
Drupal 6 JavaScript and jQuery

Putting jQuery, AJAX, and JavaScript effects into your
Drupal 6 modules and themes

Matt Butcher

 BIRMINGHAM - MUMBAI

Drupal 6 JavaScript and jQuery

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Production Reference: 1180209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-16-3

www.packtpub.com

Cover Image by Damian Carvill (damianc@packtpub.com)

Table of Contents
Preface 1
Chapter 1: Drupal and JavaScript 7

Do you speak...? 8
PHP 9
SQL 10
HTML 11
CSS 12
XML 13
JavaScript 14

Drupal's architecture 15
The Drupal Core 16
The Theme Engine 18
Modules 18

Users, nodes, and blocks 19
Users 19
Blocks 20
Nodes 22

Drupal JavaScript development tools 23
A good editor 24
Firebug 24
The Drupal Devel package 26

Summary 28
Chapter 2: Working with JavaScript in Drupal 29

How Drupal handles JavaScript 30
Where Drupal JavaScript comes from? 31

Project overview: printer-friendly page content 32
The printer script 33

Table of Contents

Drupal coding standards 34
Stylistic differences between PHP and JavaScript 35

The first lines 36
The print() function 38

Creating a theme 43
Full themes and subthemes 44
Creating a theme: first steps 45

Creating a theme directory 45
Creating the .info file 47
Adding files to the theme 48

The CSS file 52
Adding JavaScript to a theme 52

Overriding a template 52
Adding the script file 57

Summary 58
Chapter 3: jQuery: Do More with Drupal 59

jQuery: the write less, do more library 59
A first jQuery script 62

Getting jQuery 62
Starting with a basic HTML document 62
Querying with jQuery (and the Firebug console) 63
Bye bye, jQuery(); hello $() 67
Doing more with jQuery 68

Using jQuery in Drupal 71
Don't do it yourself! 73

Project: rotating sticky node teasers 73
The StickyRotate functions 76

The init() function 78
The periodicRefresh() function 86
Adding an event handler with jQuery 89

A brief look backward 91
Summary 92

Chapter 4: Drupal Behaviors 93
The drupal.js library 93
Drupal JavaScript behaviors 95

Defining a behavior to handle repeatable events 96
Telling Drupal to attach behaviors 98

Context and behaviors: bug potential 99
Project: collapsing blocks 102
Utilities 107

Checking capabilities with Drupal.jsEnabled 107
The Drupal.checkPlain() function (and the jQuery alternative) 108
The Drupal.parseJson() function 111

Table of Contents

The Drupal.encodeURIComponent() function 112
The Drupal.getSelection() function 113

Project: a simple text editor 113
The main behavior 118

Step 1: find text areas that need processing 119
Step 2: add event handlers 119
Step 3: attach the button bar 120

Summary 126
Chapter 5: Lost in Translations 127

Translations and drupal.js 128
Translation and languages 128

Turning on translation support 129
Getting and installing translations 129
Configuring languages 130

Adding the language 130
Configuring languages 131

Using the translation functions 133
The Drupal.t() function 134
The Drupal.formatPlural() function 136

Adding a translated string 138
Project: weekend countdown 139

Translating the project's strings 144
Changing a translation file 153

Summary 154
Chapter 6: JavaScript Theming 155

Theming in PHP, theming in JavaScript 155
The Drupal.theme() function 159
Project: menus and blocks 161

Adding a block with a menu in it 162
Theming a block 164
Theming a menu 168

The JavaScript theming module 174
Theming tables 175
Sending notifications to the user 178
Adding links 179

Project: templates for JavaScript 180
The node template 181
From a template to a system: what next? 183
A template system 184
Theming with templates 187
Using the template system 192

Table of Contents

[iv]

A word of warning 194
Summary 196

Chapter 7: AJAX and Drupal Web Services 197
AJAX, JSON, XHR, AHAH, and Web 2.0 198

Web application and Web 2.0 198
The position of AJAX in Web 2.0 199

Getting technical 200
Move over, XML 201

Project: web clips with RSS and AJAX 204
Really Simple Syndication (RSS) 205
The project goals 206
Creating the web clips tool 207

The WebClips behavior 209
The WebClips.showItem() function 217

Project: real-time comment notifications 219
Displaying comments as notifications 219
Installing Views and Views Datasource 220
Creating a JSON view 221
The comment watcher 226

The comment watcher behavior 230
The CommentWatcher.check() function 231
Theming the comment notification 235
Managing cookies 237

Summary 240
Chapter 8: Building a Module 241

How modules work 241
The module structure 242

The directory 243
The .info file 243
The .module file 243
Where do modules go? 243

Project: creating a JavaScript loader module 244
Creating the module directory 245
A JavaScript sample 246
The module's .info file 247

A custom addition 248
The .module file 248

The jsloader_help() function 249
The jsloader_init() function 252

Project: the editor revisited 256
First step: creating the module 256
The CSS file 258
The bettereditor.module file 258

Table of Contents

The bettereditor.js script 268
The editor() behavior 272
The insertTag() function 277
The addTag() theme 278
The button() theme function 284
The buttonBar() theme function 285

A last question 285
Summary 286

Chapter 9: Integrating and Extending 287
Project: autocompletion and search 287

The theory 288
Our plan 289
First step: creating the taxonomy 289
The new module 291
The search autocomplete JavaScript 294

Project: jQuery UI 299
What is jQuery UI? 299
Getting jQuery UI 300
The accordion module 301
The .info and .module files 302
The accordion JavaScript 303

Project: writing a jQuery plug-in 309
The plug-in code 310

A brief introduction to closures 312
The divWrap() function 315

Summary 318
Index 319

Preface
JavaScript: It's not just for calculators and image rollovers.

Drupal 6 is loaded with new features, not all of which are necessarily implemented
in PHP. This unique book, for web designers and developers, will guide you through
what can be done with JavaScript (and especially with jQuery) in Drupal 6.

With the combination of the powerhouse jQuery library, with its own robust set of
JavaScript tools, Drupal 6 comes with a pre-packaged killer JavaScript environment.
Cross-platform by nature, it provides all of the tools necessary to create powerful
AJAX-enabled scripts, gorgeous visual effects, and view-enhancing behaviors.
In addition, Drupal developers have ported some of its most powerful PHP tools
(like a theming engine and support for localization and language translation) to
JavaScript, making it possible to write simple scripts, where once only complex PHP
code could be used.

This book gives you the keys to the toolbox, showing you how to use Drupal's
JavaScript libraries to make your modules and themes more dynamic, interactive,
and responsive, and add effects to make your Drupal site explode into life!

If you've dipped your toe in the water of theme or module development with Drupal
6, this is the book that will make the look and behavior of your work something
special. With it's project-based approach, this book is carefully constructed to guide
you from how JavaScript fits into the overall Drupal architecture, to making you
a master of the jQuery library in the world of Drupal themes and modules.

What this book covers
Chapter 1 focuses on various languages and technologies used in Drupal. We will
have a high-level overview of the Drupal architecture followed by an examination
of some key Drupal concepts such as users, blocks, and nodes. From there, we will
move on to developers tools and learn about a few utilities that can expedite Drupal
JavaScript development.

Preface

[2]

Chapter 2 covers the basics on how JavaScript can be used within Drupal 6. We will
begin by exploring how JavaScript is included in Drupal pages, and then create our
first script for Drupal.

Chapter 3 focuses on jQuery. Initially, we will look at jQuery independently of
Drupal, and then we will take a closer look at how jQuery is integrated with Drupal.

Chapter 4 focuses on Drupal Behaviors and the major utility functions provided by
drupal.js, which provides functions for behaviors, translation, theming, as well as
other utility functions.

Chapter 5 focuses on the translation system in Drupal, and the JavaScript tools
that are used in conjunction with that system. We will look at installing and
configuring multiple languages using JavaScript functions, and then extracting
and translating strings.

Chapter 6 focuses on the JavaScript theming system. We will look at the JavaScript
theming module, and examine some of the themes and user interface tools that it
provides. We will implement our own template system based on HTML, CSS,
and JavaScript.

Chapter 7 focuses on the AJAX family of tools. We will learn to use jQuery's
built-in AJAX support to get content from Drupal, and also use JSON (JavaScript
Object Notation) as a JavaScript-friendly way of sending data from Drupal.

Chapter 8 focuses on module development. We will discuss how modules work,
and will learn how to create modules and use them for adding JavaScript features.
We will also learn to make our JavaScript available to other modules.

Chapter 9 focuses on advanced topics. We will look at integrating existing Drupal
JavaScript tools with our own site design, and then we will see how to extend the
JavaScript libraries with the jQuery UI library. We will also extend jQuery's library
with our own functions, building a jQuery plug-in in the process.

Who this book is for
This book is for web designers and developers who want to add JavaScript elements
to Drupal themes or modules to create more flexible and responsive user interfaces.

You are expected to know about the basic operation of Drupal, and be familiar with
the concept of theming and modules in Drupal. No experience with creating themes
or modules is required.

Preface

[3]

You will also need to know the basics of client-side web development. This includes
HTML, CSS, but you should also have a rudimentary grasp of JavaScript syntax.
Familiarity with PHP programming will be an advantage, since we will be writing
PHPTemplate files and (at the end) creating Drupal modules. However, PHP is
covered thoroughly enough that even the PHP neophyte will not find the text
too demanding. The book also covers the jQuery JavaScript library and its use in
Drupal, but no knowledge of jQuery is expected. You will learn everything you
need in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows, "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

Drupal.behaviors.countParagraphs = function (context) {
 if ($('#lots', context).size() > 0) {
 return;
 }
 else if ($('p', context).size() > 5) {
 $('body').append('<p id="lots">Lots of Text!</p>');
 }
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 if(sel.id == txtareaID && sel.start != sel.end) {
 txtareaEle.value = SimpleEditor.insertTag(
 sel.start,
 sel.end,
 $(this).hasClass('bold') ? 'strong' : 'em',
 txtareaEle.value
);
 sel.start = sel.end = -1;
 }

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6163_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Drupal and JavaScript
If you're anything like me, you're reading this first paragraph with two questions
in mind: Is this book going to cover the topics I need? And, is this book any good?
(Again, if you're anything like me you're groaning already that the author has
lapsed into indulgent first-person navel-gazing.)

Regarding the second question, I'm obviously not the person whose opinion you'll
want. But here's the answer to the first question: The aim of this book is to provide
a practical, hands-on approach to using the JavaScript scripting language to extend
and customize the Drupal 6 Content Management System (CMS).

Drupal 6 offers JavaScript tools designed to enable developers to turn Drupal sites
into Web 2.0 platforms. That's why this book exists. We're going to see how to use
Drupal's JavaScript support to assemble the building blocks needed to enhance
the client-side experience. Tools such as jQuery, language translation, and AJAX
support—all included in Drupal's core—provide powerful features that we will
explore. While we won't be developing word processors or webmail applications,
we will be developing widgets and tools that can be assembled in many different
ways to enrich the user's experience. Most importantly, we'll be doing this in a
practical and hands-on way.

What do I mean by ‘practical and hands-on'? I mean that every chapter after this one
will be organized around one or more projects. While preparing my previous book,
"Learning Drupal 6 Module Development", Packt Publishing, 978-1847194442, I came to
appreciate the power of Drupal's well-integrated JavaScript libraries. In this book,
we will use those libraries in conjunction with other Drupal technologies to create
functional pieces of code that you can use. Or even better yet, use them as a starting
point to create something even more well-suited to meet your own needs. We won't
be agonizing over the details of every function, nor will we spend a lot of time
looking at the theory. Instead, the pace will be crisp as we work on code, learn
how it works, and how it can be used.

Drupal and JavaScript

[8]

Let's start things off with a quick, high-level overview of Drupal. We will meet all
of these components again, so a good grounding in them will be helpful. In this first
chapter, we will cover the following:

The core technologies and languages upon which Drupal is built•	

The major components in Drupal and how they work together•	

The tools that you, as a JavaScript developer, can use to make Drupal •	
development easier

Once we've hurtled our way through this motley list of items, we'll embark in
Chapter 2 on our first project.

Unlike many technical books, we are not going to start off with a
chapter on installing Drupal. There are many resources on this
already, including the well-written Drupal installation notes
that are included with Drupal. If you need to install Drupal, go to
http://drupal.org and download the latest 6.x series Drupal
package. The archive you download will contain a file named INSTALL.
txt that contains detailed installation instructions.

Let's begin by looking at the languages in which Drupal is written.

Do you speak...?
Most of the time, people (including myself) talk about Drupal as a PHP-based CMS.
PHP (a recursive acronym for PHP: Hypertext Preprocessor) is a web-centered
programming language. Talking about Drupal as a PHP application makes sense as
most of the server-side programming logic is indeed written in PHP.

But PHP is not the only language used by Drupal. Surprisingly, there are at least
six different languages used in Drupal: PHP, SQL (Structured Query Language),
HTML (HyperText Markup Language), CSS (Cascading Style Sheets), XML
(eXtensible Markup Language), and—you guessed it—JavaScript.

You might be asking, "At least six? Can there be more?" Yes, there can be
more. Drupal can be extended to support innumerable languages. This
can be done through its module system.

Chapter 1

[9]

The focus of this book will be on JavaScript. We will make use of a lot of HTML,
CSS, and also a subset of PHP. But Drupal's use of these technologies is fairly
standard, and we won't be doing anything really startling with HTML or CSS.
In Drupal, XML is used primarily to provide support for RSS (Really Simple
Syndication) feeds and AJAX (Asynchronous JavaScript And XML). In fact,
we will be using Drupal's XML support for these things. We will make use of some
light PHP programming—mainly for writing templates—but it won't play a major
role in this book. We won't be using SQL at all.

While we encounter many Drupal technologies, we will stay on target. JavaScript
will be our focus.

Okay, so Drupal makes use of several languages. Impressive, sure...but why? And
how? Let's take a two-minute tour of each of these languages to learn about the roles
they play.

PHP
PHP (http://php.net) is a procedural, object-oriented scripting language. Originally,
it was designed to perform server-side HTML processing like the antiquated SSI
(Service Side Includes) technology introduced in the mid-1990s. But while SSI grew
stale and died off, PHP developers kept growing their language. With each release
of the PHP engine, it grew in power and flexibility. As a result, it achieved superstar
status among web developers. These days, you're likely to find PHP on Windows,
Mac, Linux, and UNIX boxes across the Web. Since PHP can now be used to write
shell scripts and even windowed applications, you might find it doing more than just
driving a web site.

Drupal's server-side logic is written primarily in PHP. How so? When the web server
hands Drupal a connection from a client, it is the PHP code that gets executed to
handle the client's request. Other than the queries passed to the database, all of the
processing that the server does is handled by PHP.

While this is a book on JavaScript, we will be writing some PHP code. Not a PHP
developer? Don't worry. For the most part, we will be using a very small subset
of PHP. We will be calling basic functions to handle formatting and layout from
Drupal's template engine called PHPTemplate. The purpose of PHPTemplate is
simple: Provide an easy method for inserting dynamic values into HTML. You only
need know a handful of PHP functions to be able to use PHPTemplate. This book
will cover those functions without assuming you're already a PHP ninja.

Here's a quick example of what PHPTemplate programming looks like:

<?php print t("Good Day");?>

Drupal and JavaScript

[10]

The and tags are just you're regular old HTML tags. The <?php
... ?> part indicates that the enclosed information is PHP code that the server
should execute. Inside that is the line print t("Good Day"), which simply uses the
t() function to translate Good Day into whatever the user's language is. Then using
the print directive, prints the results to the HTML. Assuming my preferred language
is German, the previous code would generate something like this:

Guten Tag

That's the sort of PHP we'll be writing in this book.

Drupal's translation features, which are available in JavaScript, will be
covered in Chapter 4.

Towards the very end of the book, we will use a little more PHP to build a Drupal
module. This might be a little more demanding, but those are the chapters you can
skim if you don't want to learn PHP. If you're interested in learning more about
PHP development, there are several other great books available, including
(shameless plug) my book Learning Drupal 6 Module Development Packt Publishing,
978-1847194442.

SQL
SQL is an acronym for Structured Query Language. What do you query with SQL?
A database! SQL is the industry standard for writing queries that relational database
systems can then parse and execute. But while the language is standardized, there
are multiple flavors of SQL. Each database program seems to use a slightly different
version of SQL—supporting some subset of the standardized language while also
adding on additional database-specific features.

Historically, Drupal development has targeted the open source MySQL database
(http://mysql.com) as the "official" database. Another popular open source
database, PostgreSQL (http://postgresql.org), is also supported by recent
Drupal releases (though not all add-on modules currently support it).

While you will need to run a database in order to use Drupal, we won't be making
much use of the SQL language in this book. Drupal provides built-in tools that we
can use to get the content we need out of the database without having to write our
own queries.

Chapter 1

[11]

HTML
HTML is the primary format for web-based content. As you undoubtedly know,
the purpose of HTML is to "mark up" a text using tags, sometimes with attributes
to provide instructions on how the document is structured and how it should look
when displayed in a browser.

Tags and elements
An HTML tag looks like this: <p>. Most tags in HTML are paired, with a
start and end tag. A tag may also have attributes, such as type="text/
javascript", and may also surround some content. When we talk
about the tag, plus the attributes and its content, we use the term element.

For example, to indicate that a piece of text is particularly important, we would put it
inside of the tags:

The important thing.

By default, most visual browsers render the content of the element as
bold text as seen here:

The important thing.

HTML's evolution has been a rough one. Initially, it was designed just to provide
structural information about the contents. But somewhere along the line, it also
became a tool for encoding layout and styling information. Combining the two
seemingly similar ideas of structure and style seemed like a good idea. But in
practice, it made for some very messy code.

The family of HTML specifications can be found online
at http://www.w3.org/html/.

On another front, XML (which we will look at in a moment) evolved separately.
Then, at some point, reconciliation between the HTML standards and the XML
standards was attempted. The outcome of this endeavor was XHTML (HTML in
XML). XHTML is now considered to be the right way to write HTML. In this book, we
will strive to use well-formed XHTML. You may notice this in the following ways:

All tags and attribute names will be in lowercase.•	
All tags will be closed. That means a tag will either appear in the opening •	
and closing pairs (), or as a single self-closing tag
(
—note the forward slash (/) before the closing angle bracket (>)).
All documents will start with an XML declaration (•	 <?xml ... ?>) and a
document type declaration (<!DOCTYPE html ...>).

Drupal and JavaScript

[12]

One of the primary roles of JavaScript (as we shall see many times) is to interact
with the document represented in HTML. Consequently, we will be using HTML
frequently in this book.

CSS
Another design principle driving XHTML is that the layout and styling information
embedded directly in the HTML should be limited to what is absolutely necessary.
Styling and layout should primarily fall in the purview of a style-specific language.

What language might that be? Cascading Style Sheets (CSS) is the de facto styling
language in today's browsers.

The CSS family of standards is found here: http://www.w3.org/
Style/CSS/.

CSS is a declarative language whose central task is to map styles to patterns of
markup in an XML or HTML document. Or, plainly speaking, CSS identifies
certain pieces of HTML and tells the browser how those pieces should look.

Earlier we looked at this piece of HTML:

The important thing.

I noted that by default, a browser would display this as highlighted text. But with
CSS, we can tell the browser to display it differently:

strong {
 font-weight: normal;
 font-size: 14pt;
 color: green;
 text-decoration: underline;
}

This little snippet of CSS tells the browser that the text inside of ...
 should look like this:

The weight of the font (how bold it is) should be normal, not bold.•	
The font size should be 14 points high. Assuming that the surrounding text is •	
12 points, this will appear larger than surrounding text.
The text color should be green.•	
The text should be underlined.•	

Chapter 1

[13]

Thus, when rendered through the browser, the text would look more
like this:

Another important use of JavaScript is to interact with the styles in a document.
Thus, we will be using CSS throughout this book.

XML
HTML tags are strictly defined. But what if you want to use a tag-based structure,
yet define your own tags? That's where XML comes in. Using XML, you can keep the
markup syntax while defining your own tags and attributes.

For example, if we want to develop an XML-based document type that describes a
pen, the markup might look something like this:

<?xml version="1.0"?>
<pen type="ballpoint">
 <ink>
 <color>black</color>
 <permanent>true<permanent>
 </ink>
 <shaft>
 <color>clear</color>
 <material>plastic</material>
 </shaft>
</pen>

Basically, it looks like an HTML document, but the tag names and attributes have
been developed specifically for the purpose of describing a pen.

Creating special-purpose markup languages is certainly the most common use of
XML. But there are many technologies that complement, co-operate with, and extend
XML to provide advanced capabilities. You can peruse http://w3.org to get an idea
of these technologies.

Here, we won't be using anything sophisticated. Our interest will be limited to plain
old XML and a few standard XML-based formats (such as the RSS).

Drupal and JavaScript

[14]

JavaScript
The star of the show has been saved for the last. JavaScript is an object-oriented
scripting language designed to run within a web browser. Let's unpack this statement:

Object-oriented•	 : Like other object-oriented programming languages,
JavaScript uses objects as a way of organizing code. (We will come back to
objects later.) But JavaScript doesn't provide all of the usual object-oriented
constructs you may have seen elsewhere. There are no classes in JavaScript,
nor are there private and protected object methods. But, the bottom line is
simply this: JavaScript employs the methodologies and principles espoused
in other modern object-oriented languages. We will use this to our advantage.

The use of the term "object-oriented" to describe JavaScript is contested.
Sometimes, JavaScript is called Object-Related because it does not have
all of the constructs that object-oriented languages typically contain.
Currently, calling JavaScript object-oriented seems to be in favor, since
JavaScript can be made to emulate any features that it does not have
built-in. JavaScript 2.0 will be a fully object-oriented language.

Scripting language•	 : Many languages—such as Java, C++, and C#—are written
in plain text, and then compiled into a format that is not readable by humans.
The compiled code is then executed by the computer when the program is
run. Scripting languages differ from these. They are not pre-compiled. Instead,
they are delivered for execution as plain text files. Then an interpreter takes the
responsibility for executing the script. JavaScript-enabled web browsers have
JavaScript interpreters embedded inside.
Web browser-centered•	 : JavaScript was initially developed as a special-purpose
language designed to provide interactivity to the otherwise static HTML pages.
While talented software developers have found other uses for the JavaScript
language, it is still the scripting language of choice for cross-browser web
scripting. Our use of it will be limited to web programming with Drupal.

So why does Drupal use both PHP and JavaScript? Why not use just one? The reason
has to do with where the code is executed.

In a web application, PHP is always executed only on the server. The server runs the
PHP code and then sends the resulting information to the client. The information
that is sent is usually in the form of HTML, CSS, or JavaScript.

Chapter 1

[15]

The web browser will never see a line of PHP code. It will all be taken care of by
the server.

So the PHP runs on the server and then sends the results to the client. The browser
takes that information—HTML, CSS, and JavaScript—and uses it to display the page.
As we saw earlier, HTML and CSS are used to describe and format the content.

The JavaScript serves a different purpose.

When the browser encounters a JavaScript file, it fires up the JavaScript interpreter
and passes the script to the interpreter. Remember that this activity is happening on
the client machine, not the server.

The script can then interact with the other content that the server has sent to the
browser. The script can add or remove CSS styles. It can add or remove elements
from the HTML. It can rearrange a web page. It can (using AJAX) request additional
content from the server and then insert that content into the document. It can make
the user interface more attractive and easier to use. In a nutshell, it can take a static
page and add some interactivity.

Does this description make JavaScript sound like a toy language? A gimmicky way
of adding glitz, but nothing more? That might have been the case in the beginning,
but it's come a long way. Web-based applications driven by advanced JavaScript
(Web 2.0) are today's Internet darlings.

That's where we are headed. In the coming chapters, we are going to use JavaScript
to add client-side functionality to our Drupal site.

We've taken a high-level overview of the different languages that Drupal employs.
Now we're going to take a different perspective. We're going to look at the many
parts that make up Drupal and see how they all connect.

Drupal's architecture
As mentioned in the previous section, almost all of the server-side Drupal code
is written in PHP. Just like a complex physical structure—a building or an
airplane—this code is organized into units, each of which does a particular job.

Drupal and JavaScript

[16]

Let's take a look at what might be called a blueprint of Drupal:

Browser

Server

Theme Engine (PHPTemplate)

Drupal Core (PHP)

Additional Modules

Database

HTML CSS JS Other

Let's look at the pieces in the diagram.

This diagram is divided into two major components: the browser and the server.
The majority of Drupal's processing is done on the server.

The PAC design pattern
On the server side, Drupal follows the PAC (Presentation-Abstraction
-Control) design pattern. The Drupal Core provides the controller. It
responds to user requests and routes them to the appropriate handlers. The
theme system provides the presentation layer. The modules (including the
built-in modules like Node) access and manipulate the data which is the job
of the abstraction layer.

The Drupal Core
At the center of Drupal is the Drupal Core. This core consists of important libraries
that Drupal must have in order to run. When a browser makes a request to Drupal,
the Drupal Core is what oversees how Drupal responds to the request. The Drupal
Core gathers data from various sources (including from the database where
information is stored long-term), and then hands that data off to the Theme Engine.

Chapter 1

[17]

The Drupal Core also includes some important modules. These are usually called
Core modules. All of them provide features that are often used in CMS systems. But
within the list of Core modules, there are a handful of modules that are absolutely
essential for the proper functioning of a Drupal system. Though these are not as
intimately connected with controlling the application, they provide services that
Drupal needs. You might notice these modules when you look at the Modules page
(in the Drupal administration interface: Administer | Site Building | Modules):

The screenshot shows the five absolutely necessary modules: Block, Filter, Node,
System, and User.

While these modules are displayed with all of the other modules installed on the
system, modules marked Core – required cannot be disabled.

Later in this chapter we will discuss the data types that three of these modules
provide: nodes, blocks, and users.

The major JavaScript libraries, including drupal.js and jquery.js, are also
managed as a part of the Drupal Core. These libraries are not encapsulated in
modules, nor are they stored with the PHP libraries. They are maintained as part
of the Core, and are included with Drupal.

Much of our attention in this book will be devoted to these core libraries. The
enormously powerful jQuery library is introduced in Chapter 3, and will be used
throughout the book. The drupal.js library is the subject of Chapter 4, 5 and 6,
and is also used elsewhere in this book.

Drupal and JavaScript

[18]

The Theme Engine
The job of the Theme Engine is to take the data given to it and format that data for
display. It might, for example, use templates to build HTML or CSS. In some cases,
it might be used to generate XML, or even email messages to be sent from the local
mail server.

Once data has been formatted by the Theme Engine, it is sent back to the browser,
typically in the form of HTML, CSS, or images.

JavaScript is a slightly more complex form. It is not usually passed through the
Theme Engine. Instead, it is passed to the browser unmodified. Where does
JavaScript come from? Sometimes it comes from libraries written by developers
(the core Drupal library and jQuery are both examples of this). Sometimes it
comes from a theme. At other times, the JavaScript comes from a module.

The Theme Engine is part of the theme system. The theme system
provides an API for styling and laying out data. It loads the Theme
Engine and hands that engine data for formatting. Why the distinction?
Here is the reason. While the theme system API remains the same,
you can actually substitute different Theme Engines for the default
PHPTemplate engine (We will only use PHPTemplate, though). You can
see a list of Theme Engines at the Drupal web site: http://drupal.
org/project/Theme+engines.

Modules
Modules are the last part of server-side processing that we will look at. Drupal itself
does not try to provide every possible feature that a web site might need. Instead,
it provides common and important features and then provides a mechanism for
plugging in additional functionality.

This mechanism is called the module system. Modules can provide additional
functionality to the Drupal Core, the Theme Engine, or even JavaScript. But it is the
Drupal Core that oversees how modules get loaded and executed, and what happens
to the data they return.

There is a lot more that could be said of this system, but we have the main concepts
covered. In this book, we'll be working primarily with themes, though we will make
use of some modules as well. As we take a closer look at these technologies, we'll
build on the overview given earlier.

For our current purposes, though, it's time to move on. We need to cover a few more
high-level Drupal concepts.

Chapter 1

[19]

Where does our JavaScript go?
As we will see in the next chapter, JavaScript can be used in both themes
and modules. For the sake of simplicity, we will make more use of
theme-based JavaScript than module-based JavaScript. By attaching
JavaScript to themes (instead of modules), we will avoid having to write
much PHP code. In the last two chapters of the book, though, we will
create a few modules.

Users, nodes, and blocks
There are three terms that are crucial to understand when doing any kind of Drupal
development: users, nodes, and blocks.

Since the user concept is the easiest to grasp, we'll start with that.

Users
One of the required core modules that Drupal provides is the User module. This
module defines Drupal's concept of a user. As expected, a Drupal user is identified
by a username and password (or in some cases by an OpenID URL). A bundle of
information, including things such as name, email address, and preferences, is also
associated with a user.

Users can be assigned roles. Roles determine what permissions a user has.
By default, there are two roles: anonymous user and authenticated user. An
anonymous user is one who has not signed in (and thus has no known username).
An authenticated user is one who is a member of the site (and has already signed in).

Using the Administer | User management | Permissions tool, you can assign
privileges to roles. For example, with this tool we could allow authenticated users
to post comments, but not allow that privilege to anonymous users.

Along with being able to define custom permissions, you can also define custom
roles. On sites that I administer, I often create an Administrator role. Users in that
role are typically granted broad access to the administration features of Drupal.

A special user
The first user created on a Drupal site is treated as a special administrative
user. This user is created during installation and will be allowed full
administrative access to the server regardless of role.

Drupal and JavaScript

[20]

As we work through this book, the users, roles, and permissions will play a part
in our coding. We will be developing code intended to be not only functional and
feature-rich, but also secure. Understanding how the user system works is a step in
the direction of securing our code.

Blocks
The next important concept that we will look at is the block system. The core block
features are provided by the Block module.

What is a block? In a nutshell, a block is a unit of organization that provides a way
for small pieces of content to be displayed in designated areas on a Drupal page. Not
terribly clear? Let's look at a screenshot:

In this screenshot, there are two arrows pointing to a couple of blocks displayed on
the page. On the left, there is a block showing the username and menu. This is the
Navigation block. Its purpose is to provide context-sensitive navigation for the user.
The Drupal logo shown beneath it is also a block, called Powered by Drupal.

On the right side is a block displayed from a custom module (the demoblock
module that is included in the source code for this book). This block simply displays
some text.

Chapter 1

[21]

You can choose which blocks show up and where they will be displayed. This is
done using the Administer | Site building | Blocks tool. For example, using that
tool we can reorganize the screen shown earlier like this:

Notice that in the screenshot, the This is a Block and Navigation blocks have
been swapped. This illustrates one of the main features of blocks: They can
be repositioned.

So what is happening behind the scenes to generate blocks? Essentially this: Drupal
modules have the ability to define blocks. When you configure a block to show up
in some region of the page, Drupal tells that module to go through the process of
creating the block.

When the module delivers its block content to Drupal, Drupal passes that
information on to the theme system. This system styles the block itself, and then
inserts that styled block into the main page template.

In the next chapter, we will be taking a closer look at the templates that come into
play when theming. Later in the book we will use JavaScript to make a block more
than just a static part of the page.

At this point, you should feel a little more comfortable with what a block is used for.
Blocks define pieces of information—lists of links, short forms, images, text, or any
other standard web content—that can be selectively displayed and positioned by an
administrator. But blocks are rarely used to provide the main content of a page.

Let's turn our attention from blocks to nodes.

Drupal and JavaScript

[22]

Nodes
Visually speaking, blocks typically show up as small bits of content. Nodes, in
contrast, can be thought of as the big pieces of content. Stories and pages—the two
types of content enabled by default in Drupal—are both types of nodes. Their role is
to hold and display large pieces of textual content.

In fact, that is the general purpose of a node: It encapsulates a piece of content
(usually a piece of text) and also provides additional information about that content.

Nodes typically have a body and a title. A node also tracks information about the
version of the node, the owner, creation date, and publishing state of a node. In short,
any information about that content is attached (in one way or another) to a node.

Most of the node information is stored in built-in Drupal tables in the
database. But custom node types can be defined either programmatically
(in code) or using modules such as the CCK (Content Construction
Kit). In such cases, information is indeed attached to a node, but the
underlying data storage mechanism is usually not limited to the built-in
Drupal node table. Data may be spread out in the database.

Let's take another look at the screenshot we saw earlier:

Right in the center of the page is the node object. In this case, it is a Page node
created by clicking on the Create content link visible in the Navigation block
on the left side, followed by clicking on the Page link.

Chapter 1

[23]

On this page, we can see the node's title (This is a node) and a pair of paragraphs
that make up its content.

There is more that can be done with a node than simply viewing it. We can get lists
of nodes (imagine a table of contents or a list of recent stories). We can display just a
selection from a node, as is often done on a Drupal front page. Also, with additional
modules, we can get even more sophisticated. For example, the ImageNode module
turns nodes into containers to which images may be attached. The Services module
makes it possible to serve node content as XML or other formats.

But for the sake of brevity, the most useful way to think of a node is simply as a piece
of content inside of the Drupal CMS.

How does Drupal go through the process of displaying a node? The process is
similar to the block display process. When a node is requested, the Node module
(and any necessary auxiliary modules) retrieves the node from the database. Then,
the theme system formats the node's content for display, and then inserts that
content into the main template. Once the node, blocks, and any additional content is
placed in the template, the resulting HTML document is returned to the browser
for display.

The behind-the-scenes logic for nodes is implemented in complex PHP code. But we
won't be interacting with nodes at that level.

For us, we are more interested in the node content as it is styled by the Theme Engine
and returned to the browser. JavaScript operates only on the already-rendered node
content, so there is no need to delve into node internals.

We've now, taken a look at three major concepts that will be used throughout this
book: users, blocks, and nodes. Next, we can turn our attention to the tools used to
develop JavaScript.

Drupal JavaScript development tools
One of the nice things about JavaScript development is that you don't really need
any other tools besides a text editor and a web browser. If you want to do your
JavaScript development that way, you can.

While you don't need any other tools, you can become a more proficient developer
by using some additional tools. In this section, I will introduce a few tools that make
Drupal JavaScript development faster and easier.

Drupal and JavaScript

[24]

A good editor
Any plain text editor can be used to write JavaScript. But there are many editors
that provide features specific to JavaScript development. Features such as syntax
highlighting (automatically color-coding code to make it easier to read), automatic
code completion, and a debugger can help you write code more efficiently.

That said, there are hundreds of code editors—perhaps even thousands—that
provide some degree of JavaScript support. So which editor or editors should you
use? That will depend on your own preferences. In the open source world, editors
like jEdit (cross-platform) and Notepad++ (Windows) provide basic support without
lots of frills. If you are also a PHP developer (or you write code in other languages),
IDEs such as Eclipse, Aptana, and NetBeans provide good integration. Even
Vim (Vi Improved) and Emacs provide JavaScript support. Also, there are many
commercial packages, such as TextMate for the Mac, that provide environments
for coding in JavaScript.

If you don't have an editor that you already feel comfortable with, I suggest
trying a couple of different ones. Start with an easy-to-use editor like jEdit
(http://jedit.org) or Notepad++ (http://notepad-plus.sourceforge.net/).

Firebug
Unlike editors, when it comes to debugging JavaScript, there is a clear candidate.
The Firefox extension Firebug tool (https://addons.mozilla.org/en-US/
firefox/addon/1843) is not only a good way of debugging your JavaScript code,
but also a tool for analyzing HTML, the DOM, CSS, and network performance. With
the built-in JavaScript command line, you can interactively execute JavaScript from
within your browser.

Chapter 1

[25]

For example, here's a screenshot of Firebug inspecting the HTML contents of the
page we've been looking at:

Firebug is running inside of Firefox (though I have hidden the Firefox toolbars to
squeeze more into the screenshot). In the lower-left pane, Firebug is displaying an
HTML representation of the current state of the document.

To the right of the HTML browser is the CSS browser, which is currently displaying
the styles attached to the highlighted HTML element. Since the <body> tag is
highlighted in the HTML, the CSS viewer is showing all styles related to the
<body> element.

Using Firebug will help you find bugs, understand what is happening in the
browser, and test out ideas right there. We will be using it in Chapter 3 to learn
the basics of jQuery.

Drupal and JavaScript

[26]

The Drupal Devel package
Seasoned Drupal developers have created special Drupal modules designed to make
developing for Drupal easier. The Devel package contains some of the most useful
developer modules.

Devel provides a suite of utilities to help developers work on Drupal. The Devel
package can be downloaded from the Drupal website: http://drupal.org/
project/devel. This package provides five modules:

1. Devel: The main developer module.
2. Devel generate: A tool to randomly generate users, nodes, and other data for

developing and debugging.
3. Devel node access: Tools for learning about what nodes are currently

being accessed.
4. Macro: A tool to help you automate form submission for development and

debugging purposes.
5. Performance logging: A tool to help you identify bottlenecks and

memory usage.
6. Theme developer: A tool to help theme developers determine what code is

generating what part of the HTML output.

The Devel and Theme developer modules are particularly helpful for JavaScript
development. Devel gives us a handful of tools to do things such as clear server-side
caches, find out about the PHP engine, examine the server's session record, and even
re-install modules. It also provides some information about how the current theme
is structured. All of this can be useful while developing JavaScript and debugging
client-server exchanges.

Devel must first be installed using Administer | Site building | Modules, and then
the Development block must be added to one of the block regions using Administer
| Site building | Modules.

While developing themes and modules, it is often necessary to
clear server-side caches. This module is worth installing just for the
convenience of the cache-clearing feature.

The Theme developer module (also called Themer) provides an interface for finding
out what template or Theme Engine call generates a particular piece of HTML. As
with Devel, the Theme developer module must be installed in Administer | Site
building | Modules. Once that is done, the Theme developer tool will show up in
the lower left corner of all of your Drupal pages.

Chapter 1

[27]

The tool looks like this:

If you check the box, then the main Theme developer tool will open. With this tool,
you can click on any part of the page and the tool will display information about the
Theme Engine's rendering of that piece of HTML as seen here:

There are a few things to notice in the screenshot. First, around the Navigation block
in the left-hand column, there is a gray box. The box appeared when I clicked on that
block. It indicates that the HTML fragment is the one currently being examined.

Second, there is a gray semi-opaque pop-up window in the center of the image.
That is the Themer tool. It displays information about the currently selected HTML
fragment. In this case, it tells us what template file was used to generate the block
and what theme that template came from. By clicking on the lighter gray box at the
bottom of the Themer tool, we could also examine all of the variables passed to
that theme.

Finally, if you examine the screenshot you might notice that there are also bordered
boxes around the main node. Whenever the mouse hovers over a themeable element,
a red box is drawn around that element.

Drupal and JavaScript

[28]

In the screenshot, you might also notice the new block in the righthand
navigation. This is the Developer block we discussed. To add this block
to your own site, go to Administer | Site building | Blocks and add the
Development module to the right sidebar..

Understanding the details of how this works is not important at present. Later, when
we look at themes in more detail, you may want to use this tool to help locate which
templates are responsible for generating various parts of the page. These are the
main tools that you will be using when developing JavaScript for Drupal.

Summary
At this point we finished with our introduction to Drupal. We looked at various
languages and technologies used in Drupal. We then had a high-level overview of
the Drupal architecture followed by an examination of some key Drupal concepts,
such as users, blocks, and nodes. From there we moved on to developers tools,
learning about a few utilities that can expedite Drupal JavaScript development.

This chapter has been introductory in nature, and has been light on code. In the next
chapter we'll make a practical turn, focusing on writing Drupal-centric JavaScript
code. There, we will build our first JavaScript project.

Working with JavaScript
in Drupal

The first chapter in this book introduced Drupal and JavaScript. It also explained the
role that JavaScript plays in the Drupal 6 environment. We will now move beyond
mere explanation and take a look at the practical details and examples.

In this chapter, we will be working with JavaScript inside of a Drupal environment.
We will begin by exploring how JavaScript is included in Drupal pages, and then
create our first script for Drupal. While we're not going to cover the basics of the
JavaScript language (there are already lots of available resources on the topic), the
code we create here will be simple and straightforward.

The purpose of this chapter is to cover the basics on how JavaScript can be used
within Drupal 6. In that regard, this chapter will serve as a foundation for our
future JavaScript development. Here are the topics that we're going to cover:

Serving JavaScript from Drupal•	

Creating a first script•	

Creating a simple theme•	

Adding JavaScript to a theme•	

Without further ado, let's get going.

Working with JavaScript in Drupal

[30]

How Drupal handles JavaScript
How is JavaScript typically used? Mostly, it is used to provide additional functionality
to a web page, which is usually delivered to a web browser as an HTML document.
The browser receives the HTML from the server and then begins the process of
displaying the page. During this parsing and rendering process, the browser may
request additional resources from the server such as images, CSS, or Flash. It then
incorporates these elements into the document displayed to the user.

In this process, there are two ways that JavaScript code can be sent from the server to
the browser. First, the code can be placed directly inside the HTML. This is done by
inserting code inside the <script> and </script> tags:

<script type="text/javascript">
 alert('hello world');
</script>

This is called including the script inline.

Second, the code can be loaded separately from the rest of the HTML. Again, this is
usually done using the <script> and </script> tags. However, instead of putting
the code between the tags, we use the src attribute to instruct the browser to retrieve
an additional document from the server.

<script type="text/javascript" src="some/script.js"></script>

In this example, src="some/script.js" points the browser to an additional script
file stored on the same server as the HTML document in which this script tag is
embedded. So, if the HTML is located at http://example.com/index.html, the
browser will request the script file using the URL http://example.com/some/
script.js.

The </script> tag is required
When XML was first standardized, it introduced a shorthand notation
for writing tags that have no content. Instead of writing <p></p>, one
could simply write <p/>. While this notation is supported by all modern
mainstream browsers, it cannot be used for <script></script>
tags. Some browsers do not recognize <script/> and expect that any
<script> tag will be accompanied by a closing </script> tag even if
there is no content between the tags.

If we were developing static HTML files, we would simply write HTML pages
that include <script></script> tags anytime we needed to add some JavaScript
to the page. But we're using Drupal, not static HTML, and the process for adding
JavaScript in this environment is done differently.

Chapter 2

[31]

Where Drupal JavaScript comes from?
As with most web content management systems, Drupal generates HTML
dynamically. In the previous chapter, we talked about how this is done through
interactions between the Drupal core, modules, and the theme system. A single
request might involve several different modules. Each module is responsible
for providing information for a specific portion of the resulting page. The theme
system is used to transform that information from PHP data structures into HTML
fragments, and then compose a full HTML document.

But this raises some interesting questions: What part of Drupal should be responsible
for deciding what JavaScript is needed for a page? And where will this JavaScript
come from?

In some cases, it makes sense for the Drupal core to handle JavaScript. It could
automatically include JavaScript in cases where scripts are clearly needed.

JavaScript can also be used to modify the look and feel of a site. In that case, the
script is really functioning as a component of a theme. It would be best to include
the script as a part of a theme.

JavaScript can also provide functional improvements, especially when used with
AJAX and related technologies. These features can be used to make more powerful
modules. In that case, it makes sense to include the script as a part of a module.

So which one is the best: modules, themes, or core? Rather than deciding on your
behalf, Drupal developers have made it possible to incorporate JavaScript into
all three:

The Drupal core handles including the core JavaScript support as needed. •	
The Drupal and jQuery libraries are included automatically when necessary.
When theme developers needs to add some JavaScript, they can do so within •	
the theme. There is no need to tamper with the core, or to accompany a
theme with a module.
Finally, module developers can add JavaScript directly to a module. In •	
this way, modules can provide advanced JavaScript functionality without
requiring modification of the theme.

In this book we will add scripts to themes and modules. As we get started with this
chapter, we will begin with a theme.

Working with JavaScript in Drupal

[32]

Module or theme?
How do you decide whether your script ought to go in a theme or in
a module? Here's a basic guideline. If the script provides functionality
specific to the layout details of a theme, it should be included in a theme.
If the script provides general behavior that should work regardless of the
theme, then it should be included in a module.

Sometimes it is hard to determine when a script belongs to a theme and when it
should to be placed in a module. In fact, the script we create here will be one such
a case. We are going to create a script that provides a printer-friendly version of a
page's main content. Once we have the script, we will attach it to a theme. Of course,
if we want to provide this functionality across themes, we might instead create a
module to house the script.

Since modules require some additional PHP development, we will delay examining
them until Chapter 8. We will start out simply with a JavaScript-enabled theme.

Project overview: printer-friendly
page content
As we continue through this book, each chapter will have at least one project. In this
chapter, we are going to write one piece of JavaScript and then create a theme to
utilize the JavaScript.

The JavaScript that we will write creates a pop-up printer-friendly window, and
automatically launches the print dialog. This is usually launched from File | Print in
your browser's menu.

Once we write the script, we will incorporate it into a theme, and add a special
printing feature to the page(s) displayed with that theme. As we walk through
this process, we will also create our first theme. (Technically, it will be a subtheme
derived from the Bluemarine theme.)

By the end of this project, you should know how to create Drupal-friendly JavaScript
files. You will also know how to create themes and add scripts to them. These are
foundational tasks upon which we will build in subsequent chapters.

The first step in the process is to write the JavaScript.

Chapter 2

[33]

The printer script
Our script will fetch the main content of a page and then open a new window,
populating that window's document with the main content of the page. From
there, it will open the browser's print dialog, prompting the user to print
the document.

Since this is our first script, we will keep it simple. The code will be very basic,
employing the sort of classical procedural JavaScript that web developers have
been using since the mid-1990's. But don't expect this to be the norm. In the next
chapter we will dive into what John Resig, creator of jQuery, calls the "New
Wave JavaScript."

To minimize clutter and maximize the reusability of our code, we will store this new
script in its own script file. The file will be named printer_tool.js:

// Id
/**
 * Add printer-friendly tool to page.
 */

var PrinterTool = {};

PrinterTool.windowSettings = 'toolbar=no,location=no,' +
 'status=no,menu=no,scrollbars=yes,width=650,height=400';

/**
 * Open a printer-friendly page and prompt for printing.
 * @param tagID
 * The ID of the tag that contains the material that should
 * be printed.
 */
PrinterTool.print = function (tagID) {
 var target = document.getElementById(tagID);
 var title = document.title;

 if(!target || target.childNodes.length === 0) {
 alert("Nothing to Print");
 return;
 }

 var content = target.innerHTML;

 var text = '<html><head><title>' +
 title +
 '</title><body>' +
 content +

Working with JavaScript in Drupal

[34]

 '</body></html>';

 printerWindow = window.open('', '', PrinterTool.windowSettings);
 printerWindow.document.open();
 printerWindow.document.write(text);
 printerWindow.document.close();
 printerWindow.print();
};

Since this is our first piece of Drupal code, we are going to dwell on the details a little
more than we will in future sections.

First, let's talk about some of the structural aspects of the code.

Drupal coding standards
In general, well-formatted code is considered a mark of professionalism. In an open
source project such as Drupal, where many people are likely to view and contribute
to the code, enforced coding standards can make reading and understanding what
the code does easier.

When contributing code to the Drupal project, developers adhere to a Drupal coding
standard (http://drupal.org/coding-standards). Add-on modules and themes
are expected to abide by these rules.

It is advised that you follow the Drupal standards even in code that you do
no anticipate submitting to the Drupal project. Along with keeping your code
stylistically similar to Drupal's, it will also help you develop good coding habits for
those occasions when you do contribute something to the community.

For the most part, the official Drupal coding standards are focused on the PHP code.
But many of these rules are readily applicable to JavaScript as well. Here are a few
important standards:

Every file should have a comment near the top that has the contents •	 Id. This
is a placeholder for the version control system to insert version information.

Drupal uses CVS (Concurrent Versioning System) for source code
versioning. Each time a file is checked into CVS, it will replace Id with
information about the current version of the software. To learn more
about CVS, visit http://www.nongnu.org/cvs/.

Chapter 2

[35]

•	 Indenting should be done with two spaces (and no tabs). This keeps the code
compact, but still clear.
Comments should be used wherever necessary.•	

Doxygen-style documentation blocks (° /** ... */) should be
used to comment files and functions.
Any complex or potentially confusing code should be 	°
commented with // or /* ... */.
Comments should be written in sentences with punctuation.	°

Control structure keywords (•	 if, else, for, switch, and so on) should appear
at the beginning of a line, and be followed by a single space (if (), not
if()). Here's an example:
if (a) {

 // Put code here.

}

else if (b) {

 // Put code here.

}

else {

 // Put code here.

}

Operators (•	 +, =, *, &&, ||, and so on) should have a single space on each side,
for example: 1 + 2. The exception to this rule is the member operator (.),
which is used to access a property of an object. There should be no spaces
surrounding these. Example: window.document (never window . document).

Stylistic differences between PHP and JavaScript
Not all PHP coding standards apply to JavaScript. PHP variables and function names
are declared in all lower case with underscores (_) to separate words. JavaScript
typically follows different conventions.

JavaScript variables and functions are named using camel case (sometimes called
StudlyCaps). For a variable or function, the first word is all lower case. Any
subsequent words in the variable or function name are capitalized. Underscores
are not used to separate words. Here are some examples:

var myNewVariable = "Hello World";
function helloWorld() {
 alert(myNewVariable);
}

Working with JavaScript in Drupal

[36]

While this convention is employed throughout the Drupal JavaScript code, there
is currently no hard-and-fast set of JavaScript-specific coding conventions. The
working draft, which covers most of the important recommendations, can be found
at http://drupal.org/node/260140.

Here is a summary of the more important (and widely followed) conventions:

Variables should always be declared with the •	 var keyword. This can go a
long way towards making the scope of variables explicit. As we will see later
in the book, JavaScript has a particularly broad notion of scope. Functions
inherit the scope of their parent context, which means a parent's variables are
available to the children. Using var makes it easier to visually identify the
scoping of a variable. It also helps to avoid ambiguous cases which may lead
to hard-to-diagnose bugs or issues.
Statements should always end with a semicolon (•	 ;). This includes statements
that assign functions, for example, myFunction = function() {};. Our
print function, defined earlier, exhibits this behavior.

Why do we require trailing semicolons?
In JavaScript, placing semicolons at the end of statements is considered
optional. Without semicolons, the script interpreter is responsible for
determining where the statement ends. It usually uses line endings to
help determine this. However, explicitly using semicolons can be helpful.
For example, JavaScript can be compressed by removing whitespace and
line endings. For this to work, every line must end with a semicolon.

When an anonymous function is declared, there should be a space between •	
the function and the parentheses, for example, function () {}, not
function() {}. This preserves the whitespace that would be there in a
non-anonymous function declaration (function myFunction() {}).

There are other conventions, many of which you will see in this book. But the ones
mentioned here cover the most frequently needed.

With coding standards behind us, let's take a look at the beginning of the
printer_tool.js file.

The first lines
Let's take another look at the first ten lines of our new JavaScript:

// Id

/**
 * Add printer-friendly tool to page.
 */

Chapter 2

[37]

var PrinterTool = {};

PrinterTool.windowSettings = 'toolbar=no,location=no,' +
 'status=no,menu=no,scrollbars=yes,width=650,height=400';

The first line is a comment with the Id tag required by the coding standards. If this
file were checked into CVS, the line would be replaced with something like this:

// $Id: print_tools.js,v 1.0 2008/07/11 08:39 mbutcher Exp $

As you can see, CVS will add some information about the version of the file. This
information includes the name of the file, its version number, when it was checked
in, and who checked it in.

Directly beneath the ID comment is the file-wide documentation block.

Documentation blocks use a special comment style beginning with a slash and
two asterisks: /**. Automated documentation tools can later scan the file and pick
out the documentation blocks, automatically generating API documentation for
your script.

The role of the file-wide documentation block is to explain what the code in the file
does. The first line should be a single-sentence description of the file. Additional
paragraphs may be added.

In the following line, we define our PrinterTool object:

var PrinterTool = {};

This code is declaring the PrinterTool variable and assigning it an empty object literal
({}). This line plays an interesting role in the structure of our application, and we will
see constructs like this both within Drupal and in the later chapters of this book.

An object literal is a notation for defining an object by using its
symbolic delimiters, rather than by using a new constructor. That is,
instead of calling the new Object() constructor, we use the symbolic
representation of an empty object, {}, to declare an empty un-prototyped
object. We will use this method frequently in this book.

The role of the PrinterTool object is to serve as a namespace for our application.
A namespace is an organizational tool that allows the software developer to collect
various resources together . This is done without having to worry that these
resources will be in conflict with those created by other developers.

Objects that function as namespaces should always begin with an initial
capital letter, such as Drupal or PrinterTools.

Working with JavaScript in Drupal

[38]

Let's consider an example. The main function in our printer_tool.js file is named
print(). But print is a very common name, and the built-in JavaScript window
object already has a function named print(). So how do we distinguish
our print() from window's print()?

One popular method of solving this problem is to assign objects to namespaces.
Then the developer can explicitly specify which print() ought to be used.

Let's look at the next line of the script for an example:

PrinterTool.windowSettings = 'toolbar=no,location=no,' +
 'status=no,menu=no,scrollbars=yes,width=650,height=400';

Here we create the windowSettings string object, assigning it a long value that will
later be used when calling JavaScript's built-in window.open() function.

But windowSettings is defined as a member of the PrinterTool namespace.

If we were to insert the following code directly beneath the previous line, what
would happen?

alert(windowSettings);

We would get an error since there is no object in the current context named
windowSettings. To retrieve the value of the windowSettings object, we would
need to write this instead:

alert(PrinterTool.windowSettings);

Now the alert dialog would be created and populated with the string 'toolbar=no,
location=no,status=no...'.

That is how namespaces function. If we were to call print(), it would use the
window.print() function. Remember, window is the default scope for browser-based
JavaScript. To call the print() function, which this script defines, we would have to
provide the full namespace PrinterTool.print().

Since we are talking about it already, let's take a closer look at the PrinterTool.
print() function.

The print() function
The PrinterTool.print() function looks like this:

/**
 * Open a printer-friendly page and prompt for printing.
 * @param tagID

Chapter 2

[39]

 * The ID of the tag that contains the material that should
 * be printed.
 */
PrinterTool.print = function (tagID) {
 var target = document.getElementById(tagID);
 var title = document.title;

 if (!target || target.childNodes.length === 0) {
 alert("Nothing to Print");
 return;
 }

 var content = target.innerHTML;

 var text = '<html><head><title>' +
 title +
 '</title><body>' +
 content +
 '</body></html>';

 printerWindow = window.open('','',PrinterTool.windowSettings);
 printerWindow.document.open();
 printerWindow.document.write(text);
 printerWindow.document.close();
 printerWindow.print();
};

The function starts with a documentation block. As with a page-level documentation
block, this begins with a single sentence describing the function. If more information
is needed, we could include additional sentences after this first line.

In this documentation block, we also have a special keyword @param. This indicates
to the documentation processor that we are about to describe one of the parameters
for this function. The @param keyword should be followed by the names of the
arguments it describes. In our case, there is only one param, tagID. These are the
only two things that should be on this line.

The next line should be indented two more spaces, and should describe
the parameter.

Order Matters
@param tags should always describe arguments in order. If we have a
function with the signature myFunction(paramA, paramB), then the
documentation block should have the @param paramA section before the
@param paramB section.

Working with JavaScript in Drupal

[40]

Our function here does not have a return value. If a return value were to exist, that
too would need to be documented. Consider this example function:

function sum(a, b) {
 return a + b;
}

The documentation block for such a function might look like this:

/**
 * Add two numbers.
 *
 * This function adds two numbers together and returns
 * the sum.
 *
 * @param a
 * The first number.
 * @param b
 * The second number.
 * @return
 * The sum of a and b.
 */

An automated documentation tool, such as Doxygen, can use such a well-formatted
comment to create a helpful API reference.

Let's continue and look at the next part of the code.

First, we assign a function to PrinterTool.print:

PrinterTool.print = function (tagID) {

Essentially, what we have done is created a method named print() attached to the
PrinterTool object. The function takes one argument: tagID. This will be the ID of
an element in the HTML document.

A function defined with the form name = function () {} is called
a function expression. For all intents and purposes, it works the same
as a typical function declaration of the form function name() {}.
The subtle differences are explained in the official Mozilla JavaScript
documentation: http://developer.mozilla.org/En/
Core_JavaScript_1.5_Reference:Functions.

Inside the function, we begin by getting information from the document that the
browser is currently displaying:

PrinterTool.print = function (tagID) {
 var target = document.getElementById(tagID);

Chapter 2

[41]

 var title = document.title;

 if (!target || target.childNodes.length === 0) {
 alert("Nothing to Print");
 return;
 }

 var content = target.innerHTML;

There are two major pieces we want to retrieve from the document. These pieces are
the title of the document and the contents of some specified element. We start by
finding that element.

To find the element, we search the document for an element with an ID passed
in as tagID. The DOM (Document Object Model) API, which defines standard
objects that describe HTML and XML documents, provides a method called
getElementById(). It searches the DOM for an element with the given ID, and
returns the element if it is found.

The DOM API is standardized by the World Wide Web Consortium
(http://w3.org), and is implemented by all major web browsers.
With the DOM, we can manipulate HTML and XML documents from
JavaScript.

We store the desired element in the target variable. We then get the title of the
current document.

Next, we check to make sure that target is set and that it has content. This is done
using the conditional if (!target || target.childNodes.length === 0).
If target is null or undefined, !target will return true. If the target element has
no children, then the childNodes.length will be 0. In either of these circumstances,
the function will alert the user of the problem and return without opening a
printer-friendly page.

