informix DATE and DATETIME data types both support four digits for the year.
For two-digit input of dates, Informix has added the DBCENTURY environment variable. There are four
values for this environment variable: past ('P'), future ('F'), closest ('C'), and present ('R'). If no value is
specified, the default is present semantics. Of course, this environment variable is not used if four digits
are supplied.

 Present semantics ('R') The present century provides the window. The window is 00–
99 and the jump date is the end of the century.

DATE ("1-1-1") when entered on June 22, 1998, evaluates to January 1, 1901. When
entered in 2002, this literal evaluates to January 1, 2001.

 Past semantics ('P') The past and present centuries provide two windows and
produce two expanded date values. The one that is prior to the current date is
chosen. If both dates are prior to the current date, the date that is closest to the
current date is chosen.

DATE ("1-1-99") when entered on June 22, 1998, produces January 1, 1899 and
January 1, 1999; January 1, 1899 is chosen. When entered in 2002, this literal evaluates to
January 1, 1999. DATE ("1-1-97") when entered on June 22, 1998, produces January
1, 1897 and January 1, 1997; January 1, 1997 is chosen. While seemingly only two years
before DATE ("1-1-99"), the resulting four-digit date is 98 years later. When entered in
2002, DATE ("1-1-97") evaluates to January 1, 1997.
In our terminology, the window is the preceding 100 years (for a current date of June 22,
1998, the window extends from June 21, 1898 to June 21, 1998) and the jump date is each

 - 62 -

day (though the window only moves forward one day). DATE ("6-22-98") will evaluate
to June 22, 1898, exactly 100 years ago today; tomorrow that same literal will evaluate to
June 22, 1998.

 Future semantics ('F') The present and future centuries provide two windows and
produce two expanded date values. The one that is after the current date is chosen.
If both dates are after the current date, the date that is closest to the current date is
chosen.

DATE ("1-1-99") when entered on June 22, 1998, produces January 1, 1999 and
January 1, 2099; January 1, 1999 is chosen. When entered in 2002, this literal evaluates to
January 1, 2099. DATE ("1-1-97") when entered on June 22, 1998, produces January
1, 1997 and January 1, 2097; January 1, 2097 is chosen. As before, while this literal seems
to be only two years before DATE ("1-1-99"), the resulting four-digit date is 98 years
later. When entered in 2002, DATE ("1-1-97") evaluates to January 1, 2097.
The window is the following 100 years (for a current date of June 22, 1998, the window
extends from June 23, 1998 to June 22, 2098) and the jump date is each day. DATE ("6-
22-98") will evaluate to June 22, 2098, exactly 100 years in the future; tomorrow that
same literal will evaluate to June 22, 1998.

 Closest semantics ('C') The past, present, and future centuries provide three windows
and produce three expanded date values. The one that is closest to the current date
is chosen.

DATE ("1-1-99") when entered on June 22, 1998, produces January 1, 1899, January
1, 1999, and January 1, 2099 as candidates; January 1, 1999 is chosen. When entered in
2002, this literal evaluates to January 1, 1999. DATE ("1-1-97") when entered on June
22, 1998, produces January 1, 1897, January 1, 1997, and January 1, 2097 as candidates;
January 1, 1997 is chosen. Unlike with the other semantics, this literal seems to be only two
years before DATE ("1-1-99"), and in fact the resulting four-digit date is also two years
earlier. When entered in 2002, DATE ("1-1-97") evaluates to January 1, 1997.
There is still anomalous behavior with this semantics; it is just distant in time. DATE ("1-
1-48") when entered on June 22, 1998, evaluates to January 1, 2048. DATE ("1-1-
49"), seemingly one year later, evaluates to January 1, 1949.
The window is the 100 years centered on the current date (for a current date of June 22,
1998, the window extends from June 22, 1948 to June 22, 2048) and the jump date is each
day. Actually, this brings up a slight unspecification of closest semantics. Because 2000 is a
leap year, any 100-year window between 1900 and 2100 will contain an odd number of
days (36,525); hence, there will be a (single) closest value. However, when the present
date is after the year 2100, the current window will contain an even number of days
(36,524), and there may occur two potential dates equidistant from the current date. As an
example, if the current date is January 1, 2105, the current semantics provides for the value
DATE ("1-1-55") January 1, 2055, January 1, 2155, and January 1, 2255. The last date
is certainly out of consideration, but the first two are exactly 18,262 days from the current
date, and so neither is preferred (or worse, both are preferred). We simply don't know which
date will be returned when this literal is evaluated on that date.

It seems that the closest semantics provides the most intuitive behavior, in that the anomalies occur
with distant dates.

The year 2000 is considered a leap year by Informix.
 DATE ("2/29/2000") is a valid SQLServer DATETIME.
 DATE ("3/1/2000") - DATE ("2/1/2000") yields 29 days.
 DATE ("2/28/2000") + INTERVAL (1) DAY yields February 29, 2000.
 DATE ("3/1/2000") - INTERVAL(1) DAY yields February 29, 2000.

3.6.5 Microsoft Access
Microsoft's definition of year 2000 compliance is as follows:

A Year 2000 Compliant product from Microsoft will not produce errors processing date data in
connection with the year change from December 31, 1999 to January 1, 2000 when used with accurate
date data in accordance with its documentation and the recommendations and exceptions set forth in
the Microsoft Year 2000 Product Guide, provided all other products (e.g., other software, firmware and

 - 63 -

hardware) used with it properly exchange date data with the Microsoft product. A Year 2000 Compliant
product from Microsoft will recognize the Year 2000 as a leap year.

Microsoft classifies its products into five categories.
 Compliant The product fully meets Microsoft's standard of compliance. May have

prerequisite patch or service pack for compliance.

 Compliant with minor issues The product meets Microsoft's standard of
compliance with some disclosed exceptions that constitute minor date issues.

 Not compliant The product does not meet Microsoft's standard of compliance.

 Testing yet to be completed Product test is not yet complete or has not started but
will be tested.

 Will not test The product will not be tested for compliance.

Microsoft considers both Access 95 and Access 97 to be year 2000 compliant, in terms of the above
definition.

Access Date/Time values have a range of 9899 years (100 A.D. to 9999 A.D.). However, Access 95 and
Access 97 differ on the interpretation of two-digit dates.

Access 95 by default allows two-digit and four-digit years on input. The user can define formats, via an
input mask. Included in the predefined formats is a Short Date format, which forces users to enter dates
in a two-digit year format.
Parsing of dates is controlled by the OLEAUT32.DLL file in the system folder. The interpretation of the
two-digit dates depends on the version of this file.
For version 2.20.4048 and lower, two-digit dates are considered to be in the same century. Hence,
DateValue ('01/01/00') will be interpreted as January 1, 1900.

For version 2.20.2049 and higher, dates 1/1/00 through 12/31/29 are interpreted as being in the next
century. So these dates would be interpreted in 1998 as 1/1/2000 through 12/31/2029. Dates 1/1/30
through 12/31/99 are interpreted in the current century, so would be interpreted in 1998 as 1/1/1930
through 12/31/1999. Effectively, this delays the year 2000 problem until the year 2030.

For Access 97, there is only one possible interpretation: the window is from year 30 of this century to
year 29 of the next century, and shifts at the year 2000.

The year 2000 is considered a leap year by Access.
 DateValue ('2000-02-29') is a valid Access Date/Time.
 DateValue ('2000-03-01') - DateValue ('2000-02-01') yields 29 days.
 DateAdd ("m", DateValue('2000-02-01'), 1) yields March 1, 2000.
 DateAdd ("m", DateValue('2000-03-01'), -1) yields February 1, 2000.
 DateAdd ("d", DateValue('2000-02-28'), 1) yields February 29, 2000.
 DateAdd ("d", DateValue('2000-03-01'), -1) yields February 29, 2000.

3.6.6 Microsoft SQL Server
Microsoft considers SQL Server 6.5 and 7.0 to be year 2000 compliant.

Microsoft SQL Server supports two temporal data types, DATETIME, with a range of 1753 to 9999, and
SMALLDATETIME, with a range of January 1, 1900 to June 6, 2079. Either data type allows you to
specify only the last two digits of the year, with values less than 50 interpreted as 20yy (e.g., 17 is
interpreted as 2017) and values greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957).
Put another way, the window starts at 1950 and is fixed, representing a "year 2050 problem," as well as
a "year 2079 problem," beyond which SMALLDATETIMEs are not defined.

Concerning the year 2000 being considered a leap year, several bugs in this regard were fixed in
Service Packs 2 and 5 of SQL Server 6.5.

 CONVERT (DATETIME, "2000-02-29", 102) is a valid SQL Server DATETIME.

 - 64 -

 DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102),
CONVERT(DATETIME, "2000-03-01", 102)) yields 29 days.

 DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields
March 1, 2000.

 DateAdd(month, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields
February 1, 2000.

 DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields
February 29, 2000.

 DateAdd(day, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields
February 29, 2000.

3.6.7 Sybase SQLServer
Sybase's definition of "century compliant" is as follows:

 "General Integrity: No value for the current date will interrupt normal operation: the
system returns the correct date accurate to century in response to a request for
current date, and the software is unaffected by any value returned."

 "Date Integrity: Correct results are returned in the operation of all legal and calendar
operations of dates that span century marks within the range of the software."

 "Explicit Century: The software's internal date storage format explicitly includes the
century and reporting formats allow date representation in the full century format."

 "Implicit Century: On encountering data that does not include the century either from
transaction input or from an external data source, the century value is
unambiguously inferred by the software."

Under this definition, Sybase considers SQLServer to be century compliant.

Sybase SQLServer supports two temporal data types, DATETIME, with a range of 1753 to 9999, and
SMALLDATETIME, with a range of January 1, 1900 to June 6, 2079. Either data type allows you to
specify only the last two digits of the year, with values less than 50 interpreted as 20yy (e.g., 17 is
interpreted as 2017) and values greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957).
Put another way, the window starts at 1950 and is fixed, representing a "year 2050 problem," as well as
a "year 2079 problem," beyond which SMALLDATETIMEs are not defined.

The year 2000 is considered a leap year by Sybase SQLServer.
 CONVERT(DATETIME, "2000-02-29", 102) is a valid SQLServer DATETIME.
 DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102),

CONVERT(DATETIME, "2000-03-01", 102)) yields 29 days.
 DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields March 1,

2000.
 DateAdd(month, −1, CONVERT(DATETIME, "2000-03-01", 102)) yields

February 1, 2000.
 DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields February

29, 2000.
 DateAdd(day, −1, CONVERT(DATETIME, "2000-03-01", 102)) yields February

29, 2000.

3.6.8 Oracle8 Server
The Oracle8 Server supports the DATE type, which includes a four-digit year, and so accommodates
the year 2000. However, Oracle8 Server can store a maximum year of 4712; this raises the impending
"year 4712 problem."
Oracle's TO_DATE function takes two strings, a value string and a format string. Applications using
YYYY in the format string are safe; applications using only two digits (e.g., a format string of 'YY-MM-
DD') will need to be examined, as the function will interpret such value strings as being in the current
century. For example, TO_DATE('450123', 'YYMMDD') when evaluated today (June 19, 1998) returns
the value denoting January 23, 1945. This means that TO_DATE('000101', 'YYMMDD') will evaluate
to January 1, 1900.
For such applications, the Oracle 7 Server and the Oracle8 Server provide a special year format mask,
RR. Values with years between 0 and 49 that are stored in 1998 with the RR format are interpreted to

 - 65 -

be in the twenty-first century; for example, TO_DATE('000101', 'RRMMDD') will evaluate to January
1, 2000. This format still experiences a shift in semantics at the millennium. Say in 1998 an application
attempts to store a future date of 2051, using a value string of '550101' and a format of RR. This will
be interpreted as 1955. Two years later, that same value string will be interpreted as 2055. This raises a
"year 2050 problem."

Summarizing, the YY format uses centuries (years having the same first two digits are in the same
century) as both the window and the window transition. The RR format has a window starting at year 50
and going to year 49, with the window transition occurring at year 0 of the century.

The year 2000 is considered a leap year by Oracle8 Server.
 TO_DATE('2000-02-29', 'YYYY-MM-DD') is a valid Oracle DATE.
 TO_DATE('2000-03-01', 'YYYY-MM-DD')- TO_DATE('2000-02-01', 'YYYY-

MM-DD') yields 29 Julian days.
 ADD_MONTHS(TO-DATE('2000-02-01', 'YYYY-MM-DD'), 1) yields March 1,

2000.
 ADD_MONTHS(TO-DATE('2000-03-01', 'YYYY-MM-DD'), −1 yields February 1,

2000.
 ADD_DAYS(TO-DATE('2000-02-28', 'YYYY-MM-DD'), 1) yields February 29,

2000.
 ADD-DAYS(TO_DATE('2000-03-01', 'YYYY-MM-DD'), −1) yields February 29,

2000.

3.7 SUBTLETIES*
It is critical that the limitations and subtle ramifications of the representation of instants provided by the
DBMS be understood. As we'll see, the meaning of a temporal value is somewhat arbitrary, with the
application providing some of the semantics.

3.7.1 Datetimes
While an instant is, well, instantaneous, SQL and all DBMSs assume a discrete time line of various
granularities, such as second, day, and year, and indicate only the particular granule in which the
instant is located. The event of an individual well sample extraction occurred at a specific instant, but we
may care to record only the

B.C., A.D., B.C.E., C.E., and B.P.

The prevailing system before the use of B.C.—A.D., at least in the Western world, was A.U.C. (ab
urbecondita, literally, "from the foundation of the city," which, being in Latin, of course meant Rome).
Dionysius (see page 27) pegged 1 A.D. at 754 A.U.C. There is the slight problem that King Herod died
in 750 A.U.C., which translates to 4 B.C. Since Herod was ostensibly alive at the birth of Jesus, we
have the interesting oxymoron of Christ being alive in 4 B.C., that is, four years before the birth of
Christ. In an effort to be less parochial, B.C. has been retermed B.C.E. ("Before the Christian Era," or
even better, "Before the Common Era"), with A.D. renamed C.E. ("Common Era"). Even more PC is
B.P. ("Before the Present"), that is, interpreted with reference to the year of publication of the source.
This book will have a copyright date of 1999 (as will all books published between July 1, 1998, and
June 30, 1999), so the millennium will reputedly end at −1 B.P. (since it is after the present). The
problem with this scheme is that it carries with it an extra obligation for the author: if this book is
delayed but a few months, I will have to adjust that B.P. data above, as well as all others that appear
herein.

Tip An instant has no duration, but its representation as a particular granule always
does.

 - 66 -

day granule in which that event occurred. If multiple tests are performed during the day on a well
sample, a time granularity, say, hour or even second, may be appropriate. An instant has no duration,
but its representation, as a particular granule, always does (when utilizing a discrete time line).

The concept of an instant is independent of any particular calendar. SQL has chosen the Gregorian
calendar for its representation of an instant. The use of a specific calendar, especially one so infused
with politics, brings with it subtle difficulties. The Gregorian calendar was proclaimed by Pope Gregory
XIII in 1582, with adoption by the Catholic states within a year. However, in some places adoption was
very slow. The Protestant German states adopted the Gregorian calendar in 1699, Japan in 1873, and
Greece only in 1923. Muslim countries tend to retain calendars based on Islam, and Asian countries
generally use lunar or hybrid (solar/lunar) calendars.
Consider an art dealer who has in hand a letter written by the artist Enoch Seeman stating that his
"Portrait of the Countess of Berkeley" was completed on "March 23, 1735." The art dealer entering this
date in SQL as DATE '1735-03-23' would in fact be specifying a day some 11 days before the
painting was finished. The reason is that before 1752 England and its colonies used the Julian calendar,
which differs from the Gregorian calendar only in the presence of century leap years (in fact, this
difference between the solar year and the calendar year precipitated the construction of the Gregorian
calendar). So the correct denotation in SQL is DATE '1735-04-03'. Had the letter been written in,
say, Paris, the same day, rather than at Berkeley Castle, it would have recorded the date "April 3,
1735." The geographical location of the historical reference supplies the calendar in force, which then
implies the correction, if any, required before the date can be specified in SQL.
As the Gregorian calendar was undefined before 1582, SQL presumably extrapolates this calendar
backwards using its rules to 1 C.E., obtaining what some have called the "proleptic Gregorian calendar"
(which as has been noted is a misnomer, because "proleptic" refers to a future act). Problems occur in
the opposite direction. Because the tropical year is 365.242,191 days, and the Gregorian year (due to
the rather complex leap year rules, see page 37) is 365.2425 days, the calendar year will be one day
longer than the astronomical year in 4000 C.E. and two days longer in 8000 C.E. A further refinement to
the Gregorian calendar designating years evenly divisible by 4000 as common (not leap) years would
ensure accuracy to within one day in 20,000 years. If this refinement was legislated, dates after 4000
C.E. stored in the database would be off by one or two days. As it is, the vernal equinox will occur on
DATE '1997-03-21', DATE '4000-03-22', and DATE '8000-03-23'.

While my watch tells me in which second (approximately) the current instant occurs, we desire a more
precise and universal definition. As mentioned, SQL uses UTC. UTC is based on cesium atomic clocks,
which are accurate to within a second in a million years. A step adjustment of a fraction of a second at
the beginning of each month correlates UTC with mean solar time (the average time between noons,
when the sun is directly overhead). In October 1967, the second in the International System of Weights
and Measures was defined to be 9,192,631,770 periods of the radiation emitted by the transition
between two hyperfine states of the cesium 133 atom in the ground state. On January 1, 1972, the
atomic second became the practical unit of time. The UTC clock runs just a little fast with respect to
mean solar time, gaining about a second a year. UTC is adjusted by applying leap seconds on January
1 or July 1 to keep UTC within 0.7 seconds of solar time.

So, what does this mean for an SQL user? The database is a model of reality. An event in reality occurs
at a particular instant. The representation of that instant in the database should identify the particular
day, or second, or microsecond, in which the instant occurred, to the precision chosen by the user.
Say that TIMESTAMP(0) is specified. Then the user is satisfied if the instant can be characterized to
within a second. Alternatively, if the database specifies that an event happened at a particular
timestamp value, the user would like to identify the second in reality during which the event occurred.
For times between 1958 and about 1998, this correspondence between reality and its representation in
an SQL-compliant database is well defined. The problem with future time is that leap seconds are
determined by a committee, after reviewing astronomical records indicating how far apart solar time is
from atomic time. When the differential gets too great, a leap second is mandated. Since January 1972,
22 leap seconds have been added, the last inserted just before 12:00 A.M., January 1, 1999 (do you
remember?). Specifically, the sequence of UTC markers was '1998-12-31 23:59:59', '1998-12-
31 23:59:60', '1999-01-01 00:00:00'. While it is probable that a leap second will be added in
2000, exactly when future ones will be added is a bureaucratic decision, informed by changes, which
cannot be precisely predicted, that are slowing down the earth's spin. The decision is generally made
around five months before the leap second is effected.
Leap seconds imply that some minutes, such as the last minute of the year 1995, contain 61 seconds.
In fact, UTC allows two leap seconds to be added, so the seconds value of a TIMESTAMP is restricted
to 0.0 through 61.999… UTC also allows the omission of a leap second; such minutes will only contain

 - 67 -

59 seconds. However, a leap second has not yet been omitted in the more than two decades since UTC
was defined.
Since UTC is coordinated with solar time, the sun will be directly overhead within 0.7 second of '2222-
01-01 12:00:00'. However, the number of seconds between TIMESTAMP '1997-01-15
11:35:29.123456' and that instant is not known. As we will see later, the DBMS will provide a
number that should be close, within 300 seconds or so: the DBMS will assume no leap seconds in the
intervening time. The number of intervening minutes is known precisely, 118,843,224, because there
are no leap minutes. Leap seconds extend the minute to which they are assigned (such as '1999-12-
31 23:59:60', above); they do not accumulate into a leap minute.

Tip Which second an SQL timestamp before 1958 denotes is not adequately specified
in the standard.

Before 1958, UTC is not defined. One possibility is that the definition of UTC is extrapolated backward
to 1 C.E. The definition of UTC in 1958 is ephemeris seconds as measured with an atomic clock, with
adjustments for changes in the earth's rotation. So there are at least two possibilities. One is that the
proper adjustment is made each month, in that the first second of each month is a little longer or shorter
than the other seconds, so that the solar day is coordinated with UTC. The problem with this approach
is that it is impossible to correlate SQL timestamps with any other time, such as unadjusted ephemeris
time, used by astronomers. A second possibility is that we can assume that each minute contains
exactly 60 (unadjusted) ephemeris seconds, which emphasizes equal-sized seconds but which
becomes uncorrelated with the solar day as we go back in time.
The moral is that no one really knows which second in reality is denoted by an SQL timestamp before
1958. Returning to the letter written by our artist Enoch Seeman, that day could have started on the
second denoted by TIMESTAMP '1735-03-23 00:00:00', or perhaps it started at '1735-03-23
00:00:10', or perhaps even at '1735-03-22 23:55:04'. Such uncertainty is frustrating. Ideally,
that date should start precisely at midnight: '1735-03-23 00:00:00'. But the standard is
surprisingly silent on precisely what instant in reality such a value means.
Given this imprecision in the standard, it is the responsibility of the application designer to supply the
semantics for SQL timestamp values. When a value in a specific system—be it atomic (TAI), barycentric
coordinate (TCB), barycentric dynamical (TDB), ephemeris, geocentric coordinate (TCG), mean solar,
sidereal, terrestrial (TT), universal (UT0, UT1, UTC), or some other system—is stored in an SQL
database, it must be converted to the semantics chosen for the application. When information from two
databases, with different semantics, are combined or compared, the timestamp values must be
converted to a common representation. It may very well be the case that one timestamp '1735-03-23
00:00:00' from a database and a second timestamp '1735-03-22 23:55:04' from another
database denote the same exact instant!
Recall that an instant is an anchored location on the time line. So, which instant is denoted by TIME
'11:35:29'? On this, perhaps the most critical question, the standard is entirely silent. Here is the
entire specification [44, pp. 24–25]:
Section 4.5.1 Datetimes Therefore, datetime data types that contain time fields (TIME and
TIMESTAMP) are maintained in Universal Coordinated Time (UTC), with an explicit or implicit time zone
part… A TIME or TIMESTAMP that does not specify WITH TIME ZONE has an implicit time zone equal
to the local time zone for the SQL-session. However, the meaning [italics retained] of the time does not
change, because it is effectively in UTC.
An aside: the draft Technical Corrigendum 3 replaces this explanation with an equally laconic
specification [19, pp. 10–11]:
Section 4.5.1 Datetimes, Draft Corrigendum The surface of the earth is divided into zones, called
time zones, in which every correct clock tells the same time, known as local time [italics retained]. Local
time is equal to UTC (Coordinated Universal Time) plus the time zone displacement [italics retained]…
A datetime value, of data type TIME or TIMESTAMP, may represent a local time or UTC.
Let's assume that the user is in the Mountain Standard time zone (seven hours behind Greenwich). She
specifies in her SQL code the literal TIME '11:35:29'. This particular time occurs exactly once each
day in the UTC definition. So perhaps the implied meaning is that the meaning of a TIME literal (or data
value) is relative to the current day. But this assumption has two unfortunate ramifications. Some TIME
values are defined for only about 1 in every 500 days: leap seconds, TIME '23:59:60', have
occurred 22 times thus far. So if I happen to retrieve this TIME value on one of those days, everything is
well defined, but if I retrieve the same value any other day, the value indicates a nonexistent instant.
The second problem is that the particular instant denoted by the value is dependent on when the value
is used or retrieved from the database. Consider a transaction that starts a few minutes before midnight
on Monday, January 13, 1997, and runs until a few minutes after midnight on Tuesday. The literal TIME

 - 68 -

'11:35:29' when first retrieved by the transaction denotes the instant TIMESTAMP '1997-01-13
11:35:29'. Just a few

More on the Start of the Millennium
This confusion between anchored and unanchored values also appears in discussions of "the
millennium." That word translated fro the Latin means simply "one thousand years," and hence is an
unanchored duration: an interval. So the years 998 and 1998 differ by a millennium. However,
Webster's Dictionary notes the connection with "biennium" ("a period of two years"), defining
millennium to be "a period of 1000 years," in particular, "the thousand years mentioned in Revelation
20 during which which holiness is to prevail and Christ is to reign on earth." Many different
interpretations of the millennium have been given [18]: it is unclear when this thousand years will start.
This confusion between interval and period thus seems to underlie the doomsayers who claim that the
world will end or other fantastic happenings will occur on January 1, 2000 (or is it January 1, 2000—
see page 63).
Others have started the millennial clock at the supposed start of the world. It has been calculated that
Jesus was born on 4000 A.M. (Annus Mundi, or "year of the world"). Given that Jesus was born in 4
B.C. (see page 75), you may want to ponder where you were at the start of the sixth millennium, or
6000 A.M., which started Monday, October 27, 199. (Surely you remember that momentous
transition!)

minutes later, the same value denotes a different instant, TIMESTAMP '1997-01-14 11:35:29',
that is, an instant 24 hours later.
Values with an explicit UTC offset are safer to use. Consider again Enoch Seeman's letter; say it was
written on TIMESTAMP '1735-03-23 13:23:45', in the early afternoon. Now the letter was written
in Berkeley Castle, which is in the same time zone as Greenwich (using time zones as they are
specified today; there were no time zones in Seeman's day). However, a user in Los Angeles who
retrieved this value from the database and printed it relative to GMT would see it as having been written
in the wee hours of the morning. On the other hand, had the offset (in this case, +0:00) been stored with
the timestamp, the desired instant would have been correctly specified and would print out correctly in
GMT.

Tip An SQL-92 TIME value is really an interval that can be added to midnight of a
particular day to specify an instant.

In conclusion, only DATE and TIMESTAMP WITH TIME ZONE adequately specify an instant, an
anchored location on the time line. TIME is relative to an unspecified midnight, and TIMESTAMP
without an associated offset acquires the time zone of the user when the value is manipulated.

As another subtlety, the standard states:

Subclause 6.8 <datetime value function> General Rule 1. The <datetime value function>s
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP respectively return the current
date, current time, and current timestamp.

However, that subclause goes on to state:

Subclause 6.8 <datetime value function> General Rule 3. If an SQL-statement generally contains
more than one reference to one or more <datetime value function>s, then all such references are
effectively evaluated simultaneously. The time of evaluation of the <datetime value function> during the
execution of the SQL-statement is implementation-dependent.

So an implementation is free to adopt whatever definition of "current" it wishes, including perhaps when
the statement was presented to the system, or perhaps when the database was first defined.

3.7.2 Time Zones

 - 69 -

As we saw above, TIME WITH TIME ZONE values are safer than TIME values. A careful reading of the
SQL-92 standard indicates that implicit time zone displacement "is defective, in at least one respect, is
imprecisely specified, does not fully implement the approach proposed [in a prior standards meeting]
and leaves unsolved a problem that was acknowledged to need a solution as long ago as 1988" [101,
pp. 1–2]. In the current SQL-92 standard, for a TIME value without an explicit time zone, either AT
LOCAL or GMT was assumed; the standard is unclear on which is to be used.

Tip Use TIME (without time zones) exceedingly carefully, as the standard is imprecise
and defective in its application of implicit time zones.

Technical Corrigendum 3 (at the time this is being written, this document is a working draft approaching
ISO approval) specifies that a TIME (without the time zone) value does not have an implicit time zone;
indeed, nothing is assumed about the nonexistent time zone. While some of the identified deficiencies
have been addressed in this way by the Technical Corrigendum, it is doubtful that the changes have
migrated into commercial products.

Tip Use TIME WITH TIME ZONE carefully, as the time zone stored in such a value is
often ignored.

Even when the TIME WITH TIME ZONE type is used, the user should be careful. For example, given
two values v1 and v2 of type TIME WITH TIME ZONE, it is possible that v1 = v2 while
EXTRACT(TIMEZONE_HOUR FROM v1) <> EXTRACT(TIMEZONE_HOUR FROMv2), and CAST(v1 TO
TIME) <> CAST(v2 TO TIME). This unintuitive semantics results from the time zone being ignored in
the equality, but not in the latter two expressions. Since many other predicates, such as OVERLAPS,
are defined in terms of equality, often the time zone stored in a value is ignored.

3.7.3 Intervals
The reason given for the distinction between year-month intervals and day-time intervals is that months
are not an integral number of days. Melton and Simon [71] ask the question, "What is the result of 1
year, 3 months, 19 days divided by 3?" They correctly state that the answer cannot be determined
unless we know the dates spanned by that interval. However, minutes are not an integral number of
seconds, due to leap seconds. What if we ask the question, "What is the result of 1 minute divided by 4,
in seconds?" The answer could be 14, 15, or 16, depending on which particular times were spanned by
that interval (up to 2 leap seconds can be added or subtracted from a minute). So, what does the
standard have to say about this? The expression INTERVAL '1' MINUTE / 4 evaluates to
INTERVAL '0' MINUTE; fractional minutes are lost. However, we can explicitly request that the
calculation be done in terms of seconds, either with INTERVAL '1:00' MINUTE TO SECOND / 4 or
CAST(INTERVAL '1' MINUTE TO INTERVAL MINUTE TO SECOND) / 4, with the cast being
implicit or explicit. Now the question is, What does cast return? Here is the entire specification [44, p.
122].
Subclause 6.10 <cast specification> General Rule 13.d. If SD [the data type of the source
expression SV, here INTERVAL '2' MINUTE] is interval and TD [the target data type, here INTERVAL
MINUTE TO SECOND] and SD have different interval precisions, then let Q be the least significant
<datetime field> of TD [that is, SECOND]. Let Y be the result of converting SV to a scalar in units Q
according to the natural rules for intervals as defined in the Gregorian calendar. Normalize Y to conform
to the datetime qualifier "P TO Q" of TD.

The rub lies in deciding exactly what the "natural rules for intervals as defined in the Gregorian
calendar" are in the presence of leap seconds. Presumably this expression would always evaluate to 15
seconds (assuming that the "average" minute contains 60 seconds), but the specification is not clear.
However, using the same logic, "What is the result of 1 year, 3 months, 19 days divided by 3?" could
just as easily be interpreted to yield 3 months, 17 days, using an average length, in days, of a year and
a month in the Gregorian calendar.

There are at least two ways the SQL could be interpreted in its handling of intervals in a consistent
manner. One is to use "average" months, and minutes, in interval conversions, and do away with the
distinction between year-month and day-time intervals. The other is to not use average months or
minutes, and expand the kinds of intervals to year-month, day-minute, and second (and fractions
thereof) variants.
Another problem surfaces as to what values are allowed for SQL intervals. The specification is laconic
on this as well [44, p. 75]:

Subclause 5.3 <literal> Syntax Rule 23. Within the definition of an <interval literal>, the <datetime
value>s are constrained by the natural rules for intervals according to the Gregorian calendar.

Tip Whether or not leap seconds are included in day-time intervals is not specified in

 - 70 -

the SQL-92 standard.
Most days have 24 hours. The day in April that daylight saving time kicks in has only 23 hours; the day
in October that daylight saving time ends contains 25 hours. Similarly, minutes can have 62 seconds
(though up to 1999 only one leap second has ever been added to any particular minute), as mentioned
in this standard [44, p. 25].
Section 4.5.1 Datetimes Note: On occasion, UTC is adjusted by the omission of a second or the
insertion of a "leap second" in order to maintain synchronization with sidereal time. This implies that
sometimes, but very rarely, a particular minute will contain exactly 59, 61 or 62 seconds.

However, no such mention is made of days with 25 hours. Hence, the standard is not clear as to
whether the maximum value of the hours field is 24 or 25, or whether the maximum value of the
seconds field is 60, 61, or 62.

3.7.4 Predicates
The OVERLAPS predicate could have been easily generalized, but wasn't. For example, the following
forms are not permitted, even though they make perfect sense:
BirthDate OVERLAPS DATE '1970-01-01'
BirthDate OVERLAPS (DATE '1970-01-01', INTERVAL '0' DAY)
(DATE '1970-01-01', INTERVAL '0' DAY) OVERLAPS BirthDate

We could argue that all three are equivalent to
BirthDate = DATE '1970-01-01'
but the discussion in Section 3.3 shows that orthogonality was not a priority in SQL's design. If the
intervals in the last two are replaced with a nonempty interval, say, INTERVAL '7' DAY (within a
week), then they are not equivalent to the first. Again, we could argue that those would be equivalent to
(BirthDate, INTERVAL '0' DAY)
OVERLAPS (DATE '1970-01-01', INTERVAL '7' DAY)
(DATE '1970-01-01', INTERVAL '7' DAY)
OVERLAPS (BirthDate, INTERVAL '0' DAY)

or
(BirthDate, NULL) OVERLAPS (DATE '1970-01-01', INTERVAL '7' DAY)
(DATE '1970-01-01', INTERVAL '7' DAY) OVERLAPS (BirthDate, NULL)

but it seems less desirable to require an empty or null interval.
In the same vein, it would have been nice to allow equality and inequality comparisons between these
period information values, such as
(BirthDate, INTERVAL '7' DAY)
= (DATE '1970-01-01', INTERVAL '7' DAY)
(DATE '1970-01-01', INTERVAL '7' DAY)
<= (BirthDate, INTERVAL '9' DAY)
As it is, SQL-92 introduces these period information values with their concomitant complex syntax
rules just for the OVERLAP predicate.

3.7.5 Constructors
The CAST function is not symmetric, in the following way. This is being written at 4:57 P.M. on July 23,
1997. The expression CAST(TIME '12:34:56' AS TIMESTAMP(0)) yields '1997-07-23
12:34:56', that is, that time today, but CAST(DATE '1997-01-01' AS TIMESTAMP(0)) yields
TIMESTAMP '1997-01-01 00:00:00'. This asymmetry appears to be a reasonable design
decision, as chances are that something that happened at some other date probably did not happen at
exactly the same time of day as "now."

3.8 IMPLEMENTATION CONSIDERATIONS*
Here we consider subtleties of instants and intervals in specific DBMSs.

 - 71 -

3.8.1 IBM DB2 Universal Database
IBM DB2 UDB will generate an error if a field value (e.g., 60 seconds, 24 hours) was out of range.
Hence, every minute in DB2 contains exactly 60 seconds; leap seconds are not accommodated.

3.8.2 Microsoft Access
Access interprets the fractional portion of a DATE as a fraction of a day, effectively dividing each day
into 86,400 seconds. Hence, every minute in Access contains exactly 60 seconds; Access DATEs do
not take into account leap seconds. Access will generate a runtime error if the field value (e.g., 60
seconds, 24 hours) was out of range.

3.8.3 Oracle8 Server
Oracle8 Server date arithmetic takes into account the (Catholic) switch from the Julian to the Gregorian
calendar, which eliminated 10 days in October 1582 (October 5 through October 14). Missing dates can
be entered into the database, but are ignored in date arithmetic and treated as the next date. For
example, the next day after October 4, 1582, is October 15, 1582, and the day following October 5,
1582, is October 15, 1582. Specifically, all the dates between October 5 and October 14 are mapped
identically to October 15.

As the maximum number of seconds in a minute in Oracle8 Server is 60, Oracle DATEs do not take into
account leap seconds. Instead, Oracle8 Server will generate a runtime error if the field value (e.g., 60
seconds, 24 hours) was out of range.

The Adoption of the Gregorian Calendar
As the Gregorian calendar was imposed by fiat by a sitting pope (see page 37), adoption was quick in
Roman Catholic countries, but decidedly unenthusiastic in Protestant countries. Britain and its
colonies (which includes what is now the United States) didn't adopt the Gregorian calendar until
1752. Because it waited so long, Parliament had to drop 11 days (September 3–13, 1752) in order to
catch up. George Washington's birthday was recorded at the time as February 11, 1731; this is a
Julian date because Britain hadn't yet switched over. However, President George Washington's
birthday is celebrated in the United States on February 22, its Gregorian data (at least until a
Presidents' Day was instituted covering for both Washington's birthday and Lincoln's birthday, which
occurred after the switch).
The U.S.S.R. didn't join the bandwagon until 1918. The "October Revolution" happened in a Julian
October; until recently it has been celebrated in Gregorian November. In fact, there are many different
switchover dates (e.g., Sweden, 1753; Turkey, 1927), rendering "the Gregorian calendar" an
oxymoron.

3.8.4 CD-ROM Materials
Detailed explanations of the temporal types in Microsoft Access 2000, Microsoft SQL Server, IBM DB2
UDB, Informix-Universal Server, Oracle8 Server, Sybase SQL-Server, and UniSQL are provided, as
well as sample SQL statements illustrating operations on instants and intervals. For some of the
operations that are not possible in IBM DB2 strictly in SQL, the equivalents are given as embedded
SQL.

A detailed explanation of Ingres is also included on the CD-ROM, but the examples have not been
tested.

 - 72 -

3.9 SUMMARY
Temporal values are the stuff of which time-varying applications are made. In order to record the history
of the modeled reality, it is first necessary to be able to record the "when."

Instants are the most basic data type. An instant is a position on the time line. Virtually all DBMSs
support this data type. In SQL-92, five related data types encode instants, to various granularities:
DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE, and TIMESTAMP WITH TIME ZONE.

Intervals are unanchored, directed portions of the time line; an interval can be added to an instant to
displace that instant either into the future or back into the past. SQL-92 supports two kinds of intervals,
year-month intervals and day-time intervals.
A rich set of operators and predicates applies to temporal values. SQL-92 provides the following classes
of predicates: equality, inequality, is null, and overlaps. It also provides arithmetic operators ('+', '-', '*',
'/'), unary plus and minus, time zone conversion (AT), "now" (CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP), a variety of conversions (CAST), and field extraction (EXTRACT).

Specific DBMSs vary greatly in their support of the standard, from quite strict adherence (e.g., IBM DB2)
to studied apathy (most DBMSs). While most temporal operations in SQL-92 can be simulated in the
facilities of the various DBMSs (and vice versa), that simulation is often unnecessarily convoluted.

Despite the care with which the SQL-92 standard has been developed and documented, it still contains
dark corners and seemingly arbitrary design decisions. Most DATE and TIMESTAMP values are
undefined, as the standard is based on UTC, which doesn't apply before 1958. SQL-92, and virtually all
DBMSs, utilize the Gregorian calendar, which was adopted in different parts of the world over a 350-
year period. A TIME value does not actually represent an instant; rather, it represents a special kind of
interval. Leap seconds may or may not be accommodated (the standard doesn't say); most DBMSs
ignore this subtlety.

3.10 READINGS
Information on the Public Petroleum Data Model can be found at www.ppdm.org.
Datetime literals are based on an ISO standard, "Representation of Dates and Times" [43]. This
standard uses the Gregorian calendar as well as a 24-hour clock, which also serve as the basis for SQL
datetimes.
While the SQL-92 standard [44] is quite lengthy, at 580 pages, only a small portion, about 30 pages, or
5 percent, concerns temporal data types and their operators. However, this portion in some ways is
more complex than other parts of SQL, as evidenced by over 12 pages (almost 10 percent) of the
Technical Corrigendum 3 [19]. Even with these numerous corrections, many of the deficiencies
discussed in Section 3.7 remain. Sykes provides a cogent discussion of the problems, and partial
solutions, to time zone support in SQL-92 [101].
The temporal constructs are included in the Intermediate SQL and Full SQL levels of conformance to
SQL-92; the Entry SQL level of conformance includes no temporal types. Conformance testing was
initially done by the National Institute of Standards and Technology (NIST), a U.S. Department of
Commerce agency. As of July 1, 1997, when NIST ceased SQL conformance testing, 11 products had
been validated for conformance to FIPS publication 127-2 [73]: IBM (2 configurations), Informix (5
configurations), NCR, and Sybase (3 configurations). Unfortunately, all of these validations were at
Entry FIPS 127-2, which includes no time support. The National Software Testing Laboratories (NSTL),
an independent organization not associated with the government, has established a testing and
certification program for SQL at
www.nstl.com/html/press___nstl_establishes_sql_conformance_testing.html. Unfortunately, according
to NSTL, "All of NSTL's testing services are conducted on a strictly confidential basis. Clients … have
used NSTL test results for promotional purposes," so information about which products conform to the
standard will come only from the vendors themselves.
Books and articles on the year 2000 problem could fill an entire shelf of your library. A quick search on
amazon.comturned up over several dozen titles; there is even a Year 2000 for Dummies [16]. (Some
book titles to the contrary, the proper spelling is "millennium," with two ns, from the Latin mille, "one
thousand," and annus, "year," whereby the two ns.) The following are some useful Web sites providing
further pointers:

 The Year 2000 Information Center: www.year2000.com
 U.S. Federal Government Gateway for Year 2000 Information Directories:

www.itpolicy.gsa.gov/mks/yr2000/y2khome.htm
 National Institute of Standards and Technology: www.nist.gov/y2k/

 - 73 -

 Information Technology Association of America (ITAA): www.itaa.org/year2000.htm
 Mitre's Year 2000 home page: www.mitre.org/technology/y2k/
 The Federal Technology Service of the General Service Administration (GSA) of the

U.S. Federal Government: www.fts.gsa.gov
 The IEEE Technical Activities Board (TAC) New Technologies Development

Committee: www.mindspring.com/~pci-inc/Year2000/y2ktech.htm
 IBM's Year 2000 home page: www.ibm.com/IBM/year2000/
 Microsoft Year 2000 Resource Center: microsoft.com/year2000/
 Newsgroup: comp.software.year-2000

The year 2000 problem isn't unique to computers. The July 1998 issue of Consumer Reports (p. 67)
describes a (manual) Mead 10-year date stamp that had been purchased in March of that year. The
reader subsequently found out that the date stamp was good only until December 31, 2000. As the
packaging copyright says 1993, this was at best an 8-year date stamp when it was manufactured.
Perhaps at the turn of the century there will be a run on office supply stores when all of the 10-year date
stamps expire.
Jones [59] lists other year 2000-like problems, many of which in a cruel irony just happen to fall right
around the same time: the conversion of the euro, which started January 1, 1999, the Global Positioning
System (GPS) week-counter rollover, which occurs at midnight on August 21, 1999, the use of the value
9999 as a file termination code, which might be misinterpreted as September 9, 1999, and the use in
Unix of the number 999999999 as end-of-file, which can be interpreted as a Unix date of September 8,
2001. Neumann [75] provided the Multics observation on page 65.
The SQL standards are denoted SQL-86, SQL-89, and SQL-92. You might think that the next standard,
due out in 1999, would be named SQL-99. Logically, then, the standard following that might be named
SQL-02, which might be confused with SQL2 (the project name under which SQL-92 was developed).
The resolution was to term the next standard SQL:1999, thereby avoiding a year 2000 problem with the
name of the standard [30].
An impressive amount of information on UTC and leap seconds can be found at
tycho.usno.navy.mil/time.html. Papers by Dyreson, Howse, Quinn, and the author provide details on
UTC and ephemeris time [28, 42, 79]. While UTC is defined relative to an atomic clock, an ephemeris
second is a constant duration of time: 1/31,556,925.9747 of the period of time between the passage in
1899 and the passage in 1900 of the sun through the vernal equinox, when the duration of sunlight and
darkness are the same. While this may seem an odd definition, the ephemeris second is actually the
average value of a second calculated from astronomical observations over the 18th and 19th centuries.
HAL was the computer featured prominently in Arthur C. Clarke's 2001: A Space Odyssey. Its (his?)
birth date, January 12, 1997, was occasioned by the release of a book on HAL's legacy [100].
Oracle's temporal support is described well in Koch and Loney's encyclopedic reference book [63, ch.
7].

See bert.cs.pitt.edu/~tawfig/convert/introduction.html for a discussion of the Hijri calendar,
supported by Microsoft Access.
Dershowitz and Reingold's beautiful book, Calendrical Calculations [27], presents in completely
algorithmic form a description of 14 calendars: the present civil calendar (Gregorian), the recent ISO
commercial calendar (ISO 8061), the old civil calendar (Julian), the Coptic and Ethiopic calendars, the
Islamic (Moslem) calendar, the modern Persian (solar) calendar, the Bahá'í calendar, the Hebrew
(Jewish) calendar, the Mayan calendar, the French Revolutionary calendar, the Chinese calendar, and
both the old (mean) and new (true) Hindu (Indian) calendars. Included is a wealth of historical material.
The mere existence of Dershowitz and Reingold's book is illustrative of the inherent complexities of the
subject.

Chapter 4: Periods
OVERVIEW
A period is a segment of the time line, starting at one instant and terminating at a later instant.

While there are a variety of representations of periods, one particular representation is preferable.

Periods are more complex than instants, because there is no total order on periods, unlike instants.

SQL-92 has essentially one construct, OVERLAPS, that is relevant to periods. However, the draft SQL3
standard includes a period type constructor, period literals, predicates, and value constructors.

 - 74 -

An instant has no duration. Yet facts in the database are true over a duration of time. To express when
a fact holds in the enterprise, a period is associated with that fact.

Tip A period is an anchored duration of the time line.

A period is an anchored duration of the time line. The Fall 1997 academic semester at the University of
Arizona comprises the period from August 25, 1997 to December 19, 1997. This data type, while quite
useful, is not supported directly by any commercial DBMS, nor is it in the SQL-92 standard. However,
periods are in the SQL3 draft standard, as will be discussed in Section 12.4.

Perhaps the reason that periods were not included with the other temporal types in SQL-92 is that they
are relatively easy to simulate with datetimes. The most common representation is with a pair of
instants, the first specifying the first day (second, microsecond) of the period and the second specifying
the last day (second, microsecond) of the period. Generally the delimiting datetimes are of identical
granularity.
Jim Barnett utilized periods in several places in the FINDER schema. The Create_Date and
Last_Update columns indicate when the data was stored in the database. Many tables also have
Start_Date and End_Date columns to specify when the data was valid in reality. These two, quite
different notions are explored in detail in chapters 8 and 5 respectively.
There are several variants possible even with an instant-pair representation of periods. One common
representation is termed a closed-closed representation because both delimiting datetimes are in the
period. For the Fall 1997 semester, the pair of dates would be [DATE '1997-08-25', DATE
'1997-12-19'], with the square brackets denoting a closed representation.
An alternative is the closed-open representation, in which the second datetime of the pair represents the
granule immediately following the last granule of the period. Our example in a closed-open
representation is thus [DATE '1997-08-25',. DATE '1997-12-20'). The ending parenthesis
indicates that the ending is open. We'll examine the relative advantages of each of these
representations shortly.

Tip

The primary representations of periods are closed-closed and closed-open pairs
of datetimes, and a pair of a starting datetime and an interval, with both
components of the same granularity.

Two less often used alternatives are open-closed and open-open.
Yet another alternative is the starting datetime and an interval specifying the duration of the period. In
this approach, the Fall 1997 semester becomes (DATE '1997-08-25' , INTERVAL '117' DAY).
Finally, for completeness, we might use the terminating datetime and the duration, for example,
(INTERVAL '117' DAY, DATE '1997-12-19'). We could also consider open variants thereof, but
that is not productive.
The delimiting datetime(s) of a period may include a time zone, if their granularity is to the hour or
smaller. The Fall 1997 semester to the second granularity in the closed-open representation with a time
zone of Mountain Standard Time is [TIMESTAMP '1997-08-25 08:00:00-07:00' , TIMESTAMP
'1997-12-19 17:00:00-07:00').This example hints at the utility of the closed-open
representation. In the closed-closed representation, the terminating timestamp would be an awkward
TIMESTAMP '1997-12-19 16:59:59-07:00'. The two delimiting datetimes of a stored period
should have an identical time zone, for the reasons given in Section 3.7.2.

Tip The time zone of a period, if any, should be stored with the first datetime of the
representation.

4.1 LITERALS
As SQL-92 does not provide a period data type, there are no period literals in that language. Periods
must instead be specified by their constituent datetime and interval literals.

4.2 PREDICATES
As we saw in the previous chapter, SQL-92 supports only four classes of predicates on datetimes and
intervals: equality, less-than, is null, and overlaps.

Tip Equality testing on periods is highly dependent on their underlying representation.

Equality on periods can be implemented using their underlying components, as shown in Table 4.1.
Here, the expression "+1" denotes adding one granule at the granularity of the period. At a granularity
of day, this expression would be "+ INTERVAL '1' DAY".

 - 75 -

Testing for is null is straightforward in any of these representations: simply apply IS NULL to the first
component, which is always a datetime. If the first component is null, the value of the second
component is irrelevant.

Table 4.1: The equality predicate on periods.

Representation Equality Predicate
[a1, a2] equals [b1,
b2]

a1 = b1 AND a2 = b2

[a1, a2] equals [b1,
b2)

a1 = b1 AND a2 + 1 = b2

[a1, a2] equals (b1,
bi)

a1 = b1 + 1 AND a2 + 1 = b1 + bi

[a1, a2) equals [b1,
b2]

a1 = b1 AND a2 = b2 + 1

[a1, a2) equals [b1,
b2)

a1 = b1 AND a2 = b2

[a1, a2) equals (b1,
bi)

a1 = b1 + 1 AND a2 = b1 + bi

(a1, ai) equals [a2,
b1]

a1 + 1 = a2 AND a1 + ai = b1 + 1

(a1, ai) equals [a2,
b1)

a1 + 1 = a2 AND a1 + ai = b1

(a1, ai1) equals (a2,
ai2)

a1 = a2 AND ai1 = ai2

Unlike datetimes and intervals, periods are not ordered. There is only a partial order between periods.
Consider the Fall 1997 semester and the calendar year 1997. The calendar year both starts before the
semester and ends after the semester. However, the month of July 1997 definitely precedes the Fall
1997 semester.

Tip While datetimes and intervals are totally ordered, periods are only partially
ordered, with 13 possible relationships between two periods.

While two datetimes or intervals can be related in three ways (before, equal, and after), two periods can
have one of 13 relationships, shown in Figure 4.1. In this figure, time proceeds from left to right. These
relationships are disjoint: only one can hold between any two given periods. Note also that a overlaps b
is more restrictive than SQL's OVERLAPS, which will be discussed shortly.
These relationships can be expressed in terms of comparisons on the components of the underlying
periods. Table 4.2 provides the SQL-92 equivalents for the relationships, except for equals, which was
provided before, and the inverse relationships (e.g., before−1), which can be easily derived. This table
assumes both argument periods are in the same representation, with the same granularity. Here, ai is
the interval component of the period a, and a1 and a2 are its datetime components.

Tip The preferred representation of a period is a closed-open pair of datetimes.

Note the niggling "+ 1" and "<=" that keep popping up with closed-closed representation, and the
interval addition that is present with the interval representation. It is for these reasons that the closed-
open representation is generally preferred.
As mentioned in the previous chapter, SQL-92 provides an OVERLAPS predicate, on pairs of two
datetimes, corresponding to a closed-open representation, or pairs of a datetime and an interval (see
page 35). In our terminology, p OVERLAPS q (the SQL-92 predicate) is equivalent to the following
using the basic predicates just introduced: p overlaps q V p overlaps−1 q V p starts q V p starts−1 q V p
finishes q V p finishes−1 q V p during q V p during−1 q V p equals q.

 - 76 -

Figure 4.1: Relationships between two periods.

SQL-92 also permits a BETWEEN predicate for datetimes and intervals (see page 35). Such a
predicate doesn't strictly apply to periods, as it is defined in terms of less-than. We might wish to define
a between predicate on periods based on before.

Tip When comparing a datetime with a period, consider the datetime to be a period of
a single granule in duration.

A period can also be compared with a datetime of identical granularity. Conceptually, a datetime is
simply a very short period, comprising one granule. Five of the predicates are not possible between a
datetime and a period: overlaps, overlaps−1, during−1, starts−1, and finishes−1, due to the existence of
only one granule in a datetime. The rest are listed in Table 4.3. Note that a datetime is considered to be
analogous to a closed-closed period.

In the remainder of this book, we will utilize the preferred representation of a period, that of a closed-
open pair of datetimes, of identical granularity.

Table 4.2: The inequality predicates on periods.

Relationship SQL-92 Predicate
[a1, a2] before [b1, b2] a2 + 1 < b1
[a1, a2) before [b1, b2) a2 < b1
(a1, ai) before (b1, bi) a1 + ai < b1
[a1, a2] meets [b1, b2] a2 + 1 = b1
[a1, a2) meets [b1, b2) a2 = b1
(a1, ai) meets (b1, bi) a1 + ai = b1
[a1, a2] overlaps [b1, b2] a1 < b1 AND a2 < b2 AND b1 <= a2
[a1, a2) overlaps [b1, b2) a1 < b1 AND a2 < b2 AND b1 < a2
(a1, ai) overlaps (b1, bi) a1 < b1 AND a1 + ai < b1 + bi AND b1

<= a1 + ai
[a1, a2] during [b1, b2] b1 < a1 AND a2 < b2
[a1, a2) during [b1, b2) b1 < a1 AND a2 < b2
(a1, ai) during (b1, bi) b1 < a1 AND a1 + ai < b1 + bi
[a1, a2] starts [b1, b2] a1 = b1 AND a2 < b2
[a1, a2) starts [b1, b2) a1 = b1 AND a2 < b2

 - 77 -

(a1, ai) starts (b1, bi) a1 = b1 AND ai < bi
[a1, a2] finishes [b1, b2] b1 < a1 AND a2 = b2
[a1, a2) finishes [b1, b2) b1 < a1 AND a2 = b2
(a1, ai) finishes (b1, bi) b1 < a1 AND a1 + ai = b1 + bi

4.3 CONSTRUCTORS
Periods may participate in, or be returned by, temporal constructors. We organize this discussion along
the types that such constructors can return.

4.3.1 Datetime Constructors
The datetime constructors that involve periods are also called instant extractors, as they identify the
delimiting instants of the argument period. Note especially here that the semantics of such constructors
(and indeed, of all constructors, and all predicates) is independent of the representation, though their
implementation is certainly highly dependent on the representation.
Four such delimiting instants are relevant: the beginning instant, the last instant, the ending instant (that
immediately following the last instant), and the previous instant (that immediately preceding the
beginning instant). For our closed-open representation p = [a1, a2), these instants can be extracted
in the following fashion. Here we use the period of the Fall 1997 semester, p = [DATE'1997-08-25'
, DATE '1997-12-20').

Table 4.3: Predicates on a period and a datetime.

Relationship SQL-92 Predicate
a equals [b1,
b2]

a = b1 AND a = b2

a equals [b1,
b2)

a = b1 AND a + 1 = b2

a equals (b1,
bi)

a = b1 AND bi = 1

a before [b1,
b2]

a + 1 < b1

a before [b1,
b2)

a + 1 < b1

a before (b1,
bi)

a < b1

a before−1 [b1,
b2]

b2 + 1 < a

a before−1 [b1,
b2)

b2 < a

a before1 (b1,
bi)

b1 + bi < a

a meets [b1,
b2]

a + 1 = b1

a meets [b1,
b2)

a + 1 = b1

a meets (b1,
bi)

a = b1

a meets−1 [b1,
b2]

b2 + 1 = a

a meets−1 [b1,
b2)

b2 = a

a meets−1 (b1,
bi)

b1 + bi = a

a during [b1,
b2]

b1 < a AND a < b2

 - 78 -

a during [b1,
b2)

b1 < a AND a + 1 < b2

a during (b1,
bi)

b1 < a AND a < b1 + bi

a starts [b1,
b2]

a = b1 AND a < b2

a starts [b1,
b2)

a = b1 AND a + 1 < b2

a starts (b1,
bi)

a = b1 AND bi > 1

a finishes [b1,
b2]

a = b2 AND b1 < a

a finishes [b1,
b2)

a + 1 = b2 AND b1 < a

a finishes (b1,
bi)

a + 1 = b1 + bi AND bi > 1

 beginning: a1 (the first day in the period)
beginning (p) = DATE '1997-08-25'

 previous: a1 − 1(the day immediately preceding the period)
previous(p) = DATE '1997-08-24'

 last: a2−1(the last day in the period)
last(p) = DATE '1997-12-19'

 ending: a2 (the day immediately following the period)
ending(p) = DATE '1997-12-20'

4.3.2 Interval Constructors
There are two useful interval constructors that take a period as an argument. The first, duration, can be
computed from [a1, a2) as (a2 − a1) qual. As an example, the period of the Fall 1997 semester has a
duration of
(DATE '1997-12-20' - DATE '1997-08-25') DAY

True and Sidereal Days
Observing the rising and setting of distant stars yields a sidereal day, or one full spin of the earth, of
23 hours and 56 minutes. But it is perhaps more natural to judge the day by the apparent motion of the
sun. The true solar time or true time is the hour-angle of the sun starting from noon.
The rotation of the earth around the sun adds 4 minutes to the true, or solar day: this small additional
spin is necessary to return the sun to directly overhead. The true day is thus 24 hours long. Over the
course of a year, the small rotations add up to a single full rotation. A sidereal year is thus composed
of one more (sidereal) day than a tropical year; it is 366.2422 sidereal days long.

The other useful interval constructor is time zone extraction, which returns the time zone of the
argument interval, if the delimiting datetimes have an associated time zone. In SQL, this can be done by
extracting the time zone hour and minute from the initial datetime, then converting to an interval:
 CAST(EXTRACT(TIMEZONE_HOUR
 FROM a1) AS HOUR) +

 - 79 -

 CAST(EXTRACT(TIMEZONE_MINUTE
 FROM a1) AS MINUTE)
The result is an interval of granularity HOUR TO MINUTE.

4.3.3 Period Constructors
There are several constructors that return a period value. Figure 4.2 illustrates some of these.

 [a, a + 1) converts the datetime a into a period of one granule.
 [a1, a2) + INTERVAL i yields [a1 + i, a2 + i).This shifts the period later by

the interval, or earlier, if the interval is negative.
 INTERVAL i + [a1, a2) yields [a1 + i, a2 + i), as addition is symmetric.
 [a1, a2) − INTERVAL i yields [[a1 − i, a2 − i). This shifts the period earlier

by the specified interval.
 a1 extend a2 yields [a1, a2 + 1), that is, the period from a1 to a2.
 [a1, a2) extend [b1, b2) yields [min(a1, b1), max(a2, b2)), that is, the period

that starts the earlier of periods a and b and finishes the later of periods a and b.
 a extend [b1, b2) yields [min(a, b1), max(a, b2)), that is, the period that starts

the earlier of instant a and period b and finishes the later of instant a and period b.
 [a1, a2) extend b yields [min(a1, b), max(a2, b)), because extend is

symmetric.
 By using AT LOCAL and AT TIME ZONE on the initial datetime in the period

representation, the time zone offset of a period can be changed.
 By CASTing each of the constituent components, the granularity of a period can be

changed.

Figure 4.2: Period operations.

The following constructors impose restrictions on the argument periods:
 [a1, a2) ∩ [b1, b2) yields [max(a1, b1), min(a2, b2)), that is, the period that

starts the later of the beginning of periods a and b and finishes the earlier of the end
of periods a and b. Note that this constructor is defined only if a OVERLAPS
b;1otherwise, an invalid period is returned, one in which the starting delimiting
instant occurs after the ending delimiting instant.

 [a1, a2) − [b1, b2) yields
o [b2, a2) if a starts−1 b or a overlaps−1 b,

o [a1, b1) if a finishes−1 b or a overlaps b, or
o a, if a before b or a meets b or a meets−1 b or a before−1 b.

Period difference results in the portion of a not overlapping with b. Note that this constructor
is undefined if a during b because then there are two subperiods of a that are not in b. This

 - 80 -

constructor is also undefined if a equals b or a during b, or a starts b, or a finishes b
because then the result is the empty period.

 [a1, a2) ∪ [b1, b2) yields [min(a1, b1), max(a2, b2)), that is, the
period that starts the earlier of the starting delimiters of periods a and b and
finishes the later of the ending delimiters of periods a and b. This constructor
is undefined if a before b or a before−1 b; otherwise, an invalid period is
returned, one that contains instants that are not in either a or b. Note that
under this restriction, [a1, a2) ∪ [b1, b2) = [a1, a2) extend [b1,
b2).

4.3.4 Character Constructors
A period can be cast into a character string via casts on its constituent parts and string concatenation
("||").
'[' || CAST(a1 AS CHARACTER) || ' - ' || CAST(a2 AS CHARACTER) || ')'

4.4 IMPLEMENTATION CONSIDERATIONS
A period data type is not included in the SQL-92 standard, and no vendor offers support for such a data
type. In the following, we show how periods can be simulated using a pair of instants.

4.4.1 IBM DB2 Universal Database
We use the closed-open representation of a pair of IBM DB2 UDB DATEs (or TIMEs, or TIMESTAMPs).
Table 4.4 shows how the period operations can be implemented in DB2. In the first column, a and b
denote datetime values. In the DB2 column, p1 and p2 denote the two components of the representation
of the period p, a and b denote DB2 UDB DATE values (we use a day granularity here), and i
denotes a DB2 UDB DECIMAL(8,0) representing a date duration. A constraint can be used to ensure
that the starting date of a period is before the ending date.

4.4.2 Informix-Universal Server
We use the closed-open representation of a pair of DATEs (or DATETIMEs). Table 4.5 shows how the
period operations can be implemented in Informix-Universal Server. In the first column, a and b denote
instant values. In the Informix-Universal Server column, p1 and p2 denote the two components of the
representation of the period p, a and b denote Informix DATE values (we use a day granularity here),
and i denotes an Informix INTERVAL DAY representing a date duration. Some of the temporal
predicates can be conveniently defined as SPL PROCEDUREs. A constraint can be used to ensure that
the starting date of a period is before the ending date.

Table 4.4: Period operations in IBM DB2 UDB.

Period Operations IBM DB2 UDB Equivalent
Types:

Period [DATE, DATE)
Predicates:

p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
p during q q1 < p1 AND p2 < q2
p during−1 q p1 < q1 AND q2 < p2
p starts q p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2

 - 81 -

p finishes q q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p OVERLAPS q p1 < q2 AND q1 < p2
p IS NULL p1 IS NULL

Datetime Constructors:
beginning (p) p1
previous (p) p1 − 1 DAY
last (p) p2 − 1 DAY
ending (p) p2

Intercal constructors:
duration(p) p2 − p1
extract_time_zone(p) not supported

Period Constructors:
p + i [p1 + i, p2 + i)
i + p [p1 + i, p2 + i)
p − i [p1 − i, p2 − i)
p extend q [CASE WHEN p1 < q1

 THEN p1 ElSE q1 END)
 CASE WHEN p2 < q2
 THEN q2 ELSE p2 END)

p extend a [CASE WHEN p1 < a THEN p1 ELSE a END
 CASE WHEN p2 <= a
 THEN a + 1 DAY
 ELSE p2 END)

a extend p [CASE WHEN p1 < a THEN p1 ELSE a END
 CASE WHEN p2 <= a
 THEN a + 1 DAY
 ELSE p2 END)

a extend b [CASE WHEN a < b THEN a ELSE b END,
 CASE WHEN a < b
 THEN b + 1 DAY
 ELSE a + 1 DAY END

p ∩ q [CASE WHEN p2 <= q1 OR q2 <=p1
 THEN NULL
 WHEN p1 < q1 THEN q1
 ELSE p1 END
 CASE WHEN p2 <= q1 OR q2 <= p1
 THEN NULL
 WHEN p2 < q2 THEN p2
 ELSE q2 END,

p − q [CASE WHEN q1 <= p1 AND p2 <= q2
 THEN NULL
 WHEN p1 < q1 AND q2 < p2
 THEN NULL
 WHEN p2 < q2 AND p1 < q2
 THEN q2
 ELSE p1 END,
 CASE WHEN q1 <= p1 AND p2 <= q2 END
 THEN NULL
 WHEN q1 < p2 AND p2 > q1
 THEN q1
 ELSE p2 END)

p ∪ q [CASE WHEN p2 <= q1 OR q2 <= p1
 THEN NULL
 WHEN p1 < q1 THEN p1

 - 82 -

 ELSE q1 END,
 CASE WHEN p2 <= q1 OR q2 <= p1
 THEN NULL
 WHEN p2 < q2 THEN q2
 ELSE p2 END)

p AT TIME ZONE i not supported
p AT LOCAL [p1 + CURRENT TIMEZONE, p2 + CURRENT TIMEZONE)

Other Operators
CAST (a AS

PERIOD)
[a, a + 1 DAY)

CAST (p AS CHAR) '[' CONCAT CHAR (p1) CONCAT '−' 'CONCAT CHAR
(p2) CONCAT ')'

Table 4.5: Period operations in Informix-Universal Server.

Period Operatoions Informix-Universal Server Equivalent
Types:

period [DATETIME, DATETIME)

Predicates:
p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
p during q q1 < p1 AND p2 < q2
p during−1 q p1 < q1 AND q2 < p2
p starts q p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2
p finishes q q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p OVERLAPS q p1 < q2 AND q1 < p2
p IS NULL p1 IS NULL

Datetime Constructors:
beginning(p) p1
previous(p) p1 - INTERVAL(1) DAY
last(p) p2 - INTERVAL(1) DAY
ending(p) p2

Interval Constructors:
duration(p) p2 - p1
extract_time_zone(p) not supported

Period Constructors:
p + i [p1 + i, p2 + i)
i + p [p1 + i, p2 + i)
p − i [p1 − i, p2 − i)
p extend a not possible

 - 83 -

p ∩ q not possible
p − q not possible
p � q not possible
p AT TIME ZONE i not supported
p AT LOCAL not supported

Other Operators:
CAST(a AS

PERIOD)
[a, a + INTERVAL(1) DAY)

CAST(p AS CHAR) not possible

4.4.3 Microsoft Access
We use the closed-open representation of a pair of Microsoft Access DATEs, which are at the second
granularity. Table 4.6 shows how the period operations can be implemented in Microsoft Access 2000.
In the first column, a and b denote datetime values. In the Access column, p1 and p2 denote the two
components of the representation of the period p, a and b denote Access DATE values, and j denotes
an Access NUMBER representing Julian days (and fractional days).

4.4.4 Microsoft SQL Server
We use the closed-open representation of a pair of Microsoft SQL Server DATETIMEs, which are at the
subsecond granularity (1/300 second). Table 4.7 shows how the period operations can be implemented
in SQL Server. In the first column, a and b denote datetime values. In the Microsoft SQL Server column,
p1 and p2 denote the two components of the representation of the period p, a and b denote SQL
Server DATETIME values, and i denotes an SQL Server INTEGER representing an integral number of
seconds.

4.4.5 Sybase SQLServer
We use the closed-open representation of a pair of Sybase SQLServer DATETIMEs, which are at the
subsecond granularity. Table 4.8 shows how the period operations can be implemented in Sybase. In
the first column, a and b denote datetime values. In the Sybase column, p1 and p2 denote the two
components of the representation of the period p, a and b denote SQL Server DATETIME values, and
i denotes an SQL Server INTEGER representing an integral number of seconds.

4.4.6 Oracle8 Server
We use the closed-open representation of a pair of Oracle DATEs, which are at the second granularity.
Table 4.9 shows how the period operations can be implemented in Oracle8 Server. In the first column, a
and b denote datetime values. In the Oracle8 Server column, p1 and p2 denote the two components of
the representation of the period p, a and b denote Oracle DATE values, and j denotes an Oracle
NUMBER representing Julian days.

4.4.7 UniSQL
We use the closed-open representation of a pair of UniSQL TIMESTAMPs, which are at the second
granularity. Table 4.10 shows how the period operations can be implemented in UniSQL. In the first
column, a and b denote datetime values. In the UniSQL column, p1 and p2 denote the two components
of the representation

Table 4.6: Period operations in Microsoft Access 2000.

Period Operations Microsoft Access 2000 Equivalent
Types:

period [DATE, DATE)

 - 84 -

predicates:
p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
p during q q1 < p1 AND p2 < q2
p during−1 q p1 < q1 AND q2 < p2
p starts q p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2
p finishes q q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p OVERLAPS q p1 < q2 AND q1 < p2
p IS NULL p1 IS NULL

Datetime Constructors:
beginning(p) p1
previous(p) DateAdd("D", −1, p1)
last(p) DateAdd("D", −1, p2)
ending(p) p2

Interval Constructors:
duration(p) p2-p1 or

 DateDiff("D", p1, p2) (integral number of
 days)

extract_time_zone(p) not supported
Period Constructors:

p + i [DateAdd("D", j, p1), DateAdd("D", j, p2))
i + p [DateAdd("D", j, p1), DateAdd("D", j, p2))
p − i [DateAdd("D", −j, p1), DateAdd("D", −j,

p2))
p extend q not possible

p ∩ q not possible
p − q not possible
p ∪ q not possible
p AT TIME ZONE I not supported
p AT LOCAL not supported

Other Operators:
CAST(a AS PERIOD) [a, DateAdd("D", 1, a))
CAST(p AS CHAR) CONCAT("[" & Cstr(p1) & "−" & Cstr(p2) &

")")

Table 4.7: Period operations in Microsoft SQL Server.

Period Operations Microsoft SQL Server Equivalent
Types:

 - 85 -

period [DATETIME, DATETIME)

Predicates:
p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before− 1 q q2 < p1
p meetsq p2 = q1
p meets− 1 q q2 = p1
p overlapsq p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
p duringq q1 < p1 AND p2 < q2
pduring−1 q p1 < q1 AND q2 < p2
p startsq p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2
p finishesq q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p OVERLAPS q p1 < q2 AND q1 < q2
p IS NULL p1 IS NULL

DateTime Constructors:
beginning(p) p1
previous(p) dateadd(second, −1, p1)
last(p) dateadd(second, −1, p2)
ending(p) p2

Interval Constructors:
duration(p) p2 − p1
extract_time_zone(p) not supported

Period Constructors:
p + i [dateadd(second, i, p1),

dateadd(second, i, p2))
i + p [dateadd(second, i, p1),

dateadd(second, i, p2))
p − i [dateadd(second, −i, p1),

dateadd(second, −i, p2))
p extend q [CASE WHEN p1 < q1

 THEN p1 ELSE q1 END,
 CASE WHEN p2 < q2
 THEN q2 ELSE p2 END)

p extend a [CASE WHEN p1 < a THEN p1 ELSE a
END,
 CASE WHEN p2 <= a
 THEN dateadd(day, 1, a) ELSE p2
END
)

a extend p [CASE WHEN p1 < a THEN p1 ELSE a
END,
 CASE WHEN p2 <= a
 THEN dateadd(day, 1, a) ELSE p2
END
)

a extend b [CASE WHEN a < b THEN a ELSE b
END,
 CASE WHEN a < b
 THEN dateadd(day, 1, b)

 - 86 -

 ELSE dateadd(day, 1, a) END)
p ∩ q [CASE WHEN p2 <= q1 OR q2 <= p1

 THEN NULL
 ELSE CASE WHEN P1 < q1
 THEN q1 ELSE P1 END END,
 CASE WHEN P2 <= q1 OR q2 <= p1
 THEN NULL
 ELSE CASE WHEN P2 < q2
 THEN P2 ELSE q2 END END)

p − q [CASE WHEN q1 <= p1 AND p2 <= q2
 THEN NULL
 ELSE CASE WHEN p1 < q1 AND q2 < p2
 THEN NULL
 ELSE CASE WHEN p2 > q2 AND p1 <
q2
 THEN q2
 ELSE p1 END
 END
 END.
 CASE WHEN q1 <= p1 AND p2 <= q2
 THEN NULL
 ELSE CASE WHEN p1 < q1 AND q2 < p2
 THEN NULL
 ELSE CASE WHEN q1 < p2 AND p2 >
q1
 THEN q1
 ELSE p2 END
 END
 END)

p ∪ q [CASE WHEN p2 <= q1 OR q2 <= p1
 THEN NULL
 ELSE CASE WHEN p1 < q1
 THEN p1 ELSE q1 END END,
 CASE WHEN p2 <= q1 OR q2 <= p1
 THEN NULL
 ELSE CASE WHEN p2 < q2
 THEN q2 ELSE p2 END END)

p AT TIME ZONE i not supported
p AT LOCAL not supported

Other Operators:
CAST(a AS PERIOD) [a. dateadd(second, 1, a))
CAST(p AS CHAR) "[" + convert(char(11), p1) +

"−" + convert(char(11), p2) +
")"

Table 4.8: Period operations in Sybase SQLServer.

Period Operations
Sybase SQLServer
Equivalent

Types:

period [DATETIME,
DATETIME)

Predicates:
p equals q p1 = q1 AND p2 =

q2
p before q p2 < q1

 - 87 -

p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 <

p2
p overlaps−1 q q1 < p1 AND p1 <

q2
p during q q1 < p1 AND p2 <

q2
p during−1 q p1 < q1 AND q2 <

p2
p starts q p1 = q1 AND p2 <

q2
p starts−1 q2 p1 = q1 AND q2 <

p2
p finishes q q1 < p1 AND p2 =

q2
p finishes−1 q p1 < q1 AND p2 =

q2
p q p1 < q2 AND q1 <

p2
p IS NULL p1 IS NULL

DateTime Constructors:
beginning(p) p1
previous(p) dateadd(second,

−1, p1)
last(p) dateadd(second,

−1, p2)
ending(p) p2

Interval Constructors:
duration(p) p2 − p1
extract_time_zone(p) not supported

Period Constructors:
p + i [dateadd(second,

i, p1),
dateadd(second,
i, p2))

i + p [dateadd(second,
i, p1),
dateadd(second,
i, p2))

p − i [dateadd(second,
−i, p1),
dateadd(second,
−i, p2))

p extend q not possible
p ∩ q not possible
p − q not possible
p � q not possible
p AT TIME ZONE i not supported
p AT LOCAL not supported

 - 88 -

Other Operators:
CAST(a AS PERIOD) [a.

dateadd(second,
1, a))

CAST(p AS CHAR) "[" +
convert(char(11)
, p1) + "−" +
convert(char(11)
, p2) + ")"

Table 4.9: Period operations in Oracle8 Server.

Period Operations Oracle8 Server Equivalent

Types:

period [DATE, DATE)
Predicates:

p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
p during q q1 < p1 AND p2 < q2
p during−1 q p1 < q1 AND q2 < p2
p starts q p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2
p finishes q q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p q p1 < q2 AND q1 < p2
p NULL p1 IS NULL

DateTime Constructors:
beginning(p) p1
previous(p) p1−1
last(p) p2 − 1
ending(p) p2

Interval Constructors:
duration(p) p2 − p1
extend_time_zone(p) not supported

Period Constructors:
p + i [p1 + j, p2 + j)
i + p [p1 + j, p2 + j)
p − i [p1 − j, p2 − j)
a extend b [LEAST(a, b), GREATEST(a + 1, b + 1))
p extend q [LEAST(p1, q1), GREATEST(p2, q2))
p extend a [LEAST(p1, a), GREATEST(p2, a + 1))

 - 89 -

a extend p [LEAST(a, p1), GREATEST(a + 1, p2))

p ∩ q [GREATEST(p1, q1), LEAST(p2, q2))

p − q not possible
p ∪ q [LEAST(p1, q1), GREATEST(p2, q2))
p AT TIME ZONE i not supported
p AT LOCAL not supported

Other Operators:
CAST(a AS

PERIOD)
[a, a + 1/86400)

Table 4.10: Period operations in UniSQL.

Period Operations UniSQL Equivalent

Types:

period [TIMESTAMP, TIMESTAMP)
Predicates:

p equals q p1 = q1 AND p2 = q2
p before q p2 < q1
p before−1 q q2 < p1
p meets q p2 = q1
p meets−1 q q2 = p1
p overlaps q p1 < q1 AND q1 < p2
p overlaps−1 q q1 < p1 AND p1 < q2
pduring q q1 < p1 AND p2 < q2
p during−1 q p1 < q1 AND q2 < p2
p starts q p1 = q1 AND p2 < q2
p starts−1 q2 p1 = q1 AND q2 < p2
p finishes q q1 < p1 AND p2 = q2
p finishes−1 q p1 < q1 AND p2 = q2
p q p1 < q2 AND q1 < p2
p IS NULL p1 IS NULL

DateTime Constructors:
beginning(p) p1
previous(p) p1 −1
last(p) p2 − 1
ending(p) p2

Interval Constructors:
duration(p) p2 − p1
extract_time_zone(p) not supported

Period Constructors:
p + i [p1 + i, p2 + i)
i + p [p1 + i, p2 + i)
p − i [p1 − i, p2 − i)

 - 90 -

p extend q not possible

p ∩ q not possible
p − q not possible
p ∪ q not possible
p AT TIME ZONE i not supported
p AT LOCAL not supported

Other Operators:
CAST(a AS

PERIOD)
[a, a + 1)

CAST(p AS CHAR) not possible

4.4.8 CD-ROM Materials
of the period p, a and b denote UniSQL TIMESTAMP values, and i denotes a UniSQL INTEGER
representing seconds.

The CD-ROM contains example queries in IBM DB2 UDB, Informix-Universal Server, Microsoft Access
2000, Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and UniSQL illustrating how periods
may be simulated using a pair of dates. For some of the operations that are not possible in IBM DB2
UDB strictly in SQL, the equivalents are given as embedded SQL.

A detailed explanation of Ingres is also included, but the examples have not been tested.

4.5 SUMMARY
A period is an anchored duration of the time line. It extends from a beginning instant to a last instant.

Although a variety of representations are possible, including closed-closed, closed-open, open-closed,
open-open, a pair of starting instant and duration, and a pair of last instant and duration, the most
convenient representation is a closed-open pair of instants.

Predicates are complex for periods, as they are not totally ordered. There are 13 possible relationships
between two periods.

The delimiting timestamps can be extracted from a period. Two periods can be unioned and intersected,
and a period can be subtracted from another period. A period can be shifted by adding or subtracting an
interval.

SQL/Temporal, part of SQL3, provides built-in support for periods, including the period type constructor,
period literals, predicates, and value constructors. Additional constructs break a period into its
constituent granules and normalize a set of periods into a set of disjoint, nonadjacent periods.

4.6 READINGS
James Allen showed that there are exactly 13 disjoint binary relationships possible between two periods
[2]; these are now termed the Allen relations.

Chapter 5: Defining State Tables
OVERVIEW
A valid-time state table records the history of the enterprise. Such a table is easily specified by
appending two timestamp columns, one specifying when the row became valid and one specifying when
the row stopped being valid. The intervening time is termed the period of validity of the row.

 - 91 -

The primary key must be changed when these timestamp columns are added. There are several kinds
of temporal primary keys. The most natural variant is the sequenced primary key, which states that the
value of the indicated columns is unique at every instant of time.

There are analogous kinds of referential integrity constraints, with the most natural being again the
sequenced variant. Unfortunately, this kind is the most challenging to express in SQL.

In 1992 the University of Arizona was confronted with a knotty dilemma. Its data was managed by a
suite of COBOL legacy systems, each with its own underlying DBMS or file structure. Personnel records
were (and continue to be) managed by PSOS (Personnel Operating System), using the Transact
DBMS. Financial records, including purchasing, reorders, property management, fixed assets, and the
ledger, are managed by FRS (Financial Records System), which uses IDMS. Student records are
contained in yet another system, SIS (Student Information System), which uses VSAM. To obtain
information from a specific system, someone in the Center for Computing and Information Technology
(CCIT) who was familiar with that system would be tasked to write a report program, which often took
several weeks. Getting an integrated report across two or more of these databases was exceedingly
difficult. About the only positive thing that could be said about this situation was that it guaranteed job
security for CCIT personnel.

Cheryl Bach, an impassioned and imaginative seven-year CCIT veteran, had a better idea. She
proposed that a data warehouse be created in a relational DBMS, gathering sanitized information from
all of these systems into a single, consistent database. Perhaps predictably, this suggestion was not
embraced by the the CCIT rank and file. So Larry Rapagnani, then CCIT director, let Cheryl start a
somewhat clandestine project to develop this system, to be called the University Information System
(UIS), using a VAX-2000 and Rdb, which the university had been given by Digital Equipment
Corporation. The hope was that this minimally funded project would produce an initial system that
demonstrated the many benefits of a unified database, thereby reducing the resistance encountered
initially.

Cheryl, working with Htay Lay and later with Chris Janton, eventually defined some 300 tables. Some
tables were copied over daily from the legacy systems; others were added each pay period, each
month, or even each 12 months (for those tables summarizing the fiscal year). The loading phase
requires most of each night; access is permitted from 8 A.M. to 8 P.M.

UIS employs a client-server architecture. Users could connect over the network to the server and run
queries directly using interactive SQL, access it via COBOL programs running on their client machine,
or use the graphical query facilities of their local machine. The system was initially released in
December 1992. University staff were encouraged to use the system, and training was provided in the
graphical user interface so that users could write their own queries. Access was also given to CCIT
personnel, so that they could try it out on their own. While the response from users of direct access to
this information was enthusiastic, not a single person within CCIT tried the system for the first two and a
half years. Decentralization can be quite threatening.

5.1 INITIAL SCHEMA
Merging the data from each system into UIS required many technical decisions, especially as the data
generally wasn't stored in tabular format in the legacy systems. We start with four tables, the
EMPLOYEES table, the INCUMBENTS table, the POSITIONS table, and the JOB_TITLES table. The
EMPLOYEES table contains 88 columns, of which 4 are germane to this discussion: SSN, LAST_NAME,
FIRST_NAME, and ANNUAL_SALARY. The INCUMBENTS table contains 12 columns, including SSN and
PCN (position control number). The POSITIONS table contains 16 columns, including PCN and
JOB_TITLE_CODE1. The JOB_TITLES table contains 11 columns. This last table is quite sizable; there
are over 7000 job titles defined. The University is certainly prepared for future growth: 10 digits are
allocated to the job title code!

We focus on the following columns:
EMPLOYEES(SSN, LAST_NAME, FIRST_NAME, ANNUAL_SALARY)
INCUMBENTS(SSN, PCN)
POSITIONS(PCN, JOB_TITLE_CODE1)
JOB_TITLES(JOB_TITLE_CODE, JOB_TITLE)
Each row of the first table provides information on one employee, each row of the second table provides
information on a job assignment for a current employee, each row of the third table describes a

 - 92 -

particular position (which can be associated with multiple job titles), and each row of the last table
describes a particular job title code. The primary key of EMPLOYEES is SSN, the primary key of
INCUMBENTS is (SSN, PCN), and the primary key of POSITIONS is PCN. INCUMBENTS.SSN is a
foreign key to EMPLOYEES.SSN, INCUMBENTS.PCN is a foreign key to POSITIONS.PCN, and
POSITIONS.JOB_TITLE_CODE1 is a foreign key to JOB_TITLES.JOB_TITLE_CODE.

Given these tables, finding the employee's salary is easy when a relational query language such as
SQL is used:

Code Fragment 5.1: What is Bob's salary?

SELECT ANNUAL_SALARY

FROM EMPLOYEES

WHERE FIRST_NAME = 'Bob'

To determine the employee's position, all three tables need to be consulted:
Code Fragment 5.2: What is Bob's Position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

Cheryl also wished to record the date of birth. To do so, she added a column to the EMPLOYEES table,
yielding the following schema:
EMPLOYEES(SSN, LAST_NAME, FIRST_NAME, ANNUAL_SALARY, BIRTH_DATE)

Finding the employee's date of birth is analogous to determining the salary:
Code Fragment 5.3: What is Bob's date of birth?

SELECT BIRTH_DATE

FROM EMPLOYEES

WHERE FIRST_NAME = 'Bob'

Tip SQL is adequate to handle queries on isolated temporal columns.

 - 93 -

This illustrates the (limited) temporal support available in SQL (more precisely, in the SQL-92 standard,
as well as in all major commercial DBMSs), that of the column type DATE. As we saw in Chapter 3,
other temporal types are available for columns. This chapter will investigate how such temporal columns
can be used to indicate the period of validity of the other columns.

5.2 ADDING HISTORY
To the INCUMBENTS table, Cheryl appended two columns. The first column indicates when the
information in the row became valid, that is, when the employee was assigned to that position. The
second column indicates when the information was no longer valid, that is, when the employee was
assigned to another position or left the university. (Cheryl would have preferred using a period data
type, but as we saw before, such a type is not available in SQL-92, nor in Rdb. So a period is simulated
with two DATEs.)

Code Fragment 5.4: Add a period timestamp to INCUMBENTS.

ALTER TABLE INCUMBENTS ADD START_DATE DATE

ALTER TABLE INCUMBENTS ADD END_DATE DATE

To the data model, these new columns are identical to the BIRTH_DATE column, in that they are of data
type DATE. However, their meaning is quite different. The BIRTH_DATE column is independent of the
rest of the table, except for the primary key. However, the timestamp columns (START_DATE and
END_DATE) interact closely with the other columns, in that they specify the period of validity of the
values of these columns. In the INCUMBENTS table, the timestamp columns specify the period of validity
of the PCN column. This difference between the semantics of the BIRTH_DATE column and the other
timestamp columns has far-ranging consequences and is the primary impetus for this entire book.
You might argue that the BIRTH_DATE column is the start of validity of the employee, with a (not
included) column DEATH_DATE providing the end of validity of the employee. However, the period of
validity is with respect to the fact modeled by the entire row and applies to the information of that row.
The EMPLOYEES table records the employee's social security number (SSN), first name, last name, and
annual salary. Taking the SSN to be time-invariant, which is a common assumption, a row of this table
associates a first name, a last name, an annual salary, and a birth date with that SSN. The period of
validity would then record when that combination of four values was valid for that SSN. If any of the four
values changed—for example, a salary raise or changing the last name of the employee (say, if he or
she got married)—the period of validity would be terminated and another row would state the new value.
For this reason, the BIRTH_DATE is simply another column and should not be considered to start the
period of validity of the row.
Such a table is called a valid-time table. This table records the history of the modeled reality. The
original table, without temporal support, is termed a snapshot table, as it logically captures the state of
the enterprise at a single point in time, much as a photographic snapshot does. Snapshot tables are
generally kept up-to-date, and so capture reality "as of now." (Jim Melton's compelling metaphor is the
"last" frame of a movie still being shot.)
In contrast with valid time, a column that just happens to be of a datetime data type, but that does not
indicate when other columns were valid, is termed a user-defined time column. BIRTH_DATE is a user-
defined time column in INCUMBENTS.
Table 5.1 is an excerpt of the INCUMBENTS table. The first row specifies that employee 111-22-3333
(Bob) had a position 90025 (Senior Vice President, Research) starting at the beginning of 1996, and
extending to June 1 of that year, when he transferred to position 120033. He stayed in that position for a
total of four months, until October 1, when he transferred to position 137112, where he continues to this
day (as we will see, the special date '3000-01-01' denotes "currently valid"). An

Table 5.1: An excerpt from the INCUMBENTS valid-time state table.
SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-

01
111223333 120033 1996-06-01 1996-08-

01

 - 94 -

111223333 120033 1996-08-01 1996-10-
01

111223333 137112 1996-10-01 3000-06-
01

444332222 120033 1997-01-01 3000-01-
01

other employee, 444-33-2222, has remained in the same position since being hired the beginning of the
following year.
This table has several interesting features. First, although Bob appears in four rows, he had only one
position at any point in time (note that closed-open periods are used in this table). The candidate keys
for this particular table are (SSN, PCN, START_DATE), (SSN, PCN, END_DATE), and (SSN, PCN,
START_DATE, END_DATE). As we will see shortly, none of these capture the desired constraint.

Second, neither employee has gaps in their position history (a gap represents times when there was no
PCN associated with their SSN); disallowing gaps may be appropriate or unacceptable, depending on
the semantics of the application.

Water Clocks
A sundial is useless at night and on overcast days. The Mesopotamians invented the clepsydra, or
water clock, for just such situations. This clock is based on the principle that it takes an approximately
fixed amount of time for a given amount of water to drain through a small hole, drop by drop. (This
same principle—with a different material, sand—is the basis for the hourglass.) Because the length of
a day, and thus an hour (see the Hours sidebar in Chapter 2), can vary when measured by a sundial,
but is of constant length when measured with a clepsydra, the standard hour was defined based on an
equinoctial day, in which the daylight and nocturnal portions were equal, and thus the hours were also
of equal length.

The third observation is that this table can be viewed as a compact representation of a sequence of
snapshot tables, each valid on a particular day. The snapshot table valid on January 1, 1996, contains
one row, (111223333, 900225). The snapshot table valid on September 13, 1996, also contains one
row, (111223333, 120033). The table valid on February 22, 1997, contains two rows: (111223333,
137112) and (444332222, 120033). This long sequence of snapshot tables is very efficiently encoded in
these five rows, by associating a period with each row.

Also note that the second and third rows have identical SSN and PCN values, yet do not represent a
duplicate in any of the snapshot tables, as the periods associated with these two rows do not overlap.
Indeed, it might be possible to replace these rows with a single row, associated with the period [1996-
06-01 – 1996-10-01).
EMPLOYEES.ANNUAL_SALARY records only the most recent salary the employee received. The table
as it is in the personnel system is quite a bit more complicated. It also includes STATUS_BEGIN_DATE
and STATUS_END_DATE, which together indicate when another included column, EMPLM_STATUS, was
valid, though only the most recent status is retained in the table. EMPLOYEES also includes the
PRIOR_SSN, as well as 17 dates, indicating when important events occurred, such as
PAY_CHANGE_DATE. As discussed above, none of these date fields constitute the commencement or
end of the period of validity. In fact, the EMPLOYEES table doesn't even have a period of validity; it is a
snapshot table. When examining a particular table, you must determine which DATE columns apply to
the row as a whole, via the period of validity for that row, and which DATE columns merely provide
information, such as the employee's date of birth or their most recent promotion date.

 - 95 -

The PSOS legacy system, however, does record the employment history. The salary history information
is included in UIS in the ZPSOS_COMPENSATION_HISTORY table. The compensation history table is
quite difficult to decipher. Its key is (CHRONOLOGY_KEY, SSN), the former a 16-character string
specifying the date and time the record was inserted. There are also HISTORY_START_DATE and
HISTORY_END_DATE columns, indicating when the information in the record applied (the period of
validity).

To get at the information desired, we define a view that eliminates most of the columns. The WHERE
clause extracts the most recently stored row for each period of validity. We are interested only in full-
time employees (full-time equivalent = 1), for which the hourly rate is actually the annual salary.

Code Fragment 5.5: Extract the relevant information.

CREATE VIEW SAL_HISTORY

AS SELECT SSN, SALARY_HOUR_RATE AS AMOUNT,

 HISTORY_START_DATE, HISTORY_END_DATE

FROM ZPOS_COMPENSATION_HISTORY AS Z

WHERE CHRONOLOGY_KEY = MAX(SELECT CHRONOLOGY_KEY

 FROM ZPOS_COMPENSATION AS Z2

 WHERE Z2.SSN = Z.SSN

 AND Z2.HISTORY_START_DATE < Z.HISTORY_END_DATE

 AND Z.HISTORY_START_DATE < Z2.HISTORY_END_DATE)

 AND EMPLOYEE_FTE = 1.00

Tip A valid-time table records the history of the modeled reality. The history can be retained

by adding timestamp column(s).
The value of the column(s) specifying the period of validity of a row is called the timestamp of the row;
the columns themselves are called the timestamp columns, or the timestamps of the table. This term, in
lowercase letters, should be distinguished from SQL-92's TIMESTAMP data type.

