
P/V Unleashed generic ISBN# Name Date FM Lp#1

Jesse Liberty with

Vishwajit Aklecha
Steve Haines

Steven Mitchell
Alexander Nickolov

Charles Pace
Meghraj Thakkar
Michael J. Tobler

Donald Xie
Steve Zagieboylo

C++

Unleashed
201 West 103rd Street

Indianapolis, Indiana 46290

00 239-5 FM 2/19/99 12:54 PM Page i

P/V Unleashed generic ISBN# Name Date FM Lp#1

C++ Unleashed
Copyright © 1999 by Sams
All r ights reserved. No part of this book shall be reproduced, stored in a
retrieval system,or transmitted by any means,electronic, mechanical,photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book,the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number:0-672-31239-5

Library of Congress Catalog Card Number:97-69859

First Printing: November 1998

00 99 98 4 3 2 1

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Windows is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD-
ROM or programs accompanying it.

EXECUTIVE EDITOR
Tracy Dunkelberger

AQUISITIONS EDITOR
Tracy Dunkelberger

DEVELOPMENT EDITOR
Sean Dixon

MANAGING EDITOR

Jodi Jensen

PROJECT EDITOR

Maureen A. McDaniel

COPY EDITOR

Alice Martina-Smith

INDEXER

Rebecca Salerno

PROOFREADER

Mona Brown

TECHNICAL EDITOR

Jay Armstrong
Poney Carpenter
Dan Clamage
Tom Collins
Russ Jacobs
Steven Mitchell
David Thompson

SOFTWARE DEVELOPMENT
SPECIALIST

Dan Scherf

TEAM COORDINATOR

Michelle Newcomb

COVER DESIGNER

Aren Howell

INTERIOR DESIGNER

Gary Adair

LAYOUT TECHNICIANS

Ayanna Lacey

Heather Hiatt Miller

00 239-5 FM 2/19/99 12:54 PM Page ii

P/V Unleashed generic ISBN# Name Date FM Lp#1

Contents at a Glance
Introduction 1

PART I OBJECT-ORIENTED PROGRAMMING 5
1 Object-Oriented Analysis and Design 7

2 Implementing Class Design in C++45

3 Inheritance, Polymorphism,and Code Reuse77

PART II IMPLEMENTATION ISSUES 123
4 Memory Management 125

5 How To Use Frameworks 169

6 Standard Template Library Container Classes217

7 STL Iterators and Algorithms 285

8 Avoiding Name Clashes by Using Namespaces361

9 Manipulating Object Types at Runtime 381

10 Tuning Application Performance 405

PART III MANIPULATING DATA 429
11 Recursion and Recursive Data Structures 431

12 Designing Efficient Sorting Methods 451

13 Search Algorithms in C++ 483

14 Hashing and Parsing Techniques 513

PART IV OBJECT PERSISTENCE AND ENCRYPTION 541
15 Object Persistence 543

16 Relational Databases and Persistence 621

17 Object Persistence Using Relational Databases 651

18 Object-Oriented Databases 677

19 Protecting Applications Using Encryption 737

00 239-5 FM 2/19/99 12:54 PM Page iii

P/V Unleashed generic ISBN# Name Date FM Lp#1

PART V DISTRIBUTED COMPUTING TOPICS 777
20 CORBA 779

21 COM 809

22 Java and C++ 851

INDEX 877

00 239-5 FM 2/19/99 12:54 PM Page iv

CONTENTS
v

Contents
INTRODUCTION 1

What Is Covered..1
Part I, “Object-Oriented Programming” ..1
Part II, “Implementation Issues”..1
Part III, “Manipulating Data” ..2
Part IV, “Object Persistence and Encryption”....................................2
Part V, “Distributed Computing Topics”..2

What You Need To Know Already ..2
What Software You Need..3
How To Read This Book ..3

PART I OBJECT-ORIENTED PROGRAMMING 5

1 OBJECT-ORIENTED ANALYSIS AND DESIGN 7
Building Models..8
Software Design:The Modeling Language ..9
Software Design:The Process..10
The Vision..13
Requirements Analysis..13

Use Cases..14
Application Analysis..24
Systems Analysis..25
Planning Documents..25
Visualizations..26
Artifacts..26

Design..27
What Are the Classes?..28
Transformations..30
Static Model..31
Dynamic Model..40

Summary..43

2 IMPLEMENTING CLASS DESIGN IN C++ 45
Translating Class Diagrams into C++..46

Standard Classes..46
Template Classes..48
Utility Classes..49
Associations..50
Aggregations ..56
Generalization ..58

Translating Interaction Diagrams into C++..61

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page v

C++

UNLEASHED
vi

Implementing Collaboration Diagrams and Sequence
Diagrams in C++..62

Translating State Transition Diagrams into C++..................................68
Translating Activity Diagrams into C++..72
Summary..76

3 INHERITANCE, POLYMORPHISM, AND CODE REUSE 77
Benefits of Inheritance..78
Object-Oriented Linked Lists..79

Designing the Linked List..79
Implementing the Linked List..81

Abstract Classes..87
Overriding Pure Virtual Methods..93

Virtual Destructors ..94
Polymorphism Through Method Overloading......................................94
Memory Management..98
Issues in Overloading Other Operators ..103

Assignment Operator..104
Overloading the Increment Operators..107
Virtual Copy Constructors..111

Multiple Inheritance..112
Problems in Multiple Inheritance..113
Multiple Inheritance Versus Containment......................................118

Summary..120

PART II IMPLEMENTATION ISSUES 123

4 MEMORY MANAGEMENT 125
Memory Management and Pointers ..127

Memory Leaks..131
Allocating Arrays..131
Stray, Dangling, and Wild Pointers..133
const Pointers ..134
const Pointers and const Member Functions............................134
Passing By Reference..135
Passing a const Pointer ..135
Don’t Return a Reference to an Object That Isn’t in Scope..........136
Pointer, Pointer, Who Has the Pointer?..139