Strong Equality and Type Coercion
When comparing two objects for equality in JavaScript, we usually do
something like this: if (a == b) { /* do something */ }. In
this case, the JavaScript interpreter will try to convert both a and b to
the same type before comparing them. So the string "0" is equal to the
integer 0. Often times this is good. However, sometimes coercion can
cause problems, as it might give the faulty impression that two values are
equal when they are not. To avoid this problem, use the strong equality
operator (===). As a programmer, you should keep this difference in
when as you write your code.

Working with JavaScript in Drupal

[42]

Once the script has made it beyond this test, we know there is content inside of the
target element. We want the content of target to be a string (rather than as mere
DOM objects), so we access that information using target's innerHTML property.

At this point, we have the two major pieces of information we need: the title of the
page and the content that we want to print.

Next, we want to put this information into a new window and prompt the user to
print the contents of that window:

PrinterTool.print = function (tagID) {
 var target = document.getElementById(tagID);
 var title = document.title;

 if(!target || target.childNodes.length == 0) {
 alert("Nothing to Print");
 return;
 }

 var content = target.innerHTML;

 var text = '<html><head><title>' +

 title +

 '</title><body>' +

 content +

 '</body></html>';

 printerWindow = window.open('', '', PrinterTool.windowSettings);

 printerWindow.document.open();

 printerWindow.document.write(text);

 printerWindow.document.close();

 printerWindow.print();

}

The portion we are concerned with is highlighted in the function.

First, we create the text variable, which holds the HTML for our new printer-friendly
version. This document is sparse. All it has is a title, the content that we want to
print, and the required HTML tags.

Next, we open a new window with window.open(). This is where we use the
PrinterTool.windowSettings property that we defined earlier. The new
window will have a default blank document. We open that document for writing
(printerWindow.document.open()), write text to it, and then close it for writing.

Chapter 2

[43]

Now we have a new window with the content that we want to print. The last
highlighted line, printerWindow.print(), opens the printer dialog.

Our first JavaScript tool is now written. Next, we will create a new theme and
incorporate this tool into the theme.

Creating a theme
As we saw in Chapter 1, Drupal separates layout and styling information from
processing code. HTML is usually stored in templates or theme functions. The
CSS along with other styling information (including some images) are also stored
separately from the functional code.

A theme is a collection of resources, (usually template files, CSS, JavaScript, and
images) that can be plugged into Drupal to provide layout and styling to a site.

If we want to change the look and feel of a site, the best place to start is with a theme.

W've already created a JavaScript file that provides additional printing functionality.
In this section, we are going to create a new theme, and then incorporate our
new script.

Typically, a theme must provide the following things:

HTML markup for common Drupal structures such as pages, blocks, •	
comments, and nodes. This will include navigational elements.
Any styles needed. This is typically done in the CSS files.•	
Any necessary images or media elements that will play a substantial role •	
in layout.
Information about the theme, including a screenshot.•	

In addition to these, many themes will also provide:

JavaScript files that may be necessary for added functionality.•	
Other sorts of media, such as Flash animations, may occasionally be needed.•	
PHP code that performs complex layout tasks may sometimes be used. •	

A theme must have at least one pre-defined file (the theme's .info file). Commonly
though, full themes have eight or more files.

Working with JavaScript in Drupal

[44]

Full themes and subthemes
The first step in creating our theme is deciding whether we want to start from scratch
or begin with an existing theme. If we were to start from scratch, we would create
a full theme. But if we wanted to build on another theme, we could create another
kind of theme called a subtheme.

To create a full theme, we would need to implement all of the required features of
a theme, and perhaps add on some other features as well. Typically, this would
involve creating all of the necessary templates, a couple of CSS files, and a couple of
helper files.

Sometimes, it is more expedient to begin with an existing theme and just override the
things we want to change. This is the capability that subthemes, a new addition in
Drupal 6, provide.

From a technical perspective, creating a full theme is not difficult, but it is
time-consuming. In contrast, a subtheme can be created quickly. Since our focus is on
JavaScript, and not theming, we will be creating a subtheme. That way, we can make
the most of an existing project and keep our work to a minimum.

As the name implies, a subtheme is derived from another theme. Therefore, we will
need to pick a theme to start with. Drupal comes with six themes pre-installed, and
these vary in method and complexity. For example, Garland is a complex theme
with templates, JavaScript, CSS, and lots of special PHP. In contrast, Chameleon
generates simpler HTML, but does all of this in pure PHP code, without reliance on
template files.

Since we want to focus our attention on JavaScript, it would be best to start with a
simple theme. From there, we will selectively override only what we need.

Our theme of choice will be the Bluemarine theme, which has a very basic
PHPTemplate-based structure that is easy to customize.

Looking for a good base theme to start with? Check out the Zen theme
in the contributed themes at http://drupal.org/project/zen. It's
built to enable subtheming. You will need to create some CSS content, but
the HTML structure is all in place.

We will with Bluemarine and create a new subtheme, borrowing as much as possible
from the base theme.

Chapter 2

[45]

Creating a theme: first steps
To create a theme, we will do the following:

1. Create a directory for the theme.
2. Create the theme's .info (dot-info) file.
3. Add our first files.

After we've finished these three short steps, we will add our JavaScript to the theme.

A precaution for theme developers
To get build our theme correctly, we will need to be able to view it. But to
view it, we will need to have it enabled. What if we make a mistake that
prevents Drupal from rendering correctly? We could lock ourselves out
of the administration page. To prevent this from happening, it is wise to
set the administration theme to one of the default themes. This is done in
Administer | Site configuration | Administration theme.

Creating a theme directory
Every theme should have its own directory.

When you install Drupal, one of the directories created is called themes/. If you take
a look inside that directory, you will see all of the top-level (non-subtheme) themes
that Drupal provides. Do not put your themes in there. This directory is only for
themes that come with Drupal's core.

Themes, like modules, go inside the sites/ subtree. The sites/ area also
appears inside the Drupal directory and is created when you install Drupal.
Inside the sites/ directory, two folders are created by default: sites/all/ and
sites/default/.

To better understand these two directories, keep in mind that one installation of
Drupal can serve multiple sites. For example, if I have a site called example.com and
a site called anotherexample.com, I can use one installation of Drupal to serve both.

The first site I install will be installed in sites/default/. The next site I install will
need to go in its own folder (for example, sites/anotherexample.com/). Content
that only belongs to a single site should go in that site's directory.

For example, if I want to install a special theme for anotherexample.com, I should
put the theme in sites/anotherexample.com/themes/.

Working with JavaScript in Drupal

[46]

In other cases, I may want to share a theme or module across all sites. In these cases,
files would go in sites/all/. In this book, we will be putting all of our themes and
modules in sites/all/themes/ and sites/all/modules/.

If in doubt, put files in sites/all/. This makes it easier to share your
work between sites.

With that background material behind us, let's create our theme directory. The name
we give to this directory will be the name of our theme.

Theme and module names should always be in a lower case, and may be
composed only of letters, numbers, and underscores. In the .info file,
we will be able to attach a human-readable name to the theme. That may
use spaces, capital letters, and other special characters.

Our first theme will be in sites/all/themes/frobnitz/ as seen in the
following screehshot:.

If this is the first theme you create, you may also need to create the sites/all/
themes/ directory.

Once the directory is created, we need to add a special file to tell Drupal about
the theme.

Chapter 2

[47]

Creating the .info file
Inside sites/all/themes/frobnitz/, we need to create a file to provide important
information about our theme. The file will always be named after the theme, and end
with the extension .info. Because of the extension, it is usually called the theme's
dot-info file.

We will create frobnitz.info, and add the following contents to the file:

; Id
name = Frobnitz
description = Table-based multi-column theme with JavaScript
enhancements.
version = 1.0
core = 6.x
base theme = bluemarine

The .info file contains a handful of lines with the form name = value. These entries
provide basic information about the theme.

Some of this information is displayed to the user (for example, name and
description). Some information is used by Drupal to make sure that this theme will
work with the installed version of Drupal. The core parameter is used for that.

Later in this chapter, we will see some other entries that contain information directly
related to the display of the theme. With those parameters, we can change the way
the theme looks and behaves just by altering the values.

The name, description, version, and core fields are required for all themes.

The •	 name field is used to give our theme a human-friendly name. You can use
capital letters and spaces in this field.
The •	 description parameter is used to provide a one-sentence explanation of
what the theme does.
The •	 version field should indicate which version number of this theme is. As
with most software, you typically start with 1.0.
Finally, the •	 core field should indicate what version of Drupal this theme
works with. For us, it will always be 6.x.

There's one additional parameter in our file:

base theme = bluemarine

The base theme parameter is what we use to inform Drupal that our theme is a
subtheme, derived from bluemarine. If we were creating a theme from scratch,
we would not include this line.

Working with JavaScript in Drupal

[48]

For the time being, this is all we need in our theme file. Later, we will add more.

Modifying .info files and clearing the cache
To improve performance, Drupal caches theme information, particularly
the theme's .info file. When you change the contents of that file (for
example, when you add a new script or stylesheet), you will need to clear
the theme information cache to force Drupal to re-read the .info file. The
most reliable way to do this is through Administer | Site configuration |
Performance. At the bottom of that page is a button labeled Clear cached
data. Press that button to clear the cache.

Adding files to the theme
At this point, we've actually created a working theme. Only the theme's directory
and .info file are required. With just those two elements, we can now go to
Administer | Site building | Themes and select our Frobnitz theme.

Of course, all Frobnitz will be at this point is an exact duplicate of Bluemarine The
following screenshot shows a sample of the Frobnitz theme:

Chapter 2

[49]

The logo image, titles, and all other information in the screenshot is showing through
the regular site configuration. The look and feel should be identical whether we
choose Bluemarine or our new Frobnitz style.

What we want to do now is add something new to our theme, and what better place
to start than with a stylesheet.

Our theme will import all of the stylesheets of its parent. So in our theme, we inherit
style.css from Bluemarine. Looking at the HTML source for a page rendered with
Frobnitz, we would see a line like this:

<link type="text/css" rel="stylesheet" media="all"
 href="/drupal/themes/bluemarine/style.css" />

If we didn't want that style to be loaded from Bluemarine, we could simply create
another file named style.css in our own theme's directory. This new file would
override Bluemarine's.

But we don't want to start over and rebuild the stylesheet. We just want to add a few
extra styles. To do this, we will create a new stylesheet called frobnitz.css. This
CSS file will also go inside our sites/all/themes/frobnitz/ folder.

Like PHP and JavaScript, the Drupal project defines coding standards
for CSS. You can learn more about these here: http://drupal.org/
node/302199.

To begin, all we will do is add a black, one-pixel border on the right side of the
lefthand column. The stylesheet looks like this:

#sidebar-left {
 border-right: 1px solid black;
}

Cascade: the 'C' in 'CSS'.
Drupal will add styles in a specific order, with theme styles added last.
Because of this, you can predictably make use of the CSS cascading
behavior. The previous declaration will be added to the declaration made
in Bluemarine's style.css file. That means we will get the combination
of styles in style.css and frobnitz.css, with frobnitz.css's
declarations taking precedence.

But before our new stylesheet will have any effect, we need to tell Drupal to include
it as part of the theme. This is done with a simple addition to the frobnitz.info file:

; Id
name = Frobnitz

Working with JavaScript in Drupal

[50]

description = Table-based multi-column theme with JavaScript
enhancements.
version = 1.0
core = 6.x
base theme = bluemarine
stylesheets[all][] = frobnitz.css

Only that last line, which is highlighted, is different. This informs Drupal that there
is a stylesheet that should be used on all format types for this page, and is named
frobnitz.css.

The all keyword indicates that this stylesheet applies to all media format types. CSS
format types include print (for printed media), screen (for screen displays), and
other types.

While this directive uses an array-like syntax, it does not function like an
array. You cannot, for example, refer to stylesheets[all][1].

The empty square brackets on the end emulate the PHP array assignment operation.
This stylesheet is added to a list of stylesheets. This array-like syntax, which we
will see again in the next section, indicates that an attribute can be used multiple
times. For example, we could add another stylesheet using stylesheets[all][] =
anotherstyle.css.

The base path for a stylesheet included using stylesheets[][] is
always the path of the theme. In other words, stylesheets[all]
[] = frobnitz.css will point to sites/all/themes/frobnitz/
frobnitz.css.

Remember to clear the theme cache to see the updates after changing this file (see the
information box a few pages back).

Chapter 2

[51]

Now, after clearing the cache, we can see the results of our labor:

Notice the black line between the lefthand menu and the main page contents. That's
what we added with our new stylesheet.

These last three segments were a rushed tour through the process of creating a new
theme. We will continue to build on our theme throughout this book. In the next
section, we will work with theme templates and theme JavaScript. However, this is
not a comprehensive introduction to themes.

If you are interested in learning more about theming in Drupal 6, the best place to
start is with the official theming handbook: http://drupal.org/theme-guide.

Working with JavaScript in Drupal

[52]

The CSS file
Next, we need to make a quick addition to the CSS file—the frobnitz.css file
mentioned in the last section. This will provide a very simple style for the tool
we are going to add. Here is what it looks like:

#printer-button {
 float: right;
 font-weight: bold;
 padding-right: 20px;
}

This CSS simply adds a definition for some element with the ID of printer-button.
We will see that element a little later in this chapter. The styles here will float that
element to the right side of the screen, add a little padding, and make the font bold.

Adding JavaScript to a theme
We now have a shiny new theme to work with. Let's turn our attention to
incorporating our JavaScript print tool into that theme.

This will require three short steps:

1. Add a template that will display a Print link.
2. Make a minor adjustment to the stylesheet to make this link stand out.
3. Add the JavaScript to our page.

Let's start with the template.

Overriding a template
Bluemarine already has all of the templates required for displaying Drupal.
However, we want to add a link on the righthand side of the main content display
that will show a Print link. When clicked, this link will run our JavaScript.

To do this, we want to override Bluemarine's page.tpl.php file. In other words,
we want to provide a Frobnitz template that will be used instead of Bluemarine's.
Since we want it to primarily look the same, we will start by copying themes/
bluemarine/page.tpl.php into sites/all/themes/frobnitz/.

The page template (page.tpl.php) is responsible for rendering the
main structure of a Drupal page, including the main body of the HTML.

Chapter 2

[53]

Let's take a quick look at the page template just to see howit's structured. Don't
worry about the details. Most of it is just boilerplate HTML:

<?php
// $Id: page.tpl.php,v 1.28 2008/01/24 09:42:52 goba Exp $
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 lang="<?php print $language->language ?>"
 xml:lang="<?php print $language->language ?>"
 dir="<?php print $language->dir ?>">

<head>
 <title><?php print $head_title ?></title>
 <?php print $head ?>
 <?php print $styles ?>
 <?php print $scripts ?>
 <script type="text/javascript"><?php /* Needed to avoid Flash of
Unstyle Content in IE */ ?> </script>
</head>
5<body>
<table border="0" cellpadding="0" cellspacing="0" id="header">
 <tr>
 <td id="logo">
 <?php if ($logo) {
 ?><a href="<?php print $front_page ?>"
 title="<?php print t('Home') ?>"><img
 src="<?php print $logo ?>"
 alt="<?php print t('Home') ?>" /><?php } ?>
 <?php if ($site_name) { ?><h1 class='site-name'><a
 href="<?php print $front_page ?>"
 title="<?php print t('Home') ?>"><?php
 print $site_name ?></h1><?php } ?>
 <?php if ($site_slogan) { ?><div class='site-slogan'>
<?php print $site_slogan ?></div><?php } ?>
 </td>
 <td id="menu">
 <?php if (isset($secondary_links)) { ?><?php print
 theme('links', $secondary_links,
 array('class' => 'links', 'id' => 'subnavlist'))
 ?><?php } ?>
 <?php if (isset($primary_links)) { ?><?php
 print theme('links', $primary_links,
 array('class' => 'links', 'id' => 'navlist'))

Working with JavaScript in Drupal

[54]

 ?><?php } ?>
 <?php print $search_box ?>
 </td>
 </tr>
 <tr>
 <td colspan="2"><div><?php print $header ?></div></td>
 </tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" id="content">
 <tr>
 <?php if ($left) { ?><td id="sidebar-left">
 <?php print $left ?>
 </td><?php } ?>
 <td valign="top">
 <?php if ($mission) { ?><div id="mission"><?php
 print $mission ?></div><?php } ?>
 <div id="main">
 <?php print $breadcrumb ?>
 <h1 class="title"><?php print $title ?></h1>
 <div class="tabs"><?php print $tabs ?></div>
 <?php if ($show_messages) { print $messages; } ?>
 <?php print $help ?>
 <?php print $content; ?>
 <?php print $feed_icons; ?>
 </div>
 </td>
 <?php if ($right) { ?><td id="sidebar-right">
 <?php print $right ?>
 </td><?php } ?>
 </tr>
</table>

<div id="footer">
 <?php print $footer_message ?>
 <?php print $footer ?>
</div>
<?php print $closure ?>
</body>
</html>

There are a few important things to note about the template.

Chapter 2

[55]

First, templates are the only place in Drupal where you will see this mix of PHP
code and HTML. By design, Drupal keeps programming logic separate from layout.
Themes are the only area where these two converge.

PHP logic will always be enclosed inside the PHP processor instruction tag:
<?php ... ?>

Second, the PHP code in templates is generally restricted to the following:

Simple print statements (•	 print $variable_name)

A handful of function calls, usually to either the theming subsystem •	
(theme()) or to the translatation subsystem (t())
Control structures, like •	 if/else and foreach, to determine what needs to
be displayed

If you are not a PHP expert, you can learn these techniques just by reading
the themes.

Finally, the page template creates the basic framework for the page. Smaller
sections are created by other templates, and provided to this template late in
the rendering process.

For example, in Bluemarine, blocks are themed with block.tpl.php. Then the
themed blocks are put in their designated regions. In this example, all of the blocks
that are displayed in the lefthand column will be formatted and placed in the
siderbar-left region, which is designated in the page.tpl.php file by the $left
variable. Then the page.tpl.php file simply prints $left:

<table border="0" cellpadding="0" cellspacing="0" id="content">
 <tr>
 <?php if ($left) { ?><td id="sidebar-left">

 <?php print $left ?>

 </td><?php } ?>

 <td valign="top">
 <?php if ($mission) { ?><div id="mission"><?php
 print $mission ?></div><?php } ?>
 <div id="main">

There are many variables to keep track of in the page.tpl.php template (block.
tpl.php is much simpler). Fortunately for us, we won't be dealing with all of the
variables directly. We're more interested in the HTML and JavaScript.

Working with JavaScript in Drupal

[56]

The Garland theme (themes/garland/) is very well-documented. You
can get an idea of what each variable stands for by reading the comments
at the top of Garland's templates.

What we now want to do is add a snippet of HTML to this theme that will add our
new link. Here is our addition:

<table border="0" cellpadding="0" cellspacing="0" id="content">
 <tr>
 <?php if ($left) { ?><td id="sidebar-left">
 <?php print $left ?>
 </td><?php } ?>
 <td valign="top">
 <?php if ($mission) { ?><div id="mission"><?php print $mission
 ?></div><?php } ?>
 <!-- New Content -->
 <div id="printer-button">
 Print</div>
 <!-- End new content -->
 <div id="main">
 <?php print $breadcrumb ?>
 <h1 class="title"><?php print $title ?></h1>
 <div class="tabs"><?php print $tabs ?></div>
 <?php if ($show_messages) { print $messages; } ?>
 <?php print $help ?>
 <?php print $content; ?>
 <?php print $feed_icons; ?>
 </div>
 </td>
 <?php if ($right) { ?><td id="sidebar-right">
 <?php print $right ?>
 </td><?php } ?>
 </tr>
</table>

This section of code occurs about thirty five lines into page.tpl.php. The
highlighted lines are highlighted are the only ones we've added. In these lines we
create a new <div></div> tag, and then put a Print link inside. When clicked, this
link executes the JavaScript function PrinterTool.print('main').

Recall that PrinterTool.print() takes as an argument the HTML ID (the value of
id="" in an HTML tag). Taking a glance at page.tpl.php, we can quickly see what
element this ID belongs to. In fact, it's directly below the link we just added:

<div id="main">
 <?php print $breadcrumb ?>
 <h1 class="title"><?php print $title ?></h1>

Chapter 2

[57]

 <div class="tabs"><?php print $tabs ?></div>
 <?php if ($show_messages) { print $messages; } ?>
 <?php print $help ?>
 <?php print $content; ?>
 <?php print $feed_icons; ?>
</div>

This is the section of the template the print function will load into a new window for
printing. Of course, all of the PHP calls will be replaced with HTML content.

We have one short step left before we can test out our new JavaScript-enabled theme.

Adding the script file
When we add a new CSS file, we need to inform Drupal about this by adding an
entry to the .info file. Adding a JavaScript file is done in the same way.

The first step in adding our JavaScript file will require copying the script into the
sites/all/themes/frobnitz/ directory, and then editing the frobnitz.info file.

; Id
name = Frobnitz
description = Table-based multi-column theme with JavaScript
enhancements.
version = 1.0
core = 6.x
base theme = bluemarine
stylesheets[all][] = frobnitz.css
scripts[] = printer_tool.js

Again, we're making only a one-line change. We're adding printer_tool.js to the
list of scripts automatically included by this theme.

Before viewing, don't forget to refresh the theme cache by either clearing it or visiting
the Administer | Site building | Themes page.

Now when we visit a page on our site, it should have the Print link as seen here:

Working with JavaScript in Drupal

[58]

Clicking on this new link should execute the JavaScript and launch our new script,
which will load a printer-friendly page into its own window. It will then launch the
browser's print dialog:

We've just completed our first project. We have added JavaScript to a theme.

Summary
In this chapter we have undertaken our first project. We have created a new
JavaScript library and a new theme. We also added some JavaScript functionality
to the new theme.

Our task here has been fine for the purpose of illustration. But, as we shall see in the
coming chapters, we can accomplish much more (often with much less code) using
the JavaScript libraries included with Drupal.

In the next chapter, we will look at one library (newly added in Drupal 6)
that is generating a lot of excitement both in and outside of the Drupal
community—jQuery, which will be our focus in Chapter 3.

jQuery: Do More with Drupal
In the last chapter, we built our first Drupal JavaScript. There, we used only
standard JavaScript functions and tools to build our printing library. One of the
benefits of working with Drupal is having access to libraries bundled with the
core Drupal platform.

In this chapter, we will look at one such library: jQuery. Specifically, we will look at
the following:

An overview of the jQuery library•	
The basics of using jQuery•	
Using jQuery within Drupal•	
Building a sticky node rotation tool with jQuery•	
jQuery effects, DOM manipulation, and events•	

As of Drupal 6, jQuery plays a major role in Drupal-centered JavaScript. For this
reason, we will make a heavy use of jQuery in the remainder of this book. By
the end of this chapter, you will be able to understand jQuery code. This will be
a tremendous help not only in the rest of this book, but in your future Drupal
JavaScript development.

jQuery: the write less, do more library
I wrote my first JavaScript code in the year 1995. It ran in Netscape 2.0, and looked
something like this:

alert("Welcome to our site!");

In the next few years, I wrote lots of calculators, image rollovers, and scrolling
status bar messages. My overall impression of JavaScript, which I suspect was
the attitude shared by most web developers at the time, was that JavaScript was
a low-powered tool for adding cutesy effects to web pages.

jQuery: Do More with Drupal

[60]

I've never been happier to eat my words.

With the birth of dynamically refreshing page renderers and the XMLHttpRequest
(XHR) object (or control), JavaScript suddenly became a much more powerful tool
for manipulating the contents of a page without requiring a full round trip to a
remote web server.

XMLHttpRequest and AJAX (Asynchronous JavaScript And XML) will be
the subject of Chapter 5.

But with all of this new power came a fair amount of complexity. The core JavaScript
libraries—the tools bundled in the major browsers—have remained relatively small.
And, as newer versions of browser have been released, writing working code often
requires an awful lot of boilerplate "cross-browser compatibility" code.

Where changes have been made, they are often complex. The event model in
Microsoft's IE and the one in Mozilla-based browsers diverged quite a while ago.
The DOM API, implemented on all major browsers, is anything but simple. Anyone
who has written an AJAX library from scratch will be quick to voice an opinion
on the trials and tribulations of getting that library to work on all major browsers.
Even manipulating a stylesheet from JavaScript has come with its share of subtle
implementation differences.

In short, even while the capabilities of JavaScript had reached new heights, the
JavaScript developer was often forced to use complex APIs and work around lots
of compatibility issues while building a program.

As JavaScript's capabilities and usefulness grew, another change was occurring.
This was a culture change among the JavaScript developers.

For a long time, the online JavaScript developers released useful snippets of code.
These were not libraries in the proper sense of the word, but short snippets of code
that could be copied and pasted into a project, tweaked, and then reused.

As JavaScript matured, so did the community around it. The focus shifted (to some
degree at least) from producing "useful doodads" to creating polished libraries
designed for reuse in a wide variety of settings.

Today's popular libraries, such as Prototype, YUI, Dojo, and the like, have all been
built for general use.

One of these libraries, jQuery, has enjoyed a meteoric rise to fame, and deservedly
so. Why has it been so successful? It's because the focus of the library has been
on taking the really difficult (but important) JavaScript tools and making them
easy to use. Thus, in the words of its creators, jQuery is the "Write Less, Do More
JavaScript Library."

Chapter 3

[61]

The jQuery site is a great source for API documentation, tutorials,
plug-ins, and additional tools: http://jquery.com.

With a library like this, less time must be spent on writing boilerplate code or trying
to address cross-browser compatibility issues. Instead, more time can be spent on
creating a powerful and robust JavaScript code.

jQuery is an open source software, dual-licensed under either the GPL
(the GNU General Public License) or the MIT license. Just as the Drupal
developers included jQuery in Drupal 6, so can you use jQuery on your
own sites and web applications.

jQuery provides a single, compact library focused on simplifying the following tasks:

Finding things in a document•	
Manipulating a document through the DOM•	
Interacting with a document's CSS•	
Working with events•	
Providing flexible AJAX tools•	

Moreover, the library works on all major browsers—Internet Explorer, Firefox,
Opera, and Safari.

As if this weren't enough, there's one more feature of jQuery that makes it a
compelling tool for developers: It uses a tremendously compact syntax that makes
it easy to accomplish surprisingly complex tasks in just a line or two of code. With a
simple plug-in architecture (with hundreds of plug-ins already available), it can be
extended to provide additional functionality.

One popular addition to jQuery is jQuery UI. This library provides
complex widgets such as calendars, accordions, and tabs. It also provides
support for drag-and-drop, sorting, and other similar tasks. You can learn
more about it at http://ui.jquery.com.

Okay, so what's the catch?

There is one aspect of jQuery that gets criticized on occasion. jQuery code looks
different from other JavaScript, and this can make that initial jump into jQuery seem
daunting. But once you've made that leap, it will change the way you write JavaScript.

Hopefully, this chapter will help make that first step an easy one. Let's take that first
step now.

jQuery: Do More with Drupal

[62]

A first jQuery script
When you read the first few pages of this chapter, you must have noticed that very
little was said about Drupal. jQuery is a standalone library with no dependency on
Drupal, which means it can be used on its own.

In fact, that's the way we are going to dip our toes into the topic. Don't worry
though. We will be coming back to Drupal just a little later in the chapter.

We are going to start out with a static HTML document and take a look jQuery
in this simplified context. In the next section, we will apply this knowledge in the
Drupal environment.

Getting jQuery
For our examples here, you will need the jQuery library. At this point, you have two
options. You can either download a copy from http://jQuery.com or you can make
a copy of the jQuery library that comes with Drupal. It's located in misc/jquery.js.

The copy that comes with Drupal is packed. Extraneous whitespace (such as
newlines) has been removed, and long variable names have been replaced with short
computer-generated names. That makes it difficult to read the jQuery library code,
should you so desire.

For that reason, I suggest going to jQuery.com and downloading the Uncompressed
version (it's right there on the front page).

For more about packing code with Packer, see http://dean.edwards.
name/packer/

Once you have the jquery.js file (or jquery.1.2.X.js), just make sure it is in the
same directory as the HTML we will create in the next part.

Again, since Drupal already includes jQuery, there is no need to worry about
putting this file where Drupal can see it. In fact, you should not put this in a
Drupal directory.

Now, let's work up some simple HTML for a few examples.

Starting with a basic HTML document
Here is a very basic HTML document that will serve as a starting point. Notice
that we are including the jQuery library in the <script></script> tag in the
document's head.

Chapter 3

[63]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">
<head>
 <meta http-equiv=»Content-Type»
 content=»text/html; charset=utf-8»/>
 <title>sample</title>
 <script src="jquery.js" type="text/javascript"></script>

</head>
<body>
 <h1 id="title">Title</h1>

 <p class="odd">Paragraph 1</p>
 <p class="even">Paragraph 2</p>
 <p class="odd">Paragraph 3</p>
 <p class="even">Paragraph 4</p>
</body>
</html>

This document is just a standard XHTML document. We are concerned mainly
with the highlighted sections. The first highlighted section loads jQuery with the
file jquery.js. If you grab a copy from jQuery.com, it may have a name such as
jquery.1.2.X.js. You can either rename that or change the src attribute to point
to your version.

The second highlighted section exhibits the elements that we will be using in this
section. Nothing should look unfamiliar here. It's just a header and four paragraphs.

Notice that the <h1></h1> has an id, id='title'. Also, the paragraph elements
have class attributes. The even paragraphs have the even class, and the odd
paragraphs have the odd class.

We are going to make use of these id and class attributes.

Now we're ready for some jQuery.

Querying with jQuery (and the Firebug console)
We could demonstrate jQuery by adding a script to the previous HTML code. But that
would require us to write a complete script first. For a gentler method of introducing
jQuery, we will start out with the Firebug console introduced in Chapter 1, instead.

Firebug is a Firefox add-on that provides a debugging and inspection environment
for web development—particularly for HTML, CSS, and JavaScript. One of the tools
it provides is a JavaScript console, which can be used to interactively run JavaScript.
That's exactly what we are going to do.

jQuery: Do More with Drupal

[64]

While we will use Firebug here, the Safari browser also includes similar
developer tools that can be enabled by opening Safari's preferences
window and then checking the Show Develop menu in menu bar check
box. The examples that follow can also be duplicated on Safari's Web
Inspector console.

To start off, let's use jQuery to find the <h1></h1> element in our document.
Locating parts of an HTML document was, after all, the original purpose of
using jQuery.

In the previous screenshot, we are entering the command jQuery('h1'). When we
run this command, it should search the document and return a jQuery object that
wraps a list of all <h1></h1> elements found in the document.

Chapter 3

[65]

So if we hit ENTER to run the command, we will get something that looks like this:

In this case, when we executed jQuery('h1'), it returned an object with a length
property set to 1. We know that there is only one <h1></h1> element in our
document, so this length is what we would expect. In fact, if we re-ran the command
as jQuery('p'), we would get the output: Object length=4. The length is four
because there are four <p></p> tags in our document.

What is the output on the console?
When you run a command on the console, Firebug always prints a
representation of the returned value to the screen. In this way, you can
get an idea of what is coming back from any executed function. If you
come from a Ruby or Python background, this behavior is similar to the
interactive shells of these languages.

jQuery: Do More with Drupal

[66]

But what is the object? It's a jQuery object. To show this, we could enter the following
command into the console:

jQuery('h1') instanceof jQuery

The instanceof operator will compare the object type on the left hand with the
type on the right hand. It will return true if both objects are of the same type. More
specifically, if the object on the left side has the type of the object on the right side,
the result will be true. Since prototypes are chainable, they may not have exactly all
the same prototypes).

It should come as no surprise that the returned value is true. In fact, even if we were
to search for an element that does not exist in our document, jQuery() will still
return a jQuery object (though the length of this object will be 0).

How do you run a function called jQuery() without the new keyword, and get a
jQuery object? The short answer is that jQuery() acts like a factory method. This
function simply creates a new jQuery object and then returns that object. For this
reason, there is no need to use new jQuery(). Instead, just jQuery() will suffice.

This method of creating a new jQuery object resembles the Factory
pattern. The Factory is a common design pattern in object-oriented
programming, where one object (the factory) takes responsibility for
creating new instances of another object. Of course in jQuery's case,
the jQuery object is responsible for creating new jQuery objects. The
flexibility of JavaScript's prototyping system allows this sort of thing to
be done.

What else can we query with jQuery?

We can get elements by their id attribute:

jQuery('#title');

To find an element by ID, we prefix the ID with a "#" (pound sign).

We can also get elements by class:

jQuery('.even');

Just as an ID is prefixed with #, a class is prefixed with a "." (dot).

Now we've seen four jQuery query strings: h1, p, #title, and .even. Do these look
familiar? If you have worked with CSS stylesheets before, they should. jQuery's
query language is none other than the CSS selector language.

Chapter 3

[67]

To style all the even paragraphs in CSS, you might write a CSS statement like this:

p.even {
/* style info */
}

That same selector, p.even, can be used in jQuery to find all even paragraphs like
this: jQuery('p.even'). Since jQuery supports all CSS selectors through CSS
version 3, you can even build more complex queries. For example, we could grab
only the first even paragraph with this:

jQuery('p.even:first');

This looks for all paragraphs with the even class, and then returns only the first of
those. Incidentally, since CSS 3 defines a pseudo-class for selecting the even and
odd children, we could drop the odd and even classes altogether and use queries
such as jQuery('p:nth-child(even):first') or even jQuery('p:even:first')
(We've just used the ":" (colon) symbol to indicate that we are using a built-in CSS
pseudo-class instead of the even class we defined ourselves.)

Throughout this book we will be using these CSS selectors to create queries.
But if you are eager to gain a detailed insight into selectors, you might want to
take a look at the W3C's current CSS 3 draft standard at http://www.w3.org/TR/
css3-selectors/.

Bye bye, jQuery(); hello $()
We've seen our last jQuery() function call.

From now on, we will be using an alias for that function. Instead of calling
jQuery('h1'), we will be making calls such as $('h1').

What is this "$" thing?

Surprising as it may seem, the $ (dollar) sign is a legal character for function or
variable names in JavaScript. That means iNeed$, $tar, and my$amount are all
legal tokens in JavaScript. And as it turns out, so is $.

Making use of this, the jQuery developers aliased the jQuery() function to $().
That saves you five whole characters of typing. And it looks cool.

Generally speaking, you (as the software developer) can use either or both of these
names to call jQuery. But the Drupal JavaScript convention suggests using the $()
version. And so we shall.

jQuery: Do More with Drupal

[68]

Doing more with jQuery
We now have a glimpse of how we can find parts of a document with jQuery. But a
querying engine alone doesn't get us too far. We need the ability to manipulate the
information we've retrieved. Of course, jQuery provides such tools.

To start, let's get the text content of our <h1></h1> element. This is done with the
text() function:

var title = $('h1');
title.text();

The first line retrieves a jQuery object containing our <h1></h1> element and stores
this in the title variable. The second line calls the jQuery object's text() function.
This will return all of the text inside of that element. Any HTML tags will be
removed. (If you want the HTML content, use html() instead of text().) Running
this pair of statements would cause Firebug to output "Title" to the console.

Likewise, if we wanted to change the title of our document, we could call:

var title = $('h1');
title.text('New Title');

Immediately, the bolded text in the document would be changed as if we had written
<h1>New Title</h1> instead of <h1>Title</h1>. What would Firebug output to
the console when we set text? A string representing the jQuery object (for example
Object length=1). This means that even a setter function returns an object. As we
will see in a moment, this is an important aspect of the jQuery library.

Our two-line text-getting scriptlet is functional, but we can shorten it down to one
line by making use of a convention called function chaining or method chaining.
When we call a function that returns an object, we often store that object in a
variable—as we did with the title variable. That way, we can use the object later
by referring to title.

Sometimes we don't need to store the object, we just need to call one of its functions.
Rather than storing the object in a variable, we can just use the dot operator (.) to
chain the function to the function that returned the object.

Chapter 3

[69]

Sounds confusing? An example will clear it up. We can rewrite our previous scriptlet
like this:

$('h1').text('A New Title');

The text() function operates on whatever jQuery object the $() function returns.

This is one of the important reasons why $() returns a jQuery object
even if it doesn't find any matches to the query. Otherwise, scripts would
be plagued with errors when a chain returned, say, a null instead of
an object.

Just as with the earlier code, the previous line will find the <h1></h1> element and
change its content.

jQuery makes greater use of the chaining concept by using a design pattern called
the Fluent Interface. In a fluent interface, any member function that would normally
return void (that is, nothing) returns its parent object instead.

A member function is a function that belongs to an object. In most
object-oriented languages, all functions are members of an object.

The jQuery object provides this type of fluent interface. So when we call $('h1').
text('A New Title'), the title is changed; but we also get the jQuery object
returned again.

How is this useful? Well, we can combine several tasks into the same line. Let's say
we not only want to change the text of the title, but also want to underline the title.
This additional step would involve changing the <h1></h1> element's CSS. We can
chain another function to our code to accomplish this:

$('h1').text('New Title').css('text-decoration', 'underline');

jQuery: Do More with Drupal

[70]

The result should look something like this:

There are two things to notice here.

First, the title and text decoration have indeed changed.

Second, as you can see in the console output, the css() function still returned our
jQuery object. That means we could continue our chain if we so desired.

Not every function returns a jQuery object
Before we get too addicted to the fluent interface, we should take another look at
an earlier example as an illustration (or perhaps a reminder) that not all jQuery
functions return jQuery objects.

In our first example of the text() function, we saw that running $('h1').text()
returned the string Title.

Chapter 3

[71]

In this case, we have a string object, not a jQuery object. Sure, we could continue
chaining, but we could only call functions of the string object. For instance, the
following would work just fine:

$('h1').text().substring(0,1);

The text() function returns a string, and substring() is a member function of
a string object. However, we could not do this:

$('h1').text().css('color','red');

This would generate an error looking something like this: TypeError: $("h1").text().
css is not a function. That happens because a string object does not have a
css() function.

At this point, the important things to understand about jQuery are:

How queries can be composed from CSS selectors•	

How •	 $() and jQuery() return jQuery objects (that often wrap lists of
elements from the document)
That jQuery function calls are often chained together to produce longer lines •	
that do more

We will pick up more about jQuery as we proceed.

Feeling comfortable with the basic concepts of jQuery? Now it's time to get back
to Drupal. We will be making use of jQuery to build Drupal-centric JavaScript.

Using jQuery in Drupal
So far, we have seen just a few lines of jQuery code. But, our examples have been
independent of Drupal. How can we use jQuery inside of Drupal?

The answer is simple. If we write our JavaScript "the Drupal way", then Drupal will
make it very easy to use jQuery. Here's what I mean.

How do we include JavaScript files in Drupal themes? By using the scripts[]
directive in the theme's .info file. And if you're a PHP programmer, you can use
the drupal_add_js() function in either a theme or a module.

If you use either of these means, then Drupal will automatically include the basic
JavaScript libraries, including drupal.js and jquery.js. That's right. Drupal not
only includes jQuery in its core distribution, but automatically includes it for you.

jQuery: Do More with Drupal

[72]

To see an example of this, we need not look further than the code we wrote in the
previous chapter. Looking in the <head></head> section of the HTML for our theme,
we can see the following <script></script> tags:

<script type="text/javascript"
 src="/drupal/misc/jquery.js"></script>
<script type="text/javascript"
 src="/drupal/misc/drupal.js"></script>
<script type="text/javascript"
 src="/drupal/sites/all/themes/frobnitz/printer_tool.js">
</script>
<script type="text/javascript">
 jQuery.extend(Drupal.settings, { "basePath": "/drupal/" });
</script>

All we added to our .info file was scripts[] = printer_tool.js. Drupal took
care of adding the other two script files. But what is that last section? Well it is:

jQuery.extend(Drupal.settings, { "basePath": "/drupal/" });

This is another use of jQuery. It provides a few functions for extending an object,
which assigns new attributes to an existing object on the fly.

In this case, the extend() function is taking the Drupal.settings object and adding
a new property, basePath, with the value /drupal/. Here, /drupal/ is the absolute
web path to Drupal. That is, my Drupal installation resides at http://localhost/
drupal/. The basePath property can then be used for constructing URLs.

Using the Firebug console, we can see the result of this extension. If we enter
Drupal.settings.basePath on the console, Firebug will print /drupal/.

Using the jQuery object without constructing a new instance
In the Drupal-generated code that we just saw, you might notice that
jQuery was referenced as an object, not as a function (note the missing
parentheses after jQuery). Some jQuery functions do not need a list of
elements or other contents before they can operate. Effectively, they can
be used as static functions. The extend() function is such an example.
In such cases, we don't need to build a new jQuery object. We can just
use the main jQuery object.

The point to be made here is simply this: When we allow Drupal to manage our
JavaScript, it handles the basic including necessary to make use of jQuery, and
even initializes some things for us.

Of course, there's a converse side to this.

Chapter 3

[73]

Don't do it yourself!
There may be a temptation to do things "the old fashioned way." One may be
inclined to simply edit the page.tpl.php template and add <script></script>
tags manually. After all, isn't this how we do things when we write HTML by hand?

Don't do it.

When you start adding scripts by hand, you are circumventing Drupal's JavaScript
system. Drupal doesn't inspect the HTML to see what files are included in the
template. So you may not get the default script files included automatically (unless
some other part of the theme or some module triggers the automatic inclusion).

In addition to perhaps not getting the autoloading that we saw, adding scripts by
hand can also lead to conflicts. For example, a library can get loaded manually, and
then get loaded by a module. If the library versions are different (or if two libraries
share functions with the same name), the results can be surprising.

There's one more thing in addition to these two: If you are planning on submitting
your code as a theme or module, hardcoding scripts this way will no doubt prompt
experienced Drupal developers to file bug reports against your code.

The moral of this story is simply to let Drupal handle the JavaScript library loading.

That's all there is to using jQuery within Drupal. We are now ready to move on to
a project.

Project: rotating sticky node teasers
Now we're ready to start our first jQuery project. We're going to write some code
that rotates sticky node teasers. With a description like that, it's got to be good!

Seriously, the phrase "rotating sticky node teasers" is pretty jargon-laden. Here's
what I mean.

jQuery: Do More with Drupal

[74]

On various Drupal pages, the main content area of the page is composed of node
teasers. The following front page is one such example:

In the content shown in the screenshot, there are three different nodes displayed. But
only the teaser version is shown. (One would have to click on Read more to see the
full story.)

By default, items are arranged from the newest to the oldest. The newest node is
listed first on the page.

But what if we wanted to have a node that was always displayed on the top?

This can be accomplished by marking a node as sticky. A sticky node floats to the
top of the list of nodes on a page.

Chapter 3

[75]

Nodes are marked as sticky using the content editor. Near the bottom of the editor
page, there is a collapsed section called Publishing options. In that section, there are
three checkboxes: Published, Promoted to front page, and Sticky at top of lists. This
third box influences an item's stickiness. In the examples to follow, we will check all
three to display sticky items on the front page. You can also mark a node as sticky by
going to Administer | Content management | Content, checking the desired node,
and selecting Make sticky from the drop-down list of Update options.

If we were to configure three items to be sticky at the top, the result would look
something like this:

In the screenshot, the three nodes with light gray backgrounds are marked as sticky.
Even when we add new nodes, these three will remain at the top of the page.

jQuery: Do More with Drupal

[76]

The screenshot also provides the basis for understanding the project we are about
to do.

Having three sticky nodes at the top is in some ways counterproductive, for only
one of those is really at the top. The others are de-emphasized in virtue of being
displayed in a lower position on the page.

In addition, the regular content (like the important This is a node story we created in
Chapter 2) is in danger of disappearing beneath the browser's fold. A viewer has to
scroll down on the page to see what's new. This isn't an attractive feature.

So, we're going to change the display of sticky nodes. We're going to build a tool,
enlisting the help of jQuery, which will rotate through the sticky nodes. It will
display them one at a time, in sequence.

After the first node has been displayed for a period of time, it will "fade out" into the
background, and then the second sticky node will "fade in". It, too, will be displayed
before fading out again. This process will continue as long as the page is displayed.
This is a process often referred to as rotating a list.

This is what the phrase "rotating sticky node teasers" means.

Using this technique, all of our sticky nodes will be displayed in the page's top slot.
In addition, the standard content display will begin in the second spot (rather than
the fourth spot in the case of our earlier screenshot). Since sticky items no longer take
up a lot of space, we can make four, five, or even six nodes sticky without making
the display cumbersome to the visitor.

And we hope this will be an attractive, eye-catching feature for our visitors as well.

That's our goal. Let's move on to the code.

The StickyRotate functions
We are going to continue building on the frobnitz theme we created in the
previous chapter. To start off, we are going to create a new JavaScript file called
sticky_rotate.js. As usual, this will go in the sites/all/themes/frobnitz
directory. And once again we will have to edit the frobnitz.info file in
that directory.

; Id
name = Frobnitz
description = Table-based multi-column theme with JavaScript
enhancements.
version = 1.0
core = 6.x
base theme = bluemarine

Chapter 3

[77]

stylesheets[all][] = frobnitz.css
scripts[] = printer_tool.js
scripts[] = sticky_rotate.js

Only that last highlighted line is new. It adds the sticky_rotate.js script to the list
of scripts automatically loaded by the theme. Remember that you may need to clear
the theme cache before Drupal adds this new script to the rendered output.

From here, we will begin editing the sticky_rotate.js file. The code we create will
come in at around sixty lines, some of which is just comments.

Again, let's take a quick glance at the lines at the top of the file:

// Id
/**
 * Rotate through all sticky nodes, using
 * jQuery effects to display them.
 */

// Our namespace:
var StickyRotate = StickyRotate || {};

We start the file with the Id keyword as explained in the last chapter. Again, this
is used by the version control system. (CVS is the official version control system
for Drupal.)

Next, we have a documentation block describing the contents of the file. This is
standard practice in Drupal. It is not always treated as required for JavaScript
(though it is required for PHP). However, it's a good idea to include it.

Finally, once again we create a new object that we will use as a namespace for our
library. In this case, StickyRotate will be our namespace, and all of our functions
and public variables will be attached to that namespace.

Using the "or" operator for default assignment
In the previous code, the StickyRotate function is assigned
StickyRotate || {}. The "||" (or) operator works in the following
manner: If the StickyRotate variable already exists, it will be assigned
to the StickyRotate variable on the lefthand side, and the Boolean
logical operator will short circuit. But if StickyRotate doesn't already
exist, then the right half of the || will be evaluated, and StickyRotate
will be assigned an empty object ({}). In short, this construct allows us
to assign StickyRotate a default value, only if StickyRotate is not
already defined. This idiom is used frequently in JavaScript, and you will
notice it in many Drupal files.

jQuery: Do More with Drupal

[78]

First, we will start out by writing a function that will take care of initializing
the process.

The init() function
To accomplish our node rotation effect, we will need to do some setup when the
page first loads. Our first function will take care of initializing sticky rotation:

/**
 * Initialize the sticky rotation.
 */
StickyRotate.init = function() {
 var stickies = $(".sticky");

 // If we don't have enough, stop immediately.
 if (stickies.size() <= 1 || $('#node-form').size() > 0) {
 return;
 }

 var highest = 100;
 stickies.each(function () {
 var stickyHeight = $(this).height();
 if(stickyHeight > highest) {
 highest = stickyHeight;
 }
 });

 stickies.hide().css('height', highest + 'px');
 StickyRotate.counter = 0;
 StickyRotate.stickies = stickies;

 stickies.eq(0).fadeIn('slow');
 setInterval(StickyRotate.periodicRefresh, 7000);
};

Taking a quick glance over the function we just saw, we will notice more than a few
invocations of jQuery's $() function. In fact, we will be using jQuery to provide
DOM and CSS manipulation, and also to provide some nice visual effects.

Let's take a closer look at the first few lines of the function:

StickyRotate.init = function() {
 var stickies = $('.sticky');

 // If we don't have enough, stop immediately.
 if (stickies.size() <= 1 || $('#node-form').size() > 0) {
 return;
 }

 /* The rest of the code... */
};

Chapter 3

[79]

The first line is our function assignment. Just as we did in the previous chapter,
we make use of JavaScript's ability to assign anonymous function declarations to
variables. So this function can be called as StickyRotate.init().

On the first line of this function, we create a local variable: stickies. It is assigned a
jQuery object containing the results of the $('.sticky') query. As we saw earlier
in the chapter, when jQuery is given the query string .sticky, it will search the
document for elements assigned the CSS class named sticky.

Effectively, this is the same as saying that it will search for all elements
with the attribute declaration class="sticky". However, one should
keep in mind that the class may be added by JavaScript. Thus, it may not
be visible when viewing the raw HTML source.

So what is this sticky class and where does it come from? Drupal's theming
system assigns the sticky class to all sticky nodes. To see this for yourself, view
the node.tpl.php in Bluemarine or Garland. (The class can also be set in PHP code.
In Chameleon, which is a PHP-driven theme, this happens in a theming function
chameleon_node().)

In other words, we can rely upon Drupal to flag those sticky nodes for us. Our
jQuery needs only to look for the right class.

So stickies should contain a jQuery-wrapped list of all of the sticky nodes on
the page.

We only want to apply our effect on pages where there is more than one sticky node
preview. After all, it wouldn't be all that useful or attractive to rotate through a list
of one.

To address this situation, we add the next conditional:

 // If we don't have enough, stop immediately.
 if (stickies.size() <= 1 || $('#node-form').size() > 0) {
 return;
 }

jQuery's size() function retrieves the number of items that the jQuery object is
currently wrapping. Since our stickies variable refers to a jQuery object, we can
call the size() function to determine whether our list is long enough to warrant
rotating through it.

jQuery: Do More with Drupal

[80]

A jQuery object also has a public attribute named length, which
contains the same information. We saw this attribute in the output of the
Firebug console earlier in the chapter. Determining which one to use is a
matter of preference, as both provide identical information. Some might
argue that length is faster, since it is a property. However, size() just
returns that property, so there is no real performance impact.

But that's not all our conditional does. It also runs another query to make sure
that the current document does not contain an element with the ID node-form.

Why? This takes care of one possible place where our JavaScript might cause
confusion. When a user is previewing a node, the node may show up twice (as a
preview of the teaser version and of the full version). In such cases, it might appear
that there are two sticky nodes, when really it's just the same node displayed twice.
For example, take a look at the following screenshot:

Unfortunately, there are no obvious cues in the node display that might make it
easy for us to avoid the situation. But fortunately, preview screens also include the
node-editing form. And the node-editing form always has the node-form ID.

Chapter 3

[81]

So in that one corner case, we can avoid adding our effect when $('#node-form').
size() is greater than 0.

In the case where there is only one sticky node on a page, or when the sticky node is
displayed as part of a content editing preview, the function simply returns without
doing anything.

But if neither of those conditions is met, initialization continues. Let's take a look at
what's next:

StickyRotate.init = function() {
 var stickies = $(".sticky");

 // If we don't have enough, stop immediately.
 if (stickies.size() <= 1 || $('#node-form').size() > 0) {
 return;
 }

 var highest = 100;

 stickies.each(function () {

 var stickyHeight = $(this).height();

 if(stickyHeight > highest) {

 highest = stickyHeight;

 }

 });

 /* The rest of the code... */
};

We are interested in the highlighted portion of the code. The focus of this snippet of
code is the height of the area where our sticky nodes will be displayed.

Looking back at our three sticky nodes, we have two fairly large teasers (the two
Latin Descartes' quotes), but we also have a very short one. The node entitled A
Sticky Node has a one-line teaser: This node should always be displayed near the
top of the home page.

What we don't want is for a short node like this to cause the page layout to shift
significantly. We don't want the content to slide up for the short node, and then slide
back down to make room for longer nodes.

What we do want then, is to control the height of the sticky nodes. We want them all
to take up the same amount of screen space.

The code we just saw is designed to find the largest sticky node, get that node's
height, and then use that as the height for all of the sticky nodes.

jQuery: Do More with Drupal

[82]

The highest variable will store the size of the highest node. By default, we set it to
100 pixels.

Next, we make use of another jQuery feature. Along with the rest of the jQuery
goodies, there are a handful of basic list-traversing functions. One of these is the
each() function, which iterates through each item in the list of nodes wrapped
by a jQuery object. On each object, it executes the function passed into the each
() function.

There are actually two jQuery each() functions: One that iterates
through the contents of a jQuery object, and one that iterates through
any list-like object. The list-iterating version is called on the main jQuery
object like this: jQuery.each(myList, function () {}).

So this version of each() takes one argument—a function object.

In our case, we are going to supply the each() function with an anonymous function
that will do the height comparison:

 stickies.each(function () {
 var stickyHeight = $(this).height();
 if(stickyHeight > highest) {
 highest = stickyHeight;
 }
 });

When that anonymous function is executed, the this variable is set to the current list
item. In our case, this will contain the current DOM element in the list of stickies.

This method of formatting inline anonymous functions is conventional,
and you will see the same formatting throughout jQuery and Drupal.

It is important to note that this is a DOM element object, not a jQuery object.
We want to find the height of that object, but the easiest way to get the height of
an element is to use the jQuery library. So in the second line, we pass this into
$() to get a new jQuery object, Then we use jQuery's height() function to find
out the element's height. This is all packed into the line that reads: var
stickyHeight = $(this).height().

While the first two lines of this code sample are complex, the next part
is straightforward:

if(stickyHeight > highest) {
 highest = stickyHeight;
}

Chapter 3

[83]

All we do here is check to see if the height of the current element is higher than
the current highest (again, 100px by default). If it is higher, then the value of
stickyHeight is assigned to highest. All we're doing, then, is finding the highest
element and setting highest to that element's height.

There is one point of interest here. The highest variable is local to the init()
function, and is declared outside of the anonymous function declaration. Doesn't
it seem like this variable ought to be out of scope for the function inside our
each() loop?

Yet, as the previous example shows, it is still accessible inside of the function's body.

This works because in JavaScript, functions inside other functions retain access to
the variables of their parent functions. In other words, if function a() (the outer
function) encloses the definition of function b() (the inner function), then function
b() will have access to all of function a()'s local variables.

By the time the each() function returns, highest should be set to the pixel height of
the highest sticky node that we will display.

We're ready to move onto the next part of the init() function:

StickyRotate.init = function() {
 var stickies = $(".sticky");

 // If we don't have enough, stop immediately.
 if (stickies.size() <= 1 || $('#node-form').size() > 0) {
 return;
 }

 var highest = 100;
 stickies.each(function () {
 var stickyHeight = $(this).height();
 if(stickyHeight > highest) {
 highest = stickyHeight;
 }
 });

 stickies.hide().css('height', highest + 'px');

 StickyRotate.counter = 0;

 StickyRotate.stickies = stickies;

 stickies.eq(0).fadeIn('slow');

 setInterval(StickyRotate.periodicRefresh, 7000);

};

jQuery: Do More with Drupal

[84]

These last several lines do all of the visible work.

To start off, we know that we currently have three sticky nodes. By default, they all
will be displayed, each at its own height.

But we want them to be hidden initially, displaying them only one at a time. We also
want to give them all the same height—the height of the tallest sticky node.

Making use of jQuery's chaining features, we can do this all in one line of code:

stickies.hide().css('height', highest + 'px');

What this will do is take all of the items wrapped in the stickies jQuery object and
hide them (hide()), and then assign each the CSS property height set to the height
of the highest element.

PHP programmers should note that the "+" (plus) operator in JavaScript is
used for string concatenation—a task done by the . (dot) operator in PHP.

Just as we saw earlier, in many cases, when a jQuery function is called on a jQuery
object, every item that that jQuery object wraps is affected. Both the hide() and
css() functions are examples of this.

Now that the list is hidden, we can get to work displaying the items one at a time.

First, we initialize a few public variables, StickyRotate.counter and
StickyRotate.stickies. This first will help the later functions determine the index
position of the currently displayed item. The second will provide our other functions
with access to our jQuery stickies object.

These variables are public because their scope is such that they can be
accessed from anywhere in the script being currently executed.

Preparation is done. The next thing to do is display the first sticky node. And we
want to do that with some panache. Specifically, we want to make it fade in.

stickies.eq(0).fadeIn('slow');

On this line, we take the stickies list and reduce it to just the first item. The eq()
jQuery function is used to reduce a list to just one item, and take as a parameter the
index of the item. We pass it 0 because we want the first item in the list.

Next, we use another jQuery function, fadeIn(), to provide us with an effect.

Chapter 3

[85]

jQuery comes with several built-in effects, including fadeIn(), fadeOut(),
slideDown(), and slideUp(). We use the fadeIn() effect here to gradually alter
the opacity from transparent to completely opaque. For example, the following
screenshot illustrates what a node item looks like when it's about a third of the
way through the fading-in process:

The fadeIn() function takes up to two parameters—the speed of the effect and a
callback function. We will look at the callback later in this chapter. The first is the
speed of the effect. It can be specified either as an integer representing the number
of milliseconds that the effect should take, or one of three keywords: slow, def
(or normal), and fast.

We used slow in our example.

The full effect of this, then, is to gradually fade-in only the first sticky node. The
others remain hidden.