5.3 TEMPORAL KEYS
The first consequence of adding valid-time support to a table is that the primary key of such tables
needs to take the timestamp into consideration. The value of the primary key of a table must be unique;
that is, each value must be contained in at most one row of the table. For the original INCUMBENTS
table, the value of the (SSN, PCN) pair of columns is unique, at any point in time. Hence, the following
table constraint works fine.

Code Fragment 5.6: The Primary Key of INCUMBENTS is (SSN, PCN).

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

Informally, this says that no employee (identified by an SSN value) can have the same position more
than once simultaneously.

 - 96 -

Tip The original primary key is not, by itself, a primary key of the temporal table.

When history is added, there may well be several rows with the same SSN and PCN. To handle this, one
or both of the new temporal columns can be appended to the key. Cheryl specified the primary key of
INCUMBENTS as (SSN, PCN, END_DATE); the primary key of SAL_HISTORY is (SSN,
HISTORY_START_DATE).
Cheryl could have just as easily used the start date, rather than the end date. She could also have used
both the start and end dates in the primary key. Unfortunately, none of these three alternatives is
sufficiently restrictive. The problem arises if there are overlapping periods associated with the same
SSN. Consider the following table, which is consistent with all three of the possible primary keys just
discussed. This table uses a closed-open representation of periods, and so, for example, the period of
validity of the first row includes the last day in May, but not the first day in June.
SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-

01
111223333 900225 1996-04-01 1996-10-

01
We wish to specify that there can be only one (SSN, PCN) pair, at any given time. Put another way, no
one can have a particular position twice at the same time. The above table violates this constraint: in
May of 1996, Bob has position code 900225 twice. The primary key constraint should have disallowed
this because two rows have the same SSN and PCN for any specific day during the months of April and
May. Unfortunately, none of the following attempts prevent the above (INCUMBENTS) table.

Code Fragment 5.7: Attempting to specify a primary key at any point in time.

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, START_DATE)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, END_DATE)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, START_DATE,

 END_DATE)

Tip Adding the timestamp does not serve to convert a nontemporal key to a temporal key.

Including the start date, the end date, or both in the primary key does not prevent Bob from having a
position (in this case, position 900225) twice in May 1996 because the rows have different values for
both of these columns.

Tip A sequenced constraint is one that is applied independently at each point in time.

What is needed is a sequenced constraint, which is applied at each point in time. The constraint desired
is that no two rows have the same value for the SSN and the PCN. Because we want this constraint to
be satisfied at every point in time, it becomes a sequenced constraint. All constraints specified on a
snapshot table have sequenced counterparts, specified on the analogous valid-time state table. A
sequenced primary key constraint can be specified in SQL as follows:

Code Fragment 5.8: (SSN, PCN) is a sequenced primary key for INCUMBENTS.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 - 97 -

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE))

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL OR I.PCN IS NULL)

)

Tip A sequenced primary key can be expressed as an SQL assertion or table constraint.

The last two predicates in the WHERE clause constitute the overlap predicate on two periods defined by
their delimiting dates. We use a COUNT aggregate to ensure that I1 and I2 aren't the exact same row.
The intuition of this sequenced constraint is "no employee can have the same position more than once
simultaneously."

In the nested SELECT, we could have used the SQL-92 OVERLAPS predicate, instead of the last two
lines:
AND (I1.START_DATE, I1.END_DATE) OVERLAPS (I2.START_DATE, I1.END_DATE)
If a closed-closed representation for the period of validity is used (in which case the END_DATE of the
above table would be the last day that PCN was valid, or 1996-05-30), the predicate must be altered
slightly:

Code Fragment 5.9: (SSN, PCN) is a sequenced primary key for INCUMBENTS, assuming a closed-
closed timestamp representation.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 AND I1.START_DATE <= I2.END_DATE

 AND I2.START_DATE <= I1.END_DATE))

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL OR I.PCN IS NULL)

 - 98 -

)

All the tables shown in this book use a closed-open representation for the period of validity, unless
otherwise indicated. The code fragments will also make this assumption. If some other representation
for the period of validity is used, the SQL predicates must be examined and possibly changed.

5.4 HANDLING NOW
It's the fabulous castle of Now.

You can walk in and wander about,

But it's so very thin,
Once you are, then you've been—

And soon as you're in, you're out.

—Shel Silverstein, "The Castle"
Tip The special value "now" can be stored as a specific instant value that will not

occur otherwise.
What should the timestamp be for current data? In the PSOS legacy system, current data is indicated
with an end date of 00-00-00, which is the code for "not applicable." The extraction utility replaces this
with January 1, 1860. (In Rdb, the minimum value for a VMS_DATE type is 1858-11-17. However, the
designers wanted this value to be a little more recognizable, so they chose the first day of the following
decade. They are thinking about using 1859-12-31 to represent a date that could not be correctly
interpreted, such as a YYMMDD format date with a value of 990001.) Hence, Bob's current salary in
INCUMBENTS has a START_DATE of July 1, 1996, and an END_DATE of January 1, 1860. One
advantage is that when records are ordered by end date, current row(s) show up first.

Using this date for current data requires that the applications and queries that use UIS have to treat
such values specially. Specifically, to identify the current records, the following predicate can be used:
WHERE INCUMBENTS.END_DATE = DATE '1860-01-01'

Anyone using the database would have to be told early on about this special, and prevalent, time value.
And clearly, taking this at face value is a blatantly false model of the enterprise.
There are several somewhat more appealing alternatives. Rather than resorting to a particular date,
NULL can be used. This yields a slightly more readable predicate.
WHERE INCUMBENTS.END_DATE IS NULL

Tip "Now" can also be represented with a null value, but this complicates queries.

The disadvantages are (1) users sometimes get confused when they encounter a date of NULL, (2) SQL
states that any comparison with a null value returns false, with the implication that rows with null values
will simply be absent from the result of most queries that contain predicates on the timestamps, which
would confuse users, and (3) other uses of NULL are no longer available. We cannot state, for example,
that the end date is unknown, which is quite different from stating that the end date is "now."
Another approach, one that is used extensively, is to set the end date to the largest value in the
timestamp domain (termed the end of time). The legacy financial system, FRS, uses 99-99-99 for this
purpose. The extraction process for UIS converts this to 3000-01-01. Why not 9999-12-31? The Sybase
DBMS was being considered for UIS, and it doesn't support that date. Chris Janton wanted this date to
be within the range of acceptable dates for all the prominent database systems available then and to be
visually apparent. So he picked a millennium date that was far into the future, thereby creating the year
3000 problem. However, the designers will be long gone when this problem rears its head. Using a date
(far) into the future allows CURRENT_DATE to be used to identify current records:
WHERE INCUMBENTS.START_DATE <= CURRENT_DATE
 AND CURRENT_DATE < INCUMBENTS.END_DATE

Tip "Now" can be represented with "forever," or a close approximation. However, it still
renders the data a rather inaccurate model of reality.

 - 99 -

The problem is that this model is also conspicuously fallacious. We can safely state that Bob will not
have this position in the year 3000, though that is exactly what the current row records.

With the lack of an entirely acceptable solution, we will use 3000-01-01 in all of our UIS examples to
represent both "now" and "forever."

5.5 UNIQUENESS REEXAMINED
A primary key constraint states two things about the associated table. First, the value of each of the key
columns in any row cannot be null. Second, there can be no two rows with the same values for the key
columns. In fact, a primary key can be expressed in another way, as a pair of constraints, NOT NULL
and UNIQUE.

Tip Two rows are value-equivalent if the values of their nontimestamp columns are
identical. Value equivalence is a weak form of duplication.

Let's examine the uniqueness constraint in the context of the INCUMBENTS table shown in Table 5.2,
considering for now the entire row. While in this case all columns are either key columns nontimestamp
columns, the following definitions hold even in the presence of other, data columns.
There are four kinds of duplicates involved, all but one of which are present in Table 5.2. All of the rows
are considered value-equivalent, in that the values of all of the columns except for the timestamp
columns are identical. Value equivalence is a weak form of duplication.

Tip Two rows are sequenced duplicates if they are duplicates at some instant.

The first two rows illustrate a sequenced duplicate. Here, the values of nontimestamp columns, in this
case SSN and PCN, are value-equivalent and the periods of validity overlap, in this case for the months
of April and May of 1996. As with primary keys, the adjective sequenced means that the operation or
constraint is applied independently at every point in time. Here, Bob has two salaries for these two
months, as well as for the month of December 1997.

Tip Two rows are current duplicates if they are sequenced duplicates at the current
instant.

A variant of sequenced duplicate is a current duplicate, in which there are duplicate rows in the current
state. It is currently March 20, 1997; there are no current duplicates because only one row, the last, is
currently valid. Interestingly, whether a table contains current duplicate rows can change over time,
even if no modifications are made to the table. In December 1997, a current duplicate will suddenly
appear in Table 5.2.

Table 5.2: A table containing several kinds of duplicates.
SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1996-10-01 1998-01-

01
111223333 120033 1997-12-01 1998-01-

01

Table 5.3: Implications among duplicate variants.

Sequenced Current Value-

equivale
nt

Nonsequenced

Sequenced √ √

Current √ √ √

Value-
equivalent

 √

 - 100 -

Nonsequenced √ √ √

Tip Two rows are nonsequenced duplicates if the values of all columns are identical.

Finally, the second and third rows are nonsequenced duplicates, in which the values of all of the
columns, including the timestamp columns, are identical. This adjective emphasizes that the property (in
this case, duplicates) is not applied independently at each point in time, but rather is applied to the table
as a whole, ignoring its temporal nature.
Table 5.3 indicates how these variants interact. Each entry specifies whether two rows satisfying the
variant on the left will also satisfy the variant listed across the top. A check mark states that the top
variant will be satisfied; an empty entry states that it may not. For example, if two rows are
nonsequenced duplicates, they will also be sequenced duplicates, for the entire period of validity.
However, two rows that are sequenced duplicates are not necessarily nonsequenced duplicates, as
illustrated by the first two rows of the above INCUMBENTS table.
The least restrictive form of duplication is value equivalence, as it simply ignores the timestamps. Note
that in Table 5.3 this form implies no other. The most restrictive is nonsequenced duplication, as it
requires all the column values to match exactly. It implies all but current duplication.

SQL's UNIQUE constraint prevents value-equivalent rows.
Code Fragment 5.10: Prevent value-equivalent rows in INCUMBENTS.

CREATE TABLE INCUMBENTS (

 …

 UNIQUE (SSN, PCN)

)

Tip

The
SQL
UNIQ
UE
constr
aint
preve
nts
nonse
quenc
ed
duplic
ates.

Intuitively, a value-equivalent constraint (or a value-equivalent primary key constraint) states that "once
a position is assigned to an employee, it can never be repeated later," because doing so would result in
a value-equivalent row.

We can also use a UNIQUE constraint to prevent nonsequenced duplicates, by simply including the
timestamp columns.

Code Fragment 5.11: Prevent nonsequenced duplicate in INCUMBENTS.

CREATE TABLE INCUMBENTS (

 - 101 -

 …

 UNIQUE (SSN, PCN, START_DATE, END_DATE)

)

Tip Nonsequenced uniqueness constraints are easy to specify in SQL, but do not

correspond to a naturally stated condition on the modeled reality.

While nonsequenced duplicates are easy to prevent via SQL statements, such constraints are not that
useful in practice. The intuitive meaning of the above nonsequenced unique constraint (or the closely
related nonsequenced primary key constraint) is something like "an employee cannot have the same
position twice over identical periods." However, this constraint can be satisfied by simply starting one of
the assignments a day earlier or later; the employee can still have two identical positions for overlapping
periods.

Current duplicates involve just a little more effort.
Code Fragment 5.12: Prevent current duplicates in INCUMBENTS.

CREATE TABLE INCUMBENTS (

…

 CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 AND I1.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < I1.END_DATE

 AND I2.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < I2.END_DATE)))

)

Tip

Current
unique
ness
constra
ints
require
an
SQL
constra
int or
asserti

 - 102 -

on,
and
are
rather
fragile.

Here the intuition is that no employee can have two identical positions. The present tense is used to
indicate "at the current time."

As mentioned above, the problem with a current uniqueness constraint is that it can be satisfied today
but violated tomorrow, even if there are no changes made to the underlying table.
If we know that the application will never store future data, we can approximate a current uniqueness
constraint by simply appending the END_DATE.

Code Fragment 5.13: Prevent current duplicates in INCUMBENTS, assuming no future data.

CREATE TABLE INCUMBENTS (

 …

 UNIQUE (SSN, PCN, END_DATE)

)

Tip The SQL UNIQUE constraint with the end date prevents current duplicates, if

future data is never stored.
This works because all current data will have the same END_DATE (the special value DATE '3000-
01-01').
As a primary key is just a combination of UNIQUE and NOT NULL, we can prevent sequenced
duplicates by removing the NOT NULL portion from CF-5.8.

Code Fragment 5.14: Prevent sequenced duplicates in INCUMBENTS.

CREATE TABLE INCUMBENTS (

 …

 CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE)))

)

 - 103 -

The intuition behind a sequenced unique (or sequenced primary key) constraint is that "at no time can
an employee have two identical positions." This constraint is a natural one. A sequenced constraint is
the logical extension of a conventional constraint on a nontemporal table.

Tip

Sequenced uniqueness constraints are also specified with an SQL constraint or
assertion. Such constraints are analogous to conventional uniqueness constraints
on nontemporal tables.

If we know that the application will make only current modifications, that is, will only modify the current
state, then we can express a sequenced constraint via a current constraint. There are three cases to
consider to see that this holds: past, current, and future. Future data cannot be stored, and so the
sequenced constraint will never be violated in the future. For current data, the current constraint will
ensure the sequenced constraint. For past data, that data at one time was current data, and so satisfies
the constraint. Hence, a current constraint will imply a sequenced constraint, if only current
modifications were made, and if the current constraint was present from the definition of the table. For
sequenced uniqueness, we saw above (CF-5.13) that current uniqueness could be specified by
appending the END_DATE. This also works for sequenced duplicates, under the stated assumptions.

Code Fragment 5.15: Prevent sequenced duplicates in INCUMBENTS, assuming only current
modifications.

CREATE TABLE INCUMBENTS (

 …

 UNIQUE (SSN, PCN, END_DATE)

)

To review, let's consider briefly the integrity constraint "Each employee has at most one position."
(Contrast this with the constraint discussed above: "Each employee can have a position at most once,"
which allows an employee to have two positions at one time.) On a snapshot table, this is expressed
with
 UNIQUE (SSN)

The sequenced variety, "At any time, an employee has at most one position," is violated by the following
temporal table:
SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-

01
111223333 900225 1996-04-01 1996-10-

01

To avoid such situations, the following expresses the sequenced constraint.
Code Fragment 5.16: INCUMBENTS.SSN is sequenced unique.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 - 104 -

 WHERE I1.SSN = I2.SSN

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE))

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL)

)

The nonsequenced variant is "an employee cannot have more than one position over two identical
periods." This is expressed as follows:

Code Fragment 5.17: INCUMBENTS.SSN is nonsequenced unique.

UNIQUE(SSN, START_DATE, END_DATE)

Finally, the current variant is "an employee has [note present tense] at most one position," expressed as
follows:

Code Fragment 5.18: INCUMBENTS.SSN is current unique.

CHECK (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I1

 WHERE AND START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < END_DATE

 AND 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN

 AND I2.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < I2.END_DATE)))

5.6 REFERENTIAL INTEGRITY
A referential integrity constraint specifies that the value of the specified column in every row of the
referencing table appears as the value of a specified column in a row of the referenced column. How
such constraints are expressed depends heavily on whether the referencing and referenced tables are
temporal tables. There are four cases, depending on whether the referencing table is temporal and
whether the referenced table is temporal.

 - 105 -

Case 1 Neither table is temporal.
If neither table is temporal, then SQL's constructs are perfectly adequate. Assuming for the moment
that the INCUMBENTS table has no timestamp columns, the fact that INCUMBENTS.PCN is a foreign
key for POSITIONS.PCN can be expressed as follows:

Code Fragment 5.19: INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table is
temporal).

CREATE TABLE INCUMBENTS (

 …

 PCN CHAR(6) REFERENCES POSITIONS,

 …

)

Case 2 Only the referencing table is temporal.
If the referencing table is temporal, but the referenced table is not, the same code works as well.
Returning to INCUMBENTS being a valid-time state table, with columns START_DATE and END_DATE,
the above REFERENCES fragment works fine. Here the assumption is that the nontemporal table
contains time-invariant data, that is, data that doesn't vary over time.

Case 3 Both tables are temporal.
If the referenced table is temporal, the situation is considerably more complex. In order to discuss this,
we render POSITIONS temporal by adding START_DATE and END_DATE columns. It turns out that in
UIS position code numbers are sometimes invalidated, and occasionally a PCN is reused. However,
UIS only maintains the current state of the POSITIONS table, so when a PCN is reused, an old value
will incorrectly be matched to a new job title code. The same holds for the job title code. In fact, there
are (at the time this was written) 881 job titles that appear in POSITIONS.JOB_TITLE_CODE1 that
are not associated with any rows in JOB_TITLES. We wish to avoid this situation by defining
appropriate referential integrity constraints.

 - 106 -

As with keys and duplicates, there are three kinds of referential integrity constraints on temporal
tables: current, sequenced, and nonsequenced.

Current referential integrity ("the PCN of all current incumbents must be listed in the current positions")
is straightforward, using the trick of converting a predicate of the form ∀P into ¬∃(¬P). For a current
foreign key, P is "a current incumbent that has a current position," and ¬P is "a current incumbent
whose position is not current."

Code Fragment 5.20: INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both tables are
temporal).

CREATE ASSERTION INCUMBENTS_Current_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM INCUMBENTS AS I

 WHERE I.END_DATE = DATE '3000-01-01'

 AND NOT EXISTS (

 SELECT *

 FROM POSITIONS AS P

 WHERE I.PCN = P.PCN

 AND P.END_DATE = DATE '3000-01-01'))

)

Here we just extract the current state on which to apply the constraint. Mirroring the current uniqueness
constraint, current referential integrity can be satisfied today yet be violated tomorrow, even if no
changes are made to either table.

Tip Current referential integrity requires an SQL constraint or assertion.

As with primary keys and duplicates, if future data is never present, current referential integrity still
requires the above assertion because the referenced and referencing tables can change independently.
For the nonsequenced referential integrity constraint ("for each value of INCUMBENTS.PCN, there
existed at some, possibly different, time that value in POSITIONS.PCN"), CF-5.19 works perfectly well.
The fact that POSITIONS is temporal means that past positions have become invalid. Nonsequenced
referential integrity ignores this time-varying behavior and is content to match current incumbents with
out-of-date positions.

Tip Nonsequenced referential integrity is easy to express, but is unnatural.

The temporal analog of a nontemporal referential integrity constraint is the sequenced constraint: "At
each point in time, each incumbent's PCN is valid at that time." This statement applies the intuition of
referential integrity to time-varying information. As with primary keys and duplicates, stating a
sequenced referential integrity constraint in English is natural, but stating it in SQL is challenging.

 - 107 -

Asserting a sequenced foreign key
The key is a sequenced foreign key if, for all rows r in the referencing table,

 there is a row with that key value valid in the referenced table when r started,
 there is a row with that key value valid in the referenced table when r stopped,
 and there are no gaps when there are no rows in the referenced table, during r's

period of validity, that have that key value.

Code Fragment 5.21: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both tables
are temporal).

CREATE ASSERTION INCUMBENTS_Sequenced_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM INCUMBENTS AS I
 -- there was a row valid in POSITIONS when I started
 WHERE NOT EXISTS (
 SELECT *
 FROM POSITIONS AS P
 WHERE I.PCN = P.PCN
 AND P.START_DATE <= I.START_DATE
 AND I.START_DATE < P.END_DATE)
 -- there was a row valid in POSITIONS when I ended
 OR NOT EXISTS (
 SELECT *
 FROM POSITIONS AS P
 WHERE I.PCN = P.PCN
 AND P.START_DATE < I.END_DATE
 AND I.END_DATE <= P.END_DATE)
 -- there are no gaps in POSITIONS during I's period of validity
 OR EXISTS (

 SELECT *
 FROM POSITIONS AS P
 WHERE I.PCN = P.PCN
 AND I.START_DATE < P.END_DATE
 AND P.END_DATE < I.END_DATE
 AND NOT EXISTS (
 SELECT *
 FROM POSITIONS AS P2
 WHERE P2.PCN = P.PCN
 AND P2.START_DATE <= P.END_DATE
 AND P.END_DATE < P2.END_DATE)))
)

Tip Sequenced

referential

 - 108 -

integrity is
the natural
extension
to time-
varying
tables, but
requires a
complex
SQL
assertion.

This assertion may be read as follows. The outermost NOT EXISTS states that no row I of
INCUMBENTS fails the referential integrity test. The three predicates in the WHERE clause provide ways
for row I to fail the test. First, the test fails if there is no row in POSITIONS valid at the start of row I's
period of validity. Second, the test fails if there is no row in POSITIONS valid at the end of row I's
period of validity. Third, the test fails if there is a gap during row I's period of validity, a time when no
row of POSITIONS was valid. A gap exists if there is a row P that ends during row I's period of validity
that is not "extended" (towards I.END_DATE) by another row.

If we are assured that the histories in the referenced table are contiguous, that is, that there are no gaps
in these histories, then sequenced referential integrity is easier to express as two assertions.

Code Fragment 5.22: POSITIONS.PCN defines a contiguous history.

CREATE ASSERTION POSITIONS_Contiguous_History

CHECK (NOT EXISTS (

 SELECT *

 FROM POSITIONS AS P, POSITIONS AS P2

 WHERE P.END_DATE < P2.START_DATE

 AND P.PCN = P2.PCN

 AND NOT EXISTS (

 SELECT *

 FROM POSITIONS AS P3

 WHERE P3.PCN = P.PCN

 AND (((P3.START_DATE <= P.END_DATE)

 AND (P.END_DATE < P3.END_DATE))

 OR ((P3.START_DATE < P2.START_DATE)

 AND (P2.START_DATE <= P3.END_DATE)))))

)

Tip

Exploiting
contiguou
s
histories
in the

 - 109 -

reference
d table
simplifies
sequence
d
referentia
l integrity
when
both
tables
are
temporal.

Requiring a contiguous history is a nonsequenced constraint. Unlike a sequenced constraint, which
must be true independently at each point in time, a nonsequenced constraint requires examining the
table at multiple points of time. The absence of a PCN on a particular day constitutes a gap in the
history only if there is a PCN for this SSN present both before and after this date.

Given that there are no gaps, we can check for containment of the referencing period of validity by the
contiguous history in the referenced table by simply checking the delimiting instants of the referencing
period of validity.

Code Fragment 5.23: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both tables
are temporal, version 2).

CREATE ASSERTION INCUMBENTS_Sequenced_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM INCUMBENTS AS I

 WHERE NOT EXISTS (

 SELECT *

 FROM POSITIONS AS P

 WHERE I.PCN = P.PCN

 AND P.START_DATE <= I.START_DATE

 AND I.START_DATE < P.END_DATE)

 OR NOT EXISTS (

 SELECT *

 FROM POSITIONS AS P

 WHERE I.PCN = P.PCN

 AND P.START_DATE < I.END_DATE

 AND I.END_DATE <= P.END_DATE)))

 - 110 -

Case4 Only the referenced table is temporal.
The final case to consider is when the referencing table (here, INCUMBENTS) is a nontemporal table
and the referenced table (here, POSITIONS) is a temporal table.

The current constraint is easy to express.

Code Fragment 5.24: INCUMBENTS.PCN is a current foreignkey for POSITIONS.PCN (only
POSITIONS is temporal).

CREATE ASSERTION INCUMBENTS_Current_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM INCUMBENTS AS I

 WHERE NOT EXISTS (

More Water Clocks

Water clocks have their disadvantages. They are susceptible to frost, and hence are not practical in
Europe or other northern climes. Indeed, it has been argued that the mechanical clock had to be
invented in Europe, a place where the prior technology of sundials and water clocks was inadequate
on cloudy, cold days.

Arguably among the most intricate of water clocks was Su Song's astronomical clock, completed in
1094 C.E. This clock, which weighed several tons and filled a 40-foot tower, reproduced the
movements of the sun, the moon, and selected stars, as well as indicating hours and k'o, each of
which equals 14 minutes and 24 seconds of our time. Mongols invaded some 30 years later and
carried away some of the clock, and within 50 years, this magnificent clock was forgotten, to await
rediscovery by Joseph Needham in 1954. Although it would be appealing for Song's clock to be a
forerunner of the European mechanical clock, no such connection has yet been uncovered.

 SELECT *
 FROM POSITIONS AS P
 WHERE I.PCN = P.PCN

 - 111 -

 AND P.END_DATE = DATE '3000-01-01'))
)
The nonsequenced constraint is, again, expressed using CF-5.19.

Tip The case where the referencing table is nontemporal but the referenced table is
temporal reduces to the other cases just described.

For the sequenced constraint, we need to be more precise on what "at each point in time" means for a
nontemporal table. There are at least two reasonable interpretations. One is that the nontemporal table
records current data, in which case a sequenced constraint is equivalent to a current constraint. A
different interpretation is that the nontemporal table contains time-invariant data. In that case, CF-5.19
works fine.
For the INCUMBENTS table, the most appropriate interpretation is that this table records current data, in
which case CF-5.20 suffices.

5.7 CONSTRAINT ATTRIBUTES*
SQL-92 and some DBMSs provide attributes on constraints and assertions. A given constraint can be
specified as DEFERRABLE or NOT DEFERRABLE. It is critical that the constraints (and assertions)
exemplified in this chapter be DEFERRABLE. Otherwise, the constraint is checked at the end of every
SQL statement, which is undesirable because most modifications on temporal tables require several
SQL statements to implement. As we shall see in Chapter 7, a single logical deletion requires one or
two UPDATE statements, a DELETE statement, and possibly an INSERT statement. While the
database may be consistent at the end of this series of statements, it most likely will not be at the end of
the intermediate SQL statements.

Tip

Temporal constraints and assertions should be DEFERRABLE INITIALLY
DEFERRED, with each transaction containing a modification resetting this via a
SET CONSTRAINTS ALL DEFERRED.

Similarly, the constraint must be set to INITIALLY DEFERRED for the same reason (INITIALLY
IMMEDIATE requests perstatement checking).

Neither of these is the default. One must request DEFERRABLE INITIALLY DEFERRED for each
constraint on a temporal table.

5.8 IMPLEMENTATION CONSIDERATIONS
The code fragments in this chapter were implemented on a variety of DBMSs.

5.8.1 IBM DB2 Universal Database
IBM DB2 supports a UNIQUE constraint (see CF-5.10 and CF-5.11) only in version 5 (Universal
Database); in prior versions, such constraints must be expressed as triggers, or as PRIMARY KEY
constraints if it is also desired that the indicated columns are not nullable. Here is the DB2 UDB version
of CF-5.10. Even in IBM UDB 5, UNIQUE requires NOT NULLABLE, and so is equivalent to a primary
key constraint.

Code Fragment 5.25: Prevent value-equivalent rows in INCUMBENTS, in DB2 UDB 5.

CREATE TABLE INCUMBENTS (

 SSN DECIMAL(9,0) NOT NULL,

 PCN DECIMAL(6,0) NOT NULL,

 START_DATE DATE,

 END_DATE DATE,

 PRIMARY KEY (SSN, PCN)

)

 - 112 -

IBM DB2 UDB also does not support assertions, nor a SELECT statement within a CHECK constraint;
triggers are used to implement these checks. As an example, CF-5.8 may be implemented as the
following DB2 UDB trigger.

Code Fragment 5.26: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in DB2UDB.

CREATE TRIGGER seq_primary_key NO CASCADE

BEFORE INSERT ON INCUMBENTS REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL

WHEN (EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN = N.SSN AND I.PCN = N.PCN

 AND I.START_DATE < N.END_DATE

 AND N.START_DATE < I.END_DATE)

 OR N.SSN IS NULL

 OR N.PCN IS NULL)

SIGNAL SQLSTATE '70003' ('Violates Sequenced primary key')

Using triggers instead of CHECK constraints can significantly complicate matters. As an example, to
specify current referential integrity (CF-5.20) in DB2 UDB requires four triggers—INSERT and UPDATE
triggers on INCUMBENTS and DELETE and UPDATE triggers on POSITIONS—instead of the single
fairly simple CHECK constraint given earlier.

5.8.2 Microsoft Access
"Forever" in Microsoft Access 97 and Access 2000 is 23:59:59 December 31, 9999 C.E.
Neither version of Microsoft Access supports assertions. Assertion checking can be implemented in
Access via Visual Basic functions that are activated by events provided in Access forms, in particular,
the After Insert event. As an example, the following is the Visual Basic code to implement a
sequenced primary key (CF-5.8).

Code Fragment 5.27: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Access.

Function Sequenced_Primary_Key()

Dim dbs As Database, rst As Recordset

Dim rst2 As Recordset

Set dbs = CurrentDb

 - 113 -

Set rst = dbs.OpenRecordset("SELECT I1.SSN " _

 & "FROM INCUMBENTS AS I1 " _

 & "WHERE 1 < (SELECT COUNT (SSN) " _

 & "FROM INCUMBENTS AS I2 " _

 & "WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN " _

 & "AND I1.START_DATE < I2.END_DATE " _

 & "AND I2.START_DATE < I1.END_DATE); ")

Set rst2 = dbs.OpenRecordset("SELECT * " _

 & "FROM INCUMBENTS AS I " _

 & "WHERE I.SSN IS NULL " _

 & "OR I.PCN IS NULL ;")

If (rst1.EOF And rst1.BOF) Or (rst2.EOF And rst2.BOF) Then

 MsgBox ("Insertion completed")

Else

 MsgBox ("You entered an invalid input")

End If

End Function

If the result of the query (the OpenRecordset) is empty, then the assertion is satisfied.
Microsoft Access 97 also doesn't support full nesting of SQL statements. Some complex queries have
to be divided into several one-statement queries, then combined in Visual Basic functions. For example,
here is the Access equivalent of CF-5.21.

Code Fragment 5.28: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both tables
are temporal), in Access.

Function Sequenced_Foreign_Key()

Dim dbs As Database

Dim rst1 As Recordset

 - 114 -

Dim rst2 As Recordset

Dim rst3 As Recordset

Dim Record_Number As Long

Set dbs = CurrentDb

Set rst1 = dbs.OpenRecordset("SELECT * " _

 & "FROM INCUMBENTS AS I " _

 & "WHERE NOT EXISTS (SELECT * " _

 & "FROM POSITIONS AS P " _

 & "WHERE I.PCN = P.PCN " _

 & "AND P.START_DATE <= I.START_DATE " _

 & "AND I.START_DATE < P.END_DATE) ")

Set rst2 = dbs.OpenRecordset("SELECT * " _

 & "FROM INCUMBENTS AS I " _

 & "WHERE NOT EXISTS (SELECT * " _

 & "FROM POSITIONS AS P " _

 & "WHERE I.PCN = P.PCN " _

 & "AND P.START_DATE < I.END_DATE " _

 & "AND I.END_DATE <= P.END_DATE) ")

Set rst3 = dbs.OpenRecordset("SELECT * " _

 & "FROM INCUMBENTS AS I " _

 & "WHERE EXISTS (SELECT * " _

 & "FROM POSITIONS AS P " _

 & "WHERE I.PCN = P.PCN " _

 & "AND I.START_DATE < P.END_DATE " _

 & "AND P.END_DATE < I.END_DATE " _

 & "AND NOT EXISTS (" _

 - 115 -

 & "SELECT * " _

 & "FROM POSITIONS AS P2 " _

 & "WHERE P2.PCN = P.PCN " _

 & "AND P2.START_DATE <= P.END_DATE " _

 & "AND P.END_DATE < P2.END_DATE)) ")

If (rst1.EOF And rst1.BOF) Or (rst2.EOF And rst2.BOF)

 Or (rst3.EOF And rst3.BOF) Then

 MsgBox ("Insertion completed")

Else

 MsgBox ("You entered an invalid input")

End If

End Function

Each OpenRecordset handles one of the NOT EXISTS clauses of CF-5.21. Microsoft Access 2000
does support nested SQL statements. While the above function will work in Access 2000, a single
OpenRecordset statement is also acceptable.

5.8.3 Microsoft SQL Server
Microsoft SQL Server does not support ASSERTIONs; these must be implemented as triggers. As an
example, CF-5.8 may be implemented as the following SQL Server trigger.

Code Fragment 5.29: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Microsoft SQL
Server.

CREATE TRIGGER Seq_Primary_Key ON INCUMBENTS

FOR INSERT, UPDATE, DELETE AS

BEGIN

 IF ((EXISTS (SELECT I1.SSN

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(I2.SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 - 116 -

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE)))

 OR (EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL OR I.PCN IS NULL))

)

 RAISERROR('Transaction violates sequenced constraint', 1, 2)

 ROLLBACK TRANSACTION

END

5.8.4 Sybase SQLServer
Sybase SQLServer does not support ASSERTIONs; these must be implemented as triggers. As an
example, CF-5.8 may be implemented as the following Sybase trigger.

Code Fragment 5.30: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Sybase.

CREATE TRIGGER Seq_Primary_Key ON INCUMBENTS

FOR INSERT, UPDATE, DELETE AS

BEGIN

 IF ((EXISTS (SELECT I1.SSN

 FROM INCUMBENTS AS I1

 WHERE 1 < (SELECT COUNT(I2.SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE)))

 OR (EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL OR I.PCN IS NULL))

)

 - 117 -

 RAISERROR('Transaction violates sequenced constraint', 1, 2)

 ROLLBACK TRANSACTION

END

Another approach is to use the syb-identity function to differentiate rows, similar to rowid in Oracle
(compare with CF-5.31, below). To use this, "auto identity" must be turned on via
sp_dboption database_name, "auto identity", "true"

Otherwise, a column must be added to the table.
ALTER TABLE INCUMBENTS ADD row_id NUMERIC(5,0) IDENTITY

5.8.5 Oracle8 Server
"Forever" in Oracle8 Server is 23:59:59 December 31, 4712 C.E. This avoids the year 2000 problem
and the year 3000 problem, and even the year 4000 problem.
Oracle8 Server does not support assertions nor complex CHECK constraints; triggers must be used to
implement these. As an example, CF-5.8 may be implemented as the following Oracle trigger.

Code Fragment 5.31: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Oracle.

CREATE OR REPLACE TRIGGER seq_primary_key

AFTER INSERT OR UPDATE ON INCUMBENTS

DECLARE

 valid INTEGER;

BEGIN

 SELECT 1

 INTO valid

 FROM DUAL

 WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS I1 , INCUMBENTS I2

 WHERE I1.SSN = I2.SSN

 AND I1.PCN = I2.PCN

 AND I1.START_DATE < I2.END_DATE

 AND I2.START_DATE < I1.END_DATE

 AND I1.rowid <> I2.rowid)

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS I1

 - 118 -

 WHERE I1.SSN IS NULL OR I1.PCN IS NULL);

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RAISE_APPLICATION_ERROR (-20001 ,

 'SSN and PCN are sequenced primary keys');

END;

In this trigger, if the WHERE clause is not satisfied, then the exception will be raised, causing the
transaction to abort. (DUAL is a dummy system table provided by Oracle8 Server for exactly this kind of
situation.)
This example also illustrates the use of Oracle8 Server's rowid facility, which eliminates the need of
COUNT (which appeared in the original CF-5.8) to ensure no duplicates.

Another relevant limitation is that there can be only one INSERT/UPDATE trigger per table in Oracle8
Server, so multiple CHECK constraints or ASSERTIONs on a table must be merged into a single
trigger.

5.8.6 UniSQL
UniSQL does not support ASSERTIONs; these must be implemented as triggers. As an example, CF-
5.8 may be implemented as the following UniSQL trigger.

Code Fragment 5.32: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in UniSQL.

CREATE TRIGGER seq_primary_key

BEFORE COMMIT

IF (EXISTS (SELECT I1.SSN

 FROM Incumbents AS I1

 WHERE 1 < (SELECT COUNT(SSN)

 FROM INCUMBENTS AS I2

 WHERE I1.SSN = I2.SSN AND I1.PCN = 12.PCN

 AND I1.StartDate < I2.EndDate

 AND I2.StartDate < I1.EndDate))

 OR EXISTS (SELECT *

 FROM INCUMBENTS AS I

 WHERE I.SSN IS NULL OR I.PCN IS NULL)

)

 - 119 -

EXECUTE REJECT;

5.8.7 CD-ROM Materials
The CD-ROM contains all the code fragments in this chapter in IBM DB2 UDB, Microsoft Access 2000,
Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and UniSQL.

5.9 SUMMARY
A valid-time state table retains the history of the modeled reality. A table is rendered temporal by
appending one or more timestamp columns, to specify the period of validity of each row. As SQL
doesn't (yet) provide a period data type, generally two datetime columns are appended, indicating the
start and end of the period. The representation can be closed-closed or closed-open, with the latter
preferred.
The end time for current data should be the logical value "now." SQL supports CURRENT_DATE in
queries, but not as a stored value. Possibilities include using a distinguished value (UIS uses 1860-01-
01 and 3000-01-01) or the value NULL. The best approach is to use a value approximating "forever." In
Section 7.5 we will see another approach that obviates the need to store "now."

The original primary key of the table is not the primary key of the temporal table. Unfortunately, adding
the start column, or the end column, or both, generally does not suffice to define the primary key. The
central notion of a key is the absence of duplicates. There are four kinds of uniqueness constraints:

1. Current: No two currently valid rows have the same value for the key columns.
2. Value-equivalent: No two rows have the same value for their nontimestamp columns.
3. Sequenced: No two rows have the same value for the key columns at any instant.
4. Nonsequenced: No two rows have the same value for all their columns.

The database designer should first determine which uniqueness constraint is required by the
application. Then the appropriate code fragment can be used as a template. Value-equivalent and
nonsequenced uniqueness can be specified using the UNIQUE construct. An SQL constraint or
assertion is required to specify current and sequenced constraints. (In the restricted case where future
information will never be stored, adding the end column suffices for a current primary key.)
A sequenced primary key is the natural analog of a primary key on a nontemporal table and is what is
usually desired. If the application only modifies the current state, then column(s) that comprise a current
primary key will also satisfy the sequenced primary key constraint. In that case, the end time should be
included in the constraint (see CF-5.13). If any application will store future or past data, then the general
constraint for sequenced primary keys (CF-5.8) or sequenced uniqueness (CF-5.14) is required.

Table 5.4: Referential integrity code fragments.

Referenced Table

Nontemporal Temporal

Current Nonsequenced Sequenced

Referencing Nontemporal 5.19 5.24 5.19 5.20 or 5.19
Table Temporal 5.19 5.20 5.19 5.21

 or 5.22 +
5.23

 - 120 -

How to express a referential integrity constraint depends on whether the referencing and referenced
tables are temporal tables. Six code fragments were given to illustrate the possibilities. Table 5.4
identifies which code fragment applies in each situation.
In many cases, a simple constraint suffices. However, when both tables are temporal, the most natural
referential constraint is a sequenced one, where a complex assertion (CF-5.21) or pair of assertions
(CF-5.22, CF-5.23) is required. All such constraints should be specified as DEFERRABLE INITIALLY
DEFERRED.

5.10 READINGS
Ensor and Stevenson [32] recommend storing a distant date for now, as do we in Section 5.4. They
recommend that the end date column be used for a primary key. As we saw in Section 5.5, this works
only when future data will never be inserted into the table, and then, only to enforce a current primary
key. They also recommend that the end date column be added for referential integrity, which has the
same problems as using this approach with the primary key. They also consider the related problem of
avoiding gaps in the history of an entity. If gaps cannot occur, then referential integrity reduces to
ensuring that the combined period of validity for the entity in the referenced table (identified by the
foreign key) contains the period of validity of the row that references it (see CF-5.23).
Clifford et al. show how CURRENT-DATE can be stored directly as a column value, thereby providing
support for "now" [23]. This approach requires a few changes to the underlying DBMS.
Böhlen differentiates between intrastate integrity constraints, which "enforce the consistency of (all)
snapshots of a valid time database," and interstate integrity constraints, which "relate and restrict
arbitrary snapshots of a valid time database," [11]. (A snapshot of a valid-time table at a specific time
instant consists of the rows that were valid at that time.) A sequenced constraint is thus an intrastate
constraint, and a nonsequenced constraint is thus an interstate constraint. We discuss Bohlen's
taxonomy in more detail on page 341.
Barnert et al. provide an analysis of the checking required during various kinds of modifications to
ensure sequenced referential integrity [4].

David Landes tells the exciting story of Needham's discovery of Su Song's clepsydra [65].

Chapter 6: Querying State Tables
OVERVIEW
With the history stored in a valid-time state table, the most prevalent queries are still of the form "What
is true now?" Such current queries are easy to convert into SQL. A related kind of query is, "What is true
at a point in time other than now?" These time-slice queries are also easy to convert.
For each current query, for example, "Who makes more than $50,000 annually?" there is an analogous
sequenced query that asks for the history, for example, "Who makes or has made more than $50,000
annually, and when?" Converting such queries to SQL can be challenging.
In the previous chapter, we saw that there are three kinds of constraints you can specify for a temporal
table: current, sequenced, and nonsequenced, with nonsequenced constraints the easiest to specify yet
the least useful. A similar situation exists for queries and modifications applied to temporal tables.
Here we examine common queries over temporal tables, from extracting the current state, to extracting
previous states, to evaluating several kinds of sequenced queries. In the following chapter, we then turn
to modifications, examining the three variants there. We assume that the INCUMBENTS and
SAL_HISTORY tables are valid-time state tables.

6.1 EXTRACTING THE CURRENT STATE

Tip Executing a query on the current state of a temporal table requires an additional
predicate.

Queries on the original table (before it was timestamped to render it as a valid-time table) correspond to
queries that extract the current state of the valid-time table. To determine Bob's (current) position, we
take the original query (CF-5.2) and add a predicate to the WHERE clause.

Listing 6.1: What is Bob's current position?

SELECT JOB_TITLE_CODE1

 - 121 -

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND END_DATE = DATE '3000-01-01'

Note that only one of the tables used in this query is temporal: INCUMBENTS. Hence the test for the
particular date need only be applied to that table. We could use the same approach when "now" is
represented with NULL.

The query on a table using the end of time ("forever") to represent "now" is more general, as it will work
even after the year 3000, thus avoiding the Y3K problem.

Listing 6.2: What is Bob's current position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < END_DATE

The last two lines of the predicate are equivalent to requiring that the current date overlap the period of
validity. Note that BETWEEN cannot be used here, because it would permit the END_DATE to equal
CURRENT_TIMESTAMP, which is incorrect because we are using a closed-open representation for
period timestamps.

Tip Current joins over two temporal tables are not that much harder.

Joins over the current state of temporal tables can be handled similarly to queries involving one
temporal table. To obtain the employee's (current) position and salary, the current state of both the
INCUMBENTS and the SAL_HISTORY tables must be used. (We could have also gotten the current
salary from the EMPLOYEES table, but that wouldn't have been as fun.)

Listing 6.3: What is Bob's current position and salary?

SELECT JOB_TITLE_CODE1, AMOUNT

FROM EMPLOYEES, INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 - 122 -

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < END_DATE

 AND HISTORY_START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < HISTORY_END_DATE

 AND SAL_HISTORY.SSN = EMPLOYEES.SSN

This same trick works for more complex queries, including those with subqueries.
Listing 6.4: What employees currently have no position?

SELECT FIRST_NAME

FROM EMPLOYEES

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS

 WHERE EMPLOYEES.SSN = INCUMBENTS.SSN

 AND START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < END_DATE)

In such queries, every temporal table has to be restricted to the current state.

6.2 EXTRACTING PRIOR STATES
The queries just discussed are termed current time-slice queries. More accurately, the class is termed a
current valid time-slice query, as such queries select the state valid at a particular time. Time-slice
queries need not be restricted to the current state. A common query requests information valid at the
beginning of the year.

Listing 6.5: What was Bob's position at the beginning of 1997?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 - 123 -

 AND START_DATE <= DATE '1997-01-01'

 AND DATE '1997-01-01' < END_DATE

If "now" is represented with a particular value, we have to augment the predicate, replacing the last line
with
AND (DATE '1997-01-01' <= END_DATE OR END_DATE = DATE '1860-01-01')

Tip Time-slice queries, over a previous state, require an additional predicate for each
temporal table.

Using NULL as a proxy for "now" is handled analogously in such queries:
AND (DATE '1997-01-01' <= END_DATE OR END_DATE IS NULL)

For queries involving multiple temporal tables, the WHERE clause most closely associated with the
FROM clause that defines a correlation name over a temporal table should be augmented as shown
above to select the previous state of that table.

6.3 SEQUENCED QUERIES
The above queries take time-varying tables and extract a state at a particular point in time. Once that
state is available, it can be manipulated conventionally.

We now consider queries in which the resulting table is a valid-time table. The query will be over one or
more temporal tables and produce a temporal result. Here we consider sequenced variants of basic
operations: selection, projection, union, sorting, join, difference, and duplicate elimination.

Sequenced selection is particularly easy: no change is necessary.
Listing 6.6: Who makes or has made more than $50,000 annually?

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

Tip

A
select
ion (a
predi
cate
over
a
nonti
mest
amp
colum
n) is
a
sequ
ence
d
select

 - 124 -

ion
on a
temp
oral
table.

In this code fragment we focus on selection by using a target list of '*', which will return all the columns,
including the desired timestamp columns. This is in contrast to a current query, which should return a
snapshot state, without timestamp columns (compare with CF-6.3 and CF-6.4), or with a prior valid
time-slice query (e.g, CF-6.5, which also doesn't include the timestamp columns).

Sequenced projection is also easy: simply include the timestamp column(s) in the select list. The
following query performs a projection on SSN.

Listing 6.7: List the social security numbers of current and past employees.

SELECT SSN, HISTORY_START_DATE, HISTORY_END_DATE

FROM SAL_HISTORY

Tip A sequenced projection of specified columns in the SELECT clause can be effected by

including the timestamp columns.
Note that duplicates resulting from the projection are retained. Adding DISTINCT will remove these
duplicates, but is probably not what is desired. Section 6.5 will examine the fascinating subtleties of
removing duplicates from temporal tables, including describing why adding DISTINCT is not sufficient.

Sequenced sorting requires the result to be ordered, at each point in time. This can easily be
accomplished by appending the start and end times to the sort columns in the ORDER BY clause.

Listing 6.8: Sequenced sort INCUMBENTS on the position code (first version).

SELECT *

FROM INCUMBENTS

ORDER BY PCN, START_DATE, END_DATE

Table 6.1 shows the result for five sample rows. For each point in time, the state at that time, taken in
the same sequence as the underlying table, will be ordered by PCN.

Table 6.1: An excerpt of INCUMBENTS.
SSN PCN START_DATE END_DATE
111223333 120033 1996-10-01 1997-06-

01
111223333 137112 1996-01-01 1996-10-

01
111223333 341288 1995-03-01 1996-01-

01
111223333 723401 1997-10-01 1998-01-

01
111223333 908654 1997-06-01 1998-01-

01

 - 125 -

Table 6.2: A sorted version of Table 6.1.
SSN PCN START_DATE END_DATE
111223333 341288 1995-03-01 1996-01-

01
111223333 137112 1996-01-01 1996-10-

01
111223333 120033 1996-10-01 1997-06-

01
111223333 908654 1997-06-01 1998-01-

01
111223333 723401 1997-10-01 1998-01-

01

The valid time-slice over this table on November 19, 1997 will be the following, which indeed is ordered
by PCN:
SSN PCN
111223333 723401
111223333 908654

Putting the timestamp columns first,
ORDER BY START_DATE, END_DATE, PCN
will not work. Applying such an order to Table 6.1 results in Table 6.2. Now take a valid time-slice on
November 19, 1997, preserving the underlying order. Two rows result,
SSN PCN
111223333 908654
111223333 723401

which are not correctly sorted.

So, our conclusion is that appending the timestamp columns to the end of the composite sort key results
in a sequenced sort. Interestingly, sequenced sorting can also be accomplished by omitting the
timestamp columns.

Listing 6.9: Sequenced sort INCUMBENTS on the position code (second version).

SELECT *

FROM INCUMBENTS

ORDER BY PCN

Tip

A
quer
y
usin
g
ORD
ER

 - 126 -

BY
is
auto
mati
cally
sequ
ence
d,
whet
her
or
not
the
time
stam
p
colu
mns
are
retai
ned.

The result is still ordered by the sort columns at all points in time. This can be argued by contradiction.
Take a valid time-slice at any point in time of the result of CF-6.9, respecting the order or that table. If
the PCN of two successive rows of that time-slice are not ordered by PCN, then the associated rows of
the result of CF-6.9 must also not be ordered by PCN, which is impossible.

The same considerations hold for sequenced union (if duplicates are retained).
Listing 6.10: Who makes or has made more than $50,000 annually or less than $10,000?

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

UNION ALL

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT < 10000

Tip

A
UNI
ON
ALL
over
temp
oral
table
s is
auto
mati
cally
sequ
ence

 - 127 -

d if
the
time
stam
p
colu
mns
are
retai
ned.

It is appealing that the selection, projection (without duplicate elimination), sorting, and union-all queries
are all automatically sequenced, without change.
A UNION without ALL eliminates duplicates but is surprisingly difficult to express in SQL. Section 6.5
will show how to do that. But before we confront that challenging query, let's consider sequenced join
queries.

6.3.1 Sequenced Joins
In Section 6.1, we showed how you can produce the join of the current states of two valid-time tables
(see CF-6.3). A more challenging query is to perform the join itself in a temporal fashion. What is
desired here is to combine the history from the two tables, termed a sequenced join.

As an example, to determine the salary and position history for each employee, we must determine, for
each point in time, the employee's salary and position.

Mean Solar Time
One problem with true solar time (see page 95) is that the motion of the sun is not uniform because
the orbit of the earth is an ellipse rather than a circle. Sometimes the earth moves faster, and
sometimes it moves slower, with the result that some days are slightly shorter or longer than others.
This variability is vexing to those who use mechanical clocks, which when working well tick off hours
that are very similar in duration. Mean solar time, or mean time, is a calculated time, determined by
averaging true solar time over the year.
The difference between mean solar time and true solar time, termed the equation of time, peaks at+14
minutes in February, and is smallest at −16 minutes at the beginning of November (see Figure 6.1).
To calibrate your watch, take the true time indicated by a sundial and add the value for the equation of
time for the current day. With out this correction, a sundial is absolutely accurate only four times a
year—around April 16, June 14, September 1, and December 25.

Figure 6.1: The equation of time. (Redrawn from Sundials: History, Theory, and Practice by René R.J. Rohr.
Dover Publications, 1996.)

The salary comes from SAL_HISTORY AMOUNT, and the position is available in INCUMBENTS.PCN.
However, to do this on a point-by-point basis would be extremely inefficient, as well as wasteful,
because the salary and position remain unchanged for many consecutive days. So we will instead
compute the history using the periods themselves.

 - 128 -

We initially assume that there are no duplicate rows in either of the underlying temporal tables. This is
probably the case for the SAL_HISTORY table; it is doubtful that an employee has two salaries at one
time. The fact that an employee can have multiple positions (e.g., a department head who is also a
faculty member) is accommodated via the position control number. The POSITIONS table maps each
PCN to JOB_TITLE_CODE1 through JOB_TITLE_CODE4; indeed, this is the primary rationale

Figure 6.2: First case of a sequenced join.

Figure 6.3: Second case of a sequenced join.

for that table. On page 112 we listed only the JOB_TITLE_CODE1 column; we now mention these other
three columns to make the point that no employee has two PCN values at the same time in the
POSITIONS table. In summary, in the case of a sequenced join between the SAL_HISTORY and
POSITIONS tables, there are no duplicate rows to contend with.
Using SQL, the query must do a case analysis of how the period of validity of each row of
SAL_HISTORY overlaps the period of validity of each row of INCUMBENTS; there are four possible
cases.

Tip A sequenced join requires four SELECT statements and complex inequality
predicates.

In the first case, the period associated with the SAL_HISTORY row is entirely contained in the period
associated with the INCUMBENTS row. Since we are interested in those times when both the salary and
the department are valid, the intersection of the two periods is the contained period, that is, the period
from S.HISTORY_START_DATE to S.HISTORY_END_DATE. We illustrate this case in Figure 6.2, with
the right end emphasizing the closed-open representation. In the second case, neither period contains
the other (shown in Figure 6.3). The other cases similarly identify the overlap of the two periods.

Listing 6.11: Provide the salary and position history for all employees.

SELECT S.SSN, AMOUNT, PCN,

 S.HISTORY_START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.START_DATE <= S.HISTORY_START_DATE

 AND S.HISTORY_END_DATE <= INCUMBENTS.END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

 - 129 -

 S.HISTORY_START_DATE, INCUMBENTS.END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND S.HISTORY_START_DATE >= INCUMBENTS.START_DATE

 AND INCUMBENTS.END_DATE < S.HISTORY.END_DATE

 AND S.HISTORY_START_DATE < INCUMBENTS.END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

 INCUMBENTS.START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.START_DATE > S.HISTORY_START_DATE

 AND S. HISTORY. END_DATE <= INCUMBENTS.END_DATE

 AND INCUMBENTS.START_DATE < S.HISTORY_END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

 INCUMBENTS.START_DATE, INCUMBENTS.END_DATE

FROM SAL_HISTORY AS S. INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.START_DATE > S.HISTORY_START_DATE

 AND INCUMBENTS.END_DATE < S. HISTORY_END_DATE

When a sequenced join is applied to the INCUMBENTS excerpt in Table 6.1 and the SAL_HISTORY
excerpt in Table 6.3, Table 6.4 results. The first row, for example, results from the intersection of the
period [1995-03-01–1996-01-01) from the INCUMBENTS table and [1995-03-01–1996-05-01) from the
SAL_HISTORY table.
As an alternative way of viewing the result, consider the date January 1, 1997. One row in the
INCUMBENTS table is valid on that day, with a PCN of 120033. One row from the SAL_HISTORY table is
also valid on that date, with an amount of 16.25. This date thus appears once in the result, in the period
of validity of row four.
This query requires care to get the 10 inequalities and the four select lists correct. The cases are
designed to partition the possible interactions between the SAL_HISTORY and INCUMBENTS rows.
Specifically, the first case covers s finishes i Vs during iVs starts iVs equals i, the
second case s overlaps−1 iVs starts−1 i, the third case s overlaps iVs finishes −1i, and
the last case s during −1i (see

Table 6.3: An excerpt from the SAL_HISTORY valid-time state table.
SSN AMOUNT HISTORY_START_DATE HISTORY_END_DATE

 - 130 -

111223333 15.75 1995-03-01 1996-05-01
111223333 16.25 1996-05-01 1997-06-01
111223333 17.00 1997-06-01 1998-01-01

Table 6.4: Result of the sequenced join.
SSN AMOUNT PCN START_DATE END_DATE
111223333 15.75 341288 1995-03-01 1996-01-

01
111223333 15.75 137112 1996-01-01 1996-05-

01
111223333 16.25 137112 1996-05-01 1996-10-

01
111223333 16.25 120033 1996-10-01 1997-06-

01
111223333 17.00 908654 1997-06-01 1998-01-

01
111223333 17.00 723401 1997-10-01 1998-01-

01

page 92 for an illustration of these operators). Because none of these relationships is covered by more
than one case, no duplicates will be generated. For this reason, we use UNION ALL, which is generally
more efficient than UNION, which does a lot of work to remove the (nonoccurring) duplicates.

The above code fragments assume that the underlying temporal tables contain no duplicates. If that
assumption does not hold, we have three choices:

1. Retain duplicates in the result.
2. Use CF-6.11, replacing UNION ALL with UNION, and eliminate the duplicates

after the join, as discussed in the next section.
3. Eliminate duplicates before the join, then use CF-6.11.

The SQL-92 CASE expression allows this query to be written as a single statement, thereby avoiding
the complexities of UNION versus UNION ALL.

Listing 6.12: Provide the salary and position history for all employees, using CASE.

SELECT S.SSN, AMOUNT, PCN,

 CASE

 WHEN S.HISTORY_START_DATE > INCUMBENTS.START_DATE

 THEN S.HISTORY_START_DATE

 ELSE INCUMBENTS.START_DATE

 END,

 CASE

 WHEN S.HISTORY_END_DATE > INCUMBENTS.END_DATE

 THEN INCUMBENTS.END_DATE

 - 131 -

 ELSE S.HISTORY_END_DATE

 END

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND (CASE

 WHEN S.HISTORY_START_DATE > INCUMBENTS.START_DATE

 THEN S.HISTORY_START_DATE

 ELSE INCUMBENTS.START_DATE

 END) <

 (CASE

 WHEN S.HISTORY_END_DATE > INCUMBENTS.END_DATE

 THEN INCUMBENTS.END_DATE

 ELSE S.HISTORY_END_DATE

 END)

The first CASE expression simulates a last-instant function of two arguments; the second, a first_instant
function of the two arguments. The additional WHERE predicate ensures the period of validity is well
formed, that its starting instant occurs before its ending instant.
As we will see later, the first_instant and last_instant functions are available (under different names)
from some vendors as SQL extensions. They can also be implemented as SQL/PSM (persistent stored
module) FUNCTIONs.

Listing 6.13: Define a first_instant function.

CREATE FUNCTION first_instant (one DATE, two DATE)

RETURNS DATE

LANGUAGE SQL

RETURN CASE WHEN one > two THEN one ELSE two END

A last_instant function can be similarly defined. In fact, we can exploit polymorphism in SQL/PSM
by defining a host of first_instant and last_instant functions, each taking two parameters of
each of the various temporal types (e.g., TIME, TIMESTAMP, TIMESTAMP (3)) and returning the
same type.

With these functions, the sequenced join is considerably simplified.
Listing 6.14: Provide the salary and position history for all employees, using first_instant and
last_instant.

 - 132 -

SELECT S.SSN, AMOUNT, PCN,

 last_instant(S.HISTORY_START_DATE, INCUMBENTS.START_DATE),

 first_instant(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND last_instant(S.HISTORY_START_DATE, INCUMBENTS.START_DATE)

 < first_instant(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

6.3.2 Sequenced EXCEPT
A join of two tables repeatedly takes a row from each and applies a predicate to both to determine
whether the rows contribute to the result. The NOT EXISTS construct of SQL is similar, with the critical
distinction that the row from the second table must not exist. This distinction renders the sequenced
NOT EXISTS more challenging than a sequenced join.

As before, let's start with a nontemporal query and convert it to its sequenced analog. Assume that
employees have multiple positions, as an example, a department head (a PCN of 455332) who is also a
professor (a PCN of 821197). We wish to identify the exceptions, that is, the department heads who are
not also professors.

Listing 6.15: List the employees who are department heads but are not also professors (nontemporal
version).

SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS 12

 WHERE 12.SSN = I1.SSN

 AND 12.PCN = 821197)

For the sequenced version, we wish to identify when the department heads were not professors.
Employees are promoted to department head, remain a few years, then someone else becomes
department head. Somewhat independently, employees are promoted to the rank of professor; very
occasionally, they are demoted to associate professor. Hence, the two SELECT clauses in the above
code fragment evaluate to time-varying tables; the NOT EXISTS must perform the relational difference
conceptually at each point in time. The result will be a valid-time state table; the challenge is to restate
the query so that it computes the timestamps of this table correctly.

 - 133 -

As an aside, the SQL NOT EXISTS is closely tied to the EXCEPT construct:
Listing 6.16: List the employees who are department heads but are not also professors (an
equivalent nontemporal version).

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197

This is the relational difference operator, expressed in SQL. The transformation we give for NOT
EXISTS is also applicable for EXCEPT.

NOT EXISTS is also closely related to NOT IN:
Listing 6.17: List the employees who are department heads but are not also professors (an
equivalent nontemporal version).

SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

 AND 821197 NOT IN (SELECT PCN

 FROM INCUMBENTS AS I2

 WHERE I1.SSN= I2.SSN)

Tip A sequenced NOT EXISTS (EXCEPT, NOT IN) requires four SELECT statements,

each with a nested NOT EXISTS.
Returning to the EXCEPT query (CF-6.15), let's focus on a row output by the sequenced version of this
query. As illustrated in Figure 6.4, there are four ways in which an output row could result. In the first
case, the employee starts being a department head when he or she is still an associate professor; the
output row ends when the person is promoted to professor. In the second case, the department head,
who was a professor, was for some reason demoted. The third case is a combination of the first two: the
department head was demoted, then subsequently promoted back to professor. In all three cases, there
must not exist another row with a rank of professor that overlaps the resulting row (otherwise, the NOT
EXISTS would not hold). In the last case, the department head was never a professor during his or her
tenure, so the entire period of validity should be returned.

These cases allow us to compute the delimiting timestamps of the resulting row. Each of these cases
requires a separate SELECT statement in the sequenced version.

 - 134 -

Listing 6.18: List the employees who are or were department heads but were not also professors
(sequenced version).

SELECT I1.SSN, I1.START_DATE, I3.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I3

WHERE I1.PCN = 455332

 AND I3.PCN = 821197

 AND I1.SSN = I3.SSN

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I4

 WHERE I4.SSN = I1.SSN

 AND I4.PCN = 821197

 AND I1.START_DATE < I4.END_DATE

 AND I4.START_DATE < I3.START_DATE)

UNION

SELECT I1.SSN, I2.END_DATE AS START_DATE, I1.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I2

WHERE I1.PCN = 455332

 AND I2.PCN = 821197

 AND I1.SSN = I2.SSN

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I4

 WHERE I4.SSN = I1.SSN

 AND I4.PCN = 821197

 AND I2.END_DATE < I4.END_DATE

 AND I4.START_DATE < I1.END_DATE)

UNION

SELECT I1.SSN, I1.END_DATE AS START_DATE, I3.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I2, INCUMBENTS AS I3

WHERE I1.PCN = 455332

 AND I2.PCN = 821197 AND I3.PCN = 821197

 - 135 -

 AND I1.SSN = I2.SSN AND I1.SSN = I3.SSN

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I4

 WHERE I4.SSN = I1.SSN

 AND I4.PCN = 821197

 AND I2.END_DATE < I4.END_DATE

 AND I4.START_DATE < I3.START_DATE)

UNION

SELECT SSN, START_DATE, END_DATE

FROM INCUMBENTS AS I1

WHERE PCN = 455332

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I4

 WHERE I4.SSN = I1.SSN

 AND I4.PCN = 821197

 AND I1.START_DATE < I4.END_DATE

 AND I4.START_DATE < I1.END_DATE)

The cases are quite similar; they differ in the specific timestamps chosen in the target lists and in the
timestamps used in the NOT EXISTS subqueries.

6.4 NONSEQUENCED VARIANTS
We have seen current and sequenced versions of selection, projection, join, union, and sorting. As with
the integrity constraints discussed in the previous chapter, nonsequenced versions of these operators
on temporal tables are straightforward. Such queries ignore the time-varying nature of the tables.

 - 136 -

Figure 6.4: Current update cases, with the period of validity of the row shown.
Listing 6.19: List all the salaries, past and present, of employees who had been a hazardous waste
specialist at some time.

SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE INCUMBENTS.SSN = SAL_HISTORY.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND JOB_TITLE_CODE1 = 20730

The phrases "past and present" and "at some time" indicate that the query is a nonsequenced one. The
periods of validity of both INCUMBENTS and SAL_HISTORY are simply ignored in this query.

Some nonsequenced queries do examine the timestamps. However, they are evaluated all at once,
rather than at a specified time (a time-slice query) or at each point in time (a sequenced query). A
common example is determining when change occurred by observing consecutive periods that signify
that change.

Listing 6.20: When did employees receive raises?

SELECT S2.SSN, S2.HISTORY_START_DATE AS RAISE_DATE

FROM SAL_HISTORY AS S1, SAL_HISTORY AS S2

WHERE S2.AMOUNT > S1.AMOUNT

 AND S1.SSN = S2.SSN

 AND S1.HISTORY_END_DATE = S2.HISTORY_START_DATE

 - 137 -

Tip A nonsequenced query considers the timestamp columns as just additional columns.

This is not a sequenced query because each result row is derived from information from two different
times. The query does not view the underlying table as a sequence of states; rather, it views the
underlying table as one with additional timestamp columns that can be used in the query. When
evaluated on the SAL_HISTORY excerpt in Table 6.3, the following result is returned:
SSN RAISE_DATE
111223333 1996-05-01
111223333 1997-06-01

Sequenced, current, and nonsequenced variants also exist for other operators. As shown in Section 6.1,
any conventional query can be converted into a current query by adding a predicate for each correlation
name. Sequenced variants of many operations were given in Sections 6.3 and 6.3.1. For selection,
projection, union, and sorting, the sequenced and nonsequenced variants are identical. For joins,
difference (EXCEPT, NOT EXISTS, NOT IN), aggregates, and subqueries, the sequenced and
nonsequenced variants are quite different. For duplicate elimination, the analysis is more subtle; we
now turn to this intriguing topic.

6.5 ELIMINATING DUPLICATES
Duplicates may be present in the underlying table or may arise in the result of operations such as union,
projection, and some implementations of sequenced join.

In some cases, the presence of duplicates will change the result of the query, as in the COUNT
aggregate.
One approach to duplicate elimination is to use the SQL facilities directly. However, that didn't work for
the analogous situation of defining a primary key, which as a side effect prevents duplicates. In Section
5.3 we saw that the primary key must be changed when valid-time support is added to a table. We also
saw that it wasn't sufficient to simply add either the start time or the end time, or both, to the primary
key. Section 5.5 amplified on this, by showing that there were four different kinds of uniqueness
constraints.

Such considerations also come into play in duplicate elimination.

6.5.1 Easy Duplicate Elimination
SQL is perfectly adequate to remove some duplicate variants.

Listing 6.21: Remove nonsequenced duplicates from INCUMBENTS.

SELECT DISTINCT *

FROM INCUMBENTS

Value equivalence, which is more useful, is handled similarly, except that the timestamps are not
included.

Listing 6.22: Remove value-equivalent rows from INCUMBENTS.

SELECT DISTINCT SSN, PCN

 - 138 -

FROM INCUMBENTS

Current duplicates involve just a little more effort. Recall that a row is currently valid in the INCUMBENTS
table if its END_DATE is the special value DATE '3000-01-01'.

Listing 6.23: Remove current duplicates from INCUMBENTS.

SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

WHERE END_DATE = DATE '3000-01-01'

Removing sequenced duplicates turns out to be quite difficult. Before we show how to do this, we
discuss coalescing, which is closely related to duplicate elimination.

6.5.2 Coalescing
Consider again Table 5.2, copied here as Table 6.5. All five rows have the same values for the SSN and
PCN columns, and hence are value-equivalent. The second and third rows also have the same values
for the START_DATE and END_DATE columns, making them nonsequenced duplicates.

Table 6.5: A table containing several kinds of duplicates.
SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1996-10-01 1998-01-

01
111223333 120033 1997-12-01 1998-01-

01

Tip Coalescing reduces the number of rows by merging the periods of validity of value-
equivalent rows.

Now consider the third and fourth rows. As just observed, these rows are value-equivalent, yet are
neither sequenced duplicates (the periods of validity do not overlap) nor nonsequenced duplicates (their
periods of validity are not identical) nor current duplicates. We focus on these rows because their
periods of validity meet (that is, the END_DATE of the third row equals the START_DATE of the fourth
row), and so the two rows could be merged. Coalescing combines value-equivalent rows into a single
row with a combined period of validity. Coalescing would merge these two rows into a single row valid
from April 1, 1996 to December 31, 1997.

Duplicate elimination and coalescing are somewhat orthogonal because in most cases eliminating
duplicates (of whatever variant) does not result in a coalesced table, and coalescing can be done
without removing duplicates.

Tip Coalescing may remove or retain sequenced duplicates.

 - 139 -

There are two variants of coalescing: removing and retaining (sequenced) duplicates. After the former is
done, there will be no sequenced, current, or nonsequenced duplicates. The latter retains the
sequenced duplicates present at each point in time. It changes the timestamps, eliminating value-
equivalent rows whose periods of validity meet. The objective is to pare down the table to the minimum
number of rows necessary to represent the number of duplicates present at each point in time.
To illustrate this, let's apply coalescing and duplicate elimination separately on Table 6.5.
Coalescing Table 6.5 while removing duplicates results in the following table, merging the five rows into
one:
SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1998-01-

01

Note that the resulting table happens to have no duplicates of any kind, though in general value-
equivalent rows are possible (such rows will not overlap or meet).
Coalescing Table 6.5 while retaining duplicates results instead in Table 6.6.

Table 6.6: Retaining duplicates while coalescing.
SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1996-04-01 1998-01-

01
111223333 120033 1997-12-01 1998-01-

01

Table 6.7: Another way to retain duplicates while coalescing.
SSN CN START_DATE END_DATE
111223333 120033 1996-01-01 1998-01-

01
111223333 120033 1996-04-01 1996-06-

01
111223333 120033 1996-04-01 1996-10-

01
111223333 120033 1997-12-01 1998-01-

01

The original table and the coalesced table are snapshot-equivalent: all of their snapshots, resulting from
a time-slice at a single instant, are identical. Since duplicates are retained, the snapshot of the result at
each instant will have the same number of duplicates as the snapshot of the original table at that
instant.
Consider a time-slice at January 3, 1996, of Table 6.5. The snapshot contains a single row,
(111223333,120033). The time-slice at that day on Table 6.6 also contains that single row. Now
consider May 25,1996. The time-slice on that date of Table 6.5 contains three rows (you should verify
this), as does the time-slice of Table 6.6.
In the original table, Table 6.5, and in the coalesced table, Table 6.6, there is one row in the snapshots
valid from January 1, 1996 to March 30, 1996, then three rows valid until May 31, 1996, then two rows
valid until September 30, 1996, then one row valid until November 30, 1997, then two rows valid until
December 31, 1997. These two tables are snapshot-equivalent. Informally, they model the same
information, the same history of the enterprise. The only difference: Table 6.6 has fewer rows and thus
requires less space on disk.

When duplicates are retained, there will be at least as many rows in the resulting table as the maximum
number of rows valid at any one time. In this case, the result does not happen to have any
nonsequenced duplicates, though such duplicates are possible.

 - 140 -

When coalescing while removing sequenced duplicates, only one resulting table is possible. However,
when coalescing while retaining duplicates, the resulting table is not always unique. Table 6.7 retains
the duplicates from Table 6.5 and also contains the minimum number of rows possible: four.
Table 6.6 resulted from merging pairs of value-equivalent rows that met. In Table 6.7, the timestamps
experience a more radical adjustment. The one remaining question is, How do you guarantee that the
coalesced table is minimized and thus contains the smallest number of rows possible? The answer is
simple. It turns out that (repeatedly) merging pairs of value-equivalent rows that meet will always result
in a coalesced table with the minimum number of rows.

To summarize, we have described three operations that minimize the number of rows: remove
sequenced duplicates, coalesce while removing sequenced duplicates, and coalesce while retaining
duplicates. If you are going to eliminate duplicates in the first place, it is just as easy to coalesce at the
same time.

6.5.3 Coalescing While Removing Duplicates
One intuition behind coalescing is that we identify those time periods with the same SSN and PCN
values that overlap or are adjacent, and merge those periods by extending the earlier period. This
process is repeated until maximal periods are constructed. The nonmaximal periods are then removed.

Coalescing while removing duplicates

Repeat, until no rows are updated,

Change a row's end date to that of the value-equivalent row that overlaps it that extends the furthest in
the future.

Remove those rows whose period of validity is entirely contained in that of a valu-eequivalent row.

Remove those rows that are nonsequenced duplicates.

Listing 6.24: Coalesce INCUMBENTS while removing duplicates (in PSM).

PROCEDURE Do_COALESCE () LANGUAGE SQL;

 CREATE TABLE Temp(SSN CHAR(9), PCN INT,

 START_DATE DATE, END_DATE DATE)

 INSERT INTO Temp

 SELECT *

 FROM INCUMBENTS;

 -- Extend row's end date
 BEGIN
 DECLARE EXIT HANDLER FOR NOT FOUND
 BEGIN END;

 - 141 -

 LOOP
 UPDATE Temp AS T1
 SET (T1.END_DATE) = (SELECT MAX(T2.END_DATE)
 FROM Temp AS T2
 WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN
 AND T1.START_DATE < T2.START_DATE
 AND T1.END_DATE >= T2.START_DATE
 AND T1.END_DATE < T2.END_DATE)
 -- Make sure there is at least one end date to extend the row
 WHERE EXISTS (SELECT *
 FROM Temp AS T2
 WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN
 AND T1.START_DATE < T2.START_DATE
 AND T1.END_DATE >= T2.START_DATE
 AND T1.END_DATE < T2.END_DATE)
 END LOOP;
 END;
 -- Remove wholly contained rows
 DELETE FROM Temp AS T1
 WHERE EXISTS (SELECT *
 FROM Temp AS T2
 WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN
 AND ((T1.START_DATE > T2.START_DATE
 AND T1.END_DATE <= T2.END_DATE)
 OR (T1.START_DATE >= T2.START_DATE
 AND T1.END_DATE < T2.END_DATE)));
 CREATE TABLE Temp2 (SSN CHAR(9), PCN INT,
 START_DATE DATE, END_DATE DATE);
 INSERT INTO Temp2
 SELECT DISTINCT *;
 FROM Temp;
END;

The loop maximally extends a row's end date. This loop terminates when no row is updated (the exit
handler accomplishes this).
To illustrate, we apply this algorithm to Table 6.5. The Temp table would initially contain the value-
equivalent rows shown in Figure 6.5.
After the first iteration of the repeat-until loop, the Temp table would contain the rows shown in
Figure 6.6. Note how the end time is extended when a value-equivalent row meets or overlaps it. After
the second iteration, some periods are further extended (Figure 6.7).
The next iteration does not change any end time, and so the repeat-until loop is terminated. The
DELETE statement removes the nonmaximal value-equivalent periods, retaining only the first one
shown in Figure 6.7.

Figure 6.5: Initial Temp table.

 - 142 -

Figure 6.6: After the first iteration.

Figure 6.7: After the second iteration.

One problem with this approach is that it uses a PSM PROCEDURE. For a time, it was thought
impossible to express this query completely in SQL. A solution was discovered independently by
several people just a few years ago, involving complex, multiply nested NOT EXISTS subclauses.

Coalesce entirely in SQL

Select those start and end dates such that

 there are no gaps between these dates,
 no value-equivalent row overlaps the period between the selected start and end

dates and has an earlier start date or a later end date.

Listing 6.25: Coalesce INCUMBENTS while removing duplicates (entirely in SQL).

CREATE TABLE Temp(SSN CHAR(9), PCN INT,

 START_DATE DATE, END_DATE DATE)

INSERT INTO Temp

SELECT *

FROM INCUMBENTS;

SELECT DISTINCT F.SSN, F.PCN, F.START_DATE, L.END_DATE

FROM Temp AS F, Temp AS L

WHERE F.START_DATE < L.END_DATE

 - 143 -

 AND F.SSN = L.SSN AND F.PCN L.PCN
 -- There are no gaps between F.END_DATE and L.START_DATE
 AND NOT XISTS (SELECT *
 FROM Temp AS M
 WHERE M.SSN = F.SSN AND M.PCN = F.PCN
 AND F.END_DATE < M.START_DATE
 AND M.START_DATE < L.START_DATE
 AND NOT EXISTS (SELECT *
 FROM Temp AS T1
 WHERE T1.SSN = F.SSN AND T1.PCN = F.PCN
 AND T1.START_DATE < M.START_DATE
 AND M.START_DATE <= T1.END_DATE))
 -- Can't be extended further
 AND NOT EXISTS (SELECT *
 FROM Temp AS T2
 WHERE T2.SSN = F.SSN AND T2.PCN = F.PCN
 AND ((T2.START_DATE < F.START_DATE
 AND F.START_DATE <= T2.END_DATE)
 OR (T2.START_DATE <= L.END_DATE
 AND L.END_DATE < T2.END_DATE)))

Figure 6.8: A common scenario

Tip Coalescing with duplicate removal can be done with a single (complex) SQL
statement.

In this query, we search for two (possibly the same) value-equivalent rows (represented by the
correlation names F, for first, and L, for last) defining start point F.START_DATE and end point
L.END_DATE of a coalesced row. The first NOT EXISTS ensures that there are no gaps between
F.END_DATE and L.START_DATE (i.e., no time points where the respective fact does not hold). This
guarantees that all start pointsM.START_DATE between F.END_DATE and L.START_DATE of value-
equivalent rows are extended (towards F.END_DATE) by a value-equivalent row, T1. This is illustrated
in Figure 6.8. In this subclause, T1 may in fact be F. It may also be the case that F itself overlaps L, in
which case the NOT EXISTS is certainly true. Finally, M need not overlap L, in which case there must
exist another M that does.
The second NOT EXISTS ensures that only maximal periods result (i.e., F and L cannot be part of a
larger value-equivalent row T2).
It is instructive to compare this code fragment with CF-5.21 on page 128. In both cases, a nested NOT
EXISTS is used to detect a gap in time.

Yet another approach uses a COUNT aggregate in place of the nested NOT EXISTS.
Listing 6.26: Coalesce INCUMBENTS while removing duplicates (entirely in SQL, using COUNT).

CREATE VIEW V1 (SSN, PCN, START_DATE, END_DATE)

AS SELECT F.SSN, F.PCN, F.START_DATE, L.END_DATE

FROM INCUMBENTS AS F, INCUMBENTS AS L, INCUMBENTS AS E

WHERE F.END_DATE <= L.END_DATE

 AND F.SSN = L.SSN AND F.SSN = E.SSN

 - 144 -

 AND F.PCN = L.PCN AND F.PCN = E.PCN

GROUP BY F.SSN, F.PCN, F.START_DATE, L.END_DATE

HAVING COUNT(CASE

 WHEN (E.START_DATE < F.START_DATE

 AND F.START_DATE <= E.END_DATE)

 OR (E.START_DATE <= L.END_DATE

 AND L.END_DATE < E.END_DATE)

 THEN 1 END) = 0

CREATE TABLE Temp(SSN CHAR(9), PCN INT,

 START_DATE DATE, END_DATE DATE)

INSERT INTO Temp

SELECT SSN, PCN, START_DATE, MIN(END_DATE)

FROM V1

GROUP BY SSN, PCN, START_DATE

The correlation names in the view denote "first" (F), "last" (L), and "extends" (E). The view collects
periods that are maximal, in that there is no row E that extends it either to the left (the first part of the
WHEN predicate) or to the right (the second part of the WHEN predicate). COUNT = 0 is equivalent to
NOT EXISTS. The WHERE predicate ensures that the period is a correct one and that we only consider
rows with the appropriate SSN and PCN. The INSERT command then ensures that there are no gaps
within the period, by selecting the minimum end date.
While this solution, at 19 lines, is somewhat shorter than CF-6.25 at 27 lines, the three-way join and the
grouped aggregate may impact performance.

A fourth alternative is to use SQL only to open a sorted cursor on the table.

Coalesce via a cursor
Retain the initial row in the cursor as the previous row.

While the cursor returns a row:

Output the previous row if there is a gap between it and the start of the row in the cursor.

Make the row associated with the cursor the previous row.

Output the previous row.

 - 145 -

Here we use Oracle's PL/SQL to express the cursor and the WHILE loop.
Listing 6.27: Coalesce INCUMBENTS while removing duplicates (using a cursor in Oracle PL/SQL).

CREATE TABLE Temp(SSN, PCN, START_DATE, END_DATE);

DECLARE CURSOR INC_CURSOR IS

SELECT *

FROM INCUMBENTS

ORDER BY SSN, PCN, START_DATE;

 StartRow INC_CURSOR%ROWTYPE;

 PrevRow INC_CURSOR%ROWTYPE;

 CurrRow INC_CURSOR%ROWTYPE;

BEGIN

 IF NOT INC_CURSOR%ISOPEN

 THEN

 OPEN INC_CURSOR;

 END IF;

 FETCH INC_CURSOR INTO PrevRow;

 StartRow := PrevRow;

 FETCH INC_CURSOR INTO CurrRow;

 WHILE INC_CURSOR%FOUND

 LOOP

 IF (StartRow.SSN <> CurrRow.SSN OR StartRow.PCN <> CurrRow.PCN)

 OR (PrevRow.END_DATE < CurrRow.START_DATE)

 - 146 -

 THEN

 INSERT INTO Temp

 VALUES (StartRow.SSN, StartRow.PCN,

 StartRow.START_DATE, PrevRow.END_DATE);

 StartRow := CurrRow;

 END IF;

 PrevRow := CurrRow;

 FETCH INC_CURSOR INTO CurrRow;

 END LOOP;

 INSERT INTO Temp

 VALUES (StartRow.SSN, StartRow.PCN,

 StartRow.START_DATE, PrevRow.END_DATE);

 CLOSE INC_CURSOR;

END;

This loop extracts a row from the sorted INCUMBENTS table. If this row (CurrRow) is value-equivalent
with the start row and if the current row overlaps or meets the previous row, then it should be coalesced
with the previous row, which is the default action. Otherwise, the coalesced row (from StartRow.
START_DATE to PrevRow.END_DATE) is added to Temp. Because the cursor is sorted, coalescing with
duplicate removal requires but a single scan of the underlying table.

6.5.4 Coalescing While Retaining Duplicates
Tip To coalesce while retaining duplicates, it is necessary to merge value-equivalent

rows whose periods of validity meet.
Coalescing while retaining (sequenced) duplicates turns out to be conceptually simpler, yet is more
difficult to implement. As mentioned in Section 6.5.2, a table is coalesced with duplicates if it has the
minimum possible number of rows, while still retaining the duplicates at each point in time. As there may
be many coalesced versions of a temporal table, our task is to produce one of those versions.

It should be clear that if two value-equivalent rows meet, the table is not coalesced (with duplicates)
because these two rows can be merged, thereby reducing the number of rows by one. More surprising
is the stronger result that a coalesced table results if all pairs of value-equivalent rows that meet (are
adjacent) are merged.

Coalescing while retaining duplicates requires iterating over the table several times via a cursor. Doing
so efficiently requires highly system-dependent approaches. As an example, the Oracle8 Server
PL/SQL code is some 80 lines long.

6.6 IMPLEMENTATION CONSIDERATIONS
We implemented these code fragments on several DBMSs.

 - 147 -

6.6.1 IBM DB2 Universal Database
UDB's recursive queries provide yet another way to effect coalescing with duplicate elimination.

Listing 6.28: Coalesce INCUMBENTS while removing duplicates, in DB2 UDB.

WITH DTR (SSN, PCN, START_DATE, END_DATE) AS

 (SELECT SSN, PCN, START_DATE, END_DATE

 FROM INCUMBENTS

 UNION ALL

 SELECT I.SSN, I.PCN, I.START_DATE, J.END_DATE

 FROM INCUMBENTS I, DTR J

 WHERE I.SSN = J.SSN AND I.PCN = J.PCN

 AND ((I.START_DATE < J.START_DATE

 AND J.START_DATE < I.END_DATE

 AND I.END_DATE < J.END_DATE)

 OR I.END_DATE = J.START_DATE)

 UNION ALL

 SELECT I.SSN, I.PCN, I.START_DATE, J.END_DATE

 FROM INCUMBENTS J, DTR I

 WHERE I.SSN = J.SSN AND I.PCN = J.PCN

 AND ((I.START_DATE < J.START_DATE

 AND J.START_DATE < I.END_DATE

 AND I.END_DATE < J.END_DATE)

 OR I.END_DATE = J.START_DATE))

SELECT DISTINCT I.SSN, I.PCN, I.START_DATE, I.END_DATE

FROM DTR I

WHERE NOT EXISTS (SELECT 1

 FROM DTR J

 WHERE I.SSN = J.SSN AND I.PCN = J.PCN

 AND ((J.START_DATE < = I.START_DATE

 AND I.END_DATE < J.END_DATE)

 - 148 -

 OR (J.START_DATE < I.START_DATE

 AND I.END_DATE <= J.END_DATE)))

So, what is going on here? The base part of the recursion is the initial SELECT. The second SELECT is
the first recursive part, the third SELECT is the second recursive part, and the final SELECT is the main
query, evaluated over the result of the recursion. The first recursive part combines the periods of value-
equivalent rows where the I row starts before the common row (from the base part, J). The second
recursive part combines the periods where the I row starts after the base part. The recursion keeps
extending the ending time of the base tuples until they change no more. Then the main query removes
those periods that are contained in another period.

The PERIOD abstract data type in IBM DB2 UDB could simplify many of the algorithms in this chapter,
because the overlaps predicate can be done directly.

6.6.2 Informix-Universal Server
While Informix-Universal Server does not support SQL-92's CASE expression, it does support the user-
defined procedures first_instant and last_instant, which were shown earlier as SQL/PSM
functions defined in CF-6.13.

Listing 6.29: Define first_instant and last_instant in Informix.

CREATE PROCEDURE first_instant (one DATE, two DATE)

 RETURNING DATE;

 IF one < two THEN RETURN one;

 ELSE RETURN two;

 END IF

END PROCEDURE;

CREATE PROCEDURE last_instant (one DATE. two DATE) RETURNING DATE

 IF one > two THEN RETURN one;

 ELSE RETURN two;

 END IF

END PROCEDURE;

A PERIOD datablade in Informix-Universal Server would simplify many algorithms in this chapter
because the OVERLAPS constructor can then be done directly within the SQL statement.

6.6.3 Microsoft SQL Server

 - 149 -

Microsoft SQL Server does not support user-defined functions, so CF-6.14 and CF-6.24 are not
possible. A cursor-based approach works for coalescing.

Listing 6.30: Coalesce INCUMBENTS while removing duplicates, in Microsoft SQL Server.

CREATE TABLE Tempo

(SSN CHAR(11),

 PCN CHAR(6),

 START_DATE DATETIME,

 END_DATE DATETIME)

DECLARE Inc_Cursor CURSOR FOR

 SELECT *

 FROM INCUMBENTS

 ORDER BY SSN, PCN, START_DATE

DECLARE @S_SSN CHAR(11)

DECLARE @S_PCN CHAR(6)

DECLARE @S_START_DATE DATETIME

DECLARE @S_END_DATE DATETIME

DECLARE @P_SSN CHAR(11)

DECLARE @P_PCN CHAR(6)

DECLARE @P_START_DATE DATETIME

DECLARE @P_END_DATE DATETIME

DECLARE @C_SSN CHAR(11)

DECLARE @C_PCN CHAR(6)

DECLARE @C_START_DATE DATETIME

DECLARE @C_END_DATE DATETIME

BEGIN

 - 150 -

 OPEN Inc_Cursor

 FETCH NEXT FROM Inc_Cursor

 INTO @P_SSN, @P_PCN, @P_START_DATE, @P_END_DATE

 SELECT @S_SSN = @P_SSN

 SELECT @S_PCN = @P_PCN

 SELECT @S_START_DATE = @P_START_DATE

 SELECT @S_END_DATE = @P_END_DATE

 FETCH NEXT FROM Inc_Cursor

 INTO @C_SSN, @C_PCN, @C_START_DATE, @C_END_DATE

 WHILE (@@FETCH_STATUS <> -1)

 BEGIN

 IF ((@S_SSN <> @C_SSN OR @S_PCN <> @C_PCN) OR

 (@P_END_DATE < @C_START_DATE))

 BEGIN

 INSERT INTO Tempo

 VALUES (@S_SSN, @S_PCN, @S_START_DATE, @P_END_DATE)

 SELECT @S_SSN = @C_SSN

 SELECT @S_PCN = @C_PCN

 SELECT @S_START_DATE = @C_START_DATE

 SELECT @S_END_DATE = @C_END_DATE

 END

 SELECT @P_SSN = @C_SSN

 SELECT @P_PCN = @C_PCN

 SELECT @P_START_DATE = @C_START_DATE

 SELECT @P_END_DATE = @C_END_DATE

 FETCH NEXT FROM Inc_Cursor INTO

 - 151 -

 @C_SSN, @C_PCN, @C_START_DATE, @C_END_DATE

 END

 INSERT INTO Tempo

 VALUES (@S_SSN, @S_PCN, @S_START_DATE, @P_END_DATE)

 CLOSE Inc_Cursor

END

6.6.4 Sybase SQLServer
Sybase SQLServer does not support user-defined functions within SQL statements, so CF-6.14 and
CF-6.24 are not possible.

6.6.5 Oracle8 Server
While Oracle8 Server does not support SQL-92's CASE expression, it does support the functions
GREATEST and LEAST, which are generalizations of the last_instant and first_instant
SQL/PSM functions defined in CF-6.13.

Listing 6.31: Provide the SSN and position history for all employees, using GREATEST and LEAST.

SELECT S.SSN, AMOUNT, PCN,

 GREATEST(S.HISTORY_START_DATE, INCUMBENTS.START_DATE).

 LEAST(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

FROM SAL_HISTORY S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

 AND GREATEST(S.HISTORY_START_DATE, INCUMBENTS.START_DATE)

 < LEAST(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

6.6.6 UniSQL
UniSQL does not provide CURRENT_DATE, so the actual date must be supplied, via a parameter, in
such queries as CF-6.1.

6.6.7 CD-ROM Materials
The CD-ROM contains the code fragments in this chapter in IBM DB2 UDB, Microsoft Access 97 and
Access 2000, Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and UniSQL.

 - 152 -

6.7 SUMMARY
This chapter examined a wide variety of useful queries on valid-time state tables. We first naturally ask,
What is true now? Queries over the current state, even complex ones, can be converted to apply to
temporal tables with the addition of a predicate for each correlation name, requesting the overlap with
"now." Queries over a single prior, or future, state also follow, with the overlap requested at a specified
point in time. Such queries are termed time-slice queries; current queries are time-slice queries at
"now."
Sequenced queries are also natural ones. For every query over the current state, such as "list the salary
and position for all employees," an analogous sequenced query that asks for the history of that
relationship can be specified, such as "provide the salary and position history for all employees" (CF-
6.11). To convert a current query to a sequenced query requires decomposing that query into its
underlying operations. Each operation is converted, then the query is stitched back together. Some
basic operations are easy to convert: selection (no change is necessary), projection (simply include the
timestamp columns in the SELECT list), sorting (no change is necessary), and union (no change is
necessary). Sequenced join requires unioning four SELECT statements; sequenced difference
(EXCEPT, NOT EXISTS) requires unioning four SELECT statements, each containing its own NOT
EXISTS subquery.
Duplicate elimination is a topic unto itself. Removing current, value-equivalent, and nonsequenced
duplicates is easy. Coalescing is related to duplicate elimination, in that both reduce the number of rows
by eliminating "extraneous" rows. But you can coalesce while retaining (sequenced) duplicates, or you
can coalesce while removing such duplicates. Both are challenging in SQL. The cursor-based approach
(CF-6.27) is preferred.

