
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Front End Drupal
Designing, Theming, Scripting

Emma Jane Hogbin
Konstantin Käfer

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

 Library of Congress Cataloging-in-Publication Data

Hogbin, Emma Jane.

 Front end Drupal : designing, theming, scripting / Emma Jane Hogbin and Konstantin
Käfer.

 p. cm.

 Includes index.

 ISBN 978-0-13-713669-8 (pbk. : alk. paper) 1. Drupal (Computer file) 2. Web sites-
Design-Computer programs. 3. Web site development. I. Käfer, Konstantin. II. Title.

 TK5105.8885.D78H65 2009

 006.7’6—dc22

 2009002636

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-713669-8
ISBN-10: 0-13-713669-2
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, IN.
First printing, April 2009

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Jill Hobbs

Indexer
Michael Loo

Proofreader
Linda Begley

Technical Reviewers
Károly Négyesi
Bernie Monette
Lynda Chiotti
Caroline Hill
R.G. Daniel

Cover Designer
Chuti Prasertsith

Composition
Gloria Schurick

Graphics
Tammy Graham
Laura Robbins

v

Contents

Foreword ... xvii

Preface ... xix

Acknowledgments .. xxiii

About the Authors ...xxv

Chapter 1: Web Page Design ..1

Describing Content .. 2

Displaying Content.. 3

Content Types and Content Fields ... 5

Organizing Lists of Content ... 8

Chronological Organization ... 9

Linear Organization ... 10

Topical Organization... 10

Popularity-Based Organization .. 12

Task-Based Organization ... 13

Page Design and Layout ... 14

Interface Components .. 14

Regions ... 15

Design Resources .. 17

Interaction ... 20

User Satisfaction .. 21

Guided Tasks ... 22

vi Contents

Code .. 22

Separating Form, Function, and Behavior ... 23

XHTML ... 23

Cascading Style Sheets .. 24

Scripting Languages ... 24

Interaction with JavaScript .. 24

Work Flow ... 25

Working with Designers ... 26

Working with Programmers .. 27

Working with Clients ... 27

Working with Site Visitors .. 28

Summary .. 29

Chapter 2: The Themers’ Toolkit ..31

A Gentle Introduction .. 32

Building a Page for Display .. 32

Directory Structure .. 33

Paths .. 33

Theming Strategies ... 33

Best Practices ... 34

Alternative Strategies ... 34

Drupal Terminology ... 36

Node .. 36

Users, Roles, and Permissions .. 36

Blocks and Regions .. 37

Categories, Taxonomy, Vocabularies, and Terms ... 38

Parent Items and Weight .. 40

Menu ... 40

Contents vii

Pagers ... 41

Hooks and Naming Conventions .. 41

Must-Have Modules ... 42

Content Creation Kit (CCK) Module ... 42

Views Module ... 53

Devel Module.. 57

Browser Tools ... 60

Firebug ... 60

Web Developer’s Toolbar .. 62

Screen Shot and Testing Services ... 62

Language References .. 65

XHTML ... 66

CSS .. 66

PHP ... 68

JavaScript ... 69

Maintaining Your System ... 69

Scheduling Tasks with Cron ... 70

Revision Control .. 70

Summary .. 71

Chapter 3: Working with Drupal Themes ..73

Finding Themes ... 74

Interface Components .. 76

Develop a Library of Themes .. 77

Installing Drupal Themes ... 78

Download and Unpack .. 78

Enable the New Theme .. 79

Personal Themes .. 81

viii Contents

Administering Themes ... 82

Global Settings .. 83

Theme-Specific Settings .. 84

The Front Page.. 85

Anatomy of a Theme .. 88

Naming and Initializing the Theme ... 88

Page Template ... 89

Including External CSS and JavaScript Files ... 91

Regions ... 92

Screenshot ... 93

Starter Themes ... 94

Zen .. 95

Custom Theme Settings .. 97

Customizing Banner Images ... 97

Migrating to Drupal 6 .. 99

Converting a Drupal 5.x Theme to a Drupal 6.x Theme ... 100

WordPress ... 101

Joomla! ... 103

Summary ... 104

Chapter 4: The Drupal Page ...107

Elements of a Page .. 107

Dissecting a Theme .. 108

Sitewide Page Variables ... 109

General Utility Variables .. 111

Page Metadata .. 111

Site Identity .. 112

Contents ix

Page Content, Drupal Messages, and Help Text ... 112

Creating New Page Variables .. 113

Modifying Page Variables ... 115

Navigation and Menus ... 115

Theming Menus .. 118

Grid Work .. 120

Regions ... 121

Blocks ... 124

Customizing the Markup of Blocks ... 125

Search .. 126

Changing Templates ... 128

Custom Front Page .. 129

Custom Offline Page .. 130

Alias: Page .. 133

New Templates from Aliased URLs ... 134

Page Templates for Views ... 136

Adding CSS Classes ... 136

Page Templates for Content Types .. 137

Taxonomy Templates .. 138

Graphical Headers ... 140

Delivering Plain Content ... 141

Print-Friendly Pages .. 142

Mobile Devices .. 147

Summary ... 149

Chapter 5: Drupal Content ..151

Node Templates.. 151

The Template File node.tpl.php .. 154

x Contents

Gaining More Control Than $content Provides ... 155

Deciphering the Object $node .. 155

Accessing Content in the $node Object .. 158

Sanitized Data Is More Secure ... 160

Node Template Variables .. 161

Creating New Variables ... 161

Changing the Defaults .. 163

Node Links ... 163

Pages and Teasers .. 165

Administrative Control of the Default Settings .. 165

A Teaser Is Not a Summary .. 166

Templates for Teasers .. 168

Images .. 169

Choosing Your Visuals .. 170

Images Hosted Offsite... 172

Image Module ... 173

CCK Images: ImageField and Image Cache ... 176

Making Lists of Content with Views .. 177

Template Files ... 177

New Variables, with Preprocess Functions .. 179

Summary .. 181

Chapter 6: Customizing the Content-Editing Forms ..183

Web Forms ... 184

Form Candy ... 185

Working with Style Sheets .. 185

Coloring in Required Fields ... 186

Contents xi

Focus on Input .. 187

Background Images on Form Fieldsets ... 188

Advanced CSS Selectors ... 191

Vertical Tabs ... 192

Node Form and Usability Improvements ... 193

Rich Text Editing ... 195

Installing TinyMCE ... 195

Configuring TinyMCE ... 196

Image Integration .. 199

Extending TinyMCE .. 201

Altering Forms with FAPI .. 201

Changing Forms Throughout Your Site ... 202

Changing Specific Forms .. 205

Changing Display Text in Forms .. 206

Removing Fields from the Form ... 207

Changing Form Widgets .. 209

Multiple-Page Forms .. 210

Webform ... 211

Altering Flow .. 211

Improving Access to Edit Screens ... 212

Admin Links ... 212

Editing Blocks ... 213

Preprocess Functions... 214

Structure of the preprocess_block Function ... 215

Adding Block-Editing Capabilities to a Theme .. 216

Administrative Interfaces ... 217

Summary .. 217

xii Contents

Chapter 7: Users and Community Participation ...219

Users .. 219

User Profiles .. 220

Theming the Default Profile... 222

Adding More Content .. 225

Granting and Restricting Access ... 227

Defining Roles ... 227

Granting and Revoking Permissions .. 228

Checking Access at the Theme Level .. 229

Extending the Administrative Role to More Users .. 231

Community Comments ... 231

Customizing Comment Display .. 231

Adding User Identity to Comments .. 234

Disqus .. 234

User-Generated Content .. 235

Blogs (and Comments) ... 235

Forums ... 236

Wikis .. 237

Recipes and Specialized Content ... 239

Spam .. 240

CAPTCHA ... 241

Comment Closer .. 242

Spam Filtering Services .. 243

Private Web Site Areas .. 244

Member-Only Sites .. 244

Private Content Fields ... 247

Summary .. 248

Contents xiii

Chapter 8: Administrative Interfaces ..251

Creating a Custom Administrative Interface ... 252

Applying a Separate Administrative Theme ... 252

RootCandy .. 253

Task-Based Navigation ... 256

Creating Custom Menus .. 257

Deploying Custom Menus .. 259

Administrative Menus .. 261

Admin Menu .. 261

Teleport .. 263

Navigate ... 264

Administrative Dashboards and Control Panels .. 266

Control Panel .. 266

Theming Control Panel ... 268

Custom Administrative Screens .. 270

New Content View .. 271

Orphan Images View ... 274

Unpublished Content by Category .. 278

Error! .. 279

Error Messages ... 279

404, Page Not Found .. 280

Custom Error .. 281

Summary ... 283

Chapter 9: Learning JavaScript ...285

JavaScript versus DOM .. 286

The JavaScript Language .. 287

First Steps: Executing Code .. 287

xiv Contents

Declaring Variables ... 288

Controlling the Flow .. 292

Object Orientation in JavaScript .. 293

The “Everything Is an Object” Approach ... 293

Defining and Working with Objects.. 296

Prototypes.. 298

Using Functions .. 302

Summary .. 309

Chapter 10: An Introduction to jQuery ..311

A First Look at jQuery ... 313

Setting Up jQuery ... 313

Executing Code on Page Load... 314

Navigating the DOM Tree ... 318

Using jQuery.. 320

Events ... 321

Setting and Retrieving Attributes .. 326

Finding Elements .. 329

Inserting, Moving, and Removing Elements ... 330

Leveraging jQuery’s Full Potential .. 333

Animations ... 333

Using jQuery Helper Functions .. 336

Calling the Server with XmlHttpRequest ... 337

Plugins for jQuery ... 342

jQuery UI ... 343

Using Other JavaScript Libraries .. 343

Summary .. 344

Contents xv

Chapter 11: JavaScript in Drupal ...345

Server-Side Drupal Integration ... 345

Adding JavaScript to a Page ... 346

Creating Menu Callback Handlers ... 349

Creating JSON ... 351

Architecting a Component ... 353

Example: Horizontal Scroller ... 355

The Component Skeleton ... 356

Creating the Markup ... 357

Drupal’s JavaScript Behaviors .. 357

Filling the Component with Functionality .. 361

Making the Component Data-Source Agnostic .. 374

Integration with Drupal .. 377

Using Plugins and jQuery UI ... 377

Sparklines ... 377

jQuery Drupal Modules ... 379

jQuery UI ... 379

Summary .. 380

Appendix A: Installing Drupal..381

Setting Up a Development Server ... 381

Windows .. 382

Linux ... 382

Mac OS X .. 382

Configuring Document Root and Virtual Hosts ... 383

Installing Drupal—and Common Hurdles to Its Installation 385

A Quick Glance at the Admin Area .. 388

Installing Modules .. 389

xvi Contents

Appendix B: Supplemental Code ..391

template ... 391

index.html .. 391

index-input.html ... 396

demo-module ... 397

demo.module ... 397

demo.info .. 399

template-skeleton ... 400

skeleton.js .. 400

skeleton.html ... 402

skeleton.css .. 403

horizscroll and horizscroll-datasource ... 404

horizscroll.js .. 404

horizscroll.html ... 410

horizscroll.css ... 413

sparkline ... 415

sparkline.html ... 415

sparkline.js .. 417

Index ...419

xvii

Foreword

At DrupalCon Barcelona in 2007, while giving my regular “State of Drupal” presenta-
tion, I remarked that during my hour-long session, four new Drupal sites would be
launched. I went on to suggest that three of those four sites would be ugly. A year later,
at DrupalCon Szeged in Hungary, those four new sites per hour had grown to seven
and Drupal 6 had been released, making it easier to create great-looking Web sites.
Still, even now, Drupal faces a common problem on the Web—the relative lack of new,
high quality themes.

Front End Drupal tackles that problem directly and is designed to help both ex-
perienced designers and rank novices get an understanding of how Drupal theming
works. From using contributed “starter themes,” to customizing templates to modify
the markup used in Drupal’s output, to using jQuery and JavaScript to enhance the
user experience, Front End Drupal clearly charts a path to theming mastery. In fact, I’ll
be the fi rst to admit that I learned a lot from this book.

The Drupal community has created a remarkable platform that powers sites of all
sizes and descriptions, all around the world. Together, we’ve crafted a robust, extensible
content-management system that illustrates some of the key values in our community:
fl exibility and utility, innovation and openness. But Drupal has always been a develop-
er’s platform, even with the many designers in our ranks. It’s about time those designers
had a great book. In fact, this book is valuable not just to the designers we have, but to
the designers we want—the thousands who have never worked with Drupal.

The thing is that creating a Drupal theme isn’t always easy. It’s a crosscutting
experi ence that requires a lot of diverse skills and utilizes expertise in XHTML, CSS,
JavaScript, and PHP, all within the context of Drupal. Doing a Drupal theme right
can be challenging, but it is also exciting and incredibly rewarding. A survey I con-
ducted in 2008 listed “Finding skilled Drupal designers” as the number one entry on

From the Library of Athicom Parinayako

the list of the “Top fi ve most diffi cult things,” as reported by both expert and novice
users. We need to do more to fi nd new themers, as well as encourage and support the
ones we already have.

I’m excited that Emma Jane and Konstantin recognized that and authored this
book. It fi lls an important need in the Drupal ecosystem and will bring a new atten-
tion to design in Drupal. Since I’ve mostly focused on the “back end,” it’s nice to see
the “front end” get more and more attention. For Drupal to succeed, we need books
like this. We need the skills it teaches and we need the people it attracts. We need the
new themes those people will create and the new suggestions and improvements they
bring to our project.

Dries Buytaert
Drupal founder and project lead

xviii Foreword

xix

Preface

Drupal is an open-source content management system software package that is free to
download, modify, and use. It has been implemented by thousands of people around
the world and is used by millions of people daily as the basis for discussion Web sites,
community portals, corporate intranets, e-commerce Web sites, vanity Web sites,
resource directories, image galleries, podcasts, and more! By choosing to use Dru-
pal, you are accessing not only an award-winning Web platform, but also its vibrant
community.

This book will teach you how to customize how Drupal looks. Applying new de-
signs is very easy—the code that controls how Drupal works is separated from the
code that controls how Drupal looks. The design part of Drupal is referred to as the
theme layer—and that’s what this book is all about. Individual designs are referred to as
“themes” and the people who create and implement them are referred to as “themers.”
By the time you reach the end of this book, you will have the tools to customize the
experience for your content managers, Web site visitors, and Drupal administrators.

The book assumes you are familiar with how Drupal works and that you have been
an administrator of a Drupal Web site. It would help if you are comfortable with Web
site design and development, but these concepts will be explained for those who have
only a limited experience with them. More specifi cally, this book will use code snippets
written in HTML, CSS, PHP, and JavaScript.

Chapter 1

This chapter covers the basics of Web page design. It will help you to prepare your
information so that it will slide easily into a Drupal Web site. You will learn how to de-
scribe content and its organization; structure page layouts so that all of your interface
components fi t sanely onto your Web pages; and implement a work fl ow that works
for your Drupal team.

From the Library of Athicom Parinayako

Chapter 2

With the basics of Web design under your belt, it is time to prepare your workstation
for Drupal theming. In this chapter, you will learn about Drupal terminology and
theming strategies as well as must-have modules and browser tools. Chapter 2 also in-
cludes language references for each of the machine languages used in creating a Drupal
theme.

Chapter 3

You will now move on to learning the basic anatomy of a Drupal theme. In Chapter
3, you will learn how to fi nd and install a premade Drupal theme. You will also learn
the anatomy of a Drupal theme and discover how to use Starter Themes to reduce
your development time. Tips are included on how to convert themes from WordPress,
Joomla!, and Drupal 5.x.

Chapter 4

The overall structure of pages in Drupal is defi ned by the page template. In this chap-
ter, you will learn how to customize every part of this template—from using sitewide
page variables and menus, to changing page templates based on the section you are cur-
rently in. Information on print-friendly templates and mobile devices is also included
in this chapter.

Chapter 5

It’s time to get to the guts of your Web site—so in Chapter 5, you will learn how to cus-
tomize your Web site content, including individual nodes and teaser summaries. This
chapter also describes the most appropriate image module to use for your Web site. Ex-
amples of output are provided to help you make the best decision for your content.

Chapter 6

The most commonly overlooked area in Drupal theme design is content editing forms.
In this chapter, you will learn simple tips and tricks to make your forms more usable
and will get a gentle introduction to altering forms with the Form API. Techniques
described in this chapter will help you to enhance the usability of your content editing
forms.

xx Preface

Chapter 7

If you are running a community site, this chapter is a must—it includes information
on how to theme user profi les, community comments, and user-generated content.
Additional information is provided on creating private, member-only sections to your
Web site.

Chapter 8

In this chapter, which covers administrative interfaces, you will learn how to make the
administration of Drupal a little bit easier. Techniques include creating custom admin-
istrative interfaces, adding task-based navigation, creating administrative menus, and
customizing your Web site’s error messages.

Chapter 9

In this chapter, you will acquire the JavaScript skills required for writing truly stun-
ning, portable, and fl exible components for your theme. Basic concepts or advanced
object orientation—there’s certainly something you’ll learn in this chapter.

Chapter 10

An introduction to jQuery, the JavaScript library that ships with Drupal, will bring
you up to speed with today’s most prevalent JavaScript library. You’ll also learn how
jQuery is used in Drupal, how you can create stunning animations, and how you can
implement AJAX callbacks to the server.

Chapter 11

In this chapter, you will learn how to apply your newfound JavaScript and jQuery
knowledge to a Drupal Web site. By creating a horizontal scroller component, you’ll
learn step by step how to architect a highly fl exible and reusable JavaScript widget. Ad-
ditional information in this chapter includes server-side JavaScript integration and an
excursion into the vast supply of ready-made jQuery plugins.

Appendices

Information on how to install Drupal and contributed modules is included in Ap-
pendix A. Appendix B contains the code samples that are referenced in the JavaScript
chapters. These code samples can also be downloaded from the book’s Web site.

Preface xxi

xxiii

Acknowledgments

Emma wishes to thank her mum, Maryann Thomas, for making sure Emma didn’t die
of scurvy while writing the book. Thanks also to Kim Werker, for trusting me with
CrochetMe; Steven Champeon, for his endless patience and insistence that Web sites
be built properly; and Bernie Monette, for introducing me to fountain pens and teach-
ing me how to spell “awkward.” Thanks to all my reviewers and my production team at
Pearson, and especially to Lynda Chiotti, who also provided an ear as I worked through
my fi rst Real Book with a Big-Time Publisher. The Drupal Documentation Team pro-
vided the empathy and the encouragement I needed to get things done—thanks! And
fi nally thanks to LugRadio Live, for inviting me to speak at their conference and in-
advertently introducing me to Debra Williams Cauley, the best acquisitions editor an
author could hope for!

Konstantin fi rst and foremost wants to thank his parents, Gertrud and Friedrich, for
enabling him to dive into computer technology at a time when home computers weren’t
as common as they are today and for their tremendous support at all times. Thanks
to NowPublic Technologies, which helped and supported me while writing this book.
Thanks also to Károly Négyesi, also known as “chx,” for the unbelievable work he has
done and is still doing for the Drupal community; to Steven Wittens, for his inspira-
tion and creativity; and to Susanne Weigel, for teaching me how to create mind maps.
Finally, thanks to Debra Williams Cauley for bearing with missed deadlines and for
poking me when I was procrastinating too much.

Thanks also to the following businesses who graciously allowed us to capture images
from their Web sites: Trillium Healing Arts Centre, Toilet Birthdays, The Ginger Press,
CrochetMe (Interweave), CSS Zen Garden, Ubuntu Screencasts, Memory Garden Re-
treats, and Hear the North.

From the Library of Athicom Parinayako

xxv

About the Authors

Emma Jane Hogbin has been working as a Web developer since 1996, helping indi-
viduals and organizations to realize both their own potential and the potential of their
online presence. She creates systems that enable her clients to succeed—by using her
infectious enthusiasm and ability to explain concepts without using technical jargon
that puts even the greatest technophobes at ease. Passionate about helping people to
acquire knowledge, Emma volunteers with the Drupal and Ubuntu documentation
teams. She is well known in the Drupal community not only for her technical knowl-
edge, but also for her engaging and humorous means of bringing Drupal to a wider
audience—such as the Drupal socks and their GPLed pattern. Through her consult-
ing company HICK Tech, and at conferences around the world, Emma has inspired
people to overcome fear, uncertainty, and doubt and to tackle problems head-on. She
is known as “emmajane” on drupal.org and chronicles her adventures at http://www.
emmajane.net.

Konstantin Käfer started his adventures into Web development in 1999. In high
school, he led the Web development and school Web site class for several years. While
still in high school, he also participated in Google’s Summer of Code 2006, doing us-
ability enhancements for the Drupal project. In the Drupal community, he is widely
known for his JavaScript skills. Konstantin has been a speaker at several DrupalCons
and other Open Source conferences. He is currently studying IT Systems at the Hasso
Plattner Institute Engineering in Potsdam, Germany. He also works as a consultant
for NowPublic, a large citizen journalism Web site based on Drupal. He can be found
blogging on http://kkaefer.com about design, Web development, and Drupal.

From the Library of Athicom Parinayako

1

1

Web Page Design

To start your adventure of becoming a Drupal themer, you must first under-
stand how all of the Drupal components fit together to become a whole Web

site. This chapter will be useful to everyone who works on the team responsible for
building a Drupal Web site, including graphic designers, content managers, and,
of course, Drupal themers. It contains important information that will help team
members to talk about how Drupal can be manipulated into storing and displaying
content for your Web site. This chapter could have easily been named “Thinking
Like Drupal” because it has all the ingredients you will need to convert your brain
to Drupal’s way of thinking.

In this chapter you will learn about each of the steps needed to build a Web site
with Drupal. You will learn how to describe content so that you can build useful
content types. You will learn about lists of content so that you can build perfect
entry points into your content. You will also learn about layout and available space
on your Web pages so that you can build appropriate page templates. This chapter
also includes a few remarks on the computer languages needed to build a Drupal
theme—although this is not a “coding” book, you will gain more from it if you are
familiar with Web construction languages. Finally, we will explore the steps required
to build a Drupal site, including the work flow that occurs during this process.

From the Library of Athicom Parinayako

2 Chapter 1 Web Page Design

Describing Content

This section is intended to help you identify each of the pieces of content that you will
store (and possibly display) in your Web site. Later, you will combine these pieces of
content into the lists of content that visitors will use to navigate your site. Finally, you
will integrate your content into the design of the whole page. This progression may
seem awkward, or tedious, or too time-consuming at fi rst. Please do not skip this part
of the book! In this code-free chapter, you will learn how to think like Drupal—match-
ing your brain to Drupal’s way of storing and retrieving content. This process will al-
low you to easily identify and “theme” every part of every page in your Web site.

Description before design
Before you begin the design process for your Drupal site, be sure to defi ne exactly
what your site will do when it is working properly. Having a clear description of

how your site works will help you make the right decisions when you are building
your Web site and implementing the theme for your design.

Each page on a Web site has several components. If you strip away all of the context
from a Web page, you are left with just the barebones content. For example, if you
removed the navigation elements, the branding and search tool from the Web site in
Figure 1.1, you would be left with content (the inset image).

FIGURE 1.1 Content in the Trillium Healing Arts Centre Web site.

On any given page, Drupal will combine several elements to create the page you
see—one of which might be content. The fl ow chart in Figure 1.2 shows the same in-
formation that is displayed in the Web site in Figure 1.1, but in terms of the hierarchy
of each page component. On the left side of the diagram are all of the elements that are
displayed, but are not content. On the right side of the diagram you see several stories,
each of which has its own components. In this part of the chapter, we focus on the
structure of the content (the right side of the diagram).

Displaying Content

When designing your Web site’s page layout, you must consider how content will be
displayed on each page. The decisions you make at this point may affect the way you
build your content types later on. Adding more fi elds to your content type allows you
to have greater control over how the information is displayed. For example, the front
page of your Web site may have a simple list of titles, each of which leads to a full story;
alternatively, you may have a more complicated list, where the link to each story con-
tains a title, an icon, and a short “teaser” of the full story. You can create a content type
with specialized fi elds for any fl avor of content you need to display on your site—even
toilet birthdays! Figure 1.3 shows a Web page that displays a list of several toilets whose
birthdays have been identifi ed. (Yup, fl ip the tank lid off your toilet and look for a date
stamp. That is its birthday!)

Describing Content 3

FIGURE 1.2 The page components displayed in the Trillium Healing Arts Centre Web page.

4 Chapter 1 Web Page Design

The decisions you make about how your content should be displayed in the fi nal
Web site allow you to confi rm that you are collecting the correct granularity of data for
each of your content types. Each content fi eld can be displayed as a separate item in
the theme layer. In subsequent chapters, you will learn how to hide individual content
fi elds on summary pages, and how to hide fi elds to create private data.

To begin the process of describing the content, start with a list for each different
kind of content displayed within your Web site. You may want to ask yourself the fol-
lowing kinds of questions:

FIGURE 1.3 The front page of the Toilet Birthdays Web site displays ten toilets with a pager at the bot-
tom to view previously added toilets.

 • Does this content have a corresponding image?

 • Are there categories for this content (and do the categories have icons)?

 • Is the author’s name displayed with the content?

 • Should the creation date or last-updated date be displayed?

 • Is this a date-based event that will be displayed in a calendar?

 • Are there video and audio files associated with this content?

 • Can people leave their comments on this content?

Content Types and Content Fields

In Drupal terminology, “story” and “blog” refer to very specifi c types of content. Each
type of content is distinguished by its content type name. For example, your Web site
might have the following types of content: Story, Blog, Image, and Event. Each of
these types of content would have its own template that content authors would use
to create and edit new content. Although it is tempting to think of content types as
“types of Web pages,” resist this temptation! When you create a new unit of content
(for example, a new “Story”), Drupal uses the term “node” to refer to that content. A
single Web page that is displayed in a Web browser may contain several nodes along
with other page components (see Figure 1.2).

Origins of the word “node”
Computer scientists defi ne “node” as an abstract unit that contains either data or
a link to more nodes. They adopted the term from the world of botany, where the

defi nition and analogy are much easier to understand. In botany, a “node” is the
point where a leaf is attached to the stem of the plant. The leaves on a tree are like
the units of content stored in your database. You can think of the sections in your
Web site as branches on a tree.

Describing Content 5

Drupal stores the data for each content node in several tables in the database. When
a specifi c unit of content is requested, Drupal collects all relevant information from
each of the database tables to produce a snapshot of the content for display. When you
are building themes, you may choose to display all, or only some, of the information
Drupal has collected for you.

6 Chapter 1 Web Page Design

Visualize the data entry form you will use to enter your content into your Web
site. Your content must have a title and perhaps a longer description (Figure 1.4).
Drupal includes its own information for each piece of content added to your Web site
as well. These fi elds include the date on which the content was created and the author
of the content.

If your Web site is very simple, you may be able to enter all new content with one of
the two default content types: Story, which displays all new entries on the front page of
the Web site, or Page, which is not displayed on the front page by default. Additional
content types provided in Drupal’s core include Blog, Book, Comment, Forum, and
Poll. If your content has a different structure than these default content types, you may
need to create your own content types to store information—you will learn how to do
this in the next chapter. Figure 1.5 shows an example of a more complicated Web form
that contains several additional content fi elds.

 Changing from one content type to another
There is no way to easily convert your information from one content type to
another content type once you have created a node. You must choose the best

content type each time you want to add new information to your Web site. You can,
however, customize your content types to include new form fi elds at any time.

Before building your new Drupal Web site, you must carefully examine the con-
tent that will be entered into the Web site. Look closely for similarities in the structure
of your content to fi nd all necessary fi elds for each of your content types. Perhaps your
content can be contained within a simple “Story” content type, which allows you to
enter only the title and a “body” of information. With this content type, however, you
will be limited to sorting information based on the date the story was created, or last
updated, and its title. For example, if you are storing a library of books you have read
in your Drupal Web site, you may also want to list the books according to the name
of the author, the year of the book’s publication, the date when you read the book,
and perhaps your quality rating for the book. Unfortunately, the content type Story,
without modifi cation, does not permit sorting books based on these fi elds. As such, it
would not be a suitable content type to store information about the books you have
read.

In the form shown in Figure 1.5, the content fi elds include information about the
toilet and about the human who took the photo of the toilet. Having each of these
fi elds remain separate from the others means the content can be sorted according to
any of these fi elds; also, each of the fi elds can be hidden or displayed, as appropriate.
When you keep the birthdays separate from the description of the toilet, and you apply
a little extra scripting, Drupal is able to send birthday greetings to Web site contribu-
tors on the appropriate dates. This is possible only because the birthday is kept as a
separate content fi eld.

Describing Content 7

FIGURE 1.4 The form used to create a new instance of the content type “Story.”

8 Chapter 1 Web Page Design

Organizing Lists of Content

Content can be organized in a lot of different ways. In this section, we look at how
Web site visitors navigate through content. This process is not the same as considering
where the navigation areas appear on the page. Your content must be sorted in a way
that your Web site visitors recognize. By understanding how you want to arrange lists
of content on your site, you will be better equipped to choose the most appropriate
tools to build these lists.

FIGURE 1.5 The form used to create a new instance of the custom content type “Toilet” on the Web site
http://www.toiletbirthdays.com.

The rest of this section describes common ways to sort content. Each of these exam-
ples has a different implementation pattern in Drupal. Read through these examples
and make a few notes on which ones you think best match the content for your Web
site. It is possible that you will implement more than one of these options.

Chronological Organization

Most Web site visitors are highly familiar with the chronological form of content orga-
nization, as it is commonly seen in blogs and calendars. In a blog, the units of content
(blog entries) are sorted from most recent to oldest. Visitors to the Web site must navi-
gate through the history of the Web site to fi nd each unit of content. When using the
Blog Module, Drupal displays new entries on the front page of the Web site by default
(see Figure 1.6).

A variation on this sort of chronological organization is a display calendar. This for-
mat is most appropriate when listing upcoming events (Figure 1.7). It may also be ap-
propriate to show an archive of stories if the information is date specifi c (for example,
a Web site that reports on community events). Think about how people will access
and use the list of content. Consider how many events will be added as well. In some
instances it will be appropriate to use a full display calendar as well as a quick summary
organized as a bullet list of the next ten events.

Organizing Lists of Content 9

FIGURE 1.6 A blog is a series of short entries sorted by reverse chronological order.

10 Chapter 1 Web Page Design

Linear Organization

Novels have a beginning, a middle, and an end. Authors create stories and assume they
will be experienced in a linear way. Similarly, your Web site may have sections that
ought to be read from start to fi nish, just like a book. For example, linear organization
is appropriate for instructions and documentation, where you build on the knowledge
that was obtained in a previous section, or where there is a logical progression of ideas
from start to fi nish (Figure 1.8).

Topical Organization

If your content is sorted hierarchically into sections and subsections, visitors to your
site will be able to browse through each of the different categories to fi nd information
that is of interest to them (Figure 1.9). Within Drupal, you may choose to implement
a controlled vocabulary with pre-determined categories, or you can opt to use “free tag-
ging” and allow categories to be entered when the content is created. Both approaches
have merits. A controlled vocabulary generates a rigorous system that is predictable for
both content editors and Web site visitors. Free tagging, by comparison, is often more
appropriate for community-generated content where thousands of users may enter
slightly different types of content into your Web site.

FIGURE 1.7 Upcoming events displayed as a calendar.

Organizing Lists of Content 11

FIGURE 1.8 A section of content with built-in navigation. Pages within the group are listed below the
introductory paragraph.

FIGURE 1.9 On this book shop’s Web site, the content is sorted by category.

12 Chapter 1 Web Page Design

Alphabetical organization works best when users know the exact name of the thing
they are looking for. This is especially true with very long lists of content. The word
“the” is perhaps the biggest enemy to alphabetical organization. Although your Web
site visitors may know exactly what they are looking for, “the” can end up putting the
content in an unexpected spot in machine-sorted lists of content. If possible, try to
limit alphabetical lists of content to a single display page. In other words, avoid pagi-
nated lists of alphabetical content. This approach will allow users to more easily scan
the full list of options to fi nd what they are looking for.

Popularity-Based Organization

Many social networking sites feature popularity-based content organization for their
front pages. For example, Digg (http://www.digg.com) features this type of content
sorting. CrochetMe (http://www.crochetme.com), the social networking site for
crocheters shown in Figure 1.10, uses popularity to rank content on its Patterns page.
An FAQ, or set of help pages, may also be ordered according to how often the content
is requested.

FIGURE 1.10 CrochetMe groups and displays its content by popularity.

Task-Based Organization

From the very beginning of your Drupal installation, you will be working with task-
based organization. Your Web site might include tasks such as adding new content,
moderating comments, searching or fi ltering the content, and viewing recently up-
dated content. Figure 1.11 shows the task-based menu that Drupal provides to help
organize these actions. You may also have a set of tasks that are available to different
roles within your team of authenticated users.

Task-based organization is appropriate for the presentation and navigation of ac-
tion-oriented pages as opposed to content-oriented pages. You will need to decide how
related tasks are grouped and how they are ordered within that group. You will also
need to decide how to integrate the tasks into the page. In some cases, tasks may be
available from a menu option (for example, Create Content); in other cases, tasks may
be presented as tabs on a page (for example, Edit This Page). The administration area
of Drupal allows you to build scenarios of related tasks. For example, selecting “Create
Content” from the Drupal navigation menu presents you with a new page with the dif-
ferent kinds of content you can add to your Web site; it also reveals an extended menu
in the navigation area on the left side of Figure 1.11.

Now that you know what your content looks like and how it will be organized, you
can start to think about the layout of your Web pages.

Organizing Lists of Content 13

FIGURE 1.11 This list shows administrative tasks that can be performed. It includes a subset of tasks to
Create Content, where the administrator can choose from a list of different types of content to add to the
Web site.

14 Chapter 1 Web Page Design

Page Design and Layout

Armed with your detailed description of each content type and the structure for your
lists of content, you are ready to start fi lling in the gaps of your Web site’s page tem-
plate. Around the outer edges of the content, you will need to fi ll in navigation areas,
logos, and maybe even spaces for ads. Common interface components are listed in
this section, though your own site may have additional requirements that go beyond
this list.

At this stage you should sketch out what your Web site will look like, including all
of the elements that will be displayed on the page. You might use a graphic design tool
such as Illustrator, Photoshop, or the GiMP to accomplish this step, or you may want
to start with paper and a pencil.

Fill in as much detail as possible to give yourself a good sense of how crowded your
pages will be. Your sketches may infl uence the number of columns on your site and
identify other technical constraints. Depending on the size of your Web site, you may
have several different templates. Combine multiple layouts into a single template and
note where options differ for each of your content types. If you are using a graphics
program, consider creating digital page mock-ups; if you are working manually, sketch
out your ideas onto separate sheets of paper.

Interface Components

When you are designing your template, you must consider several issues in addition to
the content, navigation area, and logo. Even if your site will initially use a very basic
layout, it is a good idea to think ahead, and allow for additional components to be
added in the future. For example, if you plan to add a calendar to your Web site, set
aside a space for that element in your design template now. A little forethought at the
design stage will help your Web site grow with elegance.

Outlined in this section are several examples of interface components that your site
might have in the future.

Administrative templates
The most common problem encountered during this step of Web site design is
creating too narrow a column for the content. Although your Web page might

not have any large data tables, Drupal’s administrative interface uses tables that
are quite wide. Consider using an administrative theme that has a very wide content
area to accommodate these administrative tables if your main site uses a narrow
content area.

Make space
Be sure to add more than enough regions into your template. You may not need
them all now, but you will probably need them as your site grows. For example,

will there be a time when you might want three columns of information in your
footer instead of just one?

Page Design and Layout 15

All Web sites have some kind of identifying mark that tells you which Web site you
are visiting. It might consist of an image-based logo, a line of plain text, or a combina-
tion of the two. Generally this information appears at the top of your Web site. You
may also want to include a value proposition or slogan as part of your site name. Visi-
tors arriving from a search engine will be able to use this statement to quickly identify
if they have arrived at a page that is useful to them.

If you know visitors will be able to search your Web site, remember to include the
search interface as part of your page layout. You may wish to include the input box and
activation button; alternatively, you might have just a button that leads to an advanced
search page.

Many of today’s Web sites include advertising. Whether you are soliciting ads from
specifi c companies or using an ad service that places advertisements on your Web site
automatically, you may need to consider at some point how you will display ads. Per-
haps you will end up designating different areas on your page for different levels, and
different kinds, of advertising. For example, you might make a distinction between
text-based ads and graphical ads. Even if you do not plan to rely on advertising as a
source of revenue, you may need to recognize sponsors. For example, your content
may highlight large events with corporate sponsors, or your organization may need to
acknowledge that it has received funding from a specifi c agency for a specifi c project.
Consider each of these interface components as you design your Web site templates.

Regions

When you created your template, you probably identifi ed several regions on your Web
pages. The largest area was likely reserved for content, whereas other, smaller areas
contained interface components. These regions may display the same page elements
throughout the site (for example, the logo); alternatively, the content of each region
may change from page to page (for example, subnavigation). When you are creating
your Drupal theme, you will be able to place special markers to identify these regions
in each of your templates. Some of the more extensible premade Drupal designs have
as many as 12 different regions! This sort of organization gives a lot more fl exibility
than merely choosing between a two- or three-column layout.

16 Chapter 1 Web Page Design

In subsequent chapters, you will learn how to convert your Web page design into a
full Drupal theme. You will be able to defi ne as many regions as your site needs. Even
if your Web site is a simple two-column layout, you will be able to decide if the narrow
column appears on the left or the right side of the page. Figure 1.12 displays Drupal’s
Zen theme—by default, there are eight available regions in this theme.

Fixed or fl uid?
In a fi xed-design site, the total width of the page never changes. Thus you
will always have exactly the same amount of space to lay out your content. In a

fl uid-design site, the total width of the page depends on how wide (or narrow) the
visitor’s browser is. Given the choice, many print-based designers will select a fi xed-
width design. If this description applies to you, consider using two variations on
your theme: a fi xed-width design for the public Web site and a fl uid design for the
administrative area.

FIGURE 1.12 The Zen theme-building theme comes with eight different regions; they are represented by
thick black bars.

In addition to the basic layout of the Web site, Drupal allows you to create custom
templates for each of the pages on your Web site. CrochetMe.com uses a custom tem-
plate for its front page (Figure 1.13) to divide the main content area into fi ve separate
regions, increasing the number of regions to eight in total (Figure 1.14). The eighth
region is the logo found at the upper-left corner of the page.

Page Design and Layout 17

FIGURE 1.13 The CrochetMe Web site uses several techniques to show a complex grid layout on its
front page.

Design Resources

If you are a developer who is intimidated by graphic design, you will fi nd that a lot
of excellent templates are readily available that can be easily adapted to suit your
needs. For their part, experienced designers who are new to Drupal can use these
templates to get a sense of what is possible beyond the basic themes that Drupal

18 Chapter 1 Web Page Design

provides by default. Drupal.org lists a number of themes that can be downloaded and
customized (http://drupal.org/project/Themes) to suit your project’s needs.
To see each of these themes on a real Web site, visit the Theme Garden at
http://www.themegarden.org/drupal6/. Of course, the Web and its design in-
spirations are much larger resources than the limited set of information found on the
main Drupal Web site.

FIGURE 1.14 In total, eight regions are now available on the front page of the CrochetMe.com Web site.

Copyright
The designs listed in this section are not necessarily free to modify and use. Many
of the templates are licensed under the Creative Commons or the General Public

License (GPL), and can be used if appropriate credit is given to the original designer.
Please be sure to respect the terms of the individually licensed designs.

Page Design and Layout 19

The CSS Zen Garden (http://www.csszengarden.com) is an excellent de-
sign resource. The content of each page is identical but the page has been restyled by
applying a unique Cascading Style Sheet (CSS) prepared by an expert designer. Figure
1.15 shows a summary of the designs available in this unique theme browser. CSS
Zen Garden shows you exactly how easy it ought to be to apply a new theme to your
Drupal site. You will be able to achieve a nearly instantaneous visual overhaul of this
Web site by changing only the style sheet that is applied to the underlying HTML.
If the CSS Zen Garden can perform such a dramatic transformation with only a style
sheet, imagine what you will be able to do by combining this capability with Drupal’s
powerful theme system.

FIGURE 1.15 Each theme in the CSS Zen Garden uses the same underlying HTML markup. The visual
design is overhauled by changing only the Cascading Style Sheet.

20 Chapter 1 Web Page Design

Photos
By changing only the photo used in a design, you can change the whole feel of
a Web site. If you decide to include photos of people as part of your site, make

sure you have their permission. High-quality photos with appropriate model release
can be purchased for very little money from stock photography Web sites. If you are
using your own photos of people, be sure your models sign a release form. A sam-
ple form is available from the following URL: http://www.istockphoto.com/docs/
languages/english/modelrelease.pdf.

If you need more ideas, even more template sites are available on the Internet. Scan
through these resources for inspiration, or use the templates as a starting point for
developing your own Drupal theme. The Open Web Design (http://www.openweb-
design.org) and Open Source Web Design (http://www.oswd.org) sites provide a
wide range of sample layouts. From these sites, you can download a package containing
HTML, CSS, and image fi les. These fi les must then be converted into a Drupal theme;
this conversion is described later in the book. The Open Source Web Design (OSWD)
site also has an excellent “See Designs in Use” section where you can see how the
OSWD templates have been modifi ed and implemented on real Web sites (http://
www.oswd.org/links).

When developing your page design and layout, you may choose to start with a
premade Drupal theme, or you may have a template from your existing Web site that
you are migrating to Drupal. If you are new to Drupal, the easiest approach is to start
with a Drupal theme and customize it as needed. You may also choose to convert an
existing Web site template into a Drupal theme. Alternatively, you may want to create
a theme from scratch. You will fi nd useful information throughout this book on creat-
ing and customizing Drupal themes. The fundamentals of how to create a theme are
covered in Chapter 3.

Interaction

The visitors to your Web site will be constantly interacting with that Web site. A sim-
ple Web site may only offer links as points for interaction; in other words, your visitors
may be able to view pages and navigate between them, but not much else. In contrast,
in a community Web site, where visitors are able to interact and enhance Web site
content, you will need to consider more fully how visitors and community members
interact with your Web site.

As part of this process, you need to think about the tools your Web site visitors are
using to capture and consume the content on your Web site. To accommodate their
needs, your interaction plan may include developing a printer-friendly version of your
pages, a high- and low-bandwidth template, and a public/private theme for your site. If
your Web site is updated regularly, and you are providing an RSS feed for your content,
you will also need to consider the attributes for this feed. Will you publish the whole
story or merely a content summary?

Your Web site should never prevent people from accessing public content. Consid-
eration should also be given to people who will use adaptive technology to access your
site. In most cases it makes good business sense to accommodate their special needs,
but in some cases you are also required by law to provide your content in an accessible
manner. For more information on creating accessible Web sites, read the free online
resource, “Dive into Accessibility,” by Mark Pilgrim; it is available from http://www.
diveintoaccessibility.org.

User Satisfaction

Your Web site must be able to communicate to its visitors all aspects of the tasks it is
capable of performing as well as the content that is available to be consumed. Your visi-
tors must have a clear understanding of what everything on the screen means before
taking action. This means visitors must have a clear sense of what they will be reveal-
ing or accomplishing before they perform a task. By using both images and language,
you can combine content and style to produce a pleasing experience for your Web site
visitors.

Every screen in your Web site represents a decision point. Each time a user performs
an action, that individual will have a certain idea of the desired outcome based on the
information you have provided on each page. Based on this action, the screen will
change and the user’s objectives will be either met or not met. Either way, the screen
will have entered a new state. Based on the new state, Web site visitors may be able to
confi rm whether they have successfully completed the original task. Based on the feed-
back received, Web site visitors will then be able to proceed with a new task from the
current screen or else may need to modify the original set of actions if the fi rst attempt
at the task failed. You must ensure the choices on every page are clear and complete.

Make sure your presentation and feedback are always clear. Look at your design
carefully and assess whether it is easy to see how to initiate an action and what will
happen once the action has been started. To achieve success within your Web site,
visitors must be able to name the task they want to accomplish, perform the task, and

Interaction 21

22 Chapter 1 Web Page Design

then verify the task has been successfully achieved. All three components are critical
elements in achieving user satisfaction.

Guided Tasks

Tasks should require as few steps as possible to complete. People like fi nishing things,
so why not make it easier for your Web site visitors to be happy? Wherever possible,
you should provide clear instructions on how users can perform the discrete tasks that
are relevant to them. Limiting each task to a single screen allows people to complete
the steps at their leisure. Sometimes, however, you may need to guide your Web site
visitors through a specifi c series of tasks. Perhaps the most common of these sequences
is the navigation of a payment gateway. If you know you cannot avoid a multistep
process, consider adding the following features:

 • Remove unnecessary links and content from the page template.

 • Remove navigation bars, tab rows, and locational breadcrumbs, leaving behind
only the links, actions, and buttons related to the task at hand.

 • Add a progress bar to show users where they are in the sequence of tasks they
are working through.

 • Maintain branding images and the overall site style.

Make it clear how to proceed from one page to the next. Prevent errors by clearly
marking your expectations for the user at every point of interaction (especially on
required fi elds). Where you cannot prevent errors, provide useful error messages and
a way forward through the correction—never force a visitor to use the browser’s back
button to fi x a mistake.

Code

In Web page design, two or three factors typically affect how your page looks:
(X)HTML, CSS, and sometimes JavaScript. Drupal is a database-driven Web site that
uses the scripting language PHP to output the markup that is rendered by Web brows-
ers. Keep in mind that XHTML, CSS, and JavaScript are separate languages that work
in concert to provide your site visitors with a beautiful and engaging experience. The
more you can separate these three languages in your mind, the easier it will be for
you to create an effective Drupal theme. To do so, you will need to determine what is
controlling the appearance of the element you want to change. It is easier to perform
this diagnostic test when you are used to making distinctions among the underlying
languages that control the content’s appearance on the screen.

Separating Form, Function, and Behavior

XHTML is the structural language that describes each of the elements displayed on a
page. Its job is not to format the information, but simply to describe the information:
“This is a paragraph.” “That is an image.” This structural language also describes spe-
cifi c areas on the page: “This is the navigation area.” “This is the content area.”

To change the visual appearance of items on a page, you will need to alter their styles
using CSS descriptors. Information contained in a CSS fi le may include anything from
font sizes and colors to the background images used in certain areas of the page.

JavaScript enhances interaction within the page. Using JavaScript, you can control
simple animations to morph page elements from one state to another. You can also
make areas on your site appear or disappear with the click of a mouse button. In addi-
tion, you can use JavaScript to save changes to your database without having the Web
site visitor change pages.

Although you do not necessarily need to be an expert in each of these three lan-
guages, the more you know about them, the more easily you will be able to customize
how Drupal looks.

Code 23

Reduce, reuse, recycle
When creating your HTML markup, use the correct elements for headings and
lists. Check the markup Drupal uses by default. Where it makes sense to do so,

emulate this markup. Maintaining this type of consistency will make it easier to
reuse the styles you have created and to ensure uniformity in your page-specifi c
designs.

XHTML

Drupal can produce sites that use valid XHTML markup (Strict or Transitional). While
you may need to adjust some of the markup that is created by third-party modules, the
Drupal core outputs valid XHTML. Also, although you might have created a perfect
Web site, your content managers may enter content that is not perfect XHTML. For-
tunately Drupal can perform additional tests on data entered by your content editors
through its input fi lters.

A full introduction to XHTML is beyond the scope of this book, but many excel-
lent resources are available online. A good place to start is the Opera Web Standards
Curriculum (http://www.opera.com/wsc).

24 Chapter 1 Web Page Design

Cascading Style Sheets

The most powerful language in styling Drupal is the style sheet language known as
Cascading Style Sheets. Throughout this book you will see examples of CSS. In gen-
eral, styles are applied from an external style sheet through a combination of selectors,
properties, and values.

A full introduction to CSS is beyond the scope of this book, but many excellent
resources are available online. A good place to start is the W3 Schools’ CSS Tutorial
(http://www.w3schools.com/css).

Scripting Languages

There are two additional scripting languages you will encounter at various points in
this book. JavaScript is a client-side scripting language. Web sites that allow you to
interact with the interface in real time are using JavaScript. For example, a drag-and-
drop function uses JavaScript to engineer the movement of an object within the page.
In many cases, it is possible to completely avoid JavaScript and still have the site dis-
play exactly the content you want in exactly the way you want. If you want to alter
the behavior of a page, however, you may need to learn a bit more about this scripting
language. Fortunately, sophisticated libraries are available that will allow you to write
complicated behaviors quickly and with relative ease.

To create a Drupal template, you will also need to know a little bit of the scripting
language PHP. This server-side language is never visible on the Web site, but rather is
rendered by the Web server. When you use the PHP function, “print”, the PHP script
will create a page that is built from one or a combination of the three previously de-
scribed languages (XHTML, CSS, or JavaScript), which are in turn rendered by the
browser for everyone to see. As a consequence, you can use PHP to completely hide
content from Web site visitors. Unlike the other scripting languages, PHP produces
hidden content that is truly hidden!

Interaction with JavaScript

JavaScript interactions can be useful and fun for your Web site visitors. Imagine being
able to build a conference schedule by dragging sessions into the appropriate time slot
or by sliding images into a gallery. Or how about using a fancy fade on an important
message to draw the user’s eye to the information? Drupal now offers modules that al-
low you to accomplish the following tasks:

Work Flow 25

 • Dynamically add new content to a page

 • Edit rich text (allowing your content editors to update text, without having to
know HTML)

 • Create simple Web animations for error messages

 • Enable drag-and-drop interaction with content

If you are new to theming, these ideas might seem like impossible tasks. But take
heart: JavaScript has come a long way, and many function-rich libraries are now avail-
able. In some cases you do not need to know any JavaScript to add this functionality
to your Web site. Later in this book, you will fi nd everything you need to know to get
up and running with JavaScript. We will also show you how to use existing JavaScript
libraries, such as jQuery, so that you do not have to build everything from scratch!

Work Flow

Drupal sites are typically built through a collaboration between a programmer, a de-
signer, and a content manager. Sometimes, however, these roles are combined into a
single person. Perhaps you theme Drupal on a full-time basis but are also responsible
for a little bit of design, or maybe you handle module programming and data entry in
addition to your theme creation work. Identifying each of the tasks that needs to be
completed will help you to carry out those functions in the right order. Each project
may have a slightly different list of tasks, and identifying the kind of project will help
you to carry out these tasks in the appropriate order. For example, is it more important
to prototype functionality fi rst, or does the site need to look “right” before the client
(or your Web users) starts using it?

Write down all of the tasks you need to accomplish before launching the site. In a
second list, put the tasks in order of what needs to happen fi rst, what needs to happen
right before launch, and what all the in-between steps are. If you have multiple people
working on the project, put each team member’s name beside a task. This list may also
help you to develop the project timeline (especially if all tasks by one person need to be
completed before the next team members’ can start their tasks).

The following tasks must be completed in order:

 1. Identify content, and content types, that will be contained in the Web site.

 2. Identify and record the way the Web site will be used (flowcharts).

 3. Design the structure of the Web site (wireframes).

26 Chapter 1 Web Page Design

 4. Add design elements to the wireframes to make beautiful templates for each
unique part of your Web site.

 5. Install Drupal.

 6. Install and configure Drupal modules—where necessary, complete additional
programming and module development.

 7. Convert the design into HTML.

 8. Create a Drupal theme (including template files).

 9. Add content and create user accounts.

 10. Launch the Web site.

There are, of course, many more possible roles than the ones outlined here. For ex-
ample, you will be performing quality assurance (QA) at each stage of the development
process. You may also be collaborating with an information architect, copy editors,
sound and video technicians, translators, and more! Outline each of the tasks that will
be performed by your team members. Ask the people on your team at which points
they would like to be included in the project. An information architect, for example,
might want to be involved with the planning stages, but less involved during the pro-
gramming stages.

As a team, take the time to look at a Drupal Web site together. It is important to
have the shared experience of understanding how Drupal works and where it must be
customized to meet the needs of your Web site. Encourage each member of the team
to talk about his or her role and how it is integrated with the work of the other team
members.

Working with Designers

You may have both a graphic designer and an interaction designer on your team. The
designer’s role is to create an elegant and usable design. Graphic designers make Web
sites look pretty; interaction designers need to create a usable interface. Although the
interaction designer will be involved in all aspects of the building of a Web site to
ensure the whole system is appropriate for its users, a graphic designer may only focus
only on the visual aesthetics of the site.

To carry the graphic designer’s work forward into your other promotional material,
you should ask this person to complete a style guide that specifi es the fonts, colors,
and graphics used in the creation of the Web site. Consider storing this information
within the site itself. Depending on the size of the site and the number of users, the key

Work Flow 27

information might take the form of a private section or simply an unpublished page.
Your interaction designer, however, will be working throughout the entire develop-
ment process to evaluate and improve the user experience within the Web site. This
process includes customizing help messages, determining the fl ow between sections,
and deciding when it is most appropriate to use fancy enhancements.

Working with Programmers

If you are having custom modules developed, you need to make sure your program-
mer and your designer are aware of the additional elements that will be exposed by the
new programming. Perhaps the design will need to be adjusted to accommodate new
content. Or perhaps the programming will need to be adjusted to accommodate the
graphic and interaction design. Even if your programmer says, “Drupal can’t look like
that,” that does not mean the programmer is right! Perhaps it is true that Drupal has
never looked like your design before—but this may be because everyone else has been
lacking imagination. This whole book is dedicated to helping you make Drupal look
exactly the way you want!

If you are creating new modules, be sure your team has a clear understanding of
each screen that will be built. Your programmers and designers must understand how
the new functionality is integrated into the Web site as a whole. What seems like a
minor change to the graphic design may, in fact, have a huge impact on the program-
ming; conversely, what seems like a trivial programming change may have a huge im-
pact on the interaction or graphic design. Maintain a shared workspace where all team
members can see how all of the components fi t together. The information provided
in this workspace should include both a text description of how Web site visitors will
interact with the module (including information about role- or permission-dependent
tasks) and mockups of each screen the module creates.

Working with Clients

Although it is possible you are your own client, it is more likely you will be designing
Web sites for other people, too. One of the major reasons to choose Drupal as a plat-
form is the fact that it can make client relations go a lot easier: “Want your site to use
pirate-speak on September 19? No problem! Drupal has a module to do exactly that.”

Unfortunately, even the best, most rational clients can be affected by feature creep.
Make sure you have a list of deliverables in writing before you start. If you are lucky
enough to have the best client in the whole world, you might be tempted to deliver

28 Chapter 1 Web Page Design

Be aware of your per-square-inch impact
Converting a site’s background color from green to pink, with no other changes,
will still feel like a major change. Even if is relatively minor to change one color to

another in a CSS fi le, you may be implementing a change that has a very large visual
impact on the overall design of your Web site.

more than the client wanted. Don’t be tempted! Stick to your list and instead deliver
the project ahead of time and under budget.

Sometimes what the client wants has nothing to do with the words the client uses
to describe the end result. This disconnect can affect which modules you choose to use
and how you store the data.

Working with Site Visitors

The great thing about the Internet is that nothing is permanent (ignoring, of course,
those sites that allow you to view old versions of pages, such as The Way Back Machine
on archive.org). Working with your Web site visitors to make tiny adjustments to your
interface on a regular basis can help you to create a loyal fan base because it is involved
in the development of the Web site. You may even choose to apply the open-source
development philosophy of “Release early. Release often. Listen to your customers.”
Massive changes to a user interface suddenly will be more disruptive than a series of
small changes that happen on a regular basis. Each of these changes might be small (for
example, improving the navigation for a specifi c set of tasks, offering new tools, fi xing
the display for specifi c browsers), but their collective impact on your visitors may be
huge.

If you are working with an online community that has a forum, you might want to
add a forum topic for Web site suggestions. Alternatively, you might decide to include
a category in your contact form for Web site feedback. Such an invitation to give feed-
back may be open to the entire community or just to a trusted subset of community
members who represent a range of technical skills and operating system/browser com-
binations. Reporting on computer error messages entails use of a skill set better known
as “bug reporting” within the technical community. You may need to work with your
site visitors to develop their ability to report useful bugs. Do solicit their opinions, and
do act on the advice you are given.

Summary 29

Summary

Drupal is extremely fl exible; it is a framework that you can manipulate in many ways.
The more you know about your options, the less your Web site will look like every
other Web site. This chapter introduced some of the key elements associated with the
creation of Drupal-based sites:

 • Elements on a page

 • Lists of content

 • Page design and layout

 • Interaction

 • Markup

 • Work flow

This chapter covered the basic toolkit you will need to design Drupal sites. Use this
chapter as a reference as you work through the rest of the book. When you develop an
idea for your content types, consider how it will be viewed on the site to determine
the best way to theme or to control the display of the content. Being able to describe
the feature and its function within the site will help you choose the right way to apply
your design to it.

31

2

The Themers’ Toolkit

Throughout this book you will learn how to configure Drupal from the admin-
istration area and how to build template files using scripting and markup

languages. You have already made the commitment to working with the Drupal
framework. Framework is a term that is often tossed around by developers, design-
ers, and software pundits. Of course, you know what a framework is, but stopping
to think about the definition will help to set the tone for much of this chapter.
According to Wikipedia, a framework is “a basic conceptual structure used to solve
or address complex issues.” This chapter introduces the tools you need to build
Web sites within the Drupal framework.

In this chapter, you will learn about the basics of a Drupal theme, must-have
modules, and browser-based tools. You will learn how to create a custom content
type with the CCK module. You will learn step-by-step how to create a mini port-
folio Web site. The chapter also includes a brief section where you can find more
information about the computer languages that are used in the Drupal theming
system. The tools highlighted in this section are essential to the sane development
and deployment of a Drupal theme. Taking the time to set up your system with the
appropriate toolkit will save you hours—if not days—in development time.

From the Library of Athicom Parinayako

32 Chapter 2 The Themers’ Toolkit

A Gentle Introduction

In Drupal, a theme is the fi nal step in the process of building a Web page for display.
It converts the data from PHP objects and arrays into HTML markup and CSS style
defi nitions. Working at the theme layer you have the ultimate and fi nal control over
how a page is displayed. Once a theme is created, it may be applied with the simple
click of a button. If you have ever used a downloaded theme, you know how impres-
sive and instantaneous the process is to fl ip from your current theme to one that you
downloaded and unpacked only a few moments ago.

Many changes can be made to Drupal from the administration area. Neverthe-
less, building and customizing themes require comfort with at least three computer
languages: PHP, HTML, and CSS. Knowing a little bit of XML and JavaScript also
helps. Chapters 9 to 11 include an extensive primer on using JavaScript in Drupal.
Throughout this book, you will learn how to use the PHPTemplate theming engine to
build and modify Drupal themes. By far the most popular engine, PHPTemplate offers
many starter templates to choose from. Most of the online documentation also refers
to this template engine.

Building a Page for Display

A single Web page that is built by Drupal and is viewed in your Web browser is a com-
bination of data and formatting information. Drupal takes several steps to prepare a
page for viewing in a Web browser:

 1. It retrieves information from the database. Although pages can be saved (or
“cached”), information retrieved from the database is “dynamic” or changeable
for each page requested.

 2. It checks the retrieved data against relevant output filters. This step may
include the conversion of URLs into clickable links and line breaks into new
paragraphs.

 3. It inserts the information into each of the relevant templates provided by
Drupal core, contributed modules, and your theme. This includes combining
many small templates into an overall page template.

 4. It displays the formatted page in the Web browser.

Drupal provides generic templates for every type of information that will be dis-
played in your Web site. If you have not created your own template, Drupal will use

one of its own. Using the theming system, you can customize each of the default tem-
plates to adjust how data is displayed in your Web site.

Directory Structure

Drupal allows you to run different Web sites from a single instance of Drupal fi les
on your Web server. You could, for example, run two Web sites example.com and
mysite.org from the same code base, with each site having its own database. To cre-
ate multiple sites, you simply create a subfolder within the Drupal folder sites. These
site folders must have the same name as the domain names they represent. For exam-
ple, the domain name example.com would have a folder named sites/example.
com. Each of your site-specifi c folders will contain a fi le named settings.php as well
as a subdirectory to hold site-specifi c modules and site-specifi c themes. If you would
like a module or theme to be available to all sites, use the folders sites/all/modules
and sites/all/themes, respectively. Do not place downloaded modules and themes
into the Drupal core directories. Keeping the Drupal core pristine will make it easier
to perform security updates.

Paths

Drupal places information it needs into the URL for each page you view. This infor-
mation is referred to as the “Drupal path.” These paths are in no way related to the
directory structure of Drupal fi les; however, every “page” in Drupal has a distinct path.
For example, http://example.com/node/1337 has the path node/1337. These
paths instruct the Drupal module Path about which information needs to be compiled
to display each page. The Path module allows you to create an alias for each page.
For example, you might want to create an alias for node/1337 so that site visitors
may request the same content from the URL http://example.com/free-kittens.
When you are working with Drupal page templates in Chapter 4, it will be important
to know if you are looking at a Drupal path or at the alias of a path. More information
is provided in Chapter 4 on how to tell the difference between the two.

Theming Strategies

Many different strategies may be used to prepare templates for Drupal. The best
approach for your Web site will depend on how you need to display the data, how
much the display of data needs to be altered from the default templates provided by

Theming Strategies 33

34 Chapter 2 The Themers’ Toolkit

Drupal, and what the technical abilities of the person who will be maintaining the
theme for your Web site are. Programming logic, structure of information, and the
visual style of the displayed page are separated into different types of fi les in your
theme’s directory. The Drupal database does not “think” about how the content will be
displayed; it merely stores user-submitted data.

Best Practices

Throughout this book you will learn how to theme Drupal by separating each task into
different types of fi les within your theme’s directory. These tasks are distinguished as
follows:

 • Definitions, including regions and style sheet file names, are placed into a
.info file.

 • Logic and “decision making” are placed into a template.php file.

 • HTML markup is placed into template files ending with .tpl.php. This
extension is pronounced “tipple-fip.”

 • Style definitions are placed into Cascading Style Sheet files.

This separation of tasks into fi les is a “best practice” that is relevant to the PHPTem-
plate theme engine and will be used throughout this book. Different theming engines
may use different fi le naming conventions. Of course, there are exceptions to this
 organization: Sometimes it makes sense to include a bit of markup in your logic fi le,
and sometimes it is essential to test for certain conditions before displaying marked-up
data (for example, testing whether a variable is set).

Alternative Strategies

A variety of alternative strategies have been described online. They offer good ideas
that are completely appropriate for some cases. You may choose to incorporate some
of these ideas into your own themes; however, this book focuses on the best practices
mentioned previously.

Palantir offered a full description of its theming strategy for one of its Web sites at
http://www.palantir.net/blog/graycor-drupal-theming-works. Its them-
ing strategy optimizes for changes to CCK content types from the Web interface. The
company themes as much as possible at the fi eld level in the fi le template.php instead
of at the node level in individual tpl.php fi les. This approach allows Palantir’s cli-
ents to easily change the order of the fi elds from within the Web-based GUI without

needing FTP access to the server and without requiring knowledge of how to change
a template fi le. Although the fi elds can be themed in individual tpl.php fi les, this
strategy keeps the theme directory free of clutter. It might also improve performance,
because Drupal does not have to open many small template fi les to build a single page.
With the theme registry’s caching system in Drupal 6, however, it is unlikely this tech-
nique will offer a signifi cant improvement in terms of performance.

A second, completely different strategy is to use the module ConTemplate. This
module allows you to rearrange content by adding PHP snippets in the Web inter-
face to rearrange content before it reaches the theming stage. This approach allows
ConTemplate to change search indexing and RSS feeds; however, any other them-
ing should be performed at the theme level. To accomplish these pre-theme changes,
ConTemplate stores theme-like PHP snippets in the database and uses the PHP func-
tion eval to convert the theme instructions into the pages that are viewed in a Web
browser. This method of processing theme instructions is slower than if you were to use
PHPTemplate as described earlier.

Text fi les associated with themes can be easily placed into a version control sys-
tem such as CVS, Subversion, or Bazaar. By contrast, ConTemplate stores its snippets
in the database; as a consequence, you cannot keep incremental snapshots of your
changes. ConTemplate’s snippets are not stored within the database in the same way
that versions of a node are stored in the table node_revisions. This means you can-
not “undo” changes that you make. You can also potentially wreck your Web site if the
PHP is faulty.

If you know you need to alter search indexing and RSS feeds, you can fi nd out
more about ConTemplate from its project Web site (http://drupal.org/project/
contemplate).

Working with text fi les
ConTemplate can be confi gured to read its theme snippets from text fi les instead
of the database. This strategy requires copying and pasting template informa-

tion from the Web site into fi les that reside on your server. By working only with the
theme’s template fi les, you can accomplish the same thing but without having to set
your preferences from within the administration area of the Web site fi rst.

Over time you will undoubtedly develop your own strategies. Nevertheless, using
techniques that are promoted within the Drupal core will make it easier to upgrade
your work over time. The techniques described throughout this book are aligned with

Theming Strategies 35

36 Chapter 2 The Themers’ Toolkit

the recommended approach to theming Drupal (with a few exceptions that are noted
as such).

Now that you have learned the components that make up a Drupal theme, it is time
to prepare the toolkit you will use for the rest of this book, and indeed as a Drupal
themer!

Drupal Terminology

Newcomers to Drupal quickly realize there is a whole vocabulary that is specifi c to
the development and maintenance of Drupal. In this section you will be introduced to
a few of the terms that are used throughout this book.

Node

Each time you create a new unit of content in Drupal, you are really creating a new
node. A node can be a simple page with text and images on it, but it could also be a
completely customized content type that you have created to store your entomological
collection of bug photographs. A node refers to a single instance of content, whereas
a content type (sometimes called a “node type”) refers to a specifi c data structure that is
used for a series of nodes. By default, there are two content types enabled: “Page” and
“Story.” Drupal offers some basic ways of navigating through the nodes, but with the
Views module (one of the must-have modules described later in this chapter) you may
create whatever navigation scheme is appropriate for your Web site.

Figure 2.1 shows some of the properties of a node, including the metadata, settings,
and version-controlled content. Modules may add additional properties to nodes in
the database. In Figure 2.1, the comment module has added two fi elds to the settings
for the node, and the taxonomy module has added “tags” to the version-controlled
content. Using the CCK module you will learn how to add even more fi elds to your
content. CCK fi elds use a different storage structure within the database.

Users, Roles, and Permissions

Two kinds of users are distinguished for a Drupal Web site: (1) users who have created
an account on the Web site and are logged in (authenticated users) and (2) users who
have not taken these steps (anonymous users). Having only two types of users is very
limiting for large Web sites that are maintained by several kinds of content authors and
comment moderators. For this reason, Drupal has a role-based permission system to
accommodate the permission granularity required to maintain complex Web sites.

Node

Metadata

Type
Creation date
Modification
Date
Creator
Language
…

Settings

Old revisions Current revision

Actual data (payload)
 revisioned

Published
Comment mode
Moderated
Stickiness
Input format
…

Re
Tit
Bo
In
Ta
…

Re
Tit
Bo
In
Ta
…

Re
Tit
Bo
In
Ta
…

Re
Tit
Bo
In
Ta
…

Revision ID
Title
Body
Input format
Tags
…

The fi rst user account has a role of its own
One very special authenticated user is identifi ed by Drupal: The fi rst user that
creates an account in any Drupal Web site has ultimate power and can carry out

any task in that Web site. This account, which is referred to as user/1, must be used
when performing security updates.

Creating a new role is a trivial task: Just navigate to the Administer, User manage-
ment, Roles page and submit your new role title in the form that appears. Once an
appropriate name has been created, you may alter the permissions for this role by
navigating to Administer, User management, Permissions. For example, you might
create a new role called “Editor” and then allow this role to “upload fi les” and “access
user profi les.”

Figure 2.2 displays several permissions in the form of a Venn diagram. In this fi gure,
the role named Administrator has all permissions of the role Editor plus two additional
permissions. Anonymous users have permission only to search the site, view content,
and post comments. A Web site visitor who is using an authenticated account may
also post comments without the consent of an administrator. Account holders may be
assigned multiple roles. For example, if the user has the roles Editor and Authenticated
User, that individual may “administer users” and “post comments.”

Blocks and Regions

The Drupal page is divided into markup, the content of the page, and the regions
for the page. Regions may contain zero, one, or more blocks. A block may contain a
navigation menu, a random image, a list of recent comments, or anything else that you

Drupal Terminology 37

FIGURE 2.1 Properties of a node, including metadata, settings, and version-controlled content.

38 Chapter 2 The Themers’ Toolkit

might need. Blocks are typically defi ned by modules, but you can also create your own
custom blocks. Each block must be placed into a region before it will become visible on
the Web site. As the Web site developer, you may control the order in which multiple
blocks appear in the same region. You may also decide to limit the visibility for certain
blocks to specifi c pages or to specifi c roles.

Many modules provide their own blocks. For this reason, each time you enable a
new module, you should check whether new blocks are now available. To ensure the
blocks are visible to the appropriate user roles, you may need to adjust the permissions
defi ned by the new module.

Blocks can be dynamic, or they can contain static information that does not change
from page to page. One dynamic block is the “Who’s online” block provided by the
module user.module. This block presents a list of Web site users who have been
active on the Web site within the last few minutes. You can also create context-sensitive
blocks—for example, an “Author information” block containing further information
about the user who created the currently displayed node.

To create a custom block, navigate to Administer, Site building, Blocks. Select the
link to “Add block.” Custom blocks need not be limited to just displaying text. You
may also use PHP and place virtually any content into the block—for example, a
search form or a Flash video.

Categories, Taxonomy, Vocabularies, and Terms

Humans seem to have an insatiable need to classify things. We build libraries with
books sorted by topic, we use Latin naming conventions to sort plants and animals

administer users

administer nodes

upload files

access content

Anonymous user

Administrator

Authenticated
user

Editor

post comments
 without approval

post
comments

search content

create story
content

edit own
story content

FIGURE 2.2 Sample roles and their permissions displayed as a Venn diagram.

into families, and we use categories to sort our blog posts. This science of naming and
classifying things is known as taxonomy. Within Drupal, the term taxonomy refers to
any form of organization based on categories and classifi cation. A taxonomy typically
has a hierarchical structure, like a family tree—there are terms at the top of the tree
structure that are relevant to many things, but as you descend the structure the terms
become narrower and apply to a smaller subset of the items being described. In Drupal,
you are not required to create a hierarchy of your taxonomy terms. Figure 2.3 shows
three different kinds of relationships that taxonomy terms (categories) may have: no
hierarchy, a single hierarchy, and multiple hierarchies. Notice that only the second and
third diagrams are similar to a “family tree,” with fewer items appearing at the top and
many items found at the bottom of the “tree.”

Within your Web site, you may have several unrelated topics that you want to
assign to categories. For example, your blog categories may be separate from your

No hierarchy

Single hierarchy

Multiple hierarchies

Drupal Terminology 39

FIGURE 2.3 Taxonomy terms may have no hierarchy, a single hierarchy, or multiple hierarchies.