Finally, we are up to the last line in our init() function. This line sets up a
time-delayed loop that will handle the fading-out and fading-in of the subsequent
node displays.

setInterval(StickyRotate.periodicRefresh, 7000);

The setInterval() function is a built-in JavaScript function that takes as arguments
a callback function and an interval in milliseconds. In this case, every 7000
milliseconds (seven seconds), the StickyRotate.periodicRefresh() function will
be executed.

jQuery: Do More with Drupal

[86]

It is important to note that when we pass the function name to setInterval(), we
do not add parentheses at the end of the function name. That would result in sending
the results of that function to the setInterval() function.

Instead, we want to pass the function object so that setInterval() can call that
function at the appropriate interval.

If we wanted to get really fancy, we could rewrite this function to
pass a closure to the setInterval() function. In such a case, we
wouldn't need to set any public variables. For the sake of simplicity
(and performance), we will stick to our current implementation.

Of course, the StickyRotate.periodicRefresh() function has not been written
yet. Let's turn to that now.

The periodicRefresh() function
This is the second (and the last non-anonymous) function in our project. As we saw
earlier, it is called by the setInterval() function. In fact, barring some interruption,
it will be called every seven seconds.

Fortunately, this new function makes use of the same tools just introduced, so our
review of the function should go quickly.

/**
 * Callback function to change show a new sticky.
 */
StickyRotate.periodicRefresh = function () {
 var stickies = StickyRotate.stickies;
 var count = StickyRotate.counter;
 var lastSticky = stickies.size() - 1;

 var newcount;
 if (count == lastSticky) {
 newcount = StickyRotate.counter = 0;
 }
 else {
 newcount = StickyRotate.counter = count + 1;
 }

 stickies.eq(count).fadeOut('slow', function () {
 stickies.eq(newcount).fadeIn('slow');
 });
};

Chapter 3

[87]

Let's break this function into two chunks. Here is the first:

StickyRotate.periodicRefresh = function () {
 var stickies = StickyRotate.stickies;
 var count = StickyRotate.counter;
 var lastSticky = stickies.size() - 1;

 var newcount;
 if (count == lastSticky) {
 newcount = StickyRotate.counter = 0;
 }
 else {
 newcount = StickyRotate.counter = count + 1;
 }

 /* More code... */
};

To make things easier on ourselves, we use stickies and count to store local copies
of the StickyRotate.stickies and StickyRotate.counter variables. This makes
for a cleaner code and reduces the chances for mistakes to be made when typing
variable names.

The lastSticky stores the index number of the last sticky in the stickies list.
(Actually, stickies is a jQuery object wrapping the list of stickies.)

At this point, we have the list of stickies, the index (count) of the current sticky, and
the index (lastSticky) of the last sticky. Based on this, we can compute what item
should be displayed next.

That is done with the simple conditional:

var newcount;
if (count == lastSticky) {
 newcount = StickyRotate.counter = 0;
}
else {
 newcount = StickyRotate.counter = count + 1;
}

On a stylistic note, we could omit the curly braces for the if and
else blocks. However, Drupal's coding standards strongly encourage
developers to leave these braces in, for the sake of readability. For that
same reason, it is also often suggested that the if or else statement be
used rather than the ternary (? :) operator. However, in simple cases
where the ternary is easier to read, it is acceptable.

jQuery: Do More with Drupal

[88]

Our conditional is basically checking to see if we have reached the last sticky node.
If we have, then we want to start over again with the first node. Otherwise, we want
to keep going through the list.

One interesting aspect of the previous code is that we want to set two variables at
once. We want a local variable, newcount, pointing to the index of next sticky node.
We also want to set the StickyRotate.counter variable to this new value so that
future invocations of our preiodicRefresh() function will access the correct item in
the list of sticky nodes.

To accomplish this, we use the double assignment:

newcount = StickyRotate.counter = 0;

Both variables will be assigned the value 0 if the current count is equal to
lastSticky. Otherwise, newcount and StickyRotate.counter will be set
to count + 1.

Now there are only a couple of additional lines to investigate:

StickyRotate.periodicRefresh = function () {
 var stickies = StickyRotate.stickies;
 var count = StickyRotate.counter;
 var lastSticky = stickies.size() - 1;

 var newcount;
 if (count == lastSticky) {
 newcount = StickyRotate.counter = 0;
 }
 else {
 newcount = StickyRotate.counter = count + 1;
 }

 stickies.eq(count).fadeOut('slow', function () {

 stickies.eq(newcount).fadeIn('slow');

 });

};

The highlighted lines take care of fading-out the old sticky node, and fading-in the
next sticky node in the list.

This is accomplished by (again) getting a single item from our list of stickies using
the eq() function, and then calling the fadeOut() function.

This time, we call the fadeOut() function with both of its arguments. We set the
speed to slow, and then give it an anonymous callback function.

Chapter 3

[89]

The callback function uses the newcount variable to select the next item from the list
of stickies and fades it in.

At first, a glance at these three lines of code might make it look unnecessarily
complex. After all, can't we write something like the following instead?

stickies.eq(count).fadeOut('slow');
stickies.eq(newcount).fadeIn('slow');

This won't work as expected. Instead of getting a full fade-out followed by a
fade-in, both will happen at the same time. In this case, two sticky node teasers will
be displayed at the same time. This, in turn, means that the viewer will temporarily
see two stacked sticky nodes. Then the top one will go away and the bottom one will
slide up.

It's ugly.

The reason behind this is that the fading process takes time. For all practical
purposes, though, fading is handled in a separate "thread". As soon as the fade is
started, the script interpreter continues to execute the next line of the script. So the
fading-in process will begin before the fading-out process has completed.

To work around this, we use the anonymous callback function that jQuery will
fire when it has finished the fading-out. While this might seemingly lead to more
complexity, it's only gained us a line of code. And as we will see in later chapters,
being able to launch multiple effects at the same time can have its benefits.

Now we have two functions that, when used together, will provide our sticky node a
rotation feature.

There's only one thing left to do. We need to make sure that our little StickyRotate
tool gets started when a page loads.

Adding an event handler with jQuery
When a page loads, we want to start our StickyRotate tool. Practically speaking,
we want to have the browser execute the StickyRotate.init() function when the
page is done loading and is ready to add effects.

We want it to be loaded because we want first, all of our sticky nodes
to be loaded, and second, all of the CSS styles to be applied so that they
don't override the styles we set dynamically. But we don't really want to
wait for the images to load first.

jQuery: Do More with Drupal

[90]

Unfortunately, the two popular ways of accomplishing this have
significant drawbacks.

The first method of calling the init() method is to embed a snippet of JavaScript
somewhere in the page. For example, a section of code like this might be inserted
somewhere in the document's body:

<script>
 StickyRotate.init()
</script>

What's wrong with this? For starters, it's messy. In order to make sure that it is
executed correctly, we have to put the script somewhere in the HTML after the
last sticky node. Otherwise, we run the risk of having the script execute before the
HTML is completely loaded. This means that we have to hack the page.tpl.php file
to insert the code in the appropriate place. This, in turn, can end up being a pain to
maintain (and it is not very portable).

Instead, we might try to fire the event by adding onload="StickyRotate.init()"
to the <body></body> element. This has two drawbacks. First, it means we have
to hack page.tpl.php, which is undesirable. Second, onload is not implemented
consistently across browsers, and it may take longer to fire than we would like
(or it may fire before the document is really ready).

Fortunately for us, jQuery provides a third alternative. We can write a few lines
of JavaScript that will attach an event handler to a special jQuery ready event.
According to the jQuery documentation, the ready event is fired the instant the DOM
is ready to be read and manipulated. (See http://docs.jquery.com/Events/ready
for details.)

Here and throughout the book, we will use this method to execute code as soon as
we can reliably do so.

Here's how we will do it for our present code:

$(document).ready(StickyRotate.init);

This code doesn't go in the HTML body, and does not need to be launched
from onload or another HTML attribute. Instead, it is included in our
sticky_rotate.js file.

Here's how this line works.

Chapter 3

[91]

$(document) creates a jQuery object that wraps the document object. The ready()
function assigns an event handler to the ready event of that object. This ready
event is a special jQuery event that fires when the DOM is ready for manipulation.
Roughly, though, it functions like the (on)load event, and should almost always be
used instead of an onload handler.

The ready() function takes a function as a parameter. Often, developers will write
an inline anonymous function to do the initialization. But we've already created an
init() function that is suitable for our needs. So all we have to do is pass in that
function object, and jQuery takes care of the rest.

But what if we have multiple scripts that need to do something when the document
is ready? Do we need to write a master function to handle all of the initialization?

No we do not. One of the nice things about jQuery's event model design is that
we can register multiple handlers for the ready event (or any other event)—and
we can even do this in different script files. So, we can use $(document).ready()
multiple times.

Now we have a tool that will rotate through sticky nodes, displaying them in order.
Using the fade effect provided by jQuery, it will smoothly transition from one sticky
node to the next. It will accomplish our goals of keeping the important information
right at the top, while not occupying too much space (and subsequently pushing
other information further down the page).

More importantly, we've gotten to see jQuery in action, providing querying tools,
DOM manipulation features, effects, and event handlers. This will lay groundwork
for later chapters.

A brief look backward
Now that we've seen the possibilities that come with jQuery, let's briefly reconsider
how we built the printer tool in Chapter 2.

To build that tool, we had to make changes within the HTML of our theme, and we
had to work with various DOM methods such as getElementById().

With jQuery, we could have skipped the template part altogether, using the ready()
function (and other jQuery event handlers) to create the printing link as the page was
created. In fact, we will do something like this in the coming chapter.

Likewise, we could probably have trimmed down the size of our script by making
use of jQuery's chaining feature.

jQuery: Do More with Drupal

[92]

But in the interest of moving forward, we will not spend time revising that code.
Instead, the next chapter will cover some of the additional JavaScript functionality
provided by Drupal.

Summary
This chapter has focused on jQuery. Initially, we looked independently at jQuery.
We manipulated a static HTML document using jQuery. From there, we took a
closer look at how jQuery is integrated with Drupal. Our main project in this chapter
explored how jQuery can interact with HTML created by Drupal. We created a tool
to take Drupal's default display of sticky nodes. We transform it into a rotating
display, fading one item into view, and then fading it out again, only to fade-in the
next item.

As we move on from here, we will explore more Drupal libraries. In the next
chapter, we will look at Drupal behaviors—another powerful component in Drupal
JavaScript development. But this isn't the last you will see of jQuery. On the contrary,
it figures prominently in Drupal 6 JavaScript development.

Drupal Behaviors
In the previous chapter, we spent some time getting to know jQuery. We will now
look at another library that comes bundled with Drupal. In fact, the library we will
see here is Drupal-specific. The drupal.js library is composed of tools commonly
used in Drupal-centred JavaScript.

There are four major sets of tools in drupal.js: translation functions, theming
system, some utility functions, and the core code for Drupal Behaviors. In this
chapter, we are going to focus on Drupal Behaviors and then examine some of the
utility functions. Translation and theming will each get their own chapter.

In this chapter we will cover the following:

The basics of the •	 drupal.js library
Understanding and using Drupal Behaviors•	

Avoiding pitfalls in Drupal Behaviors•	

Using utility functions•	

We will also do two projects in this chapter. The first project, a short one, will focus
on behaviors. The second project will be grander in scope. We will combine our
jQuery tools with the features we discover in drupal.js in order to create a simple
text editor.

The drupal.js library
In the Using jQuery in Drupal section of the previous chapter, we saw how Drupal
will automatically include the jQuery library when it detects that the page request
uses JavaScript. When a theme or module, for example, includes a JavaScript file
with a scripts[] entry in the .info file, Drupal will automatically include the
standard JavaScript libraries.

Drupal Behaviors

[94]

Let's take another look at the scripts that get included:

<script type="text/javascript"
 src="/drupal/misc/jquery.js"></script>
<script type="text/javascript"

 src="/drupal/misc/drupal.js"></script>

<script type="text/javascript"
 src="/drupal/sites/all/themes/frobnitz/printer_tool.js">
</script>
<script type="text/javascript">
jQuery.extend(Drupal.settings, { "basePath": "/drupal/" });
</script>

Drupal generated this code from our printer tool script developed in Chapter 2.
There are three JavaScript files included here. The first one is jquery.js, which was
the focus of the previous chapter. The last one is printer_tool.js, the script we
created in Chapter 2.

Sandwiched between them is drupal.js. Like jquery.js, drupal.js plays a
prominent role in Drupal's client-side scripting efforts, which is included by
default on any page that includes JavaScript.

But what exactly does it do?

Essentially, it is composed of four classes of tools:

1. Theming functions
2. Translation functions
3. Utility functions
4. Support for Drupal Behaviors

Theming functions provide a partial JavaScript implementation of the Drupal
theming system. Using the theming system, we can theme JavaScript objects just
like the PHP developers do on the server side.

Translation functions, which we will explore in the next chapter, provide language
translation facilities to JavaScript. Just as is the case with the theming system, the
translation system is designed to provide an API similar to the server-side PHP
translation system.

Some of the tools provided by drupal.js cater to commonly needed services. I am
referring to these as Utility functions.

Chapter 4

[95]

Finally, Drupal offers a framework for adding scripted behaviors to a page. When
the page is loaded, these behaviors are automatically "attached" to the page, and
immediately take effect. This framework is called Drupal Behaviors (often shortened
to just behaviors). If this all sounds unclear, don't worry. We will look at this topic in
more detail later in this chapter.

Now we are ready to move on to a discussion of behaviors.

Drupal JavaScript behaviors
As I mentioned at the beginning of the chapter, the drupal.js library is
Drupal-specific. The main advantage of using a tightly-coupled library is that the
tools provided are aware of the Drupal structure and do things the Drupal way.

Behaviors are a good example.

The Drupal Behaviors feature provides a standard method for attaching some
particular information (called a behavior) to zero or more elements on a page. To
understand this admittedly vague description, let's start with an example and build
a better explanation.

In the previous chapter we looked at registering a handler for the jQuery ready
event—jquery('document').ready(). We can use that function to run some
JavaScript as soon as the DOM is ready for manipulation.

For example, we might write a JavaScript snippet that dynamically adds a new
class attribute to all paragraph tags:

$(document).ready(function () {
 $('p').addClass('fancy');
});

This script finds all paragraph elements and adds the fancy class. Since it is executed
during the ready event, it will happen as soon as the DOM is ready for manipulation.

But what if we have a script that executes a little later and adds a new paragraph?

$('body').append('<p>Another paragraph</p>');

Now we have a paragraph that doesn't have the fancy class because it was added to
the DOM after the ready event was handled.

Drupal Behaviors

[96]

Defining a behavior to handle repeatable
events
The ready event that jQuery defines (and that we saw at the end of the previous
chapter) is fired as soon as the DOM is ready for manipulation. But that's the only
time it fires.

The DOM can undergo many changes between the time the page loads and when the
user leaves the page. Some of those DOM changes may have an impact
on how the other JavaScript works. In cases like this, we want to be able to re-run our
query to add the fancy class whenever a new paragraph is inserted into the DOM.

This is the sort of case that Drupal Behaviors were designed to address. Instead of
having our paragraph query run (once) when the ready event fires, we can define
this as a behavior. In essence, we would be creating a behavior that says, "<p></p>
elements should behave this way."

When we define a behavior, we describe what elements should be modified and how
they should be modified. We then let Drupal take care of the attaching.

I have heard some Drupal JavaScript developers state that behaviors
are a replacement for jQuery.ready(). But this is not an accurate
description. Behaviors should be used when you are attaching some
behavior to elements in the DOM—and only when you want those
behaviors to be attached to new (matching) content when it is inserted
into the DOM. Treating behaviors as a better ready event can cause
unexpected errors and less efficient code.

When you define a new behavior, Drupal takes over the management of that
behavior. When a page is loaded, the behavior is executed. When other important
DOM-altering events occur, Drupal re-runs the behaviors.

However, when writing JavaScript in Drupal, there are a couple of things you need
to do to keep behaviors—both yours and others'—working correctly:

When writing behaviors, to make sure you don't accidentally attach the same •	
behavior to the same thing multiple times. We'll see how to do this later.
When writing code that modifies the DOM, remember to notify the behaviors •	
system that behaviors may need reattaching. This is done using the Drupal.
attachBehaviors() function, and we will see examples of this later.

Chapter 4

[97]

Let's take a look at an example that re-implements our early code—this time as
a behavior:

Drupal.behaviors.addFancy = function (context) {
 $('p:not(.fancy)', context).addClass('fancy');
};

This three line behavior essentially does the same thing as our previous jQuery
snippet, with only minor exceptions. Let's look at the differences.

First of all, a behavior is a function that is attached to the Drupal.behaviors object.
In our case, the function will be named Drupal.behaviors.addFancy().

When Drupal executes a behavior, it passes one parameter, context.

The context object contains information about the part of the document that is being
evaluated. This should always be a location within the DOM. When behaviors are first
attached (in a call to $(document).ready()), the document object is passed in as the
context. In other cases, only a smaller subset of DOM may be passed in.

Generally, it is advised that a behavior restricts its changes to the context
(though that is not always a good idea, and we will discuss the point later in the
chapter). So we will add the fancy class only to elements in our given context:

$('p:not(.fancy)', context).addClass('fancy');

Notice that the second argument to $() is the context object. That optional
argument provides the object that jQuery should query.

There's another item of note here: The query has been modified. Originally, we
began with $('p'). Now we have $('p:not(.fancy)', context). What is the
:not(.fancy) part for? The :not() is a pseudo class in CSS. It tells jQuery to
not match anything inside of that query. So <p></p> will match and therefore be
included in the returned results, but <p class='fancy'></p> will not.

The :not() functions with an implicit AND. Any matching query must
match the initial query and not the query within :not().

So the jQuery line, if translated into plain English, would read "Find all paragraphs
that don't have the class fancy and give them that class."

Technically in this particular situation, it is not necessary to add the :not(.fancy)
part. There's no way to add two of the same classes to an element, and jQuery will
gracefully handle the situation. But this illustrates a point: in many cases, you want
to ensure that your behavior does not do the same thing twice.

Drupal Behaviors

[98]

When we work on our project later in the chapter, we will see another way of using
CSS classes to make sure that a behavior isn't attached twice when it should only be
attached once.

Telling Drupal to attach behaviors
After modifying a portion of the document, it might be desirable to notify Drupal
so that behaviors can be re-attached. This is done with yet another function from
drupal.js: Drupal.attachBehaviors().

When should attachBehaviors() be called?
There are some DOM modifications which probably don't warrant
calling Drupal.attachBehaviors(). For example, just changing
the text of a node (without altering any elements) can usually be
done safely. Also, there are other elements, such as
, that rarely
have behaviors attached. In these cases, you should not run Drupal.
attachBehaviors(). On the converse, any time you load HTML from
an AJAX/AHAH call you should run Drupal.attachBehaviors().

Let's look at an example of Drupal.attachBehaviors(). At the beginning of the
part entitled Drupal JavaScript behaviors, we inserted a paragraph using jQuery. We
did this with a quick jQuery one-liner:

$('body').append('<p>Another paragraph</p>');

We will now build on that example:

var context = $('<p>Another paragraph</p>')
 .appendTo('body').get(0);
 Drupal.attachBehaviors(context);

Whoa! This new snippet of code looks a lot different. But surprisingly, it functions
similarly. Let's take a closer look at the jQuery call:

$('<p>Another paragraph</p>').appendTo('body').get(0);

Just as with our initial example, this jQuery chain adds a new paragraph to the
end of the body element. However, it does so in reverse order. Instead of finding
the body and adding an element, this code creates the new element and then
appends it to the body.

Along with the other things the $() function can deal with, it can also recognize
HTML embedded in strings. It converts this information to a DOM fragment.
By default, this value is held in its own DOM. It is not immediately put into the
document that is being displayed.

Chapter 4

[99]

So in this example, the $() call returns a jQuery, wrapping a paragraph element
that is currently not a part of the main document. The next thing to do is to append
this element to the document object at the end of the body. That is done with the
appendTo() method, which takes a jQuery query string (a CSS selector).

The call to appendTo() returns a jQuery object that is still wrapping the <p></p>
element. But now, that element is part of the main document. The appendTo() call
took care of that.

append() and appendTo(): don't overlook the differences!
An easily overlooked difference between append() and appendTo()
is in the return value; both return jQuery objects. But where append()
returns a jQuery object wrapping the thing(s) that have been appended
to, the appendTo() call returns the elements that were appended.

The final function in that chain is get(). This too is a jQuery function. It extracts the
object(s) wrapped by jQuery and return(s) those objects. It takes an optional index
value. Since jQuery stores its elements in an indexed list, we can get the wrapped
objects by position. In our case, we want the first paragraph (there should be only
one), so we use get(0).

The return value of get(0) is stored in the context variable. So context is now
pointing to the <p></p> element that we just created.

The last line in our script looks like this:

Drupal.attachBehaviors(context);

This simply tells Drupal to try to attach behaviors.

If we had called Drupal.attachBehaviors() with no arguments, then a default
context would have been built for us. That context would have been the document
object. Since we know that our script only inserted this one paragraph tag, we can
reasonably restrict the context to just new <p></p> elements.

In general, it's better to set the context appropriately. The more specific the context,
the faster the code runs. So in our case, we have created a very limited context.

But beware! This might not always be the best choice, for the impact of inserting
one element—even at the end of a document—might extend well beyond the
intended target.

Context and behaviors: bug potential
In some cases, working with the context and behaviors can get tricky, leading to bugs
that may be difficult to debug.

Drupal Behaviors

[100]

For example, let's look at another behavior that we assume would work with the one
we just created:

Drupal.behaviors.countParagraphs = function (context) {
 if ($('#lots', context).size() > 0) {
 return;
 }
 else if ($('p', context).size() > 5) {
 $('body').append('<p id="lots">Lots of Text!</p>');
 }
};

The previous code snippet does the following:

It checks to see if an element with the ID •	 lots exists. If it does, that means
this behavior has already been properly processed. So it returns early.
If the •	 lots ID does not exist, it checks to see if there are more than
five paragraphs.
If there are more than five paragraphs, a short piece of text •	 Lots of Text!is
appended to the end of the document. The ID of the paragraph that wraps
this text is lots. So we know this has already been processed (and that there
are more than five paragraphs) by the existence of the lots ID.

Another important thing to notice is that both queries (the checking queries) use the
context. This is the recommended procedure, but it can have unanticipated results, as
we shall see.

We have two behaviors, both making use of the context in the recommended way. In
our code that attaches the new paragraph we call attachBehaviors(), passing it the
most narrow context we can (the paragraph that was inserted).

So what happens when the number of paragraphs in the document exceeds
five? Nothing.

Here's an example from Firebug's console:

>>> $('p').size();
5
>>> var cxt = $('<p>Sixth paragraph</p>')
 .appendTo('body').get(0);
>>> Drupal.attachBehaviors(cxt);
>>> $('p').size();
6
>>> $('#lots').size();
0

Chapter 4

[101]

At the beginning of this script, our document had five paragraphs. On the next two
lines, we added a sixth and re-attached behaviors.

But the <p id="lots">Lots of Text!</p> was not added to the document.
We can tell this in two ways—First, by the fact that it would have added a seventh
paragraph. Second, $('#lots').size() would have returned 1. That means our
Drupal.behaviors.countParagraphs() behavior did not run.

This happened because our behaviors are configured to use the context. Our
attachBehaviors() call keeps the context limited to just the changed elements. This
is correct, isn't it? But in this case, our zeal to optimize actually caused the failure.

Let's look at why it fails.

Here's how the context is set up:

var cxt = $('<p>Sixth paragraph</p>').appendTo('body').get(0);
Drupal.attachBehaviors(cxt);

The context object, cxt, points only to the new paragraph.

So Drupal.attachBehaviors(cxt) only passes that one paragraph to all of the
registered behaviors.

Now, let's look at the behavior that counts paragraphs:

Drupal.behaviors.countParagraphs = function (context) {
 if ($('#lots', context).size() > 0) {
 return;
 }
 else if ($('p', context).size() > 5) {

 $('body').append('<p id="lots">Lots of Text!</p>');
 }
};

The highlighted line is the problematic one. Since the context is limited to just one
paragraph, the jQuery chain $('p', context).size() will always return 1 when
our Drupal.attachBehavior(cxt) function is executed. So regardless of how many
paragraphs the actual document contains, the content's else if statement won't
get executed.

This is a simple case, but we could imagine fairly elaborate ones that come from
similar problems. In order to be sure that a call to Drupal.attachBehaviors()
will not result in a bug like the one we just saw, you must be familiar with all of
the behaviors that might run in your Drupal instance. (If you are creating portable
code, you should have some way to ensure that no other code could possibly have
problems like what was just described.)

Drupal Behaviors

[102]

What's the solution?

There are two possible solutions:

1. In your behaviors, ignore context.
2. When you call Drupal.attachBehaviors(), don't specify context.

The first solution has two problems. First, it goes against the design of behaviors.
Second, it would require that all the developers implement it before we could be sure
that it was working. Since behaviors are supposed to be context-aware, it would be
hard to achieve this.

I'm inclined to suggest that the second solution is the best. The context should
not be narrowed. That is, behaviors should use the document object as the
context. In practice, what this means for you is that you should call Drupal.
attachBehaviors() with no arguments. While it may result in a (small)
performance hit, it will prevent bugs like the one seen previously.

Project: collapsing blocks
In this project, we will write a very simple behavior that will be attached to blocks
on a page. We will make blocks collapsible. Clicking on a block's title will cause the
body of the block to slide up or slide down.

Here are the contents of a file called behaviors.js, which is part of the Frobnitz
theme, included in using a scripts[] directive in frobnitz.info:

// Id
/**
 * Defines behaviors for Frobnitz theme.
 * @file
 */

/**
 * Toggle visibility of blocks (with slide effect).
 */
Drupal.behaviors.slideBlocks = function (context) {
 $('.block:not(.slideBlocks-processed)', context)
 .addClass('slideBlocks-processed')
 .each(function () {
 $(this).children(".title").toggle(
 function () {
 $(this).siblings(".content").slideUp("slow");
 },

Chapter 4

[103]

 function () {
 $(this).siblings(".content").slideDown("slow");
 });
 });
};

In the code, we define one behavior named Drupal.behaviors.slideBlocks().
When attached, this behavior will add a toggle to all blocks on the page. When a
block's title is clicked, the block will slide up and disappear. Here's a screenshot
of the sliding in progress:

When the slide is complete, only the title—mbutcher—will be displayed.

When the title is clicked again, the contents will slide back down until they are
fully visible.

Since our code is operating on blocks, it will be helpful to take a quick look at the
HTML that Drupal generates for a block.

Here's the menu section as generated by the Frobnitz theme (which is inheriting this
from the Bluemarine theme):

<div class="block block-user" id="block-user-1">
 <h2 class="title">mbutcher</h2>
 <div class="content">
 <ul class="menu">
 <li class="leaf first">
 My account

 <li class="collapsed">
 Create content

 <li class="collapsed">
 Administer

 <li class="leaf last">
 Log out

Drupal Behaviors

[104]

 </div>
</div>

This shows the complete contents of one specific block. We are more interested in the
generic structure that all blocks share. To see this, we can simplify the previous code
to something like this:

<div class="block" id="some_id">
 <h2 class="title">Title</h2>
 <div class="content">Content</div>
</div>

That's about all there is to a generic block. Every block has three structural pieces,
and these are identified by class. There's a block that contains a title and
some content.

Returning to our code, let's look at the behavior function:

Drupal.behaviors.slideBlocks = function (context) {
 $('.block:not(.slideBlocks-processed)', context)

 .addClass('slideBlocks-processed')

 .each(function () {
 $(this).children(".title").toggle(
 function () {
 $(this).siblings(".content").slideUp("slow");
 },
 function () {
 $(this).siblings(".content").slideDown("slow");
 });
 });
};

Our behavior first tries to find all of the blocks that haven't already been processed
by this behavior. The query to do this is: .block:not(.slideBlocks-processed).
As we saw in the previous HTML, the class block indicates that a piece of HTML
is a block.

Again, we want to prevent our behavior from being run twice on the same
element. To do this, we write the behavior in such a way that it attaches its own
class to an element once the element has been processed. In this case, the class is
slideBlocks-processed, following one of the conventions used when
defining behaviors.

Chapter 4

[105]

Any block that gets processed by our slideBlocks behavior will be assigned the
slideBlocks-processed class. So when we do the initial query, we can avoid blocks
that have already processed by using .block:not(.slideBlocks-processed). The
resulting jQuery object will only contain blocks that have not been processed.

The first thing we do with these matching blocks is append the
slideBlocks-processed class to them. That way, later calls to Drupal.
attachBehaviors() won't result in the behavior being attached again.

Let's continue in the jQuery chain:

$('.block:not(.slideBlocks-processed)', context)
 .addClass('slideBlocks-processed')
 .each(function () {
 $(this).children(".title").toggle(
 function () {
 $(this).siblings(".content").slideUp("slow");
 },
 function () {
 $(this).siblings(".content").slideDown("slow");
 });
 });

The each() function, which we saw in Chapter 3, will iterate through each item in
the jQuery object and call the anonymous function on each item.

Inside this anonymous function, the this keyword will point to the current item in
the list. So if there are four blocks on the page, the anonymous function will be called
four times, with this being set first to the first item in the list, then to the second
item in the list, and so on.

Since our query is returning elements that are blocks, iterations through each() will
set this to point to a block element.

What we want to do is get the title of each block and add an event handler to it, so
that each time the title is clicked, the content slides up or slides down. In the code
just shown, here's how this is done:

 $(this).children(".title").toggle(
 function () {
 $(this).siblings(".content").slideUp("slow");
 },
 function () {
 $(this).siblings(".content").slideDown("slow");
 });

Drupal Behaviors

[106]

Remember, this contains a block element (<div class='block'>...</div>). We
wrap that in a jQuery object again, and then use the children() jQuery function to
find all of the children of the current block that have the title class.

There will always be only one title per block.

To that title we want to attach an event handler that will fire when the title is clicked.
But we want it to do one thing (slide up) the first time it is clicked, and another thing
(slide down) the second time it is clicked.

The jQuery toggle() event handler is just what we need. It will fire the first
function on odd clicks (1, 3, 5, and so on), and the second function on even clicks
(2, 4, 6, and so on).

So on odd clicks it will execute this function:

function () {
 $(this).siblings(".content").slideUp("slow");
};

The this variable is set to the element that was clicked, which is the block's title. We
want to add the slide up effect to the content. Recall that the general structure of a
block looks like this:

<div class="block" id="some_id">
 <h2 class="title">Title</h2>
 <div class="content">Content</div>
</div>

The title and block sections of a node are next to each other at the same level in the
DOM tree. In other words, they are siblings. To get from our current title to the
content sibling, we wrap the title element in a jQuery object and then use the jQuery
siblings() function, passing it a CSS selector that will match the element with the
content class.

Why don't we look for div.content?
Why do we search for .content instead of the more specific div.
content? This is done mainly for the sake of portability. Possibly, a
themer will want to change the HTML structure, perhaps using a
tag or wrapping the content inside a table. We wouldn't want such
changes to break our JavaScript. So we do our best to decouple the CSS
selector from the HTML tags.

Once we've got the content sibling, we simply add the slideUp() effect, setting the
speed parameter to 'slow'.

Chapter 4

[107]

The second toggle function performs an analogous task:

function () {
 $(this).siblings(".content").slideDown("slow");
};

Here, instead of sliding up, this function causes the content to slide down.
Otherwise, the functions are identical.

That's all there is to our behavior. When the page is loaded (and the ready event
fires), all of the registered behaviors, including this one, will be attached. So from
the moment the user can first interact with the page, she or he will be able to click on
block titles and cause block contents to slide up until they disappear, and then (with
another click) slide back down.

In the coming chapters, we will make use of the Drupal.attachBehaviors()
function to make sure that new blocks that are added dynamically from JavaScript
will also be given this behavior.

Utilities
At the beginning of the chapter, I listed the four toolsets that can be found in
drupal.js: behaviors, translations, theming, and utilities. We've already looked
at behaviors. Translations and theming will the subjects of the next two chapters.
But before we continue, let's look at some of the more important utilities.

All of the utilities covered in this section are part of the drupal.js library and will
be available any time you include JavaScript files in your theme or module.

Checking capabilities with Drupal.jsEnabled
The first utility we will check out is not a function. It's a property of the Drupal
object: Drupal.jsEnabled. This variable indicates whether or not the browser will
support drupal.js and jquery.js.

The name of this property is slightly misleading. It doesn't actually indicate whether
JavaScript is enabled. (That wouldn't be all that useful, would it? If JavaScript was
truly disabled, a JavaScript variable would be worthless.)

Instead, this flag is set to true if the requisite level of JavaScript is supported. Some
browser, such as antiquated desktop browsers and bare-bones embedded browsers,
have a limited level of JavaScript support. But they don't provide a full implementation
like what you would find in modern editions of IE, Firefox, Safari, or Opera.

Drupal Behaviors

[108]

When drupal.js loads, it will evaluate whether the JavaScript implementation
supports DOM manipulation of the sort that jQuery and drupal.js rely upon. If the
correct functions exist then this flag will be set to true. Otherwise, the flag will be set
to false.

Internally, Drupal uses this flag to determine if behaviors are supported. If Drupal.
jsEnabled is false, then Drupal.attachBehaviors() doesn't attempt to attach any
behaviors. It just silently returns.

Also, Drupal uses this flag to set a cookie. If Drupal.jsEnabled is true, a cookie is
set which indicates that JavaScript support is sufficient. This way, server-side code
can send back appropriate responses based on a browser's JavaScript capabilities.
(This cookie is named has_js, and is available in PHP using $_COOKIE['has_js'].)

Feel free to use Drupal.jsEnabled whenever you are concerned that a browser
might not support the necessary JavaScript for DOM manipulations. But don't get
overly concerned about checking with the use of this flag. Most jQuery functions will
silently fail if JavaScript support isn't good enough, and the main Drupal features
(like behaviors) will be skipped as well.

The Drupal.checkPlain() function
(and the jQuery alternative)
The first function we will look at is the Drupal.checkPlain() function. If you have
already written some Drupal PHP code, you will probably recognize the name.

The Drupal.checkPlain() function takes a string and prepares it for display,
escaping symbols that have a special meaning in HTML. While the use of the term
check implies that this will return a Boolean value (true if the text is plain, false if
otherwise), it actually performs the escaping, and returns the escaped string.

So what does it escape? Let's look at an example. While viewing a node on our
Drupal system, we can use the Firebug console to manipulate the document:

>>> myString = "A string with HTML embedded.";
"A string with HTML embedded."
>>> $('.node .content').html(myString);
Object length=1

The first line creates a new string named myString. Note that the contents of this
string contain embedded HTML: A string with HTML embedded

In the second line we use jQuery to find the main content section for the node
displayed on the current page, and replace the existing contents of that section
with the value of myString. Since this involves a little bit of new jQuery, let's look
at it closely.

Chapter 4

[109]

The query we use here is .node .content. The most important character in
this query is the space between .node and .content. It indicates a descendent
relationship between .node and .content. We might rephrase this query as "find
all elements with class node, and then find any elements that are descendants of this
node and that have the class content."

Descendants and children
A descendant relationship is not limited to just children of the selected
node. Child nodes are directly under the selected node. A descendant
may be more than one level beneath a node. If you are interested
in only children, you can use the > operator instead of the empty space:
$('.node > .content'). Note that in this case the whitespace around
the > is treated as insignificant.

So this query will select the main content for the main node or nodes displayed on
the page. Why do we use this more complex form of the query? Why not just use
$('.content')? That's because even blocks use the .content class, and we don't
want to select the content of our blocks.

The second part of our jQuery chain is the html() method. This replaces the entire
HTML under the current node with the string passed in. The string is interpreted
and inserted into the DOM, so HTML tags in the string are actually recognized as
HTML markup.

Let's look at the results of running this command to see how the string is interpreted:

Notice that HTML is displayed above as HTML (in italics).

What if we wanted to display the HTML tags and not have them interpreted? That's
where the Drupal.checkPlain() function comes in. Let's take a look at a similar
snippet of code:

>>> myString = "Add a line break using the
 tag.";
"Add a line break using the
 tag."
>>> escapedString = Drupal.checkPlain(myString);
"Add a line break using the
 tag."
>>> $('.node div.content').html(escapedString);
Object length=1

Drupal Behaviors

[110]

If we were to look at this in the browser, it would look something like this:

In the screenshot, the
 tag is displayed as is, and doesn't appear to be treated as
HTML. What's going on behind the scenes?

Take a look at the second command entered on the console: escapedString =
Drupal.checkPlain(myString);. Here, we use the Drupal.checkPlain() function
to escape the contents of myString. The output displayed on the console shows what
happens when we do so:

"Add a line break using the
 tag."

The tag
 that we originally entered in myString has now been converted
to
. The < and > characters were encoded into their HTML entity
equivalents. The Drupal.checkPlain() function encodes four characters:

<•	 becomes <.
>•	 becomes >
"•	 (double quote) becomes "
&•	 becomes &

Why escape these four? They all represent HTML elements. By escaping them, we
can ensure that we are not inserting HTML elements into the string. So there is no
danger that the HTML is interpreted by the browser.

There is good reason for doing this. Not only does it allow us to display HTML
tags, but it adds a layer of security when we are dealing with user-entered data. We
wouldn't want the string <script>doSomethingBad();</script> to get rendered!

So when should you use Drupal.checkPlain() in your scripts? The usual answer
is anytime you are displaying unknown or untrusted information. Actually, the
situation is compounded by the fact that jQuery handles most cases where you'd
use Drupal.checkPlain(), and it does so gracefully.

Chapter 4

[111]

Earlier, when we inserted our new content, we did this:

>>> myString = "Add a line break using the
 tag.";
"Add a line break using the
 tag."
>>> escapedString = Drupal.checkPlain(myString);
"Add a line break using the
 tag."
>>> $('.node div.content').html(escapedString);
Object length=1

We could have done this with jQuery—and in a more succinct way:

>>> myString = "Add a line break using the
 tag.";
"Add a line break using the
 tag."
>>> $('.node div.content').text(myString);
Object length=1

In this case, instead of using the Drupal.checkPlain() function to do the encoding
and then using the jQuery html() function to insert the content, we just use the
jQuery text() function. It implicitly handles the encoding and the insertion.

The guideline for using the text() function is simple: Any time you are inserting
text that should not contain HTML (including, for example, user-entered text), you
should insert it with text() instead of html().

So when should Drupal.checkPlain() be used? It should be used in cases where
you need to encode a string, but not insert it into a document.

The Drupal.parseJson() function
Some of the functions in drupal.js were created before comparable functions
existed in jQuery. One such function is Drupal.parseJson().

This function was intended to be used for parsing AJAX data that was returned from
the server in the JSON (JavaScript Object Notation) format. JSON data looks like
JavaScript. Here's an example describing a person's name:

jsonString = "{'first': 'Matt', 'last': 'Butcher'}";

If we were to remove the double quotes, we would have a literal JavaScript object
declaration. That's the idea behind JSON. As a part of an AJAX exchange, a server
can send the client JSON data, which the client can then parse into JavaScript objects.

We will see JSON in action in Chapter 7. Until then, here's a short example of how
the Drupal.parseJson() function works:

>>> jsonString = "{'first': 'Matt', 'last':'Butcher'}";
"{'first': 'Matt', 'last':'Butcher'}"
>>> name = Drupal.parseJson(jsonString);

Drupal Behaviors

[112]

Object first=Matt last=Butcher

>>> name.first
"Matt"

The line Object first=Matt last=Butcher in the code shows the main feature of
Drupal.parseJson(). The string is parsed and converted to an object. We can then
use that object directly in JavaScript.

This function may be of limited use as the version of jQuery that ships with Drupal 6
already contains functions for dealing with JSON content during AJAX calls. When
we look at AJAX later in the book, we will see how jQuery functions can be used to
handle JSON data.

The Drupal.encodeURIComponent() function
Earlier, we looked at encoding HTML with Drupal.checkPlain(). Here, we will
look at another encoding function—one designed for encoding pieces of a URL
or URI.

Drupal PHP programmers may also recognize this function. It essentially performs
the same task as the drupal_urlencode() PHP function. Those familiar with
JavaScript will recognize this as having the same name as a built-in JavaScript function.

The built-in JavaScript function, encodeURIComponent(), is used to encode values
that will be used when constructing a query string or a URI. Certain values, such as a
slash (/), have special meaning in URLs. A slash indicates a directory.

How do we write a request for a document on the server named pros/cons.
html, where the slash is part of the file name and not an indicator that pros/ is a
directory? It should be escaped with "/" replaced by a hexadecimal representation
of the character. We can see how this is done with the built-in browser function
encodeURIComponent():

>>> encodeURIComponent('pros/cons.html');
"pros%2Fcons.html"

Looking at the Firebug output, we can see that the slash was replaced by %2F, where
2F is the ASCII hexadecimal representation of the / character.

But Drupal presents something of a special case. It uses paths as query parameters.
So we would expect strings, such as node/1/edit with the slashes left as is.
At the same time, we would want other special characters, such as %, to be
escaped correctly.

Chapter 4

[113]

That's where Drupal.encodeURIComponent() comes in. It correctly converts other
characters while preserving the slashes. To see this in action, let's compare how the
two different functions convert the fiction link node/1/calc%:

>>> myString = 'node/1/calc%';
"node/1/calc%"
>>> encodeURIComponent(myString);
"node%2F1%2Fcalc%25"
>>> Drupal.encodeURIComponent(myString);
"node/1/calc%25"

In this example we can see the difference: The Drupal.encodeURIComponent() call
preserved the slashes in the path.

In general, Drupal.encodeURIComponent() should be used any time you
are constructing links back to Drupal. However, when making calls to other
non-Drupal services, you should continue to use the browser-defined
encodeURIComponent() function.

The Drupal.getSelection() function
The last utility function that we will look at is the Drupal.getSelection() function.
This tool is used to find out what portion of a text area (<textarea></textarea>)
is selected.

For example, when you select a section of text with your mouse, this function can be
used to find out the starting and ending locations of the selection.

The Drupal.getSelection() function returns an object with two attributes: start
and end. These two properties are integers which represent the beginning and
ending of the selection. In our next project, we will see this function in action.

There are a few other functions in the drupal.js file that may be used in rare
circumstances, but the ones we have seen here are the ones you are most likely to use
in your own scripts. In the last part of this chapter, we will do another project. We
will create a simple editor with jQuery and some of the Drupal capabilities we have
seen in this chapter.

Project: a simple text editor
In this project we are going to create a simple text editor. We are going to begin
with text areas and add a couple of buttons that insert HTML tags for us. In doing
this project, we will make use of the jQuery techniques we learned in the previous
chapter, as well as behaviors and some of the utility functions we saw earlier in
this chapter.

Drupal Behaviors

[114]

There are already several rich text editors available for Drupal, all of
which are more advanced than the simple tool we will create here. The
WYSIWYG API module is poised to become the de facto text editor going
forward. It can be found at http://drupal.org/project/wysiwyg.

Our editor will have two buttons—a B button to make some text bold, and an I
button to add italics. The editor will insert markup into the text so that the tags
are visible to the user. For example, if the user types in the string This is bold,
highlights the word "bold", and presses the B button, she or he will see the text
This is bold.

Before we look at the code, let's take a quick look at what it should produce:

The new simple editor attaches to existing <textarea></textarea> elements and
adds the two-button toolbar.

We want to write our code so multiple text areas on the same screen can all have
editors. We also want the editor to load as soon as the page is loaded and attach to
all text areas.

If we were implementing a complete editor solution, we would probably
not want the editor to attach to all text areas, since not all areas accept
HTML input. But for our project, we will simplify the process by
attaching the editor to all text areas.

Chapter 4

[115]

Let's start out by looking at our frobnitz.info file, which will point to a new CSS
file and a new JavaScript file:

; Id
name = Frobnitz
description = Table-based multi-column theme with JavaScript
enhancements.
version = 1.0
core = 6.x
base theme = bluemarine
stylesheets[all][] = frobnitz.css
stylesheets[all][] = simpleeditor.css
scripts[] = printer_tool.js
scripts[] = sticky_rotate.js
scripts[] = behaviors.js
scripts[] = simpleeditor.js

The two new files, highlighted in the previous code, will provide a stylesheet and a
JavaScript library for our tool.

The stylesheet is very simple. Here it is:

.editor-button {
 border: 1px solid gray;
 padding: 3px;
 width: 1em;
 text-align: center;
 background-color: #eee;
 float: left;
}

.editor-button:hover {
 background-color: #ccc;
}

.button-bar {
 clear: both;
}

It simply takes the elements that make up the buttons and button bar, and
makes them look and behave a little more like form buttons. Now, let's move
on to the JavaScript.

Here is the simpleeditor.js script in its entirety. After taking a quick look at the
entire file we will go through it more carefully:

// Id
/**
 * Simple text editing controls for a textarea.
 */

Drupal Behaviors

[116]

var SimpleEditor = SimpleEditor || {};

SimpleEditor.buttonBar =
 '<div class="button-bar">' +
 '<div class="editor-button bold">B</div>' +
 '<div class="editor-button italics">I</div>' +
 '</div>';

SimpleEditor.selection = null;
/**
 * Record changes to a select box.
 */
SimpleEditor.watchSelection = function () {
 SimpleEditor.selection = Drupal.getSelection(this);
 SimpleEditor.selection.id = $(this).attr('id');
};

/**
 * Attaches the editor toolbar.
 */
Drupal.behaviors.editor = function () {
 $('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(SimpleEditor.watchSelection)
 .keyup(SimpleEditor.watchSelection)
 .each(function (item) {
 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');
 var bar = SimpleEditor.buttonBar;

 $(bar).attr('id', 'buttons-' + txtareaID)
 .insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = SimpleEditor.selection;
 if (sel.id == txtareaID && sel.start != sel.end) {
 txtareaEle.value = SimpleEditor.insertTag(
 sel.start,
 sel.end,
 $(this).hasClass('bold') ? 'strong' : 'em',
 txtareaEle.value
);
 sel.start = sel.end = -1;
 }

Chapter 4

[117]

 });
 });
};

/**
 * Insert a tag.
 * @param start
 * Location to insert start tag.
 * @param end
 * Location to insert end tag.
 * @param tag
 * Tag to insert.
 * @param value
 * String to insert tag into.
 */
SimpleEditor.insertTag = function (start, end, tag, value) {
 var front = value.substring(0, start);
 var middle = value.substring(start, end);
 var back = value.substring(end);
 return front + '<' + tag + '>' + middle +
 '</' + tag + '>' + back;
};

The previous code has been organized in the order in which we will look at it
below. This makes the overarching structure a little less evident. Here's a high-level
description of what's going on.

The SimpleEditor namespace will hold most of the information pertinent to our
editor. We will use a Drupal behavior for attaching and handling various events.
Most of the major logic will be inside of our behavior.

Other than that, we will add a few helper function that will be part of our
SimpleEditor namespace.

Let's look at the first several lines of code in the simpleeditor.js file:

var SimpleEditor = SimpleEditor || {};

SimpleEditor.buttonBar =
 '<div class="button-bar">' +
 '<div class="editor-button bold">B</div>' +
 '<div class="editor-button italics">I</div>' +
 '</div>';

The SimpleEditor.buttonBar variable holds some generic HTML that creates a
basic button bar. We will use this as a template to add buttons to text areas.

Next, we will look at the new behavior. This is the most complex piece of code in
our project.

Drupal Behaviors

[118]

The main behavior
There is one main behavior registered for our simple editor. It learns about all of the
text areas in the document and then adds editor support to those areas.

This behavior illustrates the compactness that is achievable with jQuery and
drupal.js. It also makes use of constructs that you are likely to see in Drupal code,
such as nested anonymous functions.

Since it is complex, we will walk through it carefully.

Here's the behavior code:

Drupal.behaviors.editor = function () {
 $('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(SimpleEditor.watchSelection)
 .keyup(SimpleEditor.watchSelection)
 .each(function (item) {
 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');
 var bar = SimpleEditor.buttonBar;

 $(bar).attr('id', 'buttons-' + txtareaID)
 .insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = SimpleEditor.selection;
 console.log(sel.id + ' ' + txtareaID);
 if(sel.id == txtareaID && sel.start != sel.end) {
 txtareaEle.value = SimpleEditor.insertTag(
 sel.start,
 sel.end,
 $(this).hasClass('bold') ? 'strong' : 'em',
 txtareaEle.value
);
 sel.start = sel.end = -1;
 }
 });
 });
};

Chapter 4

[119]

The main part of this function is controlled by a large jQuery chain. This chain serves
three purposes:

1. It finds all of the text areas that need processing.
2. It adds event handlers to those text areas.
3. It loops through each text area and attaches a button bar to the text area.

Step 1: find text areas that need processing
Here's the chain:

 $('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(SimpleEditor.watchSelection)
 .keyup(SimpleEditor.watchSelection)
 .each(/* more code here */);

Take a look at the first pair of lines.

We saw this pattern earlier in the chapter. The main query looks for text
areas that have not already been processed by the behavior (textarea:not
(.editor-processed)). To the returned list, it first adds the class that indicates
that the behavior has been processed (addClass('editor-processed')).

Step 2: add event handlers
Once we've found the appropriate text areas and marked them as processed, we can
move on to lines three and four. Here, we need to attach two event handlers:

1. mouseup: This event will be triggered when a mouse button is released.
2. keyup: This event will be triggered when a key is released.

These are the two events which might indicate that some text within the text area has
just been selected.

How? Consider the case where a user is selecting text with a mouse. The user presses
the mouse button down, drags the mouse to select the text, and then releases the
mouse button. We want to check button releases to see if new text was selected.

The keyup event works the same way. The user may hold down the shift key while
selecting text with the arrow key. It's the key release that we want to use as a clue.
We should check it to see if the user selected any text.

Drupal Behaviors

[120]

In both cases, the same function is assigned. The SimpleEditor.watchSelection()
function checks a text area to find out what has been selected. Let's take a look at that
function before we continue examining the third part of the jQuery chain:

SimpleEditor.selection = null;

SimpleEditor.watchSelection = function () {
 SimpleEditor.selection = Drupal.getSelection(this);
 SimpleEditor.selection.id = $(this).attr('id');
};

The SimpleEditor.watchSelection() function does two things. First, it calls the
Drupal.getSelection() function to find out what text (if any) is selected in the
given text area. The value of this in the event handler function will be the element
from which the event was fired. In other words, this will be the text area element
that most recently changed.

The returned object will be stored in SimpleEditor.selection, where other parts of
our editor can access it.

The second thing this function does is get the ID of the current text area element.
Since we can have multiple text areas on the same page, we need to track which one
was modified. That's what SimpleEditor.selection.id is used for.

The id property is not a part of the object returned from Drupal.
getSelection(). Instead, we add it on an ad hoc basis.

At this point we have handled one of the major tasks that our editor must do. We
have created code that will track what is happening in the text area. Next, we will
move onto the third step in the jQuery chain.

Step 3: attach the button bar
First, the jQuery chain found the text areas to process. Next, the event handlers were
added. In the third step, the jQuery chain loops through each of the matching text
areas with a call to the each() function.

Inside of the each() function, we define an anonymous function that will operate on
each text area element. Here's that function:

function (item) {
 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');
 var bar = SimpleEditor.buttonBar;

Chapter 4

[121]

 $(bar).attr('id', 'buttons-' + txtareaID)
 .insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(/* Event handler function */);
}

This function will be called once for each text area that is found on the page.

This function defines three variables. The txtarea variable points to a jQuery object
wrapping the current text area. In order to identify the text area, we will need to get
the ID of the current area. The ID gets stored in txtareaID. We also need a local
copy of the button bar string that we created at the beginning of the script. This gets
stored in the bar variable.

As we've seen before, jQuery can distinguish between a string that contains HTML
and the one that contains a CSS selector. So when we call $(bar), jQuery parses bar
into an HTML DOM fragment. From there, we can manipulate the bar DOM just as
we do with the main document.

The first thing we do is generate an ID for our button bar—an ID based on the ID of
the text area that this button bar will be attached to.

We can use this ID later to distinguish one button bar from another. Again, if we
have several text areas on a page, we will have several button bars too. We need to
make sure that clicking on a button for one text area doesn't change text in another
text area.

Now we have a copy of the button bar and we've given it a unique ID. The next thing
to do is insert it into the document's DOM immediately above the text area that it will
be attached to. What we want to accomplish is to attach the current jQuery DOM to
some point in the document's DOM. We do that with the insertBefore() jQuery
function, which will insert the button bar above the desired text area.

Our button bar is structured like this:

<div class="button-bar" id="button-someID">
 <div class="editor-button bold">B</div>
 <div class="editor-button italics">I</div>
</div>

Our current jQuery object is pointing to the outer <div></div> element. But now we
want to work on the two inner divs, each describing a button. To go from the outer
element to the inner elements, we use $().childrend('.editor-button').

Now the current jQuery object will wrap both—the B button and the I button.

Drupal Behaviors

[122]

Currently, these aren't really buttons at all. Nothing will happen when you click
them. We need to add an event handler to these two so that they respond when
clicked. We use jQuery's click() function to add an event handler for the
click event.

The click() function takes a function as an argument. Once again, we define an
anonymous function to handle this.

Here's the event handler function that is attached to the click event:

function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = SimpleEditor.selection;
 if(sel.id == txtareaID && sel.start != sel.end) {
 txtareaEle.value = SimpleEditor.insertTag(
 sel.start,
 sel.end,
 $(this).hasClass('bold') ? 'strong' : 'em',
 txtareaEle.value
);
 sel.start = sel.end = -1;
 }
}

Each time one of our buttons is clicked, a version of the above function will
be executed.

What do I mean by a version?

This function, as an anonymous function, is created once per button. Furthermore,
the function definition is nested within another function definition (the definition for
the anonymous function inside of each()). Each time the function is defined in the
each() loop, it takes with it the environment defined by its parent function. In short,
it's not just a function, but also a snapshot of the environment in which the function
was created.

While each version of this function does the same thing, each has access to a
different environment.

For example, txtareaID, defined in the parent function (as we just saw), is still
available inside of this function. Furthermore, the txtareaID for the function
assigned to the first text area is different than the txtareaID assigned to the second
text area. In spite of the fact that the variable name is the same, the scope of the
variable is such that one click handler retains a copy, while another click handler
retains a different copy with a different value.

Chapter 4

[123]

For all practical purposes, we have created what is called a closure. We
have defined a function that carries with it some values it got from its
original context, but which are now closed off to any outside context.
The function may still have access to the txtareaID that was set when
the function was defined, but that txtareaID is closed off from any
other parts of the program. It no longer lives in any scope outside of the
anonymous function's scope. In Chapter 9, we will take another look
at closures.

By using anonymous methods in this way, we have made it possible to register event
handlers so that the context is carried with them. For example, there's no need to add
onclick attributes in our HTML that provides the ID of the text area or some other
bit of information. All of that is stored in the anonymous function as the behavior
is attached.

So what does this function do? The first thing it does is define a few variables. The
txtareaEle variable contains the actual text area element that this button relates to.
Notice that this function uses the txtareaID variable defined by the parent to get
this information.

The second variable, sel, is a copy of the SimpleEditor.selection variable. It
contains information about what text area was last active, and what part of that area
is selected. This SimpleEditor.selection object is maintained by the code we
looked at earlier, notably the SimpleEditor.watchSelection() function.

We now have the ID of the text area that this handler is attached to, and we have
information about the last text area that was active.

The next thing this click handler does is to find out whether it needs to make any
changes to the text area that it is responsible for. There are two criteria for this:

First, is the currently active text area (•	 sel.id), the text area that this click
handler is responsible for (txtareaID)? Remember, there will be one click
handler for every button attached to every text area. Each click function needs
to find out if the current text area target is the one that it is responsible for.
Second, is there any text selected? Our primitive editor will only surround •	
selected text with tags. So it will only insert tags if there is selected text
to surround.

If either of these two criteria fails, the click handler will quietly return.

Drupal Behaviors

[124]

But if the target text area is the one this handler handles, and if there is also some
selected text, then this function will go about wrapping the selected text in the
appropriate tags:

 if(sel.id == txtareaID && sel.start != sel.end) {
 txtareaEle.value = SimpleEditor.insertTag(

 sel.start,

 sel.end,

 $(this).hasClass('bold') ? 'strong' : 'em',

 txtareaEle.value

);

 sel.start = sel.end = -1;
 }

The highlighted code is responsible for inserting the tag. It resets the value
of its text area (txtareaEle.value) to whatever gets returned from
SimpleEditor.insertTag().

In just a moment we will look at SimpleEditor.insertTag(). But first, let's look at
the parameters that are passed in:

The first parameter, •	 sel.start, indicates where the selection starts. It's the
index of the first character in the text area that is selected.
The second parameter, •	 sel.end, is the last selected character in the text area.
The third parameter determines what tag is going to be inserted. If the button •	
that was clicked has the class bold, then clicking this button should make
the text bold (strong). Otherwise, we assume that the text should be put in
italics (em).
Finally, we pass in the string that contains all of the text in the text area. In •	
this case, we simply get the value property of the text area element.

So this last function call in the click event handler will take the text in the target
text area, find the selected text in that area, and surround the selected text with the
appropriate HTML tag.

After the call to SimpleEditor.insertTag() returns, we clear out the old selection
by setting sel.start and sel.end to -1. We clear it because the selection disappears
in the browser window when a button is clicked, and also because we want to make
sure that another button click doesn't insert another tag.