Nonsequenced queries, which treat the timestamps as regular columns, are generally difficult to
express in English, but relatively straightforward to express in SQL. Such queries do not have current
analogs.

6.8 READINGS
SQL-92 includes an unrelated COALESCE operator that is shorthand of CASE that replaces NULL
values with other values [71]. SQL's stored procedures (SQL/PSM) is now an ISO standard [45] and is
thoroughly described by Melton [70].
Ensor and Stevenson discuss extracting the current state in Oracle, examining both SQL and
procedural variants [32]. They conclude that the biggest advantage of the procedural approach is that it
can stop when the (single) qualifying row is found.
Current queries were termed temporally upward compatible queries by Bair et al. [3] in their discussion
of supporting legacy applications when time support was added. The notion of value equivalence was
introduced by the author [86]. That paper also introduced the notion of snapshot reducibility, which
relates two queries, a query qt on a temporal table and a query qs on a time-slice of that table. As an
example, let qs be CF-6.17 and let qt be CF-6.18. qt is said to be snapshot-reducible to qs if the time-
slice of the result of qt at a time instant i is identical to the result of qs on the time-slice of the underlying
table at instant i, for all possible instants i. This is precisely the notion of a sequenced query. The
sequenced EXCEPT simulates the nontemporal EXCEPT at each instant of time.
The terms "sequenced" and "nonsequenced" first appeared in a change proposal forSQL3 [92].
Coalescing was first studied in depth by Böhlen et al. [15], though many temporal data models and
temporal query languages have implicitly or explicitly assumed or provided coalescing. CF-6.25 uses an
idea discovered independently by Böhlen [10] and by Rozenshtein, Abramovich, and Birger [82]. CF-
6.26 uses an idea proposed by Romley [21]. The recursive query solution using DB2 UDB (CF-6.18)
was suggested by Leung and Pirahesh [66].
There has been some work on implementing temporal joins within the DBMS [97].

Milton Stoneman's Easy-to-Make Wooden Sundials [99] provides five delightful sundial designs,
explaining how to construct these sundials and how to adjust the sundial to your latitude.

Chapter 7: Modifying State Tables
OVERVIEW
A major thread of this exposition is the classification of statements (queries, integrity constraints) into
current, sequenced, and nonsequenced variants. This taxonomy also benefits modifications.

 - 153 -

SQL has three modification statements: INSERT, DELETE, and UPDATE. Interestingly, a current
deletion is implemented as an UPDATE followed by a DELETE, and a sequenced deletion requires an
INSERT, two UPDATEs, and a DELETE. Updates are more complex: a current update is implemented
as three SQL statements; sequenced updates require five SQL statements. Mentioning other temporal
tables makes things even more exciting. Finally, we consider the pros and cons of breaking up a valid-
time table into a current portion and a historical portion, each a separate table.
We now turn to implementing modifications to a valid-time table. We consider separately current
modifications (those on the current, and future, states), sequenced modifications (those evaluated,
conceptually at least, at each point in time), and nonsequenced modifications (those explicitly
mentioning the timestamp columns). We apply these modifications to the INCUMBENTS table.
We also examine how primary key and referential integrity constraints can be maintained across these
modifications. One approach, exemplified in Chapter 5, is to specify an assertion. Any violating
modification results in the rollback of the transaction (assuming the assertion is immediate; see Section
5.7), thereby guaranteeing that the database remains consistent with the integrity constraint. Of course,
the problem is that this is an all-or-nothing proposition: one improper modification derails the entire
transaction.

A second approach is to code the modification to ensure that the integrity constraint is not violated,
perhaps reducing the execution time required to check the constraint.
In this chapter, we first show how to perform the modification, then consider additions that also ensure
uniqueness, primary key, and referential integrity constraints remain satisfied. We continue with the
INCUMBENTS table, repeated as Table 7.1.

7.1 CURRENT MODIFICATIONS
A current modification concerns something that happens now and applies into the future. In a
conventional, nontemporal table, all modifications are current modifications.

Tip A current modification concerns something that happens right now.

Table 7.1: An excerpt from the INCUMBENTS valid-time state table.
SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-

01
111223333 120033 1996-06-01 1996-08-

01
111223333 120033 1996-08-01 1996-10-

01
111223333 137112 1996-10-01 3000-06-

01
444332222 120033 1997-01-01 3000-01-

01

In showing how integrity constraints can be ensured within the modification, we consider two cases: the
general case where any modification is allowed and the restricted case where only current modifications
are performed on the table. The cases differentiate the data upon which the modification is performed
and consider whether a noncurrent modification might have been performed in the past. Often we know
a priori that only current modifications are possible, which tells us something about the data we can
exploit in the (current) modification now being performed.

7.1.1 Current Insertions
A current insertion requires only that the start date and end date be specified.

Listing 7.1: Bob joins as associate director of the Computer Center.

INSERT INTO INCUMBENTS

 - 154 -

VALUES (111223333, 999071, CURRENT_DATE, DATE '3000-01-01')

This statement provides a timestamp from "now" to the end of time.

Maintaining a sequenced primary key is easy if only the current state of the table is ever modified.
Listing 7.2: Bob joins as associate director of the Computer Center, ensuring the primary key, in the
restricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE '3000-01-01'

FROM DUAL

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE SSN = I2.SSN

 AND PCN = I2.PCN

 AND I2.END_DATE = DATE '3000-01-01')

Babylonic and Italic Hours

Babylonian sundials counted the hours since sunrise. The Italians of the Middle Ages started a new
day at sunset. In Germany during the Renaissance, the custom was to count in Babylonic hours
during the day and Italic hours during the night. On many cathedrals, in particular in Strasbourg and
Basel, sundials indicate both Italic and Babylonic hours. In fact, with such sundials, you can determine
(1) the number of hours elapsed since sunrise: the Babylonic hour, (2) the number of hours left till
sunset: the Italic hour, (3) the length of the day, by adding the two together, (4) the day of the year,
from the position of the shadow at high noon, (5) the true hour of sunrise, from the noon line, and (6)
the true hour of sunset, also from the noon line.

This works because all rows that are current now extend to "forever" there are no rows that start in the
future and end before "forever." As mentioned on page 138, >DUAL is a dummy system table provided
by Oracle. It can be simulated in other DBMSs for use here by creating a one-column table and
inserting a single row into it.
Alternatively, a sequenced primary key in the restricted case can be stated as a primary key constraint,
appending the END_DATE, as exemplified in CF-5.15.

 - 155 -

This statement doesn't insert a row if Bob currently has that position. An alternative approach would be
to first (current) delete his position, then perform the insertion. Yet another approach would be to
(current) update his position. Both options will be discussed shortly.

Tip Ensuring uniqueness requires a WHERE predicate, an augmented primary key
constraint, or a uniqueness constraint.

Ensuring referential integrity in the restricted case is also straightforward. Only an insertion in the
referencing table can possibly violate referential integrity. (We assume in this discussion that both
tables, referencing and referenced, are temporal.)

Ensuring uniqueness and referential integrity in the restricted case

Add this row to the table

 if a duplicate row is not already present (i.e., no key violation) and if there is a
corresponding row in the referenced table (i.e., no foreign key violation).

We use as an example the referential integrity constraint from INCUMBENTS.PCN to POSITIONS.PCN,
for which an insertion into the referencing table (here, INCUMBENTS) can violate the constraint.

Listing 7.3: Bob joins as associate director of the Computer Center, also ensuring referential
integrity, in the restricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE '3000-01-01'

FROM POSITIONS

WHERE PCN = 999071

 AND END_DATE = DATE '3000-01-01'

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE SSN = I2.SSN

 AND PCN = I2.PCN

 AND I2.END_DATE = DATE '3000-01-01')

Tip

Ensuring
referenti
al
integrity
with a
current
insertion
in the

 - 156 -

restricte
d case
requires
an
addition
al
WHERE
predicat
e.

If the position is valid at "forever," it is also valid now, and so fully covers the period being inserted into
INCUMBENTS
If the referential integrity would have been violated (because the position isn't current in POSITIONS),
the statement inserts nothing. An alternative strategy is to fill the gap in the referenced table (where the
PCN is not present in POSITIONS) with null values for the other columns, effectively defining a new
position with a null JOB_TITLE_CODE1, so that Bob's position can be inserted into INCUMBENTS

Listing 7.4: Fill the gap (in the restricted case) in the POSITIONS table for the position of associate
director of the Computer Center.

INSERT INTO POSITIONS (PCN, JOB_TITLE_CODE1, START_DATE, END_DATE)

SELECT DISTINCT 999071, NULL, CURRENT_DATE, DATE '3000-01-01'

FROM DUAL

WHERE NOT EXISTS (SELECT *

 FROM POSITIONS

 WHERE PCN = 999071

 AND END_DATE = DATE '3000-01-01')

Tip Filling the gap in the referenced table is an easy way to ensure referential integrity for

current insertions into the referencing table.
We need to fill the period between "now" and "forever" with this row, but only if there isn't a row already
there. If the gap is first filled, then there is no need to check for referential integrity the original INSERT
statement (into INCUMBENTS).

We have thus far looked at the restricted case where only current modifications are allowed. Such a
situation is quite common. Envision an application that operates on a nontemporal table. Now the table
is converted to retain the history, say, by adding a start and an end date column, and the modifications
and queries in the application are also converted. Since the application did not before concern itself with
history, all the modifications are current modifications, on the current state.

The Fundamental Insight
The design of early sundials and water clocks reflected the seemingly continuous nature of time. The
gnomon's shadow traced a path across the etchings of the sundial, and the water (or sand) flowed in a
steady stream. Su Song's water clock, while simultaneously intricate and massive, was hobbled in its
accuracy by this flow, which lacked both precision and power. The European insight, by some as yet
unknown genius, was to abandon reliance on an accumulative approach, and instead focus on
periodically stopping the fall of a weight that pulled a rope wound round a cylinder. In this way, the
weight doesn't continue to accelerate in its descent. If the stops were timed correctly, the cylinder
would rotate slowly, a revolution every hour or every day. This transition from an analog model to a
digital model was every bit as invigorating to the society of the 15th century as the transition from

 - 157 -

analog electronics (i.e., vacuum tubes) to digital electronics (i.e., transistors and integrated circuits) in
the 20th century.

Now let's consider the more general case. In the restricted case, all modifications are current
modifications. This implies that there are only two kinds of rows in the table: those that started in the
past and ended in the past, and those that started in the past and are still valid, that is, have an
END_DATE of "forever."

The general case allows other kinds of modifications, thereby permitting two additional kinds of rows:
those that started in the past and end sometime in the future (but before "forever"), and those that start
sometime in the future and end sometime in the future, including "forever." Such rows represent
planning information, or scheduled changes.

These two new kinds of rows are problematic, in that they introduce gaps in the future behavior. The
possibility of gaps in the future impacts the modifications that are applied to the table.

So, the task before us is to implement a current insertion in the general case. We first consider ensuring
solely the primary key constraints.

Listing 7.5: Bob was assigned the position of associate director of the Computer Center, ensuring
the primary key, in the unrestricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE '3000-01-01'

FROM DUAL

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE SSN = I2.SSN

 AND PCN = I2.PCN

 AND I2.END_DATE > CURRENT_DATE)

We don't perform the insertion if doing so would violate the primary key constraint. I2 violates this
constraint (in the context of the row being inserted) if its period of validity overlaps that of the inserted
row. This will occur if I2 stops in the future or is currently valid, in which case the end date is "forever,"
in this case the year 3000. (If "forever" was represented with a particular date in the past, such as 1860,
the above predicate would not be sufficient.)
We now turn our attention to the referential integrity constraint. As before, only an insertion in the
referencing table can possibly violate referential integrity. In this case, a predicate must be added to the
WHERE clause of the above code fragment asserting that there are no gaps in the POSITIONS table
for the position code of 999071 for "now" to "forever." This predicate is a simple modification of CF-5.21
(see also CF-7.14, below).

Tip When unrestricted modifications are possible, such modifications may generate
gaps that must be filled to ensure referential integrity.

Alternatively, the gap(s) can be filled, in which case no such predicate is required in the current
insertion. In the restricted case, either a row was valid for the entire period from "now" to "forever," or

 - 158 -

the PCN was not valid for the entire period. In the general case, there can be gaps, due to the possibility
of periods starting or ending sometime in the future. Recall that COALESCE in SQL-92 evaluates to the
value of the first argument, unless that value is NULL, in which case it evaluates to the value of the
second argument, and so on.

Listing 7.6: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case.

INSERT INTO POSITIONS

SELECT 999071, NULL, END_DATE AS START_DATE,

 COALESCE((SELECT MIN(START_DATE)

 FROM POSITIONS AS P2

 WHERE P2.PCN = 999071

 AND P2.START_DATE > P.START_DATE),

 DATE '3000-01-01') AS END_DATE

FROM POSITIONS AS P

WHERE P.PCN = 999071

 AND P.END_DATE > CURRENT_DATE

 AND P.END_DATE < DATE '3000-01-01'

 AND NOT EXISTS (SELECT *

 FROM POSITIONS AS P3

 WHERE P3.PCN = 999071

 AND P3.START_DATE <= P.END_DATE

 AND P.END_DATE < P3.END_DATE)

The start of a gap is identified where a row ends, but there is no overlapping row that extends the period
of validity. The end of the gap is either the start of the first period or, in the absence of such a period,
"forever."

7.1.2 Current Deletions
Current deletions apply from "now" to "forever." In the restricted case of only current modifications being
allowed on tables, a current deletion is translated into an update.

Listing 7.7: Bob was just fired as associate director of the Computer Center (only current
modifications assumed).

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

 - 159 -

WHERE SSN = 111223333

 AND PCN = 999071

 AND END_DATE = DATE '3000-01-01'

Tip In the restricted case, a current deletion is converted into an update of the end date.

Let's say Bob was previously hired as associate director of the Computer Center on January 1, 1998.
Assuming only current modifications, there cannot be future appointments in the table, so the most
recent appointment in the INCUMBENTS table is
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 3000-01-

01

Bob was fired on March 13, 1998 (Friday!). This logical deletion updates that row to
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 1998-03-

13

In the general case, deletions are implemented as an update and a delete.

Deletion in the general case

For those rows that started in the past and end in the future, reset the end date to "now."

Delete entirely those rows that start in the future.

Listing 7.8: Bob was just fired as associate director of the Computer Center.

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < CURRENT_DATE

 AND END_DATE > CURRENT_DATE

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 - 160 -

 AND PCN = 999071

 AND START_DATE >= CURRENT_DATE

Tip In the general case, a current deletion is implemented as an update, for those

currently valid periods, and a delete, for those periods starting in the future.

These two statements can be performed in either order, as they affect disjoint sets of rows.
The DELETE statement eliminates those states that become true in the future. If only current
modifications are applied to the INCUMBENTS table, such states cannot occur, and the DELETE
statement is not then necessary. Note also that in the general case, the UPDATE predicate is more
complex.
Ensuring the primary key constraints (specifically, no duplicates) is trivial, because deletions cannot
cause duplicates. There is also no problem ensuring referential integrity for the referencing table. For
the referenced table (e.g., deleting a row of the POSITIONS table), a cascading current delete on the
referencing table (in this case, on the INCUMBENTS table) of all rows referencing that PCN value will
ensure referential integrity.

7.1.3 Current Updates
An update is logically a delete coupled with an insert. (Things get complicated in the presence of
triggers. In this discussion, we assume no triggers have been defined on the temporal table.)

A current update changes the value for the period of validity from "now" to "forever." A current update is
the analog of a nontemporal update, such as the following:

Tip A current update in the restricted case is implemented by an update to end the
current row at "now" and an insertion of the new values.

Listing 7.9: Today Bob was promoted to director of the Computer Center (nontemporal version).

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

If only current modifications are applied to INCUMBENTS, then all the affected rows extend to "forever."
We terminate the current position at "now" and insert the new position, from "now" to "forever."

Listing 7.10: Today Bob was promoted to director of the Computer Center (assuming only current
modifications).

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT SSN, 908739, CURRENT_DATE, DATE '3000-01-01'

FROM INCUMBENTS

WHERE SSN = 111223333

 AND END_DATE = DATE '3000-01-01'

 - 161 -

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

 AND START_DATE < CURRENT_DATE

The update must occur after the insertion. Alternatively, the portion up to "now" could be inserted and
the update could change the explicit column(s) and the start date to "now."
As we'll see, simple modifications such as CF-7.9 transmute into a series of modifications. Here, the
temporal version of an update consists of two modification statements. Later we'll see a six-line
nontemporal UPDATE explode into eight (!) statements and 77 lines of SQL. These statements in
concert effect the desired results. Unfortunately, it is often the case that intermediate states, after some
of the statements have executed but before the rest of the statements, may not satisfy stated integrity
constraints.
As a specific example, the sequenced primary key constraint of CF-5.8 on page 118 is violated between
the INSERT and the UPDATE statements of CF-7.10. For this reason, as discussed in Section 5.7,
assertion checking should be delayed to the end of the transaction, or at least until after all the
modification statements implementing a temporal modification complete.

Let's return to the previous example table, with the following row:
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 3000-01-

01

We promote Bob to director on Friday, March 13 (now this is his lucky day!).
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 1998-03-

13
111223333 908739 1998-03-13 3000-01-

01
If arbitrary modifications are permitted on INCUMBENTS, then there may exist rows that start in the
future, as well as rows that end before "forever." For the former, only the PCN need be changed. For the
latter, the END_DATE must be retained on the inserted row.
We emphasize that a current update has a period of applicability of "now" to "forever." A row that starts
in the future may be a planned transfer that shouldn't be impacted by the update, in which case a
sequenced update, to be discussed in Section 7.2.3, with a shorter period of applicability, is more
appropriate.
Figure 7.1 shows the three cases. If a row's period of validity terminates in the past, then the update will
not affect that row. If the row is currently valid, then the portion before "now" must be terminated at
"now," and a new row, with the updated values, inserted, with the period of validity starting at "now" and
terminating when the original row did. If the row starts in the future, the row can be updated as usual.

Current update in the general case

Insert new information valid from "now" until the row ended.

Terminate the current row at "now."

Update any rows that start in the future with the new values.

 - 162 -

Listing 7.11: Today Bob was promoted to director of the Computer Center.

INSERT INTO INCUMBENTS

SELECT SSN, 908739, CURRENT_DATE, END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

 AND START_DATE <= CURRENT_DATE

 AND END_DATE > CURRENT_DATE

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

 AND START_DATE < CURRENT_DATE

 AND END_DATE > CURRENT_DATE

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

 AND START_DATE > CURRENT_DATE

Tip

A
curr
ent
upd
ate
in
the
gen
eral
case
is
impl
eme

 - 163 -

nted
by
two
upd
ates
and
an
inse
rtion
.

The second UPDATE statement can appear anywhere, but the first UPDATE statement must occur
after the insertion.
The impact of an update on a primary key constraint is best judged by viewing the update as a delete
followed by an insert. The delete cannot violate the constraint, but the insertion can. The approaches
described in Section 7.1.1 apply to updates as well.
When examining the impact of an update on a referential integrity constraint, the insertion portion of an
update on the referencing table is of concern, as is the deletion portion of an update on the referenced
table.

Figure 7.1: Current update cases, with the period of validity of the row shown.

7.2 SEQUENCED MODIFICATIONS
A current modification applies from "now" to "forever." A sequenced modification generalizes this to
apply over a specified period, termed the period of applicability. This period could be in the past, in the
future, or overlap "now."

Tip A current modification is simply a sequenced modification with a period of
applicability of "now" to "forever."

Most of the previous material applies to sequenced modifications, with CURRENT_DATE replaced with
the start of the period of applicability of the modification and with DATE '3000-01-01' replaced with
the end of the period of applicability. Here we only the significant differences between current and
sequenced modifications, and will discuss the unrestricted case, where periods may start or end in the
future.

7.2.1 Sequenced Insertions
In a sequenced insertion, the application provides the period of applicability.

Listing 7.12: Bob was assigned the position of associate director of the Computer Center for 1997.

INSERT INTO INCUMBENTS

VALUES (111223333, 999071, DATE '1997-01-01', DATE '1998-01-01')

 - 164 -

Note that as usual we are using a closed-open representation for periods.
To ensure a primary key, we need to look for duplicates anytime during the period of applicability. This
requires a slight generalization of CF-7.5.

Listing 7.13: Bob was assigned the position of associate director of the Computer Center for 1997,
ensuring the primary key.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, DATE '1997-01-01', DATE '1998-01-01'

FROM DUAL

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE SSN = I2.SSN

 AND PCN = I2.PCN

 AND I2.START_DATE < DATE '1998-01-01'

 AND DATE '1997-01-01' < I2.END_DATE)

Here we just check for overlap with the period of applicability.

For preserving referential integrity, we again have two choices. We can disallow the insertion if the
constraint would be violated, or we can fill the gaps before the insertion.
Disallowing a violation of the constraint requires a hefty predicate, drawn from CF-5.21.

Sequenced insertion ensuring uniqueness and referential integrity

Insert a row

 if no duplicate exists during the period of applicability,
 and if there is a row in the referenced table at the start of the period of

applicability,
 and if there is a row at the end of the period of applicability,
 and if there are no gaps during the period of applicability.

Listing 7.14: Bob was assigned the position of associate director of the Computer Center for 1997,
also ensuring referential integrity.

 - 165 -

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, DATE '1997-01-01', DATE '1998-01-01'

FROM POSITIONS

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE SSN = I2.SSN

 AND PCN = I2.PCN

 AND I2.START_DATE < DATE '1998-01-01'

 AND DATE '1997-01-01' < I2.END_DATE)

 AND EXISTS (SELECT *

 FROM POSITIONS AS P

 WHERE P.PCN = 999071

 AND P.START_DATE <= DATE '1997-01-01'

 AND DATE '1997-01-01' < P.END_DATE)

 AND EXISTS (SELECT *

 FROM POSITIONS AS P

 WHERE P.PCN = 999071

 AND P.START_DATE < DATE '1998-01-01'

 AND DATE '1998-01-01' <= P.END_DATE)

 AND NOT EXISTS (SELECT *

 FROM POSITIONS AS P

 WHERE P.PCN = 999071

 AND DATE '1997-01-01' < P.END_DATE

 AND P.END_DATE < DATE '1998-01-01'

 AND NOT EXISTS (SELECT *

 FROM POSITIONS AS P2

 WHERE P2.PCN = 999071

 AND P2.START_DATE <= P.END_DATE

 AND P.END_DATE < P2.END_DATE))

 - 166 -

There are four components to the predicate. The first states that there are no duplicates over the period
of applicability. The second states that the new position is valid at the start of the period of applicability.
The third states that the new position is valid at the end of the period of applicability. The last
component (the NOT EXISTS) states that there is no gap during the period of applicability. As before, a
gap exists if there is a row P that ends during the period of applicability that is not extended (towards the
beginning of 1998) by another row of POSITIONS
The other approach, of filling gaps, requires modifying CF-7.6, substituting CURRENT_DATE with DATE
'1997-01-01' and DATE '3000-01-01' with DATE '1998-01-01'.

7.2.2 Sequenced Deletions
We start with the following nontemporal deletion:

Listing 7.15: Bob was removed as associate director of the Computer Center (nontemporal version).

DELETE FROM INCUMBENTS

WHERE SSN=111223333

 AND PCN = 999071

We now wish to convert this to a sequenced deletion, over a period of applicability of the year 1997:
"Bob was removed as associate director of the Computer Center for 1997."
Recall that a current deletion in the general case is implemented as an update, for the currently valid
periods, and a delete, for periods starting in the future. For a sequenced deletion, there are four cases,
as shown in Figure 7.2. In each case, the period of validity of the original tuple is shown above the
period of applicability for the deletion. In Case 1, the original row covers the period of applicability, so
both the initial and final periods need to be retained. The initial period is retained by setting the end date
to the beginning of the period of applicability; the final period is inserted. In Case 2, only the initial
portion of the period of validity of the original row is retained. Symmetrically, in Case 3, only the final
portion of the period need be retained. And in Case 4, the entire row should be deleted, as the period of
applicability covers it entirely.

Sequenced deletion

Insert the old values from the end of the period of applicability to the end of the period of validity of the
original row.

Update the end date to end at the beginning of the period of applicability.

Update the start date to begin at the end of the period of applicability.

Delete entirely rows that are covered by the period of applicability.

 - 167 -

Figure 7.2: Sequenced deletion cases, with the period of validity (PV) and period of applicability (PA) shown.
Listing 7.16: Bob was removed as associate director of the Computer Center for 1997.

INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE '1998-01-01', END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1998-01-01'

UPDATE INCUMBENTS

SET END_DATE = DATE '1997-01-01'

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE >= DATE '1997-01-01'

UPDATE INCUMBENTS

SET START_DATE = DATE '1998-01-01'

 - 168 -

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE >= DATE '1998-01-01'

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE >= DATE '1997-01-01'

 AND END_DATE <= DATE '1998-01-01'

Case 1 is reflected in the first two statements; the second statement also covers Case 2. The third
statement handles Case 3, and the fourth, Case 4.

As a simple example, we start with Bob having been promoted on March 13 to director:
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 1998-03-

13
111223333 908739 1998-03-13 3000-01-

01

He is given a leave of absence for the month of March 1998, which corresponds to a sequenced
deletion with a period of applicability of [1998-03-01 – 1998-04-01). The result is
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 1998-03-

01
111223333 908739 1998-04-01 3000-01-

01

The first row is handled by the first UPDATE (Case 2), and the second row is handled by the second
UPDATE (Case 3).

Table 7.2: The leave of absence was for the month of April.
SSN PCN START_DATE END_DATE
111223333 999071 1998-01-01 1998-03-

13
111223333 908739 1998-03-13 1998-04-

01
111223333 908739 1998-05-01 3000-01-

01

Now let's consider instead that the leave of absence is the month of April. The result then is Table 7.2.
This utilizes only Case 1, which is implemented as an INSERT and an UPDATE.

Tip A sequenced deletion is implemented by four statements: an insertion, two
updates, and a deletion.

 - 169 -

Note that a sequenced primary key will be temporarily violated (by the INSERT statement), but will be
satisfied after the final DELETE statement, which implies that the constraint should be temporarily
deferred during this modification. All four statements must be evaluated in the order shown. They have
been carefully designed to cover each case exactly once.

Tip A sequenced deletion can violate a nonsequenced uniqueness constraint. It
cannot violate a current or sequenced uniqueness constraint.

Concerning referential integrity, a sequenced deletion may introduce a gap, violating a foreign key
referencing the table on which the deletion is applied. Concerning duplicates, a deletion is applied.
Concerning duplicates, a deletion applied on a snapshot table cannot cause a uniqueness constraint to
be violated. The same holds for a sequenced uniqueness constraint. However, a sequenced deletion
can violate nonsequenced uniqueness because deleting the middle out of a single period results in two
disconnected periods.
As an example, the following table contains no nonsequenced duplicates (it does contain value-
equivalent rows and sequenced duplicates, but that is not the focus here):
SSN PCN START_DATE END_DATE
111223333 120033 1998-04-01 1998-06-

01
111223333 120033 1998-04-01 1998-10-

01
If a sequenced deletion with a period of applicability of June 1, 1998 through July 31, 1998, is applied,
the resulting table (Table 7.3) does violate nonsequenced uniqueness!

Table 7.3: June and July 1998 were deleted.
SSN PCN START_DATE END_DATE
111223333 120033 1998-04-01 1998-06-

01
111223333 120033 1998-04-01 1998-06-

01
111223333 120033 1998-08-01 1998-10-

01

7.2.3 Sequenced Updates
A sequenced update is the temporal analog of a nontemporal update, with a specified period of
applicability. Let us again consider the following update:

Listing 7.17: Bob was promoted to director of the Computer Center (nontemporal version).

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

We now convert this to a sequenced update: Bob was promoted only for the calendar year 1997.
Tip A sequenced update is implemented by five statements: two insertions and three

updates.
As with sequenced deletions, there are more cases to consider for sequenced updates as compared
with current updates. The four cases in Figure 7.2 are handled differently in an update. In Case 1 of
Figure 7.3, the initial and final portions of the period of validity are retained (via two insertions), and the
affected portion is updated. In Case 2, only the initial portion is retained; in Case 3, only the final portion
is retained. In Case 4, the period of validity is retained, as it is covered by the period of applicability.

 - 170 -

Sequenced update

Insert the old values from the start date to the beginning of the period of applicability.

Insert the old values from the end of the period of applicability to the end date.

Update the explicit columns of rows that overlap the period of applicability.

Update the start date to begin at the beginning of the period of applicability of rows that overlap the
period of applicability.

Update the end date to end at the end of the period of applicability of rows that overlap the period of
applicability.

Listing 7.18: Bob was promoted to director of the Computer Center for 1997.

INSERT INTO INCUMBENTS

SELECT SSN, PCN, START_DATE, DATE '1997-01-01'

FROM INCUMBENTS

WHERE SSN = 111223333

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE '1998-01-01', END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

 - 171 -

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS

SET START_DATE = DATE '1997-01-01'

WHERE SSN = 111223333

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS

SET END_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

The first INSERT statement handles the initial portions of Cases 1 and 2; the second handles the final
portions of Cases 2 and 3. The first update handles the update for all four cases. The second and third
updates adjust the starting (for Cases 1 and 2) and ending dates (for Cases 1 and 3) of the updated
portion. Note that the last three UPDATE statements will not impact the row(s) inserted by the two
INSERT statements, as the period of validity of those rows lies outside the period of applicability. Again,
all five statements must be evaluated in the order shown.

Returning again to our simple example,
SSN PCN START_DATE END_DATE
111223333 341288 1998-01-01 1998-03-

13
111223333 908739 1998-03-13 3000-01-

01
Bob was given a temporal assignment of PCN = 999071 for the month of March 1998. The result (Table
7.4) contains four rows. Study this result carefully to convince yourself that it is indeed what is desired.

 - 172 -

Figure 7.3: Sequenced update cases, with the period of validity (PV) and period of applicability (PA) shown.
Table 7.4: Result of the sequenced update.
SSN PCN START_DATE END_DATE
111223333 341288 1998-01-01 1998-03-

01
111223333 999071 1998-03-01 1998-03-

13
111223333 999071 1998-03-13 1998-04-

01
111223333 908739 1998-04-01 3000-01-

01

Effecting this result requires the following changes to the original two rows:
1. Insert the first row of the result (the first INSERT of CF-7.18, Case 2 of Figure 7.3,

old value retained).
2. Insert the fourth row of the result (the second INSERT, Case 3, old value

retained).
3. Change the PCN of both of the original rows to 999071, forming new rows 2 and 3

(the first UPDATE, Cases 2 and 3, updated portion).
4. Change the start date of the first original row to 1998-03-01, to form the second

row of the result (the second UPDATE, Case 2, old value retained).
5. Change the end date of the second original row to 1998-04-01, to form the third

row of the result (the third UPDATE, Case 3, old value retained).
Amazingly, this does produce the correct result, in all cases.
Concerning duplicates and referential integrity, a sequenced update can again be considered to be a
combination of a sequenced deletion followed by a sequenced insertion. The deletion is relevant for
referenced tables (e.g., of concern if we updated the POSITIONS table); the insertion is relevant for
uniqueness and for referencing tables (e.g., for an insertion we would need to check that the PCN was in
the POSITIONS table).

 - 173 -

7.3 NONSEQUENCED MODIFICATIONS
As with constraints and queries, a nonsequenced modification treats the time-stamps identically to the
other columns.

Listing 7.19: Delete Bob's records that include 1997 stating that he was associate director of the
Computer Center.

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE <= DATE '1997-12-31'

 AND DATE '1997-01-01' < END_DATE

Tip

Nonsequenced
modifications
are usually
difficult to state
in English
because they
are expressed
in terms of the
representation,
but easier to
express in
SQL for the
same reason.

Let's compare this statement with the current variant, CF-7.8, "Bob was fired as associate director of the
Computer Center," and with the sequenced variant, CF-7.16, "Bob was removed as associate director
of the Computer Center for 1997." The current and sequenced deletes mention what happened in reality
because they model changes. The nonsequenced statement concerns the specific representation
(deleting particular records). Conversely, the associated SQL statements for the current and sequenced
variants are much more complex than that for the nonsequenced delete, for the same reason: the latter
is expressed in terms of the representation.

Most modifications will be first expressed as changes to the enterprise being modeled (some fact
becomes true, or will be true sometime in the future; some aspect changes, now or in the future; some
fact is no longer true). Such modifications are either current or sequenced modifications. Nonsequenced
modifications, while generally easier to express in SQL, are rare.

Tip Nonsequenced modifications are rare.

The ramifications (e.g., ensuring uniqueness and referential integrity) of a current modification impact
the period from "now" to "forever" those for sequenced modifications impact the period of applicability.
Since nonsequenced modifications manipulate the timestamps in arbitrary ways, their impact must be
judged on a case-by-case basis. Consider the following simple SQL update:

Listing 7.20: Extend Bob's position as associate director of the Computer Center for an additional
year.

UPDATE INCUMBENTS

SET END_DATE = END_DATE + INTERVAL '1' YEAR

 - 174 -

WHERE SSN = 111223333

 AND PCN = 999071

Tip

Correctly
impleme
nting a
nonsequ
enced
modificat
ion in
the
presenc
e of
sequenc
ed
constrai
nts is
difficult
and
must be
done on
a case-
by-case
basis.

Note that Bob might have had this position multiple times (perhaps he went on leave or had a temporary
assignment elsewhere); this statement will change all such records. Unlike the sequenced update (CF-
7.18, "Bob was promoted to director of the Computer Center for 1997"), it is probable that the
nonsequenced update just listed will result in (sequenced) duplicates (Bob having two positions at a
point in time). How do we avoid such integrity violations? In this case, we would need to either augment
the UPDATE statement to check for sequenced duplicates (and not do the update if one was found), or
first delete the offending duplicates before doing the update. Either way, it is not possible to give a
general algorithm; the specific code depends entirely on how the modification manipulates the
timestamp column(s).

7.4 MODIFICATIONS THAT MENTION OTHER TABLES*
The examples given in this chapter have been simple ones, with predicates and the SET clause limited
to simple equalities involving other columns in the table being modified. What if predicate or SET
clause(s) involve subqueries, or mention other tables? To convert such complex modifications, a
combination of the techniques from this chapter and the previous chapter on queries must be applied.

7.4.1 Complex Current Modifications
Recall from Chapter 6 that a current query merely requires an additional predicate:
START_DATE <= CURRENT_DATE AND CURRENT_DATE < END_DATE

Predicates and SET clauses in a current modification that mention other temporal tables can use this
same comparison.
The following query assumes we don't know the PCN, but can look it up in the POSITIONS table, given
the JOB_TITLE_CODE1, which is available from the (nontemporal) table JOB_TITLES. We first show
the modification ignoring time.

Listing 7.21: Bob is promoted to director of the Computer Center getting the PCN from POSITIONS
(nontemporal version).

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 - 175 -

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR' COMPUTER CENTER')

WHERE SSN = 111223333

The following is the current version of this modification; compare it with CF-7.11.

Listing 7.22: Bob is promoted to director of the Computer Center getting the PCN from POSITIONS
(current version).

INSERT INTO INCUMBENTS

SELECT SSN, I.PCN, CURRENT_DATE, I.END_DATE

FROM INCUMBENTS AS I, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

 AND I.START_DATE <= CURRENT_DATE

 AND I.END_DATE > CURRENT_DATE

 AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND POSITIONS.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < POSITIONS.END_DATE

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

 AND PCN <> (SELECT PCN

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND POSITIONS.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < POSITIONS.END_DATE)

 AND INCUMBENTS.START_DATE < CURRENT_DATE

 AND INCUMBENTS.END_DATE > CURRENT_DATE

 - 176 -

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND POSITIONS.START_DATE <= CURRENT_DATE

 AND CURRENT_DATE < POSITIONS.END_DATE)

WHERE SSN = 111223333

 AND START_DATE >= CURRENT_DATE

Tip

Current
modific
ations
that
mentio
n other
tables
require
an
additio
nal
overlap
predica
te for
each
correlat
ion
name.

Two changes were made to CF-7.11. The first replaced the two occurrences of a PCN of 908739 with
the SELECT statement that looks up this value from the POSITIONS and JOB_TITLES tables. The
second change added the overlap test with CURRENT_DATE for the POSITIONS correlation name. No
such test is required of JOB_TITLES because this table doesn't record history.

7.4.2 Complex Sequenced Modifications
Section 6.3 and Section 6.3.1 showed how to express sequenced selection, projection, union, sorting,
join, and duplicate elimination. Section 7.2 showed how to implement sequenced insertions, deletions,
and updates. We now consider implementing sequenced modifications that refer to other tables. Doing
so requires combining these techniques.

We warn you that sequenced modifications over multiple time-varying tables are exceedingly knotty.
That is little consolation to the application developer who is expected to produce such queries. Here we
walk through the steps taking a nontemporal multitable update (at 6 lines) to its sequenced equivalent
(at 76 lines!). This section can be safely skipped; you can return here when required to write such an
update.

If a SET or WHERE clause mentions another temporal table, the predicate in the context of a
sequenced modification will be valid for the periods of validity of the relevant rows of that table. Multiple
rows contribute various periods of validity, which must be accounted for.

 - 177 -

There are three periods that are involved. The first is the period of validity contributed by the row being
modified. The second is the period of applicability for the

Escapements
The mechanism that periodically stops the unwinding of the clock, and thus keeps the time, is termed
the "escapement." The first escapement, invented in the 15th century, was the verge-and-foliot, or
recoil escapement. The rotating cylinder has notches or teeth on it, which push (hence the name,
"recoil") a weighted bar, the foliot, in one direction, twisting a wire. When the wire untwists, it pushes
the foliot in the other direction, releasing the cylinder (called the crown wheel) to turn until the
escapement hits the next notch. Twist-untwist, tick-tock. The escapement ensures that the crown only
advances one unit at a time and serves to impulse the foliot, keeping the clocking going.

All escapements have these two tasks: regulate the advancement, and "kick" the oscillating body. A
wonderous diversity of escapments has been invented over the last 600 years.

modification. The third is the period of validity of the row of the table mentioned in the SET or WHERE
clause.

We are primarily interested in regions where these three periods intersect. Times outside the period of
validity of the row being modified are obviously of no concern. The SET clause or WHERE clause is
defined only for the period of validity of the mentioned table. The modification affects those times within
the period of applicability. Note however that those times outside the period of applicability but within the
period of validity of the modified row are still relevant, for we wish to retain the old values for the
columns during these times.
Hence, to convert a query mentioning other table(s) to be a sequenced query (the most useful kind), a
case analysis on the interaction of these three periods is required. Figure 7.2 and 7.3 illustrated the
possible ways that the period of validity of the modified row and the period of applicability can interact.
To this analysis we must add the period of validity of the mentioned rows. Each type of interaction
generally necessitates an insertion or update. Periods outside the period of applicability require inserts
to retain the old column values. Before, there was only one period from the row being modified within
the period of applicability; here, because of the other referenced tables, there may be many such
periods. These periods are also inserted (for a sequenced insertion or update). The exception is the first
period within the period of applicability, which is updated (again, for a sequenced update), both of the
column values, to effect the update, and the start and end timestamp columns.
As an example, we convert the above nontemporal update (CF-7.21) to a sequenced update, using a
period of applicability of the calendar year 1997. Doing so effectively requires a sequenced join between
INCUMBENTS and POSITIONS. Here is the original, nontemporal update.

 - 178 -

Figure 7.4: Case 1 of sequenced update, mentioning another temporal table.
Listing 7.23: Bob was promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER')

WHERE SSN = 111223333

As just mentioned, there are four base cases for sequenced updates (see Figure 7.3). Let's examine
how the period of validity for the POSITIONS table interacts with the period of validity for INCUMBENTS
and with the period of applicability. In Figure 7.4, we focus on Case 1. In this example, the PCN in
POSITIONS for director of the Computer Center changes several times (from 1 to 2 to 3) over the
course of 1997.
This particular update will result in a single row from INCUMBENTS being replaced with five rows. The
first and last rows will be identical to the original row except for the start and end times. The PCN column
of the second row will be 1, of the third row, 2, and of the fourth row, 3, all drawn from the POSITIONS
table. Since we need to derive five rows (in this case) from one original row, this modification will be
performed via four inserts and four updates (one to update the PCN column, one to update the
START_DATE column, and two to update the END_DATE column), a total of eight modification
statements.

Sequenced update mentioning another table

Insert old values before period of applicability begins.

Insert old values after period of applicability ends.

Perform update on first period representing the intersection of the period of validity for the row, the
period of applicability, and the period of validity of the mentioned row(s).

 - 179 -

Insert new values for the remainder of the period of applicability (two subcases).

Update its start date (one update) and end date (two subcases).

Listing 7.24: Bob was promoted to director of the Computer Center for 1997 (sequenced version).

INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE '1998-01-01', END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

INSERT INTO INCUMBENTS

SELECT SSN, PCN, START_DATE, DATE '1997-01-01'

FROM INCUMBENTS

WHERE SSN = 111223333

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND POSITIONS.START_DATE <= DATE '1997-01-01'

 AND DATE '1997-01-01' < POSITIONS.END_DATE)

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 - 180 -

 AND END_DATE > DATE '1997-01-01'

INSERT INTO INCUMBENTS

SELECT SSN, POSITIONS.PCN,

 POSITIONS.START_DATE, POSITIONS.END_DATE

FROM INCUMBENTS, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

 AND INCUMBENTS.START_DATE <= DATE '1998-01-01'

 AND INCUMBENTS.END_DATE > DATE '1998-01-01'

 AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND DATE '1997-01-01' <= POSITIONS.START_DATE

 AND INCUMBENTS.START_DATE <= POSITIONS.START_DATE

 AND POSITIONS.END_DATE < DATE '1998-01-01

 AND POSITIONS.END_DATE < INCUMBENTS.END_DATE

INSERT INTO INCUMBENTS

SELECT SSN, POSITIONS.PCN,

 POSITIONS.START_DATE, DATE '1998-01-01'

FROM INCUMBENTS, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

 AND INCUMBENTS.START_DATE <= DATE '1998-01-01'

 AND INCUMBENTS.END_DATE > DATE '1998-01-01'

 AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER'

 AND DATE '1997-01-01' <= POSITIONS.START_DATE

 AND DATE '1998-01-01 < POSITIONS.END_DATE

UPDATE INCUMBENTS

SET START_DATE = DATE '1997-01-01'

WHERE SSN = 111223333

 - 181 -

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS

SET END_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE INCUMBENTS.SSN = I2.SSN

 AND INCUMBENTS.PCN = I2.PCN

 AND INCUMBENTS.START_DATE < I2.END_DATE

 AND I2.START_DATE < INCUMBENTS.END_DATE)

UPDATE INCUMBENTS

SET END_DATE = (SELECT MIN(I2.START_DATE)

 FROM INCUMBENTS AS I2

 WHERE INCUMBENTS.SSN = I2.SSN

 AND INCUMBENTS.PCN <> I2.PCN

 AND INCUMBENTS.START_DATE < I2.START_DATE)

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

 AND EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE INCUMBENTS.SSN = I2.SSN

 AND INCUMBENTS.PCN <> I2.PCN

 AND INCUMBENTS.START_DATE < I2.END_DATE

 AND I2.START_DATE < INCUMBENTS.END_DATE)

 - 182 -

In comparison with the original sequenced version (CF-7.18), we added here mention of the
POSITIONS and JOB_TITLES tables, impacting only the latter three UPDATE statements of the
original version. Since POSITIONS is time-varying, we are really doing a sequenced join between that
table and the table being updated, INCUMBENTS
The first INSERT statement handles the initial portion (the first row in Figure 7.4); the second handles
the final portion (the last row in the figure). The first update changes the PCN to the value found in the
POSITIONS table valid at the beginning of the period of applicability (1997). The following two insertions
add intermediate periods during the period of applicability, the former from row(s) of the POSITIONS
table that end before the end of applicability, the latter from rows that end after the period of
applicability. The following three updates adjust the starting and ending dates of the initial portion with
the new PCN value.

This case analysis identifies for which periods the old values should be inserted, for which periods the
new values should be inserted, and for which single period the columns should be updated to the new
values, with the start and end times changed. We illustrated the most complex case, that of update;
deletion is simpler, and insertion simpler still.

7.5 TEMPORAL PARTITIONING*

Tip Sequenced updates referring to other tables are complex to convert into SQL.

As discussed on page 120, the value '3000-01-01' ("forever") is used in INCUMBENTS.END_DATE to
represent currently valid data, that is data valid until "now." What we really desire is to store
CURRENT_DATE as the column value. Unfortunately, neither SQL nor any extant DBMS allows this
because the value has the habit of changing once each day. While quite inconvenient for the DBMS
vendor, this property is what the user wants. Bob's position could change tomorrow, but at least we
know that the position recorded in the database is valid today.
As an aside, using CURRENT_DATE is close, but is not entirely accurate. The UIS is updated every
night with the previous day's value. So what we really want to model is that we know Bob's position up
to yesterday; it could change today, in which case we would hear about the change tomorrow. So what
is really needed is the now-relative value CURRENT_DATE - INTERVAL '1' DAY, which is also not
supported as a column value by DBMSs.

Tip

Temporal partitioning finesses the limitation of CURRENT_DATE not being
permitted as column values by splitting a valid-time table into a current store
containing only current information and a history store.

Since we can't store the value we want, we come at the problem a different way. By using temporal
partitioning, we can avoid the necessity of storing an end time of "now." We partition INCUMBENTS into
two tables, INCUMBENTS_CURRENT and INCUMBENTS_PAST. The latter table, termed the history store,
contains no current information; hence, the END_DATE is always a specific, known date. In the former
table, termed the current store, we have no need for that column, so we omit it. The START_DATE is still
present in the INCUMBENTS_CURRENT table, as we need to know when the current information became
valid.
These two tables are not as expressive as the original INCUMBENTS table: they cannot record future
data. Say Bob receives a promotion postactively, that is, to go into effect at some future time. Postactive
promotions are common in universities; many are announced in late spring, to go into effect at the
beginning of the following fiscal year (which for the University of Arizona is July 1). Bob's new position
could be recorded in INCUMBENTS, with a START_DATE of July 1. Such data cannot be stored in
INCUMBENTS_PAST, nor is such data appropriate for INCUMBENTS_CURRENT because the position is
not yet current.

7.5.1 Queries
If temporal partitioning is used, current queries are simpler: just apply the query to the current store.

Listing 7.25: What is Bob's current position?

 - 183 -

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS_CURRENT, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS_CURRENT.SSN

 AND INCUMBENTS_CURRENT.PCN = POSITIONS.PCN

Tip

Current
queries
are
simplifi
ed
when
applied
to a
partitio
ned
valid-
time
table.

The disadvantage of temporal partitioning, as we will see below, is that queries over the history must
reference both tables. However, sometimes the data is naturally partitioned at the source of that data.
Recall that while SAL_HISTORY (see page 116) contains the salary history, the EMPLOYEES table
contains the current salary, as well as the PAY_CHANGE_DATE. An important design issue, which we'll
just mention now, is whether to replicate current information in the past table.
While all of these approaches are similar in length (around 30 lines of SQL code), the query becomes
much more complex when temporal partitioning is used on one or both of the underlying tables. If the
INCUMBENTS table is partitioned into INCUMBENTS_PAST and INCUMBENTS_CURRENT, then the
temporal join mushrooms to a 50-line query.

Listing 7.26: Provide the salary and department history for all employees.

(Insert CF-6.11 from page 151, substituting INCUMBENTS_PAST for INCUMBENTS)

UNION

SELECT S.SSN, AMOUNT, PCN,

 S.HISTORY_START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS_CURRENT AS I

WHERE S.SSN = I.SSN

 AND I.START_DATE <= S.HISTORY_START_DATE

UNION

SELECT S.SSN, AMOUNT, PCN,

 I.START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS_CURRENT AS I

WHERE S.SSN = I.SSN

 - 184 -

 AND I.START_DATE > S.HISTORY_START_DATE

 AND S.HISTORY._END_DATE <= DATE '3000-01-01'

 AND I.START_DATE < S.HISTORY_END_DATE

UNION

SELECT S.SSN, AMOUNT, PCN,

 I.START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS_CURRENT AS I

WHERE S.SSN = I.SSN

 AND I.START_DATE > S.HISTORY_START_DATE

 AND DATE '3000-01-01' < S.HISTORY_END_DATE

Tip

If the history store does not include current data, then sequenced and nonsequenced
queries are more complex. Otherwise, such data must be replicated across both
tables.

There are two major changes made to CF-6.11 to produce the portion here. INCUMBENTS.END_DATE
is replaced with DATE '3000-01-01'. With this substitution, the second case in the original doesn't
apply to INCUMBENTS_CURRENT, and so is omitted.
If the INCUMBENTS_PAST also includes the current data, then CF-6.11 with INCUMBENTS_PAST
substituted for INCUMBENTS suffices. This approach favors query simplicity, at the expense of
modification complexity, as will now be shown.

7.5.2 Modifications
Current inserts into partitioned tables are even easier.

Listing 7.27: Bob was assigned the position of associate director of the Computer Center
(partitioned).

INSERT INTO INCUMBENTS_CURRENT

VALUES (111223333, 6201945234, CURRENT_DATE)

Here we only have to record when the fact became valid.
We assume in this code fragment that duplicates were allowed. If duplicates are not allowed, then there
are two choices. One approach is to define a constraint or assertion disallowing duplicates, which will
then prevent duplicates from being inserted. This works fine for current and nonsequenced duplicates,
as well as for value-equivalent duplicates. For sequenced duplicates (where no duplicates are allowed
at each point in time), using a constraint, such as that shown in CF-5.14, is overkill because a duplicate
present at any instant will prevent the insertion at all instants.

Tip Current insertions only impact the current store of a partitioned table.

The second approach is to extend the above INSERT statements to insert facts only if there is no
duplicate. For current nonsequenced duplicates, this is easy. For sequenced duplicates, where
duplicates must be avoided at each point in time, ensuring this is easy for the partitioned table. If there

 - 185 -

is a value-equivalent row in the INCUMBENTS_CURRENT, then the period of validity of that row wholly
contains the row to be inserted, and the entire insertion should not take place.

Listing 7.28: Bob was assigned the position of associate director of the Computer Center
(partitioned, avoiding sequenced duplicates).

INSERT INTO INCUMBENTS_CURRENT

VALUES (111223333, 6201945234, CURRENT_DATE)

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS_CURRENT AS I2

 WHERE I2.SSN = 111223333

 AND I2.PCN = 6201945234)

Similarly, current deletions move a row from the current store to the history store.
Listing 7.29: Bob was fired as associate director of the Computer Center (partitioned).

INSERT INTO INCUMBENTS_PAST (SSN, PCN, START_DATE, END_DATE)

SELECT SSN, PCN, START_DATE, CURRENT_DATE

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

 AND PCN = 999071

DELETE FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

 AND PCN = 999071

This is slightly shorter than the nonpartitioned current deletion (CF-7.8). Similarly, a current update is
logically a current delete coupled with a current insert.

Sequenced modifications over a partitioned table must consider both stores. For sequenced insertions,
there are two cases: (1) the period of applicability lies entirely in the past, in which case the row is
inserted into the history store, or (2) the period of applicability includes now, in which case the row is
inserted into the current store.
For sequenced deletions, recall that a partitioned store cannot record future data, so the period of
applicability must either end before now or extend to "forever." In the first situation, only the history store
is modified, as described in Section 7.2.2. The second situation involves changes to the history store
and to the current store.

 - 186 -

Revisiting Figure 7.2 on page 191, all four cases are relevant for the period of validity for rows in both
the current and history stores. The insertion, two updates, and the deletion of CF-7.16 apply as is to
INCUMBENTS_PAST For the current store, these cases result in a somewhat different set of statements.

Listing 7.30: Bob was removed as associate director of the Computer Center for 1997 (partitioned).

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, DATE '1998-01-01', END_DATE

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE <= DATE '1997-01-01'

 AND END_DATE > DATE '1998-01-01'

UPDATE INCUMBENTS_PAST

SET END_DATE = DATE '1997-01-01'

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE >= DATE '1997-01-01'

UPDATE INCUMBENTS_PAST

SET START_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE >= DATE '1998-01-01'

DELETE FROM INCUMBENTS_PAST

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE >= DATE '1997-01-01'

 AND END_DATE <= DATE '1998-01-01'

 - 187 -

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE <= DATE '1998-01-01'

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, START_DATE, DATE '1997-01-01'

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1997-01-01'

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE < DATE '1998-01-01'

DELETE FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

 AND PCN = 999071

 AND START_DATE >= DATE '1997-01-01'

Tip

Sequenced
updates
are tedious
due to the
extensive
case
analysis
required
for the
current and
history
stores
separately.

 - 188 -

The situation is similar for sequenced updates. The history store is updated identically to the
nonpartitioned valid-time state table (copying the five modification statements from CF-7.18). Updating
the current store requires some changes to these statements, yielding another six modification
statements (whew!). These are best understood by examining Figure 7.3 and considering what changes
to the partitioned store are required in each case.

Listing 7.31: Bob was promoted to director of the Computer Center for 1997 (partitioned).

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, START_DATE, DATE '1997-01-01'

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, DATE '1998-01-01', END_DATE

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

UPDATE INCUMBENTS_PAST

SET PCN = 908739

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS_PAST

SET START_DATE = DATE '1997-01-01'

WHERE SSN = 111223333

 AND START_DATE < DATE '1997-01-01'

 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS_PAST

 - 189 -

SET END_DATE = DATE '1998-01-01'

WHERE SSN = 111223333

 AND START_DATE < DATE '1998-01-01'

 AND END_DATE > DATE '1998-01-01'

--Now handle changes to INCUMBENTS_CURRENT

INSERT INTO INCUMBENTS_PAST
SELECT SSN, PCN, START_DATE, DATE '1997-01-01'
FROM INCUMBENTS_CURRENT
WHERE SSN = 111223333
 AND START_DATE < DATE '1997-01-01'

INSERT INTO INCUMBENTS_PAST
SELECT SSN, 908739, DATE '1997-01-01', DATE '1998-01-01'
FROM INCUMBENTS_CURRENT
WHERE SSN = 111223333
 AND START_DATE < DATE '1997-01-01'
 AND DATE '1998-01-01' < CURRENT_DATE

INSERT INTO INCUMBENTS_PAST
SELECT SSN, 908739, START_DATE, DATE '1998-01-01'
FROM INCUMBENTS_CURRENT
WHERE SSN = 111223333
 AND START_DATE < DATE '1998-01-01'
 AND DATE '1998-01-01' < CURRENT_DATE

UPDATE INCUMBENTS_PAST
SET PCN = 908739
WHERE SSN = 111223333
 AND START_DATE < DATE '1998-01-01'
 AND END_DATE > DATE '1997-01-01'

UPDATE INCUMBENTS_CURRENT
SET START_DATE = DATE '1998-01-01'
WHERE SSN = 111223333
 AND START_DATE < DATE '1998-01-01'

UPDATE INCUMBENTS_CURRENT
SET START_DATE = DATE '1997-01-01'
WHERE SSN = 111223333
 AND START_DATE < DATE '1997-01-01'

As with the nonpartitioned store, nonsequenced modifications are easy to express in SQL and difficult to
express in English because they are so intimately coupled with the implementation.

7.6 IMPLEMENTATION CONSIDERATIONS
As before, the code fragments were implemented on several systems.

7.6.1 IBM DB2 Universal Database
All of the code fragments compile without error in IBM DB2 UDB. The DUAL table in CF-7.2 can be
replaced with a WITH TEMP construct.

 - 190 -

Listing 7.32: Bob was assigned the position of associate director of the Computer Center, ensuring
the primary key, in DB2 UDB.

INSERT INTO INCUMBENTS

WITH TEMP(SSN, PCN, START_DATE, END_DATE) AS

(VALUES (111223333, 999071, CURRENT DATE, '3000-01-01'))

SELECT *

FROM TEMP AS T

WHERE (NOT EXISTS (SELECT *

 FROM INCUMBENTS AS I2

 WHERE T.SSN = I2.SSN

 AND T.PCN = I2.PCN

 AND I2.END_DATE = '3000-01-01'))

7.6.2 Microsoft Access
CF-7.6 (fill gaps in the POSITIONS table) cannot be done in Microsoft Access 97 or Access 2000
because these DBMSs do not support the COALESCE operator.

7.6.3 Microsoft SQL Server
All of the code fragments compile without error in Microsoft SQL Server.

7.6.4 Oracle8 Server
CF-7.6 causes difficulties with Oracle8 Server, as it doesn't allow SELECT statements in the target list
of an outer SELECT statement. This code fragment can be converted to the following PL/SQL code:

Listing 7.33: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case, in Oracle.

CURSOR gaps(pcn2 varchar2) IS

 SELECT END_DATE

 FROM POSITIONS p2

 WHERE p2.PCN = pcn2

 AND p2.END_DATE > SYSDATE

 AND p2.END_DATE < TO_DATE('3000-01-01','YYYY-MM-DD')

 AND NOT EXISTS (SELECT *

 FROM POSITIONS p3

 - 191 -

 WHERE p3.PCN = pcn2

 AND p3.START_DATE <= p2.END_DATE

 AND p2.END_DATE < p3.END_DATE);

new_start_date DATE;

new_end_date DATE;

BEGIN

 OPEN gaps(in_pcn);

 LOOP

 BEGIN

 FETCH gaps INTO new_start_date;

 EXIT WHEN gaps%NOTFOUND;

 SELECT NVL(MIN(p2.START_DATE),TO_DATE('3000-01-01','YYYY-MM-DD'))

 INTO new_end_date

 FROM POSITIONS p2

 WHERE p2.PCN = in_pcn

 AND p2.START_DATE > new_start_date;

 INSERT INTO POSITIONS

 (pcn, JOB_TITLE_CODE1, START_DATE, END_DATE)

 VALUES (in_pcn, NULL, new_start_date, new_end_date);

 END;

 END LOOP;

 CLOSE gaps;

END;

The cursor is the WHERE clause of the original INSERT statement. The WHERE clause in the nested
select inside the original COALESCE expression is implemented here as a select on the rows returned
by the cursor, with COALESCE implemented with NVL. The insert is then performed.

7.6.5 UniSQL

 - 192 -

CF-7.6 causes slight difficulties with UniSQL, because COALESCE cannot take a SELECT statement
as an argument. Also, as UniSQL does not support CURRENT_DATE, we use today's date instead.

Listing 7.34: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case, in UniSQL.

INSERT INTO POSITIONS

SELECT 999071, NULL, END_DATE,

 (SELECT COALESCE(MIN(START_DATE), DATE '01/01/3000')

 FROM POSITIONS AS P2

 WHERE P2.PCN = 999071

 AND P2.START_DATE > P.START_DATE)

FROM POSITIONS AS P2

WHERE P2.PCN = 999071

 AND P2.END_DATE > DATE '1/16/1998'

 AND P2.END_DATE < DATE '01/01/3000'

 AND NOT EXISTS (SELECT *

 FROM POSITIONS AS P3

 WHERE P3.PCN = 999071

 AND P3.START_DATE <= P2.END_DATE

 AND P2.END_DATE < P3.END_DATE)

7.6.6 CD-ROM Materials
The CD-ROM contains the code fragments in this chapter in IBM DB2 UDB, Microsoft Access 97,
Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and UniSQL.

7.7 SUMMARY
We have examined how to convert various nontemporal modifications into current and sequenced
modifications. Insertions are not too troublesome. Additional predicates are required to ensure
sequenced uniqueness and referential integrity. Alternatively, gaps can be filled in the referenced table,
which is analogous to adding the key values in the nontemporal case.
Nontemporal deletions and updates are mapped into a series of SQL statements. Current modifications
can be viewed as sequenced modifications with a period of applicability from "now" to "forever." The
portion of each row's period of validity that is outside the period of applicability must be retained. Often
this involves inserting new rows. Deleting a short period from the middle of a row will result in two
remaining rows; updating such a period will result in an initial unchanged row, an updated row, and a
final unchanged row. Keeping all the cases straight requires a sophisticated dance between as many as
five statements for a simple update (CF-7.18).

 - 193 -

In showing how integrity constraints can be ensured within the modification, we considered for each
current modification two cases: the general case, where any modification is allowed on the underlying
table, and the restricted case, where only current modifications are ever performed on the table.

Tip The modifications found in nontemporal applications are all current modifications.

The restricted case is interesting because it mirrors the behavior of a nontemporal table. After a series
of current modifications, the current state of the temporal table (the rows that are valid at "now") will be
identical to a nontemporal table upon which the same series of modifications had been applied.

Many applications initially have no temporal component. The need for retaining the history then arises.
To extend such an application, the first step is to make one or more of the tables temporal, generally by
adding a period timestamp (e.g., start date and end date columns). Then the modifications, which are all
current modifications, are converted to manipulate these new columns. This chapter explained this
conversion process in detail.

Later, such applications are extended to allow storage and changing of future information. Such
modifications are more general than current modifications. When these modifications are permitted to
the temporal tables, the current modifications in the original application must be converted to cover the
general case.

If the modification mentions other tables, the interaction between the period of validity of the row
undergoing modification, the period of applicability of the modification, and the period(s) of validity of the
mentioned table(s) must be taken into consideration when translating the modification.

Temporal partitioning finesses the problem of storing currently valid data by separating this data from
old data, storing the former in a table known as the current store and the latter in a table known as the
history store. Some queries and updates are simplified under this arrangement; others are lengthened.

7.8 READINGS
Most temporal database research has focused on queries; modification is often handled as an
afterthought. Some proposals for temporal query languages have considered extended modification
statements: HSQL [84], TQuel [86, 87], and TRM [5]. Implementing modification of temporal tables has
received no attention. In fact, Tansel's book [102] has a 170-page part on implementation, with nary a
word on modifications.
Myrach et al. [72] discuss how to ensure keys and referential integrity using the constructs of the TSQL2
temporal query language [91]. A later paper [4] provides various mechanisms for ensuring sequenced
referential integrity in an extended relational model.
Ahn's work with the author is perhaps the most thorough investigation of temporal partitioning [1].
Clifford et al. propose storing now-relative values (such as CURRENT_DATE-INTERVAL '1' DAY) in
the database [23].
As discussed in Section 5.7, each transaction containing a modification should reset the mode of
temporal assertions to deferred, say, with SET CONSTRAINTS ALL DEFERRED

David Landes argues persuasively that a digital perception of time, encouraged by the stepwise
movement of the clock hand in the town's clock tower and the subsequent need for skilled craftsmen
who could assemble these clockworks, was one of the major advances that "turned Europe from a
weak, peripheral, highly vulnerable outpost of Mediterranean civilization into a hegemonic aggressor.
Time measurement was at once a sign of new-found creativity and an agent and catalyst in the use of
knowledge for wealth and power" [65, p. 12].

Chapter 8: Retaining a Tracking Log
OVERVIEW
A tracking log captures the sequence of modifications that have been applied to a single table, the table
being tracked. The tracking log allows the monitored table to be reconstructed as of any time in the
past. This feature can be used to undo inadvertent modifications or to restore the table to a previous,
consistent state. Of course, the tracking log can also be used in informal or formal audit procedures.

 - 194 -

Different organizations of the tracking log result from the varying assumptions and constraints on the
monitored table. The schema of the tracking log comprises the columns of the monitored table, along
with a timestamp column (a single datetime specifying when the modification occurred) and sometimes
an operation code (insert, delete, update) and a transaction identifier. Triggers can be used to maintain
the tracking log, without necessitating changes to the application code. A tracking log can contain
before-images (the row before the indicated change occurred), after-images, or a combination of both.

The different organizations of the tracking log are coupled with various reconstruction algorithms.
Achieving fully accurate transaction semantics for the reconstructed table turns out to be surprisingly
difficult; various restrictions on how the monitored trail is modified can simplify the reconstruction
algorithm dramatically.

Nigel Corbin, a Welshman who speaks the King's English with a clipped precision underscoring his
doctorate in theoretical physics, provides technical support for Schlumberger's GeoQuest division. In
April 1996, we talked in Jakarta, at a meeting of FINDER support personnel who had flown in from
Schlumberger's wide-flung offices: Perth, Kuala Lumpur, Mexico City. Looking out from GeoQuest's
16th-floor offices in the "Golden Triangle" of this sprawling Indonesian capital of approximately 10
million people, the eye encounters office buildings, five-star hotels, and foreign embassies in every
direction, emphasizing the explosive growth over the past two decades and obscuring the crushing
poverty still found in other parts of the city. A year later, the then-unthinkable would occur: Suharto
resigned, and a massive economic and social upheaval commenced.
Nigel is based on the other side of the world, in Gatwick, near London. Actually, his office is at the
Gatwick airport, which presented challenges to the building's architect. The windows have 6 inches of
double-paned glass, to acoustically isolate the inhabitants from the shrill whine of departing jet planes.
An enclosing wire mesh absorbs the microwave emissions from the airport radar, which otherwise
would impart a vague warmth on each sweep. There are no architectural solutions for near encounters
of planes that occasionally make tight turnarounds for emergency landings due to equipment
malfunction, the closest thus far being a miniscule 1 meter.
When we met, Nigel had other concerns. One of his clients called him to report that all of the North Sea
wells had been relocated to the Pacific Ocean. This was quite disturbing news! Nigel rushed to the
customer site and verified that the wells were indeed showing up in the wrong location on the digitized
maps generated by FINDER. Upon further investigation, Nigel determined that the wells' coordinates
were fine, but that these coordinates were being interpreted using the incorrect units. FINDER includes
a PROJECTIONS table, containing the columns PROJECTION_ID (the primary key),
PROJECTION_NAME, PROJECTION_TYPE (an integer between 0 and 20), SPHEROID_CODE (the U.S.
Geologic Survey (USGS) spheroid code, an integer between 0 and 18), PROJECTION_UOM (the
spheroid units, an integer between 0 and 5), and ZONE_CODE (the USGS zone code, a number between
0 and 5400). Someone had (perhaps inadvertently) changed one of the codes for the projection used by
the North Sea wells, by executing an ill-advised update on this table. Finding the incorrect column value
was tedious. While this table is small, containing several tens of rows, it took Nigel the better part of the
morning to reconstruct the table's correct contents.

With this problem fixed, Nigel then considered the more basic issue: what specific changes had been
made to this table, and why? One option would be to revise the permissions on this table to disallow
updates on the table, thereby ensuring that the table remained consistent. However, this alternative was
unacceptable to the client, as there were valid situations in which one or more rows would need to be
changed. Nigel decided that a tracking log for this table would be desirable, should the circumstances
recur.

8.1 DEFINING THE TRACKING LOG

Tip

A tracking log retains the past states of a table without impacting the monitored
table. As differentiated from a valid-time table, which models the state of the
enterprise over time, a tracking log captures the state of the monitored table itself
over time.

A tracking log specifies the sequence of modifications to a single table, the monitored table. The
tracking log records the fact that a modification had been applied, as well as the data involved in the
modification. Usually it contains additional information about the change, such as when the modification
occurred, or who performed it, or which task or transaction effected the change. The tracking log
permits the contents of the monitored table to be reconstructed as of any time in the past.
A tracking log differs from the valid-time tables discussed in previous chapters. Those tables modeled
the state of the enterprise over time. In contrast, a tracking log captures the state of the modified table
itself over time.

 - 195 -

We first define a new table, P_Log, which will contain the tracking log for the PROJECTIONS table.
Code Fragment 8.1: Create the tracking log table.

CREATE TABLE P_Log (

PROJECTION_ID INT,

PROJECTION_NAME CHAR(10),

PROJECTION_TYPE INT,

SPHEROID_CODE INT,

PROJECTION_UOM INT,

ZONE_CODE INT,

When_Changed DATE,

PRIMARY KEY (PROJECTION_ID, When_Changed))

All but the final column are from the PROJECTIONS table. The When_Changed column indicates the
date on which the values in the row were removed or changed in the PROJECTIONS table. Hence, these
are the old values; the current values can be found in the monitored table. In fact, the value of the
When_Changed column can never exceed "now." That When_Changed is of type DATE implies that
each specific projection will be updated at most once per day (we will relax this assumption later).

Tip

The schema of a tracking log comprises the columns of the monitored table, along
with a single timestamp column. Its key is simply the primary key of the monitored
table and the timestamp column.

Recall from Section 5.3 that the (sequenced) primary key of a valid-time table cannot be composed from
its columns; an assertion is required. Such is not the case here. The key of the tracking log is simply the
key of the monitored table (PROJECTION_ID) along with the When_Changed column. The reason for
this is that the primary key constraint on the monitored table implies a current key constraint on the
tracking log. Since only current modifications (in fact, current insertions) are applied to the log, a current
key constraint becomes a sequenced key constraint.
A tracking log can also contain auxiliary columns, such as Who_Changed, that provide additional
information on the transaction that is updating the monitored table. However, if triggers are used to
maintain the tracking log, those triggers must have access to this auxiliary information. SQL-92's
SYSTEM_USER is helpful here; other, application-dependent information is harder to make available to
the trigger.
As an aside, we saw in Chapter 5 that the ZPSOS_COMPENSATION_HISTORY table included a
CHRONOLOGY_KEY column, which is effectively a transaction timestamp. That table contained both the
current information and the tracking log.
The benefit of a separate P_Log table is that the PROJECTIONS table remains as before, and all the
code that uses that table still works as before. FINDER is a large, complex system. If Nigel had to
examine all of the code that accessed this table, this additional work would probably have convinced
him to abandon adding the tracking log in the first place.
However, the code that modifies the PROJECTIONS table is still of concern. We wish to also retain that
code as is. This can be done by maintaining the P_Log table via triggers, working behind the scenes.
We define two triggers, one each for DELETE and UPDATE, on the monitored table.

Listing 8.2: Triggers for maintaining the P_Log table.

CREATE TRIGGER Delete_PROJECTIONS

 - 196 -

AFTER DELETE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES

(OLD.PROJECTION_ID,

OLD.PROJECTION_NAME,

OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE,

OLD.PROJECTION_UOM,

OLD.ZONE_CODE,

CURRENT_DATE)

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (OLD.PROJECTION_ID,

OLD.PROJECTION_NAME,

OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE,

OLD.PROJECTION_UOM,

OLD.ZONE_CODE,

CURRENT_DATE)

Tip

Triggers
allow
the
tracking
log to
be
maintai
ned
automat
ically,
without
necessit
ating
change
s to the
applicati
on
code.

 - 197 -

In both cases, the values stored in the tracking log table are the old values. In the case of update, the
new values may be found in the PROJECTIONS table. The value of the When_Changed column is
"now." Again, we assume that only one modification is applied each day. Since inserted values can also
be found in the monitored table, there is no need for an INSERT trigger (we also return to this
assumption later in this chapter).
These triggers assume that no other modifications are made to the P_Log table, other than through the
INSERT, DELETE, and UPDATE statements. If triggers were already present on the PROJECTIONS
table, and if the DBMS allowed only one trigger per operation per table, then the existing triggers would
need to be merged with those defined above.

With this organization, Nigel can confidently install the tracking log with a simple table definition and two
trigger definitions. No existing code is impacted. The tracking log is maintained entirely as a side effect
of modifications to the monitored table.

8.2 QUERIES
Assume that the following transactions have been executed on the PROJECTIONS table (here we show
the values of only the table's key column and one additional column).

1. Insert projection 1 with a type of 12 on January 1, 1996.
2. Insert projection 2 with a type of 10 on January 1, 1996.

Table 8.1: The PROJECTIONS table.
PROJECTION_ID PROJECTION_TYPE
1 12
2 14
3 11

Table 8.2: The P_Log table.
PROJECTION_ID PROJECTION_TYPE When_Changed
5 18 1996-02-03
2 10 1996-03-20
3 15 1996-05-28
2 13 1996-06-17
4 17 1996-07-12

3. Insert projection 3 with a type of 15 on January 1, 1996.
4. Insert projection 4 with a type of 17 on January 1, 1996.
5. Insert projection 5 with a type of 18 on January 1, 1996.
6. Delete projection 5 on February 3, 1996.
7. Update projection 2 to a type of 13 on March 20, 1996.
8. Update projection 3 to a type of 11 on May 28, 1996.
9. Update projection 2 with a type of 14 on June 17, 1996.
10. Delete projection 4 on July 12, 1996.

After these transactions have executed, the current contents of the PROJECTIONS table are shown in
Table 8.1. The contents of the P_Log table are shown in Table 8.2.
Note that Table 8.2 will be ordered on When_Changed: each trigger adds a new row to the table with a
When_Changed time greater than all existing values. Note also that the tracking log is append-only; no
rows are ever updated or deleted. Finally, observe that the tracking log can contain multiple rows for a
particular PROJECTION_ID if that value was updated several times.

We first consider extracting prior states, then examine other kinds of queries.

8.2.1 Extracting a Prior State
Tip Extracting a prior state involves looking at both the monitored table and the

tracking log.

 - 198 -

The tracking log table allows us to reconstruct the state of the PROJECTIONS table at any day in the
past. We wish to reconstruct the table as of April 1, 1996, that is, to see the table as it existed between
transactions 7 and 8. Projection 1 was never modified (it does not appear in the tracking log), so the
value in

Circadian Clocks

Across the evening sky

All the birds are leaving

But how can they know

It's time for them to go

……….

So come the storms of winter

And then the birds in spring again

—Sandy Denny, "Who Knows Where the Time Goes"

Barbara Kingsolver, in her book High Tide in Tucson, realizes that her pet crab is still responding to
the tidal cycle of the California coast from where it was taken, several hundred miles to the west. The
crab would become active only at certain times, even though there was no longer any environmental
stimuli to indicate the tides. Tidal rhythms are common in many animals living in tide-washed
coastlines: crabs (locomotion, oxygen consumption, and color change), fish (swimming), and bivalves
(shell gapping).
On most coastlines there are two high and two low tides each lunar day, which is the 24 hour and 51
minute average interval between successive moonrises, due to the gravitational and centrifugal forces
generated between the moon and the earth. Hence, the average high tide-to-high tide interval is 12.4
hours.

It appears that crabs possess not one 12.4-hour biological clock, but rather two biological clocks, each
running at twice that interval, tightly coupled 180 degrees out of phase, to ensure a stable interval of
12.4 hours between peaks. One benefit of two clocks is that deviations of the tides from a 12.4-hour
period can be as great as ±90 minutes, whereas deviations from a 24.8-hour period are much smaller:
±10 minutes.

the monitored table is fine. Projection 2 was modified twice, on March 20 and on June 17, and so the
old value stored in the tracking log on June 17 is the desired one. Projection 3 was modified once, on
May 28, and so the old value for that date is the desired one. Projection 4 was deleted on July 12 (it is
present in the tracking log, but not in the monitored table); we use the old value for that date. Projection
5 was deleted on February 3, and so should not be present in the reconstructed table. The table as of
April 1, 1996, is thus as shown in Table 8.3.
There are two basic cases. Here, the date for which the state is to be reconstructed is termed the as-of
date.

Reconstruct a previous state of a monitored table, as of a specified date

 - 199 -

Each row of a prior state

 was not deleted or updated after the as-of date, and thus is in the monitored
table, or was deleted or updated after the as-of date, and thus is in the
tracking log.

Table 8.3: The monitored table as of April 1, 1996.
PROJECTION_ID PROJECTION_TYPE
1 12
2 13
3 15
4 17

Code Fragment 8.3: Reconstruct the PROJECTIONS table as of April 1, 1996.

SELECT *

FROM PROJECTIONS AS P

WHERE NOT EXISTS (SELECT *

 FROM P_Log AS A

 WHERE P.PROJECTION_ID = A.PROJECTION_ID

 AND A.When_Changed > DATE '1996-04-01')

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE When_Changed = (SELECT MIN(When_Changed)

 FROM P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID

 AND A2.When_Changed > DATE '1996-04-01')

This example illustrates the structure of the reconstruction process. The row from the monitored table is
to be retained if there does not exist a change record in the tracking log with a When_Changed after the
as-of date. Otherwise, the old value is extracted from the change record with a When_Changed date
that is the first one to appear after the as-of date.

 - 200 -

The approach presented thus far in this chapter is adequate for identifying what changes were made to
the PROJECTIONS table, and for undoing the changes that were incorrect by first reconstructing the
table as of the date it was last known to be correct. It has the benefits of not impacting the existing
FINDER code and of adding little to the storage requirements (recall that the PROJECTIONS table is
small and that changes to this table are infrequent).

Nigel was called back a few months later to correct the same problem. This time it took him only a few
minutes to reconstruct the monitored table (by running the above code) and identify the incorrect values.
Additionally, he had in hand the date the incorrect change was effected and could use this information
to narrow down who made the change. Nigel has used the tracking log approach several times for other
tables that users were incorrectly updating.

8.2.2 Other Queries
We now turn to other kinds of queries. Current queries on tracking logs are trivial: just perform them on
the monitored table as before.

Code Fragment 8.4: List the information on projection 5.

SELECT *

FROM PROJECTIONS

WHERE PROJECTION_ID = 5

Future queries are not possible: we have no way of knowing what the monitored table will look like in
the future.

Tip Queries on past states of a monitored table are easiest to express via a
reconstruction view.

Past queries are quite useful on monitored tables; indeed, tables are audited precisely to enable such
queries. The above SELECT statement (CF-8.3) extracts a prior state of the monitored table. More
extensive queries on this state (say, to prepare a report as of the end of the calendar year) are best
realized by forming a view.

Code Fragment 8.5: Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.

CREATE VIEW April_PROJECTIONS

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE)

AS (SELECT …

)

Here, the SELECT statement in CF-8.3 is used to create a (snapshot) view, which can then be used in
queries.

Code Fragment 8.6: List the information on projection type 12 as of April 1, 1996.

 - 201 -

SELECT *

FROM April_PROJECTIONS

WHERE PROJECTION_TYPE = 12

8.2.3 Converting to a State Table*
One way to perform sequenced and nonsequenced queries on a tracking log is to convert it to a
transaction-time state table. As with valid-time state tables, we time-stamp each row with a closed-open
period, represented with two transaction time-stamp columns (see Table 8.4). Note that the maximum
stop time is "now" (January 16, 1998). Rows that are in the current table (and thus are current now) will
have a stop time of "now" in the transaction-time state table. Rows that are not in the current table (and
thus were deleted) will have a stop time in the past.

Table 8.4: The tracking log as a transaction-time state table, PROJECTIONS_State.
PROJECTION_ID PROJECTION_TYPE Start_Date Stop_Date
1 12 1996-01-01 1998-01-

16
5 18 1996-01-01 1996-02-

03
4 17 1996-01-01 1996-07-

12
2 10 1996-01-01 1996-03-

20
3 15 1996-01-01 1996-05-

28
2 13 1996-03-20 1996-06-

17
2 14 1996-06-17 1998-01-

16
3 11 1996-05-28 1998-01-

16

There are four basic cases to consider, differentiated by the timestamp of the resulting row in the state
table:

1. The initial row never changed. The state table includes the initial row, valid from
January 1, 1996 to the present.

2. The initial row was deleted. The state table includes the initial row, valid from
January 1, 1996 to the tracking log entry's When_Changed date. This timestamp
also results from the case where the initial row was modified at least once, with
the earliest row in the audit table contributing a row in the state table valid from
January 1, 1996 to the tracking log entry's timestamp.

3. The initial row was modified at least once, with the resulting row drawn from the
audited table, valid from the last audit entry's timestamp to the present.

4. Here the initial row was modified several times. Each intermediate value results in
a state table row valid from the earlier change date to the later change date. This
timestamp also results if the row was deleted.

Each case contributes a SELECT statement, with the result being the UNION of these intermediate
results, as the cases are disjoint.

Code Fragment 8.7: Convert P_Log to a transaction-time state table.

 - 202 -

CREATE VIEW PROJECTIONS_State

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date, Stop_Date)

AS (
 -- Case 1
SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,
 SPHEROID_CODE, PROJECTION_JOM, ZONE_CODE,
 DATE '1996-01-01', CURRENT_DATE
FROM PROJECTIONS
WHERE NOT EXISTS (SELECT * FROM P_Log
 WHERE P_Log.PROJECTIONS_ID = PROJECTIONS.PROJECTION_ID)
UNION
 -- Case 2
SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,
 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,
 DATE '1996-01-01', When_Changed
FROM P_Log AS A1
WHERE NOT EXISTS (SELECT * FROM P_Log AS A2
 WHERE A1.PROJECTION_ID = A2.PROJECTION_ID
 AND A1.When_Changed > A2.When_Changed)
UNION
 -- Case 3
SELECT A1.PROJECTION_ID, A1.PROJECTION_NAME, A1.PROJECTION_TYPE,
 A1.SPHEROID_CODE, A1.PROJECTION_UOM, A1.ZONE_CODE,
 When_Changed, CURRENT_DATE
FROM P_Log AS A1, PROJECTIONS
WHERE A1.PROJECTION_ID = PROJECTIONS.PROJECTION_ID
 AND NOT EXISTS (SELECT * FROM P_Log AS A2
 WHERE A1.PROJECTION_ID = A2.PROJECTION_ID
 AND A1.When_Changed < A2.When_Changed)
UNION
 -- Case 4
SELECT A1.PROJECTION_ID, A1.PROJECTION_NAME, A1.PROJECTION_TYPE,
 A1.SPHEROID_CODE, A1.PROJECTION_UOM, A1.ZONE_CODE,
 A0.When_Changed, A1.When_Changed
FROM P_Log AS A0, P_Log AS A1
WHERE A0.PROJECTION_ID = A1.PROJECTION_ID
 AND A0.When_Changed < A1.When_Changed
 AND NOT EXISTS (SELECT *
 FROM P_Log AS M
 WHERE M.PROJECTION_ID = A1.PROJECTION_ID
 AND M.When_Changed < A1.When_Changed
 AND M.When_Changed > A0.When_Changed)
)

Tip

Sequenced
and
nonsequen
ced
queries on
a tracking
log are
best stated

 - 203 -

on a view
that
extracts
the states
as a
transaction
-time state
table.

Given the transaction-time state table defined by this view, current, sequenced, and nonsequenced
queries can be performed analogously to such queries on valid-time state tables. The semantics of such
queries are somewhat different because these tables utilize transaction time. Rather than being of the
form "Give the history of …," transaction-time sequenced queries are of the form "When was it recorded
that…"

Code Fragment 8.8: When was it recorded that a projection had a type of 17?

SELECT PROJECTION_ID, PROJECTION_TYPE, Start_Date, Stop_Date

FROM PROJECTIONS_State

WHERE PROJECTION_TYPE = 17

This query returns the following table:
PROJECTION_ID PROJECTION_TYPE Start_Date Stop_Date
4 17 1996-01-01 1996-07-

12
This transaction sequenced selection and projection query should be compared with the similar valid-
time sequenced queries CF-6.6 and CF-6.7.
Other examples of sequenced and nonsequenced queries are given in Section 9.3.

8.3 MODIFICATIONS
Current modifications are trivial: these are modifications on the monitored table, with the triggers behind
the scene ensuring that the tracking log is kept consistent.

Code Fragment 8.9: Insert a projection with an ID of 6.

INSERT INTO PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION-TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE)

VALUES (6, 'New Projection', 22, 14, 93, 4)

Code Fragment 8.10: Delete projection 2.

DELETE FROM PROJECTIONS

 - 204 -

WHERE PROJECTION_ID = 2

Code Fragment 8.11: Change the type of projection 1 to 43.

UPDATE PROJECTIONS

SET PROJECTION_TYPE = 43

WHERE PROJECTION_ID = 1

Tip

Sequenced
and
nonsequen
ced
modificatio
ns are not
allowed on
tracking
logs.

Sequenced and nonsequenced modifications are not allowed on tracking logs because such
modifications destroy the semantics of a tracking log in two senses. If a past state were modified, we no
longer would be able to reconstruct the state as it was stored at that time, thereby removing the prime
motivation for a tracking log. If a state with a stop date after "now" were inserted, then a future state
could not later be reconstructed.

8.4 PERMITTING INSERTIONS
The above code makes several assumptions, which we now address. The first assumption is that the
table was originally constituted with insertions, and thereafter the only changes were updates and
deletions. Any insertions that do occur will be assumed (in the reconstruction algorithm) to have been
executed when the table was defined. Say that an insertion of a new projection, number 6, was made
on June 29, 1996. CF-8.3 would include this projection in the state reconstructed as of April 1,1996, via
the first SELECT statement. A second assumption is that insertions are not allowed after a deletion.

To remove the first assumption, we need to include insertions to the tracking log, so that they will be
dated correctly. This is done via a trigger on INSERT.

Code Fragment 8.12: Insert trigger for maintaining the P_Log table.

 CREATE TRIGGER Insert_PROJECTIONS

 AFTER INSERT ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (NEW.PROJECTION_ID,

NEW.PROJECTION_NAME,

 NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE,

 NEW.PROJECTION_UOM,

 - 205 -

NEW.ZONE_CODE,

 CURRENT_DATE)

Having the insertions in the tracking log increases the size of the tracking log considerably. In the first
approach, projections were in P_Log only if the projection was updated or deleted. The tracking log
table might be much smaller than

The Sothic Cycle
Early calendars were lunar, perhaps because the lunar cycle, at slightly less than 30 days, is more
easily observed than the solar cycle, at about 365.25 days. The Egyptian calendar contained 12
months of 30 days each. However, the annual flooding of the Nile required reconciliation with the solar
year, so five intercalated days were included. The lack of a leap day meant that their civil lunar New
Year retrogressed by 1/4 day each year with respect to the religious solar New Year (defined as when
the Dog Star, named Sothis by the Greeks, rose with the sun). The two New Years coincide once
every 1,460 years, termed the Sothic cycle.

It is known that in 139 A.D., the two New Years did coincide, so, working backward, historians have
concluded that the Egyptian calendar originated in 4241 B.C.E. (This is being written in 1998, during
the 399th year of the fifth Sothic cycle.)

Table 8.5: Including insertions in the P_Log table.
PROJECTION_ID PROJECTION_TYPE When_Changed
1 12 1996-01-01
2 10 1996-01-01
3 15 1996-01-01
4 17 1996-01-01
5 18 1996-01-01
5 18 1996-02-03
2 10 1996-03-20
3 15 1996-05-28
2 13 1996-06-17
4 17 1996-07-12

the monitored table if the monitored table exhibited low volatility. In this new approach, every projection
in PROJECTIONS is also in P_Log, as illustrated by Table 8.5. The tracking log is now always larger
than the monitored table. However, this additional information allows us to reconstruct the monitored
table correctly even in the presence of later insertions.

Tip The time sequence of an object records the evolution over time of that object.

To reconstruct the PROJECTIONS table at a previous time t, there are five cases to consider, shown in
Figure 8.1. In this figure, the sequence of operations for a single projection is shown as a progression
along time. This progression consists of an insertion, followed by zero or more updates, followed
optionally by a deletion. Such a sequence is called the time sequence of the projection.

 - 206 -

The five cases indicate possible as-of times. Case 1 occurs when the as-of time t is before the initial
insertion. The projection should not appear in the reconstructed table. In Case 2, t is between the time
of insertion and the first update. Either the

Figure 8.1: Cases for tracking log reconstruction.

first value of the tracking log (from the INSERT trigger) or the second value (from the UPDATE trigger)
should be used in the reconstructed table; the two values are identical. In Case 3, t occurs between two
updates; the value from the tracking log corresponding to the second update should be used. In Case 4,
t occurs between the last update and the tuple being deleted; the value in the tracking log inserted by
the DELETE trigger should be used here. In Cases 2 through 5, the value stored in PROJECTIONS may
also be used. In Case 5, t occurs after the deletion.
In Cases 4 and 5, the as-of time is after the last time in the tracking log. We differentiate these cases by
the presence of the projection in the monitored table. If the projection is not in PROJECTIONS, and the
timestamp of the last tracking log match is older than the as-of time (Case 5), then that projection was
deleted and should not appear in the reconstructed value. Otherwise (Case 4), the value in
PROJECTIONS should be used.

Tip If arbitrary insertions are allowed, the reconstruction algorithm becomes more
complex.

In the following code fragment, we merge Cases 2 through 4 in the first SELECT. We locate the first
entry in the tracking log after the as-of time t (the NOT EXISTS and the middle predicate ensure that
this entry is the first) and use its values for the columns. The EXISTS ensures that this is not Case 1.
The second SELECT is Case 4, where no DELETE or UPDATE followed the as-of time. The result is
the same as before, shown in Table 8.3.

Code Fragment 8.13: Reconstruction algorithm 2, again, as of April 1,1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE NOT EXISTS (SELECT *

 FROM P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID

 AND DATE '1996-04-01' < A2.When_Changed

AND A2.When_Changed < A.When_Changed)

AND DATE '1996-04-01' < A.When_Changed

 AND EXISTS (SELECT *

 FROM P_Log AS A3

 WHERE A.PROJECTION_ID = A3.PROJECTION_ID

 AND A3.When_Changed <= DATE '1996-04-01')

UNION

 - 207 -

SELECT *

FROM PROJECTIONS AS P

WHERE DATE '1996-04-01' > (SELECT MAX(When_Changed)

 FROM P_Log AS A

 WHERE P.PROJECTION_ID = A.PROJECTION_ID)

The code to create a transaction-time state table is also complicated by this change.

8.5 BACKLOGS
Tip A backlog is a tracking log with the modification operation (insert, delete, update)

explicitly identified.
While the trigger in CF-8.12 allows insertions to the PROJECTIONS table other than at the very
beginning, it still does not allow insertions after a deletion. This is because a deletion followed later by
an insertion of the same projection is indistinguishable in the tracking log from two sequential updates.
To differentiate a deletion from an update, we add a column to P_Log that indicates which operation
was done. Such a tracking log is called a backlog.
ALTER TABLE P_Log ADD COLUMN Operation CHAR(1)
The triggers must be changed to also store the Operation code, I, D, and U.
Table 8.6 shows an example of the P_Log table, with some insertions after deletions. This differs from
the list of transactions in Section 8.2 in that the two latest insertions, which were not allowed before, are
included here. As before, we show only a few of the columns in the backlog.