Pointers and Exceptions..140
Using Auto Pointers..146
Reference Counting..152

Summary..167

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page vi

CONTENTS
vii

5 HOW TO USE FRAMEWORKS 169
The Microsoft Foundation Classes..170

Getting Started..170
Other Wizards ..174

Gaining Perspective ..175
Application Architecture ..175
Multithreading..175
Cooperative Versus Preemptive Multithreading............................176

Issues in Preemptive Multithreading..177
A Brief Case Study ..178

Creating Threads..179
Utility Classes..199

String Manipulation Classes..199
Time Classes..199

Documents and Views..201
Views..201

Summary..215

6 STANDARD TEMPLATE LIBRARY CONTAINER CLASSES 217
Defining and Instantiating Templates..218

Defining and Instantiating Function Templates218
Defining and Instantiating Class Templates219

Understanding Sequence Containers ..221
The Vector Container..221
The List Container..240
The Deque Container..253

Understanding Stacks..255
Understanding Queues..259

Priority Queues..262
Understanding Associative Containers..263

The Map Container..263
The Multimap Container..277
The Set Container..279
The Multiset Container..280

Considering Performance Issues..280
Using the Standard C++ Library ..282
Designing Element Types..283
Summary..284

7 STL ITERATORS AND ALGORITHMS 285
Iterator Classes..286

Position Within a Container..286
Types of Iterators In and Out of Containers286
Base Iterator Class..287
Input Iterators ..289

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page vii

C++

UNLEASHED
viii

Output Iterators ..290
Forward Iterators..291
Bidirectional Iterators ..291
Random Access Iterators..291
Iterator Operations..291
Standard Iterator Classes..293

Function Objects..296
Predicates..297
Arithmetic Functions..298

Algorithm Classes..299
Non-Mutating Sequence Operations..299
Mutating Sequence Algorithms..311
Sorting and Related Sequence Operations327
Standard Function Compositions..352

Summary..360

8 AVOIDING NAME CLASHES BY USING NAMESPACES 361
Functions and Classes Are Resolved by Name..................................362
Creating a Namespace..366

Declaring and Defining Types..367
Defining Functions Outside a Namespace....................................367
Adding New Members ..368
Nesting Namespaces..369

Using a Namespace..369
The using Keyword..373

The using Directive..373
The using Declaration ..375

The Namespace Alias ..376
The Unnamed Namespace..377
The Standard Namespace std ..378
Summary..379

9 MANIPULATING OBJECT TYPES AT RUNTIME 381
The typeid() Operator..382
The type_info Class..383

The Constructor for the type_info Class....................................383
The Comparison Operators ..383
The name() Member Function..385
The before() Member Function..388
The typeid() Operator in Constructors and Destructors............389
Misuses of typeid() ..390

Dynamic Typecasting of Objects..392
The dynamic_cast() Operator ..392
The typeid() Versus the dynamic_cast Operator398

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page viii

CONTENTS
ix

Other Cast Operators ..398
The static_cast() Operator..398
The reinterpret_cast() Operator ..400
When to Use the dynamic_cast() , static_cast() ,

or reinterpret_cast() Operator ..401
The const_cast() Operator..401

New Versus Old Typecasting..402
Summary..404

10 TUNING APPLICATION PERFORMANCE 405
Inline Functions Outside Class Definitions ..406
Avoid Revealing Implementation Code in Distributed Header

Files ..412
Analyzing the Cost of Virtual Functions and Virtual Base Classes....413

Virtual Functions..414
Virtual Base Classes..418

RTTI Trade-Offs ..422
Managing Memory for Temporary Objects..425
Summary..428

PART III MANIPULATING DATA 429

11 RECURSION AND RECURSIVE DATA STRUCTURES 431
What Is Recursion?..432

Fibonacci Numbers:A Recursive Definition432
Stopping the Recursion..434

Recursive Structures..435
Traversing a Recursive Structure with a Recursive Function..............437
Recursion Versus Iteration and Tail Recursion....................................441

Tail Recursion ..445
Indirect Recursion..446
Recursion and the Stack ..447
Debugging Recursive Functions..449
Summary..449

12 DESIGNING EFFICIENT SORTING METHODS 451
Analyzing the Performance of Algorithms..452

Comparing the Average, Worst, and Best Cases............................453
The Stability of Sorts..454
Using Additional Storage During Sorting......................................454

The Bubble Sort ..455
Analysis of the Bubble Sort ..457

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page ix

C++

UNLEASHED
x

The Insertion Sort ..457
Analysis of the Insertion Sort ..460

The Selection Sort..460
Analysis of the Selection Sort ..462

The Quick Sort ..463
Analysis of the Quick Sort ..466

The Merge Sort ..466
Analysis of the Merge Sort ..470

The Shell Sort ..471
Analysis of the Shell Sort ..473

The Heap Sort ..473
Analysis of the Heap Sort ..476

Choosing a Sort Method..476
Generating Test Data ..478
Summary..481

13 SEARCH ALGORITHMS IN C++ 483
Linear Searches..484

Analysis of the Linear Search ..486
Searching a Sorted Array..486

Pattern Matching..489
The Brute-Force Algorithm..490
Pattern Representations..491
Constructing Finite-State Machines ..491

Graph Algorithms..494
Depth-First Search..496
Breadth-First Search ..497
Comparing Depth-First and Breadth-First Searches......................498
Best-First Search ..499
Implementing Graph Objects..500
Representation of Tic-Tac-Toe ..505
Applying Alpha-Beta Cutoffs ..505
The Traveling Salesman Problem ..507

External Searching ..508
Indexed Sequential Access..508
Binary Trees..509
2-3-4 Trees..509