It's time to turn to the SimpleEditor.insertTag function to see how that works:

SimpleEditor.insertTag = function (start, end, tag, value) {
 var front = value.substring(0, start);

Chapter 4

[125]

 var middle = value.substring(start, end);
 var back = value.substring(end);
 return front + '<' + tag + '>' + middle + '</' + tag + '>'
 + back;
};

We saw the four parameters that are passed to SimpleEditor.insertTag():
the position of the first selected character(start), the position of the last selected
character (end), the name of the tag to surround the selection with (tag), and the
string that contains all of the text (value).

There are a few ways we could do this, some probably more economical than this.
But this function follows a very simple path. It breaks the string into three parts: The
part before the start tag should be inserted, the part between the start and end tags,
and the part after the end tag.

For example, let's imagine the value of value to be this:

The cat sat on the mat.

Now let's imagine that the word cat has been selected. That would make the
value of start equal to 4, and the value of end equal to 7. This would result in
the following three parts:

var front = 'The ';
var middle = 'cat';
var back = ' sat on the mat.';

And if the I button was clicked then the value of tag is em.

Now, all the function does is glue these strings back together:

front + '<' + tag + '>' + middle + '</' + tag + '>' + back;

This would produce the string The cat sat on the mat.

When SimpleEditor.insertTag() returns this value, it would replace the old
text as the value of the text area. The result, then, is that the selected text has been
wrapped with the appropriate HTML tags.

We've now created an editor capable of adding bold and italic tags to text in a text
area. We've done this with a combination of jQuery and drupal.js functions,
including a behavior and the Drupal.getSelection() utility function.

While this editor is certainly primitive, it's also less than 100 lines of code (including
comments). This should give you some idea of how powerful tools can be efficiently
built using the libraries included with Drupal 6.

Drupal Behaviors

[126]

Summary
In this chapter, we looked at Drupal Behaviors and the major utility functions
provided by drupal.js.

We began with an overview of the drupal.js file, which provides functions for
behaviors, translation, theming, as well as other utility functions. Then looked at
what Drupal Behaviors are and how they work. We even saw how seemingly correct
uses of behaviors can result in bugs that are difficult to diagnose.

In our first project, we used behaviors to add a sliding effect to all blocks on a page.

Then we looked at several utility functions included in drupal.js, learning when
and how to use them. This led us to our second project, where we created a simple
editor using jQuery, behaviors, and the Drupal.getSelection() function.

In the next chapter, we will continue our exploration of drupal.js by looking at
JavaScript translation features. In the chapter after that, we will look at the JavaScript
theming engine where we will again encounter behaviors.

Lost in Translations
Drupal offers some enticing JavaScript tools, one of which is jQuery. The theming
and behavior capabilities provided by drupal.js are other examples. Along with
those cool tools comes a feature that has had a remarkable influence on the success
of Drupal, but which provides far less glitz and glamour.

This tragic hero is the translation engine, which will be the subject of this chapter.

Translations are important—one might even say vital—to the success of Drupal.
Consequently, it is imperative that all Drupal developers become familiar with
these tools. JavaScript written in Drupal 6 (and in later versions) should be
translation-aware.

Even if you don't think you need the translation functions, I advise you
to read this chapter. The tools covered here play a very important role in
Drupal, even providing additional security to your code.

We will move quickly in this chapter, retaining our focus on the practical. We will
not spend time in closely examining the translation system.

Here are the things we will cover in this chapter:

Get our bearings in the •	 drupal.js library
Enable multi-language capabilities in Drupal•	

Learn the translation functions•	

Build language files•	

For our project, we will create a small tool that takes advantage of JavaScript
translation features. And to see it in action, we will create our own translation.

Lost in Translations

[128]

Translations and drupal.js
There are four main families of tools in drupal.js:

1. Theming functions.
2. Translation functions.
3. Utility functions.
4. Support for Drupal behaviors.

Our focus in this chapter will be on the translation functions. When we talk about
translation tools, what exactly are we talking about?

Translation functions provide language translation facilities to JavaScript. Text that
would normally be hardcoded into the JavaScript is translated through this system to
the user's preferred language.

As is the case with the theming system, the drupal.js translation system is designed
to provide an API similar to the server-side PHP translation system.

The translation functions are designed to be simple for the developer's use. In fact,
the developer needn't even turn on Drupal's translation module to use the JavaScript
libraries. The idea is to make it painless enough for the developer to use, and train
the developer to habitually use the translation features.

In order to show how things work, we will not only look at the translation functions,
but also at how the larger translation system is used.

Translation and languages
One of the Drupal's more distinguished points is its well-integrated support for
multiple languages. Drupal has been translated into dozens of languages, and
installing and enabling a translation is a simple process. For these reasons, Drupal
has gained an international audience.

In earlier versions of Drupal, this language support was confined to server-side PHP
code. JavaScript did not have access to the translation library. But with the release of
Drupal 6, basic translation support was extended to JavaScript.

In order to see how translations work, we are going to walk through the process of
enabling the translation system on the server. We will then return to the drupal.js
library to see how it uses the system.

Chapter 5

[129]

Translation functions are the portions of code that developers use to
make it possible for code to perform translations when appropriate. The
translation system is the part of Drupal that does the actual translation.
We will start with this second part, the translation system, and then go
back to the translation functions.

English is the default language for Drupal. In fact, it is the only one installed by
default. But since Drupal provides a complete language translation subsystem, and
Drupal code is developed to support translation, enabling multi-language support is
a straightforward process.

We will begin by installing a new language.

There are three steps that must be performed the first time you install a language:

1. Multi-language support must be turned on.
2. Translation files must be downloaded and installed.
3. Drupal's translation preferences must be configured.

We will briefly walk through this process.

Turning on translation support
By default, Drupal's translation support is disabled. It is disabled for the practical
reason that if it is not needed, the performance hit incurred by the translation
subsystem should be avoided.

Turning it on is a matter of enabling a couple of modules. These modules are
included in the Drupal core, so there's no need to download anything. All you need
to do is go to Administer | Site building | Modules, and then check the boxes next
to the Locale and Content translation modules.

Once you've done that, click on the Save configuration button at the bottom of the
screen. That should do it.

Getting and installing translations
Dozens of translations are available in the Translations repository
on the official Drupal.org web site. To find and download a new language, go to
http://drupal.org/project/Translations and download the desired language.

Lost in Translations

[130]

Once you have the translation archive, you can install it by uncompressing the file
in the same directory where Drupal is installed. For example, if Drupal is installed
in /var/www/drupal (a common location for it on Linux servers), you will want
to uncompress the translation file in /var/www/drupal. The language files will
automatically be placed in the correct location.

The next thing to do is to let Drupal know that you have a new language installed.

Configuring languages
Once we have downloaded and unpacked the desired language(s), we need to
configure Drupal's language support to determine how to handle multiple languages.

There are two steps to this process:

1. Add the new language.
2. Configure the global language settings.

In the first step, we are going to let Drupal know about the new language.

Adding the language
We've already installed the language, but we also need to tell Drupal that we want it
to go through the process of scanning the language files and compiling a translation
database. This process is called adding a language.

To do this, we need to go to the Administer | Site configuration | Languages page
and click on the Add language tab as seen in the following screenshot:

Chapter 5

[131]

On this screen you will need to select the language from the Language name
drop-down list. Unfortunately, this list is not limited to the languages you have
already installed, so you will have to find the language in the list. Languages are
indexed by their English name. Thus, you should look for German instead of Deutsch.

Once you've found the language, click Add language and sit back while Drupal
parses all of the language files.

After the parsing is finished, we are ready to move on to the next step.

Configuring languages
We have multiple languages supported, now. But we need to tell Drupal how it
should determine what language we want to see when we visit a page.

To configure this, we can click on the Configure tab on the Administer | Site
configuration | Languages page. There is only one set of options on this page:
Language negotiation.

These settings let us configure how Drupal will determine which language to display.
By default, None is checked. This means only the default language will be used.

Path prefix only determines which language to use based on a language identifier
string present at the beginning of the URL. For example, my site is running at
http://localhost:8888/drupal/. I have English set as the default language, and
the Spanish translation is also installed.

Using these settings if I type in the previous URL, I will see the page in English (the
default language). However, if I type in the URL http://localhost:8888/drupal/
es/, the site will be displayed in Spanish. The es identifier is a prefix to the Drupal
portion of the URL. So if I want to view a node using the Spanish translation, the
URL would look like this: http://localhost:8888/drupal/es/node/1.

Lost in Translations

[132]

Path translation and language prefixes
The URLs mentioned make use of Drupal's clean URLs. By using
Apache's mod_rewrite module, data that would normally appear in
a query string can be embedded in the URL. If you do not have clean
URLs turned on, then the previous URL would look something like this:
http://localhost:8888/drupal?q=es/node/1. With the query
string clearly isolated, it's a little easier to see how es is treated as a prefix.

The Path prefix with language fallback option is similar to the previous option,
except that it adds one more step.

If the path provides a language prefix, then that language is used (assuming the
language has been installed and added). But if no prefix is found, Drupal then checks
the language preferences that the web browser sends in its HTTP headers. These
look something like this:

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US;
rv:1.9.0.1) Gecko/2008070206 Firefox/3.0.1
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
Accept-Language: es,en-us;q=0.7,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cache-Control: max-age=0

This is a subset of the HTTP headers my browser sent when requesting a page from
Drupal (and I viewed the headers using Firebug).

The highlighted line shows the language preferences. Spanish (es) is the first
language, with US English (en-us) and generic English (en) set as my second and
third choices.

With Path prefix with language fallback enabled, when I type in
http://localhost:8888/drupal/, I will get the page in Spanish because
Drupal will inspect the Accept-language header and determine that it is the
best language to use.

If the Accept-language header isn't available, or there is no language match, then
Drupal will fall back to the site's default language.

Finally, the last language negotiation type is Domain name only. In this case,
the domain name portion of the URL is used to determine language. For example,
http://es.example.com would resolve to the Spanish language, while
http://en.example.com would resolve to English.

Chapter 5

[133]

For multi-language development work, I find the Path prefix only choice to be the
easiest to work with.

The translation feature is used to translate the strings that appear in
Drupal code. This is done manually by a dedicated team of translators.
Consequently, enabling translation will not affect the content you create.
For example, if you write content in English, it will not be translated to
Spanish for you. Only the interface (built-in menus, module descriptions,
and so on) will be translated.

We now have multi-language support enabled, and you should be able to configure
your Drupal installation to use more than one language. It's time to take the
developer's perspective again. First, we will look at the main JavaScript translation
functions. Then, we will look at a developer's tool to create translations.

Using the translation functions
Regardless of whether or not you intend to translate your module, you should always
use the translation functions where applicable. There are a few reasons for this:

By coding in a translation-friendly way, you pave the way for easy •	
translations later. This is especially important for contributed modules,
where your module may indeed be used by speakers of other languages.
The translation functions provide additional security. This might sound •	
counterintuitive at first. How can adding translation support increase security?
As we will see shortly, the translation functions also perform additional
escaping on text. Untrusted text is automatically escaped for display.
Escaping is one way of preventing a malicious user from performing
Cross-Site Scripting (often called XSS) scripting attacks or other code
injection attacks.
Using translation functions is just good coding practice. As with many •	
other aspects of Drupal coding, the developer community encourages (and
in many cases enforces) clean, well-written, and portable code. Using the
translation functions is one way of conforming to Drupal's coding guidelines.

The drupal.js file contains a pair of functions that can make use of Drupal's
multi-language support. These two functions are Drupal.t() and Drupal.
formatPlural().

If you've done any Drupal PHP coding, both of these should immediately be familiar
to you. They are directly analogous to the t() and formatPlural() functions in
Drupal's core PHP library. Not only do they share a name, but also the same method
signature. They take the same arguments and return the same type of content.

Lost in Translations

[134]

Let's start out by looking at the Drupal.t() function.

In the previous chapter, we looked at the jQuery.extend() function,
and I mentioned that it worked like a static function. Many of the functions
we will see in the drupal.js library are also used this way. There
is no need to call new Drupal(). In fact, the Drupal object has no
constructor, so it cannot be used to create new instances.

The Drupal.t() function
As with all of core Drupal JavaScript functions, this function uses the Drupal
namespace. The t() function is a member of the Drupal library. This function's job
is to take a string and perform any translation actions on it. Here's a simple example
of this:

alert(Drupal.t('hello world'));

In this case, the translation function would check the language database for the
user's preferred language and see if there was a translation available. If there is,
then the function will return the translated string. If not, then hello world will be
returned unaltered.

Shortly, we will take a closer look at how the translation happens. It is a slightly
more complex process than what initially meets the eye. But before we move on
in that direction, let's look at a more complex use of the Drupal.t() function.

The Drupal.t() function can take up to two arguments. They are (in order):

1. The string that should be translated.
2. An object containing name/value pairs for substitution into the string.

Here's a brief example that makes use of both:

var params = {
 "@siteName": "Example.Com",
 "!url": "http://example.com/"
};
var txt = Drupal.t("The URL for @siteName is !url.", params);

In the code, we first create the params object that contains a mapping of placeholders
to text. What is this mapping for? Look ahead to the contents of the Drupal.t()
function. The Drupal.t() function takes a string object and the params mapping
we created.

Chapter 5

[135]

The string looks like this: The URL for @siteName is !url. There are two
placeholders in this string, @siteName and !url. When the Drupal.t() function is
executed, the placeholders will be replaced by values from the params object.

In this case, @siteName will be replaced by Example.Com, and !url will be replaced
by http://example.com/. So the English rendering of the string would be The URL
for Example.Com is http://example.com/.

But wait! There are a couple of details to fill in. First of all, why are we using
placeholders in the first place? And second, what are the @ and ! signs for?

In answer to the first question, placeholders should be used for any values that
should not be translated. The example uses a proper name for @siteName and a URL
for !url. In cases like this, translation would be unnecessary. Presumably, the site
name and URL are the same in all languages.

This is a simple case where placeholders might be used. However, it's not all that
common in practical cases.

A more realistic use of placeholders is to substitute it in values that are not known
at translation time. To elaborate the example, consider the case where the site name
and site URL are retrieved from some other object. Let's say we have an object called
SiteInfo that contains this information (This is a fictional example. There is no
such object.)

Our params object might look like this instead:

var params = {
 "@siteName": SiteInfo.name,
 "!url": SiteInfo.url
};

Here, the values of these variables may not be known until runtime, long after the
translation has been generated. So using placeholders clearly makes sense.

Translations are created by humans, and the process of translation is
mostly handled manually. We will see this process in a few minutes.
But nothing magical happens at runtime. Translated strings are simply
substituted for the default (usually English-language) text.

Placeholders are then used in cases where values need to be inserted into a translated
string, but where the values themselves should not be translated as part of that string.

Lost in Translations

[136]

In answer to the second question, placeholders can be demarcated by three different
symbols: @, %, and !. Any word (alphanumeric characters surrounded by whitespace)
inside a translation string that begins with one of those three characters will be
treated as a placeholder.

Each of these three placeholder symbols serves a special purpose. Each indicates to
Drupal.t() how the string should be substituted in, as explained here:

Placeholders that begin with the •	 @ symbol are escaped for display in HTML.
For example, if we have a param that looks like this: '@tag': '<p>',
Drupal.t() will convert the value to <p> before substituting it into
the target string. Mostly, you should use this method of escaping to prevent
security holes.
Placeholders that begin with •	 ! are inserted verbatim. Drupal does not encode
any of these. This should be used with care, for it could open security holes
that might, for instance, allow XSS attacks.
Finally, placeholders that begin with •	 % are first encoded (like @ placeholders),
and then themed for emphasis. It means, in the default Drupal configuration,
the resulting string will be placed inside the tags. Using the
example '@tag': '<p>', the output would be <p>.

So what should you use and when? Most of the time, placeholders should be
prefixed with @. That will do the encoding, but without necessarily adding any
additional format (like % does). Placeholders should only begin with ! when escaping
content would damage the output, and when the value to be substituted is known.
For example, you shouldn't take user-entered text and then use a ! placeholder.

That's how the Drupal.t() function works.

When should a string be translated?

Ideally, every static piece of text in your application—labels, help text, descriptions,
and so on—should be translated. Of course, there are exceptions. For example,
proper nouns are usually not translated.

The Drupal.formatPlural() function
The second translation function is Drupal.formatPlural(). As you may have
guessed from the name of the function, its job is to format a reference to singular and
plural objects. This comes from the problem that in many languages (English and
Spanish are good examples) single items and plural items have different suffixes.
For example, we say "Johnny has 1 apple" and "Johnny has 2 apples". We also say,
"Johnny has 0 apples."

Chapter 5

[137]

So 1 is the only singular case in English (not all languages are this way, French treats
0 as singular). To handle this in a translation-friendly way (not all languages add
s to form a plural), Drupal contains a function Drupal.formatPlural() that can
determine whether the current case needs a singular form or a plural form.

This function takes these arguments:

A number (If it is 1, then the singular will be used, otherwise the plural form •	
will be used.)
A singular string (in English)•	
A plural string (in English)•	

Elaborating our example, we might have code that looks something like this:

for (i = 0; i < 6; ++i) {
 alert(
 Drupal.formatPlural(i, "Johnny has 1 apple.", "Johnny has

 @count apples.")

);
}

The formatting is a little stilted to get everything on one line, but the important part
is the highlighted call to Drupal.formatPlural().

When this script is run, it will loop six times and pop-up an alert message each time.
Each time Drupal.formatPlural() is called, it will be passed i and the singular and
plural strings.

If the value of i is 1 then the alert will say Johnny has 1 apple. In all other cases, the
third parameter will be used: Johnny has @count apples. The @count placeholder
is automatically replaced with the value of i. So for the first loop, we get Johnny has
0 apples. On the third loop, we get Johnny has 2 apples.

But this function doesn't just toggle between two strings. It uses the translation
subsystem to translate the selected string too. So if the language is set to German and
i is 0, the output should look something like this (assuming the German translation
exists): Johnny hast 0 Äpfel.

That's all there is to the Drupal.formatPlural() function. The next thing we will
be look at is how to translate a string and make it available to your JavaScript.

Lost in Translations

[138]

Adding a translated string
When we create a translation for our content, we want to fulfill two goals:

1. Build a translation in such a way that the Drupal.t() function can make
use of it.

2. Make this translation portable, so that we can use the same JavaScript on
different servers. Even if we are only planning on using our JavaScript on a
single site, we want it to be portable for ease of migration
or rebuilding.

The easiest way to meet these two goals is to install a special module. This module is
called the Translation template extractor. It basically analyzes our code, looking for
the Drupal.t() calls. It then generates a template that we can easily modify to add
our translation.

To get this module, go to http://drupal.org/project/potx and get the latest
release. The release contains both a module and a command-line tool. If you like, you
can use the command-line version. However, the module version is very easy to use.
It is installed simply by moving the potx/ folder in the downloaded module to your
sites/all/modules directory, and then installing the module in the usual way by
visiting Administer | Site building | Modules.

The main thing this module does is add a new tab to the Administer | Site building
| Translate interface page:

Chapter 5

[139]

The Extract tab (on the far right of the list of tabs) is the one that we use to parse our
files and get the strings for translation. In just a little while, we will use this interface
to grab the contents from a JavaScript project that we will be creating.

This interface will generate a special file called a POT file, which maps the original
untranslated text to translated strings.

Drupal uses the GNU gettext system for translation. Learn more about it
at http://www.gnu.org/software/gettext/.

Once you've gone through the process of translating strings in this POT file, it is just
a matter of putting the translation file in the right place in the theme (or module)
directory. Again, we will walk through that in our project.

Translating JavaScript, translating PHP
We are focused on the JavaScript here. However, PHP translations are
done in exactly the same way. There's no need to learn two translation
systems—the two are fully integrated.

In fact, now that we have gone over the basics, we are ready to start our project.

Project: weekend countdown
The project that we will create in this chapter is a simple weekend countdown tool.
This will display a little piece of text that indicates the current day of the week, and
then says how many days are left until the weekend.

The main point of this application will be to make practical use of the translation
system that we saw earlier. For that reason, we will first write some code, and then
do a little translation.

While we will consistently use the Drupal.t() function in this book,
this is the only place where we will be writing a translation. You do not
need to provide translations along with your theme or module (though if
you have the ability to do the translations, it sure would be nice).

Our code is once again going to be attached to the frobnitz theme. The script
file will be named day.js. Make sure you include it in the frobnitz.info file:
scripts[] = day.js.

Lost in Translations

[140]

Here's the code:

var Day = Day || {};

Day.dayNames = [
 Drupal.t("Sunday"),
 Drupal.t("Monday"),
 Drupal.t("Tuesday"),
 Drupal.t("Wednesday"),
 Drupal.t("Thursday"),
 Drupal.t("Friday"),
 Drupal.t("Saturday")
];

/**
 * Create a small banner indicating the number of days until
 * the weekend.
 *
 * This will create a div element in the upper right-hand
 * corner.
 */
Day.banner = function () {
 var divProps = {
 "position": "absolute",
 "top": "5px",
 "right": "25px",
 "background-color": "black",
 "color": "white",
 "padding": "4px"
 };

 var today = (new Date()).getDay();
 var dayCount = 6 - today;
 var dayFields = {
 "@day": Day.dayNames[today],
 "@satCount": Drupal.formatPlural(dayCount,"is 1 day", "are @count
 days"),
 "@saturday": Day.dayNames[6]
 };

 var dayText = Drupal.t(
 "Today is @day. There @satCount until @saturday.", dayFields);
 var dayDiv = '<div id="day_div"></div>';

Chapter 5

[141]

 $('body').append(dayDiv).children('#day_div').css(divProps)
 .text(dayText);
};

$(document).ready(Day.banner);

The main thing this code does is create a box in the upper-right corner of the screen
that looks like this:

With this in mind, let's step through the code by beginning with the top portion:

var Day = Day || {};
Day.dayNames = [
 Drupal.t("Sunday"),
 Drupal.t("Monday"),
 Drupal.t("Tuesday"),
 Drupal.t("Wednesday"),
 Drupal.t("Thursday"),
 Drupal.t("Friday"),
 Drupal.t("Saturday")
];

After creating a Day namespace object, we create an array with seven entries,
one for each day of the week. The value of the entry will be the result of a call to
Drupal.t(). The resulting English-language version would be something like this:
["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"].

Later we will use this array to match the numeric index of the weekday to the name
of the day. This is done in the Day.banner() function seen here:

Day.banner = function () {
 var divProps = {
 "position": "absolute",
 "top": "5px",
 "right": "25px",
 "background-color": "black",
 "color": "white",
 "padding": "4px"
 };

 var today = (new Date()).getDay();

Lost in Translations

[142]

 var dayCount = 6 - today;
 var dayFields = {
 "@day": Day.dayNames[today],
 "@satCount": Drupal.formatPlural(dayCount, "is 1 day", "are
 @count days"),
 "@saturday": Day.dayNames[6]
 };

 var dayText = Drupal.t("Today is @day. There @satCount until
 @saturday.", dayFields);
 var dayDiv = '<div id="day_div"></div>';

 $('body').append(dayDiv).children('#day_div').css(divProps)
 .text(dayText);
};

The first thing we do in this function is create divProps, which serves as a map
of all of the CSS properties that we will assign later to our <div></div> element.

After that, we find the numeric value of the current day of the week and then
calculate how many days are left until Saturday:

var today = (new Date()).getDay();
var dayCount = 6 – today;

Both of these values are stored for later use.

In order to create compact code, the previous code uses a shortcut. The code (new
Date()).getDay() creates an anonymous instance of the Date prototype and then
calls that object's getDay() function. The function getDay() returns the numeric
index of the current day, where Sunday is 0 and Saturday is 6.

This is effectively the same as writing:

var myDate = Date();
var today = myDate.getDay();

Our shortcut method is useful only in the case where the new Date instance is
needed only once. By using it, we spare ourselves a line of code and an extra
variable. However, there's nothing wrong with using the two-line version.

Now that we have the current date and the number of days until Saturday, we
can continue.

 var dayFields = {
 "@day": Day.dayNames[today],
 "@satCount": Drupal.formatPlural(dayCount, "is 1 day", "are

Chapter 5

[143]

 @count days"),
 "@saturday": Day.dayNames[6]
 };
 var dayText = Drupal.t("Today is @day. There @satCount until
 @saturday.", dayFields);

The pattern of the previous code should look familiar because it is the setup for a
Drupal.t() call.

First, we define our placeholders. This call is a little packed, so let's look at it closely.
The dayFields object contains three placeholders:

@day•	 : This contains the name of the day for the current day. It uses the
Day.dayNames array to translate the numeric day to a string. Since each
item in Day.dayNames is already translated, the day of the week will be
appropriately translated.
@satCount•	 : This placeholder is going to produce a string indicating
the number of days. We use Drupal.formatPlural() here to handle
pluralizing. It will print either is 1 day or are @count days.
@saturday•	 : This will contain the translated name of Saturday. This uses the
Day.dayNames to get the appropriately translated name.

With the placeholders ready, the next thing the code does is run Drupal.t().
This will take the string Today is @day. There @satCount until @saturday. and
substitute in the placeholders.

By the time this part of the code is run, the dayText variable should contain
something like Today is Wednesday. There are 3 days until Saturday.

The last step in this function is to insert that generated text into the page. Once again,
we are going to use jQuery to do this for us:

var dayDiv = '<div id="day_div"></div>';

$('body').append(dayDiv).children('#day_div').css(divProps)
 .text(dayText);

In this snippet, we first define a basic <div></div> element, storing it as a string in
dayDiv. Then we use jQuery to do the following:

1. Find the <body></body> element and build a jQuery object that wraps it.
2. Append the contents of dayDiv (our div element) to the body.
3. Search the body element for the child with an ID day_div (which is the ID

of the div we added). Essentially, what we are doing here is changing the
jQuery object to point to the newly added div element instead of to the
body element.

Lost in Translations

[144]

4. The css() function is called on the jQuery object that wraps the div element.
This adds all of the items in divProps as CSS properties. In short, we are
now styling the div element.

5. Finally, by using the text() function we are setting the text content of the
div element.

When this long jQuery chain is executed, the HTML will contain a new div element
that looks like this:

<div id="day_div" style="padding: 4px; position: absolute; top: 5px;
 right: 25px; background-color: black; color:
 white;">
 Today is Wednesday. There are 3 days until Saturday.
</div>

Here we've used jQuery to programmatically add a fully styled element with the
information we have created.

That wraps up the Day.banner() function. Since we want this to show as soon as the
page loads, we need to add one more line to our file:

$(document).ready(Day.banner);

We saw this function in the last chapter. The jQuery ready event fires as soon as
the HTML is loaded and the DOM is ready for manipulation. In this case, when that
event fires, the Day.banner() function is executed and the weekend countdown
is displayed.

Remember that we pass the function object (Day.banner), and not the
results of the function (Day.banner()), to the ready() function.

Now we've finished the first part of this project. Regardless of what languages you
have installed and your language configuration, the Day.banner() function will
always return English text. Why? That's because we have not translated our tool, so
every Drupal.t() lookup will fail to find translated text.

Let's fix that by creating a translation for our script.

Translating the project's strings
With our application written to take advantage of the translation system, what we
want to do now is provide translations for other languages. To do this, we will use
the Translation template extractor module discussed earlier in the chapter.

Chapter 5

[145]

To do our translation, we will have the template extractor analyze the code in our
theme and generate a translation template file. From there, we will simply add the
translated text, and then add the translation file to the correct location in the
file system.

The first step is to generate the translation template. This is done in Administer |
Site building | Translate interface. We are interested in the Extract tab.

For our example, we are going to translate the Frobnitz theme into Spanish. This
theme contains the day.js file that we have created as part of this project.

Here is what the Extract tab looks like:

In the previous screenshot, I have already configured things for a download. All I
need to do to get my translation template is press the Extract button.

Here's how things work.

Lost in Translations

[146]

The first thing to do is select the part of the site to be translated. I only want to work
on the Frobnitz theme, so I have expanded the Directory "sites/all/themes" section
and checked the Extract from frobnitz in the sites/all/themes/frobnitz directory
radio button.

Next, I have selected the Template language. In the screenshot, there are two
available options: Language independent template and Template file for
Spanish translation.

The first choice provides a basic template that will work for any language. If I were
translating to, say, German (which is not a currently-installed language), then I could
choose this option.

Fortunately, since we already have the Spanish Drupal translation installed, we can
make use of a shortcut. The second link, Template file for Spanish translations, allows
us to generate a template that has already been tailored to our target language.

In addition to this, the last checkbox, Include translations, takes us a step further. It
will check to see if there are any existing English-to-Spanish translations that match
our own calls.

When the Extract button is pressed, the extractor will analyze our Frobnitz theme.
It will locate the text that needs translation—the text in the Drupal.t() function
call. Since we checked the Include translations box, it will also search existing
translations and try to generate some translations for us.

Once all of this is done, the server will deliver a partially completed translation file.

Here's what the file looks like:

Id
#
LANGUAGE translation of Drupal (general)
Copyright YEAR NAME <EMAIL@ADDRESS>
Generated from files:
page.tpl.php: n/a
frobnitz.info: n/a
day.js: n/a
test.js: n/a
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
"POT-Creation-Date: 2008-08-28 02:47-0600\n"

Chapter 5

[147]

"PO-Revision-Date: YYYY-mm-DD HH:MM+ZZZZ\n"
"Last-Translator: NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <EMAIL@ADDRESS>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: page.tpl.php:20;20;21
msgid "Home"
msgstr "Inicio"

#: frobnitz.info:0
msgid "Frobnitz"
msgstr ""

#: frobnitz.info:0
msgid "Table-based multi-column theme with JavaScript enhancements."
msgstr ""

#: day.js:0
msgid "Sunday"
msgstr "Domingo"

#: day.js:0
msgid "Monday"
msgstr "Lunes"

#: day.js:0
msgid "Tuesday"
msgstr "Martes"

#: day.js:0
msgid "Wednesday"
msgstr "Miércoles"

#: day.js:0
msgid "Thursday"
msgstr "Jueves"

#: day.js:0
msgid "Friday"
msgstr "Viernes"

Lost in Translations

[148]

#: day.js:0
msgid "Saturday"
msgstr "Sábado"

#: day.js:0
msgid "Today is @day. There @satCount until @saturday."
msgstr ""

#: day.js:0
msgid "1 day"
msgid_plural "@count days"
msgstr[0] "1 día"
msgstr[1] "@count días"

While this file is long, it is not very complex. Let's start at the top:

Id
#
LANGUAGE translation of Drupal (general)
Copyright YEAR NAME <EMAIL@ADDRESS>
Generated from files:
page.tpl.php: n/a
frobnitz.info: n/a
day.js: n/a
test.js: n/a
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
"POT-Creation-Date: 2008-08-28 02:47-0600\n"
"PO-Revision-Date: YYYY-mm-DD HH:MM+ZZZZ\n"
"Last-Translator: NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <EMAIL@ADDRESS>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

Lines that begin with # are comments. The comments are automatically generated
and provide some useful information. But there are also a few placeholders that you
might want to replace with useful information.

For example, you might want to change Copyright YEAR NAME <EMAIL@ADDRESS>
to something like Copyright 2008 Barbara Jenson <bjenson@example.com>.

Chapter 5

[149]

Next is a block of automatically generated text that provides some metadata about
the translation, such as when the translation file was created. Again, you might
want to change the default generated value of items, such as Language-Team, to
something more accurate.

You will definitely need to set the Plural-Forms directive. This helps Drupal.
formatPlural() to correctly set the plural form. The directive takes two parts. First,
nplurals indicates how many plural forms the given language has. English and
Spanish both have two, Slovenian has four. The second part gives the formula for
selecting which of the forms to use. The singular version in our code is the first (0).
Plural is in the second place (1). So we can write a simple formula for plural that
looks like this: n != 1;. This tells the translator that if n!= 1, the first item (singular)
should be used; otherwise, plural should be used.

So the entire Plural-Forms directive should look like this:

"Plural-Forms: nplurals=2; plural=(n != 1);\n"

For the plural formulas of other languages, see http://drupal.org/
node/17564.

With the headers out of the way, let's look at the first translated item in the file:

#: page.tpl.php:20;20;21
msgid "Home"
msgstr "Inicio"

These three lines handle the translation of the term "Home".

The first line is an informational comment that tells us where the string appears. It
can be found in page.tpl.php on lines 20 and 21.

Here's the actual code from that file (formatted for easier reading):

<?php if ($logo) {
 ?><a href="<?php print $front_page ?>"
 title="<?php print t('Home') ?>"><img src="<?php

 print $logo ?>" alt="<?php print t('Home') ?>" />

 <?php
} ?>

Notice that both of the highlighted lines call the Drupal PHP function t(), which
performs the same task for PHP as Drupal.t() does for JavaScript.

Lost in Translations

[150]

There are a few important things to note about this example:

First, this one translation file is handling translations for both the PHP and •	
the JavaScript translations. There is no need to generate different language
files for the different technologies.
Second, in this case the •	 t() function was used twice with the same string
both times. But we only have to translate the string once. This minimizes
redundant work.

Looking back at that first entry in the translation file, there are two lines after
the comment:

msgid "Home"
msgstr "Inicio"

A translation of any given message is broken into two parts: the original message
and the translation. In the previous case, each part takes only one line (longer strings
may take multiple lines).

The first line indicates the original English-language string that was passed into the
t() function. This is called the message ID.

The second line is the translation into the file's target language—Spanish.

In this case, the translated text was automatically generated. Apparently, the
template extractor found another Home message ID and that message was translated
to Inicio. So here, that same translation is suggested.

In fact, as we look through the file, we will see that many of the messages we chose
have already been translated. All of the day names are done for us.

In fact, the first one that needs translating is this:

#: day.js:0
msgid "Today is @day. There @satCount until @saturday."
msgstr "Hoy es @day. Quedan @satCount til @saturday."

All we need to do to complete this example is translate the string, putting the
placeholders in the appropriate places:

Hoy es Jueves. Quedan 2 dias til Sábado.

That's all there is to translating a string.

Chapter 5

[151]

If, for some reason, we needed to do a multi-line string, and the syntax is something
like this:

msgid ""
 "Original string"
 "More text..."
msgstr ""
 "New string"
 "More text..."

We should note that the first string is always empty ("") on a multi-line translation.

Now let's take a look at a configuration for a string translated by Drupal.
formatPlural():

#: day.js:0
msgid "is 1 day"
msgid_plural " @count days"
msgstr[0] "1 día"
msgstr[1] "@count días"

Again, the extractor found existing values for us, and the translation is already
complete. But the format is a little different than other entries.

The msgid line always points to the first string in the Drupal.formatPlural() call.
The code that generated the previous configuration was Drupal.formatPlural(i,
"1 day", "@count days"). That first string, 1 day, became the message ID.

Beneath that is the original plural form:

msgid_plural " @count days"

Note that in this case, we use msgid_plural instead of just msgid.

The last two lines are the Spanish translations of these two strings:

msgstr[0] "1 día"
msgstr[1] "@count días"

Just as with .info files, an array-like syntax is used here. The first item, msgstr[0],
is the singular form. The second item is the plural form.

And that's all there is to handling the plural format translations.

Once we've translated all the strings, we are done with the translation file. Next, we
just need to put it in the right place.

Lost in Translations

[152]

What if a term should remain untranslated?
Some of the terms that the extractor finds may be terms you don't want to
translate. To leave these terms untranslated, just set the msgstr to be an
empty string: msgstr "".

To make the translation file available to Drupal's translation system, you should
simply put the translation file in the translations/ directory of your theme (or
module). For us, the file is placed in sites/all/themes/frobnitz/translations/.
From there, Drupal takes over and we're done.

While developing a translation, you may have to manually reload your
translation in order to coerce Drupal into re-parsing the translation files.
See the next section for details.

Running the code with the Spanish translation will show text that looks like this:

Hoy es Jueves. Quedan 2 dias til Sábado.

How is this working? Drupal has taken our translation file and built a new JavaScript
file (located in sites/default/files/languages/). When the page loads and
Spanish is the selected language, Drupal adds a link to that extra JavaScript file:

<script src="/drupal/misc/jquery.js?G" type="text/javascript">
</script>
<script src="/drupal/misc/drupal.js?G" type="text/javascript">
</script>
<script src="/drupal/sites/default/files/languages/es_fc9ac0f50be05d64
 034e46fc4de9f518.js?G" type="text/javascript">

</script>

<script src="/drupal/sites/all/themes/frobnitz/printer_tool.js?G"
type="text/javascript">
</script>
<script src="/drupal/sites/all/themes/frobnitz/sticky_rotate.js?G"
type="text/javascript">
</script>
<script src="/drupal/sites/all/themes/frobnitz/day.js?G" type="text/
javascript">

The highlighted section shows the inclusion of the translation JavaScript that Drupal
created for us. The contents of that file look like this:

Drupal.locale = {
 'pluralFormula': function($n) { return Number(($n!=1)); },
 'strings': {

Chapter 5

[153]

 "Thursday": "Jueves",
 "Friday": "Viernes",
 "Saturday": "Sábado",
 "Sunday": "Domingo",
 "Monday": "Lunes",
 "Tuesday": "Martes",
 "Wednesday": "Miércoles",
 "1 day": ["1 día", "@count días"],
 "Test": "carnet",
 "Today is @day. There @satCount until @saturday.":"Hoy es @day.
Quedan @satCount til @saturday."
 }
};

There's no need to take a detailed look at this script. The important thing to note is
that it defines an object named Drupal.locale.strings that contains the translation
pairs that our script needs.

As Drupal.t() and Drupal.formatPlural() are called, they will check the
Drupal.locale.strings object to see if the given string or strings need translation.
If they do, then the translation is performed.

Changing a translation file
There is one thing you should be aware of when developing translations for
your themes and modules. Once Drupal has scanned your translation PO file
once, it will not automatically scan it again. The translation database never gets
automatically updated.

Practically speaking, this means that changing the translation file requires an extra
step before your changes show up. You will have to manually import the modified
translation file.

If you add the new Drupal.t() call to you script, you can walk
through the same exporting process we just did in order to create a
fresh translation template at Administer | Site building | Translation
interface. If you check the Include translation text box, then the
translations you already created will be placed in the translation template,
and you will not have to recreate any previous work.

Lost in Translations

[154]

Once you have made modifications to your translation file, you can re-import it
by going to Administer | Site building | Translation interface and clicking on
the Import tab, which will show the following screen:

In the previous screenshot, we are re-uploading the frobnitz.es.po.txt file that
we created before. Note that under the Mode section, I have selected the first option
(Strings in the uploaded file replace existing ones, new ones are added) so that any
changes I've made are given priority.

Just remember to save the updated file in your theme so that when you install the
theme elsewhere, the correct version will be imported.

Summary
In this chapter, we focused on the translation system in Drupal, and the JavaScript
tools that are used in conjunction with that system. We looked at installing and
configuring multiple languages using the JavaScript Drupal.t() and Drupal.
formatPlural() functions, and then extracting and translating the strings. In this
chapter's project, we focused on using these translation functions, and then created
a new translation to use for testing.

Now, we've seen an important and powerful aspect of Drupal—one that has been
made accessible to JavaScript just recently (with Drupal 6). Next, we'll turn to
another set of tools in the drupal.js file.

JavaScript Theming
In this chapter, we will discuss the last major component of the drupal.js JavaScript
library. In the previous chapter we looked at the translation capabilities. Before that,
in Chapter 4, we covered Drupal behaviors and utility functions. In this chapter, we
will focus on the JavaScript theme system.

We will cover the following:

The difference between theming in PHP and theming in JavaScript•	

The Drupal JavaScript theming function•	

Implementing custom themes in JavaScript•	

Using the JavaScript theming module•	

Creating a JavaScript template engine•	

The projects in this chapter will be focused on improving JavaScript-generated user
interfaces by using the JavaScript theme system.

Theming in PHP, theming in JavaScript
In Chapter 1, we had an overview of the server-side Drupal theming system. In
Chapter 2, we created the Frobnitz theme, complete with its own PHP template, a
stylesheet, and some JavaScript. Since then, we've steadily added to that theme. The
theme system that we have been working with runs on a server. It is written in PHP
which, when executed, prepares results that are sent to a browser.

This PHP-based theme system is very powerful and complex (and, in fact, Packt
Publishing has published two books on Drupal theming). However, there is a
limitation to this system, namely, all of the theming must be done before the data
is sent to the client.

JavaScript Theming

[156]

As we have already seen, when the page is delivered and loaded, JavaScript can start
doing its thing. It can rearrange the page, add new data, hide old data, and create an
interactive environment in which the user's input can change what is displayed.

The server's theme engine is responsible for taking Drupal data and laying it out
for display. Once loaded on the client side, JavaScript can change that display. This
means even JavaScrip can become responsible for generating the look and feel of a
page. Therefore, JavaScript must be able to generate and manipulate HTML and CSS.

How does JavaScript handle this task? In the past, it handled it in one of the two
not-very-graceful ways.

The first way was to embed strings inside of application logic. This led to code that
looked something like this:

 function calculateSum() {
 var out = '<p>';
 var total = 0;
 if (arguments.length == 0) {
 out += 'Error: No data given.';
 }
 else if (arguments.length == 1) {
 out += 'Error: Cannot sum only one number.';
 }
 else {
 out += 'The sum is: <span '
 + 'style="color: red; font-weight: bold">';
 for(var i = 0; i < arguments.length; ++i) {
 total += arguments[i];
 }
 out += new String(total) + '';
 }
 out += '</p>';
 document.getElementById('sum').innerHTML = out;
 return total;
 }

Simply speaking, the purpose of this demonstration function is to sum all of the
arguments passed to it, and then place the result inside of the element with the id sum.

Passing an arbitrary number of arguments in JavaScript
JavaScript supports passing a function, a variable number of arguments
(sometimes referred to as varargs). Every function has access to a variable
called arguments, which is an array-like object containing all of the
parameters (in order) that were passed into the function.

Chapter 6

[157]

For example, calling calculateSum(1, 2, 3, 4) would find the element with ID
sum, and insert the HTML <p>The sum is: <div style="color: red; font-weight:
bold">10</div></p>.

What we are interested in is how this function builds the information it inserts into
the document.

Here, the HTML and CSS are embedded in strings, which are nested inside of the
programming logic. The strings are concatenated (using the + or += operators) and
the result is injected into the appropriate element.

The method exhibited here strikes many programmers as ugly. The string
concatenation code is written alongside the programming logic (the actual summing
of the numbers), and the result looks jumbled.

One response to this has been to get rid of the "ugly" string building code and use
DOM objects. In this way, everything is essentially treated as programming logic
as seen here:

function calculateSum2() {
 var pEle = document.createElement('p');
 var total = 0;
 if (arguments.length == 0) {
 var pcdata = document.createTextNode(
 'Error: No data given.'
);
 pEle.appendChild(txt);
 }
 else if (arguments.length == 1) {
 var pcdata = document.createTextNode(
 'Error: Cannot sum only one number'
);
 pEle.appendChild(txt);
 }
 else {
 var pcdata1 = document.createTextNode('The sum is:');
 var spanEle = document.createElement('span');
 spanEle.setAttribute(
 'style',
 'color: red; font-weight: bold'
);

 for(var i = 0; i < arguments.length; ++i) {
 total += arguments[i];
 }

JavaScript Theming

[158]

 var pcdata2 = document.createTextNode(' ' + total);

 pEle.appendChild(pcdata1);
 pEle.appendChild(spanEle);
 spanEle.appendChild(pcdata2);
 }

 var sumEle = document.getElementById('sum');
 sumEle.appendChild(pEle);
 return total;
 }

Instead of incrementally appending text and data to strings, this method uses the
browser's DOM API to programmatically build up elements and then insert them
into the document.

Don't worry if this code doesn't make sense. Thanks to jQuery, we never
have to write code like this again. The jQuery library provides a much
more concise alternative to the DOM API.

In many ways, this second example code is more visually appealing. It just looks
like a series of function calls. It all looks like serious programming logic instead of
string building.

However, we're not going to use either of these methods of building a user interface.
Here's why.

While there's nothing wrong with either example, they both suffer from a major
drawback: The layout information is coupled with the functional aspects of
the function.

A few months from now, what if somebody needs to come back and change the
layout of our code? What if they want to change the <p></p> tags to <div></div>
tags? In both cases, they will need to wade through the programming logic to find
all of the right places to change the tags. In a sizeable JavaScript application, if all
of the layout code is buried in programming logic, HTML changes can become
a nightmare.

Drupal developers have already addressed the problem of separating logic and
layout by developing a server-side theme system. Therefore, when they addressed
the problem in JavaScript, their solution was (unsurprisingly) to implement a version
of the theme system in JavaScript.

Chapter 6

[159]

The purpose of the JavaScript theming system is to separate the display code out into
separate functions, and then use a standard method of calling those functions. By
separating the theming functions from the rest of the code, layout information can be
isolated and easily changed. But the developers didn't stop there. Like the server-side
system, the JavaScript version supports an overriding mechanism. Here, a default
theme can be assigned, but another theme can be declared that overrides that default.
In a moment we will see, how that works (and why it is a good thing).

The Drupal.theme() function
On the server side, the PHP theming system is remarkably sophisticated. There are
PHP template files, theming functions, and preprocessing functions. There is a .info
file and a complex system of theme inheritance.

The JavaScript side of things is considerably simpler. The drupal.js library in
Drupal 6 only has two theme-related JavaScript functions: Drupal.theme()
(which is a paltry seven lines of code) and Drupal.theme.prototype.
placeholder() (with only three lines of code).

As you may have guessed, the Drupal.theme() function is the more important
of the two. The Drupal.theme() function is responsible for invoking the correct
theme and passing it data to be themed. Those familiar with Drupal's theme()
PHP function should already have an accurate idea of how this works.

Drupal.theme() takes at least one argument—the name of the theme function that
should be called. Any number of additional arguments may be passed in, too. All
additional arguments will simply be passed on to the theming function as well.

An example will help clarify all of this.

There is one built-in theme that is included with Drupal 6: the placeholder theme.
A few paragraphs ago, I mentioned that there were only two theme-related
functions. Well, the second of these functions is the one that themes placeholders:
Drupal.theme.prototype.placeholder().

But we don't call that function directly. Instead, we use Drupal.theme()as seen here:

Drupal.theme('placeholder', 'Hello World');

The first argument, the string placeholder, tells Drupal to use the placeholder
theme function. Any subsequent arguments are just passed into the placeholder
function. It is as if we called the placeholder function like this:

Drupal.theme.prototype.placeholder('Hello World');

JavaScript Theming

[160]

The placeholder theme function is responsible for formatting the passed-in string.
The code would return the string Hello World.

There are two questions we might ask at this point. First, why use Drupal.theme()
if all it does is call the longer function? Secondly, what if we don't want our
placeholder text to be returned as emphasized text? (For example, what if we want it
to be returned as bold text?)

These two questions are closely related, for the answer is that the Drupal.theme()
function can do more than just call that particular function. We can define an
alternate theming function to override the default behavior and themes in any way
we want. And the Drupal.theme() function will use our overriding function instead
of using the default placeholder function.

All we have to do to override the default function is create a new function in
a different namespace. If the original function is Drupal.theme.prototype.
placeholder(), we will define Drupal.theme.placeholder(). Then, all we
do is drop the prototype property from the definition.

New tools are sometimes rough around the edges. Drupal's theming
system misuses the prototype object, which has a very special purpose
in the JavaScript object model. The prototype property should not be
used as a generic namespace. Hopefully, this will be fixed in a future
Drupal release.

We can easily create our own placeholder function to wrap placeholders in
 tags instead of the tags used by default. In fact,
we can do it in a couple of ways.

Here is one way we could do it:

Drupal.theme.placeholder = function (str) {
 return '' + Drupal.checkPlain(str) + '';
};

This simply creates a new string, concatenating the strong tags to the original string.
Note that we use Drupal.checkPlain() to do any necessary escaping on the string
passed in.

The Drupal.checkPlain() function was discussed in Chapter 4.

Chapter 6

[161]

We are still using the kind of string concatenation that some developers find
offensively ugly. However, since we have abstracted the theme information into
a separate function, at least it remains separate from the main programming logic.

Another way to write a function using jQuery that is functionally equivalent to the
previous one, and perhaps a little less ugly to some programmers, is:

Drupal.theme.placeholder = function (str) {
 return $('').text(str).parent().html();
};

Here, the string concatenation code has been replaced with a jQuery chain that
builds a new DOM element from the tags, and then adds str as
its text. The jQuery text() function handles all of the escaping of the text. So there's
no need to call Drupal.checkPlain() on str.

Getting the new element back as a string is little tricky. This is done by getting the
parent element (the root of this new DOM) and then calling the html() function to
get the HTML as a string.

The jQuery function is doing more work "under the hood," and so it will
be slower. Rarely will the speed difference be noticeable. jQuery's extra
work pays off. More sophisticated HTML can be built with little effort.
Sometimes, jQuery will catch and clean mistakes in the HTML.

Later in this chapter, we will see how to make the most of jQuery features
by moving from string concatenation to HTML templates. This will give
us PHP Template like functionality from the client side.

Either of these methods will achieve the same result. Now, when Drupal.
theme('placeholder', 'Hello World') is called, the theme function will return
Hello World.

That's all there is to Drupal's theme system—two functions. Let's create a project
where we can build something a little more interesting with the theme system.

Project: menus and blocks
We will do a few short projects in this chapter. In this first project, we will create
a couple of new themes. These themes will mimic two standard Drupal layout
components: blocks and menus.

JavaScript Theming

[162]

The focus of this project will be to see how PHP Templates and PHP functions can be
converted into JavaScript-based theme functions.

Our theming project is going to add a new menu inside of new block to a page
using JavaScript. Although we will be adding these elements from JavaScript, we
want them to look and perform indistinguishably from the server-generated blocks
and menus.

We will put the code inside of a new file called themes.js. It should be included
with our frobnitz.info file, so make sure to add a scripts[] entry and refresh
the cache.

Adding a block with a menu in it
The new menu and block will be added as soon as the document is loaded.
This means we can start with the now familiar jQuery ready event handler:

$(document).ready(function () {
 var links = [
 {name: 'Drupal.org', link:'http://drupal.org'},
 {name: 'jQuery', link:'http://jquery.com'},
 {name: 'No Link'}
];

 var text = Drupal.theme('shallow_menu', links);

 var blockInfo = {
 title: 'JavaScript Menu',
 content: text
 };
 var block = Drupal.theme('block', blockInfo);

 $('.block:first').before(block);
});

This call creates a new array of links, themes them, adds them to a block named
JavaScript Menu, and then themes the entire block. Finally, the new content is added
directly above the first block on the page.

The array of links is actually an array of objects, each with a name property. The first
two also have URLs in the link property. The third does not:

var links = [
 {name: 'Drupal.org', link:'http://drupal.org'},
 {name: 'jQuery', link:'http://jquery.com'},
 {name: 'No Link'}
];

Chapter 6

[163]

This list gets passed to the Drupal.theme() function:

var text = Drupal.theme('shallow_menu', links);

This will attempt to theme the links object using a function called shallow_menu().
We will create that function soon.

The input we give the shallow_menu() function is the links array—an array of
objects. We will get back a single string object that contains our links marked up
in HTML.

This string is stored in text, which is then used as part of a new object:

var blockInfo = {
 title: 'JavaScript Menu',
 content: text
};

This new object defines the two pieces of content we are already used to seeing in
blocks: a title and some content.

To get from our object to a string of HTML that represents a block, we have to take
another step. We need to theme the block:

var block = Drupal.theme('block', blockInfo);

This will look for a block() function somewhere in the Drupal.theme namespace
and use that to theme our new block.

The resulting block, as an HTML string, will be stored in block. This block is
inserted into the DOM using jQuery:

$('.block:first').before(block);

This query will find the first block that appears on the page, and then insert our
newly minted block just before it.

One thing to note here is the order of theming. If you were to scan through the
PHP source code of Drupal's server-side, you would notice that theming happens
incrementally. First, one piece of information is prepared for display, and then it is
combined with other data and themed into a larger chunk. This continues until one
large document has been constructed. The document is then sent to the client.

On the server side, Drupal uses both theming functions and PHP
Template files to apply themes to data. But both are applied in this
incremental fashion.

JavaScript Theming

[164]

We are following the same pattern here. Once we have the link objects all built and
stored in an array, we theme them. After all, we know they are ready for display.

That piece of information is then combined with more information to create a block
object, which can then be themed. Now we have a larger chunk of HTML.

We can stop there since we don't have to rebuild the entire document. Instead, we
insert the fully composed fragment into the existing document.

My choice of theming methods—theme the menu first, then add it to a block—isn't
a trumped-up structure that I invented to make a point. In fact, I took the structure
straight from the PHP system. There are existing PHP theming tools for menus and
blocks, and I simply re-implemented them in JavaScript.

In the previous example, we called Drupal.theme() twice. First, we called it for
'shallow_menu', and the second time we called it for 'block'. These two calls
have corresponding JavaScript functions that we need to create.

In the next two subsections, we will look at each of the two themes, beginning
with Drupal.theme.prototype.block(), and see how they compare to their
server-side counterparts.

Theming a block
When we looked at the jQuery ready handler in the previous section, we saw how
the menu was themed first, and then the resulting string was used as one of the
components for building a block.

We are going to look at the theming functions in reverse. The reason for this is
simplicity. Block theming in both PHP and JavaScript is simple. Theming a menu
is considerably more complex. So we will build up from easy to harder.

In the Bluemarine theme, which is the base for our Frobnitz theme, blocks are
themed using a template. You can find this template under Drupal's installation
directory at /themes/bluemarine/block.tpl.php. Here's what the PHP Template
looks like:

<?php
// $Id: block.tpl.php,v 1.3 2007/08/07 08:39:36 goba Exp $
?>
 <div class="block block-<?php print $block->module; ?>"
 id="block-<?php print $block->module; ?>-<?php
 print $block->delta; ?>">
 <h2 class="title"><?php print $block->subject; ?></h2>
 <div class="content"><?php print $block->content; ?></div>
 </div>

Chapter 6

[165]

That's the entire thing. It is a short snippet of HTML with a few embedded PHP
statements (<?php ... ?>).

We looked at another template, page.tpl.php, in Chapter 2. This one is
even simpler than the one we saw there.

When this template is rendered, it will generate a piece of HTML that looks
something like this:

 <div class="block block-mymodule" id="block-mymodule-1">
 <h2 class="title">The Title</h2>
 <div class="content">The Content</div>
 </div>

How does it get from the earlier template to this output? Each of the PHP
statements is executed, and the results are added into the HTML. <?php print
$block->module; ?> prints the name of the module that created the block
($block->module). A print statement tells PHP that the text should be added
into the document.

Each piece of PHP code is simply printing parts of the block into the HTML. So if the
block's content ($block->content) is The Content, then you might wonder what
happens with code like this:

<div class="content"><?php print $block->content; ?></div>

The value of $block->content is inserted between the <div class="content">
and </div> tags. So the output becomes:

<div class="content">The Content</div>

Of course, as you have no doubt noticed already, the <?php and ?> as well as
everything between them is left out of the rendered document. Only the HTML
remains in the document that is sent to the client.

In order to re-implement this template as a JavaScript function, we need to find out
what data gets placed into the template. Here's the information that gets pulled from
the $block object into the template:

$block->module•	 : This is the name of the module that generated the block.
We have the luxury of getting to hardcode this in our function.
$block->delta•	 : This is a numeric value that augments the module name,
giving us a delta number for this module's block. If a module includes only
one block on the page, that block's delta will be 0. The next block generated
by that module will be 1, and so on. The key is to make the module name and
delta number combination unique.

JavaScript Theming

[166]

$block->subject•	 : This is the title of the block.
$block->content•	 : This is the content of the block.

These four pieces of information are all that is used to populate the template.

Now that we can interpret the PHP Template, the next step is to transform that
into JavaScript.

As we saw before, JavaScript has no template system, and the Drupal theming
system does not add one. Therefore, we will be turning the template into a JavaScript
function that builds a string of HTML.

While this might not be the prettiest solution, it is the de facto way of doing things
using the Drupal JavaScript theme system.

Here's our function for theming a block:

/**
 * Theme a block object.
 * This matches the bluemarine block.tpl.php.
 *
 * @param block
 * A block object. Like the PHP version, it is expected to
 * have a title and content. It may also have an id.
 * @return
 * Returns a string formated as a block.
 */
Drupal.theme.prototype.block = function (block) {
 if (!block.id) {
 block.id = "frobnitz-" + Math.floor(Math.random() * 9999);
 }

 var text = '<div class="block block-frobnitz" id="block-' +
 block.id +
 '">' +
 '<h2 class="title">' +
 block.title +
 '</h2><div class="content">' +
 block.content +
 '</div></div>';

 return text;
};

The function Drupal.theme.prototype.block()will be get called when we call
Drupal.theme('block', blockObject).

Chapter 6

[167]

Earlier, when we looked at the jQuery ready handler, we saw that there are two
properties to the block object that gets passed into this function: title and content.
These correspond to two of the values we saw before.

The first thing the previous function does is check to see if the block object also has
an id property. We want to set an ID attribute on our block. It is a requirement of
HTML that ID attributes have to be unique within a document.

If the block doesn't have an ID attribute, we generate one based on a
random number.

