

Cascading Style Sheets 2.0 Programmer's Reference

 1

Cascading Style Sheets 2.0 Programmer’s Reference
Eric A. Meyer

Osborne/McGraw-Hill
2600 Tenth Street

Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact
Osborne/McGraw-Hill at the above address. For information on translations or book distributors outside
the U.S.A., please see the International Contact Information page immediately following the index of this

book.
Cascading Style Sheets 2.0 Programmer’s Reference

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be

reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DOC DOC 01987654321

ISBN 0-07-213178-0
Publisher

Brandon A. Nordin
Vice President & Associate Publisher

Scott Rogers
Acquisitions Editor

Jim Schachterle
Project Editor
Madhu Prasher

Acquisitions Coordinator
Tim Madrid

Copy Editor
Mike McGee
Proofreader

Paul Tyler
Indexer

Claire Splan
Computer Designers

Tara Davis and Lucie Ericksen
Illustrator

Michael Mueller
Series Design
Peter F. Hancik

This book was composed with Corel VENTURA™ Publisher.
Information has been obtained by Osborne/McGraw-Hill from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources, Osborne/McGraw-Hill, or
others, Osborne/McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any

information and is not responsible for any errors or omissions or the results obtained from use of such
information.

To my wife, Kathryn, and a secluded dance
under a starry California sky

About the Author
Eric A. Meyer has been working with the Web since late 1993. After six years as campus Webmaster at
Case Western Reserve University, he joined The OPAL Group (www.theopalgroup.com), an information

technology consulting firm in Cleveland, Ohio, which is a much nicer city than you might have heard.
Eric is an invited expert with the W3C’s CSS Working Group, and coordinated the creation of the CSS

Test Suite for the W3C (www.w3.org). As of this writing, he is author of three highly popular HTML
tutorials, three books, and dozens of articles on CSS and Web design. Eric also teaches CSS classes
online and gives talks at various conferences and seminars. Anyone with an ear for early 20th-century
swing and jazz is invited to check out his show, “Your Father’s Oldsmobile,” which is heard weekly on
WRUW 91.1-FM in Cleveland (www.wruw.org). When not otherwise busy, Eric is usually bothering his

wife Kathryn in some fashion.

Cascading Style Sheets 2.0 Programmer's Reference

 2

Table of Contents

 Cascading Style Sheets 2.0 Programmer’s Reference - 1
 Introduction - 3
 Part I Reference
 Chapter 1 - Basic CSS Concepts - 3
 Chapter 2 - Values - 18
 Chapter 3 - Selectors, Pseudo-Classes, Pseudo-Elements, and At-Rules - 24
 Chapter 4 - Visual Media Styles - 35
 Chapter 5 - Paged Media Styles - 124
 Chapter 6 - Aural Media Styles - 134
 Part II Summaries
 Chapter 7 - Browser Compatibility - 151
 Chapter 8 - CSS2 Quick Reference - 165
 Chapter 9 - Useful Resources - 172

Cascading Style Sheets 2.0 Programmer's Reference

 3

Introduction
In the beginning, there was HTML. And it was pretty good, but not great. You couldn’t really create nifty
visual designs with it, which gave rise to table-based layout and single-pixel GIF tricks. And that was
pretty bad. So CSS was born, and it was very good—in theory, anyway. There was a long struggle to
make CSS a viable technology, thanks to imperfect interpretations of the specification, but lo! The day
arrived when CSS could be used without fear and dread. And the people rejoiced.

Thanks to CSS, designers can cut back on the FONT and table tricks they’ve been forced to cobble
together, and dramatically clean up their markup. With the coming of XHTML and XML, both of which
are deeply semantic and must rely on some styling mechanism to become visually appealing, CSS is
growing more and more popular. It’s a flexible, easy-to-understand language which offers designers a
lot of power. Because it reduces markup clutter, it makes pages easier to maintain. And its centralized
styling abilities lets designers adjust page layout with quick, easy edits of the styles, not dramatic
changes to the markup. In fact, CSS makes it possible to completely reshape the look of a document
without changing a single character inside the BODY element.

This book endeavors to efficiently describe the properties and values of CSS2, which was the latest
CSS standard when the book was written, and to provide details on property interactions, common
authoring mistakes, and other information which designers should find useful.
The text has been arranged to present basic concepts first, with details on important CSS algorithms
and behaviors (Chapter 1). This is followed with “core” information which describes the types of values
that can be used in CSS2 (Chapter 2), and the various ways in which elements can be selected for
styling (Chapter 3). This first part of the book does its best to describe the foundation of CSS, for the
rest of it would not function without the values and concepts presented.
The middle of the book (Chapters 4 through 6) is the largest portion, and is probably the area where
readers will spend the most time—all of the properties found in CSS2 are defined, described, and
annotated with notes. These properties are broken up into separate chapters, with Chapter 4 devoted to
visual-media properties, Chapter 5 to paged-media properties, and Chapter 6 to aural-media properties.
Each property is described in terms of its allowed values, its initial (or default) value, and other common
aspects. There are also detailed descriptions of the meaning of each allowed value, notes about how
the property works, examples of the property in use, and a list of related properties.

The final part of the book (Chapters 7 through 9) contains other useful information about CSS, including
a browser support chart, a CSS2 property quick reference, and a list of useful online resources.
Between the contents of this book and the resources provided, it should be possible to decipher any
CSS conundrums you may encounter. Although CSS can sometimes seem a bit mystifying, it is more
than worth the effort of learning its secrets. Enjoy!

Part I: Reference
Chapter List

Chapter 1: Basic CSS Concepts
Chapter 2: Values
Chapter 3: Selectors, Pseudo-Classes, Pseudo-Elements, and At-Rules
Chapter 4: Visual Media Styles
Chapter 5: Paged Media Styles
Chapter 6: Aural Media Styles

Chapter 1: Basic CSS Concepts
In order to comprehend how CSS affects the presentation of a document, there are some key concepts
that must be grasped. Once these are understood, even in part, it becomes easier to see how the
properties and values of CSS work. Do not, however, feel that you must completely understand
everything in this chapter before experimenting with CSS. In fact, it is better to review this chapter first,
then refer back to it as properties are used.

Cascading Style Sheets 2.0 Programmer's Reference

 4

Associating Styles with Documents
There are four ways to associate styles with a document. These range from associating a separate
stylesheet with your document to embedding style information in the document itself.

LINK Element
The LINK element is found in HTML and XHTML, and is used to associate an external stylesheet with a
document.

Generic Syntax
<link rel="..." type="text/css" href="..." media="...">

Attributes
rel=“...”
This attribute describes the relation of the LINKed file to the document itself. For external stylesheets,
there are two possible values: stylesheet and alternate stylesheet. Any LINK with a rel of
stylesheet will be used in the styling of the document. The value alternate stylesheet is used
to refer to stylesheets that are not used in the default rendering of the document, but which can, in
theory, be selected by the user and thus change the presentation. The user agent must provide a
mechanism to do so in order for this to work, and unfortunately most user agents do not provide such a
mechanism. This attribute is required.
href=“...”
The value of this attribute is the URL of the external stylesheet. Either relative or absolute URLs may be
used. This attribute is required.
type=“text/css”
This is used to declare the type of data which is being LINKed to the document. When associating a
CSS stylesheet, the only allowed value is text/css. Other stylesheet languages will call for different
values (e.g., text/xsl). This attribute is required.
media=“...”
Using this attribute, one can declare a stylesheet to apply only to certain media. The default value is
all, which means that the styles will be used in all media in which the document is presented.
Recognized values under CSS are all, screen, print, projection, aural, braille, embossed,
handheld, tty, and tv. Any number of these values can be used in a media attribute by formatting
them as a comma-separated list. This attribute is optional.

Note In this approach, the stylesheet is placed in its own file. Such files are usually
given an extension of .css, such as main-styles.css. The LINK element must be
placed inside the HEAD element in HTML and XHTML, but XML-based markup
languages may have other requirements.

Examples
<link rel="stylesheet" type="text/css"
 href="http://www.my.site/styles/basic.css">
<link rel="stylesheet" type="text/css" href="article.css"
 media="screen,projection">
<link rel="stylesheet" type="text/css" href="printout.css"
 media="print">

STYLE Element
The STYLE element is found in HTML and XHTML, and is used as a container for an embedded
stylesheet.

Generic Syntax
<style type="text/css" media="...">

Attributes
type=“text/css”
This attribute is handled the same as that used on the LINK element. This attribute is required.

Cascading Style Sheets 2.0 Programmer's Reference

 5

media=“...”
This attribute is handled the same as that used on the LINK element. This attribute is optional.

Note STYLE must be placed in the HEAD element under HTML and XHTML.

Examples
<style type="text/css">
H1 {color: purple; border-bottom: 1px solid maroon;}
H2 {color: blue; background: cyan;}
</style>
<style type="text/css" media="all">
PRE, CODE, TT {font-family: monospace; color: #333;}
PRE {margin-left: 3em;}
</style>

STYLE Attribute
Under HTML and XHTML 1.1, any element can take a style attribute.

Generic Syntax
<elem style="...styles...">

Note The value of this attribute is any combination of style declarations. Because this
approach binds the style very tightly to the element in question by placing stylistic
information within the document itself, use of the style attribute is discouraged in
those cases where a more robust solution (e.g., an embedded or external
stylesheet) can be used.

Examples
<p style="color: red;">This paragraph’s text will be colored red.</p>
<h1 style="font-family: sans-serif; color: magenta; padding: 0.5em;
 border-bottom: 2px solid green; background: cyan;">This H1 will
 assault your visual senses</h1>

@import Rule
@import is used to import an external stylesheet in a manner similar to the LINK element. See the
entry for @import in Chapter 3 for details.

Rule Structure
The basis of applying styles to documents is the rule. Each rule is composed of a number of
components, each of which has a specific name and function. These are summarized in Figure 1-1.

Figure 1-1: CSS rule structure

The selector is the part that determines which portions of the document will be matched by the rule. The
rule’s styles will be applied to the selected element(s). For example, a selector of pre means that all
pre elements will be selected. Multiple selectors can be grouped in a single rule by separating them
with commas. See Chapter 2 for details about the various selectors which may be used.
The declaration block is bounded by (and includes) a pair of curly braces. The selector is always to the
left of the declaration block (that is, it comes before the block). Whitespace within a declaration block is
ignored, so any amount of whitespace may be used by authors to make their styles more readable.

Cascading Style Sheets 2.0 Programmer's Reference

 6

Inside the declaration block are zero or more declarations. Each declaration consists of a property
followed by a colon, and then the value for the property followed by a semicolon. A value will consist of
one or more keywords and value types, usually (but not always) separated from each other by a space.
The allowed properties and their possible values are discussed in Chapters 4 through 6. There can
never be more than one property per declaration.

It is permissible to have an empty declaration block, in which case this rule will apply no styles to the
elements matched by the selector. This is functionally equivalent to not writing the rule at all. CSS does
not require that the last declaration in a declaration block be followed by a semicolon, but some early
CSS1 implementations would incorrectly fail to recognize any styles which followed a declaration block
that did not end with a semicolon.

Resolving Style Conflicts
In the course of creating a stylesheet, it is quite possible that many different rules will apply to a single
element. For example, if one rule applies to all paragraph elements, and another rule applies to all
elements which have a CLASS attribute with a value of urgent, which rule should be used?
As it happens, both rules will apply. If the different rules contain declarations that deal with different
properties, then there is no conflict, and the styles are “pooled together.” However, if different rules have
declarations that attempt to set values for the same property, then there are mechanisms to decide
which styles will actually be used.

As an example, assume the following three rules:
div#aside h1 {color: red; margin: 0.5em;}
h1.title {color: purple; font-weight: bold; margin-left: 3em;}
h1 {color: gray; font-style: italic;}
Now assume that the document contains an H1 element which is matched by all three rules. How
should it be styled? There are three contradictory values given for color, and there may be some
conflict between the margin rules as well.
As it happens, the answer is that our hypothetical H1 should be colored red, boldfaced, italicized, and
have top, right, bottom, and left margins of 0.5em. Thus, the declarations which were overruled were
color: purple, color: red, and margin-left: 3em. The mechanisms by which we arrived at this
answer are further explained in the next section.

Cascade Rules
In determining how to style a document, some declarations may conflict with each other. For example, if
two different declarations call for all paragraphs to be either red or blue, which one wins out? This
process is described by the cascade. The cascade rules are as follows:

1. Find all declarations that apply to the element and property in question, for the target media
type (i.e., do not apply print-media styles if the current media is screen). Declarations apply if
the associated selector matches the element in question. Thus, the declaration in the rule h6
{color: navy;} will be used only if the document contains one or more H6 elements.

2. The primary sort of the declarations is done by origin and weight. The origin refers to the
source from which the declaration comes: the author’s styles, the user’s styles, or the user
agent’s internal styles (hereafter referred to as the default stylesheet). An imported
stylesheet has the same origin as the stylesheet that imported it. The weight refers to the
importance of the declaration. For normal declarations, author stylesheets override user
stylesheets which override the default stylesheet. For “!important” declarations, user
stylesheets override author stylesheets which override the default stylesheet. “!important”
declarations override normal declarations. See “Importance” later in the chapter for more
details.

3. The secondary sort is by specificity of selector: more specific selectors will override more
general ones. Pseudo-elements and pseudo-classes are counted as normal elements and
classes, respectively. See “Specificity Calculation” later in the chapter for more details.

4. Finally, sort by order specified: if two rules have the same weight, origin, and specificity, the
latter specified wins. Rules in imported stylesheets are considered to be placed before any
rules in the embedded stylesheet.

Specificity Calculation
Every selector in CSS is assigned a specificity. The actual specificity is calculated based on the
composition of the selector itself, according to the following rules:

1. Count the number of ID selectors in the selector (= a)

Cascading Style Sheets 2.0 Programmer's Reference

 7

2. Count the number of other selectors and pseudo-class selectors in the selector (= b)
3. Count the number of element names in the selector (= c)
4. Ignore pseudo-elements

The concatenation of the three values (a-b-c) yields the specificity. Note that these numbers are not
represented in base ten; thus 0-0-11 is less than 0-1-0, even though they might be represented as “11”
and “10” respectively. It is for this reason that authors are encouraged to think of specificity as a
comma- or hyphen-separated list of three numbers. For example:
h1 {color: black} /* spec. = 0-0-1 */
div ul li {color: gray;} /* spec. = 0-0-3 */
pre.example {color: white;} /* spec. = 0-1-1 */
div.help h1 em.term {color: blue;} /* spec. = 0-2-3 */
#title {color: cyan;} /* spec. = 1-0-0 */
body ul#first li ol.steps li {color: silver;} /* spec. = 1-1-5 */
As detailed earlier in the section “Cascade Rules,” specificity is more important than the order in which
rules appear. Thus, if the following two selectors match the same element, the declarations from the first
will override any conflicting declarations in the second.
div.credits {text-align: center; color; gray;} /* spec. = 0-1-1 */
div {text-align: left; color: black;} /* spec. = 0-0-1 */

Therefore, the element which these two rules match will have gray, centered text.
Important declarations always outweigh non-important declarations, no matter the specificity of their
associated selectors (see the next section for more details).

Importance
Declarations may be marked as important using the !important construct. This is applied to the
actual declarations which are important, not to the selector nor to the rule as a whole. For example:
p {color: red; background: yellow !important; font-family: serif;}
In this example, only the declaration background: yellow is important. The other two declarations
are not.

If two or more important declarations involve the same property, then the conflict is resolved using
specificity calculations. For example:
h2 {color: red !important; font-style: italic;}
h2 {color: green !important;}
Since both color declarations are important, and both associated selectors have the same specificity,
the second rule wins because it comes later in the stylesheet. Thus, H2 elements will be green and
italicized—the font-style declaration is not affected in this case.

Inheritance

Many styles can be inherited from an element to its descendant elements. Any inherited style will be
applied to an element unless the property in question is explicitly set through a rule whose selector
matches the element. For example, consider these rules:
body {color: black;}
p {color: green;}

Given this, the color of any paragraph will be green, while the color of all other elements will be black.
Note that this overriding of inherited styles takes effect no matter what specificity or importance was
attached to the original rule. For example:
div#summary {color: black !important;}
p {color: green;}
Any paragraphs within a div whose id attribute has a value of summary will still be green, because the
explicitly assigned style overrides the inherited style.
However, all properties (except for page) can be given a value of inherit. This directs the user agent
to determine the value of the property for the parent element, and use that value for the current element.
Thus, p {color: inherit;} will set the color of any paragraph to be the same color as its parent.

Cascading Style Sheets 2.0 Programmer's Reference

 8

This has the advantages of upgrading the inheritance mechanism such that a style can be explicitly
assigned to inherit, instead of relying on the normal inheritance mechanism as a "fallback."

Shorthand Properties
There are a few properties in CSS which are considered shorthand properties; that is, they represent a
much larger collection of properties. For example, margin is a shorthand for the properties margin-
top, margin-right, margin-bottom, and margin-left. The following two rules will have exactly
the same effect:
p {margin: 1em;}
p {margin-top: 1em;
 margin-right: 1em;
 margin-bottom: 1em;
 margin-left: 1em;}

Because of this, authors must be sure to avoid conflicts between properties and shorthands, or even
between two shorthand properties. For example, consider the following two rules as matching the same
element:
pre.example {margin: 1em;}
pre {margin-left: 3em;}
Due to the operation of the cascade, any pre element with a class of example will have a margin
1em wide, including the left margin. The shorthand’s effects have masked out the value assigned in the
pre rule.
Another good example involves text-decoration, which is a shorthand for no properties at all but
acts much as a shorthand property does. Consider the following rules:
h2 {text-decoration: overline;}
h2, h3 {text-decoration: underline;}
Given these rules, all H2 elements will be underlined but not overlined. The given values of text-
decoration do not combine, as each combination of keywords is its own unique value. If it is desirable
to decorate H2 elements with both an underline and an overline, then the necessary rule is:
h2 {text-decoration: underline overline;}
Table 1-1 summarizes the shorthand properties in CSS and what properties they represent.

Table 1-1: Shorthand Properties

Shorthand property Represents
background background-attachment, background-color,

background-image, background-position,
background-repeat

border border-color, border-style, border-width
border-bottom border-bottom-color, border-bottom-style, border-

bottom-width
border-left border-left-color, border-left-style, border-

left-width
border-right border-right-color, border-right-style, border-

right-width
border-top border-top-color, border-top-style, border-top-

width
cue cue-before, cue-after
font font-family, font-size, font-style, font-weight,

font-variant, line-height (will also reset font-size-
adjust and font-stretch)

list-style list-style-image, list-style-position, list-
style-type

margin margin-top, margin-right, margin-bottom, margin-
left

outline outline-color, outline-style, outline-width

Cascading Style Sheets 2.0 Programmer's Reference

 9

Table 1-1: Shorthand Properties

Shorthand property Represents
padding padding-top, padding-right, padding-bottom,

padding-left
pause pause-after, pause-before

Visual Layout
Although it does contain sections for styling non-visual media, CSS is at its heart a style language for
visual presentation. Therefore, since authors will spend so much time worrying about the visual effects
of their styles, it is crucial to understand how these effects are constructed and laid out.

There are two basic layout mechanisms in CSS: the box model and the inline layout model. Although
they are related, each has its own rules and effects, not all of which are intuitive. In addition, there are
special rules to describe how positioned elements are laid out, and how floated elements are placed
and sized. These rules are closely modeled on the box model, but there are some important differences.

The Box Model

The fundament of visual display under CSS is the box model. Familiarity with the various components of
the box model enables the author to understand how a great many properties interact with each other,
and to understand why pages appear as they do (or to figure out what’s going wrong in buggy
browsers).

Basic Components
A diagram of the basic box model is shown in Figure 1-2.

Cascading Style Sheets 2.0 Programmer's Reference

 10

Figure 1-2: The CSS box model

Specific Layout Rules
The background of an element (whether color, image, or some combination) extends to the outer edge
of the border, thus filling the content area and the padding. It will also be visible through any “gaps” in
the border itself, such as those seen with the border-style values dotted, dashed, and double.
The following equation always holds true: margin-left + border-left-width + padding-left +
width + padding-right + border-right-width + margin-right = the value of width for the
parent element (that is, the width of the parent element’s content area). This must sometimes be
accomplished by setting the left and right margins to negative values. In such cases, the element will
appear to be wider than its parent element, and will "stick out" of the content area of its parent.
Mathematically, however, the negative margins satisfy the above equation, and so the element can be
said to be exactly as wide as the content area of its parent. This may seem disingenuous, since the
visual effect is precisely the opposite, but this is permitted under CSS.
Only the margins, height and width may be set to auto. The margins may be given negative
lengths, but height and width may not. The padding and border widths default to 0 (zero), and may
not be set to negative lengths.
Vertically adjacent margins of elements in the normal document flow are collapsed. In other words, if
two margins are vertically adjacent to each other, then the actual distance between the two element
borders is the maximum of the adjacent margins. In the case of negative margins, the absolute
maximum of the negative adjacent margins is subtracted from the maximum of the positive adjacent
margins. The vertically adjacent margins of elements which have been floated or positioned do not
collapse.

The mechanism of collapsing margins can be visualized as a paper- and-plastic model. In this model,
each element is represented by a piece of paper upon which the element’s content has been written (or
drawn). Any margins which surround the element are represented as strips of clear plastic attached to
the edges of the paper. When one element follows another, they are slid together until the edge of one

Cascading Style Sheets 2.0 Programmer's Reference

 11

element’s plastic strip touches the edge of the other element’s paper. Thus, the plastic will overlap, but
the pieces of paper will never be further apart than the width of the wider plastic strip. This holds true
even if multiple elements are adjacent, such as one list ending and another beginning. There are four
adjacent margins in this example, the bottom margins of the first list and its last list item, and the top
margins of the second list and its first list item. The distance between the content of the two list items
will be that of the largest of the four margins.

Recall that horizontally adjacent margins do not collapse. Thus, placing 10-pixel margins on two
adjacent inline elements will create a 20-pixel space between the right border of the first element and
the left border of the second. Margins on floated and positioned elements are never collapsed, either
horizontally or vertically.

The Inline Layout Model

Almost as fundamental as the box model is the way in which text is arranged within an element. While
this may seem simple, it quickly becomes complex once the details are laid bare.

Basic Components
A diagram of the basic inline layout model is shown in Figure 1-3.

Figure 1-3: The CSS Inline layout model

Specific Layout Rules

The height of a line of text is calculated using the following terms:
 Content area The box defined by the font-size of each piece of text (whether in an

element or not)
 Half-leading The distance determined by the value of line-height, where the

half-leading equals ((font-size - line-height)/2)
 Inline box The box defined by subtracting the half-leading from the top and bottom

of the content area; for any given piece of text, the height of the inline box will always
be equal to the value of line-height for that same text

 Line box The actual box which is stacked below the previous line box; this bounds
the top of the highest inline box and the bottom of the lowest inline box in the line

How does all this work? For each piece of text, an inline box is generated, using the content area and
the half-leading to arrive at its final height. These inline boxes will always be centered vertically within
the content area. The inline boxes are then aligned with respect to each other according to the value of
vertical-align for each. If the value is baseline, then the text baseline is aligned with the baseline
of the line.

Once the inline boxes have been vertically aligned, the height of the line box is determined. The line
box’s top is aligned with the top of the highest inline box top in the line, and the bottom of the line box is
aligned with the bottom of the lowest inline box in the line. The top of each line box is placed adjacent to
the bottom of the previous line box, or adjacent to the inner top edge of the parent element in the case

Cascading Style Sheets 2.0 Programmer's Reference

 12

of the first line box in the element. Thus the line boxes are “stacked” to form a block-level element’s
content.

In fact, each character generates its own inline box, but these should all have the same height for a
given element, so, in general, inline boxes are discussed at the element level.

Any border which is drawn around an inline element is placed such that it lies just outside the area
defined by the content area plus any declared padding. This has no direct relation to the line box itself;
the border may be drawn in the same place as the edges of the line box, but if so it is by coincidence. It
is entirely possible for an inline element’s border to “cut through” the text in the line, or through other
lines of text.

When it comes to borders, background, and other box properties, inline elements are formatted as if
they were a single line of text. Let’s start with the simplest analogy. Picture a given inline element: a
single strip of paper with the element’s content written upon it. Any backgrounds, borders, padding, and
so forth are applied to the inline element as per the box model. The strip of paper is then torn into
pieces between words such that each paper segment will fit between the right and left edges of the
block-level element’s content area. Therefore, borders will most likely not “cap off” the ends of any line
segments, except the left edge of the first line segment and the right edge of the last line segment.
Similarly, any right or left padding (or margin) will appear only on the last or first line segment,
respectively.

This analogy is only partly accurate. If all of the text in the inline element is the same size and has the
same vertical alignment, then the analogy is exactly correct. However, if this is not the case, then each
line’s height will be altered as described earlier in this section. In other words, some line segments could
be taller than others in the same inline element, due to the way line boxes are constructed. Otherwise,
the analogy holds; any left or right padding or margins will still be applied only to the first or last line
segments, respectively.

Setting top and bottom margins on non-replaced inline elements (e.g., elements which contain only text)
will have no effect on layout, as margins cannot affect the calculation of the height of a line box. Setting
a top and bottom padding may cause the background of the inline element to be increased, but the
specification is not clear about what should happen in such a case. It may be that the expanded
background will overwrite content in other lines of text, or even in other elements. It is also possible that
the backgrounds will be drawn “beneath” the content of other inline elements. User agents are permitted
to ignore top and bottom padding on inline elements.
Inline replaced elements (e.g., images within a line of text) are treated a little differently from text. The
inline box of a replaced element is defined to be the element plus any borders and margins. Thus, top
and bottom margins on inline replaced elements can affect the height of a line box.

Float Rules

When an element is floated, its visual placement is governed by a set of ten rules. In effect, these rules
say “place the floated element as high, and as far to one side, as possible.” However, the details are
important:

1. The left outer edge of a left-floating box may not be to the left of the left edge of its
containing block. An analogous rule holds for right-floating elements.

2. If the current box is left-floating, and there are any left floating boxes generated by
elements earlier in the source document, then for each such earlier box, either the left
outer edge of the current box must be to the right of the right outer edge of the earlier
box, or its top must be lower than the bottom of the earlier box. Analogous rules hold
for right-floating boxes.

3. The right outer edge of a left-floating box may not be to the right of the left outer edge
of any right-floating box that is to the right of it. Analogous rules hold for right-floating
elements.

4. A floating box’s outer top may not be higher than the top of its containing block.
5. The outer top of a floating box may not be higher than the outer top of any block or

floated box generated by an element earlier in the source document.
6. The outer top of an element’s floating box may not be higher than the top of any line-

box containing a box generated by an element earlier in the source document.
7. A left-floating box that has another left-floating box to its left may not have its right

outer edge to the right of its containing block’s right edge. (Loosely: a left float may

Cascading Style Sheets 2.0 Programmer's Reference

 13

not stick out at the right edge, unless it is already as far to the left as possible.) An
analogous rule holds for right-floating elements.

8. A floating box must be placed as high as possible.
9. A left-floating box must be put as far to the left as possible, a right-floating box as far

to the right as possible. A higher position is preferred over one that is further to the
left/right.

10. The top outer edge of the float must be below the bottom outer edge of all earlier left-
floating boxes (in the case of clear: left), or all earlier right-floating boxes (in the
case of clear: right), or both (clear: both).

The margins of floated elements are never collapsed. Thus, even though an element may be floated
into the top left corner of its parent element, its margins will push it away from the corner, and will push
any content away from the floated element.
Even though floated elements are prohibited from being any higher than the top of the containing block,
there is a way around this. By setting a negative top margin, the element can be “pulled up” past the top
of its containing block. This is somewhat similar to the ability of elements to be wider than their
containing block through the use of negative left and right margins. As well, floating elements can be
pulled out of an element by setting a negative left or right margin. However, the user agent is not
required to reflow the document to account for this situation, so a floating element with negative margins
may overlap other content within the document. Authors are advised to use this technique very
cautiously.

Although floating elements are removed from the normal flow of the document, they do affect the layout
of content within the document. This is effectively done by increasing the padding within any following
elements on those lines which are next to a floating element. However, this means that the backgrounds
and borders

of any elements will extend “underneath” the floated element, and possibly past the other side of the
floated element. This behavior ensures that all element boxes will remain rectangular, but it can lead to
unwanted effects.

Positioning Rules
Although CSS started out as a way to style elements in the normal flow of a document, it quickly
became apparent that authors wanted to do more with their layouts. There were requests for a CSS way
to replace frames, methods to offset elements from their normal placement, and more. In response,
positioning was added to the specification in CSS2. There are really only three kinds of positioning:
static, relative, and absolute. Static positioning is the state of normality—in other words, an “un-
positioned” paragraph actually has a static position. Relatively positioned elements are offset from their
normal place in the document, while absolutely positioned elements are placed with respect to some
point, and they never move from that position.
Every positioned element is placed with respect to its containing block. This block can be thought of as
the positioning context for the positioned element. Every positioned element has its own unique
containing block. The way to determine such a block is explained in each following section.

Relative Positioning
Relative positioning is fairly simple in its execution. A relatively positioned element is offset from the
place it would ordinarily occupy in the normal document flow, and the space it leaves behind is
preserved. This makes it fairly likely that the positioned element will overlap other elements and their
content, or be overlapped by other elements, depending on the value of the property z-index. It is up
to the author to construct styles that avoid such situations, if desired.

Containing Block
The containing block of a relatively positioned element is the box it would have occupied in the normal
flow of the document (i.e., had it not been positioned).

Offsets
The distance of a relatively positioned element is set with the properties top, right, bottom, and
left. Positive values will push the element toward the center of its containing block, and negative
values will push it away. Thus, a positive value for top will push the element downward, while a positive

Cascading Style Sheets 2.0 Programmer's Reference

 14

value for bottom will move it upward. Negative values will reverse the directions. Similarly, a positive
value for left will push the element to the right, and a positive right value will move it to the left, with
negative values having the opposite effects.There are cases where the values of some properties will
clash with each other. For example, setting both top and bottom to 10px means that the element
should be moved both upward and downward by 10 pixels, which is not possible. Therefore, the
following rules are used:

1. If the properties top and bottom are both given an explicit value, then the value of
bottom is ignored.

2. If the properties left and right are both given an explicit value, then the value of
right is ignored in left-to-right languages. In right-to-left languages, left is
ignored.

Absolute Positioning
Absolute positioning actually covers two values of the property position. These values are absolute
and fixed. The only real difference between the two is the containing block used in each case;
otherwise, the rules explained in this section are the same for both.
In both cases, the positioned element is entirely removed from the normal flow of the document. This
makes it quite likely that the positioned element will overlap other elements and their content, or be
overlapped by other elements, depending on the value of the property z-index. It is up to the author to
construct styles that avoid such situations, if desired.

Containing Block
In the case of position: absolute, the containing block of the positioned element is the nearest
ancestor element which has a value for the property position other than static. If no such ancestor
exists, then the containing block is the root element of the document. In HTML and XHTML, this is
effectively the HTML element, and not the BODY element. This will start the containing block at the top
left corner of the document, outside any margins set on the BODY element. Absolutely positioned
elements still scroll with the rest of the document, as they have been absolutely positioned with respect
to the document itself.
In the case of position: fixed, the containing block is the viewport. In Web browsers, the viewport
is the browser’s display window, which means that fixed-position elements will not scroll with the
document and can thus be used in a manner similar to frames. In paged media such as a printout, each
page establishes its own viewport, so a fixed-position element will appear in the same place on each
page.

Horizontal Dimensions
The horizontal dimensions of an absolutely positioned element are set with the properties left,
margin-left, border-left-width, padding-left, width, padding-right, border-right-
width, margin-right, and right. The values of these properties, when added together, must equal
the width of the containing block. Negative margins may make the element wider than its containing
block.

There are a number of rules which govern the adjustment of these property values. The rules for non-
replaced elements (e.g., paragraphs) are as follows:

1. If the property left is set to auto in left-to-right languages, then the value is reset to be
aligned with the same place where the element’s left edge would have been if it still
were a part of the normal flow of the document (i.e., it had not been positioned). If
that point is to the left of the left edge of the containing block, then left will be set to
a negative value. In right-to-left languages, this rule is applied to the property right,
not left.

2. If the property width is set to auto, then any auto values for the properties left
and right are reset to 0. This will have the effect of marking the element and its
margins as wide as the containing block.

3. If the properties left, right, or width are set to auto, then any auto values for
the properties margin-left and margin-right are reset to 0. This will remove
any left or right margins from the element.

4. If the properties margin-left and margin-right are both set to auto, then they
are set to be of equal widths. If the element’s width is set to an explicit length, then
this will have the effect of "centering" the element within its containing block. (If the

Cascading Style Sheets 2.0 Programmer's Reference

 15

element’s width is not set to an explicit length, then it must be auto and the
above rule will take effect, setting both margins to 0.)

5. If there is only one property whose value remains auto (i.e., it is not reset by one of
the previous rules), then it is reset to be the length necessary to satisfy the
equation for calculating horizontal dimensions.

6. If all dimensions are set to explicit lengths, and these lengths do not add up to the
width of the containing block, then in left-to-right languages the value of the
property left is reset such that the equation for calculating horizontal dimensions
will be satisfied. In right-to-left languages, it is the property right which is reset.

For replaced elements (e.g., images) which have been absolutely positioned, the rules differ from the
ones just described in two ways. First, if the property width has a value of auto, replace it with the
intrinsic width of the element. Second, since the value of the property width can never be auto, the
third rule (listed previously) is effectively ignored.
In addition, the width of an element can be bounded by the properties min-width and max-width.
These are handled using the following rules:

1. The width is computed as normal (see previous rules).
2. If the value given for the property min-width is greater than that given for max-

width, the value of max-width is reset to the value of min-width.
3. If the computed width of the element is greater than max-width, or smaller than

min-width, then the value of the property width is reset to match the appropriate
bounding property.

It may be that a user agent defines its own value for min-width. If so, then the user agent is free to
reset any value for min-width which falls below its internal value.

Vertical Dimensions
The vertical dimensions of an absolutely positioned element are set with the properties top, margin-
top, border-top-width, padding-top, height, padding-bottom, border-bottom-width,
margin-bottom, and bottom. The values of these properties, when added together, must equal the
height of the containing block. Negative margins may make the element taller than its containing block.

There are a number of rules which govern the adjustment of these property values. The rules for non-
replaced elements (e.g., paragraphs) are set out in CSS2 as follows:

1. If the property top is set to auto, then the value is reset to be aligned with the same
place where the element’s top edge would have been if it still were a part of the
normal flow of the document (i.e., it had not been positioned). If that point is above
the containing block, then top will be set to a negative value.