Summary..511

14 HASHING AND PARSING TECHNIQUES 513
Searching Versus Hashing..514
Hash Functions..515
Collision Resolution..516

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page x

CONTENTS
xi

Linear Rehashing..516
Nonlinear Rehashing..517
Load Factor (Alpha)..518
Chaining..519
Bucket Addressing..520

Parsing..533
Parsing Numeric Expressions..534
Parsing String Expressions..536
Context-Free Grammar and Parsing ..537
Using Top-Down Parsing to Validate Regular Expressions..........538

Summary..539

PART IV OBJECT PERSISTENCE AND ENCRYPTION 541

15 OBJECT PERSISTENCE 543
Creating Storable Objects..545

What Is a B-Tree?..554
Writing It To Disk..558

Caching..559
Determining How Big Each Page Should Be................................559
Determining How Many Pages Can Be in Memory at Once........560

Swapping to Disk..560
Implementing the B-Tree ..560
How It Works..596
Walking the Code..599
Searching..615

Summary..619

16 RELATIONAL DATABASES AND PERSISTENCE 621
Basic Concepts of Relational Databases..622
Architecture of a Relational Database..624

Restrictions and Considerations ..625
SQL: Defining and Querying the Database..625

Normalization ..626
Joins..627

Persisting to a Relational Database..628
Swizzling with Object Identifiers ..629
Using Blobs..629

Hiding the Details..630
Storing Objects Directly ..630
Using Your Database’s API ..631
Accessing ODBC Data Sources ..631
Using MFC ..634

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xi

C++

UNLEASHED
xii

SQL Statements..648
Setting Database Characteristics..648

Summary..648

17 OBJECT PERSISTENCE USING RELATIONAL DATABASES 651
Objects in Oracle8 ..653

Object Types..653
Object References..654
Collections..656

Using External Procedures Developed in C++....................................658
Mapping UML Diagrams to an Object-Relational Database..............662

Database Design..663
C++ Generation..663
Server Generation ..666

Case Study: Purchase Order System..672
System Description ..672

18 OBJECT-ORIENTED DATABASES 677
Overview of ODBMS..678
The ODMG Standard ..680
A C++ Invoicing Application ..680
Data Persistence..700

Database Schemas and Schema Capture Tools..............................702
Collections..705
Iterators ..708
Relationships..708

Databases and Transactions..715
ODBMS Technical Issues..732

Client/Server Architecture..732
Data Storage and Object Clustering ..733
Data Transfer Granularity ..734
Data Locking Granularity ..735

Summary..736

19 PROTECTING APPLICATIONS USING ENCRYPTION 737
A Brief History of Encryption ..738

The Role of the National Bureau of Standards..............................739
Understanding Encryption ..740

Codes..741
Ciphers..741
Vernam Cipher..744

Private Key Cryptography ..747

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xii

CONTENTS
xiii

Private Key Algorithms..748
Mechanics of Secret Key Encryption ..749
Using Key Distribution Centers ..753

Public Key Cryptography ..753
Ralph Merkle’s Puzzle Technique..754
Diffie-Hellman Multiuser Cryptographic Techniques....................754
The RSA Technique ..755

Using Pretty Good Privacy (PGP)..757
Choosing Prime Numbers in PGP..758
Using Random Numbers in Cryptography759
File Encryption Using PGP..759

Limitations of Cryptography ..762
Legal Restrictions on Cryptography..764
Cryptographic Attacks ..765

Brute-Force Attack ..765
Cryptanalysis..765
Hacking a PGP-Encrypted File ..766

Digital Signatures..767
The Public Key Cryptography Standard (PKCS)..........................768
The Digital Signature Standard (DSS)..768
Nonrepudiation ..769

Commercial Cryptographic Products..769
Secure Web Clients..770
Secure Email Clients..771
Secure Desktop Products..772

Summary..775

PART V DISTRIBUTED COMPUTING TOPICS 777

20 CORBA 779
Theory and Justification ..781

The Minimal CORBA Environment..781
A Framework for Object Technology ..783
IIOP: The Object Glue..783
A Component Model..785

IDL: The Binding Contract..785
The IDL Compared to a C++ Class Definition..............................787

The Object Request Broker ..788
Object Lifetime..789
Development Environments..790

Comparing CORBA Environments..791
ORB Interoperability ..791

Creating the C++ Client..792

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xiii

C++

UNLEASHED
xiv

P/V Unleashed generic ISBN# Name Date FM Lp#1

Generating the Stub..793
Connecting to the ORB..794
Invoking Methods..794
The Completed C++ Client Application ..794

Creating the C++ Server..795
Generating the Skeleton ..796
Implementing the Server Methods..796
Connecting the Server Class..797
Loading the BOA into the ORB..797

A Java Client..800
Generating the Stub..801
Startup and Method Invocation Code..802

Testing Strategies ..802
Tracing..802
Monitor and Logging Services ..803
Exception Handling..803
Remote Debugging ..803

The Naming Service and Interoperability ..804
Interoperable Object Reference (IOR)..804
Naming Contexts..805
Interoperability Issues..805

Performance..807
ORB Memory Leaks..807
Granularity of Interface..807
Passing Object References..808

Summary..808

21 COM 809
COM Fundamentals..811

COM Architecture..811
Interfaces..812
The IUnknown Interface..817
COM Objects..820
Type Libraries ..823
Other COM Technologies..824

Using COM Objects in C++..830
Using Raw Interfaces..830
Using Smart Pointers..831
Using Type Libraries..837

Writing COM Objects in C++..841
Multiple Inheritance ..841
Nested Classes..845
Using Tear-Off Classes..848