That is the only additional piece of information we need. Instead of using a module
name (the code isn't generated from a module, and hence does not have a module
name), we are just hardcoding in the name frobnitz. So there is no need to get the
fourth piece of information that the PHP Template used.

From here, all that is left is to build up a string containing the HTML and return that
string. This is done in one big string concatenation operation:

 var text = '<div class="block block-frobnitz" id="block-' +
 block.id +
 '">' +
 '<h2 class="title">' +
 block.title +
 '</h2><div class="content">' +
 block.content +
 '</div></div>';
 return text;

The string that this returns should be in the same form as the PHP Template's output
that we just saw. It might look something like this:

<div id="block-frobnitz-3931" class="block block-frobnitz">
 <h2 class="title">Title Goes Here</h2>
 <div class="content">
 Content Goes Here
 </div>
</div>

As you can see, with a simple PHP Template, not much work is involved in
translating it to JavaScript.

Since the HTML is generated by JavaScript, the newly added HTML will
not show up when you view the source. However, you can use the HTML
inspector in Firebug. This works because Firebug shows the HTML as it
currently is, not as it was when the page was loaded.

JavaScript Theming

[168]

The next one we will look at is going to be a little different.

Theming a menu
Menus are a familiar fixture in Drupal. In fact, once Drupal is installed, one of the
first things we do is use the menu. It looks like this:

If you quickly scan through the templates included in Bluemarine (or Garland, or
any of the default themes), you won't find the template that generates this menu.
Why not? That's because it comes from a set of theming functions buried deep in
Drupal's includes/menu.inc file.

The main menu function is menu_tree_output(), which is not actually a theming
function, technically speaking. While we're not going to dwell on it, here's how that
function looks:

function menu_tree_output($tree) {
 $output = '';
 $items = array();
 foreach ($tree as $data) {
 if (!$data['link']['hidden']) {
 $items[] = $data;
 }
 }

 $num_items = count($items);
 foreach ($items as $i => $data) {
 $extra_class = NULL;
 if ($i == 0) {
 $extra_class = 'first';
 }
 if ($i == $num_items - 1) {
 $extra_class = 'last';
 }
 $link = theme('menu_item_link', $data['link']);

 if ($data['below']) {

Chapter 6

[169]

 $output .= theme('menu_item', $link, $data['link']['has_
children'], menu_tree_output($data['below']), $data['link']['in_
active_trail'], $extra_class);

 }
 else {
 $output .= theme('menu_item', $link, $data['link']['has_
children'], '', $data['link']['in_active_trail'], $extra_class);

 }
 }
 return $output ? theme('menu_tree', $output) : '';

}

The basic idea of the previous function is to traverse a menu tree and theme it so that
it is ready for display. Each call to the theme() function (the PHP equivalent of the
Drupal.theme() JavaScript function) is highlighted. There are four theme() calls
to three different theming functions: menu_item_link(), menu_item(), and
menu_tree().

The three theming functions are much less daunting and also bear some
resemblance to the block function we just created. Feel free to look at
them. They are all in /includes/menu.inc.

If we were to reproduce this in JavaScript, we would need to write at least four
functions (assuming none of the themes would call something else).

Now we should ask ourselves some questions: What are we trying to implement in
our JavaScript theme function? Do we need the complex logic present above? We
could create a JavaScript equivalent, but do we need to?

All we really want to do, in our example at hand, is create a simple menu containing
links. We don't need to support an elaborate tree structure at all. We don't really
need to break out the theming of menu items and menu item links, or even of the
menu as a whole and each of the menu items.

The most important thing is getting our code to look like the menu generated from
menu_tree_output(). The fastest way of finding out how to generate our theme will
not be analyzing the code. It's going to be analyzing the generated HTML.

In fact, let's take a look at the HTML source for the menu we saw in a screenshot a
few pages back. Here's what that looks like:

<ul class="menu">
 <li class="leaf first">
 My account

JavaScript Theming

[170]

 <li class="collapsed">
 Create content

 <li class="collapsed">
 Administer

 <li class="leaf last">
 Log out

Ah, that's much better. We can generalize a little more to see the structure of a menu
in its simplest form like this:

<ul class='menu'>
 <li class='leaf'>
 name

Also, from the example before, we can see that the for the first node in
a menu has the additional class first. Similarly, the last one has the last class.

We're now ready to code this up in JavaScript. This time, we will use the
jQuery-based method for building:

/**
 * Build a single (non-colapsed) menu list.
 * Mimics the complex menu logic in menus.inc.
 * @param items
 * An array of objects that have a name and a link property.
 * @returns
 * String representation of a link list.
 */
Drupal.theme.prototype.shallow_menu = function (items) {
 var list = $('<ul class="menu">');

 for (var i = 0; i < items.length; ++i) {
 var item = items[i];

 // Get text for menu item
 var menuText = null;
 if (item.link) {
 menuText = item.name.link(item.link);
 }
 else {
 menuText = item.name;
 }

Chapter 6

[171]

 // Create item
 var li = $('<li class="leaf">');

 // figure out if this is first or last
 if (i == 0) {
 li.addClass('first');
 }
 else if (i == items.length - 1) {
 li.addClass('last');
 }

 // Add item to list
 li.html(menuText).appendTo(list);
 }

 return list.parent().html();
};

Don't let the size of this function distract you. It's actually not very complex.

This function takes a list of objects that represent links. We saw this list in the jQuery
ready handler we created earlier:

var links = [
 {name: 'Drupal.org', link:'http://drupal.org'},
 {name: 'jQuery', link: 'http://jquery.org'},
 {name: 'No Link'}
];

This is the object that is passed into our Drupal.theme.prototype.shallow
_menu() function.

Our theme is named shallow_menu() because it does not take the deep
tree-structured menu data that its PHP counterpart did. Instead, this
function only creates shallow menus.

We start out by creating a list object, which is our list element wrapped inside of a
jQuery object. Once again, we are taking advantage of jQuery's flexible constructor to
pass it an HTML fragment instead of a CSS selector.

Once our list container is ready, all we need to do is loop through each object in the
list of links, formatting and adding it to the list as we go.

JavaScript Theming

[172]

The loop starts out like this:

 for (var i = 0; i < items.length; ++i) {
 var item = items[i];

 // Get text for menu item
 var menuText = null;
 if (item.link) {
 menuText = item.name.link(item.link);
 }
 else {
 menuText = item.name;
 }
 /* More here... */
};

The first thing we do in the for loop is store the current item in the item variable.
We know that each item will have a name, but we don't know if it will have a
link property.

If it has a link, we want to create a piece of HTML that looks like this: name. But if it doesn't, we want HTML that looks like this: name.

This is all done within that first if/else conditional.

Easy linking
A useful JavaScript function that is used surprisingly infrequently is
the string method link(). Any string can be turned into a link by
calling this method and passing in a URL like this: 'a string'.
link('http://example.com'). This little snippet of code will
generate an HTML looking like this: <a href="http://example.
com">a string.

The next part of the for loop looks like this:

 for (i = 0; i < items.length; ++i) {
 var item = items[i];

 // Get text for menu item
 var menuText = null;
 if (item.link) {
 menuText = item.name.link(item.link);
 }
 else {
 menuText = item.name;
 }

 // Create item

Chapter 6

[173]

 var li = $('<li class="leaf">');

 // figure out if this is first or last
 if (i == 0) {
 li.addClass('first');
 }
 else if (i == items.length - 1) {
 li.addClass('last');
 }

 // Add item to list
 li.html(menuText).appendTo(list);
 }

The highlighted portion is the new code.

First, we create a jQuery-wrapped list element:

 var li = $('<li class="leaf">');

Once we have the li object we check it to see if it is either the first or last menu item.
If it's the first, we add the first class. And if it is last, we add the last class. All
others will have only the leaf class.

Now that we have our list item element (li) ready, we add content and then append
the entire thing to the list object:

li.html(menuText).appendTo(list);

By the time the for loop is done, a new li object will have been added to the list
for each item that was in the original array of links.

Finally, after the for loop we have one last line. We bring things together with a last
jQuery chain:

return list.parent().html();

A theme function needs to return a string, so we grab a string representation of the
main element (together with its contents) using parent().html().

When all of this is put together, we should get a menu embedded in a block. The
entire thing should look something like this:

JavaScript Theming

[174]

We've finished our project. We created two themes—one based on a PHP Template
file and one based on a very complex function. But when we put everything together,
our JavaScript themes look just like their PHP-generated counterparts.

The JavaScript theming module
In the project we just created, we built a couple of simple themes that implemented
existing Drupal functionality. On the JavaScript side, we recreated some features
already present on the server side. The only theme function that ships with the
Drupal 6 core is the placeholder function. Unfortunately, this means that doing this
kind of basic re-implementation work is necessary when you want to recreate the look
and feel.

Fortunately, there are Drupal modules that provide features that Drupal itself lacks.
In this case, there is a module that provides some much-needed general purpose
theming functions. This module is called the JavaScript theming module, and is
available at http://www.drupal.org/project/js_theming.

The JavaScript theming module makes use of some of the newer features
of the JavaScript language. Not all of the features will work on older or
less-supported browsers.

Installing the JavaScript theming module is as simple as downloading the module
from the URL given above, unpacking it in the /sites/all/modules directory
of your Drupal installation, and enabling it from Administer | Site building |
Modules. Once the module is enabled, the JavaScript tools will be available to you
on all pages.

This module provides themes for the following common user interface components:

Tables•	
Nested lists•	
Notification messages•	
Images•	

In addition to these themes, it also provides some basic utility functions that make
working with Drupal easier (and for the PHP developer, more familiar). Two
important functions are Drupal.l() and Drupal.url(), both of which are used
to construct URLs.

Let's take a look at a few of these.

Chapter 6

[175]

Theming tables
Tables provide a great way of visually presenting certain forms of data.
Unfortunately, the HTML used to create them is verbose; a lot of tags are required to
properly build a table. For that reason, tables make a perfect candidate for theming.

It should come as no surprise that this common user interface component is one of
the themes that JavaScript theming provides. It is used like this:

Drupal.theme('table', headers, rows);

Here, headers is an array of column headings, and rows is an array of rows, where
each row is an array. Let's take a look at a fragment of JavaScript code:

var headers = ['Library', 'Purpose'];
var rows = [
 ['jquery.js', 'Document manipulation'],
 ['drupal.js', 'Drupal interaction'],
 ['js_theming.js', 'Provide additional themes']
];
var table = Drupal.theme('table',headers, rows);

The headers array contains two column headers, Library and Purpose. Underneath
that is the rows array, which contains three rows of data. Each row is, in turn, an
array, and each item in that array represents a cell.

We have three rows of data, each with two cells (one for the Library column and
one for the Purpose column).

In code that was used for something more than an example. We would
surround each of these strings with Drupal.t() to allow the translation
subsystem to translate them when necessary.

At the end of this fragment, if we were to dump the contents of the table variable, it
would look like this:

<table class="sticky-enabled">
 <thead>
 <tr>
 <th>Library</th>
 <th>Purpose</th>
 </tr>
 </thead>
 <tbody>
 <tr class="odd">
 <td>jquery.js</td>
 <td>Document manipulation</td>

JavaScript Theming

[176]

 </tr>
 <tr class=»even»>
 <td>drupal.js</td>
 <td>Drupal interaction</td>
 </tr>
 <tr class=»odd»>
 <td>js_theming.js</td>
 <td>Provide additional themes</td>
 </tr>
 </tbody>
</table>

Our headers are now encapsulated in the <thead></thead> section, and each
row of the row table is now a <tr></tr> element containing each of its items in
<td></td> tags.

If we took a look at this in a browser window, it would look something like this:

The table uses standard Drupal CSS class names. Therefore, it is styled by the
existing Drupal theme's stylesheets (in this case, the Bluemarine CSS that
Frobnitz inherits).

This is a simple use of the table theme. It supports more complex table formatting by
taking objects in addition to strings. For example, if we wanted to add an additional
class to each <td></td> tag, we could do something like this:

var headers = ['Library', 'Purpose'];
var cell1 = {data: 'jQuery.js', 'class':'myClass'};
var cell2 = {data: 'Document manipulation', 'class':'myClass'};
var rows = [
 [cell1, cell2]
];
var attrs = {'width': '100%'};
var caption = "Drupal JS Libraries";
var table = Drupal.theme(
 'table', headers, rows, attrs, caption
);

Chapter 6

[177]

In this example, I have shortened the table down to one row to make it a little clearer.

The class is enclosed in single quotes because the bare literal is a
JavaScript-reserved word. Using class without quotes will cause errors.

This time, the two cells in the row have been moved out to their own variables:
cell1 and cell2. Each of these is an object with two properties: data (the element
data) and class (the CSS class to add).

The object notation for cells works in the following manner: a property named
data holds the table's data. All other properties will be assumed to be the name
of an HTML attribute, and will be converted to attribute/value pairs. Here,
class:'myClass' will become class='myClass'. We could likewise use id:'myID'
to add an attribute like id='myID'.

We have also added an attrs object, which holds the attributes for the table tag, and
a caption element that will hold the caption for the table. Both of these are passed as
additional parameters to Drupal.theme() on the last few lines of the previous code.

When the results of this code are displayed, they will look something like this:

Notice this time the table is wider and there is a caption above the table. If we were
to look at the underlying HTML, we would see the additional CSS classes we added
to each table cell:

<table width="100%" class="sticky-enabled">
 <caption>Drupal JS Libraries</caption>
 <thead>
 <tr>
 <th>Library</th>
 <th>Purpose</th>
 </tr>
 </thead>
 <tbody>
 <tr class="odd">
 <td class="myClass">jQuery.js</td>

 <td class="myClass">Document manipulation</td>

 </tr>

JavaScript Theming

[178]

 </tbody>
</table>

Looking at the highlighted lines, we can see the effect of turning our cells
into objects.

The table has more features, including support for server-driven, sortable columns
(which require a little bit of server-side coding). But we will continue to look at a few
other features of the JavaScript theming library.

Sending notifications to the user
What happens when an error occurs and our code needs to inform the user of this?
What if something succeeds and we want to let the user know? What if we just need
to provide a little information for the user, and provide it in a standard way that is
easy to identify?

On the server side there is a standard procedure for handling these three situations.
There is a PHP function, drupal_set_message(), which can be used to inform users
about errors, warnings, or additional information.

This is another useful feature that the JavaScript theming module provides.

This function is called like this:

Drupal.messages.set(text, level);

Here, text is the text of the message, and level is one of three predefined levels:
'warning', 'error', or 'status'. (Note that each of these is a string and must be
passed into the function in quotation marks.)

Here's how we might use it to display an error message:

Drupal.messages.set("An error occurred.", "error");

When this executes, it will display a red box near the top of the user's page
(just under the page's header section) with the error message:

This message will be displayed for several seconds, and will then disappear.
(The time is configurable through the module's administration interface.)

Chapter 6

[179]

The other two message levels function similarly, but warning will create a yellow
box and status will create a grey box (colors, of course, are determined by the CSS).

If you are using this module, the Drupal.messages.set() function is a good tool for
providing user notifications.

Adding links
There are many useful functions in the JavaScript theming library, but to save space
(and cover more ground regarding theming), we will cover only one more. This
function is Drupal.l(), and it is the main function used for creating links.

Those familiar with PHP programming for Drupal, will find it unsurprising that
Drupal.l() provides the same functionality as the Drupal PHP l() function. It is
typically called in this way:

Drupal.l(text, url);

Here, text is the text that will be linked and url is the relative URL of a Drupal
resource. For example, we could create a link to the fifth node in our system like this:

Drupal.l('Node 5', 'node/5');

This would return a string of HTML that looked like this:

Node 5

Note that the link for the base path on my system has been adjusted. It has turned
node/5 into /drupal/node/5.

There is an optional third parameter which can contain additional options. These
options are all documented at http://api.drupal.org/api/function/l/6. For
example, if we wanted to use an absolute URL, instead of a relative one, we could set
the absolute property to true:

Drupal.l('Drupal', 'http://drupal.org', {'absolute':true});

This would result in a link pointing to http://drupal.org, instead of a relative link
to our own server.

The JavaScript theming module provides some useful tools for extending the
JavaScript capabilities of your Drupal 6 system.

Next up, we are going to work on another project. In this project, we will implement
a simple template system.

JavaScript Theming

[180]

Project: templates for JavaScript
So far we've seen a few ways in which a theming function can format text. One
method is to build up a string by appending HTML fragments and variables. Our
first string building example looked like this:

Drupal.theme.placeholder = function (str) {
 return '' + Drupal.checkPlain(str) + '';
};

In the previous project, we used this method to implement Drupal.theme.
prototype.block(). In this method, an HTML fragment is created by appending
strings together. We also saw another method that relied upon jQuery to handle the
HTML. We re-implemented the previous function using the jQuery method:

Drupal.theme.placeholder = function (str) {
 return $('').text(str).parent().html();
};

In this case, the HTML is composed at the DOM level, and is then converted back
into a string at the end. Although it incurs more overhead, it looks more elegant,
can improve error checking, and can also provide additional features.

There is one possible advantage in using the string-based method. In
some hard-to-debug cases, Internet Explorer does not correctly handle
the manipulation of elements until after they are added to the parent
document. This seems to occur when working with <object/> tags.
However, these are rare cases, and most of the time the jQuery builder
method works fine.

One of our original goals was to separate the logical workings of a program from
the layout of the program. The Drupal.theme() function is a step in the right
direction, to be sure. However, on the server side, the PHP Template system makes
an even cleaner separation. Template files are easier to edit than strings embedded
in functions. Also, for all its compact functionality, if what you are interested in is
merely changing minor layout details, jQuery is probably even harder to edit.

It would be nice to have a template language for Drupal JavaScript. In this project,
we are going to write one.

We want a simple template system where the HTML is separated from the JavaScript
code as much as possible. We want to make it very easy for a themer to edit the
look and feel of our JavaScript-themed code. This means getting the markup out of
functions. Ideally, one should be able to change the layout without ever having to see
a line of JavaScript code.

Chapter 6

[181]

Oh, and we also want to do this without making any changes at all to the PHP code
that drives Drupal.

Here are our design goals:

Taking a cue from the PHP Template system, let's make it possible for each •	
template to be stored in its own style.
We don't want to reinvent the entire theme system. Therefore, we want to •	
make this mesh with the existing Drupal.theme() function, and as much of
the rest of the subsystem, as is possible.
We already have some powerful tools in the •	 drupal.js and jQuery libraries.
Let's try to minimize the amount of code we generate. (We will not introduce
any new dependencies either).
Finally, we want to make our new template language simple enough for •	
themers and developers to pick it up quickly.

The last point implies that we will be writing a new template language. Why not
just re-use PHP Templates in JavaScript? What makes PHP Templates a winner for
Drupal is how it balances performance and simplicity. It is trivially easy for a PHP
developer to learn, and it executes quickly because it is only made up of PHP.

However, JavaScript is a different language than PHP. If we try to use PHP
Templates in JavaScript, we will have a lot of work to make it possible for our scripts
to be able to parse the PHP files. Since we don't want to implement all of PHP just to
make a few templates, we are stuck in the situation of having to document exactly
how our templates differed from standard PHP Templates.

However, maybe we can look for the same balancing point on the client side that
Drupal server developers found in PHP Templates. If PHP is fast on the server, what
is a browser good at parsing and interpreting? HTML, CSS, and JavaScript all come
to mind. It just so happens that web developers tend to be well-versed in at least the
first two of these technologies.

We now have a candidate for a template language. Let's now see if we can build a
template language that primarily uses HTML and CSS for markup.

The node template
For this project, let's build some code that will add a new node to the list of nodes we
see on the home page. In the previous project, we built code for adding blocks on the
fly. This time, we'll add nodes on the fly.

JavaScript Theming

[182]

Again, the place to start with is the normal node.tpl.php file that is included
with Bluemarine:

<?php
// $Id: node.tpl.php,v 1.7 2007/08/07 08:39:36 goba Exp $
?>
 <div class="node<?php if ($sticky) { print " sticky"; } ?>
 <?php if (!$status) { print " node-unpublished"; } ?>">
 <?php if ($picture) {
 print $picture;
 }?>
 <?php if ($page == 0) { ?><h2 class="title">
 <a href="<?php print $node_url?>"><?php
 print $title?></h2><?php }; ?>
 <?php print $submitted?>
 <div class="taxonomy"><?php print $terms?></div>
 <div class="content"><?php print $content?></div>
 <?php if ($links) {
 ?><div class="links">» <?php print $links?></div>
 <?php
 }; ?>
 </div>

As usual with the PHP Template files, this is made up of a mixture of HTML and
very simple PHP code. There are a couple of if statements to conditionally add CSS
classes, display pictures, and include links. There are plenty of print statements,
which inject strings into the HTML. However, there is no complex logic, or unusual
functions, used in this template.

Let's remove all of the PHP and see what the underlying HTML basically looks like:

<div class="node">
 <h2 class="title"></h2>

 <div class="taxonomy"></div>
 <div class="content"></div>
 <div class="links"></div>
</div>

Based on the CSS class names, we can take a glance at this fragment and get a pretty
good idea about what each piece of the fragment ought to do. In fact, the class names
provide enough information so we can even computationally fill it out. Where
should the title go? How about inside the link in the tag with class='title'! We
can find locations like that using a jQuery CSS selector: $('.title a').

Chapter 6

[183]

We might want to flag a node as unpublished using the element with class
submitted. If we have taxonomy terms, we can put them in the element with the
taxonomy class. Similarly, content and links go inside of the div tags with the
appropriate class names.

It looks like we have the information we need. Let's make this pure HTML fragment
our template.

Following a naming convention similar to the PHP Template names, let's store the
previous code inside of our theme with the name node.tpl.html. Notice that the
last part of this filename is .html, not .php. We don't want this file to be executed on
the server side (it would be a waste of time and would make this template look like a
PHP Template).

From a template to a system: what next?
We have now devised a template language that fills some requirements. It should be
easy for any experienced HTML author to create templates in our system. After all,
they're just HTML fragments. Of course, we would want to make sure they used the
correct CSS classes, but no new language will need to be learned.

We have also stored our template in its own file. That should make it easier to
edit as well.

But wait. What do we do with these templates? How can we use them from
JavaScript? After all, the templates are on the server, and unless the browser
requests them, they will not be sent to the client.

Furthermore, templates on the server side are composed into a single HTML
document before they are transmitted to the client. However, a client-side template
is obviously not going to work that way. The JavaScript template engine won't even
have started until a pre-built document has been sent.

What we need is a way to get the template from JavaScript, use that template for
theming, and then inject the results into the existing document (the one built on the
server). This might initially seem like a tall order, but we are going to borrow a little
technology from the next chapter and create an engine that will do just what I
have described.

The strategy used here could be generalized with a little bit more code to
provide template services to any Drupal JavaScript application. However,
to keep our code concise, we will create a specific application to meet
our needs.

JavaScript Theming

[184]

We will continue adding code to the themes.js file that we created for the last
project. From here, we are going to proceed as follows:

1. We will create a simple template layer that sets up the environment we will
need for templating.

2. We will employ the existing Drupal theming system, using it as a frontend to
our template system.

Let's look at the first step.

A template system
We now have HTML templates on the server and a theming system on the client.
The first step toward linking these two is to fetch the templates from the server.

To do this, we are going to create a new namespace object named TplHtml. We don't
want to put our custom code inside of the Drupal namespace as this code is not the
official Drupal code.

This new namespace will house our main template function, in addition to all of the
templates that we load from the server.

Here's what the code for our complete template system looks like:

var TplHtml = {template: {}};

TplHtml.loadTemplate = function (name, uri) {
 var url = Drupal.settings.basePath + uri;

 jQuery.get(url, function (txt) {
 TplHtml.template[name] = txt;
 });
};

$(document).ready(function () {
 TplHtml.loadTemplate('node',
 '/sites/all/themes/frobnitz/node.tpl.html');
});

The first line creates the new TplHtml namespace that adds an empty template
object. TplHtml.template is where the templates we get from the server will
be stored.

Next is the TplHtml.loadTemplate() function. This is the key piece of our template
system. It takes a template name and a URL fragment (uri) that will be used to find
the template on the server.

Chapter 6

[185]

The name parameter should be a short name for our template. For example, our node
template would probably have the name node. Later, we will use it as a keyword for
referring to our template. It must be made up of alphanumeric characters only, and
contain no spaces.

The uri parameter should be the relative path of the template within the theming
system. In a few moments, we will see this used to point to the node.tpl.html file
we just created just before.

The TplHtml.loadTemplate() function has only four lines of code. The first line
takes the uri parameter and prepends it with the base path to the server:

var url = Drupal.settings.basePath + uri;

In Chapter 2, we discussed how the Drupal.settings.basePath variable will
always point to absolute server path where Drupal is installed. By constructing the
URL this way, we don't have to know anything about where on the server Drupal is
installed. Instead, we can just build a relative path from Drupal's base to our specific
template file.

The next three lines are responsible for fetching the file from the server:

jQuery.get(url, function (txt) {
 TplHtml.template[name] = txt;
});

Here we are using a jQuery function that is new to us: jQuery.get(). In a nutshell,
this function makes it possible to fetch a file from the server, and then manipulate
it locally. It's part of jQuery's powerful AJAX (Asynchronous JavaScript and XML)
library, which we will take a closer look at this function in the next chapter.

Chapter 7 will cover AJAX in detail. There, we will cover jQuery's AJAX
features and do projects that involve retrieving XML and JSON data from
the Drupal server.

For now, we will just take a quick look at what it does for us in this context.

We pass it two arguments: the URL that we just constructed (url) and an
anonymous function. jQuery will request the URL from the server. When the
server responds, jQuery will execute the anonymous function, passing the server's
response as the first parameter to this function. Therefore, txt will contain a string
representation of the document we requested.

Since we will be requesting templates, txt will hold a complete template. We want
to take that template and cache it somewhere convenient. We have already created
that place: the TplHtml.template object.

JavaScript Theming

[186]

Taking advantage of JavaScript's array-like object reference syntax, we can add this
new template to the TplHtml.template object in this way:

TplHtml.template[name] = txt;

If we add a template with the name block, we could then access this template as a
JavaScript object:

alert(TplHtml.template.block);

That's all there is to our template retrieval function. This gives us a tool for fetching
as many templates as we need from the server.

Next, we will look at the simple jQuery ready handler:

$(document).ready(function () {
 TplHtml.loadTemplate('node',
 '/sites/all/themes/frobnitz/node.tpl.html');
});

With this snippet of code, we move from general to specific. When the document
is ready, we load a very specific template file using our TplHtml.loadTemplate()
function. This will fetch our template file, which is located at /sites/all/themes/
frobnitz/node.tpl.html (the relative path from Drupal's base to our custom
theme). Once retrieved, the template will be stored in TplHtml.template.node,
since node is the name passed into TplHtml.loadTemplate().

With this chunk of code, within moments of the main document loading, we should
also have the node template available to us. If we were to look at the contents of
TplHtml.template.node, we would see a string that looked like this:

<div class="node">
 <h2 class="title"></h2>

 <div class="taxonomy"></div>
 <div class="content"></div>
 <div class="links"></div>
</div>

Does this look familiar? It should since it's the template we created at the beginning
of this project.

The next step is to build theme functions that can make use of this template system.

Chapter 6

[187]

Theming with templates
The last part of our template system is a theme function that can make use of
the template.

Based on the jQuery ready handler we just wrote, we now have a template stored
in TplHtml.template.node. Here, we need to provide a function that will take that
template and then populate it with data.

To do this, we will once again use jQuery since it provides powerful tools for
navigating HTML and modifying the document's structure. Here's our new function:

Drupal.theme.node = function (node) {
 var out = '';
 if (TplHtml.template.node) {
 var tpl = $(TplHtml.template.node);

 // Is it sticky?
 if (node.sticky) {
 tpl.parent().find('.node').addClass('sticky');
 }

 // Do title and title's link at the same time.
 if (!node.nodeUrl) node.nodeUrl = '#';
 tpl.find('.title a').text(node.title)
 .attr('href', node.nodeUrl);

 // These are the things we are going to place in
 // the template.
 // Fortunately for us, class names match 1-to-1 with
 // the names of the node properties.
 var values = ['content','submitted','taxonomy','links'];
 for (var i = 0; i < values.length; ++i) {
 var value = values[i];
 if (node[value]) {
 tpl.find('.' + value).html(node[value]);
 }
 else {
 tpl.find('.' + value).hide();
 }
 }

 // Now we dump the template to a string.
 out = tpl.parent().html();
 }
 return out;
};

JavaScript Theming

[188]

Though this function is large, it doesn't use any new functions or techniques. In fact,
all it is doing is taking the node data and the TplHtml.template.node template, and
merging the data into the template.

To get through this large function, let's look at it in smaller chunks:

Drupal.theme.node = function (node) {

The theme function takes one parameter: node. This parameter is expected to be an
object and may have any of the following properties:

node.title•	 : The title of the node. This is the only required item.
node.nodeUrl•	 : The relative URL of the node.
node.sticky•	 : A flag indicating whether this node should be treated as sticky
at the top of the page. (The default is false.)
node.content•	 : The content of the node.
node.submitted•	 : Information about the date and submitter of the node.
node.taxonomy•	 : A string containing hyperlinks to taxonomy terms.
node.links•	 : A string containing additional links (like to comments).

As we build up the layout, we will put each bit of node information into its
appropriate place in the template.

Let's take a look at the next section of the function:

Drupal.theme.node = function (node) {
 var out = '';
 if (TplHtml.template.node) {
 var tpl = $(TplHtml.template.node);

 // Is it sticky?
 if (node.sticky) {
 tpl.parent().find('.node').addClass('sticky');
 }

 // Do title and title's link at the same time.
 if (!node.nodeUrl) node.nodeUrl = '#';
 tpl.find('.title a').text(node.title)
 .attr('href', node.nodeUrl)

 // More here...
 }

 return out;

}

Chapter 6

[189]

The out variable is going to hold the string that we return.

The first thing we do after declaring our out variable is check to see whether the
template exists. If it does, we continue with the formatting. If not, we return an
empty string.

Returning an empty string like this is fine for demonstration purposes,
but it isn't a great way of doing things on a production system. Since
the template is being fetched from a remote server, it is possible that the
template couldn't be loaded. It might be a better solution to add some
default theming in cases where the template cannot be loaded.

Inside the conditional, we create a new jQuery object to wrap the node template.
The tpl variable will refer to our template jQuery object. We can now conveniently
manipulate the HTML DOM for our template.

Next, we begin modifying the template. We check to see if node.sticky is set
and true. If it is, we then want to add a sticky CSS class to any element with
the node class. This is done with a simple jQuery string: tpl.parent().find
('.node').addClass('sticky'). This starts from the top of the template DOM
(tpl.parent()), and then finds all elements with the node class. Each of those nodes
gets the sticky class added.

From here, we move on to the node title and URL. The HTML template we created
had a title section that looked like this:

<h2 class="title"></h2>

We want to find that section and add both a title and a URL. We can do this with one
long jQuery chain:

tpl.find('.title a').text(node.title)
 .attr('href', node.nodeUrl)

This finds the link element inside the title section, sets its text to node.title, and
then re-targets the link to node.nodeUrl.

The following chunk of code makes it easy enough for us to accomplish several
content-filling tasks in a compact loop:

Drupal.theme.node = function (node) {
 var out = '';
 if (TplHtml.template.node) {
 var tpl = $(TplHtml.template.node);

 // Is it sticky?

JavaScript Theming

[190]

 if (node.sticky) {
 tpl.parent().find('.node').addClass('sticky');
 }

 // Do title and title's link at the same time.
 if (!node.nodeUrl) node.nodeUrl = '#';
 tpl.find('.title a').text(node.title)
 .attr('href', node.nodeUrl)

 // These are the things we are going to place in
 // the template.
 // Fortunately for us, class names match 1-to-1 with
 // the names of the node properties.
 var values = ['content','submitted','taxonomy','links'];

 for (var i = 0; i < values.length; ++i) {

 var value = values[i];

 if (node[value]) {

 tpl.find('.' + value).html(node[value]);

 }

 else {

 tpl.find('.' + value).hide();

 }

 }

 // Now we dump the template to a string.
 out = tpl.parent().html();
 }
 return out;
};

The first thing we do in this highlighted section is define a new array:

var values = ['content','submitted','taxonomy','links'];

We have four CSS classes defined in the document that we need to fill in: content,
submitted, taxonomy, and links. We potentially have four attributes on our node
object that need to be slotted in these spots: node.content, node.submitted, node.
taxonomy, and node.links.

Fortunately for us, the names match up! We can loop through the values array and
drop the contents of our node properties into the correct location in the template:

for (var i = 0; i < values.length; ++i) {
 var value = values[i];
 if (node[value]) {

Chapter 6

[191]

 tpl.find('.' + value).html(node[value]);

 }
 else {
 tpl.find('.' + value).hide();
 }
}

We can make use of the fact that JavaScript allows array-like access to object
properties to check whether or not each of the items in the values array exists. For
example, if the node.submitted exists, then node['submitted'] will be evaluated
as true. So we look through the values array and check for each property in the node
object. If it exists (if (node[value])), then we insert the value. If it doesn't exist, we
hide the relevant part of the template so an empty container is not displayed.

The highlighted line in the previous code is responsible for adding the content into
the template:

tpl.find('.' + value).html(node[value]);

This jQuery chain begins with the template and finds all elements whose class is the
current value. During first iteration, it will look for is content, then submitted, and
so on until all of the items in the values array have been inserted. With any match, it
will simply add the appropriate node property's content.

We will see an example of this in a moment.

Finally, there's one more thing this function does before returning the
themed content:

Drupal.theme.node = function (node) {
 var out = '';
 if (TplHtml.template.node) {
 var tpl = $(TplHtml.template.node);

 // Is it sticky?
 if (node.sticky) {
 tpl.parent().find('.node').addClass('sticky');
 }

 // Do title and title's link at the same time.
 if (!node.nodeUrl) node.nodeUrl = '#';
 tpl.find('.title a').text(node.title)
 .attr('href', node.nodeUrl)

 // These are the things we are going to place in
 // the template.
 // Fortunately for us, class names match 1-to-1 with
 // the names of the node properties.

JavaScript Theming

[192]

 var values = ['content','submitted','taxonomy','links'];
 for (var i = 0; i < values.length; ++i) {
 var value = values[i];
 if (node[value]) {
 tpl.find('.' + value).html(node[value]);
 }
 else {
 tpl.find('.' + value).hide();
 }
 }

 // Now we dump the template to a string.
 out = tpl.parent().html();
 }
 return out;
}

The template has now been populated. However, like all theme functions, this must
return the results neither as a jQuery object, nor as HTML elements, but as a string.
To do this, we call tpl.parent().html(). This goes to the very root of the template
and retrieves the HTML as a string. At the end of this function, the string is returned.

Using the template system
We now have a basic template system. We can very quickly mock up a new function
to test out our template-based theme:

function addNode() {
 var node = {
 title: "New Node",
 content: "JavaScript created this node!",
 nodeUrl: 'http://drupal.org'
 };
 $('.node:last').after(Drupal.theme('node', node));
 Drupal.attachBehaviors();
}

The addNode() function creates a new node object with a title, content, and a
nodeUrl. It then finds the node section and adds the new node to the end of the
existing list of nodes. For example, on the front page, it would add it at the bottom of
the page.

Notice that we call Drupal.theme('node', node) to invoke the Drupal.theme.
prototype.node() function that we just defined, and pass it our new node object.

Finally, since we have just altered the DOM, we need to run the Drupal.
attachBehaviors() function to make sure any new elements get evaluated by the
behaviors system.

Chapter 6

[193]

To make it possible to call our new function, we might also want to add a link
somewhere in the document. One easy way of doing this, for testing purposes, is to
add another jQuery ready function that adds a link to the pure JavaScript menu we
created earlier in the chapter:

$(document).ready(function () {
 $('.block:first')
 .append('Add node')
 .children('a:last').click(addNode);
}

This simply adds a new Add node link which, when clicked, runs our demo
addNode() function.

What happens when we click this new link running the addNode() function? The
node is themed and the results of that theming look like this:

<div class="node">
 <h2 class="title">New Node</h2>

 <div style="display: none;" class="taxonomy"></div>
 <div class="content">JavaScript created this node!</div>
 <div style="display: none;" class="links"></div>
</div>

Note that several elements are marked display: none. They are hidden because the
node object had no corresponding property, so we know they shouldn't be displayed.

Next, the now-populated HTML template is injected into the existing document. The
results look something like this:

Note that under the already existing This is a node node (which was created in
Chapter 1), there is another node called New Node. This is the node we just created
with our JavaScript template tool.

JavaScript Theming

[194]

A word of warning
The code we generated to retrieve templates from the server does come with a
caveat. It takes time for the browser to get the template from the client. Sometimes,
it may take a second or two, and at times even more.

How do we handle the case where we want to theme something and the template
hasn't yet completely loaded?

There are two options:

1. Implement a default local theme that can be used when the server hasn't sent
a template back.

2. Use a timer (setTimeout()), callback, or another similar mechanism to delay
and give the server time to respond.

In the next chapter, when we look at AJAX in more detail, we will
see some additional jQuery functionality that could be used to make
the loadTemplate() function more robust. Rewriting that function
might eliminate the need for precautions like this. We might also
consider rewriting the template feature to use synchronous, rather than
asynchronous, requests for templates. However, this could become a
performance bottleneck.

Both of these options can be used in conjunction. Here's the sample function that
illustrates how we might use both:

var max_wait = 3000; // 3 seconds
var attempt = 0;
function addNode() {
 var wait = 200;
 var node = {
 title: "New Node",
 content: "JavaScript created this node!",
 nodeUrl: 'http://drupal.org'
 };

 if (TplHtml.template.node) {
 var txt = Drupal.theme('node', node);
 $('.node:last').after(txt);
 Drupal.attachBehaviors();
 }
 else if (attempt * wait < max_wait) {
 ++attempt;
 setTimeout(addNode, wait);
 console.log("delaying");
 }

Chapter 6

[195]

 else {
 var txt = Drupal.theme('defaultNode', node);
 $('.node:last').after(txt);
 Drupal.attachBehaviors();
 }
}

This is a variation of the addNode() testing function we looked at before. There
are two new variables, max_wait and attempt, which are in a broader scope than
the function and will persist across function calls. The first one—max_wait—sets
the maximum amount of time that this script will wait for the server to load the
template. The second one—attempt—is a counter that will record the number of
attempts made to use the template.

These will make more sense in a moment.

The important code is the big if/else-if/else conditional. Here's how it works.

It first checks to see if the TplHtml.template.node template exists. If it does, then
we know that the template must have been loaded already. We can then go on and
do our theming by using the function we created earlier.

If the template does not exist, we check the else if condition:

 else if (attempt * wait < max_wait) {
 ++attempt;
 setTimeout(addNode, wait);
 console.log("delaying");
 }

Here, we check to make sure that we still have time to check for the template. The
wait variable, set early in the addNode() function, is the amount of time between
checks. We can multiply attempt and wait to see how long we've been trying to use
the template. Of course, the first time this is run, it will be 0. We haven't delayed at
all as of now.

Using this method, we can account for cases when the remote server is
unavailable. If the server takes too long to respond, a default template is
used. One drawback of using a callback (an alternative to this method) is
that there is no way to gracefully handle server failures.

If we make it to the inside of the else if condition, we know that the template isn't
loaded and we still have time to wait for it to be loaded. So here's what we do:

Increment the attempt counter: •	 ++attempt.

JavaScript Theming

[196]

Register a timeout function (•	 setTimeout(addNode, wait)). This tells the
JavaScript runtime to wait for wait milliseconds (200 in our case) and then
call the addNode() method. Essentially, this function is registering itself as
the callback.
For debugging purposes (this is a test function, after all), we are logging this •	
to the Firebug console so we can tell that it is in a waiting state.

If this condition takes effect, the application will wait before trying to theme and
display the content.

If we expect long delays and need to notify the user, we may use a
throbber as a visual device to indicate the waiting state. We will discuss
this in Chapter 8.

However, if the server hasn't retrieved our template by max_wait, then the else
block of the conditional will be executed. In this case, a different theming function
will be called:

var txt = Drupal.theme('defaultNode', node);

This fictional theme (we haven't written a function for it) would hold a default theme
implementation for a node theme. This would be an implementation that doesn't rely
on a template retrieved from the server.

The example here illustrates one way of working around timing issues with our
AJAX-based template system.

At this point we have finished our last project, and also the chapter.

Summary
The focus of this chapter was on the JavaScript theming system. We began by looking
at the tools included in the drupal.js library. We then moved on and built our own
themes. From there, we looked at the JavaScript theming module, examining some
of the themes and user interface tools that it provides. Finally, we implemented our
own template system, which was based on HTML, CSS, and JavaScript.

This chapter rounds out our look at drupal.js. In the remaining chapters of the
book, we will make frequent use of the features we covered in this, and the previous
two chapters. The next chapter will cover AJAX using jQuery and Drupal. There, we
will see how much we can gain by adding more client-server interaction to
our scripts.

AJAX and Drupal Web
Services

In the first chapter, I mentioned two key technologies that contributed to JavaScript's
rise from a toy language to an application language. So far, we have made use of
dynamic page reflowing (the ability to change what the page looks like without
reloading the page), which is the first key technology.

We will now focus on the: JavaScript's ability to pull data from the server, which is
the second key technology.

For better or worse, this methodology is usually called AJAX, (Asynchronous
JavaScript And XML). We will talk about the family of tools typically grouped
under the AJAX title and see how these tools can be used in Drupal.

In this chapter we will:

Introduce the AJAX family of tools•	

Use jQuery's built-in AJAX support to get content from Drupal•	

Fetch existing XML content from Drupal•	

Use additional Drupal modules to expose more data to AJAX•	

Use JSON (JavaScript Object Notation) as a JavaScript-friendly way of •	
sending data from Drupal

As you may have noticed, our earlier chapters were heavy on explanation. Projects
were used to simply illustrated the main points. Gradually, projects have gotten
bigger, and the explanatory text has taken up a secondary role. In this chapter, we
will spend most of the time looking at code and creating projects. First, we will have
a quick overview of AJAX and how it fits into the Drupal landscape.

AJAX and Drupal Web Services

[198]

AJAX, JSON, XHR, AHAH, and Web 2.0
Among the many glorious improvements the Web has brought to our lives, it has
created an entirely new vocabulary consisting almost entirely of acronyms. First, it
was just HTML and HTTP. Then came XML and CSS, followed by RDF (Resource
Description Framework). Enterprise computing brought us WSDL (Web Services
Description Language), XML-RPC, and SOAP (Simple Object Access Protocol). Then
along came RSS and Atom, two syndication formats that led to a plethora of orange
"button" images.

However, the acronym that has contributed the most hype to recent web
development is AJAX.

AJAX officially describes the practice of using JavaScript for requesting data from
a remote server in a way which does not interrupt the user's browsing experience.
No page refreshes take place, no plug-ins need to be loaded, and no "Do you really
want to do this?" dialogs are displayed. In fact, well-constructed AJAX is completely
unobtrusive. A user need not even know it is happening behind the scenes.

But, as the name suggests, AJAX was about JavaScript and XML. The assumption
was that all of the data passed back and forth, between JavaScript and the server,
would be some flavor of XML.

While the general idea of passing data in the background with JavaScript has gained
tremendous traction, XML isn't the only data format being used. JavaScript, HTML,
plain text, and other forms of structured content have all become "formats" for
AJAX-style data transfer.

Therefore, if we aren't passing XML, are we still doing AJAX? The more
pedantically inclined have argued that we are not. But that catchy term AJAX
has become entrenched as a general catch-all for any similar JavaScript-centred,
behind-the-scenes data passing.

Web application and Web 2.0
AJAX, and related technologies, have given web developers a new degree of
freedom. Data can be crunched in the background while users continue doing their
thing. Network latency, which is quite visible during a full-page refresh, suddenly
seems less evident. Smaller amounts of data are passed from the client to the server,
and the user may not even be aware of the exchange.

When AJAX came to the attention of developers, a cascade of changes followed.
Suddenly, web pages could be more responsive while, at the same time, doing much
more. Developers realized that web pages can act more like desktop applications.
Clunky, old page-by-page web tools were rewritten to take advantage of AJAX, and
a new class of web applications was born.

Chapter 7

[199]

These applications, which were more efficient than their predecessors, were grouped
under the amorphous umbrella term Web 2.0. If you ask a dozen experienced web
developers what Web 2.0 is, you will likely get twelve different answers. While many
disagree on specifics, it seems most agree that Web 2.0 refers to a big change in the
way web tools are structured.

The browser is no longer treated only as a display device for server-generated
content. HTML isn't treated as just a formatting language. Servers no longer handle
all of the application logic. Instead, the task of assembling data into meaningful
information is handled by many different programs, perhaps running, in many
different locations. In short, the Web has become more distributed.

From this description of Web 2.0, it is easy to understand how mashups have become
the poster child for this new generation of tools. A mashup is a web tool created by
combining two or more web services in a novel way.

At this point, we could drift into a discussion of the so-called semantic web. In this,
the "meaning" of web content is gleaned from individual pages, and then used by
web services to provide tools driven by meaning instead of by structure. But this
is outside of our present scope. Instead, we will return to one of the other Web 2.0
stars—AJAX.

The position of AJAX in Web 2.0
The role of AJAX in Web 2.0 is to delegate some of the distributed application logic
to the client. Phrased simply, AJAX turns JavaScript into a major component in a
web application. Instead of becoming just a display device by translating markup
into a visual representation, browsers now take on some of the data-crunching
responsibility. The programming language that makes all of this possible is
JavaScript.

To an extent, we have been using JavaScript in this way already. By using its ability
to dynamically alter the DOM, we have added and removed elements from the user's
view. We have altered the look and feel of a page. We have made it easier for the
user to do certain tasks. Also, we have made the user interface more responsive.

However, AJAX grants one additional capability. Not only can we change the way
the page looks, but by fetching new content from the server, we can also exchange
data. We can send data back to the server for processing. The server can then deliver
raw results (perhaps encoded as XML) and the client-side JavaScript will determine
how that information is displayed.

In the Web 2.0 landscape, it is AJAX that gives the browser the power to make use of
all of those web services.

AJAX and Drupal Web Services

[200]

Now that we have a feel for the current web landscape, and we've seen how
JavaScript and AJAX play a role in Web 2.0. It's time to dive deeper into the technical
aspects of AJAX and the related technologies.

Getting technical
How does AJAX work? At the core of the technique is a built-in browser component
called the XMLHttpRequest object. Initially included in Microsoft Internet Explorer
as an ActiveX object, XMLHttpRequest became famous only after the Mozilla family
of browsers (including Firefox) began including it as a standard JavaScript object.

The idea behind the XMLHttpRequest object (XHR) was simple. It provided
JavaScript scripts with the ability to open a new HTTP connection to the remote
server and then retrieve an XML document. It was assumed that the returned page
would be XML. In practice, there are no restraints on the type of data returned.

Practically speaking, what's the difference between HTML and XML? Not
much. To an untrained eye they look the same. It's the interpretation that
makes the difference. HTML tags already have a well-defined meaning.
XML, on the other hand, provides the syntax, but leaves the meaning up
to developers. The structure of the data can then be crystallized into XML.

However, the rationale for XHR was that servers could send updated data to the
client, essentially allowing the client-side scripts to refresh data on the screen
without requiring a page or frame reload.

As the story goes, Microsoft developed XHR so the Exchange web
client could behave more like the Exchange desktop client. Making web
applications as responsive as desktop applications is one of the hallmarks
of Web 2.0.

Before XHR, if a JavaScript developer needed to transfer information in the
background, the only way to accomplish this was in hidden frames. But that method
was clumsy, difficult to debug, and fraught with browser compatibility issues. Not
just from vendor to vendor, but also from browser version to browser version.

XHR made it easy to retrieve and parse data. Though it had its own cross-browser
compatibility issues, such issues could usually be resolved with just a few lines
of code.

Chapter 7

[201]

The basic workflow, regardless of browser, was something like this:

1. Create a new XHR object.
2. Request a piece of XML from the remote server.
3. Wait for a response.
4. When the response arrives, parse the returned XML.
5. Use the new data to do something.

That third step, waiting for a response, could be done one of two ways. First, either
the browser could hold all operations until the server returned (synchronous).
Second, it could go about its business and check back periodically to see if the
server responded (asynchronous). Using the latter method, scripts could continue to
respond to user input while the XHR object worked in the background.

Unsurprisingly, the 'asynchronous' part of Asynchronous JavaScript and XML comes
from this second method.

Each of these steps (even the waiting) required some boilerplate coding for each
script. But it didn't take long for savvy web developers to realize the process
was general, and that a library could be written to meet the requirements of web
application development. A plethora of AJAX libraries burst onto the scene. These
days, you have a choice of hundreds of libraries.

We won't have to go far to find our library. As we saw in the previous chapter,
jQuery provides AJAX capabilities. In fact, it provides a robust set of tools designed
to make simple AJAX calls trivially easy, yet still make it possible to craft advanced
AJAX applications should you need to do something fancier.

Move over, XML
XML has enjoyed tremendous success in the online world. Every major
programming language has at least one XML parser available. PHP 5 comes with
several XML tools out of the box, including a DOM. This DOM provides an interface
almost identical to the JavaScript DOM API.

But the DOM-XML combination isn't a panacea. Some problems (even problems
involving data formatting) are better solved by other tools. In addition, the "X" in
AJAX hasn't always right for the job.

AJAX and Drupal Web Services

[202]

Sometimes, instead of getting XML, it is more convenient to get fragments of HTML.
This makes sense when it is more desirable to simply insert some extra content into
the present document. In the previous chapter, we saw another case where HTML
was the desired format. There, we used HTML fragments as templates for
other information.

On other occasions, the data transmitted needs to contain programming logic,
namely, JavaScript. This method has been used to create JavaScript "loaders" that
fetched additional libraries as needed.

Since the XHR object was suitably flexible, HTML and JavaScript could both be
handled this way.

For a while, the conventional wisdom on XHR data transfer went something like this:

Use XML if you are transferring structured data•	
Use HTML if you are transferring marked up data intended for user display•	
Send Javascript if you are transferring programming logic•	

Then along came another format that challenged the role of XML.

XML has its weaknesses. One weakness is that it is relatively bulky. To send a
transmission containing only a title, I would need to create, at minimum, an XML
document like this:

<?xml version="1.0"?>
<title>My Title</title>

That's the absolute bare minimum. Mostly, even more information is needed in order
to display a title. What else could we possibly be missing? In the ideal XML world,
the above should have a character set declaration, a namespace definition, and a
schema (or DTD) to define the document's structure. We're talking a dozen lines of
code to transmit a title!

XML has a second drawback. The parsing routine is sophisticated, and can be
time-consuming.

XML's challenger came in the form of a lightweight format that was easy to parse,
more concise, and already familiar to web developers. The new format was called
JSON (JavaScript Object Notation).

As the name implies, JSON is a data format based on JavaScript. It uses the literal
forms of JavaScript arrays and objects, along with JavaScript's main types, to create a
straightforward data form.

Chapter 7

[203]

Using our previous example, if we wanted to transmit our title in JSON format, it
would look like this:

{'title': 'My Title'}

This format should look familiar. It is equivalent to a JavaScript object declaration. In
fact, we've already used this type of structure a number of times in this book.

We will take a look at both JSON and XML later in this book. The fact that we are
looking at both should lead to a clear implication. There is room for both JSON and
XML in the AJAX world. While you, the developer, may have one more decision to
make (whether to use JSON or XML for this application), both formats are widely
adopted and supported. That means you can make the choice based on the best fit,
and not just based on the availability of tools.

Before moving on to our first project, let's take a quick look at the seven jQuery AJAX
functions. These functions deal directly with AJAX transactions which are made to
a remote server. All of these functions, except jQuery.ajax(), take the same three
arguments: a URL, some data (optional), and a callback function object. (jQuery.
getScript() does not ever use the optional data.) A couple of methods, such as
jQuery.get() and jQuery.post(), take an optional fourth parameter that indicates
what type of data should be returned, for example JSON, XML, JavaScript, HTML,
and so on.

jQuery.get()•	 : This function is the most generic of jQuery tools. It does
a simple HTTP GET request from the server. The data that is passed into
the callback function is in the form of a string. We used this function in the
previous chapter and we will use it in the next project we do. There is a
variation of this function, jQuery.getIfModified(), that does the same
thing, but only invokes the callback if the returned document has changed
since it was last loaded by this script.
jQuery.getJSON()•	 : This function works like jQuery.get() with one
difference. The returned data is treated like JSON data and is parsed into
JavaScript objects. If you try to get XML content with this function, it will
generate an error.
jQuery.getScript()•	 : This function also works like jQuery.get(), except
that it expects that the returned data will be JavaScript. The script is loaded
and interpreted as soon as the AJAX request completes.
jQuery.post()•	 : This function does an HTTP POST, instead of using
an HTTP GET. This function is good for posting form data, or sending
messages that would result in changes on the server. From the programmer's
perspective, it works like jQuery.get().

AJAX and Drupal Web Services

[204]

jQuery.ajax()•	 : The other functions are "high level." Simply call the
function, and it takes care of all of the details of an AJAX transaction.
Sometimes, you may want greater control over the details. This function
gives you access to more of the details of the AJAX call, including access to
the XMLHttpRequest object. Our code here is simple, so we will not be using
this function. However, it is fully documented at http://jQuery.com.
$(o).load()•	 : This function provides even more functionality than the
others. It retrieves HTML content from a remote server, and then injects
it right into the DOM for you. The other jQuery methods are called from
the main jQuery object. This one requires an instance of a jQuery object
to know where to insert the content. For example, to insert content into
the first paragraph of the document, we could do something like this:
$('p:first').load(myUrl). There is also a variation of this function, $(o).
loadIfModified(), which does the same thing only if the remote document
has been modified since the last time this function was called.

After reading this chapter, you may find it useful to go back to the code in
the previous chapter and see how $().get() was used to load templates
for our simple template engine.

In addition to these, there are nearly a dozen helper functions. Some of them allow
you to interact with every step of the (normally behind-the-scenes) AJAX workflow,
while others simply provide utilities for making AJAX programming easier.

In this chapter, we will only use a handful of AJAX functions. However, the
other tools can come in handy when writing AJAX-enabled web applications.
jQuery is a well-document toolkit. To learn more about its AJAX features, visit
http://jQuery.com.

"Learning jQuery", Packt Publishing, 978-1847192509, provides an in-depth
coverage of the entire jQuery library, including the AJAX functions.

That's it for the theory portion of this chapter. We are now ready to dive into our
first project.

Project: web clips with RSS and AJAX
We want to begin with a simple tool, one that we can quickly sink our teeth into. To
that end, it would be nice to start with an existing XML source and focus just on the
JavaScript needed to work with that source.

Chapter 7

[205]

Wouldn't it be nice if Drupal provided such an XML source out of the box?

Actually, it does. It provides an RSS feed, and RSS is an XML format.

Really Simple Syndication (RSS)
Really Simple Syndication (RSS) was devised as a way of sharing news with other
websites. Initially, it was envisioned as a thin web service, where some remote site
could simply access a URL and get back an XML-formatted list of the latest articles.

It became an attractive offering for two reasons. First, the XML format is
simple, which makes a programmer's life easier. Second, the idea of getting an
up-to-the-minute news feed has a wide appeal. RSS readers and aggregation
services quickly appeared on the scene. Now, RSS is employed all around the Web.

Due to its widespread adoption, and diversity of ways in which it has been used, RSS
represents a Web 2.0 success story.

Since RSS is an XML format (and a simple one at that) it makes a great candidate for
an AJAX project. Since Drupal 6 provides an RSS feed out of the box, we won't have
to do any additional server-side setup.

Before we dive into the JavaScript code, let's take a look at an RSS XML file.

My local Drupal instance is running at http://localhost:8888/drupal. This feed
came from http://localhost:8888/drupal/rss.xml. I just added the rss.xml
part to my base URL to access the feed. Clicking the orange feed button, along the
bottom of Drupal's default home page, will also get you to the feed.

Here's what the feed looks like. This file is an abbreviated version of the one Drupal
provides by default. (The original had more than one entry.)

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xml:base="http://localhost:8888/drupal"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
 <title>Frobnitz Central</title>
 <link>http://localhost:8888/drupal</link>
 <description></description>
 <language>en</language>
<item>
 <title>A Sticky Node</title>
 <link>http://localhost:8888/drupal/node/5</link>
 <description>
 <p>This node should always be displayed
 near the top of the home page.</p>

AJAX and Drupal Web Services

[206]

 </description>
 <comments>
 http://localhost:8888/drupal/node/5#comments
 </comments>
 <pubDate>Sun, 10 Aug 2008 22:10:48 +0000</pubDate>
 <dc:creator>mbutcher</dc:creator>
 <guid isPermaLink=»false»>
 5 at http://localhost:8888/drupal
 </guid>
</item>
</channel>
</rss>

An RSS file is composed of a main container (the <rss></rss> tags), which
contains a channel (<channel></channel>). A channel contains one or more items
(<item></item>).

A channel describes the contents of the feed. Typically, it will include a title, a
description, some language information, and a link back to the website that this feed
describes. You can see in the channel definition how <title></title>, <link>
</link>, <description></description>, and <language></language> are used
to convey this information.

There are pointers inside of a channel to individual pieces of content from
the website. These are stored in items. An item typically includes a title, link,
description, publication date, and a GUID (globally unique identifier).