2. If the properties height and bottom are both set to auto, then bottom is reset to
0.

3. If either of the properties bottom or height are set to auto, then any auto values
for the properties margin-top and margin-bottom are reset to 0. This will
remove any top or bottom margins from the element.

4. If the properties margin-top and margin-bottom are both set to auto, then they
are set to be of equal heights. If the element’s height is set to an explicit length,
then this will have the effect of "vertically centering" the element within its
containing block. (If the element’s height is not set to an explicit length, this
means it is set to auto and the previous rule will take effect, setting both margins
to 0.)

5. If there is only one property whose value remains auto (i.e., it is not reset by one of
the previous rules), then it is reset to be the length necessary to satisfy the
equation for calculating horizontal dimensions.

6. If all dimensions are set to explicit lengths, and these lengths do not add up to the
height of the containing block, then the value of the property bottom is reset such
that the equation for calculating horizontal dimensions will be satisfied.

For replaced elements (e.g., images) which have been absolutely positioned, the rules differ from the
ones just described in two ways. First, if the property height has a value of auto, replace it with the
intrinsic height of the element. Second, since the value of the property height can never be auto, the
third rule (listed previously) is effectively ignored.
In addition, the height of an element can be bounded by the properties min-height and max-height.
These are handled using the following rules:

1. The height is computed as normal (see previous rules).

Cascading Style Sheets 2.0 Programmer's Reference

 16

2. If the value given for the property min-height is greater than that given for max-
height, the value of max-height is reset to the value of min-height.

3. If the computed height of the element is greater than max-height, or smaller than
min-height, then the value of the property height is reset to match the
appropriate bounding property.

It may be that a user agent defines its own value for min-height. If so, then the user agent is free to
reset any value for min-height which falls below its internal value.
Note that under these rules, it is impossible to set a combination of property values which will cause an
element to be just tall enough to contain its own content, and no taller (or shorter). This effect is
sometimes called “shrink wrapping,” and its omission has been seen as a serious shortcoming in CSS2.
To redress this situation, there have been proposed errata which change the meaning of height:
auto to "make the element tall enough to display its own content." These errata have not been formally
adopted by the W3C, but they are supported by every known user agent which supports absolute
positioning.
As a basic example, assume for an absolutely positioned element that both margins and padding are
set to 10 pixels in width, the borders have zero width, and the height of the positioned element is
auto. Further assume that top is set to 0, and bottom is set to 100px. Now, further assume that the
content is 260 pixels tall once it has been rendered. This will effectively set height to 260px. This
means that the positioning context would have to be exactly 400 pixels tall in order to satisfy the
equation for calculating vertical dimensions. If the positioning context is actually 475 pixels tall, then
bottom will be reset to 175px.

Font Rules
When a user agent renders text, it must select a font to use. However, almost no font in existence
contains every possible character which might be needed in a document. Thus, the truth is that text is
rendered a character at a time, with the user agent doing its best to locate the needed character from its
list of available fonts. It must not only determine that a character exists, but also whether or not it is
available in the style, weight, and variant which may be requested by the document’s CSS rules.
In these rules, a font family is actually a collection of font faces given a common name. For example,
Times New Roman is really a collection of font faces. Each face depicts a variant of the basic font; thus,
the collection may contain Times New Roman Italic, Times New Roman Bold, and so on. Therefore, a
font face is a variant on the default font in the font family. Thus, the default font will have a name
something like Times New Roman Regular.
Authors do not actually select these faces by name, but instead express preferences for the kind of face
they would like to use through various font-related properties. See the property font, and its related
properties, in Chapter 4 for more details.

Font Family Matching

The author (or the user) can influence this selection process by providing a list of fonts to be used, in
order of preference, in the rendering of an element. The user agent utilizes this list as a part of the rules
for picking which font family to use for the rendering of a given character.

The steps involved in font matching are as follows:
1. In the rendering of a character of text, the user agent builds a list of font properties

which are applicable to the character. The user agent then identifies a font family
which would appear to contain those characteristics, as well as the needed character.

2. If the needed font face cannot be found within the family, the user agent can attempt
advanced handling (described later).

3. If steps 1 and 2 fail, then the user agent should proceed to the next font family in its
font list. The process of font face matching is described in the next section.

4. If the needed font face can be found within the font family, but the needed character
does not exist, then the user agent should proceed to the next font family in its font
list.

5. If the needed character cannot be found in the needed font face, then the user agent
should indicate that the proper character cannot be displayed (e.g., fill the space with
a “missing character” open square).

For example, assume an author declares that an H2 element should be rendered using Helvetica, and
that the text within that element should be boldfaced and italicized. The user agent must first locate the
font family Helvetica and then determine if it contains a font face which is both boldfaced and italicized.

Cascading Style Sheets 2.0 Programmer's Reference

 17

If such a face exists, then the user agent checks to make sure that the needed character exists within
the face. If it does, then it is used to render the character, and the user agent moves on to the next
character to start the process over. If the character does not exist in the font face, then the user agent
must look to other fonts to see if they have the needed character in an appropriate face. If the user
agent cannot come up with a suitable match, then it must use a "missing character" symbol to indicate
its failure.

CSS2 provides rules (as mentioned in item 2 in the previous list) for more advanced handling of font
matching. These are:

1. Intelligent font matching. The user agent uses font descriptors such as glyph widths
and x-height to identify an alternate font family choice. If it determines that a match
exists, then that font is used to render the character. This does not change the value
of the property font-family.

2. Font downloading. The user agent attempts to identify a font resource which it can
download and use. It is up to the user agent to decide whether a given font resource
will be useful, and if so, what to do while it waits for the font to finish downloading.

3. Font synthesis. The user agent can attempt to construct its own font, based on font
descriptors such as the panose-1 and x-height values. In fact, all font descriptors
must be provided for font synthesis to take place.

User agents are not required to support any of these advanced mechanisms.

Font Face Matching

During the font family matching process, the user agent must determine if a font has the necessary font
face available. For example, if the author has specified that an element should be italicized, the user
agent must find an italic face of the font being used. Faces are matched as follows:

1. The user agent first attempts to match the face declared in font-style. If the value
given is italic, then any face labeled Italic or Oblique will match. If the value given is
oblique, then only Oblique faces will match.

2. The user agent next attempts to match the face declared in font-variant. If the
value given is small-caps, then any face labeled Small-caps will match. If no such
face exists, then the user agent can generate a substitute by scaling capital letters
from a regular face as needed. As a last resort, the user agent can use regular capital
letters with no scaling. If the value given is normal, then any face not labeled Small-
caps will match.

3. The user agent matches the value of font-weight. Font weight matching is
described in the next section, and the match can never fail.

4. Last, the font’s size is matched. Since most fonts can be scaled to any necessary
size, this step should never fail.

For example, assume that an author has directed that an element should be both small-caps and italic.
The user agent must locate a face which is both small-caps and italic, if possible. Otherwise, it keeps
looking for a match using the rules given in the previous section.

Font Weight Matching
The property font-weight can accept a number of values, including the nine numeric values 100
through 900 and the values normal and bold. The numeric values are the core of font-weight
matching; the other values (e.g., bold) are treated as human-friendly labels for defined points on the
numeric scale. The weight of a font is matched as follows:

 The value normal corresponds to the value 400; bold corresponds to 700.
 If the font already has a nine-level weight scale, as in font formats such as OpenType,

that scale is mapped to the values 100 through 900.
 If a font has a face labeled Medium as well as one of the labels Book, Regular, Roman,

or Normal, then Medium corresponds to the value 500.
 If the font has a face labeled Bold, that face corresponds to the value 700.

If the font contains fewer than nine weights, then the “gaps” are filled as follows:
 If the value 500 is unassigned, it corresponds to the same face as that used for the

value 400.
 If any of the values 600, 700, 800, or 900 are unassigned, then they correspond to the

next darker weight available. If no darker weight is available, then they correspond to
the next lighter weight.

Cascading Style Sheets 2.0 Programmer's Reference

 18

 If any of the values 100, 200, or 300 are unassigned, then they correspond to the next
lighter weight available. If no lighter weight is available, then correspond to the next
darker weight.

The majority of fonts will have at least two faces: normal and bold, which are mapped to the values 400
and 700. In such a case, the values 100 through 500 will result in a normal face, while 600 through
900 will yield the darker face.

Let’s pick a more complicated example. Assume a font which contains the following four faces: Meyer
Regular, Meyer Bold, Meyer Light, and Meyer Dark. This last is even darker than the “bold” face. Given
these faces, the weight numbers will be assigned as follows:

 Meyer Light: 100, 200, 300
 Meyer Regular: 400, 500
 Meyer Bold: 600, 700
 Meyer Dark: 800, 900

If Meyer Light had not been available as part of the font family, then Meyer Regular would have been
the face used for the values 100 through 500. The rest of the assignments would have gone
unchanged.

Chapter 2: Values
Although authors tend to focus on the properties in CSS, nothing in CSS would work without the values
that are assigned to those properties. After all, you can’t describe the left border of an element without
being able to say what it looks like, and that’s what values do. In many cases, a property will use its own
uniquely defined keywords (e.g., underline or thin). However, there are also many cases where
generic types of values can be used. These generic value types are explained in this chapter.

Value Representations
The property reference chapters (4 through 6) use roughly the same value syntax as that described in
section 1.3.2 of the CSS2 specification. In particular, the same symbolic conventions are used to
indicate alternatives and optional keywords. The grouping symbols are as follows:

 A vertical bar (|) is used to separate two or more alternatives when any one, but only one, of
them may be used.

 A double vertical bar (||) is used to separate two or more alternatives when any of them may
be used in any order. This operator is stronger than the single vertical bar.

 A sequence of several words means that all of them must occur in the order shown. 2A
sequence is stronger than the double vertical bar.

 Square brackets ([]) are used to group values together.

Thus, the following two expressions are equivalent:
 x y || a b | c || m | n
[x y] || [[a b] | c] || [m | n]
In addition to the grouping symbols, there are also modifier symbols. Any keyword, value type, or group
can be modified using the following symbols.

 An asterisk (*) indicates that the preceding value or group may occur zero or more times, with
no defined upper limit.

 A plus sign (+) indicates that the preceding value or group must occur one or more times,
with no defined upper limit.

 A question mark (?) indicates that the preceding value or group is optional.
 A pair of two comma-separated numbers in curly braces ({X,Y}) indicates that the preceding

value or group occurs a minimum of X times and a maximum of Y times. For example,
test{2,5} means that the word test must appear anywhere from two to five times.

Any symbols besides the ones defined here must appear literally. Two such examples are the comma
(,) and slash (/) symbols.

Basic Rules
The most important thing to keep in mind with values is that, when they use a unit, there is no space
between the value and its unit. For example, a distance of four inches is written 4in. Any space
between the value and its associated unit (as in 4 in) will cause browsers to ignore the declaration at
best, and drastically misinterpret it at worst. This is one of the most common mistakes CSS authors
make.

Cascading Style Sheets 2.0 Programmer's Reference

 19

It is also the case that values are never quoted (except for string values and some font names). Thus,
the keyword value for the color blue should not be written "blue". Instead, it should be blue. This is
possibly the second most common mistake committed by CSS authors.

Value Reference

Color Values
Color values are used to specify a color (go figure). Typically, these are used to set a color either for the
foreground of an element (i.e., its text) or else for the background of the element. They can also be used
to affect the color of borders and other decorative effects. Any color value is referred to in the property
reference chapters as <color>.

Value Types
#RRGGBB
#RRGGBB is the familiar color value format used by traditional HTML authors. In this format, the first
pair of digits corresponds to the red setting, the second pair to green, and the third pair to blue. Each
pair is in hexadecimal notation in the range 00 - FF. Thus, a “pure” green is represented as #00FF00,
"pure" red is written #FF0000, medium gray is #808080, and so forth.
#RGB
This is a shorter form of the six-digit notation just described. In this format, each digit is replicated to
arrive at an equivalent six-digit value; thus, #6A7 becomes #66AA77, "pure" green is represented as
#0F0, and so forth. Medium gray cannot be exactly represented in this format, since it does not use
replicated pairs, but it can be approximated as either #777 or #888.
rgb(rrr%,ggg%,bbb%)
This format allows the author to declare RGB values in the range 0% to 100%. Decimal values are
permitted (e.g., 57.5%). Any values outside the allowed range are clipped to the closest edge of the
range, so that –50% would be clipped to 0%. The value for black is represented as rgb(0%,0%,0%),
"pure" green is written rgb(0%,100%,0%), medium gray is rgb(50%,50%,50%), and so forth.
rgb(rrr,ggg,bbb)
The difference between this format and the previous one is that the accepted range of values is 0 - 255.
Not coincidentally, this range is the decimal equivalent of 00 - FF in hexadecimal notation. As with the
percentage RGB values, any numbers outside the allowed range are clipped to the edges of the range,
so 300 would be clipped to 255. In this format, "pure" blue is represented as rgb(0,0,255), white is
written rgb(255,255,255), medium gray is rgb(128,128,128), and so forth.
<keyword>
CSS defines 16 keywords, which are based on the original Windows VGA palette. The defined
keywords are aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple,
red, silver, teal, white, and yellow. Some browsers may recognize other keywords, but these
are not (as of this writing) found in any specification and are not guaranteed to work consistently
between browsers, or indeed from version to version in a single browser.

Note Any color value which goes outside the color range of the display medium will be
clipped to the nearest “edge” of the supported colorspace. All RGB colors in CSS
are specified in relation to the sRGB specification; see
http://www.w3.org/Graphics/Color/sRGB.html for more details.

Color choices should be made with legibility and visual impairments in mind. For example, various forms
of color blindness make it difficult to distinguish between red and green, or red and blue; see the Web
Accessibility Initiative (WAI) area of http://www.w3.org/ for more information.

Allowed Properties
The properties which can accept color values are
border-color border-right
border-top-color border-bottom
border-right-color border-left
border-bottom-color color
border-left-color background-color
border text-shadow
border-top outline-color

Cascading Style Sheets 2.0 Programmer's Reference

 20

Length Values
Absolute-length values are those which describe a length in the real world, whereas relative-length
values describe a length in relation to some other measure. They are formatted as an optional sign (plus
or minus) followed by a number, followed by a length unit identifier. Any length value is referred to in the
property reference chapters as <length>.

Value Types
in (inches)

These are the very inches one can find on almost any American ruler. Although these might seem to be
well-defined, the translation from real world measures to display environments is often ill-defined. For
example, in order to accurately make a font one inch tall, the computer must know precisely the
dimensions of its display environment, and how many pixels there are per inch. This can vary widely
between a 17” monitor and, say, a projection display in a lecture hall. Typically, the only environment in
which length measures can be precisely defined is in print media.
cm (centimeters)

This is the basis of measurement in the non-American part of the world, and a unit generally found even
on American rulers. There are 2.54 centimeters to an inch, and one centimeter equals 0.394 inches. As
with inches, the translation of centimeters to a display environment is ill-defined and likely to be
inaccurate.
mm (millimeters)

As almost the entire world knows, there are 10 millimeters to a centimeter (so you get 25.4 millimeters
to an inch, whereas 1 millimeter equals 0.0394 inches). The same translation-to-display warning applies
to millimeters as well as centimeters and inches.
pt (points)
These are traditional typographical units, and are familiar to most modern authors because they are
used to define text size in every popular word-processing program available in the Western world. By
definition, there are 72 points to an inch, since points were defined in a pre-metric era. Therefore, the
capital letters of text set to 12 points should be a sixth of an inch tall. Points are widely used on the
Web, but as with the other absolute-length units, they do not map consistently into display
environments. For example, 12pt = 12 pixels on most Macintosh systems, whereas Windows systems
may map 12pt to 16 pixels, or 22 pixels, or any number of other pixels. For this reason, points are
strongly discouraged as a unit of measure in screen media. In print media, points are far less dangerous
and can even be quite useful.
pc (picas)

A pica is equivalent to 12 points, so there are 6 picas to an inch. As described in the previous listing, the
capital letters of text set to 1 pica should be a sixth of an inch tall. Also, the same warnings about
translating to display environments apply here.
em (em-height)
In CSS, 1em is equivalent to the height of the character box for a given font. Ems can be used to set
relative sizes for fonts; for example, 1.2em is the same as saying 120%.
ex (x-height)
This refers to the x-height of the font, which is generally defined to be the height of a lowercase “x” that
exists in the chosen font. Unfortunately, the overwhelming majority of fonts available today do not
include a defined x-height, so most browsers approximate 1ex as 0.5em. The exception to this crude
approximation is Internet Explorer 5 for Macintosh, which attempts to determine the actual x-height of a
font by internally bitmapping an "x" and counting the pixels.
px (pixels)

Every computer display is composed of pixels, which are the small dots that make up the entire image.
In CSS terms, however, a pixel is defined to be about the size required to yield 90 pixels per inch. Most
user agents ignore this in favor of simply addressing the pixels on the monitor. Scaling factors may be
used when printing, in order to compensate for the high pixel density of modern printers.

Note If a negative length value is allowed on a given property but cannot be supported
by the user agent, the value should be converted to the closest supported value.
This will most likely mean 0, but it could be some other value.

A length value of 0 does not need one of the unit identifiers to follow it. Any other length value (positive
or negative) must have a unit identifier, or it will be ignored by correctly written user agents.

Cascading Style Sheets 2.0 Programmer's Reference

 21

Allowed Properties
The properties which can accept length values are
margin right
margin-top top
margin-right width
margin-bottom max-width
margin-left min-width
padding height
padding-bottom max-height
padding-right min-height
padding-left line-height
padding-top vertical-align
border-top-width marker-offset
border-width size
border-right-width background-position
border-bottom-width font-size
border-left-width text-indent
border text-shadow
border-top letter-spacing
border-right word-spacing
border-bottom border-spacing
border-left outline
bottom outline-width
left

Angle Values
Angle values are formatted as an optional sign (plus or minus) followed by a number, followed by an
angle unit identifier. Any angle value is referred to in the property reference chapters as <angle>.

Value Types
deg (degrees)
Degrees describe angles using the range 0 – 360, as on compasses; thus a right angle would be
90deg.
grad (gradians)
Gradians describe angles using the range 0–400; thus a right angle would be 100grad.
rad (radians)
Radians describe angles using the range 0–pi (3.14159...); thus a right angle would be 1.57079rad.

Note Negative angles are permitted, but will be converted to their positive equivalent.
Thus, a value of –90deg will be converted to 270deg.

Under CSS2, angle values are used only in aural styles. Because no support for aural styles was
present at the time of writing, there was no known support for angle values.

Allowed Properties
The properties which can accept angle values are
azimuth
elevation

Time Values
Time values are formatted as a number followed by a time unit identifier; thus time values cannot be
negative. Any time value is referred to in the property reference chapters as <time>.

Value Types
s (seconds)

Time measures of a full second.

Cascading Style Sheets 2.0 Programmer's Reference

 22

ms (milliseconds)
Time measures of one-thousandth of a second; thus 1000ms equals 1s.

Note Under CSS2, time values are used only in aural styles. Because no support for
aural styles was present at the time of writing, there was no known support for
time values.

Allowed Properties

The properties which can accept time values are
pause
pause-after
pause-before

Frequency Values
Frequency values are formatted as a number followed by a frequency unit identifier; thus frequency
values cannot be negative. Any frequency value is referred to in the property reference chapters as
<frequency>.

Value Types
hz (Hertz)

The frequency is defined using the Hertz scale.
khz (kilohertz)

The frequency is defined using the kilohertz scale.
Note Under CSS2, frequency values are used only in aural styles. Because no support

for aural styles was present at the time of writing, there was no known support for
time values.

Allowed Properties

The properties which can accept frequency values are
pitch

Strings
String values are used in very rare circumstances, but can be quite powerful when employed. Any string
value is referred to in the property reference chapters as <string>.

Value Types
<string>
Any arbitrary sequence of characters can be codified as a string. The sequence is enclosed in quotation
marks, either single or double. If a string is broken across multiple lines for any reason, each newline
must be preceded by a backslash. Newline characters cannot directly occur inside a string, but they can
be represented using the sequence \A ("A" being the hexadecimal code for a newline in Unicode).

Note If quotation marks need to appear within a string value, then the author should be
sure that they are not the same type as those which enclose the value. If they are
the same, then the quotation marks inside the string must be escaped using a
backslash character (\). For example:
content: "The man said, \"Help me!\" so I did.";

The same would have to be done for single-quote marks inside a string value enclosed by single-quote
marks.

Allowed Properties
The properties which can accept string values are
content
quotes

Cascading Style Sheets 2.0 Programmer's Reference

 23

text-align

Percentages
Percentage values are formatted as an optional sign (plus or minus) followed by a number (either real or
integer) followed by a percent sign (%). Any percentage value is referred to in the property reference
chapters as <percentage>.

Value Types
<percentage>
Percentage values are always used to express a value in relation to another one, such as setting a font
to be half again as big as its parent element’s font with the value 150%. Percentages are calculated in
relation to different things for different properties; see the property references for information on each
property which accepts percentages.

Note The resulting value for a percentage calculation is inherited to descendant
elements; thus, if a font’s size is calculated to be 19 pixels tall, then that size is
inherited, not the percentage.

Allowed Properties

The properties which can accept percentage values are
bottom line-height
left vertical-align
right background-position
top font-size
width text-indent
max-width volume
min-width pause
height pause-after
max-height pause-before
min-height

URI Values
URI values are used to point to files or other resources external to the stylesheet. Any URL value is
referred to in the property reference chapters as <uri>.

Value Types
url(<uri>)

This construct is used to refer to files external to both the stylesheet and the base document. The only
type of file which browsers will generally recognize are graphic files, although in principle any kind of file
could be pointed to using this value type.

Note Under CSS, relative URI values are always in relation to the stylesheet itself. If
the stylesheet is embedded in the document, then the URI will by coincidence be
in relation to the document, but only because the document and the stylesheet
are in the same location. Unfortunately, Navigator 4.x interprets URIs in relation
to the document itself, not the stylesheet. Therefore, it is sometimes advised that
authors only use absolute URIs in their stylesheets.

Allowed Properties

The properties which can accept URI values are
content cue-after
list-style-image cue-before
background-image play-during
cursor

Chapter 3: Selectors, Pseudo-Classes, Pseudo-Elements,
and At-Rules

Cascading Style Sheets 2.0 Programmer's Reference

 24

Although the long list of allowed properties and values is very important to CSS, it is even more
important to know how and where those properties can be applied to documents. This is accomplished
with selectors, pseudo-classes, pseudo-elements, and a collection of what are called at-rules.

Selectors
In order to associate styles with a specific element or set of elements, it is necessary to create a
selector. This is the part of a style rule which selects an element or set of elements and therefore
causes the styles to be applied to them. There are many kinds of selectors.

Type Selector
A type selector is one which selects elements in the document’s language type. (In CSS1, this was
called an element selector.) These are the simplest kinds of selectors.

Generic Syntax
X

Matches any element X.
Note Under HTML and XHTML, these will be the familiar document elements like H2,

PRE, TABLE, and so on. In other markup languages, the permitted type selectors
will be the range of elements permitted in that particular markup language.

Examples
h3 {color: maroon;}
p {font-family: serif; text-decoration: overline;}

Descendant Selector
A descendant selector is used to select elements which are descendants of another element in the
document tree. (In CSS1, this was called a contextual selector.)

Generic Syntax
X Y Z

Matches any element Z which is a descendant of element Y, which is in turn a descendant of element X.
Note A descendant selector is composed of a space-separated list of two or more

selectors. Note that the descendant can be of any relation, from a direct child to a
great-great-great-great-grandchild, or even further. Thus, the selector div strong
will select a STRONG element which is contained within a DIV element, no matter
how many "levels deep" the STRONG may be found. To select an element which
is the child of another, see the child selector section later in this chapter.

There have been reports of cases where complicated descendant selectors have confused Navigator
4.x. These cases seem to be fairly rare, and are difficult to reproduce when they do occur.

Examples
h1 em {font-style: italic;}
div p {background: lime;}

Universal Selector
The universal selector is used to select any element.

Generic Syntax
*

Matches any element.
Note The universal selector is treated much like a wild-card symbol in regular

expressions. It can be used to ensure that elements of a sufficiently removed
relation to the parent element are selected; for example, div * p will only select
paragraphs that are no closer than grandchildren of a DIV. Any paragraph which

Cascading Style Sheets 2.0 Programmer's Reference

 25

is a child of the DIV will not be selected.

If no selector is present in a rule, then the universal selector is implied.

Examples
* {color: black;}
div * p {border: 1px solid green;}

Child Selector
A child selector is used to select an element which is a direct child of another element.

Generic Syntax
X > Y

Selects any element Y which is a child of element X. Any deeper relationship (such as a grandchild
element) will not be selected.

Note Due to its nature, a child selector must have at least two regular selectors
separated by the > symbol. The whitespace around the > symbol is entirely
optional.

Internet Explorer 4 has problems handling this selector, and often will match the last type selector in the
expression, regardless of its context. In other words, em > strong will incorrectly match all STRONG
elements in the document.

Examples
div > p {margin-top: 1.5em;}
li>ul {list-style-type: square;}
td > a:link {color: white; background: black;}

Adjacent-Sibling Selector
An adjacent-sibling selector will select an element which immediately follows another element in the
document markup.

Generic Syntax
X + Y

Selects any element Y which immediately follows element X.
Note Due to its nature, an adjacent-sibling selector must have at least two regular

selectors separated by the + symbol. The whitespace around the + symbol is
entirely optional.

Any text which appears between two elements will not affect the operation of this selector, unless that
text is contained within an element which is sibling to the other two elements. Thus, if a paragraph is
followed by some text which is followed by a DIV, then the text between the two does not affect sibling
adjacency. If the intervening text were enclosed in an H3 element, then the H3 would prevent the
paragraph and the DIV from being adjacent siblings. Similarly, if two inline elements are separated by
text, they are still adjacent siblings.
Internet Explorer 4 and 5 both have problems handling this selector, and often will match the last type
selector in the expression, regardless of its context. In other words, em + strong will match all STRONG
elements in the document. Opera 3 has much the same problem.

Examples
h1 + p {margin-top: 0;}
p+ul {margin-top: 0.5em; color: gray;}
p em + strong {font-style: italic;}

Attribute Selectors
An attribute selector is used to select elements based on the presence of certain attributes, or the
values of attributes. There are four types of attribute selectors.

Cascading Style Sheets 2.0 Programmer's Reference

 26

Generic Syntax
X[attr]
Selects any element X with the attribute attr.
X[attr="val"]
Selects any element X whose attribute attr has the value val. The match must be exact, so
[alt="Figure"] will not match the alt value Figure 1. Spaces are permitted in the value.
X[attr~="val"]
Selects any element X whose attribute attr contains a space-separated list of values which includes
val. Therefore, [alt="Figure"] will match the alt values Figure 1, Great Figure, Figure
this out, and so forth.
X[attr|="val"]
Selects any element X whose attribute attr has a value which is a hyphen-separated list that begins
with val. This is primarily intended to allow language matches; for example, the selector
[lang|="en"] will match the values en, en-us, en-uk, and so on. It is possible to construct other
matches, such as [alt|="figure"]. This would match the values figure-1, figure-2, and so on.

Note It is possible to combine more than one attribute selector within a single selector.
For example, to select any anchor element which has the attributes href and title,
the appropriate selector is a[href][title]. If the selector should match only those
anchors with an href set to http://www.w3.org/ and any title value, the correct
selector is a[title][href="http://www.w3.org/"].

Although they have a great many uses in relation to HTML and XHTML documents, attribute selectors
are expected to see very heavy use with pure XML documents.
Opera 4 and 5 both incorrectly handle the |= attribute selector. They will match the specified value if it
appears anywhere in the attribute; thus, p[class|="three"] will incorrectly match <p
class="bakers-three">.

Examples
a[link] {color: blue;}
a[link="http://www.w3.org/"] {font-weight: bold;}
img[alt~="Figure"] {float: right;}
*[lang|="fr"] {font-style: italic;}

Class Selectors
For any element which has a class attribute, a class selector may be used to select on the value of the
class attribute.

Generic Syntax
X.class1
Selects any element X whose class attribute has a value of class1.
X.class1.class2...
Selects any element X whose class attribute contains the space-separated values class1 and
class2, in any order. Any number of values may be chained together, so long as each is separated
from the others by a period. Therefore, a selector such as p.beach.hotel.rooms.rates is a
perfectly legitimate construct. There may be other space-separated values in the class attribute, and
these will not interfere with the match. For example, p.beach.hotel would match the elements <p
class="beach hotel rates"> and <p class="beach hotel pictures">, as well as the element
<p class="hotel beach">.
.class1
Selects any element whose class attribute has a value of class1.

Note The class selector is a special HTML- and XHTML-specific notation, and uses a
specific syntax which is relevant only to those languages. In those languages, the
attribute class may appear on any element. Other markup languages may or may
not permit this convention. For most XML-based languages, the attribute
selectors will be more commonly used.

Under CSS1, classes could not start with a digit, but most browsers ignored this restriction. In CSS2,
classes may begin with digits, so the original problem has in effect corrected itself.

Cascading Style Sheets 2.0 Programmer's Reference

 27

Examples
p.warning .urgent {color; red; font-weight: bold;}
div.aside {border: 1px solid blue; background: silver;
 padding: 1em;}
.help {font-style: italic;}

ID selectors
An ID selector is very similar to the class selector.

Generic Syntax
X#id1
Selects any element X whose ID attribute has a value id1.
#id1
Selects any element whose ID attribute has a value id1.

Note Like the class selector, the ID selector is specific to HTML and XHTML. In this
case, it is used to select values of the ID attribute, which may appear on any
element. Note that HTML and XHTML restrict ID values to be unique within a
given document; thus, there can only be one ID attribute with a value of jh8571
for each document. Other markup languages which permit the ID attribute may or
may not enforce this uniqueness restriction.

Under CSS1, IDs could not start with a digit, but most browsers ignored this restriction. In CSS2, IDs
may begin with digits, so the original problem has in effect corrected itself.

Examples
h1#page-title {border-bottom: 4px double gray;
 background: gray;}
div#zza77j {color: purple;}
#footer {border-top: 1px solid gray;}

Pseudo-Classes
A pseudo-class is a selector construct which causes a user agent to behave as though it has inserted
“phantom classes” into the document markup, and then applied styles based on the modified markup.
This is done in order to allow for styling based on things which do not appear in the document itself,
such as the state of a hyperlink (e.g., visited or unvisited). Since this phantom markup is represented as
a class-attribute structure, these constructs are referred to as pseudo-class selectors.
In CSS1, it was required that a pseudo-class selector be placed at the end of its associated selector.
This led to the requirement that with class markup, the pseudo-class selector had to follow the class
notation; e.g., a.external:link. This restriction was relaxed in CSS2 to allow the construction
a:link.warning. However, this may not be recognized in older CSS-aware browsers, so it should be
used with caution.
In CSS2, it is possible to chain multiple pseudo-class selectors together; for example, a:link:hover
or input:hover:focus. This was not permitted under CSS1, and older CSS-aware browsers may
ignore selectors which use this format, so it should be used with caution as well.

:first-child
The :first-child selector is used to select an element which is not only the child of another element, but
is, in fact, the first child.

Generic Syntax
X:first-child

Selects any element X which is the first child of another element.
Note Any text which appears before the first child element will not affect the operation

of this selector. For example, the selector p.warning em:first-child will match the
first EM element in the following markup.

<p class="warning">This is warning text which

Cascading Style Sheets 2.0 Programmer's Reference

 28

contains some emphasized text as well
as some strong textand
more emphasized text.
Again, only the first EM element will be selected, and the text which appears between the opening of the
paragraph element and the beginning of the EM element does not prevent the selector from operating.

Examples
p:first-child {font-style: italic;}
ol li:first-child {text-indent: -2em;}
div:first-child em {font-weight: bold;}

:link
The :link selector is used to apply styles to any hyperlink which points to an unvisited resource.

Generic Syntax
X:link

Selects any element X which is a hyperlink and which points to an unvisited resource.
Note This link state is mutually exclusive with :visited (see the following section). Under

HTML and XHTML, the only element which may take a :link pseudo-class is an
anchor element (A) which has an href attribute. Other markup languages will
almost certainly not have these restrictions, although they are likely to impose
others.

Examples
a:link {color: blue; text-decoration: underline;}
a.external:link {color: olive;
 text-decoration: underline overline;}

:visited
The :visited selector is used to apply styles to any hyperlink which points to a visited resource.

Generic Syntax
X:visited

Selects any element X which is a hyperlink and which points to a resource which has been visited (e.g.,
one which appears in the browser’s history list).

Note This state is mutually exclusive with :link (see earlier). Under HTML and XHTML,
the only element which may take a :visited pseudo-class is an anchor element (a)
which has an href attribute. Other markup languages will almost certainly not
have these restrictions, although they are likely to impose others.

As the CSS specification says, user agents may choose to return a visited link to an unvisited state. It is
up to each user agent to decide how long a link is treated as “visited” before reverting it to “unvisited”
status.

Examples
a:visited {color: purple; text-decoration: none;}
a.external:visited {color: gray; font-weight: lighter;}

:hover
The :hover selector is used to apply styles to any element which has been designated in some way by
the user.

Generic Syntax
X:hover

Cascading Style Sheets 2.0 Programmer's Reference

 29

Selects any element X which is currently designated.
Note The most common method for “designating” an element without making it active

is to move the mouse pointer (cursor) to a point within the element’s box, so that
the pointer appears to be “hovering over” the element.

There are no restrictions on the types of elements which can be selected, but most user agents apply
:hover styles only to hyperlinks. :hover is not supported at all in Navigator 4.x, Opera 3, and Opera
4, even on hyperlinks.
:hover can be combined with other pseudo-classes to produce state-specific hover effects, but this
syntax is not supported by older CSS-aware browsers.

Examples
p.example:hover {color: blue; background: yellow;}
a:link:hover {color: blue; background: silver;}
input:hover {color: maroon; background: yellow;}

:active
The :active selector is used to apply styles to any element which has been designated by the user and
is currently active.

Generic Syntax
X:active

Selects any element X which is currently active.
Note The most common example of the “active” state is when the mouse pointer is

positioned within (or “over”) an element during the time in which the user is
pressing down the mouse button. Although the most common way of making an
element active is to “click on it” with the mouse, it is possible to designate the
element via some other means (e.g., tabbing via the keyboard) and then select it
through that same means (e.g., hitting the “return” key). Thus, it is possible for an
element to be active without also being hovered.

There are no restrictions on the types of elements which can be selected, but most user agents apply
:active styles to hyperlinks only. Navigator 4.x and Opera 3 do not support :active at all, even on
hyperlinks.
:active can be combined with other pseudo-classes to produce state-specific hover effects, but this
syntax is not supported by older CSS-aware browsers.