00 239-5 FM 2/19/99 12:54 PM Page xiv

CONTENTS
xv

Summary..848
Further Reading..849

22 JAVA AND C++ 851
Similarities Between C++ and Java ..852

Comments..852
Data Types..853
Operators ..855
Control Flow Statements..856

Differences Between C++ and Java ..856
Memory Management..856
No Pointers ..857
No Preprocessor..857
No Destructor ..857
Access Specifiers..858
Method Parameters ..859
External Functions..860
Enumerations..860
Strings ..861
Arrays ..861

Object-Oriented Features of Java..862
Classes..862
Inheritance..869
Multiple Inheritance ..871
Exception Handling..872

Summary..873

INDEX 877

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xv

About the Authors
Jesse Liberty is the founder and president of Liberty Associates,Inc.
(http://www.libertyassociates.com), where he provides training, consulting, and
mentoring in object-oriented software development. Liberty is the author of numerous
best-selling books on object-oriented analysis and design and C++; was Distinguished
Software Engineer and Architect for AT&T, Xerox, and PBS; and was Vice-President of
Technology for Citibank. He lives with his family in the suburbs of Cambridge,
Massachusetts. He can be reached at jliberty@libertyassociates.com .

with

Vishwajit Aklecha has worked for many years in the area of object-oriented software
development and has a B.S in Mathematics and a M.S. in Computer Science. He is cur-
rently employed with Hewlett-Packard’s International Software Operation in Bangalore,
India. Vishwajit’s interests are in distributed computing, frameworks research and devel-
opment,and in teaching object technology. He is currently writing a book on frameworks
and can be reached at vishwajit@technologist.com .

Steve Haines is a Windows Software Engineer at ENGAGE games online, an Internet
video game company, where he focuses on the design and implementation of latency-
critical Internet and communication-related technologies. He has been immersed in the
world of Microsoft development technologies throughout his career, and has contributed
his knowledge and experience into realizing the visions of Internet game-playing. He is
currently seeking his M.S. in Computer Science, focusing on creative technologies and
multimedia,at the University of Southern California. Steve has worked as a technical
editor and consultant for both Macmillan Computer Publishing and Addison-Wesley
Longman before venturing into the realm of writing. Writing has always been a passion
of Steve’s, to which he attributes his enthusiasm to his grandmother’s extraordinary set
of published plays,and hopes to add “lead author”to his resume in the near future.

Steven Mitchell is an electrical engineer, doing work in the areas of transportation and
communications. He has developed a number of relational database applications for in-
house use, and is currently involved in a project to develop a hardware/software protocol
testing program. Steven has worked as lead technical editor on a number of C++ books.
He is a registered Professional Engineer and makes his home in Alexandria, VA.

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xvi

P/V Unleashed generic ISBN# Name Date FM Lp#1

Alexander Nickolov is a software programmer specializing in COM/DCOM develop-
ment. He has developed Internet-aware client/server applications in C++ throughout his
career. Currently, Alexander Nickolov is a software consultant for GlobulCom
Consulting and lives in Santa Barbara,California. He can be reached at
agnickolov@geocities.com .

Charles Pace, also a contributing author to CORBA Unleashed, has over 14 years of
experience in all kinds of progressive, cutting-edge software development. He has
written a vast array of computer programs,from interactive educational games to large
enterprise systems. Charles looks forward to enabling developers to deliver applications
utilizing the next generation of software technology.

Meghraj Thakkar works as a Technical Specialist at Oracle Corporation. He has an
M.S. in Computer Science and a B.S. in Electronic Engineering. He has several industry
vendor certif ications including Microsoft Certif ied Systems Engineer (MCSE),Novell
Certif ied ECNE,Lotus Certif ied Notes Consultant,SCO UNIX ACE,and Oracle
Certif ied Professional (OCP). He has taught several courses at the University of
California, Irvine. He has presented two papers at the ECO ’98 held in New York City,
NY in March 1998. He has co-authored several books such as Special Edition Using
Oracle8, Oracle8 Server Unleashed, and Oracle Certified Professional—DBA from
Macmillan Computer Publishing. He has developed and presented several times a two-
day course, “Supporting Oracle on Windows NT,” to internal Oracle employees. Meghraj
has been working with various Oracle products for the past seven years. He will be pre-
senting at the Oracle Openworld in Adelaide, Australia in November 1998 and at the
UKOUG in Birmingham,UK in December 1998.

Michael J. Tobler is a Senior Technical Specialist with BSI Consulting in Houston,
Texas. He has more than 16 years experience working on software development projects,
specializing in planning, designing, and developing multitier systems using C++ and
Java. He is currently the president of the Houston Java Users Group. Michael is an advo-
cate and practitioner of the Unified Modeling process from Rational and a proponent of
patterns and pattern languages. He is a contributing author for The Waite Group’s C++
How-To. He has also discovered that skydiving is a very addictive sport. Michael can be
reached at mtobler@ibm.net .

Donald Xie is a Senior System Engineer and a Project Leader for electronic commerce
and Internet development for a major automotive and industrial products distributor. He
is also a C++ programming class instructor in Ziff-Davis University. Donald lives with
his family in Perth,Australia.

00 239-5 FM 2/19/99 12:54 PM Page xvii

P/V Unleashed generic ISBN# Name Date FM Lp#1

Steve Zagieboylo has been in the software industry since 1980,and has been developing
software in C++ since 1989. After stints with Lotus Development Corp.,AT&T, and a
few others in the greater Boston area,he is currently the president of ZagNet,a software
consulting company (http://www.zag.net). He has taught advanced object-oriented
programming in C++ at Harvard Extension School, and he continues to teach online C++
classes through Ziff-Davis University. Feel free to send him an email at
Unleashed@ZAG.net .

00 239-5 FM 2/19/99 12:54 PM Page xviii

P/V Unleashed generic ISBN# Name Date FM Lp#1

Dedication
This book is dedicated to Robin,Rachel, and Stacey Liberty.