There are many other possible fields that can go inside of an item. Also, there
are entries for the content creator (<dc:creator></dc:creator>), and a link to
comment about the item (<comments></comments>). More sophisticated feeds
may have enclosures, links to audio files (a podcast), and video (a vodcast or video
podcast), or other legal XML content.

When it comes down to it, that's all there is to an RSS feed. It's just a container with
a channel that contains a list of items; and it's all XML.

The project goals
In this project, we are going to make use of that RSS feed to add a web clips region
to our pages. We will allocate a small portion of the page layout to display a random
item from our XML feed. This is similar to what Google does in Gmail. By showing a
random item from our RSS feed on every page, we might entice site visitors to spend
more time clicking around on the site.

Chapter 7

[207]

To accomplish our project goals, we are going to use some of the tools we have
already encountered. To name a few, we will be using JavaScript themes, behaviors,
and jQuery. However, our focus will be on using jQuery AJAX.

Creating the web clips tool
In this project, we will create our web clips tool in webclips.js. As we have done
in previous chapters, this file will be added to frobnitz.info using a directive like
this: scripts[] = webclips.js.

We will begin by taking a quick look at the code in its entirety. We will then look at
it more closely. One thing that should be immediately noticeable is our use of several
tools introduced in earlier chapters:

// Id

/**
 * Create a web clips tool for displaying random RSS items.
 * @file
 */
var WebClips = WebClips || {settings:{}};
WebClips.settings.feed = 'rss.xml';

Drupal.behaviors.webclips = function (cxt) {

 // Return early if this has already been
 // attached.
 if ($('#main.webclips-processed').size() > 0) {
 return false;
 }

 var feedUrl = WebClips.settings.feed;
 if (
 feedUrl.indexOf('http://') != 0
 && feedUrl.indexOf('https://') != 0
 && feedUrl.indexOf('/') != 0
) {
 // The path is relative.
 feedUrl = Drupal.settings.basePath + feedUrl;
 }

 // Get the feed:
 jQuery.get(feedUrl, function (data, res) {
 if (res == 'success') {
 WebClips.items = $(data).find('item');

 var clip = Drupal.theme('webclipArea', 'webclips');

 $('#main').addClass('webclips-processed').prepend(clip);
 $('.webclip-area').css({

AJAX and Drupal Web Services

[208]

 "background-color":"#eef",
 "width":"100%"
 }).prepend(
 $('[+]').click(WebClips.showItem)
);
 WebClips.showItem();
 }
 });
};

WebClips.showItem = function () {
 var items = WebClips.items;
 var theOne = Math.floor(Math.random() * items.length);
 var item = $(items.get(theOne));
 var theLink = Drupal.theme(
 "webclip",
 item.find('title'),
 item.find('link')
);

 $('#webclips').html(theLink);
};

Drupal.theme.prototype.webclip = function (title, href) {
 return '→ ' + title.text().link(href.text());
};

Drupal.theme.prototype.webclipArea = function (id) {
 var tpl = '<div class="webclip-area"><span id="' +
 id +
 '"></div>';
 return tpl;
};

This code adds a new web clips area at the top of the main content container. It then
uses Drupal's RSS feed to insert a random item into this new container. As you can
see, to achieve these goals, we will use behaviors, themes, and jQuery.

Let's take a closer look at the first few lines:

var WebClips = WebClips || {settings:{}};
WebClips.settings.feed = 'rss.xml';

The WebClips namespace will be used for our custom objects and functions. We
don't want to run the risk of interfering with Drupal, or other modules, by putting
features inside of the Drupal namespace in unexpected places.

Chapter 7

[209]

Drupal.behaviors and Drupal.themes are namespaces that are
set aside for custom functions. We do risk name collisions with other
modules when we use those areas. But in other areas of Drupal, where
functionality is not dependent on using the Drupal namespace, it is
always best to avoid adding things inside the Drupal object.

On the second line of the code, we define WebClips.settings.feed, which holds a
URI for our RSS feed. By default, we want to point this to the relative path rss.xml.
Our code, as we shall see shortly, will expand this to point to the default rss.xml
file inside our Drupal installation. If you are not using Drupal's "Clean URLs", you
will need to adjust this path to point to ?q=rss.xml. It is recommended that you use
Clean URLs while doing the examples in this chapter.

This variable is in the WebClips.settings object (which is visible globally).
Therefore, it is easy to customize this code, setting it to use a different feed simply by
assigning a new value. For example, some other bit of JavaScript could set this using:

WebClips.settings.feed = 'anotherFeed.xml';

We want it to use the default Drupal RSS feed, rss.xml.

Next, let's move on to the first function in our library.

The WebClips behavior
We took a detailed look at behaviors in Chapter 4. There, we saw how behaviors are
executed when the document is ready for manipulation and any other time Drupal.
attachBehaviors() is called.

By defining a behavior, we are indicating that this function should be run when the
page is loaded and ready.

Since this function is a little large, we will break it down into three smaller chunks,
and look at each in detail:

Drupal.behaviors.webclips = function (cxt) {

 // Return early if this has already been
 // attached.
 if ($('#main.webclips-processed').size() > 0) {
 return false;
 }

 // The rest of the function...
}

AJAX and Drupal Web Services

[210]

This is the first part of the behavior that we will examine. While every behavior
function is passed a context (cxt in the code), we don't need to use the context for
since we know exactly which part of the document we are concerned with.

The first part of this function is a conditional:

if ($('#main.webclips-processed').size() > 0) {
 return false;
}

We have seen conditionals such as this in other behaviors we have written, but it has
a twist. Remember that a behavior can be executed more than once. All registered
behaviors will be executed when the page first loads. Then, anytime Drupal.
attachBehaviors() is called, they will be executed again. Behaviors need to be
written in such a way that they can safely be called multiple times without, for
example, attaching duplicate content.

In the past, we have avoided this problem by using a construct like this:

if ($('#main:not(webclips-processed')) {
 // Do main behavior here...
}

The code inside the conditional is only executed if the behavior has not already been
processed. This is fine for short behaviors.

But our behavior is a long one, and using this pattern would result in our wrapping
a large block of code inside a conditional. It is considered a good programming
practice (especially in object-oriented languages) to avoid this kind of nesting. There
are two good reasons for this:

Catching an "undesirable" case (where there is nothing to do) is best done •	
early in a function because it is easier to read. We read functions from top to
bottom. It is convenient (and easier to debug) to have these cases caught at
the beginning, rather than at the end of the function.
Nested code is harder to read. The further the indentation goes, the harder •	
it is for a programmer to determine how the function works. Every layer of
nesting requires the programmer to remember more context. Reducing the
burden on the programmer also reduces the likelihood of bugs creeping in.

So, instead of using something like if ($('#main:not(webclips-processed)) {},
we take the opposite approach. We check to see if the element has been processed,
and if it has, we return early.

Chapter 7

[211]

A rule of thumb
How do we determine when we should catch undesirable cases and
return early? Generally, if the body of the conditional is longer than a
dozen lines, catch the undesirable case first and return early.

With that bit of checking out of the way, we know we can proceed with the function
while knowing that this is the first time the behavior has been executed. Let's now
look at the second part that makes up this behavior:

Drupal.behaviors.webclips = function (cxt) {

 // Return early if this has already been
 // attached.
 if ($('#main.webclips-processed').size() > 0) {
 return false;
 }

 var feedUrl = WebClips.settings.feed;
 if (
 feedUrl.indexOf('http://') != 0
 && feedUrl.indexOf('https://') != 0
 && feedUrl.indexOf('/') != 0
) {
 // The path is relative.
 feedUrl = Drupal.settings.basePath + feedUrl;
 }

 // More code here...
};

The highlighted block is the second of the three parts that make up this behavior.
This is a deceptively simple piece of code. Before we can fetch the feed using AJAX,
we need to prepare the URL. If the URL is a relative path (one that does not start
with a slash), we need to prepend the Drupal path. But in other cases, it is better for
us to not attempt to alter the URL.

This code is not necessarily designed to increase security. Its purpose is
to ensure the URL is correctly formed. The XMLHttpRequest object has
some security features built in. One of these is that the XHR object will not
contact any domain other than the one that served the current page.

The first thing we do is copy the URL from WebClips.settings.feed into a local
copy named feedUrl. Having copied the variable, we can now modify the copy
without changing the original.

AJAX and Drupal Web Services

[212]

In some cases (three, in fact), we don't want to change the URL. But in other cases,
we will want to prepend the Drupal.settings.basePath to the beginning of the
path so the RSS file will be located correctly.

This piece of code checks to make sure that the URL doesn't fit the pattern of
a URL that should remain unaltered. We don't want to alter the following three
URL patterns:

1. A URL that begins with http://. This is a fully qualified URL, and adding
Drupal's base path to it would cause a failure.

2. A URL that begins with https://. We don't prepend path information to
this for the same reason that we do not prepend it to an http:// URL.

3. An absolute path beginning with /. If a path begins with a slash, we should
assume that the author intended this to be a path that begins with the server's
root. By making this assumption, we have allowed the author to specify
another feed on the same server, even if that feed is not part of Drupal.

If the feedUrl does not match any of these three patterns, we assume that feedUrl
contains a relative path. Thus, we need to prepend the Drupal.settings.basePath
to this variable:

feedUrl = Drupal.settings.basePath + feedUrl;

We now have a complete path to the RSS feed. The next thing we need to do is fetch
the content of the feed. This is done in the last part of the behavior:

Drupal.behaviors.webclips = function (cxt) {

 // Return early if this has already been
 // attached.
 if ($('#main.webclips-processed').size() > 0) {
 return false;
 }
 var feedUrl = WebClips.settings.feed;
 if (
 feedUrl.indexOf('http://') != 0
 && feedUrl.indexOf('https://') != 0
 && feedUrl.indexOf('/') != 0
) {
 // The path is relative.

Chapter 7

[213]

 feedUrl = Drupal.settings.basePath + feedUrl;
 }
 // Get the feed:
 jQuery.get(feedUrl, function (data, res) {
 if (res == 'success') {
 WebClips.items = $(data).find('item');
 var clip = Drupal.theme('webclipArea', 'webclips');
 $('#main').addClass('webclips-processed').prepend(clip);
 $('.webclip-area').css({
 "background-color":"#eef",
 "width":"100%"
 }).prepend(
 $('[+]').click(WebClips.showItem)
);
 WebClips.showItem();
 }
 });
};

The highlighted section handles the AJAX call. More specifically, it handles two
different stages of an AJAX transaction. It begins to send a request and defines the
function that should be called when the browser receives the AJAX response from
the server.

All of this is done with a single function, jQuery.get(). This function is called with
two parameters:

feedUrl•	 : the URL that this object should contact to get the RSS feed data
An anonymous function that is executed when the data is returned•	

The function passed in here doesn't have to be an anonymous one. However, (as we
have seen many times in this book) since the function is called only once, the jQuery
approach is to create an inline anonymous function.

The job of the anonymous function is to take the returned information and do
something useful with it. When jQuery invokes this function, it passes two pieces
of information:

The data returned from the server. It will be a single string.•	

The result message from the server. This is also a string. In the case where •	
the request succeeds, the message will be success. In error conditions, it will
be a message indicating what error occurred. For example, if it is the request
time out, this will be timeout. If the data returned could not properly be
parsed, this will return parsererror. In other cases, it may just return error.

AJAX and Drupal Web Services

[214]

Let's look carefully at the following anonymous callback function defined in the
previously highlighted section:

function (data, res) {
 if (res == 'success') {
 WebClips.items = $(data).find('item');
 var clip = Drupal.theme('webclipArea', 'webclips');
 $('#main').addClass('webclips-processed').prepend(clip);
 $('.webclip-area').css({
 "background-color":"#eef",
 "width":"100%"
 }).prepend(
 $('[+]').click(WebClips.showItem)
);
 WebClips.showItem();
 }
};

When this function is called by jQuery's AJAX system, the data (data) and the result
message (res) will both be passed in.

The first thing we do is check the result message to see if our transaction was
successful. If the message is success, then we proceed with our handling. In any
other case, we do nothing. The web clips section is simply not added to the page.

Why no error?
We could give some sort of error message in cases where the result is
not success. While this might be useful for debugging, it would not be
good for the user experience. Site functionality would not be significantly
degraded by the absence of web clips, so there is no reason to generate an
error message.

The rest of the code in this function is only executed when we have a
successful result.

The data returned should be an RSS XML document captured in a string. We need to
parse that string into a DOM, and begin extracting information. Once again, this is a
quick one-liner in jQuery:

WebClips.items = $(data).find('item');

When the XML string is passed into the jQuery builder, it will parse the string into a
new DOM, and wrap the results in a jQuery object.

Chapter 7

[215]

Since we just want the items from the feed, we can use the jQuery find() function,
which takes a CSS selector to query the DOM. The query that we just saw, will return
all of the <item></item> elements. WebClips.items, a variable that belongs
to our main WebClips object, is a jQuery object wrapping a list of the <item>
</item> elements.

Why do we store the items in WebClips.items? We do that since we want this list
to be accessible to other WebClips functions. Here, we will make the list globally
available. Other functions will retrieve data from this list of items.

Next, we begin building the display for our web clips area:

var clip = Drupal.theme('webclipArea', 'webclips');
$('#main').addClass('webclips-processed').prepend(clip);

First, we use Drupal.theme() to create the web clips area. This function, which
we will look at in just a moment, takes one argument. The argument is the ID
(webclips) for the web clips area. We will use that later to find the area and
exchange the clip (the RSS feed item) displayed in that area.

Before moving on to the rest of this function, let's take a quick look at the Drupal.
theme.prototype.webclipArea() theming function. This function is responsible
for defining the region where the web clips will be displayed. However, individual
web clips will be themed separately as seen here:

Drupal.theme.prototype.webclipArea = function (id) {
 var tpl = '<div class="webclip-area"><span id="' +
 id +
 '"></div>';
 return tpl;
};

This function simply builds some HTML that looks like this:

<div class="webclip-area"></div>';

There is a <div></div> with the class webclip-area. Inside of this is an empty
 tag. Above, I've used ID as a placeholder for the ID that is passed
into the theming function. Ours will have the ID webclips.

The theme is executed in the behavior and the results are stored in clip.

Once we have a themed the clip area, we insert that into the DOM at the top of the
main content area (the element with the ID main). To make sure the behavior doesn't
run again, we need to add the webclips-processed class to the element with the
main ID. Then, using the prepend() jQuery function, we add the web clip section
directly inside the main section before any other content.

AJAX and Drupal Web Services

[216]

The prepend() function is similar to the append() jQuery function.
While append() adds the content to the very end of an element's
contents, the prepend() function adds it to the very beginning.

At this point, we have a newly created section on our page that is allocated for
displaying web clips. We will now do a little bit of work to prepare this area for
displaying an individual clip:

$('.webclip-area').css({
 "background-color":"#eef",
 "width":"100%"
}).prepend(
 $('[+]').click(WebClips.showItem)
);

This jQuery chain first finds the element(s) with the class webclip-area. Glancing
back at the output from the theming function we just looked at, we can see the main
<div></div> tag will match this. Next, this chain will add some CSS to the <div>
</div> element. It sets a gray-blue background, and then sets the element's width
to 100%.

The final part of this chain adds some new content to the div, again using the
prepend() function. Referring back to the output of the theme function, this will
place the content inside of the div, before the existing element.

What do we add with this prepend() function? Here's the code:

$('[+]').click(WebClips.showItem)

This adds the: [+], and then assigns a click event handler to this.
Whenever this span is clicked the WebClips.showItem() function will be executed.
The [+] text will function as a mechanism for displaying another random web clip.
Whenever a user clicks this symbol, a new web clip will be displayed.

We're now down to the final line of the behavior: WebClips.showItem(). We just
assigned this function to a click handler, and now, on the last line of the behavior, we
explicitly call it. This function will grab an item and display it in the region we just
created. In essence, it displays the initial value for our web clips region.

Let's look at the WebClips.showItem() function.

Chapter 7

[217]

The WebClips.showItem() function
The Drupal.behaviors.webclips() behavior we looked at earlier was complex,
performing several steps to set up the area where our web clips will be displayed. At
the very end, it calls WebClips.showItem() to display an item. The present function
is much simpler:

WebClips.showItem = function () {
 var items = WebClips.items;
 var theOne = Math.floor(Math.random() * items.length);
 var item = items.eq(theOne);
 var theLink = Drupal.theme(
 "webclip",
 item.find('title'),
 item.find('link')
);

 $('#webclips').html(theLink);
};

This function takes no parameters. The first thing it does is make a local copy of the
WebClips.items jQuery object. This is only done for the sake of readability.

Next, we get a random integer corresponding to a valid index in our items list. For
example, if our list has three items, we want an integer between 0 and 2. We get this
with Math.floor(Math.random() * items.length).

To limit the matched items from a jQuery object to just one specific index number,
we use the jQuery eq() method.

Now that we have an item, we are ready to theme it, and insert it into the web clips
area on the page. Here's the theming call:

var theLink = Drupal.theme(
 "webclip",
 item.find('title'),
 item.find('link')
);

This uses the Drupal.theme.prototype.webclip() function, to which it passes: the
title of the RSS feed item, and the link from the RSS feed item. The link, you may
recall, points back to the original article that this feed item is describing:

Drupal.theme.prototype.webclip = function (title, href) {
 return '→ ' + title.text().link(href.text());
};

AJAX and Drupal Web Services

[218]

This theme function takes two parameters: title and href (where href is a link).
We're not doing anything fancy here. We just return code that looks like this:

→TITLE

Here, HREF would be replaced with the value passed in as href, and TITLE would be
replaced by the title. The → HTML entity resolves to a right arrow (→). We're
just using it as a decoration.

When the theme function returns, we have a formatted link. All we need to do
now is insert that link into the web clips area. This is done by the last line of
WebClips.showItem():

 $('#webclips').html(theLink);

This finds the element with the webclips ID, and inserts the new link into that area.
The result looks something like this:

The previous screenshot is the result of the Drupal.behaviors.webclips()
function being called during page loading. If we click on the [+], it will show
a new web clip:

The clip is changed because we attached the click handler to the [+]
 at the end of the Drupal.behaviors.webclips() function. Every time
the [+] is clicked, WebClip.showItem() is called, which changes the contents of
the web clip region.

We have now finished our first AJAX project. As with the other projects in this
book, there are many ways we could extend this project to do other, perhaps more
interesting, things. For example, periodically refreshing the item instead of waiting
for the user to click something.

However, instead of continuing to tinker with this project, let's move onto another
one. In the next project, we will see another way of using AJAX to share data
between server-side Drupal and the client-side JavaScript. But this time, we will
do something more sophisticated on the server side.

Chapter 7

[219]

Project: real-time comment notifications
In the previous project, we created a web clips feature that retrieved an RSS feed
and displayed random items along the top of the content area of a page. We took an
existing piece of XML content and made use of it in JavaScript.

But more often, we'll find that Drupal doesn't provide exactly the data we want in an
AJAX-friendly format. So how can we get that information?

One way would be to write some custom PHP code to retrieve the content we
want. This is the approach I took in my book "Learning Drupal 6 Module Development",
Packt Publishing, 978-1847194442. However, doing this requires considerable
PHP knowledge.

A second option would be to find other ways of extracting content from Drupal and
converting it to an AJAX-friendly format such as XML or JSON. That's what we are
going to do here.

Displaying comments as notifications
The goal of this project is to create a comments notification tool. This tool will alert
the user every time a new comment is posted to the site. As with popular instant
messaging clients, when a new comment is posted, our tool will raise a notification
box in the browser's lower righthand corner. It will display the new comment for
a few seconds and then disappear. Notifications will appear as new comments are
posted. With a little AJAX, this tool will unobtrusively maintain contact with the
Drupal server while we browser around the site.

To accomplish our goal, we will need a little more than JavaScript. Using a pair
of popular add-on modules, we will add some functionality to the Drupal server.
These modules will allow us to do two things:

Run a query to retrieve some specific content from the server•	

Format that content into JSON and make it accessible at its own URL•	

Once we have this data source available, we can use JavaScript and jQuery to grab
the information and display it in our theme.

A project like this presents many possibilities and complexities. One such complexity
is the issue of determining how many comments we need to show. Should we send
an alert for every single comment? If a user goes offline for a while, should we try
to "catch up" when the user logs back on, sending a list of all of the comments? How
often should the server check for new messages? If several new messages are posted
between checks, should we show them all, or only the most recent?

AJAX and Drupal Web Services

[220]

The complexity of the tool (and length of our code) can vary widely depending on
how we answer these questions. We're going to go with a simple configuration in
this project. We will check every ten seconds for the newest comment. Our tool will
only display the comment if it is newer than the last comment we displayed. This
means some comments may get skipped if more than one is posted in the ten second
interval. But for our purposes, simple code is the more valuable goal.

The first step in building our new tool is to install the: Views and Views Datasource
modules. Then we will build a data source for later use.

Installing Views and Views Datasource
One of the most frequently used add-on modules for Drupal is the Views module.
This module provides Drupal developers and administrators the ability to build up a
dynamic view of content by composing a query and determining how the results will
be displayed.

Want to show all nodes created before July 1, 2008 in a block? Want to display all
Page nodes created by mbutcher? Want to create an RSS feed containing a list of all
Story nodes with the taxonomy term important? Views is the most popular tool for
providing such functionality.

Along with CCK, Views is a tool that any serious Drupal developer must
know. Learn more about views at http://drupal.org/project/
views. In this chapter, we are using the version Views 2.0-RC1.

Views provides a back-end engine for creating, storing, and executing queries. It also
provides a user interface, complete with a visual query builder. This can be used to
create new views from the comfort of the Drupal administration interface.

To install Views, download the module (from the URL we just saw), unpack it in
the /sites/all/modules directory under your Drupal installation. Next, go to
Administer | Site building | Modules and enable Views and Views UI. This will
give you the Views engine as well as the user interface for building queries.

The Views module is very powerful. Like Drupal, one of the things that makes Views
so powerful is the fact that it can easily be extended. By default, Views allows data to
be formatted as HTML snippets for insertion into parts of a Drupal page (like a block
or a node).

But we want to create a data source that can be retrieved on its own, and that
contains JSON content. To do this, we need a helper module that adds more
functionality to Views. The module we will use for this is Views Datasource.

Chapter 7

[221]

Views Datasource provides a suite of formatters for Views, which includes JSON,
RDF XML, XHTML microformats, and a handful of other XML formats (like Atom,
another syndication format).

The Views Datasource project page can be found at http://drupal.
org/project/views_datasource. From there, you can read more
about the other formats this module supports.

To install Views Datasource, download it from the URL, put it in /sites/all/
modules, and then go to Administer | Site building | Modules. This module
provides several submodules. You may install as many of those as you like but we
will only be using the Views JSON module though. Make sure you enable it.

Creating a JSON view
The Views module comes with a very sophisticated builder interface for creating your
own views. If this book were on using Drupal modules, we would certainly spend
several pages (at least) describing the details of the Views UI. But for our immediate
purposes, we will constrain our discussion to building just one simple view.

Views UI is a module that is included with Views. This module contains
the user interface for building custom views.

We want to track new comments as they are created on our website. We then want
to make that information, available in the JSON format, and assign it to a URL so our
JavaScript can retrieve and parse the information.

We want the following information:

We only want the newest comment.•	

For that comment, we want the author and the body of the comment. We also •	
want the comment ID.
We want to know the node that this comment refers to. (Remember, a •	
comment is a comment on a node.)
We want the title of that node and the node ID.•	

We want JSON data returned.•	

We want to be able to access this JSON data feed at its own URL.•	

AJAX and Drupal Web Services

[222]

This is all of the information we need to create the new view.

If the Views UI module is enabled, then we can create a new view by going to
Administer | Site building | Views and clicking the Add tab.

We will name our new view NewestComment (with no spaces in the name).

In the previous screenshot, we set the View type to Comment since we are primarily
interested in comments for our view.

Clicking the Next button at the bottom of the page will take us to the main view
editor. The complex UI on this screen makes it possible to edit all major aspects of a
view from one screen. We will just look at the options we need to configure to create
our feed.

Chapter 7

[223]

Here is a labeled screenshot showing how we need to configure our view:

We will go through the arrows in the previous screenshot, starting with the arrow
labeled 1. Note that when you change a setting in views, the changed value has a
different background color (pale yellow, by default) than unchanged values. In our
grayscale image, this does not show up well.

1. Choose Page from the drop-down list and click on the Add display button.
This tells the Views builder that we are building a new page, not a block,
feed, or something else. When you first do this, your page will be labeled
Page, not JSON Content.

2. A page needs a path. Click on the Path item in Page Settings and set the path
to newest_comment. This assigns a relative path that we will use to construct
a URL.

3. Next, we have several things to set in the Basic Settings area. Name (JSON
Content) will help us distinguish this display from others. Style needs to be
set to JSON data document to indicate that we want JSON data for the entire
document, and Row style should be Unformatted. This is used when styling
tables or lists and JSON doesn't need styling. In the screenshot, I set the Title
property, though it has no impact on JSON data. Finally, set Items to display
to 1, since we only want one comment.

4. By default, we are working with comment objects. We also want information
about related nodes, so we click the + (plus) icon in Relationships and add
Comment: Node. This will make information about related nodes available
to us.

AJAX and Drupal Web Services

[224]

5. Next, we click on the + (plus) sign in the Fields area and add all of the fields
we want access to including Comment: Author, Comment: Body, Node:
Link, and Node: Title. Note that the ID fields for the comment and the
related node are automatically included in the results.

6. Finally, we need to set the Sort criteria to only give us the newest comment.
This is done by setting Comment: Post date with Desc (descending)
ordering.

We now have created a new view. Make sure you click the Save button once you
have completed all of the fields above.

Once it is saved, you can click the Preview button to see the output. Or, since we
registered it to a path, we can construct a URL. Beginning with our base path, we can
appending the value of Path (newest_comment) in the view we just created. On my
server, that gives me http://localhost:8888/drupal/newest_comment.

If I enter that URL in my browser, it returns data which looks something like this:

[
 {
 "cid": "12",
 "comments_name": "mbutcher",
 "comments_uid": "1",
 "comments_homepage": "",
 "comments_comment": "Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.",
 "comments_format": "1",
 "node_comments_nid": "5",
 «node_comments_title»: «A Sticky Node»,
 «comments_timestamp»: «1223830766»
 }
]

How do we make sense of this? Actually, for the JavaScript programmer, reading the
above output should be fairly straightforward.

The JSON data is also available in the view building Preview section.
However, the JSON results are all displayed on a single line. This does not
make for easy reading.

Look at the resulting JSON document as a JavaScript object. JSON is essentially a
serialization format that uses JavaScript constructs. Square brackets ([]) are used for
arrays, so the code above is an array with one item in it.

Chapter 7

[225]

Curly braces ({}) are used for object literals. So the first (and only) item in the array
above is an object.

Inside the object, nine properties are declared, each following the form "name":
"value". If the value is a number, or a Boolean value (true or false), quotation
marks are not needed around the value.

JSON data and trailing commas
Developers used to working with Drupal PHP often add a trailing
comma at the end of array declarations ([1, 2, 3,]). This is incorrect
in JavaScript and will (correctly) result in errors on some browsers.
Similarly, object literals cannot end with an extra comma.

The following fields are returned as a part of our JSON feed:

cid•	 : The comment ID number
comments_name•	 : The name of the person who posted the comment
comments_uid•	 : The user ID of the person who posted the comment
comments_homepage•	 : A placeholder for a link to the comment
comments_comment•	 : The body of the comment
comments_format•	 : The formatter that should be used when outputting
the code
node_comments_nid•	 : This is the node ID of the node that the comment
refers to
node_comments_title•	 : The title of the node that the comment refers to
comments_timestamp•	 : The time that the comment was posted

There are two questions that you might be asking when viewing this.

First, why doesn't the data encoded in JSON match the data we requested when we
constructed the view? For instance, why do we have comments_format (which we
didn't ask for) but lack the comments link, which we did ask for?

A short answer is that Views returns the information to construct all of the requested
information, along with some extra utility information (such as comments_format).
But the output generator (in this case, Views Datasource) is responsible for combining
some of that information. JSON content is returned almost unaltered. We must do
some of the data building ourselves.

Secondly, why are the names so long? We asked for the title and got
node_comments_title. Why not just title?

AJAX and Drupal Web Services

[226]

Views is capable of creating very complex queries against the Drupal database. It
does the heavy lifting automatically, without requiring you to (for example) write
the SQL to retrieve information from the database. Part of this automation process
requires the generation of field names that are unlikely to conflict with other fields in
the returned results. Therefore, it uses a rather complex naming convention to assign
field names.

We now have our view constructed. We will now turn to the JavaScript code that
will run on the client.

The comment watcher
We have just configured the server to give us the information we need in order
to find out what the latest comment is, using AJAX and JSON. In this section, we
will develop a JavaScript tool that will use this information in order to generate
comment notifications.

The script will watch the JSON feed for changes. When a new comment appears in
the JSON feed, the comment watcher will notify the user.

To create our script, we are going to draw on our existing toolkit, using behaviors,
theming, and jQuery to build the comment watcher.

Let's first take a glance at the code in its entirety. We will then take a closer look at
each section. This code is from the script commentwatcher.js, which is loaded into
our theme using a scripts[] = commentwatcher.js directive in the info file:

// Id

/**
 * Watch for new comments and display a message when a comment
 * is posted.
 *
 * @file
 */
var CommentWatcher = CommentWatcher || {settings: {}};

CommentWatcher.settings.path = 'newest_comment';
CommentWatcher.settings.maxLength = 128;
CommentWatcher.settings.showSeconds = 7;
CommentWatcher.settings.checkSeconds = 10;

Drupal.behaviors.commentWatcher = function () {
 if ($('#comment_watcher').length == 0) {
 $('body').append('<div id="comment_watcher"></div>');

Chapter 7

[227]

 CommentWatcher.check();
 var checkInterval = CommentWatcher.settings.checkSeconds *
 1000;
 setInterval(CommentWatcher.check, checkInterval);
 }
};

CommentWatcher.check = function () {
 var url = Drupal.settings.basePath +
 CommentWatcher.settings.path;

 jQuery.getJSON(url, function (data, result) {
 if (result != 'success') {
 return;
 }
 var comment = data[0];
 if (comment.cid > CommentWatcher.getLastID()) {
 CommentWatcher.setLastID(comment.cid);
 var content = Drupal.theme('commentArea', comment);
 var hideInterval = CommentWatcher.settings.showSeconds *
 1000;

 $('#comment_watcher').append(content).show('slow');

 setTimeout(function () {
 $('#comment_watcher').hide('slow', function () {
 $(this).find('#' + comment.cid).remove();
 });
 }, hideInterval);
 }

 });
};

CommentWatcher.setLastID = function (lastCommentID) {
 var oneDay = 1000 * 60 * 60 * 24;
 var expireTime = (new Date).getTime() + oneDay;
 var expire = new Date(expireTime).toGMTString();
 var myCookie = 'last_comment_id=' + lastCommentID +
 '; expires=' + expire + '; path=' +
 Drupal.settings.basePath;
 document.cookie = myCookie;
};

AJAX and Drupal Web Services

[228]

CommentWatcher.getLastID = function() {
 var found =
 document.cookie.match(/last_comment_id=([\d]+);/);
 if (!found || found.length < 2) {
 return 0;
 }
 return new Number(found[1]);
};

CommentWatcher.formatComment = function (text) {
 text = Drupal.checkPlain(text);
 if (text.length > CommentWatcher.settings.maxLength) {
 text = text.substring(
 0,
 CommentWatcher.settings.maxLength
);
 var lastSpace = text.lastIndexOf(' ');
 if (lastSpace > 0) {
 text = text.substring(0, lastSpace);
 }
 text += '...';
 }
 return text;
};

Drupal.theme.prototype.commentArea = function (comment) {
 var text =
 CommentWatcher.formatComment(comment.comments_comment);
 var node_url = Drupal.settings.basePath + '/node/' +
 comment.node_comments_nid;
 var title_link =
 Drupal.checkPlain(comment.node_comments_title);
 title_link = title_link.link(node_url);
 var author = Drupal.checkPlain(comment.comments_name) +
 Drupal.t(' said...');
 var tpl = '<div class=»new_comment»></div>';

 var out = $(tpl).attr('id', comment.cid)
 .append('<div class=»node_title»>' + title_link +
 '</div>')
 .append('' + author +'')
 .append('<blockquote>' + text + '</blockquote>')
 .parent().html();

 return out;
};

Chapter 7

[229]

There are six functions in this code. The behavior is executed when the document
is loaded. It initiates the watching process. Periodically (every ten seconds, to be
precise), the application checks the server for a new comment. If one is found, the
theming function is used to format the data, and it is displayed on the page for seven
seconds. After that time, it is hidden.

Information about the current comment is stored in a cookie. This ensures that as the
user navigates throughout the site, a comment notification is only generated when a
new comment is posted. Otherwise, the user would be notified anew on each page
load, even if he or she had already seen the comment.

Let's take a quick glance at the settings for this application. We will then move on to
the behavior. Here are the settings:

var CommentWatcher = CommentWatcher || {settings: {}};
CommentWatcher.settings.path = 'newest_comment';
CommentWatcher.settings.maxLength = 128;
CommentWatcher.settings.showSeconds = 7;
CommentWatcher.settings.checkSeconds = 10;

The namespace we will use is CommentWatcher. Inside the settings object, we have
four parameters. The CommentWatcher.settings.path points to the path for the
view. This is the same value we put in the Path field when constructing the view in
the previous section. If you are not using Drupal's "Clean URLs" feature, you will
need to adjust this to use the ?q=newest_comment syntax.

Next, we set CommentWatcher.settings.maxLength to 128. This is the maximum
number of characters from the comment body that will be shown in the body
of a notification.

Then we set a few time values:

CommentWatcher.settings.showSeconds = 7;
CommentWatcher.settings.checkSeconds = 10;

This is how long a notification will be shown (seven seconds) and how long the tool
will wait between AJAX checks to the server (ten seconds). These are all declared as
settings making them easy for behaviors, or other scripts, to modify.

Next, let's look at the main behavior.

AJAX and Drupal Web Services

[230]

The comment watcher behavior
Our behavior is going to initialize the comment watcher, and then prepare it for its
task of periodically checking the server:

Drupal.behaviors.commentWatcher = function () {
 if ($('#comment_watcher').length == 0) {
 $('body').append('<div id="comment_watcher"></div>');
 CommentWatcher.check();
 var checkInterval = CommentWatcher.settings.checkSeconds *
 1000;
 setInterval(CommentWatcher.check, checkInterval);
 }
};

The first thing it does is check for an element with the ID comment_watcher. If
there is one, we know that this behavior has already been run and we don't
do anything.

If there is not a comment_watcher element, we know that we need to set up our
comment watcher.

To set it up, we first insert the main area where notifications will be displayed. It
should come as no surprise (given the check that we just did) that this element
will have the ID comment_watcher. This is appended to the body of the HTML
document. It will be styled by a commentwatcher.css stylesheet that looks like this:

#comment_watcher {
 position: fixed;
 right: 25px;
 bottom: 0px;
 background-color: white;
 display: none;
 border: 2px solid #eee;
 font-size: 10px;
 width: 200px;
 padding: 3px;
}

.new_comment blockquote{
 font-size: 12px;
 padding-left: 10px;
 margin-left: 2px;
}

As can be seen from this stylesheet, the comment area will be located in the lower-
right corner of the browser's viewport.

Chapter 7

[231]

The next task of the behavior is to display the first comment (if there is one). Then,
the behavior registers a callback function that will be periodically executed to see if a
new notification needs to be displayed.

This is done in three lines:

CommentWatcher.check();
var checkInterval = CommentWatcher.settings.checkSeconds *
 1000;
setInterval(CommentWatcher.check, checkInterval);

The CommentWatcher.check() function, which we will look at next, checks the
remote server, and then displaying notifications. It is immediately called to show the
newest comment. Then, using setInterval(), we tell the JavaScript interpreter to
re-run the CommentWatcher.check() function every
ten seconds.

The setInterval() function takes a function object as the first
parameter, and an interval (in milliseconds) as the second parameter. The
interpreter will wait the prescribed interval of time and then execute the
function. It will continue to wait and execute until the interval is cleared
(with clearInterval()), or the script is terminated.

Let's now turn to the CommentWatcher.check() function and see what happens
when it is called.

The CommentWatcher.check() function
The CommentWatcher.check() function plays the most important role in our tool. It
polls the server and creates a notification when a new comment is posted.

However, with such a large toolkit available to us, even this function is not
terribly complex. Let's take a look:

CommentWatcher.check = function () {
 var url = Drupal.settings.basePath +
 CommentWatcher.settings.path;

 jQuery.getJSON(url, function (data, result) {
 if (result != 'success') {
 return;
 }

 var comment = data[0];
 if (comment.cid > CommentWatcher.getLastID()) {
 CommentWatcher.setLastID(comment.cid);

AJAX and Drupal Web Services

[232]

 var content = Drupal.theme('commentArea', comment);
 var hideInterval = CommentWatcher.settings.showSeconds *
 1000;

 $('#comment_watcher').append(content).show('slow');

 setTimeout(function () {
 $('#comment_watcher').hide('slow', function () {
 $(this).find('#' + comment.cid).remove();
 });
 }, hideInterval);
 }

 });
};

On the first line, we construct a relative URI to the server by appending the
CommentWatcher.settings.path to the Drupal base path. This will be passed in as
the URL parameter to the jQuery.getJSON() function.

Along with the URL, we pass an anonymous function jQuery.getJSON(). That
function will be executed when the JSON data has been retrieved from the remote
server. Let's look closely at this anonymous function:

 function (data, result) {
 if (result != 'success') {
 return;
 }

 var comment = data[0];
 if (comment.cid > CommentWatcher.getLastID()) {
 CommentWatcher.setLastID(comment.cid);
 var content = Drupal.theme('commentArea', comment);
 var hideInterval = CommentWatcher.settings.showSeconds *
 1000;

 $('#comment_watcher').append(content).show('slow');

 setTimeout(function () {
 $('#comment_watcher').hide('slow', function () {
 $(this).find('#' + comment.cid).remove();
 });
 }, hideInterval);
 }

 });

Chapter 7

[233]

As usual, the first thing we do in the anonymous function is check to make sure the
results were fetched successfully. If the network transfer was successful, and the
content could be parsed as JSON, the result is set to success.

Therefore, if the result is not success, we simply return without doing anything.

The jQuery.getJSON() function not only fetches the data from the remote server, it
also parses it using the JSON parsing rules. Therefore, if the result is success, we
know that data will be a JavaScript object decoded from the JSON data.

Earlier, we took a look at what that data looks like as it is returned from the view. It
is something like this:

[
 {
 "cid": "12",
 "comments_name": "mbutcher",
 "comments_uid": "1",
 "comments_homepage": "",
 "comments_comment": "Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.",
 "comments_format": "1",
 "node_comments_nid": "5",
 «node_comments_title»: «A Sticky Node»,
 «comments_timestamp»: «1223830766»
 }
]

So, data is an array with one item. That one item is an object describing the newest
comment. Since we will directly reference that object several times, we assign
data[0] to comment.

Next, we check to see if the comment just retrieved from the server is newer than the
last comment we looked at:

if (comment.cid > CommentWatcher.getLastID()) {
 CommentWatcher.setLastID(comment.cid);
 var content = Drupal.theme('commentArea', comment);
 var hideInterval = CommentWatcher.settings.showSeconds *
 1000;

 $('#comment_watcher').append(content).show('slow');

 setTimeout(function () {

AJAX and Drupal Web Services

[234]

 $('#comment_watcher').hide('slow', function () {
 $(this).find('#' + comment.cid).remove();
 });
 }, hideInterval);
}

Later, we will see how CommentWatcher.getLastID() and CommentWatcher.
setLastID() work. For now, we can just say that the first is used for
determining what the last new comment ID was, and the second one sets the newest
content ID.

If the comment ID (comment.cid) is newer than the latest comment ID the tool has
seen, then a new comment has been posted. In this case, we do several things:

1. We set the last comment ID using CommentWatcher.setLastID().
2. Next, we use a theming function, commentArea, to turn the comment object

into formatted HTML.
3. That data is then appended to the contents of the comment_watcher element,

and then (using the $().show() function) the new element is gradually
displayed on the screen.

4. Finally, since we only want the new comment to be shown for a few seconds,
we use JavaScript's setTimeout() function to tell JavaScript to run a
function after a given number of milliseconds: (CommentWatcher.settings.
showSeconds * 1000).

The function passed to setInterval() is an anonymous function:

function () {
 $('#comment_watcher').hide('slow', function () {
 $(this).find('#' + comment.cid).remove();
 });
}

This function finds the element with the ID comment_watcher and then gradually
hides it (using $().hide('slow')). Once the element is hidden, the $().hide()
function will execute the anonymous function we pass in, which simply removes the
comment from the comment_watcher element.

When a new comment is added, and the CommentWatcher.check() function
runs, a new notification will expand from the lower righthand corner of the
browser's viewport as seen here.

Chapter 7

[235]

The jQuery show and hide effects will cause the notification to expand out from the
corner, and after seven seconds have elapsed, collapse back down into the corner.

Now that we have an idea of how the notification looks, let's examine the
theming function.

Theming the comment notification
There are two functions involved in theming the content. The first is our custom
theming function, Drupal.theme.prototype.commentArea() which we see here:

Drupal.theme.prototype.commentArea = function (comment) {
 var text =
 CommentWatcher.formatComment(comment.comments_comment);
 var node_url = Drupal.settings.basePath + '/node/' +
 comment.node_comments_nid;
 var title_link =
 Drupal.checkPlain(comment.node_comments_title);
 title_link = title_link.link(node_url);
 var author = Drupal.checkPlain(comment.comments_name) +
 Drupal.t(' said...');
 var tpl = '<div class="new_comment"></div>';

 var out = $(tpl).attr('id', comment.cid)
 .append('<div class="node_title">' + title_link +
 '</div>')

AJAX and Drupal Web Services

[236]

 .append('' + author +'')
 .append('<blockquote>' + text + '</blockquote>')
 .parent().html();

 return out;
};

This code is straightforward. As with the other theme functions we have seen
throughout this book, the job of this function is to build up a string containing
formatted content.

The first thing this does is format the main comment content. This is done with
CommentWatcher.formatContent(), which we will look at in just a moment.

From there, it builds up several smaller pieces of content including a URL, which
is then transformed into a link, the string "AUTHOR said...", and then the primary
<div></div> tag , which is used as a wrapper for our comment content.

When retrieving content over AJAX, especially when the content isn't
embedded in XML, you should use Drupal.checkPlain(), or
another encoding tool, to prevent HTML tags from being injected. This
is especially important when the content comes from users, as is the case
with comments.

Once that is out of the way, we use one long jQuery chain to incrementally build up
the contents of the comment. At the end of the chain, we get the HTML contents of
the jQuery object and return those.

Let's look at the CommentWatcher.formatContent() function:

CommentWatcher.formatComment = function (text) {
 text = Drupal.checkPlain(text);
 if (text.length > CommentWatcher.settings.maxLength) {
 text = text.substring(
 0,
 CommentWatcher.settings.maxLength
);
 var lastSpace = text.lastIndexOf(' ');
 if (lastSpace > 0) {
 text = text.substring(0, lastSpace);
 }
 text += '...';
 }
 return text;
};

Chapter 7

[237]

The job of this function is to make sure the content of the comment is appropriately
formatted for the notification box. This involves a few things. First, we want to use
Drupal.checkPlain() to make sure no HTML is inserted.

The second thing we want to do is make sure the content fits in the small notification
area. Earlier, we set CommentWatcher.settings.maxLength to 128. This is the
maximum length we will allow the text to be before we begin the process of
truncating it.

If the text is longer, we go about the process of shortening it. First, we do this by
getting a substring of the text from the beginning through the 128th character.
However, just doing that could be ugly. We may chop off part of a word.

So the next thing we do is search backward in the string for the last space character.
Once there, we can be certain that we have not split a word. After the last space
character in the string has been found, we shorten the string again and then add
ellipsis (...) to let the reader know there is more to the comment.

Using this algorithm, it is possible for a string to end up being
131-characters long because of the appending of the ellipsis to the end.
For our purposes, this doesn't really matter. However, if the length of
the string is very important, it is a good idea to account for these three
characters when doing the initial truncation.

The escaped, shortened string is then returned.

Managing cookies
There are still two more functions in our CommentWatcher tool. These are
CommentWatcher.getLastID() and CommentWatcher.setLastID().

These two functions provide a mechanism for tracking the last comment ID. This is
necessary if we want our tool to "only" show new comments.

We could store this information in a local variable. In that case, for any given page
view, the user would see a comment no more than once. Let's think about a situation
we would like to avoid. No new comments are posted, but the user quickly travels
from page to page inside of our site. Each time the user visits a page, she or he is
notified repeatedly of the last comment. The same comment is being displayed on
each page load.

Instead of subjecting our users to repeated notifcations, we only want the user to see
comments when they are new to the user.

AJAX and Drupal Web Services

[238]

There are two ways of doing this. First, we could write code on the server that
would track the comments the user has viewed. This method would require some
PHP coding.

A second option would be to use cookies to store the information and have
JavaScript handle the reading and writing of those cookies. Since cookies are
stored over a longer term, they would work well for our situation. While there are
occasional users who turn off cookie support in their browser (which will leave those
users in the position of receiving repeat notifications), the vast majority of web users
have cookies enabled in their browsers. In a production environment, we might want
to go to greater lengths in order to detect whether the user has cookies turned off.
But for our demonstration tool, we will assume that cookies are enabled.

Cookies have been around for a long time. With AJAX technologies and
web applications, cookies can be very useful. Keep cookies in mind as
a way to store small pieces of data between page loads. Just remember,
sensitive information should not be stored in a cookie unless it is encrypted.

We are going to use the second option. Here are the two functions that take care
of this:

CommentWatcher.setLastID = function (lastCommentID) {
 var oneDay = 1000 * 60 * 60 * 24;
 var expireTime = (new Date).getTime() + oneDay;
 var expire = new Date(expireTime).toGMTString();
 var myCookie = 'last_comment_id=' + lastCommentID +
 '; expires=' + expire + '; path=' +
 Drupal.settings.basePath;
 document.cookie = myCookie;
};

CommentWatcher.getLastID = function() {
 var found =
 document.cookie.match(/ last_comment_id=([\d]+);/);
 if (!found || found.length < 2) {
 return 0;
 }
 return new Number(found[1]);
};

The first function builds a cookie of the form last_comment_id=COMMENTID;
expires=DATE; path=DRUPAL_PATH.

Chapter 7

[239]

The cookie format is very specific. The first value is a name/value pair which
is separated by an equal sign, and terminated by a semicolon and a space (yes,
that space is important). The second value is the expiration date, beginning with
expires=. The date must then be in a format like this (the POSIX date format):

Tue, 14 Jan 2008 02:29:20 GMT

Fortunately, JavaScript Date object instances have a toGMTDate() function that
returns a date string in that format. The expiration string is also terminated by a
semicolon and space.

The last item in our cookie is the path. This tells the browser when to send the
cookie to the remote server. It will only send the cookie if the path component of
the requested URI is within that path. We set it to the Drupal.settings.basePath
value, which means that this cookie will only be sent to our Drupal instance, and not
to other apps on the same server.

To set a cookie, we simply "assign" it to document.cookie. However, this isn't really
a straight assignment. The document.cookie object is a wrapper for more complex
underlying code. The code that does a document.cookie = myCookie is actually
validating the cookie format, and assigning the value to an internal array of cookies.

If we were to read back the document.cookie variable, we would not simply get
our cookie back. Instead, we would get a list of available cookie name/value pairs
(without the date stamp or path) concatenated together like this:

last_comment_id=12; SESSd210eb21e=aa65da901b5d0c8; has_js=1

This string has three cookie pairs in it: the last_comment_id string we set, a session
ID generated by PHP, and the has_js cookie generated by Drupal.

Our second function, CommentWatcher.getLastID(), deals with the long string
returned by document.cookie. All we need to find is a very specific value, and so
we use a regular expression to find it:

var found =
 document.cookie.match(/last_comment_id=([\d]+);/);

The regular expression, /last_comment_id=([\d]+);/, looks for the cookie named
last_comment_id, and then captures its value (using the parentheses).

If this pattern is found, the variable found will contain an array with two items:

[
 'last_comment_id=13',
 '13',
]

AJAX and Drupal Web Services

[240]

The first item is the entire match. The second item is just the matched portion from
within the parentheses. In this case, it is 13, the comment ID for the last comment.

Note that at the end of the CommentWatcher.getLastID() function, we convert the
resulting value into a Number. We do this explicitly so the arithmetic comparison
with the other IDs is successful. It also takes care of any additional trailing spaces
(which are dropped during a conversion), which would otherwise throw off an
equality check.

Using this pair of functions, we can store the comment ID inside of a cookie.
Our small tool will be able to "remember", from page to page, what the last comment
ID was. Therefore, the user will only see a new notification when a new comment
is posted.

Summary
In this chapter, we focused on the AJAX family of tools. After a short introduction to
AJAX, we worked on two projects.

First, we used Drupal's RSS feed as an XML source for an AJAX query. We retrieved
that data and used it to display web clips.

In the second project, we installed the Views and Views Datasource modules to
give us additional functionality on the server. We then built a view that outputs
information (in the JSON format) about the last comment posted.

On the client side, we used JavaScript and AJAX to create a notification tool that
polls the server, and notifies the user whenever a new comment is posted.

Drupal and jQuery both contain some powerful tools which make developing AJAX
applications quick and easy. By taking the redundant, and complex aspects of AJAX,
and wrapping those in library functions, these tools provide simple functions for
access and manipulating data.

In the next chapter, we are going to change tracks. Up until this point in the book,
our projects were focused on theming. In the next chapter, we are going to learn
how to develop JavaScript modules. This will take some PHP code (at least a couple
of lines), but you won't need serious PHP knowledge to understand the basics of
module creation.

Building a Module
In the previous chapter, we used the AJAX features in jQuery and Drupal to add
some new tools to our Frobnitz theme. But what if we wanted to add those tools
to another theme, such as Bluemarine or Garland? Would we need to create new
subthemes for those just to add a few JavaScript files?

That would certainly be one way of doing it. A better way would be to take our
JavaScript tools and package them as standalone components that could be added
independently. This is done through Drupal modules. In this chapter, we will learn
how to create modules and use them for adding JavaScript features.

In this chapter, we will:

Understand how modules work•	

Create a bare-bones module•	

Add JavaScript to a module•	

Make our JavaScript available to other modules•	

In previous chapters, almost all of our code has been in JavaScript. In this chapter,
we will use a little PHP. Don't worry, if you can write a PHP Template, you will be
able to follow the simple code that we are going to write.

How modules work
In the previous six chapters, we have been creating JavaScript tools and adding them
to our site using the info file for a theme. Themes are designed to take Drupal data
and prepare it for presentation. Often, it serves us quite well to attach JavaScript to
a theme.

Building a Module

[242]

But many of the tools we have written so far could just as easily be used with
any theme. Why build our tool into a theme when it could be used more broadly?
In this chapter, we are going to use modules as a way of packaging JavaScript into
a component that can be used independently of a theme.

Modules provide a way for developers to add functional components to Drupal
without having to modify the existing Drupal code.

For example, instead of opening a Drupal file and adding our own features, we can
create a module to provide these features. This has several advantages:

Since we haven't changed Drupal itself, we can continue upgrading •	
Drupal without having to carefully patch in our own changes.
We can enable and disable our module with a few mouse clicks. •	
This additional functionality is easy to on and turn off.
We can share the module with others who might also make use of it.•	

Also, as we did in the previous chapter, we can get modules that others have
developed—such as Views and Views Datasource—and use them to build
our own site.

In a nutshell, modules turn a good, general-purpose CMS, into a highly customizable
and infinitely extendible web platform.

Modules are mostly written in PHP. In fact, one of the two required module files
must always be written in PHP. But modules can provide JavaScript services as
well. In fact, that is what we will be doing in this chapter. We will create modules
that make our JavaScript tools available across Drupal, regardless of the theme.

The module structure
Drupal developers have gone to great lengths to make module writing easy. In fact,
the process of creating a module is only four steps long:

1. Create a directory for your module.
2. Add a .info file to the module directory.
3. Add a few configuration directives to the .info file.
4. Add a .module file to your module directory.

After following these four steps, you will have a module that can be administered
from within Drupal, though it won't do anything.

Let's briefly cover the pieces used in these steps: the directory, .info file, and
.module file.

Chapter 8

[243]

The directory
Each module must be placed in a directory. Most often, a module has its own
directory. For example, if we want to create a module called my_module, it will be
housed in the my_module/ directory.

On occasion, several similar modules will be grouped into a package. A package is
simply a collection of related modules, all stored in the same directory. For example,
we could create a my_tools module with modules named my_first_tool and
my_other_tool. These would both be stored in the my_tools/ directory.

We will be creating simple modules, and each will be stored in its own directory.

The .info file
In Chapter 2, we created our first theme's .info file. That file is used by the Drupal
theming system to glean information about the theme.

Modules also have a .info file. In fact, it looks very similar to a theme's .info file.
In our case, it will be easier to create a module's .info file than it was to create a
theme's .info file.

Just as a theme's .info file goes in the theme's directory, so a module's .info file
goes in the module's directory.

The .module file
Drupal needs to know where the module's executable code is located. How does
it do that? It looks in the module's directory for a file that ends with the .module
extension. When it finds such a file, it loads it as a PHP script.

Writing PHP code for Drupal is just about as simple as creating the module file and
writing some PHP functions.

Those are the three parts of a Drupal module.

Where do modules go?
Like themes, modules are stored in directories located in pre-defined locations
beneath your site's Drupal directory.

Themes go in /themes (for built-in themes), /sites/all/themes, /sites/default/
themes, and (if you are hosting multiple sites) /sites/SITENAME/themes.

Building a Module

[244]

Modules are similarly organized:

Modules included as part of the Drupal Core go in the •	 /modules directory
under the Drupal root
Modules used across the installation go in •	 /sites/all/modules

Modules used only by the default site go in •	 /sites/default/modules
(usually you would only put modules here if you are hosting multiple sites)
Modules used only by other sites, on a multisite Drupal installation, go in •	 /
sites/SITENAME/modules, where SITENAME is replaced by the actual name
of the site

Drupal has the ability to run multiple sites with only one copy of the
Drupal Core. For example, if you wanted to run my.example.com and
your.example.com on the same website, you could configure Drupal to
manage both domains (each with its own database) without having to run
two Drupal instances. For more information, see http://drupal.org/
getting-started/6/install/multi-site.

In this book, we will always put our modules in /sites/all/modules.

We have now seen the three parts of a module, and we know where to put the
module files. In the spirit of our project-based method, it's time for us to dive right
in and create a module.

How tough will this first module be? Here's a hint: the entire .module file is only
27-lines long, and 10 of those are comment lines. No rocket science here!

Project: creating a JavaScript loader
module
When working with themes, we added JavaScript to our site by adding a line to the
theme's .info file like this:

scripts[] = my_script.js

Like themes, modules also have .info files. The format of the module's .info file is
the same, but the directives available in module .info files are different from those
available in theme .info files.

Chapter 8

[245]

The scripts[] directive is an example. It is unused by module .info files.
If you put such an entry in your module's .info file, it will simply be ignored.

We are going to change this. In this project, we will build a JavaScript autoloader
which reads all of the scripts from a module's .info file, and includes them in the
HTML delivered back to the client.

Why doesn't Drupal do this already?
The main reason why Drupal doesn't already do this is, in a word,
performance. We are going to make it possible for one module to include
its own script files. But what if we added scripts from all of the modules?
Just checking all of the modules would add overhead to Drupal's
page-rendering process. In the future, this could change if some clever
developers figure an expedient way of doing this.

Our module is only going to read its own .info file. We could expand its scope
to check all modules for scripts, but that would add significant complexity to the
module and would have a significant performance impact.

We are going to build our module in the following order:

1. Create the module directory.
2. Add a sample JavaScript file for testing.
3. Add the module's .info file.
4. Write the short .module file.

There are two major things that I wish to convey as we walk through this project.
First, this project should illustrate the process of creating a simple module. Second,
we will see the primary tool for interacting with JavaScript from a module: the
drupal_add_js() function.

Creating the module directory
The first step in developing a new module is creating a place for it to be stored.
For basic modules, the directory should have the module's machine-readable name.
Our module will be called jsloader, so we will create a directory with that name.

Building a Module

[246]

As mentioned in the previous section, custom Drupal modules go under the sites/
directory. Specifically, ours will go in sites/all/modules/jsloader/ as seen here:

In the previous screenshot, from the Finder in Mac OS X, the base Drupal directory is
on the far left. Inside of sites/all/modules, we have created a new directory called
jsloader. I have included an arrow to point to the exact location of the jsloader
directory in this screenshot.

You might notice the views and views_datasource modules in the
same directory. We installed these two modules in the previous chapter.
We used the potx module in Chapter 5, and js_theming was covered
in Chapter 6.

Next, we will add a simple file to that directory.

A JavaScript sample
We want a simple script to test. This is certainly not the type of thing we would use
on a public web site. But it will let us know whether or not our loader is working.