There are three basic cases to consider in the reconstruction algorithm.
1. If the as-of time t occurs before the first insertion of a projection's time sequence, the

projection is not included.
2. If t occurs after the last operation of a projection, the projection is included only if the

operation is not a deletion, using the current value in the PROJECTIONS table.
3. Otherwise, t occurs between two operations, and Table 8.7 must be consulted to

determine the appropriate action: to use the value from the first operation or to use
the value stored from the second operation. The entries marked "illegal" cannot
occur. For example, it is impossible for a projection to be reinserted

Table 8.6: The P_Log backlog.
PROJECTION-
ID

PROJECTION_TYPE When_Changed Opera

1 12 1996-01-01 I
2 10 1996-01-01 I
3 15 1996-01-01 I
4 17 1996-01-01 I
5 18 1996-01-01 I
5 18 1996-02-03 D
2 10 1996-03-20 U
5 19 1996-04-09 I
3 15 1996-05-28 U
2 13 1996-06-17 U
4 17 1996-07-12 D
4 18 1996-08-30 I

Table 8.7: Reconstruction action.

 - 208 -

 second (youngest after t)

 I U D

 I illegal first or
second

first or
second

first U illegal second second
(oldest
before
t)

D nothing illegal illegal

because PROJECTION_ID is the key for the monitored table. It is also impossible for a
deletion to follow a deletion because there is no projection to remove.

This analysis indicates that two SELECT statements are required, the first for Case 2 and the second
for the options in Table 8.7. In this table, an illegal entry simply cannot occur, and so needs not be
accommodated in the reconstruction algorithm.

Code Fragment 8.14: Reconstruction algorithm 3.

 SELECT *

FROM PROJECTIONS AS P

WHERE DATE '1996-04-01' > (SELECT MAX(When_Changed)

 FROM P_Log AS A

 WHERE P.PROJECTION_ID = A.PROJECTION_ID)

UNION

SELECT A2.PROJECTION_ID, A2.PROJECTION_NAME, A2.PROJECTION_TYPE,

 A2.SPHEROID_CODE, A2.PROJECTION_UOM, A2.ZONE_CODE

FROM P_Log AS A, P_Log AS A2

WHERE A.When_Changed < A2.When_Changed

AND A.PROJECTION_ID = A2.PROJECTION_ID

AND NOT EXISTS (SELECT *

 FROM P_Log AS A3

 WHERE A.PROJECTION_ID = A3.PROJECTION_ID

 AND A.When_Changed < A3.When_Changed

 AND A3.When_Changed < A2.When_Changed)

AND A.When_Changed < DATE '1996-04-01'

AND DATE '1996-04-01' < A2.When_Changed

AND A.Operation <> 'D'

 - 209 -

Tip A tracking log can contain before-images, after-images, or both, with differing

implications for reconstruction.
This code is complex because a combination of before-images, where the previous values of the row
are stored, and after-images, where the new values are stored, appear in P_Log. In particular, before-
images are stored by the UPDATE and DELETE triggers, and after-images are stored by the INSERT
trigger.

8.6 USING AFTER-IMAGES CONSISTENTLY
The reconstruction algorithm can be simplified considerably if the DELETE and UPDATE triggers use
after-images consistently. The former needs not store any values because the after-image is not defined
for deletions. The INSERT trigger may be retained from CF-8.12, as it already records the after-image.

Code Fragment 8.15: Triggers for maintaining the P-Log table, version 2.

CREATE TRIGGER Delete_PROJECTIONS

AFTER DELETE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (OLD.PROJECTION_ID,

NULL, NULL, NULL, NULL, CURRENT_DATE, 'D')

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (NEW.PROJECTION_ID,

NEW.PROJECTION_NAME,

NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE,

NEW.PROJECTION_UOM,

NEW.ZONE_CODE,

CURRENT_DATE, 'U')

Table 8.8: Backlog with after-images.
PROJECTION_ID PROJECTION_TYPE When_Changed Operation
1 12 1996-01-01 I
2 10 1996-01-01 I
3 15 1996-01-01 I
4 17 1996-01-01 I
5 18 1996-01-01 I
5 NULL 1996-02-03 D
2 13 1996-03-20 U

 - 210 -

5 19 1996-04-09 I
3 11 1996-05-28 U
2 14 1996-06-17 U
4 NULL 1996-07-12 D
4 18 1996-08-30 I

Table 8.9: Reconstruction action.

second

I U D

 I illegal first first
first U illegal first first

 D nothing illegal illegal

For the same transactions discussed previously, the backlog shown in Table 8.8 results.
In comparison with Table 8.6, note that both have the same number of rows. In fact, the only difference
is the value of the PROJECTION_TYPE column (the new values are indicated in italics). The previous
representation exhibited redundancy in that consecutive I-U pairs in a time sequence have identical
values for that column; the entries for projection 2 on January 1 and March 20 provide an example. The
same holds for consecutive I-D pairs, such as the entries for projection 5 on January 1 and February 3.

Tip Using after-images consistently simplifies the reconstruction algorithm
considerably.

Consistently using after-images enables a shorter reconstruction algorithm. Let us examine the action
table for after-images (Table 8.9). Note that if the Operation is I or U, the same action occurs. Also
note that if there is only one operation before the as-of time, the same action occurs here also. Hence,
there is no need to consult the PROJECTIONS table, and the reconstruction algorithm becomes a single
SELECT statement.

Code Fragment 8.16: Reconstruction algorithm with after-images.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

 FROM P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID

 AND A2.When_Changed < DATE '1996-04-01')

 AND A.Operation <> 'D'

 - 211 -

Using only after-images also changes the transaction-time state view.

Convert a backlog containing after-images to a transaction-time state table

Each row of the state table

 starts with an I or U operation and ends with a U or D operation, or starts with an
I or U operation and is not subsequently modified, in which case its stop time is
"now."

Code Fragment 8.17: Convert the backlog to a transaction-time state table, using after-images.

CREATE VIEW PROJECTIONS_state

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 START_DATE, STOP_DATE)

AS (SELECT A.PROJECTION_ID, A.PROJECTION_NAME, A.PROJECTION_TYPE,

 A.SPHEROID_CODE, A.PROJECTION_UOM, A.ZONE_CODE,

 A.When_Changed, A2.When_Changed

 FROM P_Log AS A, P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID

 AND A.When_Changed < A2.When_Changed

 AND A.Operation <> 'D'

 AND NOT EXISTS (SELECT *

 FROM P_Log AS A3

 WHERE A.PROJECTION_ID = A3.PROJECTION_ID

 AND A.When_Changed < A3.When_Changed

 AND A3.When_Changed < A2.When_Changed)

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 - 212 -

 When_Changed, CURRENT_DATE

FROM P_Log AS A

WHERE A.Operation <> 'D'

 AND NOT EXISTS (SELECT *

 FROM P_Log AS A3

 WHERE A.PROJECTION_ID = A3.PROJECTION_ID

 AND A.When_Changed < A3.When_Changed)

Tip Using after-images consistently also greatly simplifies the conversion of the tracking

log to a transaction-time state table.

We make sure each pair of operations in the first SELECT is consecutive by disallowing an intermediate
operation.
This code fragment should be compared with CF-8.7, which is over three times longer. The comparison
emphasizes the value of consistent use of after-images in the tracking log.
As mentioned earlier, once the transaction-time state table is available, sequenced and nonsequenced
queries can be performed analogously to such queries on valid-time state tables, as discussed in detail
in Chapter 6.

Tip Sequenced and nonsequenced queries are best expressed on a transaction-time
state table view, rather than on the underlying tracking log.

As an example, consider the following query: When was it recorded that a projection had the same
USGS zone code as the projection with ID 13447? The first part, "when was it recorded," indicates that
we are concerned with transaction time. It also implies that if a particular time is returned, the specified
relationship should hold during that time. This indicates a sequenced query, here in transaction time.
The fact that two projections are mentioned indicates a (self-) join on the transaction-time state table.
CF-6.12 provides the structure for a sequenced join, which we can use here.

Code Fragment 8.18: List the projections recorded as having the same USGS zone code as the
projection with ID 13447.

SELECT S1.PROJECTION_NAME,

 CASE WHEN S1.START_DATE > S2.START_DATE

 THEN S1.START_DATE ELSE S2.START_DATE END,

 CASE WHEN S1.STOP_DATE > S2.STOP_DATE

 THEN S2.STOP_DATE ELSE S1.STOP_DATE END,

FROM PROJECTIONS_state AS S1, PROJECTIONS_state AS S2

WHERE S1.ZONE_CODE = S1.ZONE_CODE

 AND S2.PROJECTION_ID = 13447

 AND S1.PROJECTION_ID <> 13447

 AND (CASE WHEN S1.START_DATE > S2.START_DATE

 - 213 -

 THEN S1.START_DATE ELSE S2.START_DATE END)

< (CASE WHEN S1.STOP_DATE > S2.STOP_DATE

 THEN S2.STOP_DATE ELSE S1.STOP_DATE END)

The resulting query isn't too bad. However, computing this result on the underlying tracking log would
have been extremely complex.
When after-images are used consistently, P_Log contains all of PROJECTIONS, which is not true of the
prior approaches. It includes this additional information without adding any rows; instead, redundancy is
eliminated to provide this information. This allows the current version to be computed even more easily.

Code Fragment 8.19: Reconstructing the current version.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

 FROM P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID)

 AND A.Operation <> 'D'

Tip If after-images are used in the tracking log, then the monitored table itself is

superfluous.
In fact, the PROJECTIONS table is simply a cached version of the reconstruction as of "now." We could
define it as a view, thereby achieving a space savings, as the current information would not be in both
the monitored table and the backlog, at the expense of more expensive retrieval of that information.

Code Fragment 8.20: Defining PROJECTIONS as a view on P_Log.

CREATE VIEW PROJECTIONS

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

 FROM P_Log AS A

 WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

 FROM P_Log AS A2

 WHERE A.PROJECTION_ID = A2.PROJECTION_ID)

 - 214 -

 AND A.Operation <> 'D'

)

If the PROJECTIONS table is defined as a view, then the user is responsible for updating the backlog
directly, as current DBMSs do not permit triggers to be defined on a view.

8.7 TRANSACTION SEMANTICS*
All of the above approaches make three assumptions:

1. No two changes to the same projection occur on a single day, even in different
transactions. This assumption derives from the When_Changed column being a
DATE.

2. Every transaction commits by the end of the day; that is, a transaction does not span
two days. Otherwise the reconstruction algorithm may return a partially completed
state—a state that will never be visible to the application, as we will see shortly.

3. Every transaction makes at most one modification to each projection. This
assumption is a consequence of PROJECTION_ID and When_Changed forming the
primary key for P_Log.

Tip Simple approaches to maintaining the tracking log impose rather harsh constraints
on the application.

Violating assumption 1 or 3 will cause the INSERT statement in the trigger to fail, which will abort the
entire transaction. In fact, assumption 1 implies no concurrency in the modifications to the
PROJECTIONS table, which in many situations is untenable. Violating assumption 2 can cause the
reconstruction algorithm to yield an incorrect result, which is also generally untenable.
One obvious attempt to remove these assumptions is to redefine the When_Changed column to be a
TIMESTAMP, which has a default precision of microsecond. However, this just changes assumption 1
to one in which no two changes to the same projection can occur on a single microsecond, which, given
today's transaction processing rates, is a reasonable one. The concern then arises as to whether the
trigger ensures that the When_Changed value is consistent with the serialization order of the
transactions that are changing the PROJECTIONS table. To put this another way, was the table
reconstructed at a specified time actually visible to transactions executing at that time?
Let us examine two transactions, T1 and T2. We assume two-phase row-level locking as our
concurrency control mechanism. Transaction T1 starts on July 1 at 4 P.M. It updates projection 1 at 6
P.M. (18:00) and again at 8 P.M. (Transactions generally complete in a much shorter period of time;
here we spread out the time to make this example easier to discuss.) Each update inserts a row into the
backlog; that row is write-locked. Transaction T2 updates projection 2 at 7 P.M. and commits at 9 P.M.
T1 updates projection 3 at 1 A.M. the following day and commits at 2 A.M. Note that T1 updates
projection 1 twice and also spans a day, thereby violating all three assumptions.

Table 8.10: A sample backlog.

PROJECTION_ID PROJECTION_TYPE When_Changed Operation

T1 1 10 1996-07-01
18:00

U

T2 2 12 1996-07-01
19:00

U

T1 1 14 1996-07-01
20:00

U

T1 3 13 1996-07-02
01:00

U

Table 8.11: State of the PROJECTIONS table before 9 P.M.
PROJECTION_ID PROJECTION_TYPE

 - 215 -

1 5
2 7
3 9

Table 8.12: State of the PROJECTIONS table between 9 P.M. and 2 A.M.
PROJECTION_ID PROJECTION_TYPE
1 5
2 12
3 9

This series of updates will generate the backlog shown in Table 8.10 (here we show the transaction
associated with each row, though this information will not be stored in the backlog).

The reconstruction algorithm yields the state of the monitored table at any point in time. Due to
concurrent transactions, such as the two above, what we desire is a state that is consistent with the
serialization order of the transactions that executed on that table.
Assume that the projection type for projection 1 was initially 5; for projection 2, 7; and for projection 3, 9.
At any time before 9 P.M., the state of the PROJECTIONS table is as shown in Table 8.11, reflecting that
no (committed) transactions have updated the table.
Recall that transaction T2 committed at 9 P.M. and T1 at 2 A.M. So between those two times, the state
of the PROJECTIONS table was as shown in Table 8.12, reflecting the changes made by T2.
After 2 A.M. on July 2, the state of the monitored table has the values shown in Table 8.13, reflecting
the changes made by both T2 and T1.

Table 8.13: State of the PROJECTIONS table after 2 A.M.
PROJECTION_ID PROJECTION_TYPE
1 14
2 12
3 13

Table 8.14: Reconstructed state as of 6:30 P.M.
PROJECTION_ID PROJECTION_TYPE
1 10
2 7
3 9

The reconstruction algorithm will yield precisely the first state for as-of times before 6 P.M. on July 1 and
the third state for times after 2 A.M. on July 2. More interesting is what it does for intermediate as-of
times when applied after 2 A.M., July 2. Applying the algorithm with an as-of time of 6:30 P.M., using the
backlog shown in Table 8.10, yields Table 8.14.
This differs from the state before 6 P.M. in the type of projection 1, which was changed by transaction
T1. Note, however, that T1 had not committed by 6:30 P.M. Hence, no other transaction would have
seen this state, because it is not consistent with any serialization order. We see that reconstruction
yields a state containing information from active transactions.
As an aside, what happens if transaction T1 later aborted, rather than committing? It turns out that we
are OK in such situations because all the rows of the backlog inserted by that transaction are
automatically removed upon abort, and hence will not be used by the reconstruction algorithm. In the
case above, we are running the reconstruction algorithm after July 2, and so we know that T1 had
committed because its updates are in the backlog.

 - 216 -

Tip The reconstruction algorithm may yield states inconsistent with serializability.

Returning to 6:30 P.M., what would a concurrent transaction (T3) see? Transaction T3 will not have
access to projection 1 because that row will be write-locked by T1 at 6:30 P.M. And we know that T2 did
not read projection 1 because had it tried, it would have blocked on that same lock and would have
resumed only at 2 A.M. the next morning, when T1 committed.
What if transaction T3 had attempted to read projection 1 using a dirty read isolation level, rather than
the default serialization isolation level? In that case, the write lock on that row is ignored, and T3 would
have seen the projection type as 10.

The Vertical Blanking Interval

That ubiquitous sign of technical ineptitude, the blinking "12:00" on the videocassette recorder, has
recently been the source of technological innovation, as VCRs learn how to get the time directly from
the video feed. A television frame (30 frames a second) is composed of two fields of 262.5 horizontal
scan lines each. The first 21 lines of each field, collectively called the vertical blanking interval (VBI),
are hidden (they are the black band you see when your vertical tracking isn't working). The first 9 are
used for repositioning the scan, but the remaining 12 lines are available for data transport. Line 21
itself is reserved for closed captioning. PBS stations in the United States use extended data services
codes within line 21 to send the current date and time. Some of the newer VCRs scan all frequencies
to find the PBS channel, then set their clock automatically from line 21 of the VBI. They also refresh
their internal clock, as often as once an hour, from this source, to correct for drift in their internal clock
and to make daylight saving time adjustments. This technology renders the VCR the most accurate
clock available for home use. Incidentally, the other 11 lines are being considered for VBI data
broadcasting; these lines provide an aggregate of about 150 Kbps per channel streaming into every
home.

So, to be precise, the reconstruction algorithm yields a state that would be visible to a transaction at the
specified time using a dirty read isolation level. This state, though, will contain only changes made by
transactions that eventually committed.

What if there are still active transactions? Since the backlog itself is being read by the reconstruction
algorithm using the (default) serialization isolation level, the algorithm must place a read lock on the
entire backlog, and hence there can be no write locks in place, which implies that there can be no active
transactions that have modified the monitored table. Any subsequent transaction that wished to modify
the monitored table will attempt to write-lock the backlog, and thus will have to await the completion of
the reconstruction algorithm of the other transaction. The effect is to serialize the reconstruction
transaction with all other transactions, including other reconstruction transactions.

8.8 REFINEMENTS*
If we wish the reconstruction algorithm to not retrieve dirty data, then we must ensure that such data is
not written to the tracking log. The triggers can be modified to delete a previous value, for the projection
in question, before inserting the current value. To do so, the trigger needs to know if the value in the
tracking log was put there by this transaction, or if it is the committed value by a previous transaction.
The former value should be removed, but the latter value must be retained. We add a transaction
identifier to the tracking log to make this distinction. Alternatively, we can augment the reconstruction
algorithm to ignore dirty data by using only the last record of each projection, which requires ordering
the records inserted by a transaction. The When_Changed value serves this purpose if it is of a
sufficiently fine precision.

Tip Achieving fully accurate transaction semantics for the reconstructed table is
difficult.

The modifications performed by a transaction should be included in the reconstructed state only for
times after the commit time of the transaction. Because the commit time is not stored in the tracking log,

 - 217 -

the reconstruction algorithm must approximate this time; a reasonable guess is the time of the last
modification in the tracking log. We can improve this somewhat by having the application insert a record
into the tracking log immediately before committing. Note that this requires scanning the application
code to identify COMMITs of transactions that modify the PROJECTIONS table, a task not necessitated
by any of the other approaches in this chapter. This commit time is also an estimate, in that the commit
process may itself take some time, and the actual commit record may be written to the DBMS log
(thereby effecting the actual commit) quite a while after the time recorded in P_Log. Reconstructing the
exact state, utilizing only the transactions that have actually committed by the specified time, is in
general not possible because the DBMS does not render the actual commit time accessible.

8.9 IMPLEMENTATION CONSIDERATIONS
Microsoft Access 97 and Access 2000 do not support table-based triggers.

8.9.1 IBM DB2 Universal Database
IBM DB2 UDB triggers differ in some syntactic details from the SQL-92 triggers discussed in this
chapter. DB2 UDB requires a referencing clause to create correlation names for the old and new values
in the referenced table, for example, REFERENCING OLD AS 0. DB2 also requires that MODE DB2SQL
be specified. Finally, when there is more than one action specified for a trigger, these actions must be
delimited with BEGIN ATOMIC and END. When there is exactly one action in the trigger, these
delimiting clauses are optional. Finally, CURRENT DATE is two words in DB2 UDB (it is one word, with
an embedded underscore, in SQL-92).
CF-8.2 can be expressed in DB2 UDB as follows (with the optional ATOMIC clause specified for clarity):

Code Fragment 8.21: Triggers for maintaining the P_Log table in DB2 UDB, assuming no insertions.

CREATE TRIGGER Delete_PROJECTIONS

AFTER DELETE ON PROJECTIONS

REFERENCING OLD AS O FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

 INSERT INTO P_Log VALUES (O.PROJECTION_ID,

 O.PROJECTION_NAME,

 O.PROJECTION_TYPE,

 O.SPHEROID_CODE,

 O.PROJECTION_UOM,

 O.ZONE_CODE,

 CURRENT DATE);

END

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS

REFERENCING OLD AS O FOR EACH ROW MODE DB2SQL

 - 218 -

 BEGIN ATOMIC

 INSERT INTO P_Log VALUES (O.PROJECTION_ID,

 O.PROJECTION_NAME,

 O.PROJECTION_TYPE,

 O.SPHEROID_CODE,

 O.PROJECTION_UOM,

 O.ZONE_CODE,

 CURRENT DATE);

END

8.9.2 Microsoft SQL Server
The syntax of the CREATE TRIGGER statement supported by Microsoft SQL Server differs from SQL-
92. The implicit OLD and NEW correlation names are not available; instead, SQL Server provides two
special tables, inserted, containing the rows that were inserted, and deleted, containing the rows
that were deleted, by the statement under consideration. "Now" is implemented in SQL Server via
GETDATE(). CF-8.2 can be expressed in SQL Server as follows:

Code Fragment 8.22: Triggers for maintaining the P_Log table in Microsoft SQL Server, assuming no
insertions.

CREATE TRIGGER Delete_PROJECTIONS

ON PROJECTIONS FOR DELETE AS

 INSERT P_Log

 SELECT *, GETDATE()

 FROM deleted

CREATE TRIGGER Update_PROJECTIONS

ON PROJECTIONS FOR UPDATE AS

 INSERT P_Log

 SELECT *, GETDATE()

 FROM deleted

The other code fragments can be similarly implemented in Microsoft SQL Server.

 - 219 -

8.9.3 Sybase SQLServer
Sybase SQLServer was one of the first DBMSs to support triggers. The syntax of the CREATE
TRIGGER statement supported by Sybase SQLServer differs from SQL-92. The implicit OLD and NEW
correlation names are not available; instead, Sybase provides two special tables, inserted, containing
the rows that were inserted, and deleted, containing the rows that were deleted, by the statement
under consideration. "Now" is implemented in Sybase via GETDATE(). CF-8.2 can be expressed in
Sybase as follows:

Code Fragment 8.23: Triggers for maintaining the P_Log table in Sybase SQLServer, assuming no
insertions.

CREATE TRIGGER Delete_PROJECTIONS

ON PROJECTIONS FOR DELETE AS

 INSERT P_Log

 SELECT *, GETDATE()

 FROM deleted

CREATE TRIGGER Update_PROJECTIONS

ON PROJECTIONS FOR UPDATE AS

 INSERT P_Log

 SELECT *, GETDATE()

 FROM deleted

The other code fragments can be similarly implemented in Sybase SQLServer, with the exceptions of
CF-8.7 and CF-8.17, as Sybase does not allow a view to be over a UNION.

8.9.4 Oracle8 Server
All the code fragments work fine under Oracle8 Server.

8.9.5 UniSQL
UniSQL supports triggers, but does not allow expressions such as CURRENTDATE within triggers.
However, it does allow triggers to call methods on rows. To store a value of "now" in the tracking log,
we'll use two triggers. The first, defined on the monitored table, is the normal one, with the minor
change of storing a placeholder date (DATE '01/01/1800') as the timestamp. The second is an
insert trigger, defined on the tracking log, which calls a method to replace this value with the current
date.

Code Fragment 8.24: Insert UniSQL trigger on the tracking log.

EXEC SQLX ALTER CLASS P_Log

 ADD METHOD set_date() FUNCTION set_date FILE './trans.o';

 - 220 -

CREATE TRIGGER Insert_P_Log

AFTER INSERT ON P_Log

EXECUTE CALL set_date();

The set_date function uses the db_put operation to replace the date with the current date.

Code Fragment 8.25: set_date C function.

void set_date(DB_OBJECT *obj)

{

 EXEC SQLX BEGIN DECLARE SECTION;

 DB_VALUE d;

 struct timeval time_sec;

 struct tm *cur_time;

 EXEC SQLX END DECLARE SECTION;

 gettimeofday(&time_sec, NULL);

 cur_time = localtime(&time_sec.tv_sec);

 db_make_date(&d, cur_time->tm_mon+1, cur_time->tm_mday,

 cur_time->tm_year+1900);

 db_put(obj, "When_Changed",&d);

 EXEC SQLX COMMIT WORK;

}

8.9.6 CD-ROM Materials
All of the code discussed in this chapter has been implemented in IBM DB2 UDB, Microsoft SQL Server
7.0, Sybase SQLServer, Oracle8 Server, and UniSQL, and is provided on the CD-ROM, along with a
test harness and Makefile.

Table 8.15: Tracking log organizations and their imposed constraints.

constraints on updates

 - 221 -

All
insertion
s
performe
d initially

None
allowed
after
deletion
s

No
constraint
s

Before-
images

√

Before-
+ after-
images

√ √

After-
images

√ √

Backlog √ √ √

8.10 SUMMARY
A tracking log contains the history of modifications to the underlying monitored table, allowing previous
states of that table to be reconstructed. A tracking log is maintained separately from the monitored
table. For the PROJECTIONS table, a tracking log is preferable, as the rest of the application need not
be modified.

Different organizations of the tracking log result from the varying assumptions and constraints on the
monitored table. We considered a variety of situations:

 All insertions are performed initially. Only deletions and updates need be stored in the
tracking log.

 Insertions are allowed at any time other than after a deletion. In this case, insertions
must also be stored in the tracking log. The tracking log will be at least as long as the
underlying table, even with no updates or deletions.

 Insertions are allowed at any time. In such cases a backlog, in which the operation
type (INSERT, DELETE, UPDATE) is explicitly recorded, is indicated. Two
organizations were discussed, one which stored a combination of before-and after-
images, and one which stored only after-images, the latter exhibiting a concomitant
simplification of the reconstruction algorithm.

Tip Different organizations of the tracking log result from various initial assumptions
and constraints on the monitored table.

Table 8.15 summarizes the tracking log organizations (listed down the left) and the constraints imposed
on when insertions are allowed to the monitored table (listed across the top). A check mark means that
the indicated organization will work when the indicated constraint is satisfied.
The tracking log structure depends strongly on the application. In the case of the problem with
inadvertent changes to the PROJECTIONS table, a very simple structure was adequate. Should the
application need to make arbitrary modifications to the monitored table, then a backlog is appropriate. If
intermediate, dirty data is undesirable in the reconstructed states, then either more involved triggers or a
more involved reconstruction algorithm is required.

Tip Tracking logs support transaction time, which is orthogonal to valid time.

You must be careful to distinguish the information content of a tracking log and of a valid-time table. A
conventional table models the current state of a portion of the enterprise. A valid time table models the
time-varying state of a portion of the enterprise. A tracking log is an example of a transaction-time table.
Such a table records the state not of the modeled reality, but of the monitored table over time. This
distinction is important both in the information we can extract from the table and the kinds of updates
permitted.
Consider two tables, the valid-time table Employee from Chapter 5 and the transaction-time table
P_Log from this chapter. Requesting the state on April 1, 1996, of the valid-time table will return the
employees on that date, as best known. This information is independent of when the Employee table
was actually created. In fact, this table could have been created yesterday, then populated with
historical information. On the other hand, requesting the state on April 1, 1996, of the transaction-time
will return the contents of that table as it was stored on disk on that date. If the table was actually
populated yesterday, then its state back on April 1 would be empty.

 - 222 -

Information about the past or future can be added or changed in valid-time tables. If we find that
information about April 1, 1996, was in error (say, an employee was omitted), we can make that
correction; later queries will return that employee. On the other hand, we cannot change what was
stored previously on the disk, and so cannot update past states of a transaction-time table. Similarly, we
do not know what will be stored on disk in the future, and so cannot update future states of that table.
Hence, transaction time is defined only in the past, unlike valid time, which can extend into the future.
All we can do is append a new state to the table. For this reason, all the triggers that maintain P_Log
effect insertions. A transaction-time table is append-only. Changes to the monitored table, whether
insertions, deletions, or updates, are in actuality insertions into the tracking log. This means that we can
add a tracking log to a conventional table, as was described in this chapter, or to a valid-time table,
resulting in a bitemporal table, to be discussed in Chapter 10.
A transaction-time table has an important property not shared with valid-time tables: queries on past
states will return the same result when evaluated at any time in the future. Consider CF-8.3 on page
225, ">reconstruct the PROJECTIONS table as of April 1, 1996." Whether we execute this query on April
2, 1996, December 31, 1996, July 7, 1998, or September 22, 2009, the resulting states will all be
identical. The resulting state will be a copy of the PROJECTIONS table that was present as magnetic
patterns on the disk on April 1, 1996.
We also defined views of the PROJECTIONS table; CF-8.5 on page 226 is the reconstructed table as of
April 1, 1996 as a view. It makes no difference whether this view is materialized as a stored table or
remains as a virtual table because the contents of the view will not change, regardless of the
modifications applied to either PROJECTIONS or P_Log. The triggers defined in this chapter to maintain
the tracking log ensure that only the current state is modified; prior states must be left intact and
unchanged.

Tip

The reconstructed state of a transaction-time table as of a point in the past will
never change, independent of when that reconstruction query or view is
evaluated. The state at a point in time of a valid-time table can change, as new
information is received and incorporated into the table.

For this same reason, changes to the future of a transaction time table are not allowed. There is no way
to accurately predict what the magnetic patterns of the disk will be at some point in the future.
Such is not the case with valid-time tables. We are free to revise the stored history in a valid-time table
as new information becomes available. Sequenced and nonsequenced modifications can change the
past and the future. A view of the enterprise on April 1, 1996, can change as information about that date
is received and our knowledge is refined. The valid-time table reflects our understanding of the history
of the enterprise as best known.

Current queries on a tracking log are much easier on monitored tables than on valid-time state tables:
just perform the query on the monitored table, which already records only the current state. Current
modifications (the only kind allowed on such tables) are equally simple: just apply it to the table, and the
triggers will make sure the tracking log is maintained. Legacy applications need not be modified at all
when maintaining a tracking log is initiated on the table.

Extracting a prior state involves looking both at the monitored table and the tracking log in some
tracking log organizations; if a backlog is maintained, the monitored table need not be consulted.

Sequenced and nonsequenced queries are best realized by first defining a view that extracts a
transaction-time state table from the tracking log. Sequenced and nonsequenced modifications are not
permitted on a tracking log, as they would invalidate the semantics of transaction time and would
corrupt later reconstructions.

8.11 READINGS
Serialization order of concurrent transactions is discussed in many textbooks; [6, 36] are seminal works
on this topic. Transaction time was first covered in detail by Ahn and the author [89, 90] and was later
included in the glossary [48]. Tracking logs have been studied by [8]. Backlog tables have been
suggested by several authors [51, 52, 61].
Chamberlin shows how to maintain a list of changes, though not the actual values of the changes,
eliminating an opportunity to reconstruct past states via DB2 triggers [22, pp. 358–359].
Leung and Pirahesh show how to access a backlog in which only the changed columns, as well as the
primary key, were stored; the columns retaining their old values were represented with NULLs, which
incur less storage overhead [66]. A time-slice is obtained by collecting, for each primary key value, the
most recent value for each column, using the recursive query facilities of DB2. This is a classic time-for-
space trade-off.

 - 223 -

Fraser's Time: the Familiar Stranger [34] is a superb survey of an expanse of topics related to
time.

Palmer provides a highly readable account of detecting two clocks in fiddler crabs, as well as
summarizing other biological clocks [78].
[31] is a technical guide for those who wish to provide encoding equipment and/or decoding equipment
to produce material with encoded data embedded in line 21 of the vertical blanking interval of the NTSC
video signal. The encoded data includes extended data services, such as date and time information.

Chapter 9: Transaction-Time State Tables
OVERVIEW
A transaction-time state table associates with each row the period of time that row was present in the
monitored table, thereby allowing the state of the monitored table at any previous point in time to be
reconstructed. A state table is more amenable to sequenced and nonsequenced queries than is a
tracking log.

Different organizations for state tables selectively minimize space overhead, modification time, degree
of legacy code change required, and query complexity. Sometimes triggers can be used to maintain the
state table.

If a state table becomes too large, the DBA can vacuum it in a disciplined fashion.
The previous chapter addressed Nigel's problem of spurious changes in the PROJECTIONS table by
defining an associated tracking log that captures these changes for later perusal. Several organizations
of the tracking log were examined: recording before-images, recording after-images, recording both
before-and after-images, and recording the actual modification operations (termed a "backlog"). These
variants all utilized a single transaction timestamp, When_Changed. To realize some queries, in
particular sequenced queries, we recommended that the tracking log be converted into a transaction-
time state table, with period timestamping.

In this chapter, we adopt exactly the opposite approach. We maintain the transaction-time state table
directly, with the monitored (snapshot) table available either as a view or as a regular table.

If space is at a premium, maintaining an instant-stamped tracking log (specifically, the after-image
organization) with triggers is the way to go. On the other hand, if sequenced queries or sequenced
integrity constraints are important, then the period-stamped approach described here should be
considered.
We revisit the issues of the last chapter using this period-stamped organization. This discussion will
parallel that chapter, as well as the valid-time state table chapters (Chapters 5–7). While many of the
concepts are the same between the two types of state tables, valid-time and transaction-time, it is
important to keep in mind the critical difference: valid-time tables model changes in reality, while
transaction-time tables model changes in the database. The two kinds of time are orthogonal, and as
we will see later, can be combined into one glorious structure, the bitemporal table.

9.1 DEFINITION
Conceptually, a transaction-time state table represents the sequence of snapshot states constituting the
states of the monitored table over time. This sequence is represented by timestamping rows with a
period. The period begins at the time in which the row was inserted into the monitored table, either
directly with an INSERT statement or as a side effect of an UPDATE statement, and ends when the row
was deleted from the monitored table, again, either directly via a DELETE statement or as a side effect
of an UPDATE statement. This period is termed the period of presence of the row, as it specifies when
that row was in the monitored table.
We first define a new table, P_TT, the transaction-time state table mirroring the PROJECTIONS table.

Listing 9.1: Create the transaction-time state table.

CREATE TABLE P_TT (

 - 224 -

 PROJECTION_ID INT,

 PROJECTION_NAME CHAR(10),

 PROJECTION_TYPE INT,

 SPHEROID_CODE INT,

 PROJECTION_UOM INT,

 ZONE_CODE INT,

 Start_Date DATE,

 Stop_Date DATE,

 PRIMARY KEY (PROJECTION_ID, Stop_Date))

Tip

The schema of a transaction-time state table comprises the columns of the monitored
table, along with two timestamp columns denoting the period of presence. Its key is
simply the primary key of the monitored table and the start timestamp column.

All but the final two columns are from the PROJECTIONS table. The Start-Date and Stop_Date in
concert denote the period of presence.
Recall from Section 5.3 that the (sequenced) primary key of a valid-time table cannot be composed from
its columns; an assertion is required. Such is not the case here. The key of the transaction-time state
table is simply the key of the monitored table (PROJECTION_ID) along with the Stop_Date column.
This works because the primary key constraint on the monitored table implies a current key constraint
on its associated transaction-time state table. Since only current modifications are applied to the state
table, a current key constraint implies a sequenced key constraint.

9.2 MAINTENANCE
There are two ways to maintain a transaction-time state table: indirectly, as a side effect of triggers
defined on the monitored table, and directly, by transforming modifications on the monitored table into
modifications on the state table. The benefit of the former approach is that no code need be changed
when the state table is defined; legacy applications function as before.

9.2.1 Indirectly via Triggers
In this first approach, the application need not be concerned with maintaining the state table; this will be
done behind the scenes via three triggers. In the following, we represent "until changed" with "forever,"
in this case DATE '9999-12-31'.

Listing 9.2: Triggers for maintaining the P_TT table.

CREATE TRIGGER INSERT_P

AFTER INSERT ON PROJECTIONS FOR EACH ROW

 INSERT INTO P_TT(PROJECTION_NAME, PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 VALUES (NEW.PROJECTION_NAME, NEW.PROJECTION_ID,

 NEW.PROJECTION_NAME, NEW.PROJECTION_TYPE,

 - 225 -

 NEW.SPHEROID_CODE, NEW.PROJECTION_UOM, NEW.ZONE_CODE,

 CURRENT_DATE, DATE '9999-12-31')

CREATE TRIGGER DELETE_P

AFTER DELETE ON PROJECTIONS FOR EACH ROW

 UPDATE P_TT

 SET Stop_Date = CURRENT_DATE

 WHERE P_TT.PROJECTION_ID = OLD.PROJECTION_ID

 AND P_TT.Stop_Date = DATE '9999-12-31'

CREATE TRIGGER UPDATE_P

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

BEGIN ATOMIC

 UPDATE P_TT

 SET Stop_Date = CURRENT_DATE

 WHERE P_TT.PROJECTION_ID = OLD.PROJECTION_ID

 AND P_TT.Stop_Date = DATE '9999-12-31';

 INSERT INTO P_TT(PROJECTION_NAME, PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 VALUES (NEW.PROJECTION_NAME, NEW.PROJECTION_ID,

 NEW.PROJECTION_NAME, NEW.PROJECTION_TYPE,

 NEW.SPHEROID_CODE, NEW.PROJECTION_UOM, NEW.ZONE_CODE,

 CURRENT_DATE, DATE '9999-12-31')

END

After he transactions listed in Section 8.2.1, the state table (in this chapter, mention of a state table will
imply a transaction-time state table) will contain the rows shown in Table 9.1. As before, we only show
two columns, PROJECTION_ID and PROJECTION_TYPE, as well as the timestamp columns.

Tip Triggers on the monitored table can be used to maintain a transaction-time state
table.

It is useful to compare Table 9.1 with the state table converted from the tracking log, Table 8.4. The only
difference is the value of the Stop_Date column. In the previous table, for some rows the value is

 - 226 -

1998-01-16 (the date the conversion was run, "now"), whereas here the value for those rows is 9999-
12-31, or "forever." While "now" is in fact more accurate, in that only the past and the current state can
be stored in a transaction-time state table (since we cannot predict the future), we use "forever" in this
chapter only because constantly updating the Stop_Date value to "now" is impractical.
The state table is somewhat redundant, in two senses. It contains all of the monitored table, as rows
with a Stop_Date of "forever." And many of the other stop dates are not strictly necessary, as they are
paired with identical Start_Date values; projections 2 and 3 are examples. The Stop_Date value of
1996-03-20 for the first row of projection 2 matches the Start_Date value of the following row of
projection 2; indeed, both of these rows were impacted by a single transaction, an UPDATE that

Table 9.1: A transaction-time state table, P_TT.
PROJECTION_ID PROJECTION_TYPE Start_Date Stop_Date
1 12 1996-01-01 9999-12-

31
2 10 1996-01-01 1996-03-

20
3 15 1996-01-01 1996-05-

28
4 17 1996-01-01 1996-07-

12
5 18 1996-01-01 1996-02-

03
2 13 1996-03-20 1996-06-

17
3 11 1996-05-28 9999-12-

31
2 14 1996-06-17 9999-12-

31

changed the type of projection 2 from 10 to 13. This shows that the tracking log organizations, which
use only one timestamp column, are more space efficient than the period-stamped state table
organization. However, the state table approach is much easier to query, especially for sequenced
queries.

9.2.2 Directly via Rewritten Modifications
Tip A transaction-time state table may also be maintained directly.

The second approach is to replace the monitored table with the state table, then define the monitored
table as a view on the state table, with the associated space savings over the regular monitored table of
the previous section.

Listing 9.3: Reconstruct the PROJECTIONS table as of now, as a view.

CREATE VIEW PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

 FROM P_TT

 WHERE Stop_Date = DATE '9999-12-31')

 - 227 -

Pendulum

The foliot was weighted to slow its oscillation, with the weights movable so that the clock be adjusted.
Unfortunately, the friction of the clock's mechanism and its exact mechanical arrangement kept its
accuracy to only about 15 minutes a day. What was needed was a periodic device whose frequency
was dependent only on the device itself and not on the details of its manufacture.

The Dutch scientist Christian Huygens was the first to apply the pendulum, whose frequency is
dependent only on its length, to regulate a clock. Huygens's clock of 1656 was accurate to 10 seconds
a day, a vast improvement over the foliot clock.

Applications composed only of queries on the PROJECTIONS table will work fine with this view, oblivious
to the fact that the evolution of that table is being retained.
Applications that modify the PROJECTIONS table must be changed to instead modify the state table.
Chapter 7 discussed 12 (!) categories of modifications on valid-time state tables: INSERT, DELETE,
and UPDATE coupled with current, sequenced, and nonsequenced semantics, along with current
modifications in the restricted case (only current modifications ever allowed). The situation with
transaction-time state tables is much simpler, as there are only current modifications. We cannot modify
the past, as we cannot change the bits that were stored on disks in the past. Similarly, we cannot modify
the future, as we cannot accurately predict what will be stored on the disk in the future. We can only
modify the current state. So, we are left with only three kinds of modifications to consider: current
INSERT, current DELETE, and current UPDATE. The resulting code is very similar to that given for
current modifications to valid-time state tables in Section 7.1.
An INSERT on a transaction-time state table requires only appending the Start_Date and
Stop_Date values, as "now" (CURRENT_DATE) and "forever" (DATE '9999-12-31'), respectively.

Listing 9.4: Insert a projection with an ID of 6.

INSERT INTO P_TT (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE-CODE,

 Start_Date, Stop_Date)

VALUES (6, 'New Projection', 22, 14, 93, 4,

 CURRENT_DATE, DATE '9999-12-31')

The fourth and sixth lines of this fragment were added to capture the change behavior.
A DELETE is mapped into an UPDATE, changing the Stop_Date of the deleted row(s) to "now."

Listing 9.5: Delete projection 2.

 - 228 -

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE PROJECTION_ID = 2

 AND Stop_Date = DATE '9999-12-31'

An UPDATE is logically a deletion followed by an insertion, and so is implemented with an UPDATE and
an INSERT. However, the INSERT must come first.

Listing 9.6: Change the type of projection 1 to 43.

INSERT INTO P_TT (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE, Start_Date, Stop_Date)

SELECT PROJECTION_ID, PROJECTION_NAME, 43,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 CURRENT_DATE, DATE '9999-12-31'

FROM P_TT

WHERE PROJECTION_ID = 1

 AND Stop_Date = DATE '9999-12-31'

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE PROJECTION_ID = 1

 AND PROJECTION_TYPE <> 43

 AND Stop_Date = DATE '9999-12-31'

Tip

Maintaining
the state
table via
direct
modificatio
ns obviates
the need
for a

 - 229 -

materialize
d
monitored
table,
decreasing
the space
overhead
for
capturing
changes
over time.

Here we first ensure that there is a row to update, then insert the new value (via the INSERT), and
terminate the old value at "now" (via the UPDATE). The PROJECTION_TYPE <> 43 predicate in the
UPDATE is required to avoid changing the row just inserted.
We emphasize that in this approach P_TT is a replacement for the PROJECTIONS table. We maintain
the P_TT table directly through rewritten modification statements, rather than indirectly through triggers
defined on the monitored table.

9.3 QUERIES
As previously mentioned, the advantage of a transaction-time state table over a tracking log (with its
single timestamp) is its ease in querying.
Reconstruction queries on state tables are termed time-slice queries. The current state view (CF-9.3)
was one example. Of course, it is possible to reconstruct the state of the monitored table at any point in
the past.

Listing 9.7: Reconstruct the PROJECTIONS table as of April 1, 1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT

WHERE Start_Date <= DATE '1996-04-01' AND DATE '1996-04-01' < Stop_Date

Tip

Reconstruction
is easy to
express on a
state table,
though only
states in the
past or
present should
be requested.

This is shorter than any of the reconstruction algorithms given for the tracking log organizations
(compare with CF-8.3, CF-8.13, CF-8.14, and CF-8.16).
This code also seems to work for dates in the future (try replacing 1996 with 2009), but in fact we have
no idea what rows the PROJECTIONS table will contain in 2009. Reconstructions should only be done
on the current or past dates; using future dates is meaningless. (This doesn't apply to valid-time state
tables, where future time-slices may be quite meaningful.)

Current queries are even easier: just apply to the monitored table or view.

State tables really shine when sequenced queries are desired. The strategies for such queries on valid-
time state tables apply in their entirety on transaction-time state tables, with two important provisions. A
sequenced query on a valid-time state table means "give the history of"; a sequenced query on a
transaction-time state table means "when was it recorded that" or perhaps "give the change history for."

 - 230 -

Tip

Sequenced queries over transaction-time state tables are expressed identically to
such queries over valid-time state tables. However, their semantics is in terms of
"when was it recorded that."

The second difference is that while a sequenced query on a valid-time state table returns another valid-
time state table, a sequenced query on a transaction-time state table does not return another
transaction-time state table. Recall once again that a transaction-time state table specifies the magnetic
patterns recorded on the disk at times in the past. The result of a sequenced query itself was
emphatically not stored on the disk in the past; it has just been calculated now. It does indicate what
was recorded, but it itself was not in existence until the query was performed. To emphasize this
distinction, we will use the column names Recorded_Start and Recorded_Stop for these query
results.

With those critical distinctions in mind, we now try out some sequenced queries.
As before, selections (the WHERE clause) and projections (the SELECT clause) are easy to render as
sequenced (compare with CF-6.7).

Listing 9.8: When was it recorded that a projection had a type of 17?

SELECT PROJECTION_ID, PROJECTION_TYPE,

 Start_Date AS Recorded_Start, Stop_Date AS Recorded_Stop

FROM P_TT

WHERE PROJECTION_TYPE = 17

Selections (the WHERE clause) are unchanged in sequenced queries; projections (the SELECT clause)
require adding the timestamp columns.
UNION is also easy to convert (compare with CF-6.10).

Listing 9.9: Give the change history for projections having a type of 12 or 18.

SELECT PROJECTION_ID,

 Start_Date AS Recorded_Start, Stop_Date AS Recorded_Stop

FROM P_TT

WHERE PROJECTION_TYPE = 12

UNION

SELECT PROJECTION_ID, Start_Date, Stop_Date

FROM P_TT

WHERE PROJECTION_TYPE = 18

This will tell us when such projections were added or removed, or when the type was changed to or
from 12 or 18.
Joins are more challenging. Here we use first_instant and last_instant PSM functions (CF-
6.13). Compare the following query with CF-6.14.

 - 231 -

Listing 9.10: When was it recorded that two projections had the same type?

SELECT P1.PROJECTION_ID, P2.PROJECTION_ID, P1.PROJECTION_TYPE,

 last_instant(P1.Start_Date, P2.Start_Date) AS Recorded_Start,

 first_instant(P1.Stop_Date, P2.Stop_Date) AS Recorded_Stop

FROM P_TT AS P1, P_TT AS P2

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

 AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

 AND last_instant(P1.Start_Date, P2.Start_Date) <

 first_instant(P1.Stop_Date, P2.Stop_Date)

Auditing queries are often nonsequenced queries. Once an error is found, queries examining the
changes made to the monitored table attempt to determine how and why the error was made. Changes
appear in the state table as two periods that meet.

Listing 9.11: When was the type of a projection erroneously changed to be identical to that of an
existing projection?

SELECT P1.PROJECTION_ID, P2.PROJECTION_ID,

 P1.PROJECTION_TYPE AS Identical_TYPE,

 P3.PROJECTION_TYPE AS Prior_TYPE,

 P2.Start_Date AS When_Changed

FROM P_TT AS P1, P_TT AS P2, P_TT AS P3

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

 AND P2.PROJECTION_ID = P3.PROJECTION_ID

 AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

 AND P2.PROJECTION_TYPE <> P3.PROJECTION_TYPE

 AND P3.Stop_Date = P2.Start_Date

Here, P1 is the existing projection; P3 has the old type, which was changed erroneously to P2. This
query is arduous when attempted on a tracking log. While the old or the new type is readily available
(depending on whether before-or after-images are recorded in the tracking log), determining the type of
a projection existing at the same time is difficult with instant-stamped tables.

 - 232 -

Another kind of nonsequenced query is the conversion to a tracking log. Before-images and after-
images can be easily extracted from a state table.

Listing 9.12: Extract before-images from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Stop_Date AS When_Changed

FROM P_TT

WHERE Stop_Date <> DATE '9999-12-31'

Listing 9.13: Extract after-images from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date AS When_Changed

FROM P_TT

Converting a state table to a backlog is a little more ambitious, as we have to distinguish insertions,
deletions, and updates. However, doing so emphasizes that the information content of tracking logs
(possibly along with the monitored table), backlogs, and transaction-time state tables is identical.

Listing 9.14: Extract a backlog from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date AS When_Changed, 'I' AS Operation

FROM P_TT AS P1

WHERE NOT EXISTS (SELECT *

 FROM P_TT AS P2

 WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND P2.Stop_Date = P1.Start_Date)

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 - 233 -

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Stop_Date AS When_Changed, 'D' AS Operation

FROM P_TT AS P1

WHERE P1.Stop_Date <> DATE '9999-12-31'

 AND NOT EXISTS (SELECT *

 FROM P_TT AS P2

 WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND P1.Stop_Date = P2.Start_Date)

UNION

SELECT P1.PROJECTION_ID, P1.PROJECTION_NAME,

 P1.PROJECTION_TYPE, P1.SPHEROID_CODE,

 P1.PROJECTION_UOM, P1.ZONE_CODE,

 P2.Start_Date AS When_Changed, 'U' AS Operation

FROM P_TT AS P1, P_TT AS P2

WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND P1.Stop_Date = P2.Start_Date

Tip

Tracking
logs,
backlog
s, and
transacti
on-time
state
tables
have
identical
informati
on
content.

Here we do a case analysis. INSERTs are indicated by the absence of an immediately preceding state
with the same key value, DELETEs by the absence of an immediately following state, and UPDATEs by
the presence of an immediately preceding state.

9.4 TEMPORAL PARTITIONING*
As we mentioned, having a Stop_Date of "forever" is awkward, as we cannot accurately predict the
future. As discussed in Section 7.5 in the context of valid time, a temporally partitioned organization
finesses this awkwardness, while also achieving a slight space savings, at the expense of requiring
more effort to express some queries. This organization uses two (or more) tables to represent a single
state table.

9.4.1 Current and Archival Stores

 - 234 -

To illustrate, we use two tables, P_TT_PAST, consisting of the rows that have been corrected, and
P_TT_CURRENT, consisting of the rows that haven't been corrected, that is, whose period of presence
includes "now." Since all rows of P-TT-CURRENT have a Stop_Date of "now," we'll simply omit that
column.

Listing 9.15: Create a temporally partitioned transaction-time state table.

CREATE TABLE P_TT_PAST (PROJECTION_ID INT,

 PROJECTION_NAME CHAR(10),

 PROJECTION_TYPE INT,

 …,

 Start_Date DATE,

 Stop_Date DATE,

 PRIMARY KEY (PROJECTION_ID, Start_Date))

CREATE TABLE P_TT_CURRENT (PROJECTION_ID INT,

 PROJECTION_NAME CHAR(10),

 PROJECTION_TYPE INT,

 …,

 Start_Date DATE DEFAULT CURRENT_DATE,

 PRIMARY KEY (PROJECTION_ID))

There are three differences between the two tables. The first is that P_TT_CURRENT does not have a
Stop_Date column. Its implicit stop date is "now." The second is that P_TT_CURRENT has a default
value of "now" for the Start_Date; we will see the utility of this shortly. The final difference is that the
primary key of P_TT_CURRENT is that of the original monitored table.
We term P_TT_PAST the archival store: it contains rows that have been corrected, and "store" is used
rather than "table" to differentiate the representation (the "store") from the logical structure (the state
table). P_TT_CURRENT is likewise termed the current store.
Another way to think about this is that P_TT_CURRENT is the monitored table, PROJECTIONS, with an
additional Start_Date column. This enables us to define PROJECTIONS as a view and also justifies
P_TT_CURRENT having the same primary key.

Listing 9.16: Reconstruct the PROJECTIONS table as of now, as a view on a temporally partitioned
table.

CREATE VIEW PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 - 235 -

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

 FROM P_TT_CURRENT)

Tip

A
transact
ion_tim
e state
table
may be
represe
nted
with two
tables,
a
current
and an
archival
store.

Comparing this code fragment with CF-9.3, we notice that here every row is selected; in that earlier view
definition, we had to explicitly test the Stop_Date.

The best way to maintain this temporally partitioned state table is via triggers on the current store.
Listing 9.17: Triggers for maintaining the P_TT table.

CREATE TRIGGER DELETE_P

BEFORE DELETE ON P_TT_CURRENT FOR EACH ROW

 INSERT INTO P_TT_PAST(PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE. SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date, CURRENT_DATE

 FROM P_TT_CURRENT AS P

 WHERE P.PROJECTION_ID = OLD.PROJECTIONS_ID

CREATE TRIGGER UPDATE_P

BEGIN ATOMIC

BEFORE UPDATE ON P_TT_CURRENT FOR EACH ROW

 INSERT INTO P_TT_PAST(PROJECTION_ID,

 - 236 -

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date, CURRENT_DATE

 FROM P_TT_CURRENT AS C

 WHERE C.PROJECTION_ID = OLD.PROJECTION_ID

 UPDATE P_TT_CURRENT

 SET Start_Date = CURRENT_DATE

 WHERE P_TT_CURRENT.PROJECTION_ID= OLD.PROJECTION_ID

END

Table 9.2: The P_TT_PAST table.
PROJECTION_ID PROJECTION_TYPE Start_Date Stop_Date
2 10 1996-01-01 1996-03-

20
3 15 1996-01-01 1996-05-

28
4 17 1996-01-01 1996-07-

12
5 18 1996-01-01 1996-02-

03
2 13 1996-03-20 1996-06-

17

Table 9.3: The P_TT_CURRENT table.
PROJECTION_ID PROJECTION_TYPE Start_Date
1 12 1996-01-01
3 11 1996-05-28
2 14 1996-06-17

Tip The two-table representation requires a few replacements in the legacy code.

Note that there is no trigger for INSERT. An insertion just affects the current store. However, for a
deletion or update, we capture the before-image in the archival store, with a period of presence from the
date the row was originally inserted (or updated) to "now." Finally, P_TT_CURRENT.Start_Date of the
updated row needs to be changed to "now" this requires an after-trigger.

 - 237 -

Defining the triggers on the current store requires that the following replacements be made to the legacy
code:

 INSERT INTO PROJECTIONS replaced with INSERT INTO P_TT_PAST
 DELETE FROM PROJECTIONS replaced with DELETE FROM P_TT_PAST
 UPDATE PROJECTIONS replaced with UPDATE P_TT_PAST

Within the modification statement, and within SELECT statements, references to PROJECTIONS can
remain; these will now refer instead to the view defined on P_TT_CURRENT.
These triggers will produce the archival and current stores shown in table 9.2 and 9.3, which should be
compared with Table 9.1. There were eight rows in that previous table, partitioned here into five
corrected rows and three current rows.

9.4.2 Queries
We now turn to queries. Queries on the current state can be applied to the PROJECTIONS view as
before. Past states can be reconstructed, using the archival store.

Listing 9.18: Reconstruct the PROJECTIONS table as of April 1,1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT_PAST

WHERE Start_Date <= DATE '1996-04-01' AND DATE '1996-04-01' < Stop_Date

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT_CURRENT

WHERE Start_Date <= DATE '1996-04-01'

This is an extension of CF-9.7. An important difference is that future states cannot be reconstructed
from the archival store, as the Stop-Date is always before "now."

Tip Both the monitored table and the transaction-time state table can be defined as
views on the two stores.

This makes the archival store slightly safer to use.
Sequenced queries are a little more difficult because the information is spread across two tables. The
easiest approach is to define another view, P-TT, which is the original state table being implemented by
the two stores.

Listing 9.19: Define the state table as a view.

CREATE VIEW P_TT (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE, Start_Date, Stop_Date)

AS (SELECT * FROM P_TT_PAST

 UNION

 - 238 -

 SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 Start_Date, CURRENT_DATE AS Stop_Date

 FROM P_TT_CURRENT)

Having the state table available as a view, we can then query it exactly as discussed in Section 9.3,
using it for both sequenced and nonsequenced queries.

9.4.3 Utilizing the Primary Key
One objection to the partitioned organization just presented is that it requires the legacy application to
be modified. Granted, the modification is slight—just replace the mention of the PROJECTIONS table in
the first line of modification statements—but any change to a complex application should not be
approached lightly.

Tip In a tripartitioned table, the current store consists of just the primary key and the
start date.

The PROJECTIONS table was defined as a view on the current store,just projecting out the
Start_Date column. Instead, we can define three tables: the original monitored table, the archival
store, and a horizontally truncated current store, containing only the primary key of the monitored table
and the start time, when that row was inserted into the monitored table. The current store and the
archival store can be maintained via triggers on the monitored table, thereby obviating any changes to
legacy code.

Listing 9.20: Define a truncated current store.

CREATE TABLE P_TT_CURRENT (

 PROJECTION_ID INT

 Start_Date DATE,

 PRIMARY KEY (PROJECTION_ID))

The triggers are now defined on the monitored table itself.
Listing 9.21: Triggers for maintaining a tripartitioned state table.

CREATE TRIGGER INSERT_P

AFTER INSERT ON PROJECTIONS FOR EACH ROW

 INSERT INTO P_TT_CURRENT(PROJECTION_ID, Start_Date)

 VALUES (NEW.PROJECTION_ID, CURRENT_DATE)

CREATE TRIGGER DELETE_P

BEFORE DELETE ON PROJECTIONS FOR EACH ROW

 - 239 -

BEGIN ATOMIC

 INSERT INTO P_TT_PAST(PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 SELECT OLD.PROJECTION_ID,

 OLD.PROJECTION_NAME, OLD.PROJECTION_TYPE,

 OLD.SPHEROID_CODE, OLD.PROJECTION_UOM, OLD.ZONE_CODE,

 Start_Date, CURRENT_DATE

 FROM P_TT_CURRENT AS PC

 WHERE PC.PROJECTION_ID = OLD.PROJECTION_ID;

 DELETE FROM P_TT_CURRENT

 WHERE PROJECTION_ID = OLD.PROJECTION_ID;

END

CREATE TRIGGER UPDATE_P

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

BEGIN ATOMIC

 INSERT INTO P_TT_PAST(PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

 PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

 SELECT OLD.PROJECTION_ID,

 OLD.PROJECTION_NAME, OLD.PROJECTION_TYPE,

 OLD.SPHEROID_CODE, OLD.PROJECTION_UOM, OLD.ZONE_CODE,

 Start_Date, CURRENT_DATE

 FROM P_TT_CURRENT AS PC

 WHERE PC.PROJECTION_ID = OLD.PROJECTION_ID;

 UPDATE P_TT_CURRENT

 SET Start_Date = CURRENT_DATE

 - 240 -

 WHERE PROJECTION_ID = NEW.PROJECTION_ID

END

Here we have the P_TT_CURRENT table mirror the changes to the monitored table, with before-images
retained in the archive store.

Tip A view reconstitutes the state table from the three underlying tables.

Current queries are expressed against the monitored table, which is now materialized, rather than being
defined as a view as in some of the other organizations. Such queries will generally be faster when
evaluated against a table than when evaluated against a view of a larger underlying table.

For sequenced and nonsequenced queries, we define a transaction-time state view over the three
constituent tables.

Listing 9.22: Define the state table as a view.

CREATE VIEW P_TT (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE, Start_Date, Stop_Date)

AS (SELECT * FROM P_TT_PAST

 UNION

 SELECT PROJECTIONS.PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE, Start_Date, CURRENT_DATE AS Stop_Date

 FROM PROJECTIONS, P_TT_CURRENT AS C

 WHERE PROJECTIONS.PROJECTION_ID = C.PROJECTION_ID)

9.5 VACUUMING*
The current store consists of the monitored table plus possibly an additional column, indicating when the
row entered the table. As such it will contain the same number of rows as the original monitored table.
The archival store contains old rows of the monitored table that have since been corrected; the two
additional columns denote the period of presence of these rows. The archival store is useful for auditing
the changes that have been applied to the monitored table, particularly when the changes themselves
were incorrect or malicious.
In comparison with a table associated with no temporal support, the database administrator needs to be
aware of the implications of adding transaction-time support to that table. First, either the monitored
table will be replaced with the current store with an additional DATE column, or there will be an
additional table defined with the primary key and the DATE column. Either approach incurs a slight
space penalty. Second, the archival store is created. Initially this table is empty, so the immediate cost
is one of execution time for deletions and updates, which trigger insertions into the archival store.
Depending on the volatility of the monitored table, the archival store will grow slowly or quickly; in any
case, the growth will be monotonic. Every deletion or update of a row of the monitored table will insert a
row into the archival store.

For highly volatile tables, the archival store can become quite large. In one sense, this is desirable
because that store is capturing the time-varying behavior of the monitored table, permitting later

 - 241 -

analysis, which would be difficult to impossible without the archival store. However, eventually the space
required by the archival store may become excessive. Transactions on the monitored table get
progressively slower as insertions into the archival store take longer; queries on the virtual transaction-
time state table also bog down due to the sheer size of the archival store.

Tip The archival store can be reduced in size by purging information on invalid
entities.

At some point the DBA may want to vacuum the archival store to remove less desired rows, thereby
improving the space and time efficiency of the state table, with the drawback of reducing the querying
capability of the state table.
There are several kinds of vacuuming operations. Two major classes are entity vacuuming and
temporal vacuuming, distinguished by what is removed. In the former, entities that are judged to be less
interesting are removed from the archival store. In the latter, information is removed based on it having
been logically deleted at some specified instant in the past. The further back this instant is, the less
information discarded.

As an example, we can purge all projections that are no longer currently valid.
Listing 9.23: Entity vacuum the archival store.

DELETE FROM P_TT_PAST

WHERE NOT EXISTS (SELECT *

 FROM P_TT_CURRENT AS C

 WHERE P_TT_PAST.PROJECTION_ID = C.PROJECTION_ID)

This works with either partitioned store organization described in Section 9.4. The danger here is that a
projection might have been erroneously deleted only yesterday, yet we have just vacuumed away all
evidence of that projection.
Once a transaction-time table has been vacuumed, subsequent queries should be interpreted with that
in mind. The query of CF-9.8 needs to be rephrased: "When was it recorded that a currently present
projection had a type of 17?"

Tip

Although vacuuming a transaction-time table helps contend with the unchecked
growth of the table, it violates the underlying semantics of the table, revising the
meaning of subsequent queries.

Vacuuming is a dangerous operation because it violates the underlying semantics of the transaction-
time state table. The state table allows all prior states of the monitored table to be reconstructed. After
the state table has been vacuumed, it is no longer possible to fully reconstruct some past states. For
entity vacuuming, the past states will not contain the entities that have been vacuumed.
On page 250, we argued that a view reconstructing a past state of a transaction-time table was
inviolate; it will return the same rows independent of when the view was evaluated. Such is not the case
in the presence of vacuuming. Before CF-9.23 was run by the DBA to entity vacuum the archival store,
projection 1 was in the April 1, 1996, reconstructed state. After the archival store was vacuumed,
projection 1 mysteriously disappeared from that state. Although this is probably what the DBA intended,
users of the transaction-time table need to be aware that such vacuuming has occurred, and that the
information in the transaction-time table is incomplete.

Entity vacuuming is one way to reduce the size of the archival store. Alternatively, we can temporally
vacuum the archival store, removing all information older than, say, two years. Many countries have
laws that require that certain records be retained only for a fixed length of time. Business policies may
also pose similar requirements. Such situations indicate temporal vacuuming.

Listing 9.24: Temporally vacuum the archival store of data older than two years.

DELETE FROM P_TT_PAST

 - 242 -

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL '731' DAY

Again, after temporally vacuuming the archival store, queries need to be reinterpreted. The query of CF-
9.8 needs to be rephrased: "When was it recorded over the past two years that a projection had a type
of 17?"

In most settings, a combination makes sense: delete those entities having only old information, which is
a more conservative stance than either entity vacuuming or temporal vacuuming alone.

Listing 9.25: Temporally vacuum old unused entities from the archival store.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL '731' DAY

AND NOT EXISTS (SELECT *

 FROM P_TT_CURRENT AS C

 WHERE PROJECTION_ID = C.PROJECTION_ID)

Sometimes additional criteria may be appropriate; these tests can be added to the WHERE clause.
Listing 9.26: Temporally vacuum old unused entities from the archival store that had a USGS
spheroid code of 2.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL '731' DAY

 AND NOT EXISTS (SELECT *

 FROM P_TT_CURRENT AS C

 WHERE PROJECTION_ID = C.PROJECTION_ID)

 AND SPHEROID_CODE = 2

Tip The DBA may wish to vacuum the archival store based on a combination of criteria.

The DBA can adjust the vacuuming criteria, trading off the realized space savings with the reduction in
querying ability. A record should be kept, probably in a separate vacuuming log, of the cleaning that has
taken place.

Listing 9.27: Log the vacuuming operations.

 - 243 -

CREATE TABLE Vacuum_Log (

 Table_Name CHAR(40) NOT NULL,

 When_Vacuumed DATE NOT NULL,

 Who CHAR(40) NOT NULL,

 Entity_Vacuuming CHAR(1) NOT NULL,

 Vacuum_Interval INTERVAL,

 Vacuum_Criteria CHAR(256)

 PRIMARY KEY (Table_Name, When_Vacuumed))

Tip The vacuum log, which indicates the meaning of queries on the state table,

should be maintained automatically.
In this table, the Entity_Vacuuming column indicates whether old entities were purged, and the
Vacuum_Interval indicates whether temporal vacuuming took place, with a NULL value indicating
not. Other criteria used in the vacuuming, such as a USGS spheroid code of 2, can be indicated as a
prose comment in Vacuum_Criteria.

Tip Vacuuming specifications should be monotonic to avoid time-dependent
assumptions.

This log should be updated each time a state table is vacuumed. For this reason, it is best to define
stored procedures that vacuum a table, given criteria such as whether to do entity vacuuming and the
vacuuming interval, while also ensuring that the vacuuming is logged appropriately.
Vacuuming needs to be done in a way that makes sense to users. While complex predicates can be
specified in the WHERE clause of the DELETE statement effecting the vacuuming, the vacuuming
criteria should be carefully chosen. One desirable property of a vacuuming specification is that it be
monotonic—once it is satisfied, it will continue to be satisfied, so that repeated application does not
violate the specification. Consider the following request:

Listing 9.28: Temporally vacuum the archival store between one and two years old.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL '365' DAY

 AND (CURRENT_DATE - Stop_Date DAY) < INTERVAL '730' DAY

This deletion will repeatedly be applied, to keep the size of the archival store in check. The problem is
that data that is 15 months old, and hence is subject to deletion, will eventually become two years old
and should then be retained. However, that data is gone; it cannot be later reconstituted. In contrast, the
vacuuming specification of CF-9.24, "data older than two years," is monotonic: once data satisfies this
predicate, it will always satisfy the predicate. Similarly, the vacuuming specifications of CF-9.25 and CF-
9.26 are also monotonic. We note in passing that a nonmonotonic vacuuming specification is an
instance of a time-dependent assumption (see page 66), to be avoided if at all possible.

9.6 IMPLEMENTATION CONSIDERATIONS
The code fragments were implemented in Microsoft SQL Server.

 - 244 -

9.6.1 Microsoft SQL Server
Other than the proviso mentioned in Section 8.9.2 concerning using the inserted and deleted tables
rather than the OLD and NEW correlation names, all the code fragments worked as stated on Microsoft
SQL Server 6.5 and 7.0.

9.6.2 CD-ROM Materials
All of the code discussed in this chapter has been implemented in Microsoft SQL Server and is provided
on the CD-ROM.

9.7 SUMMARY
A transaction-time state table maintains a history of the changes that have been applied to a monitored
table by associating with each row a period of presence, indicating when that row was present in the
monitored table.

Several organizations for such state tables were considered:
 As a period-stamped table augmenting the monitored table (CF-9.1), with triggers

defined on the monitored table (CF-9.2). Here there is some duplication, as rows of the
monitored table will also be present in the state table. This approach does not require
any changes to legacy code.

 As a single period-stamped table, with the monitored table defined as a view on the
state table, as discussed in the previous chapter. Modifications must be rephrased to
apply to the state table; queries can still reference the view.

 As a current and an archival store (CF-9.15), with the monitored table defined as a
view on the current store (CF-9.16). The first line of modification statements must be
changed to refer to the current store; triggers on this store automatically maintain the
archival store. The current store is narrower, as the superfluous stop date is not stored.
Sequenced and nonsequenced queries are applied to a view reconstituting the state
table.

 As a tripartitioned store: an archival store as before, a current store containing only the
key and the start date (CF-9.20), and the monitored table, with triggers on the
monitored table maintaining both stores (CF-9.21). This organization requires no
changes to the legacy code and materializes the monitored table for efficient current
queries.

Transaction-time state tables have the same information content as the tracking logs considered in the
previous chapter. We demonstrated this with views that extracted the before-images, after-images, and
rows of a backlog. The previous chapter provided views that went the other direction, to a state table
from a tracking log. A tracking log can be considered to be a temporally partitioned transaction-time
table in which the archival store is timestamped with an instant, rather than a period.

To choose between the organizations that support transaction time presented in the last two chapters,
the following factors should be considered:

 Are all insertions performed when the table is first created, or can entities come and
go?

 Can an entity be deleted and later inserted?
 How critical is the space overhead?
 How critical is modification performance?
 How volatile is the monitored table?
 Which is most prevalent, current, sequenced, or nonsequenced queries?
 Is the legacy code available? If so, how hard is it to modify?

As a rough guide to selecting the manner in which transaction-time support is implemented, the
following is suggested:

 Use a tracking log only if sequenced and nonsequenced queries are rare.
 Use before-images only if all insertions are performed when the table is created.
 Use after-images only if no insertions follow deletions.
 Use a backlog only if sequenced and nonsequenced queries are rare and if after-

images are not indicated.
 Use a single or bipartitioned transaction-time state table if legacy code can be changed

and space is tight.

 - 245 -

 Use a state table along with the monitored table if changes to legacy code are not
permitted and space isn't too tight.

 Use a tripartitioned state table if the legacy code cannot be changed and space is tight.

Vacuuming can be used to ameliorate the space overhead of maintaining all previous states of the
monitored table. The DBA can configure the extent and timing of the purge process via vacuuming
specifications; the DBA should ensure that these specifications are monotonic.

9.8 READINGS
Jacob Ben-Zvi originated the concept of a partitioned store in his Ph.D. dissertation [5]. Several others
subsequently studied partitioned stores in the context of valid-time, transaction-time, and bitemporal
tables [1, 26, 60, 67, 68].
Christian S. Jensen and Leo Mark have developed a comprehensive theory concerning vacuuming that
includes the kinds of vacuuming discussed in this chapter [50]. Their approach goes further and
considers the impact on query semantics and query evaluation, and discusses how to perform the
vacuuming operation. Jensen later applied these concepts to a language extension to TSQL2 to support
rudimentary vacuuming [47] and later still extended his theory of vacuuming [85]. These facilities have
yet to be proposed for SQL3.

Chapter 10: Bitemporal Tables
OVERVIEW
A bitemporal table is a glorious structure. It simultaneously records the history of the enterprise, while
also capturing the sequence of changes to the record of that history. Bitemporal tables permit queries
on the history . Bitemporal tables permit queries on the history as best known (over valid time, with a
transaction time of "now"), queries on the change history of a stored data item (over transaction time,
with a fixed valid time), and queries on the interaction of valid time and transaction time (for example,
finding that information stored retroactively, after the fact). It is this range of queries that makes
bitemporal tables so versatile and useful.

Bitemporal tables, in capturing both valid time and transaction time, require care in maintaining.
Modifications must not disturb previously recorded information; they must be append-only. As such,
modifications generally require longer sequences of more complex SQL statements.

Bitemporal tables admit a wide variety of temporal queries and integrity constraints. They also admit a
variety of representational schemes, which speed up some common queries at the expense of some
rarer queries.
Information is the key asset of many companies. Nykredit, a major Danish mortgage bank, is a good
example. In 1989, the Danish legislature changed the Mortgage Credit Act to allow mortgage providers
to market loans directly to customers and through real estate agents; before such loans had to be
funneled indirectly through banks, with the mortgage providers separated from the consumer by these
middlemen.

This change in the law had a dramatic impact on the loan market, with the number of mortgage credit
suppliers in Denmark doubling since the law's amendment. This new environment represented both an
opportunity to Nykredit to enter into direct marketing, as well as a challenge to fend off its now-
burgeoning competitors.

One of the challenges was achieving high data quality on the customers and their loans, while
expanding the traditional focus to also include customer support. Managers needed access to up-to-
date data to set benchmarks and identify problems in various areas of the business. The sheer volume
of the data, nine million loans to eight million customers concerning seven million properties, demands
that eliminating errors in the data must be highly efficient.

Jens Gadgaard is a seasoned senior architect at Nykredit Data, Nykredit's in-house information
technology provider, located in bucolic Aalborg. Aalborg is in Jutland, to the north on the mainland, right
on the Lim Fjord and only a few miles from the North Sea coast. The company offices occupy a modern
building several kilometers outside of the city proper, fronted by a beautiful pond and surrounded by
farmland; I've seen sheep and rabbits contentedly grazing on adjacent fields and lawns. Next door is
Aalborg University, with its newly inaugurated Nykredit Center for Database Research. Jens has long

 - 246 -

pushed for better management of temporal data; the Center and the internal structure of property
ownership tables reflect this emphasis.

As Jens explains it, a customer service person reports an error to the IT personnel; errors are also
discovered by batch jobs producing quarterly reports. The more information the IT personnel have
access to, the better able they are to analyze and

Figure 10.1: The property ownership relationship.

correct these errors. For this reason, Jens mandated that changes to critical tables be tracked. This
implies that the tables have transaction-time support. As these tables also model changes in reality,
they require valid-time support. The result is termed a bitemporal table, reflecting these two aspects of
underlying temporal support.

With such tables, IT personnel can first determine when the erroneous data was stored (a transaction
time), roll back the table to that point, and look at the valid-time history. They can then determine what
the correct valid-time history should be. At that point, they can tell the customer service person what
needs to be changed, or if the error was in the processing of a user transaction, they may update the
database manually. Because transaction-time support is included, these changes would be logged as
well, enabling someone later to see what happened when the change itself was in error. Although
bitemporal tables can be challenging to implement, their support for both valid time and transaction time
permits a sophisticated analysis of the evolution of the table, with all the data directly at hand. The
alternatives of going back through paper records to reconstruct the sequence of changes that were
made, or attempting to extract that sequence from backup tapes or other secondary data sources, are
simply not practical in such a dramatically changing environment.

Nykredit must be doing something right. Despite the arrival of additional competitors, Nykredit was able
to increase its market share to become the largest mortgage bank in Denmark by 1997 and is currently
Europe's fifth largest provider of real estate loans.

10.1 DEFINITION
One of the central tables of the Nykredit database is the property_ownership table, which we will
abbreviate as Prop_Owner. This table specifies the relationship between the customer and property
entities, as shown in Figure 10.1 as an entity-relationship diagram.

The customer entity has a key of customer_number; the property entity has a key of property_number.
(What kind of key, current, sequenced, or nonsequenced?, you may ask. The entity-relationship
diagram does not say. We address this critical question only after we decide which aspects of time we
wish to capture here.) The customer and property entities have additional attributes. The
property_ownership relationship is a one-to-many relationship between customers and properties: a
customer can own many properties, but a property is owned by exactly one customer. This relationship
is itself associated with other attributes, not shown here.
In mapping this conceptual entity-relationship schema to a logical, relational schema, the customer
entity induces a Customer table, with primary key customer_number, and the property entity induces
a Property table, with primary key property_number. For the property_ownership relationship, we
have two alternatives, given that this relationship is a one-to-many relationship. One alternative is to
extend the Property table with a customer_number foreign key, as well as the relationship's
attributes. However, since the relationship is not total/mandatory (a property can exist without being
owned by a customer present in the Nykredit database), that implies that all of the property_ownership
attributes must be nullable, including the customer_number. The second alternative, which is more
attractive in this case, is to create a separate table, the Prop_Owner table, with foreign keys
customer_number and property_number. None of these columns need be nullable.

Tip A bitemporal state table contains four timestamp columns, two specifying the
period of validity and two specifying the period of presence.

It turns out that the Customer and Property tables are temporal tables, but we will defer
consideration of that aspect. For the Prop_Owner table, Jens wanted to capture both the history in
reality of the owner(s) of a property over time, as well as the sequence of database states, capturing the

 - 247 -

transactions applied to this table. This requirement, originating from a need for high data quality, meant
that both valid time and transaction time were relevant for this table.
A bitemporal state table captures valid-time states via a period timestamp, here as two instant
timestamps, VT_Begin and VT_End, and transaction-time states also via a period timestamp, here as
TT_Start and TT_Stop. Along with the foreign keys, the table is comprised of six columns.

Listing 10.1: Create the Prop_Owner table.

CREATE TABLE Prop_Owner (

 customer_number INT,

 property_number INT,

 VT_Begin DATE,

 VT_End DATE,

 TT_Start TIMESTAMP,

 TT_Stop TIMESTAMP)

We give the valid timestamps a granularity of day (as a property cannot change owners multiple times in
a single day), and the transaction timestamps a granularity of microsecond (to differentiate
transactions).
We also specify the Customer and Property tables as bitemporal tables.
CREATE TABLE Customer (
 name CHAR,
 VT_Begin DATE,
 VT_End DATE,
 TT_Start TIMESTAMP,
 TT_Stop TIMESTAMP)

CREATE TABLE Property (
 property_number INT,
 address CHAR,
 property_type INT,
 estimated_value INT,
 VT_Begin DATE,
 VT_End DATE,
 TT_Start TIMESTAMP,
 TT_Stop TIMESTAMP)
Since the property_ownership relationship is one-to-many, the primary key of the Prop-Owner table
should consist of only the many side, that is, the property foreign key: property_number. As has been
emphasized many times, the sequenced semantics is generally the natural choice; what is desired here
is to specify property_number to be a primary key sequenced in both valid time and transaction time.
The state of the table at any day in valid time, as stored at any instant in transaction time, should
include at most one row in the table for any particular property, meaning that property has one owner at
that valid time, as recorded at that transaction time.

 - 248 -

So, how do we convert a property_number PRIMARY KEY constraint to be sequenced in both valid
time and transaction time? Since only current modifications are permitted on tables with transaction-
time support, including the TT_Start column is sufficient (see the explanations on pages 178 and
221). However, arbitrary modifications (including sequenced and nonsequenced) are generally
permitted on tables with valid-time support; that is true here specifically as well. As we saw in Section
5.3 on page 117, it is not sufficient to use either the begin date, the end date, or a combination of the
two; instead, an assertion is needed. Leaving the valid timestamps out of the primary key doesn't work
either, because the foreign keys plus the transaction start time does not differentiate multiple entries
inserted by a single transaction specifying different valid times. Hence, a PRIMARY KEY constraint
simply doesn't work in this case.

Components of Every Clock
Every periodic clock, save sundials and clepsydrae, has five primary components. The first is a device
that will be periodic, termed a resonator. The twisting and untwisting of a string, the back-and-forth of
a pendulum, and the vibrating of a crystal are all resonators. The second component is a means of
supplying energy to the resonator, so that it doesn't wind down. The escapement provides energy
from a falling weight to the twisting of the string and the swinging of a pendulum; a small battery
provides energy to a crystal. The energy supply together with the resonator is called an oscillator. The
third component is a counting device, such as an escapement or solid-state circuit. The fourth is a
transmission, getting the count to the fifth component, which is a display, such as the clock's hands.

Tip

Starting
that a
key on
a
bitemp
oral
table is
valid-
time
sequen
ced
require
s an
asserti
on.

To specify that the property_number column constitutes a transaction-time sequenced, valid-time
sequenced primary key, we need an assertion. We will apply this assertion at the current transaction
time; that only current modifications are permitted in transaction time will ensure that it holds over all
transaction-time states. This is a slight modification of CF-5.14 on page 124.

Listing 10.2: property_number is a (valid-time sequenced, transaction-time sequenced) primary key
for Prop_Owner.

CREATE ASSERTION P_0_seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM Prop_Owner AS P1

 WHERE property_number IS NULL

 OR 1 < (SELECT COUNT(customer_number)

 - 249 -

 FROM Prop_Owner AS P2

 WHERE P1 .property_number = P2.property_number

 AND P1.VT_Begin < P2.VT_End

 AND P2.VT_Begin < P1.VT_End

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'))

)

While we're at it, we also include a nonsequenced valid-time assertion: that there are no gaps in the
valid-time history. Specifically, once a property is acquired by a customer, it remains associated with an
owner (or sequence of owners) over its existence. As before, we use current transaction time. This is a
slight modification of CF-5.22 on page 129.

Listing 10.3: Prop_Owner. property_number defines a contiguous valid-time history.

CREATE ASSERTION P_0_Contiguous_History

CHECK (NOT EXISTS (SELECT *

 FROM Prop_Owner AS P, Prop_Owner AS P2

 WHERE P.VT_End < P2.VT_Begin

 AND P.property_number = P2.property_number

 AND P.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (

 SELECT *

 FROM Prop_Owner AS P3

 WHERE P3.property_number = P.property_number

 AND (((P3.VT_Begin <= P.VT_End)

 AND (P.VT_End < P3.VT_End))

 OR ((P3.VT_Begin < P2.VT_Begin)

 AND (P2.VT_Begin <= P3.VT_End)))

 AND P3.TT_Stop = DATE '9999-12-31'))

)

 - 250 -

The change made here was to apply the assertion at the current transaction time, which, due to the
append-only nature of transaction time, renders it a sequenced transaction-time constraint.

10.2 MODIFICATIONS
In Chapter 7 we saw that valid-time state tables admit nine kinds of modifications: current, sequenced,
and nonsequenced versions of INSERT, DELETE, and UPDATE. Chapter 9 showed that transaction-
time state tables are much simpler: only current versions of INSERT, DELETE, and UPDATE are
relevant. So, what is the situation with bitemporal tables? It turns out that here again only nine kinds of
modifications apply, all current in transaction time: valid-time current, valid-time sequenced, and valid-
time nonsequenced versions of INSERT, DELETE, and UPDATE.
Translating modifications on bitemporal tables into SQL parallels the translation on valid-time tables
given in Chapter 7. In fact, we advocate a two-stage transformation. The first stage applies those
transformations given for valid-time tables. Only then will we consider transaction time, applying a
second set of transformations to render a final sequence of SQL statements that respect the coupled
semantics of valid time and transaction time. The mappings themselves are straightforward, albeit
somewhat tedious.

Let's follow the history, over both valid time and transaction time, of a flat in Aalborg, at Skovvej 30 for
the month of January 1998. This history is quite interesting for illustrating the translation for various
kinds of modifications.

10.2.1 Current Modifications
We first consider current insertion, then current updates, and end with current deletions.

Insertions
On the 10th of January, this flat was purchased by Eva Nielsen. We record this information as a current
valid-time, current transaction-time insertion.

Listing 10.4: Eva Nielsen buys the flat at Skovvej 30 in Aalborg on January 10, 1998.

INSERT INTO Prop_Owner (customer_number, property_number, VT_Begin,

 VT_End, TT_Start, TT_Stop)

VALUES (145, 7797, CURRENT_DATE,

 DATE '9999-12-31', CURRENT_TIMESTAMP, DATE '9999-12-31')

This information is valid starting now and was inserted now. We will see that the transaction-time extent
of all modifications is "now" to "until changed," which we encode as "forever."
The interplay between valid time and transaction time can be confusing, so it is useful to have a
visualization of the information content of a bitemporal table. Figure 10.2 shows the bitemporal time
diagram, or simply time diagram, corresponding to the above insertion.

Tip Current insertions require only that the valid and transaction timestamps be
appropriately specified.

In this figure, the horizontal axis tracks transaction time and the vertical axis tracks valid time.
Information about a row, or about multiple rows associated with a primary key value, is depicted as two-
dimensional polygonal regions in the diagram. Arrows extending rightward denote "until changed" in
transaction time; arrows extending upward denote "forever" in valid time. Here we have but one region,
associated with Eva Nielsen, that starts at time 10 (January 10, 1998) in transaction time and extends to
"until changed," and that begins also at time 10 in valid time and extends to "forever." The arrow
pointing upward extends to the largest valid-time value ("forever"); the arrow pointing to the right
extends to "now," that is, it advances day by day to the right (a transaction time in the future is
meaningless).

 - 251 -

Figure 10.2: A bitemporal time diagram corresponding to Eva purchasing the flat, performed on January 10.

Updates

On the 15th Peter Olsen buys this flat; this legal transaction transfers ownership from Eva to him. The
nontemporal expression of this modification is a simple UPDATE.

Listing 10.5: Peter Olsen buys the flat on January 15,1998.

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797

Figure 10.3 illustrates how this update impacts the time diagram. The valid-time extent of a current
modification is always "now" to "forever," so from time 15 on, the property is owned by Peter; at the rest
of the time, from time 10 to 15, the property was owned by Eva. Both regions extend to the right to "until
changed." This time diagram captures two facts: Eva owning the flat and Peter owning the flat, each
associated with a bitemporal region.
This figure captures the evolving information content of the Prop_Owner table quite effectively.
Consider a transaction time-slice, which returns the valid-time history at a given transaction time. Such
a time-slice can be visualized as a vertical line intersecting the x-axis at the given time. At transaction
time 5 (January 5), the table has no record of the flat being owned by anyone. At transaction time 12,
the table records that the flat was owned by Eva from January 10 to "forever." If we

 - 252 -

Figure 10.3: A current update: Peter buys the flat, performed on January 15.

time-traveled back to January 12 and asked for the history of the flat, that would be the response. We
thought then that Eva owns the flat, and that is what the Prop_Owner table recorded then. At
transaction time 17 the table records that the flat was owned by Eva from January 10 to 15, at which
time ownership transferred to Peter, who now owns it to "forever." And that is the history as best known
(denoted by the right-pointing arrows); it is what we think is true about the valid-time history.
The current update must effect the change in the Prop_Owner table from Figure 10.2 to Figure 10.3,
via SQL statements that manipulate the explicit columns as well as the timestamp columns. While CF-
10.5 consists of but 3 lines, the translation into SQL-92 is involved, ultimately requiring over 30 lines of
SQL! However, the translation is mechanical, so with some patience, all will be clear.

Tip For modifications on bitemporal tables, the first stage contends with valid time,
resulting in a series of SQL statements.

CF-7.11 on page 186 translated a valid-time current update into three SQL statements, the first to insert
new information valid from "now" until the row ended, the second to terminate the current row at "now,"
and the third to update any rows that start in the future with the new values. I urge you to revisit that
code fragment, read the associated commentary, and ensure that you understand it well because the
bitemporal version will build on it.
In addition to contending with valid time, we also must ensure that the transaction-time extent of the
modification is from "now" to "until changed." One important property of tables with transaction-time
support is that they are append-only (cf. Section 8.10). As such tables capture the state of the stored
table over time, once we have recorded that the state was such and such at a particular time, we can't
go back and change that later because we can't change the bits stored on the disk at that prior time.
The changes always accumulate in the table with transaction-time support (the one exception is when
the table is vacuumed, which as we emphasized on page 270 violates the semantics of the table).

Tip

Only two kinds of modifications are permitted on bitemporal state tables: insertions
with a transaction time of "now" to "forever," and updates that set the transaction-
stop time to "now."

The practical ramification is that we never physically delete a row from such a table; the only physical
modifications allowed are to insert rows into the table and to change the transaction stop time of a row
from "until changed" to "now," thereby logically deleting the row. All nine types of modifications allowed
on bitemporal tables must be implemented as a combination of INSERTs with a transaction time of
"now" to "until changed" (which is represented with "forever") and UPDATEs that set the transaction-
stop time to "now." Any other modification to a bitemporal table will violate its semantics.
As mentioned, we utilize a two-stage procedure for translating a temporal modification on a bitemporal
table into a series of SQL statements. The first stage pretends that the table is a valid-time table and
uses the mappings elaborated in Chapter 7 for handling modifications of such tables. In the second
stage, we identify the statements that violate the semantics of transaction time, which basically are all
DELETEs and UPDATEs, and further map these statements into combinations of UPDATEs on the
transaction-stop time and INSERTs. Finally, we must add a predicate for each correlation name in the

 - 253 -

statement that selects the most recent transaction-time version; this can be done by simply checking
that the transaction-stop time is "until changed."

A modification on a bitemporal table

A nontemporal modification is mapped into a modification on a bitemporal table in two stages:

 The first transformation assumes that the table only has valid-time support.
 The second transformation then converts updates and deletions into stylized

INSERT and UPDATE statements. A WHERE predicate is added for each
correlation name selecting the row(s) current in transaction time.

For our first modification, a current insertion, shown in CF-10.4, we didn't need to invoke this second
transformation stage, but most of the other temporal modifications will require both stages.
We now examine the three statements of CF-7.11 on page 186, which effects a current update on a
valid-time state table. The first stage maps the update of CF-10.5 into the following three statements,
which parallel the three statements of CF-7.11.

Listing 10.6: Peter Olsen buys the flat on January 15, 1998, a current update (partial solution,
considering only valid time).

INSERT INTO Prop_Owner

SELECT 827, property_number, CURRENT_DATE, VT_End

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin <= CURRENT_DATE

 AND VT_End > CURRENT_DATE

UPDATE Prop_Owner

SET VT_End = CURRENT_DATE

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENT_DATE

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797

 - 254 -

 AND VT_Begin > CURRENT_DATE

The first statement in this fragment is an insertion, which is fine, as it upholds the semantics of
transaction time. The second statement, which terminates the valid time of the current row at "now," is
an update of a column other than the transaction-stop time. So it must be subsequently mapped (as
we'll show shortly) into two SQL statements, one to logically delete the entire row, by setting the
transaction-stop time to "now," and one to insert the row, with a new valid-time stop time of "now." The
third statement, to update any rows that start in the future with new values, must also be subsequently
mapped into two SQL statements, an UPDATE and an INSERT. So the second and third statements of
CF-10.6 must each be expanded into two statements, yielding a total of five SQL statements expressing
the sequenced version of CF-7.11.
There is a further complication in the interplay of two time dimensions, valid time and transaction time.
When we were concerned only with valid time, we contended with valid-time periods, lengthening and
shortening these periods by altering their beginning and ending instants. Two time dimensions
generalize periods to regions in the time diagram, which are considerably more involved than simple
one-dimensional periods. Quite intricate shapes can result from a series of bitemporal modifications, as
we shall see.

Hairspring

A pendulum must be hung vertically, making it fine for grandfather clocks but impractical for wrist
watches. Huygens also had the insight that a spring has the same characteristics as a pendulum, but
is unaffected by its spatial orientation. His spiral spring has been refined into the hairspring that
regulates the motion of the balance wheel in today's mechanical watches.