Acknowledgments
As is often the case, this book owes its existence, and certainly its quality, to a number of
people whose names do not appear on the cover. Among them is one of the most extraor-
dinary editors it has been my pleasure to work with: Tracy Dunkelberger of Macmillan
Computer Publishing. She has restored my faith in the commitment of Sams Publishing
to creating high-quality books of immediate use to programmers.

I want also to thank Sean Dixon and Maureen McDaniel of Macmillan who worked so
diligently on this very difficult book,and who made it better than it was when submitted.
Errors and confusion are my responsibility, but the quality of the book is to their credit
and I can thank only them. I want also to thank Brad Jones and Chris Denny, who gave
me my start with Sams Teach Yourself C++ in 21 Days, and who have fostered and pro-
tected my relationship with Sams despite my repeated tantrums.

I must also thank and acknowledge John Franklin and David and Adam Maclean of Wrox
Publishing, and Robert Martin and the editors of C++ Report—all of whom have both
nurtured my writing and given me permission to borrow liberally from past writings.

My wif e Stacey and daughters Robin and Rachel continue to tolerate my insane working
hours and provided the kind of support and encouragement required to see an effort like
this through. I remain very grateful.

00 239-5 FM 2/19/99 12:54 PM Page xix

Tell Us What You Think!
As the reader of this book,you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the Executive Editor for the Advanced Programming and Distributed Architectures
team at Macmillan Computer Publishing, I welcome your comments. You can fax,email,
or write me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book,and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-817-7070

Email: programming@mcp.com

Mail: Executive Editor
Advanced Programming and Distributed Architectures
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

P/V Unleashed generic ISBN# Name Date FM Lp#1

00 239-5 FM 2/19/99 12:54 PM Page xx

P/V Unleashed generic ISBN# Name Date Intro Lp#1

Introduction
C++ Unleashed is a survey of advanced topics in C++. The goal of this book is to pro-
vide a focused examination of each of these topics, covering the essential information
you need to fully exploit the power of the C++ language.

Many of the topics in this book deserve a book in their own right. Because it is not pos-
sible, given the available space, to cover every aspect of some of these subjects, the
chapters in this book explain only what is most necessary for you to gain a working
understanding of the technologies they describe. Often, you will find that the informa-
tion provided here is sufficient for your immediate needs. Even if that is not always the
case, these chapters provide a useful foundation in these advanced issues that will allow
you to quickly gain a more comprehensive understanding of them with further study.

What Is Covered
Part I, “Object-Oriented Programming”
We begin with a comprehensive introduction to object-oriented analysis and design. It is
my view that C++ is best used to implement a well-designed object-oriented model,
rather than to bang out quick-and-dirty code. The significant advantages of object-orient-
ed programming can only be realized once you have done the necessary analysis and put
the time in to design a well-conceived product. Chapter 1 will get you started on the dif-
ficult but rewarding path of object modeling. Along the way, I’ll teach you the funda-
mentals of the Unified Modeling Language (UML)—the emerging industry standard.

In Chapter 2, you’ll learn how to implement your object model in C++. This mapping,
from design model to code, is essential if you want to use C++ to its fullest potential as
an object-oriented programming language.

Chapter 3 continues this theme, focusing on how C++ supports inheritance and polymor-
phism. This detailed examination of the intricacies of polymorphism will lay the ground-
work for creating high-quality commercial C++ applications.

Part II, “Implementation Issues”
In Chapter 4, we discuss advanced memory management techniques. We’ll consider
advanced issues with pointers and references and we’ll discuss auto pointers and smart
pointers. In Chapter 5, we’ll discuss application frameworks and, within that context,
we’ll consider such advanced topics as multi-threading.

01 239-5 Intro 2/19/99 12:56 PM Page 1

C++

UNLEASHED
2

Also in Part II, we’ll offer an in-depth introduction to the Standard Template Library.
Chapter 6 focuses on the STL container classes and Chapter 7 follows with a discussion
of STL iterators and algorithms. In Chapter 8,we move on to one of the newest features
of ANSI C++—namespaces—and we consider how namespaces can help you avoid
name clashes as you use third-party libraries.

In Chapter 9,we focus on runtime type identification and the new ANSI-style casting
operators. Finally, in Chapter 10,we’ll consider how you tune your application perfor-
mance to optimize for speed or code size.

Part III, “Manipulating Data”
Part III opens Chapter 11—a discussion of advanced techniques using recursion. In
Chapter 12,we discuss sorting algorithms,and in Chapter 13,we discuss object-oriented
searching. This discussion is rounded out in Chapter 14 with a consideration of hashing
and parsing techniques.

Part IV, “Object Persistence and Encryption”
Chapter 15 considers object persistence and demonstrates how to write your objects to
disk and how to manage memory with persistent objects. Chapter 16 returns to the appli-
cation frameworks and considers ODBC and MFC Database connections. Chapter 17
extends this discussion to consider object persistence using relational databases,and
Chapter 18 discusses object-oriented databases. Finally, in Chapter 19,we discuss
encryption including Diffie, Hellerman,Hoffman,and Caesar ciphers; public encryption
and popular encryption approaches such as Pretty Good Privacy; and DES and Clipper.

Part V, “Distributed Computing Topics”
Chapter 20 considers CORBA, and Chapter 21 provides an in-depth introduction to
COM. Finally, Chapter 22 examines the differences between Java and C++ and considers
whether these differences are significant.

What You Need To Know Already
C++ Unleashedassumes you have read at least one good primer (such as Sams Teach
Yourself C++ in 21 Days) and/or have been programming in C++ for at least six months.
More experienced programmers will find detail on subjects they may not have consid-
ered before; less experienced programmers will find a host of new ideas,information,
and best practices.