40 Chapter 2 The Themers’ Toolkit

recipe categories. In this case you will create a new “vocabulary” for each of the discrete
topics in the Web site. You must have at least one vocabulary if you want to use the tax-
onomy system. Within each vocabulary, however, you may have as many terms as you
like. In Figure 2.3, the diamonds represent terms included as part of one vocabulary.

Parent Items and Weight

In the administration system, the terms parent item and weight often remain hidden,
because Drupal uses a drag-and-drop interface to rearrange items. Nevertheless, there
are some screens where you will need to understand their meanings.

Both taxonomy and menus may rely on hierarchies for their organization. When
items are organized within a hierarchical sorting system, Drupal uses the term “parent
item” to defi ne which taxonomy term or menu item is closer to the top of the “family
tree.” When you are placing an item into a menu, for example, you must decide under
which “parent” the specifi c menu item should be placed.

The “weight” of an item refers to the order of the item relative to all other items
in that group. With the Drupal core, the metaphor is that “Heavy items sink.” As a
Canadian writing this chapter in winter, I fi nd that weather temperatures that dip into
negative degrees Celsius do not feel “light,” so I have provided an alternative metaphor:
The weight is a little bit like a timeline. Zero is the present; a large negative value is in
the past (and will appear on the far left side of a list of items that are read from left to
right, or at the top of a list that is read from top to bottom); and a large positive value
is in the future (and will appear on the far right side of a list of items that are read from
left to right, or at the bottom of a list of items that are read from top to bottom).

Menu

A menu consists of three entities: the menu tree, the menu items, and the menu item
links. Menus are typically added to the page via blocks. The menu module provides
a block for every menu, and blocks can be enabled by navigating to Administer, Site
building, Blocks. Menu items are located within a menu tree and contain exactly one
menu item link. They have properties indicating whether the menu item is a leaf, an
expanded menu item, or a collapsed menu item. Additionally, a menu item can also
be in the “active trail,” which means that the page currently being rendered is a child
of the menu item (or the menu item itself). Figure 2.4 shows a menu and each of its
components. The lines drawn around each section outline the parts of a menu.

FIGURE 2.4 A menu can be placed into a Web site through a block. Menu items may be either a leaf (no
subsections), a collapsed menu item (with hidden subsections), or an expanded menu item (with visible
subsections).

Pagers

No, not the thing you strap to your hip when you’re “on call.” A pager is a collection of
links that breaks a very long list of nodes or comments into smaller sections. Each page
contains the same number of items. For example, a list of 100 items with 10 items per
page would yield 10 pages of results. Pagers typically have links for “next” and “previ-
ous” pages as well. Figure 2.5 shows a pager.

Hooks and Naming Conventions

Drupal’s extensibility is based on the naming conventions used for its functions; these
conventions are referred to as hooks. Modules contain a selection of those hooks to

Menu (block)

Create content

Administer

Content management

Site building

Blocks

Menus

Modules

Themes

Site configuration

User management

Reports

Help

Log out

My account

Modules

Menu item (block)

Menu item link (inline)

Active menu item link

(Menu item is a leaf)

(Menu item is collapsed
 but contains children)

(Menu item is expanded
and contains children)

My account

Menu item in trail (block)

Drupal Terminology 41

FIGURE 2.5 A pager allows you to navigate through a very long list of items.

42 Chapter 2 The Themers’ Toolkit

change content generated or provided by other modules, to add in the hook’s own han-
dling functions, or to register menu items, theme functions, and so on. Understanding
their origins removes some of the mystery of how Drupal makes its magic happen in
the fi le template.php.

For example, when Drupal creates a menu, it “asks” each module if it has any items
it would like to add to the menu tree by looking for functions with a special naming
convention. If there is a function that matches the naming convention, Drupal will
perform the function and retrieve the relevant data. Hooks are always named using the
format <module name>_<hook name>. You will see these naming conventions many
times in your theme development. Part of the function name is customized to match
your theme name, while other parts will remain the same.

These conventions are the reason you must name your functions carefully in the fi le
template.php. Throughout this book, you will see naming patterns for many theme-
related functions, including a series of functions that begin with theme_ as well as the
preprocess functions.

Must-Have Modules

There are three contributed modules that you will need to include in your theming
toolkit:

 • Content Creation Kit (CCK) module: used to extend the basic content type
additional field.

 • Views module: used to create lists of content.

 • Devel module: includes the Themer Info module, which allows you to identify
the Drupal characteristics necessary to theme any item displayed in a Drupal
Web site.

Information on how to download and install contributed modules appears in
Appendix A.

Content Creation Kit (CCK) Module

This section describes how to create new content types. The example walks you through
the creation of a content type to store a “portfolio” of your Web design work. This con-
tent type was chosen because it contains many different fi eld types that can be applied
to a wide range of content types. These content types could be news stories, movie or
music reviews, community events such as conference sessions, or products in an online

store. If you are working on a specifi c challenge within your own Web site, you should
change the example immediately to suit your needs.

At its most basic, a unit of Drupal content is a node that contains only a terse
description (a title) and text-based content (the body). Additional metadata for this
node is also stored—namely, the content author; the date the metadata was fi rst sub-
mitted to the database; the date it was last updated; whether comments are allowed;
and whether the node should appear on the front page of the Web site. To extend this
basic content type, you must fi rst know which additional information you will need to
store. Refer back to the preparation work you did in Chapter 1 and look at each of the
different content types you defi ned for your Web site. As part of this exercise, you also
defi ned the fi elds that make up each content type. You will need to use the properties
of these fi elds when you create your custom content type. Specifi cally, you will need to
know the following information for each content type that you create:

 • The properties of each field (for example, will data be captured best as a terse
text description, or will you need to use a controlled vocabulary and preset the
options in a selection list)

 • The grouping of individual fields within the content type, especially for long
forms and complicated content types

 • The privacy settings for each field

 • Optional fields versus required fields

 • The default settings for each of comments, and work flow settings

With this information in hand, you are ready to create new types of content, and
their associated input forms, in your Web site.

Installing CCK and Related Modules

If you have not already installed the Content Creation Kit, you should do so now.
Appendix A contains instructions on how to install the necessary modules. In this sec-
tion, you will make a sample portfolio Web site. It will include text fi elds, a selection
list, and an image fi eld. You will need the following additional modules to create this
content type:

 • cck (http://drupal.org/project/cck)

 • date (http://drupal.org/project/date)

 • filefield (http://drupal.org/project/filefield)

Must-Have Modules 43

44 Chapter 2 The Themers’ Toolkit

 • imagefield (http://drupal.org/project/imagefield)

 • token (http://drupal.org/project/token)

With these fi ve modules you will be able to make a wide range of content types.
For additional fi eld types, visit the CCK category on the Drupal Web site at http://
drupal.org/project/Modules/category/88. Additional modules can be down-
loaded and enabled if you need a fi eld specifi cally for computed fi elds (PHP snip-
pets), numbers, embedded media (video and audio), or node and user references. More
information is available from the main CCK project page at http://drupal.org/
project/cck.

Once the modules have been downloaded and placed into your site’s module direc-
tory, you will need to enable them from Drupal’s module administration area. Note
that the names of the projects you downloaded in the previous step will not be an exact
match to the module names you need to install in the next step. Navigate to Adminis-
ter, Site building, Modules and enable each of the following modules:

 • Content (listed under CCK)

 • FileField (listed under CCK)

 • ImageField (listed under CCK)

 • Option Widgets (listed under CCK)

 • Text (listed under CCK)

 • Date (listed under Date/Time)

The Token module will also be enabled, as it is required by the FileField module.
The Date API and Date Timezone modules are required by the Date module and will
be installed as well. You are now ready to create a custom content type.

Creating a Custom Content Type

Content in Drupal almost always has a title (a short description for linking) and a body
(a large fi eld for the actual content). When you create a new content type, you will have
these two fi elds to start, but you may add as many other fi elds as you need for your
content type. The following example creates a new content type to store information
about your “portfolio” of work. If you have a specifi c content type defi ned and ready to
use, you should change the suggested values to match your own content type.

To create the shell for your new content type, you must complete the following
steps:

 1. Navigate to Administer, Content management, Content types, Add content
type. You will be presented with a screen for the metadata for this content
type.

 2. Fill in the Name, Type, and Description for your new content type in the “Add
content type” form as shown in Figure 2.6. Use values that are appropriate for
your custom content type.

 3. Click on “Submission Form Settings” to reveal the related options.

 4. Change the “Title field label” to “Project name” and the “Body field label” to
“About this project.” You may close this fieldset when you have finished alter-
ing the fields by clicking “Submission Form Settings” a second time.

 5. Click on “Workflow settings” to reveal the related options.

 6. Adjust the defaults as appropriate for the following settings: Published; Pro-
moted to front page; Sticky at top of lists; and/or Create new revision.

Must-Have Modules 45

FIGURE 2.6 Content types have both metadata and associated fi elds. This information includes the name
of the content type, form labels, and the default settings for work fl ow and comments for each new node.

46 Chapter 2 The Themers’ Toolkit

 7. Click on “Comments settings” to reveal the related options.

 8. Set comments to “Disabled” for this content type. If you are working with
your own content type and do want to have comments enabled, you may set
the default settings now.

 9. Scroll to the bottom and click “Save content type.”

You will be returned to the summary of all content types after successfully creat-
ing your new content type. The next step is to extend the content type by adding new
content fi elds.

Adding Fields

When a content type is fi rst created, it contains only two fi elds in which to store data.
You may “extend” your content type by adding more fi elds for specifi c types of data.
Having discrete places in your Web form to enter data ensures that information will
be complete, correct, retrievable, and sortable by fi eld. When you add a new fi eld to
your content type, the content editing forms are automatically updated to show these
new fi elds.

Extending existing content types
You may add content fi elds to both core and contributed content types. For ex-
ample, if you want to extend the content type Page to include images, you could

use the instructions included in this section, even though Page is provided by Drupal
core. This same idea applies to contributed modules that offer their own content
types. For example, you could add a fi eld for “Photographer” to the content type
provided by the Image module.

Your new portfolio content type will use several additional fi elds:

 • Text descriptions of the project, including fill-in-the-blank text fields (both
single-line and multiple-line “text areas”)

 • Web links and email addresses

 • Selection lists

 • Project start and end dates

 • Text and binary file attachments (including screenshot images)

The processes for creating all fi eld types use approximately the same steps. While
creating your own fi elds, you should read the forms carefully for each fi eld type and

choose the options best suited to your needs. As an example, the following steps are
required to create a new fi eld that will allow content authors to upload and attach an
image using the module imagefield:

 1. From the list of Content types, click the “add field” link next to the content
type you would like to customize. In this case you will click the link next to
“Portfolio.”

 2. Enter the Field name (machine-readable) and the Label (human-readable).

 3. Select the field type from the drop-down list. The options may not be immedi-
ately obvious. Here are a few hints: if you would like to add an Option Wid-
get (which includes radio buttons, check boxes, and drop-down lists), choose
“Text.” If you would like to add an image field, choose “File.”

 4. Scroll to the bottom of the screen and click “Continue” to finish customizing
your new field.

 5. On the next screen, the Field name, Label, and Type will be fixed. Choose the
Widget type for your field. Figure 2.7 shows the screen to add an image field.
In this case, the Widget type is “Image.” You could also attach a “File” if you

Must-Have Modules 47

FIGURE 2.7 To add a fi eld to your content type, you move through a series of screens to set the default
options for the fi eld type you have selected.

48 Chapter 2 The Themers’ Toolkit

The following list gives suggested fi eld types for the portfolio content type example.
Once each of these fi elds has been added, the summary of your portfolio content type
will look like Figure 2.8.

 • Client name—Type: Text; Widget type: Text field

 • Project Web site (URL)—Type: Text; Widget type: Text field

 • Screenshot—Type: File; Widget type: Image

 • Start date—Type: Date; Widget type: Select list

 • End date—Type: Text; Widget type: Select list

 • Development tools—Type: Text; Widget type: Check boxes/radio buttons

You could also use Drupal’s taxonomy system instead of having a CCK fi eld to list your
development tools.

Fields: Order, Display, and Groups

At this point, you are ready to arrange the form fi elds for your new content type. You
may also choose to adjust the display for each of the fi elds and bring similar fi elds
together into groups so the form is easier to complete. The settings for the order,
display, and groupings can be confi gured from each of your content types. To use
the instructions given in this section, you must fi rst navigate to Administer, Content

More images
Using the ImageField module, you may attach as many images as you would like
to your content type. The Image Attach module allows only one image per node.

The Image Assist module does not link images directly to a node (although you can
display an uploaded image within the body of the node). For more information
about how to choose the best image module for your needs, refer to Chapter 5.

wanted to include the written documentation you supplied with the project.
Scroll to the bottom of the screen and click “Continue.”

 6. On the final screen, you will see the options for the field type you have selected.
Choose the best options for your field type.

 7. Repeat these steps for each new field. You may change the order of the fields at
any time. Fields can also be added after you have started creating content using
this content type.

management, Content types and then select “manage fi elds” beside the name of the
content type to which you want to make adjustments.

Field Order

On the summary page for fi eld management, you will see a screen that is similar to
Figure 2.9. If you have JavaScript enabled, you will see a small crosshair beside each
content fi eld. To change the order of the fi elds, click the crosshair and drag the fi eld to
its new location. Once you have rearranged the fi elds, you must commit the changes to
the database by clicking the button labeled “Save” at the bottom of the page (as shown
in Figure 2.9).

Field Display

You may adjust the default display for each fi eld by clicking the “Display fi elds” link at
the top of the page. Each fi eld type has different display settings that can be adjusted
for the teaser and full node (see Figure 2.10). You may also choose to display the label
beside the data when the content is viewed or decide to hide the label completely. The
ability to make these minor adjustments from Drupal’s administrative interface means
a lot less work is required to create custom template fi les for each content type.

Must-Have Modules 49

FIGURE 2.8 The portfolio content type has been created and is ready for use. Three core fi elds are pres-
ent as well as six new custom fi elds.

50 Chapter 2 The Themers’ Toolkit

FIGURE 2.9 After changing the fi eld order, you must commit your changes by clicking the “Save” button.

Field Groups

The CCK suite of tools includes the module Fieldgroup, which allows you to group
content fi elds on the content editing screen. To enable this module, navigate to Admin-
ister, Site building, Modules. Scroll down to the CCK suite of modules and enable the
Fieldgroup module. Scroll to the bottom and click “Save confi guration.”

FIGURE 2.10 The display settings can be customized for the full node and teaser of each fi eld type.

Once the Fieldgroup module is enabled, you can create new groups by navigating
to Administer, Content management, Content types and selecting the “manage fi elds”
option next to the content type you wish to alter. At that point, you can add a new
group by clicking the link “Add group” at the top of the page. You will be asked to
complete a basic form with settings for your new fi eld group, including the settings
shown in Figure 2.11: the group’s label, style (default visibility), help text (for editing
content), and description.

The order of these groups may be adjusted in the same way as the order of indi-
vidual fi elds. Figure 2.12 shows a fi eld group integrated with individual fi elds. To add
a fi eld to a group, you must slide the fi eld slightly to the right to show that the fi eld
belongs with that specifi c group. You may place only those fi elds you have created into
a fi eld group.

Must-Have Modules 51

FIGURE 2.11 New groups have four settings that need to be confi gured: Label, Style, Help text,
Description.

52 Chapter 2 The Themers’ Toolkit

FIGURE 2.12 To add a fi eld to a group, you must slide the fi eld slightly to the right to show that the fi eld
belongs with that specifi c group.

Additional Settings

For each content type, you will need to adjust several settings. These include Attribu-
tions, Post Settings, and Permissions.

Attributions (Post Information)

The Attributions setting allows you to enable or disable the “submitted by Username
on date” text when displaying content. If your content includes date-based informa-
tion, such as a calendar of events, it is a good idea to remove the attributions because
the “submitted on” information can be confusing if it is not themed to be very different
from the date of the event. To adjust attribution settings, follow these steps:

 1. Navigate to Administer, Site Building, Themes.

 2. Choose the “Global settings” tab.

 3. Adjust the display in the fieldset “Display post information on.”

 4. Scroll to the bottom of the screen and click “Save configuration.”

Post Settings

The Post settings adjust the default length of the teaser text for all content types. This
information acts as a global setting for all content types. Teasers are typically used in

lists of content—for example, on the front page of your Web site or in a view of con-
tent. Navigate to Administer, Content management, Post settings and then adjust the
following settings:

 • Number of posts on main page

 • Length of trimmed posts (in characters)

 • Preview post (optional or required)

Permissions

You will also need to adjust the access permissions for the new content type, thereby
determining who can view, edit, and create this content. Navigate to Administer, User
management, Permissions. Under the “node” module, update the access control set-
tings for the options: create portfolio content, delete portfolio content, and edit port-
folio content. If you have enabled content permissions, you will also be able to adjust
the permissions for each fi eld type from this screen under the content_permissions
module. When you are fi nished making changes, scroll to the bottom of the screen and
click “Save permissions.”

The portfolio content type is now ready for use.

Views Module

The second must-have contributed module is the Views module. The Content Cre-
ation Kit allows you to extend very simple forms into complex data types. The Views
module, by comparison, completes the customization puzzle by allowing you to create
your own unique lists of content. You can use this module to create anything from a
simple list of recent comments to a complex photo gallery.

The Views module can be downloaded from the project page at http://drupal.
org/project/views. Instructions for installing modules can be found in Appendix
A. Additional help for the Views module is also available from the Advanced Help
module. This module provides additional in-site instructions on how to use the Views
module. Advanced Help can be downloaded from the project page at http://drupal.
org/project/advanced_help.

There are three modules included in the Views project. To enable them, navigate to
Administer, Site building, Modules and scroll down to the Views section. You will see
the following modules listed:

Must-Have Modules 53

54 Chapter 2 The Themers’ Toolkit

 • Views: used to create customized lists and queries from the Drupal database

 • Views exporter: used to export multiple views at once

 • Views UI: the Web-based administration tool used to create and edit custom-
ized views

To use Views, you will need to enable both the Views and Views UI modules. At
this time you should also enable the Advanced Help module if you have downloaded
it; it is listed under “Other” modules. It is highly recommended that you install the
Advanced Help module.

Save server resources
Once you have created all of your views, you can disable the module Views UI.
This module is needed only to build new views; it does not need to be enabled

once your views are set. If you need to edit your views, you can enable the Views UI
module any time to make the necessary changes.

Understanding Views

To reach the Views administration area, navigate to Administer, Site building, Views.
Figure 2.13 shows the main confi guration screen. This screen includes four tabs across
the top (List, Add, Import, Tools), a link to the Getting Started tutorial (you must
have Advanced Help enabled), a set of fi lters, and a series of views that are provided by
default. (The Getting Started tutorial is a comprehensive guide to the use of Views—
you should defi nitely read it.) The default views can be disabled, enabled, and altered,
but never completely removed, because they are part of the Views module code. By
contrast, all views that you create (referred to as “Normal” views) are stored in Drupal’s
database.

Begin by looking through the list of default views. Each view contains a summary
of information about the view. Using the “archive” view as an example, you will see the
following information:

 • Default: the storage type for this view (one of: Normal, Default, Overridden)

 • Node view: the type of view (Node, Comment, File, Node Revision, Term, or
User)

 • Archive: the machine-readable name of the view

 • Enable: the view is currently disabled; click the link to enable this view

FIGURE 2.13 The Views administration area lists all views, both enabled and disabled. By default, no
views are enabled.

 • Path: archive: the URL for this view

 • Block, Page: the displays for this view (Block, Page, or Feed)

 • Display a list of months that link to content for that month: a summary of
this view

To understand how views are built, take a look at the confi guration screen for the
“archive” view. You must fi rst enable the view before confi guring it.

 1. Click the link “Enable” in the archive view summary.

 2. An “Edit” link will appear. Click the “Edit” link to configure the archive view.

The Views confi guration screen contains seven basic areas, as shown in Figure 2.14.
More generally, the screen is divided into two sides: a navigation area on the left that

Must-Have Modules 55

56 Chapter 2 The Themers’ Toolkit

allows you to switch between the types of views available (for example, Block, Page, and
Feed) and the main confi guration screen. The Views module uses JavaScript to hide and
display components on the confi guration screen. To edit an option, you click on the
label, or text setting, of the component you would like to change. For example, if you
wanted to change the number of items displayed on a default archive page, you would
click the “10” next to the heading “Items per page” under the “Basic Settings” area.

The main screen includes six areas:

 • View settings gives a brief description and tags that describe this view.

 • Basic settings include the name of view, title to display, formatting options,
and contextual information (header, footer, no results returned).

FIGURE 2.14 The Views confi guration screen contains seven areas. The main screen includes the View
settings, Basic settings, Relationships, Arguments, Sort criteria, and Filters. On the left of the screen is a
display toggle that allows you to switch between the different types of views available.

 • Relationships specifies the linkages between items in this view and other
things stored in the database (for example, the name of the author for a spe-
cific node).

 • Arguments may change the list of content that is retrieved from the database
based on the URL (most commonly used for categories).

 • Sort criteria are used to define the order of appearance for nodes displayed in
this view.

 • Filters are a fixed set of rules that govern which content should be retrieved for
this list.

At the bottom of the page is an option to preview the list of content that will be
assembled for your view. This check will help you to ensure your confi guration options
are selecting exactly the content you want to display.

Creating a New View

Look through each of the default views provided by the Views module. Each shows
you a different technique you can use for your own views:

 • taxonomy_term, backlinks, and glossary show you how to use arguments.

 • glossary shows you how to group nodes together (all nodes starting with “A”,
“B”, “C”, and so on) to create an index of your content.

 • comments_recent shows you how to create relationships between nodes and
their authors.

 • tracker shows you how to make extensive use of filters.

From the main Views administration screen, choose the view that is closest to the
type of view you would like to create. Click the link named “Clone” for that view.
Complete each of the screens in the view creation wizard to create your customized
view. If there is no match for the type of view you need to create, you may create one
from scratch. You may add a new view with no preset values from any of the Views
confi guration pages by clicking on the “Add” tab at the top of the page.

Devel Module

The third must-have module is the Devel module, which contains a whole suite of
incredibly useful tools, including a content generator to create random content to test
your theme and a visual diagnostic tool, Theme developer, that allows you to dissect

Must-Have Modules 57

58 Chapter 2 The Themers’ Toolkit

any part of your theme to reveal the underlying functions, templates, and variables in
use at any point on the page. The project page for this module is found at http://
drupal.org/project/devel.

The following modules are included in the Devel package:

 • Devel: shortcuts and functions for developers

 • Devel generate: generate sample users, nodes, and taxonomy terms

 • Devel node access: block and page showing node_access records

 • Macro: record and play back form submissions

 • Theme developer: essential information for themers

Enable the Devel and Theme developer modules. You may enable other modules
from this suite as well; however, only the Theme developer module will be used in this
book.

Once the Theme developer module is enabled, you will see a new tool in the lower-
left former of your Drupal Web site. This small gray widget, which is shown in Figure
2.15, allows you to toggle the display of the Drupal Themer Information window.
Once the Themer info window has been opened, you can move your mouse around
the screen and choose which part of the page you would like more information about.

FIGURE 2.15 The Themer info widget appears on the lower-left corner of your Web site. Clicking it
toggles the display of the Drupal Themer Information window.

In Figure 2.16, the square surrounds the node displayed on the front page of a Web
site. When you click beside the title of the node, the Themer info window reveals
information about the templates used and preprocess functions that can be used to
theme this portion of the page, as shown in Figure 2.17.

The Devel module will be used throughout this book to reveal information about
the components of the page you are theming.

Must-Have Modules 59

FIGURE 2.16 The Drupal Themer Information window (Themer info) allows you to obtain more informa-
tion about any part of the page.

60 Chapter 2 The Themers’ Toolkit

FIGURE 2.17 After you click on any part of the page, information about the theming templates and func-
tions is revealed in the Themer info window. The “Array” bar at the bottom of the screen can be expanded
to reveal the contents of the node object variable.

Browser Tools

In addition to installing Drupal’s tools, you are well advised to install a range of browser-
based, life-saving tools.

Firebug

Firebug is a Web browser plugin available for Firefox. Using this tool, you can easily
get information about any page element, including its location in the page and styles
that have been applied. For more information about Firebug, and to install it on your
machine, visit the project’s Web page at http://www.getfirebug.com. Once you
have installed Firebug, you have access to a powerful diagnostic tool that offers the
following features:

 • Ability to identify and locate any HTML element on the page by right-
clicking on the element and choosing “Inspect element”

 • Ability to edit CSS properties and attributes to test possible enhancements
immediately

 • Visual display of width, padding, and margins for every page element

 • A JavaScript debugger that allows you to pause your scripts

 • A DOM inspector

Figure 2.18 shows the element inspector. From this screen, you can easily change
just the relevant part of the style sheet, or you can override one of the core styles or a
module’s styles with something of your own.

Internet Explorer 8 ships with its own suite of Developer Tools. To enable this tool-
bar, open the Tools menu of the Internet Explorer 8 toolbar, and choose “Developer
Tools.” Additional information is available from http://msdn.microsoft.com/
en-us/library/cc848894(VS.85).aspx.

Browser Tools 61

FIGURE 2.18 Firebug inspects the Administer link. You can also activate this console by clicking on the
fi rebug in the lower-right corner of the browser.

62 Chapter 2 The Themers’ Toolkit

The Web browser Opera also has a developer toolbar, named Opera Dragonfl y.
Additional information for this browser toolkit is available from http://www.opera.
com/dragonfly/.

Web Developer’s Toolbar

The Web Developer’s Toolbar complements Firebug and is available for the browser
Firefox. From viewing the path for each image on the page to validating your CSS,
the Web Developer’s Toolbar offers a shortcut for nearly everything. Some of its useful
features are outlined here:

 • Resize the browser window to any predefined size (a size of 800 × 600 pixels is
provided by default).

 • Validate the page using WAI and Section 508 tests.

 • Check for broken links on this page.

 • Validate the CSS and HTML for the page.

 • Display line guides to determine whether page elements are aligned.

Figure 2.19 shows the Web Developer’s Toolbar displayed along the top of the
browser window. These options are also available in the Tools, Web developer menu.
Additional information on the Web Developer’s Toolbar is available from http://
chrispederick.com/work/web-developer/.

Screen Shot and Testing Services

If you were to set up your own lab to test your Web site across multiple platforms and
with multiple browsers, the process could prove quite expensive (and if you are cur-
rently relying on your friends as a test browser test environment, it is plausible they
will eventually get bored of sending you screenshots). If you have a powerful-enough
machine, you could also create virtual machines on your own desktop and install
browsers on each of the different virtual machines. An alternative to these time- and
resource-intensive testing approaches is to use an online browser testing service.

Two well-known and well-loved services are especially popular. Browser Cam
(http://www.browsercam.com) is one of the longest-running browser testing ser-
vices. It is highly customizable, highly confi gurable, and somewhat expensive if you
need to test a Web site only occasionally. It also provides remote controllable machines,
which are invaluable for testing interactive Web sites that use JavaScript and Flash.

Fortunately, a free alternative is “good enough” for most testing purposes—
Browsershots (http://www.browsershots.org). Browsershots doesn’t have any
glam to it, and you cannot change the screen resolution of the screenshots, but it will
let you quickly identify potential problems in a range of Web browsers, as shown in
Figure 2.20.

Browser Tools 63

FIGURE 2.19 The Web Developer Toolbar is integrated into the browser and provides quick access to a
range of useful tools.

Choose only what you need
Browsershots has a daily maximum number of screenshots that you can have cap-
tured on your behalf. From the initial screen displayed in Figure 2.20, select only

those browsers you need to test.

64 Chapter 2 The Themers’ Toolkit

FIGURE 2.20 Browsershots allows you to view screenshots of your Web sites from a wide range of Web
browsers.

After submitting your URL to Browsershots, you will need to wait several minutes
to see your screen captures. The wait time depends on the number of requests ahead
of you in the queue. By default, your screen captures remain available for 30 minutes
after your initial request. You may extend this time if you would like. From the results
page displayed in Figure 2.21, you may select an individual browser; alternatively, you
may download all screen shots as a “zipped” archive.

FIGURE 2.21 The results page of Browsershots includes a screen capture for each of your selected brows-
ers and gives you the ability to download all screenshots simultaneously (lower-right corner).

Language References

Four machine languages are used in the creation and maintenance of a Drupal theme:
PHP, XHTML, CSS, and JavaScript. Although you do not need to attain true mastery
of each of these languages, theming Drupal is easier if you know enough about them
to shuffl e things around while still maintaining the integrity of how the machine lan-
guage works. This book does not include a full reference for these languages, but rather

Language References 65

66 Chapter 2 The Themers’ Toolkit

assumes you understand the basics of each one. This section serves as a reminder of
some of the excellent resources that are available online if you do need a quick reference
for the code that appears in this book.

XHTML

The elements in XHTML are literally the building blocks for any page on the Web. If
you are reading this book, chances are good you have dabbled with HTML or XHTML
at some point. If you need a bit of a refresher, or if you want to know how to mark up
a page the right way, head over to the Opera Web Standards Curriculum site (http://
www.opera.com/wsc) and work through each of its lessons. It is important for you
to use valid XHTML markup for your Drupal Web site. Failure to do so may result
in pages that do not display correctly. The Web Developer’s Toolbar includes a quick
link to the W3C Markup Validation Service. You can also access this free online service
directly at http://validator.w3.org/.

CSS

CSS brings visual excitement (or perhaps visual serenity) to your Web site. Fortunately,
a lot of excellent tutorials explain how to work with Cascading Style Sheets. From
designing for maximum browser compatibility to creating elegant expanding button-
like backgrounds, the Web is rife with tutorials relevant to Drupal themers. A quick
reference for all CSS selectors, properties, and values is available from the W3 Web
site at http://www.w3.org/TR/CSS2/cover.html#minitoc. If you need a tutorial
to remind you of the basics, visit the Opera Web Standards Curriculum (mentioned
earlier) or visit the W3Schools Web site at http://www.w3schools.com/css/. As
with XHTML, the CSS you write must be valid. The W3C offers a free online vali-
dation service at http:jigsaw.w3.org/css-validator/. For more information
about designing with CSS and best practices, A List Apart provides dozens of articles
on a wide range of CSS-related topics; visit its site at http://www.alistapart.com/
topics/code/css/.

Grid-Based Frameworks

Whether you are a novice designer in need of all the help you can get or an experienced
designer, one thing is certainly true: Grids make creating elegant designs easier. In a
grid-based design process, your wireframes include a structured grid. Instead of sketch-
ing items “wherever,” you place them based on columns that are already defi ned on the

page. As an example, in Figure 2.22, a wireframe has been divided into 12 columns
using the Grid 960 template system.

Grid-based design goes beyond a bunch of columns in a graphics editor; indeed,
this approach has been extended into full CSS frameworks. These frameworks con-
sist of a library of CSS fi les that allow you to easily develop a standards-compliant,
browser-compatible, table-free layout. There are many frameworks available, including
these options:

Language References 67

FIGURE 2.22 Using the 960 Grid System, the wireframe is divided into 6+2 columns for the content, 2
columns for the author information that “fl oats” next to the text, and 4 columns for the navigation.

68 Chapter 2 The Themers’ Toolkit

 • 960 Grid System (http://960.gs/)

 • Blueprint CSS (http://www.blueprintcss.org/)

 • YAML CSS Framework (http://www.yaml.de/en/)

 • YUI Grids CSS (http://developer.yahoo.com/yui/grids/)

The Yahoo! User Interface (YUI) also comes with its own GUI to build a YUI. A full
explanation of how to use the YUI grid framework is available at http://developer.
yahoo.com/yui/grids/ and the builder is available at http://developer.yahoo.
com/yui/grids/builder/. Although some people have complained that frameworks
are just bloated CSS fi les, they are actually quite useful for rapid development and save
you from “reinventing the wheel.” Among these frameworks are common CSS tools
such as Eric Meyer’s Reset CSS style sheet (http://meyerweb.com/eric/tools/
css/reset/).

Several Drupal templates have been developed with a precise grid system in mind.
For example, the Drupal themes Four Seasons, Framework, Hiroshige, Newswire, and
Sky use the 960 Grid System to lay out the page. Its name comes from the fi xed width
of 960 pixels, which easily accommodates modern monitor screen resolutions with
a minimum screen real estate of 1024 × 768 pixels. The 960 Grid System Web site
(http://www.960.gs) includes a link to download template fi les. YAML for Drupal
can be found at http://www.yaml-fuer-drupal.de/de/download. Blueprint is
available at http://drupal.org/project/blueprint.

PHP

PHP is a server-side Web scripting language that is used to build Drupal and to make
connections to your database to access the data for your Web site. The PHP online
documentation is excellent; you can access it by visiting http://www.php.net. There
are two search options available for this site. By default, the search fi eld expects the
name of a PHP function (for example, array_merge). If you need more general docu-
mentation, you must switch the drop-down menu to “online documentation” before
submitting your search query.

If you are new to PHP and need the absolute basics, you will benefi t from the
CMS-agnostic tutorial, PHP 101. It is available at http://devzone.zend.com/
node/view/id/627.

Drupal API

In addition to all of the PHP functions, Drupal has created its own functions. If you
are searching for a function in the PHP documentation and cannot fi nd it, you should
remember to search the Drupal documentation as well! The API documentation is
pulled from the source code of Drupal. It is written by developers, for developers, but
you can read it, too. The Drupal API Web site (http://api.drupal.org) includes
information on every single Drupal function available in the Drupal core. The search
function allows you to search by function name and topic. Be sure you are reading the
appropriate version of the documentation—look for the tabs for the Drupal 4.7, Drupal
5, Drupal 6, and Drupal 7 versions. You may also want to read the section on Default
theme implementations (http://api.drupal.org/api/group/themeable/6);
this page includes a full list of all theme-related functions in the Drupal core.

JavaScript

Chapters 9 to 11 of this book include a basic primer on JavaScript, the well-known
 client-side scripting language. If you fi nd yourself yearning for more information,
you can fi nd it online. To increase the speed of development, Drupal uses a library
of JavaScript functions known as jQuery. The online documentation for jQuery is
excellent and includes tutorials on the basics of working with jQuery (http://docs.
jquery.com/Tutorials). These tutorials include an introduction to jQuery, live
examples of how jQuery works, and a special tutorial built for designers who want to
add simple behaviors to their Web sites. This reference is tech-heavy—but then so is
JavaScript.

Fortunately, not all online documentation takes the form of solid blocks of text
in black and white. Nick La has written a beautiful primer on jQuery that shows you
with circles and arrows what this technical language is all about. You can fi nd it at
jQuery Tutorial for Designers (http://www.webdesignerwall.com/tutorials/
jquery-tutorials-for-designers/).

Maintaining Your System

There are two things that you absolutely must do to maintain your sanity: perform
regular backups of your code and database (and restore from these fi les to ensure the
integrity of your backups), and apply all relevant security patches that are released by

Maintaining Your System 69

70 Chapter 2 The Themers’ Toolkit

the Drupal security team. An announcement mailing list can be found at http://
drupal.org/security. These two statements may seem like the Murphy’s Law of
Web development (“If anything can go wrong, it will”) to many people who have
had their systems cracked into or who have overwritten an important fi le. If you are
diligent about performing your backups and applying security patches, your hardware
will never fail and your site will never be cracked. Beyond these two obvious steps to
maintaining your system, there are two more tasks you should be aware of: scheduling
Drupal’s tasks and enforcing version control for your theme fi les.

Scheduling Tasks with Cron

If you are running the Drupal search function on your site, you must keep the search
index updated. The task of updating the search index is performed only “as needed.”
That means if you do not request the index to be updated, your search results will
never be up-to-date!

You can update the search index by navigating to Administer, Reports, Status report.
Look for the section entitled “Cron maintenance tasks” and click the link to “run cron
manually.” Of course, it would be a time-consuming chore for you to click this link
on a regular basis to keep your search index up-to-date. It is far more effi cient to use
a timer to tell Drupal how often the search index ought to be updated. This timer is
referred as a “cron job,” where “cron” is short for “chronograph” (which is a fancy word
for a stopwatch or timing device). Unfortunately, this step cannot be accomplished
within Drupal.

Luckily, many hosting providers will give you a Web-based administration tool to
perform cron jobs. If this is the case, you may enter the following command into this
tool:

45 * * * * /usr/bin/wget -O - -q http://example.com/cron.php

If the confi guration tool allows you to set how frequently the timer is triggered, use
only the following portion of the command:

/usr/bin/wget -O - -q http://example.com/cron.php

Revision Control

Regardless of whether you are working in an offi ce as part of a multi-person team or
alone at home with just your cat for company, you really ought to store your fi les in a

version control system. This approach allows you to maintain a log of all changes that
are made to your fi les and permits you to revert to a previously saved version of your
fi le if necessary. Several different version control systems are available. The best one
for you to use is the one you are motivated to use—a choice that may be dictated by
the software selected by your offi cemates or by your clients. Commonly used version
control systems include these packages:

 • Concurrent Version System (CVS): http://www.nongnu.org/cvs/. Drupal
is stored in this system.

 • Subversion: http://subversion.tigris.org/. This is the most popular
alternative to CVS.

 • Bazaar: http://bazaar-vcs.org. This is an easy-to-use, distributed version
control system.

While writing this book, the authors used all three of these version control systems:
CVS to download Drupal and its contributed modules to ensure the code in the book
was functional and accurate, and Subversion and Bazaar to store incremental versions
of the book as it was written. An excellent overview of revision control and version
control systems is available on Wikipedia at http://en.wikipedia.org/wiki/
Revision_control.

Summary

This chapter covered a wide range of seemingly disparate topics:

 • Drupal terminology

 • Best practices for maintaining a Drupal theme

 • Three must-have modules (CCK, Views, and Devel)

 • Browser-based tools that help you identify page markup and diagnose errors

 • Web references for the machine languages used to build Drupal

 • System maintenance tips

You are now equipped to diagnose and repair (almost) any problem that you
encounter in your theming adventures. You have also tricked out Drupal with the base
modules you will need to make a wide range of Web sites. Additional modules will be
recommended throughout the book. It is now time to take the fi rst step in creating
your own Drupal theme!

Summary 71

73

The actual creation of a Drupal theme is very simple. In this chapter you will
learn the fundamentals. Following instructions blindly may end up feeling a

bit like working through a “learn to draw” book you may have had as a child. Step
1: Draw a circle. Step 2: Add eyes, nose, mouth, and ears. Step 3: Add hair. Step 4:
Apply your sketching skills to render the stick figure into a masterpiece that pos-
sesses depth and beauty and makes old men weep at a mere glance. Sound a bit
like theming Drupal? Hang in there! This chapter will fill in many of the blanks
between steps 3 and 4 from your old drawing book!

This chapter outlines the basics of finding, installing, and configuring a Drupal
theme. You will learn how to create a lean Drupal theme from scratch to see the
component parts—and also how to create a feature-rich subtheme from one of the
many theme starter kits that are available for Drupal. The chapter wraps up with a
brief look at how to convert older themes to Drupal 6, and how to convert themes
from other content management systems to Drupal.

3

Working with Drupal Themes

From the Library of Athicom Parinayako

74 Chapter 3 Working with Drupal Themes

Finding Themes

The easiest way to theme your Drupal Web site is to start with a prebuilt theme that
appeals to you. By swapping the banner image and changing the background color,
you can transform a template with very little additional work.

In addition to the themes that ship with Drupal, premade Drupal themes can be
found in many other places. A quick Web search for “Drupal themes” will turn up
at least a few hundred thousand Web sites. The search results will range from free
themes that may have been downloaded and implemented by lots of other Web sites to
completely unique designs created by specialist-design companies. Depending on your
time and budget, you may fi nd any of these themes useful for your Web site.

Copyright
The designs listed in this section are not necessarily free to modify and use. Many
of the templates are licensed under the Creative Commons and can be used if

credit is given to the original designer. Please respect the terms of the individually
licensed designs.

Generally the templates available from the Drupal Web site (http://drupal.
org/project/Themes) and the Theme Garden (http://www.themegarden.org)
are ready to be installed and used on your Web site. When you are selecting a theme,
make sure you choose one that matches the version of Drupal you have installed.
Themes that were created for Drupal 5 will not work with Drupal 6, for example. The
list of themes on Drupal.org can be fi ltered based on the version of Drupal you are
running. You must be logged into your Drupal.org account to use this fi lter.

Create a Drupal.org account
Many packages are available from Drupal.org. By creating an account, you can
easily fi lter these packages for the version of Drupal you are using. Registration is

free. To create a new account, go to http://drupal.org/user/register.

Figure 3.1 shows the Theme Garden—a preview site for the themes that can be
downloaded from Drupal.org. There is not always a perfect match between the two
lists, however, so be sure to check both sites for appealing designs.

FIGURE 3.1 The Drupal Theme Garden allows you to see how themes look on a real site with actual con-
tent. This is the Theme Garden styled using the Amadou theme.

The Drupal.org theme directory is set up a little differently (Figure 3.2). Each
theme listed gives a summary of the theme, but not a full implementation of it. Details
on the summary page for each theme include these items:

 • A text description of the theme, including its features

 • The version of the theme as well as its release date

 • A screenshot giving a view of the “above the fold” view of the theme

 • A link back to the project Web page for the theme (if one exists)

If you need new themes on a regular basis, take the time to fi nd a theme directory
that you like using. Each directory will have slightly different features. Themebot
(http://www.themebot.com/website-templates/drupal-themes), for exam-
ple, lists W3C compliance, indicates whether a design has a fi xed or fl uid width, and
gives a full demo showing how content will be styled in blocks, sidebars, and the
 content area.

Finding Themes 75

76 Chapter 3 Working with Drupal Themes

FIGURE 3.2 Drupal.org provides the same information for modules and themes as the Drupal Theme
Garden. This is the project page for the Amadou theme.

Interface Components

When selecting a theme, it is important to consider the various page elements that you
identifi ed while working through the “Interface Components” section in Chapter 1.
These features include how many columns the page contains, how the page expands
into the available space (and how it contracts for narrower browser windows), which
font sizes are used, and whether a search box has been integrated into the design. If you
are trying to emulate an existing Web site design, you may want to skip ahead in this
chapter and read the sections on how to convert a template into a Drupal theme.

Nearly everyone is drawn to color fi rst and structure second. In some cases a design
may be available in several different colors. The color may be controlled from within
Drupal, or you may need to choose which colors you want to download the right
theme. Designs can also be easily modifi ed by altering the CSS style sheet and using
the “Colorize” function within a graphics program such as GiMP or Photoshop. By
altering the lightness and the hue of a color, you can convert a gray-scale design into

a colored one. Conversely, you can switch a colored design to black and white by
converting your graphics from RGB to gray-scale. You may fi nd this ability especially
useful if you are showcasing or selling products—a neutral interface will compete less
with your content. A full tutorial on how to colorize a theme using the Color module
is available at http://drupal.org/node/220789.

Refer back to the design decisions you made in Chapter 1 to help you choose a
template with the appropriate number of regions for your content. If your design needs
many small regions, take a moment to think about the content area: Should it be fl uid
and expand in wider display screens to give more visual importance to the content, or
should it be fi xed in size? In the Drupal Theme Garden you can resize your browser to
see how the theme adjusts to different browser conditions.

If your site is a blog, and will only ever be a blog, chances are good you will be
completely satisfi ed with a simple two-column design. By contrast, if you know your
site will grow beyond its current wireframe within a short amount of time, you should
consider using a template that can easily accommodate additional regions. Although
many themes are limited to 4 or 5 regions, others have defi ned more than a dozen
separate regions. If you do not need all the regions initially, be sure to check that the
design collapses gracefully to suit your needs.

Develop a Library of Themes

It is very easy to apply a Drupal theme. If you see a number of themes you like, down-
load them all! You can install each of the themes and test it with your own content
before making a fi nal decision on which theme to use. You may also want to keep a
library of themes that you like, but aren’t a perfect match for your current project. Be
sure to store the themes in a way that makes it easy to retrieve exactly the right theme
later on. Create a summary of the themes as well as a description of what you liked
about the theme.

Zotero is an excellent design archiving tool. This Firefox extension allows you
to take a snapshot of a Web page along with your notes (see Figure 3.3). Originally
developed to help researchers collect, manage, and cite research sources, Zotero cre-
ates a library of Web pages on your computer for offl ine browsing. Additional features
include the ability to take notes on a per-page basis, add tags to the page, and rename
the page title. The ability to access and maintain the pages locally can prove very useful
if you are in a meeting in a location that does not have an Internet connection. Zotero
can be downloaded from http://www.zotero.org.

Finding Themes 77

78 Chapter 3 Working with Drupal Themes

FIGURE 3.3 Zotero, a Firefox extension shown in the bottom of this screenshot, makes it easier to man-
age an offl ine gallery of themes. The tool integrates itself into Firefox and can be hidden or displayed using
the “Zotero” icon in the lower-right corner of the browser.

Installing Drupal Themes

Once you’ve selected your theme, your next task is to install it.

Download and Unpack

Several fi les are included in a theme. These fi les will be packaged up and compressed
to make it faster for you to download them. To prepare a new Drupal theme for use on
your site, follow these steps:

 1. Choose the right package for your Drupal installation. Themes that were de-
signed for Drupal 5 cannot be used on a Drupal 6 Web site, for example.

 2. Click the “download” button or link.

 3. You will be prompted by your Web browser to save the file. Choose a location
on your computer that you will remember—perhaps in your project folder for
a specific Web site or on your desktop.

 4. The browser may also ask you if you want to unpack the files. Go ahead and
unpack the files if you are given the option to do so.

Look at the fi les inside the theme package. If a fi le named README or INSTALL
present, be sure to read it. This kind of plain text fi le can be opened in any simple text
editor.

Within the theme, there are several components, each of which must be placed into
an appropriate home. The design elements are handled by style sheets; the graphics and
the interactive behaviors are handled by JavaScript. The markup is handled by tem-
plate fi les with the extension tpl.php . Logic, function calls, and variable assignments
are handled exclusively by the fi le template.php. As a consequence, there should not
be any markup in the template.php or any function calls in the individual tpl.php
fi les. In your theme’s folder, you will likely fi nd the following fi les:

 • An info file (themename.info)

 • A page template (page.tpl.php)

 • PHP functions that create new variables and alter the default variables pro-
vided by Drupal (template.php)

 • A style sheet (themename.css or style.css)

 • A screenshot (screenshot.png)

Although the only required fi le is the .info fi le, a theme won’t be much of a design
without at least one template fi le and a style sheet. The screenshot is provided to help
you choose the right theme from the list of themes in the Drupal administration area;
it is not used in the actual theme design.

Drupal ships with several default themes, which are stored in the themes directory.
To distinguish your uploaded themes from the default ones, store your new themes
in the sites folder. If you would like to make your theme available to all Web sites,
upload the fi les to sites/all/themes/themename. If you would like your theme
to be available to only one of your Web sites, upload it to sites/websiteurl.com/
themes/themename. In both of these examples, “themename” will be the name of the
folder on your computer that contains the theme. You may need to create a subdirec-
tory named “themes” in the relevant “sites” folder.

Enable the New Theme

Once your theme is uploaded to your Web server, you will need to enable it in the
Drupal administration area. Drupal provides an easy-to-use theme selection screen,
as shown in Figure 3.4. This screen allows you to preview each of the themes (using a

Installing Drupal Themes 79

80 Chapter 3 Working with Drupal Themes

static screenshot created by the theme designer) and offers a link to additional confi gu-
ration options that are available for the theme.

To enable the new theme, follow these steps:

 1. Log into the Web site as the administrator.

 2. Choose the “Administer” link from the navigation on the left (or “administra-
tion section” from the front page).

 3. Choose “Themes” from the list of options on the main administration screen.

 4. Scroll down to your new theme, select the check box to “Enable” the theme,
and select the “Default” radio button to activate the theme.

 5. Scroll to the bottom of the Web page and click “Save configuration.”

Your new theme should now be applied sitewide!

FIGURE 3.4 Use the Theme settings administration area to select the theme you want applied to your
Web site. Multiple columns of information help you to enable the right theme for your Web site.

Personal Themes

If your Web site is already live, you may want to enable your new theme privately to
test its implementation before showing it to the rest of the world. To do so, you can
use the “Personal Themes” feature of Drupal. It allows you to enable a theme that only
you can view. Once the theme is working correctly as a personal theme, you can apply
the theme to the entire Web site for everyone to use by following the instructions in
the previous section.

If you are not the main administrator for the site (user/1), you will need to adjust
the permissions so that you can use the Personal Theme feature.

 1. From the Administration main page, navigate to the “Permissions” screen.

 2. Scroll down to the “System” options and check the box for the appropriate role
to “select different theme” as shown in Figure 3.5.

 3. Scroll to the bottom of the Web page and click “Save permissions.”

FIGURE 3.5 Under the system module section, set the permissions for personal themes to test your theme
before publishing it on your live Web site.

Installing Drupal Themes 81

82 Chapter 3 Working with Drupal Themes

Once you have enabled your personal themes, you must confi gure the theme you
would like to use for your account. To enable your personal theme:

 1. In the Drupal navigation menu, navigate to “My account.”

 2. Click the “Edit” tab on your personal account.

 3. Scroll down to the “Theme configuration” section as shown in Figure 3.6 and
select the radio button next to your new theme.

 4. Scroll to the bottom of the screen and click “Save.”

Your new theme will now be enabled for only your account. When your theme has
been completely customized and you know it is bug free, you may apply it to the entire
site using the steps given in the previous section. If you have altered settings within the
Drupal administrative section for your theme, you will need to reapply these changes
when your theme is made public.

Administering Themes

Once your theme is installed, you will need to adjust several settings to customize the
theme for your Web site. Although some of these settings were confi gured as part of the

FIGURE 3.6 In the “Theme confi guration” section of your account page, you can select a “personal
theme” if you are a member of a role that has the correct permissions.

global theme when you fi rst installed Drupal, there may be additional aspects of your
theme that you need to customize. Theme-specifi c settings rely on variables within the
theme’s template fi les. If your theme does not use these variables, changes you make in
the administration area will have no effect.

Global Settings

A single administration screen allows you to control the default display settings for
your entire site, across all themes. The same screen is also provided on a per-theme
basis and allows you to override any of the global settings. To access this confi guration
screen, click the “confi gure” link next to the theme name on the list of themes outlined
in the previous section. To have these changes apply across all themes click the “Global
settings” link near the top of the page as shown in Figure 3.7 before continuing.

FIGURE 3.7 Some theme settings can be applied across all current and future themes by using the Global
settings screen.

Administering Themes 83

84 Chapter 3 Working with Drupal Themes

Take a moment to scan through all of the confi guration options to you. Toggle
display allows you to turn off or on some of the sitewide variables:

 • Logo

 • Site name

 • Site slogan

 • Mission statement

 • User pictures in posts

 • User pictures in comments

 • Search box

 • Shortcut icon

 • Primary links

 • Secondary links

The site name, site slogan, and mission statement are text snippets that you wrote
when you fi rst installed Drupal. If you want to edit this text, you must navigate to
Administer, Settings, Site Information.

In addition to changing the options listed previously, you can specify whether the
ownership and time stamp information will be viewable on each of your pages. Each
time a new content type is added to (or enabled on) your Drupal installation, you will
need to return to this page to adjust its settings.

From the Global settings screen, you can change the sitewide logo. You may either
choose a logo that has already been uploaded or upload a different logo through the
Web-based interface. The shortcut icon (the favicon.ico fi le) can also be adminis-
tered in the same way.

Theme-Specific Settings

Your theme can override the global settings defi ned in the previous section. You should
also defi ne the settings for your individual theme if your site is using different themes
for the Administration pages and for the public Web site. In addition to the global set-
tings, your theme may have additional settings to confi gure. Navigate to Administra-
tion, Site Building, Themes and click on the link “confi gure” next to your theme.

In the Zen theme, the following additional settings are available:

 • Show block editing on hover

 • Customizable breadcrumb separators

 • Theme development settings

Different options may be available for your specifi c theme.

The Front Page

There are several ways to customize the front page of your Drupal Web site. Each
technique must be themed in a different way. This section outlines the steps needed
to implement each solution from the Web site administration area. Each section also
includes the reference to a later chapter where the theming of this type of front page
content is described in full.

Single “Welcome” Node

Some Web sites are very simple. They have a few pages of content, a contact page,
perhaps a summary of upcoming workshops, and not much else. For this type of Web
site, you should create a “home” or “welcome” page and assign it to the front page of
the Web site using the following steps:

 1. Click the "Create content" link from the Drupal-provided Navigation menu.

 2. Choose the content type “Page.”

 3. Add a title and body for the page.

 4. Scroll down to the “Publishing options.” These options are hidden by default.
You will need to click on the link to open the menu options.

 5. Add a check mark beside “Promoted to front page.”

 6. Scroll to the bottom of the Web page and click “Save” to save your page.

This page should now appear as the front page of your Drupal Web site.
Another way to set the front page is to give Drupal a specifi c page to load within

the Site information administration area. If you are working with an existing Drupal
site and cannot fi gure out what is being displayed on the front page, check this option.
Using only the core modules within Drupal, you can also confi gure this setting to have
only one category of content be displayed on your front page. For example, you might
want to highlight only those nodes that belong to the category “Front Page News.”

Administering Themes 85

86 Chapter 3 Working with Drupal Themes

To set the front page to a specifi c category, you will need to know the URL for the
category you want to highlight.

 1. Navigate to the category page which lists all nodes for that category.

 2. Copy the query string for this page from your browser’s address bar. It will be
something like taxonomy/term/113.

 3. Navigate to Administer, Site Configuration, Site information.

 4. Scroll to the bottom of the page and copy your query string into the “Default
front page” form field. Ensure you have only the query string and not the
domain name of the Web site, as well.

 5. Click “Save configuration.”

 6. Navigate to the front page of your Web site to confirm the changes have been
applied correctly.

Content Teasers

At this point you may notice that only a partial summary of your content appears on
the front page along with a “Read more” link, instead of the entire page. If you are
happy with this format, excellent! What you are viewing is a list of “teasers” instead of
the full node. The length of this text can be adjusted in the “Post settings” section of
the administration area. To display the full node on the front page instead of a teaser,
use the following steps:

 1. Navigate to Administer, Content management, Post settings.

 2. Change the “Number of posts on main page” to a number that is appropriate
for your site (the default is 10).

 3. Change the “Length of trimmed posts” to “Unlimited.”

 4. Scroll to the bottom of the screen and click “Save configuration.”

To make your Web site load more quickly, Drupal stores the “teaser” as a separate
fi eld in the database. To make changes to your content retroactively, you will need to
go back and re-save the items currently appearing on the front page. Navigate to the
page you want to change, click the “Edit” tab, and re-save the page.

You can also force the teaser to split in a certain way by clicking the “Split summary
at cursor” button; Figure 3.8 shows the results. Click the “Join summary” button to
return to the default content editing confi guration.

Chapter 5 provides more information on ways to style content teasers.

FIGURE 3.8 Use the “Split summary at cursor” button to create a visual break between the teaser of your
story and the rest of the content. The resulting screen shows the teaser and remainder of the full content
mode.

Several Nodes “Promoted to Front Page”

The default option for “Promoted to front page” can be set per content type. This
option allows you to create a news-style front page that lists all new items of that con-
tent type by default. To set the default options for a specifi c type of content, you will
need to set your preferences in the administration area for that content type.

 1. Navigate to the administration page for a specific content type by following
the path Administer, Content management, Content Types.

 2. Click the “edit” link for the type of content you would like to modify. Drupal
provides you with two content types: Page and Story. In Chapter 2, you also
learned how to create your own content types. Choose the content type you
wish to alter.

Administering Themes 87

88 Chapter 3 Working with Drupal Themes

 3. Scroll to “Workflow settings” and click the link to open the configuration
menu.

 4. Add a check mark beside “Promoted to front page.”

 5. Scroll to the bottom of the Web page and click “Save content type.”

Any new items that are added from that content type will now be published to the
front page by default. You may disable this option when you are creating or editing the
page if you do not want those items to appear on the front page.

Anatomy of a Theme

Whether you are creating a theme from a basic HTML template or converting a theme
from another Web-based content management system, the fi rst step is always to con-
vert your fi les to a simple Drupal theme. You can then add as much complexity as you
like. In this section we examine the steps required to create a page template for a basic
theme.

Naming and Initializing the Theme

Coming up with a name for your theme is perhaps the most diffi cult part of this set
of instructions. The fi rst Drupal theme you create can be created before fi nishing your
morning’s coffee and certainly will not require any kind of fancy skills that you will
need to be wide awake to create and replicate. This new Drupal theme is affectionately
named Bolg. (Yes, Bolg—the goblin chieftain and the son of Azog.) Adjust this theme
name to suit your needs.

Use unique names
Your theme must have a name that is unique to Drupal. This restriction applies
to the directory that holds your theme, not the human-readable theme name.

It means you cannot use the same directory name as a module that is installed, or
the name of a PHP function. If your theme name is already in use, your site may not
function correctly, if at all.

The fi rst thing Bolg needs is a home on your computer. Create a new folder for your
theme fi les. Use the name of your theme—for example, “bolg.” In the bolg directory,
add a new text fi le that has the same name as your new theme directory and the suffi x
.info. For example, create a text fi le called bolg.info that resides in the directory
named “bolg.” This info fi le will contain information about your theme.

You will start with only the most basic information:

name = Theme Bolg

description = The theme of the goblin chieftain.

core = 6.x

engine = phptemplate

You should customize your .info fi le to give the name of your theme as well as a
description of it. The core variable should match the DRUPAL_CORE_COMPATIBILITY
defi ned in modules/system/system.module. This may be version 6.x or higher.
Prior to this version, Drupal handled themes differently. The engine variable refers
to the template engine that will be used to compile your theme. Use phptemplate
for the engine variable. Although Drupal does support several template engines, by
far the most common is phptemplate. If you have inherited a theme that is not
using phptemplate, refer to the online documentation at http://drupal.org/
node/176129 for more information.

Page Template

The next thing to do is create a simple page template for your Drupal theme. You will
start with a very simple static XHTML fi le to learn the basics of theme building. More
complicated XHTML templates can be used at this time if you already have an XHTML
template created. The Bolg template is based on the XHTML 1.0 Strict template from
the Web Standards Project. It can be downloaded from http://www.webstandards.
org/learn/reference/templates/xhtml10t/. It contains the following XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN”

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Conforming XHTML 1.0 Strict Template</title>

</head>

<body>

</body>

</html>

Anatomy of a Theme 89

90 Chapter 3 Working with Drupal Themes

Paste this template into a new fi le named page.tpl.php. This fi le will serve as the
basic framework for everything else; that is, you will drop variables into it.

If you are working from a rendered HTML page, you will need to remove the
content from the page, leaving only the markup that surrounds your page template
regions. You will also need to copy the associated images, CSS, and JavaScript into
your theme’s directory (and rename your index.html fi le to page.tpl.php).

Work with an HTML page
If you are converting your site from a Web-based content management system to
Drupal, you may fi nd it easier to work from a Web page that has been processed

for display in a Web browser instead of the template source fi les. This processed
page is also referred to as a “rendered” page. By using the output instead of the
source fi les, you will be able to see exactly how the page ought to fi t together by the
time it reaches the Web browser.

In the fi le page.tpl.php, you will need to replace the text with the variables
Drupal needs to deposit content into the right places. Here is a quick summary of the
changes made to the Bolg template page:

 • Replaced the contents of the <title> tag with Drupal’s PHP variable $head_
title

 • Placed the variables $head, $styles, and $scripts into the <head> tag of
the template

 • Placed the page content, and its associated variables, into the <body> tag of
the page

 • Added the variable $closure to the bottom (this variable is used by modules
such as Google Analytics)

The template now looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title><?php print $head_title; ?></title>

 <?php print $head; ?>

 <?php print $styles; ?>

 <?php print $scripts; ?>

</head>

<body>

<?php print $title; ?>

<?php print $tabs; ?>

<?php print $help; ?>

<?php print $messages; ?>

<?php print $content; ?>

<?php print $feed_icons; ?>

<?php print $closure; ?>

</body>

</html>

In Chapter 4, you will learn how to expand this code into a complete template,
including additional page variables and navigation. For now, it is useful to see the vari-
ables without having to wade through additional markup.

Including External CSS and JavaScript Files

If you are using external CSS and JavaScript fi les, you will need to update the fi le
bolg.info. To identify your style sheet, use the stylesheets array in your .info
fi le. It may contain values like these:

; Add style sheets for all media

stylesheets[all][] = bolg.css

stylesheets[all][] = navigation.css

; Add a style sheet for screen and projector media

stylesheets[screen, projector][] = projector.css

; Add a style sheet for print

stylesheets[print][] = print.css

Anatomy of a Theme 91

92 Chapter 3 Working with Drupal Themes

If you have the fi le style.css, it will be automatically included in your page tem-
plate only if no other style sheets are defi ned in your .info fi le. Additional informa-
tion about including style sheets in a Drupal 6 theme is available at http://drupal.
org/node/171209.

If you would like your JavaScript fi le to be automatically included, use the fi le name
script.js. If you would like to include additional JavaScript fi les, you will need to
update your .info fi le. Your theme’s JavaScript fi les must reside in your theme’s home
directory. Off-site JavaScript fi les will not be included, as they represent a potential
security threat to your site. In your theme’s .info fi le, add the following line for each
JavaScript fi le:

scripts[] = myscript.js

Regions

Regions can be placed throughout your template. First, however, they must be defi ned
in the .info fi le for your theme; only then can the corresponding variable names be
placed into your page template. You may have as many regions as you would like for
each theme. Regions are defi ned by setting both the PHP variable name and a human-
readable text name as follows:

regions[left] = Left sidebar

regions[right] = Right sidebar

regions[above_text] = Above content

regions[below_text] = Below content

Although three regions ($left, $right, and $footer) are available by default,
they will appear only if you do not have any of your own regions defi ned. If you would
like to use these defaults as well as your own regions, you must explicitly set the default
regions in the same way as your new, custom regions.

Not all feet are the same
$footer_message is the snippet of text defi ned on the site information page;
$footer is a region on the page where you can place blocks.

To place these region variables in the template, you may wish to add a conditional
statement around the outside of each variable so that the container elements are printed
only if the region is being used. This approach will allow you to collapse and expand
your page as appropriate. The following snippet shows how the HTML markup that
contains the variable $header is printed only if the variable is actually set.

<?php if ($header) { ?>

 <div id="header">

 <?php print $header; ?>

 </div>

<?php } ?>

The Drupal convention is to print PHP inside HTML rather than to print HTML
markup from PHP. In other words, you would use the sample markup above and avoid
using the following format in your templates:

print "<h2>$title</h2>";

Screenshot

If your theme has some basic colors, you may also want to include a screenshot at this
point to give a visual cue as to its nature on the theme selection page. This “thumbnail”
typically consists of a screenshot of the theme, although it could be any image that
distinguishes your theme from the others installed on the Web site. The image should
be approximately 150 pixels wide and included in the home directory for your theme.
Update the .info fi le to include a reference to your thumbnail. This information
should be included near the top of the fi le along with the theme name:

screen shot = screenshot.png

If you plan to distribute your theme to the wider Drupal community, you should fol-
low the screenshot guidelines that are included in the Theming Handbook at http://
drupal.org/node/11637. Broader guidelines for publicly distributed themes on
Drupal.org are available at http://drupal.org/node/14208.

Anatomy of a Theme 93

94 Chapter 3 Working with Drupal Themes

Starter Themes

It is a quick process to download a theme that matches your design and to customize
it to meet your needs. Literally hundreds (if not thousands) of Drupal themes can be
downloaded and used immediately; not surprisingly, the quality of these themes varies
greatly. It is a distinct possibility that you will spend as much time adapting a down-
loaded theme to use each of Drupal’s page variables as if you had created your own
theme from scratch.

The alternative to working with mediocre themes is to begin with a Drupal starter
theme that has an entire toolkit of Drupal-specifi c functions and customizations. Of
course, if you need a little bit of design inspiration, there are certainly advantages in
downloading a theme that is visually similar to your wireframes, and then rebuilding it
using a starter kit. By taking this route, you get the advantage of working with a complete
visual design (including banner images and icons) and a full suite of Drupal functions
(including customized administrative links like those available in the Zen starter kit).

You do not need to rely exclusively on your imagination to create both the visual
design and the code for a truly excellent theme. The default theme, Garland, has
received a good scrub and can now be used as inspiration for your new theme. Several
other starter kits are available as well. These kits, which typically have very little style,
are intended to serve as a launching point for building your own unique Drupal theme.
Each kit uses a CSS, table-free layout and has been tested in a variety of browsers. The
documentation explaining how to implement each starter kit varies. Following are the
sources for some popular starter kits:

 • Zen: http://drupal.org/project/zen

 • Genesis: http://drupal.org/project/genesis

 • ATCK: http://drupal.org/project/atck

 • Basic: http://drupal.org/project/basic

 • Beginning: http://drupal.org/project/beginning

 • Blueprint: http://drupal.org/project/Blueprint

 • Clean: http://drupal.org/project/clean

 • Flexible 2: http://drupal.org/project/flexible

 • Foundation: http://drupal.org/project/foundation

 • Framework: http://drupal.org/project/framework

 • Hunchbaque: http://drupal.org/project/hunchbaque

 • Tendu: http://drupal.org/project/tendu

An in-depth comparison of these starter kits is available at http://drupalstaging.
com/starter-themes/starter-theme-comparison.html.

Zen

Touted as being “the ultimate starting theme for Drupal,” the Zen starter kit provides
an example of how to implement all of the basics. Its markup is clean and extensively
documented. Whether you use it as a reference guide, pulling out the elements you
need, or use the actual fi les as a base for your own theme, Zen will help you to produce
cleaner themes, faster. Even a simple design is worthy of beginning with a starter kit
like Zen. Although it is a simple template, the Web site shown in Figure 3.9 was built
using the Zen starter kit. Going from a graphic fi le in GiMP to a deployed theme took
less than a day—all because of Zen. The headaches of fi guring out cross-browser, CSS-
based design were completely eliminated.

FIGURE 3.9 The Memory Garden Retreats theme was built using the Zen starter kit in less than a day.
Although this theme uses a simple Web template, its creation was virtually effortless thanks to the use of
the easy-to-use starter kit.

Starter Themes 95

96 Chapter 3 Working with Drupal Themes

You can download the Zen theme from http://drupal.org/project/zen.
Unpackage the fi les and place the entire directory (and subdirectories) into the themes
folder. The Zen package contains several themes, including a starter kit and Zen Clas-
sic. You can enable these themes by navigating to Administer, Site building, Themes.
The Zen theme will help you to identify each area of a Drupal installation that can be
customized and themed. Working with the Zen theme is much like working with the
core of Drupal—you do not need to alter the main fi les. Instead, you create a subtheme
that customizes every single element available in the main Zen theme (or perhaps
retains some of the Zen’s features).

Use the following steps to create a new subtheme named “Frodo:”

 1. Create your own Zen subtheme by making a copy of the STARTERKIT folder
within the zen folder.

 2. Rename the folder to your new theme name; rename the .info file contained
in the copied STARTERKIT folder to the same name as the folder it is contained
in. For example, if you named your directory frodo, the corresponding .info
file would be named frodo.info.

 3. Copy the main CSS file from the zen folder into the frodo folder.

 4. Copy the liquid, or fixed-width, CSS file from the main zen folder into the
frodo folder.

 5. Copy the print CSS file from the main zen folder into the frodo folder.

 6. Edit the frodo.info file by changing the settings for the theme’s name,
description, and new CSS file names.

 7. Edit the template.php and theme-settings.php files by changing all
instances of STARTERKIT to your theme’s name (“frodo,” in this example).

 8. Enable your new theme in Drupal’s administrative Web interface by navigating
to Administer, Site building, Themes.

 9. Continue to adjust each of your new theme’s settings and styles to suit your
needs.

In addition to the Zen project, a series of default templates are available for many differ-
ent core Drupal components. Most of these fi les correspond to specifi c modules and can
be copied directly from your Drupal installation’s core fi les. For example, three template

fi les are available within the folder modules/comment: comment-folder.tpl.php,
comment-wrapper.tpl.php, and comment.tpl.php. Throughout this book you
will learn about these default templates and discover how to customize them to suit
your needs.

Custom Theme Settings

The Zen theme takes advantage of the custom theme settings that are available in
Drupal 6. When you use the Zen starter kit, you have at your fi ngertips a sample
template that explains how to add even more custom settings to your theme. The Zen
starter kit includes the following custom settings by default:

 • Show block editing on hover

 • Breadcrumb settings (including separators and pages on which to show/hide
breadcrumb settings)

 • Theme development settings (liquid versus fixed layout), and show borders
around main layout elements to emulate wireframes

To view or alter these settings, navigate to Administer, Site building, Themes and
select “confi gure” next to the relevant theme name (for example, Zen or Zen Clas-
sic). Figure 3.10 shows the settings page—it has a form with the global settings at the
top as well as any theme-specifi c settings toward the bottom of the page. To add new
settings to this page, you must alter the fi le named theme-settings.php in the rel-
evant Zen theme directory. If you are using the starter kit, you already have a copy of
this fi le in your theme’s directory. Within this fi le you may add new items to your
theme’s setting by using the Form API.

If the sample settings in the Zen theme are not suffi cient for you to create your
own settings, read the Advanced Theme Settings tutorial at http://drupal.org/
node/177868.

Customizing Banner Images

When working with starter kits, you may still want to download a theme, if only to use
it for visual inspiration. Look for themes that inspire you not just through their pho-
tographs and icons, but also in terms of their color scheme, use of fonts, and layout.

Starter Themes 97

98 Chapter 3 Working with Drupal Themes

Figure 3.11 shows that changing only the banner can make a great difference in the
tone of the design.

To customize the banner for any theme requires only a few steps and rudimentary
skills with a graphics editing program.

FIGURE 3.10 By altering the fi le theme-settings.php, you can add new theme-specifi c settings to the
theme’s confi guration screen. Shown here are the Global settings (top) and theme-specifi c settings (bot-
tom) for the Zen theme.

 1. Create a backup of the current banner by copying the file to a new name (you
will now have two identical banner images with different names).

 2. Using a graphics program (such as GiMP or Photoshop), open the banner
image provided by the theme (the one with the original file name).

 3. Open the image you would like to use in your new banner. Copy and paste the
image into the existing banner. You may need to enlarge or reduce the size of
the new banner image so that it fits within the size constraints of the theme’s
original banner image.

 4. Using the theme’s original file name for the banner, save the new file. Your new
banner image will now appear in the theme.

Migrating to Drupal 6

Many different content management systems (CMS) are available. Whether your expe-
rience is with another Web-based CMS or even an earlier version of Drupal, change in
the systems you use—whether to a different system or to a different version of the same
system—is inevitable. This section focuses on the process of evaluating a template with

Migrating to Drupal 6 99

FIGURE 3.11 The same theme with two different banner images.

100 Chapter 3 Working with Drupal Themes

the goal of converting it to Drupal 6. The fi rst step to migrating from one system to
another is to carefully analyze both the current system and the new system, looking
for similarities and differences between the two. If you are a visual thinker, you may
even want to sketch a simple Web page and mark (in two different colors) the naming
conventions employed by your current system and those used by Drupal.