Examples
a:active {color: yellow; background: blue;}
a:link:active {color: white; background: black;}
a:visited:active {color: silver; background: gray;}

:focus
The :focus selector is used to apply styles to any element which currently has focus.

Generic Syntax
X:focus

Selects any element X which currently has focus.
Note The most common example of the focus state is a form element which is ready to

accept keyboard input. There are no restrictions on the types of elements which
can be selected, but many user agents apply :focus styles only to form elements,
and sometimes to hyperlinks.

:focus can be combined with other pseudo-classes to produce state-specific hover effects, but this
syntax is not supported by older CSS-aware browsers.

Examples
input:focus {color: black; background: yellow;}

Cascading Style Sheets 2.0 Programmer's Reference

 30

a:focus:hover {font-weight: bold; outline: 1px solid red;}
select:focus {width: auto;}

:lang(n)
The :lang selector is used to apply styles to any element which is written in a specified language code,
where the code is one specified by RFC 1766.

Generic Syntax
X:lang(n)
Selects any element X which uses the language n.

Note This selector operates in a fashion similar to the |= attribute selector, and is
dependent on the document markup to provide the language information. In
HTML and XHTML, this can be provided by means of the lang attribute on an
element, a meta element within the document, or even in the HTTP headers of
the document itself.

:lang can be combined with other pseudo-classes to produce state-specific hover effects, but this
syntax is not supported by older CSS-aware browsers.

Examples
*:lang(fr) {font-weight: bold}
HTML:lang(de) {background: cyan;}
DIV:lang(en) {font-family: sans-serif;}

:left, :right, and :first
See Chapter 5, “Paged Media Styles.”

Pseudo-Elements
A pseudo-element is a selector construct which causes a user agent to behave as though it has inserted
phantom markup into a document, and then applied styles to that phantom element. This is done in
order to allow for styling based on things which do not appear in the document itself, such as styling the
first line of an element. Since this phantom markup is represented as an element-like structure, the
constructs are called pseudo-element selectors.
In CSS, it is required that a pseudo-element selector be placed after the last selector in the overall
selector (e.g., div ul ol.step strong:first-letter). Therefore, a pseudo-element selector must
come after any pseudo-class selectors.

:first-letter
The :first-letter selector is used to apply styles to the first letter of an element.

Generic Syntax
X:first-letter

Applies styles to the first letter of any element X.
X.class1:first-letter
Applies styles to the first letter of any element X that has a CLASS attribute with a value of class1.
X#id1:first-letter
Applies styles to the first letter of any element X that has an ID attribute with a value of id1.

Note If the first letter is preceded by a punctuation mark, then the mark is styled along
with the first letter. Note that only certain properties may be applied to a first
letter.

Allowed Properties
The properties which may be used in a :first-letter rule are
font-variant background margin-top
font-style float margin-right
font-weight clear margin-bottom
font-size vertical-align

(if float is
margin-left

Cascading Style Sheets 2.0 Programmer's Reference

 31

none)
font-family line-height margin
font text-decoration padding-top
color text-transform padding-right
background-color text-shadow padding-bottom
background-image word-spacing padding-left
background-
repeat

letter-spacing padding

Examples
body:first-letter {font-style: italic;}
h1 + p:first-letter {font-size: 200%; color: red;
 float: left;}
*:first-child:first-letter {font-weight: bold;}

:first-line
The :first-line selector is used to apply styles to the first displayed line of an element.

Generic Syntax
X:first-line

Applies styles to the first displayed line of any element X.
X.class1:first-line
Applies styles to the first displayed line of any element X that has a class attribute with value class1.
X#id1:first-line
Applies styles to the first displayed line of any element X that has an ID attribute with value id1.

Note The actual text to which the styles are applied will change depending on the
display environment, the styles used, and so on. Note that only certain properties
may be applied to a first line.

Allowed Properties
The properties which may be used in a :first-line rule are
font-variant background-color text-decoration
font-style background-image text-transform
font-weight background-repeat text-shadow
font-size background-attachment word-spacing
font-family background letter-spacing
font vertical-align clear
color line-height

Examples
body:first-line {color: magenta;}
h1 + p:first-line {font-size: 200%; font-style: italic;}
*:first-child:first-line {font-weight: bold;}

:before
The :before selector is used to place generated content before the content of an element.

Generic Syntax
X:before

Causes content to be inserted into the displayed document immediately before the content of element
X.
X.class1:before
Causes content to be inserted into the displayed document immediately before the content of element X
that has an attribute class with a value of class1.

Cascading Style Sheets 2.0 Programmer's Reference

 32

X#id1:before
Causes content to be inserted into the displayed document immediately before the content of element X
that has an attribute ID with a value of id1.

Note This pseudo-element selector will insert into the displayed document content
which does not appear in the markup. It is used in conjunction with the content
property to specify exactly what is generated. Any styles which appear in the
same rules will be applied to the generated content; in addition, any styles applied
to the affected element which can be inherited will be inherited by the generated
content. See the entry for content in Chapter 4, "Visual Media Styles," for more
details.

Note that since this generated content does not appear in the document itself, it will not appear at all in
older Web browsers, and will not be picked up by indexing programs. Thus, it is not recommended that
necessary content be added in this manner.

Examples
h1.title:before {content: "Title: "; color: gray;}
blockquote:before {content: open-quote;}
p:before {content: url(paramark.gif);}

:after
The :after selector is used to place generated content after the content of an element.

Generic Syntax
X:after

Causes content to be inserted into the displayed document immediately after the content of element X.
X.class1:after
Causes content to be inserted into the displayed document immediately after the content of element X
that has an attribute class with a value of class1.
X#id1:after
Causes content to be inserted into the displayed document immediately after the content of element X
that has an attribute ID with a value of id1.

Note This pseudo-element inserts into the displayed document content which does not
appear in the markup. It is used in conjunction with the content property to specify
exactly what is generated. Any styles which appear in the same rules will be
applied to the generated content; in addition, any styles applied to the affected
element which can be inherited will be inherited by the generated content. See
the entry for content in Chapter 4, "Visual Media Styles," for more details.

Note that since this generated content does not appear in the document itself, it will not appear at all in
older Web browsers, and will not be picked up by indexing programs. Thus, it is not recommended that
necessary content be added in this manner.

Examples
h1.title:after {content: "...";}
blockquote:after {content: close-quote;}
p:after {content: url(arrow.gif);}

At-Rules
An at-rule is a construct that begins with an “@” symbol immediately followed by an identifier. This
identifier is then followed by a block, which is defined as all content contained within a set of curly
braces ({}); or else is followed by all content up until the next semicolon (;)—e.g., the syntax of the
@import rule. Any unrecognized at-rule must be ignored in its entirety.

@import
The @import rule is used to associate an external stylesheet with the document.

Cascading Style Sheets 2.0 Programmer's Reference

 33

Generic Syntax
@import url(...) <media>;

Components
url(...)
The url(...) portion of the rule contains the URL of the external stylesheet, with the actual URL
replacing the ... part. Both relative and absolute URLs are allowed, but only one URL may be included
in each @import directive. This portion of the rule is required.
<media>

A comma-separated list of target media. This portion of the rule is optional.
Note An @import rule behaves in a fashion similar to the LINK element in HTML and

XHTML, except that @import must appear either within a STYLE element or
within an external stylesheet. Also, @import is language-independent; so long as
CSS is recognized, @import can be used no matter what markup language is
used to structure the actual content. Multiple @import rules are permitted within
the same stylesheet, but all @import rules must appear before any other rules in
the stylesheet, and may not appear inside other at-rule blocks. If an @import rule
appears after other style rules in a stylesheet (e.g., h1 {color: gray;}), or is placed
within another at-rule block, then CSS2 parsers are required to ignore the
incorrectly placed @import rule.

By placing an @import rule inside an external stylesheet, it is possible to use one external stylesheet to
bring in another. This sort of recursive importing of styles is not well supported in older browsers.
@import is not supported by Navigator 4.x, which is actually somewhat useful since it allows authors to
"hide" styles which Navigator 4.x would have trouble interpreting. (For using external stylesheets in
Navigator 4.x, see the entry on the LINK element in Chapter 1.)

Examples
<style type="text/css">
 @import url(http://www.my.site/styles/autumn.css);
</style>
<style type="text/css" media="screen,print">
 @import url(print-styles.css) print;
 P {margin-left: 1.25em;}
</style>

@media
The @media rule is used to specify the target media for a set of style rules. This permits the inclusion of
styles for multiple media in a single stylesheet.

Generic Syntax
@media <media> {...styles...}

Components
<media>
The <media> portion is a comma-separated list of target media for the styles which follow. This portion
of the rule is optional.
{...styles...}
The collection of rules which are to be applied in the target media. This portion of the rule is required.

Note Other rule blocks may not appear inside the @media rule block.

Examples
@media print {
 body {color: black; background; white;}

Cascading Style Sheets 2.0 Programmer's Reference

 34

 a:link, a:visited {text-decoration: underline;}
}
@media screen, projection {
 body {color: black; background: #FCD;}
 a:link, a:visited {text-decoration: none;}
}
@media screen,print {
 * {line-height: 1.25;}
}

@charset
The @charset rule is used to specify the character encoding of a document.

Generic Syntax
@charset "<charset>";

Components
<charset>

This must be a character set as described in the IANA registry.
Note Only one @charset rule must appear in an external stylesheet, and it must be the

very first thing in the stylesheet, with no content of any kind preceding it.
@charset is not permitted in embedded stylesheets.

Examples
@charset "ISO-8859-1";

@font-face
The @font-face rule is used to exhaustively describe a font face for use in a document.

Generic Syntax
@font-face {<font-description>};

Components
<font-description>

This is formatted as a series of descriptor-value pairs.
Note @font-face may also be used to define the location of a font for download,

although this may run into implementation-specific limits.
In general, @font-face is extremely complicated, and its use is not recommended for any except
those who are expert in font metrics. A detailed exploration of @font-face could be a chapter (or even
a book) in itself, and is not undertaken in this work. See the CSS2 specification, section 15.3, for more
details.

Examples
@font-face {
 font-family: "Scarborough Light";
 src: url("http://www.font.site/s/scarbo-lt");
}
@font-face {
 font-family: Santiago;
 src: local ("Santiago"),
 url("http://www.font.site/s/santiago.tt")

Cascading Style Sheets 2.0 Programmer's Reference

 35

 format("truetype");
 unicode-range: U+??,U+100-220;
 font-size: all;
 font-family: sans-serif;
}

@page
See the entry for @page in Chapter 5, "Paged Media Styles," for details.

Chapter 4: Visual Media Styles
Overview
At its heart, CSS is a style language for visual presentation. Although it does have sections devoted to
aural and paged media, the vast bulk of its properties and abilities lie in the visual realm. It is therefore
unsurprising that the bulk of this reference should be devoted to explaining the visual media properties.
It is important to note that some of the properties in this section apply not only to visual media. Some of
them are also used in the interactive medium, for example. Others, such as display and position,
are used in non-visual media, but can have different effects in those media. These differences will be
noted, and are also covered in the sections that address non-visual media.
It is important to note that in many circumstances “visual media” is just another term for “continuous
media,” which itself is a fancy way of saying “browser display.” This isn’t all the term “visual media”
means, but it is what most people care about. Thus, there is a difference between visual and paged
media, despite the fact that both are fundamentally dependent on vision to be comprehended. Paged
media are covered in Chapter 5. For a review of the fundamentals of visual layout, refer to Chapter 1.
Although every property accepts inherit as a value, it is not discussed in detail in the following
reference. The operation of inherit is discussed in Chapter 1, as it is the same for every property.

Reference

background
background is a shorthand element used to set background styles for an element.

Summary
Value Syntax
[<background-color> || <background-image> || <background-
repeat> || <background-attachment> || <background-position>] |
inherit
Initial Value

not defined for shorthand properties
Percentages
allowed on <background-position>
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<background-color>
Sets a solid color for the element’s background, padding, and border background. See the section on
background-color for more details.

Cascading Style Sheets 2.0 Programmer's Reference

 36

<background-image>
Defines the location of an image to be placed in the element’s back- ground. See the section on
background-image for more details.
<background-repeat>
Sets a repeat direction for an image in the element’s background. See the section on background-
repeat for more details.
<background-attachment>
Sets an attachment state for any images in the element’s background. See the section on
background-attachment for more details.
<background-position>
Sets a position for the origin image in the element’s background. See the section on background-
position for more details.

Note Although all five background aspects can be set via background, only one of them
is necessary to constitute a legal value. Thus, it is possible to set just the
background color with background, thus returning the other four aspects to their
default values. (See the section on shorthand properties in Chapter 1 for more
details.)

In Navigator 4.x, background and its associated properties are not well supported. The most common
problem is that a background applied to a block-level element will only set a background for the content
of the element, not the entire background of the element. A workaround for this problem is to set an
invisibly thin border around the element whose color matches the background of the parent element.

Examples
body {background: white url(/pix/sawtooth.gif) top center
 repeat-x scroll;}
table {background: silver;}
p.warning {background: yellow url(danger.jpg) repeat-y;}

Related Properties
background-attachment, background-color, background-image,
background-position, background-repeat

background-attachment
background-attachment determines the tiling context and scroll state of a background image.

Summary
Value Syntax
scroll | fixed | inherit
Initial Value
scroll
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
scroll
A background image set to scroll will scroll along with the rest of the document.
fixed
A background image set to fixed will remain locked in place while the rest of the document scrolls.

Cascading Style Sheets 2.0 Programmer's Reference

 37

Note Although it seems simple in concept, background-attachment is actually quite
powerful and in some ways very complicated.

If a background image is set to be fixed, it is locked in place and cannot move while the rest of the
document scrolls. One way to take advantage of this effect is to define a tiled pattern which is the same
size as a tiled pattern in the background, but a different color. For example, consider:
body {background: green url(greentile.gif) fixed;}
h1 {background: blue url(bluetile.gif) fixed;}
For this example, we’ll assume that the two background images are the same color. Since the tiling
context for both elements is the top left corner of the document, the tiled backgrounds will line up with
each other. As the H1 element scrolls around the screen, it will "look into" different parts of its own
background, which will always be lined up with the body’s background. Thus, it will appear to change
the color of the tiled background.

There is a potential danger with this property, however. Since fixed backgrounds are positioned with
respect to the viewport, they may be placed outside the background and padding of the element to
which they belong. In order to understand this, consider the following rule:
h2 {background: black url(star.jpg) center fixed no-repeat;}
Here we have a single image which will be centered in viewport, will not be tiled, and will not scroll with
the document. However, there is no guarantee that an H2 element will be placed at the center of the
viewport. In that case, the background image will not be visible, since it is placed outside the padding
and background of the H2. Only when an H2 is at the center of the viewport will the associated
background image be visible. In addition, if multiple rules place different background images in the
same position (the center of the document), they will overlap in some sense. However, since elements
do not generally overlap, this is not necessarily a problem. As each element scrolls past the center of
the viewport, it will reveal some or all of its associated background image.
However, only Navigator 6 and Internet Explorer 5 for Macintosh support this behavior. All other known
browsers support fixed backgrounds on the BODY element in HTML, but do not support the "alignment"
behavior described.
The specification allows user agents to treat fixed as scroll. This has the same effect as not
supporting background-attachment at all, since all known visual browsers implement the
background- scrolling behavior as part of their HTML handling.

Examples
body {background-attachment: fixed;}
h1 {background-attachment: scroll;}

Related Properties
background, background-color, background-image,
background-position, background-repeat

background-color
background-color sets a solid color for the entire background, including the padding and border
background, of an element.

Summary
Value Syntax
<color> | transparent | inherit
Initial Value
transparent
Percentages

n/a
Inherited

no
Applies to

all elements

Cascading Style Sheets 2.0 Programmer's Reference

 38

Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details).
transparent

Allows the backgrounds of ancestor elements to “shine through,” or be visible behind this element.
Note Although the default value of transparent is honored by all known browsers,

explicitly setting a value of transparent in Navigator 4.x will result in a black
background. In a related bug, setting the value to inherit will result in a sickly
green.

Examples
body {background-color: white;}
h1 {background-color: rgb(100%,60%,33.33%);}
p.warning {background-color: #FF0;}

Related Properties
background, background-attachment, background-image,
background-position, background-repeat

background-image
background-image defines a pointer to an image resource which is to be placed in the background of
an element.

Summary
Value Syntax
<uri> | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<uri>
The user agent should use the image defined by that URI as the background image. If the URI points to
something other than an image, then it is to be ignored and the user agent should act as though
background-image had been set to none.
none
Setting background-image to none means that no background image should be used for matching
elements.

Note By default, background images are tiled from the top left corner of the element
and will scroll with the document; however, all this can be changed via other
background properties. If an image cannot be found, or if portions of the image
are transparent, then the background color of the element “fills in” the blank parts.

Cascading Style Sheets 2.0 Programmer's Reference

 39

If the background color is transparent, then the backgrounds of any ancestor
elements will be visible through the blank parts. Background images with alpha
channels, such as those in the PNG format, should composite the image with the
color provided by background-color, and with the background of any ancestor
elements which are visible.

It is generally a good practice to make sure that a background color is set along with a background
image, especially if the foreground (text) color is meant to be complemented by the background color.
By providing a background color as a fallback, authors can do their best to ensure that the document
will be readable even if the back- ground image cannot be displayed for some reason.

Examples
body {background-image: url(http://www.images.net/cat1/newts.gif);}
table {background-image: url(wavy.jpg);}
pre {background-image: none;}

Related Properties
background, background-attachment, background-color,
background-position, background-repeat

background-position
background-position determines the placement of the origin element; that is, the point from which
a repeated background begins.

Summary
Value Syntax
[[<percentage> | <length>]{1,2} | [[top | center | bottom] ||
[left | center | right]]] | inherit
Initial Value
0% 0%
Percentages

refer to the size of the box itself
Inherited

no
Applies to

block-level and replaced elements
Media Groups

visual

Values
percentage
Causes the appropriate point within the origin image to be aligned with the appropriate point in the
background of the element. The percentage values are used to calculate both points. If one percentage
value is given, it is used for both horizontal and vertical axes. If two values are given, the first is used for
the horizontal axis, and the second for the vertical. Thus, for a value of 50% 50%, the middle of the origin
image is aligned with the middle of the background; for a value of 100% 100%, the bottom right corner of
the origin image aligns with the bottom right corner of the element background. Percentage values may
not be mixed with keywords such as left, but may be mixed with length values.
<length>
Defines the offset of the top left corner of the origin image from the top left corner of the background. If
one length value is given, it is used for both horizontal and vertical axes. If two values are given, the first
is used for the horizontal axis, and the second for the vertical. Length values may be mixed with
percentage values, but not with keywords such as top.
top

Cascading Style Sheets 2.0 Programmer's Reference

 40

Causes the top edge of the origin image to be aligned with the top edge of the background. top may be
used in conjunction with the keywords left, center, and right. If it is used by itself, top is
equivalent to the value 50% 0%.
bottom
Causes the bottom edge of the origin image to be aligned with the bottom edge of the background.
bottom may be used in conjunction with the keywords left, center, and right. If it is used by itself,
bottom is equivalent to the value 50% 100%.
left
Causes the left edge of the origin image to be aligned with the left edge of the background. left may
be used in conjunction with the keywords top, center, and bottom. If it is used by itself, left is
equivalent to the value 0% 50%.
right
Causes the right edge of the origin image to be aligned with the right edge of the background. right
may be used in conjunction with the keywords top, center, and bottom. If it is used by itself, right
is equivalent to the value 100% 50%.
center
Causes the center of the origin image to be aligned with the center of at least one axis of the
background. center may be used in conjunction with any of the keywords. If it is used by itself,
center is equivalent to the value 50% 50% (and is also equivalent to center center).

Note The term origin image is a condensed way of saying “place from which the tiling
of the background image will commence.” By default, a background image is
repeated in all four directions—up, down, right, and left—infinitely. (See
background-repeat for information on how to alter this behavior.) Changing the
position of the origin image can change the way the background is laid out. For
example, a grid-pattern will look quite different if it tiles from the center of the
background, instead of from the top left corner. This difference will be seen
primarily around the edges of the element’s background, where the clipping of the
background will change depending on the origin image’s placement.

If a length unit and a percentage are used together, or if two length or two percentage values are
specified, then the first is used for the horizontal axis, and the second for the vertical. Length and
percentage values may be negative, and will push the origin image above and to the left of the top left
corner of the element’s box. However, there may be unexpected results, as user agents are not
required to support this behavior.
Keyword combinations may occur in any order, thanks to their inherent meanings. Thus, top left and
left top will have the same effect, and both are equivalent to the value 0% 0%.
Navigator 4.x does not support background-position at all.

Examples
body {background-position: top center;}
h1 {background-position: 50%;}
td.sidebar {background-position: -10px 33%;}

Related Properties
background, background-attachment, background-color, background-image,
background-repeat

background-repeat
background-repeat defines the directions in which a background image will be repeated (if any).

Summary
Value Syntax
repeat | repeat-x | repeat-y | no-repeat | inherit
Initial Value
repeat
Percentages

n/a

Cascading Style Sheets 2.0 Programmer's Reference

 41

Inherited

no
Applies to

all elements
Media Groups

visual

Values
repeat

Causes the background image to be repeated along both the horizontal and vertical axes. This is the
“tiling” effect familiar from traditional HTML browsers.
repeat-x
Causes the background image to be repeated along the x axis. Note that this means it will repeat to
both the right and left, not just to the right.
repeat-y
Causes the background image to be repeated along the y axis. Note that this means it will repeat to
both up and down, not just down.
no-repeat

Prevents the background image from being repeated at all. The origin image will be placed in the
background, but no “tiling” will occur.

Note The tiling effects of background-repeat are often misunderstood by authors. The
common assumption is that once the origin image has been placed via
background-position, the background will repeat down and to the right. Were this
true, then centering the origin image and setting background-repeat to repeat
would fill the background into the lower right quadrant of the background. Instead,
the background will fill the entire background, as an author would expect.

This allows authors to center an image and repeat it along one axis or another. Assume a sine-wave
pattern image which describes a single sine. This can be set as a background image, the origin image
moved to the center of the element’s background, and the repetition set to repeat-x. This will cause
the sine wave to stretch from one side of the background to the other, with the entire series of waves
centered within the element.

Internet Explorer 4 for Windows repeats backgrounds only down and to the right, not in both directions
along the axes.

Examples
body {background-image: url(sideteeth.png);
 background-repeat: repeat-y;}
h1 {background-image: url(sinewave.gif);
 background-repeat: repeat-x;}
table {background-repeat: repeat;}

Related Properties
background, background-attachment, background-color,
background-image, background-position

border
border is a shorthand property which sets the style, color, and width of the border around an element.

Summary
Value Syntax
[<border-width> || <border-style> || <color>] | inherit
Initial Value

Cascading Style Sheets 2.0 Programmer's Reference

 42

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). This sets the width for the border around the entire element. Length values for border widths
may not be negative.
<border-style>
Any permitted border style (see border-style for more details). This sets the style for the border
around the entire element.
<color>
Any color value (see the section on color units in Chapter 2 for more details). This sets the color for the
border around the entire element.

Note Since this property can only accept a single keyword for each aspect (style, color,
and width), use of border is generally restricted to those cases in which an author
wishes to set a consistent border all the way around an element. In addition,
since it is a shorthand property, its values can override those set by earlier rules;
see the section on shorthand properties in Chapter 1 for more details.

Examples
pre {border: thin solid purple;}
p.warning {border: 0.25em double red;}
a:link img {border: 2px solid blue;}

Related Properties
border-bottom, border-color, border-left, border-top, border-right,
border-style, border-width

border-bottom
border-bottom is a shorthand property which sets the style, color, and width of the bottom border of
an element.

Summary
Value Syntax
[<border-bottom-width> || <border-style> ||
<color>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 43

all elements
Media Groups

visual

Values
<border-bottom-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for border widths may not be negative.
<border-style>
Any permitted value for the property border-style.
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Note that if no border style is supplied, then the border will not exist (see border-
style for more details).

Examples
h1 {border-bottom: 0.25em double gray;}
a {border-bottom: 1px solid;}
pre {border-bottom: thin outset rgb(25%, 75%, 42.13%);}

Related Properties
border, border-bottom-color, border-bottom-style, border-bottom-width, color

border-bottom-color
border-bottom-color sets the color of the bottom border of an element.

Summary
Value Syntax
<color> | inherit
Initial Value
the value of the color property for the element
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Since this property sets the color for a single side of the border, it can only accept
one color value.

Examples
h2 {border-bottom-color: purple;}
table {border-bottom-color: #C0A467;}

Cascading Style Sheets 2.0 Programmer's Reference

 44

Related Properties
border, border-bottom, border-bottom-style,
border-bottom-width, border-color, color

border-bottom-style
border-bottom-style sets the style of the bottom border of an element.

Summary
Value Syntax
<border-style> | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-style>
Any permitted value of the property border-style.

Note The default value of none will cause the border to have no existence, and
therefore no width (see border-style for more details).

Examples
h4 {border-bottom-style: inset;}
ol {border-bottom-style: none;}

Related Properties
border, border-bottom, border-bottom-color,
border-bottom-width, border-style

border-bottom-width
border-bottom-width sets the width of the bottom border of an element.

Summary
Value Syntax
<border-width> | inherit
Initial Value
medium
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

Cascading Style Sheets 2.0 Programmer's Reference

 45

visual

Values
<border-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for this property may not be negative.

Note The value provided for border-bottom-width will only have an effect if a border
style other than none has been set for the bottom border (see border-style for
more details). If the style of the bottom border is set to none, whether via border-
bottom-style, border-style, or border, then the width of the border is reset to 0.

Examples
p.footer (border-bottom-width: 1px;}
h1 {border-bottom-width: 0.125em;}

Related Properties
border, border-bottom, border-bottom-color,
border-bottom-style, border-width

border-collapse
border-collapse determines the border model used in the rendering of a table.

Summary
Value Syntax
collapse | separate | inherit
Initial Value
collapse
Percentages

n/a
Inherited

yes
Applies to
elements with a display of table or inline-table
Media Groups

visual

Values
collapse

Sets a table to use a collapsing-border method of layout. With this method, two adjacent cells will share
a border between them, with the border chosen depending on a number of rules.

1. Borders with a border-style of hidden will suppress any border at that location. Thus, setting
the first table cell in a row to border-style: groove and then setting the style of the
second cell in the row to border-left-style: hidden will eliminate the grooved border
the two cells might otherwise have shared. The visual effect will be the same as if the two
cells were merged into one cell, although the top and bottom borders of the first cell will not
extend to the second cell.

2. A border-style of none has the lowest priority, in terms of determining which border style
should be used for a given shared border. Thus, if two adjacent cells have styles of solid
and none, respectively, then the cell set to solid will have a solid border around its entire
perimeter.

3. Narrow borders are discarded in favor of wider borders. This rule is ignored if any of the
adjacent borders has a border-style of hidden, or if any of them is set to none.

Cascading Style Sheets 2.0 Programmer's Reference

 46

4. If adjacent borders have the same width, then the border-style to be used is chosen in
the order of preference double, solid, dashed, dotted, ridge, outset, groove, and
last, inset.

5. If adjacent borders are the same style and width, but different colors, then the border to be
used is chosen in the order of preference cell, row, row group, column, column group, and
last, table.

Although the process sounds quite convoluted, this method is in fact the same as that used by
traditional HTML browsers. Under this method, groups of cells (i.e., columns and rows) can have
borders. If the border-collapse: collapse is declared for a given table, then empty-cells and
border-spacing should be ignored within that table.
separate
Sets a table to use a separate-border method of layout. Under this method, every cell has its own
border, and none of these borders are shared with other cells in the table. The gaps between the cells
(if any) are set using the property border-spacing, and any blank space between cells is filled with
the table’s background. When using this method only cells may be assigned. If border-collapse:
separate is declared for a given table, then any border styles declared for rows, columns, and groups
of table elements within that table will be ignored. Furthermore, the rendering of empty cells is controlled
by the property empty-cells.

Note As of this writing, support for table rendering with CSS was almost non-existent.
Thus, browsers effectively supported border- collapse: collapse, which means
that border-spacing and empty-cells had no effect.

Examples
table.old-style {border-collapse: collapse;}
table.spacious {border-collapse: separate;}

Related Properties
border-spacing, empty-cells

border-color
border-color is a shorthand property used to set the color of all four border sides of an element.

Summary
Value Syntax
<color>{1,4} | transparent | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details). If there are four color
values declared, they apply in the order: top, right, bottom, left. In the case of three color values, the first
will apply to the top border, the second to the left and right borders, and the third to the bottom border. If
two color values are declared, the first applies to the top and bottom borders, while the second applies
to the left and right borders. If one color value is declared, it applies to all four sides.
transparent

Cascading Style Sheets 2.0 Programmer's Reference

 47

Sets the border to be invisible. In this state, the border may still have width, but it will not be drawn. This
is similar to setting the property border-style to be hidden, except that in this case the element’s
border style is not affected. This keyword must be used alone, and will thus set all four border sides to
be invisible.

Note Some border styles may alter the color from what is declared. For example, the
inset and outset border styles use "highlight" and "shaded" variants of the
declared color to give the impression of the element being raised from (or
depressed into) the document.

Examples
h1 {border-color: #000000 gray;}
p.warning {border-color: rgb(255,0,0);}
div.circus {border-color: green red magenta yellow;}

Related Properties
border, border-bottom-color, border-left-color,
border-right-color, border-top-color, color

border-left
border-left is a shorthand property which sets the style, color, and width of the left border of an
element.

Summary
Value Syntax
[<border-left-width> || <border-style> ||
<color>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-left-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for border widths may not be negative.
<border-style>
Any permitted value for the property border-style.
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Note that if no border style is supplied, then the border will not exist (see border-
style for more details).

Examples
h1 {border-left: 0.25em double gray;}

Cascading Style Sheets 2.0 Programmer's Reference

 48

a {border-left: 1px solid;}
pre {border-left: thin outset rgb(25%, 75%, 42.13%);}

Related Properties
border, border-left-color, border-left-style,
border-left-width, color

border-left-color
border-left-color sets the color of the left border of an element.

Summary
Value Syntax
<color> | inherit
Initial Value
the value of the color property for the element
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Since this property sets the color for a single side of the border, it can only accept
one color value.

Examples
h2 {border-left-color: purple;}
table {border-left-color: #C0A467;}

Related Properties
border, border-left, border-left-style,
border-left-width, border-color, color

border-left-style
border-left-style sets the style of the left border of an element.

Summary
Value Syntax
<border-style> | inherit
Initial Value
none
Percentages

n/a
Inherited

Cascading Style Sheets 2.0 Programmer's Reference

 49

no
Applies to

all elements
Media Groups

visual

Values
<border-style>
Any permitted value of the property border-style.

Note The default value of none will cause the border to have no existence, and
therefore no width (see border-style for more details).

Examples
h4 {border-left-style: inset;}
ol {border-left-style: none;}

Related Properties
border, border-left, border-left-color,
border-left-width, border-style

border-left-width
border-left-width sets the width of the left border of an element.

Summary
Value Syntax
<border-width> | inherit
Initial Value
medium
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for this property may not be negative.

Note The value provided for border-left-width will only have an effect if a border style
other than none has been set for the left border (see border-style for more
details). If the style of the left border is set to none, whether via border-left-style,
border-style, or border, then the width of the border is reset to 0.

Examples
p.footer (border-left-width: 1px;}
h1 {border-left- width: 0.125em;}

Cascading Style Sheets 2.0 Programmer's Reference

 50

Related Properties
border, border-left, border-left-color,
border-left-style, border-width

border-right
border-right is a shorthand property which sets the style, color, and width of the right border of an
element.

Summary
Value Syntax
[<border-right-width> || <border-style> ||
<color>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-right-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for border widths may not be negative.
<border-style>
Any permitted value for the property border-style.
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Note that if no border style is supplied, then the border will not exist (see border-
style for more details).

Examples
h1 {border-right: 0.25em double gray;}
a {border-right: 1px solid;}
pre {border-right: thin outset rgb(25%, 75%, 42.13%);}

Related Properties
border, border-right-color, border-right-style,
border-right-width, color

border-right-color
border-right-color sets the color of the right border of an element.

Summary
Value Syntax
<color> | inherit

Cascading Style Sheets 2.0 Programmer's Reference

 51

Initial Value
the value of the color property for the element
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Since this property sets the color for a single side of the border, it can only accept
one color value.

Examples
h2 {border-right-color: purple;}
table {border-right-color: #C0A467;}

Related Properties
border, border-right, border-right-style,
border-right-width, border-color, color

border-right-style
border-right-style sets the style of the right border of an element.

Summary
Value Syntax
<border-style> | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-style>
Any permitted value of the property border-style.

Note The default value of none will cause the border to have no existence, and
therefore no width (see border-style for more details).

Cascading Style Sheets 2.0 Programmer's Reference

 52

Examples
h4 {border-right-style: inset;}
ol {border-right-style: none;}

Related Properties
border, border-right, border-right-color,
border-right-width, border-style

border-right-width
border-right-width sets the width of the right border of an element.

Summary
Value Syntax
<border-width> | inherit
Initial Value
medium
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for this property may not be negative.

Note The value provided for border-right-width will only have an effect if a border style
other than none has been set for the right border (see border-style for more
details). If the style of the right border is set to none, whether via border-right-
style, border-style, or border, then the width of the border is reset to 0.

Examples
p.footer (border-right-width: 1px;}
h1 {border-right-width: 0.125em;}

Related Properties
border, border-right, border-right-color,
border-right-style, border-width

border-spacing
border-spacing sets the distance between cells in a table, assuming that the table is rendered using
the separate-borders model.

Summary
Value Syntax
<length> <length>? | inherit
Initial Value
0

Cascading Style Sheets 2.0 Programmer's Reference

 53

Percentages

n/a
Inherited

yes
Applies to
elements with a display of table or inline-table
Media Groups

visual

Values
<length>

Any length unit. If two values are declared, the first applies to spacing along the horizontal axis, and the
second applies to the vertical axis. If one value is declared, it applies to both axes. Length values for
this property may not be negative.

Note If the property border-collapse is set to collapse (its default value), any value
declared for border-spacing will be ignored.

Examples
table {border-collapse: separate; border-spacing: 1px;}
table.widen {border-collapse: separate; border-spacing: 0.5in;}

Related Properties
border-collapse, empty-cells

border-style
border-style is a shorthand property used to set the styles of the four border sides of an element.

Summary
Value Syntax
[none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset]{1,4} | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
none
No border is drawn. The primary side effect of this value is that the computed border-width for the
border in question will be set to 0.
hidden
Equivalent to none, except in the context of tables which are rendered with the collapsed-border model
(see border-collapse for more details). This value cannot be used in conjunction with outlines (see
outline-style for more details).