P2/V3 C++ Unleashed ISBN# Name Date Intro Lp#1

01 239-5 Intro 2/19/99 12:56 PM Page 2

INTRODUCTION
3

What Software You Need
All of the programs in this book can be created and run with Microsoft Visual C++ or
any ANSI-compliant 32-bit compiler. While the example programs in the chapters on the
MFC will only compile on a Windows machine (Windows 95 or Windows NT), just
about all the other programs in the book will compile on any operating system.

You need no other software—just an editor, compiler, and linker. If you use an integrated
development environment such as Visual C++,you are all set. While we’ve endeavored
to test all the programs in this book on a number of compilers,we do know that it all
works in Microsoft Visual C++,and thus we recommend that compiler if you don’t
already have another.

How To Read This Book
Think of this book as a series of “white papers” on advanced topics in C++. Feel free to
jump around among the chapters,dipping into those areas which intrigue you. Again,
remember that we made no attempt to be “comprehensive” on each topic; rather, our
goal was to provide detailed introductions to these advanced topics. Each of these topics
is the subject of one or more advanced books. Our goal here is to provide the essential
information necessary for you to either start your further study or to obtain a quick and
useful overview.

One good way to read this book is as Humpty Dumpty advised:begin at the beginning,
proceed to the end, and then stop. As an alternative, you might want to read the first
three chapters and then pick and choose among those topics which are of most interest
to you.

In any case, enjoy and please let us know how we did. You can reach me, Jesse Liberty,
on the Internet at jliberty@libertyassociates.com . There is support for the book at
the Sams Web site (http://samspublishing.com) as well as at my own Web site
(http://www.libertyassociates.com)—click the books and resources link.

P/V Unleashed generic ISBN# Name Date Intro Lp#1

01 239-5 Intro 2/19/99 12:56 PM Page 3

4

P2/V3 C++ Unleashed ISBN# Name Date Intro Lp#1

01 239-5 Intro 2/19/99 12:56 PM Page 4

P/V Unleashed generic ISBN# Name Date Part Lp#1

Object-Oriented
Programming PART

I
IN THIS PART

• Object-Oriented Analysis and Design 7

• Implementing Class Design in C++ 45

• Inheritance, Polymorphism, and Code Reuse 77

03 239-5 Part 1 2/19/99 12:57 PM Page 5

P/V Unleashed generic ISBN# Name Date Part Lp#1

03 239-5 Part 1 2/19/99 12:57 PM Page 6

IN THIS CHAPTER

• Building Models 8

• Software Design: The Modeling
Language 9

• Software Design: The Process 10

• The Vision 13

• Requirements Analysis 13

• Design 27

1
C

H
A

PT
ER

Object-Oriented
Analysis and
Design

02 239-5 CH01 2/19/99 12:58 PM Page 7

C++ was created as a bridge between \object-oriented programming and C,the world’s
most popular programming language for commercial software development. The goal
was to provide object-oriented design to a fast,commercial software development
platform.

C wasdeveloped as a middle ground between high-level business applications languages
such as COBOL and the pedal-to-the-metal,high-performance, but difficult-to-use
Assembler language. C was to enforce “structured” programming, in which problems
were “decomposed”into smaller units of repeatable activities calledprocedures.

The programs we’re writing at the end of the 1990s are far more complex than those
written at the beginning of the decade. Programs created in procedural languages tend to
be difficult to manage, hard to maintain,and impossible to extend. Graphical user inter-
faces,the Internet,digital telephony, and a host of new technologies have dramatically
increased the complexity of our projects at the very same time that consumer expecta-
tions for the quality of the user interface are rising.

In the face of thisincreasing complexity, developers took a long hard look at the state of
the industry. What they found was disheartening, at best. Software was late, broken,
defective, bug ridden,unreliable, and expensive. Projects routinely ran over budget and
were delivered late to market. The cost of maintaining and building on these projects was
prohibitive, and a tremendous amount of money was being wasted.

Object-oriented software development offers a path out of the abyss. Object-oriented pro-
gramming languages build a strong link between the data structures and the methods that
manipulate that data. More important,in object-oriented programming, you no longer
think about data structures and manipulating functions; you think instead about objects.
Things.

The world is populated by things:cars,dogs,trees,clouds,flowers. Things. Each thing
has characteristics (fast,friendly, brown, puffy, pretty). Most things have behavior (move,
bark, grow, rain,wilt). We don’t think about a dog’s data and how we might manipulate
it—we think about a dog as a thing in the world, what it is like andwhat it does.

Building Models
If we are tomanage complexity, we must create a model of the universe. The goal of the
model is to create a meaningful abstraction of the real world. Such an abstraction should
be simpler than the real world but should also accurately reflect the real world so that we
can use the model to predict the behavior of things in the real world.

Object-Oriented Programming

PART I
8

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 8

A child’s globe is a classic model. The model isn’t the thing itself; we would never con-
fuse a child’s globe with the Earth, but one maps the other well enough that we can learn
about the Earth by studying the globe.

There are, of course, significant simplifications. My daughter’s globe never has rain,
floods,globe-quakes and so forth, but I can use her globe to predict how long it will take
me to fly from my home to Indianapolis should I ever need to come in and explain
myself to the Sams senior management when they ask me why my manuscript was late
(“You see, I was doing great, but then I got lost in a metaphor and it took me hours to get
out”).

A model that is not simpler than the thing being modeled is not much use. There is a
Steven Wright joke about just such a thing:“I have a map on which one inch equals one
inch. I live at E5.”

Object-oriented software design is about building good models. It consists of two signifi-
cant pieces:a modeling language and a process.

Software Design: The Modeling
Language
The modeling language is the least important aspect of object-oriented analysis and
design; unfortunately, it tends to get the most attention. A modeling language is nothing
more than a convention for how we’ll draw our model on paper. We can easily decide
that we’ll draw our classes as triangles,and that we’ll draw the inheritance relationship
as a dotted line. If so,we might model a geranium as shown in Figure 1.1.