Regardless of which system you are migrating from, a basic Drupal theme can be
built from any template. If you are not a code monkey at heart, you may fi nd it easier
to work from a HTML page that is built by the CMS and its template, instead of using
the content management system’s template fi les. Review the fi rst section of this chapter
for more information on converting a fl at HTML fi le to a Drupal theme.

Converting a Drupal 5.x Theme to a Drupal 6.x Theme

Drupal themes have changed radically from version 5 to version 6; however, there is
no reason to change the design of page that is displayed to Web site visitors when you
upgrade the theme from one version of Drupal to another. Keeping this point in mind,
you should fi nd it a relatively quick task to upgrade a theme with only a few minor
changes to your current theme fi les. Work through the following checklist to create a
Drupal 6 theme:

 1. Create an information file for your theme. This file must have the same name
as the directory that holds the theme’s files and have the extension .info. It
must contain the basic information about your theme, including its name, its
description, the core version of Drupal the theme can be applied to, and the
template engine.

 2. Remove “region” definitions from your template.php file. List them in the
themeName.info file, instead.

 3. Confirm that the variables you have set in your template files match the cur-
rent default variable names.

 4. The phptemplate_callback() function has been replaced by individual
tpl.php files. Remove relevant functions from the template.php file and
place the themed markup into its corresponding tpl.php file. For example,
the contents of phptemplate_breadcrumb() should be placed into the file
breadcrumb.tpl.php.

 5. Substitute the $layout variable in your template files for $body_classes.
Update your CSS files according to the new classes defined. Classes can be
used to identify front and internal pages, logged-in users and visitors, node ID
and node type, and visible sidebars.

 6. The $language variable is now an object. To update your theme, change this
variable to $language->language.

 7. jQuery version 1.2.3 is now included by default. Scripts can also be placed
into a file named script.js for automatic inclusion in the main template for
the site.

Keep your fi les organized
To keep your theme directories clean, place related tpl.php fi les into relevant
subdirectories. If you have a lot of images, you may also want to put them into a

subfolder.

WordPress

WordPress is a popular blogging tool that can be extended to create basic Web sites.
Like Drupal, it has a rich developer and user community base and offers many plugins
to extend the core framework. WordPress operates best when using a blog-style narra-
tive to organize its pages.

Like Drupal 6, WordPress uses many smaller component fi les for its templates;
however, the structure of a WordPress theme and the structure of a Drupal theme are
quite different. To convert a WordPress theme to Drupal, you will need to combine
some fi les and to split others into smaller components. WordPress will often use a
function (ending with parentheses) to store the same kind of information that Drupal
stores in a variable (starting with a dollar sign). These differences arise because of the
rules created by the template engine used for each of the two systems.

A typical WordPress theme maps onto Drupal fi le names as shown in Table
3.1. A typical WordPress theme maps onto Drupal variable names as shown in
Table 3.2.

Start with the following steps if you are given a WordPress template, but cannot
easily install the blogging tool to confi rm the output:

Migrating to Drupal 6 101

102 Chapter 3 Working with Drupal Themes

TABLE 3.1 WordPress and Drupal File Names

WordPress Drupal

index.php page.tpl.php

header.php page.tpl.php (incorporated into)

footer.php page.tpl.php (incorporated into)

404.php GUI administration function

comments.php comment.tpl.php

searchform.php search-block-form.tpl.php and/or search-
theme-form.tpl.php

 1. Create a new folder with the name gollum.

 2. Create a new .info file that describes your new theme. Be sure to include the
name of your theme, a brief description, and the Drupal core version required
by this theme. Use the WordPress theme screenshot for now. You may want
to replace it later if there are significant enhancements made as part of the
upgrade to Drupal.

 3. Put a copy of the WordPress file index.php into the gollum directory and
rename it page.tpl.php.

 4. Throughout the new page.tpl.php file, replace the WordPress references
to external files that describe structural components with their actual file
contents. For example, replace get_header(); with the contents of the file
header.php and get_footer(); with the contents of footer.php.

 5. Copy the sidebar.php file into the new gollum directory and rename the
file to block.tpl.php. In the new file page.tpl.php, replace get_side-
bar(); with a variable representing the name of the region for this sidebar.
Make sure this region is also defined in the theme’s .info file (for example,
gollum.info).

TABLE 3.2 WordPress and Drupal Variables

WordPress Drupal

the_title(); $title;

the_content(); $content;

next_posts_link(); Handled by Drupal’s pagination

 6. Note the functions that were called from WordPress’s sidebar.php file. These
functions must be matched to blocks within Drupal. Additional information
on blocks is available in Chapter 4. Once your Drupal theme is enabled, you
will place these blocks into the appropriate region of your new template using
the administration Web interface.

 7. Move the contents of index.php, which relate to individual story items, into
a new template file named node.tpl.php. This information may also be con-
tained in the WordPress file single.php. Check both files to ensure you have
migrated all of the WordPress theme components.

 8. Check the WordPress file functions.php for additional theme information
that may need to be migrated to Drupal either using a text-based tpl.php file
or through Drupal’s administration Web interface.

Joomla!

Joomla! is a Web-based content management system similar to Drupal. In direct com-
parisons against Drupal, advocates of Joomla! will often praise its document manage-
ment system and calendaring options; by contrast, Drupal has more sophisticated user
permissions and multiple-site management capabilities.

Joomla! at its most basic is similar to Drupal in its theme creation. It uses a single
fi le to outline the structure of the page and calls in individual variables as needed to
fi ll in the gaps.

Start with the following steps if you are given a Joomla! template. In this example,
the new Drupal theme is named Bilbo. Adjust this theme name to suit your needs.

 1. Create a new folder with the name bilbo.

 2. Create a new .info file that describes your new theme. Be sure to include the
name of your theme, a brief description, and the Drupal core version required
by this theme. If your theme had a screenshot, include it for now. You may
want to replace it later if there are significant enhancements made as part of
the upgrade to Drupal.

 3. Put a copy of the Joomla! file index.php into the bilbo directory and rename
it page.tpl.php.

 4. Replace references to mosLoadModules() in the page.tpl.php file with
a variable representing the name of the region. Make sure this region is also
defined in the theme’s .info file (for example, bilbo.info).

Migrating to Drupal 6 103

104 Chapter 3 Working with Drupal Themes

 5. Create the blocks within Drupal that will replace the output of the mosLoad-
Modules functions in the old Joomla! Web site. Once your theme is enabled
you will place these blocks into the appropriate region of your new template
using Drupal’s administration Web interface.

 6. Move the contents of the Joomla! template file named index.php, which
relate to individual story items, into a new Drupal template file named node.
tpl.php.

 7. Update Joomla!-specific variables to their Drupal equivalents (for example, the
variable for the template directory becomes $directory in Drupal).

 8. Move logic-based PHP scripting to the file template.php. Additional infor-
mation on how to use template.php is included throughout each of the
chapters of this book, including those focusing on page variables (Chapter 4)
and content variables (Chapter 5).

The principles behind good design allow you to map functionality across different
content management systems. Through careful examination of any theme, you should
be able to map its essence into Drupal, even though the frameworks may differ signifi -
cantly. If your specialty is Drupal and you are asked to convert a theme from another
CMS, be sure to ask for the original theme fi les as well as the rendered HTML output
for several pages (and with differing navigation depths). Converting an HTML page to
a Drupal theme can be easier than trying to understand the construction of a theming
system with which you have little or no experience.

Summary

Creating a simple Drupal theme can be very easy. When you are armed with the funda-
mentals of how to create a Drupal theme, it becomes much easier to make Drupal look
however you want. In this chapter, we walked through the following tasks:

 • Finding themes

 • Installing prebuilt themes

 • Customizing settings in the Web-based administration area

 • Creating new themes

 • Using starter kits to create new themes

 • Adding new theme settings that can be customized from the theme adminis-
tration screen

 • Migrating other content management system themes to Drupal 6

This chapter has laid out the skeleton of a Drupal theme. Being organized and
using good coding practices will allow you to easily move from simple layouts to the
more complicated user interactions described later in this book.

Summary 105

107

The Drupal Page

4

Get out your crayons and your coloring book! In this chapter you will learn
how to connect the dots and build context-sensitive page templates. The

adventures in this chapter begin by dissecting how Drupal builds the pages that are
delivered to your Web browser. You will then learn about sitewide variables so you
can split your page templates into a clean HTML framework with Drupal-served
data being injected into the right spots at the right times. Next, you will learn to
draw “outside the lines” with custom page variables and page templates based on
categories, page aliases, and content types. And for those who don’t like to color at
all, the chapter wraps up with information on creating print-friendly templates and
building a mobile-friendly clone of your Web site. In this chapter you dive into the
guts of a Drupal theme. Note that the code snippets included here require a basic
understanding of PHP, CSS, and XHTML.

Elements of a Page

When you understand how Drupal builds its themes, it becomes very easy to
achieve complicated tasks. A common question is, “I need to inject a block into the
content of the front page—how do I do that?” This is not how Drupal thinks about

From the Library of Athicom Parinayako

108 Chapter 4 The Drupal Page

this problem, so the answer seems very diffi cult. Instead of thinking about the page as
it appears in the Web browser, you must think about each of the elements separately.
Figure 4.1 illustrates how Drupal customizes a page with each of its template fi les.

The whole page is controlled by the template page.tpl.php. Within the whole
page, several more template fi les are injected to customize each of the different compo-
nents. These templates theme the output from various modules within Drupal. Block
and node templates are shown in Figure 4.1. Each module that outputs content to the
page will have its own templates, which you can in turn customize.

Dissecting a Theme

Most themes include a customization of the page, block, and node templates, which
are the main building blocks that are used to construct the layout of a page. If you are
working with a downloaded theme, look in your theme’s directory for the following
fi les:

 • page.tpl.php

 • block.tpl.php

 • node.tpl.php

These three fi les are the building blocks that defi ne the markup of your site. In-depth
information on customizing page.tpl.php appears later in this chapter, and addi-
tional information on customizing node.tpl.php can be found in Chapter 5.

FIGURE 4.1 The Drupal page is customized by using many different templates.

Here is another analogy for thinking about the Drupal page template: It is a little
bit like a large parking garage with numbered spaces. The garage itself does not care
which kind of car or truck or motorcycle is parked in each space; it merely houses the
lines that show each of the areas where a vehicle might fi t. The garage might have dif-
ferent colors for each of the levels to make it easier for people to remember which level
they are parked on. The people who operate the garage may have rules about which
space each person may park his or her vehicle. It is impossible to park your vehicle in
two places at the same time in the parking garage.

In Drupal terminology, the page template defi nes regions (levels in the parking
garage) where blocks may appear (assigned spaces for parked vehicles). A single block
may not appear more than once in a page (cars may be parked in only one space at a
time); however, this region can change location within the page template depending
on the context (parking garages may have different colors for each level in the garage).
Later in this chapter you will learn how to assign new blueprints to your “parking
garage.”

This analogy is not a perfect one, of course: In real life, a vehicle can park some-
where other than its assigned place. In contrast, blocks in Drupal may be assigned only
one spot throughout the Web site. Nevertheless, the parking garage analogy is a help-
ful way to think about how the page template keeps order without being aware of the
displayed content of a page.

In Chapter 3, you created with a basic page template that contained only Drupal
output and a skeleton HTML framework. You will now start to build on these basics
to create a more sophisticated page template.

Sitewide Page Variables

The variables available in the template fi le page.tpl.php are classifi ed into several
categories:

 • General utility variables are used to build context-sensitive templates with
directory names relevant to the path of the theme’s location on the server.

 • Page metadata includes page language, style and script tags relevant to the
page, and body classes.

 • Site identity takes the form of the site name, site slogan, site mission, and
logo.

Sitewide Page Variables 109

110 Chapter 4 The Drupal Page

 • Navigation includes items related to primary and secondary navigation, as
well as search boxes.

 • Page content includes the page title, dynamic help text and Drupal system
messages, and tabs.

 • Footer and closing data includes RSS feed icons, footer messages, and final
markup from any modules (“closure”).

Commonly used variables are identifi ed in Figure 4.2, which depicts a fresh instal-
lation of Drupal, using the theme Garland.

FIGURE 4.2 Common variables displayed in the Garland theme.

A complete list of page template variables is available from the Drupal directory
modules/system, in the fi le page.tpl.php, which is also available online at http://
api.drupal.org/api/file/modules/system/page.tpl.php.

General Utility Variables

The general utility variables represent a very basic toolkit with which you can custom-
ize your site’s template based on the characteristics of the visitor. They include the
following variables:

 • Variables useful in linking to images and files within your site, such as $base_
path (the base URL for the Drupal installation) and $directory (the base
directory for this theme)

 • $is_front, which reports if the current page is the front page of the site

 • User status checks, including the test of whether the visitor is logged into the
site ($logged_in) and whether the user has access to administration pages
($is_admin)

Page Metadata

The page metadata variables are used in the <head> tag of the page template. This set
includes the following variables:

 • An object containing the language the site is being displayed in. To print the
text representation of the language to your template, use the following variable:
$language->language.

 • $head_title: A modified version of the page title containing the site name,
for use in the <title> tag.

 • $head: Metadata for metatags, keyword tags to be inserted into the <head>
section.

 • $styles: Style tags used to link all CSS files for the page.

 • $scripts: Script tags used to load the JavaScript files and settings for the page.

In addition to this metadata, there is a wonderful variable that contains a set of
conditions to help you style each page: $body_classes. The $body_classes vari-
able includes the following information: the current layout (multiple columns, single
column); whether the current visitor is an authenticated user; and the type of the

Sitewide Page Variables 111

112 Chapter 4 The Drupal Page

node being displayed (for example, node-type-book). This variable includes only the
names of the classes to be used by your style sheets. To use it in your theme, you must
include the following PHP snippet:

<body class="<?php print $body_classes ?>">

Site Identity

The site identity information comprises a set of variables that outputs information
about your site. You can alter the contents of and/or disable each of these variables
in Drupal’s administration area by navigating to Administer, Site confi guration, Site
information.

 • $front_page: The URL of the front page. Use this variable instead of $base_
path when linking to the front page. It includes the language domain or
prefix.

 • $logo: The path to the logo image, as defined in the theme.

 • $site_name: The name of your Web site.

Two other variables can be set within the site identity section of the Drupal admin-
istration area:

 • $site_slogan: The slogan of the site.

 • $mission: The text of the site mission.

There is no rule that says you must use these last two variables for their intended
purpose; in fact, you can use them to store any information you would like to display
within your page template.

Page Content, Drupal Messages, and Help Text

Content is the most important part of your Web site. You must tell Drupal where to
insert content into the page template! This is done with a simple variable, $content.
You may place this variable anywhere in the template file page.tpl.php. From this
simple variable, Drupal may present a single node, or a list of nodes, or whatever else
Drupal may prepare as the “content” for any given page.

You must also print the title for this content using the variable $title. It is differ-
ent than the variable $head_title, which includes the name of the Web site and is
typically printed in the <title> tag for a page.

There are two modes for each node: view and edit. These modes can be accessed
through the tabs that are displayed on each node. Within your page template, the
variables $tabs (primary level of tabs) and $tabs2 (subnavigation available present in
several administrative pages) are used to place links that access the “view” and “edit”
modes for each node. The tab variables are typically printed between the $title and
$content variables.

Breadcrumbs
Although there is a variable containing the breadcrumb path for each page, the
breadcrumb trail is often incomplete. Many themes choose to display this vari-

able only in the administrative section of the Web page.

Drupal communicates system messages to the user through the variable $mes-
sages. This variable may contain useful information that describes the successful sub-
mission of new content or content modifi cations, errors relating to a form submission,
or messages within the administration system. Messages come in three fl avors: status,
warning, and error. Through your style sheet you can make these messages visually
unique. Typical colors used for these messages are green for status messages, yellow
for warning messages, and red for error messages. The messages are available as CSS
classes and carry the corresponding name (for example, warning messages use the CSS
selector .warning).

In addition to these system messages, Drupal will occasionally provide “help” text,
which is made available through the variable $help. Both the help text and messages
must be specifi ed in your page template to ensure that the appropriate system messages
are delivered to your Web site users.

Creating New Page Variables

In addition to using the variables that are provided by Drupal, you can create your
own. Each time Drupal builds a page, it gathers the information it needs to display
that page and makes sure the information is safe to display. This “preprocessing” is
completed before the page is built using the template fi les. To keep your template fi les
focused only on HTML output, you can insert any custom programming you need
into the relevant preprocess function. Its output will be returned as a variable to the
relevant tpl.php template fi le. Variables created in the preprocess functions are avail-
able only in the relevant template fi les (tpl.php).

Sitewide Page Variables 113

114 Chapter 4 The Drupal Page

Preprocess functions are named according to the template you want to “hook” your
new variables to. Any module that has a template fi le can use the preprocess function.
For example, the page, node, comment, and block types all have associated .tpl.php
fi les; as a consequence, they can all be tied to a preprocess function. A full list of pre-
process functions is available from the API documentation at http://api.drupal.
org/api/search/6/preprocess. More information on creating additional template
fi les is provided later in this chapter.

In the following example, you will add a new variable that can be used in the tem-
plate page.tpl.php. Your imagination is the only limit on what these variables can
contain! The Zen theme inserts additional, sophisticated body classes that allow you
to create very specialized page customizations through CSS. The Garland theme uses
a preprocess page function to hook into the color module. Later in this chapter, you
will learn how to add new image banners based on which section of the Web site you
are viewing.

In this example, we will add a new graphic to the page if the visitor is logged into
the site but is not currently viewing the front page.

function bolg_preprocess_page (&$variables) {

 // Add a "go home" button to page.tpl.php

 if ($variables['logged_in'] == TRUE && $variables['is_front'] == FALSE) {

 $image_path = $variables['directory'] . "/images/go_home.jpg";

 $image_text = t("Go home!");

 $image = theme('image', $image_path, $image_text, $image_text);

 $variables['go_home'] = l($image, "<front>", array('html'=> TRUE));

 }

} // End of the preprocess_page function

In the fi le page.tpl.php, you can now place the new variable $go_home anywhere
you would like the button to appear. Although the snippet could be simplifi ed by

Placing PHP snippets into templates
Throughout the rest of this chapter, you will be working with preprocess functions
and creating new theme variables. The preprocess functions are always placed in

 your theme’s template.php fi le. Theme variables are always placed in the relevant
template fi le (for example, page.tpl.php).

hard-coding the HTML for the image, this method can be easily reused in many dif-
ferent themes and allows the text string to be translated for multilingual Web sites.

Modifying Page Variables

You may also choose to modify variables that have already been set by Drupal. The
Zen theme uses this technique to remove the markup for an empty help message. The
Newswire theme customizes page variables to modify the HTML for the content title
depending on which page is being viewed; Newswire also customizes the logo that is
displayed on the front page and the inner pages of the site. The Acquia Marina theme
removes the markup for sidebars when they are not in use to create a clean, collapsible
template layout. You can implement your own customizations as well.

To reset a variable, simply use the same variable name as an existing page variable.
Do not unset unused variables, as this action may cause an ugly PHP error if the page.
tpl.php fi le tries to print a variable that no longer exists. Instead, set the unused vari-
able to a blank string:

function bolg_preprocess_page (&$variables) {

 // From the Zen theme

 // Don't display empty help from node_help().

 if ($variables['help'] == "<div class=\"help\"><p></p>\n</div>") {

 $variables['help'] = '';

 }

}

In addition to the techniques you will encounter later in this chapter, much can
be gleaned from other themes. Download and examine a variety of themes to see how
other people have customized their page templates by adding, and modifying, their
template variables.

Navigation and Menus

Your page template includes two variables containing navigation menus that you can
place anywhere you like in your Web page: $primary_links and $secondary_
links. These variables contain items from the two Drupal menus of the same name—
primary and secondary links. Drupal menus are collections of links to both on-site and
off-site URLs.

Navigation and Menus 115

116 Chapter 4 The Drupal Page

To add new items to the menus, you can use one of two methods:

 • To add a link to an existing node, navigate to the editing screen for the node
and adjust its menu settings as in Figure 4.3.

 • You may also use the menu administration system to add a page to the menu
as shown in Figure 4.4 by navigating to Administer, Site building, Menus, Add
item. This method allows you to add links to off-site URLs.

To add subsection menu items, you use the same technique described above, but
change the “Parent item” to the menu item in which your new subsection ought to be
included. For example, suppose you have a set of primary links containing “Mammal,”
“Amphibian,” and “Reptile.” To place “Kitten” as a subsection of “Mammal,” you
would set the “Parent item” to be “Mammal” when adding the menu information for
the “Kitten” node.

More menus into your page template
The menu module provides a block for every menu, and blocks can be placed into
any region on the site. To display a menu in a block, navigate to Administer, Site

building, Blocks. Complete the on-screen instructions to add the menu to a Web
site region. More information about creating custom, task-based menus appears in
Chapter 8.

FIGURE 4.3 Adding a node to a menu from the node editing screen.

FIGURE 4.4 Adding a path to Primary links from the menu administration area.

Within the menu administration area, you can specify which menu is used for
$primary_links and which menu is used for $secondary_links. By default, the
variable $primary_links contains menu items from the menu “Primary links” and
the variable $secondary_links contains items from the menu “Secondary links.” To
alter the menus that are used for these two navigation variables, navigate to Administer,
Site building, Menus, Settings and adjust the settings as appropriate.

The variable $secondary_links can be confi gured in one of two ways: Either this
menu can contain a second set of sitewide links for your site with “secondary” content
(for example, legal notice, contact information), or you can confi gure $secondary_
links to contain the relevant subsection navigation for your primary links. Use the
following steps to change the default behavior:

Navigation and Menus 117

118 Chapter 4 The Drupal Page

 1. Navigate to Administer, Site building, Menus.

 2. Choose the Settings tab.

 3. Change the “Source for the secondary links” so that it matches the menu that
is set in the “Source for the primary links.”

 4. Scroll to the bottom of the Web page and click “Save configuration.”

The page template variable $secondary_links now contains the subsection links
that have been defi ned for each of the items in $primary_links. Referring to the pre-
vious example, “Kitten” will now be displayed in the output of $secondary_links
when you select “Mammal” from the list of menu options provided by the variable
$primary_links.

Theming Menus

A menu is built from three nested parts: the menu tree, the menu items (the “leaves”
on the menu tree), and the menu item links. It is possible to alter the HTML for each
of these components, although in most cases customizing the CSS for the default
XHTML markup will be enough to make your menus look great. In addition to their
basic structure, menus contain information about the menu leaves. For example, Fig-
ure 4.5 shows the active trail of the current page, Modules, and includes a menu of
items that are collapsed, and expanded.

Depending on the type of menu items you want to alter, there are two relevant
strategies:

 • To alter the contents of the variables $primary_links and $secondary_
links, use the page’s preprocess function.

 • To alter the markup for all menus, use theme functions.

Drop-down menus
The variables $primary_links and $secondary_links contain only the top-level
menu items for their respective menus. If you would like to use a tree-like structure

(useful for drop-down or fl y-out menus) for your primary or secondary links, you
must use the block version of your menu instead of the theme variables. The mod-
ules MenuTree and Nice Menus both create drop-down menus from your navigation
variables. The project pages for these two modules can be found at http://drupal.
org/project/menutree and http://drupal.org/project/nice_menus, respectively.
Compare their features and choose the most appropriate module for your needs.

Menu (block)

Create content

Administer

Content management

Site building

Blocks

Menus

Modules

Themes

Site configuration

User management

Reports

Help

Log out

My account

Modules

Menu item (block)

Menu item link (inline)

Active menu item link

(Menu item is a leaf)

(Menu item is collapsed
 but contains children)

(Menu item is expanded
and contains children)

My account

Menu item in trail (block)

The primary and secondary links are registered theme variables. You may alter their
contents by using the page’s preprocess function. The variables themselves consist of an
array of links and attributes. To make changes, you must loop through the list of links
and alter each one individually. For example, if you decide to add a new class to each
menu item that is related to its position in the menu, you could use the code snippet
below. This technique would be useful if you wanted to add an icon to each menu
item, because it relies on the exact order of the menu items. Once this order is set, you
may not alter the order of the menu items without also updating the corresponding
CSS styles.

function bolg_preprocess_page(&$variables) {

// Make a shortcut for the primary links variables

$primary_links = $variables['primary_links'];

// Loop through the menu, adding a new class for CSS selections

$i = 1;

foreach ($primary_links as $link => $attributes) {

 // Append the new class to existing classes for each menu item

Navigation and Menus 119

FIGURE 4.5 Menus are built of a menu tree, the menu items, and menu item links.

120 Chapter 4 The Drupal Page

 $class = $attributes['attributes']['class'] . " item-$i";

 // Add revised classes back to the primary links temp variable

 $primary_links[$link]['attributes']['class'] = $class;

 $i++;

}

 // End of the foreach loop

// reset the variable to contain the new markup

$variables['primary_links'] = $primary_links;

} // End of the preprocess function

Using the appropriate unique identifi er for the primary links, add the new classes
to your style sheet:

#primary_links .item-1 { /* styles for the first menu item */ }

This technique works well if you want to add styles based on the order of options in a
menu. Menus are stored in an associative array and have a unique key assigned to each
item. To create a unique menu item identifi er, replace the variable $i with the variable
$link in the snippet given earlier. Your menu items will now be assigned a unique
identifi er that does not change even when the order of the menu items is altered.

For more information about how menus are constructed and themed, read the API
documentation at http://api.drupal.org/api/function/theme_links/6 and
http://api.drupal.org/api/group/menu/6 (scroll to the list of theme functions).

Grid Work

In Chapter 1 of this book, you read about Web page design and were introduced to
“regions” within a page template. Now you are ready to defi ne the regions within your
own page template and to then insert information into these defi ned spaces. There is
no limit on how large or small a region can be within your page template. You may
choose to stack many blocks into a region, or you may prefer to have only one block
contained in a region. Figure 4.6 shows fi ve of the regions available in the Zen theme

as black bars. As you can see, the sizes of these regions differ depending on their loca-
tion in the page.

Regions

Regions are used to place Drupal “blocks” into a Web site. These blocks may include
site navigation menus, custom views, module tools, or custom PHP snippets. To see a
list of the blocks that are currently available for your site, navigate to Administer, Site
building, Blocks. Figure 4.7 shows the blocks that are available for the Hear the North
site. This Web site has only a few modules installed, including a newsletter manage-
ment tool Simplenews.

You can adjust the placement of these blocks by dragging and dropping the crosshair
icon to a new region. To enable disabled blocks, drag them to a new region. To dis-
able blocks, drag them back to the “Disabled” section. After updating the placement
of blocks, you must click the button “Save blocks” to commit your changes to the

Grid Work 121

FIGURE 4.6 Five regions in the Zen theme, each with a different position and size.

122 Chapter 4 The Drupal Page

database. You may also change the order of several blocks within a region using the
same technique.

Adding a new region to your template is a multistep process:

 1. Edit your theme’s info file and add the regions as follows:

regions[new_region_name] = Human-readable region name

regions[second_region_name] = Another region name

FIGURE 4.7 Blocks available on the Hear the North Web site.

 2. Edit the file page.tpl.php and print your new regions to the structure of
your page. Use the variable names you established in your theme’s info file.

 <?php print $new_region_name ?>

 3. Clear the cache to reset the theme registry and enable the new regions. Navi-
gate to Administer, Site configuration, Performance. Scroll to the bottom of
the Web page and click “Clear cached data.”

 4. You should now be able to place blocks into your new regions by navigating to
Administer, Site building, Blocks.

Here is the basic page template repeated from Chapter 3. A few changes have been
made including the inclusion of new HTML divisions and one new region (marked
in bold) that can be positioned with CSS. Putting these regions after the main content
of the site will make the content appear more important to search engines, thereby
increasing its rank in search engine results.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 lang="<?php print $language->language ?>"

 xml:lang="<?php print $language->language ?>">

<head>

 <title><?php print $head_title; ?></title>

 <?php print $head; ?>

 <?php print $styles; ?>

 <?php print $scripts; ?>

</head>

<body class="<?php print $body_classes ?>">

<div id="main">

 <div id="page_title"><?php print $title; ?></div>

 <div id="utils-help"><?php print $help; ?></div>

 <div id="utils-messages"><?php print $messages; ?></div>

 <div id="utils-tab"><?php print $tabs; ?></div>

 <div id="main_content"><?php print $content; ?></div>

 <div id="utils-rss"><?php print $feed_icons; ?></div>

Grid Work 123

124 Chapter 4 The Drupal Page

<div id="new-region-name"><?php print $new-region-name; ?></div>

</div>

<div id="sidebar-left"><?php print $left; ?></div>

<div id="sidebar-right"><?php print $right; ?></div>

<div id="footer"><?php print $region_footer; ?></div>

<?php print $closure; ?>

</body>

</html>

Blocks

With your regions established, you can now fi ll them with blocks. Blocks may be
generated by Drupal core modules, contributed modules, or custom PHP snippets,
including lists of content created by the Views module. For more information on creat-
ing a custom view, refer to Chapter 2.

Commonly used blocks include the following:

 • Navigation menus (created in Administer, Site building, Menus)

 • Lists of content (Views module; see Chapter 2)

 • Login forms (Drupal core; turned on by default)

 • Site categories (Drupal’s Taxonomy module)

 • Recent comments (Drupal’s Comment module)

 • Search (Drupal’s search module)

 • Author information (Drupal’s profile module)

 • Five-star ratings (http://drupal.org/project/fivestar)

 • Facebook, Digg, and social bookmarking links (http://drupal.org/
project/service_links)

 • Similar entries (http://drupal.org/project/similar)

You can also create custom blocks with text, images, and even your own snippets of
PHP code. Sample PHP snippets are available from the Drupal Web site at http://
drupal.org/node/21867. To create a custom block, follow these steps:

 1. Navigate to to Administer, Site Building, Modules and enable the PHP Filter
module. You may also need to adjust the permissions for this input format by
navigating to Administer, Site configuration, Input formats and clicking on the
“configure” link next to PHP filter.

 2. Navigate to Administer, Site building, Blocks.

 3. Select the tab “Add block.”

 4. Add a “Block description.” This description specifies how the block will be
identified in the administration area and is a required field.

 5. Add a “Block title” if you would like a title to appear at the top of the dis-
played block. This field is optional.

 6. Put your text, images, and PHP snippet into the “Block body.” You could also
use plain text or HTML markup here if it was appropriate for your block.

 7. Update the “Input format” to PHP.

 8. Adjust the visibility settings for the “User,” “Role,” and “Page” roles.

 9. Scroll to the bottom of the Web page and click “Save.”

PHP snippets in blocks
Blocks with custom PHP snippets could break the display of your site if they
contain errors. Be sure to carefully test your snippets before placing them into a

block. Place your PHP snippet into the body of a private page to confi rm that it will
not break your site before deploying the snippet as a block.

Sites will sometimes have more screen real estate dedicated to blocks than to the
main content on each page, especially when the blocks provide additional informa-
tion for the node that is displayed on the page, such as author profi le information
or related content. Don’t be shy! Enable the most appropriate blocks for each part of
your Web site. Blocks are included in Drupal’s caching system and will not harm the
overall performance of your site. To enable caching for blocks, navigate to Administer,
Site confi guration, Performance. Under the section “Block cache,” choose “Enabled.”
Scroll to the bottom of the Web page and click “Save confi guration.”

Customizing the Markup of Blocks

You may change the markup of the blocks displayed in your page template by creating
a new template fi le, block.tpl.php. Drupal’s default for this template contains only
a few wrapper HTML elements:

Grid Work 125

126 Chapter 4 The Drupal Page

<div id="block-<?php print $block->module .'-'. $block->delta; ?>"

 class="block block-<?php print $block->module ?>">

<?php if ($block->subject) { ?>

 <h2><?php print $block->subject; ?></h2>

<?php } ?>

 <div class="content">

 <?php print $block->content ?>

 </div>

</div>

For blocks provided by Drupal core, the variable $block->delta represents the
order in which this block was created. For example, the fi rst block has a delta value of
1, the second has a delta value of 2, and so on. In rendered HTML, the fi rst line would
look like this:

<div id="block-user-1" class="block block-user">

As you can see, the output is not nearly as complicated as the variables would suggest!
Check the output to see what your module is using for its delta value. Some modules
provide a text delta instead of a numeric delta.

A full list of block template variables is available from the default block template.
This fi le can be found in your Drupal system fi les: modules/system/block.tpl.
php. A full list of the variables is also available online at http://api.drupal.org/
api/file/modules/system/block.tpl.php.

Search

The default Drupal core engine comes with a module that allows you to search the
contents of your site. There are four steps to enabling search on your site: enable the
search module; update the permissions for users to search content; index the content
on a regular basis through the use of a “cron job”; and display the search form to site
visitors.

 1. The Search module is not enabled by default. To enable this module, navigate
to Administer, Site Building, Modules; enable the module by placing a check
mark next to it, scrolling to the bottom of the Web page, and clicking “Save.”

 2. Next you must enable the permissions for the appropriate roles in your site.
Navigate to Administer, User Management, Permissions. To enable searching
for all users, make sure “search content” and “advanced search” are enabled for
“anonymous user.”

 3. Drupal’s search module does not search the content of the database directly
because this operation would be too time-consuming. Instead, it searches an
index of your content (similar to an index at the back of a book). To initiate
this process of creating or updating the index, navigate to Administer, Reports,
Status report. Click on the link “run cron manually.” The page will automati-
cally refresh, showing you the cron maintenance task that was last run “less
than a few seconds ago.” For more information on configuring cron jobs for
Drupal, refer to Chapter 2.

 4. Two styles of search tools are available for Drupal themes; Figure 4.8 compares
these two search forms. On the left side of the screen, the top option is the
theme’s search box (which has no heading); the second option is the Search
form block (which has a heading). If you like, you can customize the Search

Search 127

FIGURE 4.8 There are two ways to enable a search box in a Drupal theme. On the left side of the screen,
the top option is the theme’s search form; the bottom option is the Search form block.

128 Chapter 4 The Drupal Page

form block to remove the heading. Although these two search forms have a
very similar appearance, they are actually applied in quite different ways. The
Search form block may be placed only into an existing region; in contrast, the
theme’s search box may be placed anywhere within the page template.

To enable the theme’s search box, add the following PHP snippet to your theme’s
page.tpl.php fi le at the appropriate location:

<?php print $search_box ?>

To enable the search block, use these steps:

 1. Navigate to Administer, Site Building, Blocks.

 2. Scroll down to the “Disabled” section.

 3. Select a region for the search form from the select menu.

 4. Scroll to the bottom of the Web page and click “Save blocks.”

Your search box should now appear as a block within your Web site. To further cus-
tomize the options for the search block, you can navigate to Administer, Site building,
Blocks and click on the “confi gure” link next to the Search form.

Changing Templates

In this chapter you have learned how to create a template for your page and how to cus-
tomize the page elements. In this section you will see how to change the page templates
that are used for different sections of your Web site. You may want to use different
templates for each of the following tasks and types of pages:

 • Editing content

 • Displaying a content type

 • User login

 • Front page

 • Categories

 • Offline or maintenance page

Some of these templates are provided by default; others you will need to build from
scratch. The online documentation has a complete list of all default templates provided
by Drupal at http://drupal.org/node/190815. This section describes several of
the page-specifi c template options.

Assigning themes to different parts of your site
This section describes how to change the template that is used within a single
theme. If you need to assign whole themes to different parts of your Web site, you

will need a more powerful toolkit. The contributed module known as sections will
allow you to do exactly this. For more information about this project, visit http://
drupal.org/project/sections.

If you need to provide even more customization on a per-section basis, you may
need The Organic Groups module. This module enables authorized users to create
and manage their own “groups.” Each group gets its own theme, language, and tax-
onomy. The techniques described in this book could be applied to each theme for
each group on the Web site. For more information about this project, visit http://
drupal.org/project/og.

Changing Templates 129

Custom Front Page

What if you need a front page that has more—or fewer—regions than are provided by
a certain template? What if the front page needs to have a bigger banner and a smaller
content area? What if you need to make so many changes that it feels like the front
page needs a theme all of its own? Fortunately, it is very easy to create a custom front
page template for your Drupal site—so easy, in fact, that it is diffi cult to fi ll up a whole
section of this chapter with information about making a new front page template!

To make a custom front page template, follow these steps:

 1. Create a new page template file with the name page-front.tpl.php. This is
a special file name recognized by Drupal as being a unique template to be used
on only the front page of the Web site.

 2. Clear the theme registry by navigating to Administer, Site configuration, Per-
formance; scroll to the bottom of the Web page and click “clear cached data.”

 3. Navigate to the front page of your Web site and marvel!

All pages other than the front page will still use the template fi le page.tpl.php (unless
additional page-specifi c templates are used elsewhere in the site).

Using a view on the front page
If you are using the Views module, you can use the page view to create a custom
front page. Once you have created the view and assigned an alias to it, navigate

to Administer, Site confi guration, Site information. Scroll to the bottom of the Web
page and adjust the setting for the “Default front page” so that it uses the new view
page alias for the default front page.

130 Chapter 4 The Drupal Page

Custom Offline Page

Unfortunately, bad things sometimes happen to good Web sites, and the Web sites
have to go offl ine. Drupal provides a default template when a connection cannot be
made to the database. In addition, the site can be directed to enter “maintenance”
mode so that you can perform some upgrades or other feature enhancements. Figure
4.9 and Figure 4.10 show the default templates for these two offl ine pages.

The offl ine message template will appear only to visitors who are not authenticated;
administrators will still have access to the Web site as they perform their upgrades
when a site is “under maintenance.” To customize these pages, complete the following
steps:

 1. Copy the default maintenance page from the Drupal core directory modules/
system/maintenance-page.tpl.php to your theme’s directory.

 2. Make a second copy of the file for the offline template and name it
maintenance-page-offline.tpl.php.

 3. You should now have two new files in your theme’s directory:

 • maintenance-page.tpl.php: “maintenance” mode

 • maintenance-page-offline.tpl.php: “database is offline”

 4. Adjust these two new templates to suit your needs.

 5. Open your site’s configuration file in a text editor. (This file is found in
sites/yourdomainname.com/settings.php. It is not a theme file, and it is
probably write-protected.)

 6. Remove the # symbol from the following lines:

 • Line 173: # $conf = array(

 • Line 175: # 'theme_default' => 'your_theme_name'

 • Line 187: # 'maintenance_theme' => 'your_theme_name'

 • Line 214: #);

 7. Save the changes and make the file read-only again.

The next time you put your Web site into maintenance mode (or if your database
server ever goes offl ine), you will be able to show your customized apology to the world
instead of the default Drupal “maintenance” message.

Changing Templates 131

FIGURE 4.9 Offl ine message for site “under maintenance.”

FIGURE 4.10 Offl ine message when the database connection fails.

132 Chapter 4 The Drupal Page

In the section “Custom Front Page,” you learned how to create a custom front page
template. The template was activated when the current page was the front page of the
Web site. You may take advantage of this technique to target other types of pages as
well. Page templates are activated according to Drupal’s internal path for the current
page.

Internal path and URL alias
This technique works only with the internal path for a page. You cannot use
URL aliases. You will learn how to work with aliases in the next section. For now,

you may only use paths that are related to Drupal core terminology. For example,
node/5 and node/5/edit are both internal paths that can be tied to a specifi c page
template, whereas books/fiction/story-about-ping is a URL alias. Use the Devel
module to obtain a list of suggested template fi les for each page. If none of the sug-
gested templates matches your needs, consider skipping ahead to the next section
to discover alternative ways to create template fi les.

Drupal looks through a list of suggested templates from most specifi c to least spe-
cifi c and checks your theme’s directory for a matching template fi le. Once it fi nds a
template that matches the criteria, it applies that template to the page. The following
list gives examples of the templates that would match for each of the pages:

 • http://www.example.com/node/5

 • page-node-5.tpl.php

 • page-node.tpl.php

 • page.tpl.php

 • http://www.example.com/node/5/edit

 • page-node-edit.tpl.php

 • page-node-5.tpl.php

 • page-node.tpl.php

 • page.tpl.php

 • http://www.example.com/admin/build/block

 • page-admin-build-block.tpl.php

 • page-admin-build.tpl.php

 • page-admin.tpl.php

 • page.tpl.php

 • http://www.example.com/books/fiction/story-about-ping

 • page-node-2665.tpl.php

 • page-node.tpl.php

 • page.tpl.php

The last item in the list is using a URL alias. There is not a single template that can
be used by default to match any of the words in the URL to assign a template. Instead,
you must know the exact node ID for the page to fi nd a node-specifi c template match.
These template suggestions exist automatically, so use them whenever you need to cre-
ate a new template with the same fi le name and then theme it according to your needs.
You may also need to clear the theme registry to see your new template in action.

Alias: Page

Do you remember the TV show Alias? It was full of wigs and disguises and trickery
and deception and intrigue! URL aliases are a bit like throwing a wig onto a system
path—they change the way the path looks, but keep the content the same. If you want
your site to use URLs that are more closely tied to page content than node/2868, you
will need to use the module Path to create URL aliases. The bad news is that Drupal’s
theming system cannot recognize the URL aliases that you have created with the wigs
and the dark sunglasses. Instead, you must explicitly show Drupal how you want to
convert these URLs into a template suggestion. In the next section, you will learn how
to further customize this process to create template suggestions for each category.

Alias: Page 133

Template overload
Do you really need a whole new page template? Think carefully before implement-
ing the ideas presented in this section. For each new page template you create,

you will need to maintain the markup for an entirely new page. The more you add,
the more you have to maintain. There may be other, less time-intensive ways to sim-
plify a layout—for example, displaying blocks only on certain pages.

The fi rst step in this process is to grab the URL and examine its components before
the page template is processed. Using the URL alias, you will compile a new list of
suggested page templates. Being careful to match the alias for the page you want to

134 Chapter 4 The Drupal Page

redesign, you then add a new template fi le to your theme. Now when Drupal looks for
the best match for its page template, it will use your new list of suggested fi le names
and fi nd the new page template.

New Templates from Aliased URLs

The work of compiling the new list of suggested templates happens in the page pre-
process function in your theme’s template.php fi le. If you have already created a
preprocess_page function in your theme’s template.php fi le, you may add this
snippet to either the beginning or the end of the function. If you do not already have
this function, you will need to include the very fi rst (and very last) lines of this snippet
in your theme’s template.php fi le.

It takes several steps to compile a new list of suggested templates for the URL alias
of your page:

 1. Confirm that the module path is enabled. Without this module, your site will
not have URL aliases and this function will be irrelevant.

 2. By default, Drupal allows you to access the system path, but not the URL alias.
You need to use a special decoder ring, drupal_get_path_alias, to convert
the system path back to its URL alias.

 3. Break the URL alias into its components using PHP function explode. You
will use these components to build the new page template file name.

 4. Make sure your Web page is not an editing page. If it is, Drupal’s templates
can be used and this function becomes irrelevant.

 5. Create a variable to hold the new template suggestions, and establish the base
word for the new template’s file names. You could use any word here, but
using the base word “page” allows you to keep all page templates together. For
example, page-your-custom-url.tpl.php would be alphabetically close to
page-front.tpl.php.

 6. Loop through each part of the URL and build new template suggestions. This
mimics the way Drupal offers its templates. For example, if your URL alias is
books/fiction/story-about-ping, you will now be able to create three
new page templates: page-books.tpl.php, page-books-fiction.tpl.
php, and page-books-fiction-story-about-ping.tpl.php.

 7. Add the new template suggestion to a list that will be handed back to Drupal.

 8. Finally, return the list of suggested template names back to Drupal.

In your fi le template.php, the PHP snippet for these eight steps is as follows:

function bolg_preprocess_page(&$variables) {

// Step 1:

if (module_exists('path')) {

// Step 2:

$path_alias = drupal_get_path_alias($_GET['q']);

// Step 3:

$alias_parts = explode('/', $path_alias);

// Step 4:

$last = array_reverse($alias_parts);

$last_part = $last[0];

if ($last_part != "edit") {

// Step 5:

 $templates = array();

 $template_name = "page";

// Step 6:

 foreach ($alias_parts as $part) {

 $template_name = $template_name . '-' . $part;

// Step 7:

 $templates[] = $template_name;

 }

// Step 8:

 $variables['template_files'] = $templates;

} // End of the edit check

} // End of the check for the path module

} // End of the preprocess_page function

Alias: Page 135

136 Chapter 4 The Drupal Page

After you place this snippet in your theme’s template.php fi le, you may use any
part of the URL alias as a page template name. Note, however, that you must refresh
the theme registry before Drupal sees your new template suggestions.

Page Templates for Views

The Views module is very clever. When you provide a URL alias for your page view,
it automatically performs its version of the function that was described in the previous
section. For example, if you have a view with the URL alias recent/screencasts,
the Views module will automatically generate the following page template suggestions:
page-recent.tpl.php and page-recent-screencasts.tpl.php. The default
page template, page.tpl.php, will be used there if none of these fi les exist within the
theme’s directory.

Adding CSS Classes

The Zen theme allows designers to adapt their layout based on the classes that are
applied to the body. You can add this level of customization to your theme as well.
To add classes to your page, you will need to alter the contents of the page variable
$body_classes. This variable contains a list of classes all separated by a space. To add
new classes to this variable, you can use the same function that was described previ-
ously in this chapter. In the code outlined in the section “New Templates from Aliased
URLs,” replace step 8 with the following lines (the fi rst line is a comment, not part of
the functioning code):

// Step 8:

$classes = implode(' page-', $templates);

$variables['body_classes'] = $variables['body_classes'] . ' $classes';

This will add your new body classes to the end of the list of default classes.

Additional body classes are available
If you want to have even more classes available for theming, you may fi nd the
Themer module useful. This tiny module creates a suite of CSS classes that can be

applied throughout your theme. Additional information is available on the project
page at http://drupal.org/project/themer.

Page Templates for Content Types

If necessary, you can change the way a node is displayed within a page with Drupal’s
node templates. If you knew that one of your content types needed a different page lay-
out, however, you could assign a new page template to that content type. This process
is almost the same as that followed in the previous examples.

To make a content type-specifi c page template, you will need to know which type
of content you are looking at. The only time you can know this with certainty is when
you are looking at a page that contains only one node. This page would normally use
the page template page-node.tpl.php.

To create a template suggestion based on content type, you will need to replace steps
6, 7, and 8 of the preprocess function described in the section “New Templates from
Aliased URLs” with the following snippet. Notice the use of arg() in this example;
arg() is a special variable that grabs individual parameters from the system path for
the displayed page. For example, the value of arg(0) for node/2868 is “node” and the
value of arg(1) is 2868.

if (arg(0) == "node" && is_numeric(arg(1))) {

 $node_type = $variables['node']->type;

 $variables['template_files'] = "$template_name-node-$node_type.tpl.php";

}

If you want to make templates for both URL aliases and content types, you can add
this snippet after step 8 in the code snippet described in “New Templates from Aliased
URLs:”

if (arg(0) == "node" && is_numeric(arg(1))) {

 $node_type = $variables['node']->type;

 array_push($variables['template_files'], "$template_name-node-$node_type.tpl.
php");

}

The examples in this section should give you a solid toolkit for creating unique page
templates. You may think of even more ways to customize your templates, too!

Alias: Page 137

138 Chapter 4 The Drupal Page

Taxonomy Templates

The previous section described how to build new templates based on URL aliases and
content type. When you are designing a site to have category-specifi c enhancements,
it is very likely that you want to change the colors or graphical elements of the page
template. This section explores ways to create a new page template so as to add color-
specifi c sections and new variables. To accomplish this feat, you will use the same tech-
niques you learned in the previous section.

Unfortunately, categories are easily edited and are not associated with permanent
machine names. You may fi nd it helpful to print the taxonomy variable to the page
to see how categories are stored and accessed. You can also obtain this information by
using the developer module Themer Info tool in the Devel module. Refer to Chap-
ter 2 for more information on using this module.

Here are the contents of one taxonomy variable:

[taxonomy] => Array

 (

 [3] => stdClass Object

 (

 [tid] => 3

 [vid] => 1

 [name] => Available for retail and wholesale.

 [description] =>

 [weight] => 0

)

 [11] => stdClass Object

 (

 [tid] => 11

 [vid] => 2

 [name] => Books Published by The Ginger Press

 [description] =>

 [weight] => 0

)

)

In this example, the category being used to change the template variable is the fi rst
category contained in the array of data in the taxonomy variable. The fi rst four steps
of the preprocess_page function described in “New Templates from Aliased URLs”
section are repeated. At this point, you should adjust the variable $target_tax so that
it matches the position of the category you want to use to distinguish between sections
on your site. This function assumes that you are working within one vocabulary and
that each term is a different template. You will need to adjust the scripting if your site
differs from this model.

The explanations of steps 1 through 4 can be found in the section “New Templates
from Aliased URLs.” The new steps perform the following actions:

 5. Check whether this page has a system path of node/nid. This snippet will
work only if you are displaying a single node of any content type.

 6. Check whether this page has been assigned a category. Retrieve the whole array
of categories if it does.

 7. Retrieve the name of the category.

 8. Convert the category name to a plain text string of characters suitable for a file
name. This operation includes replacing spaces with a dash and converting all
characters to lowercase.

 9. Add the new template suggestion to the list of page template suggestions; add
the category name to the list of existing body classes.

function bolg_preprocess_page(&$variables) {

// Step 1:

if (module_exists('path')) {

// Step 2:

$url_alias = drupal_get_path_alias($_GET['q']);

// Step 3:

$alias_parts = explode('/', $url_alias);

// Step 4:

$last = array_reverse($alias_parts);

$last_part = $last[0];

if ($last_part != "edit") {

Taxonomy Templates 139

140 Chapter 4 The Drupal Page

// Step 5:

if (arg(0) == "node" && is_numeric(arg(1))) {

// Step 6:

if (isset($variables['node']->taxonomy)) {

 $target_tax = 0;

 $node_tax = $variables['node']->taxonomy;

// Step 7:

 $tid = array_keys($node_tax);

 $name = $node_tax[$tid[$target_tax]]->name;

// Step 8:

 $clean_name = check_plain($name);

 $dash_name = str_replace(" ", "-", $clean_name);

 $lc_name = strtolower($dash_name);

// Step 9:

array_push($variables['template_files'], "page-tax-$lc_name.tpl.php");

$variables['body_classes'] .= $variables['body_classes'] . " tax-$lc_name";

} // End of the taxonomy check

} // End of the node/nid check

} // End of the edit check

} // End of the check for the path module

} // End of the preprocess_page function

Graphical Headers

The last function introduced in this chapter allows you to change the template or add
a new CSS class to a page based on the category assigned to a page. Wouldn’t it be neat
if you could change the graphical header for that page as well? With the snippet of code
provided here, you will be able to place images into a folder in your theme directory
and have them be automatically displayed for unique categories within your Web site.

This snippet can be used as a replacement for step 9 in the preceding section, or it
can be used as a further enhancement. It assumes that all of the images reside in a sub-
directory of your theme named tax and that all image fi les are named with the lower-
case extension jpg. You may change these settings, if necessary. The image fi les should
all be named according to the following convention: Using the term name, replace all
spaces with a dash and convert all letters to lowercase. A default image should also be
available if a matching taxonomy-specifi c image cannot be found.

$image_dir = "tax";

$ext = "jpg";

$default_image_file = "FILENAME.jpg";

$image_dir = drupal_get_path('theme', 'bolg') . "/$image_dir");

$default_image = "$image_dir/$default_image_file";

$image = "$image_dir/$lc_name.$ext";

if (file_exists($image){

 $variables['tax_header'] = theme('image', $image, $clean_name, $clean_name);

} elseif (file_exists($default_image){

 $variables['tax_header'] = theme('image', $default_image, $clean_name, $clean_
name);

} else {

 $variables['tax_header'] = "";

}

Remember to put the default header graphic into the appropriate image folder in
your theme!

Delivering Plain Content

Sometimes a stripped-down version of your site is more appropriate than one cluttered
with bells and whistles. For example, “simpler is better” when you are aiming to pro-
vide a print-friendly version of a page or a mobile-friendly version of your Web site.

Delivering Plain Content 141

142 Chapter 4 The Drupal Page

Print-Friendly Pages

There are two ways to prepare pages for printing. The fi rst is to prepare a unique style
sheet for printers. The browser will automatically detect style sheets that have been
marked with a media type of “print” and format the page according to the print rules
that have been specifi ed. The second method uses a contributed module, Print, to
enable links that direct the site visitor to new pages that use a print-friendly template.

CSS Print-Friendly Pages

Cascading Style Sheets (CSS) specify the media type they are targeting. When a page
is displayed in a Web browser, you are viewing the styles that have been assigned to
the page by the media types “all” and “screen.” Eight other media types are available,
including “print,” “braille,” “handheld,” and “tv.” A full list of media types is available
from http://www.w3.org/TR/CSS2/media.html#media-types.

The “print” media type specifi es how a page should be formatted when it is printed.
Figure 4.11 shows a Web page formatted by a “screen” style sheet; Figure 4.12 shows
the “print preview” for the same page. Parts of the page that are not relevant to the
content being displayed have been eliminated. The elements that have been removed
include the header, navigation elements, and quotes in the footer.

Most of the work in creating a print-friendly style sheet focuses on fi nding regions
that can be “hidden” from view. To remove these variables from the print-friendly ver-
sion of the page, the CSS property and attribute display: none; are used. The site
name (HICK Tech) is also pulled into the display by using the property and attribute
display: block;. To add a print-friendly style sheet to your site, you must register
the new fi le in your theme’s .info fi le and clear the theme registry by navigating to
Administer, Site confi guration, Performance; scrolling to the bottom of the Web page;
and clicking “clear cached data.” A print-specifi c CSS fi le is typically named print.
css; however, there is no absolute requirement to use this fi le name. Set the print style
sheet with the following snippet in your theme’s .info fi le:

stylesheets[print][] = printstylesheet.css

The print style sheet for the HICK Tech Web site contains only the following
styles:

/* Hide all information that is not unique content for this page */

#header-wrapper, #primary-links, #banner-image, .sidebar-right .sidebar-right,

.breadcrumb, ul.primary, div.links, #bottomboxes, #footer {

 display: none;

}

/* The site name is set to "display: none"

 in the main style sheet, display it now*/

#print-sitename { display: block; }

/* Use print-friendly fonts */

body {

Delivering Plain Content 143

FIGURE 4.11 HICK Tech Web site as it is displayed in a Web browser.

144 Chapter 4 The Drupal Page

 font-family: Serif;

 color: #000;

 font-size: 1em;

 text-align: left;

}

/* Make sure the page is white, with no border, and properly aligned */

#wrapper {

 background: #fff;

 border: none;

 margin: 0;

 width: 100%;

}

FIGURE 4.12 HICK Tech Web site seen in “print preview” mode using the print style sheet.

To add your logo to the site name, you could place a background image on the site
with the following CSS snippet:

#print-sitename {

 display: block;

 background-image: url(/path/to/the/image.gif);

}

If you are concerned about exact color matching (saving your visitor’s valuable color
ink cartridges), consider using a black-and-white logo here instead of your colored
logo.

Several Drupal themes provide print-friendly CSS, including the default theme,
Garland. Review the following themes for additional examples on how to create a
print-friendly style sheet for your theme:

 • AD Redoable (http://drupal.org/project/ad_redoable)

 • NoProb (http://drupal.org/project/noprob)

 • Pluralism (http://drupal.org/project/pluralism)

 • Zen (http://drupal.org/project/zen)

The A List Apart article titled “Going to Print” by Eric Meyer provides excellent
information and strategies for creating print-friendly pages using only CSS. This article
can be found at http://alistapart.com/articles/goingtoprint/.

Print-Friendly Templates

Sometimes your Web site visitors will simply not believe that a print-friendly page is
waiting to greet them in the printer. They may have had too many bad experiences
with Web sites that do not provide a print-friendly CSS, and they may not understand
the mechanics of Web site construction well enough to know such a thing is even pos-
sible. The CrochetMe Web site shown in Figure 4.13 shows a link to a print-friendly
page (displayed in Figure 4.14) with all cruft removed. To create custom templates for
your content, you must generate new links to the end of each node, create new tem-
plates with stripped-down markup, and notify the theme about these new (nonstan-
dard) template fi les. Sounds like a lot of work, eh?

Print module to the rescue! With this nifty little module, you can easily enable print-
friendly, email-this-page, and PDF links to all of your pages. For more information

Delivering Plain Content 145

146 Chapter 4 The Drupal Page

about this module, and to download and install it, visit the module’s project page at
http://drupal.org/project/print.

Although this module does have the ability to create PDFs of pages, it requires a
helper module. The recommended helper module, which is named dompdf, provides
full CSS support and allows for excellent reproduction of the Web page. It does not,
however, support Unicode character encoding or PDF headers. To install the dompdf
module, you must install font support on your Web server. If you are not comfort-
able with system administration, or if you are using a shared hosting service, this func-
tionality will be a little tricky to implement. For more information, visit the dompdf
Web site at http://www.digitaljunkies.ca/dompdf.

FIGURE 4.13 The CrochetMe Web site uses the Print module for its content. The links appears to the
right of the content, below the author information.

FIGURE 4.14 Output of the Print module—a “print-friendly” page.

Mobile Devices

Handheld devices are becoming more common, to the point that having a site that can
be navigated while “on the go” is a must for service-oriented businesses such as restau-
rants, shops, and social networking sites. If you do not have the resources to develop a
mobile application, that does not mean you cannot provide a mobile-friendly version
of your Web site. To provide this trimmed-down version of your site template, you
may use the Mobile theme. This theme is intended to return only clean HTML with

Delivering Plain Content 147

148 Chapter 4 The Drupal Page

no styling (although images embedded in your content are maintained). The links and
sidebars are placed so that mobile or handheld devices can display the content fi rst.
For more information about this module, and to download and install it, visit the
module’s project page at http://drupal.org/project/mobile.

Once the Mobile theme is installed, you will still need to provide a URL for the
mobile version of your Web site. To do so, complete the following steps:

 1. Create a subdomain for the mobile version of your Web site. It is common
practice to replace the “www” in your site’s domain name with the letter “m.”

 2. Using the domain name you created in step 1, create a duplicate folder of
your current site in Drupal’s folder sites. For example, if you were adding a
mobile version to the site example.com, the folder sites would include the
following folders:

 • example.com

 • m.example.com

 These two folders contain identical information at this stage.

 3. In the new mobile site folder, add the mobile theme to the folder themes. You
may also delete any graphical themes that are not required by the mobile ver-
sion of your site.

 4. In the mobile site folder, edit the file settings.php and look for the sec-
tion labeled “Variable overrides.” Update the default theme to “mobile” and
uncomment the relevant lines. Before editing, the code will appear as follows:

$conf = array(

'site_name' => 'My Drupal site',

'theme_default' => 'minnelli',

'anonymous' => 'Visitor',

... approximately 50 lines

);

 After editing, it will appear as follows (note the bold lines have changed):

$conf = array(

 # 'site_name' => 'My Drupal site',

'theme_default' => 'mobile',

 # 'anonymous' => 'Visitor',

... approximately 50 lines

);

Your new mobile site is now ready for use! It uses the same database as the main
site and, therefore, will always be exactly in sync with the main site. No extra work is
required on your part!

Summary

This chapter addressed ways to modify the preprocess function so that you can prepare
and alter page template variables, and alert Drupal of new page templates. More spe-
cifi cally, you learned how to perform the follow tasks:

 • Dissect a theme into its component template files

 • Use sitewide variables in page templates

 • Create new sitewide variables with preprocess functions

 • Establish a grid for a page template through custom regions

 • Configure a sitewide search block

 • Change page templates based on taxonomy, page alias, and content type

 • Create and implement print-friendly pages using CSS and the Print module

 • Create a low-bandwidth site for mobile devices

In the next chapter you will learn how to fi ll up the “content” region of your page
with nodes that are themed exactly as you want them to be.

Summary 149

151

5

This is the pirate chapter! You have waited patiently to learn how to customize
the content of your Web site. You have learned about theming tools, prepro-

cess functions, template files, and Web design. In this chapter you will see how to
combine all of these techniques to reveal the buried treasure—your content. You
will learn how to slice and dice nodes into their component fields. You will learn
how to create treasure maps made of beautiful images and how to customize lists
of content. Grab your content, matey! It’s time to theme it within an inch of its
variables. Yarrr!

Node Templates

The node template controls how each unit of content is displayed within the larger
page template. By default, this includes everything between the editing “tabs” of the
content down to (but not including) the orange RSS feed icon. In Chapter 4, you
learned about the various kinds of page templates, including how to create new ones.
The node module has, by default, two types of node templates: node.tpl.php, for
all nodes that do not have a more specifi c template, and node-contenttypename.
tpl.php, for each type of content.

Drupal Content

From the Library of Athicom Parinayako

152 Chapter 5 Drupal Content

To create a custom node template, you must create a new fi le named node.tpl.
php in your theme directory. You may print any of the following variables into your
node template fi le:

 • $content: Node body or teaser depending on the contents of the variable
$teaser. This variable contains all of the display information for the node
stuffed into a single variable. Later in this chapter you will learn how to use the
$node variable to pick out individual fields for display.

 • $terms: A list of themed links for each of the relevant Drupal categories for
this content.

 • $links: A list of themed links related to modules other than taxonomy. The
links may include “Read more” (which is displayed on the teaser) and “Add
new comment” (which is displayed based on the comment settings).

 • $node_url: The URL of the current node. This link is useful for “permalinks”
to the page. It is commonly used to link the date a blog entry was created to
the full node.

 • $submitted: The full themed submission information (for example, “Submit-
ted by Wiarton Willie on 2 February 2009—9:46 am”). This information can
be broken into the variable $date and the user data (see the last point in this
list).

 • $date: The formatted creation date. This variable uses the Drupal “short” date
setting. You can configure formatting of the date by navigating to Administer,
Site configuration, Date and time. To display a custom-formatted date, you
may use the variable $created and the Drupal function format_date().

 • User data: $picture (the author’s profile photo), $name (username of node
author), and $uid (the author’s ID).

In this chapter, you will also learn how to replace these variables with smaller units
of information. The variable $title is available in the node template as well and
should be output for lists of nodes; however, you may need to adjust your templates to
distinguish between the title displayed in the page template and the title displayed in
the node template (especially on pages that display lists of content).

In addition to the variables that you print to the page and are visible to the Web site
visitor, many other variables contain information about the node that may help you to
format the page appropriately. These variables can be classifi ed into several categories.

Additional Information about the Content. These variables contain information
about the node that is being displayed. They include variables that are relevant to a
single node display page as well as variables that are relevant to a page containing a list
of teasers to several different nodes.

 • $type: The content type of the node (for example, story, page, blog, and cus-
tom content types).

 • $teaser: The variable that announces Drupal is requesting the “teaser” view
for the content. When the page is displayed in full, the related variable $page
returns true.

 • $readmore: If the teaser content of the node does not contain the full content,
a “read more” link is displayed.

 • $zebra: Displays either “even” or “odd”; to be used for zebra striping in teaser
listings.

 • $id: Position of the node within a list of nodes (for example, on the front
page). This variable is incremented each time a node is output.

 • $node: The full array containing all data for the node. This variable may con-
tain “unsafe” data and should be used with caution.

Information about the Site Visitor. These variables are related not to the content,
but rather to the visitor who is viewing the content. They can be useful when you are
customizing the options for authenticated users and administrators.

 • $logged_in: Returns true when the current user is a logged-in member.

 • $is_admin: Returns true when the current user is an administrator.

Information about the Comments Related to This Node. These variables are related
to the comments for this node, including whether comments are enabled for this
node.

 • $comment: Indicates whether comments are enabled for this node.

 • $comment_count: Number of comments for this node.

Node Templates 153

154 Chapter 5 Drupal Content

Status of This Content. These variables are related to the “Publishing options” for a
given node.

 • $promote: Identifies whether this node should be displayed on the front page.
($is_front allows you to check whether the page being displayed is the front
page.)

 • $sticky: Identifies whether this node ought to be displayed at the top of lists
of content.

 • $status: Identifies whether this page is “published.”

A full list of these variables is available from http://api.drupal.org/api/
file/modules/node/node.tpl.php/6. You may also refer to the default node tem-
plate fi le within your own Drupal system fi les. The default template can be found
within your Drupal core fi les at modules/node/node.tpl.php.

The Template File node.tpl.php

Compared to a page template with a full HTML framework for multiple regions and
headers, the default node template contains very little markup. The default node tem-
plate is shown in this section. It includes the default CSS classes that can be used to
provide sophisticated and customized context-sensitive designs. Two items of note: If
the node being displayed is in “teaser” mode, the node title links to the full page of
content. The second item to note is that the page template is also confi gured to display
a title. For example, when the Blog module is enabled, an additional title, “Blogs,”
appears on example.com/blog. The second title is part of the page template and is set
by the module Blog. Note: The editing tabs for a node are actually confi gured within
the page template with the variable $tabs.

<div id="node-<?php print $node->nid; ?>" class="node

<?php if ($sticky) { print ' sticky'; } ?>

 <?php if (!$status) { print ' node-unpublished'; } ?> clear-block">

<?php print $picture ?>

<?php if (!$page) { ?>

 <h2><a href="<?php print $node_url ?>" title="

 <?php print $title ?>"><?php print $title ?></h2>

<?php } ?>

 <div class="meta">

 <?php if ($submitted) { ?>

 <?php print $submitted ?>

 <?php } ?>

 <?php if ($terms) { ?>

 <div class="terms terms-inline"><?php print $terms ?></div>

 <?php } ?>

 </div>

 <div class="content">

 <?php print $content ?>

 <!-- Later in this chapter you will break this into individual fields with the
variable $node -->

 </div>

 <?php print $links; ?>

</div>

Gaining More Control Than $content Provides

The variable $content contains both the fi eld labels and the content values for all
display information for each content type. The variable $content comes prepackaged,
so you cannot use it if you want to insert markup around individual content fi elds or
add explanatory text between fi elds. To accomplish these kinds of customizations, you
must use the variable $node instead. The variable $node is an object containing all
node-related data for the node you are viewing. It includes everything from the node
ID to the categories for the node. By carefully selecting the right part of the variable
$node, you may use any of this information in your template.

Deciphering the Object $node

There are two ways to view the contents of $node. If you have the Devel module
installed and enabled, you may use the function dsm() to create an easy-to-read dis-
play of the information (see Figure 5.1). More information on the Devel module is
available in Chapter 2. In your node template fi le (node.tpl.php), add the following
snippet:

<?php dsm($node); ?>

Gaining More Control Than $content Provides 155

156 Chapter 5 Drupal Content

FIGURE 5.1 The node object displayed with the Devel module function dsm.

If you do not have the Devel module enabled, you may use the PHP function
print_r instead with the following snippet:

<pre>

<?php print_r($node); ?>

</pre>

Using the HTML tags <pre> helps you to see each of the indents that represent
the structure of the object (Figure 5.2). You may also choose to print the variable with-
out the <pre> tags and view the source of the rendered Web page to see the indents
(Figure 5.3).

Gaining More Control Than $content Provides 157

FIGURE 5.2 The sample output from the node object displayed with the PHP function print_r.

FIGURE 5.3 The source of a printed node object in a rendered Web page.

158 Chapter 5 Drupal Content

Each of these items can be accessed by referencing $node->object_property.
For example, if you wanted to print the node ID (nid) content type (type) to the
page, you would include the following snippet in your node template fi le:

<?php print $node->nid; ?>

<?php print $node->type; ?>

This node object contains four subsections:

 • body: contains the same data as the variable $content

 • field_extratext: a custom field added for this content type

 • content: a full listing of the data to be printed to the page as well as format-
ting instructions

 • links: the contents of the variable $links separated into its component parts

Within these subsections, the body contains text and the last three subsections contain
arrays.

This content type contains only one extra fi eld. Thus, if fi ve fi elds were added to the
content type, there would be a total of eight subsections in the node object.

Accessing Content in the $node Object

Content is contained in multiple places within the node object. For example, the body
fi eld for the node can be accessed from the variable as follows: $node->body and
$node->content['body']['#value']. It makes sense to use the shortest variable
name to access the content you need; however, if you need content that is buried deep
within the node object, it can be a frustrating task to fi nd the right variable name if
you are not comfortable with complex array structures. To show you how to retrieve
information from any point in the node object, the next example retrieves the body
fi eld from the pit of despair ($node->content['body']['#value']). Figure 5.4
shows the expanded array for the content subsection of the node object for the content
type story. This is the default content type story with no additional fi elds added. The
code is repeated below Figure 5.4 for a clearer view of the contents.

The array contains the following code:

content (Array, 5 elements)

 body (Array, 5 elements)

 #weight (Integer) 0

To access information for custom fi elds in CCK content types, you can use the
content variable (shown above). Much of the same information also appears as a sub-
section of the node object (see Figure 5.4). The shortcut reveals the content of the fi eld,
but not the label. If you need to display the label text as well, you will need to use the
contents of the array $node->content. For example, to print the contents of the fi eld
“Extra text,” you could use either of the following variables:

Gaining More Control Than $content Provides 159

FIGURE 5.4 The dsm printout of the node object expanded to show the content array.

Markup does not always mean sanitized data
Although the data was entered without HTML in the example, paragraph tags do
appear around the body contents. In this case, these tags indicate that the data

has been fi ltered and is sanitized. In contrast, if the original data contained HTML
markup, there would be no way of knowing this was true from merely looking at the
contents of the node object.

 #value (String, 25 characters) <p>With some content</p>

 #title (NULL)

 #description (NULL)

 #printed (Boolean) TRUE

 #title (NULL)

 #description (NULL)

 #children (String, 25 characters) <p>With some content</p>

 #printed (Boolean) TRUE

To access the contents of the body fi eld, you would start with the node object
and then walk through each of the nested arrays to build the variable: $node-
>content['body']['#value'].

160 Chapter 5 Drupal Content

$node->field_extratext[0]['safe']

$node->content['field_extratext']['field']['items'][0]['#item']['safe']

To access the label for this fi eld, you could use only the following variable:

$node->content['field_extratext']['field']['#title']

Sanitized Data Is More Secure

The variable $content contains only sanitized data. The variable $node, by contrast,
contains a mixture of both sanitized data and raw data. When you use the contents of
the node object in your template fi les, you must ensure that you are using a sanitized
version of the data, or else you must clean the data yourself. You can employ the same
technique to change the fi lter that is used for each content fi eld.

Two Drupal functions can be used to sanitize data: check_plain and check_
markup. The fi rst function converts a string of text to plain text. It is appropriate for
headings, labels, and fi elds that are text-only (for example, a person’s real name or a
phone number). To use this function in your template fi le, insert the following PHP
snippet:

<?php print check_plain($text); ?>

Of course, you would replace the variable $text with the appropriate variable for your
project.

The second Drupal function, check_markup, allows you to apply the appropriate
fi lter to your data fi eld. You may obtain the appropriate fi lter setting from the array
that contains the contents of the fi eld. For example, the following code snippet shows
that the fi eld “Extra text” is currently using the fi lter “2.” In this case, the value “2”
represents full HTML—your site may have different fi lters in use.

field_extratext (Array, 1 element)

 (Array, 4 elements)

 value (String, 12 characters) seven, eight

 format (String, 1 characters) 2

 safe (String, 20 characters) <p>seven, eight</p>

 view (String, 20 characters) <p>seven, eight</p>

If you wanted to refi lter the “Extra text” fi eld with a different fi lter, you would use
the following snippet:

check_markup($node->field_extratext[0]['value'], 3, TRUE)

The constant TRUE performs an extra test within the function check_markup to ensure
that the user viewing the data has suffi cient permissions to see the data.