In terms of the time diagram, a row with two valid-time instants, VT_Begin and VT_End, and two
transaction-time instants, TT_Start and TT_Stop, encodes a rectangle in bitemporal space. Hence,
the region in Figure 10.2, being a single rectangle, requires but one row to encode—the row inserted in
CF-10.4. The region associated with Eva in Figure 10.3 requires two rectangles; the region associated
with Peter needs but one (see Figure 10.4). Due to the semantics of transaction time, regions are often
split with vertical lines in time diagrams. The implication is that in this case two new rows will have to be
inserted, and the existing row modified, to effect this temporal modification. (This is the visual analog of
the requirement, stated earlier, that an UPDATE of a table with transaction-time support must be
mapped into an UPDATE only of the transaction-stop time to "now," and an INSERT with a transaction-
start time of "now.")

Returning to the three statements needed to realize a current deletion of a valid-time table, we note that
the third statement, to update any rows that start in the future, is not strictly required here, as there are
no rows concerning this flat that start in the future. However, for generality, because your application
may indeed

 - 255 -

Figure 10.4: Splitting a polygonal region into rectangles.

Figure 10.5: A current update of a future row.

have (valid-time) future rows, we include this statement in our discussion here. Say there was a future
row, valid from 20 to 25, with a transaction-stop time of "until changed" (see Figure 10.5). Here the flat
was owned during these five days (from January 20 to January 24; recall that we're using an open-
ended period) by someone else. A current update, "Peter Olsen buys the flat," has a valid-time extent of
"now" to "forever"; this extent includes all of January. So we must logically delete the old row and insert
a new row, indicating associating that valid time with Peter. The third statement thus maps into two SQL
statements, an INSERT and an UPDATE.
In summary, the first stage maps CF-10.5 to CF-10.6, resulting in three SQL statements. The second
stage retains the INSERT statement, but maps each of the two UPDATE statements into an INSERT-
UPDATE pair. Five SQL statements result, shown as CF-10.7 you should verify that these statements
do not violate the transaction-time semantics: all INSERTs have transaction-time extent of "now" to
"until changed," and all UPDATEs change only the transaction-stop time from "until changed" to "now,"
with no other kinds of modifications allowed.

Listing 10.7: Peter Olsen buys the flat on January 15,1998, a current update.

 - 256 -

INSERT INTO Prop_Owner

SELECT 827, property_number, CURRENT_DATE, VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin <= CURRENT_DATE

 AND VT_End > CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End < CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT 827, property_number, VT_Begin, VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 - 257 -

 AND VT_Begin < CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

The first UPDATE must occur after the first two INSERTs; the last UPDATE must occur after the last
INSERT. The resulting Prop_Owner table (shown in Table 10.1) contains three rows, corresponding to
the three rectangles in Figure 10.4. A careful matching of the dates in this table to the time diagram will
aid in understanding how a bitemporal state table encodes the regions found in the time diagram.

Table 10.1: Result of the current insertion.
customer_number Property_number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-

10
9999-
12-31

1998-01-
10

1998-
01-15

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

9999-
12-31

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

9999-
12-31

Deletions
We perform a current deletion on January 20 against Table 10.1. Specifically, we find out that Peter has
sold the property to someone else, with the mortgage handled by another mortgage company. From
Nykredit's point of view, the property no longer exists as of (a valid time of) January 20.

Code Fragment 10.8: Peter Olsen sells the flat on January 20,1998.

DELETE FROM Prop_Owner

WHERE property_number = 7797

Figure 10.6 shows the resulting time diagram. If we now request the valid-time history as best known,
we will learn that Eva owned the flat from January 10 to January 15, and Peter owned the flat from
January 15 to January 20. Note that all prior states are retained. We can still time-travel back to January
18 and request

 - 258 -

Figure 10.6: A current deletion: Peter sells the flat, performed on January 20.

Figure 10.7: A current deletion: splitting into rectangles.

the valid-time history, which will state that on that day we thought that Peter still owned the flat. In
Figure 10.3, Peter's region was a rectangle. The current deletion has chopped off the top-right coner, so
that the region is now L-shaped.
The row associated with Peter in Figure 10.3 denotes a single rectangle. That rectangle must be
converted into the two rectangles shown in Figure 10.7. We do so by terminating the existing row (by
setting its transaction-stop time to "now") and by inserting the portion still present, with a valid-end time
of "now."
As before, we proceed in two stages. The first stage pretends that the table is a valid-time state table,
mapping the temporal modification to SQL. As in CF-7.8 on page 184, two statements are required.

Code Fragment 10.9: Peter Olsen sells the flat on January 20, 1998, a current deletion (partial
version, considering only valid time).

UPDATE Prop_Owner

 - 259 -

SET VT_End = CURRENT_DATE

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENT_DATE

DELETE FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin >= CURRENT_DATE

Tip

Deletions
on
bitempor
al tables
follow
these
same
stages:
first
consider
valid
time,
then
transacti
on time.

In the first statement, applied to rows that started in the past and end in the future, the valid-time end
date is set to "now." The second deletes those rows that start now or in the future.

The second stage further maps those statements that violate the transaction time semantics into
particular forms of UP-DATEs and INSERTS. The first statement (an UPDATE) is mapped into two, an
INSERT and an UPDATE; the second (a DELETE) is mapped into an UPDATE. We also add a
predicate for each correlation name that checks for the current transaction-time version. Again, you
should be convinced that these statements do not violate the semantics of transaction time.

Code Fragment 10.10: Peter Olsen sells the flat on January 20,1998, a current deletion.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

 - 260 -

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin >= CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

We can simplify this by combining the two UPDATES into one.
Code Fragment 10.11: Peter Olsen sells the flat on January 20,1998, a current deletion, simplified
version.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < CURRENT_DATE

 AND VT_End > CURRENTS-DATE

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 - 261 -

 AND VT_End > CURRENT_DATE

 AND TT_Stop = DATE '9999-12-31'

Table 10.2: Result of the current deletion.
customer_numb
er

property_
number VT_Begin

VT_E
nd

TT_Sta
rt

TT_St
op

145 7797 1998-01-10 9999-
12-31

1998-
01-10

1998-
01-15

145 7797 1998-01-10 1998-
01-15

1998-
01-15

9999-
12-31

827 7797 1998-01-15 9999-
12-31

1998-
01-15

1998-
01-20

827 7797 1998-01-15 1998-
01-20

1998-
01-20

9999-
12-31

The UPDATE handles both current and future rows. The resulting table (Table 10.2) contains four rows.
The third row was terminated at "now," with the fourth row newly inserted. The modified rows and
columns are highlighted with an italic font.

In current modifications, valid time and transaction time are coupled: the valid time at which the
modification takes effect is "now." Similarly, the transaction time at which the modification is recorded is
"now." Sequenced modifications decouple the valid time from the transaction time, allowing the former
to be supplied by the user.

10.2.2 Sequenced Modifications
As we saw in Chapter 7, sequenced modifications generalize current modifications to apply over a
specified period of applicability. For bitemporal tables, the modification is sequenced only on valid time;
the modification is always a current modification on transaction time, from "now" to "until changed."

As before, we apply a two-stage transformation, first considering only the validtime component of the
bitemporal table, then further transforming the SQL statements so that they do not violate the semantics
of transaction time. The result will be a series of stylized UPDATE and INSERT statements.

 - 262 -

Figure 10.8: A sequenced insertion performed on January 23: Eva actually purchased the flat on January 3.

Insertions
Continuing with the Prop_Owner table as depicted in Figure 10.6, we consider a sequenced insertion.
On January 23, we find out that Eva had purchased the flat not on January 10, but on January 3, a
week earlier. So we insert those additional days, to obtain the time diagram shown in Figure 10.8.
This insertion is termed a retroactive modification, as the period of applicability (here, January 3 through
10) is before the modification date (here, January 23). Sequenced (and nonsequenced) modifications
can also be postactive, an example being a promotion that will occur in the future (in valid time). (A
valid-end time of "forever" is generally not considered a postactive modification; only the validstart time
is considered.) A sequenced modification might even be simultaneously retroactive, postactive, and
current, when its period of applicability starts in the past and extends into the future (e.g., a fixed-term
assignment that started in the past and ends at a designated date in the future).
There are two ways to effect the insertion illustrated in Figure 10.8. The easiest is to use a single SQL
INSERT statement.

Code Fragment 10.12: Eva actually purchased the flat on January 3, performed on January 23.

INSERT INTO Prop_Owner (customer_number, property_number, VT_Begin,

 VT_End. TT_Start, TT_Stop)

VALUES (145, 7797, DATE '1998-01-03',

 DATE '1998-01-10', CURRENT_TIMESTAMP, DATE '9999-12-31')

 - 263 -

Figure 10.9: One splitting into rectangles.
Table 10.3: Result of the sequenced insertion.
customer_numb
er

property_n
umber VT_Begin

VT_E
nd

TT_Sta
rt

TT_St
op

145 7797 1998-01-
10

9999-
12-31

1998-
01-10

1998-
01-15

145 7797 1998-01-
10

1998-
01-15

1998-
01-15

9999-
12-31

827 7797 1998-01-
15

9999-
12-31

1998-
01-15

1998-
01-20

827 7797 1998-01-
15

1998-
01-20

1998-
01-20

9999-
12-31

145 7797 1998-01-
03

1998-
01-10

1998-
01-23

9999-
12-31

Tip One approach to a sequenced insertion is to simply insert the new period of validity,
without regard to how it interacts with the period of validity of the existing rows.

The period of applicability for the insertion appears as the values of the VT_Begin and VT_End
columns. The region associated with Eva's ownership consists of the three rectangles shown in Figure
10.9, and the first, second, and fifth rows in Table 10.3.
A second approach is to always split with vertical lines, as shown in Figure 10.10. This is termed
transaction-time splitting because the regions are split into bands of transaction time. (The first
approach is then termed valid-time splitting.) In transaction-time splitting, we terminate the current row
and insert a new row, with a new period of validity being the union of the original period of

 - 264 -

Figure 10.10: An alternate splitting into rectangles.

Figure 10.11: Sequenced insertion cases.

validity and the period of applicability, that is, from time 5 to time 15. For this new period, there are four
cases, shown in Figure 10.11. In all four cases, the original period of validity (PV) overlaps the period of
applicability of the insertion (PA). In Case 1, PV starts before PA, with the new period of validity starting
from the start of PVC to the end of PA. This case applies to the Eva row in this example. In Case 2, the
PV starts after PA. In Case 3, the PV is contained in PA, and the new PV is PA. In Case 4, the PA is
contained in PV, and the PV need not be changed.

In the following SQL code, we use a CASE statement to compute the new period of validity. Rows are
affected if their PV overlaps the PA but does not contain the PA. Such rows are logically deleted by
setting the transaction-stop time to "now," then inserted with the new PV. If there are no rows whose PV
overlaps the PA, the insertion is performed as before.

Code Fragment 10.13: Eva actually purchased the flat on January 3, with transactiontime splitting.

-- Do normal insert if there are no overlapping rows that
-- do not contain the period of applicability
INSERT INTO Prop_Owner
SELECT 145, 7797, DATE '1998-01-03', DATE '1998-01-10',
 CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM DUAL
WHERE NOT EXISTS (SELECT *
 FROM Prop_Owner
 WHERE customer_number = 145
 AND property_number = 7797

 - 265 -

 AND DATE '1998-01-03' < VT_End
 AND VT_Begin < DATE '1998-01-10'
 AND NOT (VT_Begin < DATE '1998-01-03'
 AND DATE '1998-01-10' < VT_End)
 AND TT_Stop = DATE '9999-12-31')
-- If there is an overlap, extend it, unless PA is contained in PV
INSERT INTO Prop_Owner
SELECT customer_number, property_number,
 CASE WHEN DATE '1998-01-03 < VT_Begin
 THEN DATE '1998-01-03'
 ELSE VT_Begin END,
 CASE WHEN DATE '1998-01-10 < VT_End
 THEN VT_End
 ELSE DATE '1998-01-10' END,
 CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_Owner
WHERE customer_number = 145
 AND property_number = 7797
 AND DATE '1998-01-03' < VT_End
 AND VT_Begin < DATE '1998-01-10'
 AND NOT (VT_Begin < DATE '1998-01-03'

 AND DATE '1998-01-10' < VT_End)
 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner
SET TT_Stop = CURRENT_TIMESTAMP
WHERE customer_number = 145
 AND property_number = 7797
 AND DATE '1998-01-03' < VT_End
 AND VT_Begin < DATE '1998-01-10'
 AND NOT (VT_Begin < DATE '1998-01-03'
 AND DATE '1998-01-10' < VT_End)
 AND TT_Stop = DATE '9999-12-31'

Tip A second approach to a sequenced insertion on a bitemporal table computes a new

period of validity.
(Note the use of a DUAL table, as discussed on page 138.) The three statements can be in any order,
as they are disjoint.
This approach minimizes the representation, that is, the number of rows in the Prop_Owner table
(though in this particular example, there is no difference). As shown in Table10.4, this table still has five
rows (cf. Table 10.3), but here the second row was logically deleted. The drawback of this optimized
approach is substantial complexity and execution cost for the temporal insertion.

For the remainder of the modifications, we will not attempt to minimize the representation, but note here
that doing so is always an option to be considered.

Deletions
We learn on January 26 that Eva bought the flat not on January 10, as initially thought, nor on January
3, as later corrected, but on January 5. This requires a sequenced version of the following deletion:

Table 10.4: Result of a second approach to the sequenced insertion.
customer_numb
er

property_
number VT_Begin

VT_E
nd

TT_Sta
rt

TT_St
op

145 7797 1998-01-10 9999-
12-31

1998-
01-10

1998-
01-15

145 7797 1998-01-10 1998-
01-15

1998-
01-15

1998-
01-23

 - 266 -

827 7797 1998-01-15 9999-
12-31

1998-
01-15

1998-
01-20

827 7797 1998-01-15 1998-
01-20

1998-
01-20

9999-
12-31

145 7797 1998-01-03 1998-
01-15

1998-
01-23

9999-
12-31

Figure 10.12: A sequenced deletion performed on January 26: Eva actually purchased the flat on January 5.
Code Fragment 10.14: Eva actually purchased the flat on January 5 (nontemporal version).

DELETE FROM Prop_Owner

WHERE property_number = 7977

We specify a period of applicability of January 3 through 5, with the result shown in the time diagram in
Figure 10.12.
We need to terminate the current row and insert a new row, with a smaller period of validity. As in the
valid-time sequenced deletion of CF-7.16 on page 191, there are four cases, depicted in Figure 7.2. The
valid-time sequenced deletion was transformed into four SQL statements.

Valid-time sequenced deletion

Insert the old values from the end of the period of applicability to the end of the period of validity of the
original row.

Update the end date to end at the beginning of the period of applicability.

Update the start date to begin at the end of the period of applicability.

 - 267 -

Delete entirely rows that are covered by the period of applicability.

Tip

Sequenced
deletions
on valid-
time tables
require
some four
SQL
statements
; when
mapped to
bitemporal
tables, a
total of six
statements
are
required.

When transaction time is considered (recall that all modifications are current in transaction time),
updates turn into a combination of terminating the row with a transaction-stop time of "now" and
inserting a row with a transaction-start time of "now" and with the new valid-time date. This concerns
both the second and the third statements. Logically deleting a row turns into an UPDATE, when
transaction time is considered.
In summary, we took CF-7.16, applied it to the Prop_Owner table, being careful to utilize a period of
applicability of [1998-01-02 - 1998-01-05), then applied the second stage of the transformation,
to obtain six SQL statements, all consistent with transaction-time semantics. We admit that in this
particular situation, the first two statements suffice to effect the deletion. However, our previous
explanation and provided code cover all situations.

Code Fragment 10.15: Eva actually purchased the flat on January 5.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE '1998-01-05', VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < DATE '1998-01-02'

 AND VT_End > DATE '1998-01-05'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE '1998-01-02',

 CURRENT_TIMESTAMP, DATE '9999-12-31'

 - 268 -

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < DATE '1998-01-02'

 AND VT_End > DATE '1998-01-02'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin < DATE '1998-01-02'

 AND VT_End > DATE '1998-01-02'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE '1998-01-05', VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin < DATE '1998-01-05'

 AND VT_End >= DATE '1998-01-05'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin < DATE '1998-01-05'

 AND VT_End >= DATE '1998-01-05'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

 - 269 -

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

 AND VT_Begin >= DATE '1998-01-02'

 AND VT_End <= DATE '1998-01-05'

 AND TT_Stop = DATE '9999-12-31'

Table 10.5: Result of the sequenced deletion.
customer_number property_number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-

10
9999-
12-31

1998-01-
10

1998-
01-15

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

9999-
12-31

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

1998-
01-20

827 7797 1998-01-
15

1998-
01-20

1998-01-
20

9999-
12-31

145 7797 1998-01-
03

1998-
01-10

1998-01-
23

1998-
01-26

145 7797 1998-01-
05

1998-
01-10

1998-01-
26

9999-
12-31

Starting from Table 10.3, the sequenced deletion of CF-10.15 results in Table 10.5.

Updates
We learn on January 28 that Peter bought the flat on January 12, not January 15 as previously thought.
This requires a sequenced version of the following update.

Figure 10.13: A sequenced update performed on January 28: Peter actually purchased the flat on January
12.

 - 270 -

Code Fragment 10.16: Peter actually purchased the flat on January 12 (nontemporal version).

UPDATE Prop_Owner

SET customer_number = 145

WHERE property_number = 7797

 AND customer_number <> 145

Table 10.6: Result of the sequenced update.
customer_number property_number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-

10
9999-
12-31

1998-01-
10

1998-
01-15

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

1998-
01-28

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

1998-
01-20

827 7797 1998-01-
15

1998-
01-20

1998-01-
20

1998-
01-28

145 7797 1998-01-
03

1998-
01-10

1998-01-
23

1998-
01-26

145 7797 1998-01-
05

1998-
01-10

1998-01-
26

1998-
01-28

145 7797 1998-01-
05

1998-
01-12

1998-01-
28

9999-
12-31

827 7797 1998-01-
12

1998-
01-20

1998-01-
28

9999-
12-31

This update requires a period of applicability of January 12 through 15, setting the customer_number
to 145, which results in the time diagram in Figure 10.13. Effectively, the ownership must be transferred
from Eva to Peter for those three days, resulting in Table 10.6.
The two-stage transformation, first valid time and then transaction time, applies here as well. We modify
CF-7.18 on page 194 to apply to Prop_Owner and to utilize a period of applicability of [1998-01-12
- 1998-01-15), then contend with transaction time in the second stage. INSERTs remain; UPDATEs
are mapped to a pair of INSERT and UPDATE.

Code Fragment 10.17: Peter actually purchased the flat on January 12.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE '1998-01-12',

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-12'

 - 271 -

 AND VT_End > DATE '1998-01-12'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE '1998-01-15', VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-15'

 AND VT_End > DATE '1998-01-15'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT 145, property_number, VT_Begin, VT_End,

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-15'

 AND VT_End > DATE '1998-01-12'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998'01-15'

 AND VT_End > DATE '1998-01-12'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE '1998-01-12', VT_End,

 - 272 -

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-12'

 AND VT_End > DATE '1998-01-12'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-12'

 AND VT_End > DATE '1998-01-12'

 AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE '1998-01-15',

 CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-15'

 AND VT_End > DATE '1998-01-15'

 AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

 AND VT_Begin < DATE '1998-01-15'

 AND VT_End > DATE '1998-01-15'

 AND TT_Stop = DATE '9999-12-31'

 - 273 -

Tip

Sequenced
updates
require
applying
the same
two-stage
transformat
ion
process,
resulting in
some eight
SQL
statements
to
implement
a single
sequenced
update.

While this series of statements is quite intimidating, the two stages employed—that of mapping from the
initial sequenced update to the first set of five statements, taking the valid-time component into
consideration, as discussed in Chapter 7, then mapping into the eight statements shown here, taking
the transaction-time component into consideration—are largely mechanical and more tedious than
conceptually challenging.

10.2.3 Nonsequenced Modifications
We saw before that no mapping was required for nonsequenced modifications on valid-time state
tables; such statements treat the (valid) timestamps identically to the other columns. When considering
the transaction timestamps, we just perform the second-stage mapping discussed above.

Figure 10.14: A nonsequenced deletion performed on January 30: Delete all records of exactly one-week
duration.

Tip Nonsequenced modifications are initially complex to write, but in require no
subsequent transformations.

As an example, consider the modification "Delete all records with a valid-time duration of exactly one
week." This modification is clearly (valid-time) nonsequenced: (1) it depends heavily on the
representation, looking for rows with a particular kind of valid timestamp, (2) it does not apply on a per
instant basis, and (3) it mentions "records," that is, the recorded information, rather than "reality." The
result of this deletion, evaluated on the 30th, is shown in Figure 10.14.

DELETEs are mapped in the second stage into an UPDATE on the transaction-stop time, so one
statement suffices for nonsequenced deletions on bitemporal tables.

Code Fragment 10.18: Delete all records with a valid-time duration of exactly one week.

 - 274 -

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE (VT_End - VT_Begin DAY) = INTERVAL '7' DAY

 AND TT_Stop = DATE '9999-12-31'

The result is Table 10.7.

Now that we have a populated bitemporal table, we can discuss bitemporal queries.
Table 10.7: After a nonsequenced deletion.

customer_number property_number VT_Begin VT_End TT_Start TT_Stop

145 7797 1998-01-
10

9999-
12-31

1998-01-
10

1998-01-
15

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

1998-01-
28

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

1998-01-
20

827 7797 1998-01-
15

1998-
01-20

1998-01-
20

1998-01-
28

145 7797 1998-01-
03

1998-
01-10

1998-01-
23

1998-01-
26

145 7797 1998-01-
05

1998-
01-10

1998-01-
26

1998-01-
28

145 7797 1998-01-
05

1998-
01-12

1998-01-
28

1998-01-
30

827 7797 1998-01-
12

1998-
01-20

1998-01-
28

9999-12-
31

10.3 QUERIES
We first consider a restricted class of queries, time-slice queries, then move on to the full spectrum of
possible bitemporal queries.

10.3.1 Time-Slice Queries
A common query or view over the valid-time state table of Chapter 6 was to capture the state of the
enterprise at some point in the past (or future). This query was termed a valid-time time-slice. For the
tracking log of Chapter 8, we sought to reconstruct the state of the monitored table as of a date in the
past; that query was termed a transaction time-slice. As a bitemporal table captures valid and
transaction time, both time-slice variants are appropriate on such tables.

Tip A transaction time-slice query corresponds to a vertical slice in the time diagram.

Time-slices are useful also in understanding the information content of a bitemporal table. A transaction
time-slice of a bitemporal table takes as input a transaction-time instant and results in a valid-time state
table that was present in the database at that specified time.

Code Fragment 10.19: Give the history of owners of the flat at Skovvej 30 in Aalborg as of January 1,
1998.

SELECT customer_number, VT_Begin, VT_End

 - 275 -

FROM Prop_Owner

WHERE property_number = 7797

 AND TT_Start <= DATE '1998-01-01'

 AND DATE '1998-01-01' < TT_Stop

Applying this time-slice to Table 10.7, whose time diagram appears in Figure 10.14, results in an empty
table, as no history was yet known about that property.

Taking a transaction time-slice as of January 14 results in a history with one entry:
customer_number VT_Begin VT_End
145 1998-01-

10
9999-
12-31

On January 14, we thought that Eva was the current owner of that property. We now know that Peter
purchased the property on January 12, and that Eva never owned the property at all on January 14, but
that is 20–20 hindsight. The information we had on January 14 indicated that Eva bought the property
on the 10th, and still owns it.

The time-slice as of January 18 tells a different story:
customer_number VT_Begin VT_End
145 1998-01-

10
1998-
01-15

827 1998-01-
15

9999-
12-31

On January 18 we thought that Eva had purchased the flat on January 10 and sold it to Peter, who now
owns it. A transaction time-slice can be visualized on the time diagram as a vertical line situated at the
specified date. This line gives the valid-time history of the enterprise that was stored in the table on that
date. Figure 10.15 illustrates this transaction time-slice.

Continuing, we take a transaction time-slice as of January 29:
customer_number VT_Begin VT_End
145 1998-01-

05
1998-
01-12

827 1998-01-
12

1998-
01-20

On January 29, we thought that Eva had purchased the flat on January 5 and sold it to Peter on January
12, who sold the property to someone else on January 20.

Finally, taking the current transaction time-slice,
Code Fragment 10.20: Give the history of owners of the flat at Skovvej 30 in Aalborg as best known.

SELECT customer_number, VT_Begin, VT_End

FROM Prop_Owner

WHERE property_number = 7797

 AND TT_Stop = DATE '9999-12-31'

 - 276 -

yields the following result:
customer_number VT_Begin VT_End
827 1998-01-

12
1998-
01-20

Only Peter ever had ownership of the property, since all records with a valid-time duration of exactly one
week were deleted. Peter's ownership was for all of eight days, January 12 to January 20.

Tip A valid time-slice query corresponds to a horizontal slice in the time diagram,
resulting in a transaction-time state table.

We can also cut the pie (or, more accurately, the time diagram) horizontally. A valid time-slice of a
bitemporal table takes as input a valid-time instant and results in a transaction-time state table capturing
when information concerning that specified valid time was recorded in the database. A valid time-slice is
expressed in SQL similarly to the transaction time-slice.

Code Fragment 10.21: When was information about the owners of the flat at Skovvej 30 in Aalborg on
January 4, 1998, recorded in the Prop-Owner table?

SELECT customer_number, TT_Start, TT_Stop

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin <= DATE '1998-01-04'

 AND DATE '1998-01-04' < VT_End

Figure 10.15: A transaction time-slice as of January 18.

 - 277 -

Figure 10.16: A valid time-slice on January 13.
Table 10.8: The valid time-slice on January 13.

customer_number TT_Start TT_Stop

145 1998-01-
10

1998-01-
15

145 1998-01-
15

1998-01-
28

827 1998-01-
28

9999-12-
31

Applying this time-slice to Table 10.7, whose time diagram appears in Figure 10.14, results in one row,
customer_number TT_Start TT_Stop
145 1998-01-

23
1998-
01-26

indicating that this information—that the property was owned by Eva on January 4—was inserted into
the table on January 26 and subsequently deleted, as it was found to be incorrect, on January 26.
The valid time-slice on January 13 is more interesting. Such a time-slice can be visualized as the
horizontal line shown in Figure 10.16. This time-slice results in Table 10.8.
While the horizontal line in Figure 10.16 intersects two regions, three rows result from the time-slice.
This has to do with the way that the regions in the time diagram are sliced up into rectangles, each
associated with a row in the Prop-Owner table.

 - 278 -

Figure 10.17: The underlying rectangles encoding the bitemporal regions.

Tip A bitemporal time-slice query extracts a single point from a time diagram, resulting
in a snapshot table.

Examine the rectangles in the time diagram in Figure 10.17, which indicates the rectangle associated
with each of the eight rows of Table 10.7. This figure makes it clear why the time-slice on January 13
returned three rows: rows 1, 2, and 8.
A bitemporal time-slice takes as input two instants, a valid-time and a transaction-time instant, and
results in a snapshot state of the information regarding the enterprise at that valid time, as recorded in
the database at that transaction time. This query, CF-10.22, is illustrated in Figure 10.18. The result is
the facts located at the intersection of the two lines, in this case, Eva.
customer_number
145

Code Fragment 10.22: Give the owner of the flat at Skovvej 30 in Aalborg on January 13 as stored in
the Prop_Owner table on January 18.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin <= DATE '1998-01-13'

 AND DATE '1998-01-13' < VT_End

 AND TT_Start <= DATE '1998-01-18'

 AND DATE '1998-01-18' < TT_Stop

 - 279 -

Figure 10.18: A bitemporal time-slice on a valid time of January 13 and as of a transaction time of January
18.

The current bitemporal time-slice uses "now" for both input instants.
Code Fragment 10.23: Give the owner of the flat at Skovvej 30 in Aalborg today as best known.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

 AND VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < VT_End

 AND TT_Stop = DATE '9999-12-31'

10.3.2 The Spectrum of Bitemporal Queries
Chapter 6 discussed the three major kinds of queries on valid-time state tables: current ("valid now"),
sequenced ("history of"), and nonsequenced ("at some time"). Chapter 8 showed that there were three
analogous kinds of queries on transactiontime state tables: current ("as best known"), sequenced
("when was it recorded"), and nonsequenced (e.g., "when was … erroneously changed"). As a
bitemporal table includes both valid-time and transaction-time support, and as these two types of time
are orthogonal, it turns out that all nine combinations are possible on such tables.

 - 280 -

Figure 10.19: A sequenced insertion, performed on January 31, 1998: Peter bought another flat on January
15.

To illustrate, we will take a nontemporal query and provide all the variations of that query. Before doing
that, we add one more row to the Prop_Owner table.

Code Fragment 10.24: Peter Olsen bought another flat, at Bygaden 4 in Aalborg on January 15, 1998;
this was recorded on January 31, 1998.

INSERT INTO Prop_Owner (customer_number, property_number,

 VT_Begin, VT_End, TT_Start, TT_Stop)

VALUES (827, 3621, DATE '1998-01-15', DATE '9999-12-31',

 CURRENT_TIMESTAMP, DATE '9999-12-31')

Overlaying this information on the time diagram, shown in Figure 10.19, we see that for five days Peter
owned two properties, at Bygaden and Skovvej; he sold the Skovvej property on January 20, but retains
the Bygaden property.
We start with a nontemporal query, a simple equijoin, pretending that the Prop-Owner table is a
snapshot table.

Code Fragment 10.25: What properties are owned by the customer who owns property 7797?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

Table 10.9: The bitemporal state illustrated in Figure 10.19.
customer_numb property_ VT_Begin VT_E TT_Sta TT_St

 - 281 -

er number nd rt op
145 7797 1998-01-10 9999-

12-31
1998-
01-10

1998-
01-15

145 7797 1998-01-10 1998-
01-15

1998-
01-15

1998-
01-28

827 7797 1998-01-15 9999-
12-31

1998-
01-15

1998-
01-20

827 7797 1998-01-15 1998-
01-20

1998-
01-20

1998-
01-28

145 7797 1998-01-03 1998-
01-10

1998-
01-23

1998-
01-26

145 7797 1998-01-05 1998-
01-10

1998-
01-26

1998-
01-28

145 7797 1998-01-05 1998-
01-12

1998-
01-28

1998-
01-30

827 7797 1998-01-12 1998-
01-20

1998-
01-28

9999-
12-31

827 3621 1998-01-15 9999-
12-31

1998-
01-31

9999-
12-31

We now enumerate the nine kinds of bitemporal queries that are analogous to this nontemporal query,
applying each on the state illustrated in Figure 10.19 and given in tabular form in Table 10.9.

Case 1: Valid-time current and transaction-time current
Code Fragment 10.26: What properties are owned by the customer who owns property 7797, as best
known ?

SELECT P2.property_number

FROM Prop_Owner AS PI, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P1.VT_End

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P2.VT_End

 AND P2.TT_Stop = DATE '9999-12-31'

 - 282 -

Current in valid time is implemented by requiring that the period of validity overlap "now"; current in
transaction time is implemented by requiring a transaction stop time of "until changed." The result, a
snapshot table, is in this case the empty table because now, as best known, no one owns property
7797. (Peter owned it for some nine days in January, but doesn't own it now.)

Case 2: Valid-time sequenced and transaction-time current
Code Fragment 10.27: What properties are or were owned by the customer who owned at the same
time property 7797, as best known?

SELECT P2.property_number,

 CASE WHEN DATE P1.VT_Begin <P2.VT_Begin

 THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

 CASE WHEN DATE P1.VT_End < P2.VT_End

 THEN P1.VT_End ELSE P2.VT_End END AS VT_End,

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'

Sequenced in valid time is implemented by selecting the overlap of the periods of validity, when the
underlying rows were both valid (compare with CF-6.12 on page 152). The result, a valid-time state
table, is the following:

property_number VT_Begin VT_End
3621 1998-01- 1998-

 - 283 -

15 01-20

For those five days in January, Peter owned both properties.

Case 3: Valid-time nonsequenced and transaction-time current
Code Fragment 10.28: What properties were owned by the customer who owned at any time property
7797, as best known?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'

Nonsequenced in valid time is implemented by ignoring the valid timestamps. The result, a snapshot
table, is the following:

property_number
3621

Peter owned both properties. While in this case there was a time when Peter owned both properties
simultaneously, the query does not require that. Even if Peter had bought the second property on a
valid time of January 31, that property would still be returned by this query.

 - 284 -

Case 4: Valid-time current and transaction-time sequenced
Code Fragment 10.29: What properties did we think are owned by the customer who owns property
7797?

SELECT P2 .property_number,

 CASE WHEN DATE P1.TT_Start < P2.TT_Start

 THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

 CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

 THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P1.VT_End

 AND P2.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P2.VT_End

 AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

Sequenced in transaction time is implemented identically to sequenced in valid time: by selecting the
overlap of the periods of presence, when the underlying rows were both present. As emphasized on
page 260, the result of a transaction-time sequenced query is not a transaction-time state table. While
the result does indicate what was recorded in the Prop_Owner table, it itself was not in existence until
the query was performed. We thus use Recorded_Start and Recorded_Stop column names to
highlight this distinction. The result, a snapshot table with two additional timestamp columns, is the
empty table because there was no time in which we thought that Peter currently owns both properties.

 - 285 -

Case 5: Valid-time sequenced and transaction-time sequenced
Code Fragment 10.30: When did we think that some property, at some time, was owned by the
customer who owned at the same time property 7797?

SELECT P2.property_number,

 CASE WHEN DATE P1.VT_Begin < P2.VT_Begin

 THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

 CASE WHEN DATE P1.VT_End < P2.VT_End

 THEN P1.VT_End ELSE P2.VT_End END AS VT_End,

Figure 10.20: A query sequenced in both valid time and transaction time, computing the intersection of two
rectangles.

CASE WHEN DATE P1.TT_Start < P2.TT_Start

 THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

 CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

 THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

 - 286 -

 AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

Here we have sequenced in both valid time and transaction time. This is the most involved of all the
queries, but the parallel between valid time and transaction time should be apparent in the above
query. We must compute the overlap of the underlying rectangles, with the result being a valid-time
state table with additional Recorded timestamp columns. Figure 10.20 shows the two rectangles that
are involved (the last row of Table 10.7 and the row inserted by CF-10.24, and the overlap that is
computed. One row results:

property_number VT_Begin VT_End Recorded_Start
3621 1998-01-

15
1998-
01-20

1998-01-31

For those five days in January, Peter owned both properties. That information was recorded on
January 31 and is still thought to be true (a transaction-stop time of "until changed").

Case 6: Valid-time nonsequenced and transaction-time sequenced
Code Fragment 10.31: When did we think that some property, at some time, was owned by the
customer who owned at any time property 7797?

SELECT P2.property_number,

 CASE WHEN DATE P1.TT_Start < P2.TT_Start

 THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

 CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

 THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

As before, nonsequenced in valid time is implemented by ignoring the valid timestamps. The result, a
snapshot table with additional timestamp columns, is the following:

 - 287 -

property_number Recorded_Start Recorded_Stop
3621 1998-01-31 9999-12-31

From January 31 on, we thought that Peter had owned those two properties, perhaps not
simultaneously.

Case 7: Valid-time current and transaction-time nonsequenced
Code Fragment 10.32: When was it recorded that a property is owned by the customer who owns
property 7797?

SELECT P2.property_number, P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P1.VT_End

 AND P2.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P2.VT_End

 AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop

Nonsequenced in transaction time is implemented by not testing for full overlap in transaction time
(sequenced) and by not testing the transaction-stop time for "until changed" (current). The result, a
snapshot table, is empty because we never thought that Peter currently owns two properties.

 - 288 -

Case 8: Valid-time sequenced and transaction-time nonsequenced
Code Fragment 10.33: When was it recorded that a property is or was owned by the customer who
owned at the same time property 7797?

SELECT P2.property_number,

 CASE WHEN DATE P1.VT_Begin < P2.VT_Begin

 THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

 CASE WHEN DATE P1.VT_End < P2.VT_End

 THEN P1.VT_End ELSE P2.VT_End END AS VT_End,

 P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

 AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop

This query is similar to valid-time sequenced/transaction-time current (CF-10.27), with a different
predicate for transaction time. The result, a valid-time state table with an additional timestamp column,
is the following:

property_number VT_Begin VT_End Recorded_Start
3621 1998-01-

15
1998-
01-20

1998-01-31

For those five days in January, Peter owned both properties; this information was recorded on January
31.

Case 9: Valid-time nonsequenced and transaction-time nonsequenced

 - 289 -

Code Fragment 10.34: When was it recorded that a property was owned by the customer who owned
at some time property 7797?

SELECT P2.property_number, P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop

Note how short the FROM list and WHERE clause are. The result, a snapshot table with an additional
timestamp column, is the following:

property_number Recorded_Star
t

3621 1998-01-31

The two main points of this exercise are that all combinations do make sense, and all can be composed
by considering valid time and transaction time separately.

 For current queries, just add a predicate to the WHERE clause restricting overlap
with "now"; for transaction time, this is easiest done by requiring the transaction-stop
time to be "until changed."

 For sequenced queries, the target list computes a new timestamp by taking the
overlap of the two underlying timestamps (for the temporal join considered here); the
WHERE clause must ensure that the overlap exists. Other kinds of sequenced
queries require different approaches, as discussed in Section 6.3.

 For nonsequenced queries, nothing in the WHERE clause is needed. Depending on
the query, the target list may or may not need to include one or both of the
timestamps.

Tip All combinations of current, sequenced, and nonsequenced over valid time and
transaction time are possible and sensible.

Current in valid time translates in English to "at now"; sequenced translates to "at the same time"; and
nonsequenced translates to "at any time." Current in transaction time translates to "as best known";
sequenced translates to "when did we think"; and nonsequenced translates to "when was it recorded" or
"when was it corrected."

Tip Current/current queries are common and can be easily stated in SQL via currency
predicates.

Of these nine types of queries, a few are more prevalent. The most common is the current/current
queries, "now, as best known." These queries correspond to queries on the nontemporal version of the
table. (The following queries also utilize the Customer and Property tables, corresponding to the

 - 290 -

customer and property entities of the entity-relationship diagram in Figure 10.1; we assume that these
two tables are also bitemporal.)

Code Fragment 10.35: What is the estimated value of the property at Bygaden 4?

SELECT estimated_value FROM Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.VT_Begin <= CURRENT_DATE AND CURRENT_DATE < P.VT_End

 AND P.TT_Stop = DATE '9999-12-31'

Minutes, Seconds, and Jiffies
We've seen (page 22) that the night was partioned into 12 hours corresponding to the 12 signs of the
zodiac, and then the day was similarly ascribed to 12 hours, and hence an hour was eventually
defined as 1/24 of a day. But why are there 60 minutes in an hour and 60 seconds in a minute?
King Alfonso X (the Wise) of Castille in the 13th century gathered together Arabic, Jewish, and
Christian scholars to publish scientific works, including the Alphonsine Tables, which were arguably
the most important astonomical charts of the late Middle Ages. These tables consistently use the sex-
agesimal division, in which hours (and days, and degrees of arcs) are divided into minutes, seconds,
and "terciae." We can detect the etymology of "minute" from Latin minutus, or small, and "second"
from Latin secundus. A sixtieth of a second should then be properly called a tercia, but instead Unix
programmers have dubbed this unit a "jiffy," based on the fact that in the United States and Canada,
computer clocks in the 1970s were incremented by 60-cycle power; in most other countries there are
50 jiffies to a second, due to their 50-cycle power.

Current/current queries return a snapshot result. The last two lines of the WHERE clause select the
current state in both valid time and transaction time.

Code Fragment 10.36: Who owns the property at Bygaden 4?

SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 AND C.customer_number = PO.customer_number

 AND PO.VT_Begin <=CURRENT_DATE

 AND CURRENT_DATE < PO.VT_End

 AND PO.TT_Stop = DATE '9999-12-31'

 - 291 -

 AND C.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < C.VT_End

 AND C.TT_Stop= DATE '9999-12-31'

 AND P.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P.VT_End

 AND P.TT_Stop = DATE '9999-12-31'

Tip

Sequenced/current
queries allow you
to probe the
history as best
known.

Although this is a three-way join between bitemporal tables, the fact that it is a current/current query
means that only the WHERE clause is affected.

Perhaps the next most common kind of query is a sequenced/current query, "history, as best known."
These queries ignore transaction time and return a valid-time state table. Sequenced/current queries
over one table are simple to specify.

Code Fragment 10.37: How has the estimated value of the property at Bygaden 4 varied over time?

SELECT estimated_value, VT_Begin, VT_End

FROM Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.TT_Stop = DATE '9999-12-31'

Sequenced joins require more work.
Code Fragment 10.38: Who has owned the property at Bygaden 4?

SELECT name, GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin),

 LEAST(PO.VT_End, C.VT_End, P.VT_End)

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 AND C.customer_number = PO.customer_number

 AND GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) <

 - 292 -

 LEAST(PO.VT_End, C.VT_End, P.VT_End)

 AND PO.TT_Stop = DATE '9999-12-31'

 AND C.TT_Stop = DATE '9999-12-31'

 AND P.TT_Stop = DATE '9999-12-31'

Tip

Current/nonsequenced
queries concern
incorrectly stored
information about now.

Here we use Oracle's GREATEST and LEAST functions to compute the intersection of the periods of
validity of the three underlying rows. A (somewhat complex) CASE expression could be substituted for
each.
Transaction time is supported in the Prop_Owner table to track the changes and to correct errors. A
common query searches for the transaction that stored the current information in valid time. This is a
current/nonsequenced query.

Code Fragment 10.39: When was the estimated value for the property at Bygaden 4 stored?

SELECT estimated_value, TT_Start AS Recorded_Start

FROM Property

WHERE address = 'Bygaden 4'

 AND VT_Begin <=CURRENT_DATE AND CURRENT_DATE < VT_End

This query will return a snapshot table giving one or more estimated values, along with the date of the
transaction recording that value.

Sequenced/nonsequenced queries allow you to determine when invalid information about the history
was recorded.

Code Fragment 10.40: Who has owned the property at Bygaden 4, and when was this information
recorded?

SELECT name, GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) AS VT_Begin,

 LEAST(PO.VT_End, C.VT_End, P.VT_End) AS VT_End,

 PO.TT_Start AS PO_Recorded, C.TT_Start AS C_Recorded,

 P.TT_Start AS P_Recorded_Start

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 - 293 -

 AND C.customer_number = PO.customer_number

 AND GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) <

 LEAST(PO.VT_End, C.VT_End, P.VT_End)

 AND GREATEST(PO.TT_Start, C.TT_Start, P.TT_Start) <

 LEAST(PO.TT_Stop, C.TT_Stop, P.TT_Stop)

Tip

Nonsequenced/nonsequenced
queries tease out the
interaction between valid time
and transaction time.

This returns a valid-time state table, with three additional columns stating when that information was
recorded in the underlying tables. Subsequent queries could then isolate the identified problem.

Finally, nonsequenced/nonsequenced queries can probe the interaction between valid time and
transaction time, identifying, for example, retroactive changes (where the change concerned the past)
and postactive changes (where the change concerned the future).

Code Fragment 10.41: List all retroactive changes made to the Prop-Owner table.

SELECT customer_number, property_number, VT_Begin, VT_End,

 TT_Start AS Recorded_Start

FROM Prop_Owner

WHERE VT_Begin < TT_Start

This returns the valid-time state table in Table 10.10, indicating that many of the modifications were
retroactive.

10.4 INTEGRITY CONSTRAINTS

Tip An integrity constraint can be implemented by first writing a SELECT statement,
then embedding it in a CHECK constraint.

There is a strong connection between queries and integrity constraints (here, we are considering
general integrity constraints, not just the particular ones, such as uniqueness and key constraints,
accorded specific language constructs in SQL). An integrity constraint of the form "it must be the case
that…" can be transformed into a query of the form "select those rows such that … is false"; this query
can then be inserted into a check constraint of the form CHECK NOT EXISTS.

Implementing an integrity constraint

State the constraint as a SELECT that returns offending rows.

Create a CHECK constraint that requires that those rows not exist.

 - 294 -

As a (nontemporal) example, consider the integrity constraint "a customer who owns property 7797
shall own no other property." (Admittedly, this is a rather unusual integrity constraint, but it will be clear
momentarily why we use this particular constraint.) We first transform this into a query.

Code Fragment 10.42: Select those customers who own property 7797 and another property.

SELECT P2.customer_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1. property_number

 AND P1.customer_number = P2.customer_number

We then insert this into a NOT EXISTS.
Code Fragment 10.43: A customer who owns property 7797 shall own no other property.

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT P2.customer_number

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number))

Table 10.10: All retroactive changes made to the Prop-Owner table.
customer_number property_number VT_Begin VT_End Recorded_Start
145 7797 1998-01-

10
1998-
01-15

1998-01-15

827 7797 1998-01-
15

1998-
01-20

1998-01-20

145 7797 1998-01-
03

1998-
01-10

1998-01-23

145 7797 1998-01-
05

1998-
01-10

1998-01-26

145 7797 1998-01-
05

1998-
01-12

1998-01-28

 - 295 -

827 7797 1998-01-
12

1998-
01-20

1998-01-28

827 3621 1998-01-
15

9999-
12-31

1998-01-31

What does this have to do with bitemporal tables? Well, just as there are many kinds of bitemporal
queries (nine, to be exact), there are many kinds of bitemporal integrity constraints. We give three to
illustrate the correspondence. The first is a current/current constraint.

Code Fragment 10.44: A customer whoowns property 7797 shall own no other property.

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT P2.property_number

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2. property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin <=CURRENT_DATE

 AND CURRENT_DATE < P1.VT_End

 AND P1.TT_Stop =DATE '9999-12-31'

 AND P2.VT_Begin <= CURRENT_DATE

 AND CURRENT_DATE < P2.VT_End

 AND P2.TT_Stop = DATE '9999-12-31'))

You may have noticed that all but the first and last lines were copied directly from CF-10.26.

The above constraint doesn't accommodate the past. Often we wish the constraint to hold over all valid
time. This can be accomplished with a sequenced/current constraint.

Code Fragment 10.45: A customer who owned property 7797 shall concurrently own no other
property.

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT *

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 - 296 -

 AND P1.customer_number = P2.customer_number

 AND P1.VT_Begin < P2.VT_End

 AND P2.VT_Begin < P1.VT_End

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'))

This is just CF-10.27, with the target list replaced with *, as the NOT EXISTS could care less whether
there is one column or many in the row returned by the subquery.

To check for ownership of another property, at some possibly different time, we use a
nonsequenced/current constraint.

Code Fragment 10.46: A customer who owned property 7797 shall own no other property, even at a
different time.

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT P2.property_number

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.customer_number = P2.customer_number

 AND P1.TT_Stop = DATE '9999-12-31'

 AND P2.TT_Stop = DATE '9999-12-31'))

Tip

There
are
six
varian
ts
corre
spond
ing to
each
nonte
mpor
al
integri
ty
constr
aint.

This is just CF-10.28, placed in a NOT EXISTS.

Integrity constraints are generally applied after modification statements, or at the end of transactions
containing modification statements. As such, current in transaction time, as in the above constraints, is

 - 297 -

appropriate. The rows modified by the transaction will all have a transaction-stop time of "until
changed." There are nine variants corresponding to each nontemporal integrity constraint, paralleling
the situation with queries. However, transaction-time sequenced integrity constraints should be
specified as current in transaction time, reducing the number of usable bitemporal integrity constraints
to six: current/current, sequenced/current, nonsequenced/current, current/nonsequenced,
sequenced/nonsequenced, and nonsequenced/nonsequenced.
We now turn to a particularly important constraint, that of referential integrity, and focus on Prop-
Owner.customer_number as a sequenced/current foreign key to the Customer table. The brute-
force approach, which always works, is to use the approach above to get a nontemporal constraint, then
use the process discussed in Section 10.3.2 to obtain the appropriate bitemporal constraint.

For referential integrity, we first construct the following (nontemporal) constraint:
Code Fragment 10.47: The customer number in Prop_Owner is a foreign key referencing the
Customer table (nontemporal version).

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT *

 FROM Prop_Owner

 WHERE customer_number NOT IN (SELECT customer_number

 FROM Customer))

)

We now need to map this into a sequenced/current constraint, which is done by mapping the SELECT
into a sequenced/current query. As noted on page 155, the NOT IN is actually relational difference and
can be expressed using that construct.

Code Fragment 10.48: The customer number in Prop_Owner is a foreign key referencing the
Customer table, using EXCEPT (nontemporal version).

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT customer_number

 FROM Prop_Owner

 EXCEPT

 SELECT customer_number

 FROM Customer)

)

Tip A sequenced/current foreign key constraint can be expressed as an embedded

sequenced/current query.
We can then map this into a sequenced/current query using the approach illustrated in CF-6.18 on page
155. To do so, we made the following changes to that code fragment:

 - 298 -

 Replaced INCUMBENTS with Prop_Owner for Il and with Customer for the other
correlation names, I2, I3, and I4.

 Removed the mentions of specific PCNs.
 Replaced SSN with customer_number.
 Replaced each of the target lists with *.
 Added the transaction currency check to the WHERE clauses for all correlation names.

Code Fragment 10.49: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current version).

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT I1.customer_number

 FROM Prop_Owner AS I1, Customer AS 13

 WHERE I1.customer_number = I3.customer_number

 AND I1.TT_Stop = DATE '9999-12-31'

 AND I3.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (SELECT *

 FROM Customer AS 14

 WHERE I4.customer_number = I1.customer_number

 AND I4.TT_Stop = DATE '9999-12-31'

 AND I1.VT_Begin < I4.VT_End

 AND I4.VT_Begin < I3.VT_Begin)

 UNION

 SELECT I1.customer_number

 FROM Prop_Owner AS I1, Customer AS I2

 WHERE I1.customer_number = I2.customer_number

 AND I1.TT_Stop = DATE '9999-12-31'

 AND I2.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (SELECT *

 FROM Customer AS I4

 WHERE I4.customer_number = I1.customer_number

 AND I4.TT_Stop = DATE '9999-12-31'

 AND I2.VT_End < I4.VT_End

 AND I4.VT_Begin < I1.VT_End)

 - 299 -

 UNION

 SELECT I1.customer_number

 FROM Prop_Owner AS I1, Customer AS I2, Customer AS I3

 WHERE I1.customer_number = I2.customer_number

 AND I1.customer_number = I3.customer_number

 AND I1.TT_Stop = DATE '9999-12-31'

 AND I2.TT_Stop = DATE '9999-12-31'

 AND I3.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (SELECT *

 FROM Customer AS I4

 WHERE I4.customer_number = I1.customer_number

 AND I4.TT_Stop = DATE '9999-12-31'

 AND I2.VT_End < I4.VT_End

 AND I4.VT_Begin < I3.VT_Begin)

 UNION

 SELECT I1.customer_number

 FROM Prop_Owner AS I1

 WHERE I1.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (SELECT *

 FROM Prop_Owner AS I4

 WHERE I4.customer_number = I1.customer_number

 AND I4.TT_Stop = DATE '9999-12-31'

 AND I1.VT_Begin < I4.VT_End

 AND I4.VT_Begin < I1.VT_End))

)

Tip By studying the particulars of the desired temporal integrity constraint, often a much

simpler expression is possible.
Another way to proceed is to look more closely at what the sequenced/current referential integrity is
doing and to attempt to come up with a more streamlined version. We already did that analysis for valid-
time state tables, developing CF-5.23. This can be generalized to a sequenced/current constraint on
bitemporal tables by simply adding a transaction currency predicate for each correlation name.

Code Fragment 10.50: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current, version 2).

 - 300 -

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT *

 FROM Prop_Owner AS P

 WHERE P.TT_Stop = DATE '9999-12-31'

 AND NOT EXISTS (

 SELECT *

 FROM Customer AS C

 WHERE P.PCN = C.PCN

 AND C.TT_Stop = DATE '9999-12-31'

 AND C.VT_Begin <= P.VT_Begin

 AND P.VT_Begin < C.VT_End)

 OR NOT EXISTS (

 SELECT *

 FROM Customer AS C

 WHERE P.PCN = C.PCN

 AND C.TT_Stop = DATE '9999-12-31'

 AND C.VT_Begin < P.VT_End

 AND P.VT_End <= C.VT_End)))

This approach yields a much shorter assertion, but requires more analysis, the first approach is largely
mechanical.

Tip For referential integrity constraints between tables supporting differing aspects of
time, use a current constraint if the time support is missing.

While the temporal analog of a nontemporal foreign key integrity constraint is normally a
sequenced/sequenced constraint, there are exceptions. First, as already noted, transaction-time
sequenced can be replaced with transaction-time current. Second, for valid time, if the referencing table
does not support valid time, then we should only use the current state of the referenced table, a valid-
time current constraint.

10.5 TEMPORAL PARTITIONING*
While a bitemporal table with valid and transaction period timestamps is convenient for many types of
queries, as illustrated in Section 10.3, keeping both the valid-time history and the history of the changes
in a single table often greatly decreases query performance. To perform a current/current query ("at
now as best known") may require scanning the entire bitemporal table, rejecting the records relating to
prior dates in valid time and the erroneous records that were subsequently corrected.

Table 10.11: The bitemporal table corresponding to the time diagram of Figure 10.19.

 - 301 -

customer_numb
er

property_
number VT_Begin

VT_E
nd

TT_Sta
rt

TT_St
op

145 7797 1998-01-10 9999-
12-31

1998-
01-10

1998-
01-15

145 7797 1998-01-10 1998-
01-15

1998-
01-15

1998-
01-28

827 7797 1998-01-15 9999-
12-31

1998-
01-15

1998-
01-20

827 7797 1998-01-15 1998-
01-20

1998-
01-20

1998-
01-28

145 7797 1998-01-03 1998-
01-10

1998-
01-23

1998-
01-26

145 7797 1998-01-05 1998-
01-10

1998-
01-26

1998-
01-28

145 7797 1998-01-05 1998-
01-12

1998-
01-28

1998-
01-30

827 7797 1998-01-12 1998-
01-20

1998-
01-28

9999-
12-31

827 3621 1998-01-15 1998-
12-31

1998-
01-31

9999-
12-31

Temporal partitioning was previously considered in the context of valid time in Section 7.5 and in the
context of transaction time in Section 9.4. The alternatives, and their potential impact on performance,
are even greater for bitemporal tables. We will briefly examine a collection of temporal partitioning
schemes for bitemporal tables here, continuing with the Prop_Owner table. This table will be
represented by two or more tables, each holding a subset of the bitemporal regions. While the general
approach is termed "temporal partitioning," often the constituent tables do not actually partition the data;
information may be replicated in multiple tables, with the application held responsible for ensuring that
the information is consistent.
We illustrate the partitioning on the state of the Prop_Owner table (Table 10.11) corresponding to the
time diagram of Figure 10.19 on page 313.

10.5.1 VT Current/TT Current + Bitemporal State
If current/current queries are prevalent, it is advantageous to materialize the current/current state (valid
time = transaction time = "now"), in addition to the bitemporal state, resulting in two tables: the current
store (PO_Current) and the bitemporal store (PO_Bitemp). The current store in the example will
contain but a single row, indicating that Peter owns the flat at Bygaden 4, as best known:
customer_number property_number
827 3621

As an aside, this arrangement is not a strict partitioning, as the rows in the current store are also in the
bitemporal state table. The other variants discussed below are true partitions.

Current/current queries are easy: just apply them to the current store; no additional predicates are
required. Of course, all the other kinds of queries can be applied to the bitemporal state table, which is
still available.

Tip A current partition has the advantage that a valid-end time of "forever" need not be
stored; the valid-end timestamp is implicit in the current store.

The current store must be changed as a side effect of modifications applied to the bitemporal store.
Current modifications are simple: transform the modification as discussed in Section 10.2.1 to modify
the bitemporal store, and also apply the modification as is to the current store. Sequenced modifications
would be also applied to the current store if the period of applicability overlapped "now." Nonsequenced
modifications must be handled on a case-by-case basis.

Tip The current store has the disadvantage that the passage of time along can cause
rows to enter and exit this store; managing this movement is awkward.

 - 302 -

Interestingly, the current store can change just with the passage of time. Consider the modification that
inserts Peter buying the Bygaden flat on January 15, illustrated in Figure 10.19 on page 313. Say that
this was instead a postactive modification—that it was performed on January 5. This row was not
present in the current store on that date. Indeed, it remains absent until January 15 rolls around, at
which point it must be inserted into the current store.

One way to handle these future events is to execute the following action to reestablish consistency once
a day, say, in the early morning:

Code Fragment 10.51: Bring the PO_Current table up-to-date.

INSERT INTO PO_Current

SELECT customer_number, property_number

FROM PO_Bitemp

WHERE TT_Stop = DATE '9999-12-31'

 AND VT_Begin = CURRENT_DATE

DELETE FROM PO_Current

WHERE EXISTS (SELECT *

 FROM PO_Bitemp AS B

 WHERE PO_Current.customer_number = B.customer_number

 AND PO_Current.property_number = B.property_number

 AND TT_Stop = DATE '9999-12-31'

 AND VT_End = CURRENT_DATE)

In the deletion, we need to delete those rows of the current store associated with rows in the bitemporal
store with the same primary key.
If the granularity of valid time was smaller, say, a minute, then it might make sense to record the valid
begin and end times in a separate table, PO_Future, with a single column, When. Each modification to
the bitemporal store would insert times into PO_Future and would also set some variable indicating
when the action should be evaluated. This action would remove the earliest time from the table and
would reschedule itself for the next begin or end date. Alternatively, the above action could be run
whenever a query was applied to the current store, to ensure that this state was up-to-date.

Current/current queries are particularly easy and efficient: simply query the current store. Other queries
can be applied to the bitemporal state table, which has all the information it did before.

10.5.2 VT State/TT Current + State/State Archive
To avoid the complexity of having to modify the current store as a side effect of the passage of time, we
can put the entire valid-time history, as best known, in what is termed a history store (PO_History),
with the corrected rows—those with a transaction-stop time other than "until changed"—residing in an
archival store (PO_Archive). The history store now has more information than the current store of the
previous section. Note that the history store here has three timestamp columns: the delimiting times of
the valid-time period, and the transaction-start time. The transaction-stop time is implicit; it is "until

 - 303 -

changed." Making this implicit means that we don't have to come up with an encoding of "until changed"
(that value was encoded as "forever" in the bitemporal state table). The history store contains all the
rectangles with right pointers in Figure 10.19:
customer_number property_number VT_Begin VT_End TT_Start
827 7797 1998-01-

12
1998-
01-20

1998-01-
28

827 3621 1998-01-
15

9999-
12-31

1998-01-
31

Correspondingly, the archival store (Table 10.12) has fewer rows than the original bitemporal state
table, as the current history is stored elsewhere.

Tip

A history store is much easier to maintain than a current store and retains many of
its advantages. The archival store can be maintained automatically through
triggers defined on the history store.

While not illustrated here, it is possible for future valid times to also be present in the history store, and
in the archival store as well. We don't have to be concerned with moving such rows in or moving rows
that terminate in the future out, as we did with the current store.

Modifications—whether current, sequenced, or nonsequenced in valid time (recall that all modifications
are current in transaction time)—are applied directly to the history store. The archival store can be
maintained entirely with triggers,

Table 10.12: Archival store.

customer_number property_number VT_Begin
VT-
End TT_Start TT_Stop

145 7797 1998-01-
10

9999-
12-31

1998-01-
10

1998-
01-15

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

1998-
01-28

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

1998-
01-20

827 7797 1998-01-
15

1998-
01-20

1998-01-
20

1998-
01-28

145 7797 1998-01-
03

1998-
01-10

1998-01-
23

1998-
01-26

145 7797 1998-01-
05

1998-
01-10

1998-01-
26

1998-
01-28

145 7797 1998-01-
05

1998-
01-12

1998-01-
28

1998-
01-30

generalizing the approach used in Chapter 8 for maintaining a tracking log, specifically CF-8.2 on page
221. These triggers retain a before-image in the archival store.

Code Fragment 10.52: Triggers for maintaining the PO_Archive table.

CREATE TRIGGER Delete_PO

AFTER DELETE ON PO_History FOR EACH ROW

BEGIN

 INSERT INTO PO_Archive VALUES (OLD.customer_number,

 OLD.property_number, OLD.VT_Begin, OLD.VT_End,

 OLD.TT_Start, CURRENT_DATE)

 - 304 -

END

CREATE TRIGGER Update_PO

AFTER UPDATE ON PO_History FOR EACH ROW

BEGIN

 INSERT INTO PO_Archive VALUES (OLD.customer_number,

 OLD.property_number, OLD.VT_Begin, OLD.VT_End,

 OLD.TT_Start, CURRENT_DATE)

END

Tip

The
full
bite
mp
oral
tabl
e
can
be
exp
res
sed
as
a
vie
w.

In Section 10.2, we outlined a two-stage approach to implement modifications on a bitemporal table:
first deal with valid time, then further transform the sequence of SQL statements to deal with transaction
time. Under the history/archival store scheme, only the first stage is required; the triggers effect the
second stage, thus greatly simplifying the application code. (There is one remnant of the second stage:
the transaction-start time must be set/updated to "now" in the application code, in modifications applied
to the history store.)

Table 10.13: Another version of the archival store.
customer_number property_number VT_Begin VT_End TT_Start
145 7797 1998-01-

10
9999-
12-31

1998-01-
10

145 7797 1998-01-
10

1998-
01-15

1998-01-
15

827 7797 1998-01-
15

9999-
12-31

1998-01-
15

827 7797 1998-01-
15

1998-
01-20

1998-01-
20

145 7797 1998-01-
03

1998-
01-10

1998-01-
23

145 7797 1998-01-
05

1998-
01-10

1998-01-
26

145 7797 1998-01-
05

1998-
01-12

1998-01-
28

 - 305 -

Transaction-time current queries are applied to the history store. Transactiontime sequenced and
nonsequenced queries should be applied to the following view:

Code Fragment 10.53: Reinstate the bitemporal state table as a view.

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

 VT_End, TT_Start, TT_Stop) AS

(SELECT customer_number, property_number, VT_Begin,

 VT_End, TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT *

FROM PO_Archive)

10.5.3 VT State/TT Current + State/Event Archive
This organization differs from that of the previous section in that we use instant timestamping for
transaction time, with the accompanying space savings. (In fact, this is the scheme that Nykredit utilizes
for its property ownership table. The customer and property entities are maintained in transaction-time
tables, each temporally partitioned into a current store, with the transaction-start timestamp—the
transaction-stop time is implicitly "until changed"—and an archival store, instantstamped also with the
transaction-start date.) Here the history and archival schemes are identical. The stores themselves will
have the same number of rows as the scheme of the previous section; in fact, the history store is
identical in the two schemes. The archival store (Table 10.13) omits the transaction-stop time.
The reason that the transaction-stop time is not needed is that it can be found in another row, as the
transaction-start time. The transaction-stop time of the first row is found in the second row: January 15.
This is because the (sequenced/sequenced) primary key, customer_number and
property_number, match, and because the valid times overlap, implying that the second row
invalidated the valid-time period of the first row. Following owner 145 (Eva), the period of validity of the
fifth row does not overlap that of the second row, so it can be viewed as additional information.
However, both the second row and the fifth row are invalidated by the sixth row. Finally, the fourth row
invalidates, and provides the transaction-stop time for, the third row.
As an aside, the ZPOS_COMPENSATION_HISTORY table of Chapter 5 includes a CHRONOLOGY_KEY
column, serving as a transaction timestamp, along with HISTORY_START_DATE and
HISTORY_END_DATE columns, indicating when the information in the record applied (the period of
validity). This table can also be considered to be a state/event bitemporal table, supporting both valid
time (with period timestamping) and transaction time (with instant timestamping).

The archival store can once again be maintained via triggers defined on the history store. This ensures
that the transaction-time semantics is maintained.

As before, to evaluate transaction sequenced or nonsequenced queries, we need to constitute the
bitemporal state table, which is rather more involved than before.

Code Fragment 10.54: Reconstitute the bitemporal state table as a view.

 - 306 -

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

 VT_End, TT_Start, TT_Stop) AS

(SELECT customer_number, property_number, VT_Begin,

 VT_End, TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT P1.customer_number, P1.property_number, P1.VT_Begin, P1.VT_End,

 P1.TT_Start, P2.TT_Start

FROM PO_Archive AS P1, PO_Archive AS P2

WHERE P1.customer_number = P2.customer_number

 AND P1.property_number = P2.property_number

 AND P1.TT_Start < P2.TT_Start

 AND NOT EXISTS (SELECT *

 FROM PO_Archive AS P3

 WHERE P1.customer_number = P3.customer_number

 AND P1.property_number = P3.property_number

 AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

 PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_History AS PH

WHERE PA.customer_number = PH.customer_number

 AND PA.property_number = PH.property_number

 AND PA.TT_Start < PH.TT_Start

 AND NOT EXISTS (SELECT *

 FROM PO_Archive AS P3

 WHERE PA.customer_number = P3.customer_number

 AND PA.property_number = P3.property_number

 AND PA.TT_Start < P3.TT_Start)

)

 - 307 -

Tip

The archival store can be narrowed by storing only one transaction timestamp:
transaction start. The drawback is a more complex view reconstituting the bitemporal
state table.

For those rows that were invalidated, we need to locate the row that invalidated it (from either the
PO_History or the PO_Archive table) to locate the transaction-stop time. Those that haven't been
invalidated (i.e., those in the current store) have a transaction-stop time of "now."
There is one complication with the structure. If the entire history of an owner-property pair can be
deleted—say, with a valid-time sequenced deletion with a period of applicability of all of time—there is
no place to store the transaction time of that deletion. If this is indeed possible, it is best to create a
PO_Deleted table, with columns owner_number, property_number, and TT_Deleted. The view
definition would then require another case.

Code Fragment 10.55: Reinstate the bitemporal state table as a view, when history deletions are
allowed.

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

 VT_End, TT_Start, TT_Stop) AS

SELECT customer_number, property_number, VT_Begin, VT_End,

 TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT P1.customer_number, P1.property_number, P1.VT_Begin, P1.VT_End,

 P1.TT_Start, P2.TT_Start

FROM PO_Archive AS P1, PO_Archive AS P2

WHERE P1.customer_number = P2.customer_number

 AND P1.property_number = P2.property_number

 AND P1.TT_Start < P2.TT_Start

 AND NOT EXISTS (SELECT *

 FROM PO_Archive AS P3

 WHERE P1.customer_number = P3.customer_number

 AND P1.property_number = P3.property_number

 AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

 AND NOT EXISTS (SELECT *

 FROM PO_Deleted AS P3

 WHERE P1.customer_number = P3.customer_number

 - 308 -

 AND P1.property_number = P3.property_number

 AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

 PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_History AS PH

WHERE PA.customer_number = PH.customer_number

 AND PA.property_number = PH.property_number

 AND PA.TT_Start < PH.TT_Start

 AND NOT EXISTS (SELECT *

 FROM PO_Archive AS P3

 WHERE PA.customer_number = P3.customer_number

 AND PA.property_number = P3.property_number

 AND PA.TT_Start < P3.TT_Start)

 AND NOT EXISTS (SELECT *

 FROM PO_Deleted AS P3

 WHERE P1.customer_number = P3.customer_number

 AND P1.property_number = P3.property_number

 AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

 PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_Deleted AS PD

WHERE PA.customer_number = PD.customer_number

 AND PA.property_number = PD.property_number

 AND NOT EXISTS (SELECT *

 FROM PO_Archive AS P3

 WHERE PA.customer_number = P3.customer_number

 AND PA.property_number = P3.property_number

 AND P3.TT_Start BETWEEN PA.TT_Start AND PD.TT_Start)

 - 309 -

The additional NOT EXISTS in the second and third cases are required if an ownerproperty pair's
history is removed, then later inserted back.

10.6 VACUUMING*
Vacuuming was first introduced in Chapter 9, in the context of transaction-time state tables. Bitemporal
tables present an even greater opportunity, and need, for vacuuming. Recording the history of the
enterprise can result in many rows; also retaining the change history of the table can dramatically
increase the size of the table.
The relative sizes of the components of a bitemporal table can be surprising. In our example, Table
10.9, corresponding to the time diagram in Figure 10.19, captures three relationships, two involving
Peter and one involving Eva. The current/current state ("now as best known") comprises just one row,
the last one. The current transaction-time state ("history as best known") comprises two rows, the last
plus the next-to-last, both corresponding to Peter. The noncurrent transactiontime states, those with a
transaction-stop time other than "forever," comprise the other seven rows; these are usually placed in
an archival store. This is in accord with our intuition: the current/current state should be the smallest; the
transaction-time current should be larger, as it contains the current/current state; and the archival store
should be the largest.
However, often these relative sizes are not found in actual applications. In particular, it is often the case
that the archival store is not large at all. The rows in the archival store originate from two separate
processes. The first is when a row is inserted with an unknown valid-time end time; in such cases we
simply use "forever." Later, the end time becomes known and is stored in the bitemporal table, with the
previous row moved to the archival store. Two of the rows of Table 10.9, the first and third rows, thus
came into being.

The second situation is when erroneous data was discovered and corrected; the data in error is retained
in the archival store. This was the source of five of the rows in the example table.

Tip

Often the history store is the largest component of a bitemporal state table,
implying that vacuuming the archival store may not be effective in substantially
reducing the size of such a table.

The first source of archival rows is not invoked when the period of validity is known a priori. Insurance
policies, car loans, and fixed-term appointments are examples in which archival rows need not be
generated. And the second source of archival rows is thankfully not that common; a good percentage of
data is in fact correct and will not later be changed. (Alternatively, the data may be incorrect, but we
may never discover that.) For these reasons, in many applications the current transaction state ("history
as best known") dominates the bitemporal table, with the archival store being a fraction of the rows.
We can apply all of the techniques discussed in Section 9.5 to the archival portion of a bitemporal state
table. Because valid time is present in such tables, it can be used to further refine the vacuuming.

Code Fragment 10.56: Temporally vacuum old unused entities from the archival store for which no
recent history exists.

DELETE FROM Prop_Owner

WHERE (CURRENT_DATE - TT_StopDAY) > INTERVAL '731' DAY

 AND NOT EXISTS (SELECT *

 FROM Prop_Owner AS R

 WHERE TT_Stop = DATE '9999-12-31'

 AND (CURRENT_DATE - VT_End DAY) > INTERVAL '731' DAY

 AND customer_number = C.customer_number

 AND property_number = C.property_number)

 - 310 -

The first predicate identifies archival rows that are old in transaction time (the correction was made
more than two years ago); the second predicate ensures that no recent history (less than two years)
exists in valid time.

10.7 IMPLEMENTATION CONSIDERATIONS
The CD-ROM contains all the code fragments in this chapter in Oracle8 Server, which run without
change after transforming assertions to triggers.

10.8 SUMMARY
A bitemporal table combines both valid time and transaction time into a single structure. It contains four
timestamps, two denoting the valid-time period of validity and two denoting the transaction-time period
of presence. Such a table can also be represented by several tables, such as a current store, a history
store, and an archival store.

Primary key constraints on such tables are generally valid-time sequenced and transaction-time current.
Expressing such a constraint requires an SQL PRIMARY KEY constraint and an assertion. Often you
will also want to constrain the valid-time history for an entity (or relationship) to not have any gaps; this
requires another assertion.

Modifications on bitemporal tables can be challenging. We examined several variants, all current in
transaction time: valid-time current insertions, deletions, and updates; valid-time sequenced insertions,
deletions, and updates; and valid-time nonsequenced deletions. We saw that valid-time current
modifications were tedious, and valid-time sequenced modifications even more so. For the latter, we
advocated a two-stage conversion process: first deal with valid time, with each such modification
resulting in a series of SQL statements, then deal with transaction time, mapping each SQL statement
into one or more statements that maintain the transaction-time semantics. The mapping was
mechanical, but resulted in a long series of SQL statements. The worst case was that of sequenced
update, in which a nontemporal update of only a few lines expanded to some 60 lines of SQL.

We first considered time-slice queries, in transaction, valid, and bitemporal varieties, then showed that
there are nine versions of any nontemporal query. Some of these are more useful than others, but the
benefit of a bitemporal table is that it admits the full generality of temporal queries.

Temporal integrity constraints parallel temporal queries; in fact, any temporal integrity constraint can be
expressed as a temporal query embedded in a NOT EXISTS assertion. This mechanical translation
allows you to map a temporal constraint into SQL; further analysis may enable the assertion to be
simplified.

We examined several ways to represent a bitemporal state table via several tables, each holding a
portion of the temporal extent of the table. There are two somewhat orthogonal decisions to be made:
how to divide up the time diagram among the representational tables, and for each table, whether to use
instant or period timestamping.

Partitioning a bitemporal table renders some queries more efficient, at the expense of other queries.
Transaction-time sequenced and nonsequenced queries are negatively affected; transaction-time
current queries, especially the valid-time current subset, are made faster. If the performance of
current/current queries is critical, having a separate materialized current store can be quite effective,
though this arrangement introduces difficulties in maintaining the current store. A nice compromise is a
history/archival pair, with the former containing the transaction-current rows and the latter containing
those rows with a transaction-stop time before "now." The history store is period-stamped in valid time
and instant-stamped in transaction time (the transaction-start time); the transaction-stop time is implicit
and is equal to "until changed." The archival store is period-stamped in both valid and transaction time.
It is convenient to maintain the archival store via triggers defined on the history store.

 - 311 -

If space is at a premium, then it is best to use instant stamping in transaction time in the archival store,
at a cost in query time for noncurrent transaction queries.

The archival store component of bitemporal tables can be vacuumed; having valid time around allows
more specific vacuuming specifications.

10.9 READINGS
The bitemporal time diagram was introduced by Christian S. Jensen and the author [53]. A variation of
this diagram was independently explored by James Clifford and Tomás Isakowitz [24]; the diagram has
also been extended to incorporate reference time [23]. Heidi Gregersen and Christian S. Jensen
discuss implementing integrity constraints on tables with various kinds of temporal support [39].
Blaha and Premerlani differentiate, for portfolio databases, "the time when a transaction occurs" (in our
terminology, the valid time of the transaction), "the time when the user records a transaction" (the
transaction time of the transaction), "the time of valuation of an asset" (the valid time of the valuation),
"the time a portfolio value is computed" (the valid time of the computed value), and "the time interval
(starting time and ending time) for computing ROI" (the valid time of the ROI fact) [9, p. 195].

Table 10.14: Böhlen's classes of temporal integrity constraints.

Böhlen's terminology This book's terminology Example

nontemporal nontemporal Every
employee
must be
assigned to
at least one
project.

intrastate valid-time
sequenced

At any point
in his
employment
an
employee
must be
assigned to
at least one
project.

interstate valid-time
nonsequenced

An
employee
who was
assigned to
the KAP92
project may
not be
assigned to
the PMT
project.

static transaction-time
sequenced

At every
database
state, credit
entries are
limited to
$20 million.

dynamic transaction-time
nonsequenced

A project
credit may
not be
deleted and
subsequentl
y (i.e., at a
later
database
state)

 - 312 -

reasserted
with an
increased
credit value.

transition transaction-time
nonsequenced1

A project
credit may
not be
increased
by updating
the credit
value.

intraelement valid-time
sequenced/
transaction-

time
sequenced

At every
database
state, it
must hold
that, at any
point of his
employment
, an
employee is
assigned to
at least one
project.

interelement valid-time
nonsequenced/
transaction-

time
nonsequenced

If a project
gets credits
over a
period of six
years,
which is
extended to
a period of
ten years,
then the
number of
employees
assigned to
that project
must be
decreased
by two
within one
year.

1The predicate will be of the form of meets, that is, TT_Stop = TT-Start.

Michael Böhlen has investigated bitemporal integrity constraints in some detail. He developed a
taxonomy of such constraints [15]. His terms can be mapped into our terminology, as illustrated in Table
10.14 with the constraints listed in that paper.

The theory behind oscillators is presented in a delightfully approachable manner by James
Jespersen and Jane Fitz-Randolph in their concise and highly readable book, From Sundials to Atomic
Clocks [58]. Also approachable, though at a more advanced level, is Philip Woodward's book, My Own
Right Time [104].

Gerhard Rossum's book History of the Hour: Clocks and Modern Temporal Orders [81] is an
expansive history of the mechanical clock and its impact on European society, from the Middle Ages to
the industrial revolution. The definition of "jiffy" may be found in the Hacker's Dictionary [98].

 - 313 -

Chapter 11: Temporal Database Design
OVERVIEW
The case studies in the preceding chapters have covered a lot of ground. The major concepts—
including valid time; transaction time; current, sequenced, and nonsequenced queries; integrity
constraints; modifications; user-defined time; and the expression of these concepts in SQL-92—have
been discussed in detail.

We now reprise the initial case study—Brad De Groot's feed yard application. We have two aims in
doing so. First, we use this case to show how best to design a temporal application. And second, this
case study serves to review all of these concepts within the context of a single application.
The first case study we studied was that of Brad De Groot's feed yard application, discussed informally
in Chapter 2. We now return to that case study, this time with the benefit of a deep understanding of
temporal semantics conveyed in the intervening chapters.

Brad started his investigation into the temporal relationships between putative risk factor exposure and
subsequent health events by understanding the structure of the data files maintained by the feed yards
as they track the movement of cattle between pens. He carefully merged these data definitions into a
global schema. After months of work, Brad had constructed an entity-relationship (ER) schema with
some 40 entity types and relationships and over 150 roles. Even when printed in a small font, this ER
diagram required a large poster to see it in its entirety. The relational schema generated from this
conceptual model contains 55 tables and about 850 columns. In sum, the schema is typical: large and
complex and somewhat overwhelming.

After Brad had finished the schema, he read an early draft of this book and realized that he had a
bitemporal database on his hands. He worked with the author to understand his application in the
framework presented in this book. This analysis pointed out semantic problems with the schema, which
were solved by applying the methodology presented here.

11.1 PROPERLY SEQUENCING THE DESIGN
The case studies appearing in the preceding chapters are inextricably entwined with the design
decisions relevant to their particular needs. Should a new application match those needs closely, then
perhaps the design decisions would be appropriate for that application. The purpose of the present
chapter is to take a more general view, to outline precisely when each time-related decision should be
considered.

Application design and implementation consist fundamentally of making a series of decisions, each
impacting subsequent trade-offs, often in subtle and unexpected ways. Over the past two decades,
experience and research has converged on a sequence of three basic steps: (1) conceptual design
using the ER model, (2) logical design using the relational model, and finally (3) physical design to
ensure adequate performance.
Unfortunately, because both the ER and the relational model do not themselves adequately support
time-varying information, current practice using these models is actually counterproductive in places.
Among the most egregious is temporal partitioning, which is generally considered very early in
conceptual design, when in fact it should be one of the last considerations in physical design. Overly
complex ER schemas and relational schemas have resulted from considering time earlier rather than
later.

Tip The temporal aspects of the application should be initially ignored when
developing the conceptual schema.

In the approach we espouse here, conceptual design initially ignores the time-varying nature of the
application. We focus on capturing the current reality and temporarily ignore any history that may be
useful to capture. This selective amnesia somewhat simplifies what is often a highly complex task of
capturing the full semantics of the application. An added benefit is that existing conceptual design
metholodologies apply in full.

Only after the full design is complete do we augment the ER schema with the time-varying semantics of
the application. We consider each component of the ER schema in turn, annotating that component with
its temporal semantics. Entity types, relationship types, attributes, and keys are each individually
addressed. These annotations are expressed in prose, so that they do not clutter the ER schema.

 - 314 -

Similarly, logical design proceeds in two stages. First, the nontemporal ER schema is mapped to a
nontemporal relational schema, a collection of tables. Here again we ignore the temporal aspects of the
application, and thus can apply existing mapping strategies, unencumbered by considering how to
capture history.

In the second stage of logical design, each of the annotations is applied to the logical schema,
modifying the tables or integrity constraints to accommodate that temporal aspect. We proceed in a
disciplined fashion, dealing with each annotation in turn.

In the following, we start with a nontemporal ER schema and proceed to a fully elaborated SQL
schema, taking into account the time-varying nature of the application. This serves as yet another flight
through the core temporal concepts, and also serves to emphasize the utility of thinking of time-varying
data in these terms.

11.2 CONCEPTUAL DESIGN
Contrary to current practice, all temporal aspects should be ignored during most of conceptual design.
An ER schema should be constructed that has no temporal features. All design considerations should
be visited at this time, including keys, integrity constraints, composite attributes, multivalued attributes,
relationship participation (one-to-one, one-to-many, many-to-many, optional, or mandatory), weak and
strong entity types, subclasses, superclasses, categories, specialization, generalization, and attribute
inheritance.

Once a carefully worked-out ER schema has been constructed, only then should the temporal aspects
be considered.

11.2.1 Nontemporal ER Schema
Figure 11.1 shows a fairly small portion (about a sixth) of the initial ER schema for Brad's application, in
the traditional notation of rectangles for entities and diamonds for relationships. Note that in describing
this diagram, we use present tense, as time is not yet involved. Entity and relationship type names are
in all caps, attribute names are capitalized, and individual entities (such as a particular lot) and
individual relationships are not capitalized.

Strong Entity Types
There are two (strong) entity types present: FEEDYARD and APPLICATION. Brad has data from five
feed yards.

Weak Entity Types
There are four weak entity types, indicated by a double rectangle; a double diamond indicates the
identifying relationship type, which relates a strong entity type to the weak entity type. By necessity, this
relationship is total, indicated with a double line. A pen is a fenced-in plot of land that can hold cattle. It
is related to the FEEDYARD strong entity type via the IN_PEN relationship type. Since the relationship
is total, every PEN entity must be in a particular FEEDYARD entity.

A lot is a specific group of cattle, resident in one pen or divided into multiple pens. The analysis of
treatments and putative factors is carried out on lots of cattle. LOT is related to FEEDYARD through the
IN_LOT relationship type.
The feed yards use FoxPro to collect this information; FoxPro stores each table in a dbf file. Brad then
periodically copies these files onto a floppy disk and loads the information into his SQL database,
running on Sybase SQLAnywhere. He terms each such transfer and loading, which can involve
coordinating the data from multiple dbf files, a backup, for which a BACKUP weak entity is created.

 - 315 -

Figure 11.1: A nontemporal entity-relationship schema.

Entity Type Key Attributes

In the ER model, every entity must have an attribute that identifies that entity. Strong entity types have a
key, which is underlined in the ER schema; weak entity types have a partial key, which is indicated with
a dotted line. The key for FEEDYARD is Feedyard_ID; for APPLICATION it is A_Name.

A combination of the key for the strong entity type and the partial key for the weak entity type identifies
each weak entity. Hence, a particular (Feedyard_ID, Pen_ID) pair will identify an individual pen.

Attributes
A few other attributes are included. You might ask, Why does the LOT entity type have both Lot_ID and
Lot_ID_Num attributes? It turns out that the former is a character string used by the feed yard; the latter
is an assigned integer and is designated the partial key.
The most interesting attributes in this context are the user-defined time attributes: Proj_Closeout in LOT
(the projected date that the lot will leave the feed yard), and Year_Month and Date_Processed in
BACKUP, indicating when the backup was processed, and which month the data was associated with.
These attributes are independent of the other attributes and of the relationships that the entity type
participates in. In particular, they do not indicate the valid-time or transaction-time extent of the entities
or relationships. Rather, they approximate when the backup was taken and when it was processed.
Data within the backup is used to calculate a more precise valid time (to the granularity of day).
Because of various consistency checking and cleansing activities, the actual transaction time may be
different than the Date_Processed.

LOT.Valid is a Boolean attribute indicating whether the information in the entity has passed various
validation tests.
Note that we do not include timestamp attributes. Those attributes will be added when we map to the
relational model (that is, to tables).

Relationship Types
There are five relationship types, in addition to the identifying relationship types discussed earlier.
LOCATION identifies the pen(s) each lot is in. Cattle in a lot can reside in multiple pens, and a pen can

 - 316 -

hold cattle from multiple lots (thereby complicating the analysis of disease propagation). DESCRIBES
relates lots to backups. A dbf file contains one or more lots. MASS_TRTMNT is the administration of
some drug regime to the cattle of a lot resident in one or more pens. This is a ternary relationship type,
as we associate each individual relationship with the backup during which it was loaded.

The MOVE relationship type is complex: it is quintary, capturing the movement of a (perhaps partial) lot
of cattle from one pen (in the "from" role) to another pen (in the "to" role). This movement was loaded
during a backup, from a particular dbf file.

Several of the relationship types have associated attributes. Both the MOVE and LOCATION
relationship types include a Hd_Cnt attribute; the MASS_TRTMNT relationship type includes Avg_Wgt
and Trtmnt_Code attributes.

Participation Constraints
Participation constraints must be specified for each entity type participating in a relationship type. Each
constraint is denoted in the ER schema with a pair of integers, denoting the minimum and maximum
participation.

The minimum participation constraint (the first component of the pair) differentiates optional from
mandatory participation. A minimum participation of 0 is termed optional; a minimum participation
greater than zero is termed total, or mandatory. All but the LOCATION relationship type are total; a
particular pen may be empty.

The maximum participation constraint (the second component of the pair) identifies the relationship as
one-to-one, one-to-many, or many-to-many. For example, the DESCRIBES_LOT relationship is many-
to-one. A backup describes many lots, but a lot is described by one backup.

In a nontemporal ER schema, these constraints are considered to hold at any point in time. When the
schema is later interpreted to be a temporal ER schema, the constraints will then be considered as
sequenced, holding at each isolated point in time.

In the feed yard schema, IN_PEN, IS_DESCRIBED_BY, CREATES, DESCRIBES_PEN, and
DESCRIBES_LOT are all one-to-many relationship types. Each location relationship denotes cattle from
one lot residing in one or more pens. Each move relationship denotes the movement of cattle from one
lot from one pen to another pen, as recorded by one dbf file and one backup. Each mass_trtmnt
relationship captures a treatment being applied to one lot in one pen, as recorded by one backup.

11.2.2 Adding Temporal Annotations
Once the nontemporal conceptual schema is complete, it is annotated with the time-varying semantics
of each component. You can either indicate such semantics in the ER schema with icons, or you can list
the annotations separately, in prose, as we do here.

Entity Lifespans
Entities have a lifespan denoting when they existed. Entities are instantaneous (with an extremely short
lifespan) or have a lifespan with a duration. The lifespan of an entity can be an instant, a single period,
or a set of periods. An application may choose to model the lifespan of a person entity as starting at
birth and terminating at death, while the lifespan of an employee entity may include several
noncontiguous periods if she resigned and was later rehired.

Puncta and Ostenta
One 10th-century table divided the day into hours (horae), which were further divided into points
(puncta, five points to the hour) and ostenta (12 osts to the punct); each ost is equivalent to our
minute. Other divisions, which could not have been measurable, included the 12th-century division of
an hour into 4 points, 10 minutes, 15 parts, 40 movements, 60 marks, and 22,500 atoms (a second is
exactly 61/4 atoms).

 - 317 -

The designer may choose whether to record the lifespan. If the entities of an entity type exist for all of
(modeled) time, there may be no need to record the lifespan explicitly. Entity types with an implied
lifespan are termed nontemporal. If the lifespan of entities is a subset of the modeled time, then the
designer must decide whether it is relevant to the application to record the lifespan explicitly. If so, the
designer should also specify the granularity of the lifespan.

Interestingly, only one entity type, LOT, has a lifespan that we wish to record in the database; that entity
type has an associated granularity of DAY. The entities of the other five entity types exist for all of the
modeled time (though we note in passing that two have a relevant transaction-time extent that should
be stored).

Relationship Valid Time
A relationship type can either model instantaneous events, or it can model relationships that have a
duration. The valid time for any specific relationship must be a subset of the intersection of the lifespans
of the associated entities. A relationship is always associated with the same entities, regardless of
whether it has a temporal duration and whether its attributes vary over time. The designer must choose
whether to record the valid time of the relationship. If the valid time of the relationship type is recorded,
the granularity should also be noted.

Tip For each entity and relationship type, decide whether the valid time should be
recorded, and if so, its granulariy.

Table 11.1 summarizes the valid times of the 10 relationship types. The valid time of most relationships
is not recorded; such types are considered nontemporal relationship types. The granularities of the
MOVE and LOCATION lifespans are indicated as finer than a DAY. It turns out that several moves are
possible in a day, so the granularity is expressed as DATE along with a Move_Order; multiple moves in
a day are sequenced by the Move_Order value. (As noted above, we do not include timestamp
attributes in the ER schema, so the Move_Order attribute will appear explicitly only when we map to
tables.)

Table 11.1: Valid time of relationship types.

Relationship Type
Valid-Time
Granularity Comments

IN_PEN Nontemporal This
relationship
type is
between two
nontemporal
entity types,
and is itself
nontemporal.

IS_DESCRIBED_BY Nontemporal

CREATES Nontemporal

CONTAINS Nontemporal This
relationship
type is
between a
nontemporal
entity type,
DBF_FILE,
and a time-
varying
entity type,
LOT. The
relationship

 - 318 -

itself does
not vary over
valid time.

IN_LOT Nontemporal While lots
have a
lifespan,
their entire
lifespan is
spent in one
feed yard.

DESCRIBES_PEN Nontemporal This
relationship
type is
between two
nontemporal
entity types.

DESCRIBES_LOT Nontemporal The
relationship
does not
vary over
time.

MOVE Sub-DAY This
relationship
type doesn't
have a
duration: a
move is an
instantaneou
s event.
Hence, it
should be
associated
with a single
valid time
indicating
the instant
when the
move event
occurred.

LOCATION Sub-DAY This is an
important
component,
capturing
which pen(s)
the lot
resides in.
The location
is definitely a
time-varying
relationship,
so we record
the lifespan.
The
granularity is
the same as
that of the
MOVE
relationship
type. In fact,

 - 319 -

each
LOCATION
period is
delimited by
two MOVE
instants.

MASS_TRTMNT DAY A treatment
of the cattle
of a
specified lot
in a specified
pen is an
instantaneou
s event.

Valid Time of Attributes

The value of an attribute may change over the lifespan of the associated entity or the valid time of the
associated relationship, or may not vary over time. The valid time of an attribute's value for any specific
entity (or relationship) must be a subset of the lifespan (valid time) of that entity (relationship).

Tip For each attribute, determine if the valid time of the attribute's value should be
captured, and if so, the associated granularity.