Cascading Style Sheets 2.0 Programmer's Reference

 54

dotted

The border is drawn as a series of dots. The specific placement of these dots is left to the user agent.
dashed

The border is drawn as a series of short line segments. The specific placement of these lines is left to
the user agent.
solid

The border is drawn as a single unbroken line.
double

The border is drawn as a pair of unbroken lines. The specific place- ment of these lines, including the
separation between them, is left to the user agent.
groove

The border is drawn as though it were a furrow carved into the surface of the document. This implies a
“shading” of the border, but the CSS specification does not describe this in detail. Most user agents
handle this shading by splitting each border into two adjacent lines, and darkening the upper (or
leftward) half while lightening the lower (or rightward) half of each border.
ridge

The border is drawn as though it were a ridge pushing up the surface of the document. This implies a
“shading” of the border, but the CSS specification does not describe this in detail. Most user agents
handle this shading by splitting each border into two adjacent lines, and lightening the upper (or
leftward) half while darkening the lower (or rightward) half of each border.
inset

The border is drawn as though the entire element is pushing the surface of the document away from the
user. This implies a “shading” of the border, but the CSS specification does not describe this in detail.
Most user agents handle this shading by lightening the bottom and right borders while darkening the top
and left borders.
outset

The border is drawn as though the entire element is pushing the surface of the document toward the
user. This implies a “shading” of the border, but the CSS specification does not describe this in detail.
Most user agents handle this shading by darkening the bottom and right borders while lightening the top
and left borders.

Note If there are four style values declared, they apply in the order: top, right, bottom,
left. In the case of three style values, the first will apply to the top border, the
second to the left and right borders, and the third to the bottom border. If two style
values are declared, the first applies to the top and bottom borders, while the
second applies to the left and right borders. If one style value is declared, it
applies to all four sides.

In the case of those border styles which have gaps (dotted, dashed, and double), the background of
the element should be visible through the gaps. In other words, the border is always drawn on top of the
element’s background, which ends at the outer edge of the border.
In the case of those border styles which require shading (groove, ridge, inset, and outset), the
actual shaded colors used are based on the value of border-color for that border. It may also be
altered by any background which is visible behind the border, although, as of this writing, this behavior
has not been implemented.
User agents are permitted to interpret dotted, dashed, double, groove, ridge, inset, and
outset as solid. Navigator 4.x does just that.
The keywords permitted for this property collectively make up the <border-style> value group.

Examples
h3 {border-style: ridge none;}
pre {border-style: inset;}
div.crazy {border-style: double dotted outset solid;}
img {border-style: outset;}

Cascading Style Sheets 2.0 Programmer's Reference

 55

Related Properties
border, border-bottom-style, border-left-style,
border-right-style, border-top-style

border-top
border-top is a shorthand property which sets the style, color, and width of the top border of an
element.

Summary
Value Syntax
[<border-top-width> || <border-style> ||
<color>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-top-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for border widths may not be negative.
<border-style>
Any permitted value for the property border-style.
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Note that if no border style is supplied, then the border will not exist (see border-
style for more details).

Examples
h1 {border-top: 0.25em double gray;}
a {border-top: 1px solid;}
pre {border-top: thin outset rgb(25%, 75%, 42.13%);}

Related Properties
border, border-top-color, border-top-style,
border-top-width, color

border-top-color
border-top-color sets the color of the top border of an element.

Summary
Value Syntax
<color> | inherit

Cascading Style Sheets 2.0 Programmer's Reference

 56

Initial Value
the value of the color property for the element
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<color>
Any color value (see the section on color units in Chapter 2 for more details). If no color is specified by
this property or another border property, then the foreground color of the element is used for the
border’s color.

Note Since this property sets the color for a single side of the border, it can only accept
one color value.

Examples
h2 {border-top-color: purple;}
table {border-top-color: #C0A467;}

Related Properties
border, border-top, border-top-style,
border-top-width, border-color, color

border-top-style
border-top-style sets the style of the top border of an element.

Summary
Value Syntax
<border-style> | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-style>
Any permitted value of the property border-style.

Note The default value of none will cause the border to have no existence, and
therefore no width (see border-style for more details).

Cascading Style Sheets 2.0 Programmer's Reference

 57

Examples
h4 {border-top-style: inset;}
ol {border-top-style: none;}

Related Properties
border, border-top, border-top-color,
border-top-width, border-style

border-top-width
border-top-width sets the width of the top border of an element.

Summary
Value Syntax
<border-width> | inherit
Initial Value
medium
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<border-width>
Any length value, or one of the keywords thin, medium, and thick (see border-width for more
details). Length values for this property may not be negative.

Note The value provided for border-top-width will only have an effect if a border style
other than none has been set for the top border (see border-style for more
details). If the style of the top border is set to none, whether via border-top-style,
border-style, or border, then the width of the order is reset to 0.

Examples
p.footer (border-top-width: 1px;}
h1 {border-top-width: 0.125em;}

Related Properties
border, border-top, border-top-color,
border-top-style, border-width

border-width
border-width is a shorthand property used to set the width of the four border sides of an element.

Summary
Value Syntax
[<length> | thin | medium | thick]{1,4} | inherit
Initial Value

not defined for shorthand properties
Percentages

Cascading Style Sheets 2.0 Programmer's Reference

 58

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length unit. Length units for this property may not be negative.
thin
A border which is thinner than a border set to medium. The exact width is not defined by the CSS
specification.
medium
A border which is thicker than a border set to thin, and thinner than a border set to thick. The exact
width is not defined by the CSS specification.
thick
A border which is thicker than a border set to medium. The exact width is not defined by the CSS
specification.

Note Length and keyword values may be mixed together. If there are four values
declared, they apply in the order: top, right, bottom, left. In the case of three
values, the first will apply to the top border, the second to the left and right
borders, and the third to the bottom border. If two values are declared, the first
applies to the top and bottom borders, while the second applies to the left and
right borders. If one value is declared, it applies to all four sides.

Note that a border’s width will be reset to 0 if the value of the property border-style is none.

Examples
p.aside {border-width: 1em;}
ul {border-width: thick 1px;}
h2 {border-width: 0.66ex thin 1mm;}

Related Properties
border, border-bottom-width, border-left-width,
border-right-width, border-top-width

bottom
bottom defines an offset of the bottom edge of an absolutely positioned element from the bottom edge
of its positioning context, or the vertical distance which a relatively positioned element will be displaced.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

refer to height of containing block
Inherited

no
Applies to

positioned elements

Cascading Style Sheets 2.0 Programmer's Reference

 59

Media Groups

visual

Values
<length>

A fixed distance from the bottom of the positioning context.
<percentage>
Some percentage of the height of the positioning context, assuming that the height of the context has
been set explicitly. If not, then a percentage value for bottom is treated as though it were auto. In
practice, this means that percentage values for bottom set on relatively positioned elements will be
ignored.
auto
The actual distance which results will depend on a number of factors. These factors are the dimensions
of vertical measure for an absolutely positioned element (see the notes section). If the element has
been relatively positioned, then auto has no apparent effect.

Note In the case of an absolutely positioned element, the vertical dimensions of the
element must add up to the height of the positioning context. If every measure of
vertical distance besides bottom is explicitly set, then a value of auto is changed
to make sure that they all add up to the height of the positioning context.
Similarly, if all of the vertical dimensions including bottom are explicitly set, but do
not add up to the height of the positioning context, then the value for bottom is
discarded, and the necessary value is substituted. In both cases, a negative
distance may be assigned to bottom. In addition, setting bottom to auto may force
other vertical dimensions which are also set to auto to be reset to 0. See the
section on positioning calculations in Chapter 1 for more information.

In the case of relatively positioned elements, bottom defines a vertical offset from the place where the
relatively positioned element would ordinarily have appeared. Positive values for bottom will offset the
element upward, and negative values will move it downward. If both top and bottom are set to explicit
values, then the value for bottom will be discarded in favor of top.

Examples
div.sidebar {position: absolute; width: 90%; margin: 0; padding: 0;
 height: auto; bottom: 13%;}
sub {vertical-align: baseline; position: relative; bottom: -0.5em;}

Related Properties
height, left, position, right, top

caption-side
caption-side determines the placement of the element box of a table’s caption.

Summary
Value Syntax
top | bottom | left | right | inherit
Initial Value
top
Percentages

n/a
Inherited

yes
Applies to
elements with a display of table-caption
Media Groups

visual

Cascading Style Sheets 2.0 Programmer's Reference

 60

Values
top
Places the caption’s element box above the table box. The element box will be treated as a block-level
box immediately preceding the table, with two exceptions. First, the caption will inherit styles from the
table, and any ancestor elements within the table. Second, the caption is not considered to be a block-
level element for the purposes of any element which precedes the table and has a display of either
compact or run-in. The element box is treated as a block-level element for the purposes of width
calculations, although these are done with the table’s element box as the parent.
bottom
Places the caption’s element box below the table box. Much as with caption-side: top, the element
box will be treated as a block-level box which immediately follows the table, will inherit styles from the
table, and has its width calculated with respect to the table’s element box.
left
Places the caption’s element box to the left of the table box. The width of this caption may be explicitly
set; or, if set to auto, will be determined by the user agent. The caption may be aligned vertically with
respect to the table’s element box using the property vertical-align. In this case, only the values
top, middle, and bottom will be honored. Any other vertical-align value set on a caption will be
treated as top.
right
Places the caption’s element box to the right of the table box. Otherwise, this has the same effect as the
value left.

Note If the value of caption-side is right or left, the caption will be placed outside the
table’s element box, including any margins. Since setting the width of a left- or
right-side caption to auto leaves the actual width up to the user agent, it is
recommended that authors set explicit widths for such captions.

Examples
caption {caption-side: left; width: 10em; text-align: right;
 vertical-align: top;}
td.label {display: table-caption; caption-side: bottom;
 margin-top: 0.33em; width: 80%;}
table {caption-side: top;}

Related Properties
display

clear
clear prevents an element from being displayed next to floated elements.

Summary
Value Syntax
none | left | right | both | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

block-level elements
Media Groups

visual

Cascading Style Sheets 2.0 Programmer's Reference

 61

Values
none

Floated elements may appear on either side of the element.
left

Floated elements may not appear to the left of the element. If a floated element would appear to the left
of the element, the top margin of the element is increased until the top outer edge of the element’s
border is just below the bottom outer edge of the floated element.
right

Floated elements may not appear to the right of the element. The top margin will be increased as
necessary to ensure this.
both

Floated elements may not appear on either side of the element, and the top margin is increased, if
necessary, to ensure this.

Note The value for clear only affects the display of an element with regard to floated
elements which appear earlier in the document. If an element has descendant
elements which are floated, they are not considered for the purposes of clear on
that element.

Examples
h2 {clear: right;}
img.illus {float: left; clear: left;}

Related Properties
float

clip
clip defines the area outside which an absolutely positioned element’s content is not visible.

Summary
Value Syntax
<shape> | auto | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to

block-level and replaced elements
Media Groups

visual

Values
<shape>
A shape descriptor. As of CSS2, there is only one valid shape: rect(top right bottom left).
According to CSS2, the four values within rect(...) define offsets from the content edge of the
positioned element, and each one may be either a length value or auto. Thus, rect(10px 10px 10px
10px) would describe a clipping region inset by ten pixels from each edge of the content area.
However, Internet Explorer implemented this shape as rect(top-x top-y width height). Thus,
rect(10px 10px 20px 10px) would define a clip rectangle which begins 10 pixels below the top of
the content area, and 10 pixels to the right of the left edge, and which is 20 pixels wide by 10 pixels tall.

Cascading Style Sheets 2.0 Programmer's Reference

 62

Furthermore, Explorer treats clip as a method of clipping all aspects of an element—background,
borders, content, and anything else.
auto

The clipping region is equivalent to the content area of the positioned element.
Note The value given for clip applies only if the property overflow has been set to a

value other than visible for the affected element.
As of this writing, the specification and implementation were still out of step with regard to the syntax of
rect(...). There were proposals to change the meaning of clip to match Internet Explorer, and also
to reintroduce the original meaning of clip as another property, but this had not occurred by the time
this text went to press.
In either case, it is possible to define clipping regions which are larger than the element’s content area.
This will not affect the layout of the content, but may affect how much of it is visible. For example,
imagine an element which is seven lines tall, but which contains seventeen lines of text. If the
overflow is set to hidden and the clipping region is set to clip: auto, then only the first seven lines
of content will be visible; the rest will be hidden. Now assume a clipping region of rect(0 0 –1em 0),
using the W3C syntax instead of the Explorer method. This will extend the bottom of the clipping area
down by one em—effectively, the height of a line—and so the eighth line will be visible. This will not
change the size of the element’s box, however, so it is possible that the eighth line will be drawn outside
the borders of the element, or within its padding, or possibly overlapping the border. This would also be
possible in Internet Explorer, although with a different syntax: something like rect(0 0 200px 8em),
assuming that the element’s box is known to be 200 pixels wide and 7em tall.

Examples
div.aside {position: absolute; width: 50%; height: auto;
 overflow: hidden; clip: rect(1em 0.5em 1em 0.5em);}
p.scroller {height: 7em; overflow: scroll; clip: auto;}
#spillout {position: absolute; overflow: hidden;
 clip: rect(0 0 –5em 0);}

Related Properties
overflow

color
color sets the foreground color of an element (typically, the color of the text).

Summary
Value Syntax
<color> | inherit
Initial Value

UA dependent
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
<color>

Cascading Style Sheets 2.0 Programmer's Reference

 63

Any permitted color value.
Note It is strongly recommended that authors who set a foreground color on an

element also set a background color for the same element. Omitting the
background leads to the possibility of color conflicts among the author’s styles,
reader stylesheets, and the user agent’s defaults. For example, if an author sets
an H1 with a class of title to have a white foreground, and a reader’s stylesheet
sets the background color of all H1 elements to be white, then the combination of
the two could lead to an H1 with white text on a white background.

The value declared for color is used as the default color of any borders which may appear on the
element. This default can be overridden with the various border-color-related properties.
Using the keyword inherit with the property color will result in a sickly green in Navigator 4.x.

Examples
h1 {color: maroon;}
p.sunny {color: yellow;}
a:link {color: blue;}
a:visited {color: purple;}

Related Properties
border-color

content
content defines content to be inserted in generated content operations.

Summary
Value Syntax
[<string> | <uri> | <counter> | attr(X) | open-quote | close-quote |
no-open-quote | no-close-quote]+
| inherit
Initial Value

empty string (“”)
Percentages

n/a
Inherited

no
Applies to
:before and :after pseudo-elements
Media Groups

all

Values
<string>

Any permitted string value. This is always enclosed in quotation marks.
<uri>

A pointer to an external resource such as an image. If the user agent cannot display the resource, then
the reference is ignored. It is theoretically possible to include the contents of an entire text or HTML file
in this manner. If a resource such as an image is included in the document, there is no way to provide
an alternate text description or other accessibility features for the resource.
<counter>
There are two possible forms of this value: counter(name, style?) and counters(name,
string,? style?). In both cases, the content will be the value of the named counter at that point in
the document, rendered in the optional style value (decimal by default). In the case of

Cascading Style Sheets 2.0 Programmer's Reference

 64

counters(...), the optional string value indicates a string to follow each instance of the named
counter. See counter-increment for more details.
attr(X)
Causes the insertion of the value of attribute X for the selector’s subject. For example, it is possible to
display the value of the alt attribute of an image using this value. If the attribute does not exist for that
element, an empty string is returned.
open-quote
Causes the insertion of the appropriate string specified using the property quotes.
close-quote
Causes the insertion of the appropriate string specified using the property quotes.
no-open-quote
Prevents the insertion of the appropriate string specified using the property quotes. However, the
nesting level of the quotation marks is still increased.
no-close-quote
Prevents the insertion of the appropriate string specified using the property quotes. However, the
nesting level of the quotation marks is still decreased.

Note Any styles which are applied to the parent element will be applied to the
generated content. It is also possible to style the generated content separately
from the contents of its parent.

Examples
p.aside:before {content: "aside – "; font-weight: bold;
 color: gray;}
p:after {content: url(paramark.gif);}
li:before {content: counters(list-count, ".", lower-roman);}
a:after {content: "[" attr(href) "]"; font-size: smaller;}

Related Properties
:after, :before, counter-increment, counter-reset, quotes

counter-increment
counter-increment increases the value of a named counter.

Summary
Value Syntax
[<name> <integer>?]+ | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

all

Values
<name>
The name of a counter. The name can be any string value. If the name has not been previously reset
using the property counter-reset for the particular scope in which it occurs (see the notes section),
the named counter is assumed to have been set to zero by the root element of the document.
<integer>

Cascading Style Sheets 2.0 Programmer's Reference

 65

Defines an increment for the named counter each time the element appears in the document. This
increment can be zero, or even negative. If no integer is provided, the counter is incremented by one.
none

No increment is performed.
Note If an element is set to display: none, then any counters for that element will not be

incremented. If the element is set to visibility: hidden, on the other hand, then any
counters will be incremented. If an element has both counter-increment and
counter-reset declared, then the counter is first reset and then incremented. More
than one counter may be reset at a time.

Although counters may be incremented (and reset) on a given element, the property content is what
causes the counter to be displayed. It does this with its two counter-related values, counter(name,
style?) and counters(name, string?, style?). These are explained here due to their
dependence on counter-increment to operate effectively.
counter(name, style) is used to increment a counter within its current scope. The style portion is
optional, and may use any of the permitted values for list-style-type, including circle, disc,
and square. Every time an element resets a named counter using the property counter-reset, it
creates a scope for that counter. Different scopes can use the same named counter without collision;
thus, the counting of labels for nested lists can be easily represented. For example, the traditional HTML
method of counting nested lists can be represented as:
ol {counter-reset: list-count;}
li:before {content: counter(list-count) ". ";
 counter-increment: list-count;}
As ordered lists are nested deeper, each “level” creates its own scoped version of list-count. Since
the default list style is decimal, it does not need to be specified here.
Use of the value counters(name, string, style) results in an accumulation of scoped counters,
instead of just displaying the counter for the current scope. Thus, changing the previous example to use
counters(list-count, ".") would result in counters in the style "1.2", "1.2.1", and so on. At each
nesting level, the newly scoped counter and the string will be added on to the previous counter(s).
Similarly, counters(list-count, "-") would result in "1-2", "1-2-1", and so on.

Examples
h2:before {color: green; counter-increment: section;
 content: "Section " counter(section, upper-alpha) ". ";}
ol li:before {counter-increment: list-count;
 content: counters(item, ".", decimal; font-style:
 italic;}
ol.thirds li {counter-increment: triples 3 list-count 1;}

Related Properties
content, counter-reset

counter-reset
counter-reset sets a named counter to a specific value.

Summary
Value Syntax
[<name> <integer>?]+ | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no

Cascading Style Sheets 2.0 Programmer's Reference

 66

Applies to

all elements
Media Groups

all

Values
<name>

The named counter to be reset.
<integer>
The number to which the named counter should be reset. If no integer is given, then the counter is reset
to 0. Negative values are permitted.
none

No reset is performed.
Note If an element has both counter-increment and counter-reset declared, then the

counter is first reset and then incremented. More than one counter may be reset
at a time.

Examples
h1 {counter-reset: chapter section sub-section;}
pre.example {counter-reset: examples;}
ol.fifth {counter-reset: list-counter -5;}

Related Properties
content, counter-increment

cursor
cursor changes the appearance of the cursor (mouse pointer) when it is hovering over an element;
that is, at the time when the pointer is within the element’s box.

Summary
Value Syntax
[[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize |
ne-resize | nw-resize | n-resize | se-resize | sw-resize | s-resize |
w-resize| text | wait | help]] | inherit
Initial Value
auto
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual, interactive

Values
<uri>

A pointer to a resource containing a cursor appearance. If the user agent cannot resolve the URL, or
cannot handle the resource to which it points, then it must use a generic cursor. Since there is no

Cascading Style Sheets 2.0 Programmer's Reference

 67

standard for cursor resources in CSS, this feature is functionally disabled in all browsers known at the
time of this writing.
auto

The user agent determines the cursor appearance for a given context.
crosshair

A crosshair symbol not unlike the plus sign (+).
default

The user-agent or platform-dependent default cursor. Usually an arrow, but may be something else due
to the operating system, user-installed software, or other factors.
pointer

The cursor which is used to indicate that a link is being hovered. On most systems, this is a small hand
with a pointing finger.
move

The cursor gives the appearance that the element can be moved. On many systems, this is a pair of
two-way arrows in a cross formation, not unlike taking the crosshair cursor and adding arrowheads to
the four points.
e-resize

The cursor gives the appearance of allowing size to be increased to the right. This is usually an arrow
pointing to the right.
ne-resize

The cursor gives the appearance of allowing size to be increased both to the right and upward. This is
usually an arrow pointing in the direction of the top right corner of the display.
nw-resize

The cursor gives the appearance of allowing size to be increased both to the left and upward. This is
usually an arrow pointing in the direction of the top left corner of the display.
n-resize

The cursor gives the appearance of allowing size to be increased upward. This is usually an arrow
pointing to the top of the display.
se-resize

The cursor gives the appearance of allowing size to be increased both downward and to the right. This
is usually an arrow pointing in the direction of the bottom right corner of the display.
sw-resize

The cursor gives the appearance of allowing size to be increased both downward and to the right. This
is usually an arrow pointing in the direction of the bottom left corner of the display.
s-resize

The cursor gives the appearance of allowing size to be increased downward. This is usually an arrow
pointing to the bottom of the display.
w-resize

The cursor gives the appearance of allowing size to be increased to the left. This is usually an arrow
pointing to the left.
text

The cursor gives the appearance of allowing a text selection, as with drag-selection of text to be copied.
This is usually an “I-bar,” so named for its resemblance to a capital “I.”
wait

The cursor gives the appearance that the program is busy and that the user should wait. This is typically
an hourglass or watch icon.
help

Cascading Style Sheets 2.0 Programmer's Reference

 68

The cursor gives the appearance that there is help available. This is typically rendered as a question
mark.

Note Because users are generally very attuned to changes in the cursor’s appearance
and expect that certain cursors have certain meanings, authors should use
caution in employing this property.

Examples
p {cursor: text;}
div.confuse {cursor: wait;}
a.helpsys:link, a.helpsys:visited {cursor: help;}

Related Properties
None

direction
direction indicates the writing direction to be used in the rendering of an element.

Summary
Value Syntax
ltr | rtl | inherit
Initial Value
ltr
Percentages

n/a
Inherited

yes
Applies to

all elements, but see notes
Media Groups

visual

Values
ltr

The text is written left-to-right.
rtl

The text is written right-to-left.
Note direction will affect not only the writing direction of text, but also the order in which

table columns are laid out and the direction in which content will horizontally
overflow an element’s content area. It also determines the placement of a partial
line at the end of an element which has been set to text-align: justify.

Although direction can be applied to any element, it will have an effect on inline elements only if the
property unicode-bidi is set to embed or bidi-override.

Examples
*:lang(en) {direction: ltr;}
p.hebrew {direction: rtl;}

Related Properties
unicode-bidi

Cascading Style Sheets 2.0 Programmer's Reference

 69

display
display affects the most basic presentation of an element, effectively classing the element as a
certain type of element. The rendering of the element may depend heavily on its display type, and
certain properties will only work on elements that have specific display values.

Summary
Value Syntax
inline | block | list-item | run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inherit
Initial Value
inline
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

all

Values
inline
This value causes an element to generate an inline-level box; for example, the HTML elements
STRONG, CODE, or EM (among others). The element will generate one or more inline boxes when it is
displayed.
block
This value causes an element to generate a block-level box; for example, the HTML elements P, H1, or
PRE (among others). The element will generate a block box when it is displayed.
list-item
This value causes an element to generate both a block box and a list-item inline box. Under HTML, the
LI element is the only example of such an element.
run-in
Under certain conditions, this value will cause the element to be “inserted” into the beginning of the
following element. If an element A is set to display: run-in and is followed by a block-level element
B, then A becomes the first inline-level box of B. If the element following A is not block-level, then A
becomes a block-level box.
compact
Under certain conditions, this value will cause the element to be placed to one side of the following
element. If an element A is set to display: compact and is followed by a block-level element B, and
B is neither floated nor absolutely positioned, then A is formatted as a single-line inline box. If A cannot
be formatted as a single line, it becomes a block-level box. If A can be formatted in a single line, its
width is compared to the width of the margin to one side of B; the margin chosen (right or left) is
determined by the value of the property direction for element B. If the width of A is less than the
width of the chosen margin, then it is placed within that margin, with the baseline of element A aligned
with the baseline in the first line of element B. The height of A will affect the height of the first line in
element B. If A cannot fit into the chosen margin, then A becomes a block-level box.
marker
This value will set generated content to be a marker; thus, it should be used only in conjunction with the
:before and :after pseudo- elements when they are set on block-level elements. In all other cases,
marker is treated as inline. Markers are placed in the margin of the associated element, but can
overlap the content of the element with which they are associated. Thus, authors should set a width on
the marker box, and also set the left or right margin of the element such that it will be wide enough to
contain the marker without overlap. If the marker’s width is set to auto, then its width is that of its

Cascading Style Sheets 2.0 Programmer's Reference

 70

content. If the width of the marker is too small to dis- play all of the content, the overflow of the content
is controlled by the value for overflow. The height of a marker box is set using the property line-
height, not height. The distance between the marker and the main element (which is known as the
principal box) is controlled by the property marker-offset. For markers placed before the principal
box, the baseline of the marker is vertically aligned with the baseline of the first line in the principal box.
Similarly, for markers placed after the principal box, the baselines of the marker and the last line in the
principal box are vertically aligned. If the principal box does not contain any text, then the bottom outer
edge of the trailing marker is aligned with the bottom edge of the principal box’s bottom outer edge.
Finally, a marker box will be created only if the value of the property content actually generates any
content to be displayed.
table
This value causes an element to generate a block-level table box. This is analogous to the HTML
element TABLE.
inline-table

This value causes an element to generate an inline-level table box. While there is no analogue in HTML,
it can be envisioned as a traditional HTML table which can appear in the middle of a line of text.
table-cell
This value declares the element to be a table cell. This is analogous to the HTML element TD.
table-row
This value declares the element to be a row of table cells. This is analogous to the HTML element TR.
table-row-group
This value declares the element to be a group of table rows. This is analogous to the HTML element
TBODY.
table-column
This value declares the element to be a column of table cells. This is analogous to the HTML element
COL.
table-column-group
This value declares the element to be a group of table columns. This is analogous to the HTML element
COLGROUP.
table-header-group
This value declares the element to be a group of cells which is always visible at the top of the table,
placed before any row or row-groups but after any top-aligned table captions. In paged media, the user
agent may place the contents of this element at the top of each page which the table spans. This is
analogous to the HTML element THEAD.
table-footer-group
This value declares the element to be a group of cells which is always visible at the bottom of the table,
placed after any row or row-groups but before any bottom-aligned table captions. In paged media, the
user agent may place the contents of this element at the bottom of each page which the table spans.
This is analogous to the HTML element TFOOT.
table-caption
This value declares the element to be a caption for a table. This is analogous to the HTML element
CAPTION.
none
The element will generate no boxes at all, and thus will neither be displayed nor impact the layout of the
document. Any descendant elements will also be prevented from appearing, regardless of the value of
display for those elements.

Note The default value of inline is new to CSS2. Under CSS1, the default value was
block, but this made a lot of people very angry and was widely regarded as a bad
move.

display can be used to affect aural rendering of a document; see the entry on speak in Chapter 6 for
more details.
Authors are urged to use extreme caution when using display in a document language which already
has a strong display hierarchy, such as HTML. Considerable havoc could result from setting all
elements to be block, for example; declaring everything to be inline could be just as bad. On the
other hand, in a language like XML which has no predefined display semantics, use of display is a
matter of necessity.

Examples
img.illus {display: block;}

Cascading Style Sheets 2.0 Programmer's Reference

 71

li {display: list-item;}
h3 {display: run-in;}
{display: inline;}

Related Properties
visibility

empty-cells
empty-cells is used in the separate-border table layout model to control the rendering of table cells
which have no visible content.

Summary
Value Syntax
show | hide | inherit
Initial Value
show
Percentages

n/a
Inherited

yes
Applies to
elements with a display of table-cell
Media Groups

visual

Values
show

The borders of an empty cell are rendered.
hide

The borders of an empty cell are not drawn.
Note A cell is considered to be empty if it has no visible content. This can apply to cells

which are devoid of content, cells which contain content that has been made
invisible with the property visibility, and elements which have been suppressed
with the use of the property display. Visible content is any content which is drawn
within the cell, the non-breaking space entity (), and any other whitespace
besides the carriage-return, linefeed, tab, and space characters (ASCII codes
\0D, \0A, \09, and \20, respectively).

empty-cells will be honored only when the property border-collapse is set to separate. If
border-collapse is set to collapse, then empty-cells (and any associated values) will be
ignored.

Examples
table.wide {border-collapse: separate; empty-cells: show;}
td.blank {empty-cells: hide;}

Related Properties
border-collapse

float
float causes an element to be moved to one side of the parent element’s content area, which allows
other content to flow around it.

Cascading Style Sheets 2.0 Programmer's Reference

 72

Summary
Value Syntax
left | right | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all but positioned elements and generated content
Media Groups

visual

Values
left

The element is floated to the left side of its parent element’s content area. Following content will flow
around the floated element to the right.
right

The element is floated to the right side of its parent element’s content area. Following content will flow
around the floated element to the left.
none

The element is not floated.
Note For the rules which govern floating behavior, please see Chapter 1. Under CSS2,

positioned elements and generated content cannot be floated.
An image which has been floated will retain its intrinsic width. Text elements, however, should have a
value assigned for width; otherwise, results can be unpredictable. According to the CSS2
specification, the width of floated text elements will tend toward zero unless some explicit width has
been assigned. Thus, a floated text element with no assigned width could be as narrow as a single
character wide, or perhaps the width of the longest word within the element. Since there is no precisely
defined behavior in such a case, each user agent will likely differ from every other user agent. In order
to avoid uncertainty, authors should be careful to ensure that floated text elements have a declared
width.
In effect, floating an element causes it to reset its display to block, regardless of its original display
level. The only exception is if the original display was none, in which case the element will still not be
rendered, and float will have no effect.
While the content of following elements flows around the floated element, the element boxes of those
following elements will stretch under the floated element. In other words, while the foreground is
reflowed to avoid overwriting the float, the background will “slide under” the float. This is necessary to
avoid non-rectangular back- grounds, in the case of an element whose top is at the middle of a float, but
whose height is such that some of its content flows beneath the float. The unwelcome side effect is that
any element which is completely next to a float, and which also has a visible background, will have its
background drawn under the float. This is also true of any borders which are set on elements next to
floats. If authors wish to ensure that visible backgrounds and borders are not drawn under floats, they
should be sure to set the property clear to move said elements below any floated element.
Support for float exists in all CSS-aware browsers, but unfortunately it is also the property most
plagued by bugs. Floating text elements is one sore point, and so is floating elements within other
floated elements, as well as floating within tables. Authors are urged to undertake extra browser testing
when using float.

Examples
img.figure {float: right;}
p.aside {float: left; width: 25%;}

Cascading Style Sheets 2.0 Programmer's Reference

 73

Related Properties
clear, width

font
font is a shorthand property used to affect the rendering of text.

Summary
Value Syntax
[[<font-style> || <font-variant> || <font-weight>]? <font-size>
[/ <line-height>]? <font-family>] | caption | icon | menu |
message-box | small-caption | status-bar |
inherit
Initial Value

not defined for shorthand properties
Percentages
allowed on <font-size> and <line-height>; refer to font-size of parent element
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
<font-style>
Any permitted value for the property font-style (see font-style for more details).
<font-variant>
Any permitted value for the property font-variant (see font-variant for more details).
<font-weight>
Any permitted value for the property font-weight (see font-weight for more details).
<font-size>
Any permitted value for the property font-size (see font-size for more details).
<line-height>
Any permitted value for the property line-height (see line-height for more details).
<font-family>
Any permitted value for the property font-family (see font-family for more details).
caption

The font used by the operating system for captioned controls (e.g., buttons and drop-down menus). This
is one of the “system font” values.
icon

The font used by the operating system to label icons. This is one of the “system font” values.
menu

The font used by the operating system in menus (e.g., drop-down menus and menu lists). This is one of
the “system font” values.
message-box

The font used by the operating system within dialog boxes (e.g., warning dialogs). This is one of the
“system font” values.
small-caption

The font used by the operating system to label small controls. This is one of the “system font” values.
status-bar

Cascading Style Sheets 2.0 Programmer's Reference

 74

The font used by the operating system in window status bars. This is one of the “system font” values.
Note System font keywords must be declared alone. If the author wishes to change the

appearance of the element’s text when employing a system font, this must be
done with the more specific font properties (e.g., font-size).

If the author does use a system font keyword, then the bare minimum value for font is the <font-
size> and <font-family> keywords. All font values which do not involve system fonts and do not
include a <line-height> keyword must end with the <font-size> and <font-family> keywords,
in that order.
Any keyword values which are not given in the font declaration cause the corresponding properties to
be reset to their default values. Thus, if the keyword <font-style> is omitted, then the property
font-style is set to its default value, normal. The properties font-size-adjust and font-
stretch cannot be provided in a font declaration, and must be declared separately. However, use of
the property font will still reset the values of font-size-adjust and font-stretch to their
defaults.
The “system font” values are not well supported as of this writing, but this is expected to change rapidly.
One area to watch is support for line-height (see the entry later in this chapter for more details).

Examples
h1 {font: bold italic small-caps 250%/1.2 sans-serif;}
pre {font: 1em Courier, "Courier New", Mishawka, monospace;}
div.footer {font: italic smaller/0.8em Times, TimesNR, serif;}
div.dialog {font: message-box;}

Related Properties
font-family, font-size, font-style, font-variant,
font-weight, line-height

font-family
font-family allows the author to provide a comma-separated list of specific font families, plus a
generic type of font family, to be used in the rendering of an element’s text.

Summary
Value Syntax
[[<family-name> | <generic-family>],]*
[<family-name> | <generic-family>] | inherit
Initial Value

UA dependent
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
<family-name>

The name of a specific font (e.g., Times, Helvetica, or Arial). Font names which contain whitespace
should be quoted, using either single- or double-quotation marks. If the font name is not quoted, then
any sequence of whitespace characters within the font name will be converted to a single space, and

Cascading Style Sheets 2.0 Programmer's Reference

 75

any leading or trailing whitespace in the font name will be ignored. Technically, font names which do not
contain whitespace can be quoted, but this is not recommended, as it can confuse some user agents.
<generic-family>
One of five defined generic font family keywords: serif, sans-serif, monospace, cursive, and
fantasy. The generic-family keywords cannot be quoted. The user agent must maintain a list of
specific fonts for each generic family, and will select a font for use from among that list. Of the five
generic-family keywords, two are problematic: cursive and fantasy. Because most cursive fonts
render fairly badly on computer monitors, many systems do not have any cursive fonts available. Even if
a cursive font is available, it will generally make the document’s legibility very poor, so caution should be
used in the employment of cursive fonts. On the other side of the coin, fantasy tends to mean "any
font which does not fit into the other four generic families." The potentially infinite variability of fantasy
fonts—some may be "symbol" or "dingbat" fonts, while others may represent invented languages such
as Klingon, and still others may simply be too "arty" to read— means that no two systems are likely to
map fantasy to the same font. (This problem exists, to a lesser degree, with cursive fonts, which tend
to be very different from one another.) These factors make fantasy almost unusable in the real world,
and extreme caution should be exercised in its use.