If you were to insert these variables into your template fi les, matters could get very
messy very quickly. In the next section you will learn how to keep your templates neat
and tidy!

Node Template Variables

In the last section you learned how to dissect the node object into useful components.
You may have noticed that performing this task makes a mess of your node template
fi le. For content types with a lot of fi elds, it becomes much more diffi cult to see what
is happening in the template when you follow this path. To improve the legibility of
the template fi le, you can create new variables using the node preprocess function in
the fi le template.php.

Creating New Variables

To clean up your node template fi les, you can create new variables for use in these
template fi les instead of having to dig into the node object as described in the previous
section. The techniques you used in that section are applicable here as well, except that
this time you will put the contents into a shorter variable name. For this method you
will need to adjust the fi le template.php and the corresponding node template fi le. If
you are working with individual content types, the node template fi le will have the fi le
name node-contenttype.tpl.php.

In Chapter 4, you learned how to use preprocess functions to tell Drupal to use new
page template fi les based on certain conditions. (These were the “garage blueprints.”)
In this example, you will use a similar technique, except that this time you will use the
function THEMENAME_preprocess_node instead of THEMENAME_preprocess_page.
Within the function, two restrictions must be taken into account:

 • The content types use specific fields.

 • If the field is not set for a content type and you try to work with it, an error
message will be displayed to the user.

Node Template Variables 161

162 Chapter 5 Drupal Content

For this reason, you must check which content type you are working with before you
create your new variables. In this example, the theme is named bolg; the content type
is named sample; and the content fi eld uses the machine name field_extratext.
The function is passed a list of all variables currently set for the node template fi le. In
the snippet below you will add a new variable that contains your node content.

function bolg_preprocess_node(&$variables) {

 $node = $variables['node'];

 if ($node->type == "sample") {

 $variables['extratext'] = $node->field_extratext[0]['safe'];

 }

}

This example uses a shortcut to make the new variable accessible to the template
fi le. Instead of setting a variable on its own and then pushing it into the array of
template variables, this function sets the value of $variables['extratext']. The
variables in the node template fi les are built from this array. By setting the variable
$variables['extratext'] in the preprocess function, you ensure that a new vari-
able named $extratext will automatically become available in the node template fi le.
If you have several variables to set for each content type, you may add them all through
the preprocess function.

This variable will appear only for nodes with the content type “sample.” You may
create a unique template fi le node-sample.tpl.php to contain only relevant vari-
ables. You should always check whether a variable is set before trying to print it within
your template fi le. This snippet could be inserted into either the fi le node.tpl.php or
the fi le node-sample.tpl.php:

<?php if (! empty($extratext)) { ?>

 <?php print $extratext; ?>

<?php } ?>

This technique is appropriate if you want to control the markup around each of the
content fi elds in the node-related template fi les.

Changing the Defaults

If you have a lot of different content types, you may not want to maintain individual
template fi les for each content type. In this case you may want to reset the variable
$content instead of creating individual variables that contain each data fi eld. To
replace the contents of a variable that is defi ned by Drupal or by contributed modules,
you need simply match the variable name. For example, if you wanted to insert the
example from the previous section into the variable $content, you would use the fol-
lowing snippet of code:

function bolg_preprocess_node(&$variables) {

 $node = $variables['node'];

 if ($node->type == "sample") {

 $variables['content'] = "";

 $variables['content'] .= $node->field_extratext[0]['safe'];

 $variables['content'] .= "";

 }

}

This code will completely replace the contents of the variable $content. If you plan
to use this technique, you must be careful to include all fi elds in the new content vari-
able. You may use this revised content variable in the template fi le node.tpl.php. For
pages displaying nodes of the content type “sample,” the custom variable $content
will be used; for all other pages, the default content variable will be used.

Node Links

Replacing default variables with new content is not limited to the content variable: You
may, in fact, replace the contents of any of the node template variables described in
the fi rst section of this chapter—including the list of node links. The variable $links
contains a formatted list of links relevant to the node of content. This list may include
“Add a new comment,” “username’s blog,” and “Read more.”

You could replace these links completely by overwriting the variable in the prepro-
cess function. If you prefer to alter only a few items in the list, there are several steps
you will need to complete:

Node Template Variables 163

164 Chapter 5 Drupal Content

 1. Set up a preprocess function to alter the node template variable $links.

 2. Copy the links array from the node object ($node->links).

 3. Make the necessary changes to the array of unformatted links.

 4. Pass the new array through the theming function theme('links') to refor-
mat the new list.

 5. Reset the node template variable $links with the newly formatted list of
links.

 6. Use the new list of links in your node template with the variable $links. You
may need to clear the theme registry to see your changes.

The array of unformatted links uses the following structure:

Array (

 [comment_add] => Array (

 [title] => Add new comment

 [href] => comment/reply/3

 [attributes] => Array (

 [title] => Add a new comment to this page.

)

 [fragment] => comment-form

)

)

For example, if you wanted to add a new link to the list of links, you could do so
by inserting the following PHP snippet in the fi le template.php. In this example, a
link to the front page is added with the visible text of “ET Phone Home” and a title
attribute (tool tip) of “ET wants to go home now, please.”

function bolg_preprocess_node(&$variables) {

 $links = $variables['node']->links;

 $links['home'] = Array(

 "title" => "ET Phone Home",

 "href" => "<front>",

 "attributes" => Array (

 "title" => "ET wants to go home now, please."

)

);

 $variables['links'] = theme('links', $links, array('class' => 'links'));

}

To remove a link from the list of links, you need to know the key for the list item.
For example, the key in the previous PHP snippet is home. The key for the sample
array variable is comment_add. To unset this link item, use the following PHP snippet
in the node preprocess function:

unset($variables['node']->links['comment_add']);

In this case, it makes sense to unset the variable because it is the themed list of links
that is printed to the template fi le, not the variable itself.

Using the techniques described in this chapter, you now have the ability to modify
any node template variable and to create new ones as necessary.

Pages and Teasers

So far in this chapter, you have been learning how to theme a full node of content.
On summary pages, such as the default front page, Drupal presents a list of content
“teasers.” These snippets can also be customized in a number of ways. The techniques
described in this section are applicable to the summary pages provided by Drupal.
Additional information on styling lists of content with the Views module is presented
later in this chapter.

Administrative Control of the Default Settings

The front page of your Web site will, by default, display the fi rst 600 characters for the
10 most recent stories. This list contains any items that have been marked “Published
to front page” in the “Publishing options” section of the content editing screen. By
default, nodes of the content type “story” are promoted to the front page. To adjust the
default publishing settings, follow these steps for each content type:

 1. Navigate to Administer, Content management, Content types.

 2. Select the “edit” link next to the content type you would like to adjust.

 3. Scroll down to the “Workflow settings.”

 4. Select the check box next to “Promoted to front page.”

 5. Scroll to the bottom of the Web page and select “Save content type.”

Pages and Teasers 165

166 Chapter 5 Drupal Content

This change will alter the default setting for new nodes of this content type; it does not
affect existing content.

Now that the correct content types appear on the front page of the site, you can
adjust the default settings for teasers. From the Drupal administration area, select
which items should appear on the summary page and set the length of the teaser (in
characters):

 1. Navigate to Administer, Content management, Post settings.

 2. Adjust the “Number of posts on main page.”

 3. Adjust the “Length of trimmed posts” to the length (in characters). To use the
full text instead of an abbreviated teaser, select “Unlimited” from the drop-
down list. You can also adjust this setting on a per-story basis by using the
“Split summary at cursor” when creating and editing content.

 4. Scroll to the bottom of the Web page and select “Save configuration.”

These changes will not affect existing content. If you have adjusted the length of the
teaser, you will need to edit and re-save each of the pages appearing on the front page
of your Web site to enable the new teaser length.

A Teaser Is Not a Summary

A “summary” is typically a concise synopsis of a whole report, document, or event. In
contrast, a “teaser” is a shorter version of the content used to entice you to “read more.”
Drupal has two ways of preparing these shortened node displays. By default, Drupal
creates a “teaser” of each node based on the number of characters in the Post settings.
You can override these settings by adding the HTML comment <!-- break --> at
the point where you want to divide the teaser from the whole content.

The second technique is to create a true summary of your content using the teaser
attributes and a custom theme. Figure 5.5 shows the content editing form before “split-
ting” the node into a “summary” and the full node. Figure 5.6 shows the content edit-
ing form after making this split. From a technical point of view, this “Split summary
at cursor” operation merely adds the HTML comment break that will override the
default settings for the display of content “teasers” as described in the previous para-
graph; however, using the button to “Split summary at cursor” reveals a second option:
Show summary in full view. This check box allows you to hide or reveal the summary
at the top of your node.

When the summary is displayed, it appears as part of the full article and is not visu-
ally distinguishable from the main content. Assigning a unique style to the summary

on the full node display requires a little bit of Drupal preprocessing acrobatics. Assum-
ing your theme’s name is “bolg,” add the following code to your preprocess node func-
tion in the fi le template.php. You may add this snippet to the beginning or the end
of the function if it exists already.

Pages and Teasers 167

FIGURE 5.5 Before splitting the node editing form into a “summary” and a full node body.

FIGURE 5.6 After splitting the node into the summary (above) and a full node body (below).

168 Chapter 5 Drupal Content

function bolg_preprocess_node(&$variables) {

 if ($variables['page'] === TRUE) {

 // Reload the cached node to find the location of <!--break-->

 $node = node_load($variables['nid']);

 if (strpos($node->body, '<!--break-->') == 0) {

 $variables['styled_summary'] = check_markup($node->teaser, $node->format,
FALSE);

 } else {

 $variables['styled_summary'] = FALSE;

 }// End of check for <!-- break -->

 } // End of test for 'is this a page?'

} // End of function bolg_preprocess_node

In your node template, you may now use the variable $styled_summary when you
are viewing the full page.

<?php if ($page) { ?>

 <div class="summary"><?php print $styled_summary; ?></div>

<?php } ?>

This formatting trick was fi rst described on the following Web page: http://www.
disobey.com/node/1833.

Templates for Teasers

Theming for both full nodes and node teasers is defi ned in the node template fi le (and
in the fi le template.php if you are using preprocess functions). Two magic node
variables, $page and $teaser, are available to help you distinguish between what
shows up in a summary and what is displayed in a full node. These variables contain a
Boolean value, rather than content to be displayed. A Boolean variable is a special kind
of variable—it may contain only one of two values, either a “positive” or a “negative”
value. If the current display ought to be a “teaser,” the variable $teaser will return
1 or true and the variable $page will return nothing, 0, or false. Your conditional
statement may test against any of these values. as a Boolean value can be all of these
values: 1 and true OR nothing, 0, and false. You can also use a simple “existence”
test by placing only the name of the variable inside the test statement. The opposite

strategy is to use an exclamation mark to test if the variable does not exist. Boolean
variables are magical that way.

Within your node template fi le, you must select the elements you want to display
or hide for teasers and full nodes. To do so, add conditional statements that hide or
display each of the variables and associated HTML markup. For example, the Garland
theme provides a linked version of the node title when not displaying a full node. The
snippet is as follows:

<?php if (! $page) { ?>

 <h2><a href="<?php print $node_url ?>" title="<?php print $title ?>">

 <?php print $title ?>

 </h2>

<?php } ?>

This technique works for small customizations within the template fi le; however,
you can also separate the markup completely for the teaser and full views of your con-
tent. To enforce this separation, simply split your template fi le into two parts, using a
conditional statement to separate the two sections. For example, in the following tem-
plate, the display for the “teaser” appears at the top of the template fi le and the display
for the “full node” view is found at the bottom of the template fi le. Only the relevant
part of the fi le is displayed.

<?php if ($teaser) { ?>

 <!-- HTML and variables for the teaser go here -->

<?php } else { ?>

 <!-- full node template goes here -->

<?php } ?>

Images

Several different Drupal modules allow you to integrate images into your Web site.
Which module is most appropriate depends on how you want to integrate images into
your Web site.

If you want to insert an image occasionally and do not want to install image-related
modules, you may want to use an offsite hosting service, such as Flickr, to house your
images.

Images 169

170 Chapter 5 Drupal Content

Choosing Your Visuals

Each of the techniques for image integration is described later in this chapter. To whet
your appetite for using visuals, however, this section begins with a small gallery dem-
onstrating the use of several image modules.

Image Module

Figure 5.7 and Figure 5.8 show how the Image module can be integrated into your
Web site—including images embedded into node, a “Random Image” block, and an
Image Gallery.

FIGURE 5.7 Images appear in the body of the node (left) and as a Random Image block (right).

FIGURE 5.8 Images are also available from an image gallery (the Random Image block also appears on
the right).

CCK, ImageField, and Image Cache Modules

CCK, ImageField, and Image Cache help you keep your Web site looking consistent.
The Toilet Birthdays Web site (Figure 5.9) accepts two images per node—a photo of a
toilet and a photo of a person. Different sizes are used for the two images.

Images 171

Make pictures of words
It can be frustrating to settle for the standard set of installed fonts for headings
and titles in Drupal. It is now possible to make image-based headings on the fl y.

The module Textimage allows you to create images using the GD2 and Freetype
libraries. These pictures of words can be used as theme objects, headings, and count-
less other possibilities. Your new images may have a background, have a background
image, or be transparent. There is also limited support for CCK fi elds. The proj-
ect page for the Textimage module can be found at http://drupal.org/project/
textimage.

172 Chapter 5 Drupal Content

Images

FIGURE 5.9 The Toilet Birthday Web site enforces a common look and feel for images with CCK, Image-
Field, and Image Cache.

Images Hosted Offsite

If you want to insert an image occasionally and do not want to install image-related
modules, you can use an offsite hosting service, such as Flickr, to house your images.
Flickr encourages you to display images from their hosting service in your site. It has
two requirements: (1) You must have permission to include the photo in your own
work (whether it is your own photo or an image that is available for use under a Cre-
ative Commons license); and (2) you must link the photo back to Flickr’s Web site.

If you have a rich text editor (such as TinyMCE) installed, you will be able to drag
images from Flickr into the text editing window on your own Web site and the image
will automatically be linked back to Flickr. Handy and easy, yes?

To provide random images or to include a few of your most recent images, Flickr
requires you to create a JavaScript “badge.” Log into your Flickr account and navigate
to http://www.flickr.com/badge.gne. You will then be asked a series of questions
to customize your Flickr badge. At the end of this process, you will receive a JavaScript
snippet. In your Drupal Web site, perform the following steps:

 1. Navigate to Administer, Site building, Blocks.

 2. Select “Add block.”

 3. Add a block description and paste the JavaScript snippet from Flickr into the
body of your new block. Change the “Input format” to “Full HTML.”

 4. Scroll to the bottom of the screen and select “Save block.” You will be returned
to the Block summary page.

 5. Place your new block into the appropriate region. Scroll to the bottom of the
screen and select “Save blocks.”

If you prefer to host your images offsite, but you want to include a lot of them
in your Web site, you should consider using the CCK-related module, Embedded
Imagefi eld. This module allows you to integrate images from third-party services as a
CCK fi eld, and it creates links back to the hosting providers as part of the module. The
project page for this module is http://drupal.org/project/emfield.

Image Module

The Image module is the oldest image-related modules in Drupal. It has been an
integral part of many “I can’t believe it’s Drupal” Web sites, including the online arts
community at http://www.terminus1525.ca. This module allows users to upload
images to Drupal. Images of predefi ned sizes are automatically created and can be inte-
grated into the site. Specifi cally, images can be posted individually, included in stories,
and grouped into galleries using taxonomy terms. To include a single image per node,
users may also use the module Image Attach (which is shipped along with the Image
module). A bulk import tool is also provided.

The project page for the Image module is http://drupal.org/project/image.
Installation instructions are included in Appendix A of this book. Once the module is
installed, you will need to enable the appropriate permissions for module-related func-
tions by navigating to Administer, User management, Permissions.

Images 173

174 Chapter 5 Drupal Content

Images inside your content
The Image module can be integrated with the Image Assist module, thereby al-
lowing users to insert inline images into their posts. Additional information is

provided in Chapter 6, which covers theming forms.

When the Image module is enabled, a new content type, “Image,” becomes avail-
able to users with appropriate permissions. Figure 5.10 shows the form to upload a
new image. As with any other content type, you may fi nd this form by navigating to
the “Create content” item on the navigation menu (typically displayed as a block).

Default sizes are provided for thumbnails and preview images. You may confi gure
these defaults by navigating to Administer, Site confi guration, Images (Figure 5.11). If
you change the default image sizes, they will be resized on demand (thereby providing
for a distributed server load instead of representing a single hit to the server).

FIGURE 5.10 Uploading a new image with the Image module.

Images 175

FIGURE 5.11 Confi guring the default image sizes for the Image module.

Galleries

You may create both galleries and subgalleries with the image module-related Gallery
module. After enabling the Gallery module, navigate to Administer, Content manage-
ment, Image galleries. Select “Add gallery” and complete the form (including the “Par-
ent” item to distinguish main galleries from subgalleries).

Two theming functions are available for galleries. At the time of this writing, a
template fi le was not available, however. Thus, to theme the gallery, you must copy the
relevant function into your theme’s template.php fi le and adjust the properties as
necessary to suit your needs.

 1. In your file system, navigate to your modules directory where the Image mod-
ule is stored.

 2. Navigate to the folder image/contrib/image_gallery.

176 Chapter 5 Drupal Content

 3. Open the file image_gallery.module and look for the function
theme_image_gallery.

 4. Copy the contents of this function (including the line function theme_
image_gallery) to your theme’s template.php file.

 5. Alter the name of the function to YOURTHEMENAME_image_gallery (from
theme_image_gallery).

 6. Adjust the contents of this function to match your desired output.

 7. Clear the theme registry by navigating to Administer, Site configuration, Per-
formance. Scroll to the bottom of the Web page and click “Clear cached data.”

Repeat these steps for the function theme_image_gallery_img in the fi le image_
gallery.module.

CCK Images: ImageField and Image Cache

“With great power comes multiple confi guration screens.” This is not quite the advice
that Peter Parker gets from Uncle Ben, but it is true for the module ImageField. Whereas
the Image module gives you an “out of the box” solution for creating image galleries,
ImageField gives you great power but requires several additional steps to confi gure that
functionality. As its name implies, this module allows you to add image upload capa-
bilities to any content type. It requires the modules CCK, FileField, and ImageAPI.

Once the ImageField module has been installed, you must create a new content
type for “images.” You may also extend an existing content type to include one or more
image fi elds. The content type may use as many fi elds as are relevant for your Web
site. For example, you may want to include fi elds for the photographer’s name and
the distribution license. Information on creating custom content types with the CCK
module can be found in Chapter 2; information on theming custom content types
appeared earlier in this chapter. You will use the Themer Info to identify the correct
display image in each instance of your content. Once you have the new content type in
hand and have uploaded a few images, you are ready to create galleries using the Views
module. This module is covered in the next section.

In addition to the ImageField module, you will need to install the Image Cache
module (http://drupal.org/project/imagecache). This module allows you to
resize images. Although it is similar to the Image module described earlier in this chap-
ter, Image Cache gives you much greater control over the derivative images it creates.
For example, you may resize and crop images to create square thumbnails! The online

documentation for the Image Cache module is excellent and is kept up-to-date at
http://drupal.org/node/163561.

Making Lists of Content with Views

Now that you have learned how to customize individual nodes, it is time to custom-
ize the entry points into those nodes. You can use the Views module to create lists of
nodes that may be displayed as either a block or a page. Chapter 2 introduced the
procedure for creating a basic view. If you are not familiar with the module Views, you
may want to review the information in Chapter 2 before proceeding with the rest of
this chapter.

Views are available as blocks that can be placed into a region, as full pages, and as
RSS feeds. In this section, you will learn how to alter the “guts” of these views.

The Views module offers six default lists of content:

 • archive: Displays a list of months that link to content for that month.

 • comments_recent: Contains a block and a page to list recent comments. The
block will automatically link to the page, which displays the comment body as
well as a link to the node.

 • frontpage: Emulates the default Drupal front page. You may set the default
home page path to this view to make it your front page.

 • glossary: Lists all content, organized in alphabetical order.

 • taxonomy_term: Emulates the Drupal core’s handling of taxonomy/term. It
also emulates Views 1’s handling by having two possible feeds.

 • tracker: Shows all new activity on the system.

You may choose to customize these default views, or you may decide to create your
own view from scratch. Once your view is created, you may theme it by using a selec-
tion of appropriately named template fi les.

Template Files

Default templates are provided for each view that you have created from scratch or
customized from the default views. A sample template fi le is available within the Views
administration area for each view. These “fi les,” which are generated on the fl y, contain
sample markup as well as the full list of variable names you may use in each template

Making Lists of Content with Views 177

178 Chapter 5 Drupal Content

fi le for each view. To use them, you must copy and paste the sample templates into an
actual fi le in your theme’s directory.

To view these fi les, complete the following steps:

 1. Navigate to the administration area for a specific view. For example, follow the
path Administer, Site building, Views, edit Archive.

 2. Under the Basic Settings, click “Theme: Information.” This will reveal a series
of template files in three categories: Display output, Style output, and Row
style output (Figure 5.12).

The three types of template fi les for the archive views—Display output, Style out-
put, and Row style output—are common to all views, although some differences in
the contents of the sample templates may exist depending on the view. Other views
provide additional template fi le suggestions. Each of the three template categories
shown in Figure 5.12 is responsible for theming different parts of the view output:

 • Display output: Responsible for the framework of the view, including the
header, footer, rows, empty, pager, and feed icon. To alter all views, use the
template file views-view.tpl.php in your theme.

 • Style output: Responsible for the heading and layout of rows. To alter these
variables for all views, use the template file views-view-unformatted.tpl.
php in your theme.

FIGURE 5.12 Suggested template fi le names are provided for three levels of theming: Display, Style,
and Row.

 • Row style output: Responsible for the node object. You may use one of the
suggested file names, or you may use a node template file to theme the output.
For example, you may access the file node-view-VIEWNAME.tpl.php in your
theme’s directory. Check the suggested template file for more information on
the most appropriate template file to use for your view.

You will also have a separate template fi le for each display fi eld. For example, the
default view comments_recent contains two additional template categories:

 • Field Comment: Title (ID: subject)

 • Field Comment: Post date (ID: timestamp)

To use template fi les provided by the Views module, follow these steps:

 1. Determine the output you would like to change.

 2. Click the name of output to reveal the contents of the default template (Figure
5.13). Copy the contents of the default template that is displayed within the
Views administration area.

 3. Return to the list of outputs by clicking the link “theming information.”

 4. Choose the most specific file name that is appropriate for your theming needs.

 5. Create a new file in your theme’s directory that matches this file name. You
may place this file in a subdirectory within your theme’s directory.

 6. Paste the contents of the sample template provided by the Views Web interface
template into your new template file in your theme directory. Customize the
PHP and HTML output to suit your needs.

New Variables, with Preprocess Functions

Once you have created the new template fi le, you may also create new variables with
the preprocess function in the fi le template.php. For example, if your theme is named
bolg and your view is named All_Goblins, and you want to create new variables for
the template fi le views-view.tpl.php, you could create new variables by placing the
following function into your theme’s template.php fi le:

function bolg_preprocess_views_view__All_Goblins (&$variables) {

 $variables['orcs'] = "<big>goblin</big>";

}

Making Lists of Content with Views 179

180 Chapter 5 Drupal Content

Note that two underscores appear between views_view and the view name,
All_Goblins.

If you wanted to create a new variable for all views, you would use this simplifi ed
function name with the same code snippet as the previous example:

function bolg_preprocess_views_view (&$variables) {

 $variables['orcs'] = "<big>goblin</big>";

}

FIGURE 5.13 The contents of the default template for Display output.

This variable will now be available to you in the relevant template fi le. In the preceding
example, two different preprocess functions were used. The fi rst, bolg_preprocess_
views_view__All_Goblins, enables the variable in the template fi le views-view-
-All_Goblins.tpl.php. The second, bolg_preprocess_views_view, enables the
variable in the template fi le views-view.tpl.php. There is no inheritance from a
general template fi le to a more specifi c template fi le name. The variables created in the
preprocess function only apply to the function’s matching template fi le. You must clear
your theme registry by clearing the cache in Drupal's administration area before the
new variables will be available in your template fi les.

Summary

Thar she blows! It’s the end of the pirate chapter, matey! With the skills learned in this
chapter, you are now able to theme nodes using template fi les, preprocess functions,
and the Views module. More specifi cally, this chapter focused on the following tasks:

 • Customizing the template files for generic nodes

 • Creating new template files for each content type in a Web site

 • Displaying individual fields from a content type that has been extended with
CCK

 • Customizing the summary and full node display

 • Choosing between the Image module and the ImageField module for use on a
Web site

 • Creating galleries with the Image module

 • Customizing the output from the Views module

 • Using preprocess functions to create new variables for your Views templates

In the next chapter you will learn how to customize the forms that are used to edit
content on your Web site.

Summary 181

183

6

Customizing the
Content-Editing Forms

Matt Haughey (MetaFilter) once said, “Forms are tedious, confusing, often
poorly designed, and most people equate their use with things like paying

taxes.” In this chapter, you will learn how to alter Drupal’s forms so that their pur-
pose is obvious and they are easy to use. Most Drupal themes focus their styles and
manipulations on the customization of content, not input forms. As a themer, you
may have created a page template and perhaps individual node templates for each of
your content types. Forms are often overlooked by themers because the code seems
complicated and the forms are “good enough” that the hassle of learning how to
code them does not seem to be worth the trouble. This chapter will help transform
your forms from “good enough” to “elegant and easy to use.”

The chapter begins with a gentle introduction to Web forms. You will learn
what happens behind the scenes when Drupal processes a form. From here you will
build your own input forms using the Content Creation Kit (CCK) module. Next
you will learn how to apply some basic form enhancements using only Cascading
Style Sheets (CSS). Several contributed “helper” modules are outlined in this part
of the chapter that you may want to download and install. You will learn how to
add rich text editing so that your authors may easily bold and italicize their content
(and add links to new pages and images, too).

From the Library of Athicom Parinayako

184 Chapter 6 Customizing the Content-Editing Forms

In the last half of the chapter, you will explore how to take complete control of
content editing forms. The techniques you learn in this part of the chapter can also be
applied to other Drupal forms (including the contact form and login forms). You will
learn how to alter form elements, including how to change text labels and modify the
size of input fi elds, and how to hide form fi elds from unauthorized users. The chap-
ter will also suggest strategies for dealing with very long forms. Finally, you will learn
how to facilitate access to content editing screens by adding helper links to views and
blocks.

Web Forms

Throughout this chapter, you will learn how to alter the structure and the visual design
of forms. To understand both the limitations of these techniques and the many pos-
sibilities that are available to you, it is important to understand how Drupal prepares,
displays, and processes its Web forms. When you use a module to build a form, more
options become available than would be feasible if you used only the theme layer. From
the module point of view, Drupal forms are created as follows:

 1. Prepare the form by assembling each of the components from the database that
will make up the form.

 2. Build the HTML form elements (including any tasks associated with the
processing).

 3. Display the form.

When the data is submitted (or “posted”), Drupal goes through the fi rst two steps
again to assemble the form requirements for comparison against the data that was
posted by the content editor. This time, instead of rendering the form for display,
Drupal completes the following steps:

 1. Validate the submitted data.

 2. If the data is valid, save it to the database.

 3. If the data is not valid, repeat steps 2 and 3 from the previous list. These
actions re-create the form in the Web browser with error messages that allow
the content author to revise the form values and resubmit it. These steps are
repeated until the data is validated and saved to the database, or the content
author abandons the Web form (at which point the content is lost).

Once the form has been successfully submitted, Drupal moves the content author
to a page defi ned in the module. For the submission of content forms, this page is
the “view” of the newly saved content. A complete work fl ow illustration is avail-
able at http://drupal.org/node/165104. This illustration is part of a larger Form
application programming interface (API) documentation section of the Developing for
Drupal Handbook. More information about the Form API is available from http://
drupal.org/node/204270. Remember, however, that this documentation is written
for module developers; as a consequence, many of the steps are not accessible to you
as a themer.

In this chapter, you will learn how to create a custom content form with the CCK
module. This module allows you to add new fi elds to your content types, and to change
their display order in the rendered form. With your new form in hand, you will then
learn how to alter this form using Drupal’s Form API.

Form Candy

You may have heard of “eye candy”? It is something that is remarkable for its visual
appeal, but not necessarily its demand on your intellect. Analogous to eye candy, form
candy consists of Web form enhancements that are remarkable for their visual appeal.
These elements may also help users to edit content. This section is dedicated to the
modules, CSS tricks, and theme confi gurations that will take your forms from boring
to zippy and fun. Like kittens with a ball of yarn, your editors will enjoy working on
their content and will be relieved that they no longer have to fi ght with forms.

Working with Style Sheets

A lot can be done to improve the visual layout of forms by using both Drupal’s default
HTML and custom CSS styles. Form-specifi c fi les can be added to a separate style
sheet in your theme’s directory (for example, forms.css). This new style sheet must
be added to your theme’s .info fi le using the following line:

stylesheets[all][] = forms.css

Once you have registered the new style sheet, remember to clear your theme reg-
istry’s cache. Navigate to Administer, Site confi guration, Performance. Scroll to the
bottom of the Web page and click “clear cached data.”

Form Candy 185

186 Chapter 6 Customizing the Content-Editing Forms

If you would rather work with only your own CSS styles for HTML forms, without
having to override the default style sheets provided by Drupal’s core, you may replace
these fi les by registering an identical fi le name in your theme. For example, if you
wanted to replace the styles related to basic HTML elements and forms, you would
overwrite the fi le modules/system/defaults.css. Check the directory modules/
system for the full list of CSS fi les you may want to replace. If you are adding a new
style sheet, you must also register it in your theme .info fi le. Be sure to match the fi le
name exactly. For example:

stylesheets[all][] = defaults.css

You are now able to proceed with the styling of your content editing forms without
the hassle of overriding the default Drupal CSS form-related styles. All of the styles
described in the rest of this section should be added to the form-specifi c CSS fi le or,
alternatively, to your main style fi le if you want to keep all styles together.

Coloring in Required Fields

All Drupal nodes have at least one required fi eld: the title. In some cases, the small
asterisk beside the form label is not obvious enough for content authors to notice that
this is a required fi eld. Fortunately, Drupal adds a class to the input element that can
be used to style the input element. Figure 6.1 shows how even very minor enhance-
ments (coloring the form fi eld, and adding additional instructions) can increase the
visibility of a required fi eld. You may also choose to extend the * (asterisk) into a full
instruction by using the CSS pseudo-element “after” and the CSS attribute “content.”
Unfortunately, the CSS “content” attribute is not supported by IE; however, it is a very
quick task to add this attribute, and its presence will be appreciated by visitors who use
alternative browsers.

Add the following CSS to your fi le forms.css. The background color is a light
pink; the border color is red. You may wish to adjust these colors to match your theme.
The output of these adjustments can be seen in Figure 6.1.

Use Firebug to identify relevant CSS selectors
Use the Firefox browser and the Web development extension called Firebug to
help you inspect HTML elements in a page and locate specifi c style classes you

can override in a CSS. Download the extension at http://www.getfirebug.com and
install it into your Firefox browser.

.required {

 background-color: #ffdede;

 border: 1px solid #ff6565;

 border-top: 2px solid red;

 border-left: 2px solid red;

}

/* Some browsers, including IE, will not display this text. */

.form-required:after {

 content: "Required";

}

/* Tone down the "required" text to a light gray */

span.form-required {

 color: #ccc;

}

Later in this chapter, you will learn how to adjust individual form elements. With
such adjustments, you could add the “Required” text directly to the form element
instead of having to rely on browser support of the CSS property content.

Focus on Input

Have you ever been busily typing away in a form when you realized that you were
actually typing in the wrong place? This kind of problem wastes time and is also mildly
annoying. Through the magic of CSS, you can highlight elements that content authors
are currently working in. To get this functionality to work, you must use another CSS

Form Candy 187

FIGURE 6.1 The required fi eld “Title” is now immediately visible to content authors.

188 Chapter 6 Customizing the Content-Editing Forms

pseudo-element: :focus, the long-lost relative of :hover (which is typically used in
styling links). This enhancement is not supported by all Web browsers.

#node-form .form-item input:focus,

 #node-form .form-item textarea:focus {

 background-color: #e0edba;

 border: 2px solid green;

 border-top: 2px solid #eee;

 border-left: 2px solid #eee;

}

No fancy JavaScript is required here. Nevertheless, the form element automatically
changes color when the content author selects (or “focuses”) the fi eld to begin adding
their content. The selector that is used in the preceding example will change the color
of single input fi elds, multiline text areas, and input buttons.

In Drupal, form labels are correctly tied to their corresponding input elements.
This means you can select a check box by clicking on either the text or the small square
beside the label. Unfortunately, this functionality is not immediately obvious to con-
tent editors. By setting the CSS property for labels, you can change the cursor that is
displayed to a hand that signals to the content author that the label is “clickable.” In
addition to labels, drop-down menus must be “clicked” for a selection to be made. You
can add the cursor enhancement for both selection (drop-down menus) and label ele-
ments at the same time by adding the following CSS snippet to your forms.css fi le:

select, label {

 cursor: pointer; /* All modern browsers, including IE */

 cursor: hand; /* IE 5.5 and lower */

}

Background Images on Form Fieldsets

This enhancement will show you how to add background images to your forms. From
a practical point of view, it could be used to add a visual cue to content editors. You

might use a background image to mark a fi eldset that has all required fi elds. If your
content form collects information about “the person” and “that person’s property” you
might choose to include a background image with a person for “about you” informa-
tion and a background image of a house for “about the property” information.

Figure 6.2 shows an example of a form with both an icon and a full-fi eld back-
ground image. Both of the images shown in Figure 6.2 were added using only CSS; no
additional changes to the theme fi les were necessary.

Of course, you must be able to identify the fi eldset before you can theme it. Firebug
comes in very helpful for this task. Right-click on the element you wish to style (or
option-click if you are using a Mac). Choose “Inspect Element” from the list of items
that appears. Figure 6.3 shows Firebug opened in the footer of the Web browser, with
the markup for the element that was selected being highlighted. From here you can see
which, if any, classes are set on this form element. If there are no distinguishing charac-
teristics, you can always use the form ID (found in the form tag) to at least distinguish
this type of form.

Form Candy 189

FIGURE 6.2 Kittens as background images. One small image is placed in the corner; another large image
fi lls the whole fi eldset.

190 Chapter 6 Customizing the Content-Editing Forms

At the top of Figure 6.3, a small icon (approximately 100 pixels square) was placed
as a background image of a fi eldset. The following CSS selector and CSS properties
were used:

form fieldset.collapsible {

 background-image: url(ricky-thumb.jpg);

 background-repeat: no-repeat;

 background-position: top right;

}

The CSS selector is very generic and will place the graphical icon into all collapsible
fi eldsets throughout the site. Figure 6.4 shows an example of the icon repeated in many
fi eldsets on the same form. This technique could be used to add a graphical wash of
color to all fi eldsets in your Web site.

In Figure 6.2, a small background image (top) and a large background image (bot-
tom) were used. The larger background image was applied to the CSS class that had
been assigned by CCK’s fi eldgroup. The fi eldgroup was assigned the class name group-
characteristics. The CSS selector and properties are as follows:

FIGURE 6.3 Using Firebug’s “Inspect Element” to fi nd the classes set on a form element.

form fieldset.group-characteristics {

 background-image: url(ricky.jpg);

 background-repeat: no-repeat;

 background-position: top right;

}

By using a unique class in the CSS selector, you can apply your background image to
only one fi eldgroup.

Advanced CSS Selectors

In Figure 6.2, the fi eldset “Input Format” was assigned a background image. Although
it did not have a unique identifi er, it was the “adjacent sibling” to the title fi eld, which
did have a unique identifi er.

Form Candy 191

FIGURE 6.4 Using generic CSS selectors, you can repeat the same design elements throughout your
Web site.

192 Chapter 6 Customizing the Content-Editing Forms

form#node-form #edit-title-wrapper + fieldset {

 /* Things to display in the "Input Format" fieldset */

}

Use advanced CSS selectors
Two very handy CSS selectors are the “adjacent sibling” selector and the “fi rst”
pseudo-element. The adjacent sibling selector determines which elements are be-

side each other at the same level in the document’s hierarchy. You can combine as
many “siblings” as you need to select the exact form element you wish to style. By
combining this selector with the pseudo-element “fi rst,” you can count from a very
specifi c position in a document. For example, to select the second paragraph in a div
with a class of content, you use the following selector: div.content p:first + p.

For more information on advanced CSS selectors, visit http://gallery.

theopalgroup.com/selectoracle/.
For more information on browser support for CSS selectors and CSS properties,

visit http://www.quirksmode.org/.

If a specifi c fi eldset is not assigned by Drupal, you can use the Forms API and assign
a new CSS class to the form element you want to highlight. More information about
adding attributes to form elements appears in the section titled “Altering Forms with
FAPI” later in this chapter.

Vertical Tabs

The background kittens in the earlier example demonstrated visual enhancements you
can add to your form. This section contains information about form usability enhance-
ments implemented with the module Vertical Tabs. This module helps to summarize
and compact the bottom third of the form, which most content authors fi nd con-
fusing. Depending on the content author’s permissions, the list of possibilities to be
used will include Menu options, Revision information, Comment settings, Authoring
information, and Publishing options.

Before you install Vertical Tabs, the bottom portion of a node editing form will have
the appearance shown in Figure 6.5. After you install Vertical Tabs, content authors
will immediately have access to the revised node form layout shown in Figure 6.6.

The project page for this module can be found at http://drupal.org/project/
vertical_tabs. Instructions for installing modules are found in Appendix A of this
book.

FIGURE 6.5 Before the Vertical Tabs module is installed, the contents of the administrative settings for
each node are a secret.

FIGURE 6.6 After the Vertical Tabs module is installed, content authors see a summary of each adminis-
trative setting and have a clean and compact interface through which to make changes.

Node Form and Usability Improvements

If you like the module Vertical Tabs, you may also want to try out the development
snapshot provided by the Node Form module. This module allows you to change
the default layout form for editing nodes when using the Garland theme. Two lay-
out alternatives are currently provided: vertical tabs (Figure 6.7) and accordion style
(Figure 6.8). This module is not intended for live Web sites, but rather is a develop-
ment snapshot that is studying the usability of node editing forms. It is part of the
Drupal usability group. You can participate in this group through the site http://
groups.drupal.org/usability. The module itself can be downloaded from the
following address: http://drupal.org/project/nodeform.

Form Candy 193

194 Chapter 6 Customizing the Content-Editing Forms

FIGURE 6.7 The Node Form module provides an alternative layout for node forms and does not require
any theming per node type. Shown here is the Vertical Tabs layout.

FIGURE 6.8 The Node Form module provides an alternative layout for node forms and does not require
any theming per node type. Shown here is the Accordion layout.

Be sure to follow the installation instructions that are provided with the Node Form
module carefully. You may be required to copy functions into your theme’s template.
php fi le. This module is designed to work with only certain forms in the Garland
theme. If you are comfortable with PHP and JavaScript, you should be able to replicate
some of the module’s functionality within your own theme by copying the relevant
information into your theme’s fi les and adjusting the function names to match your
own theme.

Rich Text Editing

Every Web developer, whether novice or expert, expects to be able to create pretty Web
pages with links to other pages and bold text and pictures. To achieve this functional-
ity, you may choose from several Drupal modules that provide rich text editors, also
referred to as WYSIWYG (“What you see is what you get”) editors. Most of these
modules include a third-party JavaScript library that you will need to download and
install in addition to the Drupal module. Drupal’s full list of fi lters and editors, which
can be found at http://drupal.org/project/Modules/category/63, contains
rich text editors and fi lters that will help you to integrate rich media into your Web
site. For example, a video fi lter in this list can help you place YouTube and Google
Videos into your content (http://drupal.org/project/video_filter); another
fi lter provides for Flickr integration (http://drupal.org/project/flickr). If you
need more than basic text editing capabilities, look through the full list of available
editors and fi lters—you may fi nd just the right tool for your job. Remember to log
into Drupal.org and fi lter the category based on the version of Drupal that you want
to install. It will make sorting through the list much easier!

TinyMCE is a platform-independent, Web-based, JavaScript, HTML, WYSIWYG
editor released by Moxiecode Systems AB. It was selected as the example editor for
this book because of its integration with the Image Assist module and because of the
ease with which it reduces the number of buttons in the editing interface. Another
very popular WYSIWYG editor is FCKEditor (http://drupal.org/project/
fckeditor), which includes a built-in fi le manager.

Installing TinyMCE

Integrating TinyMCE into a Drupal Web site requires you to complete a multistep
installation process. You will need to download both TinyMCE and the corresponding
Drupal module. Not all versions of TinyMCE work with every version of the Drupal
module, so read the instructions carefully to make sure you download and install com-
patible versions of the two plugins.

 1. Go to the Drupal TinyMCE module page (http://drupal.org/project/
tinymce) and download the latest version of the module.

 2. Unpack the module and look in the README.txt file to see if there are restric-
tions on which version of TinyMCE you must use.

Rich Text Editing 195

196 Chapter 6 Customizing the Content-Editing Forms

 3. If there are no restrictions, download the latest version of TinyMCE from the
Web site. If there are restrictions, make sure you obtain the correct version.
You can download TinyMCE from http://tinymce.moxiecode.com/
download.php. Most Web sites will need only the “Main package.”

 4. Extract the TinyMCE main package and place it in the Drupal tinymce mod-
ule folder in your sites directory. The path for the TinyMCE package will be
sites/all/modules/tinymce/tinymce.

You are now ready to enable the TinyMCE module from within Drupal.

 1. Navigate to Administer, Site building, Modules.

 2. Find the TinyMCE module and put a check mark beside its name.

 3. Scroll to the bottom of the Web page and click “Save configuration.”

 4. Navigate to Administer, User management, Permissions.

 5. Enable the correct TinyMCE permissions for the appropriate roles. You may
choose who has rights to use TinyMCE and who may administer it.

 6. Scroll to the bottom of the Web page and click “Save permissions.”

Configuring TinyMCE

With TinyMCE installed, you are ready to confi gure this module for each of the roles
that will have access to use TinyMCE. You may create a different profi le for each
Drupal role. Repeat these steps for each different profi le that you want to create. If you
are exposing a number of buttons, you should switch the default input fi lter for your
content types from Filtered HTML to Full HTML.

Follow these steps to add a TinyMCE profi le:

 1. Navigate to Administer, Site configuration, TinyMCE.

 2. Click the link at the top of the page to “create a new profile.”

Six sections must be confi gured to create a new profi le. Figure 6.9 shows the default
layout of the settings page for the creation of a new TinyMCE profi le.

Basic Setup

In the “Basic setup” section you will fi nd many confi gurable options. The most impor-
tant of these are highlighted here:

 • Profile name (for example, “author” or “advanced editor”)

 • Roles allowed to use this profile (you must select at least one role)

 • Default state (choose “enabled”)

 • Allow users to choose default (choose whatever is most appropriate)

Visibility

In the “Visibility” section, you will choose the pages on which TinyMCE will appear.
By default, all of the node, user, and comment creation and editing pages will have
TinyMCE turned on. For most Web sites, it is appropriate to remove rich text edit-
ing capabilities everywhere except on the node editing pages (this includes all content
types). If you want to be more specifi c and allow only some content types, you will
need to use a PHP snippet instead of simply listing the pages.

Buttons and Plugins

Use the “Buttons and plugins” option to choose which buttons will be available for
your rich text editor. The following types of buttons are appropriate for nearly all Web
sites:

Rich Text Editing 197

FIGURE 6.9 The editor profi les in TinyMCE have six sections.

198 Chapter 6 Customizing the Content-Editing Forms

 • bold

 • italic

 • bullist (bullet list)

 • numlist (numbered list)

 • link (creates a link to a new page)

 • unlink (removes a hypertext link)

Start with only the most basic of editing options. As an example, Figure 6.10 shows
TinyMCE with only these buttons in the toolbar. If your pages absolutely require more
options, you may add them at any time. (Image integration is discussed later in this
chapter.)

At this time, all visible buttons will pass easily through the most restricted content
fi lter. If you have added more buttons, you may need to allow more HTML elements
to pass through your content fi lters. To add elements to a fi lter, follow these steps:

 1. Navigate to Administer, Site configuration, Input formats.

 2. Click the link “configure” next to the input format “Filtered HTML.”

 3. Click the “Configure” tab at the top of the page.

 4. Adjust the list of “allowed tags” to include the tags for which you have enabled
buttons in TinyMCE.

 5. Scroll to the bottom of the Web page and click “Save configuration.”

To enable users to drag and drop images from Flickr, you must add the tags
and to the list of allowed tags.

FIGURE 6.10 TinyMCE with only the following buttons enabled: bold, italic, bullet list, numbered list,
create a link, and remove a link.

Editor Appearance

The “Editor appearance” option controls the outside shell of the TinyMCE editing
window. By default, the toolbar of buttons is located along the bottom; however,
content authors will expect to fi nd these buttons at the top of their editing window.
Change the setting “Toolbar location” to “top.”

Cleanup and Output

The default options are almost always acceptable for the “Cleanup and output” option.
Nevertheless, it is a good idea to read through the options in case your site has unique
requirements.

CSS

The CSS settings control the inside text display of the editing window. The “TinyMCE
default” is typically the most appropriate option. You may also wish to use your
theme’s style sheet or to defi ne a custom style sheet that is relevant only to the editing
interface.

With each of these settings confi gured, scroll to the bottom of the profi le confi gura-
tion page and click “Create profi le.” You will be returned to the summary page, where
your new profi le should be listed.

Image Integration

Offering the ability to perform rich text editing without the ability to place images is a
bit like having a candy store with no candy! TinyMCE integrates well with the Image
Assist module. The combination of the two enables content authors to click a button
on TinyMCE’s toolbar to upload an image and integrate it immediately into the page
they are editing. This module can be used without rich text editing; in such a case,
however, content authors will see only the HTML for the image, not the image itself.

The advantage of using this combination of modules is that content authors can
place their images into exactly the right spot on the page using only a few mouse clicks.
The Image Assist module creates a new node for each image uploaded. These images
can be placed into galleries automatically on upload, which saves you from the burden
of having to maintain images in two separate locations.

Rich Text Editing 199

200 Chapter 6 Customizing the Content-Editing Forms

Image Assist can also be integrated with Drupal’s Image module. To do so, you
must download both modules, but be aware that version-specifi c requirements must
be satisfi ed if the two modules are to work together. Start by downloading the Image
module (http://drupal.org/project/image), noting which version you have
downloaded. Then go to the project page for the Image Assist module. Read the
instructions carefully and choose the appropriate version of Image Assist. Both the
Image and Image Assist modules need to be placed into your site’s modules directory
and installed according to the instructions in Appendix A. Be sure to check the new
permissions for each module and confi rm that they are correct. Navigate to Adminis-
ter, User management, Permissions and confi rm that the appropriate roles are able to
create new images and use the Image Assist module.

Configuring Image Assist and TinyMCE

Once the Image and Image Assist modules have been installed, they must be confi g-
ured for use with TinyMCE:

 1. In the Image Assist module directory (img_assist), locate the subfolder
drupalimage and move it to tinymce/tinymce/jscripts/tiny_mce/
plugins/.

 2. In the main TinyMCE directory, edit the file plugin_reg.php.

 3. To the file plugin_reg.php, add the following lines anywhere above the
return statement at the end of the file (this code can by copied from the
Image Assist file INSTALL.txt; you do not need to retype it!):

 $plugins['drupalimage'] = array();

 $plugins['drupalimage']['theme_advanced_buttons1’] = array('drupalimage');

 $plugins['drupalimage']['extended_valid_elements'] = array('img[class|src|border
=0|alt|title|width|height|align|name]');

Version issues for TinyMCE
As of this writing, the Drupal Image Assist plugin did not integrate correctly with
the TinyMCE version 3 plugin architecture. It was necessary to download version 2

of TinyMCE if integration with Image Assist was desired.
The link to the version 2 plugin is not available from the main page of the

TinyMCE site. Instead, go to the full list of all TinyMCE packages, found at http://
sourceforge.net/project/showfiles.php?group_id=103281&package_id=111430.
From this list, select the Zip fi le for the latest version 2 release of TinyMCE (for
 example, 2.1.2).

 4. Navigate to Administer, Site configuration, TinyMCE and enable the drupal-
image plugin in your TinyMCE profile. It will appear at the very bottom of
the Buttons and Plugins list.

Figure 6.11 shows the new camera icon available in the TinyMCE editor toolbar.
Clicking this button will open a pop-up window where you may perform either of the
following actions:

 • Choose a previously uploaded image

 • Upload a new image

Extending TinyMCE

The TinyMCE can be integrated with the IMCE module to enable the following fea-
tures, among others: File/Image Manager, Quota, Auto Resize, folder per user, fi le
upload, fi le delete. Additional information is available in the TinyMCE module direc-
tory that you created, in a fi le named README.txt.

Altering Forms with FAPI

As you learned earlier in this chapter, much can be done to improve Web forms with
just CSS. Sometimes, however, the content of the forms Drupal creates is inappropri-
ate. Unfortunately, CSS cannot alter the content that is available on a page; it can only
be used to style the content that is provided. In this section you will learn how to alter
the structure of your forms with Drupal’s Form API (FAPI). Although you will not be
able to create new database fi elds, you will learn how to alter the text associated with
form elements and how to change those elements’ order and display settings. You will

Altering Forms with FAPI 201

FIGURE 6.11 The TinyMCE toolbar has been updated and now incorporates the Image Assist button,
allowing users to upload a new image fi le or choose a previously uploaded image.

202 Chapter 6 Customizing the Content-Editing Forms

also learn how to add new class attributes to form elements to make the selection of
form elements easier for CSS customizations.

Changing Forms Throughout Your Site

Theming a form allows you to change what Drupal has prepared into just the right
form to be displayed. Coding best practices offer some guidance when doing so—
namely, all changes to the logic or data of the content Drupal has prepared must be
made from your theme’s fi le template.php and not from the tpl.php fi les.

Keeping template.php free of clutter
To keep the fi le template.php free of clutter, you can put your form alterations
into a separate PHP fi le, such as template-forms.php. To activate this fi le, simply

include it from the main template.php fi le using the following PHP snippet:
include_once('template-forms.php');

Although you may use several different functions to theme your forms, there are
only three key points you will need to know to alter forms using FAPI:

 1. Form elements (including the whole form) can be themed by using themeable,
form-related functions. A full list is available from http://api.drupal.org/
api/group/themeable/6. Be aware that this list also includes non-form-
related functions.

 2. Drupal uses an array to store the form-related variables it needs to build a
form. These variables, including their contents and order in the array, can be
manipulated from the form’s themeable functions (see point 1).

 3. You may add new themeable form functions for each form on your Web site.

Using these three form theming techniques, you can alter all of the forms in your
Drupal site. To apply your changes across all forms, you can use the theme functions
described in the list of themeable functions in point 1. To apply these functions just
within your own theme, you must alter the name of the function from theme_HOOK
to yourthemename_HOOK. For example, to alter the text that appears on the “Save”
buttons for all content-related forms in your entire Drupal Web site within a theme
named “bolg,” you would use the function theme_node_form with the altered name
bolg-node-form.

When you take this approach to editing the site, you will still need to know which
item in the form array needs to be changed. To make this determination, use the Devel
module to fi nd the item in the form array that you want to change. For example, in
Figure 6.12 the “Save” button has been selected for detailed examination. The parent
function theme_node_form has been selected from the list of related functions that
can be themed. From here, it is possible to examine the form array to isolate the vari-
able that needs to be changed.

The following PHP function should be added to your theme’s template.php fi le.
It will allow you to change the value of the submit button for all node forms across
your Web site. Of course, you will need to replace “bolg” in the following snippet with
your theme’s name.

function bolg_node_form ($form) {

 $form['buttons']['submit']['#value'] = “Save these changes";

 return (drupal_render($form));

}

Altering Forms with FAPI 203

FIGURE 6.12 Use Themer Info to isolate the functions and form array items you need to change.

204 Chapter 6 Customizing the Content-Editing Forms

This function affects all “node” (or “content”) forms sitewide, including both core
content types (such as Page and Story) and any new content types that you have cre-
ated or will create in the future. The guts of the function illustrate the fi rst two rules in
theming forms: (1) The content of forms can be altered by using themeable functions
and (2) Drupal stores form information in a complex data array. The preceding func-
tion highlights three key concepts:

 1. The form array was updated and now contains a new value for the submit
 button.

 2. The new value was converted from an array back into a form element with the
function drupal_render.

 3. The rendered form element was returned to Drupal.

If any of these steps are omitted, the submit button will not be altered.

Use the right theme
Make sure you have set the administrative theme to be the same as the template
fi les you are modifying. It may not be suffi cient to set the administrative theme to

“Default Theme.” To confi rm you are using the right theme, navigate to Administer,
Site confi guration, Administration theme. Set the theme to match the template fi les
you are working with.

If you use the preceding function exactly as written, you would notice that the but-
tons no longer appear at the bottom of your form. To sink the buttons to the bottom,
you must change another form array item and increase the “weight” of the buttons in
the form. Note that the weight is adjusted for both the preview and submit buttons in
the form. The fi nal function is as follows:

function bolg_node_form ($form) {

 $form['buttons']['submit']['#value'] = "Save my changes";

 $form['buttons']['#weight'] = 40;

 return (drupal_render($form));

}

Now that you know how to make sitewide changes to your content editing forms,
it is time to get a little more specifi c about form-related changes.

Changing Specific Forms

To change a specifi c form, you will fi rst need to identify the ID of the form you want
to alter. You can fi nd this information using the Themer Info provided by the Devel
module. Once the Themer Info window has been opened and you have highlighted the
form, scroll down to the array key, form_id; the information you need can be found
beside the key name, #value.

Armed with the value of the form_id, you can begin the customization process.
You will need to edit the fi le template.php to add the customizations for your theme’s
forms. First, you must alert the theme to the form you would like to alter. This step is
necessary only if there is not a themeable function registered in the Themer Info list of
“parent” functions specifi c enough to meet your needs. For example, theme_node_form
will alter all content forms in the Web site. If you want to make changes for one of your
custom content types, however, you will need to register a new function name. This can
be accomplished with the following function. Of course, you will need to replace “bolg”
with your theme’s name and “portfolio” with the form_id you want to change.

// Alert the theme you will be altering its form contents

function bolg_theme() {

 return array(

 'portfolio_node_form' => array(

 'arguments' => array('form' => NULL),

),

);

}

Finding form IDs without Themer Info
The form ID is stored as a hidden fi eld located toward the end of the form. Look
for the hidden input fi eld that contains the name attribute of form_id. In HTML,

forms match name–value pairs. In this case, the name attribute for form_id corre-
sponds to the value attribute. For example, in this form the value attributed that is
paired up with name="form_id" is value="portfolio_node_form":
<input id="edit-portfolio-node-form"

type="hidden"

value="portfolio_node_form"

name="form_id"/>

The HTML attribute id can be used for CSS styling; however, this attribute is not
used by Drupal to identify themeable forms.

Altering Forms with FAPI 205

206 Chapter 6 Customizing the Content-Editing Forms

Now that you have registered the new function name, you can use the same tech-
nique that was used previously to rename the text on the submit button. This time,
however, the changes will apply to only one form. In the following snippet, only the
text in bold has changed from the previous version of this function.

function bolg_portfolio_node_form ($form) {

 $form['buttons']['submit']['#value'] = "Save my changes";

 $form['buttons']['#weight'] = 40;

 return (drupal_render($form));

}

Using the Themer Info toolkit, you can fi nd every element that is displayed on a
form. In conjunction with the weight attribute, you can use this information to alter
the layout of your forms.

Changing Display Text in Forms

Any form element that is displayed can be changed at the theme level. In the last sec-
tion we used the weight to sink the submit button to the bottom of a custom form.
In addition to changing the order of the form elements, you can change the displayed
label text for any of the form elements. These changes are made from the template.
php fi le and fi t into the relevant theme functions for your form.

Following are examples of three kinds of form elements whose text you can alter. In
each example, the new text has been sanitized by using either t() (appropriate when
you want to translate the text later) or check_plain() (when you want to sanitize the
text entered, with no intention of translating it later).

Label for the core content fi eld “Title” available in all content-related forms:

$form['title']['#title'] = t("New label text");

CCK fi eld label for a custom content type fi eld named field_age:

$form['field_age'][0]['value']['#title'] = t("New label");

“Save” button at the bottom of the form:

$form['buttons']['submit']['#value'] = check_plain t("Yarrr! Save me timbers!");

To change the default size of a text input, you could use the following code:

$form['field_age'][0]['value']['#size'] = 2;

To change the default height of a text area, you could use the following code:

$form['body_field']['body']['#rows'] = 20;

The column width is set by the system style sheet. If you want to change the width
of a text area, you must also remove the default width setting.

Removing Fields from the Form

Sometimes you may want to limit which users can fi ll out specifi c form fi elds. By using
the module Content Permissions, you can control which roles can view and edit every
fi eld for each content type. These changes are made across all forms for the entire Web
site. The Content Permissions module is part of the CCK set of core modules and
is not enabled by default. To enable it, you must navigate to Administer, Site build-
ing, Modules and select the Content Permissions module. You may then adjust the
permissions for each form fi eld and each role on the Permissions pages. To access this
page, navigate to Administer, User management, Permissions. Scroll down to the con-
tent_permissions module and adjust the settings for each of the content fi elds in
your site.

If you want to make these changes on a per-form basis (rather than sitewide), you
can follow one of two approaches: (1) You can create new fi elds for each different sce-
nario, or (2) you can use the theme layer to remove fi elds from the individual forms
before they are rendered and displayed. In the theme layer, you can remove fi elds from
the form in the preprocess function for content type. You will likely want to limit
access based on the user’s role (including whether the user is logged in), although you
could use other tests as well. Each of these snippets should be added to your form’s
theme (for example, bolg_portfolio_node_form). You should also check whether
the fi eld you are trying to restrict is a required fi eld—use the Theme Info tool to fi nd
the appropriate form variable to test for each fi eld type.

Drupal has provided a special variable, $logged_in, to test whether users are
logged in. You can use it as follows:

Altering Forms with FAPI 207

208 Chapter 6 Customizing the Content-Editing Forms

if ($logged_in){

 // Do something for authenticated users

}

If you want to test that a user is not logged in, you can use the following snippet.
Note the use of an exclamation mark to negate the statement. In English, this state-
ment would be read as follows: “If the NOT logged-in user.”

if (! $logged_in){

 // Do something for anonymous users

}

Drupal also provides a special variable, $is_admin, to test whether users have been
granted permission to access the administration pages. You may use $is_admin in the
same way as the variable $logged_in. For example:

if ($is_admin){

 // Do something for users with administrative privileges

}

If you want to test for a specifi c role, use the following test:

if (in_array('content editor'), array_values($user->roles)){

 // Do something for content editors

 // This user role must match one that exists at admin/user/roles

}

Inside these tests, you should “unset” the form elements you want to hide. To obtain
the name of the fi eld you want to hide, navigate to Administer, Content management,
Content types and select “managed fi elds” next to the content type you are working
with. The fi elds are listed under the “Name” column. You can also use the Theme Info
module to fi nd the same information. For example, if you wanted to unset the Project
Web site (field_url) for everyone except those users with the role of “content edi-
tors,” you would use the following code snippet:

if (! in_array('content editors'), array_values($user->roles)){

 unset($form['field_url']);

endif}

You will still need to use the function drupal_render($form) at the end of your
function; however, Drupal will now omit the Project Web site fi eld from the form.

You will learn more about how to control the display of “private” content in Chap-
ter 8.

Changing Form Widgets

For some fi elds, such as the image fi eld, it makes more sense to have the “help” text
appear directly below the form label. Depending on which form element you want
to alter, there are two ways to approach this problem. Most form elements are con-
trolled by the Drupal function theme_form_element. If you want to change a CCK
multiple-form value (for example, imagefield), you need to theme the function
theme_content_multiple_values.

To alter the default theme provided by Drupal or one of its modules, the easiest strat-
egy is to copy the full function from the module fi le and paste it into your theme’s tem-
plate.php fi le. Drupal stores its theme information for forms in the fi le includes/
form.inc. From this fi le you will need to copy all of the function as follows:

function theme_form_element($element, $value) {

 // Lots of stuff goes here

 return $output;

}

You can also fi nd this function in Drupal’s online API Web site at http://api.
drupal.org/api/function/theme_form_element/6.

In addition to using Drupal’s themes for individual form elements, you can use
CCK, which provides its own formatting information. CCK stores its theme informa-
tion in the fi le cck/content.module. This folder is found in your site’s module direc-
tory (for example, sites/all/modules). This time you need to copy the following
function:

Altering Forms with FAPI 209

210 Chapter 6 Customizing the Content-Editing Forms

function theme_content_multiple_values($element) {

 // Lots of stuff here

 return $output;

}

You can fi nd this function in CCK’s online API Web site at http://api.freestyle-
systems.co.uk/api/function/theme_content_multiple_values/6.

After you have copied the function into your theme’s template.php fi le, you must
change the name to match your own theme. To do so, replace the fi rst word in the
function with your theme name. For example, if your theme is named bolg, you
would rename theme_form_element to bolg_form_element, and rename theme_
content_multiple_values to bolg_content_multiple_values.

Look carefully at the contents of these two functions. You will quickly realize that to
alter the form_element function, you must swap the $value and “description” output
lines so that the description is appended to $output ahead of $value. To change the
placement of the help text within the content_multiple_values function, move
$description from the bottom(ish) of the function to the top. Add the $descrip-
tion to the $header via the data array key. Here’s a code snippet that accomplishes
this task:

'data' => t('!title: !required',

 array('!title' => $element['#title'],

 '!required' => $required)) . $description,

Note the trailing comma after $description: This change is part of a larger array.

Multiple-Page Forms

Sometimes forms get long—very long. You may decide to create a wizard-style form
that asks different questions based on the data entered, or perhaps you want to set up a
multistep registration form you know will take several attempts to complete. Or maybe
you have a completely different reason for having a multistep form. Unfortunately, this
type of development is not something that is easily accomplished at the theme level.
Instead, such a task is better suited to custom module development.

Some modules, such as the Drupal core Profi le module, automatically separate
groups of content into separate input forms. If you are trying to accomplish a spe-
cifi c task, you should check the list of Drupal content modules for one that suits
your needs. This list is available at http://drupal.org/project/Modules/cat-
egory/57. Module developers may also fi nd the Drupal Handbook page “Multipage
forms with CCK” useful; fi nd it at http://drupal.org/node/162373.

Webform

The Webform module helps you build forms that can be fi lled out and submitted by
Web site visitors. The module collects response data, which can then be output into
various formats. For example, a .csv fi le to be imported into a spreadsheet application
such as Microsoft’s Excel or OpenOffi ce.org’s Spreadsheet. Typical uses for Webform
are to create questionnaires; contact, request, and register forms; surveys; and polls.
This module has also been used as an issue-tracking system.

The Webform module also includes features that allow you to notify a specifi c
person whenever a Webform has been submitted. It collects all submissions as a single
node. The resulting data are not intended to be viewed in the same way as “regular”
node-based content.

The project page for the Webform module can be found at http://drupal.org/
project/webform.

Altering Flow

After creating or editing content, Drupal redirects the content author to the content’s
full node display. In some circumstances, however, it may be more appropriate to take
the content author somewhere else. Using the Form API and its redirect property, you
can change the fi nal destination for content authors after the successful submission of
a form. Forms, however, are well constructed and are rebuilt by Drupal after content
authors have submitted their data, which means changes that you make to the redirect
property at the theme layer are lost when the form is rebuilt after submission. Although
you can check the contents of the $_SERVER variable in your theme’s preprocess func-
tion for the page and redirect the user to a new page based on the previously viewed
page stored in the variable $_SERVER, it is more appropriate to alter the fl ow of your
forms through a custom module. For more information on module development, refer
to the online guide at http://drupal.org/node/231276.

You may also want to review the module Pageroute. This fl exible module
 provides a user-friendly wizard for creating and editing several nodes. Although

Multiple-Page Forms 211

212 Chapter 6 Customizing the Content-Editing Forms

stable Drupal 6 module has not yet been released, a beta version is available. Addi-
tional information about the Pageroute project is available at http://drupal.org/
project/pageroute.

Improving Access to Edit Screens

The more you customize Drupal’s interface, the more likely it becomes that the con-
tent’s “edit” button will disappear. There are a number of ways you can make it easier
for content authors to edit Web site content. One option is to add this functionality to
your theme; a second option is to install one of the contributed modules that will add
these links for you. If you are working with Zen as the base of your theme, you may
already have some of this functionality available as part of your theme! In contrast, if
you are working with an existing site and want to add this functionality without alter-
ing your theme, these modules are a great way to quickly improve access to editing
screens.

Admin Links

There are many different ways to get from where you are to where you can edit con-
tent in Drupal. Unfortunately, this navigation route can be cumbersome. Figure 6.13
shows a typical front page story. Content authors often ask, “But how do I edit the
front page?” The answer: “Well, you click on the title and then click ‘edit.’” This
process is awkward and not at all intuitive. An alternative is to navigate to Content

FIGURE 6.13 By default, there is no obvious way to edit content that appears on the front page or in
a view.

management, Content page and fi lter the content to fi nd the page you want to edit—
but this approach is also time-consuming.

There are two ways to improve access for content authors: customize the “teasers”
to include a link directly to the content editing form for each content type, or install
the Admin Links module. This module adds “edit” and “delete” tabs for authenticated
users to all “teasers.” It is easy to install and does not require additional theming.

The project page for the Admin Links module can be found at http://drupal.
org/project/admin_links. The installation instructions in Appendix A provide
more information on the process of downloading and installing this module.

Once the Admin Links module is installed, no additional confi guration is required.
All permissions are gathered from the existing permissions defi ned in the Content
management, Permissions table. If you are an authorized content editor, you will
immediately see “Edit” and “Delete” links at the bottom of all content teasers (as
shown in Figure 6.14).

Editing Blocks

If you are using the Zen theme, you already have the ability to confi gure blocks from
a link in the block itself. Figure 6.15 shows the “confi gure” and “edit menu” links
that appear when you hover on a block. If you are not using the Zen theme, you can
copy this functionality to your own theme. If your theme is not already a subtheme
of something else, consider adding Zen as the base theme to enable this functionality,
and more.

Improving Access to Edit Screens 213

FIGURE 6.14 The Admin Links module adds “Edit” and “Delete” links for authorized content editors to
all teasers.

214 Chapter 6 Customizing the Content-Editing Forms

FIGURE 6.15 The Zen theme includes a set of confi guration links that allow authenticated users to edit
the block from a link that appears in the block.

Three fi les must be modifi ed in this case: template.php sets up the variables;
block.tpl.php places the links in the structure of the block; and your style sheet
customizes the appearance of the confi guration links.

To enable this functionality, you must download the Zen theme from http://
drupal.org/project/zen, extract it into your theme folder, and enable the theme.
You should enable the theme as a “personal theme” (described in Chapter 3) if you are
working on a live Web site so that you do not affect the public view of the Web site.
Once the theme is enabled, two new links will appear when you hover on the block
(neat, eh?).

Preprocess Functions

In the folder zen/zen, open the fi le block.tpl.php. You will see two kinds of vari-
ables. Some begin with $block->SOMETHING; these variables are part of Drupal’s
core variables and are available to all themes. The other variables ($edit_links and
$block_classes) were prepared by the Zen theme’s fi le template.php before the
fi le block.tpl.php was assembled.

Open the fi le template.php and search for the following line:

function zen_preprocess_block(&$vars) {

This function is responsible for preparing the additional variables $edit_links and
$body_classes. The function name, zen_preprocess_block, is derived from

three different words. “Zen” and “block” you should recognize; they indicate you will
be building variables that are relevant only to the Zen theme and only to blocks. When
you copy this function to your own theme, you must change the word “zen” to your
theme’s name. This leaves one word in the middle of the function name—“preprocess.”
This keyword tells Drupal that the guts of the function are a recipe for new variables
that will be used by “zen” in the “block” template.

Structure of the preprocess_block Function

The function preprocess_block receives a copy of all of variables prepared by Drupal
for blocks ($vars). This list includes everything (its ID, the module that created the
block, the region where the block should appear, and the title of the block). In addi-
tion to blocks, special preprocess functions are available for pages, blocks, and nodes.
To obtain a full list of all variables created by this block, issue the following PHP com-
mand inside the preprocess function to print the variables to the page:

print_r($vars);

If you have the Devel module installed, you can generate a formatted version of the
same information with the function dsm:

dsm($vars);

New variables that are placed back into the array $vars are automatically passed
along to the associated template fi le. In most cases, this location is indicated by the
rightmost word in the preprocess function name; for example, the template fi le for
preprocess_block is block.tpl.php.

Inside Zen’s preprocess block function, several sections can be seen:

 • Definition of CSS classes used to hide and show editing links

 • Test for permission to administer blocks

 • Test for views-related blocks (type of this block and permission to administer
views)

 • Test for menu-related blocks (type of this block and permission to administer
menus)

 • Assembly of links

Improving Access to Edit Screens 215

216 Chapter 6 Customizing the Content-Editing Forms

Adding Block-Editing Capabilities to a Theme

If you have chosen a different parent theme as your subtheme, you will not have access
to the Zen Edit block function. Moving the functionality from the Zen theme to your
own theme is not diffi cult, however, and requires only careful copying and pasting.
Follow these steps to merge the necessary Zen functions into your own theme:

 1. Open the Zen theme file template.php and copy the contents of the func-
tion zen_preprocess_block.

 2. Open your own theme’s file template.php and look for the function YOUR-
THEMENAME_preprocess_block. If this function does not exist, you must
create it now by adding the following PHP snippet:

function YOURTHEMENAME_preprocess_block (&$vars) {

// The edit block links snippet goes here

}

 3. To your theme’s preprocess_block function, add the contents of the Zen
theme’s preprocess_block function, which you copied in step 1.

 4. Remove the Zen-specific settings. For example, the Zen theme includes a test
to check whether block editing is enabled for the Zen theme.

// Zen's template (remove the next line from your theme):

 if (theme_get_setting('zen_block_editing') && user_access('administer blocks')) {

// Your template (add this line to your template):

 if (user_access('administer blocks')) {

 5. Place the new variables into your theme’s block.tpl.php file. To print them
at the bottom of every block, add the following PHP snippet to the end of the
file, but before the </div> tag in your theme’s file block.tpl.php:

<?php print $edit_links; ?>

 6. Clear the cache for your site by going to Administer, Site configuration, Perfor-
mance. Scroll to the bottom of the screen and click “Clear cached data.” Block

administration links should now be visible at the bottom of all of your blocks.
You may style these as appropriate for your site with CSS.