Object-Oriented Analysis and Design

CHAPTER 1
9

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.1.
Generalization/
specialization.

Flower

Geranium

02 239-5 CH01 2/19/99 12:58 PM Page 9

In the figure, you see that a Geranium is a special kind of Flower. If you and I agree to
draw our inheritance (generalization/specialization) diagrams like this,we’ll understand
each other perfectly. Over time, we’ll probably want to model lots of complex relation-
ships,and so we’ll develop our own complicated set of diagramming conventions and
rules.

Of course, we’ll need to explain our conventions to everyone else with whom we work,
and each new employee or collaborator will have to learn our convention. We may inter-
act with other companies that have their own conventions,and we’ll need to allow time
to negotiate a common convention and to compensate for the inevitable
misunderstandings.

It would be more convenient if everyone in the industry agreed on a common modeling
language. (For that matter, it would be convenient if everyone in the world agreed on a
spoken language, but one thing at a time.) The lingua francaof software development is
UML—The Unified Modeling Language. The job of the UML is to answer questions
like, “How do we draw an inheritance relationship?”The geranium drawing shown in
Figure 1.1 would be drawn as shown in Figure 1.2 in UML.

Object-Oriented Programming

PART I
10

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.2.
UML drawing of
specialization.

Flower

Geranium

In UML, classes are drawn as rectangles,and inheritance is drawn as a line with an
arrowhead. Interestingly, the arrowhead points from the more specialized class to the
more general class. The direction of the arrow is counter-intuitive for most folks,but it
doesn’t matter much; once we all agree, the system works just fine.

The details of the UML are rather straightforward. The diagrams are not hard to use or
understand, and I’ll explain them as we go along in this chapter and throughout the book,
rather than trying to teach the UML out of context. Although it is possible to write a
whole book on the UML,the truth is that 90 percent of the time, you use only a small
subset of the UML notation, and that subset is easily learned.

Software Design: The Process
The processof object-orientedanalysis and design is far more complex and far more
important than the modeling language. So of course, it is what you hear far less about.

02 239-5 CH01 2/19/99 12:58 PM Page 10

That is because the debate about modeling languages is pretty much settled; as an indus-
try, we’ve decided to use the UML. The debate about process rages on.

A methodologist is someone who develops or studies one or more methods. Typically,
methodologists develop and publish their own methods. A methodis a modeling lan-
guage and a process. Three of the leading methodologists and their methods are Grady
Booch, who developed the Booch method, Ivar Jacobson,who developed object-oriented
software engineering, and JamesRumbaugh,who developed Object Modeling
Technology (OMT). These three men have joined together to create Objectory, a method
and a commercial product from Rational Software, Inc. All three men are employed at
Rational Software, where they are affectionately known as the Three Amigos.

This chapter loosely follows Objectory. I won’t follow it rigidly because I don’t believe
in slavish adherence to academic theory—I’m much more interested in shipping product
than in adhering to a method. Other methods have something to offer, and I tend to be
eclectic, picking up bits and pieces as I go along and stitching them together into a work-
able framework.

The process of software design isiterative. That means that as we develop software, we
go through the entire process repeatedly as we strive for enhanced understanding of the
requirements. The design directs the implementation, but the details uncovered during
implementation feed back into the design. Most important,we do not try to develop any
sizable project in a single, orderly, straight line; rather, we iterate over pieces of the pro-
ject, constantly improving our design and refining ourimplementation.

Iterative development can be distinguished from waterfall development. Inwaterfall
development,the output from one stage becomes the input to the next, and there is no
going back (see Figure 1.3). In a waterfall development process,the requirements are
detailed, and the clients sign off (“Yes,this is what I want”); the requirements are then
passed on to the designer, set in stone. The designer creates the design (and a wonder to
behold it is) and passes it off to the programmer who implements the design. The pro-
grammer, in turn, hands the code to a QA person who tests the code and then releases it
to the customer. Great in theory, disaster in practice.

Object-Oriented Analysis and Design

CHAPTER 1
11

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.3.
The waterfall
method.

Analysis

Design

Implementation

Test

02 239-5 CH01 2/19/99 12:58 PM Page 11

In iterative design,the visionary comes up with a concept and then we begin to work on
fleshing out the requirements. As we examine the details,the vision may grow and
evolve. When we have a good start on the requirements,we begin the design,knowing
full well that the questions that arise during design may cause modifications back in the
requirements. As we work on design,we begin prototyping and then implementing the
product. The issues that arise in development feed back into design,and may even influ-
ence our understanding of the requirements. Most important,we design and implement
only pieces of the full product,iterating over the design and implementation phases
repeatedly.

Although the steps of the process are repeated iteratively, it is nearly impossible to
describe them in such a cyclical manner. Therefore, I will describe them in sequence:
vision,analysis,design,implementation, testing, rollout. Don’t misunderstand me—in
reality, we run through each of these steps many times during the course of the develop-
ment of a single product. The iterative design process is just hard to present and under-
stand if we cycle through each step; so I’ll describe them one after the other.

Here are the steps of the iterative design process:

1. Conceptualization

2. Analysis

3. Design

4. Implementation

5. Testing

6. Rollout

Conceptualization is the “vision thing.” It is the single sentence that describes the great
idea. Analysis is the process of understanding the requirements. Design is the process of
creating the model of your classes,from which you will generate your code.
Implementation is writing it in C++; testing is making sure that you did it right, and roll-
out is getting it to your customers. Piece of cake. All the rest is details.

Object-Oriented Programming

PART I
12

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

CONTROVERSIES

There are endless controversies about what happens in each stage of the itera-
tive design process, and even about what you name those stages. Here’s a
secret: it doesn’t matter. The essential steps are the same in just about every
process: Find out what you need to build, design a solution, and implement
that design.