We may want to record the valid time of the attribute. If the value is fixed for all time, capturing the valid
time is probably not useful. Even if the attribute's value varies over time, we may be interested just in
the current value, in which case there is no need to record the valid time. An attribute for which the valid
time is not captured

The Fourth Harrison

"H-4" is the laconic name given to perhaps the most famous watch of all time. It was the fourth in a
series of clocks that John Harrison (1693–1776) constructed in an effort to win the longitude prize,
£20,000 (several million dollars in today's currency), promised by the British Parliament for a solution
to the problem of determining a ship's longitudinal position while at sea. H-4, a large pocket watch at
13 centimeters (5 inches) in diameter and weighing 1.5 kilograms (3 pounds), was the first marine
chronometer of sufficient precision to be used reliably for navigation. John Harrison ultimately
collected the monetary award, though it took over 40 years (from H-1, which he started in 1730, to
1773) for Harrison to refine this exquisite manifestation of his mechanical genius. The watch and its
predecessors are on display at the National Maritime Museum in the Old Royal Observatory at
Greenwich, naturally.

is termed nontemporal. For each such attribute, we associate but a single value with each entity.
Table 11.2 summarizes the valid-time extent of the attributes, including some attributes for which there
wasn't room in the ER schema. The attributes not mentioned are nontemporal.

The Hd_Cnt attributes for the MOVE and LOCATION relationship types differ in their valid time,
emphasizing the need to consider the valid time of attributes separately from their associated entity or
relationship type. An individual location relationship indicates that cattle from the specified lot resided in
the specified pen. The valid time of this relationship extends from the first day that at least one head
was moved to that pen, to the day the last head of cattle from that lot was transferred out of the pen.

 - 320 -

During that period, other transfers may have taken place. As long as some cattle remained in the pen,
this time-varying head count is associated with a single location relationship. For this reason, we wish to
record the valid time of the Hd_Cnt attribute, to the granularity of DAY.

Tip A time-varying key uniquely identifies a particular entity at each point in time. A
nontemporal key identifies a particular entity over all time.

A particular move relationship captures the transfer of cattle from one pen to another. Recall that this
models an instantaneous event. Hence, the head count is fixed for this particular relationship, indicating
that the attribute is itself nontemporal. The Hd_Cnt attribute of MASS_TRTMNT is nontemporal for the
same reason.

Key attributes are particularly interesting. For such attributes, we may or may not record the valid time,
independently of whether we record the lifespan of the entity type. In either case, it is important that the
entity be identifiable by its key value, and that this value be unique. Associating

Table 11.2: Valid time of attributes.

Attribute
Valid-Time
Granularity Comments

BACKUP.Quirks Nontemporal This is a
comment
attribute.

BACKUP.VTRC_Last_Date_Mod Nontemporal This is a user-
defined time
attribute,
utilized in
consistency
checking. As
such, it is
relevant to
transaction
time (when the
data was
cleansed and
stored in
Brad's
database) but
not valid time
(when the data
was valid in
the real world).
In fact, there is
no real-world
correspondent
to this
attribute, and
so valid time is
not relevant.

BACKUP.BRDR_Last_Date_Mod Nontemporal This is also
used during
consistency
checking.

BACKUP.ARCH_Last_Date_Mod Nontemporal This is a third
user-defined
time attribute,
used during
consistency
checking.

LOT.Gndr_Code DAY See the
discussion on
page 14.

 - 321 -

LOT.Proj_Closeout DAY The projected
closeout is a
user-defined
attribute,
indicating
when the cattle
are scheduled
to be moved
from the feed
yard to the
slaughterhous
e. This
scheduled
date can
change, as the
weight and
health of the
individual
animals vary.

LOT.In-Weight DAY As cattle are
added to the
lot, the value
of this attribute
may change.

LOT.Owner DAY

LOT.Comment DAY Comments can
be tied to
particular
periods.

LOT.Valid DAY Consistency
checks are
performed on
the data from
the feed yard
as it is moved
into Brad's
database. If
any of these
checks fail, the
Valid attribute
is set to false,
until Brad
manually
checks the
data and
corrects any
problems. The
information at
each day can
be
independently
valid or invalid.

MOVE.Hd_Cnt Nontemporal For a particular
MOVE
relationship,
this attribute is
nontemporal.

LOCATION.Hd_Cnt DAY The head

 - 322 -

count for a
particular
location
relationship is
time-varying.

MASS_TRTMNT.Hd_Cnt Nontemporal For a particular
mass_trtmnt
relationship,
this attribute is
nontemporal.

Table 11.3: Transaction time of entity types.

EntityType

Transaction-
Time
Granularity Comments

APPLICATION —

BACKUP DAY A backup is
a dump of a
FoxPro
database file
at a
particular
date. The
information
in that
backup is
processed
and inserted
into the
database, at
which time a
BACKUP
entity is
created.

DBF_FILE —

FEEDYARD —

LOT DAY This is
perhaps the
most
important
entity type in
the entire
schema. The
lots track
cattle
through the
feed yard;
data on lots
must be as
clean as
possible. For
this reason,
Brad needs
to record the
transaction

 - 323 -

time of
changes to
the LOT
entity, to a
granularity of
DAY (with
the
understandin
g that only a
partial
picture is
captured).

PEN —

a time-varying key with an entity type indicates that, while the value changes over time, at any point in
time it uniquely identifies an entity. It turns out that for this schema, the valid time of the keys for all six
entity types is not recorded.

Transaction Time
Recall that recording transaction time retains the sequence of stored states. This aspect is entirely
orthogonal to valid time and should be considered separately for entity types, relationship types, and
individual attributes.
We first consider the six entity types (see Table 11.3). Unlike valid time, the transaction time of an entity
cannot be instantaneous.

The transaction-time extent may not be relevant if the application doesn't care to track the changes of
the database, or it may be explicitly stored. If the transaction time is to be recorded, then we also
indicate the granularity.
Transaction time is important in this application because the data from the feed yards is quite dirty (the
feed yards themselves are very dirty). Inconsistencies abound, which must be corrected manually. By
recording the transaction-time extent, Brad is able to track when the changes were made and can thus
work backwards to find exactly where the erroneous data originated.

The idiosyncrasies of this application do not permit all changes to be captured. Brad visits each feed
yard about once a month and makes copies of the FoxPro files created by the various feed yard
programs. He then brings these files back to his

Table 11.4: Transaction time of relationship types.

Relationship Type

Transaction-
Time
Granularity Comments

CREATES —

CONTAINS DAY This
relationship
type is
between an
entity type
that does
not support
transaction
time
(DBF_FILE
) and an
entity type
that
supports

 - 324 -

transaction
time (LOT).

IN_LOT —

IN_PEN —

IS_DESCRIBED_BY —

DESCRIBES_PEN —

DESCRIBES_LOT —

LOCATION DAY Brad
wishes to
track
changes to
this
particularly
important
relationship
for putative
risk factor
exposure.

MASS_TRTMNT —

MOVE DAY This
relationship
directly
affects the
LOCATION
relationship
, so
changes to
MOVE are
tracked as
well.

database server, where he cleans and loads the data into his data warehouse. As such, he captures
most changes to the granularity of a day. However, if some data were entered into a feed yard program,
then subsequently modified before Brad had a chance to grab the file, then the older version will be lost.
Hence, the record of the changes as reflected in the transaction-time support is necessarily partial. One
way to address this loss of information would be to modify all of the feed yard programs to maintain
transaction time with their data.

Tip

For each entity and relationship type, decide whether the transaction-time extent
should be captured, and if so, its granularity. For each attribute, determine if the
transaction time should be recorded, and if so, its granularity.

Next, we consider the relationship types (Table 11.4). If transaction time is recorded for none of the
participating entity types, recording the transaction time for the relationship type is generally not
indicated, but is still possible. In any case, the transaction time of a relationship must be contained by
the intersection of the transaction times of the participating entities.
Following the entity and relationship types, we draw our attention to the attributes (Table 11.5); again,
we omit attributes whose transaction-time extent is not recorded. The transaction-time support of
individual attributes is independent of the associated entity or relationship type, or of other attributes of
that entity or relationship type. However, in any case, the transaction-time extent of an attribute's value
must be contained in the transaction time of the associated entity or relationship.

Table 11.5: Transaction time of attributes.

Attribute

Transaction-
Time
Granularity Comments

 - 325 -

BACKUP.Year_Month DAY Multiple
backups might
pertain to a
particular year
and month.
Transaction
time is recorded
to a granularity
of DAY, in order
to tease apart
the sequence of
changes.

BACKUP.Date_Processed DAY As noted
before, because
of various
consistency
checking and
cleansing
activities, the
actual
transaction time
may be different
than the
Date_Processe
d.

BACKUP.Quirks DAY

BACKUP.VTRC_Last_Date_Mod DAY

BACKUP.BRDR_Last_Date_Mod DAY

BACKUP.ARCH_Last_Date_Mod DAY

LOT.Lot_ID_Num DAY Changes to the
attributes of this
critical
relationship are
tracked by
recording the
transaction
time.

LOT.Lot_ID DAY

LOT.Gndr_Code DAY

LOT.Proj_Closeout DAY

LOT.In_Weight DAY

LOT.Owner DAY

LOT.Comment DAY

LOT.Valid DAY

LOT.DBF_Valid DAY

LOCATION.Hd_Cnt DAY This is also an
important
attribute to
track.

MOVE.Hd_Cnt DAY This attribute
relates to that of

 - 326 -

the same name
in LOCATION.

CONTAINS.DBF.Update_RecNo DAY This attribute
specifies the
record number
utilized in the
update.

11.3 LOGICAL DESIGN
At this point, we have a nontemporal entity-relationship conceptual schema (Figure 11.1), augmented
with annotations in prose that describe the time-varying aspects of this schema. These annotations
concern the lifespan and transaction-time aspects of entity types and the valid and transaction-time
aspects of relationship types, attributes, and integrity constraints.

We now map this schema into a logical data model, here, the relational model, resulting in a collection
of tables. This mapping is done in two stages. In the first stage, the temporal annotations are for the
most part ignored, thereby arriving at a nontemporal logical schema. This logical schema is then
modified to accommodate the time-varying aspects, adding timestamp column(s) and decomposing
some tables into multiple constituent tables. Also during this second stage, various SQL assertions and
constraints are defined on the tables to capture temporal integrity constraints.

11.3.1 Mapping to Relational Schema
In this first stage, the following mapping actions are performed. We are laconic only because this
process doesn't concern time, and so should be familiar to you. Indeed, this stage can be performed
automatically by CASE tools, as the steps do not concern temporal aspects.
To keep things straight, we use a Roman font for conceptual constructs (e.g., the LOT entity type) and a
sans-serif font for logical constructs (e.g., the LOT table).

1. Create a table for each regular entity type (FEEDYARD, APPLICATION). Add
columns for each attribute. The primary key is the key of the corresponding entity
type.

2. Create a table for each weak entity type (PEN, BACKUP, LOT, DBF_FILE).
Include the key of the strong entity type as a foreign key. The primary key is a
combination of this entity type's partial key and the key of the strong entity type.

3. For each one-to-one relationship type, extend a table corresponding to one of the
entity types with the key of the other entity type as a foreign key. We have no
such relationship types here.

4. For each one-to-many binary relationship type, either extend a table or create a
new table for the relationship type. For the DESCRIBES_PEN,
DESCRIBES_LOT, and CONTAINS relationships, we extend the table on the
"one" side (PEN, LOT, and LOT, respectively) with the key of the other entity type
(of BACKUP, of BACKUP, and of DBF_FILE, respectively) as a foreign key, as
well as the attributes of the relationship.

5. Create a table for each remaining relationship type (MOVE, MASS_TRTMNT,
LOCATION). Add foreign keys for all participating entity types. The primary key is
in general a subset of these foreign keys, but is usually (and in these cases) just
the combination of them.

6. Create a table for each multivalued attribute. There are no such attributes here.
The result of this first stage is the nontemporal database schema listed in Figure 11.2, with the primary
key columns underlined. We omit some of the FDYD

 - 327 -

Figure 11.2: Initial nontemporal logical schema.

columns to save space. Finally, we've changed a few table and column names to reflect the actual
names that Brad used.
In Figure 11.3, the same (nontemporal) schema is shown using the crow's-feet notation employed by
the PowerDesigner tool that Brad used to create the schema. The diamonds represent foreign keys, the
crow's feet represent relationships that are many participation, the small circles denote optional
participation, and the small slashes across links denote mandatory participation.

11.3.2 Applying Temporal Annotations
In this second stage, we apply the temporal annotations, elaborated in Section 11.2.2. As we are
revisiting the ground traversed in previous chapters, back pointers

(in the form of page numbers in parentheses) are provided to the pages that introduce these
approaches via the case studies, providing elaboration and other alternatives.

 - 328 -

User-Defined Time Attributes
Each attribute is mapped to a column in the associated table. Attributes that record user-defined time
values are differentiated by type: an instant (page 26), an interval (page 30), or a period (page 89). All
temporal values have a granularity (page 74), though some DBMSs fix the granularity of their temporal
type(s). For anchored values (instants and periods), SQL-92 and some DBMSs allow a specified time
zone to be stored (page 29). For the rest, the time zone is either implicit or fixed. "Now" should be
represented with "forever," or a close approximation (page 120).

Tip For each attribute that is a user-defined time, choose a granularity supported by
SQL-92.

Periods may be represented as a pair of instants (page 89), whether the representation of each of the
delimiting instants is closed (contained in the period) or open (just outside the period). A closed-open
period representation, in which the end timestamp specifies the granule after the last granule of the
period, is preferable (page 91). The time zone, if any, may be stored with the first instant (page 90).

Figure 11.3: A nontemporal crow's-feet schema.

There are six user-defined time columns: LOT.PROJ-CLOSEOUT, of type DATE;. BKP YEAR_MONTH, of
type CHAR (since SQL-92 has no instant type of a MONTH granularity); BKP.PROCESSED, of type
DATE; and the last three LAST_DATE_MOD columns in BKP, of type DATE.

Entity Lifespans
To each table corresponding to an entity type for which the lifespan, or valid time of an associated
attribute, is captured (page 114), there are two alternatives for time-stamps. One possibility is a single
time specifying (1) when the entity occurred, if it is instantaneous, (2) when the entity's lifespan began, if
the entity has duration, or (3) when an attribute became valid. Another possibility is a period of validity
(page 116), generally represented with two instants, start and end. If the entity's lifespan consists of
several disjoint periods, or if attributes change values over time, a single entity will be mapped to
several rows in the corresponding table.
One entity type has a recorded lifespan: LOT. Hence, we add FROM_DATE and TO_DATE columns to
record the individual periods of that lifespan.

Code Fragment 11.1: LOT is a valid-time state table.

 - 329 -

ALTER TABLE LOT ADD COLUMN FROM_DATE DATE

ALTER TABLE LOT ADD COLUMN TO_DATE DATE

Relationship Valid Time
Tip

For tables corresponding to entity and relationship types for which valid time is to
be recorded, add either a single instant timestamp column or a period timestamp,
represented with two instant timestamp columns.

To each table corresponding to a relationship type with a recorded valid-time extent or having
attribute(s) whose valid time is recorded, we add either instant or period timestamps.
As indicated in Table 11.1, the valid time of three relationship types, LOCATION, MOVE, and
MASS_TRTMNT, is recorded. The LOCATION relationships have a temporal duration; relationships of
the other two relationship types are instantaneous.
The LOT_LOC table has an interesting timestamp, consisting of four (!) columns: FROM_DATE,
FROM_MOVE_ORDER, TO_DATE, and TO_MOVE_ORDER. Recall that cattle can be moved twice (or more)
in a day; the move order differentiates these moves.

Code Fragment 11.2: LOT_LOC is a valid-time state table.

ALTER TABLE LOT_LOC ADD COLUMN FROM_DATE DATE

ALTER TABLE LOT_LOC ADD COLUMN FROM_MOVE_ORDER INT

ALTER TABLE LOT_LOC ADD COLUMN TO_DATE DATE

ALTER TABLE LOT_LOC ADD COLUMN TO_MOVE_ORDER INT

For instantaneous relationship types, an instant timestamp is added to the associated table. For the
LOT_MOVE table, we add AT_DATE and AT_MOVE_ORDER.

Code Fragment 11.3: LOT_MOVE is a valid-time event table.

ALTER TABLE LOT_MOVE ADD COLUMN AT_DATE DATE

ALTER TABLE LOT_MOVE ADD COLUMN AT_MOVE_ORDER INT

Code Fragment 11.4: MASS_TRTMNT is a valid-time event table.

ALTER TABLE MASS_TRTMNT ADD COLUMN AT_DATE DATE

 - 330 -

Valid Time of Attributes
All attributes have a valid time; sometimes this time is recorded. If so, it is associated with a granularity.
If the lifespan of the associated entity or the valid time of the associated relationship is not recorded, the
time-varying columns should be placed in a separate table, along with the primary key of the original
table, which also serves as a foreign key to that table. This task is termed temporal support
decomposition. Fortunately, the only time-varying attributes listed in Table 11.2 are those associated
with the LOT and LOCATION entity types, both of which have a recorded valid time.
Symmetrically, if this time is recorded, but the valid time of an attribute is not recorded, it may be useful
to put that column in a separate table, with a foreign key referencing the original, time-varying table.

Tip Decompose tables so that all attributes of a table have an identical temporal
support and precision.

Another rub occurs when the granularity of the attribute is finer than that of the entity or relationship type
to which the attribute is attached. In such situations, there are two possible paths. Either we can change
the granularity of the associated table to that of the column (say, from YEAR to DAY), or we can break
off those columns(s) into a separate table, termed precision decomposition. The attributes of the LOT
entity type all have the same granularity (DAY) as LOT itself; the Hd_Cnt attribute of LOCATION has a
granularity of DAY, which is coarser than the granularity (Sub-DAY) of the associated relationship type.

Our analysis thus indicates that neither flavor of decomposition applies to this schema.

Transaction Time
For each table associated with an entity or relationship type for whose transaction-time periods are
recorded, or that is associated with attribute(s) whose transaction-time periods are recorded (page 249),
there are two basic alternatives: instant-stamped or period-stamped tables.

For an instant-stamped table, the choices are a tracking log, a restricted backlog, or a general backlog.
A tracking log is a transaction-time table that retains the original, snapshot table (page 220). Its schema
comprises the columns of the monitored table, along with a single transaction timestamp column,
indicating when the transaction committed. The value of the timestamp column can never extend past
now (page 249). A backlog is a transaction-time table with an additional column, the operation, which
may be an insertion, a deletion, or an update (page 233). In some cases, a restricted backlog, with
insertions not recorded (page 220), is perfectly fine; in most other cases, it is best to go with the fully
general backlog, using after-images consistently (page 235).

Tip

For tables corresponding to entity and relationship types for which transaction time
is to be recorded, add either two timestamps denoting the period of presence or a
single transaction timestamp, optionally with an additional operation column, if the
table is to be a backlog.

The other alternative is a table with a period timestamp indicating the period of presence (page 254),
generally represented with two instants, start and end, specifying the period starting when the row was
inserted or updated and ending when the period was removed, as a side effect of a deletion or update.
For the LOT table, we use period timestamps, adding two columns of the appropriate granularity to the
associated tables. For the LOT_MOVE, LOT_LOC, and BKP tables, we use an instant timestamp,
specifically, a backlog containing after-images.

Code Fragment 11.5: LOT, LOT_MOVE, LOT_LOC, and BKP are transaction-time tables.

ALTER TABLE LOT ADD COLUMN START_DATE DATE

ALTER TABLE LOT ADD COLUMN STOP_DATE DATE

ALTER TABLE LOT_MOVE ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE LOT_MOVE ADD COLUMN OPERATION CHAR(1)

ALTER TABLE LOT_LOC ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE LOT_LOC ADD COLUMN OPERATION CHAR(1)

 - 331 -

ALTER TABLE BKP ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE BKP ADD COLUMN OPERATION CHAR(1)

As the LOT, LOT_MOVE, and LOT_LOC tables already had valid timestamps, adding transaction-time
support renders them bitemporal (page 279).

Tip Transaction-time support may induce additional temporal support decomposition.

As with valid time, we must also consider temporal support decomposition. Basically, the tables should
be decomposed until the temporal support (which includes the details of whether valid time is recorded,
whether transaction time is recorded, and the granularity of each) of all attributes is identical.
There is one place in this schema where temporal decomposition is indicated. Most of the attributes in
LOT are bitemporal, but BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO, because they were
obtained from the CONTAINS relationship type, which records only transaction time, do not vary in valid
time, and thus differ from the other attributes in that table in their temporal support. We move those
attributes to a separate table, LOT_CONTAINS, include the primary key of LOT, and transfer the foreign
keys involving these attributes to LOT_CONTAINS. Finally, we make LOT_CONTAINS a backlog.

Code Fragment 11.6: Move the BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO columns into a
separate backlog table.

ALTER TABLE LOT DROP COLUMN BKP_ID

ALTER TABLE LOT DROP COLUMN A_NAME

ALTER TABLE LOT DROP COLUMN DBF_NAME

ALTER TABLE LOT DROP COLUMN DBF_UPDATE_RECNO

CREATE TABLE LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,

 DBF_NAME, DBF_UPDATE_RECNO,

 WHEN_CHANGED DATE, OPERATION CHAR(1),

 PRIMARY KEY (FDYD_ID, LOT_ID_NUM),

 FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT,

 FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP,

 FOREIGN KEY (A_NAME, DBF_FILE) REFERENCES DBF_FILE

)

Primary Keys

Primary keys are handled differently for valid-time, transaction-time, and bitemporal tables, which we'll
consider in order.

 - 332 -

If the entity (or relationship) type captures neither valid nor transaction time, the primary key remains as
specified in the initial logical schema. This case applies to the FDYD, PEN, APPLICATION, and
DBF_FILE tables in Figure 11.2 on page 357.

For entity types, we previously differentiated instantaneous entity types from entity types that have a
temporal duration. All of these aspects will come into play when determining precisely what comprises
the primary and foreign keys for the tables, as well as what additional assertions are required to
correctly reflect the ER schema as tables.

Tip A valid-time sequenced primary key may require an assertion and an additional
surrogate identifier column; there are three cases.

Integrity constraints (ICs) for valid-time tables can be classified according to whether they apply to the
current state, termed a current IC (page 123); apply to each point in time independently, termed a
sequenced IC (page 118); or apply to the table treating the timestamp as just another column(s), termed
a nonsequenced IC (page 123).

It is easy to confound keys in the conceptual ER schema with keys in the logical relational schema. To
keep them straight, we strictly follow the terminological convention of referring to conceptual keys
without the adjectives "primary" or "foreign" (e.g., the key of the LOT entity type)

The Bulova Accutron

This watch advanced chronometry in two ways when it was introduced in 1960: it guaranteed a
precision of at least a minute a month (2 seconds a day), and ensured that this guarantee would hold
over the life of the watch. Previous watches, even if they started out with high precision, gradually
became less accurate due to wear and the changing viscosity of the lubrication between moving parts.
The Accutron did not use a pendulum to regulate an uncoiling spring; rather, it used the vibrations of
an electrically driven tuning fork to advance the hands. This fork vibrated at 360 Hz, which moved a
tiny arm back and forth, turning a miniscule ratchet wheel with 300 microscopic teeth, each separated
from the next by a distance of 0.001 inch. Due to the very small forces involved, there is no wear, and
since there is no oil at the tuning fork, the watch will hold its rate far better than a lubricated timepiece.
The drawback is the difficulty of repair; Bulova provides microscope kits for this purpose.

and to logical keys with "primary" or "foreign" adjectives (e.g., the primary key of the LOT table). Also,
logical keys may be current, sequenced, or nonsequenced, but conceptual keys never are.

The primary key of a table associated with an entity or relationship type capturing its valid-time extent is
a sequenced primary key.

We have three cases to consider:

Case 1: The entity or relationship type is instantaneous and the valid-time instant is recorded.
A particular entity could occur at multiple points in time. A sequenced primary key constraint is
required, but is especially easy to state for instantaneous entities and relationships: the timestamp
column is added to the primary key of the associated table. This case applies to the MASS_TRTMNT
table.

 - 333 -

Case 2: The entity type has lifespan with duration, and the lifespan is recorded.
An entity whose lifespan has duration raises the question of how to identify that two rows, with
different primary key values, are associated with the same entity. The approach is to add a new
column, a surrogate identifier column, to the table, which then constitutes a time-invariant key, even as
the original key varies over time. (As we'll see on page 378, sometimes the surrogate identifier column
is not required.)
The surrogate identifier column should be made the sequenced primary key of the table. Such keys
cannot be expressed solely using SQL-92's PRIMARY KEY construct (page 117). Adding the start
time of the timestamp of the row, or the end time, or both, does not serve to convert a nontemporal
key to a sequenced key (page 118). Instead, a sequenced primary key can be expressed as an SQL
assertion or table constraint (page 118); to keep SQL happy, we also add FROM_DATE to the declared
primary key.

Two other changes are required: (a) add an assertion stating that the combination of the surrogate
column and the original primary key is sequenced unique, and (b) replace all foreign keys referencing
this table with the new surrogate column. This case is not present in the example schema.

Case 3: The relationship type has a valid-time extent, which is recorded.
The original primary key on the valid-time state table should be interpreted as a sequenced primary
key, which can be expressed as an SQL assertion or table constraint (page 118); we also add
FROM_DATE to the declared primary key. This case is not present.

Code Fragment 11.7: MASS_TRTMNT's primary key is valid-time sequenced.

ALTER TABLE MASS_TRTMNT DROP PRIMARY KEY

ALTER TABLE MASS_TRTMNT

 ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM, PEN_ID, AT_DATE)

Tip The WHEN_CHANGED column should be added to the primary key of
transaction-time tables to effect a current, and thus sequenced, primary key.

 - 334 -

For transaction-time tables, things are a little easier because instantaneous tables are not possible. The
original primary key on the table should be interpreted as a transaction-time sequenced primary key. As
contrasted with valid time, such keys can be expressed solely using SQL-92's PRIMARY KEY
construct, by simply adding the STOP_DATE column, which serves to convert the original key to a
current key, which is equivalent to a sequenced key in the case of a transaction-time table (page 254).
BKP and LOT_CONTAINS are transaction-time tables.

Code Fragment 11.8: The primary key of BKP and LOT_CONTAINS is transaction-time sequenced.

ALTER TABLE BKP DROP PRIMARY KEY

ALTER TABLE BKP ADD PRIMARY KEY (FDYD_ID, BKP_ID, WHEN_CHANGED)

ALTER TABLE LOT_CONTAINS DROP PRIMARY KEY

ALTER TABLE LOT_CONTAINS PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

 WHEN_CHANGED)

For bitemporal tables, things get more interesting because the two kinds of time must be considered
simultaneously. Fortunately, the alternatives combine in the predictable way.

Tip There are three cases for the primary key of bitemporal tables, mirroring those for
valid-time tables.

This schema includes three bitemporal tables, LOT, LOT_LOC, and LOT_MOVE. The first is associated
with an entity type, and the other two are associated with relationship types. The first two have a valid-
time extent, and the third is instantaneous.
The LOT entity type has a recorded lifespan, so we use the second case for valid time to state that the
LOT primary key is valid-time sequenced/transaction-time sequenced. Again, we implement transaction-
time sequenced with transaction-time current. As will be discussed on page 378, for LOT it turns out that
the surrogate identifier column is not required, so we don't include it here.

Code Fragment 11.9: LOT has a valid-time sequenced/transaction-time sequenced primary key of
(FDYD_ID, LOT_ID_NUM).

ALTER TABLE LOT DROP PRIMARY KEY (FDYD_ID, LOT_ID_NUM)

ALTER TABLE LOT ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

 FROM_DATE, STOP_DATE)

CREATE ASSERTION LOT_seq_seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM LOT AS L1

 - 335 -

 WHERE L1.STOP_DATE = DATE '9999-12-31'

 AND 1 < (SELECT COUNT(*)

 FROM LOT AS L2

 WHERE L1.FDYD_ID = L2.FDYD_ID

 AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

 AND L1.FROM_DATE < L2.TO_DATE

 AND L2.FROM_DATE < L1.TO_DATE

 AND L2.STOP_DATE = DATE '9999-12-31'))

)

MOVE is an instantaneous relationship type, and thus utilizes the first case for valid time. We need only
add the valid and transaction timestamps to the primary key.

Code Fragment 11.10: LOT_MOVE has a valid-time sequenced/transaction-time sequenced primary
key of (FDYD_ID, LOT_ID_NUM, FROM_PEN_ID, TO_PEN_ID).

ALTER TABLE LOT_MOVE DROP PRIMARY KEY

ALTER TABLE LOT_MOVE ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

 FROM_PEN_ID, TO_PEN_ID, AT_DATE, AT_MOVE_ORDER,

 WHEN_CHANGED)

Tip

For
tran
sacti
on-
time
tabl
es
impl
eme
nted
as
back
logs,
only
the
last
inse
rt or
upd
ate

 - 336 -

entr
y is
rele
vant
.

Finally, the key for LOT_LOC, being associated with a noninstantaneous relationship type, utilizes the
last case for valid time, resulting in a valid-time sequenced/transaction-time sequenced primary key.
However, because LOT_LOC is implemented as a backlog, rather than as a transaction-time state table,
we can't simply check for a STOP_DATE of "forever." Instead, we must use the last relevant entry in the
backlog that is an insert or an update entry.

Code Fragment 11.11: LOT_LOC has a valid-time sequenced/transaction-time sequenced primary key
of (FDYD_ID, LOT_ID_NUM, PEN_ID).

ALTER TABLE LOT_LOC DROP PRIMARY KEY (FDYD_ID, LOT_ID_NUM, PEN_ID)

ALTER TABLE LOT_LOC ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

 PEN_ID, FROM_DATE, WHEN_CHANGED)

CREATE ASSERTION LOT_LOC_seq_seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM LOT_LOC AS L1
 -- L1 is the last insert or update entry
 WHERE (L1.OPERATION = 'I' OR L1.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM LOT_LOC AS L3
 WHERE L3.FDYD_ID = L1.FDYD_ID
 AND L3.LOT_ID_NUM = L1.LOT_ID_NUM
 AND L3.PEN_ID = L1.PEN_ID
 AND L3.WHEN_CHANGED > L1.WHEN_CHANGED)
 AND 1 < (SELECT COUNT(*)
 FROM LOT_LOC AS L2
 WHERE L1.FDYD_ID = L2.FDYD_ID
 AND L1.LOT_ID_NUM = L2.LOT_ID_NUM
 AND L1.PEN_ID = L2.PEN_ID
 AND L1.FROM_DATE < L2.TO_DATE
 AND L2.FROM_DATE < L1.TO_DATE
 -- L2 is the last insert or update entry
 AND (L2.OPERATION = 'I' OR L2.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM LOT_LOC AS L3
 WHERE L3.FDYD_ID = L2.FDYD_ID
 AND L3.LOT_ID_NUM = L2.LOT_ID_NUM
 AND L3.PEN_ID = L2.PEN_ID
 AND L3.WHEN_CHANGED > L2.WHEN_CHANGED)))
)

 - 337 -

Referential Integrity
There are 17 foreign keys specified in Figure 11.2: 7 for the one-to-many binary relationship types, 2 for
the many-to-many LOCATION relationship type, 3 for the MASS_TRTMNT ternary relationship type,
and 5 for the quintary MOVE relationship type. The LOT_CONTAINS table also comes with a foreign key
(CF-11.6).

Tip If the referenced table is nontemporal, the original foreign key constraints may by
retained.

The original foreign key constraints work fine if the referenced table is nontemporal (assuming that a
nontemporal table contains time-invariant data (page 126), which is the common assumption). Most
relationship types here are nontemporal, and so the associated referential integrity constraints specified
before can remain. Similarly, foreign keys referencing nontemporal tables are fine as is. We're thus
satisfied with LOT → FDYD, LOT_CONTAINS → DBF_FILE, PEN → FDYD, DBF_FILE →
APPLICATION, BKP → FDYD, LOT_MOVE → PEN (two referential integrity constraints), LOT_MOVE →
DBF_FILE, LOT_LOC → PEN, and MASS_TRTMNT → PEN.

Tip Referential integrity on valid-time tables should be expressed as a sequenced
constraint.

There are six variants of temporal integrity constraints (page 326). However, for referential integrity, the
valid-time sequenced variety is generally indicated. If both tables are valid-time tables, then an assertion
is required, either on the referencing table individually (page 128), or on the referenced table stating that
the histories are contiguous and on the referenced table stating that the history is contained in that of
the referenced table (page 129). Ensuring the histories are contiguous can be done by filling the gaps in
the referenced table (page 180).

No foreign key constraints here apply to valid-time tables.
If both tables are transaction-time tables, transaction-time current constraints suffice, which can be
implemented by adding the STOP_DATE to the foreign key (page 254). This also works for LOT_MOVE →
BKP; since LOT_MOVE is valid timestamped with an instant, we can ignore the valid time in the
referential integrity constraint.

Code Fragment 11.12: (LOT_MOVE.FDYD_ID, LOT_MOVE.BKP_ID) is a nonsequenced/current foreign
key for BKP.

ALTER TABLE LOT_MOVE DROP FOREIGN KEY (FDYD_ID, BKP_ID)

 REFERENCES BKP

ALTER TABLE LOT_MOVE ADD FOREIGN KEY

 (FDYD_ID, BKP_ID, WHEN_CHANGED) REFERENCES BKP

If the referencing table is a nontemporal table (e.g., PEN → BKP), then the most recent transaction-time
state should be used. As BKP is a backlog, we employ the trick of CF-11.11 of using the last entry (or
entries) in the backlog that is an insert or an update entry.

Code Fragment 11.13: (PEN.FDYD_ID, PEN.BKP_ID) is a transaction-time current foreign key for BKP.

ALTER TABLE PEN DROP FOREIGN KEY (FDYD_ID, BKP_ID)

 REFERENCES BKP

CREATE ASSERTION PEN__Current_Referential_Integrity

 - 338 -

CHECK (NOT EXISTS (

 SELECT *

 FROM PEN AS P

 WHERE NOT EXISTS (

 SELECT *

 FROM BKP AS B

 WHERE P.FDYD_ID = B.FDYD_ID

 AND P.BKP_ID = B.BKP_ID

 AND (B.OPERATION = 'I' OR B.OPERATION = 'U')

 AND NOT EXISTS (

 SELECT *

 FROM BKP AS B2

 WHERE B2.FDYD_ID = B.FDYD_ID

 AND B2.BKP_ID = BKP._ID

 AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))

)

For a valid-time table referencing a transaction-time table, a current/current constraint is appropriate. In
the case of MASS_TRTMNT → BKP, the referencing table is an instant-stamped table, so we use a valid-
time nonsequenced constraint, simply ignoring the valid time.

Code Fragment 11.14: (MASS_TRTMNT.FDYD_ID, MASS_TRTMNT.BKP_ID) is a nonsequenced/current
foreign key for BKP.

ALTER TABLE MASS_TRTMNT DROP FOREIGN KEY (FDYD_ID, BKP_ID)

 REFERENCES BKP

CREATE ASSERTION MASS_TRTMNT__Curr_Curr_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM MASS_TRTMNT AS M

 WHERE NOT EXISTS (

 SELECT *

 - 339 -

 FROM BKP AS B

 WHERE M.FDYD_ID = B.FDYD_ID

 AND M.BKP_ID = B.BKP_ID

 AND (B.OPERATION = 'I' OR B.OPERATION = 'U')

 AND NOT EXISTS (

 SELECT *

 FROM BKP AS B2

 WHERE B2.FDYD_ID = B.FDYD_ID

 AND B2.BKP_ID = B.BKP_ID

 AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))

)

Tip

For foreign keys referencing bitemporal tables, if the referencing table supports
transaction time, use a transaction-time current constraint. If the referencing table is
instant-stamped in valid time, simply ignore the valid time.

For foreign keys involving bitemporal tables, we use an assertion to ensure that the foreign key is valid-
time sequenced, on the current state of the two tables (page 329), with variations if one of the two
tables doesn't have valid-time or transaction-time support, or if one or both of the tables is associated
with an instantaneous entity or relationship type.
For this schema, we need to consider the referential integrity constraints in Table 11.1 that arise from
the time-varying MOVE, LOCATION, and MASS_TRTMNT relationship types. However, only the LOT
participating entity type has a recorded lifespan, so we are left with five foreign key constraints to
consider further: LOT_CONTAINS → BKP, LOT_MOVE → LOT, LOT_LOC → LOT, MASS_TRTMNT →
LOT, and LOT_CONTAINS → LOT.
To specify a sequenced/current foreign key constraint between two bitemporal tables, we augment the
valid-time sequenced referential integrity assertion with a predicate selecting the currently valid
information. For LOT, this translates to checking for a STOP_DATE of "forever." For LOT_LOC, which is a
backlog containing after-images, we use the last entry trick.

Code Fragment 11.15: (LOT_LOC. FDYD_ID, LOT_LOC. LOT_ID_NUM) is a sequenced/current foreign
key for LOT.

ALTER TABLE LOT_LOC DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

 REFERENCES LOT

CREATE ASSERTION LOT_LOC_Seq_Current_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM LOT_LOC AS LL
 -- LL is one of the last entries

 - 340 -

 WHERE (LL.OPERATION = 'I' OR LL.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM LOT_LOC AS L3

 WHERE L3.FDYD_ID = LL.FDYD_ID
 AND L3.LOT_ID_NUM = LL.LOT_ID_NUM
 AND L3.PEN_ID = LL.PEN_ID
 AND L3.WHEN_CHANGED > LL.WHEN_CHANGED)
 AND (NOT EXISTS (
 SELECT *
 FROM LOT AS L
 WHERE LL.FDYD_ID = L.FDYD_ID
 AND LL.LOT_ID_NUM = L.LOT_ID_NUM
 AND L.STOP_DATE = DATE '9999-12-31'
 AND L.FROM_DATE <= LL.FROM_DATE
 AND LL.FROM_DATE < L.TO_DATE)
 OR NOT EXISTS (
 SELECT *
 FROM LOT AS L
 WHERE LL.FDYD_ID = L.FDYD_ID
 AND LL.LOT_ID_NUM = L.LOT_ID_NUM
 AND L.STOP_DATE = DATE '9999-12-31'
 AND L.FROM_DATE < LL.TO_DATE
 AND LL.TO_DATE <= L.TO_DATE
 OR EXISTS (SELECT *
 FROM LOT AS L
 WHERE LL.FDYD_ID = L.FDYD_ID
 AND LL.LOT_ID_NUM = L.LOT_ID_NUM
 AND L.STOP_DATE = DATE '9999-12-31'
 AND LL.FROM_DATE < L.TO_DATE
 AND L.TO_DATE < LL.TO_DATE
 AND NOT EXISTS (
 SELECT *
 FROM LOT AS L2
 WHERE L2.FDYD_ID = L.FDYD_ID
 AND L2.LOT_ID_NUM = L.LOT_ID_NUM
 AND L2.STOP_DATE = DATE '9999-12-31'
 AND L2.FROM_DATE <= L.TO_DATE
 AND L.TO_DATE < L2.TO_DATE)))
))

The LOT_CONTAINS table is a transaction-time table with a foreign key to LOT. For transaction time we
need only consider the most recent additions to the table, so this can be implemented as a transaction-
time current foreign key. Since LOT also records valid time, we utilize the current valid-time state.

Code Fragment 11.16: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. LOT_ID_NUM) is a current/
current foreign key for LOT.

ALTER TABLE LOT_CONTAINS DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

 REFERENCES LOT

CREATE ASSERTION LOT_CONTAINS_Current_Current_Referential_Integrity

CHECK (NOT EXISTS (

 - 341 -

 SELECT *

 FROM LOT_CONTAINS AS C

 WHERE (C.OPERATION = 'I' OR C.OPERATION = 'U')

 AND NOT EXISTS (

 SELECT *

 FROM LOT_CONTAINS AS C2

 WHERE C2.FDYD_ID = C.FDYD_ID

 AND C2.LOT_ID_NUM = C.LOT_ID_NUM

 AND C2.WHEN_CHANGED > C.WHEN_CHANGED)

 AND NOT EXISTS (

 SELECT *

 FROM LOT AS L

 WHERE C.FDYD_ID = L.FDYD_ID

 AND C.LOT_ID_NUM = L.LOT_ID_NUM

 AND L.STOP_DATE = DATE '9999-12-31'

 AND L.FROM_DATE <= CURRENT_DATE

 AND CURRENT_DATE < L.TO_DATE))

)

For LOT_CONTAINS → BKP, both the referencing and referenced tables are transaction-time tables.
This translates into a transaction-time current integrity constraint. As both tables are backlogs, we need
to get the most recent entry from each.

Code Fragment 11.17: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. BKP_ID) is a transaction-time
current foreign key for BKP.

ALTER TABLE LOT_CONTAINS DROP FOREIGN KEY (FDYD_ID, BKP_ID)

 REFERENCES BKP

CREATE ASSERTION LOT_CONTAINS_Current_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM LOT_CONTAINS AS C
 -- C is the last relevant entry

 - 342 -

 WHERE (C.OPERATION = 'I' OR C.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *

 FROM LOT_CONTAINS AS C2
 WHERE C2. FDYD_ID = C. FDYD_ID
 AND C2.LOT_ID_NUM = C.LOT_ID_NUM
 AND C2.WHEN_CHANGED > C.WHEN_CHANGED)
 -- There is not a match for C in BKP
 AND NOT EXISTS (
 SELECT *
 FROM BKP AS B
 WHERE B.FDYD_ID = C.FDYD_ID
 AND B.BKP_ID = C.BKP_ID
 -- B is the last relevant entry
 AND (B.OPERATION = 'I' OR B.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM BKP AS B2
 WHERE B2.FDYD_ID = B.FDYD_ID
 AND B2.BKP_ID = B.BKP_ID
 AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))
)

For a sequenced referential integrity constraint from an event table to a state table, each instant
timestamp in the referencing table must be contained in a period timestamp of the referenced table.

Code Fragment 11.18: (LOT-MOVE. FDYD-ID, LOT-MOVE. LOT-ID-NUM) is a sequenced/current
foreign key for LOT.

ALTER TABLE LOT_MOVE DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

 REFERENCES LOT

CREATE ASSERTION LOT_MOVE_Seq_Current_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 FROM LOT_MOVE AS M

 WHERE (M.OPERATION = 'I' OR M.OPERATION = 'U')

 AND NOT EXISTS (

 SELECT *

 FROM LOT_MOVE AS M2

 WHERE M2.FDYD_ID = M.FDYD_ID

 AND M2.LOT_ID_NUM = M.LOT_ID_NUM

 AND M2.FROM_PEN_ID = M.FROM_PEN_ID

 - 343 -

 AND M2.TO_PEN_ID = M.TO_PEN_ID

 AND M2.WHEN_CHANGED > M.WHEN_CHANGED)

 AND NOT EXISTS (

 SELECT *

 FROM LOT AS L

 WHERE M.FDYD_ID = L.FDYD_ID

 AND M.LOT_ID_NUM = L.LOT_ID_NUM

 AND L.STOP_DATE = DATE '9999-12-31'

 AND L.FROM_DATE <= M.AT_DATE

 AND M.AT_DATE < L.TO_DATE))

)

Tip

For
foreign
keys over
bitemporal
tables,
use
sequence
d/current
constraint
s.

This is shorter than CF-11.15 because for each row of LOT-MOVE, there need be only one row of LOT
whose period of validity contains the (instant) lifespan. In contrast, for each row of LOT-LOC, many rows
from LOT may coordinate to contain LOT-LOC's period of validity. In general, for foreign keys over
bitemporal tables, use sequenced/current constraints, unless one of the participating tables doesn't
include valid-or transaction-time support or is associated with an instantaneous entity or relationship
type, in which case the assertion is simplified.
The final foreign key to consider, MASS-TRTMNT → LOT, is even simpler because MASS-TRTMNT does
not record transaction time.

Code Fragment 11.19: (MASS-TRTMNT. FDYD-ID, MASS-TRTMNT. LOT-ID-NUM) is a valid-time
sequenced foreign key for LOT.

ALTER TABLE MASS_TRTMNT DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

 REFERENCES LOT

CREATE ASSERTION MASS_TRTMNT_Seq_Referential_Integrity

CHECK (NOT EXISTS (

 SELECT *

 - 344 -

 FROM MASS_TRTMNT AS M

 WHERE NOT EXISTS (

 SELECT *

 FROM LOT AS L

 WHERE M.FDYD_ID = L.FDYD_ID

 AND M.LOT_ID_NUM = L.LOT_ID_NUM

 AND L.STOP_DATE = DATE '9999-12-31'

 AND L.FROM_DATE <= M.AT_DATE

 AND M.AT_DATE < L.TO_DATE))

)

We have now considered the implications of time-varying tables on all the foreign key constraints.

Uniqueness Constraints
The temporal analog of UNIQUE is sequenced uniqueness, which requires a table constraint (page
124). Other forms (current, value-equivalent, nonsequenced) are less useful, as they are more
representational than semantic (page 139).
FDYD_SHORT_NAME is unique. Since FDYD does not record valid time, the original UNIQUE statement
may be retained.
Concerning the LOT table, (FDYD_ID, LOT_ID_NUM, LOT_ID) is also unique. Since this relation is
bitemporal, this corresponds to sequenced/current uniqueness, which requires an assertion.

Code Fragment 11.20: (LOT. FDYD_ID, LOT. LOT_ID) is sequenced/current unique.

ALTER TABLE LOT DROP UNIQUE (FDYD_ID, LOT_ID)

ALTER TABLE LOT ADD ASSERTION LOT_ID_Seq_Curr_UNIQUE

CHECK (NOT EXISTS (SELECT *

 FROM LOT AS L1

 WHERE L1.STOP_DATE = DATE '9999-12-31'

 AND 1 < (SELECT COUNT(*)

 FROM LOT AS L2

 WHERE L1.FDYD_ID = L2.FDYD_ID

 WHERE L1.LOT_ID = L2.LOT_ID

 WHERE L1.LOT_ID_NUM = L2.LOT_ID_NUM

 AND L2.STOP_DATE = DATE '9999-12-31'

 - 345 -

 AND L1.FROM_DATE < L2.TO_DATE

 AND L2.FROM_DATE < L1.TO_DATE))

)
11.4 PHYSICAL DESIGN
There is a sharp line between logical and physical design: logical design concerns preserving the
semantics of the application as expressed in the ER schema, and physical design concerns ensuring
efficient execution of application queries and modifications. Physical design should properly be done
after logical design, so that efficiency considerations do not muddy the semantics.

Conventional physical design involves specifying indexes and storage structures, and perhaps
decomposing tables or merging tables. That some tables are timevarying adds temporal partitioning to
this phase of the design.
Tables with a valid-time extent can be temporally partitioned into a current store containing only current
information and a history store storing data that became invalid before "now" (page 206).

Crystal Clocks
The longer the pendulum, or the longer the coiled spring, the more accurate the clock. However,
physical constraints bound the achievable precision. The next advance exploited the "piezoelectric
effect" of a quartz crystal, which vibrates when an electronic current of the correct frequency is applied
to it. A quartz crystal can thereby replace the pendulum or hairspring as the resonator with a battery
and simple electronic circuit providing the energy. Although a quartz oscillator will drift with
temperature and with age, it is accurate to tenths of a second a day, due to its frequency of 32,768 Hz
versus 360 Hz in an Accutron. A crystal clock is also much easier to manufacture and, hence, has
sounded the death knell to mechanical watches.
While there are still mechanical watches being manufactured, the attraction is more nostalgic than
economic or desire for quality. Consumer Reports did a small experiment, comparing a $3 kid's quartz
watch against a $1200 Rolex Oyster Perpetual, a superb mechanical watch. Over 6 days, the kid's
watch lost 11 seconds, and the Rolex gained 22 seconds [41]. Mechanical clocks, and perhaps even
analog displays, will soon be museum curiosities, right next to slide rules and mercury thermometers.

The only valid-time table in this schema is MASS_TRTMNT, which is associated with an instantaneous
relationship, and thus cannot be temporally partitioned.
A transaction-time state table may be temporally partitioned into a current store, an archival store, and
possibly the monitored table itself (page 264). Sometimes the monitored table is best defined as a view,
generally on the current store; often the state table itself is defined as a view (page 268). If a full backlog
is used, the monitored table can be defined as a view on the tracking log (page 235).
The only transaction-time tables are BKP and LOT_CONTAINS, which we retain as audit logs.
A bitemporal state table can be temporally partitioned into a current store (current/current), a history
store (current in transaction time), and an archival store (not current in transaction time) (page 329). A
current store improves the performance of current/current queries, but is awkward to maintain (page
331). A history store will also result in good current/current retrieval performance and is much easier to
maintain (page 332). To reduce the space requirements of the archival store, it may be advantageous to
store just one transaction timestamp (page 334).
We have three bitemporal tables: LOT (a valid-time state/transaction-time state table), LOT_LOC (a
valid-time state/audit log table), and LOT_MOVE (a valid-time event/audit log table). Since most of the
queries will be over the valid-time history of cattle coresiding in pens, an appropriate partitioning of the
LOT table is a valid-time state/transaction-time current history store and a valid-time state/transaction-
time state archive, since disk space is not at a premium. We'll call the history table LOT and create a
new archive table, LOT_Archive.

Code Fragment 11.21: Partition LOT into a history store and an archival store.

 - 346 -

ALTER TABLE LOT DROP COLUMN STOP_DATE

CREATE TABLE LOT_Archive (FDYD_ID, LOT_ID_NUM, LOT_ID,

 GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT, VALID, OWNER,

 COMMENT, FROM_DATE, TO_DATE, START_DATE, STOP_DATE,

 PRIMARY KEY (FDYD_ID, LOT_ID_NUM, FROM_DATE, STOP_DATE)

)

CREATE ASSERTION LOT_Archive_seq_seq_primary_key

CHECK (NOT EXISTS (SELECT *

 FROM LOT_Archive AS L1

 WHERE L1.STOP_DATE = DATE '9999-12-31'

 AND 1 < (SELECT COUNT(*)

 FROM LOT_Archive AS L2

 WHERE L1.FDYD_ID = L2.FDYD_ID

 AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

 AND L1.FROM_DATE < L2.TO_DATE

 AND L2.FROM_DATE < L1.TO_DATE

 AND L2.STOP_DATE = DATE '9999-12-31'))

)

Foreign key assertions that reference LOT (CF-11.15, CF-11.16, CF-11.18,, CF-11.19) substantially
remain as they are, except that the WHERE condition
LOT.STOP_DATE = DATE '9999-12-31'

is no longer needed.
Since LOT_LOC and LOT_MOVE both have instant transaction timestamps, partitioning either into a
history store and an archival audit log is possible, but would not have a dramatic impact on integrity
constraints or queries.

11.5 ADVANCED DESIGN ASPECTS*
The time-varying nature adds a few further wrinkles that can be expressed as temporal annotations to
the conceptual schema and mapped to changes to SQL tables.

 - 347 -

11.5.1 Additional Temporal Annotations
We first list additional annotations that might be useful to include with the conceptual schema.

Time-Invariant Keys
In the nontemporal ER schema, the key of an entity type is assumed to identify an entity at each point in
time. We may want to express a stronger integrity constraint, such as that the (Feedyard_ID, Pen_ID)
value identifies a particular pen over all time. This is termed a time-invariant key. As all the keys in this
schema are nontemporal, they are automatically valid time-invariant.

Time-Invariant Uniqueness Constraints
In the nontemporal ER schema, the integrity constraints on individual attributes are assumed to hold at
each point in time. We may want to express a stronger integrity constraint, such as that the
Fdyd_Short_name for a particular feed yard is unique over all time. This is termed a time-invariant
uniqueness constraint, as it applies over the entire lifespan of the entity.

As another example, the LOT.Lot_ID attribute is also time-invariant unique. Lots enter the feed yard with
a Lot_ID value. Once that lot has left the feedyard, a subsequently arriving lot could be assigned the
same Lot_ID value; Lot_IDs are reused. So Brad generates a nonreusable Lot_ID_Num attribute to
uniquely identify the lot; this attribute is the partial key for the LOT entity type.
While Lot_IDs may be reused, for any given lot entity, the Lot_ID is unique over all time, termed time-
invariant unique.

Such constraints are not applicable to attributes associated with instantaneous entity and relationship
types.

Time-Invariant Participation Constraints
This notion of a time-invariant constraint also applies to participation constraints. Conventional
participation constraints are assumed to hold at any point in time. So, for example, each in_pen
relationship denotes a pen located in at most one (actually, exactly one) feed yard at any point in time,
and each location relationship denotes cattle from one lot residing in one or more pens, at any point in
time.

Tip

Some key, uniqueness, and participation constraints may hold over the entire
lifespan (or valid time) of the associated entity (or relationship) type, and are thus
designated as time-invariant

We may want to express a stronger participation constraint, such as that each pen is located in exactly
one feed yard over all time. If a particular pen is located in a particular feed yard at one point in time,
that pen will be located in that same feed yard at all other points of time during the lifespans of the pen
and feed yard. This is termed a time-invariant participation constraint. Such constraints are not
applicable to instantaneous relationship types.

Of the relationships in this schema, the LOCATION relationship type has a many-to-many participation
constraint applied over its valid-time extent, so this participation constraint is time-invariant. IN_PEN,
IN_LOT, IS_DESCRIBED_BY, CREATES, CONTAINS, DESCRIBES_PEN, and DESCRIBES_LOT are
nontemporal relationship types, and so their nontemporal participation constraints are also valid across
their lifespan. The MOVE and MASS_TRTMNT relationship types model instantaneous events.

Transaction Time-Invariant Constraints
As with valid time, we also consider whether the integrity constraints hold over the entire transaction-
time period.

Two of the entity types, LOT and BACKUP, have transaction-time support, so we must consider
whether we wish to record the values of their key attributes as they vary.

The (partial) key of the LOT entity, Lot_ID_Num, is generated when the data is loaded. As such, it
normally doesn't change, unless some data is later discovered to be dirty and subsequently corrected.
Hence, the Lot_ID_Num can possibly vary over transaction time.

The partial key for BACKUP, BKP_ID, is generated when the backup is taken, and so is invariant in
transaction time.

 - 348 -

Tip Also consider whether the key, uniqueness, and participation constraints hold over
the entire transaction-time extent.

No attribute listed in Table 11.5 is transaction time-invariant unique. While DESCRIBES_PEN and
DESCRIBES_LOT are many-to-one relationship types, they are both transaction time-invariant many-to-
many because a particular pen or lot entity can be described by several backup entities at different
transaction times. Similarly, the LOCATION, MOVE, and MASS_TRTMNT relationship types all have
transaction time-invariant participation constraints of many-to-many.

Temporal Specialization
Temporal specialization indicates whether the valid timestamp (or lifespan) and transaction timestamp
of an entity, relationship, or attribute are coupled. One entity type, LOT, is bitemporal; two relationship
types, MOVE and LOCATION, are also bitemporal.

Tip Classify each bitemporal entity and relationship type as fully general, retroactive,
degenerate, or postactive.

LOCATION is a fully general bitemporal relationship type (also termed nonspecialized). A transaction
changing the database—specifically, the location of a lot of cattle in a pen—can mention a valid time in
the past, if some information is being corrected, or in the future, if moves in the future are anticipated.
There is no a priori coupling between valid and transaction time for this relationship.
MOVE is a retroactive relationship type, denoting that the valid time is always before (or equal to) the
transaction time. Move records come directly from the feed yard FoxPro database, and thus concern the
past; no updates are possible to a particular move relationship once it has been recorded.
A degenerate entity type denotes that the beginning of the entity's lifespan exactly corresponds to the
beginning of the transaction time. Here, any change in the modeled reality is immediately recorded in
the database, so that the valid and transaction times exactly correspond.
A final temporal specialization is a postactive entity or relationship type, in which the valid time is always
after (or equal to) the transaction time: modifications all concern the future, recording something that will
later be true.

11.5.2 Applying Temporal Annotations
We map these annotations to SQL constructs.

Tip A transaction time-invariant sequenced primary key requires an assertion stating
that the periods associated with any particular key value are contiguous.

Time-Invariant Keys
If the key is valid time-invariant, a surrogate identifier column, as discussed on page 364, is not needed,
as for example with the LOT table.
To ensure that the key is transaction time-invariant, we add an assertion stating that the periods
associated with any particular key value are contiguous, which is a nonsequenced constraint (page
129).
That the primary key for BKP is transaction time-invariant requires checking for contiguity, which
fortunately is straightforward on a backlog: the most recent entry cannot be an insert entry that followed
a previous delete entry.

Code Fragment 11.22: BKP's primary key is contiguous.

CREATE ASSERTION BKP_Contiguous_History

CHECK (NOT EXISTS (

 SELECT *

 FROM BKP AS B, BKP AS B2

 WHERE B.WHEN_CHANGED < B2.WHEN_CHANGED

 AND B.FDYD_ID = B2.FDYD_ID AND B.BKP_ID = B2.BKP_ID

 AND B.OPERATION = 'D' AND B2.OPERATION = 'I'
 -- I is the last operation

 - 349 -

 AND NOT EXISTS (
 SELECT *
 FROM BKP AS B3
 WHERE B3.FDYD_ID = B.FDYD_ID AND B3.BKP_ID = B.BKP_ID
 AND B2.WHEN_CHANGED < B3.WHEN_CHANGED)
 -- There are no operations between the delete and the insert
 AND NOT EXISTS (
 SELECT *
 FROM BKP AS B3
 WHERE B3.FDYD_ID = B.FDYD_ID AND B3.BKP_ID = B.BKP_ID

Table 11.6: An excerpt of the LOT table.

… LOT_ID … FROM_DATE TO_DATE

… 17 … 1998-01-
01

1998-
03-23

… 19 … 1998-03-
23

1998-
04-01

… 19 … 1998-05-
12

9999-
12-31

 AND B.WHEN_CHANGED < B3.WHEN_CHANGED
 AND B3.WHEN_CHANGED < B2.WHEN_CHANGED))
)

Time-Invariant Uniqueness Constraints
Time-invariant uniqueness constraints can be specified only if there is a time-invariant primary key
available. Consider the excerpt of the LOT table shown in Table 11.6. Is LOT_ID time-invariant unique,
that is, having only one value over all time for a particular LOT entity?
It is impossible to tell whether the appearance of LOT_ID values of 17 and 19 are problematic without
knowing which rows are associated with which lots. So, in Table 11.7, we focus on the primary key of
the LOT table, (FDYD_ID, LOT_ID_NUM), which has already been specified as a time-invariant primary
key.

Tip Time-invariant uniqueness requires an assertion that the column(s) are unique
with respect to the time-invariant primary key.

We can now see that this instance violates the time-invariant uniqueness constraint for LOT_ID, as a
single lot, with a LOT_ID_NUM of 101, has two distinct values for the LOT_ID.
For (FDYD_ID, LOT_ID) to be time-invariant unique, it must be unique with respect to the time-invariant
primary key, (FDYD_ID, LOT_ID_NUM). So we replace the assertion in CF-11.20 with the following
assertion.

Code Fragment 11.23: (LOT.FDYD_ID, LOT.LOT_ID) is valid time-invariant unique.

ALTER TABLE LOT DROP ASSERTION LOT_ID_Seq_Curr_UNIQUE

ALTER TABLE LOT ADD ASSERTION LOT_ID_VT_Invariant_UNIQUE

CHECK (NOT EXISTS (SELECT *

 - 350 -

 FROM LOT AS L1

 WHERE 1 < (SELECT DISTINCT COUNT(LOT_ID)

 FROM LOT AS L2

 WHERE L1.FDYD_ID = L2.FDYD_ID

 AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

 AND L2.STOP_DATE = DATE '9999-12-31'))

)

Table 11.7: Focusing on the primary key.
FDYD_ID LOT_ID_NUM LOT_ID … FROM_DATE TO_DATE

1 101 17 … 1998-01-
01

1998-
03-23

1 101 19 … 1998-03-
23

1998-
04-01

1 799 19 … 1998-05-
12

9999-
12-31

Tip The valid-time start column may be dropped from a table corresponding to a
degenerate entity type.

Temporal Specialization
A degenerate entity type allows us to simplify the table(s) of that type. Since the beginning of the entity's
lifespan (FROM_DATE) exactly corresponds to the beginning of transaction time (START_DATE), we can
omit the latter column and replace all mention of it with the former column.

No tables in this schema are degenerate.

11.6 BENEFITS

Atomic Clocks
The cesium atom has a natural vibration at 9,192,631,770 Hz. If the driving frequency is just a little off
of that natural frequency of the atom, it doesn't resonate. Laboratory cesium oscillators keep time to
about one second in 370,000 years, or, alternatively, to about 3 microseconds per year.

Satellites in geosynchronous orbit contain atomic clocks and send out timing signals from them. Small
GPS (global positioning system) receivers use triangulation and the speed of light to calculate highly
accurate location data; such calculations depends heavily on a highly accurate clock.

 - 351 -

This case study provides empirical evidence of the efficacy of the design methodology followed in this
chapter. Brad spent several months designing an initial logical schema for the 55-odd tables of his
applications. He later then worked with the author to design tables following this methodology. The
result is a set of two logical schemas drawn from the same requirements, one developed using the
traditional approach, in which time is considered from the beginning, and the schema developed here, in
which time is considered only in the second stage of conceptual and logical design.

Brad feels that the latter design is preferable in several ways. In particular, when the methodology is
followed and temporal aspects are added later, rather than in the initial ER diagram, the following
benefits specific to this case study accrue:

 The ER diagram was simplified.
 The semantics of LOT_LOC was cleaned up considerably.
 The valid-time semantics of LOT was highlighted.
 We discovered during this analysis that LOT_LOC has a transaction-time component.
 The transaction-time semantics of BKP was emphasized.
 Several of the integrity constraints were corrected.
 Some of the nullable columns were rendered not nullable.
 Twenty-five columns were removed. One table and sixteen columns were added,

thereby somewhat simplifying the logical model.
 Queries are easier to express on the revised logical model.

Patience, in considering time later, is indeed a virtue.

11.7 APPLICATION DEVELOPMENT
We now briefly revisit the queries and modifications mentioned in Chapter 2, as a review of the
approaches discussed at length in the other case studies.

11.7.1 Queries
We can express any nontemporal query in the three variants, current, sequenced, and nonsequenced.
Note the correspondence between these variants.
Current queries are the temporal analog of nontemporal queries. They require a simple addition to the
WHERE clause (page 143).

Code Fragment 11.24: How many head of cattle from lot 219 in yard 1 are (currently) in each pen?

 SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

 AND TO_DATE = DATE '9999-12-31'

Sequenced queries, which are the "and when" analog of nontemporal queries, must be broken down
into their algebraic equivalents to be translated into SQL. Selection, projection, sorting, and union are
simple (page 145).

Code Fragment 11.25: Give the history of how many head of cattle from lot 219 in yard 1 were in each
pen.

SELECT PEN_ID, HD_CNT, FROM_DATE, TO_DATE

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

 - 352 -

Nonsequenced queries, which treat the timestamps as regular columns, are generally difficult to
express in English, but relatively straightforward to express in SQL on state tables.

Code Fragment 11.26: How many head of cattle from lot 219 in yard 1 were, at some time, in each
pen?

SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

We now turn to temporal joins. Consider the following nontemporal join query. The query involves a self-
join on the table, along with projection and selection. The first predicate ensures that we don't get
identical pairs; the second and third predicates test for coresidency.

Code Fragment 11.27: Which lots are coresident in a pen (nontemporal version)?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

The current version of this query on the temporal table is constructed by adding a currency predicate (a
TO_DATE of forever) for each correlation name in the FROM clause.

Code Fragment 11.28: Which lots are currently coresident in a pen?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

 AND L1.TO_DATE = DATE '9999-12-31'

 AND L2.TO_DATE = DATE '9999-12-31'

 - 353 -

As before, nonsequenced joins are easy to specify: just ignore the timestamp columns.
Code Fragment 11.29: Which lots were in the same pen, perhaps at different times?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

A sequenced join is challenging to express in SQL (page 151). We assume that the underlying table
contains no (sequenced) duplicates; that is, a lot can be in a pen at most once at any time.

Code Fragment 11.30: Give the history of lots being coresident in a pen.

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L1.FROM_DATE, L1.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

 AND L2.FROM_DATE <= L1.FROM_DATE

 AND L1.TO_DATE <= L2.TO_DATE

UNION

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L1.FROM_DATE, L2.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

 AND L1.FROM_DATE > L2.FROM_DATE

 AND L2.TO_DATE < L1.TO_DATE

 AND L1.FROM_DATE < L2.TO_DATE

UNION

 - 354 -

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L2.FROM_DATE, L1.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

 AND L2.FROM_DATE > L1.FROM_DATE

 AND L1.TO_DATE < L2.TO_DATE

 AND L2.FROM_DATE < L1.TO_DATE

UNION

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L2.FROM_DATE, L2.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

 AND L2.FROM_DATE >= L1.FROM_DATE

 AND L2.TO_DATE < = L1.TO_DATE

The SQL-92 CASE expression allows this query to be written as a single SELECT statement (page
152).

Code Fragment 11.31: Sequenced temporal join using CASE.

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID,

 CASE WHEN L1.FROM_DATE < L2.FROM_DATE

 THEN L1.FROM_DATE

 ELSE L2.FROM_DATE END,

 CASE WHEN L1.TO_DATE < L2.TO_DATE

 THEN L2.TO_DATE

 ELSE L1.TO_DATE END

FROM LOT_LOC AS L1. LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 - 355 -

 AND L1.PEN_ID = L2.PEN_ID

 AND (CASE WHEN L1.FROM_DATE < L2.FROM_DATE

 THEN L1.FROM_DATE

 ELSE L2. FROM_DATE END) <

 (CASE WHEN L1.TO_DATE < L2.TO_DATE

 THEN L2.TO_DATE

 ELSE L1.TO_DATE END)

Reconstructing the monitored table at a point in time is a simple query or view on a transaction-time
state table (compare with CF-9.7).

Code Fragment 11.32: Provide the state of the LOT_CONTAINS table on January 12,1998.

SELECT LOT_ID_NUM, BKP_ID, A_NAME, DBF_NAME, DBF_UPDATE_RECNO

FROM LOT_CONTAINS

WHERE START_TIME < = DATE '1998-01-12'

 AND DATE '1998-01-12' < STOP_DATE

We end with two queries on the bitemporal table LOT, one a sequenced/ nonsequenced query and one
a nonsequenced/nonsequenced query.

Code Fragment 11.33: Provide the history as best known on March 15,1998.

SELECT LOT_ID_NUM, GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT,

 VALID, OWNER, COMMENT

FROM LOT

WHERE START_TIME < = DATE '1998-03-15'

 AND DATE '1998-03-15' < STOP_DATE

Code Fragment 11.34: When were steerings scheduled (as opposed to being recorded after the fact)?

SELECT S.LOT_ID_NUM, S.FROM_DATE AS When_Scheduled,

 S.START_DATE AS When_Recorded

FROM LOT AS C, LOT AS S

 - 356 -

WHERE C.FDYD_ID = S.FDYD_ID

 AND C.LOT_ID_NUM = S.LOT_ID_NUM

 AND C.GNDR_CODE = 'c' AND S.GNDR_CODE = 's'

AND C.TO_DATE = S.FROM_DATE

AND S.START_DATE < S.FROM_DATE

11.7.2 Modifications
When one or more of the tables managed by a legacy application is rendered temporal, all of the
modifications must be converted to current modifications, whose period of applicability is "now" to
"forever" (page 216).
Modifications on bitemporal state tables are written in two stages. First, the modification is transformed
according to the valid-time semantics. Second, the resulting SQL statements are further transformed
according to the transaction-time semantics (page 286).
Current insertions are easy to code in SQL; the second transformation merely requires that the
transaction timestamp be included. We illustrate such an insertion on the LOT table. Recall that this
table is temporally partitioned into a history store (see CF-11.21), containing those rows with a
transaction-stop time of "forever," and an archival store, containing those rows with a transaction-stop
time before "now." We need not record a transaction-stop time in the LOT table because it is assumed
to be "forever."

Code Fragment 11.35: Lot 433 arrives today.

INSERT INTO LOT

VALUES (1, 433, 7, 'h', DATE '1998-12-15', 14533, 1, 'Empire', 'B', 2,

 CURRENT_DATE, DATE '9999-12-31', CURRENT_DATE)

A logical current deletion in the general scenario (page 183) is implemented as a physical update and a
physical delete. But because LOT has transaction-time support, the update and delete cause the
previous values to be retained in LOT_Archive. The update is transformed into moving the old value to
the archival store, thus retaining the new value in the history store. The delete is transformed into
moving the row to be deleted to the archival store.

Code Fragment 11.36: Lot 101 leaves the feed yard.

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 101

 AND TO_DATE >= CURRENT_DATE
 AND FROM_DATE < CURRENT_DATE

 - 357 -

UPDATE LOT
SET TO_DATE = CURRENT_DATE
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 101
 AND TO_DATE >= CURRENT_DATE
 AND FROM_DATE < CURRENT_DATE

--transformed deletion
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 101
 AND FROM_DATE > CURRENT_DATE

DELETE FROM LOT
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 101
 AND FROM_DATE > CURRENT_DATE

These two pairs of statements can be done in either order, as the rows they alter are disjoint, but the
insertion into the archival store should occur before the second statement of the pair.
In the general scenario, a logical current update is more complicated, as there may exist rows that start
in the future, as well as rows that end before "forever." For the former, only the GNDR_CODE need be
changed. For the latter, the TO_DATE must be retained on the inserted row. Compare with CF-7.11;
again, we transform a physical update into an update of the history store and an insertion into the
archival store, here, twice.

Code Fragment 11.37: The cattle in lot 799 are being steered today.

--transformed insertion
INSERT INTO LOT
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, 's', PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 CURRENT_DATE, DATE '9999-123-31', CURRENT_DATE
FROM LOT
WHERE FDYD_ID = 1

 AND LOT_ID_NUM = 799
 AND FROM_DATE <= CURRENT_DATE
 AND TO_DATE > CURRENT_DATE

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 799
 AND GNDR_CODE <> 's'
 AND FROM_DATE < CURRENT_DATE
 AND TO_DATE > CURRENT_DATE

UPDATE LOT
SET TO_DATE = CURRENT_DATE

 - 358 -

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 799
 AND GNDR_CODE <> 's'
 AND FROM_DATE < CURRENT_DATE
 AND TO_DATE > CURRENT_DATE

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 799
 AND FROM_DATE >= CURRENT_DATE

UPDATE LOT
SET GNDR_CODE = 's'
WHERE FDYD_ID = 1
 AND LOT_ID_NUM = 799
 AND FROM_DATE >= CURRENT_DATE

The last pair can appear anywhere, but the second and third statements must occur after the insertion.
This store grows monotonically.

Note that in a temporally partitioned store, only insertions are applied to the archival store.

A current modification applies from "now" to "forever." A sequenced modification generalizes this to
apply over a specified period, termed the period of applicability. This period could be in the past, in the
future, or overlap "now."
Most of the previous discussion applies to sequenced modifications, with CURRENT_DATE replaced
with the start of the period of applicability of the modification and DATE '9999-12-31' replaced with
the end of the period of applicability.
In a sequenced insertion, the application provides the period of applicability (page 188).

Code Fragment 11.38: Lot 426, a collection of heifers, was on the feed yard from March 26 to April 14.

INSERT INTO LOT

VALUES (1, 426, 7, 'h', DATE '1998-12-15', 14533, 1,'Empire', ' ',

 DATE '1998-03-26', DATE '1998-04-14', CURRENT_DATE)

Sequenced deletions (page 190) require a little more work because the period of applicability of the
deletion may end before the row ends. Recall that a current deletion in the general scenario is
implemented as an update for those currently valid rows, and a delete for periods starting in the future.
A sequenced deletion requires seven physical modifications. In the following deletion, the period of
applicability is DATE '1998-10-01' to DATE '1998-10-22'.

Code Fragment 11.39: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place (applied on a validtime version of LOT).

--transformed insertion
INSERT INTO LOT
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

 - 359 -

 IN_WEIGHT, VALID, OWNER, COMMENT,
 DATE '1998-10-22', TO_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
 AND FROM_DATE <= DATE '1998-10-01'
 AND TO_DATE > DATE '1998-10-22'

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
 AND FROM_DATE < DATE '1998-10-01'
 AND TO_DATE >= DATE '1998-10-01'

UPDATE LOT
SET TO_DATE = DATE '1998-10-01'
WHERE LOT_ID_NUM = 234
 AND FROM_DATE < DATE '1998-10-01'
 AND TO_DATE >= DATE '1998-10-01'

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
 AND FROM_DATE < DATE '1998-10-22'
 AND TO_DATE >= DATE '1998-10-22'

UPDATE LOT
SET FROM_DATE = DATE '1998-10-22'
WHERE LOT_ID_NUM = 234
 AND FROM_DATE < DATE '1998-10-22'
 AND TO_DATE >= DATE '1998-10-22'

--transformed deletion
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
 AND FROM_DATE >= DATE '1998-10-01'
 AND TO_DATE <= DATE '1998-10-22'

DELETE FROM LOT
WHERE LOT_ID_NUM = 234
 AND FROM_DATE >= DATE '1998-10-01'
 AND TO_DATE <= DATE '1998-10-22'

Updates are equivalent to a current deletion followed by a current insertion, and so can be implemented
that way, taking care to correlate these two modifications (pages 186 and 194). The first transformation
of a sequenced update yields two insertions and three updates; the second transformation explodes this
into eight statements. In the following sequenced update, the period of applicability is DATE '1998-03-
01' to DATE '1998-04-01'.

Code Fragment 11.40: The lot was steered only for the month of March.

 - 360 -

--transformed insertion
INSERT INTO LOT
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, DATE '1998-03-01', CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-03-01'
 AND TO_DATE > DATE '1998-03-01'

--transformed insertion
INSERT INTO LOT
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 DATE '1998-04-01', TO_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-04-01'
 AND TO_DATE > DATE '1998-04-01'

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-04-01'
 AND TO_DATE > DATE '1998-03-01'

UPDATE LOT
SET GNDR_CODE = 's'
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-04-01'
 AND TO_DATE > DATE '1998-03-01'

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 799

 AND FROM_DATE < DATE '1998-03-01'
 AND TO_DATE > DATE '1998-03-01'

UPDATE LOT
SET FROM_DATE = DATE '1998-03-01'
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-03-01'
 AND TO_DATE > DATE '1998-03-01'

--transformed update
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-04-01'

 - 361 -

 AND TO_DATE > DATE '1998-04-01'

UPDATE LOT
SET TO_DATE = DATE '1998-04-01'
WHERE LOT_ID_NUM = 799
 AND FROM_DATE < DATE '1998-04-01'
 AND TO_DATE > DATE '1998-04-01'

Nonsequenced modifications (page 197) are rare. They are generally easy to implement in SQL (since
they are representational in nature). As with constraints and queries, a nonsequenced modification
treats the timestamps identically to the other columns. A (nonsequenced/current) deletion turns into a
pair of statements that move the row to the archival store.

Code Fragment 11.41: Delete the records of lot 234 that have duration greater than three months.

--transformed deletion
INSERT INTO LOT_Archive
SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,
 IN_WEIGHT, VALID, OWNER, COMMENT,
 FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
 AND (TO_DATE-FROM_DATE MONTH) < INTERVAL '3' MONTH

DELETE FROM LOT
WHERE LOT_ID_NUM = 234
 AND (TO_DATE-FROM_DATE MONTH) > INTERVAL '3' MONTH

The current and sequenced deletions mention what happened in reality because they model changes.
The nonsequenced statement concerns the specific representation (deleting particular records).
Conversely, the associated SQL statements for the current and sequenced variants are much more
complex than that for the nonsequenced delete for the same reason: the latter is expressed in terms of
the representation.
The following is a current update on a transaction-time table implemented as a backlog (compare with
CF-9.6). All modifications on backlogs are implemented as insertions, with the operation code indicating
the type of modification.

Code Fragment 11.42: Correct the backup identifier for lot 433 to 37.

--transformed insertion
INSERT INTO LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,
 DBF_NAME, DBF_UPDATE_RECNO, WHEN_CHANGED, OPERATION)
SELECT FDYD_ID, LOT_ID, 37, A_NAME, DBF_NAME,
 DBF_UPDATE_RECNO, CURRENT_DATE, 'I'
FROM LOT_CONTAINS AS L
WHERE LOT_ID_NUM = 433
 AND (OPERATION = 'I' OR OPERATION = 'U')
 AND NOT EXISTS (SELECT *
 FROM LOT_CONTAINS AS L2
 WHERE L.FDYD_ID = L2.FDYD_ID
 AND L.LOT_ID_NUM = L2.LOT_ID_NUM
 AND L.WHEN_CHANGED < L2.WHEN_CHANGED)

--transformed deletion
INSERT INTO LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,
 DBF_NAME, DBF_UPDATE_RECNO, WHEN_CHANGED, OPERATION)

 - 362 -

SELECT FDYD_ID, LOT_ID, BKP_ID, A_NAME, DBF_NAME,
 DBF_UPDATE_RECNO, CURRENT_DATE, 'D'
FROM LOT_CONTAINS AS L
WHERE LOT_ID_NUM = 433
 AND BKP_ID <> 37
 AND (OPERATION = 'I' OR OPERATION = 'U')
 AND NOT EXISTS (SELECT *
 FROM LOT_CONTAINS AS L2
 WHERE L.FDYD_ID = L2.FDYD_ID
 AND L.LOT_ID_NUM = L2.LOT_ID_NUM
 AND L.BKP_ID = L2.BKP_ID
 AND L.WHEN_CHANGED < L2.WHEN_CHANGED)

We finish with a sequenced/current deletion on a bitemporal table (compare with CF-10.15).

Code Fragment 11.43: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place (applied on the bitemporal version of LOT).

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

 IN_WEIGHT, VALID, OWNER, COMMENT,

 DATE '1998-10-22', TO_DATE, CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM LOT

WHERE LOT_ID_NUM = 234

 AND FROM_DATE < DATE '1998-10-01'

 AND TO_DATE > DATE '1998-10-22'

 AND STOP_DATE = DATE '9999-12-31'

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

 IN_WEIGHT, VALID, OWNER, COMMENT,

 FROM_DATE, DATE '1998-10-01', CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM LOT

WHERE LOT_ID_NUM = 234

 AND FROM_DATE < DATE '1998-10-01'

 AND TO_DATE > DATE '1998-10-01'

 AND STOP_DATE = DATE '9999-12-31'

 - 363 -

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

WHERE LOT_ID_NUM = 234

 AND FROM_DATE < DATE '1998-10-01'

 AND TO_DATE > DATE '1998-10-01'

 AND STOP_DATE = DATE '9999-12-31'

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

 IN_WEIGHT, VALID, OWNER, COMMENT,

 DATE '1998-10-22', TO_DATE, CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM LOT

WHERE LOT_ID_NUM = 234

 AND FROM_DATE < DATE '1998-10-22'

 AND TO_DATE >= DATE '1998-10-22'

 AND STOP_DATE = DATE '9999-12-31'

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

WHERE LOT_ID_NUM = 234

 AND FROM_DATE < DATE '1998-10-22'

 AND TO_DATE >= DATE '1998-10-22'

 AND STOP_DATE = DATE '9999-12-31'

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

WHERE LOT_ID_NUM = 234

 AND FROM_DATE >= DATE '1998-10-01'

 AND TO_DATE <= DATE '1998-10-22'

 AND STOP_DATE = DATE '9999-12-31'

 - 364 -

11.8 IMPLEMENTATION CONSIDERATIONS
The CD-ROM contains all the code fragments in this chapter in Oracle8 Server. As in previous chapters,
assertions must be implemented as triggers.
As an example, CF-11.17 can be implemented by the following Oracle8 Server trigger.

Code Fragment 11.44: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. BKP_ID) is a transactiontime
current foreign key for BKP, in Oracle8.

CREATE TRIGGER LOT-CONTAINS_Cur_Ref_Integrity

BEFORE INSERT OR DELETE OR UPDATE ON LOT

DECLARE

 valid INTEGER;

BEGIN

 SELECT 1

 INTO valid

 FROM DUAL

 WHERE NOT EXISTS (

 SELECT *

 FROM LOT_CONTAINS L
 -- C is the last relevant entry
 WHERE (C.OPERATION = 'I' OR C.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM LOT_CONTAINS C2
 WHERE C2.FDYD_ID = C.FDYD_ID
 AND C2.LOT_ID_NUM = C.LOT_ID_NUM
 AND C2.WHEN_CHANGED > C.WHEN_CHANGED)
 -- There is not a match for C in BKP

 AND NOT EXISTS (
 SELECT *
 FROM BKP B
 WHERE B.FDYD_ID = C.FDYD_ID
 AND B.BKP_ID = C.BKP_ID
 -- B is the last relevant entry
 AND (B.OPERATION = 'I' OR B.OPERATION = 'U')
 AND NOT EXISTS (
 SELECT *
 FROM BKP B2
 WHERE B2.FDYD_ID = B.FDYD_ID
 AND B2.BKP_ID = B.BKP_ID
 AND B2.WHEN_CHANGED > B.WHEN_CHANGED)));

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20007,
 'FDYD_ID and BKP_ID violate current/current foreign key');
END;

 - 365 -

11.9 SUMMARY
We followed a five-step methodology in designing the feed yard application: (1) perform conceptual
design ignoring time, yielding a conventional ER schema, (2) add temporal annotations in prose, (3)
map the conventional ER schema into a logical SQL schema, (4) apply the temporal annotations,
modifying the logical schema along the way, and (5) finish with physical design, including temporal
partitioning. This approach moves consideration of temporal aspects from early in the design process to
much, much later. The methology includes a systematic evaluation of the temporal aspects of each
modeling construct, thereby breaking down the design task into answering (many) brief questions about
individual constructs. Brad characterizes the process as "effecting Descartes's reductionism without
losing sight of the whole." More pragmatically, initially ignoring time results in less convoluted ER
schemas, fewer errors introduced during logical design, and a deeper understanding of the application.

11.10 READINGS
This case study was discussed in two articles in the August and September 1998 issues of Database:
Programming and Design; the series has been collected in a technical report [88]. These articles
focused on sequenced queries and on modifications to the gender attribute.
Heidi Gregersen and Christian S. Jensen have surveyed the many temporal entityrelationship models
that have been proposed over the previous two decades [38]. Their model, the Time Extended EER
Model (TIMEER [37]), is particularly elegant; I borrowed heavily from their characterization in my
presentation in Section 11.2.2. TIMEER goes further, by proposing iconic indicators of the temporal
aspects specified in this chapter in prose. Their approach to mapping TimeER schemas to the relational
model [39] is the basis for the steps listed in Section 11.3.
Christian S. Jensen and the author have written a comprehensive treatise on temporal logical design
[55], as well as a more accessible example of these strategies [57], which informed the presentation of
Section 11.3.2.
The term lifespan was introduced by Manfred Klopprogge [62], time-invariant keys (TIKs) were first
mentioned by Shamkant Navathe and Rafi Ahmed [74], and the concept of temporal specialization was
advanced by Christian S. Jensen and the author [54].

David Landes discusses the alternative divisions puncta and ostenta [65]. He also summarizes the
history of timing races in sports events, which slowly transitioned from quarter-seconds (1864) to fifths,
to tenths (the 1932 Olympics), to hundredths of a second (the Olympics in the 1970s). "There are few
people outside the realm of organized religion who are as conservative as sports officials." As an
example, instruments capable of resolving hundredths of a second were introduced at the 1924 Paris
Olympic games, yet handheld mechanical watches continued to pick the winner until the 1960 games.
Handheld watches generally yielded faster races, as human judges had a tendency to jump the finish.

Harrison's marine clocks (H-1 through H-5) provide the central thread of Dava Sobel's masterful
account of the solving of what was considered the greatest scientific problem of the time [95]. This short
(184-page) and diminutive (13 cm × 20 cm) book, just slightly larger than H-4 itself, has just been
reissued as a lavish coffee-table edition [96], with illustrations located and selected by William
Andrewes, and has inspired a PBS science series, Lost at Sea: The Search for Longitude.

Chapter 12: Language Directions
OVERVIEW
The case studies in this book have amply demonstrated that SQL-92 does not look favorably upon time-
oriented applications. Even the most simple tasks, such as specifying a primary key or joining two
tables, become mired in complexity when time is introduced.

Fortunately, the clouds part at the horizon. A minor language extension proposed for SQL3 dramatically
simplifies coding such applications by providing support for periods, valid time, and transaction time. In
this chapter we rephrase the applications of previous chapters using these new constructs. That all can
be reimplemented in a single chapter is an indication of the reduction in code length and complexity
occasioned by these new constructs.

 - 366 -

Finally, we examine some public domain and commercial tools that ease the transition until temporal
support is directly incorporated into database systems.

The case studies have shown that expressing integrity constraints, queries, and modifications on time-
varying data in SQL is challenging. We now look to the future, examining enhancements to SQL that
bring temporal processing to the masses. With just a few additional concepts, SQL can as easily
express temporal queries as it does now for nontemporal queries.

12.1 SQL-92
Many knotty problems arise when we have to contend with time-varying data in SQL-92.

 Avoiding duplicates in a time-varying table requires an aggregate (CF-5.14) or a
complex trigger (e.g., CF-5.26).

 A simple 3-line join when applied to time-varying tables explodes to a 29-line query
consisting of four SELECT statements (CF-6.11) or a complex 23-line statement with
four CASE expressions (CF-6.12).

 A 3-line UPDATE of a time-varying table translates into five modification statements
totaling 27 lines (CF-7.18).

 Maintaining a tracking log requires several triggers comprising some three dozen lines
(CF-9.2).

 The same UPDATE of a bitemporal table translates into eight modification statements
totaling 58 lines (CF-10.17)!

In addition to being long, these statements are often highly convoluted, with multiple levels of correlated
subqueries. Clearly something is amiss.

12.2 SQL-92 LIMITATIONS
What is the source of this daunting complexity? While SQL-92 supports time-varying data through the
DATE, TIME, and TIMESTAMP data types, the language

Second
By definition, there are exactly 24 sidereal hours in a sidereal day, 60 sidereal minutes in a sidereal
hour, and 60 sidereal seconds in a sidereal minute. However, because the orbit and rotation of the
earth vary slightly, the duration of a sidereal second is not constant. So instead, astronomers use an
ephemeris second, which is a constant duration of time: 1/31,556,925.9747 of the period of the
tropical year between the vernal equinoxes of 1899 and 1900. While this may seem an odd definition,
the ephemeris second is actually the average value of a second calculated from astronomical
observations over the 18th and 19th centuries.
The advent of atomic clocks has provided another unit that is fixed for all practical purposes. In
October 1967, the atomic second was adopted as the fundamental unit of time (the SI second) by the
international standards community, thereby shifting the basis of time from celestial to quantum
mechanics. Specifically, the second in the International System of Weights and Measures was defined
to be 9,192,631,770 periods of the radiation emitted by the transition between two hyperfine states of
the cesium 133 atom in the ground state. On January 1, 1972, the atomic second became the
practical unit of time. The UTC clock runs just a little fast with respect to mean solar time, gaining
about a second a year. UTC is adjusted by applying leap seconds on January 1 or July 1 to keep UTC
within 0.7 seconds of solar time.

really has no notion of a time-varying table. SQL also has no concept of current or sequenced
constraints, queries, modifications, or views, nor of the critical distinction between valid time (modeling
the behavior of the enterprise in reality) and transaction time (capturing the evolution of the stored data).

 - 367 -

In our terminology, all that SQL supports is nonsequenced operations, which we saw were often the
least useful.

12.3 SQL3
All the time in the world

Climbs the walls, swells the doors

It goes flying out the window

All the time in the world …

These precious days we live through

Thrown away like tissue

I wish that I could give you all the time in the world

—Beth Nielsen Chapman and Bill Lloyd, "All the Time in the World"
At the heart of this book is the profound revelation that time is much more than just a column, and that
SQL-92 is abysmally deficient in the constructs it provides to express time-varying applications.
Fortunately, there are now specific proposals for temporal support in SQL3 that are being considered by
the standards committees (see Section 12.16) and are being incorporated into products by vendors.
This chapter will summarize these new SQL3 constructs and revisit the preceding case studies,
showing how these constructs greatly simplify writing SQL for time-varying applications. In the following,
when I mention an SQL3 construct, I am referring to the constructs introduced in proposals or already
present in the draft SQL3. I should emphasize that these proposals are still under consideration for
SQL3. The constructs may well change; indeed, SQL3 as a whole is still undergoing refinement as it
inches towards publication as an international standard. It is doubtful that SQL/Temporal will reach ISO
standard status before the next millennium. That said, we examine these constructs as an indication of
where things are going. Commercial implementations are already starting to appear; it is likely that one
of the prevalent database systems will provide temporal support before such support is officially
accepted as part of the SQL3 standard.
We retain the chapter numbers of the case studies as section numbers in this chapter. As an example,
the topic of Chapter 6, querying state tables (in SQL-92), parallels Section 6 of this chapter, on querying
state tables in SQL3. That we can reimplement in SQL3 in a single chapter all four case studies, which
took the bulk of this book to code in SQL-92, is itself testament to the purity and expressive power of the
new constructs.

12.4 PERIODS

Tip SQL3 has a period type constructor. Period types can be constructed from
datetime and exact numeric element types.

SQL3 adds the PERIOD() constructor. An SQL data type constructor specifies a new type constructed
out of a specified type. Examples are SQL sets, multisets (i.e., with duplicates), and lists (i.e., with
ordering). In the case of the period type constructor, you can specify period data types of the SQL
datetime data types as well as of exact numerics with a scale of 0 (i.e., integers). Hence, the following
period data types are available.

 PERIOD(DATE)
 PERIOD(TIME) and PERIOD(TIME WITH TIME ZONE)
 PERIOD(TIMESTAMP) and PERIOD(TIMESTAMP WITH TIME ZONE)
 PERIOD(INT) and PERIOD(INTEGER)
 PERIOD(SMALLINT)
 PERIOD(NUMERIC)
 PERIOD(DECIMAL)

All but the first allow a scale (number of fractional digits) to be specified, though for the last four types,
this scale must be 0.

12.4.1 Period Literals

 - 368 -

Tip SQL3 period literals support all combinations of open and closed delimiting
datetimes.

Period literals are quite complex, for several reasons. First, all four variants of closed-closed, closed-
open, open-closed, and open-open are supported. The closed variants use square brackets ('[' and ']');
the open variants, parentheses ('(' and ')'). Note, however, that this distinction concerns the period
value that the literal denotes; it has nothing to do with the internal representation of a period, which is
properly not specified in the standard. Second, the delimiters can each be a date value (denoting a date
period literal), a time value (denoting a time period literal), or both (denoting a timestamp period literal).
Third, only the ending delimiter can have an (optional) time zone; if present, it applies to both delimiters.
Finally, the separator between the delimiting values can be either a minus sign, in which case there
must be spaces around it, or a comma, in which case the surrounding spaces are optional.
The following are all valid period literals and denote the same value, of type PERIOD(DATE).