If you would like to use the appear/disappear trick, you must also copy the Zen
style sheet for block editing (block-editing.css) to your own theme’s directory.
Instructions for adding a new style sheet to your theme can be found in Chapter 3.

Administrative Interfaces

This book devotes an entire chapter to the creation and customization of the Drupal
administrative interface. For more information on how to improve the administration
of Drupal, read Chapter 8.

Summary

This chapter focused on ways to style and alter Drupal forms. Several techniques were
covered—from simple CSS modifi cations to complex functions that alter the way a
form is displayed on the page. Specifi cally, the following abilities are key ways of work-
ing with forms:

 • Improving the usability of content editing forms with simple CSS enhance-
ments

 • Installing and configuring a rich text editor to make it easier for content
authors to add simple styles to content on their Web pages

 • Using modules developed by the Drupal usability group to alter the layout of
content editing screens

 • Using preprocess functions to create new variables for use in block template
files

 • Hiding form fields

 • Combining form fields into relevant groups to enhance the usability of content
editing forms

Summary 217

219

7

Users and Community
Participation

With its excellent core modules and thousands of contributed modules, Dru-
pal is capable of providing a rich interaction platform for online commu-

nities. In this chapter, you will learn how to theme different kinds of contents
that will be added to your Web site. You will also learn how to enable, theme, and
control comments—and discover the potential spam that may arise from having
anonymous comments enabled on your Web site.

Users

If you are running a community Web site, you will need to distinguish between
anonymous Web site visitors and active Web site contributors. Asking users to cre-
ate accounts on your site will create persistent, but editable, identities for individu-
als wishing to collaborate in content creation and communication on your Web
site. Drupal now offers two ways for users to create an account on your Web site:
(1) You may force users to create identities that are unique to your Web site, or (2)
you may enable the core OpenID module and allow users to use a previously cre-
ated digital identity to log into your Web site. For more information on OpenID,
visit http://openid.net/.

From the Library of Athicom Parinayako

220 Chapter 7 Users and Community Participation

User Profiles

A number of Drupal modules will extend the basic user profi le by adding new tabs and
new information summaries. Each of these modules has its own theme functions that
can be modifi ed to suit your needs. In this section we will look at ways to modify the
display at the theme layer. In Drupal 6, you can easily modify the default profi le to
include new fi elds.

To start the customization process, you must enable the Profi le module:

 1. Navigate to Administer, Site building, Modules.

 2. Find and enable the Profile module.

 3. Scroll to the bottom of the Web page and click “Save configuration.”

You may now add new fi elds to the user profi les:

 1. Navigate to Administer, User management, Profiles.

 2. Select a new type of field to add. You may choose from any of the following
options:

 • Single-line text field

 • Multiline text field

 • Check box

 • List selection

 • Free-form list

 • URL

 • Date

 3. Fill out the corresponding form for the field type that you added. Figure 7.1
shows an example of the form for a multiline text field.

 4. “Category,” “Title,” and “Form name” are all required fields. The “Category”
is the group this field will appear within. If you begin typing, Drupal will at-
tempt to complete the name by offering a list of categories that begin with the
same letters. The “Title” is the label for the form field and will display on the
page by default. The “Form name” is the database field name and is also used
as a CSS class.

 5. Scroll to the bottom of the Web page and click “Save field.”

As you add fi elds, you may want to change their display order. To do so, click on
the crosshair icon and drag the fi eld to its new position. Fields may be moved from
one category to another as well. Figure 7.2 shows an example of a fi eld that has been
moved. You must click the “Save confi guration” button to commit the changes back
to the database.

When the user edits his or her profi le, the categories will appear as separate tabs
across the top of the page (Figure 7.3). Be sure to add enough visual cues so that your
Web site account holders will be certain to see these tabs. You may also want to give
text instructions as part of a help fi le on your Web site.

Users 221

FIGURE 7.1 Profi le fi elds can be added and easily customized. These fi elds may also be a requirement to
create an account on a Web site.

222 Chapter 7 Users and Community Participation

Theming the Default Profile

Drupal 6 includes four template fi les provided by the User module. If you would like
to modify the user profi le, it is a good idea to start with these template fi les. They are
well documented and are automatically downloaded with the core Drupal installation.
You may copy the fi les from the directory modules/user/ and place them in your
theme directory. To take advantage of these template fi les, you will also need to enable
the Profi le module.

FIGURE 7.2 Fields can be moved to any position in the form through a drag-and-drop interface.

FIGURE 7.3 User profi le fi elds are sorted by category and can be edited by clicking on the category name
after enabling the edit functionality.

These template fi les are responsible for the display of user images and the main
profi le page.

user-picture.tpl.php

This fi le provides the HTML wrapper for the image that is displayed on a person’s
profi le. To use it, you must fi rst enable picture support in the User settings:

 1. Navigate to Administer, User management, User settings.

 2. Scroll (almost) to the bottom of the page and find the Pictures section.

 3. By default, Pictures are disabled. Change this selection to enabled.

 4. A new series of options will appear. For most Web sites, the default settings for
user pictures are acceptable (see Figure 7.4).

Users 223

FIGURE 7.4 The default confi guration options for user pictures are good choices for most Web sites.

224 Chapter 7 Users and Community Participation

 5. You must also enable this option for your theme. Navigate to Administer, Site
building, Themes.

 6. Click the link “configure” beside your default theme.

 7. In the Toggle Display area, enable “User pictures in comments.” You may also
want to enable “User pictures in posts” if your Web site has multiple authors.

 8. Scroll to the bottom of the Web page and click “Save configuration.”

user-profile-category.tpl.php

This template fi le is created for each of the different groups of information for a user
profi le. For example, if you created a new category called “Real Identity,” its display
would be controlled by the template fi le user-profile-category.tpl.php. By
default, each category is displayed as a defi nition list. You may alter this HTML by
changing the template fi le called user-profile-category.tpl.php. One default
category is provided by the user module, called “History.”

user-profile.tpl.php

This default template presents all user profi le data. Use this template to change the
overall layout of user profi les.

user-profile-item.tpl.php

This template is used to loop through and render each fi eld confi gured for the user’s ac-
count. It can also render the data from modules. The output is grouped by categories.
If you like, you can change only the wrapper for this page. If you want to exert fi ner-
grained control over the information that is printed to the page, however, you will need
to work with the individual fi elds. They can be accessed through the $profile array.
To print all possible information, use the following PHP snippet:

<?php print '<pre>'. check_plain(print_r($profile, 1)) .'</pre>'; ?>

This command is also stored in the default template provided in the modules/user
directory. You may wish to copy and paste it to avoid typographical errors in copying.

In a default Drupal installation, this command will print remarkably little informa-
tion. You may access this information using two different variables. The fi rst variable,
$profile, contains an array of all currently stored profi le variables; the second vari-
able, $user_profile, contains a formatted user profi le, ready for printing. To modify

the display of your profi le, use the individual components stored in the variable $pro-
file. To add material to the default profi le display, use $user_profile. Figure 7.5
shows an example illustrating the output of these two variables.

Adding More Content

Modules typically provide you with all of the variations you will need to display for the
information they collect. There may be cases, however, when you want to display data
that is not available from the module’s default variables. For example, the data collected
by the Profi le module is very limited. In addition to using the content contained in the
variables $profile and $user_profile, you may want to pull in other content that is
relevant to the user account for display on the account page. To assemble a richer set of
variables for display on the user’s profi le, you must use Drupal’s preprocess functions.

The following snippets show how to create a new variable with information re-
trieved from the database. The information that is retrieved in this snippet could be
more appropriately retrieved using the module Views; however, it is given here as an
example of what can be done at the theme layer to supplement the data provided by
existing module variables.

Users 225

FIGURE 7.5 $profile and $user_profile are two variables that allow you to retrieve profi le informa-
tion for different types of display.

226 Chapter 7 Users and Community Participation

In the theme fi le template.php, information is retrieved from database and the
contents are placed into a new variable.

function bolg_preprocess_user_profile(&$variables) {

 global $user;

 $result = db_query_range("SELECT nid, title, created FROM {node} WHERE
type='page' AND uid = $user->uid order by created DESC", 0, 8);

 $nodes = array();

 while ($row = db_fetch_object($result)) {

 $nodes[] = l(check_plain($row->title), "node/" . $row->nid);

 }

 if ($user->uid > 0 && count($nodes) > 0){

 $nodes = theme('item_list', $nodes);

 }

 return $variables['recent_nodes'] = $nodes;

}

In the previous snippet three special Drupal theming functions were used:

 • l() creates a Drupal link.

 • check_plain() encodes special characters in a plain text string for display as
HTML. This allows you to “see” HTML markup printed to the page.

 • theme('item_list', $nodes) is a list builder helper function.

Once the new variable has been prepared, it can be inserted into the template fi le
user-profile.tpl.php for display in a Web page:

<div class="user-contrib-content">

<h2><?php print t("Recent Content"); ?></h2>

 <?php if ($recent_nodes){ ?>

 <?php print $recent_nodes; ?>

 <?php } else {

 print t("No content, yet!"); ?>

 <?php } ?>

</div>

In the template fi le, one special Drupal theming function is used: t(). This func-
tion checks for translations of the text passed to the function. All human-readable
text should be passed through this function, which in turn allows content editors to
translate the text. This approach is the secure way of passing text from Drupal to the
Web browser. For more information, read the document found at http://drupal.
org/node/28984.

Additional information on ways to extend the display of user profi les with cus-
tom PHP snippets can be found on the Drupal Web site at http://drupal.org/
node/35728. If you want to allow users to syndicate their off-site blogs into their user
profi les, you should consider using the SimpleFeed module.

At the time when this book was written, a number of sophisticated Drupal 5
modules were available that customized the user account page (or user “home” page).
Several module teams were preparing to work together to create one really great
user profi le module for Drupal 6. The Advanced Profi le Kit combines several mod-
ules to give a comprehensive profi le useful for social networking Web sites. More in-
formation on this tool can be found at http://drupal.org/project/advanced_
profile. The MySite module allows users to create their own home pages with blocks
that are of greatest use to them. These “home pages” could also be made public. For
more information about this project, visit the project page at http://drupal.org/
project/mysite.

Granting and Restricting Access

In a Drupal Web site, you control the things that users do. This section is placed front
and center as a reminder that you must set permissions for each new task that you
enable on your Drupal site. If you are logged into the system as user/1, you will be
able to do everything without setting permissions. This is not true for any other user
in the system. You may want to perform your administrative duties from another user
account to remind yourself to set the permissions explicitly for functionality that you
add to your Web site.

Defining Roles

Drupal allows you to grant access to “roles” within your Web site. By default, there are
two roles: “authenticated” and “anonymous” users. You may add as many new roles as
you would like. There are no limits on how many, or how few, users can be added to
each role. If there is a specifi c task you would like only one user to perform, you could
create a role and assign only one user to that role. You may use any naming convention

Granting and Restricting Access 227

228 Chapter 7 Users and Community Participation

for your roles. You may wish to use names that are related to site capabilities—for ex-
ample, content author, moderator, administrator. Alternatively, you may decide to use
names that are related to job titles—for example, student, professor, associate dean.

Creating a role is very easy (Figure 7.6). Once your new role has been added, you
can use the link to “edit permissions” to change what users with this role may do within
the site. Use the following steps to add a new role to your Web site:

 1. Navigate to Administer, User management, Roles.

 2. Enter the name of the new role at the bottom of the current list of roles.

 3. Click “Add role.”

To change the name of the role, or to delete one of your custom roles, click the
“edit” link beside the name of the role. There are no other confi guration options avail-
able in the “edit” option.

Granting and Revoking Permissions

To change the permissions available to each user, you may click on the link “edit per-
missions” next to the name of the role. To see the full matrix of all permissions for all
roles, navigate to Administer, User management, Permissions. The role summary page
also contains a text link to this page.

The programming team for every module has made some decisions about the de-
fault permissions for its module. In most cases, all permissions are not enabled when a
new module is installed. In Figure 7.7, you can see the permissions for a few modules
that have been installed. Some modules listed are core modules (block and comment
modules); others are contributed modules (advanced_help module).

FIGURE 7.6 A new role, administrator, is created. Permissions will now need to be confi gured for the new
role.

If you wish your roles to override the permissions for these two states, unselect the
permission from the default settings and apply the permissions as you would like to
your custom roles. For example, if you want only authenticated users with the role of
“content manager” to add new pages, you would unselect the permission to “add page”
from “authenticated” users and add the permission to the role of “content managers.”

Checking Access at the Theme Level

In addition to assigning privileges via the permissions matrix, you may control access
at the theme level. For example, you might want to allow only users with a specifi c role
to view content through a specifi c template. You may also use this technique to limit
access to specifi c fi elds of content. For example, you might want to enable members of
a grant application committee to view all fi nancial data submitted by a group, but per-
mit “peer” reviewers to see only the text-based proposal (and not the fi nancial data).

Granting and Restricting Access 229

FIGURE 7.7 Most permissions are disabled for each role by default when a module is installed.

230 Chapter 7 Users and Community Participation

More control than permissions alone
To limit the display of fi elds at the theme level, you will need to edit your template
fi les for the relevant content type. PHP snippets found throughout this chapter

can be added to the appropriate places in your *.tpl.php fi les.

There are three types of permission-based functions you should be aware of at the
theme level:
 • user_is_logged_in()

 • user_access('permission')

 • in_array('name_of_role', array_values($user->roles))

Each of these options would be used as a test. For example:

if (user_is_logged_in()) {

 // Do something for logged-in users

}

if (user_access('access administration pages')) {

 // Allow this user to do administrative tasks

}

if (in_array('administrator'), array_values($user->roles)) {

 // Allow this user to do something administrators should be allowed to do,

 // but there is no permission defined by the module itself.

 // Useful for displaying specific content fields to selected roles.

}

If you are testing for the “administrator” role, you may also want to test for the
main site administrator. This can be done by extending the third test to look to see
which user is logged in.

if (in_array('administrator'), array_values($user->roles)

 || $user->uid == 1) {

 // Allow all administrators and the root user to do very special things

}

If you are looking at specifi c permissions that are created by a module, you
should also confi rm that the module is enabled. To do so, use the function mod-
ule_exists('name_of_module'). For example, in Chapter 6 you learned how to
add a search form to the error screen when the user requests a page that is a “404
Page Not Found.” In this example, we checked whether the module was enabled
(module_exists('search')) and the Web site visitor had permission to use the
form (user_access('search content')). The module name to use with module_
exists() is the word prepended to “module” on the permissions page. The specifi c
permission to use with user_access() is the exact text (with spaces, if there are any)
that appears next to your check boxes on the same permissions page.

Extending the Administrative Role to More Users

Drupal allows “all” permissions for only the fi rst account on the site. If you need to
have more than one account with this level of access, you should consider installing
the module known as “Admin role.” This module is a little helper for maintaining an
administrator role that has full permissions. By default, only one user has full admin-
istrator rights in Drupal; this module changes that situation.

For more information, and to download the Admin role module, go to the project
page at http://drupal.org/project/adminrole.

Community Comments

Drupal excels at being a platform on which people can interact. If you are producing
Drupal Web sites, you probably considered its audience participation features to be
among Drupal’s key advantages. Over the next few sections we will examine how these
interactions can be styled to fi t with the rest of your Web site design.

Customizing Comment Display

As with the user profi le, the comment module comes with three template fi les that you
can modify. These fi les can be copied from the directory modules/comment.

comment.tpl.php

The main comment fi le, comment.tpl.php controls the whole output for a comment.
The default template includes options to print out at least the commenter’s picture (if

Community Comments 231

232 Chapter 7 Users and Community Participation

this individual has an account on the Web site); whether the comment is new; the title
of the comment (if it is enabled); the date when the comment was submitted; and the
actual comment. For information on how to add additional CSS classes to comments,
review the template fi le comment.tpl.php in the Zen theme and the template fi le
template.php. In this fi le, Zen shows you how to add classes based on the following
considerations:

 • “Comments by me”

 • Status-related information (published or unpublished)

 • Comments written by the same author who wrote the original content

These variables are all added to the comment template as part of the preprocess
function. Within the zen folder, look for the following line in the template fi le
comment.tpl.php:

function zen_preprocess_comment(&$vars, $hook) {

This function contains the logic to create new variables that can be used in the tem-
plate fi le.

comment-folded.tpl.php

This fi le defi nes how the comments will look if they are hidden or “folded” away. In
this case, users have to click a link to view the comment. By default, the subject of the
comment and the author appear (as well as a “new” fl ag if relevant).

comment-wrapper.tpl.php

This fi le includes the HTML <div> for all comments that have been created. It is the
container in which all comments are placed for display. You may wish to add some kind
of title to this fi le, explaining that content displayed here consists of user-contributed
comments. In the Zen theme the following heading is added:

<h2 id="comments-title"><?php print t('Comments'); ?></h2>

Note the use of the function t(). It is the correct and secure way of handling text in
templates. This function will also escape any characters that are not plain text by run-
ning the text through the function check_plain(). It is especially important to be
secure when you are allowing content from untrusted Web site visitors.

The comment settings can also be confi gured based on the type of content. Figure
7.8 shows the range of options that can be set for your comments, which include the
following possibilities:

 • Default display mode (flat list versus threaded list)

 • Display order (newest first or oldest first)

 • Number of comments to show per page

 • Location of the comment controls

 • Anonymous commenting

 • Whether a subject field should be provided

 • Whether people leaving comments must “preview” their comments before
submitting them

 • Location of the comment submission form

Community Comments 233

FIGURE 7.8 Many confi guration options for comments exists. Comments can be confi gured in a unique
fashion for each different content type on your Web site.

234 Chapter 7 Users and Community Participation

Adding User Identity to Comments

In addition to the confi gurations that are available to each of the content types, you
may choose to include the profi le image of authenticated Web site commenters. Of
course, this possibility arises only when the commenters have an account on the Web
site with a user profi le image. These settings are adjusted in the theme confi guration
area. To include user pictures in comments, for example, you must complete the fol-
lowing steps:

 1. Navigate to Administer, Site building, Themes.

 2. Find the theme you are currently using and click the “configure” link.

 3. Scroll down to the “Toggle display” area and add a check mark beside “User
picture in comments.” You may choose to enable “User pictures in posts” as
well, although this option is less relevant on a Web site where there is only one
content manager.

If you want to adjust the position of the profi le image, you must use the fi le
comment.tpl.php. The template fi le can be copied directly into your theme directory.

Disqus

Disqus (pronounced “discuss”) is a service and tool for facilitating web comments and
discussions. The Disqus comment system can be plugged into any Web site, blog,
or application. It makes commenting easier and more interactive, while connecting
Web sites and commenters to create a thriving discussion community. Disqus makes it
easier for people to comment and track their contributions on a single profi le, which
they can display as a comment blog. After all, there really is no difference between a
great comment and a great published article. In addition to allowing authors to track
their own comments across multiple Web sites, Disqus allows Web site visitors to reply
to comments through email or mobile technologies, and to edit their own comments
after submission.

Integrating Disqus into your Drupal Web site is a two-part procedure. First, you
must download and install the Disqus module from Drupal and create an account on
the Disqus Web site. From your Disqus account, you can manage the comment systems
for multiple Web sites. Second, after you have installed the Drupal Disqus module and
created your account on Disqus, you need to confi gure your Drupal Web site.

 1. Navigate to Administer, Site configuration, Disqus.

 2. Enter your configuration settings from the Disqus Web site.

 3. Set the node type for which you would like to enable comments.

 4. Scroll to the bottom of the Web page and save your configuration.

 5. Disable Drupal’s comment module. Navigate to Administer, Site building,
Modules.

 6. Unselect the comment module. Scroll to the bottom of the Web page and save
your settings.

 7. Set the permissions so as to allow users to use Disqus. Navigate to Administer,
User management, Permissions.

 8. Select the appropriate roles who may “view disqus comments.” Scroll to the
bottom of the Web page and save your settings.

 9. Enable the Disqus block. Navigate to Administer, Site building, Blocks.

 10. Select the region where you would like the Disqus block to appear. Save your
settings.

User-Generated Content

Blogs, forums, wikis, content, and more content! There are many different ways that
community members may potentially contribute to a Web site. This section provides
a brief overview of some of the modules you may want to install to support different
kinds of user-generated content (UGC) as well as the template fi les you should be
aware of for each content type.

Blogs (and Comments)

Although comments were covered in the previous section (and spam will be covered
in a later section in this chapter), a brief note on blogs is appropriate here. Drupal in-
cludes a Blog module as part of its core. Although this module does not offer a lot of
extra functionality, it makes “blogging” easy for content editors who are new to Web
site participation and know they are supposed to be creating blogs as part of their jobs.
You can easily fi lter blog entries using the Views module to take advantage of exactly
the right combination of authors. You may also want to provide a summary page of all
blog entries that have a specifi c tag (or category or taxonomy term).

To enable the blog navigate to Administer, Site building, Modules. Look for the Blog
module in the list of Core-optional modules. Enable it by selecting the check box beside
its name, scrolling to the bottom of the Web page, and clicking “Save confi guration.”

User-Generated Content 235

236 Chapter 7 Users and Community Participation

With the Blog module installed, you should confi rm the default settings for this
content type using the following steps:

 1. Navigate to Administer, Content management, Content types.

 a. Click the “edit” link for the Blog content type.

 b. Adjust the description so that content authors know their blog entries will
be filtered to the correct page automatically.

 c. Confirm the following settings: Submission form settings; Workflow set-
tings; Comment settings.

 d. Scroll to the bottom of the Web page and click “Save content type.”

 2. Navigate to Administer, Site building, Themes.

 a. Click the “configure” link at the top of the page.

 b. Confirm the display of post information for blog entries. Although the list
of blog entries will be controlled by the view, you will still have the default
veiw provided by the module itself. You may also choose to alter this display
with a template file.

 c. Scroll to the bottom of the Web page and click “Save configuration.”

Although there are no default templates for the Blog module, you can easily con-
fi gure the display of a blog entry through the node.tpl.php template. If you would
like to have a more specifi c template for only blog entries, within your theme directory
create a copy of the template fi le node.tpl.php and name it node-blog.tpl.php.
Make your changes to this new fi le for blog-only theming.

Forums

Drupal also provides a Forum module as part of its core. This discussion system relies
on a combination of other core modules including taxonomy, nodes, and comments.
Because several modules are involved in the creation and display of Drupal’s discussion
system, you must look in several places to fi nd the default templates. Fortunately, the
entire forum system and its related modules have been converted to template fi les. You
will not need to go on a hunt through the module fi les for theme functions; instead,
you can simply copy the related template fi les into your theme directory and begin the
process of theming the forums to match your site.

To style the display of a forum post, use the template fi le node-forum.tpl.php.
You may start with the default node template fi le node.tpl.php for a very basic node
(if your theme already has a node template fi le, you may wish to use it as a base for your
forum templates). The Zen theme also provides a sample template for forum content.
The responses to a forum topic are technically comments.

Once you have the content themed, you may want to review the larger theming
picture—that is, how forum topics and listings are themed. The Forum module pro-
vides you with six template fi les through which to alter the forum-specifi c data:

 • forum-icon.tpl.php: Displays an appropriate icon for a forum post.

 • forum-list.tpl.php: Lists forums and containers. This list shows the
broadest overview of all forum categories.

 • forums.tpl.php: Default theme implementation to display a forum that may
contain both forum containers and forum topics.

 • forum-submitted.tpl.php: Gives information about the author of the post
and the date on which it was submitted.

 • forum-topic-list.tpl.php: Lists forum topics. This list is displayed on
screen after the Web site visitor has selected a topic from the forum-list.
tpl.php page.

 • forum-topic-navigation.tpl.php: The topic navigation string that ap-
pears at the bottom of all forum topics.

To alter the individual forum pages, you will need to add theme information
for nodes of the content type forum as well as comments related to these nodes.
The comment template fi les can be obtained directly from the comment module. The
Zen theme provides a template for the fi rst message in each topic in the template
fi le node-forum.tpl.php. Zen’s forum template is essentially the same as a plain
node. The only thing that differs is the addition of Zen’s shortcut for assigning new
classes based on the status of the content being displayed. If you have already created a
node.tpl.php fi le, consider using it as the base template fi le for new forum messages
as well.

Wikis

It is always best to use the most appropriate tool for the job. Even though there are a
lot of very sophisticated wiki platforms, Drupal should not be overlooked when

User-Generated Content 237

238 Chapter 7 Users and Community Participation

considering a platform for community-editable documentation. As with its forums
support, Drupal’s wiki system is created by combining several modules. To create a
wiki site, you will need to install the following modules:

 • book (core): Use this module for automatically generated navigation.

 • wikitools (contributed): Provides Wiki features such as node creation, dele-
tion, and move protection.

 • flexifilter (contributed): Use Wiki-style text formatting (available at
http://drupal.org/project/flexifilter).

 • freelinking (contributed): Create links between nodes with the CamelCase-
Title for the destination page (available at http://drupal.org/project/
freelinking).

To create a wiki, you must install each of the modules listed above. Refer to Ap-
pendix A for more information on how to install a contributed module. Each of these
modules must also be confi gured as follows:

 1. Rename the book content type to “Wiki page.” Navigate to Administer, Con-
tent management, Content types. Click the “edit” link next to “Book.” Update
the “Name” and “Description” to suit your Web site.

 2. Update the revision control defaults for your wiki pages. These setting are
found under the “Workflow settings” tab. Force a new revision for each edit of
the page by enabling “Revision Control.”

 3. Configure the “Wikitools” to match your site’s needs.

 4. Enable and configure the flexifilter module. Enable the default Medi-
awiki filter. Consider importing more filters from http://drupal.org/
node/212417.

 5. Enable and configure the freelinking module. Update your settings in the
“Wikitools configuration” screen to enable “Hijack freelinking module.”

 6. Configure the input format to use the new filters.

 7. Update the default input format for wiki pages (formerly book nodes).

 8. Update the permissions for your new content type. All Web site visitors should
be able to view content and view revisions. Depending on the “openness” of
your wiki, you may set the appropriate permissions to revert changes, create
new pages, and edit existing pages.

Extending your Drupal wiki
Charlie Gordon (http://www.cwgordon.com) also recommends the following
additions:
• Use the talk module to add a "talk" tab to each applicable node page.
• Use the table of contents module to insert a table of contents on pages of your

choice.
• Use the diff module to show the differences between various revisions. This

feature is useful for fi nding and reversing spammy posts.

User-Generated Content 239

Recipes and Specialized Content

In many cases, it is completely acceptable to build your own content type using the
Content Creation Kit (CCK). In contrast, if your needs are specialized enough that you
might consider making a custom content type, you should consider wandering through
the hundreds of submitted modules in the Content category at http://drupal.org/
project/Modules/category/57. This list of modules includes some highly special-
ized, but highly useful modules. For example, the Recipe module includes a calculator
that changes the ingredient quantities in a recipe based on the number of servings you
want (Figure 7.9). For more information about the Recipe module, visit its project
page at http://drupal.org/project/recipe.

FIGURE 7.9 The Recipe module provides a form on which Web site visitors can alter the quantity for the
ingredients in a recipe based on the number of servings required.

240 Chapter 7 Users and Community Participation

Spam

Any Web site that allows visitors to add content, or create a membership so as to create
content, faces the risk of having unwanted content added to the site. This undesir-
able content is referred to as “spam”—a term that comes from the British comedy
troop Monty Python’s 1970 “SPAM” sketch. In the sketch, Mr. and Mrs. Bun try to
order breakfast from a menu that contains mostly canned, spiced ham (brand name,
“SPAM”); however, a group of raucous Vikings keep drowning out their order by sing-
ing a tune almost entirely composed of the word “spam.” During the short skit, the
word “spam” is used more than 80 times. In the 1980s, the term was adopted when
individuals began to maliciously disrupt conversations with senseless, unwanted con-
tent. Early “spam attacks” consisted of a simple fl ood of the word “Spam” into bulletin
board systems and chat rooms. The term now has a much wider defi nition and is used
to describe any unsolicited and unwanted receipt of digital content (email, blog com-
ments, discussion board postings, and so on).

In the Drupal context, “spam” refers to any content created by a computer pro-
gram that has been designed to seek out Web forms and publish unwanted content.
Although individual Web site visitors may create spam, such attacks are more typi-
cally generated by an automated process that is disconnected from individual people.
The computer programs that create the spam content are referred to as “bots” or
“spambots.” (Although “bot” is short for “robot,” bots are worthy of the same disdain
awarded to the parasitic botfl y.)

Several approaches can be taken to prevent spambots from publishing content on
your Web site. The fastest way to lock down your site is to force each visitor to create an
account (that you approve), and log in, before publishing content. By default, Drupal
allows Web site visitors to create accounts with no administrator approval. To change
this setting, navigate to Administer, User management, User settings. Under the head-
ing “Public registrations,” choose the most appropriate option for your Web site:

 • Only site administrators can create new user accounts.

 • Visitors can create accounts and no administrator approval is required (selected
by default).

 • Visitors can create accounts but administrator approval is required.

Be sure to update the authenticated role’s access permissions accordingly. Navigate
to Administer, User management, Permissions. Confi rm the settings for the “authenti-
cated” role. You may need to add or remove permissions as appropriate. You may also

need to add a new “administrative” role if your settings initially focused only on the
default roles of “authenticated” and “anonymous” users.

CAPTCHA

Forcing individuals to create an account before leaving a comment on your Web site is
a barrier to participation that many visitors will not take the time to surpass. If visitor
participation is limited to comments on a blog, you may wish to consider adding a
“challenge” to your comment form instead of forcing users to create an account if they
want to leave a comment on your Web site. These challenge questions added to Web
site forms are known as “Completely Automated Public Turing tests to tell Computers
and Humans Apart” (CAPTCHA). The Turing test was fi rst described by Alan Turing
in 1950 and was described as a test to distinguish humans from computers. It asked,
“Can machines do what we (as thinking entities) can do?” Web CAPTCHA tests have
since been implemented in several different ways:

 • As a graphic test (read a scrambled word and type it into the response box)

 • As a logic test (perform a simple math calculation or select a word from a list,
and type the result into the response box)

 • As an audio test (listen to a word and then type it into the box)

The graphic test is one of the most commonly used tests, but it is also relatively
inaccessible to Web site visitors who have low vision or who are blind. The graphics-
based CAPTCHA test is often paired with an audio test to provide low-vision and
blind users with an alternative way to prove their humanity.

Several CAPTCHA modules are available for Drupal. The basic module, CAPT-
CHA, can also be extended by other modules to include different types of tests (and
logic questions that you have created!).

 • CAPTCHA: A basic module appropriate for most uses (http://drupal.
org/project/captcha)

 • reCAPTCHA: Implements the reCAPTCHA service (http://drupal.org/
project/recaptcha)

 • CAPTCHA Pack: Many different lightweight, text-based CAPTCHA tests;
requires the basic Drupal CAPTCHA module (http://drupal.org/
project/captcha_pack)

Spam 241

242 Chapter 7 Users and Community Participation

 • Captcha Riddler: Allows you to create your own test questions; requires the
basic Drupal CAPTCHA module (http://drupal.org/project/riddler)

Comment Closer

Many Web sites that allow comments on their content are blogs and, therefore, do not
need to leave comments open indefi nitely. If this is true for your Web site, you should
consider installing the Comment closer module. This simple module does exactly what
its name implies: After a fi xed amount of time, it disallows visitors from commenting
on specifi c types of content.

To install the Comment closer module, follow the instructions in Appendix A that
explain how to install a Drupal module. The project page for this module can be found
at http://drupal.org/project/commentcloser.

Once installed, the module can be easily confi gured by navigating to Administer,
Site confi guration, Comment closer. A simple menu allows you to choose which con-
tent types should have their comments automatically turned off, and at what point this
termination should happen (see Figure 7.10).

You must confi gure three options with the Comment closer module:

 1. Node type: the type of content you want to control with comment closer.

 2. Older than: the age of the content that should be closed.

 3. Execute: how often the creation date of the content should be checked.

FIGURE 7.10 Comments can be easily closed on a timed basis using the Comment closer module.

The Comment closer module should be “executed” more frequently than the age
check. For example, you would check for content “older than” a week every day.

This module requires the simultaneous use of cron, Drupal’s automated scheduling
tool. To confi rm that cron is running automatically, navigate to Administer, Reports,
Status report. Look for the section on “Cron maintenance tasks.” If cron has not run
recently, you will need to confi gure your Web server to trigger Drupal’s scheduling
tool. Chapter 2 of this book describes how to set up a cron job.

Spam Filtering Services

The techniques described in this section are geared toward evaluating Web site visitors
before they submit their content to your Web site. More sophisticated services are also
available that will help you to evaluate content after it has been submitted to your Web
site. These services include Akismet and Mollom.

Akismet was one of the earliest community-powered spam assessment tools. It har-
nessed the brain power of everyone who subscribed to its service to identify patterns of
spam (unwanted content) and ham (desired content). Mollom goes beyond this simple
fi ltering service and attempts to block fake user accents. In recognition of its additional
features, Mollom is currently receiving more active development and support in the
Drupal community. If you have used Akismet in the past, you should consider switch-
ing to Mollom!

Installing Mollom is a two-step process. First, you will need to download and install
the Mollom module; second, you must create a Mollom account on the Mollom Web
site.

To perform the fi rst step, follow the instructions in Appendix A on how to install a
Drupal module. The project page for this module can be found at http://drupal.
org/project/mollom.

Once the module is installed, you will need to attach your Web site to the Mollom
service. To do so, you must create a user account on the Mollom Web site. Within your
user account, you will need to tell Mollom which Web sites will be using its service.
This notifi cation is made via the “Manage sites” tab, where you then ask Mollom to
“add subscription.”

At the end of the confi guration process, you will be able to “view keys” for each of
your Web sites. Two keys are provided: public and private. These keys should be placed
in the confi guration page of your Drupal Web site. A sophisticated spam fi ltering tool-
set will be presented to you once the keys have been entered.

Spam 243

244 Chapter 7 Users and Community Participation

For more detailed information on how to confi gure Mollom, visit its Web site at
http://www.mollom.com.

Private Web Site Areas

There are many ways to create a private area within your Web site. One option is to
use CCK and create a new type of content that is “private” and available only to users
with a specifi c role. This technique is quite limited, however, and does not allow you to
reuse content for both the public and private areas of your Web site. Alternatively, you
might like to display some fi elds’ content to some users, but not to all users.

Member-Only Sites

A quick way to separate different kinds of content is to use the Taxonomy module.
Within Drupal, the concepts of “tags” and “categories” are collectively referred to as
taxonomy (in fact, “taxonomy” is sometimes referred to as “categories” within the Dru-
pal administrative area). It is easy to add categories to different pieces of content. One
way to categorize content could be to make a simple distinction between “public” and
“private” content. Unfortunately, Drupal cannot act on these categories without some
extra help from a contributed module.

Although you could build your own private content area with views and custom
templates, it is much easier to download and install the Taxonomy Access Control Lite
module. This module restricts access so that some users may view content that is hid-
den from other users. A simple scheme based on taxonomy, roles, and users controls
which content is hidden. The Taxonomy Access Control Lite module uses the same
concepts that you could implement by hand as a themer, but gives Web site adminis-
trators a graphical interface through which to accomplish these tasks.

To install the Taxonomy Access Control Lite module, follow the instructions in
Appendix A on how to install a Drupal module. The project page for this module is lo-
cated at http://drupal.org/project/tac_lite. Once you have downloaded and
installed the module, you may need to rebuild the content access permissions tables.

With the permissions tables rebuilt, you can confi gure Taxonomy Access Control
Lite. If you have not already created the categories you would like to use to distinguish
between private and public content, you should do so now.

 1. Navigate to Administer, Content management, Taxonomy.

 2. Add a new vocabulary that will distinguish between public and private
content. Click on the “add vocabulary” tab at the top of the page.

Rebuilding database tables
A warning message will appear after you have installed the Taxonomy Access
Control Lite module and clicked “Save.” Follow the on-screen instructions to

perform the necessary database updates. If you are having problems accessing con-
tent, you may need to rebuild the permissions cache. This can be done by navigating
to Administer, Content management, Post settings. Click the “rebuild permissions”
button to clear the cache related to permissions.

Private Web Site Areas 245

 3. Enter as much information as you can at this stage. Make sure you enable this
vocabulary for at least one content type. Scroll to the bottom of the Web page
and click “Save.” You can also choose at this time whether you would like to
have this category as a requirement for submitted content.

 4. Add terms that will act as flags for content authors to set their content as either
“public” or “private.” Click the “add terms” link and fill out the form using the
appropriate category names for your Web site.

You are now ready to set up TAC Lite.

 1. Navigate to Administer, User management, Access control by taxonomy.

 2. Select the vocabulary you would like to use to distinguish public and private
content. Click “Save configuration.”

 3. Click the link at the top of the page for “Scheme 1.” This is the configuration
screen for your vocabulary.

 4. Fill out the configuration screen using defaults that are appropriate for your
Web site. For example, for private pages, you would use the following settings
(Figure 7.11):

 • Scheme name: private, read-only access

 • Permissions: view

 • Access for anonymous user: none (this is a default role, provided by Drupal)

 • Access for authenticated user: private (this is a default role, provided by
Drupal)

 • Access for administrator: private (this is a role created by navigating to
Administer, User, Roles))

 5. Scroll to the bottom of the form and click “Save configuration.”

246 Chapter 7 Users and Community Participation

 6. Repeat steps 1–5 to create additional permissions (for example, any authenti-
cated user can edit content with the category “private”).

You may also want to consider using the Nodeaccess module. Nodeaccess is a Dru-
pal access control module that provides view, edit, and delete access to nodes. Users
with the “grant node permissions” permission will have a grant tab on node pages that
allows them to grant access to that node by user or role. Administrators can set default
access controls per content type, and they can also defi ne which roles are available to
grant permissions to on the node grants tab. The Nodeaccess module allows you to set
limits such as “node 123 can be viewed by authenticated users and edited by admin
users and joeplumber.” As an added bonus, update and delete permissions are kept
separate, so you can make sure users with edit permissions cannot accidentally delete
pages.

FIGURE 7.11 Setting the permissions is controlled by the schemes confi guration screen.

When this book was being written, a major rewrite of the Nodeaccess module
was in the planning stages. Many user interface changes were being planned. You can
review the status of this module, and download it, from its project page at http://
drupal.org/project/nodeaccess.

You may also wish to enhance the navigation of your Web site for the public
and private areas by using the Views module to create custom lists of content. For
more information about creating administrative views of content, refer to Chapter 8.
For more ideas on how to implement a private Web site, refer to Drupal’s online
documentation page, “Private forums and member-only sites,” at http://drupal.
org/node/111576.

Private Content Fields

You may wish to have some content fi elds that have restricted visibility. Within the
template fi le for each of your content types, you can perform tests on each of the con-
tent fi elds to limit its visibility. Common tests include the following:

 • Test whether the user is viewing content he or she has authored:

 if ($GLOBALS['user']->uid == $node->uid) {

 • Test whether a user is viewing his or her own user profile:

 if ($GLOBALS['user']->uid == $user->uid) {

 • Test whether the logged-in user has a specific role:

 if (in_array('administrator'), array_values($user->roles)){

 • Test whether the logged-in user has a specific permission:

 if (user_access('access administration pages')){

Each of these if statements must be ended with }. For example, to provide a link
to the Administration area only for users with suffi cient permission, you could use the
following PHP snippet:

Private Web Site Areas 247

248 Chapter 7 Users and Community Participation

if (user_access('access administration pages')){

 print l("Administration Drupal", "admin");

}

This example uses the l() function to format an internal Drupal link. It correct-
ly handles aliased paths, and it allows themes to highlight links to the current page
correctly.

If you are working within the user profi le and want to limit the display of certain
fi elds, you have four more options at your disposal:

 • Hidden profile field: Accessible only to administrators, modules, and themes

 • Private field: Content available only to privileged users

 • Public field: Content shown on profile page but not used on member list pages

 • Public field: Content shown on profile page and on member list pages

Within your template fi le, make sure you are using the variable $profile to dis-
play each of your profi le fi elds to protect information according to the settings listed
above. Private profi le fi elds can be viewed only by the account holder (in other words,
a user can view his or her own information) as well as users with the “administer us-
ers” permission. Hidden fi elds, by contrast, can never be manipulated by the user.
They may contain information about the user. The hidden profi le fi eld was originally
implemented to keep track of community contributions. The higher the number of
contributions (tallied based on the number of nodes added to the Web site), the higher
the user’s assigned role. Although it is very useful for module developers, it is unlikely
you will use the hidden profi le fi eld on a regular basis in your work as a themer.

By limiting the visibility of certain areas on the profi le page, you can change the
profi le page from a boring account history to a private home page for users who are
viewing their own accounts. If you wanted to create a “friends-only” view of a pro-
fi le, you could install either the Buddylist2 module (http://drupal.org/project/
buddylist2) or the User Relationship module (http://drupal.org/project/
user_relationships) to establish relationships between account holders.

Summary

This chapter described ways to create and style a Web site that has a lot of user-contrib-
uted content. More specifi cally, it covered the following topics:

 • Styling user profile pages

 • Customizing the access profiles for different types of roles in your Web site

 • Enabling different kinds of user-generated content

 • Creating custom pages of user-generated content

 • Controlling spam

 • Creating private areas in your Web site

Using suggestions from your community and the basic techniques covered in this
chapter, you will now be able to theme your Web site according to the needs of your
community of users.

Summary 249

251

8

Administrative Interfaces

It is easy to be lulled into thinking the only area of the Web site that can be
controlled by a theme is the very front-end design—the part that Web site visi-

tors see. In fact, with a little bit of thinking about the common tasks your Web
site administrators are performing, you can create a completely customized Drupal
administration area. This will help to speed up work flow and will reveal new ways
of thinking about how common tasks could be made even easier. When using any
administrative system, take notes about functionality that you do, and do not, like.
Think about how you could apply these lessons to your own Web sites. Does it
make more sense for you, and your Web site administrators, to use iconic cues, or
would a series of text-based links work better than a bunch of cryptic images?

In this chapter, you will learn how to enhance or replace elements in Drupal’s
administrative interface. Specifically, this chapter includes sections on using the
core Drupal tools to customize your administrative interface and on using contrib-
uted modules to create control panels and administrative dashboards. A large part
of this chapter focuses on the Views module, including use of this module to cre-
ate unique lists of content that can be used by content administrators to filter out
pages that need moderation or that have been omitted from the main site (perhaps
unintentionally). The chapter ends with a brief discussion of the customization of
error messages and error pages.

From the Library of Athicom Parinayako

252 Chapter 8 Administrative Interfaces

Creating a Custom Administrative Interface

Drupal’s default administrative interface is based on functionality created by develop-
ers. It is not easily administered by novice Web site managers. Fortunately, Drupal is
highly fl exible, even in the administration area, and you can easily update the interface
to refl ect the tasks that your content managers will need to accomplish.

Applying a Separate Administrative Theme

Content managers and Web site administrators may be accustomed to having a visually
distinct management area within the Web site that looks very different to the public
Web site. By default, Drupal uses the same theme for both the administrative and
public versions of a Web site. This behavior is unlike that of other Web publishing plat-
forms. For example, WordPress uses an administrative dashboard with a distinct “view
site” link near the top of the page. In Joomla!, the administrative area is known as the
“control panel,” and it comes equipped with a “preview” button to view the live site.

Both approaches offer both their own advantages and disadvantages. In Drupal,
the administrative interface provides a seamless experience for Web site administrators.
Administrators can delve into the administration of the site without having to learn
a different style of pages, which might otherwise cause a jarring switch between the
administrative and public views for the site. This distinction may also be a drawback,
however, as visitors can sometimes overlook the powerful administrative options be-
cause they feel those options are part of the public side to the Web site; thus visitors
may not realize they have the full set of administrative tools available to them.

To set an administration theme, you select the theme from a list, as shown in Fig-
ure 8.1. If you want to do additional confi guration of your administration theme, use
the steps in Chapter 3 to confi gure a sitewide theme; alternatively, you must navigate
to Administer, Themes and choose the “confi gure” option beside the administrative
theme that you would like to alter.

Use a fl exible administration theme
If you are using a fi xed-width theme for your main Web site, you may want to use
a fl uid design for your administration theme. Many of the administration tables

are quite wide and may not be displayed properly in a fi xed-width theme.

The administrative theme is set in the “Site Building” part of the administration
screen.

 1. Choose the “Administer” link from the navigation options on the left side of
the screen (or choose “administration section” from the front page).

 2. Choose “Administration Theme” from the list of options on the main adminis-
tration screen.

 3. Select the Administration Theme you would like to use.

 4. At the bottom of the configuration screen, click “Save configuration.”

A separate administration theme should now be applied to your Web site.

RootCandy

RootCandy is a theme designed explicitly for the administration of Drupal; it is not
meant to be used as a public interface theme. This contributed theme must be down-
loaded and installed before it can be applied to a Web site. RootCandy features icons
across the top of each page in the administration area highlighting each of the main
administrative functions (Figure 8.2). Wherever possible, screens expand to the full
width of the page. In sections with subnavigation possibilities, the options are tucked
neatly to the left of the main screen (Figure 8.3). This theme can also be recolored to
complement the main part of your Web site using the Color module, which is also
used by the default theme, Garland.

Creating a Custom Administrative Interface 253

FIGURE 8.1 Use the Theme settings administration area to select the theme you want applied to your
Web site.

254 Chapter 8 Administrative Interfaces

FIGURE 8.2 RootCandy is an alternative administrative theme focusing on usability.

You should download and install the RootCandy theme to see how the administra-
tion area of Drupal might potentially be themed. You may not choose to use it as your
fi nal administration theme, but RootCandy will likely serve as a source of inspiration,
suggesting the many possibilities that are available to you. To install the RootCandy
theme, follow these steps:

 1. Download the project files from http://drupal.org/project/
rootcandy.

 2. Unpackage the files and put them into the site-specific directory sites/
yoursitename.com/themes or a general directory for all sites using this
Drupal code base: sites/all/themes.

 3. Enable RootCandy as the administration theme. Navigate to Administer,
Site configuration, Administrative Theme. Choose RootCandy as the
administrative theme. Scroll to the bottom of the Web page and click “Save
configuration.”

Other confi guration options are also available for this theme, including changing
the base colors (Figure 8.4).

 1. Navigate to Administer, Site building, Themes.

 2. Click the “configure” link next to the RootCandy theme.

 3. Customize the display options for this theme, including the color.

 4. Scroll to the bottom of the Web page and click “Save configuration.”

Now that you have seen how Drupal’s administrative area can be altered, it is time
to start thinking about how you, too, can improve the experience for your administra-
tors. If you are working with a small Web site that requires few custom tasks, Root-
Candy might be enough for your needs. If you have a lot of custom tasks, however, you
should consider creating a customized experience for your content administrators.

Creating a Custom Administrative Interface 255

FIGURE 8.3 The RootCandy theme emphasizes the best possible use of space on each screen.

256 Chapter 8 Administrative Interfaces

FIGURE 8.4 RootCandy allows you to customize the colors to match the main theme of your Web site.

Task-Based Navigation

Regardless of the type of Web site you have created, there will be some tasks that you
need to perform on a regular basis. These tasks may range from creating a simple blog
entry to undertaking a more complex series of tasks, such as editing, reviewing, and
publishing content submitted by multiple Web site authors. Drupal provides a naviga-
tion block for users who are logged into the Web site that contains links to “Create
Content,” “Administer” the site, and “Logout” from the site. This block features the
user’s name as the title of the block and typically appears on the left side of the page in
a default Drupal installation as shown in Figure 8.5.

While the Administer menu does contain a number of useful links, it is long and
somewhat overwhelming for new Web site administrators. Using the “Site building”
and “Site confi guration” features requires the administrator to memorize each of the

options contained within them. In many cases it is easier to go to the main “Adminis-
ter” page and choose from the detailed list of all options found there.

To overcome the problems of having a too-long administrative menu, you may cre-
ate your own custom menus for frequently performed administrative tasks within your
site. For example, Web site administrators, content managers, and basic users have dif-
ferent sets of tasks that they need to accomplish. Customized menus for each of these
groups can be placed into a specifi c region on your page by enabling the block for that
menu. You will also be able to limit the access to each of these blocks according to the
user’s role.

When developing these menus, fi rst list the common tasks that are needed by each
different type of user. Consider the order in which these tasks should appear on the
menu. In most cases it will be appropriate to put the most frequently performed tasks
at the top of the list. You will be able to change the order of the menu items at any
time. You may also use links to external Web sites for your menus—an ability that can
prove especially useful if you use an external service, such as mailman, to administer
the mailing lists for your Web site.

Creating Custom Menus

To create a custom menu, follow these steps:

 1. Navigate to Administer, Site building, Menus.

 2. Click “Add menu” from the configuration options across the top of the page.

Task-Based Navigation 257

FIGURE 8.5 The default navigation block lists the Administer menu option; however, only those people
who are very familiar with each of the sections will be able to effectively use this menu.

258 Chapter 8 Administrative Interfaces

 3. Fill in the form to create a new menu. Information to be provided includes a
machine-readable name (lowercase letters, numbers, and hyphens but not un-
derscores), a human-readable title, and a brief description of what is contained
in the menu. Use meaningful names, and be aware that the description will
appear on the summary page for all menus.

 4. Scroll to the bottom of the Web page and click “Save.”

Your menu is now ready to have items added.

 1. Click on the “Add item” configuration option at the top of the page.

 2. You will be able to create new menu items using the administrative interface
shown in Figure 8.6:

 • “Path” may be an internal or external link.

 • “Menu title” contains the words that will appear in the menu. Be as clear as
possible with this text.

 • “Description” will appear as a tool tip when the user hovers the mouse over
the menu item. Try to use a concise description that does not repeat the
“Menu title” text. (In other words, in the dictionary, under the word
“redundant,” the definition should not say, “See redundant.”)

 • Your menu item can have several subsections. When you specify the
“Expanded” option, menu items nested under the current option will
appear.

 • If you wish to move your menu item to another menu (or to move it within
the hierarchy of the existing menu), change the “Parent item.”

 • You can also change the order of the items within the menu. Use the
“Weight” to move items up and down. This positioning of items can be
easily edited in future screens.

 3. When the menu item has been added and configured to your liking, scroll to
the bottom of the Web page and click “Save.”

 4. Add additional items to the menu by repeating steps 2–7.

Once you have added your menu items, you can easily change their order, as shown
in Figure 8.7, by dragging and dropping items to the correct location.

 1. Navigate to Administer, Menus.

 2. Choose the menu you want to alter by clicking on its title.

 3. Use the crosshair icon at the left side of each menu item to drag and drop the
menu item to a new location.

 4. Scroll to the bottom of the Web page and click “Save configuration” to retain
these changes.

If you do not have JavaScript enabled, you can move menu items by changing the
weight in the drop down-box for each menu item.

Deploying Custom Menus

Once you have created the custom menu, you will need to enable it on your site. To do
so, you must place a “block” for the menu into a “region” on your template. To enable
the menu, follow these steps:

 1. Navigate to Administer, Site building, Blocks.

 2. Note the yellow bars, which will appear throughout the site to show you
regions where blocks can be placed (the color may vary depending on the
administrative theme you are using).

Task-Based Navigation 259

FIGURE 8.6 Items can be easily added to any menu in Drupal.

260 Chapter 8 Administrative Interfaces

 3. Scroll down to the list of “Disabled” menu items and find your new menu.
Drag the block up to the region you would like it to appear under and in the
order you would like it to appear within the given region.

 4. Scroll to the bottom of the page and click “Save blocks.”

With the blocks saved, you can now confi gure their visibility:

 1. Scroll to the block that contains your custom menu. Click “configure” next to
the block.

 2. On the configuration screen, you can override the name of the menu and set
three different visibility options:

 • User-specific settings

 • Roles that may view the block

 • Pages on which the block can appear

FIGURE 8.7 To change the order of a menu item, use the crosshair icon on the left side to drag and drop
the item to a new location. If JavaScript is not enabled, use the “Weight” drop-down menu to change the
position of each menu item.

Administrative Menus

Several contributed Drupal modules are available that will allow you to keep the full
navigation options open for the Administration area without cluttering up the overall
Web site layout. These modules are not part of the Drupal core, but rather must be
downloaded and installed separately. Information about each of the project’s pages is
included here, along with a description of the module.

Remember to enable the permissions
If you are logged in as the primary site administrator, you will have these admin-
istrator menus available when the module is installed. If you have other Web

site administrators who also want to access these menus, you will need to set the
permissions on a per-role basis by navigating to Administer, User management,
Permissions.

Administrative Menus 261

Admin Menu

The Admin Menu module creates a new menu containing all administrative menu
items along the very top of your Web site. This module is not part of the Drupal core
and must be downloaded and installed separately. The Admin Menu module is espe-
cially helpful for new Drupal administrators, because it gives them a quick overview of
the available options without having to click through to each of the screens. It is also
useful for experienced Drupal administrators, because it provides a shortcut to admin-
istrative tasks. An example of the Admin menu in action can be seen in Figure 8.8.

FIGURE 8.8 The Admin Menu module contains a shortcut to all links in the Administer menu.

262 Chapter 8 Administrative Interfaces

To install the Admin Menu module, follow the instructions in Appendix A on how
to install a Drupal module. The project page for this module is located at http://
drupal.org/project/admin_menu.

Once the module has been installed and enabled, you will immediately see a black
menu bar at the top of your Web site. Figure 8.9 shows the Admin Menu with no
options selected. You will be able to use the Admin Menu as a shortcut to all adminis-
tration pages as well as some commonly run administrative tasks.

The Drupal icon on the far left end of the Admin menu also contains a menu. This
menu includes links to the following task:

 • Visiting the Administer home page

 • Running cron (see Chapter 2 for more information)

 • Running updates

 • Disabling the Devel module

 • Accessing a shortcut to the Drupal.org issue queue

If the Devel module (see Chapter 2) is installed, you will also see links to three other
tasks:

 • Generating items (“dummy” content, users, and taxonomy items)

 • Emptying the cache

 • Using the Variable editor

FIGURE 8.9 The Admin menu sits neatly at the top of your page and contains shortcuts to all administra-
tive pages.

Administrative Menus 263

The Admin menu alters the modules page
By default, the Admin menu collapses fi eldsets on the module pages. If you would
rather that each section remain open on this page, you will need to change the

default settings for the Admin menu. Navigate to Administer, Site confi guration,
Admin menu. Remove the check box next to “Collapse fi eldsets on modules page.”
Scroll to the bottom of the Web page and click “Save confi guration.”

The Admin menu is designed for use by administrative users. If you need a drop-
down menu as a replacement for a complete menu (for example, the default Navigation
menu or a custom menu that you have created), you will need to use the SimpleMenu
module instead of the Admin Menu module. It can be downloaded from http://
drupal.org/project/simplemenu.

Teleport

Another useful shortcut tool for site administrators and expert users is the Teleport
module. This module is an on-demand search widget. It appears as in Figure 8.10
when the user presses a series of keys. The teleporter locates titles and paths that match
the text as you begin typing. You can then select from a list of possible options in the
drop-down menu. Use of this module requires JavaScript.

FIGURE 8.10 The Teleport widget allows you to quickly jump to another page in your Web site.

264 Chapter 8 Administrative Interfaces

The Teleport module can be downloaded from the project page at http://
drupal.org/project/teleport. Instructions for its installation can be found in
Appendix A.

Once the Teleport module is installed, you may confi gure several options, including
the shortcut keys used to access the teleporter (Figure 8.11).

 1. Navigate to Administer, Site configuration, Teleport.

 2. Configure the following options for the module:

 • Default shortcut key

 • The types of things to include in the search (Only titles and paths are
indexed, not the content of the pages.)

 • The content types to search

 3. Scroll to the bottom of the Web page and click “Save configuration.”

Navigate

Navigate is an administrative menu that truly separates site administration from
the theme. From this administrative menu, you can readily navigate through pages;

FIGURE 8.11 The shortcut keys for the teleporter can be easily confi gured.

you can also search through your navigation and pages (Figure 8.12). Pages can be
bookmarked and saved in the Navigate menu for future use. Although there are no
additional module dependencies, Navigate is heavily dependent on AJAX and will not
work as advertised if you do not have JavaScript enabled.

The Navigate module can be downloaded from the project page at http://www.
drupal.org/project/navigate. Instructions for its installation can be found in
Appendix A.

Once the Navigate module is installed, you may confi gure several options.

 1. Navigate to Administer, Site configuration, Navigate settings.

 2. Configure the following options for the module:

 • Help text

 • Default home page

 • Number of history items to save

 • The header image for the administration frame (This can also be removed, as
shown in Figure 8.12.)

 3. Scroll to the bottom of the Web page and click “Save configuration.” If the
Devel module is installed, each of the shortcuts from the devel block are also

Administrative Menus 265

FIGURE 8.12 Navigate is an administrative menu that separates site administration from the theme.

266 Chapter 8 Administrative Interfaces

available from this page. This includes a set of handy links to the following
tasks:

 • Emptying the cache

 • Listing the output from phpinfo()

 • Accessing documentation for recently used Drupal functions

 • Listing currently set variables

 • Resetting menus and reinstalling modules

Administrative Dashboards and Control Panels

The distinction between an administrative menu, a control panel, and an administra-
tive dashboard might be viewed as a bit pedantic. These controls offer either graphical
or text-based, administrative navigation that is visually prominent within the site’s
design. Both RootCandy’s set of icons across the top of the administrative pages and
the Control Panel module allow you to easily build your own graphical administrative
dashboard to administer Drupal.

Control Panel

Control Panel is a module that creates a series of icons for the administration of your
Drupal installation. It matches the administrative URL from a menu onto a graphical
icon. A control panel can be built from any Drupal menu. With the Control Panel
module, a full-page option is created and can serve as an alternative to the administra-
tive home page (Figure 8.13). To implement this approach, replace the existing link to
the Admin page with a link to the control panel. You may also choose to create a block
from any menu and place it in any region of your Web site.

The Control Panel module can be downloaded from the project page at http://
drupal.org/project/controlpanel. Instructions for installing modules can be
found in Appendix A.

The sample block shown in Figure 8.14 uses the default menu for Administer and
contains links to Content management, Site building, Site confi guration, User man-
agement, Reports, and Help. Although the display is not perfect, altering the titles of
the longest menu options tightens up the display signifi cantly as shown in Figure 8.15.
Instead of changing the names of the menu items, you may wish to build your own
custom menus containing each of the options your users will need.

FIGURE 8.14 Control panels can be displayed either as a page or as a block. By default, the titles are a bit
long for display in most sidebars.

Administrative Dashboards and Control Panels 267

FIGURE 8.13 A control panel can be used as a full-page display to replace the main administration home
page.

268 Chapter 8 Administrative Interfaces

You can add icons to a control panel by creating PNG image fi les. These fi les must
be uploaded to the appropriate sub-directory of the images subfolder for the Control
Panel module. For example, to have icons available for all available sizes, you must upload
the appropriately sized graphics to each of the following directories: controlpanel/
images/16x16, controlpanel/images/24x24, controlpanel/images/36x36,
and controlpanel/images/48x48. Image fi le names should match the path for the
menu item. For example, an image representing the path admin/build/modules
should be named admin_build_modules.png. You may also provide icons for paths
outside of the administration area by using the same naming convention. For example,
an icon for the path node/add/blog would be named node_add_blog.png.

Theming Control Panel

Theme functions are available for the Control Panel module. These functions allow
you to change the HTML that surrounds each item in the control panel. Two views
can be themed in the Control Panel module: main panel view and child panel view.

FIGURE 8.15 By altering the name of the menu items, the text of the control page is now legible.

The fi rst function alters the output for the fi rst row of the control panel icons displayed
in Figure 8.13. The second function alters the output for subsections displayed in sub-
sequent rows (for example, for “Site building” in Figure 8.13).

To change the output of these two views, you must create a replacement function
in your theme. Instead of printing what the module programmer has put into the
module, Drupal will then use your HTML when printing the output for the control
panel. The steps outlined here can be used to theme the output from any module with
a theme function.

 1. Open the module file in a text editor. This file will be found in the
controlpanel subdirectory of the modules directory—for example, sites/
all/modules/controlpanel/controlpanel.module.

 2. Look for the function that can be themed. It begins with:

function theme_controlpanel_panel_view ($menu, $block = NULL) {

 3. Copy the contents of this function. You will need everything from the word
function to the final }. This data will be approximately 20 lines long.

 4. Open the file named template.php for your theme. If this file does not exist,
create it now.

 5. Paste the function into the file template.php. Although this function can be
placed anywhere in the file, you may prefer to list your functions alphabetically
to keep the file neat and tidy.

 6. Change the name of the function so that the word “theme” matches the name
of your theme. For example, if your theme was named bolg, the function
would be renamed from theme_controlpanel_panel_view to bolg_
controlpanel_panel_view.

 7. Using the provided output as an example, you may now reconfigure the inside
of the theme to produce whatever HTML you would like to print to the
browser page. Make sure the end of your function “returns” content back to
Drupal.

 8. Repeat these steps for the second function that can be themed in the Control
Panel module. It is named theme_controlpanel_child_panel_view in the
file controlpanel.module.

You may repeat this entire process for the second function that can be themed.

Administrative Dashboards and Control Panels 269

270 Chapter 8 Administrative Interfaces

Custom Administrative Screens

Even with the rich offering of themes and modules from the Drupal community, it is
very possible that your site may need a little bit more customization than what is of-
fered by these solutions. If this is the case for your site, consider building a new content
administration area that exists independently of the main administrative area. By redi-
recting site administrators to your version of how the administration ought to work,
you can create a whole new experience for the administration of Drupal.

The fi rst thing you will need to do to create a custom administration experience is
to think about the tasks that each of your administrators will need to perform. You may
have placed some of these tasks into menus and then blocks earlier in this chapter. In
some cases, however, it is diffi cult to confi ne the tasks to a single block. For example,
you may want to create a list of all pages that are waiting for approval before being
published, or you may want to list all images that are not currently assigned to a gal-
lery. Thinking about the tasks you perform on a regular basis may help you to realize
that life would be a lot easier if only you could have a summary of a specifi c kind of
content.

Using the Views module, you can easily create a customized list of any content you
may need. This tool is essentially a point-and-click database query tool. The results of
a query can be returned as a page, as a block, or as a feed (or a combination of these).
The list of content that is returned can be themed so that it fi ts with the rest of your
Web site.

You may decide to fi lter the list based on the content’s characteristics or based on
the URLs that a visitor uses. For example, you could have a single view that shows
“unpublished content” for each of your Web site categories based on the URL that
is called. In this case, two conditions would be put onto the list of content that is re-
turned: The fi rst condition (only unpublished content) is called a “fi lter” within views;
the second (variable categories) is referred to as an “argument.” A fi lter is fi xed within
the view, but an argument can change depending on which URL is visited.

The origins of an argument
The word “argument” is a programming term. It refers to pieces of information
that are passed from the outside world into a specifi c section of a script. You may

also be familiar with the term “parameters.” Parameters are the variables that are
passed to a specifi c section of a script. Arguments, by contrast, are the actual values
that are assigned to the parameter variables when a script is executed. In Web-based
applications, arguments are typically thought of as extra bits of information col-
lected from the URL of a Web page.

Custom Administrative Screens 271

New Content View

Using the Views module, you can create lists of content that are relevant for your Web
site administration. For example, you could create a view containing the 20 most re-
cent items published on your Web site. You must have the contributed Views module
enabled for this section. Additional information about the Views module can be found
in Chapter 2. This view is comparable to the front page of a blog as well as to the con-
tent management administrative interface found by navigating to Administer, Content
management, Content. You may wish to use this view as a block, a page, or a feed. For
this view we will start by cloning the default “frontpage” view. You must fi rst enable it
using the following steps:

 1. Navigate to Administer, Site building, Views.

 2. Click on the link to “clone” the “frontpage” view. This will reveal the first con-
figuration screen, “Clone view frontpage.” See Figure 8.16.

FIGURE 8.16 The fi rst confi guration screen in the View interface allows you to confi gure information
about your new view.

272 Chapter 8 Administrative Interfaces

 3. Change the “View name” to all_recent_content. The “View name” should
be a machine-readable name that contains only letters, numbers, and under-
scores.

 4. Update the “View description” to match the new functionality for this view.
Provide a helpful description—for example, “Creates a list of the most recent
content published to the Web site.”

 5. Add relevant tags for this view to the “View tag”—for example, “new content.”

 6. You cannot change the “View type” when you are cloning a view. Note that
type for this view is “node.” If you want to use a different type of content, you
must either create a new view or clone a different view.

 7. Scroll to the bottom of the Web page and click “Next.”

FIGURE 8.17 The main confi guration screen for the Views module allows you to confi gure your view.

The main confi guration screen for your view will now appear. See Figure 8.17.
For the altered “All recent content” view, several items need to be changed from the

default “frontpage” view. For each confi guration option, click the text and then change
the appropriate options in the confi guration screen that appears at the bottom of the
page. Click “Update” to save your settings.

Basic Settings

Under the “Basic settings” section of the Views administration screen, you must con-
fi gure the following options:

 • Items per page: 10. Update this number to display more than 10 items.

 • Name: Defaults. Update the view name to match the new content that will be
displayed.

 • Title: None. This is an administrative view; it will be useful to add a page title.

Filters

Under the “Filters” section of the Views administration screen, you must confi gure the
following option:

 • Node: Promoted to front page. This filter is no longer required. Click the
“Remove” the option in the configuration screen.

Sort Criteria

Under the “Sort criteria” section of the Views administration screen, you must confi g-
ure the following option:

 • Node: Sticky. This filter is no longer relevant, as we want only the newest
content. Click the “Remove” option in the configuration screen.

Page Display

You must also create a new URL for this view. Click the “Page” tab to the left of the
main confi guration screen. Under “Page settings,” click the text next to “Path.” Update
the path to the new URL for this page. For example, you would change “frontpage” to
“all_recent_content.”

After adjusting each setting and clicking “Update,” scroll to the bottom of the page
to see a preview of what will appear for this view. Once the view is correctly confi gured,

Custom Administrative Screens 273

274 Chapter 8 Administrative Interfaces

click “Save” to fi nalize all changes made. To use the new view, integrate a link to the
new page into your custom menus created previously in this chapter, or enable a block
to give a summary of all content for this view.

Orphan Images View

Another useful list of content that you can create with the Views module is a list of
orphaned images that are not included in an image gallery. This view requires you to
have taxonomy enabled and confi gured with the Image and Image Gallery modules. It
will be most useful as a full page (as opposed to a block or a feed). To create this view,
you will start from scratch instead of cloning an existing view.

 1. Navigate to Administer, Site building, Views.

 2. Click on the link to “Add” a new view. This will reveal the first configuration
screen. Set the following information for this view:

 • View name: orphan_images.

 • View description: A list of all images not integrated into a gallery.

 • View tag: orphan image. (You may also have orphan book pages or other
types of content.)

 • View type: node.

 3. Scroll to the bottom of the Web page and click “Next.” The main configura-
tion screen for your view will now appear.

Update the settings for this view. You will need to set the node type as well as the
categories. You should set the fi elds before you set the fi lters; otherwise, you will get an
error message.

Page Display

You must also create a new URL for this view. Click the “Page” tab to the left of the
main confi guration screen. Under “Page settings,” click the text next to “Path.” Add a
new URL for this page—for example, orphan_images.

Fields

Under the “Fields” section of the Views administration screen, you must confi gure the
following options:

 • Click the + sign next to the “Fields” heading to add a display field.

 • In the configuration screen, change the “Groups” to “node” and wait for the
new list of fields to appear.

 • Choose Node: Title, Node: Edit, Node: Delete, and Node: View from the list
of fields. Click “add” to enable these four fields.

Filters

Under the “Filters” section of the Views administration screen, you must confi gure the
following options:

 • Node type: images

 1. Click the + sign next to the “Filter” heading to create a new filter.

 2. In the configuration screen, change the “Groups” to “node” and wait for the
new list of filters to appear.

 3. Scroll down to the filter “Node: type” and enable it by selecting the check
box.

 4. Set the operator to “Is one of” and the node type to “Image.”

 5. Click “Update” to save these settings.

 • Not in a gallery

 1. Click the + sign next to the “Filter” heading to create a second filter.

 2. In the configuration screen, change the “Groups” to “taxonomy” and wait
for the new list of filters to appear.

 3. Scroll down to the filter “Taxonomy: Term ID” and enable it by selecting
the check box and clicking “Add.”

 4. Set the vocabulary to “Image Galleries” and the selection type to “Drop-
down.” Click “update.”

 5. Change the operator to “Is none of” and select all image galleries from the
list on the right.

 6. Click “Update” to save these settings.

 7. Repeat these steps to add additional filters.

Basic Settings

Under the “Basic settings” section of the Views administration screen, you must con-
fi gure the following options:

Custom Administrative Screens 275

276 Chapter 8 Administrative Interfaces

 1. Choose the basic style for this view—for example, Grid, List, Table, Unformat-
ted. Configure the display settings for the style you choose.

 2. Restrict this view to only authenticated users. The assumption here is that
because the image is not in a gallery, it should not be a public image. Click on
“Access: unrestricted.” Change “By role” to “authenticated users.” You must
set this access correctly or the page will not display any images even if there are
some!

After adjusting each setting and clicking “Update,” scroll to the bottom of the page
to see a preview of what will appear for this view. Once the view is correctly confi gured,
click “Save” to fi nalize all changes made. To use this view, integrate a link to the new
page into your custom menus created previously in this chapter, or enable a block to
give a summary of all content for this view.

Theming the View

At this time, the image module does not provide hooks to display images as part of
the view. Instead, a custom theme template is required to do so. A default template is
included as part of the Views module.

 1. Under the “Basic settings,” click “Theme: Information.” This choice will reveal
a series of template files.

 2. Beside the “Row style output” link, you will see a series of file names.
Choose the most specific file name for the fields for this view—for example,
views-view-fields--orphan-images.tpl.php. Create a file in your
theme directory that matches this file name.

 3. In the new template file, add the following code snippet:

<?php $node = node_load($row->nid); ?>

<h2 class="image"><?php print check_plain($node->title);?></h2>

[<?php print l("view", "node/$node->nid"); ?>]

[<?php print l("edit", "node/$node->nid/edit"); ?>]

[<?php print l("delete", "node/$node->nid/delete"); ?>]

<div class="image">

<?php print theme_image($node->images["thumbnail"], $node->title, $node->body,
NULL, TRUE); ?>

</div>

This code will display the list using the thumbnail images and provide a set of view,
edit, and delete links for each image. (See Figure 8.18 for an example of this output.)
The images that are displayed from this list differ from the main image gallery layout
shown in Figure 8.19.

This view can now be added into a custom administrative “Gallery” menu that
allows you to perform a variety of tasks. Following is a list of suggested tasks, with the
administrative path appearing in parentheses:

 • Upload Image (node/add/image)

 • Edit Gallery Categories (admin/content/image)

 • Orphan Images (orphan_images)

 • View Galleries (image)

Custom Administrative Screens 277

FIGURE 8.18 Using a simple template fi le, images can be added to the output of the view for orphan
images.