Note See Chapter 1 for more details on font selection in CSS.

When rendering an element’s text, the user agent will attempt to use the fonts in the order in which they
are provided. Thus, given the value Times, Adams, serif, a user agent will first attempt to use
Times. If Times is not available, or if it does not contain the needed character, then the user agent will
attempt to use Adams. If Adams is either unsuitable or unavailable, then the user agent will go to the
last entry on the list, which directs it to use any available serif font. If the generic family has been
omitted from the value, then the user agent would have been forced to use its default font (generally set
by the user in a preferences dialog). Note that specific fonts do not have to fall into the same generic
family. It is perfectly legal to specify Times, Helvetica, Courier, and "Minion Web" in the same font-
family value.
Because of the possibility that a given user agent will not have the specific fonts requested, authors are
strongly encouraged to provide a last-ditch fallback in the form of a generic-family keyword at the end of
every font-family value.
It is possible to place generic-family keywords at any point in a font-family value. However, since
the presence of a generic-family keyword will often lead to the selection of some available font, any
specific fonts listed after a generic-family keyword will likely never be chosen. It can be useful to provide
multiple generic-family keywords at the end of a font-family value, especially if the preferred generic
family is an uncommon type such as cursive.

Examples
h1 {font-family: Helvetica, Arial, Verdana, sans-serif;}
pre {font-family: monospace;}
p {font-family: Times, "Times New Roman", TimesNR,
 "New Century Schoolbook", serif;}
div.signature {font-family: "Meyer Light", cursive, serif;}

Related Properties
font

font-size
font-size affects the size of an element’s text.

Summary
Value Syntax
xx-small | x-small | small | medium | large | x-large | xx-large |
larger | smaller | <length> | <percentage> |
inherit
Initial Value
medium
Percentages

Cascading Style Sheets 2.0 Programmer's Reference

 76

refer to parent element’s font size
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
xx-small
Sets the element’s text to be a size smaller than that which results from the value x-small. The exact
size is not defined by CSS.
x-small
Sets the element’s text to be a size smaller than that which results from the value small. The exact
size is not defined by CSS.
small
Sets the element’s text to be a size smaller than that which results from the value medium. The exact
size is not defined by CSS.
medium
Sets the element’s text to be a size smaller than that which results from the value large, and larger
than that which results from the value small. The exact size is not defined by CSS.
large
Sets the element’s text to be a size larger than that which results from the value medium. The exact
size is not defined by CSS, although medium text should be equivalent to the user’s default setting (for
example, the size of unstyled paragraph text).
x-large
Sets the element’s text to be a size larger than that which results from the value large. The exact size
is not defined by CSS.
xx-large
Sets the element’s text to be a size larger than that which results from the value x-large. The exact
size is not defined by CSS.
larger

Sets the element’s text to be larger than that of its parent. This is accomplished by using the absolute-
size scaling factor (see notes) to increase the size of the text.
smaller

Sets the element’s text to be smaller than that of its parent. This is accomplished by using the absolute-
size scaling factor (see notes) to decrease the size of the text.
<length>
Any permitted length value. Negative length values are not permitted for font-size.
<percentage>
Sets the element’s text size relative to that of its parent. For example, font-size: 50% will make the
element’s text half the size of its parent element’s text. The resulting value of font-size for a
percentage calculation is actually the computed font-size which results from the calculation. Thus, if an
element’s font is set to a percentage and is calculated to be seven pixels tall, then its font-size is set to
7px, and it is this value which is inherited by any descendant elements.

Note In order to increase the robustness and scalability of styles, authors are
encouraged to use percentages and em lengths in their stylesheets. Since these
values will set font-size in relation to the default font size (or other elements), they
are vastly preferable to absolute-length units such as points. Furthermore, setting
common elements (such as BODY or P) to a font-size less than 1em (or 100%) is
discouraged, as this will make most text smaller than the user’s default setting. In
many cases, this will make the text too small for comfortable reading.

The computed font-size values of the absolute-size keywords xx-small through xx-large are not
precisely defined, but they do have a known relationship to one another. These values relate to one
another via a scaling factor internal to the user agent. CSS1 suggested a factor of 1.5, but CSS2
changed this to 1.2; however, user agents are not required to use any particular scaling factor. In fact,
different fonts may have different scaling factors.

Cascading Style Sheets 2.0 Programmer's Reference

 77

In any case, adjacent keywords in the progression will have the same size relationship. This relationship
is controlled by the scaling factor. For example, assume that medium is equivalent to 10pt. Given a
scaling factor of 1.2, then large would be equivalent to 12pt, x-large to 14.4pt (12 times 1.2), and
so on. Similarly, small would be equivalent to 8.33pt (10 divided by 1.2), x-small to 6.94pt, and
so on.

While user agents might be expected to recompute the actual sizes of these keywords if the user
changes the default font size, in practice most do not. Instead, they assign unchanging font sizes to the
absolute-size keywords.
Despite what one might expect, providing a length value for font-size may not guarantee the actual
size of the font. This can occur for a number of reasons.
First, the value of font-size is actually setting the height of the character box for each character
which is displayed, not the height of the character glyph itself. Since font character glyphs are rarely
exactly the same height as their character boxes, the actual measured size of the character glyph may
not precisely match the value given for font-size. In most cases, the actual height of the characters
will be less than the font-size value, but in some cases they may be taller.
If the preferred font is not available, and a value has been given for the property font-size-adjust,
then the actual font-size of the font used may be different than that which the author has specified.
In addition, the user agent may maintain bounds past which it will not allow the computed value of
font-size to go. In most cases, this will be to prevent fonts from becoming too small to read, but
upper font-size bounds may also be enforced.

Finally, user agents may provide the user with the ability to alter font sizes, regardless of how the author
sets them. These range from user stylesheets to interface features like “Text Zoom” in Internet Explorer
5 for the Macintosh, or the “Page Zoom” found in Opera.

Examples
h1 {font-size: 225%;}
div.legal {font-size: 0.75em;}

Related Properties
font, font-size-adjust

font-size-adjust
font-size-adjust can be used to improve the legibility of alternate font choices.

Summary
Value Syntax
<number> | none | inherit
Initial Value
none
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
<number>
The aspect value of the first font listed in the value of the property font-family. This value is used in
the equation fs x (fa/aa) = as, where fs is the declared value of font-size for the element, fa is the

Cascading Style Sheets 2.0 Programmer's Reference

 78

declared value of font-size-adjust, aa is the aspect value of the actual font to be used, and as is
the computed font-size for the element.
none

No size adjustments should be made to alternate font choices.
Note Although font-size-adjust cannot be set as a keyword of the property font, its

value will be reset to none for an element if font is also declared for that element.
Thus, any element which uses both font and font-size-adjust must have the
properties in that order: font first, and font-size-adjust second.

In order to understand font-size-adjust a little better, let us consider a hypothetical example.
Suppose that an author declares that an element should use (in order of preference) the fonts "Kathryn
Light" and "Meyer Web." The aspect value of Kathryn Light, which is the ratio of the x-height to the
height of its character box, is 0.42. Knowing this, the page author sets font-size-adjust to 0.42
and also declares the element’s font-size to be 18px.
A user views the page with a system that does not have Kathryn Light, but does have Meyer Web. The
aspect value for Meyer Web is 0.42. The user agent then performs the following calculation: 18px times
(0.42/0.23) = 32.87px. This will be the font-size used to display the element using Meyer Web.
Although this may seem like an enormous difference, the legibility of the element’s text will be
approximately the same as if it had used the first-choice font. Without this size adjustment, the
element’s text would be very difficult to read using Meyer Web.

In practice, this property is rarely used and even less often supported.

Examples
p.sig {font: 125% Author, Braggadaccio, cursive;
 font-size-adjust: 0.33;}
h1 {font-family: Verdana, sans-serif; font-size-adjust: 0.58;}

Related Properties
font, font-size

font-stretch
font-stretch makes text characters wider or narrower than the font’s default character width.

Summary
Value Syntax
normal | wider | narrower | ultra-condensed |
extra-condensed | condensed | semi-condensed | semi-expanded |
expanded | extra-expanded | ultra-expanded | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
ultra-condensed

Cascading Style Sheets 2.0 Programmer's Reference

 79

The text characters in the element will be narrowed extremely, rendering them narrower than if the
value were extra-condensed. CSS does not specify how this is accomplished, nor does it point out
the mechanism for calculating the final character width.
extra-condensed
The text characters in the element will be narrowed significantly, making them narrower than if the value
were condensed. CSS does not specify how this is accomplished, nor does it reveal the mechanism
for calculating the final character width.
condensed
The text characters in the element will be narrowed, more so than if the value were semi-condensed.
CSS does not specify how this is accomplished, nor does it disclose the mechanism for calculating the
final character width.
semi-condensed
The text characters in the element will be slightly narrowed, making them narrower than if the value
were normal. CSS does not specify how this is accomplished, nor does it explain the mechanism by
which the final character width is calculated.
normal

The text characters in the element are of normal width.
semi-expanded
The text characters in the element will be slightly widened, making them wider than if the value were
normal. CSS does not specify how this is accomplished, nor does it show the mechanism for
calculating the final character width.
expanded
The text characters in the element will be widened, making them wider than if the value were semi-
expanded. CSS does not specify how this is accomplished, nor does it present the mechanism for
calculating the final character width.
extra-expanded
The text characters in the element will be widened greatly, making them wider than if the value were
expanded. CSS does not specify how this is accomplished, nor does it explain the mechanism for
calculating the final character width.
ultra-expanded
The text characters in the element will be widened extremely, making them wider than if the value were
extra-expanded. CSS does not specify how this is accomplished, nor does it divulge the mechanism
for calculating the final character width.
wider
The width of text characters in the element will be wider than those of their parent element. In effect, this
moves the font-stretch value up one notch in the list of keywords above, so that if the parent
element’s font-stretch is semi-expanded, then the element’s value will be expanded. The value
cannot be increased past ultra-expanded.
narrower
The width of text characters in the element will be narrower than those of their parent element. In effect,
this moves the font-stretch value down one notch in the list of keywords above, so that if the parent
element’s font-stretch is normal, then the element’s value will be semi-condensed. The value
cannot be increased past ultra-condensed.

Note Although font-stretch cannot be set as a keyword of the property font, its value
will be reset to none for an element if font is also declared for that element. Thus,
any element which uses both font and font-stretch must have the properties in
that order: font first, and font-stretch second.

In practice, this property is rarely used and even less often supported.

Examples
em {font-stretch: extra-expanded;}
div.narrow {font-stretch: ultra-condensed;}
p {font-stretch: normal;}

Related Properties
font

Cascading Style Sheets 2.0 Programmer's Reference

 80

font-style
font-style determines the use of one of three font faces to be used in the rendering of a given
element’s text.

Summary
Value Syntax
normal | italic | oblique | inherit
Initial Value
normal
Percentages
n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
normal

Specifies a normal font face; that is, whatever is the default face for the font in use. In most fonts, this
results in an upright font.
italic

Specifies an italic font face; that is, one which is slanted and in which the characters have been
modified to improve legibility in their slanted state. These are often referred to as Cursive or Italic faces.
If no italic font face is available, the user agent may select one which is labeled “oblique.”
oblique

Specifies an oblique font face; that is, one which is slanted. These are often referred to as Oblique or
Incline faces. In many cases, an oblique face is simply a normal face which has been computationally
slanted.

Note As of this writing, there is no visual difference between the values italic and
oblique in Web browsers. This makes the value oblique fairly unnecessary, but in
the future better support in Web browsers may bring oblique back into common
usage.

Examples
p.slant {font-style: oblique;}
blockquote {font-style: italic;}
blockquote em {font-style: normal;}

Related Properties
font

font-variant
font-variant determines the use of one of two font faces to be used in the rendering of a given
element’s text.

Summary
Value Syntax
normal | small-caps | inherit
Initial Value
normal

Cascading Style Sheets 2.0 Programmer's Reference

 81

Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
normal

Specifies a normal font face; that is, whatever is the default face for the font in use. In the context of this
property, this value effectively means that the font should not be small-caps.
small-caps

Specifies a small-caps face; that is, a face in which lowercase characters are rendered as capital letters
which are smaller than the letters used for uppercase characters. If no such face is available, the user
agent may simulate one by computationally scaling capital letters to get the desired effect.

Note Since lowercase characters in a small-caps font are rendered as capital letters of
reduced size, they may suffer from reduced legibility as well. For example, a
small-caps font in which the uppercase characters are 12 pixels tall (due to the
rule font-size: 12px, perhaps) may use 10-pixel-tall capitals for lowercase
characters.

Under CSS2, user agents are allowed to simulate the small-caps effect by rendering all text in capital
letters of the same size. Although this is visually indistinguishable from text-transform:
uppercase, it is permitted behavior. Internet Explorer 5.x for Windows takes this approach.

It is possible that future versions of CSS will permit other variant types, but the specification does not
hint at what these might be.

Examples
h1 {font-variant: small-caps;}
p {font-variant: normal;}

Related Properties
font

font-weight
font-weight alters the visual weight of characters in an element.

Summary
Value Syntax
normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
800 | 900 | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 82

all elements
Media Groups

visual

Values
100
The font’s characters should be lighter than those characters which result from a value of 200, or at a
minimum have the same weight.
200
The font’s characters should be at least as heavy as those characters which result from a value of 100,
and should be heavier if possible.
300
The font’s characters should be at least as heavy as those characters which result from a value of 200,
and should be heavier if possible.
400
The font’s characters should be at least as heavy as those characters which result from a value of 300,
and should be heavier if possible.
500
The font’s characters should be at least as heavy as those characters which result from a value of 400,
and should be heavier if possible.
600
The font’s characters should be at least as heavy as those characters which result from a value of 500,
and should be heavier if possible.
700
The font’s characters should be at least as heavy as those characters which result from a value of 600,
and should be heavier if possible.
800
The font’s characters should be at least as heavy as those characters which result from a value of 700,
and should be heavier if possible.
900
The font’s characters should be at least as heavy as those characters which result from a value of 800,
and should be heavier if possible.
normal
Equivalent to the value 400.
bold
Equivalent to the value 700.
bolder
The font characters for the element should be heavier than those of the parent element. If there is a
heavier font face available, use it; otherwise, increase the numeric keyword level by one. For example, if
an element’s parent has a weight of 400, and the element is set to bolder, then its weight will be 500
(assuming there is a heavier font face available). This may or may not have a visible effect. The weight
of a font cannot be increased above 900.
lighter
The font characters for the element should be lighter than those of the parent element. If there is a
lighter font face available, use it; otherwise, decrease the numeric keyword level by one. For example, if
an element’s parent has a weight of 400, and the element is set to lighter, then its weight will be 300
(assuming there is a heavier font face available). This may or may not have a visible effect. The weight
of a font cannot be decreased below 100.

Note See the section on font rules in Chapter 1 for more details on font-weight
assignment.

At sufficiently small font sizes, characters will be too small to show the effects of weighting. For
example, with text eight pixels tall, there is little or no visual difference between normal and boldface
text. This is due to the loss of legibility involved in boldfacing characters whose lines are only one or two
pixels apart, and which are one pixel wide. Even though a piece of small text doesn’t look heavy, it may
in fact be as bold as possible, and many authors mistake the lack of visual change as a bug or an
instance of missing support. In fact, it is a reflection of the limitations imposed by modern display
environments.

Cascading Style Sheets 2.0 Programmer's Reference

 83

In practice, a font will generally have at least two faces which the user agent recognizes: normal and
bold. Some fonts may also contain light faces, but it is not certain that a user agent will recognize and
use these faces.

Examples
strong {font-weight: bold;}
a:link, a:visited {font-weight: bolder;}
h3 {font-weight: 900;}

Related Properties
font

height
height defines the vertical distance between the top and bottom edges of the element’s content area.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

see “Values”
Inherited

no
Applies to

all elements except non-replaced inline elements, table columns, and column groups
Media Groups

visual

Values
<length>

Any length unit. Negative length values are not permitted for this property.
<percentage>
The height is calculated with respect to the height of the element’s containing block, assuming that the
containing block’s height has been explicitly set. If not, then a percentage value is treated as auto.
auto
The result of this value depends on a number of factors. In the normal document flow, auto will result in
whatever height is necessary to enclose the content of the element. In positioned elements, it may have
the same effect, or it may be overridden due to constraints introduced using properties such as top and
bottom. See the section on positioning rules in Chapter 1 for more details.

Note If the height of a replaced element (e.g., an image) is set to a length unit, and no
width is set, then the image will be scaled so that its height matches the declared
value, and the width is altered by the same proportion. For example, an image
100 pixels tall and 50 pixels wide is set to height: 200px; thus its width will be
increased to 100 pixels. Setting the height of a replaced element to a percentage
will operate as described above, and make the height of the element some
percentage of the height of its containing block. It is not possible to reduce an
element to half its intrinsic size through a percentage value.

Examples
div.nav {position: fixed; top: 0; height: 15%;}
img.pic {height: 200px;}

Cascading Style Sheets 2.0 Programmer's Reference

 84

select {height: 0.9em;}

Related Properties
bottom, margin-bottom, margin-top, padding-bottom, padding-top, top, width

left
left defines an offset of the left edge of an absolutely positioned element from the left edge of its
positioning context, or the horizontal distance which a relatively positioned element will be displaced.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

refer to width of containing block
Inherited

no
Applies to

positioned elements
Media Groups

visual

Values
<length>

A fixed distance from the bottom of the positioning context.
<percentage>
Some percentage of the width of the positioning context, assuming that the width of the context has
been set explicitly. If not, then a percentage value for left is treated as though it were auto. In
practice, this means that percentage values for left set on relatively positioned elements will be
ignored.
auto
The actual distance which results will depend on a number of factors. These factors are the dimensions
of horizontal measure for an absolutely positioned element (see the notes section). If the element has
been relatively positioned, then auto has no apparent effect.

Note In the case of an absolutely positioned element, the horizontal dimensions of the
element must add up to the width of the positioning context. If every measure of
horizontal distance besides left is explicitly set, then a value of auto is changed to
make sure that they all add up to the width of the positioning context. Similarly, in
right-to-left writing modes such as Hebrew, if all of the horizontal dimensions
including left are explicitly set, but do not add up to the width of the positioning
context, then the value for left is discarded, and the necessary value is
substituted. In both cases, a negative distance may be assigned to left. If left is
set to auto in left-to-right writing modes such as English, then the left edge of the
positioned element should be aligned with the place where it would have
appeared had the element not been positioned.

In addition, setting left to auto may force other horizontal dimensions which are also set to auto to
be reset to 0. See the section on positioning calculations in Chapter 1 for more information.
In the case of relatively positioned elements, left defines a horizontal offset from the place where the
relatively positioned element would ordinarily have appeared. Positive values for left will offset the
element to the right, and negative values will move it to the left. In left-to-right writing modes such as
English, if both right and left are set to explicit values, then the value for right will be discarded in
favor of left.

Cascading Style Sheets 2.0 Programmer's Reference

 85

Examples
div.sidebar {position: absolute; width: auto;
 left: 10%; right: 50%;}
em.slide-left { position: relative; left: -1em;}

Related Properties
bottom, position, right, top, width

letter-spacing
letter-spacing modifies the amount of space placed between adjacent characters.

Summary
Value Syntax
normal | <length> | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
normal
The default spacing between letters is not changed. In practice, this is equivalent to setting the value to
0.
<length>

This will add to the spacing between letters—the greater the length, the more space will be seen
between letters. Negative values are permitted, and will cause letters to bunch together, to the point of
potentially overwriting one another or even appearing to write text “backwards.”

Note letter-spacing is treated as a modifier because in normal layout, there is no space
between character boxes. The space normally seen between characters is an
artifact of intentional design, as some amount of space is intentionally left to
either side of a character glyph within its character box. This is done to prevent
the glyphs from touching each other during rendering.

In fully justified text (see text-align), the space between letters may be programmatically altered in
order to create the effect of full justification.
In order to preserve the relative spacing between characters for descendant elements, authors are
encouraged to use em length units.

Examples
em {letter-spacing: 1px;}
h1.wider {letter-spacing: 0.5em;}
p.scrunched {letter-spacing: -0.5ex;}
table {letter-spacing: normal;}

Related Properties
text-align, word-spacing

Cascading Style Sheets 2.0 Programmer's Reference

 86

line-height
line-height modifies the height of the inline boxes which make up a line of text.

Summary
Value Syntax
normal | <number> | <length> | <percentage> | inherit
Initial Value
normal
Percentages

refer to the font size of the element itself
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
normal
Directs the user agent to set the height of lines in the element to a “reasonable” distance. This is
recommended as a <number> value between 1.0 and 1.2, but user agents are free to use whatever
value they choose.
<number>
The actual height of lines in the element is this value multiplied by the font-size of the element. In
addition, the numeric value, and not the computed line-height, is inherited by any descendant
elements. This allows descendants to have line-heights which are proportional to their font sizes. Use of
this value is strongly encouraged. Negative values are not permitted.
<length>
The height of lines in the element is the value given. Note that this is actually a minimum height, as
conditions within a given line may make its line-box taller than the length value given for line-height.
Negative values are not permitted.
<percentage>
The height of lines in the element is calculated as a percentage of the element’s font-size (not the
parent element’s font-size). Note that this is actually a minimum height, as conditions within a given
line may make its line-box taller than the length value given for line-height. Negative values are not
permitted.

Note The effects of line-height are actually far more complicated than they appear. The
value of line-height for a given element is used to derive the half-leading which is
applied to the top and bottom of each inline box in the line. These inline boxes are
what collectively make up the line box. A line box may be taller than any of its
constituent inline boxes, but it can never be shorter than the shortest inline box. It
is also possible that the line box may be shorter than the contents of the line, in
which case the contents may overlap the content of other lines. See the section
on inline formatting in Chapter 1 for more details.

Support for line-height is less than exemplary in current Web browsers. Only with the advent of
browsers such as Internet Explorer 5 for Macintosh and Opera 4 have Web browsers truly supported
the line-height described in the CSS specification. Older browsers may evidence unexpected behaviors,
generally in the form of pushing lines further apart than they should be drawn. In most cases, there is
minimal impact on the layout (something which most authors will tolerate), but attempts at extreme
typographic effects may be thwarted by browser limitations.
The height of marker boxes (see display: marker) is set using line-height.
The value of line-height can also be set as a part of the font property.

Examples
h1 {line-height: 130%;}
p {line-height: 1.1;}

Cascading Style Sheets 2.0 Programmer's Reference

 87

pre {font-size: 10px; line-height: 11px;}

Related Properties
font, font-size, vertical-align

list-style
list-style is a shorthand property used to set the position and type of markers in a list; it can also be
used to assign an image as the marker.

Summary
Value Syntax
[<list-style-type> || <list-style-position> || <list-style-image>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

yes
Applies to
elements with a display of list-item
Media Groups

visual

Values
<list-style-type>
Any permitted value for the property list-style-type.
<list-style-position>
Any permitted value for the property list-style-position.
<list-style-image>
Any permitted value for the property list-style-image.

Note

As with other shorthand properties, any unspecified keywords will reset the corresponding properties to
their default values. See the section on shorthand properties in Chapter 1 for more details.

Examples
ol li {list-style: decimal;}
ul.state li {list-style: inside url(states/new-york.png);}

Related Properties
list-style-image, list-style-position, list-style-type

list-style-image
list-style-image defines a pointer to an image resource that is to be used as the marker for list
items.

Summary
Value Syntax
<uri> | none | inherit
Initial Value
none
Percentages

n/a

Cascading Style Sheets 2.0 Programmer's Reference

 88

Inherited

yes
Applies to
elements with a display of list-item
Media Groups

visual

Values
<uri>
A pointer to an image resource. If the URL cannot be resolved, then the property is treated as if the
value were none.
none

No image should be used as a marker for the element.
Note Since it is not possible to affect the size of a marker image specified using list-

style-image, authors should exercise caution to ensure that the image is not too
large for the text in the list item’s content. For more details on markers, refer to
the entry for marker in the property display.

Note that since this property is inherited, a marker image set for a list will be applied to any lists which
are descendants of the element. The only way to prevent this is to set the value of list-style-
image for these descendant lists to none.

Examples
ul.state li {list-style-image: url(states/new-york.png);}
ul.state li ul {list-style-image: none;}

Related Properties
list-style, list-style-position, list-style-type

list-style-position
list-style-position affects the placement of a marker in relation to the content of the list item.

Summary
Value Syntax
inside | outside | inherit
Initial Value
outside
Percentages

n/a
Inherited

yes
Applies to
elements with a display of list-item
Media Groups

visual

Values
inside
The marker is made an inline element at the beginning of the first line of the list item’s content. This is
somewhat similar to the effect created by display: run-in.
outside
The marker is placed outside the box containing the list item’s content. The actual position of this
marker is not specified. For more flexible list-item markers, refer to the entry for the value marker in the
property display.

Cascading Style Sheets 2.0 Programmer's Reference

 89

Note Note that since this property is inherited, the marker position set for a list will be
applied to any lists which are descendants of the element. The only way to
prevent this is to set the value of list- style-position for these descendant lists to a
different value.

Examples
ul.collapse {list-style-position: inside;}
ol li {list-style-position: outside;}

Related Properties
list-style, list-style-image, list-style-type

list-style-type
list-style-type sets the counting (or bullet) style used in the marker for a list item.

Summary
Value Syntax
disc | circle | square | decimal | decimal-leading-zero | lower-roman |
upper-roman | lower-greek | lower-alpha | lower-latin | upper-alpha |
upper-latin | hebrew | armenian | georgian | cjk-ideographic | hiragana |
katakana | hiragana-iroha | katakana-iroha | none | inherit
Initial Value
disc
Percentages

n/a
Inherited

yes
Applies to
elements with a display of list-item
Media Groups

visual

Values
disc

Although the exact representation of this value is not specified, most user agents render it as a filled
circle.
circle

Although the exact representation of this value is not specified, most user agents render it as an unfilled
circle.
square

Although the exact representation of this value is not specified, most user agents render it as a square
(oddly enough). However, some will fill the square, while others leave it unfilled.
decimal
Specifies a decimal counting system, beginning with 1 and proceeding to 2, 3, 4, and so on.
decimal-leading-zero
Specifies a decimal counting system, beginning with 01 and proceeding to 02, 03, 04, and so on. User
agent may fill in enough leading zeros to match the number of digits in the last item; for example, a 320-
item list might start with 001. This behavior is not required.
lower-roman
Specifies counting with lowercase roman numerals, beginning with i and proceeding to ii, iii, iv, and so
on.
upper-roman

Cascading Style Sheets 2.0 Programmer's Reference

 90

Specifies counting with uppercase roman numerals, beginning with I and proceeding to II, III, IV, and so
on.
lower-alpha
Specifies counting with lowercase ASCII letters, beginning with a and proceeding to b, c, d, and so on.
upper-alpha
Specifies counting with uppercase ASCII letters, beginning with A and proceeding to B, C, D, and so on.
lower-latin
Specifies counting with lowercase ASCII letters, beginning with a and proceeding to b, c, d, and so on.
upper-latin
Specifies counting with uppercase ASCII letters, beginning with A and proceeding to B, C, D, and so on.
lower-greek
Specifies counting with classical Greek letters, beginning with alpha and proceeding to beta, gamma,
delta, and so on.
hebrew

Specifies counting in traditional Hebrew.
armenian

Specifies counting in traditional Armenian.
georgian

Specifies counting in traditional Georgian.
cjk-ideographic

Specifies counting in ideographic numbers.
hiragana
Specifies counting in the Japanese hiragana system, beginning with a and proceeding to i, u, e, o, ka,
ki, and so on.
katakana
Specifies counting in the Japanese katakana system, beginning with A and proceeding to I, U, E, O, KA,
KI, and so on.
hiragana-iroha
Specifies counting in the Japanese hiragana-iroha system, beginning with i and proceeding to ro, ha, ni,
ho, and so on.
katakana-iroha
Specifies counting in the Japanese katakana-iroha system, beginning with I and proceeding to RO, HA,
NI, HO, and so on.
none

No marker should be displayed.
Note If a user agent cannot support the counting system specified, it should treat the

value as decimal. List items within an ordered list always increment the list’s
counter (see counter-increment for more details) in decimal format, with the
actual counter type being translated from decimal to the declared type. Thus, the
sixth list item in an ordered list will typically have a counter value of 6; if the
declared type is lower-alpha, then the 6 will be translated to an f. CSS does not
specify how said translations should take place, and there is no provision for
handling "wrap-around" in non-numeric counting systems. For example, the
specification does not define the next entry after "Z" in an alphabetic counting
system.

Note that the default value is disc, which applies even to list items in ordered lists. Thus, if a rule using
list-style is applied to list items in an ordered list, and the value of list-style does not contain a
list style type, the default value of disc will be used.
Note also that since this property is inherited; the marker style set for a list will be applied to any lists
which are descendants of the element. The only way to prevent this is to set the value of list-style-
type for these descendant lists to a different value.

Examples
ol.caesar {list-style-type: upper-roman;}
li.letter {list-style-type: lower-alpha;}

Cascading Style Sheets 2.0 Programmer's Reference

 91

Related Properties
list-style, list-style-image, list-style-position

margin
margin is a shorthand property which sets the width of the margins on all four sides of an element.

Summary
Value Syntax
[<length> | <percentage> | auto]{1,4} | inherit
Initial Value

not defined for shorthand properties
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The margin’s width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).
auto
Sets the values for all four margins to be automatically calculated. This will have different meanings for
each side; for more details, refer to the individual margin properties, or the section on height and width
calculations in Chapter 1.

Note Length and percentage values may be mixed together. If there are four values
declared, they apply in the order: top, right, bottom, left. In the case of three
values, the first will apply to the top margin, the second to the left and right
margins, and the third to the bottom margin. If two values are declared, the first
applies to the top and bottom margins, while the second applies to the left and
right margins. If one value is declared, it applies to all four margins.

Vertically adjacent margins will collapse to the larger of the two. See the section on the box model in
Chapter 1 for more details.

For the effects of margins on inline elements, refer to the individual margin properties.

Examples
h1 {margin: 1.5em 5% 0.5em;}
img {margin: 10px;}
a.external:link {margin: 1em;}

Related Properties
margin-bottom, margin-left, margin-right, margin-top

margin-bottom
margin-bottom sets the width of the margin on the bottom of an element.

Cascading Style Sheets 2.0 Programmer's Reference

 92

Summary
Value Syntax
[<length> | <percentage> | auto] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The margin’s width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).
auto
This value will have different effects depending on the situation. For floated elements, block-level
elements in the normal flow, relatively positioned elements, and inline-level elements, replaced or
otherwise, auto is equivalent to 0. For other circumstances, see the section on height calculations in
Chapter 1.

Note If two elements which are vertically adjacent (that is, they follow one another in
the normal flow of the document) have margins set, then the actual distance
between the two borders of the two elements is equal to the larger of the margins.
Thus, if an element with a margin-bottom of 1.5em is immediately followed by an
element with a margin-top of 1em, the distance between the borders of the two
elements will be 1.5em. See the section on the box model in Chapter 1 for more
details.

margin-bottom has no effect on non-replaced inline elements. User agents should assign the value
of margin-bottom to these elements, but since inline margins have no impact on line height
calculations, there will be no visible effect. This is not the case with replaced inline elements, which
have the bottom margin as part of their element box.

Examples
h1 {margin-bottom: 0.33em;}
table {margin-bottom: 3%;}
img.drop {margin-bottom: 12px;}

Related Properties
margin, margin-left, margin-right, margin-top

margin-left
margin-left sets the width of the margin on the left side of an element.

Summary
Value Syntax
[<length> | <percentage> | auto] | inherit
Initial Value

Cascading Style Sheets 2.0 Programmer's Reference

 93

0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The margin’s width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).
auto
This value will have different effects depending on the situation. For floated elements, relatively
positioned elements, and inline-level elements, replaced or otherwise, auto is equivalent to 0. For other
circumstances, see the section on width calculations in Chapter 1.

Note margin-left will have an effect on the layout of inline elements. In the case of
replaced element-like images, the margin is rendered as part of the element box.
In the case of non-replaced elements like hyperlinks, the left margin is applied to
the left side of the element. If the inline element is broken across two or more
lines, the left margin is applied to the left side of the element on the first line in
which it appears, and is not applied to the left sides of the element in subsequent
lines. Horizontally adjacent margins do not collapse; see the section on the box
model in Chapter 1 for more details.

Examples
h2 {margin-left: 25px;}
pre {margin-left: 3em;}
li {margin-left: 7%;}

Related Properties
margin, margin-bottom, margin-right, margin-top

margin-right
margin-right sets the width of the margin on the right side of an element.

Summary
Value Syntax
[<length> | <percentage> | auto] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 94

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The margin’s width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).
auto
This value will have different effects depending on the situation. For floated elements, relatively
positioned elements, and inline-level elements, replaced or otherwise, auto is equivalent to 0. For other
circumstances, see the section on width calculations in Chapter 1.

Note margin-right will have an effect on the layout of inline elements. In the case of
replaced element-like images, the margin is rendered as part of the element box.
In the case of non-replaced elements like hyperlinks, the right margin is applied to
the right side of the element. If the inline element is broken across two or more
lines, the right margin is applied to the right side of the element on the last line in
which it appears, and is not applied to the right sides of the element in preceding
lines. Horizontally adjacent margins do not collapse; see the section on the box
model in Chapter 1 for more details.

Examples
h3 {margin-left: 5%;}
blockquote {margin-right: 5em;}
li {margin-right: auto;}

Related Properties
margin, margin-bottom, margin-left, margin-top

margin-top
margin-top sets the width of the margin on the \\top of an element.

Summary
Value Syntax
[<length> | <percentage> | auto] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.

Cascading Style Sheets 2.0 Programmer's Reference

 95

<percentage>

The margin’s width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).
auto
This value will have different effects depending on the situation. For floated elements, block-level
elements in the normal flow, relatively positioned elements, and inline-level elements, replaced or
otherwise, auto is equivalent to 0. For other circumstances, see the section on height calculations in
Chapter 1.