We will put this script in the jsloader/ directory we just created, and we'll name it
jsloader.js. Here are the contents of that file:

// Id

/**
 * Verify that the autoloader is working.
 * @file
 */

jQuery(document).ready(function() {
 alert("JS Loader is ready.");
});

Chapter 8

[247]

This script is going to have the annoying characteristic of opening a new alert dialog
box every time a page is loaded on our site. For our purposes, it does exactly what
we want. It lets us know when the script is being loaded, and we don't even have to
check the HTML source.

So far, we have only one file in our jsloader/ directory, the test script. As things
stand, Drupal won't even recognize this as a module yet. First, we need to create a
.info file.

The module's .info file
The purpose of the .info file is to provide Drupal with some basic information
about our module. An info file is always named with the module's name, so ours
will be jsloader.info. Also, it must be stored inside of our module's directory.

Here's a very basic .info file for our new module:

; Id
name = JS Loader
description = "Load JavaScript files"
core = 6.x

This file only has four lines.

The first line is a comment (note the leading semicolon (;)) with the Id tag we
discussed in Chapter 2. It serves the same purpose here as it does in a theme's .info
file. It is a placeholder for CVS versioning information that will be inserted when
code is checked into the CVS repository at Drupal.org.

Next is the name directive, whose value is a human-readable name for this module.
This field is used to display the module's name in the administration interface.

The third line is the description directive, which contains a short description about
what the module does. The one above is enclosed in quotation marks. The quotation
marks are not required if the description fits on one line. Only when values require
more than one line of text do you need quotation marks.

The final line, core, indicates the minimum version of Drupal required by this
module. 6.x indicates that this module should run on any Drupal 6 system.

There are a handful of other directives that can be added to a .info file. Some
of these are discussed in my book "Learning Drupal 6 Module Development", Packt
Publishing, 978-1847194442, and all are documented in the release notes for Drupal 6.

Building a Module

[248]

A custom addition
We will add one more line to our basic .info file. This line won't be used by Drupal,
but will be used by our new module:

scripts[] = jsloader.js

This fifth line indicates that our module should include the jsloader.js file as a
script sent to the client. In a few moments, we'll see how this is used. For now, it is
only important to note that this is not a standard directive for a .info file. Drupal
will simply ignore it.

We now have the test script and the .info file. The last file to create is the
.module file.

The .module file
In the same directory where we put our other two files, we will now create the
.module file. As with the .info file, the .module file must be named after the
module. For the jsloader module, the file name must be jsloader.module.

This file will contain PHP code. However, it does not have the .php
extension. If you are using an IDE to edit your code, you may need to
manually set it to use PHP syntax on the .module files.

While the file is only 27-lines long, we will dwell on it for a while, explaining various
aspects of Drupal's behavior as we go.

Here is the .module file in its entirety:

<?php
// Id

/**
 * A module to load JS files.
 */

/**
 * Implementation of hook_help().
 */
function jsloader_help($path, $args) {
 if ($path == 'admin/help#jsloader') {
 return t('JS Loader loads JavaScript files based on the
 contents of the .info file.');
 }
}
/**
 * Implementation of hook_init().

Chapter 8

[249]

 */
function jsloader_init() {
 $path = drupal_get_path('module', 'jsloader');
 $info = drupal_parse_info_file($path . '/jsloader.info');
 foreach ($info['scripts'] as $script) {
 drupal_add_js($path . '/' . $script);
 }
}

Taking a quick look at this file. We can see the following:

It begins with a •	 <?php tag to indicate that this is a PHP file.
Next comes a comment (•	 //) to hold the Id CVS keyword.
After that is the main documentation block for the file.•	

There are two functions in this file: •	 jsloader_help() and
jsloader_init(), each has its own documentation block.

Although the file begins with a <?php, it does not end with the customary
?> tag. Why? For library files such as this, the closing tag is optional and
can actually lead to application-breaking mistakes. Drupal conventions
recommend omitting the closing tag for this reason.

In Chapter 2, we discussed coding standards, which included spacing, commenting,
and the general structure of code. We will not repeat that discussion, but there are
two things to note about the way PHP code is generally structured in Drupal.

First, most Drupal PHP code is procedural, not object-oriented. Functions are defined
in the global namespace and are not usually assigned to objects. This will change in
Drupal 7, which will be object-oriented to a greater extent.

Second, function names and variable names are always lowercase, with words
separated by underscores. Camel case (myVariable) is never used in Drupal's
procedural code.

With these few notes addressed, we are ready to look at the first function,
jsloader_help().

The jsloader_help() function
The purpose of this first function, jsloader_help(), is to provide some content for
the Drupal built-in help system. Always provide a help function for your module,
even if it does no more than provide basic information about what the module does.
A little help is better than no help.

Building a Module

[250]

Admonitions aside, let's explore the code, starting with the comment. Believe it
or not, this one line comment opens the door for a discussion of Drupal's most
powerful feature:

/**
 * Implementation of hook_help().
 */
function jsloader_help($path, $args) {
 if ($path == 'admin/help#jsloader') {
 return t('JS Loader loads JavaScript files based on the
 contents of the .info file.');
 }
}

This comment says Implementation of hook_help(). What does it mean?

Drupal uses a very powerful system, called the hook system, to give custom
modules the ability to strategically interact with the Drupal Core system. Here's how
it works. When a client requests a page, Drupal begins processing the request by
walking through a long series of steps. It begins by loading the necessary code, and
ends with the sending of HTML (and other files) to the client.

At specific points during this process, Drupal checks to see if any modules need
to "hook into" Drupal and do some processing of their own. If Drupal finds any
modules that respond to the current state, it will call them and temporarily hand
over control to them. These modules do what they need to do (even modify
Drupal's data) and then return control to Drupal.

This whole procedure is so fundamental to Drupal, that even foundational pieces
of Drupal, such as the node, user, and comment systems, are implemented using
modules and hooks.

That's a high-level explanation. Here's how it works in practice. Drupal defines
certain callback points. These are points where it will turn over control to modules.
When one of these points is reached, a hook is called. A hook is simply a pre-defined
pattern for a function name. Usually, these are represented with a function call
such as hook_help(). In actuality, Drupal checks each module for a function that
follows a pattern. It looks for a function of the form <modulename>_help(), where
<modulename> is replaced with the name of the module. If it finds such a function, it
executes it.

For example, when the help page is loaded, Drupal goes through each module
looking for a hook_help() implementation. In the node module, it looks for
node_help(). In comment, it looks for comment_help(), and in jsloader it will
look for jsloader_help().

Chapter 8

[251]

There are dozens of hooks defined in the Drupal 6 Core. Module developers can
create their own hooks, effectively passing control off to different modules! As you
may guess, the module system provides potentially infinite extensibility.

Hooks for all of the core modules are documented at
http://api.drupal.org/api/group/hooks/6.

With the hook system in mind, we can take another look at how modules function.
Essentially, a module implements hook functions—it defines functions that follow
hook patterns, and so will be called by Drupal. Therefore, a module can be very
specific, containing only the code necessary to add the desired features at the
desired places.

That is why we can create our module in only a few dozen lines of code. We are
implementing two hooks, and each will be called only at the desired time in the life
cycle of a Drupal request.

Hooks are the very heart of Drupal PHP programming. They make it easy to write
simple, yet functional code.

Why aren't hooks used in Drupal JavaScript?
If hooks are so powerful, one might ask why they aren't used in the
JavaScript libraries. In fact, the same strategy is used in JavaScript
(though we often use anonymous functions instead of writing hook
functions). The JavaScript event model, and even the Drupal theme and
behavior systems, use callback-driven logic. However, because JavaScript
is object-oriented, much of the pattern-based method invocation can be
omitted. We can simply pass in objects that implement certain patterns
(or as we do with behaviors and themes, attach functions to already
existing objects). Drupal will then call these at the appropriate time.

Like user interface programming, Drupal hooks work on an event-like model.
Certain conditions arise, and hooks are called. For example, when a user loads a help
page, the hook_help() implementations are called. Each module is then expected to
determine (based on context) whether or not it should return help information:

function jsloader_help($path, $args) {
 if ($path == 'admin/help#jsloader') {
 return t('JS Loader loads JavaScript files based on the
 contents of the .info file.');
 }
}

Building a Module

[252]

A hook_help() implementation will be passed two arguments: $path and $args.
The first contains the path that was requested by the user, and the second contains
an array corresponding to the components in the path. Imagine it as the results of
splitting the $path at each slash (/) character.

For our help function, we only want to handle the case where a general overview
of the module is requested. The path for general help will always be of the form
admin/help#<modulename>.

This function will only return help text when the path is admin/help#jsloader.
While our help text can be as long as we need, our demonstration module will just
get a simple string description:

return t('JS Loader loads JavaScript files based on the
 contents of the .info file.');

Normally, the code above would all be on one line, without the backslash.

Notice that our help text is passed through the t() function. This is the PHP
equivalent of the Drupal.t() translation function we saw a few chapters ago. It will
translate the string when necessary.

That's all there is to the function. If help text is requested for our module, this simple
description will be returned. If we enable the module in Administer | Site building
| Modules, then go to Administer | Help, and then click on JS Loader, we should
see something like this:

We have now successfully implemented our first hook. Our module only needs one
more before we finish.

The jsloader_init() function
The first hook we implemented printed the help text. This second one will do the
rest of the work for our module. It will read the module's .info file and load any
JavaScript files specified in the scripts[] directive. For example, when we created
our jsloader.info file, we added a line to the bottom that looked like this:

scripts[] = jsloader.js

Chapter 8

[253]

Drupal will simply ignore this directive when it parses the .info file. However, we
can make use of it.

To do so, we are going to implement another hook: hook_init(). This hook is
executed near the beginning of a page request, after Drupal has loaded all of the core
libraries, and then loaded the modules. However, it is called before any HTML is
sent back to the client.

We want to hook into the Drupal request cycle early. This allows us to add the
JavaScript files to the HTML's head section (inside the <head></head> tags).

The hook_init() hook is easy to implement. It takes no arguments and nothing
needs to be returned. To implement the hook_init() function, we simply create
jsloader_init(), a function that follows the hook naming convention:

/**
 * Implementation of hook_init().
 */
function jsloader_init() {
 $path = drupal_get_path('module', 'jsloader');
 $info = drupal_parse_info_file($path . '/jsloader.info');
 foreach ($info['scripts'] as $script) {
 drupal_add_js($path . '/' . $script);
 }
}

This function reads the .info file, and then load all of the scripts that the info file
points to. Both of these functions will require us to know the path to the module.
Fortunately, Drupal can compute this for us.

On the first line, we retrieve the path to our module and then assign this information
to the variable $path. The drupal_get_path() function takes two arguments.
The first is the type of path we want to get. The string module indicates that we are
interested in a module directory. In contrast, to get a theme path, we would use the
string theme.

The second parameter is the module whose path we want. We are interested in our
own module's path, so we pass jsloader to the function.

Now that we have the base path to our module, we can load the .info file. Again,
this is a simple task because Drupal provides a function for reading and parsing
this file.

The drupal_parse_info_file() takes the full path to the .info file as its
parameter. We build this by concatenating the $path and '/jsloader.info'.
Drupal will then read the file, parse it, and return an array.

Building a Module

[254]

PHP arrays
In JavaScript, we made frequent use of arrays and object literals. PHP's
array-type functions are a combination of these two. That is, it may
contain a list of values with numeric indexes or key/value pairs.

The array returned is an associative array that, if done in JavaScript, would look
something like this:

{
 'name' : 'JS Loader',
 'description': 'Load JavaScript files',
 'core': '6.x',
 'scripts': ['jsloader.js']
}

Items in the .info file, that have square brackets in the name, are converted to
arrays. Thus, scripts[] is transformed into a key, scripts, and it has an array for a
value. Each time the scripts[] directive is parsed, its contents are appended to the
array. If we had two scripts[] directives, the scripts entry would look like this:

'scripts': ['jsloader.js', 'other.js']

The results of the parsed .info file are stored in the $info variable. We know
that the scripts[] entries are now stored in the $info array as the name scripts
and an array of script file names. What we want to do next is loop through
$info['scripts'] and tell Drupal to add each script to the output.

In PHP, this can be done conveniently with a foreach loop, which will iterate
through each item in an array, temporarily assigning each item to a variable.

A foreach loop follows the pattern foreach ($array as $array_item) {}.
In each iteration, the $array_item will contain the value of the current item in
the array:

foreach ($info['scripts'] as $script) {
 drupal_add_js($path . '/' . $script);
}

For each script[] item added in the .info file, this will use the drupal_add_js()
function to add that JavaScript file.

The drupal_add_js() function is multifunctional. It can be used three ways:

1. To add a JavaScript file to the head of the generated HTML.
2. To add inline JavaScript to the output, inside of <script></script> tags.

This will also go in the HTML head.

Chapter 8

[255]

3. To add an individual setting to the Drupal.settings array. We have seen
the Drupal.settings.basePath variable in previous chapters. This extends
that same object.

Unfortunately, the arguments are different in each case and therefore mean different
things. Here, we have used the simplest case as we are simply adding a file. The
syntax for doing this from within a module is drupal_add_js($filename). As we
can see, the drupal_add_js() function needs to know the path to the filename.

In the above code snippet, this loads each script file.

In the next project, we will see how drupal_add_js() can be used to add settings.

The three uses of this function are documented in the Drupal API at
http://api.drupal.org/api/function/drupal_add_js/6.

That is all there is to our loader. Now, every script that we add to the .info file using
the scripts[] directive will automatically be loaded on every page request. At the
beginning of this project, we created a module that fired an alert() every time a page
loaded. Now that our module is complete, we should be able to test the loader by
loading a page on our site. Here's a screenshot of what that should look like:

If the alert box pops up, we know that our script is being loaded.

The module we just created provides a way for integrating JavaScript files into
Drupal, without relying on a theme, and without requiring any additional code.
With this single module, we could add all of the scripts created since Chapter 3. The
one in Chapter 2 relied a little too heavily on a template file to be used outside of a
theme. No additional PHP would be necessary.

On the other hand, this module doesn't exploit the possibility of using PHP code
to inform JavaScript. In the next project, we will see how we can use PHP code in
modules to pass information on to a JavaScript tool.

Building a Module

[256]

Project: the editor revisited
In the previous project, we created a simple module to automatically load any
JavaScript files indicated in the .info file. In this project, we are going to create a
module that provides features for a specific JavaScript tool.

This project will improve the Simple Editor project we did in Chapter 4. Here, we
will package an editor as a module, making it easy to use in many themes. We'll also
make a little more use of PHP as a way of passing configuration options from the
server to the client.

The goal of this project is to illustrate server-side PHP code can be used to generate
JavaScript for the client. Here's a theme you may notice as we go: There is more than
one way to write code like this, and in some cases, it's hard to tell which is preferable.
We will run into two specific cases during our coding where we will need to make
decisions about how something ought to be done.

We are going to make some improvements on the Simple Editor, add a few features,
and rewrite some parts in light of what we now know. We will call our new editor
Better Editor.

When we wrote our Simple Editor back in Chapter 4, we had not yet learned about
themes. Instead of using theme functions to edit our code, we simply built strings
where needed. Here, we are going to progress to theme functions.

Also, Simple Editor had only a few buttons, and adding more buttons required
laborious re-writing of the code. Several things needed to be changed for each
new button.

In Better Editor, we are going to change the way buttons are created. We will make
it possible for the server to dictate what buttons get created. This means we will be
writing a little extra PHP code for this section. Once again, it is simple code. Even if
you are new to PHP, this code should be easy to follow.

Now, let's create our module.

First step: creating the module
Just as with the previous module, we will begin by creating a module directory,
bettereditor, in sites/all/modules/. We will create two files: the .info file
and the .module file.

Chapter 8

[257]

Here's what bettereditor.info looks like:

; Id
name = Better Editor
description = Provide a simple editor for HTML.
core = 6.x
php = 5.2

One again, we set a name and description. We have also indicate the version
of Drupal Core that this module is designed to work with. We also add one new
directive, php = 5.2, at the end. This directive tells Drupal that the module will
only work on servers running PHP 5.2 or later.

While Drupal 6 still runs on PHP 4, it is not advised to run anything on PHP 4. It is
now unsupported and is no longer maintained. Instead, PHP 5.2 or later should be
used on any server. In fact, Drupal 7 will require at least PHP 5.2.

Our module will make use of a function introduced in PHP 5.2. Therefore, we added
this last directive to let Drupal know that an earlier version of PHP will not work for
this module.

On rare occasions, I have heard programmers argue that it is "bad
practice" to not support PHP 4, since the Drupal Core supports it.
This is not the case. PHP 4 has long been deprecated and unsupported.
There is no good reason to write applications for it. By noting in the
configuration file that our module requires PHP 5.2, we are abiding by
good coding practices.

That is all we need for our .info file. At this point, if we were to look in Administer
| Site building | Modules, we would see our module listed there.

The next thing to do is create bettereditor.module. This also, goes in sites/all/
modules/bettereditor/. As you may recall, this is the file that will store our
PHP code.

But before we open that file for editing, we will create two more files. These files
aren't required by all modules, but our particular module will need them.

The first is a CSS file, and the second is our JavaScript library. These will be called
bettereditor.css and bettereditor.js, respectively. They will go in the
bettereditor/ directory along with our .info and .module files.

We now have four files in our module. The simplest one, bettereditor.info, is
already done. Let's take a quick look at the CSS file.

Building a Module

[258]

The CSS file
The bettereditor.css file provides a few definitions that will be used to style the
editor. To be more precise, it contains four class definitions:

.editor-button {
 border: 1px solid gray;
 padding: 3px;
 text-align: center;
 background-color: #eee;
 float: left;
}

.editor-button:hover {
 background-color: #ccc;
}

.button-bar {
 clear: both;
 height: 2em;
}

.strikethrough {
 text-decoration: line-through;
}

The first two define how the buttons on our editor should look. The third class
definition defines how our button bar should look. The last one, .strikethrough, is
intended to be applied to text-containing elements. It will display the text as having a
single line through it. We will use this last class to demonstrate an additional feature
of our new editor.

That's all there is to our CSS file. Next up, we will turn to the .module file.

The bettereditor.module file
Our new .module file will implement the same pair of hooks that the previous
module used, which are hook_help() and hook_init():

<?php
// Id

/**
 * A better version of the simple editor.
 * @file
 */

/**
 * Implementation of hook_help().

Chapter 8

[259]

 */
function bettereditor_help($path, $args) {
 if($path == 'admin/help#bettereditor') {
 return t('This module provides a JavaScript based text \
 editor.');
 }
}

/**
 * Implementation of hook_init().
 */
function bettereditor_init() {
 $buttons = array();
 $buttons[] = array(
 'name' => 'B',
 'tag' => 'strong',
 'style' => 'font-weight: bold',
);
 $buttons[] = array(
 'name' => 'I',
 'tag' => 'em',
 'style' => 'font-style: italic',
);
 $buttons[] = array(
 'name' => 'S',
 'tag' => 'del',
 'cssClass' => 'strikethrough',
 'style' => 'text-decoration: line-through',
);
 $buttons[] = array(
 'name' => 'ul',
 'tag' => array('ul', 'li'),
);
 $buttons[] = array(
 'name' => 'ol',
 'tag' => array('ol', 'li'),
);
 $buttons[] = array(
 'name' => 'li',
 'tag' => 'li',
);
 $buttons[] = array(
 'name' => 'table',
 'tag' => array('table', 'tbody', 'tr', 'td'),
);

Building a Module

[260]

 $buttonJS = json_encode($buttons);
 $script = 'BetterEditor.buttons = ' . $buttonJS;
 $path = drupal_get_path('module', 'bettereditor');

 drupal_add_css($path . '/bettereditor.css');

 drupal_add_js($path . '/bettereditor.js');
 drupal_add_js($script, 'inline');

}

The help function, bettereditor_help(), does the same thing here as it did in the
previous project. It provides very basic help that will be shown on the help screen for
this module. Again, when building a production-quality module, it is a good idea to
write longer, more descriptive help text.

The more important part of our module is the bettereditor_init() function.
As in jsloader_init() in the previous project, this function implements Drupal's
hook_init() hook. This means it will be called toward the beginning of the
page-rendering cycle, right after Drupal has finished its own initialization.

Here, we will insert all of the necessary code to load our JavaScript. In our new
editor, this will be a little more complex than our previous example.

We will do two things in this function. First, we will define all of the buttons
that our editor should have. We will then add the appropriate JavaScript library
(bettereditor.js) and export our button properties.

Once Drupal has executed our hook, which is called at the beginning of every page
load, it will continue with the rest of the processing and finally deliver the finished
HTML document to the user. Our goal in using hook_init(), is to make this script
available to all pages, since we don't know which pages will have text areas and
which won't.

Let's look at the first part of the bettereditor_init() function:

function bettereditor_init() {
 $buttons = array();
 $buttons[] = array(
 'name' => 'B',
 'tag' => 'strong',
 'style' => 'font-weight: bold',
);
 $buttons[] = array(
 'name' => 'I',
 'tag' => 'em',
 'style' => 'font-style: italic',

Chapter 8

[261]

);
 $buttons[] = array(
 'name' => 'S',
 'tag' => 'del',
 'cssClass' => 'strikethrough',
 'style' => 'text-decoration: line-through',
);
 $buttons[] = array(
 'name' => 'ul',
 'tag' => array('ul', 'li'),
);
 $buttons[] = array(
 'name' => 'ol',
 'tag' => array('ol', 'li'),
);
 $buttons[] = array(
 'name' => 'li',
 'tag' => 'li',
);
 $buttons[] = array(
 'name' => 'table',
 'tag' => array('table', 'tbody', 'tr', 'td'),
);

This is a big block of very repetitive code. What's going on here?

We are building a nested series of arrays. The $buttons variable contains an array
and each position in that array, contains another array. In other words, this is a
two-dimensional array (in fact, it is deeper in some places).

In the previous project, I mentioned that PHP arrays can be either numerically
indexed arrays ($array[0], $array[1], $array[2]...) or associative arrays with
keys and values ($array['key1'], $array['key2']...). In this example, we
have both.

The $buttons array is numerically indexed. Here, we do array assignments like this:

$buttons[] = 'something';

This has the practical effect of pushing a new value to the end of the array, similar to
the JavaScript practice of appending values like this: myArray.push('new value').

Building a Module

[262]

Inside each array item in this array, we build a new associative array. The first entry
looks like this:

 $buttons[] = array(
 'name' => 'B',
 'tag' => 'strong',
 'style' => 'font-weight: bold',
);

The array() function in PHP works as an array constructor of sorts. It builds a
new array.

Unlike their JavaScript counterparts, PHP arrays are not objects. Arrays
are a special type in PHP.

The array() function can be initialized with a set of data. Here, we are initializing
an associative array with a list of keys and values. The syntax is 'key' => 'value',
and each pair is separated by a comma.

Associative arrays in PHP can be used for most of the purposes that JavaScript object
literals are used. In that respect, you might think of the "first entry" we just saw as a
PHP equivalent of a JavaScript structure such as this:

var buttons = [
 {
 'name': 'B',
 'tag': 'strong',
 'style': 'font-weight: bold'
 }
]

While these two constructs are certainly not identical (JavaScript is much more
object-oriented than PHP), the basic analogy certainly works as a heuristic when
mentally translating between PHP and JavaScript.

When defining arrays in PHP, it is OK to leave a trailing comma after the
last pair or item. In fact, in Drupal, this is a recommended practice because
it reduces errors when new array items are coded in at the end of a list.

In this snippet, we add a new array to the first index of the $buttons array. This new
associative array contains three elements:

'name' => 'B',
'tag' => 'strong',
'style' => 'font-weight: bold',

Chapter 8

[263]

Basically, we have invented a data structure that describes our buttons. The data
structure is designed to tell us how the button should look and what tag the button
should represent.

So in this case, the name shown on the button will be B. The tag that will wrap
selected text will be strong. This will be translated to by our
JavaScript. Finally, we might want to style the button a little, so we add the style
property to make the B on the button show as bold text.

Some of the other elements in this array use different properties:

$buttons[] = array(
 'name' => 'S',
 'tag' => 'del',
 'cssClass' => 'strikethrough',
 'style' => 'text-decoration: line-through',
);

This button also has a class set to strikethrough. We're going to use this to add
a class, not to the button, but to the tag before it is inserted. The above definition
should create an S button that will, when clicked, insert tags such as this:
<del. class='strikethrough'>.

In our bettereditor.css file, we defined a .strikethrough class. This is the item
for which that class is used.

We will now add a new feature to our editor. So far, we've created buttons that can
insert a single tag. What about cases where we want to add multiple tags with the
click of a button?

Let's extend our tag attribute, allowing it to have an array of values. Here are
a few examples:

 $buttons[] = array(
 'name' => 'ul',
 'tag' => array('ul', 'li'),
);
 $buttons[] = array(
 'name' => 'ol',
 'tag' => array('ol', 'li'),
);
 $buttons[] = array(
 'name' => 'li',
 'tag' => 'li',
);

Building a Module

[264]

 $buttons[] = array(
 'name' => 'table',
 'tag' => array('table', 'tbody', 'tr', 'td'),
);

The highlighted rows show cases where more than one tag is provided. We want our
editor to automatically nest the tags, with the left-most tag being the outermost tag.
Then, the first unordered list definition should create tags like this:

Likewise, the tag for table should render like the following. It has table, tbody, tr,
and td:

<table>
 <tbody>
 <tr>
 <td></td>
 </tr>
 </tbody>
</table>

This data structure describes how we would like our buttons to look and function. It
will be the responsibility of the JavaScript code to take these definitions and interpret
them. But before we can turn to the JavaScript, we have a few more items to work on
in PHP.

Namely, we need to take the $buttons array and translate it into JavaScript. We
then need to have that data, and the bettereditor.js and bettereditor.css files,
sent back to the client. Let's take a look at the last part of the bettereditor_init()
function to see how this is done:

$buttonJS = json_encode($buttons);
$script = 'BetterEditor.buttons = ' . $buttonJS;
$path = drupal_get_path('module', 'bettereditor');

drupal_add_css($path . '/bettereditor.css');

//drupal_add_js(array('buttons' => $buttons), 'setting');
drupal_add_js($path . '/bettereditor.js');
drupal_add_js($script, 'inline');

At this point, we have two interesting choices to make.

Earlier, I mentioned that there were three ways of calling drupal_add_js().
Already, we have seen how it can be called to include an entire script file. It can also
be used to inject scripts, either in whole or in part, or to add settings to the Drupal.
settings object.

Chapter 8

[265]

Right now, we have the buttons defined in $buttons. Should these be added to the
Drupal.settings object or sent as a script fragment? Technically speaking, either
one can be done.

Adding things to the Drupal.settings array has the advantage of being easier to
code (by a few characters). Modules, such as JavaScript Theming, make liberal use of
Drupal.settings. But this is not actually a good idea most of the time.

Earlier in the book, we talked about namespaces. The chief rationale for namespacing
applies even here. If we just add our settings to Drupal.settings, we may
eventually encounter problems where other JavaScript files which use settings with
the same name. This will lead to conflicts as two different libraries will try to store
their data in the same place. The Drupal API docs (http://api.drupal.org/api/
function/drupal_add_js/6) have this to say on the matter:

You might want to wrap your actual configuration settings in another variable to
prevent the pollution of the Drupal.settings namespace.

Is the suggestion that we ought to wrap settings in another variable and then use
Drupal.settings (creating something like Drupal.settings.BetterEditor.
buttons), or that we should use an altogether different variable?

The first option is not good. Frankly, repartitioning a namespace like this is silly.
We've now created another namespace inside of a namespace, and for what purpose?

In addition to this, calling the function is even more difficult. That's because we have
to add another layer of testing to our array. Our array would look more like this:

$buttons = array(
 'BetterEditor' => array(
 'buttons' => array(
 array(
 'name' => 'B',
 'tag' => 'strong',
 // ...
),
 array(
 'name' => 'I',
 // ...
),
 // and more buttons....
),
);

Building a Module

[266]

Gaining another layer of complexity on the server isn't the only place. When this is
encoded as JavaScript, we now have to reference the settings with unwieldy calls
like this:

alert(Drupal.settings.BetterEditor.buttons[0].name);

This does nothing to improve the readability of the code and, given the additional
typing we must do to call the variables, increases the probability of typos.

It doesn't really make sense to add all of this complexity just to work with the
Drupal.settings object.

Instead, let's look at the third form of drupal_add_js(). Let's add a script inline.
The idea here is to pass a valid snippet of JavaScript code into drupal_add_js().
It takes on the responsibility of wrapping this inside of the <script></script> tags,
and placing it in the document (after all of the other scripts).

This does put a little more of the scripting burden back on you, the coder. But if used
correctly, it has the advantage of reducing code complexity on both the client and
server side.

This is the approach taken in our code:

$buttonJS = json_encode($buttons);
$script = 'BetterEditor.buttons = ' . $buttonJS;
$path = drupal_get_path('module', 'bettereditor');
drupal_add_css($path . '/bettereditor.css');
drupal_add_js($path . '/bettereditor.js');
drupal_add_js($script, 'inline');

Here, we need to accomplish the following:

Turn our big •	 $buttons array into a valid JavaScript fragment
Include the CSS and the JavaScript file•	
Include our script•	

The order of these last two is not really important. Drupal will sort things out in a
particular order. It will always order things with CSS first, then JavaScript libraries,
and then custom scripts.

First, we should ask ourself this question. How do we translate $buttons
into JavaScript?

It turns out that we have two options again. First, there is a Drupal built-in function,
drupal_to_js(), that takes an array and converts it to JavaScript. Second, since we
are using PHP 5.2, there is a JSON encoding function, json_encode(), which can
convert PHP data structures to JSON data.

Chapter 8

[267]

The JSON notation is identical to the JavaScript literal notation. In other words,
json_encode() will create valid JavaScript.

How do we choose?

There are three key differences between the two:

1. drupal_to_js() is available in all platforms that Drupal 6 supports
. json_encode() requires PHP 5.

2. json_encode() is implemented in C code, which means it is very fast.
drupal_to_js() is written in PHP and is not terribly efficient.

3. drupal_to_js() does an extra encoding routine. It encodes HTML-reserved
characters (<. >, and &) .json_encode() adheres strictly to the standard and
does not do this encoding.

In Drupal 7, drupal_to_js() has been re-implemented using
json_encode(). When Drupal 7 is released, the last point will be
the only difference.

Choosing the function depends on your needs. We don't need the extra encoding
(that would just make one more decoding run on the client), and the speed
improvement is nice to have. So I have chosen to use json_encode(). But again,
this argument can go either way.

With two lines, we can generate a script suitable for sending to the client:
$buttonJS = json_encode($buttons);
$script = 'BetterEditor.buttons = ' . $buttonJS;

On the second line, we simply create JavaScript that will assign BetterEditor.
buttons the value of our JSON-encoded $buttons array. The variable $script
will hold the JavaScript data.

We can now add the CSS and JavaScript in three calls:

drupal_add_css($path . '/bettereditor.css');
drupal_add_js($path . '/bettereditor.js');
drupal_add_js($script, 'inline');

The drupal_add_css()function does the same thing for CSS files, that
drupal_add_js() does for JavaScript.

The first drupal_add_js() call adds the bettereditor.js script, which we have
not yet created.

Building a Module

[268]

The last line adds the BetterEditor.buttons data as an inline script. Note that
the string inline, which is passed in as the second parameter, tells Drupal to
include this as an inline script, instead of interpreting $script as a file name.

If we were to enable the module (you can do this now) and then load a page, we
would see something like this in the source code:

<script type="text/javascript">
BetterEditor.buttons = [
 {"name":"B","tag":"strong","style":"font-weight: bold"},
 {"name":"I","tag":"em","style":"font-style: italic"},
 {"name":"S","tag":"del","cssClass":"strikethrough",
 "style":"text-decoration: line-through"},
 {"name":"ul","tag":["ul","li"]},
 {"name":"ol","tag":["ol","li"]},{"name":"li","tag":"li"},
 {"name":"table","tag":["table","tbody","tr","td"]}
]
</script>

This array of object literals is the result of running json_encode() over the PHP
array. When our script loads and is executed, the previous data will all be available
to it.

That's all there is to our module file. The last thing to do is work on the
bettereditor.js script.

The bettereditor.js script
The last file of the project is the bettereditor.js script. This file will contain a
modified version of the simpleeditor.js script we created in Chapter 4. Since
we won't go over the repeated pieces, you may find it helpful to skim the relevant
section of that chapter again.

The script has undergone a few changes. First, the namespace object is now
BetterEditor instead of SimpleEditor. Second, there are three new theming
functions. Third, the internals of a few functions have changed to accommodate
the new server-provided BetterEditor.buttons data.

Let's start with a quick glance at the code:

// Id

/**
 * A better version of the simple editor.
 * @file
 */

Chapter 8

[269]

var BetterEditor = BetterEditor || {};
BetterEditor.selection = null;

/**
 * Record changes to a select box.
 */
BetterEditor.watchSelection = function () {
 BetterEditor.selection = Drupal.getSelection(this);
 BetterEditor.selection.id = $(this).attr('id');
};

/**
 * Attaches the editor toolbar.
 */
Drupal.behaviors.editor = function () {
 $('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(BetterEditor.watchSelection)
 .keyup(BetterEditor.watchSelection)
 .each(function (item) {
 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');

 var buttons = [];
 for (var i = 0; i < BetterEditor.buttons.length; ++i) {
 button = BetterEditor.buttons[i];
 buttons.push(Drupal.theme('button', button));
 }

 var id = 'buttons-' + txtareaID;
 var bar = $(Drupal.theme('buttonBar', buttons, id));

 $(bar).insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = BetterEditor.selection;
 if (sel.id == txtareaID && sel.start != sel.end) {
 var buttonName = $(this).html();
 var targetButton = null;
 for (i = 0; i < BetterEditor.buttons.length; ++i) {
 if (BetterEditor.buttons[i].name == buttonName) {
 targetButton = BetterEditor.buttons[i];
 break;
 }
 }

 if (targetButton) {

Building a Module

[270]

 txtareaEle.value = BetterEditor.insertTag(
 sel.start,
 sel.end,
 targetButton,
 txtareaEle.value
);
 }
 sel.start = sel.end = -1;
 }
 });
 });
};

/**
 * Insert a tag.
 *
 * @param start
 * Location to insert start tag.
 * @param end
 * Location to insert end tag.
 * @param tag
 * Tag to insert.
 * @param value
 * String to insert tag into.
 */
BetterEditor.insertTag = function (start, end, tag, value) {
 var front = value.substring(0, start);
 var middle = value.substring(start, end);
 var back = value.substring(end);
 var formatted = Drupal.theme('addTag', tag, middle);
 return front + formatted + back;
};

/**
 * Theme a button bar.
 *
 * @param buttons
 * Array of buttons that should be added.
 * @param id
 * ID for the button bar. This is used to distinguish button
 * bars on screens where there are multiple editors.
 *
 * @return
 * Themed button bar as a string of HTML.
 */

Chapter 8

[271]

Drupal.theme.prototype.buttonBar = function (buttons, id) {
 var buttonBar = $('<div class="button-bar"></div>')
 .attr('id', id);

 jQuery.each(buttons, function (i, item) {
 buttonBar.append(item);
 });

 return buttonBar.parent().html();
};

/**
 * Theme an individual button.
 *
 * @param button
 * Individual button object.
 *
 * @return
 * Themed button HTML as a string.
 */
Drupal.theme.prototype.button = function (button) {
 var tag = $('<div class="editor-button"></div>');

 if (button.style) {
 tag.attr('style', button.style);
 }

 return tag.html(button.name).parent().html();
};

/**
 * Theme a tag before inserting it into the text area.
 * This wraps text inside of the appropriate tags. If the
 * button object contains an array of tags, then the tags
 * will be nested, with the text in the innermost tag.
 *
 * @param button
 * Button object that describes what the button does.
 * @param text
 * Text that the tag will be wrapped around.
 */
Drupal.theme.prototype.addTag = function (button, text) {
 var tag = null;
 if (button.tag instanceof Array && button.tag.length > 0) {

 var placeholder = $('body')
 .append('<div class='placeholder'></div>')
 .children('.placeholder').hide();
 var current = placeholder; // Copy for working with

Building a Module

[272]

 jQuery.each(button.tag, function (i, data) {
 var newTag = '<' + data + '>\n</' + data + '>\n';

 current.append(newTag);
 if (button.cssClass) {
 current.addClass(button.cssClass);
 }
 current = current.children();

 if (i == button.tag.length -1) {
 current.html(text);
 }

 });
 var html = placeholder.html();
 placeholder.remove();
 return html;
 }
 else {
 tag = $('<' + button.tag + '></' + button.tag + '>');
 if (button.cssClass) {
 tag.addClass(button.cssClass);
 }
 return tag.html(text).parent().html();
 }
};

This is the largest chunk of code we have seen in any single project. Fortunately,
much of it is repeated from our earlier project.

Other than the transition from SimpleEditor to BetterEditor, the first part of the
code has not changed. For that reason, we will skip the opening definitions and the
BetterEditor.watchSelection() function, which simply track what part of the
text area is selected.

The editor() behavior
We will begin with the behavior Drupal.behaviors.editor(). This function is
called when the document is ready, as well as any time a major DOM change results
in behaviors being reattached:

Drupal.behaviors.editor = function () {
 $('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(BetterEditor.watchSelection)
 .keyup(BetterEditor.watchSelection)
 .each(function (item) {

Chapter 8

[273]

 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');

 var buttons = [];
 for (i = 0; i < BetterEditor.buttons.length; ++i) {
 button = BetterEditor.buttons[i];
 buttons.push(Drupal.theme('button', button));
 }

 var id = 'buttons-' + txtareaID;
 var bar = $(Drupal.theme('buttonBar', buttons, id));

 $(bar).insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = BetterEditor.selection;
 if(sel.id == txtareaID && sel.start != sel.end) {
 var buttonName = $(this).html();
 var targetButton = null;
 for (i = 0; i < BetterEditor.buttons.length; ++i){
 if (BetterEditor.buttons[i].name == buttonName){
 targetButton = BetterEditor.buttons[i];
 break;
 }
 }
 if (targetButton) {
 txtareaEle.value = BetterEditor.insertTag(
 sel.start,
 sel.end,
 targetButton,
 txtareaEle.value
);
 }
 sel.start = sel.end = -1;
 }
 });
 });
};

The main jQuery chain has not changed:

$('textarea:not(.editor-processed)')
 .addClass('editor-processed')
 .mouseup(BetterEditor.watchSelection)
 .keyup(BetterEditor.watchSelection)
 .each(/* anonymous function here */);

Building a Module

[274]

This finds all unprocessed text areas and adds a few things. First, it adds the class
to indicate that the textarea has been processed. Next, it adds two event handlers.
When a mouse button is released, or when a key on the keyboard is released, the
BetterEditor.watchSelection() function will be executed.

Finally, it uses the $().each() function to loop through every textarea and adds
the editor.

Let's turn to the function called inside of $().each():

 function (item) {
 var txtarea = $(this);
 var txtareaID = txtarea.attr('id');

 var buttons = [];

 for (i = 0; i < BetterEditor.buttons.length; ++i) {

 button = BetterEditor.buttons[i];

 buttons.push(Drupal.theme('button', button));

 }

 var id = 'buttons-' + txtareaID;
 var bar = $(Drupal.theme('buttonBar', buttons, id));

 $(bar).insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(function () {
 var txtareaEle = $('#' + txtareaID).get(0);
 var sel = BetterEditor.selection;
 if(sel.id == txtareaID && sel.start != sel.end) {
 var buttonName = $(this).html();

 var targetButton = null;

 for (i = 0; i < BetterEditor.buttons.length; ++i) {

 if (BetterEditor.buttons[i].name == buttonName) {

 targetButton = BetterEditor.buttons[i];

 break;

 }

 }

 if (targetButton) {

 txtareaEle.value = BetterEditor.insertTag(

 sel.start,

 sel.end,

 targetButton,

 txtareaEle.value

);

 }

Chapter 8

[275]

 sel.start = sel.end = -1;
 }
 });

The basic job of this function is to attach the editor to the passed-in textarea.
The highlighted sections represent the areas where changes have been made.

The function starts by setting up a few variables with information about the target
textarea element. After this is a for loop:

var buttons = [];
for (i = 0; i < BetterEditor.buttons.length; ++i) {
 button = BetterEditor.buttons[i];
 buttons.push(Drupal.theme('button', button));
}

The buttons array, which was declared on the first line, will hold all of the themed
buttons. How do we get those? We loop through the values in BetterEditor.
buttons (this is the array we created on the server) and pass that data into a theming
function. Later, we will see how the Drupal.theme.prototype.button() function
themes buttons.

We now have information about the target text areas and a themed list of buttons.
The next step is to turn our buttons into a button bar:

var bar = $(Drupal.theme('buttonBar', buttons, id));

This uses another new theme, Drupal.theme.prototype.buttonBar(). This
takes a list of buttons and returns a single chunk of HTML which will function
as the button bar.

The next thing to do is insert our new button bar into the document immediately
before the textarea. This is also done with a jQuery chain:

$(bar).insertBefore('#' + txtareaID)
 .children('.editor-button')
 .click(/* anonymous function here */);

This inserts the new button bar, and then adds a click handler to every child of the
button bar. What are the children of the button bar? Those are the nodes one-level
down (the individual buttons we created before. Therefore, each one of these buttons
will be assigned a click event handler.

The click handler has changed since the SimpleEditor version. Let's take a look at
this new version:

function () {
 var txtareaEle = $('#' + txtareaID).get(0);

Building a Module

[276]

 var sel = BetterEditor.selection;
 if(sel.id == txtareaID && sel.start != sel.end) {
 var buttonName = $(this).html();
 var targetButton = null;
 for (i = 0; i < BetterEditor.buttons.length; ++i) {
 if (BetterEditor.buttons[i].name == buttonName) {
 targetButton = BetterEditor.buttons[i];
 break;
 }

 }

 if (targetButton) {
 txtareaEle.value = BetterEditor.insertTag(
 sel.start,
 sel.end,
 targetButton,
 txtareaEle.value
);
 }
 sel.start = sel.end = -1;
 }
});

The code above has been highlighted even more carefully to show the particular
lines that were changed.

This function handles the response to a button click. For example, when a user
clicks on, the B button, this event handler needs to figure out what button was
clicked. Then it takes the appropriate action, which means it finds the selected
text and surrounds it with the tags.

The first if statement in this function determines whether or not a portion of the
document has been selected. As you may recall, our initial design for the editor only
wrapped HTML around the existing selected text (it did not insert empty tags).

Once inside of the if statement, we need to find out what button was called. To do
this, we will match the button's name with the text inside of the button element.
Here's why this works.

We know that the bold button will be named B. That is, we know that the text
displayed to the user will be B. We also know that this value comes directly from
the button object's name property.

Chapter 8

[277]

So in the click handler function, we can get the HTML value of the button using
$(this).html(). This gets stored in buttonName. We can then loop through all of
the buttons in BetterEditor.buttons looking for an object with a name equal to
the value of buttonName. Using our previous example, if a user clicks on a button
with the name B, buttonName would have the value B. As this code loops through
BetterEditor.buttons, it will hit the first object:

{"name":"B","tag":"strong","style":"font-weight: bold"},

It has the name B. So that object will be stored in targetButton and the loop will
be terminated by the break statement. After all, there's no point continuing to loop
through the list of buttons if we have already found a match.

Now that we have identified the correct button object, we can find what tag(s) we
should use when inserting that button.

The following part of the code simply checks to make sure a button has been found.
There is the possibility that something might go wrong and a bogus button may be
displayed on the button bar:

if (targetButton) {
 txtareaEle.value = BetterEditor.insertTag(
 sel.start,
 sel.end,
 targetButton,
 txtareaEle.value
);
}

If a button object has been found to answer the click event, the BetterEditor.
insertTag() function is executed. In the old version, some HTML formatting was
passed in the third argument of the function. Now, the target button object is passed.

Let's turn to that function and see what it does.

The insertTag() function
This function is responsible for finding the correct piece of text and inserting
the HTML. It is largely unchanged from the Simple Editor version in Chapter 4.
However, we will cover some differences that exist here:

BetterEditor.insertTag = function (start, end, tag, value) {
 var front = value.substring(0, start);
 var middle = value.substring(start, end);
 var back = value.substring(end);
 var formatted = Drupal.theme('addTag', tag, middle);
 return front + formatted + back;
};

Building a Module

[278]

As you may recall, this function proceeds by finding the selected text (captured
in the middle variable). It then surrounds the selected text with tags, rebuilds the
content, and then sends it back to the calling function.

This function has been changed slightly. Instead of building the HTML markup,
it passes the button data (stored in the tag variable) to a theming function. The
theming function, Drupal.theme.prototype.addTag(), does the actual formatting
and returns a formatted string.

BetterEditor.insertTag() simply rebuilds the contents of the textarea and sends
the data back to the calling function.

Not much is new in this function. However, the functionality of the addTag theme
is surprisingly complex. We have three functions left to look at. Let's begin with
Drupal.theme.prototype.addTag().

The addTag() theme
The three theming functions, which we are about to look at, are all new in
BetterEditor. We will begin with the most complex.

Drupal.theme.prototype.addTag() is responsible for taking some text and
wrapping it in the appropriate HTML. It is passed two arguments. First, the button
object for the button that was just clicked. This contains the data passed from the
server. The second argument is the text that should be surrounded:

Drupal.theme.prototype.addTag = function (button, text) {
 var tag = null;
 if (button.tag instanceof Array && button.tag.length > 0) {

 var placeholder = $('body')
 .append('<div class='placeholder'></div>')
 .children('.placeholder').hide();
 var current = placeholder; // Copy for working with

 jQuery.each(button.tag, function (i, data) {
 var newTag = '<' + data + '>\n</' + data + '>\n';

 current.append(newTag);
 if (button.cssClass) {
 current.addClass(button.cssClass);
 }
 current = current.children();

 if (i == button.tag.length -1) {
 current.html(text);
 }

 });

Chapter 8

[279]

 var html = placeholder.html();
 placeholder.remove();
 return html;
 }
 else {
 tag = $('<' + button.tag + '></' + button.tag + '>');
 if (button.cssClass) {
 tag.addClass(button.cssClass);
 }
 return tag.html(text).parent().html();
 }
};

To get our bearings before we look at this code, let's look back at the button.tag
property that we defined.

Here's the JSON data for the B button:

{
 "name":"B",
 "tag":"strong",
 "style":"font-weight: bold"
},

Now compare that to our table button:

{
 "name":"table",
 "tag":[
 "table",
 "tbody",
 "tr",
 "td"
]
}

The table button has an array of tags, while the B button only has a single tag value.
So when a user clicks on the B button, the highlighted text will only be surrounded
by one pair of tags: .

But if the user were to click on the table button, the text should be nested in the
middle of this tag set: <table><tbody><tr><td> </td></tr></tbody></table>.
The Drupal.theme.prototype.addTag() function that we are now examining is
responsible for handling these two cases.

Building a Module

[280]

The function begins by making a quick choice based on the type of data inside of the
button.tag object:

 if (button.tag instanceof Array && button.tag.length > 0) {
 // Complex case: Nested tags
 }
 else {
 // Simple case: One tag.
 }

If the button.tag object is an array, we should assume that we will be working with
nested tags. Otherwise, we will assume that there is only one tag.

If we were building a production quality version of this, we would spend
more time evaluating the button.tag object. We might try to streamline
the case where the button.tag array has only one item. We might also
try to account for cases where no tag data was supplied on the server (an
issue that doesn't concern our closed-system example here). But for the
sake of brevity, we will cover a simplified case.

Let's quickly dispense with the second case, where button.tag is not an array. In
this case, we simply take the value of the tag and create start and end tags out of it.
We then wrap that in a jQuery object named tag:

 if (button.tag instanceof Array && button.tag.length > 0) {
 /* Handle array case */
 else {
 tag = $('<' + button.tag + '></' + button.tag + '>');

 if (button.cssClass) {

 tag.addClass(button.cssClass);

 }

 return tag.html(text).parent().html();

 }

If the button.class object is set (recall that the S button had a class property),
we add that too. Finally, wrap the tag around the passed-in text, and return a text
representation of the HTML.

Let's now turn back to the more complicated case of nested tags:

 if (button.tag instanceof Array && button.tag.length > 0) {

 var placeholder = $('body')

 .append('<div class='placeholder'></div>')

 .children('.placeholder').hide();

Chapter 8

[281]

 var current = placeholder; // Copy for working with

 jQuery.each(button.tag, function (i, data) {

 var newTag = '<' + data + '>\n</' + data + '>\n';

 current.append(newTag);

 if (button.cssClass) {

 current.addClass(button.cssClass);

 }

 current = current.children();

 if (i == button.tag.length -1) {

 current.html(text);

 }

 });

 var html = placeholder.html();

 placeholder.remove();

 return html;

 }
 else {
 tag = $('<' + button.tag + '></' + button.tag + '>');
 if (button.class) {
 tag.addClass(button.class);
 }
 return tag.html(text).parent().html();
 }

There are a couple of ways to do this sort of tag building. I chose a method that made
use of jQuery, and that seemed simple to me.

Let's start with the first few lines:

var placeholder = $('body')

 .append('<div class='placeholder'></div>')

 .children('.placeholder').hide();

var current = placeholder; // Copy for working with

First, we need a root jQuery object to work with. But we don't have any tags to
work with at the beginning. So we just create a pair of tags that we don't really
need. However, IE requires that these tags be a part of the document. So we append
them to the end of the body, and then hide the div so that it won't disrupt the user
experience. Once we have the placeholder, the first thing we do is make a copy
of it in current. Why is this done? We are going to use current to traverse down
the DOM as we create it, but placeholder will always point to the top-level
placeholder node.

Building a Module

[282]

Next, we will loop through each of the items in button.tag, create an element,
and then set that as the root element. In essence, we are creating the DOM and
descending it as we go.

Here's how that happens. The anonymous function is called once for each tag.
It begins by constructing a string representing the new tag:

 jQuery.each(button.tag, function (i, data) {
 var newTag = '<' + data + '>\n</' + data + '>\n';
 current.append(newTag);
 if (button.class) {
 current.addClass(button.class);
 }
 current = current.children();

 if (i == button.tag.length -1) {
 current.html(text);
 }
 });

The newTag variable holds the new tag data, and current points to the current node
(starting with the placeholder that we created).

Note that the newTag string has \n line endings encoded into it. This
causes the output to be displayed with line breaks and makes it easier to
read in an HTML editing environment like the one we are creating.

The newTag is appended to as the last child of current.

Next, if there is a class property on this button, we add the class to the
current element.

According to this setup, the same class is added to all of the tags in
button.tag. In practice, that is not usually desirable. Alternatives to
this may be to ignore the button.class properties for nested tags, or to
simply add the class only to the first tag in a nested series.

After this, we reset current to current.children():

current = current.children();

Here, we are changing the jQuery object to point at the new element that we just
created. For example, let's take the case of an unordered list. We will begin with a
DOM representable like this:

<div class='placeholder'></div>

Chapter 8

[283]

The current variable points to this element. The first time through the jQuery.
each() iterator, the DOM is changed to this:

<div class='placeholder'>

</div>

First the tag is added. Next, when current = current.children() is executed, the
current node is moved from <div></div> down to the child element .

The next time through the loop, the new tag will be added. It is appended
to the end of current, and current points to the element. The result is a
DOM fragment looking like this:

<div class='placeholder'>

</div>

All we need to do now is add the text. This is easy because we know from the outset
how deep the DOM fragment will be, based on the number of things in the button.
tag array:

if (i == button.tag.length -1) {
 current.html(text);
}

Once our counter (maintained by jQuery.each()) is only one less than the length
of the array, we know we are in the innermost tag and can add the text here. This
results in a DOM fragment looking something like this:

<div class='placeholder'>

 Text Here!

</div>

We are done creating the DOM fragment. Since we still have our placeholder
variable pointing to the main div, we can get our newly marked up text with a call
to placeholder.html(). Remember, since $().html() returns only the children
of the present node, the current node is not returned. In other words, given the
HTML we have in the previous DOM fragment, the following will be returned by
placeholder.html():

 Text Here!

Building a Module

[284]

The placeholder is not present in the results as only the children of the placeholder
were returned. Once we are done with our special-purpose placeholder, we remove
it from the DOM using placeholder.remove().

At the end of the Drupal.theme.prototype.addTag() function, a string containing
the HTML markup is returned. As this gets passed back to the BetterEditor.
insertTag() function, the contents for the textarea are recreated. The new text is
returned back to the click event handler, which inserts the text into the textarea. And,
voila! The user sees the new HTML wrapped around the selected text as seen here:

We have made it through the most complicated parts. Just two theme
functions are left.

The button() theme function
While looking at Drupal.behaviors.editor(), we saw the Drupal.theme.
prototype.button() theme get called. That theme is responsible for taking a button
object and turning it into an HTML button. In Simple Editor, this was handled by
some very generic string concatenation and a little bit of jQuery. We haven't gained
much sophistication in moving to themes. The code is simple:

Drupal.theme.prototype.button = function (button) {
 var tag = $('<div class="editor-button"></div>');

 if (button.style) {
 tag.attr('style', button.style);
 }

 return tag.html(button.name).parent().html();
}

The button object is passed in. We create a jQuery object with the base <div></div>
tag. If the button object has a style property, we add a style attribute to the div
tag. For example, with the B button, we add style='text-weight: bold' to
the div tag.

Finally, we run one last jQuery chain, adding the button name as the text content of
the div tag. We then returning the whole thing as a string containing HTML.

Chapter 8

[285]

Every button is passed through this theme function. Together, all of the buttons
are handed over to the Drupal.theme.prototype.buttonBar() function for
additional theming.

The buttonBar() theme function
The Drupal.theme.prototype.buttonBar() theme is also very straightforward.
It's job is to take an array of buttons and combine them into a single button bar.
Since more than one button bar may exist on a page, each button bar needs to
have its own ID.

Here's the theme:

Drupal.theme.prototype.buttonBar = function (buttons, id) {
 var buttonBar = $('<div class="button-bar"></div>')
 .attr('id', id);
 jQuery.each(buttons, function (i, item) {
 buttonBar.append(item);
 });
 return buttonBar.parent().html();
}

First, the new button bar jQuery object is created and the ID is appended.

Next, we loop through each of the items in the buttons array and append each one
to the button bar.

Finally, the button bar is converted to an HTML string and returned. It is then
inserted by our main behavior, Drupal.behaviors.editor(), into the appropriate
place in the DOM.

We have made it through our largest project. Although we began with an existing
project, there has been a substantial amount of information to cover. However, we
have created a second module. A module tied closely to server-generated content.

A last question
There is a question that might arise in regard to this last project. Why involve the
server in the process the way that we did? Why not simply create the buttons in
JavaScript to begin with?

The point of this project was to exhibit how data could be passed from the server.
However, if we wanted to delve into a little more PHP, we could derive even more
from server integration. We could, for example, use the Forms API (FAPI) to create
an administration form, which would allow system administrators to select the
buttons that should appear on a form, or even define their own buttons.

Building a Module

[286]

We could also use the input filter logic (which determines what tags are allowed in a
given input box) to determine which buttons are displayed to the user.

In short, there are many directions we could go with our server-side development.
But we have hit the boundaries defined for this book. Delving into serious PHP
programming is beyond our scope. Of course, if you are interested in Drupal 6 PHP
development, you might like my book Learning Drupal 6 Module Development, Packt
Publishing, 978-1847194442.

Summary
The focus of this chapter was on module development. We set out to use Drupal
modules as a way to encapsulate JavaScript functionality. We did this in a way that
would be portable across themes and even across Drupal installations. During this
chapter, we created two projects. The first was a script autoloader that provided
module-side .info file processing for scripts. This essentially replicated the
behavior of themes and their .info files.

Our second project was more ambitious. Starting with the code from the Simple
Editor that we created in Chapter 4, we created a Better Editor. This editor obtained
configuration information from the server, allowing the JavaScript editor to be
customized from PHP.

In the next and final chapter, we will focus again on Drupal JavaScript libraries and
add-ons. Now that we know how to create modules, we have a more robust toolset
for future projects.

Integrating and Extending
In this final chapter, we will look at a few advanced topics. We will look at
integrating existing Drupal JavaScript tools with our own site design, and then we
will see how to extend the JavaScript libraries with the jQuery UI library. Finally, we
will take one more step and extend jQuery's library with our own functions, building
a jQuery plug-in in the process.

We will cover the following:

Using the •	 autocomplete.js Drupal library
Installing and using the jQuery UI library•	

Building a custom jQuery plug-in•	

Using a custom jQuery plug-in both inside and outside of Drupal•	

As with the previous chapter, the focus of this chapter will be on completing projects.

Project: autocompletion and search
One of the more successful Web 2.0 uses of JavaScript has been autocompletion. Start
typing a search term in a text entry field and the browser displays a list of suggested
terms. Type a few more characters and the list changes as you type, refining and
narrowing the terms that might be completions of what you are typing. This is
known as autocompletion.

How does autocompletion work? Here's what happens behind the scenes. As
you type text into the field, a piece of JavaScript is monitoring the field, sending
AJAX requests to the server to tell it what text you have entered so far. The server
then does some preliminary searching or matching routine and returns data to
the JavaScript. The script then displays the choices that match. Usually, the script
displays the options in a way that makes them look like part of a combo box (a text
entry field with a selectable list).