278 Chapter 8 Administrative Interfaces

Unpublished Content by Category

A third example of a custom administrative view would be one created by selecting un-
published content on a per-category basis. This view is easily created from the default
view of taxonomy_term.

 1. Navigate to Administer, Site building, Views.

 2. Enable the taxonomy_term view.

 3. Click the “clone” link to create a copy of the view.

 4. Update the “View name,” “View description,” and “View” tags. For the “View
name,” you may wish to use unpublished_by_term.

 5. Scroll to the bottom of the Web page and click “next.”

On the next administration screen you will be presented with a new set of confi gura-
tion options.

 1. Alter the filter “Node: Published or admin” by clicking on the filter name.

 2. Click “Remove” for this filter.

 3. Add a new filter by clicking on the + next to the “Filters” heading.

 4. Choose the “Node: published” filter. Scroll to the bottom of the Web page and
click “Add.”

 5. Without selecting “Published” click “Update.” This option will filter the view
so that only unpublished content is listed.

FIGURE 8.19 The main image gallery contains only one image, which has been assigned the category of
“Hay-on-Wye.”

 6. Under the “Basic settings” for the “Page” type, update the “Path” to
taxonomy/term/%/unpublished. Click “Update” to commit the changes.

 7. The “Core feed” and “Views 1 feed” displays can be removed. Click “Save” to
commit the changes.

This view can now be accessed by adding “unpublished” onto the end of any taxonomy
page—for example, taxonomy/term/1/unpublished.

Error!

Sometimes bad things happen. Drupal allows you to easily create custom error pages to
deal with those (infrequent, one hopes) mishaps. Several solutions are presented in this
section to help you decide how to best deliver useful error messages to your Web site
visitors. Always remember to test your error pages and error messages. The last thing
you want to have is an error-fi lled error!

Error Messages

Drupal has two main ways of delivering system-related messages to the user: help and
messages. Both are rendered in the page.tpl.php template fi le, where they are avail-
able as $help and $messages, respectively. With some very simple styling, you can
easily ensure that these messages match your existing theme.

Three types of Drupal messages can be displayed to the Web site user: status, warn-
ing, and error. These messages are always displayed in a div with the additional class
of messages. For example, an error message has the following markup:

<div class="messages error">Bad things happened!</div>

Within your theme’s CSS fi le, the following classes can be used to override Drupal’s
default theming for these messages:

/* Define the box shape for all messages */

.messages {

 padding: 7px;

 border: 1px solid black;

 margin: 10px;

}

Error! 279

280 Chapter 8 Administrative Interfaces

/* Define the colors for error messages */

.error {

 border-color: red;

 background-color: #FFDDDD

 color: #AA0000;

}

/* Define the colors for warning messages */

.warning {

 border-color: yellow;

 background-color: #FFFFDD

 color: #CCAA00;

}

/* Define the colors for status messages */

.status {

 border-color: green;

 background-color: #EEFFAA

 color: #668833;

}

404, Page Not Found

By default, Drupal allows you to create two types of error pages: one for “404, Page not
found” errors and a second for “403, Access forbidden” errors. These error pages are
actual pages stored within the database. You may use any content type for these pages.
Once the pages have been created, navigate to Administer, Site Confi guration, Error
reporting. Enter the path for the two error pages you created as shown in Figure 8.20.

Technically, that was very easy. Creating the text of the error page, however, requires
a bit more thought. Here are a few tips to creating good error pages:

 1. Use a friendly and human tone on your error message page.

 2. If you have a site map, offer a link it. You may also want to include the site
map as part of your error page.

 3. Offer a link to the site search, or include the search form in the error page.
This can be done with a PHP snippet within the actual page.

 4. Offer a link to a guided tour (if you have one) or the “About the site” page.

 5. Include a contact form for visitors to fill out if they were looking for specific
information.

 6. Read “The Perfect 404” (http://www.alistapart.com/articles/
perfect404) for additional tips on dealing with missing pages.

Custom Error

One of the disadvantages of using the built-in Drupal error-handling techniques is
that the error pages are actual nodes in the database. As a consequence, they may show
up in search results pages. An alternative to this approach to error handling is to use
the Custom Error module. This module can be downloaded from the project page
at http://drupal.org/project/customerror. Instructions explaining how to in-
stall modules can be found in Appendix A.

Once the Custom Error module is installed, you will need to confi gure the error
messages and enable the custom error screens. To do so, you fi rst enter the text for the
error message page. You may use HTML tags and/or PHP snippets. To update the
error text, follow these steps:

 1. Navigate to Administer, Site configuration, Custom error.

 2. Enter the title and text you would like to use for the error pages (“404, not
found” and “403, access denied”).

Error! 281

FIGURE 8.20 On the error reporting page, enter the path for the error page that you have created.

282 Chapter 8 Administrative Interfaces

Sample 404 Page

Be sure to enable PHP if you use the sample 404 page. The PHP snippet will provide
a search form on the error page.

<p>We couldn't find your page. We're sorry. But look what we did find: It's a
search form! Cool, eh?!</p>

<?php

// Confirm the search module is enabled, and the visitor is allowed to use it

if (module_exists('search') && user_access('search content')) {

// Copy a sanitized version of the requested URL into the search box

$search_terms = strtolower(preg_replace('/[^a-zA-Z0-9-]+/', ' ', $_
REQUEST['destination']));

print drupal_get_form('search_form', NULL, $search_terms, 'node', 'Look it up');

}

?>

Sample 403 Page

Be sure to enable PHP if you use the sample 403 page. The PHP snippet will provide
a login form to Web site visitors who are not logged into the Web site.

<p>Sadly, you are not important enough to view this page.</p>

<?php

// Check whether the visitor is logged in...

if (user_is_logged_in()) {

 print "SuXor, eh?";

} else {

 print "Would it help if you were logged into the site?";

 print drupal_get_form('user_login');

}

?>

Once you have created the text, you must enable the custom error pages:

 1. Navigate to Administer, Site configuration, Error reporting.

 2. Set the “Default 403 (access denied) page:” to “customerror/403.”

 3. Set the “Default 404 (not found) page:” to “customerror/404.”

 4. Scroll to the bottom of the Web page and click “Save.”

Additional information on custom page templates for offl ine messages can be found
in Chapter 4.

Summary

Customizing the Drupal administrative experience can be as easy as creating a few
blocks with highly useful links or as complex as implementing an entirely new theme
with pages that replace the main administrative navigation. This chapter covered the
following topics:

 • Installing administrative themes

 • Creating administrative shortcuts for frequent tasks

 • Installing and configuring administrative control panels and dashboards

 • Using views to create custom lists of content

 • Customizing error pages

Regardless of whether you create an entirely new Drupal administrative interface
or simply add a few time-saving taskbars, you should consider checking in with the
Drupal Usability Group. They may have uncovered some tools that will help you cus-
tomize your site more effectively. Visit this group at http://groups.drupal.org/
usability.

Summary 283

285

9

Learning JavaScript

With the rise of the technology called AJAX (for Asynchronous JavaScript
and XML) in 2005, JavaScript lost its image as a poor amateur language,

which it had since its first appearance in 1995. This image was mostly due to the
language being used to achieve things that were regarded as useless gimmicks. If you
were a Web developer in the late 1990s or early 2000s, you may be familiar with
popular JavaScript effects from that time, such as status bar tickers, text flying after
the mouse cursor, automatic resizing of windows, or annoying pop-ups.

In recent years, the art of writing good JavaScript has shifted its focus as Web
developers began applying common programming techniques. They also started to
use function libraries and began to harness the full power of the language. Actually,
JavaScript itself has not really changed a lot since its introduction; rather, the way it
is used has undergone dramatic changes.

In Drupal, JavaScript is mainly used to enhance functionality that is already
there. Usually the JavaScript facilitates the process of doing something—for ex-
ample, the file upload JavaScript allows the user to upload a file without having to
reload the entire page. That way, the user can upload a file in the background while

From the Library of Athicom Parinayako

286 Chapter 9 Learning JavaScript

still writing the content or changing other details about the node. It is not good prac-
tice to build things with JavaScript that aren’t accessible when JavaScript is unavailable.
Instead, you should provide a basic version that is usable without JavaScript and then
gradually enhance the functionality by incorporating JavaScript features.

Drupal uses the powerful jQuery library for most of its included JavaScript func-
tionality. Settling on one JavaScript library included in the core allows third-party
module developers to rely on this library and not worry about including their own. Al-
though writing JavaScript using jQuery certainly differs from writing plain JavaScript,
it is nonetheless essential to know the fundamental features of JavaScript. Just know-
ing how to write jQuery code does not allow you to create truly fl exible and portable
JavaScript “widgets.” For this reason, this chapter focuses on the core language fi rst. If
you know some basic PHP (like that used in templates), you should understand the
general syntax of JavaScript as presented here.

Chapters 10 and 11 explain jQuery in greater detail and demonstrate how you can
integrate your JavaScript code with Drupal.

JavaScript versus DOM

JavaScript in the browser consists of two main components: the core JavaScript lan-
guage and the DOM (Document Object Model). The DOM is responsible for pro-
viding access to elements of the Web page currently loaded, such as divs, forms, and
virtually any other aspect of the document. The DOM provides the document and
window objects and all their methods. Unfortunately, it can be quite diffi cult to use the
DOM even for simple tasks, because this model usually requires the use of long func-
tion names like document.getElementsByTagName() and because it lacks conve-
nient navigation methods. Additionally, the implementation of the DOM is not fully
standards-compliant across browsers and a lot of weird edge cases crop up, especially
with Internet Explorer.

Luckily, jQuery steps into the breach to provide a unifi ed interface on top of the
DOM (see Figure 9.1). It takes a lot of the pain out of writing cross-browser-compat-
ible code. Because we are able to use jQuery when working with Drupal, the DOM
won’t be covered in greater detail here. Instead, we will focus on using jQuery to achieve
the same things in a much faster and clearer way. But fi rst, we look at JavaScript itself
to learn some quite useful things and explore its mechanics.

The JavaScript Language

Like PHP, JavaScript is a scripting language. That means you don’t have to compile
it to be able to run it; instead, you feed the JavaScript into an “interpreter” that goes
through the source code and executes the commands as it goes. Even though JavaScript
has syntax similar to PHP, there are some differences between the two: For example,
functions don’t have to have names, JavaScript is less strict about semicolons, and the
syntax for defi ning arrays is more concise than in PHP. This section explores the basics
of writing and executing JavaScript and provides a quick glance at the most important
concepts of the language.

First Steps: Executing Code

For now, the easiest way to execute snippets of JavaScript code is the Firefox extension
called Firebug. If you have not already installed it, now is a good time to do so. You can
download Firebug from http://getfirebug.com. If you don’t want to use Firefox,
you can use another browser that has a JavaScript console, such as Safari 3+ or Opera;
however, Firebug’s console is probably the easiest to use. You don’t have to open a real
Web page—a blank page is suffi cient for our fi rst JavaScript experiments.

To run JavaScript code, just open the console by clicking on the icon on the right
side of the status bar, as shown in Figure 9.2.

Next, type alert("Drupal rocks!"); after the prompt at the bottom of the Web
page. Congratulations, you just ran JavaScript code—not bad for the start! alert() is a
function that displays an alert box. Keep in mind that JavaScript is a case-sensitive pro-
gramming language (unlike PHP), which means that it considers alert, Alert, and
aLeRT to be completely different things. It also means that running Alert("Drupal
rocks!"); won’t work.

JavaScript core

Your JavaScript code

DOM

jQuery

The JavaScript Language 287

FIGURE 9.1 The JavaScript and jQuery development stack.

288 Chapter 9 Learning JavaScript

Declaring Variables

If you want to write more complex scripts, you will most likely want to store data
or other items using variables. In JavaScript, a simple assignment closely resembles
its counterpart in PHP: myVariable = "Drupal";. After making this assignment,
you can use the variable by simply specifying its name: alert(myVariable);. This
statement will produce an alert box with the contents of the variable myVariable as a
message. Note that variable names (and all other “identifi ers”) are case sensitive as well
and must start with a letter, an underscore, or a dollar sign.

The dollar sign
In JavaScript, you could prefi x variable names with the dollar sign just like you do
in PHP; however, it is not common practice in the JavaScript world to do so. The

JavaScript code in this book does not use variable names prefi xed with the dollar
sign. In your own code, you can prefi x all variable names with $, but that step is not
required.

The Variable Scope

There is one subtle but very important difference between JavaScript and PHP: If you
use a variable without prefi xing it with var the fi rst time you’re using it in JavaScript,
the variable is automatically considered to be “global” and, therefore, is automatically
defi ned in any section throughout your entire script.

You might be familiar with the concept of “scope” from PHP. If you have not pre-
viously encountered this idea, here is a short explanation: When a variable is defi ned
fi rst, you can specify its scope, where scope refers to the area for which the variable is
defi ned. If you defi ne a variable in a function, it is available only in that particular
function, but not in other functions. As a rule of thumb, a variable “ceases” to exist

FIGURE 9.2 Firebug’s JavaScript console.

when the current function is closed (in JavaScript and PHP, when the fi nal } character
appears after a function).

By default, variables are defi ned as global in JavaScript when you create them man-
ually. In reality, you rarely want to use global variables. To keep a variable from being
available outside of the scope in which it was defi ned, you must prefi x it with var like
this: var myVariable = "Drupal";.

Figure 9.3 illustrates this concept. In the fi gure, the global variable detail is avail-
able inside the function, so the function alerts 1. The local variable orange is defi ned
inside the function but is not available to access initiated from outside the function.
Trying to access it will result in an error. The variable red is defi ned without the var
modifi er and, therefore, is considered global. Accessing this variable from outside the
function is possible, but only after the function has been executed and defi ned the vari-
able. If you try to access this variable before the function has been run, you will get an
error. After the function is run, red contains the string "global".

Camel case names
You might have noticed that the variable name we used (myVariable) is not typi-
cal for Drupal. This naming scheme, which is called “camel case,” is used nearly

everywhere throughout JavaScript. Instead of separating words with a space or an
underscore, the fi rst letter of a word is written in uppercase and appended imme-
diately to the preceding word without whitespace between them. The fi rst letter of
the entire phrase usually appears in lowercase. You can adopt this scheme or use the
variable naming scheme known from PHP—either way will work.

The JavaScript Language 289

var detail = 1;

function hello() {
 var orange = 'internal';
 red = 'global';
 alert(detail);
}

hello();
alert(orange); // Error!
alert(red);

FIGURE 9.3 The scope of a variable.

Data Types

So far, we have used strings (enclosed with the " character). In fact, several other data
types are also available in JavaScript:

290 Chapter 9 Learning JavaScript

 • Strings contain sequences of characters (e.g., words or sentences, though
their content can also be the source of an entire HTML document). They are
enclosed by either double quotes (") or single quotes ('). If you want to use
the enclosing delimiters themselves, you must “escape” them by prefixing them
with a backslash. The backslash in a string is represented by a double backslash
(\\; an “escaped” backslash).

 • Numbers represent numerical data such as integers or floating-point numbers.
JavaScript doesn’t distinguish between int and float—it treats all numbers
in the same way. For example, if you type 3.5 * 4 into Firebug’s JavaScript
prompt, it does not return 14.0 but rather 14.

 • Booleans can have two values: false or true (just like in PHP). Always write
these two keywords in lowercase (JavaScript is case sensitive, remember?). In-
ternally, true corresponds to 1 and false corresponds to 0. Type 1 == true,
2 == true, true + 2 , and 0 == false into the prompt to verify that.

 • Functions are data types in JavaScript. No, you didn’t misread the previous
sentence: You can assign functions to a variable, pass functions as arguments,
return them from another function, and so on. Functions are full-blown, first-
class objects in JavaScript—more on that in the section “Using Functions”
later in this chapter.

 • Objects are omnipresent in JavaScript. Everything in JavaScript is an object,
and even the other data types can be used as objects because they are automati-
cally converted to a “wrapper object” around the actual data type. The section
“Object Orientation in JavaScript” explains objects in greater detail.

Even though Arrays are actually objects, they are often considered a separate data
type because they have their own syntax and behavior. Arrays in JavaScript don’t be-
have exactly like their counterparts in PHP: You can only number items sequentially
starting from 0 instead of using your own keys. You can use objects as counterparts
to the associative arrays in PHP, however. Arrays can be defi ned as a list of comma-
separated values within square brackets:

var myArray = ['green', 'red', 'blue', 'purple'];

console.log(myArray[2]); // Prints 'blue' to the console.

Displaying debugging information
You can write data to Firebug’s console by using the function console.log().
Many different formatting options are available, as documented on http://

getfirebug.com/console.html.

Operators

In JavaScript, just as in PHP, you can use several operators to perform calculations or
other operations. On numbers, you can use the +, -, *, /, and % operators just as in
PHP. For concatenating strings in JavaScript, however, you must use the + operator
instead of . (dot).

The Boolean operators || and && also behave slightly differently in JavaScript.
While PHP returns true or false when you concatenate multiple expressions with
these operators, JavaScript returns the actual value of the expression that stopped the
evaluation of the entire expression. Here’s a short example from misc/drupal.js:

var Drupal = Drupal || {};

This short snippet makes sure that the Drupal variable is defi ned without overwriting
previous contents. It is evaluated in the following way: When the fi rst part (before the
||) evaluates to true, it is returned (and subsequently assigned to Drupal, so nothing
really happens). When it does not (e.g., it is not defi ned, 0, or false), the second part
of the expression is checked. If it’s true, it is returned; if not, the next part is checked,
and so on. In this case, the second part is the last expression, so it is always returned,
even if it evaluates to false.

The same mechanism can be used to check multiple variables in sequential fashion,
with the fi rst variable that meets the criteria being used. An example of this behavior
can be found in misc/progress.js in the Drupal.progressBar function:

Drupal.progressBar = function (id, updateCallback, method, errorCallback) {

 // ...

 this.method = method || "GET";

 // ...

};

The JavaScript Language 291

292 Chapter 9 Learning JavaScript

When the function is called without specifying the method parameter (or by passing
a value that is null or false), it automatically uses GET as an HTTP method; otherwise,
the specifi ed method is used. This behavior saves you from writing code like this:

if (method) {

 this.method = method;

}

else {

 this.method = "GET";

}

Controlling the Flow

JavaScript also features control structures such as if, while, for, and switch. These
types of statements can be used in much the same way as their counterparts in PHP.
Although JavaScript lacks a keyword called foreach, it is nonetheless possible to iter-
ate over an array or an object. To do so, you would use a special syntax for the for
loop, which is illustrated in the misc/autocomplete.js fi le in the function Drupal.
jsAC.prototype.found:

for (var key in matches) {

 var li = document.createElement('li');

 $(li)

 .html('<div>'+ matches[key] +'</div>')

 .mousedown(function () { ac.select(this); })

 .mouseover(function () { ac.highlight(this); })

 .mouseout(function () { ac.unhighlight(this); });

 li.autocompleteValue = key;

 $(ul).append(li);

}

The code in this loop is executed for each item that can be found in the array matches.
At this point, you need not worry about the code surrounded by the { and } characters.
The key variable contains the index (in the case of an array, it is 0, 1, 2, . . .) and allows
you to retrieve the actual value of the array element or object property. Keep in mind
that PHP’s foreach loop returns the value (and optionally the key); JavaScript always

returns the key, but never the value. Also keep in mind that you should always defi ne
the variable used for storing they key using the var keyword—otherwise, it becomes
global!

JavaScript also has a ternary “operator” that acts like an abbreviation of an if
statement. The following example stems from the Drupal.tableDrag.prototype.
dragRow function found in misc/tabledrag.js:

self.rowObject.direction = y > self.oldY ? 'down' : 'up';

If the expression (the part between the equal sign and the question mark) evaluates to
true, the fi rst expression after the question mark (separated by a colon) is executed.
If that is not the case, the second expression is executed. In this case, the direction the
user is dragging a row is calculated. y is the current coordinate and self.oldY is the
origin of the row. When the new y coordinate is bigger than the original coordinate,
the user is dragging in a downward direction; otherwise, the user is dragging upward.

Although these statements can make your code more concise, you should not over-
use them: Your code can quickly become an unreadable tangle!

Object Orientation in JavaScript

Unlike most programming languages, JavaScript is a “prototype-based,” object-ori-
ented programming language. In other words, you won’t fi nd a class keyword in
this language, because JavaScript doesn’t have regular classes. Instead, everything is an
object in JavaScript. In traditional object-oriented languages, classes defi ne an entity;
you then create instances of these entities. By contrast, in JavaScript, you create new
objects that are derived from another object. The new objects inherit all prototypes
of the original object, even if they were defi ned after the derivation. However, it’s still
possible to mimic the “regular” classes known from most programming languages with
object orientation. We will explore the exact details of how objects and prototypes
work in JavaScript later in this chapter.

The “Everything Is an Object” Approach

Unlike a couple of other object-oriented programming languages, JavaScript does not
draw a real distinction between primitive data types (such as integers and Booleans)
and objects. Everything in JavaScript is an object. Integers and other numbers are ob-
jects, strings are objects, arrays are objects, functions are objects, regular expressions
are objects, and so on.

Object Orientation in JavaScript 293

294 Chapter 9 Learning JavaScript

As mentioned earlier, JavaScript also doesn’t distinguish between integers and fl oat-
ing-point numbers. Numbers in JavaScript are basically “copies” of the Number object:
(42).constructor; returns Number. However, numbers have some special traits
that other objects lack and are restricted in some other ways. Nonetheless, we can do
some interesting experiments with numbers. In some edge cases and in some versions
of Firebug, executing the preceding script in the console will not work. Instead, you
must create a plain HTML fi le with a script tag in the header, as shown in the follow-
ing code example. This approach is also useful when you want to test slightly different
versions or more complex code because it can be a bit of a hassle to write longer code
in the JavaScript console.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

<head>

 <title>JavaScript testing</title>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <script type="text/javascript">

 // Insert code here.

 </script>

</head>

<body>

 <p>No page content</p>

</body>

</html>

Comments in JavaScript work the same way as in PHP: You can start a single-line com-
ment with a double slash (//) and enclose a multiple-line comment with /* and */.

You can now replace the comment with your testing code and load the fi le into a
browser.

Number.prototype.squared = function() {

 return this * this;

};

console.log((42).squared());

This code extends the Number objects and adds a function to all numbers named
squared. In the last line, we create a new number object just by writing out the
number and calling the number’s squared() method! Using such functions makes
the code much easier to read because the resulting code looks and sounds more nat-
ural. For example, suppose you have a lot of hexadecimal codes that you want to
convert to their RGB equivalents. You can simple extend the String object with a
function that takes the string and converts it to the respective RGB values: "66CCFF".
hexToRGB();.

Adding functions to an object (and all instances of that object) is achieved via the
prototype property. Later in this chapter, the “Prototypes” section explains this pro-
cess in greater detail and shows an implementation of the hexToRGB() function. For
now, just be aware that basically everything is an object in JavaScript.

Yes, functions are also objects. As a consequence, you can do anything with func-
tions that you could do with other objects. You can store functions in variables, use
them as parameters to other function calls, add properties to them, and so on. And
because properties of an object are regular variables, these properties can also contain
functions! That means you can add “subfunctions” to functions:

function foo() {

 console.log("foo");

}

foo.value = "Drupal";

foo.bar = function() {

 console.log("My value is: " + this.value);

};

foo();

console.log(foo.value);

foo.bar();

Object Orientation in JavaScript 295

296 Chapter 9 Learning JavaScript

Semicolons in JavaScript
In JavaScript, you should end an assignment with a semicolon, just like any other
command. JavaScript is not as strict about semicolons as other programming

languages, but to improve readability and compatibility, you should always add
semicolons to separate commands. If you omit the semicolons, line ends are con-
sidered the end of the command if the current context allows it.

Not adding semicolons is considered bad programming style and can sometimes
even break the script—for example, when it is compressed by removing whitespace.
Line breaks are also considered whitespace and, therefore, will be removed. If you
do not add semicolons, the commands will be glued together and the JavaScript
engine will no longer be able to parse the script.

The preceding code prints “foo”, “Drupal”, and “My value is: Drupal”, in that order,
to the console. Using this technique, you can create full-blown objects that are not
instances of any class. This approach is very similar to the programming pattern com-
monly known as a “singleton”. (More on design patterns in JavaScript can be found in
Chapter 11 of this book and in the highly recommended book Pro JavaScript Design
Patterns by Ross Harmes and Dustin Diaz.)

Defining and Working with Objects

You can defi ne new objects in JavaScript in two ways:

 • var myObj = new Object(); uses the new keyword to create a new
“instance” of an object. While this approach works adequately, it’s considered
obsolete by many programmers because the syntax is quite verbose.

 • var myObj = {}; creates a new, empty object that you can now fill.

Due to its brevity, we’ll use the latter syntax throughout the book. This syntax is used
by JSON (as described in Chapter 10, in the section “Calling the Server with Xml-
HttpRequest”) and most other people as well. You can add properties to a class in two
ways: (1) add the properties directly when defi ning the object or (2) add the properties
after the object is defi ned.

var configuration = {

 "id": 1634,

 "firstName": "John",

 "lastName": "Doe",

 "birthday": "1982-03-17",

 "permissions": {

 'create': true,

 'update': true,

 'delete': false

 }

};

The preceding code block contains an example object, where the object consists of
key–value pairs. The string (or integer) found to the left of the colon is the key; the
item found to the right of the colon is the value that corresponds to the key. Key–value
pairs are separated from one another by commas. As everywhere else in JavaScript, the
whitespace doesn’t matter here—we could just as well have written everything on one
line. It is also possible to arbitrarily nest objects: The value corresponding to a key can
also be an object, for example. Finally, because everything is an object in JavaScript,
values can be anything.

Commas in arrays and objects
Unlike in PHP, you shouldn’t add a comma after the last element of the object
in JavaScript. Mozilla browsers won’t complain, but many other browsers will

just stop the execution of the script!

You can add new keys to an object by using the following syntax:

function IDtoKey(id) {

 //...

 if (id == 236) {

 return "lastName";

 }

}

var configuration = {};

configuration.id = 1634;

configuration["firstName"] = "John";

configuration[IDtoKey(236)] = "Doe";

configuration["birth" + "Day"] = "1982-03-17";

Object Orientation in JavaScript 297

298 Chapter 9 Learning JavaScript

configuration.permissions = {};

configuration.permissions.create = true;

configuration["permissions"].update = true;

configuration["permissions"]["delete"] = false;

Inspecting the contents of an object
With Firebug, you can print any object to the console. Just enter console.
log(configuration); and you’ll see a new line showing some values of the
object. By clicking on that line, you can inspect the object fully and even dig

deeper into it.

The dot syntax used in the preceding example corresponds to PHP’s arrow syntax
for objects. Alternatively, you can use an array-like syntax when accessing properties
of the object. You can also use variable names or other arbitrary commands to specify
the key in the square brackets; it’s even possible to call a function that returns the key.
These ways of accessing an object’s properties work on deeper levels and can be freely
mixed, as shown in the preceding example. To add new properties to an object, you
do not need to declare those properties beforehand—just assign them. If the property
didn’t exist before, it will be created from scratch by this step; if it did exist before, it
will be overwritten.

Prototypes

Most other object-oriented programming languages support the concept of classes.
Classes are basically blueprints for objects (the objects created from a class are com-
monly known as instances), as shown in the left part of Figure 9.4. In contrast, Java-
Script does not have classes. Instead, it allows objects to have a special property that
acts as template for “instances” created from that object—namely, the prototype
property.

This special property contains the blueprints for other objects created from that
object, as illustrated in the right part of Figure 9.4. Everything in that area of the fi gure
is available in the instance. However, an object must meet one requirement before it
can act as base object: It must be a function (Functions are objects, remember?) that
serves as constructor. This point might seem subtle, but there really is a difference: The
prototype is an object as well, which means that it can be extended at any time—not
just when it is defi ned for the fi rst time.

FIGURE 9.4 Classical object orientation versus JavaScript’s object orientation.

Creating Your Own Objects with Prototypes

We will now illustrate these ideas with some code examples.

// Creates the constructor function for the autocomplete object.

function autocomplete(url) {

 // Saves the correct url for this object.

 if (url) {

 this.url = url;

 }

}

// Adds a function to "autocomplete's" prototype.

autocomplete.prototype.doStuff = function() {

 console.log("This object autocompletes from " + this.url);

};

// Adds some default properties to the prototype.

autocomplete.prototype.url = 'http://example.org/js/node/title';

autocomplete.prototype.maxItems = 8;

This source code shows the basic defi nition of a “prototype-enabled” object. We start
off with a regular function, which will become the “constructor” of the object. A con-
structor is a function that is executed when a new instance of the object is created—in

ac1
ac2

ac3

Autocomplete

Class

Instances

Property of
the function

“Classical” object orientation

ac1
ac2

ac3

Autocomplete

Function

Instances

JavaScript’s object orientation

.prototype

Object Orientation in JavaScript 299

300 Chapter 9 Learning JavaScript

this case, when a new text fi eld is enabled for autocompletion. We then add a function
and some other variables needed to that object’s prototype.

The constructor function contains some code, which we next examine a bit further:
If the parameter url is not false, it is saved to this.url. The if statement checks
whether a URL has been passed to the function; when that is the case, it saves the URL
into the object. We’ll discuss that behavior later. For now, here’s some code to create
instances of the object we just created (add this code to the object defi nition):

var ac1 = new autocomplete();

var ac2 = new autocomplete("http://example.org/js/taxonomy/title");

ac1.doStuff();

ac2.doStuff();

ac1.maxItems = 12;

console.log(ac2.maxItems);

The fi rst two lines of this code create new instances of the autocomplete object.
The fi rst instance doesn’t pass a URL to the constructor, so nothing is saved to this.
url. The second instance does pass a URL to the constructor. When the two func-
tions ac1.doStuff() and ac2.doStuff() are called, they will log their URL to the
console. The fi rst line appearing in the console is “This object autocompletes from
http://example.org/js/node/title.” This URL is the “default” URL for that object as
defi ned in the prototype! As long as the properties of the instance aren’t overwritten or
changed in some way, they contain the values of the prototype. The second line in the
console contains the custom URL that was passed to the constructor for ac2.

You can also change the value of an instance directly. For example, we can just
change maxItems to another number. Printing out the value of maxItems from the
other instance shows that the assignment only altered one object. To easily see what
values a certain object contains, we can just print the object to Firebug’s console with
console.log(ac1);. Clicking on the object in the console allows for further inspec-
tion of it, as shown in Figure 9.5.

Extending Existing Objects

One of the best things about JavaScript is that it’s extremely fl exible. JavaScript al-
lows you to modify anything at any given point. In the case of object orientation with

prototypes, that statement means that you can alter the prototype of the base object at
any time. If you do, all instances of that object will also get the newly added properties.
Thus you can add and override functions even after you create instances of them, and
these new instances will automatically be “updated.”

Let’s look at an example (add this code after the object defi nition from the previous
two code examples):

// Function for creating the drop-down menu.

autocomplete.prototype.createDropdown = function() {

 // Dummy code for creating a drop-down menu.

 console.log("Creating the dropdown with " + this.maxItems + " items");

};

// Increase the number of items displayed by default.

autocomplete.prototype.maxItems = 10;

ac1.createDropdown();

ac2.createDropdown();

First, we add a new function to the prototype of the autocomplete object. This
function will be available to all new instances created from the autocomplete ob-
ject as well as to all existing instances. Next, we increase the default item limit for
autocomplete objects to 10. When we call the new function createDropdown(),
it prints the number of items to be displayed for that particular instance of the
autocomplete object. In this case, it displays 12 for ac1 and 10 for ac2. In this way,
the new value propagates to existing instances, although it will not overwrite values we
already have overridden. In the preceding code example, we set ac1.maxItems to 12,
thereby overriding the value provided from the prototype.

Object Orientation in JavaScript 301

FIGURE 9.5 Displaying an object in Firebug’s console.

302 Chapter 9 Learning JavaScript

We can also extend predefi ned objects, such as the String object from the Java-
Script core. That ability allows us to execute code such as "66CCFF".hexToRGB();
and to understand how this implementation can be done. Because all strings are in-
stances of the String object, we simply add a new function to String.prototype
and all strings will gain that functionality automatically! Here’s the code:

String.prototype.hexToRGB = function() {

 return {

 'r': parseInt(this[0] + this[1], 16),

 'g': parseInt(this[2] + this[3], 16),

 'b': parseInt(this[4] + this[5], 16)

 };

};

You can paste this code into the bare-bones HTML document and test it in Firebug’s
console. The function parseInt converts numbers from different bases (hexadecimal
numbers are base 16) to regular base 10 numbers.

Operator overloading
A small problem in JavaScript is that the + operator is overloaded. In other
words, this operator can operate with a multitude of data types, including both

strings and numbers: It concatenates strings, but adds numbers. Consider 4 + 5 +
"6" as an example: It fi rst adds 4 and 5 and then concatenates 6, resulting in "96".

If you get odd results when doing calculations, check whether all operands are of
correct data types. You can convert strings that contain numbers to actual numbers
with parseInt(). Thus 4 + 5 + parseInt("6") returns the correct result.

This problem doesn’t exist in PHP because the concatenation operator in PHP is
the dot operator (.), whereas adding numbers is done with the + operator.

This function obviously lacks some capabilities, such as checking that the string
is, in fact, a hexadecimal value. The conversion could also be performed in one step
and the color channel parts can be extracted using the modulo function. Our function
should also allow the hash sign to appear as the fi rst character, and so on.

Using Functions

As mentioned earlier, functions are fi rst-class objects in JavaScript. That fact al-
lows us to do many things in JavaScript that are not possible in other programming
languages.

Anonymous Functions

Anonymous functions describe functions that are not associated with a name; they are
just there. You can defi ne anonymous functions virtually everywhere. It’s even possible
to defi ne a function directly in the argument list to a function call!

function(param1, param2, ...) { /* Function body */ }

This example shows what an anonymous function looks like. The difference between a
regular function and an anonymous function is that you omit the function name after
the keyword function. You might fi nd this format familiar, and you are correct: We
used the same notation to assign the function to a variable name or an object property,
thereby removing its anonymity.

function functionCaller(func) {

 console.log("Calling function...");

 func();

 console.log("Function has been called!");

}

functionCaller(function() {

 alert("Anonymous function");

});

The preceding code example shows that you can simply defi ne functions in another
function’s argument list. First, we create a function called functionCaller with one
parameter. We print some debugging information and call the anonymous function
that is passed to this function. func contains the function passed to that function;
func can just be treated like a regular function. The second part of the code calls the
function with an anonymous function as the parameter.

This technique is commonly used in jQuery and various other programming pat-
terns because it allows you to easily customize an action by passing in custom code that
is called in another function. In fact, it is quite similar to what Drupal does in some
places in its PHP code. For example, when you are defi ning a new menu item, you
must specify a page callback, access callback, and various other callback func-
tions that are called when the menu item is invoked or displayed. The only difference
here is that PHP (unlike JavaScript) doesn’t allow you to defi ne these functions directly

Object Orientation in JavaScript 303

304 Chapter 9 Learning JavaScript

in place (at the time of this writing), but rather forces you to use a string that contains
the function’s name.

You can defi ne anonymous functions in many other places. For example, you
might want to return a function from a function (Yes, functions are everywhere in
JavaScript!):

// A function that returns a function.

function logCall(func) {

 return function() {

 console.log("Calling function %o.", func);

 var ret = func();

 console.log("Function %o returned %o.", func, ret);

 };

}

function doStuff() {

 alert("Executing function");

}

// Create a version of the doStuff() function that is being logged.

var doStuffLogged = logCall(doStuff);

doStuffLogged();

The fi rst function, logCall, returns another (anonymous) function with no pa-
rameters. This code is not executed when the function logCall is invoked; rather,
the inner function is created. In that inner function, we log the function that is being
called, execute the function (named func), and print the return value for that func-
tion. The next section in this book examines the nitty-gritty details of how the func-
tion scope works and explains why the inner function can access the variable func.

The second function, doStuff, is just a dummy function that will be used later. We
call the function logCall with that function as a parameter. logCall returns a new
function that executes doStuff when it is executed (phew!); that anonymous returned
function is saved to a variable. In the next line, we execute this function, which is now
stored in the variable doStuffLogged.

When you execute this code snippet in a browser, you’ll see “Calling function do-
Stuff().” in the console window, then the alert will appear. After you click “OK,” the

text “Function doStuff() returned undefi ned.” will appear. That message indicates we
just “extended” a function by adding logging capabilities, so that the function now
informs us every time it is called. How neat is that!?

The Function Scope

We’ve talked about the function scope before, but what does that term actually mean? In
general terms, the scope is the environment or context in which a piece of code (read:
a function) is executed. The scope comprises all things that can be accessed or reached
from a certain point in the code.

In a function, the scope includes the defi ned local variables in that function (using
the var keyword), the parameters to that function, and all global variables (e.g., objects
that JavaScript provides itself, such as the Math object, and objects that the Document
Object Model provides, such as window and document). Additionally, in JavaScript,
the scope of a function includes all variables of the function it is defi ned in (the “parent
function”). As we saw in the previous code example, the inner anonymous function
can also access the parameters of the outer function in which it is defi ned.

This kind of scope is called “lexical scope” (or static scope). Although it is somewhat
uncommon, it is not that complicated and is certainly very convenient: The things you
can access are the items that are defi ned or available above the function in the source
code. The scope doesn’t depend on the context in which the function is executed, but
rather on the context in which the function is defi ned. Let’s look at an example:

function scopeTest(param) {

 var funcs = [];

 for (var i = 0; i < 10; i++) {

 funcs[i] = function(j) {

 console.log("i: %o; param: %o; j: %o", i, param, j);

 };

 }

 funcs[3](42);

 return funcs;

}

var functions = scopeTest('successful');

functions[3](21);

Object Orientation in JavaScript 305

306 Chapter 9 Learning JavaScript

This example defi nes a function with one parameter. The for loop creates 10 func-
tions and stores them to the funcs array so that they can be executed later on. The
functions created print various variables to the console so that we can see which values
they contain. We then pick a random function, execute it with the additional param-
eter 42, and return the entire array with the created functions.

When we look at the output of this JavaScript snippet, we see that i is always 10,
param is always "successful", and j is 42 in the fi rst case and 21 in the second
case (executing other functions than the one with index 3 gives the same result). The
sources of the values of param and j are clear: "successful" is from the call of sco-
peTest, and 42 and 21 are the arguments passed to the created functions.

The value of i is 10 because the for loop counted until 10 until it stopped. But . . .
i had a different value when the function was created in the loop, you say? That doesn’t
matter, because we used only the variable i. Although the value of that variable may
change, the inner function always uses the current value of the variable.

The last line of the example shows that the scope of the function scopeTest sur-
vives even until after the function has returned. It exists as long as it is necessary—as
long as you still can execute functions defi ned within scopeTest, the scope is guar-
anteed to exist.

One kind of function does not have only one static scope. In fact, each invocation
of such a function creates a new “copy” of the scope, leaving the other scopes intact.
That behavior is called closures. Using the same scopeTest function from the pre-
ceding example, we now create a second set of functions with a different parameter:

var otherFunctions = scopeTest('failed');

functions[3](21);

otherFunctions[3](21);

The variable otherFunctions now contains another set of functions. When we call
one of the original functions, param remains "successful" because the function was
defi ned in a scope(!) where param was set to that value. Calling the newly created copy
prints "failed" for param—because the scope that function was declared in contains
a different variable with the name param.

As shown in Figure 9.6, executing the preceding code means that you end up with
two copies of the scope when the function is called twice. These scopes are completely
unrelated and can have entirely different values and states. Code that is operating in-
side that scope can change variables in the scope (the state of the scope), even after the

function scopeTest(param) {
 var funcs {};

 for (var i 0; i < 10; i++) {
 funcs[i] function(j) {
 // ...
 };
 }
 // ...
}

function scopeTest(param) {
 var funcs {};

 for (var i 0; i < 10; i++) {
 funcs[i] function(j) {
 // ...
 };
 }
 // ...
}

var functions
 scopeTest('successful');

var otherFunctions
 scopeTest('failed');

Scope for the first call Scope for the second call

…

original function returns. The scope is discarded only when it becomes impossible to
execute any code found in that scope.

This notion of functions and scope is not an easy concept to understand, but there
are many different ways to leverage that particular feature of JavaScript. You can use
this capability to encapsulate JavaScript widgets so that they form one single compo-
nent instead of being distributed in the entire namespace. You can tightly integrate
components with one another without actually making them depend on each other
(more on that in Chapter 11).

Aliasing and Calling Functions

So far, we have called functions simply by adding () after the function name (or after
the variable name in which the function is stored), optionally with some parameters.
This is not the only way to call functions in JavaScript, however. Because functions are
objects, they also have methods. Specifi cally, the two methods named call and apply
both basically do one thing: execute the function.

In contrast to the practice of appending parentheses, which simply executes the
function, the call and apply methods can also modify the this variable available
in the function as well as pass parameters in another way. The call method executes
the function to which it belongs, where this is the fi rst parameter of call() and the
rest of the parameters is shifted by one to the left (see Figure 9.7). The apply method
also uses the fi rst parameter as this and takes the second parameter (which must be
an array) as the parameter list. As a result, you can execute a function with a variable
parameter list very easily.

Object Orientation in JavaScript 307

FIGURE 9.6 Different scopes of one function.

308 Chapter 9 Learning JavaScript

function invokeTest(param1, param2, param3) {
 this;
}

invokeTest("one", "two", "three");
Calling directly

invokeTest.call("value", "one", "two", "three");

function invokeTest(param1, param2, param3) {
this;

}

Calling with .call()

var params = ["one", "two", "three"];
invokeTest.apply("value", params);

function invokeTest(param1, param2, param3) {
this;

}

Calling with .apply()

FIGURE 9.7 Various ways of calling a function.

With those two functions, you can manipulate the this variable. But what is this?
As a general rule of thumb, this is the object for which the function is executed. When
you add click events to an element, this refers to the element the event handler was
attached to (the element that was clicked). When you execute the method of an ob-
ject, this is the object itself, and so on. When the function is not called for a specifi c
object, this is a generic pointer to window, the root element of the browser environ-
ment. Let’s look at an example:

var myObj = {};

myObj.name = "Banana";

// Create a function that tells us something about this object.

myObj.tellMeAboutYou = function() {

 console.log("My name is " + this.name);

};

// Now execute that function.

myObj.tellMeAboutYou();

When you execute this snippet, you’ll see that this.name does, indeed, refer
to myObj.name. In this example, this is the same as myObj because the function
tellMeAboutYou is executed as a member of myObj; thus it is executed for myObj.
Remember that this is not tightly bound to the place where it was defi ned, so in our
example, this does not necessarily always refer to myObj. We already have seen that
its value can be altered. In fact, if you reference a function from another object and call
the function as method of that other object, this points to that other object:

var myOtherObj = {};

myOtherObj.name = "Kiwi";

myOtherObj.tellMeAboutYou = myObj.tellMeAboutYou;

// Execute the referenced/copied function.

myOtherObj.tellMeAboutYou();

This code snippet prints out “Kiwi”: Because of the way in which this function was
called, this refers to myOtherObj. This behavior can both be a good thing and a bad
thing. It often proves useful because you can easily reuse functions—after all, this is
not bound to a specifi c object.

Summary

This chapter took a broad view of JavaScript. A variety of language constructs are
specifi c to JavaScript, and some of JavaScript’s features differ somewhat from those of
PHP. In this chapter, we played with JavaScript’s data types and examined how they
behave. Probably the most important part of this chapter dealt with JavaScript’s object
orientation. Don’t worry too much if you didn’t understand every detail; in Chapters
10 and 11, you will become more comfortable with the sometimes unusual aspects of
JavaScript.

Functions are fi rst-class objects in JavaScript, and much of the language’s empha-
sis focuses on them. Two concepts—scope and context—are also very important in
JavaScript.

In the next chapter, we take a step back from the innards of the JavaScript program-
ming language and have some fun with jQuery.

Summary 309

311

10

An Introduction to jQuery

Chapter 9 introduced the Document Object Model (DOM); the DOM has
also been mentioned earlier in this book. The DOM is the means used to

access, create, manipulate, and delete parts of the Web page on which JavaScript is
operating. It also allows the Web page to react to events that happen on the page,
such as the user clicking on a certain element, moving the mouse, or typing letters.
Furthermore, it provides an interface to some of the browser’s user interface (UI)
elements (the chrome) and other status information, such as the screen resolution
or the scroll bars.

The DOM is not specific to JavaScript, nor is it specific to certain browsers. Put
simply, the DOM defines a certain way to do things with a hierarchically structured
document tree—and that’s what a Web page is! All (X)HTML documents are struc-
tured in a tree-like fashion: As shown in Figure 10.1, they contain a root element
(html), which has two children (head and body), which in turn can have their own
child elements, and so on.

The DOM is actually a model to interact with such a tree-like structure. It can
also be used in a back-end application (such as Drupal) to create, read, and manipu-
late HTML or XML documents.

From the Library of Athicom Parinayako

312 Chapter 10 An Introduction to jQuery

FIGURE 10.1 An HTML document tree.

Unfortunately, the JavaScript methods and functions to interact with the DOM are
not easy and straightforward to use. Even simple tasks, such as adding a class name to
all paragraphs, require some verbose code and are vulnerable to errors because of some
not-so-obvious pitfalls. Also, the DOM is not consistently implemented across brows-
ers. As a consequence, if we tried to use the DOM directly, we would have to take all
kinds of weird edge cases into account.

This is where jQuery comes into play: It provides a clean and easy-to-use in-
terface to the Web site. Internally, it uses DOM functions; externally, it provides a
coherent interface that remains consistent across all browsers. jQuery deals with all of
the browser-related differences at the internal level—that is, invisibly to the user—so
the user (in this case, the jQuery programmer) doesn’t have to worry about them.

This chapter explains most aspects of jQuery. As you follow along with the examples
here, you’ll learn to fi nd your way around an HTML document; create, manipulate,
and delete elements; attach and remove events from them; and explore many more of
jQuery’s features. You will also see how to make calls to the server (commonly known
as AJAX, although it’s technically not AJAX for the most part) and how the returned
data can be processed effi ciently. First, however, we take a look at the basic usage of
jQuery.

A First Look at jQuery

In this section, we will briefl y look at how jQuery can be used and encounter the most
commonly used features in jQuery. Even though jQuery is designed to be easy to use,
you should be aware of a few exceptional cases.

Setting Up jQuery

The most current version of jQuery can be found at http://jquery.com/. Drupal 6
ships with jQuery 1.2. For testing purposes, the uncompressed version is the best one
because it allows you to easily examine the code. For production Web sites, the other
version is a better choice because of its smaller fi le size.

Making jQuery available on a Web site requires you to write only a single line of
code, which includes the jquery.js fi le:

<script type="text/javascript" src="jquery.js"></script>

That’s it. (You must replace the path to jquery.js with the location where your ver-
sion of jQuery resides, of course.) Drupal automatically adds jQuery to a generated
page when it is needed—that is, when there’s another JavaScript fi le or code on that
page.

You can use one of two approaches to make Drupal aware of JavaScript fi les in a
theme:

 • Use the drupal_add_js() function in your theme.

 • Add the JavaScript file name to the theme’s .info file.

For experimenting with jQuery, the second solution is the easiest option. (You’ll learn
how to use the more powerful drupal_add_js() in Chapter 11.) In your theme’s
.info fi le, add the following line:

A First Look at jQuery 313

314 Chapter 10 An Introduction to jQuery

scripts[] = mytheme.js

This line tells Drupal’s template engine that this JavaScript fi le is required for this
theme, so it automatically includes it. You can test that it works correctly by adding
alert("file loaded!"); to the mytheme.js fi le. Make sure you empty the cache
before you begin the test. You can add as many JavaScript fi les as you want by just
repeating the line. Because a JavaScript fi le is added to the page, Drupal will automati-
cally add misc/drupal.js and misc/jquery.js as well. You don’t have to down-
load jQuery—your Drupal installation already has it!

jQuery itself doesn’t do anything by default; it simply sits on the page and waits to
be used. When your Web page contains multiple JavaScript fi les, you should include
jQuery fi rst because other scripts might rely on jQuery. Browsers execute JavaScript
code in the exactly same order it is included in the HTML document, so simply plac-
ing the script tag that includes jQuery above all other script tags ensures that this
feature is available to all remaining JavaScript code. Drupal ensures that jQuery is
always the fi rst fi le, so you don’t have to worry about the order in which fi les are made
available.

Some people prefer to experiment with JavaScript and jQuery in a clean and
controlled environment. If you’re one of them, you will fi nd a sample HTML page
in the fi les accompanying this book; they can be downloaded from http://
frontenddrupal.com. The sample fi le includes the jQuery library and contains some
markup and CSS code that you can use for experimenting with Drupal. (The template
may not work properly in Internet Explorer 7 or earlier versions, but it’s just a test
template anyway.)

Executing Code on Page Load

The most common way of executing JavaScript code is immediately after the page
loads. That strategy takes care of housekeeping issues early on, by ensuring that all
kinds of setup and initialization tasks are performed, event handlers are attached to
elements, and so on. Executing JavaScript when the page loads might not seem like a
big deal; after all, you could just write code into a JavaScript fi le and include it in the
HTML page. In fact, you have already seen that you can execute JavaScript code in this
way because you were alerted that the “fi le loaded.”

Now let’s move on to our fi rst jQuery command: $('h2').hide();.Write that
line into the JavaScript fi le you just created and open a Drupal page in a browser.
(Make sure there are h2 tags in the source code; if there aren’t, you can use any other tag
name.) Depending on your browser and many other circumstances, you might even
see an effect; in most browsers, however, you will not notice any visible change. If you
already know some jQuery, you will recognize that this command is correct and makes
all h2 elements in the page disappear (we’ll get to the nitty-gritty of the syntax soon).

JavaScript code is always evaluated as soon as possible—that is, as soon as all preced-
ing JavaScript code is loaded and executed. Oftentimes, JavaScript code is evaluated
before the entire page is loaded (before the closing </html> has even reached the
browser). When you put code directly in the head of a document or a fi le loaded in
that place, there is no guarantee that you will be able to access the DOM at that point,
because it might not be loaded completely. For example, our earlier jQuery code tried
to fi nd all h2 elements in the page, but it found none because the document was not
yet loaded completely when the code was executed. To prove this fact, try replacing
this code with console.log($('h2').size()); to confi rm that it didn’t fi nd any
h2 elements.

When we talk about loading the DOM, we are referring to only the HTML source
code—not to other elements such as style sheets or images the page needs. Thus the
ideal point to execute JavaScript code that should run when the page loads is precisely
when the HTML page itself is loaded.

Luckily, jQuery has a ready solution to handle this issue. We can tell jQuery to ex-
ecute a function as soon as the DOM is ready by using the onready event:

var init = function() {

 $('h2').hide();

};

$(document).ready(init);

When you insert this code into your JavaScript fi le, the function init is called when
the document is ready. All h2 headings should disappear when you load the Drupal
page containing that fi le.

A First Look at jQuery 315

316 Chapter 10 An Introduction to jQuery

Now, let’s dissect the code we’ve just written step by step:

$('h2').hide();

The dollar sign at the beginning of this line is the name of a function (functions and
variables can start with a dollar sign in JavaScript—in fact, you can create a function
named $). That function lies at the heart of jQuery and acts as a dispatcher for all of
its functionality. In other words, every piece of jQuery functionality is encapsulated
within the dollar object. Actually, the dollar function is just an alias to a function called
jQuery, which is used to make statements shorter. You’ll discover the implications of
this behavior in the section “Using Other JavaScript Libraries” later in this chapter.

The dollar function is called with a single parameter, 'h2'. jQuery allows you to
fi nd elements in a page using CSS syntax; therefore this selector fi nds all h2 tags inside
the page. The dollar function call returns a jQuery object that has several methods, one
of which is named hide; that’s the method we are calling.

Alternatively, we could have written the fi rst statement in this way:

var headlines = $('h2');

headlines.hide();

The fi rst syntax is more commonly used, however, because it’s cleaner and more con-
cise. As you can see, jQuery has a very expressive syntax that requires you to type in
only a few characters. By comparison, the equivalent statement in regular JavaScript,
utilizing the DOM directly, would be written as follows:

The onload event
The onready event is provided by jQuery and is not part of the regular DOM
event collection provided by the browser. Although some people use the native

onload event to execute JavaScript code on page load, that’s not a good idea be-
cause the onload event isn’t triggered until everything has been loaded, including any
style sheets and media fi les such as images.

Usually, the user sees the page before all elements are loaded (with placeholders
indicating the positions of unloaded images). The user can interact with the page at
that point, even though the JavaScript code that changes parts of the page has not
yet executed. To avoid this kind of problem, you should always use jQuery’s onready
event when you want to execute code immediately when the page loads. Use the
onload event if you really want to execute code only when all elements of the page
have been fully loaded.

var headlines = document.getElementsByTagName('h2');

for (var i = 0; i < headlines.length; i++) {

 headlines[i].style.display = 'none';

}

You can probably understand what that code means, but it’s signifi cantly longer.
The second line in our initial code, $(document).ready(init);, is similarly

structured. This time, we don’t pass a string to the dollar function, but rather a vari-
able named document. This variable is predefi ned by the browser environment and
contains all kinds of settings and methods related to the currently loaded document.
(Similarly, the window object contains properties and methods for obtaining informa-
tion about the window or changing aspects of the browser window in which the page
is loaded.)

The $(document) part of the second line creates a “jQueryifi ed” version of that
object; in other words, the object returned by that function call contains all jQuery
functions and acts on the document object. It does not change the original object,
but instead wraps it in a jQuery object to provide more functionality. The ready()
method of the returned jQuery object attaches a function to the list of events to ex-
ecute when the element has fi nished loading. When functions are used in this way, they
are usually termed “callbacks” or “callback functions.”

There are, of course, even shorter ways to achieve the same goal:

$(document).ready(function() {

 $('h2').hide();

});

The preceding code takes advantage of the fact that we can declare anonymous func-
tions (see Chapter 9 for more information on anonymous functions) that can be
defi ned in the argument list of a function.

$(function() {

 $('h2').hide();

});

A First Look at jQuery 317

318 Chapter 10 An Introduction to jQuery

This code is a jQuery shortcut for attaching a function to the document’s onready
event. jQuery can detect when the fi rst parameter is a function and attaches that func-
tion to the event list (more on events later in this chapter).

Navigating the DOM Tree

We’ve already seen that the dollar function has some unique features. There are fi ve
ways to call that function, three of which we’ve already encountered:

 • $("selector") finds all HTML nodes matching the CSS selector passed.

 • $(document) wraps the passed (HTML node) object as a jQuery object.

 • $(func) attaches the passed function to the document’s onready event list.

The dollar function also allows us to restrict the search for HTML nodes matching
a selector to a certain area in the DOM tree by passing the root of the area (also called
a context) as second parameter:

var headline = $('h2');

var image = $('img', headline);

The variable image now contains all img elements that are inside the items in
headline.

The selector syntax allows you to use many different kinds of CSS selectors. You
can query elements based on their ID, search by class name, select only elements with
a certain property or a certain state (e.g., disabled), and so on. In addition, as in CSS,
you can use multiple selectors in one statement by concatenating them with commas.
The best part is that all of these selectors also work in Internet Explorer (even though
Internet Explorer doesn’t support some of these selectors for CSS).

You can try out all of these selectors in the sample document, either by wrapping
them in a function called onready or by typing them into Firebug’s console. To see the
resulting elements in Firebug, append .get() to all of these functions to get a plain
list of the elements found. When you hover over this list in Firebug, each element will
be highlighted in the body window; when you click on that element, you can inspect
its position in the document tree.

Without further ado, here are some examples of jQuery’s extensive selector
support:

 • $(".links") finds all elements that belong to the class links. This selector
is not exclusive, so it also finds elements that have other classes besides the one
searched for. For example, this query might find <div class="links">, but
also <ul class="links inline">.

 • $("li:contains('comment')") matches all list items that contain the
word “comment” somewhere. (It also matches partial words, so it also finds
“comments”.)

 • $("#header h1 a[href^='http']") finds all hyperlinks whose href at-
tribute begins with “http” and that are inside a h1 tag, which in turn is inside
an element with an ID of header.

 • $("input:submit") finds all input elements that have type="submit";
thus it finds all submit buttons.

Some of these selectors might not produce any results on a Drupal page because there
are just no matching elements available. To test that the searching strategy actually
works, modify your theme (or the content of a node, for example) so that you get
results.

The jQuery documentation found at http://docs.jquery.com/Selectors has
a complete and up-to-date listing of all supported selectors, along with examples of
their use and detailed documentation for the selectors. You should look at all selec-
tors at least once—you will almost certainly fi nd a selector you didn’t know exists, but
proves to be very useful.

Be aware that the “jQuery version” of an element and the native JavaScript object
of the element itself (which is provided by the DOM) are not identical. The jQuery
object allows you to perform all actions that can be done with jQuery (hiding, moving,
applying CSS, animating, . . .). By comparison, the native object directly represents the
object and doesn’t contain any jQuery actions.

The left side in Figure 10.2 depicts various plain HTML nodes fl oating around.
When you use $('.content') to select elements, jQuery will collect only the match-
ing elements and wrap them in a jQuery object, thereby providing abstraction and
more features to all enclosed nodes.

To access the actual native objects, you can use array syntax. With this syntax, $(".
columns")[0] is the fi rst element found, $(".columns")[1] is the second element
found, and so on. In addition, the function called .get(N)returns the Nth object
found. Calling .get() without a parameter will retrieve an array of all DOM objects
in the jQuery object.

A First Look at jQuery 319

320 Chapter 10 An Introduction to jQuery

Using jQuery

As discussed earlier, jQuery always acts on lists of elements. When you execute an ac-
tion, it is (usually) applied to all elements that are part of the jQuery object. On many
occasions, there will be just one element wrapped into a jQuery object. Nevertheless,
keep in mind that jQuery isn’t restricted to manipulating only one DOM object at a
time.

To do something with a jQuery object, you call one of its methods. There are lots
of possibilities in terms of actions you can perform. The jQuery documentation at
http://docs.jquery.com/ divides these actions into the following categories:

 • Attributes methods allow you to retrieve attributes from the matched DOM
elements and change them. There are special methods for changing classes as
well. It’s also possible to retrieve and manipulate the value attribute of form
elements.

 • Events can be attached and removed from elements with various methods. You
can also artificially trigger events.

 • CSS methods retrieve and set CSS properties of the elements matched. jQuery
also provides methods for calculating the absolute position of the element in
the viewport as well as measuring and setting the dimensions of the element.

 • Traversing methods allow you to change the matched elements inside the
jQuery object. It’s possible to find other elements based on the currently se-
lected element (e.g., by selecting parents, children, or siblings). It’s also possible
to filter out elements from the current selection.

 • Manipulation methods change the position of the element in the DOM tree.
It’s possible to move around DOM nodes, wrap them in other markup

<div class="column">

<div class="column">

<div class="column">

<div class="column">

<div class="column">

<div class="column">

0:

1:

2:

jQuery object

<div class="header">

<input type="submit" />

$(".column") creates:

FIGURE 10.2 A jQuery object is a wrapper for one or more DOM objects.

language, clone them, or delete them. It’s also possible to change the contents
of the elements matched (i.e., the material between <tag> and </tag>).

 • Effects methods allow you to add visual cues to your Web page by animating
movements, fading elements, and showing or hiding them. It’s also possible to
queue multiple animations so that they execute sequentially.

The other sections don’t refer to actions that can be performed with DOM ele-
ments. Some of the described methods also fi t into multiple categories. Here, we look
at the most important methods. We start by considering how events are managed in
JavaScript and jQuery because that is what we will do most of the time: do something
in response to the user’s actions.

Events

Events are things that happen. A thing that happens can be the user clicking on some-
thing, moving the mouse, scrolling down, double-clicking, submitting a form, pressing
a key, or resizing the browser window, among other actions. The browser allows you to
act upon those events—that is, to execute code when an event occurs.

To do so, the DOM maintains a set of on... properties for almost all properties.
For example, you can set the onclick property of any DOM element (which is not the
jQuery object—a jQuery object wraps DOM elements) to a function, and the browser
will then call that function when the user clicks on that element. This approach has
one drawback, however: When you set the property, the previous value is overwritten.

Oftentimes, you want to add multiple functions to a single event of a single ele-
ment. Different scripts might add different functions, but when you just set the DOM
element’s on... property, the script that runs later will overwrite the fi rst script’s
event callback function. Luckily, jQuery offers an interface through which you can
add events to an element—and it does so without overwriting existing functions. In-
ternally, jQuery has only one function, but that function calls in turn all of the other
functions you attached using jQuery.

Let’s add our fi rst event-handling function:

$('#body .teaser p').mouseover(function() {

 alert('Mouse is here');

});

Using jQuery 321

322 Chapter 10 An Introduction to jQuery

In the preceding code, you should replace the selector #body .teaser p with a selec-
tor that matches an element on your Drupal page. You can, of course, use a selector
that matches multiple elements. In that case, every instance will react to the mou-
seover event. You can either run that code snippet directly in Firebug (or a JavaScript
console in another browser) or write it into the JavaScript fi le you created. If you follow
the latter path, don’t forget to execute the code when the DOM has fi nished loading by
wrapping it in $(document).ready(function() { ... });.

The code in the previous example “attaches” a function to the onmouseover event
of the paragraph selected. Event functions in jQuery are named without the leading
on, so calling the .mouseover() method adds a new method to the onmouseover
event. The parameter to that function is an anonymous function. (If you don’t know
what an anonymous function is, revisit the section “Anonymous Functions” in Chap-
ter 9.) The function does only one thing: Send an alert message when called.

Now, let’s add another mouseover event to the same set of elements:

$('#body .teaser p').mouseover(function() {

 $(this).animate({ opacity: 0.5 });

});

Make sure to change the selector in the preceding code to whatever you used in the
fi rst mouseover event. When adding this event in addition to the previous one, you’ll
notice that both functions are executed when you hover over a selected element. The
second function fades the hovered element to 50% of its original opacity, so it will ap-
pear semi-transparent.

What’s the dot before the function name?
In this book, we use dot notation to refer to jQuery methods instead of “regu-
lar” functions. A dot before the function name indicates that the function can-

not be called by that name, but rather has to be called as a method of a jQuery
object—for example, $('div').mouseover(...).

When you load the page, you should see a message box as soon as you enter the
paragraph selected with your mouse cursor. Note that the mouseover event is fi red
only when the user enters the paragraph, not when the user moves the cursor around
on the paragraph.

Let’s look at another event function:

$('#header h1 a').click(function() {

 alert("This link leads to the home page.");

 return false;

});

When you click on the selected element, the specifi ed anonymous function is called. It
fi rst sends an alert message and then returns false. Try to remove the return false;
line and see what happens. With that statement, nothing should happen after the alert;
without the statement, you should follow the link. It is the return value of an event
callback function that matters. When the function returns false, the handling of the
event stops (the event no longer “bubbles” up, in DOM lingo); otherwise, execution
of the code continues with the remaining event handlers, which include the “default”
action that would happen if no other JavaScript handlers were added to the element.

jQuery also allows you to remove event-handling functions you have added previ-
ously. You have two options for doing so. First, you can add an event-handling func-
tion that is automatically removed after the event occurs once:

$('#header h1 a').one('click', function() {

 alert("This link leads to the home page.");

 return false;

});

Run this code on the example page and then click on the logo. The fi rst time, you
should see the alert message; the second time, the link should actually take you to the
linked page. This callback function is added with the .one() method. Its fi rst param-
eter is the event name (without “on”), and its second parameter is the function.

Alternatively, you can call the method .unbind(), which works via the same
mechanism: The fi rst parameter is the event from which you want to remove a callback
function; the second parameter is the event function you want to remove. If you use
this approach, you must save a reference to the callback function, because otherwise
you won’t be able to remove it. Here’s an example:

$(function() {

 var searchText = "Enter your search terms";

 var focusSearch = function() {

Using jQuery 323

324 Chapter 10 An Introduction to jQuery

 if ($(this).val() == searchText) {

 $(this).val("");

 }

 };

 var blurSearch = function() {

 if (!$(this).val()) {

 $(this).val(searchText);

 }

 else {

 $(this)

 .unbind('focus', focusSearch)

 .unbind('blur', blurSearch);

 }

 };

 $('#edit-keys')

 .val(searchText)

 .focus(focusSearch)

 .blur(blurSearch);

});

This example actually does something useful: It adds text into the search text fi eld.
When the user gives the focus to that text fi eld, the text is removed. When the user
leaves the fi eld again, the text is inserted again, if the user didn’t enter any text of his or
her own. Once some actual text is entered, the event handlers are removed completely
so that the script no longer messes with the user’s input. Figure 10.3 shows the possible
states of the input fi eld.

Let’s dissect the preceding script line by line. The fi rst and the last lines are the
“wrapper” that ensures that the code in between them is executed only until after the
DOM fi nishes loading. (The note entitled “The onload Event” provides further infor-
mation on that topic.) The second line defi nes a variable that holds the text, thereby
ensuring that we don’t have to write the same text over and over each time we need
it. Note that var is used to make the variable local to the surrounding function. As a
consequence, this variable cannot be accessed from outside and doesn’t “pollute” the
global namespace.

Next, the function focusSearch is defi ned. It sets the value to an empty string
when the value of the text fi eld is the default text. To refer to the text fi eld, we use this.
The function is used as an event-handling function, such that when the event is trig-
gered, this refers to the element associated with the event. Because we have attached
the function to the “focus” event of the text box, this in that function refers to that
text box. This relationship is a good thing: It allows us to use the same event callback
function for lots of different events because this always refers to the element that is
the target of the current interaction.

You might have noticed that this was wrapped into $(). In event callback func-
tions, this is a native DOM element, so we must wrap it as a jQuery object fi rst to be
able to use jQuery functionality.

The blurSearch function works in a similar fashion: It checks whether the value
of the text box evaluates to false (using the ! operator). When the text box is empty,
the original value is restored. When the user has entered text, the else branch is ex-
ecuted and the events are removed from the text box with the .unbind() function.

You might fi nd the syntax used in the preceding script a bit awkward: No semicolon
appears after the fi rst line, which wraps this as a jQuery object. Instead, the next line
calls the .unbind() function for the fi rst time. But this line doesn’t end with a semico-
lon, either: The command continues on the next line with another call to .unbind()
with other parameters. This example demonstrates one of jQuery’s greatest features:
You can “chain” several commands together without specifying the jQuery object over
and over again. Without chaining, these lines would have to be written in this way:

$(this).unbind('focus', focusSearch);

$(this).unbind('blur', blurSearch);

In this example, $(this) is relatively short, but you could also use longer selectors.
Repeating them multiple times would certainly be tiresome. Also, there is some over-
head associated with creating a jQuery version of an object and searching through the

Using jQuery 325

FIGURE 10.3 The possible states of a text fi eld with a default value.

326 Chapter 10 An Introduction to jQuery

document for elements matching that selector. When you chain together several meth-
ods to be applied to one jQuery object, you eliminate that overhead.

How chaining works internally
The chaining technique is actually quite simple: Each jQuery method returns
itself (using this). JavaScript allows you to call a function from the object re-

turned from another function call, which in turn allows you to chain together an
infi nitely long series of method calls. However, some functions don’t return this, so
you can use those functions only as the last item in a chain. These functions usually
return something related to the elements, such as their contents or the value of an
HTML attribute.

Back in our text fi eld script, the last three lines actually do something right away:
The fi rst line fi lls the search fi eld with the text, and the next two lines attach the event
handlers for the focus and the blur event. The focus event is triggered when the
user moves the cursor into the element (either by clicking on it or by moving the cur-
sor with the keyboard). The blur event is triggered when the user moves the cursor
away.

Of course, you could do many other things with this kind of script. For example,
you might try to develop a script that automatically submits the form when the user
picks another language. Drop-down menus based on the select syntax have a change
event that is triggered when the user selects something. Forms can be submitted by
calling .submit() for the form. Once the form is submitted automatically, you can
hide the submit button as well. If you’re stuck or your solution isn’t working, look into
the package downloadable from http://frontenddrupal.com, which contains an
example solution. (Hint: The script requires fewer than fi ve lines of code.)

Setting and Retrieving Attributes

Now let’s continue to work on our sample HTML page. It contains several objects that
we can modify.

$('#column-products a').attr('target', '_blank');

This line looks for all links within the element with the ID “column-products” and
changes the target attribute to _blank. Try clicking on a link in the “Products” col-
umn before you execute the code and again after you execute the code. The attribute

opens the link in a new window or tab (assuming you didn’t disable that functionality
in the browser). In Firebug’s HTML inspector, you can also see that the links received
the target attribute.

The .attr() method can be called in many different ways. This fl exibility—one
function accepts parameters in different ways—is typical of jQuery.

 • .attr('attribute', 'value') sets the attribute of the elements in the
jQuery object to the second parameter (which is a string or an integer).

 • .attr('attribute') returns the value of the attribute from the first
matched element. This is an exception to the rule that a jQuery method always
works with all matched elements. Methods that return information about an
element usually return information only for the first element.

 • .attr({ 'attribute': 'value, ... }) takes an object consisting of
attribute–value pairs as its only parameter. As a result, you can set multiple at-
tributes at once without calling .attr() repeatedly.

 • .attr('attribute', func) calls the function func for each element and
sets the element’s attribute attribute to the return value. This capability
makes it possible to dynamically calculate the value for each element. The
function’s this value is the element, and the first and only parameter for that
function is the index (all elements in a jQuery object are numbered from 0 to
N).

The .attr() function offers a good example of jQuery’s fl exibility, as it features a
lot of patterns used throughout jQuery. It is often possible to specify an object using
key–value pairs instead of just one key and the corresponding value. jQuery also allows
you to pass functions that are called subsequently for every element to do something
(e.g., to determine a value).

A very commonly used feature in jQuery is the ability to add, remove, and tog-
gle classes from elements. Theoretically, you could perform those operations with
the .attr() function, by calling .attr('class', 'myClassName'). However,
elements can have multiple classes and .attr() always replaces the entire value. Giv-
en these possibilities, jQuery offers a more convenient and less destructive way to
deal with classes. The names of the three methods used for this purpose—.addClass

('myClassName'), .removeClass('myClassName'), and .toggleClass('my
ClassName')—explain their usage. .toggleClass “toggles” the class, removing the
class if it is present and adding the class if it is not. Trying to remove a class that is not

Using jQuery 327

328 Chapter 10 An Introduction to jQuery

present or to add a class that is already present does not have any effect. The method
.hasClass('myClassName') checks whether at least one of the matched elements
has the class name.

Consider the following example:

$('ul.menu a:first').toggleClass('active');

This line looks for the fi rst link in a menu and toggles the active class. This class is
not set by default, so running this code for the fi rst time adds it (if the class has not
been added previously). Running the code for the second time removes it again.

Similar to what happens when you add and remove classes, you can modify CSS
directly (You could just change the style attribute, but the .css() method provides
a much nicer, easier, and more consistent interface). The function .css() can be
called in much the same way that the function .attr() can be called. Let’s look at
some examples to see how this works (the selectors work on the sample HTML page
provided, but you can change them to something else and test the examples on your
Drupal page):

 • $('.teaser p strong').css('font-size', '16px'); changes the font
size of the introduction sentence to 16 pixels.