Note If two elements which are vertically adjacent (that is, they follow one another in
the normal flow of the document) have margins set, then the actual distance
between the two borders of the two elements is equal to the larger of the margins.
Thus, if an element with a margin-top of 1.75em is immediately preceded by an
element with a margin-bottom of 1em, the distance between the borders of the
two elements will be 1.75em. See the section on the box model in Chapter 1 for
more details.

margin-top has no visible effect on non-replaced inline elements. User agents should assign the
value of margin-top to these elements, but since inline margins have no impact on line height
calculations, there will be no visible effect. This is not the case with replaced inline elements, which
render the top margin as part of their element box.

Examples
h4 {margin-top: 1.5em;}
table {margin-top: 4%;}
img.drop {margin-top: 12px;}

Related Properties
margin, margin-bottom, margin-left, margin-right

marker-offset
marker-offset defines the distance between the nearest border edges of a marker and its
associated principal box.

Summary
Value Syntax
<length> | auto | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to
elements with a display of marker
Media Groups

visual

Values
<length>

Any length value. This sets the distance between the marker’s edge and the nearest edge of the
principal box. Negative values are permitted.
auto

The distance between the marker’s edge and the nearest edge of the principal box is determined by the
user agent.

Cascading Style Sheets 2.0 Programmer's Reference

 96

Note For more details on markers, refer to the entry for marker in the property display.

Examples
li:before {display: marker; marker-offset: 1.25em;
 width: 30px; content: url(spiral.jpg);}
p.aside:after {display: marker; marker-offset: 10px;
 content: " (End of aside.)";}

Related Properties
display

max-height
max-height sets an upper bound on the height of an element.

Summary
Value Syntax
<length> | <percentage> | none | inherit
Initial Value
none
Percentages

refer to height of containing block
Inherited

no
Applies to

all elements except non-replaced inline elements and table elements
Media Groups

visual

Values
<length>
Any length unit. The element can never have a value for height which exceeds this distance.
<percentage>

Limits the element’s height to be at most this percentage of the height of the containing block. If the
containing block’s height changes— due to document reflow triggered by a change in the default font
size, for example—then the maximum height of the element will change with it.
none

There is no limit to the height of the element.
Note See the section on calculating element heights in Chapter 1 for more details on

how max-height affects layout.

Examples
img {max-height: 40px;}
p.aside {max-height: 10em;}
div.sidebar {max-height: 50%;}

Related Properties
height, min-height

Cascading Style Sheets 2.0 Programmer's Reference

 97

max-width
max-width sets an upper bound on the width of an element.

Summary
Value Syntax
<length> | <percentage> | none | inherit
Initial Value
none
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements except non-replaced inline elements and table elements
Media Groups

visual

Values
<length>

Any length unit. The element can never have a value forwidth which exceeds this distance.
<percentage>

Limits the element’s width to be at most this percentage of the width of the containing block. If the
containing block’s width changes—due to document reflow triggered by a change in the size of the
browser window, for example—then the maximum width of the element will change with it.
none

There is no limit to the width of the element.
Note See the section on calculating element widths in Chapter 1 for more details on

how max-width affects layout.

Examples
p {max-width: 90%;}
img.sidefig {max-width: 200px;}
div.sidebar {max-width: 20em;}

Related Properties
min-width, width

min-height
min-height sets a lower bound on the height of an element.

Summary
Value Syntax
<length> | <percentage> | inherit
Initial Value
0
Percentages

refer to height of containing block
Inherited

no

Cascading Style Sheets 2.0 Programmer's Reference

 98

Applies to

all elements except non-replaced inline elements and table elements
Media Groups

visual

Values
<length>
Any length unit. The element can never have a value for height which is lower than this distance.
<percentage>

Limits the element’s height to be at least this percentage of the height of the containing block. If the
containing block’s height changes—due to document reflow triggered by a change in the default font
size, for example—then the minimum height of the element will change with it.

Note See the section on calculating element heights in Chapter 1 for more details on
how min-height affects layout.

Examples
div.top {min-height: 85px;}
img {min-height: 10px;}
h1 {min-height: 1em;}

Related Properties
height, max-height

min-width
min-width sets a lower bound on the width of an element.

Summary
Value Syntax
<length> | <percentage> | inherit
Initial Value

UA dependent
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements except non-replaced inline elements and table elements
Media Groups

visual

Values
<length>
Any length unit. The element can never have a value for width which is less than this distance.
<percentage>

Limits the element’s width to be at least this percentage of the width of the containing block. If the
containing block’s width changes—due to document reflow triggered by a change in the size of the
browser window, for example—then the maximum width of the element will change with it.

Note See the section on calculating element widths in Chapter 1 for more details on
how max-width affects layout.

Cascading Style Sheets 2.0 Programmer's Reference

 99

Examples
p {min-width: 10em;}
img {min-width: 25px;}
h2 {min-width: 50%;}

Related Properties
max-width, width

outline
outline is a shorthand property which is used to set the width, color, and style of an outline around an
element.

Summary
Value Syntax
[<outline-color> || <outline-style> || <outline-width>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual, interactive

Values
<outline-color>
Any permitted value of the property outline-color.
<outline-style>
Any permitted value of the property outline-style.
<outline-width>
Any permitted value of the property outline-width.

Note An outline is usually applied to an element when it has focus (i.e., is the current
subject of user interaction). However, there is no restriction on the type or state of
elements to which outlines may be applied. An outline could be drawn around
every paragraph just as easily as around the link which has focus. Outlines are
drawn along the outside edge of the element’s borders, and do not trigger reflow
of the document when they are drawn or removed. Thus, they may be drawn over
the background, or (if wide enough) even the borders, background, or content of
other elements.

Examples
a:hover {outline: 1px dotted invert;}
input:focus {outline: blue 0.5ex outset;}
h1 {outline: purple solid 1em;}

Related Properties
:focus, outline-color, outline-style, outline-width

outline-color
outline-color sets the color for an outline around an element.

Cascading Style Sheets 2.0 Programmer's Reference

 100

Summary
Value Syntax
<color> | invert | inherit
Initial Value
invert
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual, interactive

Values
<color>

Any color value.
invert

The outline performs a color inversion of the area where it is drawn. This is analogous to a “reverse
video” effect, and ensures that the outline will be visible regardless of the background color(s) behind it.

Note Unlike the element’s border, an outline can only have one color.

Because outlines can overwrite other elements, as well as any backgrounds behind the element to
which the outline is applied, authors are encouraged to use the color keyword invert whenever
possible.

Examples
input:focus {outline-color: invert;}
h1.high {outline-color: invert;}

Related Properties
:focus, outline, outline-style, outline-width

outline-style
outline-style determines the style of an outline around an element.

Summary
Value Syntax
none | dotted | dashed | solid | double | groove | ridge | inset |
outset | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

Cascading Style Sheets 2.0 Programmer's Reference

 101

visual, interactive

Values
none
No outline is drawn. The primary side effect of this value is that the computed outline-width for the
outline in question will be set to 0.
dotted

The outline is drawn as a series of dots. The specific placement of these dots is left to the user agent.
dashed

The outline is drawn as a series of short line segments. The specific placement of these lines is left to
the user agent.
solid

The outline is drawn as a single unbroken line.
double

The outline is drawn as a pair of unbroken lines. The specific placement of these lines, including the
separation between them, is left to the user agent.
groove

The outline is drawn as though it were a furrow carved into the surface of the document. This implies a
“shading” of the outline, but the CSS specification does not describe this in detail. Most user agents
handle this shading by splitting each outline into two adjacent lines, and darkening the upper (or
leftward) half while lightening the lower (or rightward) half of each outline.
ridge

The outline is drawn as though it were a ridge pushing up the surface of the document. This implies a
“shading” of the outline, but the CSS specification does not describe this in detail. Most user agents
handle this shading by splitting each outline into two adjacent lines, and lightening the upper (or
leftward) half while darkening the lower (or rightward) half of each outline.
inset

The outline is drawn as though the entire element is pushing the surface of the document away from the
user. This implies a “shading” of the outline, but the CSS specification does not describe this in detail.
Most user agents handle this shading by lightening the bottom and right outlines while darkening the top
and left outlines.
outset

The outline is drawn as though the entire element is pushing the surface of the document toward the
user. This implies a “shading” of the outline, but the CSS specification does not describe this in detail.
Most user agents handle this shading by darkening the bottom and right outlines while lightening the top
and left outlines.

Note

The value hidden, which is permitted for border styles, is not allowed for outline styles.

Examples
a:visited:focus {outline-style: dotted;}
pre.example {outline-style: outset;}

Related Properties
:focus, outline, outline-color, outline-width

outline-width
outline-width defines the width of the outline around an element.

Summary
Value Syntax

Cascading Style Sheets 2.0 Programmer's Reference

 102

<length> | thin | medium | thick | inherit
Initial Value

medium
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual, interactive

Values
<length>

Any length unit. Length units for this property may not be negative.
thin
An outline which is thinner than an outline set to medium. The exact width is not defined by the CSS
specification.
medium
An outline which is thicker than an outline set to thin, and thinner than an outline set to thick. The
exact width is not defined by the CSS specification.
thick
An outline which is thicker than an outline set to medium. The exact width is not defined by the CSS
specification.

Note Because outlines can overwrite other elements, as well as any backgrounds
behind the element to which the outline is applied, authors are encouraged to
make their outlines as thin as possible. This will minimize the chances of the
outline overwriting and obscuring useful content.

Examples
a:link:hover{outline-width: 2px;}
select {outline-width: 0;}
input:focus {outline-width: thick;}

Related Properties
:focus, outline, outline-color, outline-style

overflow
overflow determines how content which overflows its element’s content area should be handled.

Summary
Value Syntax
visible | hidden | scroll | auto | inherit
Initial Value
visible
Percentages

n/a
Inherited

no
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 103

block-level and replaced elements
Media Groups

visual

Values
visible

Overflowing content should be displayed. The width of the content will be rendered as if the element
were tall enough to contain all of the content, but the element’s visible box will not be altered. This will
give the effect of the content “spilling out” of its element’s content area. The overflowing content will
almost certainly overlap portions of the padding, borders, and margins of its containing element, and
may in fact overlap parts of other elements.
hidden
Overflowing content should not be displayed. The region beyond which it is hidden is defined by the
value of the property clip.
scroll
Overflowing content should not be displayed, but the user agent should provide some means of
accessing the hidden content (e.g., a set of scrollbars). The region beyond which the content is not
shown is defined by the value of the property clip. Furthermore, the CSS2 specification recommends
that this value should always cause the scrolling mechanism to be rendered, regardless of whether it is
actually needed.
auto

The behavior caused by this value is dependent on the user agent. The CSS2 specification
recommends that if any content overflows, it should be accessible with a scrolling mechanism.

Note As of this writing, support for overflow is not very good. Of the known browsers,
only Navigator 6 comes close to properly supporting this property.

Examples
div.inset {overflow: scroll;}
td {overflow: hidden;}
p.aside {overflow: scroll;}

Related Properties
clip

padding
padding is a shorthand property which is used to set the padding on all four sides of an element.

Summary
Value Syntax
[<length> | <percentage>]{1,4} | inherit
Initial Value

not defined for shorthand properties
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Cascading Style Sheets 2.0 Programmer's Reference

 104

Values
<length>

Any length value. Negative length values are not permitted for the property.
<percentage>

The padding width is calculated with respect to the width of the element’s containing block (usually, but
not always, the content area of the parent element).

Note Length and percentage values may be mixed together. If there are four values
declared, they apply in the order: top, right, bottom, left. In the case of three
values, the first will apply to the top padding, the second to the left and right
padding, and the third to the bottom padding. If two values are declared, the first
applies to the top and bottom padding, while the second applies to the left and
right padding. If one value is declared, it applies to all four padding.

For the effects of padding on inline elements, refer to the individual padding properties.

Examples
td {padding: 0.75ex;}
div.aside {padding: 1em 10px;}
h2 {padding: 0.5em 5% 0.25em 15px;}

Related Properties
padding-bottom, padding-left, padding-right, padding-top

padding-bottom
padding-bottom sets the width of the padding on the bottom of an element.

Summary
Value Syntax
[<length> | <percentage>] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value. Negative length values are not permitted for this property.
<percentage>

The bottom padding’s width is calculated with respect to the width of the element’s containing block
(usually, but not always, the content area of the parent element).

Note padding-bottom may or may not have an effect on non-replaced (e.g., text) inline
elements. User agents should assign the value of padding-bottom to these
elements, and it may increase the amount of background which is drawn. Any
borders set on the element will also be pushed away from the content of the
element. User agents are not, however, required to increase the visible

Cascading Style Sheets 2.0 Programmer's Reference

 105

background area of inline elements. Even if the user agent does increase the
visible background, it may or may not overwrite content in following lines. Authors
are thus encouraged to avoid setting bottom padding on inline elements.

Examples
h3 {padding-bottom: 5px;}
ul {padding-bottom: 1.5em;}

Related Properties
padding, padding-left, padding-right, padding-top

padding-left
padding-left sets the width of the padding on the left side of an element.

Summary
Value Syntax
[<length> | <percentage>] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The left padding’s width is calculated with respect to the width of the element’s containing block
(usually, but not always, the content area of the parent element).

Note padding-left will have an effect on the layout of inline elements. In the case of
non-replaced elements like hyperlinks, the left padding is applied to the left side
of the element, and will extend the visible background of the element. It will also
push the border away from the element’s content. If the inline element is broken
across two or more lines, the left padding is applied to the left side of the element
on the first line in which it appears, and is not applied to the left sides of the
element in subsequent lines.

Examples
h2 {padding-left: 20px;}
pre {padding-left: 2em;}
div.column {padding-left: 10%;}

Related Properties
padding, padding-bottom, padding-right, padding-top

Cascading Style Sheets 2.0 Programmer's Reference

 106

padding-right
padding-right sets the width of the padding on the right side of an element.

Summary
Value Syntax
[<length> | <percentage>] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The right padding’s width is calculated with respect to the width of the element’s containing block
(usually, but not always, the content-area of the parent element).

Note padding-right will have an effect on the layout of inline elements. In the case of
non-replaced elements like hyperlinks, the right padding is applied to the right
side of the element, and will extend the visible background of the element. It will
also push the border away from the element’s content. If the inline element is
broken across two or more lines, the right padding is applied to the right side of
the element on the last line in which it appears, and is not applied to the right
sides of the element in following lines.

Examples
h1 {padding-right: 5%;}
p.example {padding-right: 40px;}

Related Properties
padding, padding-bottom, padding-left, padding-top

padding-top

padding-top sets the width of the padding on the top of an element.

Summary
Value Syntax
[<length> | <percentage>] | inherit
Initial Value
0
Percentages

refer to width of containing block
Inherited

no

Cascading Style Sheets 2.0 Programmer's Reference

 107

Applies to

all elements
Media Groups

visual

Values
<length>

Any length value.
<percentage>

The padding’s width is calculated with respect to the width of the element’s containing block (usually,
but not always, the content area of the parent element).

Note padding-top may or may not have an effect on non-replaced (e.g., text) inline
elements. User agents should assign the value of padding-top to these elements,
and it may increase the amount of background which is drawn. Any borders set
on the element will also be pushed away from the content of the element. User
agents are not, however, required to increase the visible background area of
inline elements. Even if the user agent does increase the visible background, it
may or may not overwrite content in preceding lines. Authors are thus
encouraged to avoid setting top padding on inline elements.

Examples
h3 {padding-top: 8px;}
pre.code {padding-top: 0.5em;}

Related Properties
padding, padding-bottom, padding-left, padding-right

position
position determines the method by which an element’s box is laid out.

Summary
Value Syntax
static | relative | absolute | fixed | inherit
Initial Value
static
Percentages

n/a
Inherited

no
Applies to

all elements, but not to generated content
Media Groups

visual

Values
static
The element box is laid out as a part of the normal document flow, following the preceding element and
preceding following elements. Its content will flow around any floated elements. If an element is set to
this type of positioning, any values for left and top will be ignored.
relative

Cascading Style Sheets 2.0 Programmer's Reference

 108

The element’s box is laid out as a part of the normal flow, and then offset by some distance. The offset
distance is declared through some combination of the properties left, right, top and bottom; if
these all have a value of 0, then the box is not offset. The space which the element would normally
have occupied is preserved, and other elements in the document are laid out as though the relatively
positioned element were still a part of the normal flow. It is possible that the relatively positioned
element will overlap other elements. A relatively positioned element, even one which is not offset,
establishes a containing block for its descendant elements.
absolute
The element’s box is laid out in relation to its containing block, and is entirely removed from the normal
flow of the document. The containing block of an absolutely positioned element is the nearest ancestor
element with a position other than static. If no such ancestor exists, then the containing block is
the root element of the document. The edges of the absolutely positioned element’s box are positioned
via the properties left, right, top and bottom, which specify offsets from the edges of the
containing block. The space which the element would have occupied had it remained in the normal flow
is closed up as though the element did not exist, and other elements are laid out as though the
absolutely positioned element did not exist. Care must be taken to ensure that the positioned element
does not overlap other elements. Since the containing block will always be some element within the
document, or the root element, an absolutely positioned element will scroll with the rest of the
document.
fixed
The element’s box is absolutely positioned, with all of the behaviors which are described for
position: absolute. The major difference is that the containing block of a fixed-position element is
always the viewport. In Web browsers, this would be the browser window, and so a fixed-position
element will not scroll with the rest of the document. In paged media, each page is a viewport. Thus, a
fixed-position element in paged media will appear on every page, which can be used to simulate effects
such as running footers. See Chapter 6 for more details.

Note A common method of establishing a containing block for absolutely positioned
elements is to set an ancestor element to position: relative with no offsets. This
will cause no visible change to the relatively positioned ancestor, but will define
the desired containing block for any descendant elements.

Examples
img#lead {position: absolute;}
div.top {position: fixed; top: 0; height: 10% width: 100%;}
sup {position: relative; bottom: 0.66em;}

Related Properties
bottom, left, right, top, z-index

quotes
quotes is used to define the quotation pairs which are used at each level of nested quotation.

Summary
Value Syntax
[<string> <string>]+ | none | inherit
Initial Value

UA dependent
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Cascading Style Sheets 2.0 Programmer's Reference

 109

Values
<string> <string>

A pair of string values which are used to represent the open- and close-quotes. These are always in the
order of open-quote first, and close-quote second. The first pair of marks is used for the first (or
outermost) level of quotation, the second pair for the next level of nested quotation, and so on. An
arbitrary number of quotation pairs may be supplied. Single-quote marks may be enclosed by double-
quote marks, and vice versa.
none
This prevents the values open-quote and close-quote on the property content from generating
any quotation marks.

Note Although this property can be used to create customized quotation schemes, it is
most useful for supplying quotation schemes for languages which the user agent
may not recognize.

Examples
blockquote {quotes: ‘"’ ‘"’ "’" "’";}
q:lang(fr) {quotes: "<<" ">>" "<" ">";}

Related Properties
content

right
right defines an offset of the right edge of an absolutely positioned element from the right edge of its
positioning context, or the horizontal distance which a relatively positioned element will be displaced.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

refer to width of containing block
Inherited

no
Applies to

positioned elements
Media Groups

visual

Values
<length>

A fixed distance from the bottom of the positioning context.
<percentage>
Some percentage of the width of the positioning context, assuming that the width of the context has
been set explicitly. If not, then a percentage value for right is treated as though it were auto. In
practice, this means that percentage values for right set on relatively positioned elements will be
ignored.
auto
The actual distance which results will depend on a number of factors. These factors are the dimensions
of horizontal measure for an absolutely positioned element (see the notes section). If the element has
been relatively positioned, then auto has no apparent effect.

Note In the case of an absolutely positioned element, the horizontal dimensions of the
element must add up to the width of the positioning context. If every measure of

Cascading Style Sheets 2.0 Programmer's Reference

 110

horizontal distance besides right is explicitly set, then a value of auto is changed
to make sure that they all add up to the width of the positioning context. Similarly,
in left-to-right writing modes such as English, if all of the horizontal dimensions
including right are explicitly set, but do not add up to the width of the positioning
context, then the value for right is discarded, and the necessary value is
substituted. In both cases, a negative distance may be assigned to right. If right is
set to auto in right-to-left writing modes such as Hebrew, then the right edge of
the positioned element should be aligned with the place where it would have
appeared had the element not been positioned.

In addition, setting right to auto may force other horizontal dimensions which are also set to auto to
be reset to 0. See the section on positioning calculations in Chapter 1 for more information.
In the case of relatively positioned elements, right defines a horizontal offset from the place where the
relatively positioned element would ordinarily have appeared. Positive values for right will offset the
element to the right, and negative values will move it to the right. In right-to-left writing modes such as
Hebrew, if both right and left are set to explicit values, then the value for left will be discarded in
favor of right.

Examples
div.sidebar {position: absolute; width: auto;
 left: 10%; right: 50%;}
em.slide-right { position: relative; right: -1em;}

Related Properties
bottom, left, position, top, width

table-layout
table-layout determines the layout method used in rendering a table.

Summary
Value Syntax
auto | fixed | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to
elements with a display of table or inline-table
Media Groups

visual

Values
auto

The table should be laid out according to some automatic layout algorithm. There is a suggested
algorithm given in the CSS specification, but the specification does not require that a particular
algorithm be used, so it is up to each user agent to implement its own method.
fixed
The table should be laid out according to the provided fixed-table layout method. This method states
that the table’s width is given with the property width. If the value given for width is auto, then the
value for table-layout is changed to auto. If not, then column widths are determined by the
following rules:
 If the column element has a width other than auto, then the declared value sets the width

of the column.

Cascading Style Sheets 2.0 Programmer's Reference

 111

 If the column’s width is set to auto, then the first cell in the column which does not have
width: auto will set the width of the column. If that cell spans multiple columns, then its width
is divided evenly between the spanned columns.

 Any remaining columns will evenly divide the amount of horizontal space available,
subtracting any borders or cell spacing.

Once these steps are performed, then the width of the table is either the value of the property width
set on the table, or the sum of the width of all the columns, borders, and cell spacing, whichever is
greater. If the table’s width exceeds that of its columns, then all columns should be widened equally until
the aggregate column, border, and cell spacing widths equal the width of the table. Once the table has
been laid out, any content which cannot fit into its cell will overflow according to the value of the property
overflow. Since the specification does not say anything about the height of rows, it will be up to user
agents to invent their own solutions, which may vary.

Note The CSS specification provides an algorithm for calculating cell and row heights
which does not depend on the width algorithms described above. In summary, a
row’s height is largely dependent upon the cells within that row. A table row must
be at least as tall as the tallest cell in that row, regardless of any value assigned
to the row element’s height. Similarly, any cell must be tall enough to display all of
its content, regardless of any value assigned to the cell element’s height.

However, the specification does not say what should happen in the following circumstance:
 The table’s declared height does not equal the aggregate height of the rows, borders, and

cell spacing.

Nor does it explain the following:
 The meaning of percentage values assigned to the property height when set on table cells,

table rows, or table row groups.
 The effect that cells which span multiple rows will have on row-height calculations, except to

say that the row heights must add up to a height tall enough to contain the spanning cell.

Given these ambiguities, authors should expect that user agents will differ in their handling of height
calculations for tables.

Examples
table.granite {table-layout: fixed;}
table {table-layout: auto;}

Related Properties
border-collapse, cell-spacing, empty-cells

text-align
text-align determines the way in which line boxes are aligned within a block-level element.

Summary
Value Syntax
left | right | center | justify | <string> | inherit
Initial Value

depends on UA and writing direction
Percentages

n/a
Inherited

yes
Applies to
block-level elements (except the value <string>, which applies only to table cells)
Media Groups

visual

Cascading Style Sheets 2.0 Programmer's Reference

 112

Values
left

The left edge of each line box is aligned with the left edge of the block-level element’s content area.
right

The right edge of each line box is aligned with the right edge of the block-level element’s content area.
center

The center of each line box is aligned with the center of the block-level element’s content area.
justify
The edges of each line box should align with the edges of the block-level element’s content area. This
may be accomplished by programmatically increasing the letter- and word-spacing of text within a given
line, but the CSS specification does not require a particular method. User agents are permitted to
interpret this value as either left or right, depending on the writing direction for the element.
<string>
The content of cells in a column will align on the given string. This value may be applied only to table
cells; if set on other types of elements, the value is treated as either left or right, depending on the
writing direction for the element. As of this writing, no known user agent supports this value.

Note The value justify provides the effect of "full justification" or "double justification,"
which is a time-honored way of laying out text in print media. However, fully
justified text can actually be more difficult to read on a computer screen, so
authors are urged to use justify with caution.

Examples
p.column {text-align: justify;}
td.total {text-align: ".";}
div.rightside {text-align: right;}

Related Properties
direction, letter-spacing, word-spacing

text-decoration
text-decoration is used to add "decorations" to inline content.

Summary
Value Syntax
none | [underline || overline || line-through || blink] | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
none

No decoration should be added to the inline text.
underline

Cascading Style Sheets 2.0 Programmer's Reference

 113

An underline is drawn beneath the inline text.
overline

An overline is drawn above the inline text.
line-through

A line should be drawn through the middle of the inline text. Note that “middle” does not imply “vertical
center,” as the line will most likely be drawn closer to the center of lowercase characters than the actual
center of the character boxes.
blink
The inline text should blink on and off, analogous to the BLINK element introduced by Netscape. User
agents are not required to support this value.

Note If this property is set on a block-level element, it will actually affect the inline
content of the element.

The color of any text decoration is set by the foreground color of the text. However, it is not always the
case that the color of an element will match the color of the text decoration near it. This can occur due
to the “spanning” of an element by the decoration set on an ancestor element.
A text decoration is not inherited by descendant elements. However, the decoration set on an element
will affect the entire element, including any descendants. Consider a hyperlink which has been set to
text-decoration: underline. Within the hyperlink is an EM element. Since the EM does not inherit
the decoration, its value for text-decoration is none. The underline still continues underneath the EM,
however, since it is a descendant of the hyperlink. This is referred to as the "spanning" of descendant
elements by a text decoration.
This has some interesting consequences. Take the hyperlink-EM example, and assume that the
hyperlink and its underline are colored blue, while the EM is colored red. The hyperlink’s underline will
be blue, even when it appears beneath the red EM element. Thus, it is possible for a text decoration’s
color to be different than the color of the text near it. It is also possible for a decoration to cut through
text. Take an underlined element which contains a SUB (subscript) element. The subscripted text will be
lowered with respect to its parent element’s text, but the parent’s underline will not change position.
Thus the subscripted text will likely overlap the underline.
If an element contains no text, then this property is ignored. Thus, it is not possible to underline an
image by using text-decoration. However, images may have underlines appear beneath them due
to the "spanning" described earlier.
In many Web browsers, setting an element’s text-decoration value to none will prevent the display
of any decorations within that element, even if it should have been spanned by the decoration of a
parent element. The exceptions are Internet Explorer 5 for Macintosh, Navigator 6, and Opera 4+
(although Opera still does not span decorations across images).

Examples
a[href] {text-decoration: underline;}
p.old {text-decoration: line-through;}
blink {text-decoration: blink;}

Related Properties
None.

text-indent
text-indent defines an indentation distance for the first line of text in a block-level element.

Summary
Value Syntax
<length> | <percentage> | inherit
Initial Value
0
Percentages

refer to width of containing block

Cascading Style Sheets 2.0 Programmer's Reference

 114

Inherited

yes
Applies to

block-level elements
Media Groups

visual

Values
<length>

Any length value. Negative lengths are permitted for the property, and will produce a “hanging indent”
effect. Authors should be sure to increase the element’s margin so that the hanging indent can still be
seen, especially if the edge of the element is close to the edge of the viewport.
<percentage>

The first line of text is indented by a distance relative to the width of the element’s containing block. The
computed indentation will be the same regardless of the width of the element, so it is possible to specify
an indentation which is greater than the width of the element. The CSS specification does not say what
should happen in such cases.

Note text-indent is a simple way to produce the "tabbed first line" effect common in
print media.

Examples
p {text-indent: 3em;}
div.hang {text-indent: -40px; margin-left: 40px;}
p.odd {text-indent: 50%;}

Related Properties
None

text-shadow
text-shadow specifies one or more shadows which are derived from the text of an element.

Summary
Value Syntax
none | [<color> || <length> <length> <length>? ,]* [<color> || <length>
<length> <length>?] | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

visual

Values
none

Cascading Style Sheets 2.0 Programmer's Reference

 115

No shadows should be associated with the element.
<color>

Any color value. This gives the color of the shadow. If no color is provided, the shadow’s color is taken
from the value of the property color for the element.
<length> <length> <length>
The offset distances and blur radius for the shadow, in the order x-offset, y-offset, and blur radius. The
two offset values are required for any shadow, but the blur radius is optional. Negative values are
permitted for the offset lengths, but not the blur radius. A negative x-offset will place the shadow to the
left of its text, and a negative y-offset will place the shadow above the text.

Note This is the mechanism by which authors may add “drop shadows” to their text
without having to resort to graphics. The CSS specification does not say how, or
even whether, shadows should be blended with their backgrounds, nor exactly
how the blur should be calculated.

A shadow does not affect the size of the element’s box, and may in fact extend beyond the element.
The shadows are considered a part of their element’s stacking context (see z-index for more details),
and so may overlap other elements. The specification does not say how multiple shadows on the same
element should be stacked or blended.
By specifying no offset and a blur radius for an element, it is possible to provide a “glow” effect to the
element’s text. Caution should be used, however, since many such effects involve setting the text color
close to the background color, which will make the element very difficult to read in a user agent which
does not support text-shadow. As of this writing, that was all of them, so authors are urged to use this
property with caution.

Examples
h1 {text-shadow: 0.5em 0.4em 2px gray;}
p.raise {text-shadow: 1px 1px;}
div.crazy {text-shadow: 10px 1.2em 3px purple, -1in 23px 0 magenta,
 0 2em 1em maroon, 3ex –2cm 5mm yellow;}

Related Properties
None

text-transform
text-transform changes the capitalization of text within an element, or else directs the user agent to
leave the capitalization "as is."

Summary
Value Syntax
capitalize | uppercase | lowercase | none | inherit
Initial Value
none
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
capitalize

Cascading Style Sheets 2.0 Programmer's Reference

 116

The first letter of each word in the element’s text should be capitalized. The CSS specification does not
say what a “word” is, and in fact the definition of what constitutes a word is likely to be different from
language to language. The usual working definition of a word is any sequence of characters which is
surrounded by whitespace, but this cannot be guaranteed.
uppercase

All of the characters in the element’s text should be uppercase (capital letters).
lowercase

All of the characters in the element’s text should be lowercase.
none

The capitalization of the element’s text should not be altered.
Note Although text-transform is inherited, it does not necessarily force the capitalization

of the first letter in a descendent element. If a portion of a word is enclosed within
an element, but there is no whitespace which separates this element from the text
that surrounds it, then the string of letters is considered to be a single "word" and
only the first letter in that word should be capitalized. Consider the following
markup:

<em style="text-transform: capitalize;">
 supercalifragilisticexpialidocious
Only the first “S” would be capitalized, and the “f” at the beginning of the STRONG element would not.

Examples
*.shout {text-transform: uppercase;}
p.cummings {text-transform: lowercase;}
h1.title {text-transform: capitalize;}

Related Properties
None

top
top defines an offset of the top edge of an absolutely positioned element from the top edge of its
positioning context, or the vertical distance which a relatively positioned element will be displaced.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

refer to height of containing block
Inherited

no
Applies to

positioned elements
Media Groups

visual

Values
<length>

A fixed distance from the top of the positioning context.
<percentage>

Cascading Style Sheets 2.0 Programmer's Reference

 117

Some percentage of the height of the positioning context, assuming that the height of the context has
been set explicitly. If not, then a percentage value for top is treated as though it were auto. In practice,
this means that percentage values for top set on relatively positioned elements will be ignored.
auto
The actual distance which results will depend on a number of factors. These factors are the dimensions
of vertical measure for an absolutely positioned element (see the notes section). If the element has
been relatively positioned, then auto has no apparent effect.

Note In the case of an absolutely positioned element, the vertical dimensions of the
element must add up to the height of the positioning context. Setting top to auto
may force other vertical dimensions which are also set to auto to be reset to 0.
See the section on positioning calculations in Chapter 1 for more information.

In the case of relatively positioned elements, top defines a vertical offset from the place where the
relatively positioned element would ordinarily have appeared. Positive values for top will offset the
element upward, and negative values will move it downward. If both bottom and top are set to explicit
values, then the value for top will be discarded in favor of bottom.

Examples
div.sidebar {position: absolute; width: 15em; margin: 0; padding: 0;
 height: auto; top: 25%;}
sub {vertical-align: baseline; position: relative; top: 0.5em;}

Related Properties
bottom, height, left, position, right

unicode-bidi
unicode-bidi influences the layout of text in bidirectional-text situations.

Summary
Value Syntax
normal | embed | bidi-override | inherit
Initial Value
normal
Percentages

n/a
Inherited

no
Applies to

all elements, but see notes
Media Groups

visual

Values
normal

Prevents the element from opening a new level of Unicode bidirectional embedding.
embed
Causes the element to open a new level of Unicode bidirectional embedding, assuming the element is
inline-level. The direction of the new embedding level is taken from the value of the property
direction for the element, and reordering within the element is implicit. For direction: ltr, this
will have the effect of beginning the element with a Unicode LRE (U+202A); for direction: rtl, the
element begins with a Unicode RLE (U+202B). In either case, the ele- ment will be closed with a
Unicode PDF (U+202C).
bidi-override

Cascading Style Sheets 2.0 Programmer's Reference

 118

Causes an override of reordering mechanisms within the element, assuming the element is inline-level
or is a block-level element that contains only inline elements. In other words, glyphs within the element
are strictly ordered in the direction specified by the property direction, and implicit ordering is
ignored. For direction: ltr, this will have the effect of opening the element with a Unicode LRO
(U+202D); for direction: rtl, the element begins with a Unicode ROL (U+202E). In either case, the
element will be closed with a Unicode PDF (U+202C).

Note To quote the CSS2 specification: “The final order of the characters in each block-
level element is the same as if the bidi control codes had been added as
described..., markup had been stripped, and the resulting character sequence
had been passed to an implementation of the Unicode bidirectional algorithm for
plain text that produced the same line-breaks as the styled text. In this process,
no-textual entities such as images are treated as neutral characters, unless their
unicode-bidi property has a value other than normal, in which case they are
treated as strong characters in the direction specified for the element." Authors
who wish to understand this process in more detail should consult the Unicode
specification, as an explanation of its workings is (far) beyond the scope of this
book.

Examples
*:lang(en) {direction: ltr; unicode-bidi: embed;}

Related Properties
direction

vertical-align
vertical-align determines the alignment of text within a line, or within a table cell.