 PERIOD '[1997-01-01 - 1997-12-31]'
 PERIOD '[1997-01-01 - 1998-01-01)'
 PERIOD '(1996-12-31 - 1997-12-31]'
 PERIOD '(1996-12-31 - 1998-01-01)'
 PERIOD '[1997-01-01, 1997-12-31]'

The following are also valid literals, of type PERIOD(TIMESTAMP WITH TIME ZONE). The time zone
appears last in the literal.

 PERIOD '[1997-01-01 00:00:00 - 1997-12-31 23:59:59-07:00]'
 PERIOD '[1997-01-01 00:00:00 - 1998-01-01 00:00:00-07:00)'
 PERIOD '(1996-12-31 23:59:59 - 1997-12-31 23:59:59-07:00]'
 PERIOD '(1996-12-31 23:59:59 - 1998-01-01 00:00:00-07:00)'

12.4.2 Predicates
SQL3 defines several predicates on periods:

 p OVERLAPS q (discussed for SQL-92 on page 35) is extended in SQL3 to allow
either operand to be a period value, in addition to the datetime-datetime and
datetime-interval pairs supported in SQL-92. p OVERLAPS q implements p overlaps
q V p overlaps-1 q V p starts q V p starts-1 q V p finishes q V p finishes-1 q V p
during q V p during-1 q V p equals q.

The Hour Hand (First Major Advance)

There have been three great transitions marking the increasing accuracy of clocks, enabled through
technological advance. Interestingly, while some 2000 years separated the first from the third
transition, the latter came about just as this book was being written.

The first major advance was the addition of an hour hand, or indicator, on a sundial when an accuracy
of sufficiently less than a day was possible. As we saw in the "Hours" sidebar in Chapter 2, the
Chaldeans around 300 B.C.E. divided the day into 12 parts, based on the night being also divided into
12 parts, measuring these hours on a sundial.

 p PRECEDES q implements before.
 p SUCCEEDS q implements before-1.
 p MEETS q implements p meets q V p meets-1 q.
 p CONTAINS q implements p during q∧ p ≠ q.

SQL3 raises an exception if the result of a period constructor is not a valid period.

12.4.3 Constructors

 - 369 -

SQL3 adds several datetime constructors:
 BEGIN implements beginning.
 END implements ending.
 LAST implements last.
 PRIOR implements '-1', when applied to a datetime. Hence, previous (p) can be

expressed in SQL3 as PRIOR(BEGIN(p)).
 NEXT implements '+1', when applied to a datetime.

SQL3 adds one interval constructor, INTERVAL(p), which implements duration. An interval qualifier
can also be specified, as in INTERVAL(p DAY).

SQL3 adds several period constructors:
 PERIOD[a, b) yields a period beginning at a and ending at b; closed-closed,

openclosed, and open-open variants are also included.
 p P_UNION q implements '∪' over periods; an exception is raised if NOT p OVERLAPS

q.
 p P_EXCEPT q implements '−' over periods; an exception is raised if p CONTAINS qOR

q CONTAINS p.
 p P_INTERSECT q implements '∩' over periods; an exception is raised if NOTp

OVERLAPS q.
 CAST(p AS type) allows you to change the granularity of p.

Table 12.1 summarizes how the period operations can be implemented in SQL/ Temporal. In the first
column, p and q denote period values, and i denotes an interval value. The OVERLAPS in the first
column, next-to-last line of the predicates is the SQL-92 OVERLAPS predicate.

12.5 DEFINING VALID-TIME STATE TABLES
The University Information System consists of some 300 tables, 4 of which are listed below:
EMPLOYEES(SSN, LAST_NAME, FIRST_NAME, ANNUAL_SALARY)
INCUMBENTS(SSN, PCN)
POSITIONS(PCN, JOB-TITLE-CODE1)
JOB_TITLES(JOB_TITLE_CODE, JOB-TITLE)
These tables are snapshot tables, in that they capture the current state of the modeled reality. The
EMPLOYEES table specifies each employee's current annual salary, the INCUMBENTS table identifies the
position code for each current employee, and the POSITIONS and JOB_TITLES tables in concert
provide the job title(s) for each position. SQL3 can express many useful queries on these tables.

Code Fragment 12.1: What is Bob's position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

SQL3 can also express integrity constraints on such tables. The following is an especially useful one.
Code Fragment 12.2: (SSN, PCN) is a sequenced primary key for INCUMBENTS.

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

 - 370 -

Tip

Valid-
time
supp
ort is
speci
fied
in
SQL3
with
an
ADD
VALI
DTIM
E
claus
e.

To indicate that the history of the time-changing reality is to be captured in the INCUMBENTS table,
valid-time support is added to that table, associating with each row a period indicating when that row
was valid in reality. SQL3 includes specific constructs to define, query, and modify tables with valid-time
support.

Table 12.1: Period operations in SQL3.

Period Operations SQL3 Equivalent
Types:

period PERIOD(datetime type)
Predicates:

p equals q p = q
p before q p PRECEDES q
p before−1 q p SUCCEEDS q
p meets q END(p) = BEGIN(q)
p meets−1 q END(q = BEGIN(p)

p overlaps q
BEGIN(p) < BEGIN(q) AND
BEGIN(q < END(p)

p overlaps−1 q
BEGIN(q) < BEGIN(p) AND
BEGIN(p) < END(q)

p during q
BEGIN(q) < BEGIN(p) AND
END(p) < END(q)

p during−1 q
BEGIN(p) < BEGIN(q) < AND
END(q) < END(p)

p starts q
BEGIN(p) = BEGIN(q) AND
END(p) < END(q)

p starts−1 q2
BEGIN(p) = BEGIN(q) AND
END(q) < END(p)

p finishes q
BEGIN(q) < BEGIN(p) AND
END(p) = END(q)

p finishes−1 p
BEGIN(p) < BEGIN(q) AND
END(p) = END(q)

p OVERLAPS q p OVERLAPS q
p IS NULL p IS NULL

Datetime Constructors:
beginning(p) BEGIN(p)
previous(p) PRIOR(BEGIN(p))

 - 371 -

last(p) LAST(p)
ending(p) END(P)

Interval Constructors:

duration(p)
INTERVAL(p), INTERVAL(p AS
qual)

extract_time_zone(p) CAST(EXTRACT(TIMEZONE_HOUR
 FROM BEGIN(p)) AS HOUR) +
 CAST(EXTRACT(TIMEZONE_MINUTE
 FROM BEGIN(p)) AS MINUTE)
Period Constructors:

p + i
PERIOD[BEGIN(p) + i, END(p)
+ i)

i + p
PERIOD[BEGIN(p) + i, END(p)
+ i,)

p − i
PERIOD[BEGIN(p) − i, END(P)
− i)

p extend q not possible
p ∩ q p P_INTERSECT q
p − q p P_EXCEPT q
p � q p P_UNION q
p AT TIME ZONE

i
PERIOD[BEGIN(p) AT TIME ZONE
i,

 END(p) AT TIME ZONE i)
p AT LOCAL PERIOD[BEGIN(p) AT LOCAL,

 END(p) AT LOCAL)
Other Operators:

CAST(a AS
PERIOD) PERIOD[a, a]

CAST(p AS CHAR) CAST(p AS CHAR)

Code Fragment 12.3: Add valid-time support to INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME PERIOD(DATE)

The period initially associated with each row has the indicated granularity, here, day, of "now" (that is,
CURRENT_DATE) to "forever" (that is, '9999-12-31').

12.5.1 Temporal Keys and Uniqueness
The primary key was specified when INCUMBENTS was a snapshot table. An important property of
SQL3 is that such integrity constraints continue to hold after valid-time support is added. This property is
termed temporal upward compatibility, and requires that each integrity constraint on an associated
snapshot database (e.g., the original INCUMBENTS table) be interpreted to hold on the current time-slice
of the temporal counterpart of the database (the table with valid-time support).

Tip Constraints expressed on nontemporal tables are interpreted in SQL3 as current
constraints when valid-time support is added to the table.

 - 372 -

When INCUMBENTS did not have valid-time support, it modeled the current reality. As position
assignments changed, the table was modified to reflect the new situation. Integrity constraints such as
primary and foreign keys applied to the information currently in the table.
When history is retained, by adding valid-time support to the table, these integrity constraints still apply
to the current information. Temporal upward compatibility thus implies that existing constraints on a
nontemporal table become current constraints when valid-time support is added to the table. Compare
the primary key constraint, CF-12.2 above, which still holds, with CF-5.12, which does the same thing in
SQL-92, but requires nine lines in a CHECK constraint.

Tip An SQL-92 statement can be converted into a sequenced statement in SQL3
simply by prepending VALIDTIME.

This primary key constraint is perfectly fine if only current modifications are made to the table. If
sequenced or nonsequenced modifications are possible, then we need to ensure that the primary key
holds on all instants of time, even when the information valid on a particular day may be changed by a
later modification. For that, we need a sequenced primary key constraint: "No employee can have the
same position more than once simultaneously."
In SQL3, any statement can be rendered sequenced by prepending the reserved word VALIDTIME.

Code Fragment 12.4: (SSN, PCN) is a sequenced primary key for INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME PRIMARY KEY (SSN, PCN)

Compare this with CF-5.8, a 10-line CHECK constraint containing an aggregate and two levels of
nested subqueries.

The Minute Hand (Second Major Advance)

After the hour hand was invented around 300 B.C.E., the next transition had to await the passage of
two millennia, to Huygens's pendulum clock in 1656 C.E. The dramatic vault in accuracy afforded by
the pendulum enabled the addition of a minute hand. It is difficult to imagine now a society in which
time was known only to roughly an hour.

As we've seen throughout this book, the sequenced variant is generally the one to use. It is for that
reason that the SQL3 syntax is designed to succinctly indicate that a sequenced semantics is desired.
As one further example, consider the uniqueness constraint: "No employee can have two identical
positions." On the original, nontemporal INCUMBENTS table, this is expressed as a uniqueness
constraint.

Code Fragment 12.5: Prevent duplicates in INCUMBENTS.

ALTER TABLE INCUMBENTS ADD UNIQUE (SSN, PCN)

When valid-time support is added to the INCUMBENTS table, this constraint continues to be interpreted
as current uniqueness.

 - 373 -

Expressing sequenced uniqueness, "At no time can an employee have two identical positions," requires
but a single additional reserved word.

Code Fragment 12.6: Prevent sequenced duplicates in INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME UNIQUE (SSN, PCN)

(Compare with CF-5.14.)

12.5.2 Referential Integrity
We now revisit the various kinds of referential integrity (RI) and show how they may be expressed with
the proposed constructs by examining the four cases from Section 5.6.

Case 1 Neither table is temporal.
Assume initially that neither the INCUMBENTS nor the POSITIONS table has temporal support.
Referential integrity can then be expressed in SQL-92 as follows:

Code Fragment 12.7: INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table is
temporal).

ALTER TABLE INCUMBENTS

ADD FOREIGN KEY (PCN) REFERENCES POSITIONS

Case 2 Only the referencing table is temporal.
When valid-time support was added to the INCUMBENTS table, via ADD VALIDTIME PERIOD, the
foreign key constraint still applies directly. It translates to a current constraint: "For each currently valid
row of INCUMBENTS, the PCN is also in POSITIONS." Temporal upward compatibility ensures that
applications are not broken when temporal support is added to an underlying table.

 - 374 -

Case 3 Both tables are temporal.
We now add temporal support to the referenced table, POSITIONS.

Code Fragment 12.8: INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both tables are
temporal).

ALTER TABLE POSITIONS ADD VALIDTIME PERIOD(DATE)

Tip
Unlike the complex statements required in SQL-92, the sequenced variant in SQL3 is
almost identical to the nontemporal analog.

The foreign key specified above (CF-12.7) when applied to referencing and referenced tables with
valid-time support continues to be interpreted as a current foreign key. (Compare with the SQL-92
version, CF-5.20, at 12 lines.)
The sequenced RI constraint, "At each point in time, each in cumbent's PCN is valid at that time," is
the most natural application of the nontemporal RI constraint to time-varying information. This required
a complex 32-line assertion (CF-5.21). Using the proposal constructs, only one additional keyword,
VALIDTIME, is necessary to obtain a sequenced integrity constraint.

Code Fragment 12.9: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both tables
are temporal).

ALTER TABLE INCUMBENTS

ADD VALIDTIME FOREIGN KEY (PCN) REFERENCES POSITIONS

Tip
An SQL-92 statement can be converted into a nonsequenced statement in SQL3
simply by prepending NONSEQUENCED VALIDTIME.

A nonsequenced RI constraint ("For each value of INCUMBENTS.PCN, there existed at some, possibly
different, time that value in POSITIONS.PCN") is equally simple to specify: we need only prepend the
reserved word NONSEQUENCED. While nonsequenced constraints (and queries) are notoriously
awkward to express in English, their translations to SQL-92 and SQL3 are almost identical, differing
only in that single reserved word NONSEQUENCED.

Code Fragment 12.10: INCUMBENTS. PCN is a nonsequenced foreign key for POSITIONS.PCN (both
tables are temporal).

ALTER TABLE INCUMBENTS ADD NONSEQUENCED VALIDTIME

 - 375 -

FOREIGN KEY (PCN) REFERENCES POSITIONS

Case 4 Only the referenced table is temporal.

Here we drop the temporal support on the referencing table.

Code Fragment 12.11: INCUMBENTS. PCN is a current foreign key for POSITIONS. PCN (only
POSITIONS is temporal).

ALTER TABLE INCUMBENTS DROP VALIDTIME

The original RI constraint, CF-12.7, continues to apply and is equivalent to the 10-line assertion in CF-
5.24, in which every PCN value in INCUMBENTS must also occur in the current state of the POSITIONS
table.

In summary, temporal upward compatibility ensures that existing constraints, such as the referential
integrity constraint of CF-12.7, are interpreted as current constraints when applied to tables with valid-
time support. Sequenced constraints are specified by prepending VALIDTIME.

12.6 QUERYING STATE TABLES
Although INCUMBENTS now has valid-time support, standard SQL queries still apply directly, retrieving
(as before valid-time support was added) the current information.

Code Fragment 12.12: What is Bob's position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 - 376 -

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

This query is identical to CF-6.2 on the original INCUMBENTS table, without validtime support. This is
another example of temporal upward compatibility (TUC). TUC in this context requires that each query
will return the same result on an associated snapshot database (e.g., the original INCUMBENTS table)
as on the temporal counterpart of the database (the table with valid-time support).
TUC applies uniformly to all corners of the language. CF-6.3 requires 10 lines in SQL-92, but is shorter
in SQL3 because the timestamp columns need not be mentioned.

Code Fragment 12.13: What is Bob's current position and salary?

SELECT JOB_TITLE_CODE1, AMOUNT

FROM EMPLOYEES, INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND SAL_HISTORY.SSN = EMPLOYEES.SSN

Code Fragment 12.14: What employees currently have no position?

SELECT FIRST_NAME

FROM EMPLOYEES

WHERE NOT EXISTS (SELECT *

 FROM INCUMBENTS

 WHERE EMPLOYEES.SSN = INCUMBENTS.SSN)

(Compare with CF-6.4.)

12.6.1 Extracting States
Tip A valid time-slice query is nonsequenced, with the associated timestamp period

compared with the specified instant.

A valid time-slice query is nonsequenced. It is not a current query because it involves information in the
past or future, and it is not a sequenced query because the result of the query has no timestamp.
Nonsequenced queries are signaled by the NONSEQUENCED reserved word in SQL3. Additionally, the
valid time-slice query needs to access the period timestamp to ensure information valid at the specified
date is retrieved. To access the valid timestamp of a row, use the VALIDTIME() function, which
evaluates to a period.

 - 377 -

Code Fragment 12.15: What was Bob's position at the beginning of 1997?

NONSEQUENCED VALIDTIME SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND VALIDTIME(INCUMBENTS) OVERLAPS DATE '1997-01-01'

(Compare with CF-6.5.)

12.6.2 Sequenced Queries
In all cases, a nontemporal query can be rendered sequenced by simply prepending VALIDTIME.

Code Fragment 12.16: Who makes or has made more than $50,000 annually?

VALIDTIME SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

Code Fragment 12.17: List the social security numbers of current and past employees.

VALIDTIME SELECT SSN

FROM SAL_HISTORY

In CF-6.7, we had to explicitly mention the timestamp columns. Here, SQL3 handles them automatically.

Code Fragment 12.18: Sequenced sort INCUMBENTS on the position code (first version).

VALIDTIME SELECT *

FROM INCUMBENTS

ORDER BY PCN

 - 378 -

Here again, we needn't be concerned with where the timestamp columns should be placed in the
ORDER BY clause (compare with CF-6.8).

Code Fragment 12.19: Who makes or has made more than $50,000 annually or less than $10,000?

VALIDTIME SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

UNION ALL

SELECT *

FROM SAL_HISTORY WHERE AMOUNT < 10000

Here, the VALIDTIME applies to the entire query expression, which is SELECT … UNION ALL SELECT
….

Sequenced joins are quite difficult in SQL-92, but only require adding one reserved word in SQL3. The
sequenced variant in SQL3 of a nontemporal query retains the nontemporal query, adding only
VALIDTIME. In SQL-92, converting to the sequenced analog requires completely rewriting the query.

Code Fragment 12.20: Provide the salary and position history for all employees.

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

In SQL-92, this query required some four UNIONs and 29 lines (CF-6.11), or four CASE expressions
and 23 lines (CF-6.12), or two SQL/PSM FUNCTIONs (CF-6.14).

The Second Hand (Not a Major Advance)
While the minute hand was invented in 1656, after a period of two millennia, the second hand
appeared astonishingly quickly, after but three decades, in 1690, for doctors' watches. The second
hand was perfectly fine for determining a person's pulse rate, but was of little use in telling the time, for
watches weren't, and generally still aren't, of sufficient accuracy to need a second hand: the second
hand carries no information as to which instant it is. In 1776, an independent second train, an
extraordinarily complex mechanical device, was invented to start and stop the second hand. That most
modern watches do not have such a facility is more a testament to marketing (implying that the watch
is accurate to the second) than to utility or performance. The second hand on the watch on your wrist
is undoubtedly of the same use as on watches of 300 years ago: to provide a visual indication that
your watch hadn't stopped.

 - 379 -

Nested queries are similarly converted into their sequenced analog.
Code Fragment 12.21: List the employees who are or were department heads but were not also
professors.

VALIDTIME SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

 AND NOT EXISTS (SELECT *

 FROM INCUMBENTS AS 12

 WHERE 12.SSN = I1.SSN

 AND 12.PCN = 821197)

The entire query, including the nested portion, is (conceptually) evaluated independently at each instant.
This query requires four SELECTs UNIONed together, or 45 lines of SQL-92 (CF-6.18).

This query can also be expressed via EXCEPT.
Code Fragment 12.22: List the employees who are or were department heads but were not also
professors (an equivalent version).

VALIDTIME SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197

12.6.3 Nonsequenced Queries
Nonsequenced queries require (naturally) the NONSEQUENCED adverb in SQL3. As before, the
timestamp is available via VALIDTIME().

 - 380 -

Code Fragment 12.23: List all the salaries, past and present, of employees who had been a
hazardous waste specialist at some time.

NONSEQUENCED VALIDTIME SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE INCUMBENTS.SSN = SAL_HISTORY.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND JOB_TITLE_CODE1 = 20730

The phrases "past and present" and "at some time" indicate that the query is a nonsequenced one. This
query in SQL3 is similar to the SQL-92 variant (CF-6.19); the only difference is the two added keywords.

Code Fragment 12.24: When did employees receive raises?

NONSEQUENCED VALIDTIME

SELECT S2.SSN, BEGIN(VALIDTIME(S2)) AS RAISE_DATE

FROM SAL_HISTORY AS S1. SAL_HISTORY AS S2

WHERE S2.AMOUNT > S1.AMOUNT

 AND S1.SSN = S2.SSN

 AND VALIDTIME(S1) MEETS VALIDTIME(S2)

Here, we access the timestamp in two places, in the SELECT clause, where we grab the beginning date
of the timestamp (we could have just as easily used END(VALIDTIME(S1))), and in the WHERE
clause. The MEETS predicate is quite useful in such situations.

A nonsequenced query does not view the underlying table with valid-time support as a sequence of
states; rather, it views the underlying table as one with an additional timestamp column (of type period)
that can be accessed in the query via the function VALIDTIME().

12.6.4 Eliminating Duplicates
Duplicate removal of any variant—current, sequenced, or nonsequenced—is specified in SQL3 using
DISTINCT. You will notice an appealing consistency to the following three queries:

Code Fragment 12.25: Remove current duplicates from INCUMBENTS.

SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

 - 381 -

Code Fragment 12.26: Remove sequenced duplicates from INCUMBENTS.

VALIDTIME SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

Code Fragment 12.27: Remove nonsequenced duplicates from INCUMBENTS.

NONSEQUENCED VALIDTIME SELECT DISTINCT *

FROM INCUMBENTS

The SQL-92 queries (CF-6.23, CF-6.24–6.26, and CF-6.21, respectively) vary dramatically, from 2 lines
for nonsequenced to 19–30 lines for sequenced.

12.7 MODIFYING STATE TABLES
SQL3's explicit support for current, sequenced, and nonsequenced statements applies equally to
modification statements.

12.7.1 Current Modifications
Modifications that don't involve the new reserved words when applied to tables with valid-time support
are interpreted as current modifications.

Code Fragment 12.28: Bob joins as associate director of the Computer Center.

INSERT INTO INCUMBENTS

VALUES (111223333, 999071)

Tip

Current
modific
ations
in
SQL3
are the
same
whethe
r
applied
to
nonte
mporal
tables

 - 382 -

or to
tables
with
valid-
time
suppor
t.

The default timestamp of PERIOD[CURRENT-DATE, DATE '9999-12-31') is automatically provided
when the underlying table has valid-time support. Current uniqueness, primary key, and referential
integrity constraints are automatically maintained, so the gymnastics of CF-7.2–CF-7.5 is not necessary.

Code Fragment 12.29: Bob was just fired as associate director of the Computer Center.

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

Compare with CF-7.7, in which a current deletion in the restricted case is implemented in SQL-92 as an
UPDATE, or CF-7.8, in which a current deletion in the general case is implemented as an UPDATE and
a DELETE statement.

Code Fragment 12.30: Today, Bob was promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Compare with CF-7.10 and CF-7.11. In particular, no complex case analysis is required.

12.7.2 Sequenced Modifications
Tip The period of applicability of a sequenced modification is specified in SQL3

immediately after VALIDTIME.

A current modification applies from "now" to "forever". A sequenced modification generalizes this to
apply over a specified period of applicability, which could be in the past, in the future, or overlap "now".

In SQL3, the period of applicability is specified immediately after VALIDTIME.
Code Fragment 12.31: Bob was assigned the position of associate director of the Computer Center
for 1997.

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' INSERT INTO INCUMBENTS

VALUES (111223333, 999071)

 - 383 -

Of course, all (current and sequenced) primary key and referential integrity constraints continue to be
checked. In SQL-92, these must be checked within the insertion (CF-7.13 and CF-7.14).

Deletions also allow a period of applicability to be specified.
Code Fragment 12.32: Bob was removed as associate director of the Computer Center for 1997.

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' DELETE FROM INCUMBENTS

WHERE SSN=111223333

 AND PCN = 999071

(Compare with CF-7.16.)

Code Fragment 12.33: Bob was promoted to director of the Computer Center for 1997.

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Compare with CF-7.18, which consists of five separate SQL-92 statements. No complex case analysis
is required.

A True Second Hand (Third Major Advance)

The hour hand was invented around 300 B.C.E., and the minute hand in 1656. A truly accurate
second hand is just now becoming prevalent, in the form of radio watches that enclose Lilliputian radio
receivers that tune into signals to synchronize with the standard atomic clocks. The most inexpensive
of these watches retails for about $100 at the time of this writing and will certainly fall dramatically in
price as production and demand ramp up and as economies of scale come into play. You can marvel
that one of the three most momentous transitions in horology over 2300 years occurred in your
lifetime.

12.7.3 Nonsequenced Modifications
As with constraints and queries, a nonsequenced modification treats the period timestamp (available via
the VALIDTIME() function) identically to the other columns.

Code Fragment 12.34: Delete Bob's records that include 1997 stating that he was associate director
of the Computer Center.

 - 384 -

NONSEQUENCED VALIDTIME DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

 AND VALIDTIME(INCUMBENTS) CONTAINS DATE '1997-12-31'

The CONTAINS predicate is particularly useful here.
Code Fragment 12.35: Extend Bob's position as associate director of the Computer Center for an
additional year.

NONSEQUENCED VALIDTIME UPDATE INCUMBENTS

SET VALIDTIME = PERIOD(BEGIN(VALIDTIME(INCUMBENTS)),

 END(VALIDTIME(INCUMBENTS)) + INTERVAL '1' YEAR]

WHERE SSN = 111223333

 AND PCN = 999071

Tip

The
SQL-
92
and
SQL3
versio
ns of
nonse
quenc
ed
modifi
cation
s are
quite
similar
.

In comparison with CF-7.20, this is one of the few situations in which the SQL3 version is longer (in this
case, by one line) than the SQL-92 version. Except for details of syntax, though, the two versions are
very similar.

12.7.4 Modifications That Mention Other Tables
When one or more tables are rendered temporal, existing constraints, queries, and modifications still
apply over the period of applicability of "now" to "forever."

Code Fragment 12.36: Bob is promoted to director of the Computer Center (current version).

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 - 385 -

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER')

WHERE SSN = 111223333

Tip Even complex sequenced modifications over several tables can be easily expressed in

SQL3 via the VALIDTIME construct.
It is perhaps no longer surprising that this requires some 30 lines of SQL-92 code (CF-7.22).

You will also be able to easily express this update as a sequenced update, over a period of validity of
the year 1997.

Code Fragment 12.37: Bob was promoted to director of the Computer Center for 1997 (sequenced
version).

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' UPDATE INCUMBENTS

SET PCN = (SELECT PCN

 FROM POSITIONS, JOB_TITLES

 WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

 AND JOB_TITLE = 'DIRECTOR, COMPUTER CENTER')

WHERE SSN = 111223333

(Compare with CF-7.24, requiring eight SQL-92 statements and 77 lines.)

12.7.5 Temporal Partitioning*
Tip Temporal partitioning is an aspect of physical design.

Temporal partitioning is effectively a physical design aspect, and as such should not impact the
expression of queries or modifications on the partitioned table. Of course, as SQL-92 does not include
the notion of tables with valid-time support, the partitioning must be implemented manually by the
application programmer. As an analogy, if a DBMS didn't implement indexes, then they might be
simulated by the application programmer via additional tables, which would dramatically complicate the
SQL code.

Tip In SQL3, temporal partitioning has no impact on queries.

As SQL3 does support tables with valid-time support, it enables the underlying DBMS to include
partitioning. A specific syntax for specifying temporal partitioning is not included in SQL3 for the same
reason that syntax to specify indexing is not included in SQL-92.
In the following, we assume that temporal partitioning of the INCUMBENTS table has been specified in
some DBMS-specific manner.

Code Fragment 12.38: What is Bob's current position (partitioned)?

SELECT JOB_TITLE_CODE1

 - 386 -

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

This is similar to CF-7.25, with the exception that the original table, INCUMBENTS, is mentioned, rather
than the current store, INCUMBENTS_CURRENT.

Code Fragment 12.39: Provide the salary and department history for all employees (partitioned).

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

Incredibly, this requires 50 lines in SQL-92 (CF-7.26).

Current modifications work as before.
Code Fragment 12.40: Bob was assigned the position of associate director of the Computer Center
(partitioned).

INSERT INTO INCUMBENTS

VALUES (111223333, 6201945234)

This is quite similar to the SQL-92 version (CF-7.27). The SQL3 version will also ensure that no current
or sequenced integrity constraints are violated.

Code Fragment 12.41: Bob was fired as associate director of the Computer Center (partitioned).

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

SQL3 really shines in sequenced operations.
Code Fragment 12.42: Bob was removed as associate director of the Computer Center for 1997
(partitioned).

 - 387 -

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

(Compare with the eight statements of CF-7.30.) Note that the core of the modification in SQL3 is
unaffected by either the modification being sequenced or an underlying table being temporally
partitioned.

Code Fragment 12.43: Bob was promoted to director of the Computer Center for 1997 (partitioned).

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

(Compare with CF-7.31 at 57 lines.)

12.8 RETAINING A TRACKING LOG
The previous sections concerned tables with valid-Time support, capturing the history of the modeled
reality. A tracking log is a quite different animal, as it captures the history of the table itself, allowing
prior states to be retrieved. The states of the database at all previous points of time are retained, and
modifications are appendonly. Changes are not allowed on the past states, as that would prevent
secure auditing. Instead, compensating transactions are used to correct errors.

SQL3 supports transaction time in a fashion parallel to valid time, utilizing the TRANSACTIONTIME
reserved word.

12.8.1 Defining Transaction-Time Tables
The simplest way to implement a tracking log is to add transaction-time support to the monitored table.
Transaction-time support may be specified in SQL3 with a simple ADD TRANSACTIONTIME.

Code Fragment 12.44: Add transaction-time support to the PROJECTIONS table.

ALTER TABLE PROJECTIONS ADD TRANSACTIONTIME

Unlike valid-time support, the granularity is not specified, but instead is provided by the DBMS.
Previously defined integrity constraints, such as PROJECTION_ID being a primary key, are retained,
interpreted as current constraints. Accomplishing this in SQL-92 required a set of triggers (CF-8.2).

Tip The representation of a table with transaction-time support in SQL3 is specified
with physical design statements supported by the DBMS.

The DBMS is now responsible for maintaining transaction time for us. In particular, we don't have to
worry about an application inadvertently corrupting past states (say, by incorrectly altering the
timestamp columns), or a white-collar criminal intentionally "changing history" to cover up his tracks.
The DBMS simply does not permit past states to be modified.

 - 388 -

The DBMS controls the representation of a table with transaction-time support. It might utilize a single
instant timestamp, termed a tracking log on page 220, a pair of instants or a period as a timestamp, an
instant timestamp coupled with an operation code, termed a backlog on page 233, or a backlog with
after-images. The DBMS may provide syntax to choose among several representations; such physical
design statements are not included in SQL3.

12.8.2 Queries
A query on the current state of a table with transaction-time support is trivial: simply omit any mention of
time.

Code Fragment 12.45: List the information on projection 5.

SELECT *

FROM PROJECTIONS

WHERE PROJECTION_ID = 5

To reconstruct the table as of some point in the past, a transaction-time nonsequenced query is
required.

Code Fragment 12.46: Reconstruct the PROJECTIONS table as of April 1, 1996.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM PROJECTIONS AS P

WHERE TRANSACTIONTIME(P) OVERLAPS DATE '1996-04-01'

Here we use the TRANSACTIONTIME() function to access the transaction time stamp associated with
each row. Compare with CF-8.3.

This can also be defined as a view.
Code Fragment 12.47: Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.

CREATE VIEW April_PROJECTIONS

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE)

AS (NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM PROJECTIONS AS P

 - 389 -

WHERE TRANSACTIONTIME(P) OVERLAPS DATE '1996-04-01')

CF-8.5 showed how to convert P_Log to a transaction-time state table. Here, PROJECTIONS is already
a state table. So perhaps an analogous operation would be to convert the PROJECTIONS table to one
containing a When_Changed column.

More on the Second Hand

Another way to have a watch accurate to a second is to frequently synchronize it with a known source
of that accuracy. To do so, you can call by phone various national time services, such as the one in
Boulder, Colorado. Often such services also broadcast the current time by radio, which can be
listened to manually, or automatically, by the clock itself. Such radio-controlled clocks and watches
became sufficiently inexpensive for wide distribution only in 1998.

I have such a clock in my bedroom. It cost $79 and is accurate to within a second, resynchronizing
itself each night, by tuning into the appropriate frequency. With such a handy comparison, I find it easy
to keep my watch to within a second or two of the correct time, and thus confidently provide a highly
accurate answer to the question "What time is it?"

With such an accurate chronometer, I have discovered that the Public Broadcasting Service starts its
news service right on the half-hour, to the second, as does Headline News on the Cable News
Network (CNN). However, the digital clock display in the lower right of the picture of CNN's Headline
News is inexplicably off: tonight it is some 24 seconds behind, and I've seen it wrong by several
minutes.

Code Fragment 12.48: Convert PROJECTIONS to an instant-stamped table.

CREATE VIEW P_Log

 (PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 When_Changed)

AS (NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 END(TRANSACTIONTIME(PROJECTIONS)))

FROM PROJECTIONS

WHERE END(TRANSACTIONTIME(PROJECTIONS)) < CURRENT_TIMESTAMP

 - 390 -

Tip

Transaction-
time
sequenced
queries are
signaled in
SQL3 with
the
TRANSACTI
ONTIME
prefix.

Since all currently active rows have a transaction timestamp ending at "now," we eliminate those in the
WHERE clause, since they haven't been previously changed.

Transaction-time sequenced queries ("when was it recorded") are easy on tables with transaction-time
support: just prepend TRANSACTIONTIME.

Code Fragment 12.49: When was it recorded that a projection had a type of 17?

TRANSACTIONTIME SELECT PROJECTION_ID, PROJECTION_TYPE

FROM PROJECTIONS_State

WHERE PROJECTION_TYPE = 17

Code Fragment 12.50: List the projections recorded as having the same USGS zone code as the
projection with ID 13447.

TRANSACTIONTIME SELECT S1.PROJECTION_NAME

FROM PROJECTION_state AS S1, PROJECTIONS_state AS S2

WHERE S1.ZONE_CODE = S1.ZONE_CODE

 AND S2.PROJECTION_ID = 13447

 AND S1.PROJECTION_ID <> 13447

(Compare with CF-8.18.)

Another kind of nonsequenced query is the conversion to a tracking log (compare with CF-9.12–9.14),
containing before-images, containing after-images, or as a backlog, respectively.

Code Fragment 12.51: Extract before-images from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 - 391 -

 END(TRANSACTIONTIME(PROJECTIONS)) AS When_Changed

FROM PROJECTIONS

WHERE END(TRANSACTIONTIME(PROJECTIONS)) <> CURRENT_TIMESTAMP

Code Fragment 12.52: Extract after-images from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,
ZONE_CODE,

 BEGIN(TRANSACTIONTIME(PROJECTIONS)) AS When_Changed

FROM PROJECTIONS

Code Fragment 12.53: Extract a backlog from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION_ID,

 PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 BEGIN(TRANSACTIONTIME(P1)) AS When_Changed 'I' AS Operation

FROM PROJECTIONS AS P1

WHERE NOT EXISTS (SELECT *

 FROM PROJECTIONS AS P2

 WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND TRANSACTIONTIME(P2) MEETS TRANSACTIONTIME(P1))

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

 SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

 END(TRANSACTIONTIME(P1)) AS When_Changed, 'D' AS Operation

FROM PROJECTIONS AS P1

WHERE END(TRANSACTIONTIME(P1)) <> CURRENT_TIMESTAMP

 AND NOT EXISTS (SELECT *

 - 392 -

 FROM PROJECTIONS AS P2

 WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND TRANSACTIONTIME(P1) MEETS TRANSACTIONTIME(P2))

UNION

SELECT P1.PROJECTION_ID, P1.PROJECTION_NAME,

 P1.PROJECTION_TYPE, P1.SPHEROID_CODE,

 P1.PROJECTION_UOM, P1.ZONE_CODE,

 BEGIN(TRANSACTION(P2)) AS When_Changed, 'U' AS Operation

FROM PROJECTIONS AS P1, PROJECTIONS AS P2

WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

 AND TRANSACTIONTIME(P1) MEETS TRANSACTIONTIME(P2)

Here again MEETS turns out to be quite useful.

12.8.3 Modifications
Sequenced and nonsequenced modifications are not permitted on tables with transaction-time support,
as such modifications would violate the semantics of such tables. Instead, only current modifications are
allowed. Such modifications in SQL3 are expressed on tables with transaction-time support without
mention of time.

Code Fragment 12.54: Insert a projection with an ID of 6.

INSERT INTO PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

 PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

 ZONE_CODE)

VALUES (6, 'New Projection', 22, 14, 93, 4)

(Compare with CF-9.4.)

Code Fragment 12.55: Delete projection 2.

DELETE FROM PROJECTIONS

WHERE PROJECTION_ID = 2

 - 393 -

Code Fragment 12.56: Change the type of projection 1 to 43.

UPDATE PROJECTIONS

SET PROJECTION_TYPE = 43

WHERE PROJECTION_ID = 1

Temporal upward compatibility ensures that such modifications, which don't mention time, maintain the
prior states.

12.9 TRANSACTION-TIME STATE TABLES
As mentioned previously, the representation of a table with temporal support is a physical design
concern. The DBMS may provide syntax to choose among several representations; such physical
design statements are not included in SQL3. Hence, the queries and modifications presented above are
still appropriate for a period-stamped representation. Here, we present the remaining queries.

12.9.1 Queries
As with valid time, a sequenced transaction-time prefix applies to the entire query, in the following case,
to the UNION.

Code Fragment 12.57: Give the change history for projections having a type of 12 or 18.

TRANSACTIONTIME SELECT PROJECTION_ID

FROM P_TT

WHERE PROJECTION_TYPE = 12

UNION

SELECT PROJECTION_ID

FROM P_TT

WHERE PROJECTION_TYPE = 18

(Compare with CF-9.9.)

Code Fragment 12.58: When was it recorded that two projections had the same type?

TRANSACTIONTIME SELECT P1.PROJECTION_ID, P2.PROJECTION_ID,

 P1.PROJECTION_TYPE

FROM PROJECTIONS AS P1, PROJECTIONS AS P2

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

 - 394 -

 AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

Auditing queries are often transaction-time nonsequenced queries.
Code Fragment 12.59: When was the type of a projection erroneously changed to be identical to that
of an existing projection?

NONSEQUENCED TRANSACTIONTIME SELECT P1.PROJECTION_ID,

 P1.PROJECTION_TYPE AS Identical_TYPE,

 P3.PROJECTION_TYPE AS Prior_TYPE,

 BEGIN(TRANSACTIONTIME(P2)) AS When_Changed

FROM P_TT AS P1, P_TT AS P2, P_TT AS P3

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

 AND P2.PROJECTION_ID = P3.PROJECTION_ID

 AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

 AND P2.PROJECTION_TYPE <> P3.PROJECTION_TYPE

 AND TRANSACTIONTIME(P3) MEETS TRANSACTIONTIME(P2)

The MEETS predicate is quite handy for "change" queries. Compare with CF-9.11.

12.9.2 Temporal Partitioning and Vacuuming
Temporal partitioning is representational, and thus in the domain of physical design. You could envision
the DBMS providing an ADD PARTITIONING clause to the ALTER TABLE statement.

As with all physical design decisions, such a statement would not impact the specification of queries or
modifications. Hence, the code fragments given above work perfectly fine with a temporally partitioned
representation.

Vacuuming is not yet supported in SQL3.

12.10 BITEMPORAL TABLES
Tip Valid-time support and transaction-time support in concert result in a bitemporal

table.
Valid-time support and transaction-time support are orthogonal in SQL3. They can be used separately,
as above, or together, resulting in a table with both kinds of support, termed a bitemporal table.

Code Fragment 12.60: Create the Prop_Owner table.

CREATE TABLE Prop_Owner (

 customer_number INT,

 - 395 -

 property_number INT)

AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME

While the granularity of the valid timestamp is specified by the user (here, to a granularity of day), the
granularity of the transaction timestamp is supplied by the DBMS.

As before, nontemporal queries, views, constraints, assertions, and modifications are interpreted as
current (in both valid time and transaction time) when applied to a bitemporal table. The concepts of
temporal upward compatibility, sequenced semantics, and nonsequenced semantics apply orthogonally
to valid time and transaction time.

The semantics is dictated by three simple rules:
 The absence of VALIDTIME (respectively, TRANSACTIONTIME) indicates validtime

(transaction-time) upward compatibility. The result of such a query does not include
valid-time (transaction-time) support.

 VALIDTIME (respectively, TRANSACTIONTIME) indicates sequenced valid
(transaction) semantics. An optional period expression temporally scopes the result.
The result of such a query includes valid-time (transaction-time) support.

 NONSEQUENCED denotes nonsequenced valid (respectively transaction) semantics.
An optional period expression after NONSEQUENCED VALIDTIME
(TRANSACTIONTIME) provides a valid-time (transaction-time) timestamp, yielding
valid-time (transaction-time) support in the result.

The valid-time and transaction-time clauses can be used together in assertions and constraints.
Code Fragment 12.61: property_number is a (valid-time sequenced, transaction-time sequenced)
primary key for Prop_Owner.

CREATE ASSERTION P_O_seq_primary_key

VALIDTIME AND TRANSACTIONTIME PRIMARY KEY (property_number)

(Compare with CF-10.2.)

Code Fragment 12.62: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current version).

ALTER TABLE Prop_Owner ADD

VALIDTIME FOREIGN KEY (customer_number) REFERENCES Customer

(Compare with CF-10.49, at 48 lines, and CF-10.50, 18 lines.)

12.10.1 Queries
We start with time-slice queries, which are generally nonsequenced in one dimension. The first is a
transaction time-slice query, resulting in a table with valid-time support (as such, it is sequenced in valid
time).

 - 396 -

Code Fragment 12.63: Give the history of owners of the flat at Skovvej 30 in Aalborg as of January 1,
1998.

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

 AND TRANSACTIONTIME(Prop_Owner) OVERLAPS DATE '1998-01-01'

The result is a table with one column, customer_number, and one (valid) period timestamp. Here we
again use the TRANSACTIONTIME function to extract the transaction timestamp. Compare with CF-
10.19.

The OVERLAPS predicate is not required for a current transaction time-slice.
Code Fragment 12.64: Give the history of owners of the flat at Skovvej 30 in Aalborg as best known.

VALIDTIME SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

The valid time-slice results in a transaction-time state table; it is nonsequenced in valid time but
sequenced in transaction time.

Code Fragment 12.65: When was the information about the owners of the flat at Skovvej 30 in
Aalborg on January 4, 1998, recorded in the Prop_Owner table?

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME

SELECT customer_number FROM Prop_Owner

WHERE property_number = 7797

 AND VALIDTIME(Prop_Owner) OVERLAPS DATE '1998-01-04'

Here, the result has a transaction timestamp.

A bitemporal time-slice takes as input two instants, a valid-time and a transaction-time instant, and
results in a snapshot state of the information regarding the enterprise at that valid time, as recorded in
the database at that transaction time. It is nonsequenced in both valid and transaction time.

 - 397 -

Code Fragment 12.66: Give the owner of the flat at Skovvej 30 in Aalborg on January 13 as stored in
the Prop_Owner table on January 18.

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

 AND VALIDTIME(Prop_Owner) OVERLAPS DATE '1998-01-13'

 AND TRANSACTIONTIME(Prop_Owner) OVERLAPS DATE '1998-01-18'

The result includes no implicit timestamps.

The current bitemporal time-slice is particularly easy to write in SQL3.
Code Fragment 12.67: Give the owner of the flat at Skovvej 30 in Aalborg today as best known.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

Tip All combinations of current, sequenced, and nonsequenced queries over valid time

and transaction time are easily expressed in SQL3.

Again, the result has but one column, and no implicit timestamps.

The orthogonality of valid-time and transaction-time support enables us to combine in arbitrary ways
current, sequenced, and nonsequenced semantics for both kinds of time, resulting in nine temporal
variants of every nontemporal query. Current in valid time translates in English to "at now"; sequenced
translates to "at the same time"; and nonsequenced translates to "at any time." Current in transaction
time translates to "as best known"; sequenced translates to "when did we think"; and nonsequenced
translates to "when was it recorded" or "when was it corrected."
We illustrate this by providing all variants of the query "What properties are owned by the customer who
owns property 7797?", repeating the nine cases from Section 10.3.2. Unlike SQL-92, in which the
variants can differ, sometimes dramatically, in SQL3 all the variants are identical, save their prefixes.

Case 1: Valid-time current and transaction-time current
Code Fragment 12.68: What properties are owned by the customer who owns property 7797, as best
known?

 - 398 -

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

(Compare with CF-10.26.)

Case 2: Valid-time sequenced and transaction-time current
Code Fragment 12.69: What properties are or were owned by the customer who owned at the same
time property 7797, as best known?

VALIDTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

Case 3: Valid-time nonsequenced and transaction-time current

 - 399 -

Code Fragment 12.70: What properties were owned by the customer who owned at any time property
7797, as best known?

NONSEQUENCED VALIDTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

Case 4: Valid-time current and transaction-time sequenced
Code Fragment 12.71: What properties did we think are owned by the customer who owns property
7797?

TRANSACTIONTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

 - 400 -

Case 5: Valid-time sequenced and transaction-time sequenced
Code Fragment 12.72: When did we think that some property, at some time, was owned by the
customer who owned at the same time property 7797?

VALIDTIME AND TRANSACTIONTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

Case 6: Valid-time nonsequenced and transaction-time sequenced
Code Fragment 12.73: When did we think that some property, at some time, was owned by the
customer who owned at any time property 7797?

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

 - 401 -

Case 7: Valid-time current and transaction-time nonsequenced
Code Fragment 12.74: When was it recorded that a property is owned by the customer who owns
property 7797, as best known?

NONSEQUENCED TRANSACTIONTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

Case 8: Valid-time sequenced and transaction-time nonsequenced
Code Fragment 12.75: When was it recorded that a property is or was owned by the customer who
owned at the same time property 7797?

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

 - 402 -

Case 9: Valid-time nonsequenced and transaction-time nonsequenced
Code Fragment 12.76: When was it recorded that a property was owned by the customer who owned
at some time property 7797?

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT P2.property_number, BEGIN(TRANSACTIONTIME(P2)) AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner

We end with the remaining bitemporal queries presented in the Nykredit chapter, providing additional
examples of combinations of valid and transaction time with current, sequenced, and nonsequenced
queries.

Code Fragment 12.77: What is the estimated value of the property at Bygaden 4 (current/current)?

SELECT estimated_value

FROM Property AS P

WHERE P.address = 'Bygaden 4'

 - 403 -

Code Fragment 12.78: Who owns the property at Bygaden 4 (current/current)?

SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 AND C.customer_number = PO.customer_number

(Compare with CF-10.36, at 14 lines.)

Code Fragment 12.79: How has the estimated value of the property at Bygaden 4 varied over time
(sequenced/current)?

VALIDTIME SELECT estimated_value

FROM Property AS P

WHERE P.address = 'Bygaden 4'

Code Fragment 12.80: Who has owned the property at Bygaden 4 (sequenced/current)?

VALIDTIME SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 AND C.customer_number = PO.customer_number

Code Fragment 12.81: When was the estimated value for the property at Bygaden 4 stored
(current/nonsequenced)?

NONSEQUENCED TRANSACTIONTIME

SELECT estimated_value, BEGIN(TRANSACTIONTIME(Property))

 AS Recorded_Start

 - 404 -

FROM Property

WHERE address = 'Bygaden 4'

Code Fragment 12.82: Who has owned the property at Bygaden 4, and when was this information
recorded (sequenced/nonsequenced)?

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT name, BEGIN(TRANSACTIONTIME(PO)) AS PO_Recorded,

 BEGIN(TRANSACTIONTIME(C)) AS C_Recorded,

 BEGIN(TRANSACTIONTIME(P)) AS P_Recorded_Start

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = 'Bygaden 4'

 AND P.property_number = PO.property_number

 AND C.customer_number = PO.customer_number

Code Fragment 12.83: List all retroactive changes made to the Prop_Owner table
(nonsequenced/nonsequenced).

NONSEQUENCED VALIDTIME VALIDTIME(Prop_Owner)

 AND NONSEQUENCED TRANSACTIONTIME

SELECT customer_number, property_number,

 BEGIN(TRANSACTIONTIME(Prop_Owner)) AS Recorded_Start

FROM Prop_Owner

WHERE BEGIN(VALIDTIME(Prop_Owner))

 < BEGIN(TRANSACTIONTIME(Prop_Owner))

Tip

Following
NONSEQ
UENCED
VALIDTIM
E with a
period
expression
in SQL3
renders

 - 405 -

the result a
table with
valid-time
support.

Here we see an expression appearing after NONSEQUENCED VALIDTIME. This renders the result a
table with valid-time support, with the specified period forming the period of validity of the row. The
resulting table will have three columns, customer_number, property_number, and
Recorded_Start; each row will also be associated with a valid timestamp.

12.10.2 Integrity Constraints
The following assertion is nonsequenced in valid time and current in transaction time:

Code Fragment 12.84: Prop_Owner.property_number defines a contiguous valid-time history.

CREATE ASSERTION P_O_Contiguous_History

NONSEQUENCED VALIDTIME CHECK (NOT EXISTS (SELECT *

 FROM Prop_Owner AS P, Prop_Owner AS P2

 WHERE END(VALIDTIME(P)) < BEGIN(VALIDTIME(P2)

 AND P.property_number = P2.property_number

 AND NOT EXISTS (

 SELECT *

 FROM Prop_Owner AS P3

 WHERE P3.property_number = P.property_number

 AND ((BEGIN(VALIDTIME(P3)) <= END(VALIDTIME(P)))

 AND (END(VALIDTIME(P) < END(VALIDTIME(P3))))

 OR ((BEGIN(VALIDTIME(P3)) < BEGIN(VALIDTIME(P2)))

 AND (BEGIN(VALIDTIME(P2)) <= END(VALIDTIME(P3)))))))

))

Tip SQL3 integrity constraints on bitemporal tables can be any combination of current,

sequenced, and nonsequenced.
(Compare with CF-10.3.)

As with queries, assertions (and constraints and views) can also include with combinations of valid-time
and transaction-time sequenced and nonsequenced prefixes. Compare with CF-10.44–10.46.

Code Fragment 12.85: A customer who owns property 7797 shall own no other property
(current/current).

CREATE ASSERTION CHECK (NOT EXISTS (

 SELECT P2.property_number

 - 406 -

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_Owner = P2.property_owner))

Code Fragment 12.86: A customer who owned property 7797 shall concurrently own no other
property (sequenced/current).

CREATE ASSERTION VALIDTIME CHECK (NOT EXISTS (

 SELECT *

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1._property_owner = P2.property_owner))

Code Fragment 12.87: A customer who owned property 7797 shall own no other property, even at a
different time (nonsequenced/current).

CREATE ASSERTION NONSEQUENCED VALIDTIME CHECK (NOT EXISTS (

 SELECT P2.property_number

 FROM Prop_Owner AS P1, Prop_Owner AS P2

 WHERE P1.property_number = 7797

 AND P2.property_number <> P1.property_number

 AND P1.property_owner = P2.property_owner))

12.10.3 Modifications
Tip Current modifications in SQL3 on bitemporal tables are identical to their

nontemporal counterparts.

During modifications the DBMS provides the transaction time of facts, in contrast with the valid time,
which is provided by the user. This derives from the different semantics of transaction time and valid
time. Specifically, when a fact is (logically) deleted from a table with transaction-time support, its
transaction-stop time is set automatically by the DBMS to the current time, "now." When a fact is
inserted into the table, its transaction-start time is set by the DBMS, again to the current time. An update

 - 407 -

is treated, concerning the transaction timestamps, as a deletion followed by an insertion. The
transaction times that a set of modification transactions give to the modified rows must be consistent
with the serialization order of those transactions. Most importantly, though, the semantics of transaction
time across modification statements is maintained automatically by the DBMS. No user intervention is
required, and no mention of transaction time is indicated, or is even possible, in modifications of tables
with transaction-time support, including bitemporal tables.

Current valid-time modifications are identical to their nontemporal versions.
Code Fragment 12.88: Eva Nielsen buys the flat at Skovvej 30 in Aalborg on January 10, 1998.

INSERT INTO Prop_Owner (customer_number, property_number)

VALUES (145, 7797)

(Compare with CF-10.4.)

Code Fragment 12.89: Peter Olsen sells the flat on January 20, 1998.

DELETE FROM Prop_Owner

WHERE property_number = 7797

Code Fragment 12.90: Peter Olsen buys the flat on January 15, 1998, a current update.

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797

Tip The period of applicability for valid-time sequenced modifications in SQL3 is specified

immediately following the VALIDTIME prefix.

A current modification carries with it an implied period of applicability of "now" to "forever." Sequenced
modifications have an implied period of applicability of all of time: "beginning" to "forever." In the latter,
though, the user can specify a different period of applicability, right after the VALIDTIME reserved word.

Code Fragment 12.91: Eva actually purchased the flat on January 3, performed on January 23.

VALIDTIME PERIOD '[1998-01-03 - 1998-01-10)'

INSERT INTO Prop_Owner (customer_number, property_number)

VALUES (145, 7797)

 - 408 -

Code Fragment 12.92: Eva actually purchased the flat on January 5.

VALIDTIME PERIOD '[1998-01-02 - 1998-01-5)' DELETE FROM Prop_Owner

WHERE property_number = 7977

Code Fragment 12.93: Peter actually purchased the flat on January 12.

VALIDTIME PERIOD '[1998-01-12 - 1998-01-15)' UPDATE Prop_Owner

SET customer_number = 145

WHERE property_number = 7797

 AND customer_number <> 145

Code Fragment 12.94: Delete all records with a valid-time duration of exactly one week.

NONSEQUENCED VALIDTIME DELETE Prop_Owner

WHERE INTERVAL(PERIOD(Prop_Owner)) = INTERVAL '7' DAY

12.10.4 Temporal Partitioning and Vacuuming
As has been emphasized before, temporal partitioning is a physical design decision, and as such has
no impact on the expression of SQL3 queries, modifications, integrity constraints, and so on.

Vacuuming hasn't yet been specified for SQL3.

Internet Time
New requirements inspire new clocks. Consider the netizen, trying deep into the night to connect via a
chatroom with a correspondent halfway across the world. Via email, he had suggested a rendezvous
time, expressed in her local time, but he was off by an hour, and they miss their opportunity. Swatch,
the Swiss watch company, responded with the Webmaster, a watch (retailing at 100. SFr) that
displays both the local time and Internet Time, based on Biel Mean Time (BMT). Internet Time is the
same time the world over, so no conversions are necessary. He tells his cyber partner to check in at
750 BMT, or more colloquially, at 750 Swatch Beats, which corresponds, on this crisp winter day, to 6
P.M. in Biel, Switzerland (Central European Wintertime), 10 A.M. in Tucson, Arizona (Mountain
Standard Time), and 4 A.M. (Eastern Summer Time) in Sydney, Australia.

 - 409 -

Each day contains 1000 Swatch Beats, each 1 minute and 26.4 seconds long. The BMT meridian may
be seen on the façade of the Swatch International Headquarters on Jakob-Staempfli Street in Biel.

12.11 CAPSTONE CASE
In this last case, Brad's feed yard application, everything comes together. This is actually the third time
we're attacking this application. The first time was in Chapter 2, where we surveyed the major concepts
and expressed queries and modifications in prose. In Chapter 11 we showed how to design temporal
applications, using this case. Here, we reexpress the schema, queries, and modifications in SQL3, as
yet another example of how these constructs simplify development of temporal applications.

12.11.1 Temporal Relational Schema
Section 11.1 emphasized a five-step methodology for database design: (1) perform conceptual design
ignoring time, yielding a conventional ER schema, (2) add temporal annotations in prose, (3) map the
conventional ER schema into a logical SQL schema, (4) apply the temporal annotations, modifying the
logical schema along the way, and (5) finish with physical design, including temporal partitioning.

When using SQL3, we retain the first three steps and greatly simplify the fourth step. The fifth step is
DBMS-dependent, as the SQL3 standard does not include constructs for physical schema specification.
We start with the output from the third step: the initial nontemporal logical schema shown in Figure 11.2.
We then apply the temporal annotations, paralleling the material in Section 11.3.2.

User-Defined Time Attributes
Attributes whose type is period can use the SQL3 PERIOD type directly, rather than simulating these
with two instant columns.

Entity Lifespans
To each table corresponding to an entity type for which the lifespan or valid time of an associated
attribute is captured, we add an AS VALIDTIME clause. One entity type has a recorded lifespan: LOT.

Code Fragment 12.95: LOT is a valid-time state table.

ALTER TABLE LOT ADD VALIDTIME PERIOD(DATE)

Relationship Valid Time

To each table corresponding to a relationship type with a recorded valid-time extent, or having
attribute(s) whose valid time is recorded, we add an AS VALIDTIME clause.

Tip For tables corresponding to entity and relationship types for which valid time is to
be recorded, use an AS VALIDTIME clause in SQL3.

As indicated in Table 11.1, the valid time of three relationship types, LOCATION, MOVE, and
MASS_TRTMNT, is recorded. The LOCATION relationship type has a temporal extent; the other two
are instantaneous relationship types. All three must use a period timestamp because SQL3 does not
(yet) support event tables, that is, tables with an instant timestamp. Instead, a period of a single granule
will be used.
For LOCATION and MOVE, the granularity is denoted as "Sub-DAY" in Table 11.1. The MOVE_ORDER
column was used to differentiate multiple moves on a single day. As this is not possible in SQL3, we
specify a granularity of MINUTE for the associated tables.

Code Fragment 12.96: LOT_LOC, LOT_MOVE, and MASS_TRTMNT have valid-time support.

ALTER TABLE LOT_LOC ADD VALIDTIME PERIOD(TIMESTAMP MINUTE)

 - 410 -

ALTER TABLE LOT_MOVE ADD VALIDTIME PERIOD(TIMESTAMP MINUTE)

ALTER TABLE MASS_TRTMNT ADD VALIDTIME PERIOD(DATE)

Valid Time of Attributes

Tables should be decomposed so that all attributes in a table have identical temporal support. No
temporal decomposition is indicated here.

Tip TRANSACTIONTIME without a stated granularity may be used in SQL3.

Transaction Time

For each table associated with an entity or relationship type for whose transaction-time periods are
recorded, or that are associated with attribute(s) whose transaction-time periods are recorded, the AS
TRANSACTIONTIME clause should be used. SQL3 provides the granularity for transaction time; it may
not be specified by the user.

Code Fragment 12.97: LOT, LOT_MOVE, LOT_LOC, and BKP are transaction-time tables.

ALTER TABLE LOT ADD TRANSACTIONTIME

ALTER TABLE LOT_MOVE ADD TRANSACTIONTIME

ALTER TABLE LOT_LOC ADD TRANSACTIONTIME

ALTER TABLE BKP ADD TRANSACTIONTIME

Tip

Transaction-
time support
may induce
additional
temporal
support
decompositi
on.

As the LOT, LOT_MOVE, and LOT_LOC tables already had valid timestamps, adding transaction-time
support renders them bitemporal.
As with valid time, we must also consider temporal support decomposition. Most of the attributes in LOT
are bitemporal, but BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO, because they were
inherited from the CONTAINS relationship type, which records only transaction time, do not vary in valid
time, and thus differ from the other attributes in that table in their temporal support. We move those
attributes to a separate transaction-time table, LOT_CONTAINS, and include the primary key of LOT.

 - 411 -

Code Fragment 12.98: Move the BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO columns into a
separate transaction-time table.

ALTER TABLE LOT DROP COLUMN BKP_ID

ALTER TABLE LOT DROP COLUMN A_NAME

ALTER TABLE LOT DROP COLUMN DBF_NAME

ALTER TABLE LOT DROP COLUMN DBF_UPDATE_RECNO

CREATE TABLE LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,

 DBF_NAME, DBF_UPDATE_RECNO,

 PRIMARY KEY (FDYD_ID, LOT_ID_NUM),

 FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT

)

AS TRANSACTIONTIME

Primary Keys

For tables with valid-time support, the primary key should be valid-time sequenced; for tables with
transaction-time support, the primary key should be transaction-time sequenced.

Tip In SQL3, the primary key should reflect the temporal support accorded the table.

The original primary key for these tables, which is interpreted as current/current, can be dropped if the
table has some kind of temporal support. The collected result of these changes is shown in Figure 12.1.

Tip Time-invariant primary keys are inherently nonsequenced.

The primary key for the BACKUP entity type is transactiontime invariant, which is translated into a
NONSEQUENCED TRANSACTIONTIME PRIMARY KEY.

Referential Integrity
Referential integrity constraints are inherently sequenced. The prefix for FOREIGN KEY depends on the
temporal support of both participating tables:

 Both tables have valid-time support. The prefix should be VALIDTIME, indicating
a valid-time sequenced foreign key.

 Only the referencing table has valid-time support. The prefix should be
NONSEQUENCED VALIDTIME, indicating a valid-time nonsequenced foreign
key, ignoring the timestamp of the referencing table.

 The referencing table does not have valid-time support. No prefix should be used,
indicating a valid-time current foreign key, which applies to the current state of the
referenced table, should it have valid-time support, and to the table as it is, should
it not have valid-time support.

The same rules hold for transaction-time support. Generally, in SQL3, if both the referencing table and
the referenced table have valid-time support, then VALIDTIME is indicated; if only the referencing table

 - 412 -

has valid-time support, then NONSEQUENCED VALIDTIME is indicated. Transaction-time support is
analogously handled.

Uniqueness Constraints
As with all integrity constraints, the presence of temporal support implies a sequenced constraint. The
one exception is time-invariant integrity constraints, which are inherently nonsequenced. This may be
seen in the uniqueness clause of the LOT table.

In SQL3, integrity constraints should reflect the temporal support accorded the table and be interpreted
as sequenced. Time-invariant integrity constraints, which hold over all time, correspond to
nonsequenced integrity constraints.

 - 413 -

 - 414 -

Figure 12.1: SQL3 schema.

12.11.2 Queries
As we've seen from the previous case studies, queries on time-varying tables are much easier to
express in SQL3 than in SQL-92. We continue this comparison with the queries in Section 11.7.1.

Code Fragment 12.99: How many head of cattle from lot 219 in yard 1 are (currently) in each pen?

SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

Code Fragment 12.100: Give the history of how many head of cattle from lot 219 in yard 1 were in
each pen.

VALIDTIME SELECT PEN_ID, HD_CNT FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

 - 415 -

Code Fragment 12.101: How many head of cattle from lot 219 in yard 1 were, at some time, in each
pen?

NONSEQUENCED SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

Temporal joins are handled in the same way.
Code Fragment 12.102: Which lots are currently coresident in a pen?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

Code Fragment 12.103: Which lots were in the same pen, perhaps at different times?

NONSEQUENCED VALIDTIME

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

Code Fragment 12.104: Give the history of lots being coresident in a pen.

VALIDTIME SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

 - 416 -

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

 AND L1.FDYD_ID = L2.FDYD_ID

 AND L1.PEN_ID = L2.PEN_ID

Code Fragment 12.105: Provide the state of the LOT_CONTAINS table on January 12, 1998.

NONSEQUENCED TRANSACTIONTIME

SELECT LOT_ID_NUM, BKP_ID, A_NAME, DBF_NAME, DBF_UPDATE_RECNO

FROM LOT_CONTAINS AS L

WHERE TRANSACTIONTIME(L) OVERLAPS DATE '1998-01-12'

Code Fragment 12.106: Provide the history of the LOT table as best known on March 15, 1998.

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT LOT_ID_NUM, GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT,

 VALID, OWNER, COMMENT

FROM LOT

WHERE TRANSACTIONTIME(LOT) OVERLAPS DATE '1998-03-15'

Code Fragment 12.107: When were steerings scheduled (as opposed to being recorded after the
fact)?

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT S.LOT_ID_NUM, BEGIN(VALIDTIME(S)) AS When_Scheduled,

 BEGIN(TRANSACTIONTIME(S)) AS When_Recorded

FROM LOT AS C, LOT AS S

WHERE C.FDYD_ID = S.FDYD_ID

 AND C.LOT_ID_NUM = S.LOT_ID_NUM

 AND C.GNDR_CODE = 'c' AND S.GNDR_CODE = 's'

 AND VALIDTIME(C) MEETS VALIDTIME(S)

 - 417 -

 AND BEGIN(TRANSACTIONTIME(S)) < BEGIN(VALIDTIME(S))

12.11.3 Modifications
We start with current modifications, which are unchanged from their nontemporal analogs.

Code Fragment 12.108: Lot 433 arrives today.

INSERT INTO LOT

VALUES (433, 'h')

Code Fragment 12.109: Lot 101 leaves the feed yard.

DELETE FROM LOT

WHERE LOT_ID_NUM = 234

Code Fragment 12.110: The cattle in lot 799 are being steered today.

UPDATE LOT

SET GNDR_CODE = 's'

WHERE LOT_ID_NUM = 799

We now consider sequenced modifications.
Code Fragment 12.111: Lot 426, a collection of heifers, was on the feed yard from March 26 to April
14.

VALIDTIME INSERT INTO LOT

VALUES (426, 'h')

The following modification will apply regardless of whether LOT has transactiontime support.

Code Fragment 12.112: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place.

 - 418 -

VALIDTIME PERIOD '[1998-10-01 - 1998-10-22)'

DELETE FROM LOT

WHERE LOT_ID_NUM = 234

Code Fragment 12.113: Lot 799 was steered only for the month of March.

VALIDTIME PERIOD '[1998-03-01 - 1998-04-01)'

UPDATE LOT

SET GNDR_CODE = 's'

WHERE LOT_ID_NUM = 799

This update when expressed in SQL-92 requires two INSERT statements and three UPDATE
statements, or some 29 lines of code.

Nonsequenced modifications are also straightforward.
Code Fragment 12.114: Delete the records of lot 234 that have duration greater than three months.

NONSEQUENCED VALIDTIME DELETE FROM LOT

WHERE LOT_ID_NUM = 234

 AND INTERVAL(VALIDTIME(LOT) AS MONTH) > INTERVAL '3' MONTH

Code Fragment 12.115: Correct the backup identifier for lot 433 to 37.

UPDATE LOT_CONTAINS

SET BKP_ID = 37

WHERE LOT_ID = 433

12.12 MIGRATION
The potential users of the extensions to SQL3 just described are enterprises with applications that need
to manage potentially large amounts of time-varying information. In the case studies we just covered,
we tacitly assumed that we could code these applications in SQL3 from scratch. In reality, it is probable
that these enterprises are already managing time-varying data using SQL-92 (more specifically, a

 - 419 -

particular variant provided by the DBMS vendor) and that the temporal applications are already in place
and working. Indeed, the uninterrupted functioning of applications is likely to be of vital importance. The
question then becomes how to recast the application to use the new SQL3 constructs. We provide an
effective migration path by identifying four successively more general levels of queries and
modifications.

In this section, we differentiate the temporal constructs proposed for SQL3 from the (massive)
remainder of SQL3. To do so, we use the name of Part 7 of SQL3—SQL/Temporal—to denote the
temporal constructs, and we use the name of Part 2—SQL/Foundation—to denote the nontemporal
portion.

12.12.1 Upward Compatibility
Perhaps the most important aspect of ensuring a smooth transition is to guarantee that all application
code without modification will work with the new system exactly with the same functionality as with the
existing system.
To explore the relationship between nontemporal and temporal data and queries, we employ a series of
figures that demonstrate increasing query and update functionality. In Figure 12.2, a conventional table
is denoted with a rectangle. The current state of this table is the rectangle in the upper-right corner.
Whenever a modification is made to this table, the previous state is discarded; hence, at any time only
the current state is available. The discarded prior states are denoted with dashed rectangles; the right-
pointing arrows denote the modification that took the table from one state to the next state.
When a query q is applied to the current state of a table, a resulting table is computed, shown as the
rectangle in the bottom-right corner. While this figure only concerns queries over single tables, the
extension to queries over multiple tables is clear.

Figure 12.2: Evaluating an SQL/Foundation query over a table without temporal support, to return a table
also without temporal support.

Upward compatibility states that (1) all instances of tables in SQL/Foundation are instances of tables in
SQL/Temporal, (2) all SQL/Foundation modifications to tables in SQL/Foundation result in the same
tables when the modifications are evaluated according to SQL/Temporal semantics, and (3) all
SQL/Foundation queries result in the same tables when the queries are evaluated according to
SQL/Temporal.
By requiring that the temporal constructs be a strict superset (i.e., only adding language constructs), it is
relatively easy to ensure that the temporal constructs are upward compatible with SQL/Foundation.

12.12.2 Temporal Upward Compatibility
If an existing or new application needs support for the temporal dimension of the data in one or more
tables, the table can be defined with or altered to add temporal support (e.g., by using the CREATE
TABLE…AS VALID or AS TRANSACTION or ALTER…ADD VALID or ADD TRANSACTION
statements). It is undesirable to be forced to change the application code that accesses the table
without temporal support, when temporal support is added to that table. Previously we have mentioned
a requirement that states that the existing applications on tables without temporal support will continue
to work with no changes in functionality when the tables they access are altered to add temporal
support. Specifically, temporal upward compatibility requires that each query will return the same result
on an associated

 - 420 -

Figure 12.3: Evaluating an SQL/Foundation query over a table with temporal support, to return a table
without such support.

snapshot database as on the temporal counterpart of the database. Further, this property applies to
modifications to those tables with temporal support.
Temporal upward compatibility is illustrated in Figure 12.3. When temporal support is added to a table,
the history is preserved, and modifications over time are retained. In this figure, the state to the far left
was the current state when the table was made temporal. All subsequent modifications, denoted by the
arrows, result in states that are retained, and thus are solid rectangles. Temporal upward compatibility
ensures that the states will have identical contents to those states resulting from modifications of the
table without temporal support.
The query q is an SQL/Foundation query. Due to temporal upward compatibility, the semantics of this
query must not change if it is applied to a table with temporal support. Hence, the query only applies to
the current state, and a table without temporal support results.
As an example from the University Information System, take the following SQL92 query on a
nontemporal INCUMBENTS table:

Code Fragment 12.116: What is Bob's position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = 'Bob'

 AND EMPLOYEES.SSN = INCUMBENTS.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

After adding valid-time support to INCUMBENTS, this query is interpreted as a current query, returning
Bob's current position (which is, after all, what the query did when evaluated on the nontemporal version
of the INCUMBENTS table).

Temporal upward compatibility applies to all SQL/Foundation statements. Consider the following SQL-
92 modification on a nontemporal table:

Code Fragment 12.117: Bob was promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

 - 421 -

Temporal upward compatibility demands that this modification, when applied to a table with valid-time
support, be interpreted as impacting the current state of that table, that is, that it be interpreted as a
current modification, and so it is.

The same holds for tables with transaction-time support and for bitemporal tables.
Temporal upward compatibility at its core says this: Take an application that doesn't involve time, that
concerns only the current reality. An example is an application storing the current job assignments of
employees. Alter one or more of the tables so that they now have temporal support (valid-time,
transaction-time, or both). The application should run as before, without changing a single line of code.
This is an extremely powerful notion.
It is instructive to consider temporal upward compatibility in more detail. When designing information
systems, two general approaches have been advocated. In the first approach, the system design is
based on the function of the enterprise that the system is intended for (the "Yourdon" approach); in the
second, the design is based on the structure of the reality that the system is about (the "Jackson"
approach). It has been argued that the latter approach is superior because structure may remain stable
when the function changes, but the opposite is generally not possible. Thus, a more stable system
design, needing less maintenance, is achieved when adopting the second design principle. This
suggests that the data needs of an enterprise are relatively stable and only change when the actual
business of the enterprise changes.

When replacing a nontemporal system with a temporal system, that is, to utilize the constructs in
SQL/Temporal, the enterprise is not changing its business, but wants the extra support offered by the
temporal system for managing its temporal data. Thus, it is atypical for an enterprise to suddenly desire
to record temporal information where it previously recorded only snapshot information. Such a change
would be motivated by a change in the business.

The typical situation is rather more complicated. The nontemporal database system is likely to already
manage temporal data, which is encoded using tables without temporal support, perhaps using the
techniques discussed in early chapters. When adopting the SQL/Temporal constructs, upward
compatibility guarantees that it is not necessary to change the database schema or application
programs. However, without changes, the benefits of the added temporal support are also limited. Only
when defining new tables or modifying existing applications can the new temporal support be exploited.
The enterprise then gradually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant for several reasons. First, it
provides an appealing intuitive notion of a table with temporal support: the semantics of queries and
modification are retained from tables without such support; the only difference is that intermediate states
are also retained. Second, in those cases where the original table contained no historical information,
temporal upward compatibility affords a natural means of migrating to temporal support. In such cases,
not a single line of the application need be changed when the table is altered to be temporal. Third,
conventional tables that do contain temporal information and for which temporal support has been
added can still be queried and modified by conventional SQL/Foundation statements in a consistent
manner.

12.12.3 Sequenced Extensions
The requirements covered so far have been aimed at protecting investments in legacy code and at
ensuring uninterrupted operation of existing applications when achieving substantially increased
temporal support. Upward compatibility guarantees that (nontemporal) legacy application code will
continue to work without change when migrating, and temporal upward compatibility in addition allows
legacy code to coexist with new temporal applications following the migration.

The requirement introduced in this section aims at protecting investment in programmer training and at
ensuring continued efficient, cost-effective application development upon migration. This is achieved by
exploiting the fact that programmers are likely to be comfortable with SQL.
Sequenced semantics states that SQL/Temporal must offer, for each query in SQL/Foundation, a
temporal query that "naturally" generalizes this query, in a specific technical sense. In addition, we

 - 422 -

require that the SQL/Temporal query be syntactically similar to the SQL/Foundation query that it
generalizes.

With this requirement satisfied, SQL/Foundation queries on tables with temporal support have
semantics that are easily ("naturally") understood in terms of the semantics of the SQL/Foundation
queries on tables without temporal support. The familiarity of the similar syntax and the corresponding,
naturally extended semantics make it possible for programmers to immediately and easily write a wide
range of temporal queries, with little need for expensive training.
Figure 12.4 illustrates this property. We have already seen that an SQL/Foundation query q on a table
with temporal support applies the standard SQL3 semantics

Figure 12.4: Evaluating a sequenced query over a table with valid-time support, to return a table with similar
support.

on the current state of that table, resulting in a table without temporal support. This figure illustrates a
new query, q′, which is an SQL/Temporal sequenced query. Query q′ is applied to the table with
temporal support (the sequence of states across the top of the figure), and results in a table also with
temporal support, which is the sequence of states across the bottom.
We would like the meaning of q′ to be easily understood by the SQL/Foundation programmer. Satisfying
sequenced semantics along with the syntactical similarity requirement makes this possible. Specifically,
the meaning of q′ is precisely that of applying SQL3 query q on each state of the input table (which must
have temporal support), producing a state of the output table for each such application. And when q′
also closely resembles q syntactically, temporal queries are easily formulated and understood. To
generate query q′, we need only prepend the reserved word VALIDTIME or TRANSACTIONTIME to
query q.
As an example, let q be the following nontemporal query,

Code Fragment 12.118: Provide the salary and department for all employees.

SELECT S.SSN, AMOUNT, PCN

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

and q′ be the sequenced variant of q.

Figure 12.5: Evaluating an SQL/Temporal modification on a table with valid-time support.
Code Fragment 12.119: Provide the salary and department history for all employees.

 - 423 -

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

One small addition was made to the English statement, "history," and one small addition was made to
the SQL/Temporal statement, VALIDTIME.
These concepts also apply to sequenced modifications, illustrated in Figure 12.5. A valid-time
modification destructively modifies states as illustrated, by the curved arrows. As with queries, the
modification is applied on a state-by-state basis. Hence, the semantics of the SQL/Temporal
modification is a natural extension of the SQL/Foundation modification statement that it generalizes.
Elaborating on the example, the following nontemporal modification m, CF-12.120, can modify all times
with a sequenced version, m′ = VALIDTIME m, CF-12.121, or with a sequenced version with a specified
period of applicability, CF-12.122.

Code Fragment 12.120: Bob was promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Code Fragment 12.121: Bob was promoted to director of the Computer Center for all time.

VALIDTIME UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Figure 12.6: Evaluating a nonsequenced query over a table with valid-time support, to return a table with
similar support.
Code Fragment 12.122: Bob was promoted to director of the Computer Center for 1997.

 - 424 -

VALIDTIME PERIOD '[1997-01-01 - 1997-12-31]' UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

12.12.4 Nonsequenced Queries and Modifications
In a sequenced query, the information in a particular state of the resulting table with temporal support is
derived solely from information in the state at that same time of the source table(s). However, there are
many reasonable queries that require other states to be examined. Such queries are illustrated in Figure
12.6, in which each state of the resulting table requires information from possibly all states of the source
table.
In this figure, two tables with temporal support are shown, one consisting of the states across the top of
the figure, and the other, the result of the query, consisting of the states across the bottom of the figure.
A single query q performs the possibly complex computation, with the information usage illustrated by
the downward pointing arrows. Whenever the computation of a single state of the result table may utilize
information from a state at a different time, that query is nonsequenced. Such queries are more complex
than sequenced queries, and they require a new construct in the query language, specifically, the
NONSEQUENCED reserved word.

Figure 12.7: Evaluating a nonsequenced modification on a table with valid-time support.
Code Fragment 12.123: List all the salaries, past and present, of employees who had been hazardous
waste specialists at some time.

NONSEQUENCED VALIDTIME SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE INCUMBENTS.SSN = SAL_HISTORY.SSN

 AND INCUMBENTS.PCN = POSITIONS.PCN

 AND JOB_TITLE_CODE1 = 20730

The phrases "past and present" and "at some time" indicate that the query is a nonsequenced one.

It is important to note that nonsequenced queries are very different from sequenced queries. In the
latter, the query language is providing a temporal semantics; in the former, the query language
interprets the timestamp as simply another column. For the user, this means that in nonsequenced
queries (modifications, assertions, etc.) the period timestamps must be manipulated explicitly. The
operations, such as join and relational difference, are performed with respect to the periods themselves,
rather than on the individual states of the tables with temporal support. Reserved words are used to
syntactically differentiate temporally upward compatible queries, sequenced queries, and
nonsequenced queries, each of which applies a distinct semantics.

 - 425 -

The concept of nonsequenced queries naturally generalizes to modifications. Nonsequenced
modifications destructively change states, with information retrieved from possibly all states of the
original table. In Figure 12.7, each state of the table with valid-time support is possibly modified, using
information from possibly all states of the table before the modification. Nonsequenced modifications
include future modifications. (We note in passing that nonsequenced modifications are only permitted
on tables with valid-time support; all modifications are current in transaction time.)
In the nonsequenced modification of CF-12.124, the deletion of a particular state is dependent on the
PCN being in the state on December 31, 1997.

Figure 12.8: The NORMALIZE operator.
Code Fragment 12.124: Delete Bob's records that include 1997 stating that he was associate director
of the Computer Center.

NONSEQUENCED VALIDTIME DELETE FROM INCUMBENTS

WHERE SSN = 111223333

 AND PCN = 999071

 AND VALIDTIME(INCUMBENTS) CONTAINS DATE '1997-12-31'

12.13 ADDITIONAL CONSTRUCTS OF SQL3*
A few additional constructs are defined in SQL/Temporal and are mentioned here for completeness.
A set constructor specialized to periods is included. The NORMALIZE(pset) operator, where pset is a
set of periods, yields a potentially smaller set of periods that are disjoint, that is, they do not meet or
overlap. Figure 12.8 illustrates the result of this operator on a set of periods. The six periods at the top
comprise the input to the operator; the two periods at the bottom comprise the result. Effectively, the
periods are coalesced with duplicate elimination. The parallel operation of coalescing while retaining
duplicates is not provided.
An EXPAND operator, which converts a period into a SET of the period's element type, is also provided.
EXPAND(PERIOD '[1997-01-01 00:00:00 - 1997-12-31 00:00:00]') would result in a
value of type SET(TIMESTAMP(0)) (i.e., to the granularity of second), with 31,536,000 elements (!).
This set can be converted back to the original period via a new NORMALIZE ON construct of the select
statement. This construct is best explained with an example. The following statement EXPANDS a
period column (ATable.Aperiod), then normalizes it back into the original period.

Code Fragment 12.125: Expanding each period into a set of granules, then normalizing back to a
period.

SELECT A, B, C, PERIOD[E3, E3] AS P

FROM (SELECT A, B, C, EXPAND(APeriod) AS E FROM ATable) AS E1,

 TABLE(E1.E) AS E2(E3)

 - 426 -

NORMALIZE ON P

This rather complex query expands the APeriod column of ATable; the resulting table E1 has a single
timestamp column, E, of type SET(TIMESTAMP(0)). The second expression in the FROM clause
makes a table out of each set; the value of the E3 column for each row of E2 is a particular timestamp
value, such as TIMESTAMP '1997-10-21 17:05:30'. The SELECT clause converts each of these
times into a period of duration one second. The NORMALIZE ON clause then normalizes the result by
collecting the values of P for rows with identical values for the remaining columns (A, B, and C), applying
NORMALIZE to this set of periods, then associating a copy of the row with each of the resulting periods.
(Whew!) As we'll see later, this idiom can be used to implement certain types of temporal queries.
If the original table ATable contained duplicate rows, then this statement will normalize the periods
associated with those rows, thereby removing sequenced duplicates. Say table ATable contained six
rows with identical values for A, B, and C and with the periods shown in the top portion of Figure 12.8 as
the value of the APeriod column. The result of the above statement would contain two rows,
associated with the periods in the bottom portion of Figure 12.8.
Finally, an EXPANDING clause is added to UNION, EXCEPT, and INTERSECT, but only if ALL is not
specified. This clause provides another way to effect a sequenced query. Thus, the following query, on
a table without temporal support, rather with an explicit When column of type PERIOD, implements a
sequenced EXCEPT (compare with CF-12.22, which replaces the EXPANDING(When) with the prefix
VALIDTIME).

Code Fragment 12.126: List the employees who are department heads but are not also professors
(using EXPANDING).

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT EXPANDING (When)

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197

This is syntactic sugar for three steps: applying EXPAND to the timestamp, performing the operation,
then normalizing the result.

Code Fragment 12.127: List the employees who are department heads but are not also professors
(using EXPAND and NORMALIZE).

SELECT SSN, PERIOD[W2, W2] AS When

FROM (SELECT SSN, W2

 FROM (SELECT SSN, EXPAND(When) AS W

 FROM INCUMBENTS

 - 427 -

 WHERE PCN = 455332) AS El,

 TABLE(El.W) AS E2(W2)

 EXCEPT

 SELECT SSN, W2

 FROM (SELECT SSN, EXPAND(When) AS W

 FROM INCUMBENTS

 WHERE PCN = 821197) AS El,

 TABLE(El.W) AS E2(W2)

) AS E3

NORMALIZE ON When

While this query, at 14 lines, is certainly shorter than CF-6.18, at 45 lines, it is highly inefficient as
stated. Each row of INCUMBENTS is expanded into potentially millions of rows of E3, then normalized
back to the result. And because NORMALIZE is used, duplicates are automatically removed. There is
no parallel to EXCEPT EXPANDING ALL; instead, VALIDTIME…EXCEPT ALL… should be used.
VALIDTIME lends a sequenced semantics to any query, and as such is preferred over the EXPANDING
option, which is constrained to some uses of UNION, EXCEPT, and INTERSECT.

In summary, many uses of EXPAND and NORMALIZE are more easily performed by sequenced
queries using VALIDTIME or TRANSACTIONTIME, which provides a sequenced semantics to any
nontemporal query, view, modification, assertion, and cursor.

12.14 IMPLEMENTATION CONSIDERATIONS
SQL3 is in draft form, and vendors are still adding support for the SQL-92 standard; there is currently
available (early 1999) no DBMS compliant at the Full SQL level. So understandably no DBMS yet
supports the constructs just described.
An alternative strategy is to implement temporal support outside the DBMS, as middleware imposed
between the application and the DBMS. The user issues temporal statements, which are translated into
the variant of SQL supported by the underlying DBMS. This strategy has been employed in several
research prototypes, as well as one commercially available product.

12.14.1 TIMEDB
TIMEDB is middleware that supports the constructs proposed for SQL3, including valid time, transaction
time, queries, modifications, views, assertions, and constraints. It also supports user-specified valid-time
coalescing. It doesn't support the EXPAND, EXCEPT EXPANDING, and NORMALIZE constructs
described in Section 12.13, though as we saw there, those constructs can often be simulated in a more
natural fashion with sequenced statements.

There are two quite separate versions of TIMEDB. Both accept the same language, but are distinct
code bases.

 TIMEDB 1: This system runs as a front end to Oracle, accepts textual input, and
utilizes the Oracle Call Interface (OCI) to evaluate the user requests. The system is
implemented in Prolog. Three versions are available, running under SICStus Prolog,
Macintosh SICStus Prolog, and SWI Prolog. The TIMEDB 1 source (about 10,000
lines of Prolog) is public domain and is included in the distribution. A main-memory
emulator of OCI, also implemented in Prolog, allows the system to be used even if
Oracle is not available. As SWI Prolog is available free for noncommercial use,
TIMEDB 1 allows exploration of the SQL3 constructs at no cost.

 - 428 -

 TIMEDB 2: This system is implemented in Java, provides a graphical user interface,
and uses JDBC to communicate with the underlying DBMS. It has been tested with
Oracle8 Server, Sybase's Adaptive Server Enterprise (Version 11.5), and
Cloudscape's JBMS (Version 1.1). It is a commercial product from TimeConsult.

Both versions of TIMEDB were developed by Andreas Steiner.

12.14.2 TIGER
TIGER is another front end to Oracle supporting the SQL3 temporal constructs. The TIGER source
(about 4000 lines of SWI Prolog code) is freely usable for educational and research purposes. The
language supported is ATSQL, which is similar to that proposed for SQL3, including valid time,
transaction time, queries, modifications, views, assertions, and constraints, with the following
differences:

 The reserved words VALID and TRANSACTION replace VALIDTIME and
TRANSACTIONTIME, respectively. The functions VTIME() and TTIME() replace
VALIDTIME() and TRANSACTIONTIME().

 The INTERVAL() function is replaced with the DURATION() function.
 SEQUENCED is a new reserved word. If VALID is used as a prefix, either

SEQUENCED or NONSEQUENCED is required in TIGER.
 There is a new SET VALID clause, permitting a wider range of expressions than that

allowed in SQL3's VALIDTIME <expression> clause.
 User-specifiable coalescing, either on valid time, transaction time, or both, in either

order, is supported.
 EXPAND, EXCEPT EXPANDING, and NORMALIZE are not supported.

TIGER was developed by a team directed by Michael Böhlen.

12.14.3 Synchrony
Synchrony is a data warehouse query tool developed by the if…software company.

A data warehouse is a collection of information, often extracted from multiple production databases, that
supports sophisticated dimensional analysis tools. Data warehouses are always temporal: the fact table
has a time attribute that is a foreign key to a time dimension table.

As an example, a data warehouse supporting sales information might have time, store, product, and
customer dimension tables in a star schema, in which the fact table has a foreign key to each dimension
table.

In a conventional data warehouse, the dimensions are themselves nontemporal, which limits their
functionality. Suppose an unmarried customer buys a toaster in January. This would cause a row to be
inserted into the fact table. If that customer later marries, her marital status would be updated in the
customer dimension table. Since the customer table is nontemporal, the previous marital status is lost,
and the information about the toaster sale is incorrect, as the warehouse implies that the toaster was
bought by a married person.

Synchrony is notable in that it supports in a comprehensive fashion time-varying dimension tables.
Synchrony provides powerful data loading and query facilities for such tables. Queries such as "What
percentage of customers have lived in the same home for over three years, and what percentage of
overall sales do they account for?" can be easily expressed.

Synchrony differs from the other systems described here in that it doesn't offer a temporal extension of
SQL based on the relational model. Rather, Synchrony's query language is graphical and based on a
star schema data model. However, Synchrony is similar to the other systems in that it extends a query
language and data model to make it easier to express temporal queries, and it generates conventional
SQL for evaluation by an underlying DBMS, thereby freeing the user from having to write these complex
statements manually.

12.14.4 CD-ROM Materials

 - 429 -

A wealth of material is available on the CD-ROM:
 Some 25 change proposals and expert contributions that have been submitted to the

ANSI or ISO SQL3 committees are included. Of particular interest are the valid-time
and transaction-time change proposals [92, 93].

 The full distribution of TIMEDB 1 is included, along with all source code and over 30
demos.

 A demonstration version of TIMEDB 2 is included as Java class files. The features
missing in the demo version are views, assertions, constraints, update statements,
delete statements, subqueries, and transaction-time support. A comprehensive
manual is provided, as are over a dozen demos.

 Information, a thorough manual, and white papers on TIGER are included. TIGER
may be run through a web browser at cs.auc.dk/~tigeradm/.

 A white paper and a guide containing several demos of Synchrony are available on
the CD-ROM.

 Several reports discuss the technical challenges of implementing the SQL3 temporal
constructs and provide some solutions.

12.15 SUMMARY
In SQL-92, users must "roll their own" temporal support in the application code. SQL3 instead provides
explicit support for periods and valid and transaction time, thereby dramatically simplifying the code that
must be written.

We first examined the PERIOD data type, introduced in SQL/Temporal. We then looked at the valid-
time support available, specifically the VALIDTIME and NONSEQUENCED reserved words and the
VALIDTIME function. Transaction-time support was introduced via the TRANSACTIONTIME reserved
word and function. Bitem-poral support is afforded by combining the orthogonal support for valid time
and transaction time.
These minimal constructs were illustrated by rephrasing the code fragments of the previous case
studies in SQL3. Table 12.2 compares the SQL/Temporal code fragments of this chapter with the
analogous SQL-92 code fragments for four major case studies: Brad De Groot's feed yard application,
Cheryl Bach's University Information System, Nigel Corbin's oil field application, and Jens Gadgaard's
property ownership application. The code fragments in SQL-92 for these four applications to-taled 1848
lines; only 520 lines of SQL3 were required to do exactly the same thing. These tables show that, over a
wide range of data definition, query, and modification fragments, the SQL-92 version is three times
longer in number of lines than the SQL3 version, and many times more complex. In fact, very few SQL3
fragments were more than 10 lines long; some fragments in SQL-92 comprised literally dozens of lines
of highly complex code.

Table 12.2: Application development in SQL-92 and SQL3.