 • $('#column-products li a').css({ 'color': 'blue', 'text-dec-
oration': 'underline' }); makes the links in the products column blue
and underlined.

 • $('#column-misc li:first img').css({ 'paddingTop': '30px' });
increases the top padding of the first image in the rightmost column.

As the last example demonstrates, the names for the CSS rules are slightly different
from actual CSS. Usually, property names are replaced with camel-case variants (i.e.,
the dashes are removed and the next letter is capitalized). Although there are some
differences among browsers, jQuery smoothes out those variations so we don’t have to
take care of them.

While it’s fast and easy to change CSS directly in jQuery, adding and removing
classes is usually a better strategy for two reasons. First, you don’t have to mix presen-
tational CSS rules into the behavior layer. Second, you can control the look of your
JavaScript widget by altering the code in just one place. It is recommended that you
use .css() only when the CSS rules aren’t strictly serving presentational purposes and
your JavaScript component requires them to be present. For example, you could set the

position to absolute or relative, but you shouldn’t change the font size if it can
be moved into a regular style sheet and applied using classes.

You can also change the content of elements, where the content refers to what ap-
pears between the opening and closing tags of the matched element. To do so, you
can use .html('<div>New markup</div>') and .text('New text'). The fi rst
method replaces the content of the elements with the specifi ed markup, and the second
method accepts only text. When you call these functions without parameters, they
return the current content. Consider the following example:

$('#column-products h3').text('Products & Services');

Running this code changes the heading in the “Products” column to “Products &
Services”. Note that you don’t have to use HTML entities when you call .text().
However, running that code removes the a tag in the heading. To preserve that tag, you
could use the selector #column-products h3 a or execute

$('#column-products h3').html('Products & Services');

to change the entire HTML content of the heading. Actually, this is not the ideal ap-
proach: You could have reused the a tag and just changed its contents and possibly the
href attribute to achieve your goal. When events are attached to elements on a Web
page and execute actions when the user clicks on the target link, they will not be moved
over when you use .html() to replace the content. Conversely, they are preserved
when you change the anchor’s content. If you want to add a callback to an element,
you should not replace the element itself but only its content; that strategy retains the
callback.

Finding Elements

You already know how to fi nd elements on a Web page with CSS selectors (if you’re
unsure about how to do that, check the section “Navigating the DOM Tree” in this
chapter). However, you can fi nd your way around the Web page in other ways.

When you have a set of DOM elements in a jQuery object, you can fi lter them
by using .filter() with a CSS selector. jQuery will then weed out all elements that
don’t match the selector. For example, $('li') fi nds all list elements and $('li').
filter(':first-child') fi lters out all of those list items that are not the fi rst ele-
ment within their container (which is usually a ul or ol tag in this case). The jQuery

Using jQuery 329

330 Chapter 10 An Introduction to jQuery

object with which you use this method acts as a “base” set; jQuery then removes the
items that don’t match the selector from the current set.

Calling .filter() alone is sometimes useful. jQuery also provides an .end()
function, which restores the state of the jQuery object before the last “destructive” ac-
tion—that is, it restores the object to its state before elements were added or removed.
This capability, when combined with method chaining, allows you to create extremely
powerful statements that require you to write very little code.

Another command, .find(), also takes a CSS selector as parameter. It searches for
elements matching this selector. It doesn’t search through the entire document, how-
ever, but only searches the children and descendants of the currently selected elements.
The results then replace the current selection so that you can apply other methods to
the result set. As with .filter(), you can reverse a .find() operation by calling
.end().

jQuery includes many more methods for performing specifi c operations, such
as fi nding the next sibling of all elements, fi ltering all siblings of the current DOM
elements with a CSS selector, climbing up the DOM tree by selecting parents, add-
ing other elements to the current selection, and selectively removing elements. A
detailed list of all available methods can be found at http://docs.jquery.com/
Traversing.

Inserting, Moving, and Removing Elements

Sometimes, in addition to changing the existing elements that are already in a page,
you want to add new elements to the mix. jQuery facilitates that operation to a high
degree. Consider the following example:

var col = $('<div class="column">...</div>');

This line creates a new DOM element, wraps it in a jQuery object, and stores it in the
variable col. You can use arbitrary valid markup as part of this operation—even nested
elements are possible. Of course, this code just creates the elements; it doesn’t insert
them in the document anywhere. That means the elements are there (i.e., they exist)
but are not somewhere (i.e., in a specifi c location) in the document.

Elements are inserted into the page relative to other elements. In other words, you
can insert elements before, into, and after other elements. When inserting an element
as a child of another element, you can choose between inserting it as the fi rst child or
as the last child. Figure 10.4 shows the possible ways for insertion relative to the high-
lighted element.

FIGURE 10.4 Inserting elements.

The insert methods take the element to be inserted as fi rst parameter. Thus calling
$('body').append('<p>Lorem Ipsum</p>'); inserts a new paragraph as last ele-
ment inside body. The parameter can be either an HTML string (as in this example), a
jQuery object, or a native DOM object. The .prepend() method works similarly, but
it inserts the element as fi rst inner element. The methods .before() and .after()
insert the element before and after the element, respectively (on the outside).

Let’s look at an example. Here we are rearranging the “Products” list:

var construction = $('li.construction');

$('li.pharmaceuticals').after(construction);

In the fi rst line, we select the element we want to move so that we can easily refer-
ence it in the next line. The second line inserts the elements of the jQuery object con-
struction after the list item with the class pharmaceuticals. When changing the
positions of items that are already in the document, these items are moved away from
their original positions and inserted into their new positions; they aren’t duplicated but
rather are moved by default.

Of course, you could also write the preceding statement in one line by replacing
construction with its value:

$('li.pharmaceuticals').after($('li.construction'));

We can easily insert a new list item at any place in similar fashion:

$('li.electronics').before('<li class="furniture">Furniture</
a>');

Note that we pass just a plain HTML string to the .before() method as op-
posed to an actual jQuery object or DOM element. jQuery is smart enough to fi gure
out whether you pass an element or an HTML string to it and accordingly takes the

<div>

</div>

<p> </p>

Before

Prepend

Append

After

Using jQuery 331

332 Chapter 10 An Introduction to jQuery

appropriate action. Figure 10.5 shows the changes to the “Products” column of the
sample page.

The methods we have examined so far insert another element relative to a certain
element (the elements in the jQuery object). It’s also possible to work in the reverse direc-
tion by using .prependTo(), .appendTo(), .insertBefore(), and .insertAfter().
These four methods insert a jQuery object relative to another element, jQuery object, or
selector.

This discussion is a bit theoretical, so let’s look at a practical example. We will com-
pare these two methods:

 • $('li.pharmaceuticals').after($('li.construction'));

 • $('li.construction').insertAfter('li.pharmaceuticals');

Both lines do the same thing—they move the “Construction” item after the “Pharma-
ceuticals” item—but their “point of view” is different. In the fi rst line, the destination
item is the focus; in the second line, the original item is the focus. It doesn’t really mat-
ter which method you use, as both are useful in some situations. For example, if you
are changing other attributes of a jQuery object, it’s easier to chain a .insertAfter()
to that operation than to make a .after() call in another line.

Note that .insertAfter() and its brethren can also take a string as parameter.
This string will be interpreted as a CSS selector instead of HTML code. You can, of
course, use jQuery objects and DOM elements as well, just as you would with all other
methods.

The .remove() method allows you to delete the currently selected items from the
document. These items are retained in the jQuery object, however. Thus you can remove

Aircrafts
Food and Beverages
Clothing
Electronics
Telecommunication
Construction
Energy supply
Pharmaceuticals
Hardware
Industrial plants

Before

•
•
•
•
•
•
•
•
•
•

Aircrafts
Food and Beverages
Clothing
Furniture
Electronics
Telecommunication
Energy supply
Pharmaceuticals
Construction
Hardware
Industrial plants

After running both commands

•
•
•
•
•
•
•
•
•
•
•

Products Products

FIGURE 10.5 A list before and after executing the commands.

items temporarily and store them in variables so that they can be inserted somewhere
else at a later date. If you do not store the removed element (or the jQuery wrapper),
it is destroyed when the variable goes out of scope. For example, $('#column-news
li:eq(1)').remove(); removes the second news item from the page as shown in
Figure 10.6 (enumeration starts with 0, so 1 is the second item).

Several other methods that modify item positions, such as .wrap() and
.replace(), are documented on the jQuery Web site at http://docs.jquery.
com/Manipulation.

Leveraging jQuery’s Full Potential

So far, we’ve used only basic code snippets to demonstrate jQuery functionality. In re-
ality, jQuery offers many more capabilities: You can animate items in various different
ways, call the server, write plugins for jQuery, and so on. Additionally, jQuery features
some useful functions that make everyday programming much easier. After consider-
ing these aspects of jQuery, we’ll take a quick look at jQuery UI, a library built on
jQuery that implements commonly used functionality that is not covered by jQuery,
such as drag-and-drop, date pickers, tabs, and so on.

Animations

jQuery provides an easy-to-use interface for animating elements of the Web page. Us-
ing this system, you can quickly move elements, change their sizes, and fade their opac-
ity. Plugins may offer even more animation capabilities, such as fading the color and
implementing different styles of animation.

11/23/08: Annual business report
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incidid unt ut labore et dolore magna
aliqua. Ut enim ad minim veniam… read more»

10/31/08: New company branch
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incidid unt ut labore et dolore magna
aliqua. Ut enim ad minim veniam… read more»

10/7/08: 3,208 products launched
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incidid unt ut labore et dolore magna
aliqua. Ut enim ad minim veniam… read more»

News

Before

11/23/08: Annual business report
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incidid unt ut labore et dolore magna
aliqua. Ut enim ad minim veniam… read more»

10/7/08: 3,208 products launched
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incidid unt ut labore et dolore magna
aliqua. Ut enim ad minim veniam… read more»

News

After running the command

See previous items…

See previous items…

Leveraging jQuery’s Full Potential 333

FIGURE 10.6 The “News” column before and after removing an item.

334 Chapter 10 An Introduction to jQuery

Let’s look at an example:

$('.menu').slideUp();

Paste this code into your theme’s JavaScript fi le (make sure that it’s executed onready
and not right away). When you load the page, notice how the menus slide up (given
that your menus do have the class menu). The other animation functions can be used
in a similar fashion.

All animation functions take a parameter indicating the duration of an animation.
You can either specify the time in milliseconds or use one of the default lengths by
specifying "slow" (600 milliseconds), "normal" (400 milliseconds), or "fast" (200
milliseconds).

Animation functions also take the parameter “callback,” which can consist of a call-
back function. This function is executed when the animation is fi nished. You could, for
example, add a function that removes the element after the animation is fi nished, when
you .fadeOut() an element, or when you .slideUp() an element. Some animation
functions take different or more parameters; you can fi nd out more about them on
http://docs.jquery.com/Effects.

Like most other jQuery methods, animations can be chained. Animations are ex-
ecuted sequentially, not in parallel (executing several animations in parallel is discussed
later in this chapter). In other words, the next animation doesn’t start until the fi rst
animation fi nishes. This statement applies only to animations, however. When you
change other aspects of the Web page—for example, the font color with .css()—the
change is executed right away, even when it seemingly occurs after the animation. For
this reason, you should put commands that need to run after the animation fi nishes in
the callback function of that animation.

It’s possible to stop animations as well. This ability comes in handy when the user
performs an action while the element that should do something different is in the
middle of its animation. At this point, the new action can simply .stop() the anima-
tion and do something else with it. For example, suppose a slide widget moves in new
slides from the right when the user clicks the “Next” button. If the user immediately
clicks the “Previous” button after clicking the “Next” button, the slide continues to
move in, even though it should actually move in the other direction. In this case, click-
ing the “Previous” button can stop the animation and start a new animation in the
other direction.

The animation functions we have encountered so far are shortcuts for the .ani-
mate() function. This function is the central hub for animating things in jQuery. Its

fi rst parameter contains all information related to how the elements should be ani-
mated. Other options, such as the duration of the animation and the callback function,
can be specifi ed as well. (Refer to the http://docs.jquery.com/Effects page for
more details.)

Let’s investigate the fi rst parameter of the .animate() function. It allows you to
specify almost any CSS property that takes numbers as its parameters, from the di-
mensions to the opacity, to the position, to the font size, to paddings and margins,
and more. (The exception to this rule is that you cannot animate background URL
changes.) Let’s look at an example:

$('.teaser p').animate({

 fontSize: "12px",

 left: -100,

 opacity: 0.5

});

This animation changes the font size to 12 pixels, changes the left position of the ani-
mation to –100 pixels (the element is positioned relatively, so the animation will move
away from its original position), and fades the text to 50% opacity. Depending on your
browser, this font size might make the animation look either smooth or clumsy. Firefox
3 animates it perfectly with non-integer font sizes, but most other browsers will render
only integer font sizes. The default text is set at 14 pixels, so animating it at a size of 12
pixels requires only one intermediary step in most browsers. Given that the animation
usually occurs relatively quickly, that’s rarely a problem.

During animations, the values are always changed from their current state. If the
animation would end in the same value as is already set, no animation occurs (because
the fi nal state is already in place); thus it’s safe to execute the same animation twice.
jQuery takes care of all cross-browser compatibility issues. Using jQuery’s opacity
property also works in Internet Explorer, even though it doesn’t support the opacity
CSS property.

The options parameter allows you to specify callback functions that should be ex-
ecuted either after each animation step is fi nished (an animation consists of many inter-
mediary steps) or after the entire animation is completed. You can also modify the queu-
ing behavior, the duration of the animation, and the easing. Easing means the behavior
of the animation over time. The default (and the only value available in the jQuery core)
is “linear,” which means that each of the animation steps changes by the same amount.

Leveraging jQuery’s Full Potential 335

336 Chapter 10 An Introduction to jQuery

Other easing methods might fi rst animate slowly, then more quickly, and before the
completion of the animation move more slowly to provide a more natural feeling.

Using jQuery Helper Functions

jQuery also provides some functionality that is not related to manipulating the DOM.
A full list of these functions can be found at http://docs.jquery.com/Utilities.
In this section, we’ll look at the jQuery.extend() and jQuery.each() methods
more closely.

The jQuery.extend() function allows you to merge objects together. That means
all values and their associated keys are copied from one object to another, overwriting
the former values. The jQuery.extend() function copies all objects starting from the
second parameter into the object passed as fi rst parameter (the “target”) and returns
this object. This capability is useful when you want to merge in parameters, add default
values, and so on. Here’s an example:

var slideshow = function(params) {

 jQuery.extend(this, {

 start: 0,

 duration: 7000

 }, params);

};

The preceding code extends this fi rst with the default options specifi ed in the object
and then with the options specifi ed in params. This order ensures that passed parame-
ters (as part of the params object) overwrite default values. This technique is commonly
used in JavaScript to allow passing function parameters by name. Oftentimes, you will
have a considerable number of parameters for a function (or an object constructor, as in
this case), but you want to pass only certain parameters to the function. The jQuery.
extend() function allows you to name which parameters you want to change, thereby
ensuring that the actual parameters are merged into the default parameters.

The jQuery.each() function takes two parameters: (1) an object with keys and
their associated values and (2) a function. It executes the passed function for each of
the items of the object, passing it the index, the key, and the value. This technique
represents an alternative to looping over the object, albeit with a slight, but important
difference: Because a function is called for each element, a new scope is created for
each element. As a consequence, you can do with the passed values whatever you want

without worrying that their contents might change during the loop. In a loop, exactly
one variable holds the value, and the loop mechanism changes the contents in each step.
In jQuery.each(), a new variable in each step continues to hold its value, though
there can be several distinct variables with the same names living in different scopes.

Calling the Server with XmlHttpRequest

You almost certainly have heard of AJAX, a term coined in 2005 for the process of
loading data within the lifetime of a Web site. AJAX makes it possible to develop Web
sites that change their content dynamically without needing to preload all possible
content or resorting to reloading the page. AJAX, which stands for “Asynchronous
JavaScript and XML,” is based on the XmlHttpRequest technology introduced by
Microsoft in Internet Explorer.

XmlHttpRequest was originally created to facilitate the process of requesting data
in XML format (thus the “XML” in the AJAX acronym). In reality, it doesn’t matter
which content you transmit—it doesn’t have to be XML. In fact, most of what is today
described as AJAX doesn’t use XML at all, but rather either HTML code, which is then
inserted into the page directly, or JSON.

JSON (“JavaScript Object Notation”) basically describes JavaScript’s object literal
syntax (the one with the curly braces). It has become increasingly popular as an alter-
native to XML because it’s easier to parse and has less overhead. Here’s a short JSON
example:

{

 'status': true,

 'id': 49836,

 'title': 'Lorem Ipsum',

 'body': 'An important way to im...',

 'tags': {

 'technology': 'Technology',

 'business': 'Business'

 },

 'link': 'http://example.com/story/lorem-ipsum',

 'related': [28983, 34985, 38475]

}

Leveraging jQuery’s Full Potential 337

338 Chapter 10 An Introduction to jQuery

Using JSON, you can arbitrarily nest JavaScript objects. In addition, you can use arrays
(with the bracket notation) and most other data types available in JavaScript.

Drupal provides a (PHP) function named drupal_to_js() that converts a PHP
array to JSON. The function drupal_json() automatically adds the right content
type to the HTTP header and outputs the passed array as JSON. Use this function
when you want to create a response from within Drupal.

The “Asynchronous” part of the AJAX acronym means that the browser doesn’t
wait idly until it receives a response from the server, but rather continues to execute
other JavaScript in the meantime. If that were not the case, the browser would be com-
pletely locked up and the user could not do anything while an XmlHttpRequest was
performed (it’s also possible to carry out synchronous calls). At some point, the request
fi nishes and the return value must be processed. For this purpose, it’s possible to specify
a callback function that is executed when the request fi nishes.

Figure 10.7 shows the difference between a synchronous call and an asynchronous
call. Performing asynchronous calls is a bit more complicated because you must take
into account that the user can do something else while the request is processed. Nev-
ertheless, it’s generally worth the effort to use asynchronous calls because synchronous
calls completely block the browser while the request is performed.

The .load() Function

The easiest way to load data from the server is to use jQuery’s .load() function. This
function loads an HTML fragment and replaces the jQuery object’s elements with
the new content. The fi rst parameter is the URL from which data should be loaded;
the other parameters are optional and allow you to add parameters to the request and
specify a callback function to be executed when the data has been loaded.

It is a bit trickier to demonstrate the usage of this function than it is to show pure
jQuery functions because you also need a server that produces the appropriate re-
sponses. For this reason, a fed_ajax.module is available on this book’s Web site at
http://frontenddrupal.com/. Install this module to your Drupal site (see Appen-
dix A for a guide on installing modules), and you can then use the module’s responses
to follow along with the examples in this section.

Another barrier to demonstrating the use of the .load() function is that, for se-
curity reasons, all browsers forbid loading data from domains other than the one on
which the page performing the load is located. For this reason, the fed_ajax.module
also provides a copy of our sample HTML page that you can work on at /fed_ajax.

First, we will load another teaser into the page. On the sample HTML page
loaded from your Drupal installation, execute $('.teaser').load('/fed_ajax/
teaser'); in the browser’s JavaScript prompt. The browser will load the URL in
the background and then replace the teaser with the newly returned content. If your
Drupal installation is not located at the root level of your Web server, you must prefi x
the URL /fed_ajax/teaser with your base path. For example, if your installation is
located at http://localhost/drupal/, the URL should be /drupal/fed_ajax/
teaser.

The .load() function has another nice feature: It allows you to automatically
select a specifi c part of the returned HTML and insert only that portion instead of
the entire return value. This ability is useful when you don’t want to write specifi c
functions that return just the data you need; with this feature, you can load the entire

Return value

Request
Waiting for

answer

Synchronous call

Function Request

Return value

Request
Waiting for

answer

Asynchronous call

Function Request

Other commands
can be executed

Another
function

Browser is
blocked

Indicates the
control flow

Leveraging jQuery’s Full Potential 339

Figure 10.7 Synchronous call versus asynchronous call.

340 Chapter 10 An Introduction to jQuery

HTML page and replace only the relevant part using a CSS selector. This CSS selector
is not a separate parameter to the .load() function, but rather must be inserted after
the URL (in the same string), separated with a space.

We can use this mechanism to load back the original teaser by simply loading the
exact same page and selecting just the teaser part:

$('.teaser').load(document.location.href + ' .teaser');

document.location.href contains the URL from which the current page was
loaded. We now add a space and the selector that plucks the right part from the newly
loaded page.

Loading Data with jQuery.getJSON()

While loading plain HTML is sometimes very useful and simplifi es matters greatly
on the client side, having the data available in a structured format is equally useful.
The jQuery.getJSON() method allows you to retrieve data in the JSON format and
then operate on that data. This function cannot be applied to a set of elements in the
same way as the .load() function; rather, it is a stand-alone function in the jQuery
namespace (which is accessed by the $ shortcut by default).

var callback = function(data) {

 console.log("Request finished; returned data:");

 console.log(data);

};

$.getJSON('/fed_ajax/json', { id: 1 }, callback);

console.log("Request started...");

In this example, we fi rst defi ne the callback function to be executed when the request
is fi nished. The fi rst parameter contains the returned data, already parsed into a Java-
Script object. We then print the data to the console. In a real-world situation, you
would most likely perform actions with the data, such as looping over all returned ele-
ments and inserting them somewhere into the page or adding them to a data store.

The $.getJSON call fi rst specifi es the URL (again, prefi x this identifi er with your
actual path to Drupal). The second parameter can contain data for the request. It
should be either a ready-made query string (such as "id=1&action=fetch") or a

JavaScript object with key–value pairs that is transformed into a query string and ap-
pended to the URL by jQuery. The third parameter is the callback function that will
be executed when the data has been retrieved. Note that any code you execute imme-
diately after the call to $.getJSON is executed right away: $.getJSON does not wait
until the request fi nishes, but rather returns immediately after starting the request (as
outlined in Figure 10.7).

The $.getJSON function should only be used for obtaining data from the server.
Requests to the specifi ed URL should not change anything on the server (by creating
new data or deleting items, for example). This restriction applies because $.getJSON
uses a GET request. HTTP has different request modes, of which the most frequently
used are GET and POST. The HTTP defi nition specifi es that GET requests should be
nondestructive (of course, you can modify the database for logging the request). The
POST type is used for requests that have side effects, such as the creation of content,
deletion of items, or modifi cation of elements. In short: GET is for retrieving content,
POST is for creating content.

The All-Arounder: $.ajax()

All of jQuery’s AJAX functions use the $.ajax() function internally. The
.load() and $.getJSON functions are just wrappers for that function, intended to
simplify commonly performed tasks. If you need more fl exibility, you can use $.ajax
directly and confi gure whatever functionality you need. Many confi guration options
are possible—so many that we can’t possibly show all of them here. This function is
extensively documented at http://docs.jquery.com/Ajax/jQuery.ajax.

The $.ajax() function makes use of the named parameter mechanism, which
was outlined in the section “Using jQuery Helper Functions.” This function takes one
parameter, which contains key–value pairs for all other parameters. A large number of
parameters available, including the following options:

 • type can either be GET (default) or POST; it determines the HTTP type.

 • url is the URL for the request.

 • data can either be a string or an object with key–value pairs.

 • dataType specifies how the returned data should be interpreted. It can be
"json", "html", "xml", or "text". (Other values are also available; see the
documentation.)

 • success is a callback function that is executed when the request was comp-
leted successfully and the data could be parsed.

Leveraging jQuery’s Full Potential 341

342 Chapter 10 An Introduction to jQuery

 • complete is a callback function that is executed when the request finishes (on
both success and failure).

 • error is a callback function that is executed when the request fails.

$.ajax works in the same way as $.getJSON: It returns immediately after the re-
quest has been started and the code after the call to that function is executed. (This isn’t
true when you select the synchronous transfer mode by setting the async parameter
to false.)

Plugins for jQuery

jQuery allows you to create custom operations that will then become available for
jQuery objects. You can use that feature to create new shortcuts for existing functions
or to implement completely new functionality. You add functions to a jQuery object by
adding them to the jQuery.fn namespace (this is, in fact, just a reference to jQuery
.prototype). Here’s a small example:

jQuery.fn.log = function() {

 return this.each(function() {

 if (console.log) {

 console.log(this);

 }

 else {

 alert(this);

 }

 });

};

This plugin adds the .log() function. Because jQuery objects may contain several
DOM elements, you must use the this.each() function to execute the action for each
of the contained elements. The inner function logs the DOM element to the console
when that functionality is available; otherwise, it sends an alert message to the user.

Of course, this is just a very small example; there’s much more to say about jQuery
plugin development. The http://docs.jquery.com/Plugins/Authoring page
has a bit more information available. In addition, several more advanced books ably
cover this topic—for example, jQuery Reference Guide: A Comprehensive Exploration
of the Popular JavaScript Library by Jonathan Chaffer (Packt Publishing). A vast

repository of ready-made jQuery plugins can also be found at http://plugins.
jquery.com/. Add them to your page, and you will immediately be able to take ad-
vantage of the new functionality.

jQuery UI

jQuery UI (located at http://ui.jquery.com/) is a collection of jQuery plugins
and APIs that implement commonly used functionality that is not part of the jQuery
core. It features drag-and-drop support; APIs for making elements resizable, sortable,
and selectable; and frequently used controls such as a date picker, a dialog window, a
progress bar, and tabs. If you are considering implementing drag-and-drop functional-
ity, you should defi nitely think about using jQuery UI’s APIs for that purpose. These
plugins will eliminate a lot of the pain associated with implementing drag-and-drop
functionality across browsers.

Using Other JavaScript Libraries

Although Drupal exclusively uses jQuery, your project might not. If you’re porting an
existing application that was built using another library, such as Prototype/Scriptacu-
lous, you might want to continue using these libraries in your existing scripts. That
way, you will not have to convert all code to jQuery, possibly introducing new bugs.

Unfortunately, both jQuery and Prototype use the $ variable, but only one library
can have that name. In most cases, the library that is loaded later overwrites the library
that is loaded fi rst. Fortunately, jQuery is aware of the fact that the $ variable is coveted,
and it is designed to run even if it’s not stored in the $ variable. To remove jQuery from
this variable, you would execute the command jQuery.noConflict(); immediately
after jQuery loads; jQuery will then not modify or overwrite that variable.

Making jQuery not use the $ variable is relatively easy, but many scripts (including
the scripts that ship with Drupal) rely on jQuery being available in $. There is an easy
fi x for this problem: Create a new scope (through a function) and overwrite $ with
jQuery in just that scope. The code looks like this:

(function($) {

 // Put your code using $ as jQuery here.

})(jQuery);

// $ is not jQuery here.

Using Other JavaScript Libraries 343

344 Chapter 10 An Introduction to jQuery

The solution is to create a new function and execute it right away, passing jQuery as
parameter that then maps to $ just inside that function. Inside the function, $ is jQuery;
in the outside world, it’s not. Note that a lot of JavaScript code from contributed mod-
ules relies on jQuery being available in $, so you should take this step with great care.
If a module doesn’t work when jQuery is not available in $, go to the module’s project
page on http://www.drupal.org and create an issue telling the author to make the
module compliant.

Summary

This chapter introduced jQuery, a JavaScript library that allows you to perform com-
mon tasks using a very concise and easy syntax. Even though jQuery focuses mostly
on manipulating the DOM tree, it also has some useful helper functions. Most im-
portantly, jQuery provides an interface for making AJAX-style server requests. jQuery
plugins and jQuery UI are other key components of the jQuery environment, as is
getting jQuery to live in harmony with other libraries.

345

11

JavaScript in Drupal

This chapter explains how to apply the JavaScript skills you acquired or pol-
ished while working through Chapters 9 and 10. You will learn how to add

JavaScript to Drupal and to themes in particular, and you will get to know the
various ways of providing additional information in the form of variables for the
JavaScript that runs on a page. You will also see how JavaScript can interact with the
server and discover how you can return results from a server query.

The majority of this chapter, however, explores ways to create self-contained and
portable JavaScript “components”—pieces of functionality that can greatly enhance
your Web site. You will learn how to create a horizontal scroller, step by step. Finally,
you’ll learn about more ways to add interaction to your Web site by leveraging the
vast pool of ready-to-use jQuery widgets and the jQuery UI.

Server-Side Drupal Integration

Now that you know quite a bit about both JavaScript and jQuery, it’s time to go
back to Drupal and see how to integrate JavaScript with Drupal. Drupal provides
some functionality for dealing with JavaScript, but you should always keep in
mind that JavaScript is run in the browser, after Drupal has completely finished

From the Library of Athicom Parinayako

346 Chapter 11 JavaScript in Drupal

creating the HTML page. As a result, you cannot call PHP functions from your
JavaScript code. If you need to obtain additional data from the server, you must specifi-
cally advise Drupal to react to certain requests by creating a menu callback, as discussed
later in this section.

Adding JavaScript to a Page

Drupal provides a function named drupal_add_js() that allows you to add all kinds
of JavaScript to a page. Using this function, you can add fi les, variables, and custom code,
depending on which parameters you use. The drupal_add_js() function is exten-
sively documented at http://api.drupal.org/api/function/drupal_add_js/6.
Its behavior heavily depends on the second parameter, which defaults to 'module'.

Adding Files

The most common use of drupal_add_js() is for adding fi les. This behavior is trig-
gered when the second parameter for drupal_add_js is neither 'inline' nor 'set-
ting'. You can add JavaScript fi les to a page everywhere except for page.tpl.php
(this exception occurs because the list of fi les added is a variable in page.tpl.php
and so cannot be changed after it has been generated). In the download package that
accompanies this book, you will fi nd a demo.module that you can place in sites/
all/modules. In a module, a call to that function would look like this:

drupal_add_js(drupal_get_path('module', 'mymodule') . '/mymodule.js');

The fi rst and only parameter is constructed of two parts: The path to the mod-
ule’s folder is concatenated with the name of the JavaScript fi le in that folder. When
the JavaScript fi le is located in a theme directory, the usage is similar: Just replace
'module' with 'theme' and insert the theme’s name as the second parameter in the
drupal_get_path() call.

When adding JavaScript fi les for a theme, you should set the second parameter for
drupal_add_js() to 'theme'. This will guarantee that this JavaScript fi le is included
after any module or Drupal core JavaScript fi les.

By setting the $scope parameter to 'footer', you can include the script at the
bottom of the page instead of within the <head> section. This step is sometimes nec-
essary to include scripts that can be run only when the document has already been
loaded, but that don’t use jQuery’s document.ready() method. To add a JavaScript
fi le to the footer, use the following code:

drupal_add_js(drupal_get_path('module', 'mymodule') . '/mymodule.js', 'footer');

Other, rarely used parameters for drupal_add_js()are documented on the API
Web site.

Adding JavaScript to a Theme in the .info File

There is another, easier way to add JavaScript to your theme: Add a line in the theme’s
.info fi le. In much the same way that you would add style sheets there, you add a line
in the following format:

scripts[] = file.js

Drupal’s theme layer then automatically adds this fi le to every page with that theme.
This behavior is ideal for JavaScript fi les that should always be available on a page—for
example, for functionality that is shared among all or most pages. You can add as many
lines as you want, as long as each starts with scripts[] = and is followed by the path
to the script relative to the theme. It is not possible to add scripts to other scopes or
use any other parameters with this approach, nor is it possible to add JavaScript fi les
only to certain pages. After adding a script to the .info fi le, fl ush the theme registry
by going to the theme administration page or using devel.module’s link.

The Settings Storage

Oftentimes, you will want to pass certain parameters to your JavaScript code. The set-
tings storage in Drupal.settings is the perfect place to carry out that task. drupal_
add_js() lets you add arbitrary values to that storage; those values will then be made
available on the Web site to your JavaScript code.

To add settings, the second parameter must be 'setting' and the fi rst parameter
must be an array that contains the actual settings. The other parameters aren’t used in
this way for calling drupal_add_js(). Here’s an example setting:

$data = array(

 'items' => 3,

 'data' => array(

 342 => 'http://example.com/files/slideshow01.jpg',

 386 => 'http://example.com/files/slideshow02.jpg',

 440 => 'http://example.com/files/slideshow03.jpg',

Server-Side Drupal Integration 347

348 Chapter 11 JavaScript in Drupal

),

);

drupal_add_js(array('slideshow' => $data), 'setting');

This code adds an array with just one key named slideshow; slideshow contains the
actual data. This approach prevents our data from appearing directly in Drupal.set-
tings on the client side. Instead of Drupal.settings, that array is stored in Drupal.
settings.slideshow. By putting everything in Drupal.settings.slideshow, we
can ensure that no other module interferes with our data and everything is nicely
grouped in one place. It’s a good idea to use your module or theme name to create a
namespace.

To access data added with drupal_add_js(), you can use the Drupal.settings
object. To access this object, type Drupal.settings in Firebug. You can then click on
the object and inspect it further, as shown in Figure 11.1.

Be careful to not add your data twice or PHP’s array merge function might produce
unexpected results. If you add the same key twice, PHP will convert that value into

FIGURE 11.1 Exploring the Drupal.settings object with Firebug.

an array that contains both the original value and the new value. The following code
example illustrates what might happen:

drupal_add_js(array('mymodule' => 4), 'setting');

drupal_add_js(array('mymodule' => 8), 'setting');

// This will result in:

// array(

// 'mymodule' => array(4, 8)

//);

To prevent this result, you may not add exactly the same key twice. A solution to this
dilemma is to store your variables somewhere else and add them only when you add
variables for the last time.

Inline JavaScript

The drupal_add_js() function also allows you to add custom JavaScript code to a
page. To do so, the second parameter must be 'inline' and the fi rst parameter con-
sists of a string with the actual JavaScript code (don’t include <script> tags here):

drupal_add_js('alert("Hello World");', 'inline');

When you insert this line in any module or template fi le (except for page.tpl.php),
it will add this JavaScript code that sends an alert message of “Hello World” when
the page loads. You should use this feature only rarely, however, and only when it’s
absolutely necessary. If you want to add larger quantities of code, move that code to a
separate JavaScript fi le; when you want to add just confi guration options, use the set-
tings functionality described in the previous section.

Creating Menu Callback Handlers

Although this book doesn’t cover module development, you still need to know how
to integrate your JavaScript code with Drupal. In the previous section, JavaScript was
added to a page from within Drupal. Once the JavaScript is executed on the client
side, you might want to call back to the server to request additional data—a technique
commonly known as AJAX (see Chapter 10 for a discussion as to why this name is
misleading).

Server-Side Drupal Integration 349

350 Chapter 11 JavaScript in Drupal

The Drupal menu system is used for more than simply creating and maintaining
the visible menus and the menu items in it. In fact, Drupal’s menus are primarily a
system to “dispatch” requests to different page functions. Thus Drupal allows you to
create menu items that are not visible in the menu system (“menu callbacks”) and map
them to a function that generates the content.

In the menu hook of a module, you can defi ne the menu items for your page. Read
more about hooks at http://api.drupal.org/api/group/hooks/6 and more
about the menu system at http://drupal.org/node/102338.

Let’s see how to defi ne a menu item:

function demo_menu() {

 $items = array();

 $items['demo'] = array(

 'title' => 'Demo module',

 'description' => 'A demo page for testing code.',

 'access callback' => 'user_access',

 'access arguments' => array('access content'),

 'page callback' => 'demo_page',

);

 return $items;

}

You can fi nd this menu item code in demo.module (which is included in the down-
load package from http://frontenddrupal.com). You just have to return an array
with menu item structures (which are also arrays). Many different settings are possible,
as shown on the documentation page. Usually, you need only a few of them, as illus-
trated in this code example.

The preceding code defi nes a new menu item with the path 'demo' (in the square
brackets after $items). You can also defi ne access restrictions; currently, this menu
item is available for everyone who has access content permissions, which is every-
one by default. The last line is probably the most interesting line. Here you defi ne the
“page callback function”—that is, the function called when the user accesses this menu

item. In that function, you should generate the content and return the resulting HTML
code. This menu item is a visible item; you should see it in the navigation block, as
shown in Figure 11.2.

Creating JSON

When we call the server to obtain data, we don’t always want to use HTML code.
Instead, JSON is often used for this purpose (see Chapter 10 for more about JSON).
Luckily, Drupal provides a drupal_json() function that generates a JSON object
from a regular PHP array. It also sends the correct HTTP headers so that browsers rec-
ognize this input as JavaScript code. The drupal_json() function is documented at
http://api.drupal.org/api/function/drupal_json/6. When using this func-
tion, you don’t have to return anything from your page callback function.

Server-Side Drupal Integration 351

FIGURE 11.2 A page generated by a custom module.

352 Chapter 11 JavaScript in Drupal

Let’s look at an example JSON callback menu item:

$items['demo/json'] = array(

 'access callback' => 'user_access',

 'access arguments' => array('access content'),

 'page callback' => 'demo_json',

 'type' => MENU_CALLBACK,

);

The last line specifi es that this menu item is a callback item (the menu system defaults
to visible items) and ensures that it does not appear in the menu tree. Insert this menu
item into the demo_menu function and go to /demo/json as specifi ed. You’ll prob-
ably see the same page as appeared with /demo—but why? Drupal caches menu items,
so just inserting new code into the menu hook won’t do the trick. Instead, you must
explicitly tell Drupal to fl ush the menu cache. To do so, go to /admin/build/mod-
ules. You can also install the devel module available from http://drupal.org/
project/devel, enable the “Developer” block, and click on “Empty cache.”

Once you completed these tasks, reload /demo/json. You should see nothing—
which is what you expected.

Now that our menu defi nition works, we must create the specifi ed menu function
demo_json():

function demo_json() {

 $data = array(

 'items' => 3,

 'data' => array(

 342 => 'http://example.com/files/slideshow01.jpg',

 386 => 'http://example.com/files/slideshow02.jpg',

 440 => 'http://example.com/files/slideshow03.jpg',

),

);

 drupal_json($data);

}

When you reload /demo/json again, you should see the data in JSON format:

{ "items": 3, "data": { "342": "http://example.com/files/slideshow01.jpg", "386":
 "http://example.com/files/slideshow02.jpg", "440": "http://example.com/files/

 slideshow03.jpg" } }

And that’s all it takes to make your data JavaScript-compatible. Of course, the data
does not take the form of a static array, but is usually generated dynamically, based
on the parameters of the request. The parameters are available in $_GET or $_POST
depending on the request type. Be careful when you use these values, because they are
not checked for malicious input. The menu system also provides some facilities for
retrieving parameters. Check the menu documentation for more information.

Architecting a Component

Oftentimes, you don’t just want to make a few minor enhancements to a website,
such as automatically submitting the form after a drop-down box changes, but rather
want to develop larger components with which the user can interact. In this section,
we’ll fi rst look at some of the key principles you need to know when creating a new
JavaScript component:

 • Compatibility. In the early days of developing JavaScript components, devel-
opers acted as if they were alone. Specifically, they used global variables every-
where. Eventually, this led to conflicts between different components when
both used the same variable name. On today’s Web sites, your script is not
likely to be the only one present; therefore, you should try to keep all of your
components together in one space. Drupal uses the Drupal object to group all
Drupal-related things, such as the settings storage, behaviors, and translations.
Ideally, your script should reside in one unambiguously named variable.

Additionally, you should make sure that you use the var keyword when
declaring local variables; otherwise, they become global variables, which
can lead to random behavior when other scripts also forget to use the var
keyword. To see whether you might have missed one, execute a couple of
JavaScript actions and then check the window object in Firebug. It lists all
global variables. Drupal, jQuery, and $ should be the only user-provided
variables, as shown in Figure 11.3. The other variables are provided by Firefox
add-ons or the browser itself.

Architecting a Component 353

354 Chapter 11 JavaScript in Drupal

FIGURE 11.3 The global JavaScript objects in Firefox.

 • Reusability. It is recommended that you write as many of your functions as
possible in such a way that those functions are not fixed for exactly one use
case. For example, instead of making the function use an implicit variable from
this, you can make the function operate on a parameter. That way, other
scripts can also make use of your widget.

Another aspect of reusability is to create your components in such a way
that it’s easy for other components to reuse the entire functionality of the com-
ponent. As an example, consider a “modal overlay” widget that displays a page
overlay. An ideal modal overlay widget would expose all required functionality
so that other components can simply create a new modal widget with custom
content in one or two lines of code.

 • Flexibility. Oftentimes, you will need to create complex HTML markup
for displaying your widget. Different elements will inevitably have different
functionality when interacting with such widgets. To avoid coupling your
JavaScript component too closely with a specific markup tree, you should
assign class or IDs to all elements that will get an event handler assigned to
them. In your JavaScript, you can just “search” for this class name within a
given HTML structure to select the element. This approach should always
be preferred over relying on a specific HTML structure and navigation with
.prev(), .next(), or .children() because it allows you to almost arbi-
trarily change your HTML markup while retaining all functionality.

 • Encapsulation. On many occasions, you will want to use not just a single
instance of the component on one page, but several of them. For example, hav-
ing just one slideshow on a given page is not always a good idea; instead, you
may decide to create several of them. This is also a time where it’s vital that
your components be encapsulated (see the “Compatibility” bullet point) and

not interfere with one another. However, sometimes it makes sense to have
shared parts of a component—for example, when you create a function that
performs a calculation but doesn’t have any side effects. It would be a waste of
resources to create a copy of this function for every component instance.

 • Speed. When developing a Web site, you will often test the site with one or
two instances of a component. Of course, some components are used even
more often on one page. This consideration is critical, especially if the Web site
users will somehow be able to create new instances of something. You should
never underestimate a user’s ability to do something to an excessive amount.
Test at least once whether the component you’ve developed still performs
acceptably when the Web page contains several hundred instances of it. If it
doesn’t, you should reconsider your use of poorly performing CSS selectors or
spread out calculations over time as opposed to calculating everything at one
single point.

Example: Horizontal Scroller

In this section, we will actually implement a JavaScript component while obeying the
preceding rules. The point of this example is to help you create more modular, reliable,
and stable components. Here we will develop a horizontal scroller widget that allows
you to horizontally scroll images by clicking on left/right buttons. In Figure 11.4, you
can see the fi nished product.

The features of this widget include the following items:

 • The left/right buttons are hidden when they have no functionality.

 • The scroller scrolls to the first item that is not completely visible.

 • The scroller degrades gracefully when JavaScript is not available.

 • The items in the scroller can be of variable width.

Example: Horizontal Scroller 355

FIGURE 11.4 The fi nal horizontal scroller, featuring images and left/right buttons.

356 Chapter 11 JavaScript in Drupal

 • The “page transitions” are animated.

 • Resizing the window does not cause the scroller to break, just because fewer or
more items fit into the view at once.

 • The scroller works in Internet Explorer 6.

It’s always helpful to fi rst write a list of the features you want; later, you can check
whether your component really does everything you need. In addition, the results of
this exercise make for a good checklist when you are testing the component in various
browsers.

The Component Skeleton

When developing a component, it’s often easier to not start directly within Drupal,
but instead to fi rst develop the JavaScript code in a controlled environment. In other
words, you take a plain HTML page, add jQuery and the required JavaScript fi les
to it, develop the base widget there, and then move the component to Drupal. This
approach has several advantages:

 • The page reloads more quickly, and you don’t have to wait for Drupal to ren-
der that page.

 • You don’t have to clean Drupal caches repeatedly to see the change you’ve
made.

 • This strategy reduces distractions caused by other elements on the page.
 • You can actually read the jQuery code when stepping through a function with

the debugger because you can use a non-minified version of jQuery.

Of course, starting in another environment also has a few drawbacks:

 • The result is not 100% Drupal, and you might encounter some minor prob-
lems when finally moving your component to Drupal.

 • You can’t really test interaction with the server via AJAX without refraining
from using Drupal for supplying data.

 • Not all components can make use of the proposed component skeleton.

The download package for this book includes a folder named component-skel-
eton that contains a component development environment. Just rename every fi le

named “skeleton,” and replace “skeleton” in all fi les with the name of your compo-
nent. This skeleton contains the drupal.js from Drupal 6 as well as jQuery 1.2
in an uncompressed version. The included drupal.js fi le provides some commonly
used functionality as well as the basic infrastructure for some of the JavaScript-related
concepts that are specifi c to Drupal. skeleton.js contains a wireframe for starting
off with a new component. You can reuse the code found in this fi le or replace it with
your own.

We’ll name our example component “horizscroll.” For your own component,
choose a name that is not in use and that is unambiguous, yet concise. Of course, you
can change the name at any point—but to do so, you must rename everything, which
can become quite a hassle.

Creating the Markup

The skeleton.html fi le is just a bare-bones HTML fi le that contains some content
and a section where the widget will reside. Depending on your widget, you may have
to change the markup to suit your needs. The HTML fi le also includes a place where
you can add further settings variables that normally would be added during Drupal’s
page generation process.

We can—and should—create most of the component’s look with plain HTML
and CSS. Always do as much as possible with HTML/CSS, reserving JavaScript and
jQuery for creating behavioral functionality. Even though it might be tempting to use
jQuery’s .css() function to fi x a small bug, don’t go down this road: Finding poten-
tial errors introduced during this process becomes a lot more complicated (e.g., you
can’t use Firebug to see the source of the formatting).

Drupal’s JavaScript Behaviors

The component code will reside in skeleton.js. The renamed “behaviors” function
looks like this:

/**

 * Initializes the horizscroll component.

 */

Drupal.behaviors.horizscroll = function(context) {

 $('.horizscroll:not(.horizscroll-processed)', context).each(function() {

Example: Horizontal Scroller 357

358 Chapter 11 JavaScript in Drupal

 // <<< Insert the code to process each horizscroll here >>>

 }).addClass('horizscroll-processed');

};

Behaviors are specifi c to Drupal, but the underlying concept is easy to understand:
Oftentimes you have code that does something when the page is loaded, such as ini-
tializing a component. However, when you modify the page afterward by request-
ing additional data via AJAX or AHAH (AHAH is Drupal’s way of making dynamic
forms without writing JavaScript code), the component HTML code that is part of
the newly inserted code does not receive the same treatment by default—because your
code looked for such elements only at the very beginning of the process.

This is where Drupal’s behaviors jump into the breach: Whenever new code is
inserted, the Drupal.attachBehaviors() function is called, with the fi rst param-
eter being the root of the newly inserted elements. The Drupal.attachBehaviors()
function calls all functions that appear inside the Drupal.behaviors namespace with
that parameter. Your behavior function is then responsible for initializing any compo-
nents of its type inside that new page part.

Usually, this process occurs in the manner illustrated in the sample code: You call
an anonymous function for each .horizscroll element you can fi nd inside that con-
text, except when it already has the class horizscroll-processed. The anonymous
function then performs initialization tasks before the addClass() function adds the
class horizscroll-processed, which prevents the same component instance from
being initialized twice.

When you insert HTML code into the page, you should call the function Drupal.
attachBehaviors() yourself to allow other JavaScript fi les to initialize components
that might be contained in that code. For more information on this feature, see the
source code documentation in drupal.js. The document at http://drupal.org/
node/120360 describes how this functionality came to be part of Drupal.

The slider will work as illustrated in Figure 11.5. As shown in the fi gure, the items
reside inside a content section with infi nite width. The content section itself is included
in a container, which cuts off the container at a certain width using overflow:hidden;.
Because the content box has infi nite width, the items inside it won’t fl oat into several
lines but rather will stay together in one line. Additionally, left and right buttons allow
the user to change the currently displayed items. A click on the slider will move the
content box to the left so that another part becomes visible inside the viewport pro-
vided through the container.

FIGURE 11.5 How the slider works internally.

We can identify fi ve kinds of elements for the slider:

 • Each slider can contain an arbitrary amount of items.

 • A content box is repositioned when the slider moves.

 • The container provides the viewport for the item.

 • The left and right buttons allow the user to change the currently displayed
items.

 • An overall container encapsulates everything (this element is somewhat
optional but makes life a lot easer).

This list of elements leads us quickly to the following markup:

<div class="horizscroll">

 ‹

 ›

 <div class="horizscroll-container">

 <ul class="horizscroll-content">

 Item #1

 Item #2

Visible area
(container)

Slides this way

‹ ›

Next button
Item Content

‹ ›

Example: Horizontal Scroller 359

360 Chapter 11 JavaScript in Drupal

 Item #3

 <!-- ... -->

 </div>

</div>

The left and right quotation marks serve as pointers in our case, but you can also
replace them with text, an image, or a background image. After all, this code is just
HTML and CSS. We can now style that HTML, but we must use some specifi c rules
to ensure that we get the functionality we want:

.horizscroll-container {

 position:relative;

 overflow: hidden;

}

.horizscroll-content {

 width: 32767px;

 position: relative;

 top: 0;

 left: 0;

}

.horizscroll-content li {

 float: left;

}

These are the absolute minimum styles for the script to function correctly. Of course,
you might want to add additional CSS rules—for example, rules to remove the bullets
from each list item. The width of the content box is set to a very large value. When you
have a large number of items, you might have to increase that number, but generally
you won’t run into problems with this value.

The container has a relative position, which means it becomes the new offset
origin for all containing children. As a consequence, the rules top: 0 and left: 0

refer to the origin of the container, not to the origin of the browser window. For the
fi nal CSS rules, check the horizscroll.css fi le in the horizscroll folder in the
book download package.

Unfortunately, you must deal with some of the oddities of Internet Explorer 6 when
creating a widget in this way, because the code presented here is actually just pure
HTML and CSS. Still, writing the JavaScript code is much less of a hassle, thanks to
jQuery’s cross-browser abstractions.

Filling the Component with Functionality

In Chapter 9, you learned about JavaScript’s object orientation—and this is the right
place to use it. In the skeleton’s JavaScript fi le, you will fi nd a defi nition for an instan-
tiable object. Here is the constructor, renamed appropriately for our horizscroll
project:

Drupal.horizscroll = function(options) {

 // Store a reference to this so that anonymous functions

 // can reference it.

 var that = this;

 // Merge in the options object.

 $.extend(this, options);

 // <<< Insert more constructor code here >>>

};

This code already does several useful things (which you can ditch in your own project
if you don’t want them): It aliases this to that; as a result, we can create anonymous
functions that can also access the outer this. A quick reminder: this contains the
newly created instance of the object for which this constructor is being executed. For
an explanation for why this is necessary, see the sections entitled “The Variable Scope”
and “The Function Scope” in Chapter 9. The second line implements the “named
parameters” pattern commonly used in jQuery. To learn more about the $.extend()
function, see “Using jQuery Helper Functions” in Chapter 10.

The rest of the skeleton JavaScript fi le contains placeholder functions for the new
object’s prototype:

Example: Horizontal Scroller 361

362 Chapter 11 JavaScript in Drupal

Drupal.horizscroll.prototype = {

 /**

 * Method documentation.

 */

 'method': function() {

 // <<< Insert code here >>>

 },

 /**

 * AnotherMethod documentation.

 */

 'anotherMethod': function() {

 // <<< Insert code here >>>

 }

};

Breaking Down the Functionality

If you like, you can simply rename these methods and use them as is. Before we begin
to add more code, let’s take a step back and try to split up the features into functions:

Drupal.horizScroll = function(options) {

 // Store a reference to this so that anonymous functions

 // can reference it.

 var that = this;

 // Merge in the options object.

 $.extend(this, options);

 // Store references to the container, the content, and so on.

 // Set the first element as the "target item."

 // Add callback functions to the left and right buttons.

 // Initialize the button status.

};

Drupal.horizScroll.prototype = {

 // Function that updates the button status based on the

 // position of the content.

 'updateButtons': function() { },

 // Function that moves the content box to a particular item.

 'scrollToItem': function() { },

 // Function that calculates the next target item.

 'findTarget': function() { }

};

When you think about it, that’s all that’s necessary to create the described compo-
nent. While writing your code, it’s often useful to create “stub functions” that don’t
actually do anything, but simply serve as placeholders for features that are yet to be
implemented. When you have a clear idea of how the functionality is split among the
various functions, it becomes much easier to implement each feature in the appropriate
place. Every time you need a specifi c task done, call that function. You can worry about
that function’s implementation later. Coming up with a good breakdown of function-
ality is not always easy, but here are some tips to help you think about the issues:

 • Go through your widget step by step and write down all the things you need
to do (in plain text, not code).

 • When you have to do a certain thing more than once, that task is a good can-
didate to be split out in its own function.

 • Try to generalize functionality. In our example, we have “calculate the next tar-
get item,” but it’s also called to calculate the previous item when the user clicks
the left button.

Of course, you will often have to change the way you originally broke down the
functionality during the development process for a component. For example, you
might fi nd that you want to reuse a certain code snippet, so you move it to its own
function. Conversely, you might discover that some other functionality is better per-
formed inside another function, because splitting it out to a function would introduce

Example: Horizontal Scroller 363

364 Chapter 11 JavaScript in Drupal

too much overhead. Despite the likelihood that changes will be necessary, getting a
good overview of the desired functionality before you start to code the component usu-
ally results in better-structured and -architected code.

Bootstrapping the Component

In the constructor, we start to write our own code by storing the elements that make
up the component, the container, the content, and so on. This step ensures that we
can later reference those items easily without having to search the whole document tree
each time:

this.left = $('.horizscroll-left:first', this.root);

this.right = $('.horizscroll-right:first', this.root);

this.container = $('.horizscroll-container:first', this.root);

this.content = $('.horizscroll-content:first', this.root);

This code fi nds the fi rst occurrence of that class within the component’s HTML root.
Unfortunately, there seems to be a lot of duplicate code; all lines look exactly the same,
except for the name.

In our second attempt, we use a loop:

var items = ['left', 'right', 'container', 'content'];

for (var i in items) {

 this[items[i]] = $('.horizscroll-' + items[i] + ':first', this.root);

}

That’s much better. When we want to change the way these items are selected, we have
to change just one line instead of four.

There’s also a third way to accomplish this goal, by using jQuery’s .each()
function:

$.each(['left', 'right', 'container', 'content'], function() {

 that[this] = $('.horizscroll-' + this + ':first', that.root);

});

(that is this from the constructor function; this in the anonymous function refers
to the currently processed item, so it’s one of 'left', 'right', . . .).

For this task, it doesn’t really matter which version you use; all of them have the
same effect. However, if you’re performing more complicated tasks, having an own
function scope for each “loop” iteration is benefi cial.

When scrolling through the items, we keep a “target” item, which is a reference to
the item that is currently being displayed as the leftmost item. This approach is useful
because it allows us to quickly calculate position differences between items. However,
when initializing the component, the targeted item is the fi rst item. Let’s fetch this
item using our previously created references:

this.target = this.content.find('> :eq(0)');

The CSS selector fi nds the fi rst direct child of the elements in this.content. Because
this child is the <ul class="horizscroll-content">, this.target will end up
being the fi rst of that list. Note that we are not using completely fi xed selec-
tors, so the content box doesn’t have to be a ; it might also be wrapped in more
markup.

To verify that the commands work correctly, you can use Firebug’s console and the
method console.log(). You should always confi rm that you do, in fact, get what
you’re trying to select. If you skip this testing, you may end up with hard-to-spot errors
because jQuery doesn’t produce any warnings or error messages when the result set is
empty (in fact, jQuery lets you perform arbitrary actions on empty sets).

The scrollToItem() Function

We can add the rest of the constructor code later; let’s move to the real functionality of
the scroller now. We’ll tackle the scrollToItem function fi rst. To test this functional-
ity, add the following code to the end of the constructor:

this.scrollToItem(this.content.find('> :eq(3)'));

You should also modify the content of the scroller to contain more items (at least
four in this case; numbering starts at 0). To do so, either come up with your own con-
tent (images are perfect) or use the HTML code from the fi nished implementation and
copy the images folder to your development folder. To perform the scrolling, we must
determine the offset to move the content to. Look at Figure 11.6 to get an idea of the
distances and offsets.

Example: Horizontal Scroller 365

366 Chapter 11 JavaScript in Drupal

FIGURE 11.6 Distances for the content and the new target item.

We don’t need the current target’s position, so we can just replace this.target
with the new target. The new target is supplied as a parameter:

'scrollToItem': function(item) {

 // Set the item as target.

 this.target = item;

},

Luckily, jQuery 1.2 provides a function named .offset() that calculates the cur-
rent left and top positions of an element, relative to the document origins. This func-
tion returns an object with two keys, left and top. As you can see in Figure 11.6, the
distance between the left offset of the new target item and the content box is exactly
the number of pixels by which the content box should be positioned left of the con-
tainer box. The content box and the container have 'relative' positions, so we can
just specify left: -200px; for the content box to move it 200 pixels left of the con-
tainer. The parts that are left of the container will be invisible. To calculate the value
for left, we use this code:

var pos = this.content.offset().left - this.target.offset().left;

The resulting value is negative, because all elements are always right of the content box.
Thus this.target.offset().left is greater than this.content.offset().
left. Of course, we have to use negative offsets anyway. Using the command

this.content.animate({ 'left': pos });

we can move this.content to the new position. Using the animation function
ensures that the transition goes smoothly and that the content slides to the left.

‹ ›
Window
border

this.content.offset().left
this.target.offset().left

Old target New target

 So far, we’ve only talked about moving items to the left. What about moving items
in the opposite direction? Actually, the code we’ve written already takes that possibility
into account: The positions from .offset() are always the absolute position on the
page; when we select a new target item that is farther on the left than the current target
item, the difference becomes smaller. In such a case, the value for left becomes larger
(i.e., less negative). jQuery’s .animate() method will automatically fi gure out how to
move the content box depending on its current position and the new value.

For the moment, then, our scrollToItem() function looks like this:

'scrollToItem': function(item) {

 // Set the item as target.

 this.target = item;

 // Animate the content frame to the new target position.

 var pos = this.content.offset().left - this.target.offset().left;

 this.content.animate({ 'left': pos });

},

Finding the Next Target Item

The .findTarget() method is a little more complex. We have two options here: We
could split this method up into two distinct functions that determine the next target
item depending on the direction, or we could try to keep everything in one function.
We will take the latter approach. First, we consider which information we need to
determine the next target. Figure 11.7 provides an overview of all the distances and
positions.

Window
border

‹ ›

this.target.offset().left

this.container.width()

FIGURE 11.7 Data needed when calculating the next target item.

Example: Horizontal Scroller 367

368 Chapter 11 JavaScript in Drupal

The basic algorithm includes four steps:

 1. Set the new target item to the next item.

 2. Look at the next item.

 3. If the distance between the current target item and the next item is smaller
than the container width, set the new target item to the current item and con-
tinue at step 2.

 4. Otherwise, stop.

This algorithm ensures that we move by at least one item, which makes sense (e.g.,
when the container is narrower than an item). It also allows the user (or the developer)
to resize the slider at any point. The algorithm for fi nding the next item will automati-
cally use the current width. Even though the width and number of items in the scroller
may change, this algorithm always determines the correct position. Now, how does
that look in code?

'findTarget': function(direction) {

 var width = this.container.width(),

 origin = this.target.offset().left,

 current = this.target[direction](),

 next = current[direction]();

 while (next.size() && Math.abs(next.offset().left - origin) <= width) {

 current = next;

 next = current[direction]();

 }

 return current;

},

The fi rst var statement defi nes the values we need. The line defi ning current is of
particular interest: It runs either .prev() or .next() on this.target, depending
on the direction parameter. Recall how methods of an object are really just regular
variables that contain a function. That means we can also use this syntax to reference
such a member variable and call the contained function. (The section entitled “The
Function Scope” in Chapter 9 offers another example of this syntax.) next contains

the next but one item, whose position we will then check to see whether it is still
within the container’s width.

The loop condition fi rst checks whether a next item exists. If that’s not the case, it
aborts the loop immediately. If there is a next item, the distance between the current
target item (offset) and this item is calculated and compared to the container width.
If the distance is smaller, the loop continues; otherwise, it aborts, leaving the current
item alone. When the loop body is executed, it moves the next item to current because
it’s still within the limits as confi rmed by the loop condition. Finally, we calculate the
next item and store it to next for the loop condition to check.

Just returning current after the loop has fi nished does the trick, but there’s room
for improvement. Issue a console.log(current); command and inspect the results
in Firebug. As shown in Figure 11.8, a series of nested prevObject keys contain the
preceding objects (so that you could use .end() at a later point).

We don’t need these keys and they just take up space. Fortunately, there’s an easy
solution to get rid of them—just wrap current in $() so that the return line looks
like this:

return $(current);

To thoroughly test this function, you would issue various findTarget() calls in
the constructor. To programmatically move the slider to another position, you can give
the command this.content.css('left', -300); in the constructor function and
then call findTarget('prev'). Make sure to use debug outputs with console.log()

Example: Horizontal Scroller 369

FIGURE 11.8 Nested prevObject properties.

370 Chapter 11 JavaScript in Drupal

so that you can check with Firebug whether the found object is actually the correct
item.

Enabling the Buttons

Now that we have implemented two of the three functions, let’s try to make the but-
tons functional. This operation is done only once, so we’ll add it to the constructor
function:

this.left.click(function() {

 that.scrollToItem(that.findTarget('prev'));

 return false;

});

this.right.click(function() {

 that.scrollToItem(that.findTarget('next'));

 return false;

});

In these functions, we reference the newly created horizscroll object using that—
because this is something else when the function is called as a click event-handler
callback. In the callback functions, we fi rst fi nd the next (or previous) target and then
pass the returned item to scrollToItem(). Finally, false is returned so that the
default action for that link is not executed.

These two functions are similar, so we decide to consolidate them into a more
generic version:

$.each({'left': 'prev', 'right': 'next' }, function(key, direction) {

 that[key].click(function() {

 that.scrollToItem(that.findTarget(direction));

 });

});

This time, it’s vital that we use $.each() instead of a loop. If we did not take this
step, key and direction would change on the second loop iteration, but the function

created in the fi rst iteration would reference the same variables—effectively doing the
wrong thing.

Now try clicking the “next” button. You should see the slider move to the right. If
not, something went wrong. Make absolutely sure that you followed the steps outlined
previously. You can also peek at the fi nal code (which is available in the downloadable
package for this book at http://frontenddrupal.com) and compare it with your
own code to see whether you missed something.

Still no luck? Try the following steps:

 • Make sure your JavaScript code is loaded correctly and that JavaScript is not
turned off in the browser.

 • Using the JavaScript console, try to find where the code fails.

 • Check whether all variables are assigned correctly and whether you made
typos.

 • Use JavaScript Lint (http://jslint.com) to verify that your code parses
correctly.

 • Use a debugger such as the one found on Firebug’s “Script” tab to step through
the code. Hover over variable names to see their values.

 • Use console.log() in Firebug to print out each step in the process, verifying
that nothing went wrong.

If your code doesn’t run on the fi rst try, don’t worry. Most of the time, you won’t
get it right the fi rst time. (If you do, congratulations!) Thankfully, debugging support
for JavaScript has greatly improved in recent years. With Firebug, you have an amazing
tool that can assist you during development.

Debugging in Internet Explorer
Microsoft provides a tool for debugging scripts in Internet Explorer that comes
bundled with Visual Studio. A free alternative is also available from Microsoft:

 Microsoft Visual Web Developer 2008 Express Edition, which is available at http://
www.microsoft.com/express/vwd/. This tool was originally built for ASP.NET devel-
opment, but there’s an easy trick to get it to debug the JavaScript code in your
Drupal application: Load an empty project and click the Preview button. Visual Web
Developer starts Internet Explorer and loads the empty page. Now you can just
enter your own URL or fi le name, but debugging still works. If your script produces
an error, the backtrace is displayed in Visual Web Developer, and you can use the
debugger to step through your code.

Example: Horizontal Scroller 371

372 Chapter 11 JavaScript in Drupal

The current version of our code still contains one bug, though: If you click the right
button repeatedly, you’ll eventually end up at the rightmost item. Clicking again will
result in a JavaScript error, indicating that jQuery is using .offset() on an empty
result. To avoid that problem, you can wrap all of the code in .scrollToItem() into
an if branch that checks whether a target item exists:

'scrollToItem': function(item) {

 if (item.size()) {

 this.target = item;

 var pos = this.content.offset().left - this.target.offset().left;

 this.content.animate({ 'left': pos });

 }

},

Updating the Buttons in updateButtons()

At this point, most of our code is complete. Indeed, users can scroll the content fl aw-
lessly. Only one thing is missing: When the item is at the rightmost or leftmost posi-
tion, the buttons to scroll to the left or right are still functional; doing nothing in
the ideal case. To implement this behavior, instead of using jQuery’s .show() and
.hide() functions, we will use classes again. This choice enables us to do other things
besides hiding elements as well. For example, we could reduce the component’s opac-
ity, change the background image, or even alter the position of the scroller.

Here is the code for updating the left button:

var leftmost = this.target.is(':first-child');

this.left[leftmost ? 'removeClass' : 'addClass']('enabled');

This code is actually quite straightforward: When the target is the fi rst element, we
remove the class enabled; otherwise, the class is added. Insert this code in the update-
Buttons() function and add a call to this.updateButtons() in the constructor to
test it. Here we use enabled instead of disabled for a simple reason: When JavaScript
is disabled, the button will stay in the disabled state instead of having an “enabled”
appearance. You should always make sure that your UI elements have a meaningful

appearance and behave as expected when JavaScript is not available (e.g., when the user
is browsing on a mobile phone or when the user has manually disabled JavaScript).
Look at the CSS fi le in the downloadable package’s horizscroll folder to see which
styles we use in the fi nal script.

Graceful degradation for style sheets with html.js
Sometimes you may want to change the default look of your page, based on
whether JavaScript is enabled or disabled. Drupal provides a good solution for

that situation: When JavaScript is enabled, it adds the class js to the <html> tag.
Then, in your style sheets, you can precede your selectors with html.js to overwrite
CSS rules when JavaScript is enabled:

 .horizscroll-container {

 overflow:auto;

 position:relative;

 }

 html.js .horizscroll-container {

 overflow:hidden;

 }

These CSS rules ensure that the container receives a horizontal scrollbar by default
(try disabling JavaScript and reload the page). When JavaScript is enabled, however,
the scrollbar is removed because the slider buttons are functional. This technique
allows your users to access all scroller items, albeit in a slightly different way.

Updating the right button is a bit harder, but the idea is the same as the one we used
in the loop condition for findTarget(): If the distance between the last item and the
current target item is smaller than the container width, the last item is already fully
visible and we no longer need the right button. Here’s the code:

var last = this.content.find('> :last-child');

var rightmost = (last.offset().left + last.width() -

 this.target.offset().left) <= this.container.width();

this.right[rightmost ? 'removeClass' : 'addClass']('enabled');

First, we grab the last item in the list and use it to calculate whether the rightmost
item is visible. We use last.offset().left + last.width() to perform this

Example: Horizontal Scroller 373

374 Chapter 11 JavaScript in Drupal

operation because we have to check whether the item is fully visible inside the con-
tainer; thus we need the offset of the right border. We then add or remove the enabled
class based on the value of this variable. Adding the same class multiple times is not a
problem, because jQuery will detect that condition and discard the request for addi-
tion when the class is already present.

This technique works well in Firefox, but Safari may not show the button after
initializing the widget. At the time of this writing, Safari returns 0 for the offset and
width of the last item if the item is positioned too far outside the browser window or
if it is not associated with a fi xed width. For this reason, we check whether the item
actually has a width; if it doesn’t, we show the right button just in case. We can issue
the command var hidden = (last.width() === 0);, to see whether the item
has a width.

The fi nal function looks like this:

'updateButtons': function() {

 var leftmost = this.target.is(':first-child');

 this.left[leftmost ? 'removeClass' : 'addClass']('enabled');

 var last = this.content.find('> :last-child');

 var hidden = (last.width() === 0);

 var rightmost = (last.offset().left + last.width() -

 this.target.offset().left) <= this.container.width();

 this.right[(!hidden && rightmost) ? 'removeClass' :

 'addClass']('enabled');

},

Now that all of our functions work, we should confi rm that the button is updated
appropriately. We need to add a call to this.updateButtons(); in two places: at the
end of the constructor and at the end of scrollToItem(). That’s it—our horizontal
slider is now fully functional!

Making the Component Data-Source Agnostic

We won’t stop here, of course; we still can improve many things. Currently, the hori-
zontal slider component can only take the HTML code that is already there and add
interactivity to it. It would be useful to let the horizontal slider ask for new items each

time more items should be displayed. This approach offers a key advantage—namely,
not all items need to be available as HTML code at page load time. (Most browsers
will load these images, even though they might not yet be displayed because they’re
outside the viewport.)

The idea is to create a datasource function that takes care of obtaining new items
when the slider requests such an item. This function can be supplied when the widget
is created and will be “merged” into the new horizScroll object. The command
$.extend(this, options); takes care of this task. In case the developer doesn’t
supply a datasource function, we must make sure a fallback data source is available:

if (!this.datasource) {

 this.datasource = Drupal.horizScroll.settingsDatasource;

}

We add this code after the .extend() call. We then defi ne the function referenced
there (note that we just use the function name—we don’t call the function):

Drupal.horizScroll.defaultDatasource = function(index) {

 var el = $('> :eq('+ index +')', this.content);

 if (el.size()) {

 return el.html();

 }

};

This function is just a placeholder that returns the HTML code of the element that
is already present. If the specifi ed index doesn’t exist, the function doesn’t return any-
thing, so the return value is undefined.

We can write a number of different data source functions that take data from the
Drupal.settings object, create the data on the fl y, or load it via AJAX. A data source
function that loads data from the settings object might, for example, look like this:

Drupal.horizScroll.settingsDatasource = function(index) {

 return Drupal.settings[this.datasourceKey][index];

};

Example: Horizontal Scroller 375

376 Chapter 11 JavaScript in Drupal

Note that this is the scroller object when this function is called, so it can access any
values it needs. This function requires another key to be present, the datasourceKey,
which must also be supplied when we create the scroller object.

Let’s take a quick look at how we would create a horizontal scroller with a nonstan-
dard data source works:

new Drupal.horizScroll({

 'root': $('#posts'),

 'datasource': Drupal.horizScroll.settingsDatasource,

 'datasourceKey': 'postsScroller'

});

This code uses the settingsDatasource function we defi ned earlier. That function
then takes as input the data from Drupal.settings.postsScroller as specifi ed
with the datasourceKey.

To test this function, add some item data to the HTML fi le’s settings section, as
shown here:

<script type="text/javascript"><!--//--><![CDATA[//><!--

 jQuery.extend(Drupal.settings, {

 "basePath": "/",

 'postsScroller': [

 '',

 '',

 '',

 // ...

 ''

],

 });

//--><!]]></script>

At this point, you should either change how horizscroll components are created or
change the class name and add a custom initialization function. When you watch Fire-
bug’s “Net” panel, you’ll notice that—in contrast to the previous version—not all fi les
are loaded immediately. (You can also confi rm this behavior by inspecting the HTML
code; new items should be added as you progress farther to the right.)

Integration with Drupal

The actual task of integrating our new component with Drupal is not that complicated:
You’ve learned earlier in this chapter how you can use the PHP function drupal_add_
js() to include a JavaScript fi le on a page. In the same way, you can add the settings
required for the settingsDatasource version of the scroller. Usually, a custom-built
module gathers the required data, adds it to the page, and exposes it to the theme layer.
It might seem tempting to gather the data directly in your template, but this is not a
good idea: You’re moving the functionality into the theme layer, which makes it more
complicated to switch your theme later or upgrade to a new version of Drupal.