Summary
Value Syntax
baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length> | inherit
Initial Value
baseline
Percentages
refer to the value of line-height for the element itself
Inherited

no
Applies to
inline-level elements and elements with a display of table-cell
Media Groups

visual

Values
baseline

The baseline of the element is aligned with the baseline of the parent element. If either element doesn’t
have a baseline, then align the bottom of the element box with the bottom of the parent element’s box.
sub
The baseline of the element is lowered to the point appropriate for subscripted text. The CSS
specification does not say what that point should be. Note that the value of font-size for the element
is not altered by this value.
super
The baseline of the element is raised to the point appropriate for superscripted text. The CSS
specification does not say what that point should be. Note that the value of font-size for the element
is not altered by this value.
top

Cascading Style Sheets 2.0 Programmer's Reference

 119

The top of the element’s box is aligned with the top of the line box, in the context of inline content, or
with the top of the table cell in the context of tables.
text-top

The top of the element’s box is aligned with the top of the highest inline box in the line.
middle

The baseline of the element is aligned with the point defined by the baseline of the parent element plus
half the x-height of the parent element’s font, in the context of inline content. The middle of the element
should be aligned with the middle of the table cell in the context of tables.
bottom

The bottom of the element’s box is aligned with the bottom of the line box, in the context of inline
content, or with the bottom of the table cell in the context of tables.
text-bottom

The bottom of the element’s box is aligned with the bottom of the lowest inline box in the line.
<percentage>
The baseline of the element is raised or lowered by the given percentage of the value for the property
line-height. Thus, a vertical-align value of 50% on a line which has a line-height of 18px
will raise the baseline by 9 pixels. A percentage value of 0% for this property has the same effect as the
value baseline.
<length>
The baseline of the element is raised or lowered by the given length value. Negative length values are
permitted for this property. A length value of 0 for this property has the same effect as the value
baseline.

Note See the section on inline formatting in Chapter 1 for more details on the
differences between line boxes, inline boxes, and the baseline.

Support for vertical-align is less than exemplary in current Web browsers. Only with the advent of
browsers such as Internet Explorer 5 for Macintosh and Opera 4 have Web browsers truly supported
the behavior described in the CSS specification. Older browsers may evidence unexpected behaviors,
generally in the form of misaligning elements. In most cases, there is minimal impact on the layout
(something which the author will tolerate), but attempts at extreme typographic effects may be thwarted
by browser limitations.

Examples
sup {vertical-align: superscript; font-size: 80%;}
td div {vertical-align: middle;}
img.textdec {vertical-align: bottom;}
span.drop {vertical-align: text-bottom;}

Related Properties
line-height

visibility
visibility determines whether an element is invisible or not.

Summary
Value Syntax
visible | hidden | collapse | inherit
Initial Value
inherit
Percentages

n/a
Inherited

no
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 120

all elements
Media Groups

visual

Values
visible

The element is visible.
hidden

The element is invisible (i.e., completely transparent). The element still exists, so it still affects the
document’s layout. The visual effect will be that of a blank spot exactly the same size that the visible
element would occupy, including any borders or margins.
collapse

This value causes columns, rows, columns groups, and row groups to be removed from the document,
but still affects the layout of the table. Thus, any cells within those rows will affect the widths of columns
in the visible portion of the table.

Note The descendant elements of an invisible element may be made visible by setting
them to visibility: visible.

This property is often used in “dynamic pages” to accomplish such effects as pop-up menus.

Examples
p.glass {visibility: hidden;}
tr.stow {visibility: collapse;}

Related Properties
display

white-space
white-space is used to alter the user agent’s handling of whitespace in an element.

Summary
Value Syntax
normal | pre | nowrap | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

block-level elements
Media Groups

visual

Values
normal

Any sequence of whitespaces within the element is converted to a single space. This is familiar
behavior from traditional Web browsers.
pre

Cascading Style Sheets 2.0 Programmer's Reference

 121

All whitespace in the element is honored, including multiple spaces and carriage returns. Word
wrapping is disabled, and lines are only broken at newline characters in the source, or \A sequence in
generated content.
nowrap
Any sequence of whitespaces within the element is converted to a single space, but word wrapping is
disabled. Line breaks in the source are ignored, and only the \A sequence in generated content will
start a new line of text.

Note Although the value nowrap is fairly well supported in modern browsers, pre is not.

Examples
div.poem {white-space: pre;}
p {white-space: normal;}
td.single {white-space: nowrap;}

Related Properties
None.

width
width sets the width of an element’s content area.

Summary
Value Syntax
<length> | <percentage> | auto | inherit
Initial Value
auto
Percentages

refer to width of containing block
Inherited

no
Applies to

all elements except non-replaced inline elements, table rows, and row groups
Media Groups

visual

Values
<length>

Any length unit. Negative length values are not permitted for this property.
<percentage>
The width is calculated with respect to the width of the element’s containing block, assuming that the
containing block’s width has been explicitly set. If not, then a percentage value is treated as auto.
auto
The result of this value depends on a number of factors. In the normal document flow, auto will be
treated as 100%, assuming that there are no margins, borders, or padding set on the element. For
floated elements, the value auto will tend toward a width 0. In positioned elements, it may have the
same effect, or it may be overridden due to constraints introduced using properties such as left and
right. See the section on positioning rules in Chapter 1 for more details.

Note If the width of a replaced element (e.g., an image) is set to a length unit, and no
height is set, then the image will be scaled so that its width matches the declared
value, and the height is altered by the same proportion. For example, an image
100 pixels tall and 50 pixels wide is set to width: 200px; thus its height will be
increased to 100 pixels. Setting the width of a replaced element to a percentage
will operate as described above, and make the width of the element some

Cascading Style Sheets 2.0 Programmer's Reference

 122

percentage of the width of its containing block. It is not possible to reduce an
element to half its intrinsic size through a percentage value, for example.

Examples
div.aside {width: 25%;}
img.photo {width: 250px;}

Related Properties
height, max-width, min-width

word-spacing
word-spacing modifies the amount of space placed between words.

Summary
Value Syntax
normal | <length> | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

visual

Values
normal
The default spacing between words is not changed. In practice, this is equivalent to setting the value to
0.
<length>

This will add to the spacing between words—the greater the length, the more space will be seen
between words. Negative values are permitted, and will cause words to bunch together, to the point of
potentially overwriting one another or even appearing to write the words “backwards.” The length given
will modify the amount of space already between words, which means that there is usually a minimum
of a single space from which the modification occurs.

Note In fully justified text (see text-align), the space between words may be
programmatically altered in order to create the effect of full justification.

In order to preserve the relative spacing between words for descendant elements, authors are
encouraged to use em length units.

Examples
em {letter-spacing: 1px;}
h1.wider {letter-spacing: 0.5em;}
p.scrunched {letter-spacing: -0.5ex;}
table {letter-spacing: normal;}

Related Properties
letter-spacing, text-align

Cascading Style Sheets 2.0 Programmer's Reference

 123

z-index
z-index sets the stacking level of an element.

Summary
Value Syntax
auto | <integer> | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to

positioned elements
Media Groups

visual

Values
auto

The stack level of the element is the same as that of its parent element. Furthermore, the element does
not generate a new stacking context.
<integer>
The stack level of the element is set to the given value, and it establishes a new stacking context for any
descendant elements. The stack level of the element in its newly created stacking context is 0. The
higher an element’s z-index value, the "closer" it is to the reader. Negative values are permitted for
this property. In theory, any arbitrarily large number may be declared, but there may be implementation-
specific limits.

Note The stack level of an element is simply a numeric designation of its position on
the z-axis. This axis is imagined as a line extending out of the canvas as well as
behind it, although no element may ever be placed “behind” the canvas. An
element is placed on the z-axis, and also given its stack level, using the property
z-index. For example, elements A and B are given z-index values of 2 and 1044,
respectively. In any situation where A and B overlap due to their positioning, then
all of B will be visible, whereas part of A will appear to be "behind" B.

If an element generates a stacking context, then all of its descendant elements are placed on the z-axis
as a group. Thus, no matter what values are assigned to descendants of element B, they will be placed
“in front” of element A and its descendants. For those familiar with vector graphics programs such as
Adobe Illustrator, a stacking context is basically equivalent to a layer on which many shapes may be
placed. The shapes in each level will have a stacking order comparable to each other, but all of them
will be “in front” of the layer below their layer.
The usual way to envision this is to add another stacking number for each context in which an element
exists. For example, assume that element B, still with a z-index value of 1044, has a descendant
element B2 with a z-index value of –40. Element A (z-index of 2) has a descendant element A2
with a z-index of 5000. If A2 and B2 overlap, B2 will still be "in front" of A2. Their z-index values
can be thought of like this: A2, 2,5000; B2, 1044,-40. In summary, the four elements in question
would be sorted this way:
A 2
A2 2,5000
B2 1044,-40
B 1044
Note that elements with a z-index of auto are effectively assigned places along the z-axis by the user
agent, but there is no defined behavior for such a case. A user agent could decide to stack such
elements in the order they are rendered, with the earliest elements in the document being the furthest
away from the user. Of course, a user agent could do just the opposite, deciding that the last elements

Cascading Style Sheets 2.0 Programmer's Reference

 124

in a document will be furthest away from the user on the theory that the first elements contain the most
important information. There is no way to guarantee any particular behavior.

Examples
div.sidebar {position: fixed; height: 100%; width: 20%; left: 0;
 z-index: 10;}
em#drop {position: relative; top: 14px; z-index: -66;}

Related Properties
position

Chapter 5: Paged Media Styles
Overview
One of the areas in which CSS2 improves greatly over CSS1 is in its addition of rules for handling
paged media. This is usually assumed to refer to material such as printouts of a document, but it can
also refer to specialized devices which display information a page at a time, as well as to “print
previews” on a computer screen, and more. A good example is the default display of PDF files, which
are usually presented a page at a time.
In creating a model for paged media, CSS takes the general idea of the box model and extends it to
create the page box. This is the term used to refer to the area in which content is drawn on a given
piece of the display medium (e.g., a piece of paper in a printout). The area in which a page box is drawn
is referred to as a sheet. This term is used mostly to avoid the confusion which using the term “page”
would invoke. In CSS2, all page boxes are rectangular, although they may not necessarily be the same
size as the sheets on which they are drawn.
Because the page box is drawn from the general box model in CSS2, authors are able to set margins
and dimensions for a page box, just as they would with an ordinary element box (however, padding and
borders cannot be set on page boxes in CSS2). All this is done using the @page directive, which is
explained later in the chapter.
As of CSS2, the specification does not contain properties to automatically generate running heads or
footers, place page numbers, and other advanced page-layout features. These features are expected to
appear in a future version of CSS. CSS2 does allow authors to simulate these features with the property
display (see Chapter 4), although the methods are a bit clumsy.

General Paged-Media Rules
There are some concepts which should be understood before attempting to write paged-media styles.
These include page-breaking and content-clipping rules.

Page-Breaking Rules

A good portion of the paged media rules are devoted to affecting the placement of page breaks. In order
to keep these as clear as possible, CSS defines a number of rules related to “allowed” page breaks.
This section will review these rules in order to make the properties which follow easier to understand.

In general, CSS recommends the use of some general heuristics to determine how page breaks should
be placed.

 Break pages as few times as possible.
 Attempt to make all page boxes appear to be about the same height.
 Avoid page breaks inside block boxes which have borders.
 Avoid page breaks inside tables.
 Avoid page breaks inside floated elements.

The specification comes right out and admits that these rules may contradict each other in some
circumstances. It also avoids making them actual requirements; thus, user agents are free to place
page breaks as many or as few times as possible, and to use or ignore any or all of the preceding rules.

Cascading Style Sheets 2.0 Programmer's Reference

 125

However, there are some rules which user agents may not ignore. First are the two basic rules which
define where page breaks may actually occur.

 Page breaks may occur in the vertical margins between block boxes. If a page break
occurs between two block boxes, then the adjacent margins (the bottom margin of the
preceding element and the top margin of the following elements) are set to 0.

 Page breaks may occur between the line boxes of a block box.

There is more to the story than that, as it happens. There are five rules which govern the placement of
page breaks.

1. A page break may only be placed between block boxes if the values of page-break-
after and page-break-before for the two affected elements will allow it. This is the
case if the value of at least one of the elements is always, left, or right; or if the values
for both elements is auto.

2. If the values of page-break-after and page-break-before for two adjacent
elements is auto, and the nearest common ancestor to the two elements has a
page-break-inside value of avoid, then do not place a page break between the
elements.

3. A page break may be placed between two line boxes in a block box only if the
number of line boxes between the line box and the start of the block box is greater
than or equal to the value of orphans for the element. Similarly, a page break may
be placed between two line boxes only if the number of line boxes between the line
box and the end of the block box is greater than or equal to the value of widows for
the element.

4. A page break may be placed between two line boxes of an element only when the
value of page-break-inside for the element is auto.

5. A page break must be placed between two block boxes if the value of page-break-
before (for the preceding element) or page-break-after (for the following
element) is always, left, or right.

In situations where the rules do not allow for a line break, then rules 1 and 3 are ignored in order to
allow more flexibility. If there is still no valid place for a line break to appear, then rules 2 and 4 are also
ignored. In other words, all bets are off. At this point, the user agent will likely perform some form of
straightforward clipping operation to split the page, but other behaviors may be used. Rule 5 always
takes effect, no matter the circumstance.
Now that we’ve explored the circumstances in which a page break may be placed, let’s look at the two
rules which describe when a page break must be placed.

1. A page break must be placed between two block boxes if the value of page is
different for the two blocks.

2. A page break must be placed between two block boxes if the value of page for the
last line box in the preceding element is different than the value of page for the first
line box of the following element.

Finally, page breaks cannot be placed inside absolutely positioned elements.

Content-Clipping Rules

If content somehow ends up beyond the confines of the page box—for example, if it is an especially
wide image, or an element which has been positioned too far to one side or another—then the browser
must choose some mechanism to cope with the situation. As with the basic page-breaking rules, there
are a few suggestions.

 Content should be permitted to “bleed” beyond the edges of the page box. In other
words, user agents should render content which is outside the page box so long as
there is room to do so.

 Although it may be necessary to generate blank pages to honor the values left and
right for the page-break rules, generation of an excessive number of empty page
boxes should be avoided.

 If an element is positioned outside the page box to the extent that no part of it will be
rendered, then the user agent may choose its own method of handling it. It may discard
the element, for example, or place it at the end of the document.

Since none of these behaviors are requirements, authors cannot rely on any particular behavior to
happen in all user agents. For this reason, the CSS specification also recommends that authors not
create rules to place elements in odd positions simply to avoid rendering them. If an element should not

Cascading Style Sheets 2.0 Programmer's Reference

 126

be rendered in paged media, then it can be suppressed using display: none or made invisible with
visibility: hidden.

Reference

@page
@page is used to define the page context for a given page box.

Summary
Syntax
@page <page selector>?<page pseudo-class>? {<page context>}
Media Groups
paged

Components
<page selector>
Any legal string value may be used to define the page selector. For example, a page selector meant to
describe one page of a greeting card could be called card, greeting-card, or anything else which
has meaning for the author. Similarly, a page selector for handheld devices could be palm-screen or
hand-screen. The page selector can then be utilized by way of the property page.
<page pseudo-class>
This can be any of the page pseudo-classes :first, :left, and :right (see the upcoming
descriptions). These pseudo-classes must follow the page selector with no intervening space.
<page context>

The block of CSS rules which describe the page box.

Description
The page context is especially notable for the restrictions which are imposed upon it and the way in
which it changes the behavior of a few visual properties.
First of all, a page box cannot be given padding or borders—only margins—so these properties will
have no effect in a page context. (The CSS2 specification expressly states that this may change in the
future.) Second (and more important), a page context has no concept of fonts, which means that em and
ex units cannot be used to describe the size of a page box or its margins. All such dimensions must be
declared with an absolute-length unit such as in or cm, or the relative-size length unit px (pixels). Note,
however, that the mapping of pixels to a paged medium is not defined and cannot be guaranteed. It is
possible that a laser printer, for example, would interpret a length of 600px as 600 dots. At a resolution
of 1200 dots per inch or more, this would be a very small length. For this reason, the use of pixels in
paged media is strongly discouraged.
One property whose behavior changes in a paged-medium context is position. When an element is
set to position: fixed, it will appear in the same position on every page. This can be useful for
creating effects such as running heads and footers. If this is done, care must be taken to make sure that
the fixed-position element does not overlap other content on the page. This could be accomplished by
increasing the margins on the page box on the appropriate side.
A page context may be established for any element, including the BODY element in HTML. If an element
has a different page context from the element which precedes it, then a page break should be inserted
between them. See the section on page later in this chapter for more details.

Examples
@page sideways {size: landscape; margin: 0.75in;}
@page {size: 8.5in 11in; marks: cross; margin: 1in;}
@page legal:first {size: 8.5in 14in; margin: 0.66in; margin-top: 3in;}

Related Properties
page

Cascading Style Sheets 2.0 Programmer's Reference

 127

:first
The pseudo-class :first is used to style the first page of a document.

Summary
Syntax
@page <page selector>?:first {<page context>}
Media Groups

paged

Description
By using :first, the author can set special styles for the first page of a document which will not carry
over to other pages. This could be an increased top margin, for example, or a portrait orientation when
the rest of the document is in landscape.

Examples
@page :first {size: portrait; margin-top: 2.5in;}
@page rotate:first {size: landscape; margin-bottom: 10mm;}

:left
The pseudo-class :left is used to style the left pages of a document.

Summary
Syntax
@page <page selector>?:left {<page context>}
Media Groups

paged

Description
This pseudo-class allows authors to define styles for pages which are on the left in double-sided
printing. For example, in one common paged-media layout format, the right margin (which will be toward
the “inside” of a two-page layout) of left-side pages should be larger to account for binding, while the left
(or “outer”) margin should be equivalent to the top and bottom margins. This can be accomplished with
simple margin rules for all :left pages.

Examples
@page :left {margin-right: 1.25in; margin-left: 1in;
 margin-top: 1in; margin-bottom: 1in;}

:right
The pseudo-class :right is used to style the right pages of a document.

Summary
Syntax
@page <page selector>?:right {<page context>}
Media Groups

paged

Description
This pseudo-class allows authors to define styles for pages which are on the right in double-sided
printing, such as increasing the margin width for the left (“inside”) margin to account for binding (see the
previous description of :left for details). This can be accomplished with simple margin rules for all
:right pages.

Cascading Style Sheets 2.0 Programmer's Reference

 128

Examples
@page :right {margin-left: 1.25in; margin-right: 1in;
 margin-top: 1in; margin-bottom: 1in;}

marks
marks specifies the appearance and type of cropping marks which are placed on each page.

Summary
Value Syntax
[crop || cross] | none | inherit
Initial Value
none
Percentages

n/a
Inherited

n/a
Applies to

page context
Media Groups

visual, paged

Values
crop

Directs that crop marks be placed on the page. These marks are used by printers to determine where a
page should be trimmed.
cross

Causes the user agent to add cross marks to the page. These marks are used to align sheets during the
printing process.
none

No marks should be placed on the page.
Note The marks which are invoked with this property are placed just outside the page

box, the size of which is determined by the property size.

The placement, size, and appearance of the marks is entirely under the control of the user agent, and
cannot be affected through CSS.

Examples
@page proof {marks: cross crop; margin: 1.5em; size: auto;}
@page {marks: none;}

Related Properties
size

orphans
orphans sets the minimum number of lines in an element that must appear at the bottom of a page.

Summary
Value Syntax
<integer> | inherit
Initial Value

Cascading Style Sheets 2.0 Programmer's Reference

 129

2
Percentages

n/a
Inherited

yes
Applies to

block-level elements
Media Groups

visual, paged

Values
<integer>
The number given sets the minimum number of lines permitted at the bottom of a page. The value of
orphans can affect the page-breaking for a given page, effectively moving the "break point" up or down
depending on the circumstances. For example, assume an element which starts one line before the
bottom of the page box. If the value of orphans is 2, then the page break will be placed before the
element, and it will start on the next page. This will have the side effect of increasing the "blank space"
at the bottom of the page.

Note The value of orphans will be invoked for a given element only if that element
should have a page break within it. In other words, an element which started just
before the end of a page and which carries over to the next page will use its
orphans value. Any element which fits onto a single page in its entirety can have
a value for orphans, but will not use it.

Setting the value of orphans sufficiently high can lead to strange effects. If you set orphans to 20 for
all elements in a document, then any element which is longer than 20 lines and starts less than 20 lines
before the bottom of the page will be shifted to the next page.

Examples
p {orphans: 3;}
ol {orphans: 5;}

Related Properties
page-break-after, page-break-before, page-break-inside, widows

page
page is used to invoke a page selector which has been previously defined using @page.

Summary
Value Syntax
<page selector> | auto
Initial Value
auto
Percentages

n/a
Inherited

yes
Applies to

block-level elements
Media Groups

visual, paged

Cascading Style Sheets 2.0 Programmer's Reference

 130

Values
<page selector>
Any previously defined page selector. See the section on @page earlier in the chapter for more details.
auto

The user agent should format the page according to its defaults.
Note As a property, page can have no apparent effect on page layout without a

previously defined page selector to use. It is useful, however, in that a page
selector can be defined for a particular page layout, and then that layout can be
assigned to individual elements. For example, suppose that you have a type of
table which needs to be printed in landscape mode. By assigning a consistent
class to these tables (e.g., <table class="chart">), you can then use page to
assign a landscape-oriented page context to these elements. Since their page
context will differ from surrounding elements, these tables will appear on their
own pages, with page breaks being inserted before and after the landscape
tables.

If you wish to apply a consistent page context to the entire document, you can create a page selector
and then select the BODY element with a page rule set to that page selector.

Examples
@page proof {marks: cross crop; margin: 1.5em; size: auto;}
body.rough-draft {page: proof;}
@page rotate {size: landscape;}
table.chart {page: rotate;}

Related Properties
@page

page-break-after
page-break-after indicates whether (and how many) page breaks should be allowed after an
element’s box.

Summary
Value Syntax
auto | always | avoid | left | right | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to

block-level elements
Media Groups

visual, paged

Values
auto

Page breaks should be neither forced nor prevented after the element’s box.
always

A page break should be forced after this element’s box.
avoid

Cascading Style Sheets 2.0 Programmer's Reference

 131

No page break should be placed after the element’s box if at all possible. This does not guarantee the
lack of a page break after the element.
left

Force one or two page breaks after the element’s box, such that the next page on which an element is
printed will be a left-hand page.
right

Force one or two page breaks after the element’s box, such that the next page on which an element is
printed will be a right-hand page.

Note The value of this property is not the sole factor in determining whether a page
break should follow the element. This decision will also be affected by the value
of page-break-before for a following element, and the value of page-break-inside
for any ancestor elements.

Examples
h1 {page-break-after: avoid;}
div.summary {page-break-after: always;}

Related Properties
orphans, page-break-before, page-break-inside, widows

page-break-before
page-break-before indicates whether (and how many) page breaks should be allowed before an
element’s box.

Summary
Value Syntax
auto | always | avoid | left | right | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to

block-level elements
Media Groups

visual, paged

Values
auto

Page breaks should be neither forced nor prevented before the element’s box.
always

A page break should be forced before the element’s box.
avoid

No page break should be placed before the element’s box, if at all possible. This does not guarantee the
lack of a page break before the element.
left

Force one or two page breaks before the element’s box, such that the page on which the element is
printed will be a left-hand page.
right

Cascading Style Sheets 2.0 Programmer's Reference

 132

Force one or two page breaks before the element’s box, such that the page on which the element is
printed will be a right-hand page.

Note The value of this property is not the sole factor in determining whether a page
break should follow the element. This decision will also be affected by the value
of page-break-after for a preceding element, and the value of page-break-inside
for any ancestor elements.

Examples
h1 {page-break-before: right;}
table {page-break-before: always;}

Related Properties
orphans, page-break-after, page-break-inside, widows

page-break-inside
page-break-inside indicates whether page breaks should be allowed within an element’s box.

Summary
Value Syntax
avoid | auto | inherit
Initial Value
auto
Percentages

n/a
Inherited

yes
Applies to

block-level elements
Media Groups

visual, paged

Values
avoid

No page break should be placed inside the element’s box if at all possible. This is not a guarantee, as
the element may be too large to fit on a single page.
auto

Page breaks should be neither forced nor prevented inside the element’s box.
Note The value of this property is not the sole factor in determining whether a page

break should follow the element. This decision will also be affected by the values
of page-break-before and page-break-after for any descendant elements. For
example, if a DIV is set to page-break-inside: avoid, but one of its descendant
elements has been set to page-break-before: always, then there will be a page
break inside the DIV.

Examples
ul, ol {page-break-inside: avoid;}
table {page-break-inside: avoid;}
p {page-break-inside: auto;}

Related Properties
orphans, page-break-after, page-break-before, widows

Cascading Style Sheets 2.0 Programmer's Reference

 133

size
size specifies the size and orientation of a page box.

Summary
Value Syntax
<length>{1,2} | auto | portrait | landscape | inherit
Initial Value
auto
Percentages

n/a
Inherited

n/a
Applies to

page context
Media Groups

visual, paged

Values
<length>

Sets the physical size of the page box. If only one length value is given, it sets both the height and width
of the page box. If two length values are given, the first is the width and the second the height of the
page box.
auto
The page box is sized to fit the display medium. For example, if the print page is 8.5 inches by 11
inches, then page: auto will result in a page box of that size.
portrait
Sets the page box to the same size as the display sheet, but the longer measure is forced to be the
vertical axis. As an example, if the sheet is 5 inches tall by 10 inches wide, a setting of size:
portrait will force the user agent to make the page box 10 inches tall by 5 inches wide. On the other
hand, an 8.5 inch by 11 inch sheet will result in a page box which is 8.5 inches wide by 11 inches tall.
landscape
Sets the page box to the same size as the display sheet, but the longer measure is forced to be the
horizontal axis. As an example, if the sheet is 5 inches tall by 10 inches wide, a setting of size:
landscape will force the user agent to make the page box 5 inches tall by 10 inches wide. On the
other hand, an 8.5 inch by 11 inch sheet will result in a page box which is 11 inches wide by 8.5 inches
tall.

Note If the page box which results from the values of size will not fit on the actual
sheet, then the CSS specification offers two possible fallbacks. First is to rotate
the page box 90 degrees, assuming this will allow the page box to fit onto a
sheet. If this is not the case, then the user agent may scale the page box to fit on
the sheet.

It is also left to user agents to decide where the page box will actually be placed on the sheet, although
the CSS specification recommends that it be centered within the sheet.

Examples
@page legal {size: 8.5in 14in;}
@page {size: landscape;}

Related Properties
@page

widows
widows sets the minimum number of lines in an element that must appear at the top of a page.

Cascading Style Sheets 2.0 Programmer's Reference

 134

Summary
Value Syntax
<integer> | inherit
Initial Value
2
Percentages

n/a
Inherited

yes
Applies to

block-level elements
Media Groups

visual, paged

Values
<integer>
The number given sets the minimum number of lines permitted at the top of a page. The value of
widows can affect the page-breaking for a given page, effectively moving the "break point" up or down
depending on the circumstances. For example, assume an element which should end one line after the
top of the page box. If the value of widows is 2, then the page break will be placed before the element,
and it will start on the current page. This will have the side effect of increasing the "blank space" at the
bottom of the previous page.

Note The value of widows will be invoked for a given element only if that element
should have a page break within it. In other words, an element which started just
before the end of a page and which carries over to the next page will use its
widows value. Any element which fits onto a single page in its entirety can have a
value for widows, but will not use it.

Setting the value of widows sufficiently high can lead to strange effects. If you set widows to 20 for all
elements in a document, then any element which ends less than 20 lines after the top of the page will
be shifted in its entirety onto the page, thereby removing it from the previous page.

Examples
div.aside {widows: 2;}
ul {widows: 6;}

Related Properties
orphans, page-break-after, page-break-before, page-break-inside

Chapter 6: Aural Media Styles
In addition to the visual and paged media, CSS also provides properties to support aural (audio) media.
Using these properties, it is theoretically possible to create audio styles nearly as rich as the visual
styles permitted by the rest of the specification. Besides enriching the Web for users who are blind or
otherwise visually impaired, aural styles could also be useful for automobile drivers who want to have
Web pages read to them by a dashboard browser, just to pick one example.

As of this writing, there is very little deployed support for aural styles, and what support does exist can
be found in niche products which exist to serve the visually impaired community. None of the popular
visual browsers, such as Netscape Navigator or Microsoft Internet Explorer, includes any support for
aural styles.

Cascading Style Sheets 2.0 Programmer's Reference

 135

Reference

azimuth
azimuth describes the position of a sound source along the horizontal axis of the listener’s
environment.

Summary
Value Syntax
<angle> | [[left-side | far-left | left |
center-left | center | center-right | right | far-right | right-side] ||
behind] | leftwards | rightwards | inherit
Initial Value
center
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<angle>
Any angle value which corresponds to the range 0deg – 360deg. An angle value of 0deg corresponds
to a point directly in front of the listener, whereas 90deg corresponds to a point directly to the right,
180deg a point directly behind, and 270deg directly to the left of the listener. Negative angle values are
also permitted, so –90deg is equivalent to 270deg.
left-side
Equivalent to 270deg (-90deg). When combined with behind, the sound’s position is the same.
far-left
Equivalent to 300deg (-60deg). When combined with behind, the sound’s position is equivalent to
240deg.
left
Equivalent to 320deg (-40deg). When combined with behind, the sound’s position is equivalent to
220deg.
center-left
Equivalent to 340deg (-20deg). When combined with behind, the sound’s position is equivalent to
200deg.
center
Equivalent to 0deg. When combined with behind, the sound’s position is equivalent to 180deg.
center-right
Equivalent to 20deg. When combined with behind, the sound’s position is equivalent to 160deg.
right
Equivalent to 40deg. When combined with behind, the sound’s position is equivalent to 140deg.
far-right
Equivalent to 60deg. When combined with behind, the sound’s position is equivalent to 120deg.
right-side
Equivalent to 90deg. When combined with behind, the sound’s position is the same.
leftwards
Causes the audio source to be shifted by 20 degrees (in 360-degree space) to the left. In fact,
leftwards causes a shift in a counter-clockwise direction. Thus, if the sound source is initially at the
180deg position (directly behind the listener), then leftwards would actually cause the source to be
shifted to 160deg, or 20 degrees counterclockwise, which will sound to the listener like a rightward
movement.

Cascading Style Sheets 2.0 Programmer's Reference

 136

rightwards
Causes the audio source to be shifted by 20 degrees (in 360-degree space) to the right. In fact,
rightwards causes a shift in a clockwise direction. Thus, if the sound source is initially at the 180deg
position (directly behind the listener), then rightwards would actually cause the source to be shifted
to 200deg, or 20 degrees clockwise, which will sound to the listener like a leftward movement.

Note If an aural device can produce spatial audio, but cannot place sounds behind the
listener, then the device should convert the values between 90deg and 270deg
into values in the –90deg to 90deg range. The specification does not require a
particular method of accomplishing this, but suggests an algorithm equivalent to
the following:
if 90deg < x <=270deg then set x to 180deg –x

This algorithm will “reflect” sounds from the rear hemisphere into the forward hemisphere. For example,
a sound at 135deg will be reflected to 45deg, while a sound at 210deg will be set to –30deg
(equivalent to 330deg).

Examples
a.external:link {azimuth: right-side;}
a:visited {azimuth: 180deg;}

Related Properties
elevation

cue
cue is a shorthand element for cue-before and cue-after.

Summary
Value Syntax
[<cue-before> || <cue-after>] | inherit
Initial Value

not defined for shorthand properties
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

aural

Values
<cue-before>
See the entry for cue-before.
<cue-after>
See the entry for cue-after.

Note If two values are specified, the first corresponds to cue-before, and the second to
cue-after. If only one value is given, it applies to both cue-before and cue-after.

Examples
h1 {cue: url(flourish.wav);}
a:link {cue: url(open.wav) url(close.wav);}

Cascading Style Sheets 2.0 Programmer's Reference

 137

Related Properties
cue-before, cue-after, pause, pause-after, pause-before

cue-after
cue-after defines an auditory cue to be played immediately after the rendering of an element.

Summary
Value Syntax
<uri> | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

aural

Values
<uri>
The user agent should use the sound resource defined by that URI as the audio cue. If the URI points to
something other than an audio file, then it is to be ignored and the user agent should act as though
cue-after had been set to none.
none
Setting cue-after to none means that no cue should be played.

Note cue-after can be used to play a "page turning" sound after each paragraph, sound
a gong to mark the end of a hyperlink, or other audible cues. Note that this cue is
rendered after any pauses declared using pause-after.

Examples
a:link {cue-after: url(close.wav);}
body {cue-after: url(the-end.wav);}

Related Properties
cue, cue-before, pause-after

cue-before
cue-before defines an auditory cue to be played immediately before the rendering of an element.

Summary
Value Syntax
<uri> | none | inherit
Initial Value
none
Percentages

n/a
Inherited

no
Applies to

Cascading Style Sheets 2.0 Programmer's Reference

 138

all elements
Media Groups

aural

Values
<uri>
The user agent should use the sound resource defined by that URI as the audio cue. If the URI points to
something other than an audio file, then it is to be ignored and the user agent should act as though
cue-before had been set to none.
none
Setting cue-before to none means that no cue should be played.

Note cue-before can be used to play a "new section" sound before each heading,
produce a "mouse-click" sound to mark the beginning of a hyperlink, or other
audible cues. Note that this cue is rendered before any pauses declared using
pause-before.

Examples
a:visited {cue-before: url(drag.wav);}
h3 {cue-before: url(ding.wav);}

Related Properties
cue, cue-after, pause-before

elevation
elevation describes the position of a sound source along the vertical axis of the listener’s
environment.

Summary
Value Syntax
<angle> | above | level | below | higher | lower | inherit
Initial Value
level
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<angle>
Angle values are in the range –90deg to 90deg. An angle value of 0deg corresponds to a point which
is level with the listener, whereas 90deg corresponds to a point directly above, and –90deg directly
below.
above
Equivalent to the value 90deg.
level
Equivalent to the value 0deg.
below
Equivalent to the value -90deg.
higher

Cascading Style Sheets 2.0 Programmer's Reference

 139

Causes the sound source to be shifted upwards by 10deg. Values beyond the range –90deg to 90deg
are "clipped" to the edges of the range; thus, applying higher to a sound source with an elevation
of 90deg will result in the value 90deg.
lower
Causes the sound source to be shifted downwards by 10deg. Values beyond the range –90deg to
90deg are "clipped" to the edges of the range; thus, applying lower to a sound source with an
elevation of -90deg will result in the value -90deg.