Operation

SQL-92
Fragment(
s)

Lines
of
Code

SQL3
Fragme
nt

Lines
of
Code

Valid-Time State Tables:

adding valid-time support 5.4 2 12.3 1

sequenced primary key
constraint

5.8 10 12.4 1

current uniqueness constraint 5.12 9 12.5 1

sequenced uniqueness
constraints

5.14 7 12.6 1

referential integrity
(referencing table is temporal)

5.19 1 12.7 2

current referential integrity
(both tables are temporal)

5.20 12 12.7 2

current referential integrity
(referenced table is temporal)

5.24 10 12.7 2

sequenced referential integrity 5.21 32 12.9 2

 - 430 -

(both tables are temporal)

nonsequenced referential
integrity (both tables are temporal)

5.19 1 12.10 2

current join queries 6.2, 6.3 17 12.12,
12.13 11

current not exists query 6.4 7 12.14 5

valid time-slice query 6.5 7 12.15 6

sequenced selection query 6.6 3 12.16 3

sequenced projection query 6.7 2 12.17 2

sequenced sort queries 6.8, 6.9 3 12.18 3

sequenced union query 6.10 7 12.19 7

sequenced join query 6.11–6.14 7–29 12.20 3

sequenced nested query 6.18 45 12.21 7

sequenced except queries 6.18 45 12.22,
12.126 7

nonsequenced join queries 6.19, 6.20 10 12.23,
12.24 11

remove current duplicates 6.23 3 12.25 2

remove sequenced duplicates 6.24–6.26 19–
30

12.26 2

remove nonsequenced
duplicates

6.21 2 12.27 2

current insertions 7.1–7.3, 7.5 2–9 12.28 2

current deletions 7.7, 7.8 5,10 12.29 3

current updates 7.10, 7.11,
7.22 9–30 12.30,

12.36 3–6

sequenced insertion 7.12–7.14 2–28 12.31 2

sequenced deletion 7.16 24 12.32 3

sequenced updates 7.18, 7.24 27–
77

12.33,
12.37
12.122

3–6

nonsequenced deletion 7.19 5 12.34 4

nonsequenced update 7.20 4 12.35 5

partitioned current join query 7.25 5 12.38 5

partitioned sequenced join 7.26 50 12.39 3

partitioned current insertions 7.27, 7.28 2, 6 12.40 2

partitioned current deletion 7.29 8 12.41 3

partitioned sequenced
deletion

7.30 44 12.42 3

partitioned sequenced update 7.31 57 12.43 3
Transaction-Time Tables:

adding transaction-time
support

8.1+8.2,
8.12, 8.15,
9.1+9.2,

17–
44

12.44 1

 - 431 -

9.15+9.17,
9.20+9.21

current query 8.4 3 12.45 3

extracting a prior state 8.3, 8.13,
8.14, 8.16,
9.7, 9.18

4–19 12.46 4

prior state as a view 8.5, 8.17 17–
27

12.47 7

current state as a view 8.20, 9.3 0–11 — 0
 9.16, 9.19,

9.22

converting to a state table 8.7 38 — —

converting to an event table 9.12–9.14 4–26 12.48,
12.51–
12.53

6–27

sequenced selection queries 8.8, 9.8 3–4 12.49 3

sequenced union query 9.9 8 12.57 7

sequenced join query 9.10 8 12.58 5

sequenced self-join query 8.18 13 12.50 5

nonsequenced query 9.11 10 12.59 10

current insertions 8.9, 9.4 4–6 12.54 4

current deletions 8.10, 9.5 2–4 12.55 2

current updates 8.11, 9.6 3–14 12.56 3

entity vacuum 9.23 4 — —

temporally vacuum 9.24–9.26,
9.28 2–6 — —

log the vacuuming operations 9.27 8 — —
Bitemporal State Tables:

adding bitemporal support 10.1, 10.52 7–17 12.60 4

sequenced/sequenced
primary key

10.2 13 12.61 2

current/current integrity
constraint

10.44 12 12.85 6

sequenced/current integrity
constraint

10.45 10 12.86 6

nonsequenced/current
integrity constraint

10.46 8 12.87 6

sequenced/current referential
integrity

10.49, 10.50 18–
48

12.62 2

contiguous history assertion 10.3 16 12.84 14

transaction time-slice 10.19 5 12.63 5

current transaction time-slice 10.20 4 12.64 3

valid time-slice 10.21 5 12.65 5

bitemporal time-slice 10.22 7 12.66 6

 - 432 -

current bitemporal time-slice 10.23 6 12.67 3

current/current queries 10.26, 10.35 16 12.68,
12.77 8

sequenced/current queries 10.27, 10.37 16 12.69,
12.79 8

nonsequenced/current query 10.28 7 12.70 5

current/sequenced query 10.29 14 12.71 5

sequenced/sequenced query 10.30 15 12.72 5

nonsequenced/sequenced
query

10.31 10 12.73 6

current/nonsequenced
queries

10.32, 10.39 13 12.74,
12.81 9

sequenced/nonsequenced
query

10.33 12 12.75 6

nonsequenced/nonsequenced
queries

10.31, 10.41 9 12.73,
12.83 13

current/current multiway join
query multiway join query

10.36 14 12.78 1

sequenced/current join query 10.38 11 12.80 5

sequenced/nonsequenced
multiway join query

10.40 12 12.82 8

current insertion 10.4 4 12.88 2

current deletion 10.10, 10.11 13–
19

12.89 2

current update 10.7 34 12.90 3

sequenced insertion 10.12, 10.13 4–36 12.91 3

sequenced deletion 10.15 42 12.92 2

sequenced update 10.17 58 12.93 3

nonsequenced deletion 10.18 4 12.94 2

reconstitute bitemporal state
table as a view

10.53–10.55 8–51 — 0

temporally vacuum 10.56 8 — —
Capstone Case:

schema definition Fig.11.2,
11.1–11.20,
11.22, 11.23

245 Fig.12.1 82

current queries 11.24, 11.28 11 12.99,
12.102 8

sequenced queries 11.25, 11.30
or 11.31 20–

36
12.100,
12.104 7

nonsequenced queries 11.26, 11.29 8 12.101,
12.103 8

nonsequenced/nonsequenced
query

11.34 9 12.107 9

extracting a prior state 11.32,11.33 9 12.105,
12.106 15

 - 433 -

current modifications 11.35,
11.37, 11.42 68 12.108–

12.110,
12.115

10

sequenced modifications 11.38–
11.40, 11.43 149 12.111–

12.113,
12.112

12

nonsequenced modification 11.41 10 12.114 3

To recap, five requirements must be satisfied if a language or DBMS can be claimed to provide
temporal support:

1. Both valid time and transaction time are supported, in a compatible and orthogonal
manner. In particular, the semantics of transaction time, where the state as of a time
in the past can be reconstructed, must be guaranteed by the DBMS.

2. Upward compatibility is ensured.
Existing constructs applied to nontemporal data should operate exactly as before. This
requirement is fairly easy to satisfy.
3. Temporal upward compatibility is ensured. This means that an existing nontemporal

application will not be broken when temporal support is added to a table, say, via an
ALTER TABLE statement. No changes to application code should be required when
the history of the enterprise (valid time) or the sequence of changes to the data
(transaction time), or both, are retained. This implies, for example, that a
conventional query on tables with temporal support should be interpreted as a
current query. Upward compatibility and temporal upward compatibility guarantee
that legacy application code needs no modification when migrating and that new
temporal applications may coexist with existing applications. They are thus aimed at
protecting investments in legacy application code.

4. Sequenced variants should be easy to express for all constructs of the language,
including queries, modifications, views, assertions and constraints, and cursors. This
requirement ensures that the extended query language is easy to use for
programmers familiar with the existing query language, thus helping to protect
investments in programmer training. In particular, complex rewritings of the
statement should not be necessary.

5. Nonsequenced variants should also be easy to express. In part, such variants enable
data with temporal support to be converted to and from data without temporal
support.

The SQL/Temporal constructs discussed here satisfy these requirements:
1. Valid time can be added to a table via AS VALIDTIME PERIOD; transaction time can

be added with AS TRANSACTIONTIME. Only current modifications are allowed in
transaction time to ensure that time-slices will be correct. Either kind of time can be
used individually or together, forming a bitemporal table.

2. The temporal constructs of SQL/Temporal are defined as an upward compatible
extension of the other parts of SQL3.

3. All conventional queries (modifications, views, assertions, constraints, cursors) on
tables with temporal support are interpreted as current queries (respectively,
modifications, etc.). As an example, when valid-time support was added to the
INCUMBENTS table, the existing code of this application, perhaps tens of thousands
of lines, did not require a single change.

4. An SQL/Foundation query can be converted to a sequenced query in SQL/Temporal
simply by prepending the keyword VALIDTIME. This also holds for modifications
(e.g., VALIDTIME UPDATE), views (e.g., CREATE VIEW AS VALIDTIME SELECT),
and constraints (e.g., VALIDTIME UNIQUE). And of course this also applies to
transaction time, via the TRANSACTIONTIME keyword.

5. Nonsequenced statements require the additional keyword NONSEQUENCED. The
valid timestamp associated with a row is accessible via the function VALIDTIME(),
and the transaction timestamp, via TRANSACTIONTIME().

 - 434 -

As we have shown with the case studies throughout this chapter, these proposed constructs (three new
reserved words, VALIDTIME, TRANSACTIONTIME, and NONSEQUENCED, in addition to those
already in SQL/Temporal) can greatly simplify application development, often reducing the amount of
SQL code that needs to be written by a factor of three or more, while improving the comprehensibility of
that code.

Finally, we examined two prototypes (TIMEDB 1 and TIGER) and a commercial product (TIMEDB 2)
that support these constructs, as well as another product, Synchrony, which supports time-varying
dimensions in a data warehouse.

12.16 READINGS
SQL-86 and SQL-89 had no notion of time. SQL-92 added datetime and interval data types, though no
product has yet been validated for conformance to this standard (some products have been validated at
the Entry level, which does not include the temporal data types). However, it has long been recognized
in the temporal database research community, and as the case studies in this special series have
illustrated, that these data types alone are inadequate. Momentum for a temporal extension to SQL
designed by that community first became evident at the Work-shop on an Infrastructure for Temporal
Databases, held in Arlington, Texas, in June 1993 [87].
The TSQL2 committee was subsequently formed, producing a preliminary language specification the
following January. The final version was completed in September 1994, and a book describing the
language and examining in detail its underlying design decisions was released at the VLDB
International Workshop on Temporal Databases in Zurich in September 1995 [91].
The ANSI and ISO SQL3 committees became involved in late 1994. A new part to SQL3, termed
SQL/Temporal, was proposed and formally approved by the SQL3 International Organization for
Standardization in Ottawa in July 1995 as Part 7 of the SQL3 draft standard. Jim Melton agreed to edit
this new part [69]. There is presently a two-year experiment (ending in 2000) to allow drafts to be visible
to the public. Hence, this draft may be viewed at
ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sqltmprl.ps. PDF and ASCII text versions are
also available.
The first task was to define a PERIOD data type, which is now included in Part 7. Discussions then
commenced on adding further temporal support. Two change proposals resulted, one on valid-time
support and one on transactiontime support [92, 93]. These change proposals have been unanimously
approved by the ANSI SQL3 committee (ANSI X3H2) for consideration by the ISO SQL3 committee
(ISO/IEC JTC 1/SC 32/WG 3). The full story may be found at www.cs.arizona.edu/people/rts/tsql2.html.
In the meantime, the SQL committees decided to focus on Part 1, Part 2, Part 4, and Part 5 of the SQL3
draft standard. These parts are expected to be finalized as an international standard in 1999 [30]. At
that time, the committees will revisit the other parts and move them through the exhaustive process
towards standardization.
Michael B¨ohlen and Robert Marti introduced the notion of temporal semicompleteness as a (highly
desirable) property of a temporal query language [14]. Translated into our terminology, temporal
semicompleteness says that a sequenced query should be a syntactic augmentation of the associated
nontemporal query, with the augmentation consisting solely of constructs added before and after the
query. SQL3 is thus temporally semicomplete because a nontemporal query can be rendered
sequenced by simply prepending VALIDTIME. The initial design of this construct appeared in 1995 [15].
Transitioning from SQL-92 to SQL3 is covered in depth by John Bair et al. [3] and by the author and
others [94]. System design based on the function of the enterprise is advocated by Edward Yourdon
[106]; system design based on the structure of the reality that the system is about has been elaborated
by Michael Jackson [46].
TIMEDB was developed by the TimeConsult software company under the direction of Andreas Steiner.
TimeConsult provides consulting in handling temporal data in relational, object-relational, and object-
oriented DBMSs; implements temporal database applications; and supports their TIMEDB 2 product.
For more information, see their Web site at www.timeconsult.com or contact Andreas Steiner at
<steiner@timeconsult.com>.
TIGER was developed by a team directed by Michael Böhlen at the Department of Computer Science,
Aalborg University, Denmark. He can be reached at boehlen@cs.auc.dk; his Web page is
www.cs.auc.dk/~boehlen/. The TIGER Web page is cs.auc.dk/~tigeradm/, which includes an online
demo. The Prolog code for both TIGER and TIMEDB1 resembles that developed in the early 1990s to
support ChronoLog [10]. TIGER supports the ATSQL language [12].
Synchrony is analytic software developed by the if … software company. if … develops analytic
software designed for business analysts and decision makers to examine in-depth relationships across
multiple aspects of their businesses. For more information, contact if … at 510-864-3480 or
www.iftime.com.

 - 435 -

The Swatch Webmaster and BMT are described at www.swatch.ch, clicking on ".beat".

Chapter 13: Prospects
Overview
So we see that development of time-varying database applications in SQL is possible, but is devilishly
difficult. There are proposals before the SQL3 committee for new language constructs that help
immensely. How long will we have to wait until such facilities are widely available?

In the near term, developers of time-oriented applications have three choices. The easiest option is to
minimize the use of time in the application, reducing the complexity of the SQL needed, as well as the
functionality of the delivered application. The second option is to use the concepts and techniques
introduced in this book to develop powerful and correct time-oriented applications. Of course, the SQL
code required will often be daunting. The last option is to use third-party software to translate temporal
queries (expressed in the SQL/Temporal syntax, or a related syntax) into SQL-92. Such translators are
already available commercially, and as the market for such middleware matures, their number and
sophistication will grow.

In the longer term, vendors will start integrating temporal support into the DBMS itself. Initially, this will
be done by simply imposing a middleware translator between the application and the DBMS. While this
is architecturally identical to the third option just described, the perception will be that the DBMS itself
has temporal support, an important marketing distinction. The vendor can then gradually move the
functionality from the middleware component to the internals of the DBMS, retaining the temporal
language but gaining in efficiency, with the timing of this transfer from middleware to DBMS internals
based on market demand.
Unlike other constructs, such as triggers and object-relational extensions that are now de rigueur for
commercial DBMS offerings, a standard for temporal support was proposed before such support was
implemented in a product. When a middleware or DBMS vendor decides to implement temporal
support, the language of choice should be something similar to what has been proposed (and
summarized in the previous chapter). The ever-present danger, existing in previous extensions and to
which temporal extensions are susceptible, is that vendors will attempt to impose proprietary language
constructs. We've already seen that occur with the basic temporal types, with many vendors basically
ignoring the SQL-92 standard data types of DATE, TIME, and TIMESTAMP. We can only hope that
when support for valid time and transaction time is added, the vendors utilize the mature language
constructs already designed and refined by the SQL3 standards committees.

Temporal extensions will not occur in a vacuum—they must be integrated with other facilities now being
added or considered for the future. Fortunately, the requirements of upward compatibility, temporal
upward compatibility, and sequenced support ensure that whatever constructs are later added will be
usable in current, sequenced, and nonsequenced queries, views, modifications, assertions, and cursors
over tables with temporal support.
Predicting when the transition from third-party middleware solutions to integrated temporal DBMS
offerings will occur is difficult. I estimate that the first will appear by the year 2000. As the benefits of
such support become clear and acknowledged (the readers of this chapter are already aware of these
advantages), pressure will mount on the remaining DBMS vendors to follow suit. Very quickly thereafter,
a phase shift will occur, with temporal support along the lines proposed for SQL3 appearing in all DBMS
offerings, as such support becomes a mandatory requirement.

Glossary

This glossary is an extension of the official one, which is in two parts, general concepts [49] and time
granularity concepts [7].

The page in which the term is defined is indicated in parentheses.
A.D.

anno Domini, "in the year of our Lord".
after-image

The new value of a modified row or column.
A.H.

 - 436 -

anno Hegirae, the first year of the Hijri (Islamic) calendar
A.M.

(1) annus mundi, or "year of the world". 6000 A.M. started October 27, 1997. (2) ante meridiem, or
"before noon."

append-only
A property of tables with transaction-time support, in which changes are implemented only as
insertions, or changing the transaction-stop time to "now," so that the changes always accummulate
in the table.

archival store
The component of a temporally partitioned transaction-time state table containing rows that have
been corrected, that is, rows with a transaction-time stop date before "now".

as-of date

The (transaction-time) date for which a prior state of a monitored table is to be reconstructed.
atom

There are 22,500 atoms in an hour, so a second is exactly 6 1/4 atoms.
atomic second

9,192,631,770 periods of the radiation emitted by the transtition between two particular hyperfine
states of the cesium 133 atom in the ground state.

A.U.C.
ab urbe condita, or "from the foundation of the city". A.U.C. was the prevailing year numbering
system before the use of B.C.-A.D. 1 A.D. is 754 A.U.C.

backlog
A tracking log with the modification operation explicitly identified.

B.C.
An acronym for "before Christ".

B.C.E.
The preferred term for B.C.; an acroymn for "before the Christian Era" or "before the Common Era".

before-image

The previous value of a modified row or column.
bitemporal table

Having support for both valid time and transaction time.
bitemporal time diagram

A two-dimensional graphical notation of the information content of a bitemporal table.
bitemporal time-slice

A query or veiw that selects the snapshot state of a bitebitemportal table at specified valid-time
instants.

BMT
Biel Mean Time, based on the meridian for Internet Time in Biel, Switzerland.

B.P.
An acronym for "before the present".

C.E.
The preferred term for A.D.; an acronym for "Common Era".

chronology
The science of timekeeping.See also horology

clepsydra
A clock powered by the flow of water.

coalesce

Reduce the number of rows in a table by merging the periods of validity of value-equivalent rows.
comparable

In SQL-92, indicates whether values of two types can be compared.
current duplicate

Two rows that are sequenced duplicates in the current state.
current insertion

A row that became valid now.
current integrity constraint

Must hold only for the current state.
current join

A join over the current states of the two argument tables.
current modification

 - 437 -

Concerns a change that occurred now.
current store

The component of a temporally partitioned state table containing rows that are still current, that is,
rows with a stop date of "now".

current time-slice query

Expressed on the current state of the table or database.
current update

Changes a fact now.
current valid time-slice query

Expressed on the current valid-time state of the table or database.
DATE

An SQL-92 data type, with a granularity of day. Supported by IBM DB2 UDB; by Informix-Universal
Server; by Oracle8 Server, with a granularity of second; and by UniSQL, also with a granularity of
second.

datetime
An SQL-92 instant data type or value.

DATETIME
A data type supported by Informix-Universal Server, with a specifiable precision; by Microsoft
Access, with a granularity of slightly less than one millisecond; by Microsoft SQL Server, with a
granularity of 1/300 of a second; and by Sybase SQLServer, also with a granularity of 1/300 of a
second.

day-time interval
An SQL-92 interval data type containing only the day, hour, minute, and second fields, with an
optional fractional seconds.

degenerate specialization

A bitemporal entity type, relationship type, or table in which the beginning of the valid-time extent
(the entity's lifespan) exactly corresponds to the beginning of the transaction time

dirty read
An isolation level that allows transactions to read uncommitted values.

entity vacuuming
Purging entities that are judged to be less interesting from the archival store.

ephemeris second
1/31,556,925.9747 of the period of the tropical year between the vernal equinoxes of 1899 and 1900.

equation of time
The difference between mean solar time and true solar time.

equinoctial day
A day for which the daylight is equal in duration to the night, that is, March 21 or September 21.

escapement
The mechanism within a mechanical clock that regulates the advancement of the hands, while subtly
imparting energy to the oscillator, to keep the clock running.

event

An instantaneous fact, that is, something occurring at an instant in the modeled reality.
fully general

A bitemporal entity type, relationship type, or table that exhibits no coupling between its valid and
transaction timestamps.

gnomon
The pointer portion of a sundial.

gnomonics
The science of sundials. See alsochronology.

granularity
A partitioning of the time line, for example, years, days, microseconds.

granule
A specific unit element of a granularity.

heliochronometer
A sundial.

hemicyclium

A truncated, and thus lighter, hemispherium.
hemispherium

 - 438 -

Berossos's sundial, made by hollowing out a half-sphere in a rectangular block of stone.
history store

The component of a temporally partitioned state table containing rows that were valid in the past,
that is, rows with a stop date before "now".

horology
The science of time measurement, and the art of constructing instruments that indicate time.

hour
1/24 th of a mean solar day.

instant
A time point on an underlying time axis, or equivalently, an anchored location on that axis.

Internet Time
A day in Internet Time starts at midnight BMT and contains 1000 Swatch Beats.

interstate integrity constraint

A constraint applied across states of the table. See also nonsequenced integrity constraint.
interval

An unanchored contiguous portion of the time line.
INTERVAL

An SQL-92 data type, with a user-specifiable granularity.Supported by Informix-Universal Server.
See also day-time interval andyear-month interval. Supported by Informix-Universal Server.

intrastate integrity constraint
A constraint applied across states of the table. See also sequenced integrity constraint.

jiffy
In the United States and Canada, 1/60th of a second; in most other places, 1/50th of a second,
though 10-millisecond jiffies (1/100th of a second) are becoming more common.

k'o
Roughly a quarter hour, indicated by Chinese clepsydrae: each 14 minutes and 24 seconds long.

labeled duration
An IBM DB2 UDB construct consisting of a numeric expression followed by a time unit, singular or
plural.

lifespan

The valid-time extent of an entity or of a relationship in the ER model.
lunar day

The average interval between successive moonrises.
mean time

The time calculated by a fictitious earth traversing at a constant speed around the sun.
millennium bug

A catch phrase for the year 2000 problem.
monitored table

A table for which a tracking log is maintained.
monotonic vacuuming specification

Repeated application of the vacuuming does not violate the specification.
nonsequenced duplicate

Rows with identical values for their timestamp and nontimestamp columns.
nonsequenced integrity constraint

Treats the timestamp as just another column.

nonsequenced modification
Treats the row's timestamp as just another column.

nonspecialized
Seefully general

nontemporal entity type
An entity type for which the lifespan is not recorded.

nontemporal relationship type
A relationship type for which the valid time is not captured.

ost
There are 60 osts (ostenta) to the hour, so an ost is equivalent to a minute.

period
The time between two instants, or equivalently, an anchored duration of the time line.

PERIOD
An SQL3 data type constructor, with a user-specified granularity.

 - 439 -

period of applicability

The period over which a sequenced modification applies.
period of presence

The (transaction-time) period for which a row was logically resident in the table.
period of validity

The period for which a fact represented by a row is valid in the modeled reality.
P.M.

post meridiem, or "after noon."
point

There are five points (puncta) to the hour.
position

In SQL-92, the number of characters from the character set SQL_TEXT that it would take to
represent any value of that type.

postactive modification

A modification in which the period of applicability is after the transaction-start time.
postactive specialization

A bitemporal entity type, relationship type, or table in which the beginning of the valid timestamp is
always after or equal to the beginning of the transaction timestamp.

precision
In SQL-92, the number of fractional digits allowed in the value of the associated data type.

precision decomposition
Columns with a finer granularity than that of the table they are associated with are placed in a
separate table, with a timestamp of that finer granularity.

proleptic Gregorian calendar
The Gregorian calendar extrapolated backwards to 1 C.E.; used in SQL-92.

reconstruct
Retrieve a prior state of a monitored table, as of a specified date.

retroactive modification
A modification in which the period of applicability is before the transaction-start time.

retroactive specialization

A bitemporal entity type, relationship type, or table in which the beginning of the valid timestamp is
equal to or before the beginning of the transaction timestamp.

sequenced deletion
Removes rows that became invalid now

sequenced duplicate
Rows that are duplicates at some instant.

sequenced integrity constraint
Is applied independently at each point in time

sequenced join
Join two tables by joining, at each point in time, the corresponding states of the argument tables.

sequenced primary key
A constraint stating that the specified columns constitute a primary key in every state.

sequenced update
Occurred independently in each state, over the period of applicability of the update

serialization
An isolation level in which only committed values may be read.

sidereal day

The time between two meridian transits of a star, 23 hours and 56 minutes of true solar time.
sidereal second

1/86,400th of a sidereal day.
SMALLDATETIME

A Microsoft SQL Server data type, with a granularity of minute, and a Sybase SQLServer data type,
also with a granularity of minute.

snapshot equivalent
Two rows or tables in which all of their snapshots, resulting from a time-slice at an instant of time,
are identical.

snapshot of a table

 - 440 -

The rows of that table valid at (or within the period of presence of, for a transaction-time table) a
specified instant.

snapshot table
A table that is not timestamped with either valid time or transaction time.

solar day
Seetrue day

Sothic cycle

When the lunar New Year coincides with the solar New Year in the Egyptian calendar, once every
1460 years.

Swatch Beat
One-thousandth of a solar day, of length 1 minute 26.4 seconds.

temporal
As a modifier, used to indicate that the modified concept concerns some aspect of time.

temporal constructor
An expression that returns a temporal value.

temporal specialization
Denotes the coupling of the valid and transaction timestamps of a bitemporal entity type, relationship
type, or table.

temporal support decomposition
Columns that differ in their temporal support from the enclosing table are placed in a separate table.

temporal table
A table supporting valid time or transaction time.

temporal upward compatibility

An SQL-92 statement (query, modification, view, assertion, constraint) will have the same effect on
an associated snapshot database as on the temporal counterpart of the database.

temporal vacuuming
Purging old information from the archival store.

temporally partitioned table
A state table that is represented physically as two or more tables, with the criterion of which
underlying table a row resides based on the temporal extent of that row.

TIME
An SQL-92 data type, with a default granularity of second. Supported by IBM DB2 UDB and by
UniSQL, with a granularity of second.

time-dependent assumption
An often implicit assumption that will be invalidated purely by the course of time. The year 2000
problem is a specific instance.

time-invariant
Data or a table that doesn't vary over time.

time-invariant key

A key that identifies a particular entity over its entire lifespan.
time-invariant participation constraint

A participation constraint that holds over the entire valid time of the relationship.
time-invariant unique

Attribute(s) that are unique for a particular entity or relationship over its entire lifespan or valid time.
time-sequence

Of an object, the sequence (ordered by time) of pairs of a data object and an instant.
time-slice

Of a row or a table: the value(s) at a specified instant of time.
time-slice query

A query applied to a particular state of a table or database.
timestamp

Of a row, either the period of validity or the period of presence of that row. Of a table, the table's
timestamp column(s).

TIMESTAMP

An SQL-92 data type, with a default granularity of microsecond. Supported by IBM DB2 UDB and
UniSQL, with a granularity of second.

timestamp column
The column(s) of the table denoting the timestamp.

 - 441 -

tracking log
Records the past states of the monitored table.

transaction time
Of a fact, the time when the fact is current in the database and may be retrieved. This time is a
period delimited by when the fact was inserted into the database and when it was modified or
logically deleted.

transaction time-invariant participation constraint
A participation constraint that holds over the entire transaction-time period of the relationship.

transaction time-invariant unique
Attribute(s) that are unique for a particular entity or relationship over its entire transaction-time
period.

transaction time-slice
A query or view that selects the snapshot state of a transaction-time table at a specified transaction
time, or a valid-time state of a bitemporal table.

transaction-time splitting

A method of partitioning a region of a bitemporal time diagram into rectangles by inserting vertical
splits, resulting in contiguous bands in transaction time.

transaction-time state table
One with facts timestamped with their transaction time.

tropical year
The time interval between two consecutive passages of the earth across a given point of its orbit.

true day
The time between two consecutive noons, 24 hours.

true time
The hour-angle of the sun starting from noon.

user-defined time
An uninterpreted datetime. Contrast with valid time and transaction time.

vacuum

Remove less desired information, for example, from an archival or history store.
vacuuming criteria

Additional predicates that characterize the rows to be purged from a temporal table.
valid time

Of a fact, when the fact was true in the modeled reality.
valid time-slice

A query or view that selects the snapshot state of a valid-time table at a specified valid time, or a
transaction-time state of a bitemporal table.

valid-time splitting
A method of partitioning a region of a bitemporal time diagram into rectangles by inserting horizontal
splits, resulting in contiguous bands in valid time.

valid-time state table
One that records the history of the modeled reality by timestamping facts with periods denoting when
they were valid.

valid-time support

A row with an associated valid time, which is a value of the period data type. An SQL3 table is one in
which each row is a row with valid-time support.

value-equivalent
Rows on the same schema with identical values for their nontimestamp columns.

year-month interval
An SQL-92 interval data type containing only the year and month fields.

year 2000 problem
A hardware or software bug arising from using just two digits to record the year. Y2K is the acronym
for the year 2000 problem.

Bibliography

[1] I., Ahn, R. T. Snodgrass. "Partitioned Storage Structures for Temporal Databases," Information Systems
13(4):369–391, 1988.

 - 442 -

[2] J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of the ACM 26(11):832–
843, 1983.

[3] J., Bair, M. Böhlen, C. S. Jensen, and R. T. Snodgrass. "Notions of Upward Compatibility of Temporal
Query Languages," Business Informatics (Wirtschafts Informatik) 39(1):25–34, 1997.

[4] R. Barnert, G. F. Knolmayer, T. Myrach. Rules for Ensuring Referential Integrity in a Time-Extended
Relational Model. Technical Report, University of Bern, Switzerland, 1996.

[5] J. Ben-Zvi. The Time Relational Model. Ph.D. dissertation, Computer Science Department, University of
California at Los Angeles, 1982.

[6] A., Bernstein, V. Hadzilacos, and N. Goodman (eds.). Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[7] C., Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang. "A Glossary of Time
Granularity Concepts," in [33], pp. 406–4131998.

[8] L. A. Bjork, Jr. "Generalized Audit Trail Requirements and Concepts for Data Base Applications" IBM
Systems Journal 14(3):229–245, 1975.

[9] Blaha, M., and W. Premerlani. Object-Oriented Modeling and Design for Database Applications. Prentice
Hall, Upper Saddle River, NJ, 1998.

[10] M. H. Böhlen, The Temporal Deductive Database System ChronoLogPh.D. dissertation, Department
Informatik, ETH Zurich, 1994.

[11] Böhlen, H. M. Valid Time Integrity Constraints. Technical Report 94–30, University of Arizona, Tucson,
November, 1994.

[12] Böhlen, H. M., and C. S. Jensen. Seamless Integration of Time into SQL. Technical Report R-96-2049,
Aalborg University, Aalborg, Denmark, December, 1996.

[13] M. H., Böhlen, C. S. Jensen, and R. T. Snodgrass."Evaluating the Completeness of TSQL2," in [25],
153–174, 1995.

[14] Böhlen, H. M., and R. Marti. "On the Completeness of Temporal Database Query Languages," in
Proceedings of the First International Conference on Temporal Logic, pp. 283–300, July, 1994.

[15] M. H., Böhlen, R. T. Snodgrass, and M. D. Soo. "Coalescing in Temporal Databases," in Proceedings of
the International Conference on Very Large Databases, pp. 180–191, Mumbai (Bombay), India, September,
1996.

[16] K. C. Bourne, Year 2000 for Dummies. IDG Books Worldwide, Foster City, CA, 1997.

[17] A. J. Brackin, Clocks: Chronicling Time. Encyclopedia of Discovery and Invention, Lucent Books, 1991.

[18] Britannica Online. www.eb.com:180/cig-bin/g?DocF=micro/394/19.html

[19] Cannan, S. J. (eds.). Database Language SQL—Technical Corrigendum 3, ISO/IEC
9075:1992/Cor.3:1998.

[20] J. Celko,"Regions, Runs, and Sequences," Chapter 22 of SQL for Smarties: Advanced SQL
Programming. Morgan Kaufmann, San Francisco, 1995.

[21] J. Celko, "Tooling Around," DBMS Magazine 11(5):20–25, 1998.

[22] D. Chamberlin, Using the New DB2. Morgan Kaufmann, San Francisco, 1996.

 - 443 -

[23] J., Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. "On the Semantics of 'Now'
in Databases," ACM Transactions on Database Systems22(2):171–214, 1997.

[24] J., and Clifford, T. Isakowitz. "On the Semantics of (Bi)temporal Variable Databases," in Proceedings of
the Fourth International Conference on Extending Database Technology, Cambridge, England, 215–230,
March, 1994.

[25] J., and Clifford, A. Tuzhilin (eds.) Recent Advances in Temporal Databases. Springer-Verlag, New York,
1995. Also Proceedings of the VLDB International Workshop on Temporal Databases.

[26] P., Dadam, V. Lum, and H. D. Werner. "Integration of Time Versions into a Relational Database
System," in Proceedings of the Conference on Very Large Databases, Singapore, pp. 509–522, 1984.

[27] N., Dershowitz, and E. M. Reingold. Calendrical Calculations. Cambridge University Press, Cambridge,
1997.

[28] C. E., and Dyreson, R. T. Snodgrass. "Timestamp Semantics and Representation," Information Systems
18(3):143–166, 1993.

[29] Eisenberg, A., and J. Melton. "Standards in Practice," ACM SIGMOD Record 27(3):53–58, 1998.

[30] Eisenberg, A., and J. Melton. "SQL:1999, Formerly Known as SQL3," ACM SIGMOD Record 28(1):131–
138, March, 1999.

[31] Electronics Industries Association. Recommended Practice for Line 21 Data Service. ANSI/EIA-608-94,
September, 1994.

[32] Ensor, D., and I. Stevenson. Oracle Design. O'Reilly & Associates, Sebastopol, CA, 1997.

[33] O., Etzion, S. Jajodia, and S. M. Sripada (eds.). Temporal Databases: Research and Practice. Springer-
Verlag, New York, 1998.

[34] J. Fraser, Time: The Familiar Stranger. Tempus Books, Redmond, WA, 1987.

[35] S. J. Gould, Questioning the Millennium: A Rationalist's Guide to a Precisely Arbitrary Countdown.
Harmony Books, New York, 1997.

[36] Gray, J., and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San
Francisco, 1993.

[37] H., and Gregersen, C. S. Jensen. Conceptual Modeling of Time-Varying Information. TIMECENTER
Technical Report TR-35, September, 1998.

[38] H., and Gregersen, C. S. Jensen. "Temporal Entity-Relationship Models—A Survey" to appear in IEEE
Transactions on Knowledge and Data Engineering, 1999.

[39] H., Gregersen, L. Mark, and C. S. Jensen. Mapping Temporal ER Diagrams to Relational Schemas.
TIMECENTER Technical Report TR-39, December, 1998.

[40] D. R. Hofstadter, Gödel, Escher, Bach: An External Golden Braid. Vintage Books, New York, 1979.

[41] "How to Buy a Wristwatch," Consumer Reports, 62(11):6, 1997.

[42] D. Howse, Greenwich Time and the Discovery of the Longitude. Oxford University Press, Oxford, 1980.

[43] ISO. Data Elements and Interchange Formats—Information Interchange—Representation of Dates and
Times. ISO 8601: 1988.

 - 444 -

[44] ISO. Database language SQL. ISO/IEC 9075:1992. ANSI X3.135-1992.

[45] ISO. Database language SQL—Part 4: Persistent Stored Modules (SQL/PSM). ISO/IEC 9075-4:1995,
ANSI/ISO/IEC 9075-4-1995.

[46] M. A. Jackson, System Development. Prentice Hall International Series in Computer Science. Prentice
Hall, Englewood Cliffs, NJ, 1983.

[47] C. S. Jensen, "Vacuuming," Chapter 23 of [91], pp. 451–462, 1995.

[48] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, S. Jajodia (eds.). "A Glossary of Temporal
Database Concepts," ACM SIGMOD Record 23(1):52–64, 1994.

[49] C. S. Jensen, C. E. Dyreson (eds.) M. Böhlen, J. Clifford, R. Elmasri, S. K. Gadia, F. Grandi, P. Hayes,
S. Jajodia, W. Käfer, N. Kline, N. Lorentzos, Y. Mitsopoulos, A. Montanari, D. Nonen, E. Peressi, B. Pernici,
J. F. Roddick, N. L. Sarda, M. R. Scalas, A. Segev, R. T. Snodgrass, M. D. Soo, A. Tansel, R. Tiberio, and
G. Wiederhold. "A Consensus Glossary of Temporal Database Concepts—February 1998 Version," in [33],
pp. 367–413, 1998.

[50] C. S. and Jensen, L. Mark. A Framework for Vacuuming Temporal Databases. Technical Report CS-TR-
2516, UMIACS-TR-90-105, Department of Computer Science, University of Maryland, College Park, MD,
August, 1990.

[51] C. S., and Jensen, L. Mark. "Differential Query Processing in Transaction-Time Databases," Chapter 19
of [102], pp. 457–492, 1994.

[52] C. S., Jensen, L. Mark, and N. Roussopoulos. "Incremental Implementation Model for Relational
Databases with Transaction Time," IEEE Transactions on Knowledge and Data Engineering 3(4):461–473,
1991.

[53] C. S., and Jensen, R. T. Snodgrass, "Temporal Specialization," in Proceedings of the International
Conference on Data Engineering, Tempe, Arizona, 594–603, February, 1992.

[54] C. S., and Jensen, R. T. Snodgrass. "Temporal Specialization and Generalization," IEEE Transactions
on Knowledge and Data Engineering 6(6):954–974, 1994.

[55] C. S., and Jensen, R. T. Snodgrass. "Semantics of Time-Varying Information," Information Systems
21(4):311–352, 1996.

[56] C. S., and Jensen, R. T. Snodgrass. "Temporal Data Management" IEEE Transactions on Knowledge
and Data Engineering, 11(1):36–44, January/February, 1999.

[57] C. S., and Jensen, R. T. Snodgrass. "Temporally Enhanced Database Design," to appear in Object-
Oriented Data Modeling, M. P. Papazoglou, S. Spaccapietra, and Z. Tari (eds.), MIT Press, Cambridge, MA,
1999.

[58] J., and Jespersen, J. Fitz-Randolph. From Sundials to Atomic Clocks: Understanding Time and
Frequency. Dover, Mineola, NY, 1982.

[59] C. Jones, "Bad Days for Software" IEEE Spectrum 35(9):47–52, 1998.

[60] R. H., and Katz, T. Lehman. "Database Support for Versions and Alternatives of Large Design Files,"
IEEE Transactions on Software Engineering 10(2):191–200, 1984.

[61] K. A. Kimball, The DATA System. Master's thesis, University of Pennsylvania, 1978.

[62] M. R. Klopprogge, "TERM: An Approach to Include the Time Dimension in the Entity-Relationship
Mode," in Proceedings of the Second International Conference on the Entity Relationship Approach, pp.
477–512, October, 1981.

 - 445 -

[63] G., and Koch, K. Loney. Oracle: The Complete Reference. Osborne McGraw Hill, Berkeley, CA, 1997.

[64] T. S. Kuhn, The Structure of Scientific Revolutions. University of Chicago Press, third edition, 1996.

[65] D. S. Landes, Revolution in Time: Clocks and the Making of the Modern World. Barnes & Noble Books,
New York 1998.

[66] T. Y. C., Leung, H. Pirahesh. "Querying Historical Data in IBM DB2 C/S DBMS Using Recursive SQL," in
[25], 315–331, 1995.

[67] V., Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. D. Werner, and J. Woodfill."Designing
DBMS Support for the Temporal Dimension," in Proceedings of the ACM International Conference on
Management of Data, Boston, MA, pp. 115–130, 1984.

[68] V., Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. D. Werner, and J. Woodfill. "Design of
an Integrated DBMS to Support Advanced Applications," in Proceedings Conference on Foundations of Data
Organization, Kyoto, Japan, 1985.

[69] J. (eds.). Melton, (ISO Working Draft) Temporal (SQL/Temporal). American National Standards Institute
X3H2-97-135, International Organization for Standardization DBL:LGW-013, April, 1997.

[70] J. Melton, Understanding SQL's Stored Procedures: A Complete Guide to SQL/PSM. Morgan
Kaufmann, San Francisco, 1998.

[71] J., and Melton, A. R. Simon. Understanding the New SQL: A Complete Guide to SQL/PSM. Morgan
Kaufmann, San Francisco, 1993.

[72] T., Myrach, G. F. Knolmayer, and R. Barnert. "On Ensuring Keys and Referential Integrity in the
Temporal Database Language TSQL2," in H.-M. Haav and B. Thalheim (eds.). Databases and Information
Systems, Proceedings of the Second International Baltic Workshop, Tallinn, June 12–14, Volume I:
Research Track, Tampere University of Technology Press, pp. 171–181, 1996.

[73] National Institute of Standards and Technology. Federal Information Processing Standard 127-2,
Database Language (SQL), December 3, 1993. ftp://speckle.ncsl.nist.gov/vpl/sqlintro.htm, June 18, 1998.

[74] S. B., and Navathe, R. Ahmed. "A Temporal Relational Model and a Query Language," Information
Sciences 49:147–175, 1989.

[75] P. G., and Neumann, "Y2K Update," Communications of the ACM 40(9):128, 1998.

[76] G., and Özsoyo, lu, R. T. Snodgrass. "Temporal and Real-Time Databases: A Survey," IEEE
Transactions on Knowledge and Data Engineering7(4):513–532, 1995.

[77] A. Pais, Niels Bohr's Times, in Physics, Philosophy, and Polity. Clarendon Press, Oxford, 1991.

[78] J. D. Palmer, "Time, Tide and the Living Clocks of Marine Organisms," American Scientist84(6):570–
578, 1996.

[79] T. J. Quinn, "The BIPM and the Accurate Measurement of Time," Proceedings of the IEEE, 79(9):894–
906, 1991.

[80] R.R. J. Rohr, Sundials: History, Theory, and Practice. Dover Publications, Mineola, NY, 1970.

[81] G. D.-V. Rossum, History of the Hour: Clocks and Modern Temporal Orders. The University of Chicago
Press, Chicago, 1996.

[82] D., Rozenshtein, A. Abramovich, and E. Birger. "Loop-Free SQL Solutions for Finding Continuous
Regions," SQL Forum 2(6), November-December, 1993.

 - 446 -

[83] J. S. Rudolph, Make Your Own Working Paper Clock. Harper Perennial, New York, 1983.

[84] N. L. Sarda, "Extensions to SQL for Historical Databases," IEEE Transactions on Knowledge and Data
Engineering 2(2):220–230, 1990.

[85] J., and Skyt, C. S. Jensen. Vacuuming Temporal Databases. TIMECENTER Technical Report TR-32,
September, 1998.

[86] R. T. Snodgrass, "The Temporal Query Language Tquel" ACM Transactions on Database Systems
12(2):247–298, 1987.

[87] R. T. Snodgrass, "An Overview of Tquel," Chapter 6 of [102], pp. 141–182, 1994.

[88] R. T. Snodgrass, "Managing Temporal Data—A Five-Part Series," TEMPIS Technical Report TR-28,
September, 1998. www.cs.arizona.edu/people/rts/DBPD/.

[89] R. T., and Snodgrass, I. Ahn. "A Taxonomy of Time in Databases," in Proceedings of the ACM-SIGMOD
International Conference on Management of Data, Austin, TX, pp. 236–246, May, 1985.

[90] R. T., and Snodgrass, I. Ahn. "Temporal Databases," IEEE Computer 19(9):35–42, 1986.

[91] R. T. (eds.). Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri, F. Grandi,
C. S. Jensen, W. Käfer, N. Kline, K. Kulkanri, T. Y. C. Leung, N. Lorentzos, J. F. Roddick, A. Segev, M. D.
Soo, and S. M. Sripada.The TSQL2 Temporal Query Language. Kluwer Academic, Norwell, MA, 1995.

[92] R. T., Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Valid Time to SQL/Temporal.
Change proposal, ANSI X3H2-96-501r1, ISO/IEC JTC1/SC21/WG3 DBL MCI-146r2, November, 1996.
ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/madl46.pdf.

[93] R. T., Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Transaction Time to
SQL/Temporal. Change proposal, ANSI X3H2-96-502r2, ISO/IEC JTC 1/SC 21/WG 3 DBL-MAD-147r2,
November, 1996. ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/madl47.pdf.

[94] R. T., Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. "Transitioning Temporal Support in
TSQL2 to SQL3," in [33], pp. 150–1941998.

[95] D. Sobel, Longitude. Walker and Company, New York, 1995.

[96] D. Sobel, W. J. H. Andrewes. The Illustrated Longitude. Walker and Company, New York, 1998.

[97] M.D., Soo, R. T. Snodgrass, C. S. Jensen. "Efficient Evaluation of the Valid-Time Natural Join," in
Proceedings of the International Conference on Data Engineering, Houston, TX, pp. 282–292, February,
1994.

[98] G. (ed.). Steele, The Hacker's Dictionary. Harper and Row, New York, 1983.

[99] M. Stoneman, Easy-to-Make Wooden Sundials: Instructions and Plans for Five Projects. Dover, Mineola,
NY, 1981.

[100] D. G. (ed.). Stork, HAL's Legacy: 2001's Computer as Dream and Reality. MIT Press, Cambridge, MA,
1997.

[101] J. M. Sykes, Time Zones—A Tidying. ISO/IEC JTC 1/SC 21/WG 3 DBL MCI-068, April, 1996.

[102] A., Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass (eds.). Temporal
Databases: Theory, Design, and Implementation. Database Systems and Applications Series.
Benjamin/Cummings, Redwood City, CA, 1994.

 - 447 -

[103] V. J., and Tsotras, X. S. Wang. "Temporal Databases," in Encyclopedia of Electrical and Electronics
Engineering, John Wiley and Sons, New York, 1999.

[104] P. Woodward, My Own Right Time: An Exploration of Clockwork Design. Oxford University Press,
Oxford, 1995.

[105] Y., Wu, S. Jajodia, and X. S. Wang. "Temporal Database Bibliography Update," in [33], 338–366, 1998.

[106] E. Yourdon, Managing the System Life Cycle. Yourdon Press, 1982.

[107] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zicari. Advanced
Database Systems.Morgan Kaufmann, San Francisco, 1997.

List of Figures
Chapter 1: Introduction

Figure 1.1: Electron diffraction pattern of Tase2. (Image reprinted, by permission from structural and
Chemical Analysis of Materials, Figure 11.5(b), by J.P. Eberhart. © 1991 John Wiley & sons, Ltd.)
Figure 1.2: Berossos's hemispherium. (From Rohr, R. R. J., Sundials: History, Theory, and Practice.
Dover Publications, NY, 1996.)
Figure 1.3: Berossos's hemicyclium. (From Rohr, R. R. J., Sundials: History, Theory, and Practice.
Dover Publications, NY, 1996.)

Chapter 2: Fundamental Concepts
Figure 2.1: Gender transitions.

Chapter 4: Periods
Figure 4.1: Relationships between two periods.
Figure 4.2: Period operations.

Chapter 6: Querying State Tables
Figure 6.1: The equation of time. (Redrawn from Sundials: History, Theory, and Practice by René R.J.
Rohr. Dover Publications, 1996.)
Figure 6.2: First case of a sequenced join.
Figure 6.3: Second case of a sequenced join.
Figure 6.4: Current update cases, with the period of validity of the row shown.
Figure 6.5: Initial Temp table.
Figure 6.6: After the first iteration.
Figure 6.7: After the second iteration.
Figure 6.8: A common scenario

Chapter 7: Modifying State Tables
Figure 7.1: Current update cases, with the period of validity of the row shown.
Figure 7.2: Sequenced deletion cases, with the period of validity (PV) and period of applicability (PA)
shown.
Figure 7.3: Sequenced update cases, with the period of validity (PV) and period of applicability (PA)
shown.
Figure 7.4: Case 1 of sequenced update, mentioning another temporal table.

Chapter 8: Retaining a Tracking Log
Figure 8.1: Cases for tracking log reconstruction.

Chapter 10: Bitemporal Tables
Figure 10.1: The property ownership relationship.
Figure 10.2: A bitemporal time diagram corresponding to Eva purchasing the flat, performed on
January 10.
Figure 10.3: A current update: Peter buys the flat, performed on January 15.
Figure 10.4: Splitting a polygonal region into rectangles.
Figure 10.5: A current update of a future row.
Figure 10.6: A current deletion: Peter sells the flat, performed on January 20.
Figure 10.7: A current deletion: splitting into rectangles.
Figure 10.8: A sequenced insertion performed on January 23: Eva actually purchased the flat on
January 3.
Figure 10.9: One splitting into rectangles.
Figure 10.10: An alternate splitting into rectangles.
Figure 10.11: Sequenced insertion cases.

 - 448 -

Figure 10.12: A sequenced deletion performed on January 26: Eva actually purchased the flat on
January 5.
Figure 10.13: A sequenced update performed on January 28: Peter actually purchased the flat on
January 12.
Figure 10.14: A nonsequenced deletion performed on January 30: Delete all records of exactly one-
week duration.
Figure 10.15: A transaction time-slice as of January 18.
Figure 10.16: A valid time-slice on January 13.
Figure 10.17: The underlying rectangles encoding the bitemporal regions.
Figure 10.18: A bitemporal time-slice on a valid time of January 13 and as of a transaction time of
January 18.
Figure 10.19: A sequenced insertion, performed on January 31, 1998: Peter bought another flat on
January 15.
Figure 10.20: A query sequenced in both valid time and transaction time, computing the intersection of
two rectangles.

Chapter 11: Temporal Database Design
Figure 11.1: A nontemporal entity-relationship schema.
Figure 11.2: Initial nontemporal logical schema.
Figure 11.3: A nontemporal crow's-feet schema.

Chapter 12: Language Directions
Figure 12.1: SQL3 schema.
Figure 12.2: Evaluating an SQL/Foundation query over a table without temporal support, to return a
table also without temporal support.
Figure 12.3: Evaluating an SQL/Foundation query over a table with temporal support, to return a table
without such support.
Figure 12.4: Evaluating a sequenced query over a table with valid-time support, to return a table with
similar support.
Figure 12.5: Evaluating an SQL/Temporal modification on a table with valid-time support.
Figure 12.6: Evaluating a nonsequenced query over a table with valid-time support, to return a table
with similar support.
Figure 12.7: Evaluating a nonsequenced modification on a table with valid-time support.
Figure 12.8: The NORMALIZE operator.

List of Tables
Chapter 2: Fundamental Concepts

Table 2.1: The LOT_LOC table.
Table 2.2: The history of lot 219.
Table 2.3: Result of a nonsequenced query.
Table 2.4: Result of another nonsequenced query.
Table 2.5: The LOT table.
Table 2.6: Result of a current insertion and deletion.
Table 2.7: Lot 799 was steered today.
Table 2.8: The LOT_CONTAINS table.
Table 2.9: The corrected backup identifier.
Table 2.10: The LOT bitemporal table.
Table 2.11: The history as known on March 15.
Table 2.12: The history as known on April 1.

Chapter 3: Instants and Intervals
Table 3.1: Result type of SQL-92 expressions involving temporal values.
Table 3.2: SQL-92 operations in IBM DB2 UDB.
Table 3.3: SQL-92 operations in Informix-Universal Server.
Table 3.4: SQL-92 operations in Microsoft Access 2000.
Table 3.5: SQL-92 operations in Microsoft SQL Server.
Table 3.6: SQL-92 operations in Sybase SQLServer.
Table 3.7: SQL-92 operations in Oracle8 Server.
Table 3.8: SQL-92 operations in UniSQL.

Chapter 4: Periods
Table 4.1: The equality predicate on periods.
Table 4.2: The inequality predicates on periods.
Table 4.3: Predicates on a period and a datetime.

 - 449 -

Table 4.4: Period operations in IBM DB2 UDB.
Table 4.5: Period operations in Informix-Universal Server.
Table 4.6: Period operations in Microsoft Access 2000.
Table 4.7: Period operations in Microsoft SQL Server.
Table 4.8: Period operations in Sybase SQLServer.
Table 4.9: Period operations in Oracle8 Server.
Table 4.10: Period operations in UniSQL.

Chapter 5: Defining State Tables
Table 5.1: An excerpt from the INCUMBENTS valid-time state table.
Table 5.2: A table containing several kinds of duplicates.
Table 5.3: Implications among duplicate variants.
Table 5.4: Referential integrity code fragments.

Chapter 6: Querying State Tables
Table 6.1: An excerpt of INCUMBENTS.
Table 6.2: A sorted version of Table 6.1.
Table 6.3: An excerpt from the SAL_HISTORY valid-time state table.
Table 6.4: Result of the sequenced join.
Table 6.5: A table containing several kinds of duplicates.
Table 6.6: Retaining duplicates while coalescing.
Table 6.7: Another way to retain duplicates while coalescing.

Chapter 7: Modifying State Tables
Table 7.1: An excerpt from the INCUMBENTS valid-time state table.
Table 7.2: The leave of absence was for the month of April.
Table 7.3: June and July 1998 were deleted.
Table 7.4: Result of the sequenced update.

Chapter 8: Retaining a Tracking Log
Table 8.1: The PROJECTIONS table.
Table 8.2: The P_Log table.
Table 8.3: The monitored table as of April 1, 1996.
Table 8.4: The tracking log as a transaction-time state table, PROJECTIONS_State.
Table 8.5: Including insertions in the P_Log table.
Table 8.6: The P_Log backlog.
Table 8.7: Reconstruction action.
Table 8.8: Backlog with after-images.
Table 8.9: Reconstruction action.
Table 8.10: A sample backlog.
Table 8.11: State of the PROJECTIONS table before 9 P.M.
Table 8.12: State of the PROJECTIONS table between 9 P.M. and 2 A.M.
Table 8.13: State of the PROJECTIONS table after 2 A.M.
Table 8.14: Reconstructed state as of 6:30 P.M.
Table 8.15: Tracking log organizations and their imposed constraints.

Chapter 9: Transaction-Time State Tables
Table 9.1: A transaction-time state table, P_TT.
Table 9.2: The P_TT_PAST table.
Table 9.3: The P_TT_CURRENT table.

Chapter 10: Bitemporal Tables
Table 10.1: Result of the current insertion.
Table 10.2: Result of the current deletion.
Table 10.3: Result of the sequenced insertion.
Table 10.4: Result of a second approach to the sequenced insertion.
Table 10.5: Result of the sequenced deletion.
Table 10.6: Result of the sequenced update.
Table 10.7: After a nonsequenced deletion.
Table 10.8: The valid time-slice on January 13.
Table 10.9: The bitemporal state illustrated in Figure 10.19.
Table 10.10: All retroactive changes made to the Prop-Owner table.
Table 10.11: The bitemporal table corresponding to the time diagram of Figure 10.19.
Table 10.12: Archival store.
Table 10.13: Another version of the archival store.
Table 10.14: Böhlen's classes of temporal integrity constraints.

 - 450 -

Chapter 11: Temporal Database Design
Table 11.1: Valid time of relationship types.
Table 11.2: Valid time of attributes.
Table 11.3: Transaction time of entity types.
Table 11.4: Transaction time of relationship types.
Table 11.5: Transaction time of attributes.
Table 11.6: An excerpt of the LOT table.
Table 11.7: Focusing on the primary key.

Chapter 12: Language Directions
Table 12.1: Period operations in SQL3.
Table 12.2: Application development in SQL-92 and SQL3.

List of Code Fragments and Examples
Chapter 1: Introduction

Code Fragment 1.1: Which managers make less than at least one of their subordinates?
Code Fragment 1.2: Which managers make less than at least one of their subordinates (without using
EXISTS)?

Chapter 3: Instants and Intervals
Code Fragment 3.1: Seven ways to ask for information on those born on January 1, 1970.
Code Fragment 3.2: Four more ways to ask for information on those born on January 1, 1970.
Code Fragment 3.3: Two more ways to ask for information on those born on January 1, 1970.
Code Fragment 3.4: Yet four more ways to ask for information on those born on January 1,1970.
Code Fragment 3.5: Three more ways to ask for information on those born on January 1, 1970.
Code Fragment 3.6: Yet another four ways to ask for information on those born on January 1,1970.

Chapter 5: Defining State Tables
Code Fragment 5.1: What is Bob's salary?
Code Fragment 5.2: What is Bob's Position?
Code Fragment 5.3: What is Bob's date of birth?
Code Fragment 5.4: Add a period timestamp to INCUMBENTS.
Code Fragment 5.5: Extract the relevant information.
Code Fragment 5.6: The Primary Key of INCUMBENTS is (SSN, PCN).
Code Fragment 5.7: Attempting to specify a primary key at any point in time.
Code Fragment 5.8: (SSN, PCN) is a sequenced primary key for INCUMBENTS.
Code Fragment 5.9: (SSN, PCN) is a sequenced primary key for INCUMBENTS, assuming a closed-
closed timestamp representation.
Code Fragment 5.10: Prevent value-equivalent rows in INCUMBENTS.
Code Fragment 5.11: Prevent nonsequenced duplicate in INCUMBENTS.
Code Fragment 5.12: Prevent current duplicates in INCUMBENTS.
Code Fragment 5.13: Prevent current duplicates in INCUMBENTS, assuming no future data.
Code Fragment 5.14: Prevent sequenced duplicates in INCUMBENTS.
Code Fragment 5.15: Prevent sequenced duplicates in INCUMBENTS, assuming only current
modifications.
Code Fragment 5.16: INCUMBENTS.SSN is sequenced unique.
Code Fragment 5.17: INCUMBENTS.SSN is nonsequenced unique.
Code Fragment 5.18: INCUMBENTS.SSN is current unique.
Code Fragment 5.19: INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table is
temporal).
Code Fragment 5.20: INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both tables
are temporal).
Code Fragment 5.21: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both
tables are temporal).
Code Fragment 5.22: POSITIONS.PCN defines a contiguous history.
Code Fragment 5.23: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both
tables are temporal, version 2).
Code Fragment 5.24: INCUMBENTS.PCN is a current foreignkey for POSITIONS.PCN (only
POSITIONS is temporal).
Code Fragment 5.25: Prevent value-equivalent rows in INCUMBENTS, in DB2 UDB 5.
Code Fragment 5.26: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in DB2UDB.
Code Fragment 5.27: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Access.

 - 451 -

Code Fragment 5.28: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both
tables are temporal), in Access.
Code Fragment 5.29: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Microsoft SQL
Server.
Code Fragment 5.30: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Sybase.
Code Fragment 5.31: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Oracle.
Code Fragment 5.32: (SSN, PCN) is a sequenced primary key for INCUMBENTS, in UniSQL.

Chapter 6: Querying State Tables
Example 6.1: What is Bob's current position?
Example 6.2: What is Bob's current position?
Example 6.3: What is Bob's current position and salary?
Example 6.4: What employees currently have no position?
Example 6.5: What was Bob's position at the beginning of 1997?
Example 6.6: Who makes or has made more than $50,000 annually?
Example 6.7: List the social security numbers of current and past employees.
Example 6.8: Sequenced sort INCUMBENTS on the position code (first version).
Example 6.9: Sequenced sort INCUMBENTS on the position code (second version).
Example 6.10: Who makes or has made more than $50,000 annually or less than $10,000?
Example 6.11: Provide the salary and position history for all employees.
Example 6.12: Provide the salary and position history for all employees, using CASE.
Example 6.13: Define a first_instant function.
Example 6.14: Provide the salary and position history for all employees, using first_instant and
last_instant.
Example 6.15: List the employees who are department heads but are not also professors
(nontemporal version).
Example 6.16: List the employees who are department heads but are not also professors (an
equivalent nontemporal version).
Example 6.17: List the employees who are department heads but are not also professors (an
equivalent nontemporal version).
Example 6.18: List the employees who are or were department heads but were not also professors
(sequenced version).
Example 6.19: List all the salaries, past and present, of employees who had been a hazardous waste
specialist at some time.
Example 6.20: When did employees receive raises?
Example 6.21: Remove nonsequenced duplicates from INCUMBENTS.
Example 6.22: Remove value-equivalent rows from INCUMBENTS.
Example 6.23: Remove current duplicates from INCUMBENTS.
Example 6.24: Coalesce INCUMBENTS while removing duplicates (in PSM).
Example 6.25: Coalesce INCUMBENTS while removing duplicates (entirely in SQL).
Example 6.26: Coalesce INCUMBENTS while removing duplicates (entirely in SQL, using COUNT).
Example 6.27: Coalesce INCUMBENTS while removing duplicates (using a cursor in Oracle PL/SQL).
Example 6.28: Coalesce INCUMBENTS while removing duplicates, in DB2 UDB.
Example 6.29: Define first_instant and last_instant in Informix.
Example 6.30: Coalesce INCUMBENTS while removing duplicates, in Microsoft SQL Server.
Example 6.31: Provide the SSN and position history for all employees, using GREATEST and LEAST.

Chapter 7: Modifying State Tables
Example 7.1: Bob joins as associate director of the Computer Center.
Example 7.2: Bob joins as associate director of the Computer Center, ensuring the primary key, in the
restricted case.
Example 7.3: Bob joins as associate director of the Computer Center, also ensuring referential
integrity, in the restricted case.
Example 7.4: Fill the gap (in the restricted case) in the POSITIONS table for the position of associate
director of the Computer Center.
Example 7.5: Bob was assigned the position of associate director of the Computer Center, ensuring
the primary key, in the unrestricted case.
Example 7.6: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case.
Example 7.7: Bob was just fired as associate director of the Computer Center (only current
modifications assumed).
Example 7.8: Bob was just fired as associate director of the Computer Center.
Example 7.9: Today Bob was promoted to director of the Computer Center (nontemporal version).

 - 452 -

Example 7.10: Today Bob was promoted to director of the Computer Center (assuming only current
modifications).
Example 7.11: Today Bob was promoted to director of the Computer Center.
Example 7.12: Bob was assigned the position of associate director of the Computer Center for 1997.
Example 7.13: Bob was assigned the position of associate director of the Computer Center for 1997,
ensuring the primary key.
Example 7.14: Bob was assigned the position of associate director of the Computer Center for 1997,
also ensuring referential integrity.
Example 7.15: Bob was removed as associate director of the Computer Center (nontemporal version).
Example 7.16: Bob was removed as associate director of the Computer Center for 1997.
Example 7.17: Bob was promoted to director of the Computer Center (nontemporal version).
Example 7.18: Bob was promoted to director of the Computer Center for 1997.
Example 7.19: Delete Bob's records that include 1997 stating that he was associate director of the
Computer Center.
Example 7.20: Extend Bob's position as associate director of the Computer Center for an additional
year.
Example 7.21: Bob is promoted to director of the Computer Center getting the PCN from POSITIONS
(nontemporal version).
Example 7.22: Bob is promoted to director of the Computer Center getting the PCN from POSITIONS
(current version).
Example 7.23: Bob was promoted to director of the Computer Center.
Example 7.24: Bob was promoted to director of the Computer Center for 1997 (sequenced version).
Example 7.25: What is Bob's current position?
Example 7.26: Provide the salary and department history for all employees.
Example 7.27: Bob was assigned the position of associate director of the Computer Center
(partitioned).
Example 7.28: Bob was assigned the position of associate director of the Computer Center
(partitioned, avoiding sequenced duplicates).
Example 7.29: Bob was fired as associate director of the Computer Center (partitioned).
Example 7.30: Bob was removed as associate director of the Computer Center for 1997 (partitioned).
Example 7.31: Bob was promoted to director of the Computer Center for 1997 (partitioned).
Example 7.32: Bob was assigned the position of associate director of the Computer Center, ensuring
the primary key, in DB2 UDB.
Example 7.33: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case, in Oracle.
Example 7.34: Fill gaps in the POSITIONS table for the position of associate director of the Computer
Center, in the general case, in UniSQL.

Chapter 8: Retaining a Tracking Log
Code Fragment 8.1: Create the tracking log table.
Example 8.2: Triggers for maintaining the P_Log table.
Code Fragment 8.3: Reconstruct the PROJECTIONS table as of April 1, 1996.
Code Fragment 8.4: List the information on projection 5.
Code Fragment 8.5: Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.
Code Fragment 8.6: List the information on projection type 12 as of April 1, 1996.
Code Fragment 8.7: Convert P_Log to a transaction-time state table.
Code Fragment 8.8: When was it recorded that a projection had a type of 17?
Code Fragment 8.9: Insert a projection with an ID of 6.
Code Fragment 8.10: Delete projection 2.
Code Fragment 8.11: Change the type of projection 1 to 43.
Code Fragment 8.12: Insert trigger for maintaining the P_Log table.
Code Fragment 8.13: Reconstruction algorithm 2, again, as of April 1,1996.
Code Fragment 8.14: Reconstruction algorithm 3.
Code Fragment 8.15: Triggers for maintaining the P-Log table, version 2.
Code Fragment 8.16: Reconstruction algorithm with after-images.
Code Fragment 8.17: Convert the backlog to a transaction-time state table, using after-images.
Code Fragment 8.18: List the projections recorded as having the same USGS zone code as the
projection with ID 13447.
Code Fragment 8.19: Reconstructing the current version.
Code Fragment 8.20: Defining PROJECTIONS as a view on P_Log.
Code Fragment 8.21: Triggers for maintaining the P_Log table in DB2 UDB, assuming no insertions.
Code Fragment 8.22: Triggers for maintaining the P_Log table in Microsoft SQL Server, assuming no
insertions.

 - 453 -

Code Fragment 8.23: Triggers for maintaining the P_Log table in Sybase SQLServer, assuming no
insertions.
Code Fragment 8.24: Insert UniSQL trigger on the tracking log.
Code Fragment 8.25: set_date C function.

Chapter 9: Transaction-Time State Tables
Example 9.1: Create the transaction-time state table.
Example 9.2: Triggers for maintaining the P_TT table.
Example 9.3: Reconstruct the PROJECTIONS table as of now, as a view.
Example 9.4: Insert a projection with an ID of 6.
Example 9.5: Delete projection 2.
Example 9.6: Change the type of projection 1 to 43.
Example 9.7: Reconstruct the PROJECTIONS table as of April 1, 1996.
Example 9.8: When was it recorded that a projection had a type of 17?
Example 9.9: Give the change history for projections having a type of 12 or 18.
Example 9.10: When was it recorded that two projections had the same type?
Example 9.11: When was the type of a projection erroneously changed to be identical to that of an
existing projection?
Example 9.12: Extract before-images from a transaction-time state table.
Example 9.13: Extract after-images from a transaction-time state table.
Example 9.14: Extract a backlog from a transaction-time state table.
Example 9.15: Create a temporally partitioned transaction-time state table.
Example 9.16: Reconstruct the PROJECTIONS table as of now, as a view on a temporally partitioned
table.
Example 9.17: Triggers for maintaining the P_TT table.
Example 9.18: Reconstruct the PROJECTIONS table as of April 1,1996.
Example 9.19: Define the state table as a view.
Example 9.20: Define a truncated current store.
Example 9.21: Triggers for maintaining a tripartitioned state table.
Example 9.22: Define the state table as a view.
Example 9.23: Entity vacuum the archival store.
Example 9.24: Temporally vacuum the archival store of data older than two years.
Example 9.25: Temporally vacuum old unused entities from the archival store.
Example 9.26: Temporally vacuum old unused entities from the archival store that had a USGS
spheroid code of 2.
Example 9.27: Log the vacuuming operations.
Example 9.28: Temporally vacuum the archival store between one and two years old.

Chapter 10: Bitemporal Tables
Example 10.1: Create the Prop_Owner table.
Example 10.2: property_number is a (valid-time sequenced, transaction-time sequenced) primary key
for Prop_Owner.
Example 10.3: Prop_Owner. property_number defines a contiguous valid-time history.
Example 10.4: Eva Nielsen buys the flat at Skovvej 30 in Aalborg on January 10, 1998.
Example 10.5: Peter Olsen buys the flat on January 15,1998.
Example 10.6: Peter Olsen buys the flat on January 15, 1998, a current update (partial solution,
considering only valid time).
Example 10.7: Peter Olsen buys the flat on January 15,1998, a current update.
Code Fragment 10.8: Peter Olsen sells the flat on January 20,1998.
Code Fragment 10.9: Peter Olsen sells the flat on January 20, 1998, a current deletion (partial
version, considering only valid time).
Code Fragment 10.10: Peter Olsen sells the flat on January 20,1998, a current deletion.
Code Fragment 10.11: Peter Olsen sells the flat on January 20,1998, a current deletion, simplified
version.
Code Fragment 10.12: Eva actually purchased the flat on January 3, performed on January 23.
Code Fragment 10.13: Eva actually purchased the flat on January 3, with transactiontime splitting.
Code Fragment 10.14: Eva actually purchased the flat on January 5 (nontemporal version).
Code Fragment 10.15: Eva actually purchased the flat on January 5.
Code Fragment 10.16: Peter actually purchased the flat on January 12 (nontemporal version).
Code Fragment 10.17: Peter actually purchased the flat on January 12.
Code Fragment 10.18: Delete all records with a valid-time duration of exactly one week.
Code Fragment 10.19: Give the history of owners of the flat at Skovvej 30 in Aalborg as of January 1,
1998.
Code Fragment 10.20: Give the history of owners of the flat at Skovvej 30 in Aalborg as best known.

 - 454 -

Code Fragment 10.21: When was information about the owners of the flat at Skovvej 30 in Aalborg on
January 4, 1998, recorded in the Prop-Owner table?
Code Fragment 10.22: Give the owner of the flat at Skovvej 30 in Aalborg on January 13 as stored in
the Prop_Owner table on January 18.
Code Fragment 10.23: Give the owner of the flat at Skovvej 30 in Aalborg today as best known.
Code Fragment 10.24: Peter Olsen bought another flat, at Bygaden 4 in Aalborg on January 15, 1998;
this was recorded on January 31, 1998.
Code Fragment 10.25: What properties are owned by the customer who owns property 7797?
Code Fragment 10.26: What properties are owned by the customer who owns property 7797, as best
known ?
Code Fragment 10.27: What properties are or were owned by the customer who owned at the same
time property 7797, as best known?
Code Fragment 10.28: What properties were owned by the customer who owned at any time property
7797, as best known?
Code Fragment 10.29: What properties did we think are owned by the customer who owns property
7797?
Code Fragment 10.30: When did we think that some property, at some time, was owned by the
customer who owned at the same time property 7797?
Code Fragment 10.31: When did we think that some property, at some time, was owned by the
customer who owned at any time property 7797?
Code Fragment 10.32: When was it recorded that a property is owned by the customer who owns
property 7797?
Code Fragment 10.33: When was it recorded that a property is or was owned by the customer who
owned at the same time property 7797?
Code Fragment 10.34: When was it recorded that a property was owned by the customer who owned
at some time property 7797?
Code Fragment 10.35: What is the estimated value of the property at Bygaden 4?
Code Fragment 10.36: Who owns the property at Bygaden 4?
Code Fragment 10.37: How has the estimated value of the property at Bygaden 4 varied over time?
Code Fragment 10.38: Who has owned the property at Bygaden 4?
Code Fragment 10.39: When was the estimated value for the property at Bygaden 4 stored?
Code Fragment 10.40: Who has owned the property at Bygaden 4, and when was this information
recorded?
Code Fragment 10.41: List all retroactive changes made to the Prop-Owner table.
Code Fragment 10.42: Select those customers who own property 7797 and another property.
Code Fragment 10.43: A customer who owns property 7797 shall own no other property.
Code Fragment 10.44: A customer whoowns property 7797 shall own no other property.
Code Fragment 10.45: A customer who owned property 7797 shall concurrently own no other
property.
Code Fragment 10.46: A customer who owned property 7797 shall own no other property, even at a
different time.
Code Fragment 10.47: The customer number in Prop_Owner is a foreign key referencing the
Customer table (nontemporal version).
Code Fragment 10.48: The customer number in Prop_Owner is a foreign key referencing the
Customer table, using EXCEPT (nontemporal version).
Code Fragment 10.49: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current version).
Code Fragment 10.50: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current, version 2).
Code Fragment 10.51: Bring the PO_Current table up-to-date.
Code Fragment 10.52: Triggers for maintaining the PO_Archive table.
Code Fragment 10.53: Reinstate the bitemporal state table as a view.
Code Fragment 10.54: Reconstitute the bitemporal state table as a view.
Code Fragment 10.55: Reinstate the bitemporal state table as a view, when history deletions are
allowed.
Code Fragment 10.56: Temporally vacuum old unused entities from the archival store for which no
recent history exists.

Chapter 11: Temporal Database Design
Code Fragment 11.1: LOT is a valid-time state table.
Code Fragment 11.2: LOT_LOC is a valid-time state table.
Code Fragment 11.3: LOT_MOVE is a valid-time event table.
Code Fragment 11.4: MASS_TRTMNT is a valid-time event table.
Code Fragment 11.5: LOT, LOT_MOVE, LOT_LOC, and BKP are transaction-time tables.

 - 455 -

Code Fragment 11.6: Move the BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO
columns into a separate backlog table.
Code Fragment 11.7: MASS_TRTMNT's primary key is valid-time sequenced.
Code Fragment 11.8: The primary key of BKP and LOT_CONTAINS is transaction-time sequenced.
Code Fragment 11.9: LOT has a valid-time sequenced/transaction-time sequenced primary key of
(FDYD_ID, LOT_ID_NUM).
Code Fragment 11.10: LOT_MOVE has a valid-time sequenced/transaction-time sequenced primary
key of (FDYD_ID, LOT_ID_NUM, FROM_PEN_ID, TO_PEN_ID).
Code Fragment 11.11: LOT_LOC has a valid-time sequenced/transaction-time sequenced primary key
of (FDYD_ID, LOT_ID_NUM, PEN_ID).
Code Fragment 11.12: (LOT_MOVE.FDYD_ID, LOT_MOVE.BKP_ID) is a nonsequenced/current
foreign key for BKP.
Code Fragment 11.13: (PEN.FDYD_ID, PEN.BKP_ID) is a transaction-time current foreign key for
BKP.
Code Fragment 11.14: (MASS_TRTMNT.FDYD_ID, MASS_TRTMNT.BKP_ID) is a
nonsequenced/current foreign key for BKP.
Code Fragment 11.15: (LOT_LOC. FDYD_ID, LOT_LOC. LOT_ID_NUM) is a sequenced/current
foreign key for LOT.
Code Fragment 11.16: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. LOT_ID_NUM) is a current/
current foreign key for LOT.
Code Fragment 11.17: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. BKP_ID) is a transaction-time
current foreign key for BKP.
Code Fragment 11.18: (LOT-MOVE. FDYD-ID, LOT-MOVE. LOT-ID-NUM) is a sequenced/current
foreign key for LOT.
Code Fragment 11.19: (MASS-TRTMNT. FDYD-ID, MASS-TRTMNT. LOT-ID-NUM) is a valid-time
sequenced foreign key for LOT.
Code Fragment 11.20: (LOT. FDYD_ID, LOT. LOT_ID) is sequenced/current unique.
Code Fragment 11.21: Partition LOT into a history store and an archival store.
Code Fragment 11.22: BKP's primary key is contiguous.
Code Fragment 11.23: (LOT.FDYD_ID, LOT.LOT_ID) is valid time-invariant unique.
Code Fragment 11.24: How many head of cattle from lot 219 in yard 1 are (currently) in each pen?
Code Fragment 11.25: Give the history of how many head of cattle from lot 219 in yard 1 were in each
pen.
Code Fragment 11.26: How many head of cattle from lot 219 in yard 1 were, at some time, in each
pen?
Code Fragment 11.27: Which lots are coresident in a pen (nontemporal version)?
Code Fragment 11.28: Which lots are currently coresident in a pen?
Code Fragment 11.29: Which lots were in the same pen, perhaps at different times?
Code Fragment 11.30: Give the history of lots being coresident in a pen.
Code Fragment 11.31: Sequenced temporal join using CASE.
Code Fragment 11.32: Provide the state of the LOT_CONTAINS table on January 12,1998.
Code Fragment 11.33: Provide the history as best known on March 15,1998.
Code Fragment 11.34: When were steerings scheduled (as opposed to being recorded after the fact)?
Code Fragment 11.35: Lot 433 arrives today.
Code Fragment 11.36: Lot 101 leaves the feed yard.
Code Fragment 11.37: The cattle in lot 799 are being steered today.
Code Fragment 11.38: Lot 426, a collection of heifers, was on the feed yard from March 26 to April 14.
Code Fragment 11.39: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place (applied on a validtime version of LOT).
Code Fragment 11.40: The lot was steered only for the month of March.
Code Fragment 11.41: Delete the records of lot 234 that have duration greater than three months.
Code Fragment 11.42: Correct the backup identifier for lot 433 to 37.
Code Fragment 11.43: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place (applied on the bitemporal version of LOT).
Code Fragment 11.44: (LOT_CONTAINS. FDYD_ID, LOT_CONTAINS. BKP_ID) is a transactiontime
current foreign key for BKP, in Oracle8.

Chapter 12: Language Directions
Code Fragment 12.1: What is Bob's position?
Code Fragment 12.2: (SSN, PCN) is a sequenced primary key for INCUMBENTS.
Code Fragment 12.3: Add valid-time support to INCUMBENTS.
Code Fragment 12.4: (SSN, PCN) is a sequenced primary key for INCUMBENTS.
Code Fragment 12.5: Prevent duplicates in INCUMBENTS.
Code Fragment 12.6: Prevent sequenced duplicates in INCUMBENTS.

 - 456 -

Code Fragment 12.7: INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table is
temporal).
Code Fragment 12.8: INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both tables
are temporal).
Code Fragment 12.9: INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN (both
tables are temporal).
Code Fragment 12.10: INCUMBENTS. PCN is a nonsequenced foreign key for POSITIONS.PCN
(both tables are temporal).
Code Fragment 12.11: INCUMBENTS. PCN is a current foreign key for POSITIONS. PCN (only
POSITIONS is temporal).
Code Fragment 12.12: What is Bob's position?
Code Fragment 12.13: What is Bob's current position and salary?
Code Fragment 12.14: What employees currently have no position?
Code Fragment 12.15: What was Bob's position at the beginning of 1997?
Code Fragment 12.16: Who makes or has made more than $50,000 annually?
Code Fragment 12.17: List the social security numbers of current and past employees.
Code Fragment 12.18: Sequenced sort INCUMBENTS on the position code (first version).
Code Fragment 12.19: Who makes or has made more than $50,000 annually or less than $10,000?
Code Fragment 12.20: Provide the salary and position history for all employees.
Code Fragment 12.21: List the employees who are or were department heads but were not also
professors.
Code Fragment 12.22: List the employees who are or were department heads but were not also
professors (an equivalent version).
Code Fragment 12.23: List all the salaries, past and present, of employees who had been a
hazardous waste specialist at some time.
Code Fragment 12.24: When did employees receive raises?
Code Fragment 12.25: Remove current duplicates from INCUMBENTS.
Code Fragment 12.26: Remove sequenced duplicates from INCUMBENTS.
Code Fragment 12.27: Remove nonsequenced duplicates from INCUMBENTS.
Code Fragment 12.28: Bob joins as associate director of the Computer Center.
Code Fragment 12.29: Bob was just fired as associate director of the Computer Center.
Code Fragment 12.30: Today, Bob was promoted to director of the Computer Center.
Code Fragment 12.31: Bob was assigned the position of associate director of the Computer Center for
1997.
Code Fragment 12.32: Bob was removed as associate director of the Computer Center for 1997.
Code Fragment 12.33: Bob was promoted to director of the Computer Center for 1997.
Code Fragment 12.34: Delete Bob's records that include 1997 stating that he was associate director of
the Computer Center.
Code Fragment 12.35: Extend Bob's position as associate director of the Computer Center for an
additional year.
Code Fragment 12.36: Bob is promoted to director of the Computer Center (current version).
Code Fragment 12.37: Bob was promoted to director of the Computer Center for 1997 (sequenced
version).
Code Fragment 12.38: What is Bob's current position (partitioned)?
Code Fragment 12.39: Provide the salary and department history for all employees (partitioned).
Code Fragment 12.40: Bob was assigned the position of associate director of the Computer Center
(partitioned).
Code Fragment 12.41: Bob was fired as associate director of the Computer Center (partitioned).
Code Fragment 12.42: Bob was removed as associate director of the Computer Center for 1997
(partitioned).
Code Fragment 12.43: Bob was promoted to director of the Computer Center for 1997 (partitioned).
Code Fragment 12.44: Add transaction-time support to the PROJECTIONS table.
Code Fragment 12.45: List the information on projection 5.
Code Fragment 12.46: Reconstruct the PROJECTIONS table as of April 1, 1996.
Code Fragment 12.47: Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.
Code Fragment 12.48: Convert PROJECTIONS to an instant-stamped table.
Code Fragment 12.49: When was it recorded that a projection had a type of 17?
Code Fragment 12.50: List the projections recorded as having the same USGS zone code as the
projection with ID 13447.
Code Fragment 12.51: Extract before-images from a transaction-time state table.
Code Fragment 12.52: Extract after-images from a transaction-time state table.
Code Fragment 12.53: Extract a backlog from a transaction-time state table.
Code Fragment 12.54: Insert a projection with an ID of 6.

 - 457 -

Code Fragment 12.55: Delete projection 2.
Code Fragment 12.56: Change the type of projection 1 to 43.
Code Fragment 12.57: Give the change history for projections having a type of 12 or 18.
Code Fragment 12.58: When was it recorded that two projections had the same type?
Code Fragment 12.59: When was the type of a projection erroneously changed to be identical to that
of an existing projection?
Code Fragment 12.60: Create the Prop_Owner table.
Code Fragment 12.61: property_number is a (valid-time sequenced, transaction-time sequenced)
primary key for Prop_Owner.
Code Fragment 12.62: The customer number in Prop_Owner is a foreign key referencing the
Customer table (valid-time sequenced/transaction-time current version).
Code Fragment 12.63: Give the history of owners of the flat at Skovvej 30 in Aalborg as of January 1,
1998.
Code Fragment 12.64: Give the history of owners of the flat at Skovvej 30 in Aalborg as best known.
Code Fragment 12.65: When was the information about the owners of the flat at Skovvej 30 in Aalborg
on January 4, 1998, recorded in the Prop_Owner table?
Code Fragment 12.66: Give the owner of the flat at Skovvej 30 in Aalborg on January 13 as stored in
the Prop_Owner table on January 18.
Code Fragment 12.67: Give the owner of the flat at Skovvej 30 in Aalborg today as best known.
Code Fragment 12.68: What properties are owned by the customer who owns property 7797, as best
known?
Code Fragment 12.69: What properties are or were owned by the customer who owned at the same
time property 7797, as best known?
Code Fragment 12.70: What properties were owned by the customer who owned at any time property
7797, as best known?
Code Fragment 12.71: What properties did we think are owned by the customer who owns property
7797?
Code Fragment 12.72: When did we think that some property, at some time, was owned by the
customer who owned at the same time property 7797?
Code Fragment 12.73: When did we think that some property, at some time, was owned by the
customer who owned at any time property 7797?
Code Fragment 12.74: When was it recorded that a property is owned by the customer who owns
property 7797, as best known?
Code Fragment 12.75: When was it recorded that a property is or was owned by the customer who
owned at the same time property 7797?
Code Fragment 12.76: When was it recorded that a property was owned by the customer who owned
at some time property 7797?
Code Fragment 12.77: What is the estimated value of the property at Bygaden 4 (current/current)?
Code Fragment 12.78: Who owns the property at Bygaden 4 (current/current)?
Code Fragment 12.79: How has the estimated value of the property at Bygaden 4 varied over time
(sequenced/current)?
Code Fragment 12.80: Who has owned the property at Bygaden 4 (sequenced/current)?
Code Fragment 12.81: When was the estimated value for the property at Bygaden 4 stored
(current/nonsequenced)?
Code Fragment 12.82: Who has owned the property at Bygaden 4, and when was this information
recorded (sequenced/nonsequenced)?
Code Fragment 12.83: List all retroactive changes made to the Prop_Owner table
(nonsequenced/nonsequenced).
Code Fragment 12.84: Prop_Owner.property_number defines a contiguous valid-time history.
Code Fragment 12.85: A customer who owns property 7797 shall own no other property
(current/current).
Code Fragment 12.86: A customer who owned property 7797 shall concurrently own no other property
(sequenced/current).
Code Fragment 12.87: A customer who owned property 7797 shall own no other property, even at a
different time (nonsequenced/current).
Code Fragment 12.88: Eva Nielsen buys the flat at Skovvej 30 in Aalborg on January 10, 1998.
Code Fragment 12.89: Peter Olsen sells the flat on January 20, 1998.
Code Fragment 12.90: Peter Olsen buys the flat on January 15, 1998, a current update.
Code Fragment 12.91: Eva actually purchased the flat on January 3, performed on January 23.
Code Fragment 12.92: Eva actually purchased the flat on January 5.
Code Fragment 12.93: Peter actually purchased the flat on January 12.
Code Fragment 12.94: Delete all records with a valid-time duration of exactly one week.
Code Fragment 12.95: LOT is a valid-time state table.

 - 458 -

Code Fragment 12.96: LOT_LOC, LOT_MOVE, and MASS_TRTMNT have valid-time support.
Code Fragment 12.97: LOT, LOT_MOVE, LOT_LOC, and BKP are transaction-time tables.
Code Fragment 12.98: Move the BKP_ID, A_NAME, DBF_NAME, and DBF_UPDATE_RECNO
columns into a separate transaction-time table.
Code Fragment 12.99: How many head of cattle from lot 219 in yard 1 are (currently) in each pen?
Code Fragment 12.100: Give the history of how many head of cattle from lot 219 in yard 1 were in
each pen.
Code Fragment 12.101: How many head of cattle from lot 219 in yard 1 were, at some time, in each
pen?
Code Fragment 12.102: Which lots are currently coresident in a pen?
Code Fragment 12.103: Which lots were in the same pen, perhaps at different times?
Code Fragment 12.104: Give the history of lots being coresident in a pen.
Code Fragment 12.105: Provide the state of the LOT_CONTAINS table on January 12, 1998.
Code Fragment 12.106: Provide the history of the LOT table as best known on March 15, 1998.
Code Fragment 12.107: When were steerings scheduled (as opposed to being recorded after the
fact)?
Code Fragment 12.108: Lot 433 arrives today.
Code Fragment 12.109: Lot 101 leaves the feed yard.
Code Fragment 12.110: The cattle in lot 799 are being steered today.
Code Fragment 12.111: Lot 426, a collection of heifers, was on the feed yard from March 26 to April
14.
Code Fragment 12.112: Lot 234 will be absent from the feed yard for the first three weeks of October,
when the steering will take place.
Code Fragment 12.113: Lot 799 was steered only for the month of March.
Code Fragment 12.114: Delete the records of lot 234 that have duration greater than three months.
Code Fragment 12.115: Correct the backup identifier for lot 433 to 37.
Code Fragment 12.116: What is Bob's position?
Code Fragment 12.117: Bob was promoted to director of the Computer Center.
Code Fragment 12.118: Provide the salary and department for all employees.
Code Fragment 12.119: Provide the salary and department history for all employees.
Code Fragment 12.120: Bob was promoted to director of the Computer Center.
Code Fragment 12.121: Bob was promoted to director of the Computer Center for all time.
Code Fragment 12.122: Bob was promoted to director of the Computer Center for 1997.
Code Fragment 12.123: List all the salaries, past and present, of employees who had been hazardous
waste specialists at some time.
Code Fragment 12.124: Delete Bob's records that include 1997 stating that he was associate director
of the Computer Center.
Code Fragment 12.125: Expanding each period into a set of granules, then normalizing back to a
period.
Code Fragment 12.126: List the employees who are department heads but are not also professors
(using EXPANDING).
Code Fragment 12.127: List the employees who are department heads but are not also professors
(using EXPAND and NORMALIZE).

List of Sidebars
Chapter 1: Introduction

At least one queries
Calendars
Gnomonics

Chapter 2: Fundamental Concepts
The Tropical Year
Hours

Chapter 3: Instants and Intervals
A.D.VERSUS B.C.
Sundials
The Gregorian Calendar
The Hijri Calendar
The Start of the Millennium
B.C., A.D., B.C.E., C.E., and B.P.
More on the Start of the Millennium
The Adoption of the Gregorian Calendar

 - 459 -

Chapter 4: Periods
True and Sidereal Days

Chapter 5: Defining State Tables
Water Clocks
Case 1 Neither table is temporal.
Case 2 Only the referencing table is temporal.
Case 3 Both tables are temporal.
Asserting a sequenced foreign key
Case4 Only the referenced table is temporal.
More Water Clocks

Chapter 6: Querying State Tables
Mean Solar Time
Coalescing while removing duplicates
Coalesce entirely in SQL
Coalesce via a cursor

Chapter 7: Modifying State Tables
Babylonic and Italic Hours
Ensuring uniqueness and referential integrity in the restricted case
The Fundamental Insight
Deletion in the general case
Current update in the general case
Sequenced insertion ensuring uniqueness and referential integrity
Sequenced deletion
Sequenced update
Escapements
Sequenced update mentioning another table

Chapter 8: Retaining a Tracking Log
Circadian Clocks
Reconstruct a previous state of a monitored table, as of a specified date
The Sothic Cycle
Convert a backlog containing after-images to a transaction-time state table
The Vertical Blanking Interval

Chapter 9: Transaction-Time State Tables
Pendulum

Chapter 10: Bitemporal Tables
Components of Every Clock
A modification on a bitemporal table
Hairspring
Valid-time sequenced deletion
Case 1: Valid-time current and transaction-time current
Case 2: Valid-time sequenced and transaction-time current
Case 3: Valid-time nonsequenced and transaction-time current
Case 4: Valid-time current and transaction-time sequenced
Case 5: Valid-time sequenced and transaction-time sequenced
Case 6: Valid-time nonsequenced and transaction-time sequenced
Case 7: Valid-time current and transaction-time nonsequenced
Case 8: Valid-time sequenced and transaction-time nonsequenced
Case 9: Valid-time nonsequenced and transaction-time nonsequenced
Minutes, Seconds, and Jiffies
Implementing an integrity constraint

Chapter 11: Temporal Database Design
Puncta and Ostenta
The Fourth Harrison
The Bulova Accutron
Case 1: The entity or relationship type is instantaneous and the valid-time instant is recorded.
Case 2: The entity type has lifespan with duration, and the lifespan is recorded.
Case 3: The relationship type has a valid-time extent, which is recorded.
Crystal Clocks
Atomic Clocks

 - 460 -

Chapter 12: Language Directions
Second
The Hour Hand (First Major Advance)
The Minute Hand (Second Major Advance)
Case 1 Neither table is temporal.
Case 2 Only the referencing table is temporal.
Case 3 Both tables are temporal.
Case 4 Only the referenced table is temporal.
The Second Hand (Not a Major Advance)
A True Second Hand (Third Major Advance)
More on the Second Hand
Case 1: Valid-time current and transaction-time current
Case 2: Valid-time sequenced and transaction-time current
Case 3: Valid-time nonsequenced and transaction-time current
Case 4: Valid-time current and transaction-time sequenced
Case 5: Valid-time sequenced and transaction-time sequenced
Case 6: Valid-time nonsequenced and transaction-time sequenced
Case 7: Valid-time current and transaction-time nonsequenced
Case 8: Valid-time sequenced and transaction-time nonsequenced
Case 9: Valid-time nonsequenced and transaction-time nonsequenced
Internet Time