Using Plugins and jQuery UI

An alternative to creating JavaScript components yourself is to integrate one of the
many freely available jQuery plugins you can fi nd on the Web. The jQuery Web site
provides a platform for sharing such plugins at http://plugins.jquery.com/.
However, not all jQuery plugins are listed there.

Sparklines

In this section we explore the “sparklines” plugin, which is available at http://
plugins.jquery.com/project/sparklines. Sparklines are small information
graphics that can be placed inside text, as shown in Figure 11.9. Usually, they display
some sort of numerical data, perhaps plotted over time or depicted as a pie chart. The
inventor, Edward Tufte, describes sparklines as “data-intense, design-simple, word-
sized graphics.” They usually don’t contain axis descriptions but are intended solely for
making a point or giving the user a very quick overview of the latest developments.

FIGURE 11.9 A sparkline information graphic.

Using Plugins and jQuery UI 377

378 Chapter 11 JavaScript in Drupal

Suppose we have a CCK node titled team; this module contains a fi eld with mul-
tiple values that allows you to track the wins and losses of the team. Wouldn’t it be cool
to show a small graphic that indicates whether the team has lost, won, or achieved a
draw in its last few matches? Figure 11.10 shows what this graphic could look like. This
type of graphic is called “tristate” because it has three possible states: “plus,” “neutral,”
and “minus.” It is a perfect choice for showing the results of recent games.

Using jQuery plugins is generally a rather simple process: You download the jQuery
plugin fi le and create a new Drupal behavior (see the previous section for an explana-
tion of behaviors) that initializes the jQuery plugin in your preferred way. The spark-
lines plugin is documented in the source code and on its author’s Web site at http://
omnipotent.net/jquery.sparkline/. There are two ways of inputting data into a
sparkline: The sparkline can take the data that is embedded in the HTML code or you
can provide an array of data when initializing the plugin. To simplify matters, we use
the HTML initialization technique.

In a module or a template fi le, you must aggregate the required data (aggregate the
data in a template fi le that is already available in the node object—for example, you can
syndicate data from different CCK fi elds, but you shouldn’t perform database queries
to collect the data). Then print the data, separated by commas, into an element, like
this:

-1,0,0,1,1,-1,0,0,1,-1,-1

Here –1 indicates a loss, 0 indicates a draw, and 1 indicates a win.
Next, call .sparkline() on this element. Make sure to add the jquery.spark

lines.js fi le to your page before trying this code:

Drupal.behaviors.winslosses = function(context) {

 $('.winlost:not(.winslosses-processed)', context)

 .sparkline('html', { type: 'tristate' })

 .addClass('winslosses-processed');

};

FIGURE 11.10 Lost and won games of 1. FC Nürnberg from the July 2008 Bundesliga season.

This is the general behaviors pattern: Look for nonprocessed elements, process them,
and then add the class indicating that the element has been processed.

There are many other jQuery plugins besides the sparklines program available
on the jQuery Web site. Of course, not all plugins are of outstanding quality. Most,
though, are worth giving a try.

jQuery Drupal Modules

As an alternative to adding jQuery fi les yourself to the theme or with a module, you
can download a Drupal module that adds it to your Web site. The Drupal Web site has
many JavaScript/jQuery modules available for download. Check the “JavaScript Utili-
ties” section at http://drupal.org/project/Modules. Most of the time, adding
these fi les is a simple matter of installing the module. Some of the JavaScript mod-
ules don’t do anything by themselves, however. Instead, they exist to provide a central
instance of, say, jQuery UI. That way, other modules that use jQuery UI can just add
a dependency on the jQuery UI module and don’t have to ship with their own version
of jQuery UI.

Another useful module is the jQuery Update module. This module replaces the
jQuery version that shipped with your Drupal version with the most current one. It
also makes sure that all of the JavaScript fi les that came with Drupal are compatible
with the new jQuery version. This module can be found at http://drupal.org/
project/jquery_update.

jQuery UI

jQuery UI (downloadable at http://ui.jquery.com/) is a collection of plugins and
frameworks that implement frequently used features. You can use some of the compo-
nents of jQuery UI directly, such as the Accordion and Tabs plugins. Other parts of
jQuery UI provide APIs on which you can build your own components. For example,
the Draggable and Droppable interfaces allow you to easily add drag-and-drop capa-
bilities to your widget. jQuery UI also provides a variety of easing options as well as
more effects. It is developed independently of jQuery, however, so it may not be as
stable and well tested as jQuery is. Nevertheless, jQuery UI is certainly ready for pro-
duction use.

The usage of jQuery UI APIs is generally not complicated: You simply tell jQuery
how you want your components to interact. Enabling drag-and-drop functionality
between two lists might work like this:

Using Plugins and jQuery UI 379

380 Chapter 11 JavaScript in Drupal

$('ul.source li', context).draggable({ 'helper': 'clone' });

$('ul.target', context).droppable({

 accept: '.source li',

 drop: function(e, ui) {

 $(this).append(ui.draggable);

 }

});

This code allows list items from a list with the class source to be dragged to lists with
the class target. It fi rst makes the list items draggable with the “Draggable” API, and
then makes the target list accept items with a certain selector by using the “Drop-
pable” API. Next, the drop callback function moves the item from the old list to the
new one by appending the dragged object (which is stored in ui.draggable) to the
target list (which is this). Many more options are also available for the Draggable and
Droppable interfaces.

Summary

This chapter described how you can add JavaScript fi les to your Drupal template and
to modules. As explained in this chapter, you can feed data and confi guration options
into JavaScript code either directly in the page header or via an AJAX request. When
creating a JavaScript component, it is important to adhere to the key principles out-
lined in this chapter.

To demonstrate the creation of a component, we implemented a horizontal slider
in JavaScript, fi rst making a rough skeleton and then fi lling in the features, making
sure that everything works in each step. To make this widget even more useful, we
converted the horizontal slider to use a dynamic data source function that adds new
items to the slider as they are about to be displayed. An alternative to writing JavaScript
components yourself is to use one of the many readily available jQuery plugins and
Drupal JavaScript modules.

Of course, the JavaScript chapters in this book do not cover all aspects of the
JavaScript world. Entire books have been dedicated to jQuery and jQuery UI as well
as to JavaScript and JavaScript programming techniques. Check out these resources if
you want to learn even more about JavaScript development.

381

APPENDIX A

Installing Drupal

Even though Drupal is a powerful content management system, its require-
ments are modest: a Web server (preferably Apache, but IIS or other server

software will work as well) with at least PHP 4.3 and a database back end (MySQL
or PostgreSQL) are needed. In this appendix, the setup of an Apache Web server
and MySQL is briefly outlined, as this is by far the most common approach to us-
ing Drupal.

Setting Up a Development Server

When developing a theme or tweaking a Drupal Web site, a local Web server is
very handy to speed up the process of developing and testing. Several software dis-
tributions that come preconfi gured with Apache, PHP, and MySQL are available;
their use largely simplifi es the setup of a Web server. These packages usually have
a straightforward installation routine: download the package, extract the fi les, and
click the “Start server” button.

Of course, there are many ways to install a server; only a few of them are pre-
sented here. If you already have a development Web server set up, you can most
likely reuse it for running Drupal.

From the Library of Athicom Parinayako

382 Appendix A Installing Drupal

Windows

A popular free server package is XAMPP, which comes in two fl avors: the regular
version and a light version. Both can be downloaded from http://www.

apachefriends.org/en/xampp.html. The light version contains all software that is
required for running Drupal. If you want to conveniently upgrade your servers later,
however, you will have to stick with the full version.

What the heck is XAMPP?
The name XAMPP is compiled from the components this package contains.
The X stands for any operating system, A is for Apache, M for MySQL, the

fi rst P for PHP, and the second P for Perl. You might also see the acronym LAMP,
which similarly stands for “Linux, Apache, MySQL, PHP”—a common Web host
confi guration.

On the XAMPP Web site, choose your operating system and follow the steps de-
tailed on the subsequent page. The Windows version of XAMPP ships with a conve-
nient installer that guides you through the installation process. During setup, you can
opt to install Apache and MySQL as a “service.” That means that these server programs
are started automatically when you boot your computer. If you don’t want to do that
right now, you can always install or uninstall the service in XAMPP’s control panel.
Your new Web server can be reached at http://localhost.

If you are stuck in the installation process or experience other diffi culties, you can
fi nd extensive support documentation on the XAMPP Web site.

Linux

If you are using Linux, keep in mind that a lot of distributions already have Apache,
PHP, and sometimes even MySQL preinstalled. If not, you might want to take a look
at your package manager—it might provide for easier installation. The default location
of your document root depends on your distribution, and you might want to edit it
to suit your needs. In case you don’t want to stick with your distribution’s packages,
XAMPP also comes in a Linux version.

Mac OS X

Mac OS X also ships with Apache and PHP. To enable the Apache server, go to the
“Sharing” section in the “System Preferences” and check “Personal Web Sharing.” By

default, every user has a Web root, which is the “Sites” folder in your folder; it is ac-
cessible at http://localhost/~username/ (where username is your login name).
The fi les located at /Library/WebServer/Documents are available at http://
localhost.

Even though Mac OS ships with Apache preinstalled, you still need MySQL (or
PostgreSQL). There are installation packages available for Mac OS X on the vendors’
Web sites: http://dev.mysql.com/downloads/mysql/ for MySQL and http://
www.postgresql.org/download/ for PostgreSQL.

Unfortunately, the Apache and PHP versions in Mac OS X 10.4 and earlier are quite
old (Apache 1.3.x and PHP 4.x), so you might want to consider installing Apache 2
with PHP 5. Mac OS X 10.5 Leopard ships with server and PHP versions that are suf-
fi cient for Drupal. However, you have to remove the hash sign before the LoadModule
php5_module libexec/apache2/libphp5.so line in the httpd.conf (see below
for more information on where you can fi nd that fi le).

In most cases, it’s a lot easier to use a preconfi gured package called MAMP (Mac OS
X, Apache, MySQL, PHP), which is available at http://www.mamp.info. It contains
all required components for running Drupal. The regular version will suffi ce. MAMP’s
default document root is /Applications/MAMP/htdocs.

Configuring Document Root and Virtual Hosts

If you’re unhappy with the default document root (the place where your Web server
fi les are located), you can change it by modifying Apache’s confi guration fi le. To do so,
you typically have to locate httpd.conf, as it is the main confi guration fi le. Use Table
A.1 to fi nd the fi le location for your setup.

TABLE A.1 Locating httpd.conf

Setup Method Configuration File Path

Windows (XAMPP) C:\xampp\apache\conf\httpd.conf

Linux Type locate httpd.conf in a shell

Mac OS X Tiger /private/etc/httpd/httpd.conf

Mac OS X Leopard /private/etc/apache2/httpd.conf

Mac OS X (MAMP) Use the MAMP control panel (Preferences/Apache) or /
Applications/MAMP/conf/apache/httpd.conf

Configuring Document Root and Virtual Hosts 383

384 Appendix A Installing Drupal

In the confi guration fi le, look for a line beginning with DocumentRoot. The path
that follows this directive (in double quotes) is the document root. It must not end
with a slash (or a backslash). Write down the old directory and enter the new directory
here. Then search for the old document root directory until you fi nd a line that looks
like <Directory "C:/xampp/htdocs"> (the path is your old document root). Enter
the same new path here as well and save the fi le. This part of the confi guration fi le
could look like the following code example:

#

DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but

symbolic links and aliases may be used to point to other locations.

#

DocumentRoot "/Users/kkaefer/Sites"

[...]

#

This should be changed to whatever you set DocumentRoot to.

#

<Directory "/Users/kkaefer/Sites">

 [...]

</Directory>

For the changes to take effect, you have to restart the Apache Web server. To do so,
follow the instructions found in Table A.2.

TABLE A.2 Starting and stopping Apache

Setup Method Restarting the Method

Windows (XAMPP) Use the XAMPP control panel

Linux Type apachectl restart or /etc/init.d/
apache restart

Mac OS X System Preferences/Sharing, uncheck/check
“(Personal) web sharing”

Mac OS X (MAMP) Use the MAMP control panel application
(Preferences/Apache)

Installing Drupal—and Common Hurdles to Its Installation

Once your Web server is working, installing Drupal is usually a fairly easy task. You
may encounter some small hurdles when setting up the CMS, but these can be over-
come quickly. As we walk through the installation process, you will get to know some
of them.

 1. Download Drupal. Go to http://drupal.org and select “Drupal 6” in
the download section. Unpack it and copy the contents of the Zip file to your
document root (or wherever you want Drupal to be located).

Hurdle 1
When copying the package, make absolutely sure that you also copy the .htac-
cess fi le located in the Drupal root folder. It is required by Drupal, especially

for clean URLs. Most operating systems tend to hide this fi le by default because it
begins with a dot. To make sure you copy the fi le, you can either turn on the display
of fi les of that type, move the entire folder that contains the Drupal root, or move
the fi les from the command line.

 2. Create a database. Drupal needs a database in which to store its data. Data-
bases can be created via the command line, but it is easier to use graphical
user interfaces such as phpMyAdmin for that purpose. XAMPP and MAMP
already ship with phpMyAdmin preinstalled, and almost every shared hosting
provider has it installed as well.

If you’re prompted with a “collation,” select something with UTF-8, as this
is Drupal’s default character set (it contains almost all known characters on
earth). If you can’t select a charset, Drupal will take care of that task later. You
should note the username, password, and database name for Drupal’s installa-
tion process.

 3. Install Drupal. Once you have downloaded and extracted the Drupal files
and created a database, you are ready to run Drupal’s installer. This piece of
software automatically creates all required database tables and sets some default
settings. To launch the installer, navigate to the URL where your Drupal instal-
lation is reachable over your Web server (e.g., http://localhost, http://
localhost/drupal, or whatever you have chosen).

You’ll be automatically redirected to the installer, which guides you through
the whole installation process. If you prefer, you can install Drupal in another
language, but that requires additional effort, as there are no translations sup-
plied with the Drupal core package.

Installing Drupal—and Common Hurdles to Its Installation 385

386 Appendix A Installing Drupal

Hurdle 2
On most systems, you will see a warning message saying that you don’t have
enough permissions to write to a confi guration fi le. The automatic installer re-

quires you to copy the settings.default.php fi le in the /sites/default/ folder
and to give PHP write permissions to that folder. The installer needs this permission
because it writes the database confi guration data to that fi le.

If you’re on Windows, you will likely not see this warning. Windows uses a differ-
ent rights management system.

On Mac OS X, navigate in the Finder to that folder, duplicate the fi le, and re-
name it to settings.php. Then select the “Get Info” item in the fi le’s context menu
(right-click or Ctrl-click). In the “Permissions” section of the info window, set all
access permissions to “Read & Write.” If the access permissions drop-down options
are disabled, click on the lock icon to authenticate fi rst.

On a Linux shell, navigate to your Drupal installation’s root folder and type in
the shell command chmod 777 sites/default/settings.php (this technique also
works on Mac OS X).

When you’re done installing Drupal, make absolutely sure to set the access rights
to “read-only” to prevent attackers from being able to compromise your system. In
Mac OS X, just set the drop-down option back to “read only”; on Linux systems,
execute the same command, but with 644 instead of 777.

 4. Perform site setup. After the Drupal installer managed to write the settings
file to the disk and successfully set up the database, you will be presented with
a page containing settings for the most important configuration options for
your site, such as the site’s name and the email address. You are also required to
set up an administrator’s account here. This account will always have all access
rights. It is vital to keep the account data safe.

 5. Perform the initial configuration. Once you’re done setting up Drupal, you’ll
be automatically logged in to Drupal. When you are on the “Administer” main
page (see Figure A.1), you will most likely see a little warning message at the
top telling you that there are problems requiring your attention.

On the “Status report” page as shown in Figure A.2, you will see an over-
view of most of Drupal’s dependencies and an indication as to whether they’re
met.

If you receive a “Configuration file” error message, you must change the
access permissions. See the “Hurdle 2,” which explains how to change these
permissions.

The next thing that will most likely appear as problematic is the “Cron
maintenance tasks” page. Cron is a piece of software that is well known from

UNIX-based systems (Linux, Mac OS X); it allows scheduling of repeating
tasks. (In Windows, the corresponding feature is the “Task Planner,” which
works differently). Drupal requires a task setup that calls the page http://
example.com/cron.php (where example.com is the URL to your Drupal
installation) regularly. This setup is needed for maintenance tasks, such as
creating the search index or temp folder cleanups. When you’re just running a
development site on your local machine, you can skip this step (keep in mind
that the search will not work correctly in this case!). Some hosting companies
have an interface for creating cron tasks. If your hosting company does not,
you can try dropping its help staff a nice email and asking for it.

The last item that is likely to bear a warning sign after installation is “File
system.” Drupal stores all files uploaded by users in a central files directory. To
create this directory, create a folder named files in your Drupal installation’s
folder and set access permissions to read and write (see “Hurdle 2” for further
instructions). Alternatively, you can create a folder with an arbitrary name, set

Installing Drupal—and Common Hurdles to Its Installation 387

FIGURE A.1 Administration home screen showing warning messages.

388 Appendix A Installing Drupal

its permissions, and change where Drupal stores its files by going to Adminis-
ter, Site configuration, File system.

A Quick Glance at the Admin Area

Drupal’s administration area is, by default, split into four sections: Content manage-
ment, Site building, Site confi guration, and User management. In addition, Reports

FIGURE A.2 Drupal’s status report page.

and Help areas are available. Modules can extend these main categories arbitrarily. The
Organic Groups module, for example, adds a new root-level administration item called
Organic groups.

 • The Content Management section contains all administrative settings related
to the creation and management of content. You can use this area to create
new content types, alter the publishing work flow, moderate comments, and
manage posts on your Web site.

 • The Site building area controls the actual functionality of your site. You can
manage which modules and themes are enabled, which blocks are visible, how
your menu is structured, and so forth.

 • Site configuration contains all settings related to the general Web site. If a set-
tings page cannot be associated with either content (i.e., nodes or comments)
or users, it’s likely that the page can be found here, as this section acts as a kind
of “catch-all.”

 • User management contains all actions and settings concerning users of your
site. In this area, you can get an overview listing page, manage permissions,
block users. and so forth.

 • The Reports item comprises various messages that have been accumulated
while running your site, such as error and status messages. It is also the place to
look for the updating notifier, which informs you about new versions of Dru-
pal or installed third-party modules. A great place for finding out what’s wrong
with your site is the “Status report” page, which lists all sorts of information
about your system and points out misconfigurations.

 • The Help section holds various help texts for many Drupal components, but
acts more like an introduction to the general capabilities of Drupal and its
modules rather than providing actual help when something is broken. Never-
theless, it is worth checking out to get a basic idea of what a certain module
does, as this information is not specifically covered in this book.

Installing Modules

Some of the features that made Drupal what it is today are not included in the core
distribution you just installed. Drupal features a very fl exible and well-documented
plugin architecture that allows plugin developers to do almost anything they want
without modify the core of Drupal. These plugins are called modules in the Drupal

Installing Modules 389

390 Appendix A Installing Drupal

world. Most Drupal Web sites use at least the CCK module and the Views modules,
among others.

Installing modules is usually relatively easy and takes just a few steps:

 1. Download the latest version of the module from the project’s page. Make sure
that it matches the Drupal version you are running. Modules are not compat-
ible across major Drupal releases. For example, you can’t use Drupal 7 modules
with Drupal 6, and vice versa.

 2. You may choose to unpack the files before uploading them if your Web server
does not have the appropriate tools to unpack the files or if your Web server
runs on your local machine.

 3. Place the module folder in the sites/all/modules folder on your Web
server.

 4. Navigate to Administer, Site building, Modules.

 5. Enable the module by selecting the check box next to the module name, scroll
to the bottom of the screen, and click “Save configuration.”

Usually it’s a good idea to read a module’s README.txt or INSTALL.txt fi le before
installing the module. This fi le contains information explaining which additional steps
may be required to install the module, help text on how to use or set up the module
confi guration, and warnings.

391

APPENDIX B

Supplemental Code

On http://frontenddrupal.com, you can download the example code
used throughout the book. Additionally, this appendix provides a short

overview of the code as well as the most important example code, grouped by
folders.

template

In Chapter 10, a sample template is used for practicing jQuery code in a clean en-
vironment. The template folder contains all required fi les for running code. Insert
new code into the index.html fi le.

index.html

The index.html fi le serves as a playground for experimenting with JavaScript code.
Just insert the JavaScript code you want to try in the marked section in the header.

From the Library of Athicom Parinayako

392 Appendix B Supplemental Code

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>

 <title>ACME Inc.</title>

 <link rel=“stylesheet“ href=“files/styles.css“ type=“text/css“ />

 <script type=“text/javascript“ src=“files/jquery-1.2.6.js“></script>

 <script type=“text/javascript“>

$(function() {

 // Place your JavaScript code here.

});

 </script>

</head>

<body>

<div id=“wrapper“>

 <div id=“header“>

 <h1>ACME Inc.</h1>

 <h4>A Company that Makes Everything.</h4>

 <ul id=“navigation“>

 <li class=“active“>Home

 Products

 Brands

 Company

 Support

 <form id=“language“ action=“/“ method=“get“

 title=“Select a language to view the site in“>

 <fieldset>

 <legend>Language</legend>

 <select>

 <option value=“en“ selected=“selected“>English</option>

 <option value="fr">Français</option>

 <option value=»es»>Español</option>

 </select>

 <input type=»submit» name=»op» id=»edit-change»

 value=»Change» />

 </fieldset>

 </form>

 <form id=»search» action=»/» method=»get»>

 <fieldset>

 <legend>Search</legend>

 <input type=»text» name=»edit[keys]» id=»edit-keys» />

 <input type=»submit» name=»op» id=»edit-search»

 value=»Search» />

 </fieldset>

 </form>

 </div>

 <div id=»body»>

 <div class=»teaser»>

 <img src=»files/teaser.jpg»

 alt=»Bank on a beach» />

 <p>Lorem ipsum dolor sit amet, consectetur

 adipisicing elit, sed do eiusmod tempor incididunt ut labore et

 dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

 exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat. Duis aute irure dolor in reprehenderit in voluptate

 velit esse cillum dolore eu fugiat nulla pariatur. Excepteur

 sint occaecat cupidatat non proident, sunt in culpa qui officia

 deserunt mollit anim id est laborum.</p>

 </div>

template 393

394 Appendix B Supplemental Code

 <div class=»columns»>

 <div class=»column» id=»column-products»>

 <h3>Products</h3>

 <li class=»aircrafts»>

 Aircrafts

 <li class=»food-beverages»>

 Food & Beverages

 <li class=»clothing»>

 Clothing

 <li class=»electronics»>

 Electronics

 <li class=»telecommunication»>

 Telecommunication

 <li class=»construction»>

 Construction

 <li class=»energy-supply»>

 Energy supply

 <li class=»pharmaceuticals»>

 Pharmaceuticals

 <li class=»hardware»>

 Hardware

 <li class=»industrial plants»>

 Industrial plants

 See more products…

 </div>

 <div class=»column» id=»column-news»>

 <h3>News</h3>

 <h4>11/23/08: Annual business report</h4>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing

 elit, sed do eiusmod tempor incididunt ut labore et

 dolore magna aliqua. Ut enim ad minim veniam…

 read more</p>

 <h4>10/31/08: New company branch</h4>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing

 elit, sed do eiusmod tempor incididunt ut labore et

 dolore magna aliqua. Ut enim ad minim veniam…

 read more</p>

 <h4>10/7/08: 3,208 products launched</h4>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing

 elit, sed do eiusmod tempor incididunt ut labore et

 dolore magna aliqua. Ut enim ad minim veniam…

 read more</p>

 See previous items…

 </div>

 <div class=»column» id=»column-misc»>

 <img src=»files/pastries.jpg»

 alt=»Check our large pastry selection!» />

template 395

396 Appendix B Supplemental Code

 <img src="files/environment.jpg"

 alt=»ACME’s environment policy» />

 </div>

 </div>

 </div>

 <div id=»footer»>

 <ul id=»footer-nav»>

 <li id=»footer-privacy»>Privacy Policy

 <li id=»footer-tos»>Terms of Service

 <li id=»footer-feedback»>Feedback

 <p class=»message»>

 Copyright © 1984-2009 ACME Incorporated.

 All rights reserved.

 </p>

 </div>

</div>

</body>

</html>

index-input.html

The index-input.html fi le is essentially the same as index.html, except that there’s
already sample code in the header. The example code adds a default value to the search
form, as shown in Chapter 10.

$(function() {

 $(function() {

 var searchText = "Enter your search terms";

 var focusSearch = function() {

 if ($(this).val() == searchText) {

 $(this).val("");

 }

 };

 var blurSearch = function() {

 if (!$(this).val()) {

 $(this).val(searchText);

 }

 else {

 $(this)

 .unbind('focus', focusSearch)

 .unbind('blur', blurSearch);

 }

 };

 $('#edit-keys')

 .val(searchText)

 .focus(focusSearch)

 .blur(blurSearch);

 });

});

demo-module

The demo-module folder contains a sample Drupal module. Move this folder to your
Drupal installation in sites/all/modules so that you can enable it in the adminis-
tration section. See Appendix A for instructions on enabling modules. The .info fi le
contains information about the module.

demo.module

The demo.module sample module allows you to add PHP code at various places to
test the code explained in Chapter 11. By no means is this a complete example of a
Drupal module. Much more documentation on writing modules can be found online

demo-module 397

398 Appendix B Supplemental Code

at http://drupal.org/node/508 or in the fantastic book Pro Drupal Development
by John VanDyk, published by APress.

<?php

// Id

/**

 * @file

 * This is the file description for demo module.

 *

 * In this more verbose, multiline description, you can specify what

 * this file does exactly. Make sure to wrap your documentation in

 * column 71 so that the file can be displayed nicely in default-sized

 * consoles.

 */

/**

 * Implementation of hook_init().

 */

function demo_init() {

 // Place code that runs on every page here.

}

/**

 * Implementation of hook_menu().

 */

function demo_menu() {

 $items = array();

 $items['demo'] = array(

 'title' => 'Demo module',

 'description' => 'A demo page for testing code.',

 'access callback' => 'user_access',

 'access arguments' => array('access content'),

 'page callback' => 'demo_page',

);

 // Insert more menu items here.

 return $items;

}

/**

 * Menu callback; Displays content for 'demo'.

 */

function demo_page() {

 // Insert code that runs only on this page here.

 return 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, ' .

 'sed do eiusmod tempor incididunt ut labore et dolore magna ' .

 'aliqua. Ut enim ad minim veniam, quis nostrud exercitation ' .

 'ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis ' .

 'aute irure dolor in reprehenderit in voluptate velit esse ' .

 'cillum dolore eu fugiat nulla pariatur. Excepteur sint ' .

 'occaecat cupidatat non proident, sunt in culpa qui officia ' .

 'deserunt mollit anim id est laborum.';

}

demo.info

The demo.info fi le is required so that Drupal will correctly recognize the module. It
must be located in the same folder as the .module fi le. For the various confi guration
options, see the URLs in the source code.

; Id

name = Demo

description = "A demonstration module for testing code."

demo-module 399

400 Appendix B Supplemental Code

; Drupal core version this module is for.

core = 6.x

; Package name (see http://drupal.org/node/101009 for a list of names)

; package =

; PHP version requirement

; php = 5.2

; Module dependencies

; dependencies[] = mymodule

; dependencies[] = theirmodule

; For further information about configuration options, see

; http://drupal.org/node/231036 (Drupal 6)

template-skeleton

The template-skeleton folder contains a skeleton for developing a JavaScript com-
ponent. This skeleton code is used in Chapter 11 as a basis for developing the horizon-
tal scroller. This skeleton.js fi le is released into public domain. The other fi les are
taken from the Drupal distribution or from the jQuery Web site.

skeleton.js

The skeleton.js script fi le provides a basis on which you can build your own Java-
Script components for Drupal. The script is initialized in the Drupal.behaviors.
skeleton function and creates a new behavior instance for each component found in
the HTML source code.

/**

 * Initializes the skeleton component.

 */

Drupal.behaviors.skeleton = function(context) {

 $('.skeleton:not(.skeleton-processed)', context).each(function() {

 // <<< Insert the code to process each skeleton here >>>

 }).addClass('skeleton-processed');

};

/**

 * The skeleton constructor.

 *

 * @param options

 * You should document all available options here.

 */

Drupal.skeleton = function(options) {

 // Store a reference to this so that anonymous functions can

 // reference it.

 var that = this;

 // Merge in the options object.

 $.extend(this, options);

 // <<< Insert more constructor code here >>>

};

Drupal.skeleton.prototype = {

 /**

 * Method documentation.

 */

 'method': function() {

 // <<< Insert code here >>>

 },

 /**

 * AnotherMethod documentation.

 */

 'anotherMethod': function() {

template-skeleton 401

402 Appendix B Supplemental Code

 // <<< Insert code here >>>

 }

};

skeleton.html

The skeleton.html fi le is a basic HTML fi le that includes all the required fi les for
developing Drupal JavaScript components. It also includes an HTML dummy of the
component you’re building. For more information on how this fi le can be used, check
Chapter 11.

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

 <meta http-equiv=“Content-Type“ content=“text/html; charset=utf-8“/>

 <title>Skeleton</title>

 <link rel=“stylesheet“ href=“skeleton.css“ type=“text/css“ />

 <script src=“jquery-1.2.6.js“ type=“text/javascript“></script>

 <script src=“drupal.js“ type=“text/javascript“></script>

 <script src=“skeleton.js“ type=“text/javascript“></script>

 <script type=“text/javascript“><!--//--><![CDATA[//><!--

 jQuery.extend(Drupal.settings, {

 „basePath“: „/“

 // <<< Optionally insert more variables here >>>

 });

 //--><!]]></script>

</head>

<body>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

<div class=»skeleton clear-block»>

 <!-- More HTML code here. -->

</div>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

</body>

</html>

skeleton.css

The skeleton.css fi le contains the single most important style class from Drupal’s
default CSS. You’ll need it for developing your CSS code for JavaScript components.

/* <<< Place your skeleton CSS code here >>> */

/**

 * Markup free clearing

template-skeleton 403

404 Appendix B Supplemental Code

 * Details: http://www.positioniseverything.net/easyclearing.html

 */

.clear-block:after {

 content: ".";

 display: block;

 height: 0;

 clear: both;

 visibility: hidden;

}

.clear-block {

 display: inline-block;

}

/* Hides from IE-mac */

* html .clear-block {

 height: 1%;

}

.clear-block {

 display: block;

}

/* End hide from IE-mac */

horizscroll and horizscroll-datasource

The horizscroll and horizscroll-datasource folders contain two versions of
the horizontal scroller developed in Chapter 11. The horizscroll folder contains the
version without the data source; the companion fi le contains the version with the data
source added. Only the horizscroll-datasource fi le appears here. Library script
fi les are omitted.

horizscroll.js

The horizscroll.js fi le implements the behavior of the horizontal scroller. Check
Chapter 11 for a detailed step-by-step explanation on how this has been built.

/*

Copyright (c) 2008 Konstantin Käfer

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

*/

// Apply the horizontal scroller to all elements with the corresponding class.

Drupal.behaviors.horizScroll = function(context) {

 $('.horizscroll:not(.horizscroll-processed)', context).each(function() {

 new Drupal.horizScroll({ 'root': this, 'datasourceKey': 'imageScroller' });

 }).addClass('horizscroll-processed');

};

/**

 * Adds horizontal scrolling functionality.

horizscroll and horizscroll-datasource 405

406 Appendix B Supplemental Code

 *

 * Options:

 * - root: The root of the horizontal scroller HTML structure.

 *

 * HTML structure:

 * <div class="horizscroll>

 * ‹

 * ›

 * <div class="horizscroll-container">

 * <ul class="horizscroll-content">

 * ...

 * ...

 *

 * </div>

 * </div>

 *

 * You can change the HTML as long as there are elements with these classes.

 * The direct children of .horizscroll-content are considered as item.

 */

Drupal.horizScroll = function(options) {

 // Store a reference to this so that anonymous functions can reference it.

 var that = this;

 // Merge in the options object.

 $.extend(this, options);

 // Add a default datasource.

 if (!this.datasource) {

 this.datasource = Drupal.horizScroll.settingsDatasource;

 }

 // Store references to all required elements.

 $.each([‘left’, ‘right’, ‘container’, ‘content’], function() {

 that[this] = $(‘.horizscroll-’ + this + ‘:first’, that.root);

 });

 // Possibly initialize items.

 this.initializeItems();

 // We start with the first element in the content area as our target.

 this.target = this.content.find(‘> :eq(0)’);

 // Add callback functions to the left and right buttons.

 $.each({‘left’: ‘prev’, ‘right’: ‘next’ }, function(key, direction) {

 that[key].click(function() {

 that.scrollToItem(that.findTarget(direction));

 });

 });

 // Initialize the buttons.

 this.updateButtons();

};

Drupal.horizScroll.prototype = {

 // Updates the button status depending on the content position.

 ‘updateButtons’: function() {

 // When the target is the first item, we remove enabled status.

 var leftmost = this.target.is(‘:first-child’);

 this.left[leftmost ? ‘removeClass’ : ‘addClass’](‘enabled’);

 // Another algorithm to determine whether the last item is shown.

 var last = this.content.find(‘> :last-child’);

 // Safari returns 0 sometimes when the image has not yet been loaded.

 var hidden = (last.width() === 0);

 // Otherwise, we check whether the distance from the target to the last

 // item is less or equal to the container width.

 var rightmost = (last.offset().left + last.width() -

 this.target.offset().left) <= this.container.width();

 this.right[(!hidden && rightmost) ? ‘removeClass’ : ‘addClass’](‘enabled’);

horizscroll and horizscroll-datasource 407

408 Appendix B Supplemental Code

 },

 // Moves to the passed item and sets it as target.

 ‘scrollToItem’: function(item) {

 // Only proceed when there’s an item to scroll to.

 if (item.size()) {

 // Set the item as target because updateButtons relies on this.

 this.target = item;

 // Animate the content frame to the new target position.

 var pos = this.content.offset().left - this.target.offset().left;

 this.content.animate({ ‘left’: pos });

 // Initialize new items when scrolling.s

 this.initializeItems();

 // Update the buttons. This function is working in a way that does not

 // rely on the current position of the content frame because at this

 // point it’s still animating and not yet at the final position.

 this.updateButtons();

 }

 },

 // Calculate the previous or next target item.

 // The direction parameter can either be ‘next’ or ‘prev’.

 ‘findTarget’: function(direction) {

 // We save some information so that it doesn’t have to be recalculated

 // in each loop. current will be the target item, next contains the a

 // reference to the next item so that we don’t call .next() all the time.

 var width = this.container.width(),

 origin = this.target.offset().left,

 current = this.target[direction](),

 next = current[direction]();

 // While there is a subsequent item and the distance between the current

 // and the next item is still smaller than the container width, make

 while (next.size() && Math.abs(next.offset().left - origin) <= width) {

 current = next;

 next = current[direction]();

 }

 // Wrap in $() to keep jQuery from storing previous items from the loop.

 return $(current);

 },

 'initializeItems': function() {

 // Pre-calculate values for use in the loop.

 var width = this.container.width();

 var origin = this[this.target ? 'target' : 'content'].offset().left;

 // Find the offset of the current last item. It's possible that there are

 // no items yet, so, make sure this is always a sensible value.

 var last = this.content.find('> :last-child');

 var offset = last.size() ? last.offset().left + last.width() : origin;

 // Keep adding new items until we have enough for the next "page".

 while (Math.abs(offset - origin) < 2 * width) {

 // Fetch the element that comes next. Since the index starts with 0,

 // the number of current items will be the next index.

 var el = this.datasource(this.content.children().size());

 if (el) {

 // Add the new item to the content box and update the offset.

 el = $(el);

 this.content.append(el);

 offset = el.offset().left + el.width();

 }

 else {

 // Stop adding new items when there are no more items in the source.

 break;

horizscroll and horizscroll-datasource 409

410 Appendix B Supplemental Code

 }

 }

 }

};

Drupal.horizScroll.defaultDatasource = function(index) {

 var el = $('> :eq('+ index +')', this.content);

 if (el.size()) {

 return el.html();

 }

};

Drupal.horizScroll.settingsDatasource = function(index) {

 return Drupal.settings[this.datasourceKey][index];

};

horizscroll.html

The horizscroll.html fi le contains the HTML code that allows the JavaScript code
from horizscroll.js to attach its behavior. It also contains all variables for the data
source.

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

 <meta http-equiv=“Content-Type“ content=“text/html; charset=utf-8“/>

 <title>horizscroll</title>

 <link rel=“stylesheet“ href=“horizscroll.css“ type=“text/css“ />

 <script src=“jquery.js“ type=“text/javascript“></script>

 <script src=“drupal.js“ type=“text/javascript“></script>

 <script src=“horizscroll.js“ type=“text/javascript“></script>

 <script type=“text/javascript“><!--//--><![CDATA[//><!--

 jQuery.extend(Drupal.settings, {

 „basePath“: „/“,

 ‚imageScroller‘: [

 ‚‘,

 ‚‘,

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 '',

 ''

],

 });

 //--><!]]></script>

</head>

horizscroll and horizscroll-datasource 411

412 Appendix B Supplemental Code

<body>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

<div class=»horizscroll clear-block»>

 ‹

 ›

 <div class=»horizscroll-container»>

 <ul class=»horizscroll-content»>

 <!-- further items are loaded from settings -->

 </div>

</div>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

</body>

</html>

horizscroll.css

The horizscroll.css fi le ensures that the scroller is displayed correctly. It is crucial
given that a large part of the functionality is achieved by applying CSS classes.

.horizscroll {

 overflow:hidden;

}

.horizscroll-left, .horizscroll-right {

 float:left;

 color:#000;

 text-decoration:none;

 font-size:60px;

 line-height:61px;

 padding:36px 6px;

 display:none;

 font-family:Arial;

 text-align:center;

 font-weight:normal;

}

.horizscroll-right {

 float:right;

}

.horizscroll-left:hover, .horizscroll-right:hover {

 color:#FFF;

 background:#000;

}

.horizscroll-left:active, .horizscroll-right:active {

 background:#CCC;

 color:#000;

}

horizscroll and horizscroll-datasource 413

414 Appendix B Supplemental Code

html.js .horizscroll-left, html.js .horizscroll-right {

 display:block;

 visibility:hidden;

}

html.js .horizscroll-left.enabled, html.js .horizscroll-right.enabled {

 visibility:visible;

}

* html .horizscroll-left, * html .horizscroll-right {

 /**

 * IE 6 rounding error: 1px lets the content float to the next line

 * when this is 4%. You might need to tweak this depending on the

 * width of your scroller.

 */

 width:3.95%;

 padding-left:0;

 padding-right:0;

}

* html .horizscroll-container {

 float:left;

 width:92%;

}

.horizscroll-container {

 overflow:auto;

 position:relative;

}

html.js .horizscroll-container {

 overflow:hidden;

}

.horizscroll-content {

 padding:0;

 margin:0;

 width:32767px;

 position:relative;

 top:0;

 left:0;

}

.horizscroll-content li {

 float:left;

 list-style:none;

 margin:0 5px 0 0;

}

.horizscroll-content li img {

 display:block;

}

sparkline

The sparkline folder contains an example for using the jQuery plugin “Sparkline,”
which is available at http://omnipotent.net/jquery.sparkline/. For a descrip-
tion of this plugin, see the section “Using Plugins and jQuery UI” in Chapter 11.

sparkline.html

The sparkline.html fi le contains the data based on which the Sparkline plugin cre-
ates the visual representation.

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

sparkline 415

416 Appendix B Supplemental Code

 <meta http-equiv=“Content-Type“ content=“text/html; charset=utf-8“/>

 <title>sparkline</title>

 <link rel=“stylesheet“ href=“sparkline.css“ type=“text/css“ />

 <script src=“jquery-1.2.6.js“ type=“text/javascript“></script>

 <script src=“drupal.js“ type=“text/javascript“></script>

 <script src=“sparkline.js“ type=“text/javascript“></script>

 <script src=“jquery.sparkline.js“ type=“text/javascript“></script>

 <script type=“text/javascript“><!--//--><![CDATA[//><!--

 jQuery.extend(Drupal.settings, {

 „basePath“: „/“

 // <<< Optionally insert more variables here >>>

 });

 //--><!]]></script>

</head>

<body>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

<p>

 1. FC Nürnberg

 -1,0,0,1,1,-1,0,0,1,-1,-1

</p>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat. Duis aute irure dolor in

 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

 culpa qui officia deserunt mollit anim id est laborum.</p>

</body>

</html>

sparkline.js

A tiny JavaScript fi le, sparkline.js, makes the raw data from the HTML fi le appear
in a nicely formatted manner using a sparkline.

/**

 * Initializes the sparkline component.

 */

Drupal.behaviors.winlost = function(context) {

 $('.winlost:not(.winlost-processed)', context)

 .sparkline('html', { type: 'tristate' })

 .addClass('winlost-processed');

};

sparkline 417

Index

419

A
Access control, 227

 creating roles, 227
 granting and revoking permissions, 228–229
 at theme level, 229–231

Access Forbidden message, 280
Acquia Marina theme, 115
.addClass method, 327
Adjacent sibling selector, 192
Admin Links module, 213
Admin Menu module, 261–263
Admin role module, 231
Administration area, 388

 making changes from, 31–32
 sections of, 388–389

Administrative interface
 control panels, 266–268
 creating, 252–256
 creating menus for, 257–259
 custom screens for, 270–279
 deploying menus for, 259–260
 modules for, 262–269
 RootCandy, 253–256
 task-based navigation for, 256–257
 theme for, 252–253

Administrative templates, 15
Advertising, on Web pages, 15
.after method, 331
AHAH, 358
AJAX, 285, 313, 337, 338, 349
$.ajax function, 341–342
Akismet, 243
Alphabetical organization, 12
Amadou theme, 75
.animate function, 334–335
Animation, using jQuery, 335–337
Anonymous functions, 303–305
Anonymous users, 36–37
Apache, 382–383
.append method, 331

.appendTo method, 332
apply, 307, 308
archive list, 177
Argument, defined, 270
Array data type, 290
ATCK starter kit, 94
.attr method, 327
Attributes methods, 320, 327–329
Attributions setting, 52
Authenticated users, 37

B
Background images, on forms, 188–191
Banners, customizing, 97–99
$base_path variable, 111
Basic starter kit, 94
Bazaar, 35, 71
.before method, 333
Beginning starter kit, 94
block.tpl.php, 108
Blocks

 creating, 124
 customizing markup of, 125–126
 dynamic and static, 38
 editing, 213–216
 and menus, 40
 types of, 124

Blog, defined, 9
Blog content type, 6
Blog module, 235–236
Blueprint CSS, 68
Blueprint starter kit, 94
Body:, 158
$body_classes variable, 101, 111–112, 136

 altering, 136
Bolg theme, 88
Book content type, 6
Boolean data type, 290
Boolean operators, 291
Breadcrumbs, 113

420 Index

Browser Cam, 62
Browser testing tools, 60–65
Browsershots, 63–65
Buttons

 enabling, 370–372
 updating, 372–374

C
call, 308
Camel case, 289
CAPTCHA, 241–242
CAPTCHA pack, 241
CAPTCHA Riddler module, 242
Categories, 38
CCK (content creation kit) module, 36, 42

 installation of, 43–44
 and page appearance, 173
 using, 44–45

Chaffer, Jonathan, 342
Chaining, in jQuery, 326
check_markup, 160
check_plain, 160, 226
Chronological organization, 9–10
Classes, 298
Clean starter kit, 94
.click method, 323
Closures, 306
Color, on forms, 186–187
Color module, 77
Commas, in JavaScript, 297
$comment variable, 153
Comment closer module, 242–243
Comment content type, 6
comment.tpl.php, 231
$comment_count variable, 153
comment-folded.tpl.php, 232
comment-wrapper.tpl.php, 232
Comments

 adding user identity to, 234–235
 displaying, 231–232
 information about, 153
 in JavaScript, 294–295

comments_recent list, 177
Component, JavaScript

 compatibility of, 353
 data-source agnosticity of, 374–376
 encapsulation of, 354–355
 example of, 355–374
 fl exibility of, 354
 reusability of, 354
 speed of, 355
 using plugins to create, 377–380

console.log(), 291
ConTemplate, 35

Content
 accessing, 158–160
 delivery of, 141–149
 describing, 2, 4
 displaying, 3, 5
 information about, 152
 organization of, 8–13
 status of, 153
 storage of, 5–7
 user-generated, 235–239

$content variable, 110, 112, 152
 data in, 160
 going beyond, 155–156

Content fields, 5, 8
 private, 247–248

Content Management, 389
Content module, 44
Content Permissions module, 53, 207
Content types, 5, 7, 36, 42

 adding fi elds to, 46–48
 changing, 6
 custom, 44–45
 extending, 46
 metadata in, 45
 page templates for, 137–138
 settings of, 52–53

Control Panel module, 266–269
Control panels, 266–268

 adding images to, 269
 theming, 268–269

Control structures, in JavaScript, 292–293
$created variable, 151
Creative Commons, 18, 74
CrochetMe, 12

 example pages from, 12, 17, 18, 146, 147
Cron, 70–71
CSS (Cascading Style Sheets), 19, 24

 media types of, 142
 print-friendly pages in, 142–146
 using, 66
 using on front page, 91–92

.css method, 328
CSS descriptors, 24
CSS methods, 320, 328–329
CSS selectors, 189–190

 advanced, 191–192
CSS Zen Garden, 19
Custom Error module, 281–283
CVS (Concurrent Version System), 35, 71

D
Data types, 289–290
Database, creating, 385
$date variable, 152

Index 421

Date module, 44
Debugging

 displaying result of, 291
 in Internet Explorer, 371

demo.info, 399–400
demo.module module, 397–399
demo-module folder, 397

 fi les in, 397–400
Description, of site, 2–3
Devel generate module, 58
Devel module, 43, 57

 components of, 57–58
Devel node access module, 58
Development server, 381–383

 under Linux, 382–383
 under Mac OS X, 382–383
 under Windows, 382

Digg, 12
$directory variable, 111
Display calendar, 9–10
Disqus, 234–235
Document root, configuring, 383–384
Dollar function, 316–318

 calling, 318–319
Dollar sign, use of, 288, 343–344
DOM (document object model), 286, 311
Dot notation, 322
Drop-down menus, 118
Drupal

 admin area of, 388–389
 best practices in, 34
 browser tools working with, 60–65
 confi guring, 386–389
 converting HTML to, 104
 converting Joomla! to, 103–104
 converting WordPress to, 101–103
 described, xix
 directory structure of, 33
 downloading, 385
 function of, 32
 hurdles in installing, 385, 386
 installing, 385–388
 installing modules for, 390
 integration of JavaScript with, 287, 345–377
 path of, 33
 setup of, 381–384
 site setup for, 386

Drupal 5.x, upgrading to 6.x, 99–100
Drupal 6.x

 creating theme in, 100–101
 migration to, 100

Drupal API, 69
Drupal page

 content of, 112–113
 creating variables for, 113–115

 elements of, 107–109
 general utility variables in, 109, 111
 menus in, 116–120
 modifying variables in, 115
 navigation of, 115–120
 page metadata in, 109, 111
 site identity of, 109, 112
 sitewide variables of, 109–110

drupal_add_js, 346–349
drupal.attachBehaviors, 358
drupal_json function, 351
Drupal.org, 18

 registering on, 74
 theme directory of, 75

Dynamic blocks, 38

E
Easing, 335
Editing

 blocks, 213–214, 215–216
 screens, 212

Effects methods, 321
Element inspector, 61
Error messages, 113, 279–281

 custom, 281–283
Escape character, 290
Events methods, 320, 321–327
Exclamation point, use of, 169

F
FAPI, 201–210
favicon.ico, 84
FCKEditor, 195
$feed_icons variable, 110
Field display, 49–50
Field order, 49
Field types, 42
field_extratext, 158
FieldGroup module, 50–51
Fields

 adding, 46–48
 content, 5, 8

FileField module, 44
Files, adding, 346–348
.filter method, 330
.find method, 330
.findTarget method, 367–370
Firebug, 60–61, 186, 189, 287, 298
First pseudo-element, 192
Fixed design, of page, 16
Flexible 2 starter kit, 94
flexifilter module, 238
Flickr, 170, 172–175, 195

422 Index

Fluid design, of page, 16
$footer variable, 92
$footer_message variable, 92
Footers, 92–93
for loop, 292
foreach statement, 292
Form API (FAPI), 201–210
form_id, 205
Forms

 altering fl ow of, 211–212
 background images on, 188–191
 changing display text in, 206–207
 changing sitewide, 201–204
 changing specifi c forms, 205–206
 changing widgets in, 209–210
 color in, 186–187
 creating, 184
 enhancing, 193–195
 facilitating input on, 187–188
 multiple-page, 210–211
 processing of, 184–185
 removing fi elds from, 207–209
 Rich Text editing of, 195–197
 style sheets for, 185–186

Forms API, 192
Forum content type, 6
Forum module, 236–237
Foundation starter kit, 94
Framework, defined, 31
Framework starter kit, 94
Free tagging, 10
freelinking module, 238
$front_page variable, 112
Front page

 adjusting defaults for, 165–166
 content teasers on, 86–87
 customizing, 85–88, 130
 multiple-node, 87–88
 single “welcome” node, 85–86
 views on, 130

frontpage list, 177
Function data type, 290
Functions, JavaScript, 295, 302

 anonymous, 303–305
 calling, 307–309
 scope of, 305–306

G
Gallery module, 175–176
Garland theme, 94
General Public License (GPL), 18
General utility variables, 109, 111
Genesis starter kit, 94

Ginger Press example page, 11
Global settings, 83–84
Global variables, 289
glossary list, 177
Gordon, Charlie, 239
Graphical headers, changing, 140–141
Grids, 67

 using, 120–123
Guided tasks, 22

H
Handheld devices, designing for, 147–149
Haughey, Matt, 183
$head variable, 111
$head_title variable, 111
Hear the North example page, 122
$help variable, 113, 279
Help section, 389
HICK Tech example, 142–144
Hierarchies, of taxonomies, 39
Hooks, 41–42, 350
Horizontal Scroller example component, 355–356

 bootstrapping, 364–365
 buttons in, 370–374
 compatibility of, 374–375
 functionality of, 361–364
 integration with Drupal, 377
 markup of, 357–360
 skeleton of, 356–357
 slider in, 358–370

horizscroll folder, 404
 fi les in, 404–415

horizscroll.css, 412–415
horizscroll.html, 410–412
horizscroll.js, 404–410
horizscroll-datasource folder, 404

 fi les in, 404–415
.htaccess, 385
.html method, 329
HTML pages, 90

 converting to Drupal, 104
 structure of, 311–312

html.js, 373
httpd.conf, 383
Hunchbaque starter kit, 94

I
$id variable, 152
if statement, 292
Image Assist module, 174, 199–200

 use with TinyMCE, 200–201
Image Cache module, 172, 177

Index 423

Image module, 171, 173–175
 use with TinyMCE, 200–201

ImageAPI module, 176
ImageField module, 44, 48, 57, 171, 176–177
Images

 adding to Web page, 170
 background, 188–191
 choosing, 171
 galleries of, 175–176
 offsite hosting of, 172–173

IMCE module, 201
in_array, 230
index.html, 391–396
index-input.html, 396–397
Insert methods, in jQuery, 330–333
.insertAfter method, 332, 333
.insertBefore method, 332
Interaction, 20–21

 guided tasks, 22
 user satisfaction, 21–22

Interface components, 14–16
 choosing, 76–77

Internet Explorer
 debugging in, 371
 developer tools of, 62

$is_admin variable, 111, 153, 208
$is_front variable, 111, 154

J
JavaScript

 adding to Drupal page, 346–349
 control structures in, 292–293
 data types in, 290
 and DOM, 286, 311. See also jQuery.
 functions in, 303–309
 inline, 349
 interacting with, 24–25
 libraries for, 343–344
 object orientation in, 293–303
 operators in, 291–293, 302
 running code in, 287–288
 server-side integration with Drupal, 345–377
 syntax characteristics of, 287
 using, 69
 using with Drupal, 285
 using on front page, 91–92
 variable declaration in, 288–289

Joomla!, 103–104
jQuery, 69

 animation using, 334–335
 chaining in, 326
 and DOM, 318–319
 Drupal modules in, 379–380
 to execute code on page load, 314–318

 functions of, 286
 helper functions of, 336–337
 plugins for, 342–343, 377
 purposes of, 312–313
 selector support in, 319
 setting up, 313–314
 using, 320–334

jQuery UI, 343, 379–380
jQuery Update module, 379
jQuery.each, 337
jQuery.extend, 336–337
jQuery.getJSON method, 340–341
JSON (JavaScript Object Notation), 337–338

 creating object, 351–353

L
l() function, 226
La, Nick, 69
LAMP, 382
$language variable, 101, 111
Layout, 14–15
$layout variable, 101
$left variable, 110
Lexical scope, 305
Linear organization, 10
Links, 158

 creating, 226
$links variable, 151, 163
A List Apart, 66
.load function, 339–340
Local variables, 289
.log function, 343
$logged_in variable, 111, 152, 207–208
$logo variable, 112

M
Macro module, 58
Maintenance, system, 70–71
Manipulation methods, 321, 330–333
Member-only sites, 244–246
Memory Garden Retreats theme, 96
Menu callback handlers, 349–351
Menus, 40–41

 adding items to, 116
 components of, 118
 drop-down, 119
 theming, 118–119

Messages, types of, 113
$messages variable, 113, 279
Microsoft Visual Web Developer, 371
$mission variable, 112
Mobile theme, 147–149
module_exists, 230

424 Index

Mollom, 243
Monty Python, 240
.mouseover method, 322
Multiple-page forms, 210–211
MySQL, 382, 383

N
Naming

 conventions, 41–42
 of theme, 88–89

Navigate module, 264–266
Navigation, 110, 115

 and menus, 115–119
New content, viewing, 271–274
Newswire theme, 115
960 Grid, 67, 68
Node

 components of, 41
 customizing entry points to, 177–181
 defi ned, 5, 36
 required fi elds in, 186

$node variable, 152
 accessing content in, 158–160
 data in, 159
 understanding, 154–158

$node_url variable, 151
Node Form module, 193–194
Node template, 150

 changing defaults in, 163
 creating, 151
 creating variables in, 161–163
 replacing content in, 163–164
 using, 151–160

Node types. See Content types.
node_revisions table, 35
node.tpl.php, 108, 109, 150, 153–154
Nodeaccess module, 246–247
nodecontenttypename.tpl.php, 150
Number data type, 290
Numbers, in JavaScript, 294

O
Object data type, 290
Objects, JavaScript, 293–295

 adding keys to, 297–298
 defi ning, 296–298
 extending, 301–302
 inspecting contents of, 298
 using prototypes to create, 299–300

Offline page, custom, 130–132
.offset function, 366, 367

.one method, 323
Open Source Web Design (OSWD), 20
Opera Web Standards Curriculum, 23, 66
Operators, in JavaScript, 291
Option Widgets module, 44
Orphan images, viewing, 274–279

P
$page, 169
Page content, 110, 112–113
Page content type, 6, 36
Page design, 14–15, 28

 fi xed vs. fl uid, 16
 impact of small changes on, 28

Page metadata, 109, 111
Page Not Found message, 282
Page template, 89–91

 activating, 132–133
 changing, 128–132
 for content types, 137
 for views, 136

page.tpl.php, 108
Pageroute module, 211–212
Pagers, 41
Palantir, 34–35
Parameters, defined, 270
Parent items, 40
Permissions, 36–37, 228–229

 setting, 53
Permissions cache, rebuilding, 245–246
Personal themes, 81–82
Photos, sources for, 20
PHP, 24

 converting to JSON, 338
 inside blocks, 125
 inside HTML, 93
 inside templates, 114
 using, 68

phptemplate, 89
phptemplate_callback(), 100
$picture variable, 152
Plus sign, in JavaScript, 302
Poll content type, 6
Popularity-based organization, 12–13
Post settings, 52
PostgreSQL, 383
<pre> tags, 156
.prepend method, 331
.prependTo method, 332
Preprocess functions, 214–215
preprocess_block, 215

Index 425

Preprocessing, 113–114
$primary_links variable, 110, 115
Print-friendly pages, 141–142

 CSS, 142–145
 templates for, 145–147

print_r, 156
Private

 content fi elds, 247–248
 member-only sites, 244–245
 Web site areas, 244

Profile
 adding information to, 225–226
 creating, 220–222
 theming, 222–224

promoted to front page option, 87–88
Profile module, 220–221
$promote variable, 154
Prototype/Scriptaculous, 343–344
Prototypes, 298–299

 objects created by, 299–300

R
$readmore variable, 152
Rebuilding permissions cache, 245–246
reCAPTCHA module, 241
Recipe module, 239
Regions, 37

 adding, 121–123
 defi ning, 92
 using, 120–121

Release forms, 20
.remove method, 333
.removeClass method, 328
Rendered page, 90
.replace method, 333
Reports item, 389
Reuse, of styles, 23
Reverse chronological order, 9
Revision control, 70–71
Rich Text editing, 195–201
$right variable, 110
Roles, 227–228
RootCandy theme, 253–256

S
Scope, of function, 305–307
Screenshots, 63, 93
script.js, 92
Scripting languages. See JavaScript; PHP.
$scripts variable, 111
scrollToItem function, 365–367
Search module, 126–128

$secondary_links variable, 115, 117
Semicolons, in JavaScript, 296
Settings storage, 347–349
Shortcut icon, 84
Site building, 386
Site configuration, 387–388
Site identity, 109, 112
$site_name variable, 110, 112
$site_slogan variable, 112
skeleton.css, 403–404
skeleton.html, 402–403
skeleton.js, 400–402
Slider, creating, 358–361
Spam, 240

 fi ltering of, 243–244
 minimizing, 241–243

sparkline folder, 415
 fi les in, 415–417

sparkline.html, 415–417
sparkline.js, 417
Sparklines plugin, 377–379
Starter kits, 94–95
Starter themes, 94
Static blocks, 38
Static scope, 305
$status variable, 154
Status messages, 113
$sticky variable, 154
.stop method, 335
Story content type, 6, 36
String data type, 290
Style sheets, 91–92, 185–186

 degradation of, 373
style.css, 92
$styled summary variable, 169
$styles variable, 111
.submit method, 326
$submitted variable, 152
Subversion, 35, 71
Summary, creating, 166–168
switch statement, 292
System maintenance, 69–70

 revision control, 70–71
 task scheduling, 70

T
t() function, 227, 232
$tabs variable, 113, 154
$tabs2 variable, 113
Task scheduling, 70
Task-based organization, 13
Taxonomies, 38

 hierarchies of, 39

426 Index

Taxonomy Access Control Lite module, 244
 installing, 245

Taxonomy templates, 138–140
taxonomy_term list, 177
$teaser variable, 152, 153, 168
Teasers, 86–87

 adjusting settings for, 165–166
 distinguished from summaries, 166–167
 templates for, 168–169

Teleport module, 263–264
template folder, 391

 fi les in, 391–397
template.php file, 34

 streamlining, 202
template-skeleton folder, 400

 fi les in, 400–404
Templates

 changing, 129–134
 customizing, 18
 design resources for, 17–19
 interface components in, 15–16
 space allocation in, 16
 Web resources for, 19–20

Tendu starter kit, 94
Terms, 39
$terms variable, 152
Ternary operator, in JavaScript, 293
Testing tools for browser, 60–65
.text method, 329
Text files, working with, 35
Text module, 44
Textimage module, 172
Theme developer module, 58
theme function, 226
Theme Garden, 18, 74–75
Theme layer, xix
Theme registry, caching system of, 35
theme-settings.php, 96–98
Theme-specific settings, 84–85
themeName.info, 100
Themer info widget, 58–59
Themes

 adding JavaScript to, 347
 administration of, 82–88
 assigning, 129
 banners for, 99
 components of, 79
 custom settings for, 97–98
 customization of, 108–109
 default, 79
 defi ned, 32
 distribution of, 93
 enabling of, 79–80

 global settings for, 83–84
 initializing, 89
 installation of, 78–79
 libraries of, 77
 naming of, 88–89
 page template for, 89–91
 personal, 81–82
 regions in, 92–93
 starter, 94
 strategies for, 33–34
 templates for, 74
 upgrading Drupal version of, 100–101

Thumbnails, 93
TinyMCE, 195–196

 appearance of, 199
 buttons and plugins for, 198–199
 cleanup and output for, 199
 confi guring, 196–199
 CSS settings for, 199
 extending, 201
 images in, 199–201
 installing, 195–196
 versions of, 200
 visibility settings, 197

$title variable, 110, 112, 152
.toggleClass method, 328
Toilet Birthdays example page, 4, 172
Token module, 44
Topical organization, 11–12
tpl.php files, 34, 101
tracker list, 177
Traversing methods, 321, 330
Trillium Healing Arts Centre example page, 2

 components of, 3
Tufte, Edward, 377
$type variable, 152

U
$uid variable, 152
.unbind method, 323–324
Unpublished content, viewing, 279–279
URL alias, 133–134

 and Drupal, 134–136
User management, 389
User satisfaction with Web page, 21–22
user/1 account, 37
user-picture.tpl.php, 223
user-profile.tpl.php, 224
user-profile-category.tpl.php, 224
user-profile-item.tpl.php, 224
user_access, 230
user_is_logged_in(), 230

Index 427

Users
 access control, 228–232, 244–248
 administrator privileges for, 231–232
 anonymous, 36–37, 219
 authenticated, 37
 content generated by, 235–239
 information about, 153
 profi les of, 220–222
 role in creating Web site, 28

V
VanDyk, John, 398
Variables

 creating, 113–115
 in JavaScript, 288–289
 modifying, 115
 prefi x for, 288
 resetting, 115
 scope of, 289
 unused, 115

Version control, 70–71
Vertical Tabs module, 192–193
Videos, adding to form, 195
View

 creating, 57
 page template for, 136

View mode, 113
Views exporter, 53
Views module, 43, 53

 administrative use of, 271–272
 components of, 54–55
 templates in, 178–181
 using, 54–57, 177–181

ViewsUI, 53
 use and disabling of, 54

Virtual hosts, 383–385
Vocabularies, 39

W
W3C Markup Validation Service, 66
Warning messages, 113
Way Back Machine, 28
Web Developer’s Toolbar, 62
Web page(s)

 coding of, 22–26
 components of, 3
 content of, 2
 Drupal. See Drupal page.
 guided tasks on, 22
 images on, 170–173

 interaction with, 20–22
 internal path for, 132
 layout of, 15–17
 private, 244–248
 regions of, 16–17

Web site
 client role in, 27–28
 designer’s role in, 26–27
 identifying mark for, 15
 planning of, 25–30
 programmer’s role in, 27
 searching, 126–128
 users of, 28, 36–37

Webform module, 211
Weight, 40
Welcome page, 85
while statement, 292
Wikis, creating, 237–239
wikitools module, 238
WordPress, 101–103
.wrap method, 333

X
XAMPP, 382
XHTML, 23

 structure of, 311–312
 using, 66, 89

XmlHttpRequest, 337

Y
Yahoo! User Interface (YUI), 68
YAML CSS Framework, 68
YUI Grids CSS, 68

Z
$zebra variable, 153
Zen starter kit, 94

 described, 95
 using, 96–97

Zen theme, 17, 61, 84, 96, 98, 114, 115, 121, 136,
212–217, 232, 237

Zotero, 77

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: Web Page Design
	Describing Content
	Displaying Content
	Content Types and Content Fields

	Organizing Lists of Content
	Chronological Organization
	Linear Organization
	Topical Organization
	Popularity-Based Organization
	Task-Based Organization

	Page Design and Layout
	Interface Components
	Regions
	Design Resources

	Interaction
	User Satisfaction
	Guided Tasks

	Code
	Separating Form, Function, and Behavior
	XHTML
	Cascading Style Sheets
	Scripting Languages
	Interaction with JavaScript

	Work Flow
	Working with Designers
	Working with Programmers
	Working with Clients
	Working with Site Visitors

	Summary

	Chapter 2: The Themers’ Toolkit
	A Gentle Introduction
	Building a Page for Display
	Directory Structure
	Paths

	Theming Strategies
	Best Practices
	Alternative Strategies

	Drupal Terminology
	Node
	Users, Roles, and Permissions
	Blocks and Regions
	Categories, Taxonomy, Vocabularies, and Terms
	Parent Items and Weight
	Menu
	Pagers
	Hooks and Naming Conventions

	Must-Have Modules
	Content Creation Kit (CCK) Module
	Views Module
	Devel Module

	Browser Tools
	Firebug
	Web Developer‘s Toolbar
	Screen Shot and Testing Services

	Language References
	XHTML
	CSS
	PHP
	JavaScript

	Maintaining Your System
	Scheduling Tasks with Cron
	Revision Control

	Summary

	Chapter 3: Working with Drupal Themes
	Finding Themes
	Interface Components
	Develop a Library of Themes

	Installing Drupal Themes
	Download and Unpack
	Enable the New Theme
	Personal Themes

	Administering Themes
	Global Settings
	Theme-Specific Settings
	The Front Page

	Anatomy of a Theme
	Naming and Initializing the Theme
	Page Template
	Including External CSS and JavaScript Files
	Regions
	Screenshot

	Starter Themes
	Zen
	Custom Theme Settings
	Customizing Banner Images

	Migrating to Drupal 6
	Converting a Drupal 5.x Theme to a Drupal 6.x Theme
	WordPress
	Joomla!

	Summary

	Chapter 4: The Drupal Page
	Elements of a Page
	Dissecting a Theme

	Sitewide Page Variables
	General Utility Variables
	Page Metadata
	Site Identity
	Page Content, Drupal Messages, and Help Text
	Creating New Page Variables
	Modifying Page Variables

	Navigation and Menus
	Theming Menus

	Grid Work
	Regions
	Blocks
	Customizing the Markup of Blocks

	Search
	Changing Templates
	Custom Front Page
	Custom Offline Page

	Alias: Page
	New Templates from Aliased URLs
	Page Templates for Views
	Adding CSS Classes
	Page Templates for Content Types

	Taxonomy Templates
	Graphical Headers

	Delivering Plain Content
	Print-Friendly Pages
	Mobile Devices

	Summary

	Chapter 5: Drupal Content
	Node Templates
	The Template File node.tpl.php

	Gaining More Control Than $content Provides
	Deciphering the Object $node
	Accessing Content in the $node Object
	Sanitized Data Is More Secure

	Node Template Variables
	Creating New Variables
	Changing the Defaults
	Node Links

	Pages and Teasers
	Administrative Control of the Default Settings
	A Teaser Is Not a Summary
	Templates for Teasers

	Images
	Choosing Your Visuals
	Images Hosted Offsite
	Image Module
	CCK Images: ImageField and Image Cache

	Making Lists of Content with Views
	Template Files
	New Variables, with Preprocess Functions

	Summary

	Chapter 6: Customizing the Content-Editing Forms
	Web Forms
	Form Candy
	Working with Style Sheets
	Coloring in Required Fields
	Focus on Input
	Background Images on Form Fieldsets
	Advanced CSS Selectors
	Vertical Tabs
	Node Form and Usability Improvements

	Rich Text Editing
	Installing TinyMCE
	Configuring TinyMCE
	Image Integration
	Extending TinyMCE

	Altering Forms with FAPI
	Changing Forms Throughout Your Site
	Changing Specific Forms
	Changing Display Text in Forms
	Removing Fields from the Form
	Changing Form Widgets

	Multiple-Page Forms
	Webform
	Altering Flow

	Improving Access to Edit Screens
	Admin Links
	Editing Blocks
	Preprocess Functions
	Structure of the preprocess_block Function
	Adding Block-Editing Capabilities to a Theme
	Administrative Interfaces

	Summary

	Chapter 7: Users and Community Participation
	Users
	User Profiles
	Theming the Default Profile
	Adding More Content

	Granting and Restricting Access
	Defining Roles
	Granting and Revoking Permissions
	Checking Access at the Theme Level
	Extending the Administrative Role to More Users

	Community Comments
	Customizing Comment Display
	Adding User Identity to Comments
	Disqus

	User-Generated Content
	Blogs (and Comments)
	Forums
	Wikis
	Recipes and Specialized Content

	Spam
	CAPTCHA
	Comment Closer
	Spam Filtering Services

	Private Web Site Areas
	Member-Only Sites
	Private Content Fields

	Summary

	Chapter 8: Administrative Interfaces
	Creating a Custom Administrative Interface
	Applying a Separate Administrative Theme
	RootCandy

	Task-Based Navigation
	Creating Custom Menus
	Deploying Custom Menus

	Administrative Menus
	Admin Menu
	Teleport
	Navigate

	Administrative Dashboards and Control Panels
	Control Panel
	Theming Control Panel

	Custom Administrative Screens
	New Content View
	Orphan Images View
	Unpublished Content by Category

	Error!
	Error Messages
	404, Page Not Found
	Custom Error

	Summary

	Chapter 9: Learning JavaScript
	JavaScript versus DOM
	The JavaScript Language
	First Steps: Executing Code
	Declaring Variables
	Controlling the Flow

	Object Orientation in JavaScript
	The “Everything Is an Object” Approach
	Defining and Working with Objects
	Prototypes
	Using Functions

	Summary

	Chapter 10: An Introduction to jQuery
	A First Look at jQuery
	Setting Up jQuery
	Executing Code on Page Load
	Navigating the DOM Tree

	Using jQuery
	Events
	Setting and Retrieving Attributes
	Finding Elements
	Inserting, Moving, and Removing Elements

	Leveraging jQuery’s Full Potential
	Animations
	Using jQuery Helper Functions
	Calling the Server with XmlHttpRequest
	Plugins for jQuery
	jQuery UI

	Using Other JavaScript Libraries
	Summary

	Chapter 11: JavaScript in Drupal
	Server-Side Drupal Integration
	Adding JavaScript to a Page
	Creating Menu Callback Handlers
	Creating JSON

	Architecting a Component
	Example: Horizontal Scroller
	The Component Skeleton
	Creating the Markup
	Drupal’s JavaScript Behaviors
	Filling the Component with Functionality
	Making the Component Data-Source Agnostic
	Integration with Drupal

	Using Plugins and jQuery UI
	Sparklines
	jQuery Drupal Modules
	jQuery UI

	Summary

	Appendix A: Installing Drupal
	Setting Up a Development Server
	Windows
	Linux
	Mac OS X

	Configuring Document Root and Virtual Hosts
	Installing Drupal—and Common Hurdles to Its Installation
	A Quick Glance at the Admin Area
	Installing Modules

	Appendix B: Supplemental Code
	template
	index.html
	index-input.html

	demo-module
	demo.module
	demo.info

	template-skeleton
	skeleton.js
	skeleton.html
	skeleton.css

	horizscroll and horizscroll-datasource
	horizscroll.js
	horizscroll.html
	horizscroll.css

	sparkline
	sparkline.html
	sparkline.js

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