Note By combining this property with azimuth, a sound’s position in the "aural sphere"
can be described.

Examples
h1 {elevation: above;}
h2 {elevation: 60deg;}

Related Properties
azimuth

pause
pause is a shorthand element for pause-before and pause-after.

Summary
Value Syntax
[[<time> | <percentage>]{1,2}] | inherit
Initial Value

UA dependent
Percentages
see descriptions of pause-before and pause-after
Inherited

no
Applies to

all elements
Media Groups

aural

Values
<time>
Any time value (e.g., 150ms); the pause will be the length of time specified.
<percentage>
The length of the pause is dictated by the value of speech-rate. For a speech-rate of 60 words per
minute, which corresponds to one word per second, then a percentage is calculated with respect to one
second. For a speech-rate of 120 words per minute, which yields a time per word of 500
milliseconds, then percentage would be calculated with respect to 500 milliseconds.

Note If two values are specified, the first corresponds to pause-before, and the second
to pause-after. If only one value is given, it applies to both pause-before and
pause-after.

Examples
a:link, a:visited {pause: 25%;}
h1 {pause: 2s 250ms;}

Related Properties
cue-before, cue-after, pause-before, pause-after, speech-rate

Cascading Style Sheets 2.0 Programmer's Reference

 140

pause-after
pause-after defines the duration of a silent pause to be inserted after the content of an element.
Values
<time> | <percentage> | inherit
Initial Value

UA dependent
Percentages

see description under Values
Inherited

no
Applies to

all elements
Media Groups

aural

Values
<time>
Any time value (e.g., 300ms); the pause will be the length of time specified.
<percentage>
The length of the pause is dictated by the value of speech-rate. Thus, pause-after: 33% would
yield 167ms if the speech rate is two words per second (120 words per minute), and 333ms if it’s one
word per second (60 words per minute).

Note The generated pause is observed before any cue-after content.

Examples
table {pause-after: 1500ms;}
li {pause-after: 50%;}

Related Properties
cue-after, pause, pause-before, speech-rate

pause-before
pause-before defines the duration of a silent pause to be inserted before the content of an element.

Summary
Value Syntax
<time> | <percentage> | inherit
Initial Value

UA dependent
Percentages

see description under Values
Inherited

no
Applies to

all elements
Media Groups

aural

Cascading Style Sheets 2.0 Programmer's Reference

 141

Values
<time>
Any time value (e.g., 2s).
<percentage>
The length of the pause is dictated by the value of speech-rate. Thus, pause-before: 50% would
yield 250ms if the speech rate is two words per second (120 words per minute), and 500ms if it’s one
word per second (60 words per minute).

Note The generated pause is observed after any cue-before content.

Examples
h2, h3, h4 {pause-before: 200%;}
ol li {pause-before: 1s;}

Related Properties
cue-before, pause, pause-after, speech-rate

pitch
pitch specifies the average pitch of the speaking voice used to render spoken text.

Summary
Value Syntax
<frequency> | x-low | low | medium | high | x-high | inherit
Initial Value
medium
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<frequency>
A frequency value, which must be set in hertz (e.g., 140Hz), will define an absolute frequency to use as
the pitch average.
x-low
While the corresponding absolute frequency will be different for every voice family, the result given by
x-low must at a minimum be lower than the result derived from the keyword low.
low
While the corresponding absolute frequency will be different for every voice family, the result given by
low must, at a minimum, be lower than the result derived from the keyword medium.
medium
While the corresponding absolute frequency will be different for every voice family, the result given by
medium must, at a minimum, be higher than the result given by the keyword low, and lower than the
result derived from the keyword high.
high
While the corresponding absolute frequency will be different for every voice family, the result given by
high must, at a minimum, be higher than the result derived from the keyword medium.
x-high
While the corresponding absolute frequency will be different for every voice family, the result given by
x-high must, at a minimum, be higher than the result derived from the keyword high.

Cascading Style Sheets 2.0 Programmer's Reference

 142

Note The default average pitch will depend on the voice family; for example, the
average male pitch is generally given as 120Hz, while the female average is in
the area of 210Hz.

Examples
p.shriek {pitch: high;}
div.basso {pitch: x-low;}
body {pitch: 150Hz;}

Related Properties
pitch-range, voice-family

pitch-range
pitch-range defines the amount of variation permitted in the pitch of spoken text.

Summary
Value Syntax
<number> | inherit
Initial Value
50
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<number>
The higher the value of pitch-range, the more "animated" a voice will seem, due to the changes in
pitch used in speaking various words. A value of 0 will produce a voice with no pitch variation at all—in
other words, a flat monotone. The value 50 is defined to correspond to "normal" inflection. Higher
values will lead to a perception of more animation in the voice.

Note The number values are raw numbers, not frequency values. Thus, setting pitch-
range: 70 does not mean that the pitch can vary up to 70Hz. In fact, the pitch
variation may be more or less than 70Hz, depending on the voice family and
possibly a number of other unknown factors. The degree of pitch change for each
numeric value of pitch-range is not defined by CSS.

Examples
body {pitch-range: 66;}
*.robot {pitch-range: 0;}

Related Properties
pitch, voice-family

play-during
play-during defines a sound to be played while rendering the element’s content. This sound is also
known as a "background sound."

Cascading Style Sheets 2.0 Programmer's Reference

 143

Summary
Value Syntax
<uri> mix? repeat? | auto | none | inherit
Initial Value
auto
Percentages

n/a
Inherited

no
Applies to

all elements
Media Groups

aural

Values
<uri>
A single URI may be given, and it should resolve to a sound file. If it does not, then play-during is
treated as though it had been set to auto.
mix
Causes the background sound of the element to be played, along with any background sound resulting
from the value of play-during for any ancestor elements. If the value does not contain mix, then the
element’s background sound replaces the ancestor’s background sound for the duration of the
element’s rendering. Once the element has been rendered, its background sound ceases and the
ancestor’s background sound resumes.
repeat
Causes the background sound to be repeated if it finishes before the element is fully rendered. If the
value does not contain repeat, then the sound will only be played once. Any background sound which
lasts longer than the rendering time for the element will be clipped once the element has been spoken,
regardless of the presence or absence of repeat.
auto

Any sound being played for any ancestor elements will continue to be heard, but no background sound
will be produced by the current element. If there is no sound associated with any ancestor elements,
then no sound will be heard.
none

Causes complete background silence during the rendering of the element. No background sound is
played for the element, and any background sounds associated with ancestor elements are also muted.

Note Due to the potential cacophony which could result from mixing several sounds
together at once, authors are encouraged to use the keyword mix sparingly, and
with a great deal of caution. This is especially true since CSS does not offer a
way to synchronize sounds with each other.

Examples
h1 {play-during: url(ocean-waves.wav) mix repeat;}
a:link (play-during: none;}

Related Properties
none

richness
richness defines the degree to which a voice will "carry."

Cascading Style Sheets 2.0 Programmer's Reference

 144

Summary
Value Syntax
<number> | inherit
Initial Value
50
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<number>

The higher the numeric value, the more rich the voice and the further it will carry. A lower value will
produce a voice which is soft and (to quote the specification) “mellifluous.”

Note Richness is also known as the “brightness” of a voice.

Examples
*.chairman-kaga {richness: 80;}
div.aside {richness: 10;}

Related Properties
stress, voice-family

speak
speak defines the method by which an element’s text should be aurally rendered, or if it should be
rendered at all.

Summary
Value Syntax
normal | none | spell-out | inherit
Initial Value
normal
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
normal

Cascading Style Sheets 2.0 Programmer's Reference

 145

Directs the user agent to speak the text using the pronunciation rules for that element and its children.
These pronunciation rules will be language-dependent and are not given in CSS.
none
Prevents the element from being spoken. This is accomplished by skipping the element entirely. This is
somewhat analogous to the visual style display: none, which suppresses rendering of an element
and closes up the space it would ordinarily occupy. By skipping the element, the time taken to render it
is effectively zero. In order to suppress audio rendering of an element but force the browser to pause for
the amount of time it normally would have taken to speak the element, see volume.
spell-out
Causes the user agent to speak the text one letter at a time, which is useful for speaking acronyms. For
example, the speak value for an element containing the text "W3C" should probably be spell-out.

Note In a sense, speak is something like display for aural media, although display can
still be used in aural stylesheets. In the case of speak: none, it is possible that
descendant elements may override this value and thus be spoken. In order to
ensure that an element and its descendants are not aurally rendered, use display:
none.

Examples
acronym {speak: spell-out;}
*.hidden {speak: none;}

Related Properties
speak-header, speaker-numeral, speak-punctuation, volume

speak-header
speak-header is used to specify the audible repetition (or lack thereof) of table headers.

Summary
Value Syntax
once | always | inherit
Initial Value
once
Percentages

n/a
Inherited

yes
Applies to

elements that have table header information
Media Groups

aural

Values
once

Headers will only be read once; that is, they will be rendered when the user agent first renders the
header cell.
always
The contents of the header will be spoken as the preface to every related cell in the table. Thus, for
every cell in a column beneath the header “Sales Tax,” the browser will speak the words “Sales Tax”
before rendering the contents of the table cell. If a document language possesses no way to associate
headers with other cells, then speak-header: always cannot be supported for documents in that
language.

Note The correct execution of speak-header values is dependent on a document
mechanism which associates cells with headers. For example, HTML 4.0
contains elements to describe columns and rows, as well as attribute-based
association methods, and in addition describes a method of deducing header

Cascading Style Sheets 2.0 Programmer's Reference

 146

information from the structure of the table.

Examples
table {speak-header: once;}
th.urgent {speak-header: always;}

Related Properties
speak, speaker-numeral, speak-punctuation

speak-numeral
speak-numeral defines the method by which a number should be aurally rendered.

Summary
Value Syntax
digits | continuous | inherit
Initial Value
continuous
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
digits

The numeral is read one number at a time; e.g., “four one one.”
continuous

The numeral is read in a language-dependent fashion; e.g., “four hundred eleven.”
Note Language-dependent speaking systems are not within the scope of CSS, so each

user agent may implement its own strategy for speaking numerals in a continuous
fashion.

Examples
td.phone-no {speak-number: digits;}
td.price {speak-number: continuous;}

Related Properties
speak, speaker-header, speak-punctuation

speak-punctuation
speak-punctuation defines the method by which punctuation should be aurally rendered.

Summary
Value Syntax
code | none | inherit
Initial Value
none
Percentages

Cascading Style Sheets 2.0 Programmer's Reference

 147

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
code

Punctuation is spoken literally; e.g., “In closing comma I feel that...”
none

Punctuation is rendered as pauses of various lengths. The length of these pauses will be language-
dependent.

Note Language-dependent speaking systems are not within the scope of CSS, so each
user agent may implement its own strategy for “speaking” punctuation.

Examples
*.literal {speak-punctuation: code;}
body {speak-punctuation: none;}

Related Properties
speak, speak-header, speaker-numeral

speech-rate
speech-rate is used to declare the rate at which text is spoken.

Summary
Value Syntax
<number> | x-slow | slow | medium | fast | x-fast | faster |
slower | inherit
Initial Value
medium
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<number>
Define the average number of words spoken per minute. Thus, a value of 90 would set the user agent
to read text at an average of 90 words per minute.
x-slow

Equivalent to 80 words per minute.
slow

Cascading Style Sheets 2.0 Programmer's Reference

 148

Equivalent to 120 words per minute.
medium

Equivalent to 180-200 words per minute. The exact number chosen is user agent–dependent.
fast

Equivalent to 300 words per minute.
x-fast

Equivalent to 500 words per minute.
faster
Adds 40 words per minute to the current value of speech-rate.
slower
Subtracts 40 words per minute to the current value of speech-rate.

Note Note that the words-per-minute figures for the keywords are normal for the
English language. Although implementation experience shows that other
languages have different speaking rates, these are not accommodated in the
specification. Future revisions of CSS may or may not address this situation.

Examples
em {speech-rate: slower;}
div.legalese {speech-rate: fast;}
h1 {speech-rate: 90;}

Related Properties
pause, pause-after, pause-before

stress
stress specifies the amount of inflection which is used to speak stress markers in a language.

Summary
Value Syntax
<number> | inherit
Initial Value
50
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<number>

Defines the range of stress inflection. The actual meaning of this value will depend on the language
being spoken, as different human languages permit different ranges of stress inflection. The exact
mechanism is not given in the specification. In general, higher values will lead to greater inflection on
stress markers, while lower values will lessen the stress inflection.

Note According to the specification, stress refers to "the height of ‘local peaks’ in the
intonation contour of a voice." As an example, the English language uses stress
markers to highlight various parts of a sentence using primary, secondary, and
tertiary stress. stress combines with pitch-range to produce the nuances of a

Cascading Style Sheets 2.0 Programmer's Reference

 149

given language.

Examples
strong {stress: 80;}
div.aside {stress: 40;}

Related Properties
pitch-range, voice-family

voice-family
voice-family is used to define the specific voice, and optionally a generic voice type, which is to be
used in the speaking of content.

Summary
Value Syntax
[[<specific-voice> | <generic-voice>],]*
[<specific-voice> | <generic-voice>] | inherit
Initial Value

UA dependent
Percentages

n/a
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<specific-voice>

Any specific voice name may be declared for the voice, although those voice names with whitespace or
other special characters in their names should be quoted.
<generic-voice>
The permitted generic voice family values are male, female, and child.

Note In effect, voice-family is the equivalent of font-family for aural media.

Examples
body {voice-family: JoeBob, Cuthbert, male;}
*.fem {voice-family: Julie, "Ma Bell", Aenea, female;}

Related Properties
pitch, pitch-range, stress, richness

volume
volume describes the "loudness" of a sound.

Summary
Value Syntax
<number> | <percentage> | silent | x-soft | soft |
medium | loud | x-loud | inherit

Cascading Style Sheets 2.0 Programmer's Reference

 150

Initial Value
medium
Percentages

refer to inherited value
Inherited

yes
Applies to

all elements
Media Groups

aural

Values
<number>
Any number in the range 0 – 100. The actual decibel levels which correspond to the volume number
values 0 and 100 are meant to be set by the user agent. For this reason, the specification defines the
number 0 as the minimum audible level, and 100 as the maximum comfortable level. This is due to the
fact that different environments require different decibel ranges for comfortable hearing. For example,
the setting for 0 should be different when driving in a car than the setting in a home office; similarly, the
setting for 100 will be different in a library than in a teenager’s bedroom. This approach allows users to
set the volume range appropriate for their diverse environments while still making use of the same
author stylesheet. This also means that the value 0 will produce some sound, at whatever decibel level
is set to be the minimum audible level for the current user environment.
<percentage>
Percentage values are calculated relative to the inherited value of volume, and then clipped to the
range 0 – 100 if necessary.
silent
No sound should be produced. Thus, silent and 0 are not equivalent, as 0 could produce a 30-
decibel sound or a 5-decibel sound, depending on the user agent’s settings. Like the mute button on a
television, silent will always result in a lack of any sound, regardless of the user agent settings.
However, the time it would normally have taken to play the sound (or read the text) will be filled with
silence. In other words, the user agent still attempts to play a sound or read text, but produces no actual
sound. This is somewhat equivalent to the visual style visibility: hidden, which causes elements
to be invisible but take up the space which would be required to display them.
x-soft
Equivalent to the numeric value 0.
soft
Equivalent to the numeric value 25.
medium
Equivalent to the numeric value 50.
loud
Equivalent to the numeric value 75.
x-loud
Equivalent to the numeric value 100.

Note In more precise terms, volume, to quote the specification, sets "the median
volume of the waveform... In other words, a highly inflected voice at a volume of
50 might peak well above that." Thus, volume does not enforce exactly the same
volume level for every sound produced, but instead defines the midpoint of the
sounds which are produced. In addition, the property volume is intended to adjust
the dynamic range of a sound, since it cannot be expected to override physical
controls like volume knobs.

Examples
div.sotto {volume: 33;}
h1 {volume: loud;}
*.quiet {volume: 0;}

Cascading Style Sheets 2.0 Programmer's Reference

 151

*.mute {volume: silent;}

Related Properties
speak

Part II: Summaries
Chapter List

Chapter 7: Browser Compatibility
Chapter 8: CSS2 Quick Reference
Chapter 9: Useful Resources

Chapter 7: Browser Compatibility
Overview
It is the unfortunate truth that CSS support in Web browsers has not been perfect. Only recently have
browsers even begun to reach a full and correct implementation of CSS1, and thus turned their eyes to
implementing CSS2. Knowing the potential trouble spots can save authors a great deal of frustration. As
of this writing, CSS2 support was not advanced enough to merit its own chart. In fact, the only portions
of CSS2 which could reasonably be charted are selectors (minimal adoption) and positioning (bugs
galore). The rest of CSS2 is either not supported, or partially supported. It is true that Navigator 6 and
Opera 5 have pretty good CSS2 support, but they also have pretty poor market penetration. Thus, we
have undertaken to chart support for the part of CSS which has the widest acceptance: CSS1.
In the following chart, each property and value is given a support rating for each browser on the chart.
These ratings are explained in Table 7-1.

Table 7-1: Support Chart Ratings Explained

Rating Description

Y Yes, the property is supported in this browser. No known bugs exist,
and the browser’s behavior is in accordance with the CSS specification.

Q Quirks still exist in this browser’s support, but overall it is very good.
This rating is reserved for browsers which are very, very close to
matching the specification, or which follow the specification’s letter but
not its spirit.

P Partial implementation of the specification. This generally means that
while there are no bugs in the browser’s behavior, there are also gaps
in its support.

B Buggy implementation. Not only is the support incomplete, it is incorrect
and may do great violence to page layout.

N No support for this property or value. The browser will act as if the
property or value did not exist.

The number found next to each property name below refers to the section number in the CSS1
specification.

Cascading Style Sheets 2.0 Programmer's Reference

 152

Cascading Style Sheets 2.0 Programmer's Reference

 153

Cascading Style Sheets 2.0 Programmer's Reference

 154

Cascading Style Sheets 2.0 Programmer's Reference

 155

Cascading Style Sheets 2.0 Programmer's Reference

 156

Cascading Style Sheets 2.0 Programmer's Reference

 157

Cascading Style Sheets 2.0 Programmer's Reference

 158

Cascading Style Sheets 2.0 Programmer's Reference

 159

Cascading Style Sheets 2.0 Programmer's Reference

 160

Notes

1.1 Containment in HTML

@import
WinIE4 and WinIE5 both import files even when the @import statement is at the end of the document
stylesheet. This is technically in violation of the CSS1 specification, although obviously not a major
failing; thus the "Quirk" rating.

1.1 Containment in HTML

<x STYLE=“dec;”>

Navigator 4 has particular trouble with list items, which is most of the reason for the “B” rating.

1.3 Inheritance

Navigator 4’s inheritance is unstable at best, and fatally flawed at worst. It would take too long to list all
occurrences, but particularly troublesome areas include tables and lists.

1.4 Class Selector

WinIE4/5 allows class names to begin with digits; this is not permitted under CSS1.

1.5 ID Selector

WinIE4/5 allows ID names to begin with digits; this is not permitted under CSS1. All browsers apply the
style for a given ID to more than one instance of that ID in an HTML document, which is not permitted.
This is an error-checking problem, not a failing of the CSS implementations, but it is significant enough
to warrant the ratings shown. Note that ID and classes can begin with digits under CSS2, so this is not
as much of a problem as it might first appear.

1.6 Contextual Selectors

x y z {dec;}
MacNav4 has the most trouble with contextual selectors involving tables. For example, HTML BODY
TABLE P is not properly handled.

3.2 Cascading Order

There are simply far too many instances of problems, with far too many of them defying analysis, to list
here.

5.2.2 font-family

cursive

Despite having a preferences setting for cursive fonts, Opera does not seem to apply the preference,
but instead substitutes another font.

5.2.4 font-variant

small-caps
WinIE4/5 approximates the small-caps style by making all such text uppercase. While this can be
justified under the CSS1 specification, visually it does not render the text in small caps.

Cascading Style Sheets 2.0 Programmer's Reference

 161

5.2.6 font-size

xx-small - xx-large
IE4/5’s (both Win and Mac) values for absolute sizes assign small to be the same size as unstyled
text, instead of medium, as one might expect. Thus, declaring an absolute font size (such as font-
size: medium) will almost certainly lead to different size fonts in Navigator and Explorer. While this is
not incorrect under the specification, it is confusing to many authors.

5.3.2 background-color

<color>

Nav4 does not apply the background color to the entire content box and padding, but rather just to the
text in the element. This can be worked around by declaring a zero-width border.

5.3.2 background-color

transparent
Nav4 insists on applying this value to the parent of an element, not the element itself. This can lead to
“holes” in the parent element’s background. Opera 4 has a bug which only shows up when a
background has been repeated, and the rest of the background of the element is transparent (either by
default or when explicitly declared). Scrolling the element “offscreen” and then bringing it back can
cause “holes” to be punched through the repeated images of ancestor elements, thus creating visual
anomalies.

5.3.4 background-repeat

repeat
WinIE4 only repeats down and to the right. The correct behavior is for the background image to be tiled
in both vertical directions for repeat-y, and both horizontal for repeat-x. Nav4 gets this property
correct on a technicality: since it does not support background-position, there is no way to know
whether or not it would tile in all four directions if given the chance, or instead emulate WinIE4’s
behavior. Opera 3.6, MacIE4/5, and WinIE5 all behave correctly.

5.3.4 background-repeat

repeat-x

WinIE4 only repeats to the right, instead of both left and right.

5.3.4 background-repeat

repeat-y

WinIE4 only repeats down, instead of both up and down.

5.3.7 background

Navigator 4.x is legendary for its inability to correctly render backgrounds. If there is no border around
an element, then the background will only be visible behind the text of the element, instead of
throughout the entire content-area and padding. Unfortunately, if a border is added, there will be a
transparent gap between the content-area and the border itself. This is not the padding, and there is no
way to get rid of the gap.

5.4.3 text-decoration

none
According to the specification, if an element is decorated, but one of its children is not, the parent’s
effect will still be visible on the child; in a certain sense, it “shines through.” Thus, if a paragraph is

Cascading Style Sheets 2.0 Programmer's Reference

 162

underlined, but a STRONG element within it is set to have no underlining, the paragraph underline will
still "span" the STRONG element. This also means that the underlining of child elements should be the
same color as the parent element, unless the child element has also been set to be underlined.

In practice, however, setting an inline element to “none” will turn off all decorations, regardless of the
parent’s decoration. The only exceptions to this are Opera and MacIE5, which implement this part of the
specification correctly. Unfortunately, Opera 4 and 5 and Netscape 6 will not “span” inline images with
the text decoration of a parent element. In addition, Netscape 6 appears not to use the parent element’s
decoration, but instead “replicates” the underline onto child elements, which is clearly wrong. Despite its
seeming simplicity, this property remains a thorny problem for browser developers.

5.4.3 text-decoration

blink

Since this value is not required under CSS1, only Navigator supports it (surprise).

5.4.5 text-transform

uppercase

Opera 3.6 uppercases the first letter in each inline element within a word, which (according to the CSS1
Test Suite) it should not do.

5.4.6 text-align

justify

In Nav4, this value has a tendency to break down in tables, but generally works in other circumstances.

5.4.8 line-height

<length>

Nav4 incorrectly permits negative values for this property.

5.4.8 line-height

Opera 3.6 applies background colors to the space between lines, as opposed to just the text itself, when
the background is set for an inline element within the text. (See the CSS1 Test Suite for more details.)

5.5.01 margin-top
All margin properties seem to be problematic, or else completely unsupported, on inline elements; see
margin in this chapter for details.

5.5.02 margin-right
All margin properties seem to be problematic, or else completely unsupported, on inline elements; see
margin below for details. Opera 4 sometimes applies right margins to all of the boxes of an inline
element, not just the last one. This seems to come and go somewhat randomly, but it is common
enough to be noticeable.

5.5.03 margin-bottom
All margin properties seem to be problematic, or else completely unsupported, on inline elements; see
margin below for details.

5.5.04 margin-left
All margin properties seem to be problematic, or else completely unsupported, on inline elements; see
margin below for details. Opera 4 sometimes applies left margins to all of the boxes of an inline
element, not just the first one. This seems to come and go somewhat randomly, but it is common
enough to be noticeable.

Cascading Style Sheets 2.0 Programmer's Reference

 163

5.5.05 margin
All margin properties seem to be problematic, or else completely unsupported, on inline elements. In the
case of margin, support is pretty good on block-level elements in WinIE4 and WinIE5, while with inline
elements, WinIE4 and WinIE5 ignore this property completely. MacIE5 correctly honors margins on all
elements. Navigator 4.x does fairly well so long as margins are not applied to floating or inline elements,
in which case major bugs can be tripped.
Opera 4’s problems with correctly applying right and left margins to inline elements seems to get worse
with margin.

5.5.06 padding-top
See the notes for “5.5.10 padding.”

5.5.07 padding-right
See the notes for “5.5.10 padding.”

5.5.08 padding-bottom
See the notes for “5.5.10 padding.”

5.5.09 padding-left
See the notes for “5.5.10 padding.”

5.5.10 padding
All padding properties seem to be problematic, or else completely unsupported, on inline elements.
Opera 3.6 correctly ignores negative padding values, but will alter the line-height based on values of
padding applied to inline elements, which is incorrect. WinIE4 and WinIE5 will honor padding
assignments on block-level elements, but not inline elements. Navigator 4.x does fairly well so long as
padding is not applied to floating or inline elements, in which case major bugs can be tripped.

5.5.11 border-top-width
See the notes for “5.5.15 border-width.”

5.5.12 border-right-width
See the notes for “5.5.15 border-width.”

5.5.13 border-bottom-width
See the notes for “5.5.15 border-width.”

5.5.14 border-left-width
See the notes for “5.5.15 border-width.”

5.5.15 border-width
Nav4 will create visible borders even when no border-style is set, and does not set borders on all
sides when a style is set. Things get really ugly when borders are applied to inline styles. WinIE4 and
WinIE5 correctly handle borders on block-level elements, but ignore them for inlines.

5.5.16 border-color
Navigator 4.x and Opera 3.6 do not set colors on individual sides, as in border-color: red blue
green purple. Explorer cannot apply border colors to inline elements, since it does not apply borders
to inlines, but this is not penalized here.

5.5.17 border-style
Navigator 4.x does not reset the border-width to zero if border-style is none, but instead
incorrectly honors the width setting.

5.5.18 border-top

Opera 3 does not apply border styles to table elements, which is the reason for the “P” rating. IE4 and
IE5 do not apply borders to inline elements.

Cascading Style Sheets 2.0 Programmer's Reference

 164

5.5.19 border-right

Opera 3 does not apply border styles to table elements, which is the reason for the “P” rating. WinIE4
and WinIE5 do not apply borders to inline elements.

5.5.20 border-bottom

Opera 3 does not apply border styles to table elements, which is the reason for the “P” rating. IE5 and
IE5/Win do not apply borders to inline elements, which is the reason for those “P” ratings.

5.5.21 border-left

Opera 3 does not apply border styles to table elements, which is the reason for the “P” rating. IE4 and
IE5/Win do not apply borders to inline elements.

5.5.22 border

Opera 3 does not apply border styles to table elements, which is the reason for the “P” rating. IE4 and
IE5/Win do not apply borders to inline elements, which is the reason for those “P” ratings. Opera 5 has
an odd, semi-random bug that causes it to improperly place the border around the first inline element (or
part thereof) in the document. The border is drawn too high, making it appear as though the border has
been “superscripted” while the content remains where it should.

5.5.23 width
Navigator 4.x applies width in a very inconsistent fashion, but appears to honor it on most simple text
elements and images. WinIE4/5 applies it to images and tables, but ignores it for most text elements
such as P and headings. Opera 3.6, weirdly, seems to set the width of images to 100%—but this is
largely an illusion, since minimizing the window and then maximizing it again will reveal correctly sized
images.

5.5.25 float
float is one of the most complicated and hard-to-implement aspects of the entire specification. Basic
floating is generally supported by all browsers, especially on images, but when the specification is
closely tested, or the document structure becomes complicated, floating most often happens incorrectly,
or not at all. The floating of text elements is especially inconsistent, although IE5 and Opera have
cleaned up their act to a large degree, leaving WinIE4 and Nav4 the major transgressors in this respect.
Authors should use float with some care, and thoroughly test any pages employing it with great care.

Opera 4 seems to place floated elements a little bit off from where the “ideal” place would seem to be,
but in general, its support is extremely robust and can generally be counted upon.

5.5.26 clear
Like float, clear is not a simple thing to support. There is typically basic support, but as things get
more complicated, browser behavior tends to break down. Thoroughly test pages using this property.

5.6.1 display

inline
Opera 3.6 almost gets inline right, but seems to honor the occasional carriage return as though it
were a
 element, instead of plain whitespace.

5.6.3 list-style-type

none

MacNav4 displays question marks for bullets when using this value.

Cascading Style Sheets 2.0 Programmer's Reference

 165

5.6.5 list-style-position

inside

The positioning and formatting of list-items when set to this value are a bit odd under MacIE4.

6.1 Length Units

ex
All supporting browsers (except one) appear to calculate ex as one-half em. This is arguably a
reasonable approximation, but it is technically incorrect. The exception is MacIE5, which actually goes
to some effort to determine the x-height of a given font.

6.3 Color Units

<keyword>
Navigator will generate a color for any apparent keyword. For example, color: invalidValue will
yield a dark blue, and color: inherit (a valid declaration under CSS2) comes out as a vaguely
nauseous green.

6.4 URLs

<url>

Navigator determines relative URLs with respect to the HTML document, not the stylesheet.

Chapter 8: CSS2 Quick Reference
Overview
The following table contains a terse description of each property in CSS2, for those times when you just
need to look something up quickly but don’t want to go flipping back and forth through the main part of
the book. The parenthetical number following each property name refers to the section of CSS2 which
describes the property. The column marked “Inh” shows whether or not the values of the given property
are inherited by descendant elements.

Cascading Style Sheets 2.0 Programmer's Reference

 166

Cascading Style Sheets 2.0 Programmer's Reference

 167

Cascading Style Sheets 2.0 Programmer's Reference

 168

Cascading Style Sheets 2.0 Programmer's Reference

 169

Cascading Style Sheets 2.0 Programmer's Reference

 170

Cascading Style Sheets 2.0 Programmer's Reference

 171

Cascading Style Sheets 2.0 Programmer's Reference

 172

Chapter 9: Useful Resources
While there isn’t nearly as much information about CSS as there is about HTML, there are still a number
of highly useful and very important resources available online. This chapter contains ten of the best.
Please note that the omission of a certain resource does not imply that it’s somehow inferior or flawed.
This list simply represents the author’s choices for ten highly useful sites which will provide great
information covering a broad range of subjects.

Tools

CSScheck (Web Design Group)
http://www.htmlhelp.com/tools/csscheck/

This CSS validator is one of the best for validating your CSS. Besides performing the valuable services
of catching typographical errors, malformed values and properties, as well as other problems,
CSScheck explains its results with clear messages and friendly graphics. It also catches common
mistakes by authors which aren’t actually errors; for example, declaring a color without a background or
vice versa. This is the best tool for beginning authors to check their work.

CSS Validator (World Wide Web Consortium)
http://jigsaw.w3.org/css-validator/

Although not nearly so user-friendly as CSScheck, this validator does have the advantage of being
maintained by the W3C—the very people who wrote the CSS specification. The error and warning
messages are quite terse, and the output can be a little tricky to decipher. Despite these problems, it’s a
very good validator and a valuable tool for the more experienced author.

Discussion Groups

Stylesheets Newsgroup (Usenet)
news:comp.infosystems.www.authoring.stylesheets
One of the most active CSS discussion communities, this group is a place for practical advice,
passionate arguments over theory, explorations of the subtleties of the CSS specification, and
everything in between. (Incidentally, due to its excessive length, the name of this group is often
abbreviated to “ciwas”—pronounced see-wass.) New authors are encouraged to read the group’s FAQs
(posted twice weekly) and make use of a CSS validator before posting questions. The group charter
does not prohibit discussion of style languages other than CSS, but, in practice, CSS-related messages
account for well over 95% of the group’s traffic. The signal-to-noise ratio is astonishingly high for a
Usenet group, at least for certain definitions of “signal.”

Style Discussion List (W3C)
http://lists.w3.org/Mail/Request

Sponsored by the World Wide Web Consortium, this list is a place to discuss the state of the CSS
specification, as well as proposals for future directions in CSS. “How to” and “help me” questions are
generally discouraged on this list.

Style Discussion List (HTML Writers Guild)
http://www.hwg.org/lists/hwg-style/index.html

The HWG maintains this list for authors who have “how to” and “help me” questions about style
languages like CSS. The bulk of list subscribers seem to be real-world Web page designers, so the
discussion is focused on what works and how browsers can be made to behave. As with ciwas, style
languages other than CSS are open for discussion on this list, but rarely ever come up.

Cascading Style Sheets 2.0 Programmer's Reference

 173

References

CSS Activity Page (W3C)
http://www.w3.org/Style/CSS/

If you’re looking for the official home of CSS, this is it. In addition to providing links to the CSS
specifications and drafts of new work in progress, the Activity Page provides news bulletins pointing out
new tools, resources, articles, and more CSS-related stuff. You can also find links to the history of CSS,
including proposals which were never adopted, pointers to other style languages, and a great deal
more. If you need to get a handle on what’s new and what’s coming soon, this is definitely the place to
go.

Style Sheets Reference Guide (Web Review)
http://www.webreview.com/style/
This site is home to the CSS Browser Compatibility Charts which form the basis for the chart found in
Chapter 7. In addition to the charts, it contains some basic CSS information like a simple CSS FAQ and
links to CSS-related articles on webreview.com. It’s also maintained by the author of this book.

The House of Style (Western Civilisation)
http://www.westciv.com/style_master/house/
This site is an eclectic collection of browser compatibility information, tutorials, pre-made stylesheets, a
CSS gallery, expert commentary and advice, and much more. The “good oil” articles alone make this a
site worth visiting. Even more impressive, it’s all the work of one man: John Allsopp, the author of Style
Master. (Note: Style Master is a commercial product. Endorsement of the House of Style does not imply
endorsement of Style Master.)

Agitprop
http://style.metrius.com/

If you’ve ever wondered how font sizing on the Web could be improved, you should visit this site without
delay. The font articles in particular should be required reading for any Web designer, especially those
who started out in the print-media world and think that the same design rules apply on the Web.
Agitprop is the work of Todd Fahrner, one of the most respected CSS experts in the world.

CSS Pointers Group
http://css.nu/

This site is home to hundreds of CSS-related links, a fair number of detailed browser bug lists, articles
on interesting effects and common workarounds, and much more. The CSS Pointers Group is
maintained by Jan Roland Eriksson and Sue Sims, two well-known CSS gurus.