Integrating and Extending

[288]

There are a lot of nuances to autocompletion scripts. How often should the script
perform its AJAX query? If queries happen too often, autocompletion becomes a
performance burden. If they happen too rarely, the autocomplete functionality will
be useless. Should the script send short strings (such as 'is') to the server? How
many results should it show? These and other such questions make implementing
autocompletion a sizable task.

The Drupal Core makes use of autocompletion in several places. For that reason,
Drupal developers created a special-purpose JavaScript library that provides the
client-side facilities. This library can then be used to add autocompletion to other text
fields on your site.

One area where autocomplete is not enabled in Drupal is on the search pages. As
always, there are a variety of reasons for this, the most important being performance.
Having lots of autocompletion scripts, on various clients, all running numerous
searches would significantly increase the load on the search engine.

In our first project, we are going to devise a simple autocompletion tool for searches.

The theory
At one time I was on a team charged with analyzing a large-scale search
implementation for a web site that handled hundreds of thousands of hits a day.
Sifting through the search data, we were surprised to find that while there were
many thousands of unique searches; most of the searches were for one of the eighty
different search strings. We could reduce the load on our server by almost 75 percent
simply by caching the results for those eighty search strings.

We can extrapolate from this example. Perhaps autocompletion would be useful
if the server only returned a subset of all of the possible search terms. That subset
would have to reflect the popular information on the site in order to be useful.
Implementing things this way could cost less performance-wise, while still being
useful to the user.

Chapter 9

[289]

Our plan
For our implementation, we will add autocompletion to the search field in the search
module's block. But rather than running a search for each autocompletion request,
we will build a scaled-down list of terms that we will define. Only that list of terms
will be used for autocompletion.

If this were a book on PHP development, I would suggest writing some server-side
code to collect and analyze search engine data, and then use that information to
pre-populate an autocompletion field. But we can't readily get that information.
So we will try another approach.We will use a Drupal taxonomy as the source for
our suggestions.

Taking this approach, we will allow content creators to add keywords to articles.
Those keywords will then be used for autocompletion.

First step: creating the taxonomy
We are going to use a taxonomy to seed our search terms. Drupal taxonomies are
collections of terms that are sometimes structured (such as a hierarchy of categories)
and sometimes unstructured (such as user-entered tags). Using taxonomies you
can add keywords, categories, and tags to the content on your site. But there
are many other uses for taxonomies. Ours will be used for providing our search
autocompletion with a list of suggestions.

On occasion, Drupal uses the term vocabulary instead of taxonomy.
Sometimes, a tenuous distinction is made (a taxonomy is made up of
vocabularies, which are in turn made up of terms). Practically speaking,
the term 'vocabulary' is a synonym for taxonomy.

Integrating and Extending

[290]

The taxonomy will be created through Drupal's administrative interface. Our
new taxonomy will be called Tags. Here is the relevant portion of the taxonomy
creation page:

The taxonomy defined in the screenshot will be applied to all of our content types
and will use a tagging structure. When a user creates new content, she or he can add
tags, which in turn will be used by our autocompletion tool.

Chapter 9

[291]

Since it has been applied to all content types, any time we go to the Create content
page and create a new node, we should have the option of tagging that content.
Here's a new piece of content:

Here we added just over a dozen tags to the story. When we finish with this project,
those tags should be displayed as autocompletion recommendations when a user
types the appropriate text into a search box.

Next, we need to go into Administer | Site building | Modules and turn on the
Search module (if it's not already on). Once you have enabled that, you should
also go to the Administer | Site building | Blocks page and put the Search block
into one of the regions. Our script will turn that Search block's text field into an
autocompletion field.

We are now finished with our preparations. We can move on to the code.

It is wise to manually run Cron before continuing. The new content
we just created will not be available to your search engine until the re-
indexing operation has been run. Cron will run that operation.

The new module
We are going to implement our new package as a module. Creating
JavaScript-centered modules was covered in the previous chapter. Nothing
new will be introduced here.

To begin with, we will create our new module in the appropriate directory. Under the
Drupal root, we create the directory sites/all/modules/search_autocomplete/. In
that directory, we will create the .info, .module, and .js files.

Integrating and Extending

[292]

Here are the contents of search_autocomplete.info:

; Id
name = Search Autocomplete
description = Provide autocompletion for search fields
dependencies[] = search
core = 6.x

We only need the bare minimum for our module. We added one new directive
dependencies[], which indicates that this module depends upon another module.
In this case, it is the search module that comes with Drupal.

The square brackets ([]) at the end of the dependencies directive
indicate that the directive can have multiple lines. If we need to declare
another dependency, we should do so by adding another line like this:
dependency[] = another_module.

Next, we need some boilerplate PHP code to add the appropriate JavaScript files
and set a few variables that will be sent to the JavaScript. This code is similar to the
modules we created in the previous chapter. Here is the search_autocomplete.
module file in its entirety:

<?php

/**
 * Provide autocomplete functionality to Drupal search.
 * @file
 */

/**
 * Implementation of hook_help().
 */
function search_autocomplete_help($path) {
 if ($path == 'admin/help#search_autocomplete') {
 return t('Provide autocompletion to Drupal search.');
 }
}

/**
 * Implementation of hook_init().
 */
function search_autocomplete_init() {
 $path = drupal_get_path('module', 'search_autocomplete');

Chapter 9

[293]

 // The Taxonomy ID.
 $tid = 2;

 $autocomplete_uri = url('taxonomy/autocomplete/' . $tid);
 $inline = 'SearchAutocomplete.url = “' .
 $autocomplete_uri . '";';

 drupal_add_js($inline, 'inline');
 drupal_add_js('misc/autocomplete.js');
 drupal_add_js($path . '/search_autocomplete.js');
}

The search_autocomplete_init() function is very important. It implements the
Drupal hook_init() hook, which means this function will be run when Drupal
initializes on each request.

For our module, the duty of this function is to send the correct JavaScript to
the client.

The first line simply gets the URL path to the current module. $path can then be
used to construct URLs.

Next, we do a little bit of hard coding. We set $tid (the Drupal shorthand term for
Taxonomy ID) to 2. This is the TID of the taxonomy we just created.

Finding the ID of a taxonomy
One easy way of finding an ID for your taxonomy is to go to Administer
| Content management | Taxonomy and then click list terms for your
taxonomy. Your browser will display a URL like this: http://example.
com/ admin/content/taxonomy/2. The number at the end (2) is
your TID.

For the sake of simplicity, this has been hard coded. If we were to spend some more
time coding with PHP, we might create an administrative interface for choosing the
taxonomy we want to use. We could then augment the previous function , to retrieve
the appropriate taxonomy ID from the database. But since our focus is on JavaScript,
and not PHP, we will forgo the better solution in favor of the most expedient.

Our AJAX form, when we create it, will need to callback to the server. The server
will need to provide the correct taxonomy terms to the client. How are we going to
get that list?

Fortunately, Drupal again has a tool that we can use. There is a built-in taxonomy
autocompletion script that comes standard with the taxonomy module. We can
reuse that feature. All we need to do is pass the correct URL down to the client-side
JavaScript, which we will do in three simple steps:

Integrating and Extending

[294]

 $autocomplete_uri = url('taxonomy/autocomplete/' . $tid);
 $inline = 'SearchAutocomplete.url = “' .
 $autocomplete_uri . '";';

 drupal_add_js($inline, 'inline');

First, we use the url() function, a Drupal built-in, to create a URL pointing to the
relative path taxonomy/autocomplete/2. (2 is the ID of our taxonomy and is stored
in $tid.)

Next, we build that into a JavaScript fragment, which will look something like this:

SearchAutocomplete.url =
 'http://example.com/taxonomy/autocomplete/2';

That data is stored in $inline.

On the third line, we send the previous code to the client in the form of an inline
script. This is similar to the way we passed settings to the Better Editor in the
previous chapter.

We have now finished the brunt of the configuration for our autocompletion script.
The last thing to do is make sure that our two necessary JavaScript libraries are
loaded by the client. That is done with the following two lines:

 drupal_add_js('misc/autocomplete.js');
 drupal_add_js($path . '/search_autocomplete.js');

The first script added is the Drupal autocomplete.js library, which is stored in the
misc/ directory.

The second script added is our search_autocomplete.js—a file that we will look
at next.

That is all that there is to our server-side component.

The search autocomplete JavaScript
The last thing we need to do is create a JavaScript tool that will turn our plain old
search box into an autocomplete-capable search box.

We will put this code in search_autocomplete.js, the last JavaScript file that we
added in our hook_init() implementation.

Chapter 9

[295]

The main task of this code will be to modify the search block in order to turn it into
an autocomplete function, and then let the Drupal autocomplete behavior do the
requisite processing on that field.

Here is the code in its entirety:

// Id

/**
 * Turn the search block into an autocomplete form.
 * @file
 */

var SearchAutocomplete = SearchAutocomplete || {};

$(document).ready(function () {
 $('input[name="search_block_form"]:not(.form-autocomplete)')
 .each(function () {
 var newId = $(this).attr('id') + '-autocomplete';
 var newElement = $('<input type="hidden"/>')
 .addClass('autocomplete')
 .attr('id', newId).attr('disabled','disabled')
 .attr('value', SearchAutocomplete.url);

 $(this).after(newElement);

 }).addClass('form-autocomplete');

 Drupal.attachBehaviors();
});

The first thing done here is to create an empty SearchAutocomplete object. This
will be our namespace. In our PHP code, we added an inline script that adds the
SearchAutocomplete.url object, so we need to make sure that that namespace
exists here in order for that script to successfully run.

Next, we handle the remainder of our code using the jQuery ready event.

But wait! Why aren't we doing this in a behavior? After all, this is the situation that
behaviors are good for, right?

Here is the reason for our choice: We need to make sure the behaviors are run again
after we finish processing. But if we put code to run Drupal.attachBehaviors()
inside of a behavior, we then have to write some extra code to prevent infinite
recursion. In our case, the simplest solution to this problem is to run our code in
the ready event handler instead of trying to write a recursion detection device.

Integrating and Extending

[296]

Let's take a look at the beginning of this function:

$('input[name="search_block_form"]:not(.form-autocomplete)')
 .each(function () {
 // More code here...
 }).addClass('form-autocomplete');

This first jQuery object grabs elements that match the query input[name="
search_block_form"]:not(.form-autocomplete). This is a little longer
than our usual query, but it is not difficult to understand.

The query is composed of three parts: an element query (input), an attribute
query ([name="search_block_form"]), and a negation pseudo-class (:not(.
form-autocomplete)). In short, the query looks for all <input/> elements with
an attribute name that has the value search_block_form. But due to the negation
pseudo-class, only elements that don't have the class form-autocomplete match.

The search_block_form name is used by the search module when it
creates a block containing a search text field. This part of the script could
be extended to find other text fields and turn them into autocompletion
fields. For example, to enable autocompletion in your theme's search box,
you would use the name search_theme_form.

In short, it matches all search text boxes that don't already have an autocomplete
feature. This query should match any Drupal search block, which typically looks
something like this:

<input type="text" maxlength="128" name="search_block_form"
 id="edit-search-block-form-1" size="15" value=""
 title="Enter the terms you wish to search for."
 class="form-text" />

As we can see from the previous code, it iterates through each of the matching
elements. In a moment, we will look at what happens to each element as it is iterated
over. Then, once that is done, the class form-autocomplete is added to each of the
matching elements.

Chapter 9

[297]

Adding this class serves two purposes. First, it makes sure that the same code
cannot be run on it again (not a likely event, given that we run the code in the ready
handler). Second, it identifies that element as an autocomplete form. The Drupal
CSS then styles the element accordingly, adding the standard autocomplete throbber
inside the text box:

Note the grey circle near the end of the search box. That is the location of the
throbber icon. When the autocompletion AJAX script is running, the throbber icon
will be displayed as a spinning circle.

Let's now turn to the anonymous function that is run inside the each() function:

$('input[name="search_block_form"]:not(.form-autocomplete)')
 .each(function () {
 var newId = $(this).attr('id') + '-autocomplete';

 var newElement = $('<input type="hidden"/>')

 .addClass('autocomplete')

 .attr('id', newId).attr('disabled','disabled')

 .attr('value', SearchAutocomplete.url);

 $(this).after(newElement);

 }).addClass('form-autocomplete');

In a nutshell, the highlighted code creates a new hidden element that contains
instructions for the autocomplete handler. This hidden element is then added after
the search box input element.

The anonymous function called by each does the following. First, it creates a new ID
based on the id attribute of the current input element. This ID will be assigned to
the new hidden element. The autocomplete.js library will use the ID to correlate
the new hidden element with the field that it describes. So the naming convention
used (original ID plus -autocomplete) is important.

Integrating and Extending

[298]

Next, the script creates the new element:

var newElement = $('<input type="hidden"/>')
 .addClass('autocomplete')
 .attr('id', newId).attr('disabled','disabled')
 .attr('value', SearchAutocomplete.url);

Once created, the new hidden element is assigned a new class (autocomplete), an
ID, and a value.

The class is used by Drupal's autocomplete behaviors to identify autocompletion
fields. The value attribute is expected to contain a URL that will be used for
AJAX operations.

In the last line of our anonymous function, the new element is added after the search
box input element:

$(this).after(newElement);

Once the main jQuery is done, only one thing remains in the function:

$(document).ready(function () {
 $('input[name="search_block_form"]:not(.form-autocomplete)')
 .each(function () {
 var newId = $(this).attr('id') + '-autocomplete';
 var newElement = $('<input type="hidden"/>')
 .addClass('autocomplete')
 .attr('id', newId).attr('disabled','disabled')
 .attr('value', SearchAutocomplete.url);

 $(this).after(newElement);

 }).addClass('form-autocomplete');

 Drupal.attachBehaviors();

});

Lastly, Drupal.attachBehaviors() is run. This will load and run all of
the behaviors.

This line raises an interesting point. We know that all behaviors are run during
the jQuery ready event. This function is also run during the jQuery ready event.
But it is run after Drupal's behaviors and modifies the DOM. We need to give the
behaviors another chance to process the new material we just added. So we have to
run Drupal.attachBehaviors() again to be sure that the autocomplete behavior
correctly attaches.

Chapter 9

[299]

This shouldn't cause any problems. After all, behaviors are intended to be run
multiple times.

That's all there is to our autocomplete module. To enable this module, simply go
to the administration menu Administer | Site building | Modules, and enable
Search Autocomplete.

Once the module is enabled, search dialogs should respond automatically. Here's a
screenshot showing the autocompletion in action:

Typing in the first three letters, we get a list of four matching words from our tag list.

Now we are done with our first project. In the next one, we will use the jQuery UI
plug-in to add richer user interface elements to our site.

Project: jQuery UI
Although we are going to write a small amount of code in this project, we are going
to get some big results with it. We will focus on integrating the jQuery UI with
Drupal. We already have a sufficient background to make this task a breeze.

What is jQuery UI?
The jQuery library has received considerable attention in this book, and deservedly
so. After all, not only does jQuery come packaged with Drupal, but much of Drupal's
own JavaScript code uses jQuery.

The small jQuery library doesn't provide widgets or other components popular in
JavaScript libraries. Instead, it is focuses on providing a rich toolset for working with
the DOM, CSS, events, and AJAX.

Interested in calendar widgets, or tabs, or sliders, or drag-and-drop support? You
won't find any of those in jQuery. But you will find them in an official jQuery add-on
package called the jQuery UI. The jQuery UI library provides a huge repository of
tools for building rich user interfaces. It builds on the solid foundation of jQuery, but
it adds much more.

Integrating and Extending

[300]

The official jQuery UI web site is co-located with the jQuery home page.
Visit http://ui.jquery.com to learn more about the project and to
view some of the demos.

Here's a partial list of the things you will find in jQuery UI:

Drag-and-drop support: Declare elements as draggable or configure them as •	
dropable containers.
Over a dozen additional effects (in addition to •	 slide and fade): Some, like
explode, are tantalizingly elaborate.
Make elements or containers resizable: you can even add drag bars to •	
images, allowing your users to click and drag on an image border to
make the image larger.
Sortable lists: Turn a list or group of items into a sortable list with •	
drag-and-drop support.

There are even more features, but these should whet your appetite In this project,
we will use the accordion tool to turn our menus into an elaborate expanding and
collapsing accordion widget.

But the best part about this library is that, like jQuery, the tools are compact. Much
can be done with only a few lines of code.

Getting jQuery UI
The jQuery UI library does not come standard with Drupal nor is it to be included in
the near future. So to use it with Drupal, you will need to download the library from
http://ui.jquery.com.

There is a jQuery UI Drupal module which adds some convenience
functions for PHP developers working with jQuery UI. While we won't
use it here (our PHP code isn't complex enough), it is a good option for
PHP module developers looking to integrate with jQuery UI. For more
information, see http://drupal.org/project/jquery_ui.

There are several ways of getting jQuery UI, including building a custom package.
(See http://ui.jquery.com/download for all of the options.)When learning jQuery
UI, the best bet is the Development bundle distribution. This includes the entire
library along with examples and unit tests.

Chapter 9

[301]

The library is constructed in a modular fashion. Individual features are stored in
separate files. For the most part, it is easy to pick and choose which elements you
want to install on your server.

When you are ready, download a version of the jQuery UI. We will be using the
ui.core.js and ui.accordion.js files, so make sure you at least have these two.
If you get the Development bundle, you will have everything. Later on, we will
copy the necessary files into our module.

The next step in our project will be to create a new module.

The accordion module
We are going to write a small module, using the jQuery accordion library, to turn
our left-side navigation blocks into an accordion widget. This will keep our site
navigation compact and easy to use.

Earlier in the book, we added a Drupal behavior to our blocks to make
them collapsible. Before proceeding, that behavior should be turned off
because it will conflict with our accordion widget. To do this, comment
out scripts[] = behaviors.js in the frobnitz.info file, or simply
switch to another theme.

As usual, the first thing we need to do is create a new module directory in the
appropriate location under the Drupal root directory. Our module will be named
accordion, so we will be creating sites/all/modules/accordion.

Inside of that folder, we will be creating four files:

1. accordion.info.
2. accordion.module.
3. accordion.css.
4. accordion.js.

These four files should all be familiar by now. The .info file will describe the
module. The .module file will hold some spartan PHP code. The .js file will
hold our JavaScript, and the .css file will hold our CSS.

Integrating and Extending

[302]

Along with these four files, we will create a directory named ui/. This is where our
jQuery UI files will go. How you downloaded jQuery UI will determine how you
need to copy the appropriate files:

If you downloaded the Development bundle, you can simply copy the •	
bundle's ui/ folder into sites/all/modules/accordion/
If you built a custom package, copy •	 ui.core.js and ui.accordion.js into
sites/all/modules/accordion/ui/

Next, we will create the accordion.info and accordion.module files.

The .info and .module files
The accordion.info file will follow the same structure as our previous .info files:

; Id
name = Accordion
description = Display the left-hand blocks as an accordion.
core = 6.x
php = 5.2

There should be nothing surprising here.

Next, we will create a very simple module file. The PHP code for our module will
simply add the requisite JavaScript libraries. Like our previous module, it will
implement only the hook_help() and hook_init() hooks:

<?php
// Id

/**
 * Attach an accordion effect to menus.
 * @file
 */

/**
 * Implementation of hook_help().
 */
function accordion_help($path, $args) {
 if ($path == 'admin/help#accordion') {
 return t('This module adds accordion effects to menus.');
 }
}

/**
 * Implementation of hook_init().
 */

Chapter 9

[303]

function accordion_init() {
 $path = drupal_get_path('module', 'accordion');
 drupal_add_css($path . '/accordion.css');
 drupal_add_js($path . '/accordion.js');
 drupal_add_js($path . '/ui/ui.core.js');
 drupal_add_js($path . '/ui/ui.accordion.js');
}

The accordion_init() function adds four files.

First, the accordion.css file (which we will create in a moment) contains styling
information. It is a CSS file, not a JavaScript file. Therefore, we add it with the
drupal_add_css() function.

Next, we have three JavaScript files that need to be added:

1. accordion.js: This holds our custom JavaScript code. We will take a close
look at the contents of this file shortly.

2. ui/ui.core.js: This is the base library for jQuery UI. It contains functions
used by the rest of the jQuery UI components. Any time you use jQuery UI
you will need to include this library.

3. ui/ui.accordion.js: This contains the jQuery UI accordion widget code.

That is all there is to our module. Next, we will look at the JavaScript.

The accordion JavaScript
Our module code was short, but our JavaScript code is going to be even shorter. In
accordion.js, we need to write the necessary glue code to find the right part of our
document and turn it into an accordion. With jQuery at our disposal, and jQuery UI
tightly integrated, this process is as easy as writing a simple jQuery chain.

To make things even simpler, we will wrap this in a Drupal behavior and allow
Drupal to control the initialization of our widget:

// Id

/**
 * JavaScript for initializing and adding accordion effect.
 * @file
 */
Drupal.behaviors.accordion = function () {
 $('#sidebar-left:not(.ui-accordion)').accordion({
 header: 'h2'
 });
};

Integrating and Extending

[304]

The body of our newly defined behavior has a single jQuery chain that consists of
two parts. First, the jQuery call executes this query:

#sidebar-left:not(.ui-accordion)

This will look for an element with the ID sidebar-left that does not have the class
ui-accordion.

The sidebar-left ID is a standard ID for Drupal. It identifies the lefthand region
where blocks are typically located. Here's what my sidebar-left column looks like
before running the previous code:

Chapter 9

[305]

This is the area that the ID identifies. But there is the additional :not(.ui-
accordion). The ui-accordion class is added by an accordion widget. As with
other behaviors, we add this extra check to ensure if the behavior is run multiple
times, we won't try to repeatedly turn the left column into an accordion widget.

Let's now take a look at the second part of the query:

$('#sidebar-left:not(.ui-accordion)').accordion({
 header: 'h2'
});

The jQuery UI functions are added onto the main jQuery object (we will see how
to do this in our final project). So adding the accordion is as simple as calling the
accordion() method.

That method takes an object literal containing settings. There are over half a dozen
possible settings for the accordion, all documented at http://docs.jquery.com/
UI/Accordion/accordion#options, but we will only use one.

We need to tell the accordion effect what element to use as header information. To
explain this, let's take a quick look at the structure of the HTML in the left sidebar:

<td id="sidebar-left">
 <div class="block block-user" id="block-user-1">
 <h2 class="title">
 mbutcher
 </h2>
 <div class="content">
 <!-- Menu content -->
 </div>
 </div>
 <div class="block block-menu" id="block-menu-menu-custom-content-
management">
 <h2 class="title">
 Content Management
 </h2>
 <div class="content">
 <!-- Menu content -->
 </div>
 </div>
 <div class="block block-menu" id="block-menu-devel">
 <h2 class="title">
 Development
 </h2>
 <div class="content">

Integrating and Extending

[306]

 <!-- Menu content -->
 </div>
 </div>
 <div class="block block-search" id="block-search-0">
 <h2 class="title">
 Search
 </h2>
 <div class="content">
 <!-- Search form -->
 </div>
 </div>
</td>

In the previous code, I have removed the content of every block to simplify the
HTML. It's the general structure that we are interested in.

First, the <td></td> element has the ID sidebar-left. That is going to be the main
container for our new accordion widget.

The blocks are inside of the <td></td> element. The blocks have the
following structure:

<div class="block other-class" id="block-ID">
 <h2 class="title">
 <!-- TITLE -->
 </h2>
 <div class="content">
 <!-- CONTENT -->
 </div>
</div>

Each of these blocks will be a collapsible region in our accordion. A collapsible
region looks like this:

Looks familiar? This is a block. The title of the block becomes the header of the
collapsible region, and the block's content becomes the body of the collapsible region.

Chapter 9

[307]

The jQuery UI accordion widget assumes that all direct children of the container
element (the <td></td>, in our case) are collapsible regions. However, it needs
information about what element holds the title of the collapsible region. So when we
call $().accordion(), we pass it the needed information:

$('#sidebar-left:not(.ui-accordion)').accordion({
 header: 'h2'
});

We tell it that the header of the region should be composed from the <h2></h2>
elements inside of each block.

This will not work well for blocks that do not have headers. Regions in
an accordion are expanded by clicking on the header. If no header exists,
there is no way to expand the region. On possible remedy would be to use
jQuery to dynamically add titles to all blocks before adding an accordion.
Of course, the more pragmatic solution is to avoid using blocks with no
titles in an accordion.

That is all there is to our code. The accordion widget is added to the <td></td>
element with the ID sidebar-left, and we get something that looks like this
(or will look like this once we add a little CSS):

The previous screenshots capture the accordion in three different states.

Integrating and Extending

[308]

The leftmost screenshot shows the accordion as it looks when it initially loads.
The main Drupal menu block is expanded and the remaining blocks are collapsed.

If we click on the title of the second block, Content Management, the second
block slides upward and hides the first. The middle screenshot shows the block in
this state.

Now if we click on the last item in the accordion—Search—it too slides up, pushing
the Development section upwards. The rightmost screenshot shows the end result.
The Search block is displayed in its entirety, and the other blocks are collapsed
above it.

If we click on Content Management again, it would expand downward until its
contents are displayed. At that point, it would again look like the screenshot in
the middle.

By using the jQuery UI library, we added this sophisticated component in just
five lines of JavaScript. However, to get it to look as it does in these screenshots, a
little CSS is needed. We won't go through the styles in detail, but in the interest of
completeness, here is the accordion.css:

/*
 * Accordion module CSS.
 */

.ui-accordion div.block {
 background-color: #efefef;
 margin-bottom: 0px;
 padding-bottom: 0px;
}

h2.ui-accordion-header {
 border: 1px solid black;
 background-color: #6699CC;
 color: white;
 margin-bottom: 0px !IMPORTANT;
}

There are two selectors in this code. The first selects all of the blocks in the UI
accordion and sets the background color to light-grey. It also fixes the bottom
padding and margin to prevent gaps between titles in our accordion.

The second item styles the accordion header. It makes it look more like a clickable
area by surrounding it with a black border, setting the background color to blue,
and setting the text color to white. Here too, we need to adjust the bottom margin.
This adjustment is marked as !IMPORTANT to prevent the default style sheet from
overriding it.

Chapter 9

[309]

That wraps up our accordion widget project. Even though this has been an easygoing
project, I hope it has done three things. First, I hope it has illustrated the ease with
which jQuery UI effects and widgets can be integrated into Drupal. Second, I hope
it inspires further experimentation with the library. Other widgets, such as tabs,
spinners, dialogs, grids, and so on, are just as easy to work with. These widgets can
really make a site stand out.

My third objective was a little more subtle. By looking at $().accordion(), we have
seen how a jQuery extension can integrate cleanly with jQuery. For our final project,
we will go back to the main jQuery library and write a simple plug-in.

Project: writing a jQuery plug-in
Earlier in the book, we talked about jQuery plug-ins. Plug-ins are to jQuery what
modules are to Drupal—a tool for extending functionality. In this project, we will
write a small jQuery plug-in.

Throughout the book, we have looked at numerous ways to work with JavaScript
in a Drupal site. We are going to look at one final way. A jQuery plug-in extends
the capabilities of jQuery. This is not a Drupal-specific feature, but a feature of the
jQuery library.

Why would we learn this technique if we can already write JavaScript in a
Drupal site?

There are a few reasons for this:

With close integration into jQuery, we can build compact code using jQuery's •	
fluent interface pattern.
When it comes to manipulating DOM and CSS, managing events, or working •	
with effects, you can often make the coding task easier by writing it as a
jQuery plug-in.
A plug-in is more portable than a Drupal module and you can use it in •	
non-Drupal (or even non-PHP) web applications. Thus, reusability is good.
The jQuery architecture makes plug-in writing easier, simpler in some •	
respects than adding a Drupal behavior.

Our example here will be very basic. Robust and complex jQuery plug-ins
can certainly be written (many such plug-ins are available for download at
http://jquery.com). Our project should give you the tools needed to write more
complex plug-ins.

Integrating and Extending

[310]

The plug-in code
The basic principle of writing a jQuery plug-in is very simple: You write a function
and attach that function to the jQuery object. We are going to add a new method to
the jQuery object.

The most basic pattern for writing such a plug-in is similar to this:

jQuery.fn.myNewPlug-in = function () {
 // Do something.
}

The new plug-in could then be called like this:

$('p').myNewPlug-in();

What are we doing here? The jQuery.fn object is where jQuery functions are
attached to the jQuery prototype object. In other words, all of the functions that are
attached to jQuery.fn will be available to jQuery objects, and can be called (as in the
previous example) by $().someFunction().

As a de facto rule, a plug-in should use only one namespace inside of
the jQuery.fn namespace. When adding multiple functions to jQuery,
these functions should be grouped into another namespace. Instead
of jQuery.fn.myPlug-inFirst() and jQuery.fn.myPlug-
inSecond(), it should be jQuery.fn.myPlug-in.first() and
jQuery.fn.myPlug-in.second().

We now have a basic idea about how to write a plug-in. Following this prescribed
pattern for plug-in development, we are going to create our own simple plug-in.

Plug-ins for jQuery should be stored in files named jquery.<plug-in>.js, where
<plug-in> is replaced with the name of the plug-in (all in lowercase). Our plug-in
is going to wrap matched elements in a <div></div> tag. For example, we might
create a jQuery object that finds all anchors:

$('a');

Our little tool could then be applied in order to enclose each of those anchor
elements inside of a div:

$('a').divWrap();

This would transform something like into
<div></div>. Though our plug-in may never
win any awards for innovativeness, it is a good starting point for investigating
jQuery plug-ins.

Chapter 9

[311]

We are going to call this plug-in divWrap, so it should be stored in a file called
jquery.divwrap.js.

This library will work just like any JavaScript library in Drupal. You can
add it to a theme using the theme's .info file, or you can include it in a
module with the drupal_add_js() function. While developing, you
might find it handy to simply start with a static HTML file and include
only jQuery and your plug-in.

Here's the code that we will put in jquery.divwrap.js:

(function ($) {

 /**
 * Wrap the selected element or elements in <div></div>
 * tags.
 *
 * @param attributes
 * An object containing name/value pairs for attributes.
 */
 jQuery.fn.divWrap = function () {
 var attrs = (arguments.length > 0) ? arguments[0] : {};

 this.each(function (index, item) {
 var div = $(item).wrap('<div></div>').parent();

 if (attrs) {
 div.attr(attrs);
 }
 });
 return this;
 };
})(jQuery);

The first thing to note about this plug-in is the outermost wrapper, which looks
like this:

(function ($) {
 // Code here
})(jQuery);

What is this? In JavaScript, you can both define and call a function in one step,
and this is how it is done. The previous code performs a task similar to what this
code does:

myFunc = function ($) {
 // Code here
}
myFunc(jQuery);

Integrating and Extending

[312]

There are two important reasons why we begin a jQuery plug-in with code such
as this:

1. We can conveniently work with jQuery using the $() function alias.
2. We also create a closure that protects our plug-in's context.

Neither of these may be obvious, so let me explain.

Although we have used the $() function many times in this book. However, the
name $ is sometimes overridden, or turned off, by other JavaScript libraries. In short,
there is no guarantee that $ refers to jQuery. The convention that we saw overcomes
this uncertainty by wrapping the entire plug-in in a function that takes an argument
named $. The function is then called with the globally scoped jQuery object. In
effect, it re-maps $ to jQuery so that we can confidently use the $() function in
our code.

Second, this convention creates a closure around our plug-in. Closures are often
treated as an advanced aspect of JavaScript development. In fact, they are used
frequently in a variety of contexts. (We have used them a few times already, but
without the fancy name and in a subtler fashion.) We will take a brief look at this
topic, and you will find that they are not as mysterious as they may seem at first.

A brief introduction to closures
A closure provides a convenient way of providing a context in which we can store
local variables and functions that we don't want other outside scripts to have access
to. A closure basically seals-off a context for us.

Inside of a closure, we can create variables and functions that would not be accessible
to the outside world. However, code inside the closure can access these functions
and variables. With a closure, we can hide data from outsiders, while making it
available to the code inside.

If you have done object-oriented programming in Java, PHP, or other
languages, you can compare the closure method of protecting access to
the private keyword used in class variable declarations. While they are
technically quite different, they are functionally similar.

All of this may sound abstract, and perhaps even a little lofty and impractical.
However, a quick look at some simple code should make things clear.

Let's start with a simple test:

var text = 'This is a test';
console.log(text);

Chapter 9

[313]

If we were to run this in Firefox with Firebug turned on, we would see the contents
of the text variable printed to the Firebug console.

But what if we wrapped the text variable inside of a closure as shown:

(function () {
 var text = 'This is a test';
})();

console.log(text);

In this case, Firebug would show an error saying something like ReferenceError: text
is not defined.

This happens because text in the previous code is scoped only to the
anonymous function. In other words, the text variable is not available outside
that anonymous function.

This comes in handy when we want to have private variables or functions (variables
or functions that are available only inside of our plug-in and not to code outside). To
see how this works, let's make a few additions to the previous code:

var MyObject = {};
(function () {
 var text = 'This is a test';
 MyObject.getText = function () {
 return text;
 };
})();
console.log(MyObject.getText());
console.log(text);

The highlighted lines were added.

The first console.log() call will print This is a test to the console. However, the
second one will give the same ReferenceError that we saw earlier. Let's see why.

In this new addition, we have done the following:

At the top, we create an object, •	 MyObject, which is globally scoped (since it is
outside of the function).
Inside of the closure we add a new function, •	 MyObject.getText(), that
returned the value of the private text variable. Note that this new function is
attached to the globally scoped MyObject object.
Outside of the closure, we run •	 MyObject.getText() and print the returned
value to the console.

Integrating and Extending

[314]

In our simpler example, we saw that console.log(text) fails. What will happen
when console.log(MyObject.getText()) is run? It will print This is a test to
the console.

The reason why this happens is simple: When we create MyObject.getText(),
we create it in a context that has access to the text variable. We might say that
MyObject.getText() can see text. Also, it can see text because text is in its
context. Both are inside of the closure.

Even when we call the MyObject.getText() method outside of the closure, as we
do in the console.log() call, that function can still see the text variable, and so it
can return it. Since text is available only to code inside of the closure, we can say
that text is a private variable.

The getText() function is attached to MyObject, which makes it available in any
context where MyObject is available. Since MyObject is a globally scoped object,
MyObject.getText() is available just about anywhere.

Should we need, we could also create functions inside of the closure.
By not attaching them to an object outside of the closure, we can create
private functions.

Returning to our closure, the (function ($) {})(jQuery) construct is not
fundamentally different from the code we just wrote. The jQuery object is globally
scoped, and anything we explicitly add to jQuery.fn will be available outside of our
closure. However, anything else we define in our closure will be accessible only to
other code in the same scope.

That's the general strategy we are using with our plug-in. We define the entire
plug-in inside of a closure so that we can carefully control access to the code
we write.

Glancing back at the code, you may notice that we don't really make use of this
feature. There are no private variables or functions. But writing it this way will make
it easier to extend later, if we so choose, and conforms to suggested practices for
jQuery plug-in development. And we are still getting the benefit of the aliasing
of $ to jQuery.

Now that we understand the basics of closures, let's get back to our plug-in.

Chapter 9

[315]

The divWrap() function
Inside of our closure we define one new function:

 jQuery.fn.divWrap = function () {
 var attrs = (arguments.length > 0) ? arguments[0] : {};

 this.each(function (index, item) {
 var div = $(item).wrap('<div></div>').parent();

 if (attrs) {
 div.attr(attrs);
 }
 });
 return this;
 };

This function takes all of the items wrapped in the current jQuery object and wraps
each in <div></div> tags. It takes an optional parameter—an object. The attributes
of that object will be used as attributes for the new div element.

The first thing our divWrap function does is check to see if any arguments were
passed in. Recall that JavaScript's built-in arguments variable is an array-like object
that lists all of the parameters passed into the function.

The first line checks to see if arguments.length is greater than 0. If it is, then
the attrs variable will be assigned the first argument. Otherwise, attrs will be
assigned an empty object ({}).

Next, we use this.each() to loop through all of the objects currently wrapped by
jQuery. This works because a plug-in added to jQuery.fn is part of jQuery. It's this
variable—a variable automatically created by JavaScript—that points to the object of
which this function is a part. So in this case, it points to a jQuery object.

To understand this, let's look at how we would call our new plug-in:

$('a').divWrap();

In this line of code, we use $() to search for all <a> elements. So when
divWrap() is called, the jQuery object should contain a list of all <a> elements.
When divWrap() is executed, this will point to the current jQuery object—the very
object that contains the list of <a> elements.

Integrating and Extending

[316]

Now returning to our code, we want to loop through each element in the current
jQuery object and wrap it in a div tag. We do that with the anonymous function
inside of this.each():

function (index, item) {
 var div = $(item).wrap('<div></div>').parent();

 if (attrs) {
 div.attr(attrs);
 }
}

Recall that the $().each() function receives two arguments: index, which is the
numeric index of the current object within jQuery's list of objects, and item, which is
the current object.

This anonymous function acts as a closure. Inside of the context of the
$().each() method, this anonymous function has access to the attrs
variable. But for the rest of jQuery that variable is out of scope. We've
been creating closures all along!

The first thing we do in this function is run a jQuery chain to wrap the current item
inside of a <div></div> tags. At the end of this chain, we call parent(), which
will select the div element we just wrapped with. This is done for the sake of the
second step.

In the divWrap() function, we assigned attrs the value of arguments[0] or {}.
Here, we add the contents of attrs as attributes to the div. A quick look at an
example will clarify this.

We could call our plug-in like this:

attrs = { style: 'background-color: #F0F' };
$('a').divWrap(attrs);

In this case, the attrs object would be used to add attributes to the div that wraps
any found <a> elements. The result of this would look something like this:

<div style='background-color: #F0F'>
 Some link
</div>

Notice how attrs was turned into attributes for the <div></div> tag.

Chapter 9

[317]

That's all there is to this anonymous function executed by the $().each() function.
There's only one more thing our plug-in function does:

(function ($) {
 jQuery.fn.divWrap = function () {
 var attrs = (arguments.length > 0) ? arguments[0] : {};

 this.each(function (index, item) {
 var div = $(item).wrap('<div></div>').parent();

 if (attrs) {
 div.attr(attrs);
 }
 });
 return this;
 }
})(jQuery);

Notice the highlighted line in the code? Why do we return this? We are returning
the jQuery object so that other functions can be chained off to this one. We could, for
example, do something like this:

$('a').divWrap().text();

This would return the text of each <a> element after wrapping all of the
<a> elements inside of the div tags.

So that's the basic method for creating a jQuery plug-in. How do you make use of
this tool inside of Drupal? This is done the same way you would use any JavaScript
library. In a theme, you might add it to the .info file using a scripts[] directive.
Or in PHP (such as a module), you can add it with the drupal_add_js() function.

Other references for writing jQuery plug-ins
There are two very helpful jQuery basic plug-in writing tutorials
that may be helpful. The official plug-in writing guide is at http://
docs.jquery.com/Plug-ins/Authoring. The standard plug-in
writing pattern is explained here: http://www.learningjquery.
com/2007/10/a-plug-in-development-pattern.

When should you write a jQuery plug-in instead of JavaScript in Drupal? To
a large extent, the answer will depend on your own needs. However, here are
some guidelines:

If you might need to use the code outside of Drupal, a plug-in is easier •	
to port. In fact, you may want to release a generic plug-in to the jQuery
community at http://jquery.com.

Integrating and Extending

[318]

If your code would work well as part of a jQuery chain, you might consider •	
adding it as a jQuery plug-in, even if it does depend on Drupal.
If you find a jQuery plug-in that already does much of what you want, you •	
might consider writing another plug-in that extends the base jQuery plug-in.
Even in this case, it is easier to work from within jQuery than from Drupal's
JavaScript library.

As we have seen throughout this book, the JavaScript integration in Drupal is
very robust. Whether it's a jQuery plug-in or a Drupal-centered library, or even
an unrelated JavaScript library, Drupal makes it easy to integrate.

Summary
In this chapter we covered three projects. In the first project, we saw how we could
integrate another existing Drupal JavaScript library—autocomplete.js—into our
site. We used a taxonomy to add suggestions to our search box.

After that, we integrated one of the jQuery UI tools—the accordion widget—into our
site. Using this tool, we turned our lefthand navigation into a compact, but elegant
accordion menu.

Finally, we learned how to extend jQuery by writing a jQuery plug-in. In a couple
dozen lines of code, we wrote a complete plug-in that takes advantage of jQuery's
DOM tools and looping structures. During this section, we talked about closures and
discovered that we'd been writing them all along.

This is the final chapter of the book. In our earlier chapters, we started out with some
fairly clumsy JavaScript, just barely integrated into a Drupal theme. Now, seven
chapters later, we know how to write Drupal-centred JavaScript with the use of
jQuery, Drupal's own JavaScript libraries, and even external libraries such as jQuery
UI. We've worked with both themes and modules. We've even written a little bit of
PHP code.

The purpose of this book has been to give you access to the JavaScript tools which
are often used for Drupal development, and to show you how to use them in this
context. We have only scratched the surface of what can be done with these tools.
This book, if I have been successful, gives you a foundation. From here, you can
begin building the next generation of JavaScript-enabled Drupal web applications.

Index
A
AJAX

about 198
in Web 2.0 199
web development 198
working 200
XHR 200

AJAX project
about 204
comment notifications 219
goals 206
RSS 205
web clips 204
web clips tool, creating 207-209

Asynchronous JavaScript And XML. See
AJAX

autocompletion
about 287
working 287

autocompletion project
about 287
JavaScript tool, creating 294
module, creating 291-294
plan 289
search_autocomplete_init() function 293
search autocomplete JavaScript, creating

294-298
search_autocomplete.module file 292
taxonomy, creating 289-291
theory 288

B
bettereditor.js script, simple editor project

about 268- 272
addTag() theme 278-284

buttonBar() theme function 285
button() theme function 284
editor() behavior 272-277
insertTag() function 277

bettereditor.module file, simple editor
project

$button array 261
$button array, translating to JavaScript

264-267
arrays, building 261
bettereditor_help() function 260
bettereditor_init() function 260, 261
hook_help(), implementing 258, 260
hook_init(), implementing 258, 260
tag attribute 263

block module
about 20
blocks, selecting 21
custom module 20
demoblock 20
navigation block 20

blocks collapsible project
behavior.js file contents 102
Drupal.behaviors.slideBlocks(),

defining 103
generic structure, blocks 104
menu section, Frobnitz theme 103

C
camel case 35
channel, RSS

about 206
items 206

closures, jQuery UI
about 312

[320]

divWrap() function, defining 315
comment notifications, AJAX project

comment notifcation tool, creating 219
comments, displaying as notifications 219
comment watcher 226
JSON view, creating 221
prerequisites, JSON view 221
Views Datasource, installing 220
Views, installing 220

comment watcher
about 226
comment notification, theming 235
comment watcher behavior 230
CommentWatcher.check() function 231
comment_watcher element, setting up 230
CommentWatcher.formatContent() func-

tion 236
CommentWatcher.getLastID() function 237
CommentWatcher.setLastID() function 237
CommentWatcher.settings.maxLength, set-

tings 229
cookies, building 238
cookies, managing 237
cookies, setting 239
custom theming function 235
CSS file 52

D
Devel package

about 26
modules 26

Dojo 60
DOM API 41
dot-info file 47
Drupal

autocompletion project 287
block module 20
drupal_add_js() function 254, 266
drupal_parse_info_file() 253
Drupal.theme.prototype.commentArea().

235
first JavaScript, creating 32
first jQuery script 62
hook system 250
JavaScript, handling 30
JavaScript, working with 30

jQuery plug-in project 309
jQuery project 73
jQuery UI project 299
jQuery, using 71
languages 8
nodes 22
RSS 205
script autoloader project 244
simple editor project 256
theming project 161
translation engine 127
translation funcions 128
translation system 127
Translation template extractor, installing

138
user module 19
weekend countdown project 139

drupal_add_js() function 266
Drupal architecture

about 15
diagram 16
Drupal Core 16
modules 18
PAC design pattern 16
Theme Engine 18

Drupal.attachBehviors()
about 98
context 99
example 98
Firebug console example 100

Drupal.checkPlain() function, utilities
about 108
example 108
html() method 109
mystring, creating 108
string, encoding 109

Drupal coding standards
differences between PHP and JavaScript 35

Drupal Core 16
Drupal.encodeURIComponent() function,

utilities 112
Drupal.formatPlural() function

about 136
working 136, 137

Drupal.getSelection() function 113
Drupal JavaScript

creating 32

[321]

originating 31
Drupal JavaScript Behaviors

about 95
behavior, attaching 98
behavior, defining 96
blocks collapsible project 102
Drupal.attachBehviors() 98
features 95

Drupal JavaScript development tools
about 23
Devel package 26

Drupal.jsEnabled, utilities
about 107

drupal.js library
about 93
theming functions 94
utilities 107
utility functions 94

E
Eclipse 24
editors

Aptana 24
Eclipse 24
Emacs 24
jEdit 24
NetBeans 24
Notepad++ 24
TextMate 24
Vim 24

Emacs 24
encodeURIComponent() function

about 112
characters, converting 112

F
Firebug

about 25, 63
HTML contents, inspecting 25
JavaScript console 63

Firebug console 63
Fluent Interface 69
function/method chaining 68

H
hook system

about 250
working 250-252

I
insertBefore() jQuery function 121

J
JavaScript

about 14
coding conventions 35
conventions 36
frobnitz theme, creating 43
object-oriented 14
scripting language 14
template system 180, 184, 185
theme, creating 43
web browser centered 14
writing 32

JavaScript, adding to theme
page template 53, 54
script file, adding 57, 58
template, overriding 52

JavaScript template system
about 180
code, building 182
node template 181, 182
templates, theming with 187-192
template, writing 180
using 192, 193
warning 194-196

JavaScript theme system
about 156, 157, 158
Drupal.theme() function 159
Drupal.theme.prototype.placeholder() func-

tion 159
JavaScript theming module 174

JavaScript theming module
about 174
installing 174
links, adding 179
notifications, sending to user 178
tables, theming 175, 176, 177
user interface components 174

[322]

JavaScript, writing
printer script 33

jEdit 24
jQuery

$, using 67
basic HTML document, starting with 62
Firebug console 63
function, not returning jQuery object 70
<h1></h1> element, finding 64
integrating, with Drupal 71
jQuery, downloading 62
necessities 71
querying with 63

jQuery AJAX functions
$(o).load() 204
$(o).loadIfModified() 204
about 203
jQuery.get() 203
jQuery.getajax() 204
jQuery.getIfModified() 203
jQuery.getJSON() 203
jQuery.getpost() 203
jQuery.getScript() 203

jQuery plug-in
about 309
features 309

jQuery plug-in project
about 309
closures 312, 313
divWrap() function, defining 315-317
plug-in code, writing 310-312

jQuery project
rotating sticky node teasers 73

jQuery script 62
jQuery UI

about 299
downloading 300
features 300

jQuery UI project
about 299, 300
accordion.css file 301
accordion.info file 301, 302
accordion_init() function 303
accordion JavaScript 303-309
accordion.js file 301
accordion module, creating 301-303
accordion.module file 301

jQuery UI, downloading 300

L
language installation, translation system

language, adding 130, 131
languages, configuring 130-132
multi-language translation support, turning

on 129
steps 129
translations, downloading 129
translations, installing 130

languages, Drupal
CSS 8
HTML 8
JavaScript 8
PHP 8
SQL 8

M
mashup 199
member function 69
modules

about 18
module system 18

modules, Devel package
Devel 26
Devel generate 26

modules, Drupal
about 241
advantages 242
creating 242
location 244
organizing 244
structure 242
working 241

module structure, Drupal
about 242
directory 243
.info file 243
location 243
.module file 243

N
NetBeans 24
nodes

[323]

about 22, 23
ImageNode module 23
Services module 23

Notepad++ 24

P
page template 52
PHP arrays 254
PHP-based theme system 155
PHP coding standards 35
PHPTemplate 9
PostgreSQL 10
printer script

about 33, 34
Drupal coding standards 34
first lines 36
PrinterTool.print() function 38
printerWindow.print() 43
windowSettings string object, creating 38

R
RDF 198
Really Simple Syndication. See RSS
rotating sticky node teasers, jQuery project

effect, applying on pages 79
event handler, adding with jQuery 89
function assignment 79
new object, creating 77
size() function, calling 79
stickies, creating 79
sticky class 79
sticky node’s height, controlling 81
StickyRotate functions 76
StickyRotate.init() function 79
sticky_rotate.js file, creating 76

RSS
about 205
channel 206

S
script autoloader project

about 244
JavaScript loader module, creating 244, 245
JavaScript sample, testing 246, 247
jsloader_help() function 249, 250

jsloader.info file 247
jsloader_init() function 252
jsloader.module file, creating 248, 249
module directory, creating 245, 246

semantic web 199
simple editor project

about 256
better editor 256
bettereditor.css file 258
bettereditor.info 257
bettereditor_init() function 260
bettereditor.js script 268
bettereditor.module, creating 257
bettereditor.module file 258
CSS file 258
features, adding 256
module, creating 256, 257
query 285

simple text editor project
about 113
bar variable, each() function 121
B button 114
behavior code 118
button bar, attaching 120
click() function 122
each() function 120
event handlers, adding 119
I button 114
keyup event handlers, adding 119
main behavior 118
mouseup event handlers, adding 119
SimpleEditor.watchSelection() function 120
text areas, finding 119
txtareaID, each() function 121
txtarea variable, each() function 121

SOAP 198
SQL 10

T
template system 184
TextMate 24
theme

about 43
Bluemarine theme 44
Chameleon theme 44
creating 45

[324]

CSS file 52
full theme, creating 44
Garland theme 44
JavaScript, adding 52
requisites 43
subtheme 44

theme, creating
fields, required 47
files, adding to theme 48
frobnitz.info file, creating 47
Frobnitz theme, creating 48
.info file, creating 47

Theme Engine 18
theming project

about 161
block, adding with menu 162, 164
block, theming 164
block, theming in JavaScript 166, 167
block, theming in PHP 164
menu, theming 168-173

translation functions
about 128, 129
advantages 133
Drupal.formatPlural() function 136
Drupal.t() function 134
uses 133

translation system
english language, default 129
language, installing 129
languages 128

U
user module

about 19
anonymous user 19
authenticated user 19
roles 19
special user 19

utilities
about 107
Drupal.checkPlain() function 108
Drupal.encodeURIComponent() function

112
Drupal.getSelection() function 113
Drupal.jsEnabled 107
Drupal.parseJson() function 111

V
views 220
Views Datasource 220

W
Web 2.0

about 198
AJAX’s role 199

web clips tool, AJAX project
creating 207
WebClips behavior 209-216
WebClips.showItem() function 217, 218

weekend countdown project
about 139
array of weekdays, creating 141
Day.banner() function 141
dayFields object 143
day.js 140
day namespace object, creating 140

WSDL 198

X
XHR

about 200, 201
data transfer 202

XML 13
XMLHttpRequest 200
XML-RPC 198

Y
YUI 60

Thank you for buying
Drupal 6 JavaScript and jQuery

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Drupal 6 JavaScript and jQuery, Packt will have given some
of the money received to the Drupal project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Learning Drupal 6 Module
Development
ISBN: 978-1-847194-44-2 Paperback: 310 pages

A practical tutorial for creating your first Drupal 6
modules with PHP

1. Specifically written for Drupal 6
development

2. Program your own Drupal modules
3. No experience of Drupal development

required

4. Know Drupal 5? Learn what's new
in Drupal 6

5. Integrate AJAX functionality with the jQuery
library

Building Powerful and Robust
Websites with Drupal 6
ISBN: 978-1-847192-97-4 Paperback: 362 pages

Build your own professional blog, forum, portal or
community website with Drupal 6

1. Set up, configure, and deploy Drupal 6

2. Harness Drupal's world-class Content
Management System

3. Design and implement your website's look
and feel

Please check www.PacktPub.com for information on our titles

Drupal 6 Site Builder Solutions
ISBN: 978-1-847196-40-8 Paperback: 333 pages

Build powerful website features for your business
and connect to your customers through blogs,
product catalogs, newsletters, and maps

1. Implement the essential features of a
business or non-profit website using Drupal

2. Integrate with other "web 2.0" sites such as
Google Maps, Digg, Flickr, and YouTube
to drive traffic, build a community, and
increase your website's effectiveness

3. No website development knowledge
required

4. Complete example of a real world site with
clear explanation

Drupal 6 Themes
ISBN: 978-1-847195-66-1 Paperback: 291 pages

Create new themes for your Drupal 6 site with clean
layout and powerful CSS styling

1. Learn to create new Drupal 6 themes
2. No experience of Drupal theming required
3. Techniques and tools for creating and

modifying themess
4. A complete guide to the system's

themable elements

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

	Table of Contents
	Preface
	Chapter 1: Drupal and JavaScript
	Do you speak...?
	PHP
	SQL
	HTML
	CSS
	XML
	JavaScript

	Drupal's architecture
	The Drupal Core
	The Theme Engine
	Modules

	Users, nodes, and blocks
	Users
	Blocks
	Nodes

	Drupal JavaScript development tools
	A good editor
	Firebug
	The Drupal Devel package

	Summary

	Chapter 2: Working with JavaScript in Drupal
	How Drupal handles JavaScript
	Where Drupal JavaScript comes from?

	Project overview: printer-friendly page content
	The printer script
	Drupal coding standards
	Stylistic differences between PHP and JavaScript

	The first lines
	The print() function

	Creating a theme
	Full themes and subthemes
	Creating a theme: first steps
	Creating a theme directory
	Creating the .info file
	Adding files to the theme

	The CSS file
	Adding JavaScript to a theme
	Overriding a template
	Adding the script file

	Summary

	Chapter 3: jQuery: Do More with Drupal
	jQuery: the write less, do more library
	A first jQuery script
	Getting jQuery
	Starting with a basic HTML document
	Querying with jQuery (and the Firebug console)
	Bye bye, jQuery(); hello $()
	Doing more with jQuery

	Using jQuery in Drupal
	Don't do it yourself!

	Project: rotating sticky node teasers
	The StickyRotate functions
	The init() function
	The periodicRefresh() function
	Adding an event handler with jQuery

	A brief look backward
	Summary

	Chapter 4: Drupal Behaviors
	The drupal.js library
	Drupal JavaScript behaviors
	Defining a behavior to handle repeatable events
	Telling Drupal to attach behaviors
	Context and behaviors: bug potential

	Project: collapsing blocks
	Utilities
	Checking capabilities with Drupal.jsEnabled
	The Drupal.checkPlain() function (and the jQuery alternative)
	The Drupal.parseJson() function
	The Drupal.encodeURIComponent() function
	The Drupal.getSelection() function

	Project: a simple text editor
	The main behavior
	Step 1: find text areas that need processing
	Step 2: add event handlers
	Step 3: attach the button bar

	Summary

	Chapter 5: Lost in Translations
	Translations and drupal.js
	Translation and languages
	Turning on translation support
	Getting and installing translations
	Configuring languages
	Adding the language
	Configuring languages

	Using the translation functions
	The Drupal.t() function
	The Drupal.formatPlural() function

	Adding a translated string
	Project: weekend countdown
	Translating the project's strings
	Changing a translation file

	Summary

	Chapter 6: JavaScript Theming
	Theming in PHP, theming in JavaScript
	The Drupal.theme() function
	Project: menus and blocks
	Adding a block with a menu in it
	Theming a block
	Theming a menu

	The JavaScript theming module
	Theming tables
	Sending notifications to the user
	Adding links

	Project: templates for JavaScript
	The node template
	From a template to a system: what next?
	A template system
	Theming with templates
	Using the template system
	A word of warning

	Summary

	Chapter 7: AJAX and Drupal Web Services
	AJAX, JSON, XHR, AHAH, and Web 2.0
	Web application and Web 2.0
	The position of AJAX in Web 2.0

	Getting technical
	Move over, XML

	Project: web clips with RSS and AJAX
	Really Simple Syndication (RSS)
	The project goals
	Creating the web clips tool
	The WebClips behavior
	The WebClips.showItem() function

	Project: real-time comment notifications
	Displaying comments as notifications
	Installing Views and Views Datasource
	Creating a JSON view
	The comment watcher
	The comment watcher behavior
	The CommentWatcher.check() function
	Theming the comment notification
	Managing cookies

	Summary

	Chapter 8: Building a Module
	How modules work
	The module structure
	The directory
	The .info file
	The .module file
	Where do modules go?

	Project: creating a JavaScript loader module
	Creating the module directory
	A JavaScript sample
	The module's .info file
	A custom addition

	The .module file
	The jsloader_help() function
	The jsloader_init() function

	Project: the editor revisited
	First step: creating the module
	The CSS file
	The bettereditor.module file
	The bettereditor.js script
	The editor() behavior
	The insertTag() function
	The addTag() theme
	The button() theme function
	The buttonBar() theme function

	A last question

	Summary

	Chapter 9: Integrating and Extending
	Project: autocompletion and search
	The theory
	Our plan
	First step: creating the taxonomy
	The new module
	The search autocomplete JavaScript

	Project: jQuery UI
	What is jQuery UI?
	Getting jQuery UI
	The accordion module
	The .info and .module files
	The accordion JavaScript

	Project: writing a jQuery plug-in
	The plug-in code
	A brief introduction to closures
	The divWrap() function

	Summary

	Index