02 239-5 CH01 2/19/99 12:58 PM Page 12

The Vision
All great software starts with a vision. One individual has an insight into a product he or
she thinks would be good to build. Rarely do committees create compelling visions. The
very first phase of object-oriented analysis and design is to capture this vision in a single
sentence (or at most,a short paragraph). The vision becomes the guiding principal of
development,and the team that comes together to implement the vision ought to refer
back to it—and update it if necessary—as it goes forward.

Even if the vision statement comes out of a committee in the marketing department,one
person should be designated as the “visionary.” It is his or her job to be the keeper of the
sacred light. As you progress,the requirements will evolve. Scheduling and time-to-mar-
ket demands may modify what you try to accomplish in the first iteration of the program,
but the visionary must keep an eye on the essential idea,to ensure that whatever is pro-
duced reflects the core vision with high fidelity. It is this ruthless dedication, this pas-
sionate commitment,that sees the project through to completion. If you lose sight of the
vision, your product is doomed.

Requirements Analysis
The conceptualization phase, in which the vision is articulated, is very brief. It may be
no longer than a flash of insight followed by the time it takes to write down what the
visionary has in mind. Often,as the object-oriented expert, you join the project after the
vision is already articulated.

Some companies confuse the vision statement with the requirements. A strong vision is
necessary, but it is not sufficient. To move on to analysis,you must understand how the
product will be used, and how it must perform. The goal of the analysis phase is to artic-
ulate and capture these requirements. The outcome of the Analysis phase is the produc-
tion of a requirements document. The first section in the requirements document is the
use case analysis.

Object-Oriented Analysis and Design

CHAPTER 1
13

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

Although the newsgroups and object-technology mailing lists thrive on splitting
hairs, the essentials of object-oriented analysis and design are fairly straightfor-
ward. In this chapter, I’ll lay out a practical approach to the process as the
bedrock on which you can build the architecture of your application. In the rest
of the book, we’ll focus on the details of implementing your design in C++.

The goal of all this work is to produce code that meets the stated requirements
and that is reliable, extensible, and maintainable. Most important, the goal is to
produce high-quality code on time and on budget.

02 239-5 CH01 2/19/99 12:58 PM Page 13

Use Cases
The driving force inanalysis,design,and implementation is the use cases. A use caseis
nothing more than a high-level description of how the product will be used. Use cases
drive not only the analysis,they drive the design,they help you find the classes,and they
are especially important in testing the product.

Creating a robust and comprehensive set of use cases may be the single most important
task in analysis. It is here that you depend most heavily on your domain experts; the
domain experts have the most information about the business requirements you are trying
to capture.

Use cases pay little attention to user interface, and they pay no attention to the internals
of the system you are building. Any system or person who interacts with the system is
called an actor.

To summarize, here are some definitions:

• Use case:A description of how the software will be used.

• Domain experts: Peoplewith expertise in the domain(area) of business for which
you are creating the product.

• Actor: Any personor system that interacts with the system you are developing.

A use case is a description of the interaction between an actor and the system itself. For
purposes of use-case analysis,the system is treated as a “black box.” An actor “sends a
message” to the system,and something happens:Information is returned, the state of the
systemis changed, the spaceship changes direction,whatever.

Identify the Actors
It is important to note that not all actors are people. Systems that interact with the system
you are building are also actors. Thus,if we were building an automated teller machine,
the customer and the bank clerk can both be actors—as can the mortgage-tracking sys-
tem. The essential characteristics of actors are as follows:

• They are external to the system

• They interact with the system

Getting started is often the hardest part of use-case analysis. Often,the best way to get
going is with a “brainstorming” session. Simply write down the list of people and sys-
tems that will interact with your new system. Remember that when we discuss people,
we really mean roles—the bank clerk, the manager, the customer, and so forth. One per-
son can have more than one role.

Object-Oriented Programming

PART I
14

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 14

For the ATM example just mentioned, we can expect such a list to include the following
roles:

• The customer

• The bank personnel

• A back-office system

• The person who fills the ATM with money and supplies

There is no need to go beyond the obvious list at first. Generating even three or four
actors may be enough to get you started on generating use cases. Each of these actors
interacts with the system in different ways. We’ll want to capture these interactions in
our usecases.

Determine the First Use Cases
Let’s start with the customer role. We might brainstorm the following use cases for a
customer:

• Customer checks his or her balances

• Customer deposits money to his or her account

• Customer withdraws money from his or her account

• Customer transfers money between accounts

• Customer opens an account

• Customer closes an account

Should we distinguish between “Customer deposits money in his or her checking
account”and “Customer deposits money in his or her savings account,” or should we
combine these actions (as we did in the preceding list) into “Customer deposits money to
his or her account?”The answer to this question lies in whether this distinction is mean-
ingful in the domain.

To determine whether these actions are one use case or two, you must ask whether the
mechanismsare different (does the customer do something significantly different with
these deposits) and whether the outcomesare different (does the system reply in a differ-
ent way). The answer to both questions for the deposit issue is “no”: The customer
deposits money to either account in essentially the same way, and the outcome is pretty
much the same; the ATM responds by incrementing the balance in the appropriate
account.

Given that the actor and the system behave and respond more or less identically, regard-
less of whether the deposit is made to the checking or the savings account,these two use

Object-Oriented Analysis and Design

CHAPTER 1
15

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 15

cases are actually a single use case. Later, when we flesh out use-case scenarios,we can
try the two variations to see whether they make any difference at all.

As you think about each actor, you may discover additional use cases by asking these
questions:

• Why is the actor using this system?

The customer is using the system to get cash,to make a deposit,or to check an
account balance.

• What outcome does the actor want from each request?

Add cash to an account or get cash to make a purchase.

• What happened to cause the actor to use this system now?

He or she may recently have been paid or may be on the way to make a purchase.

• What must the actor do to use the system?

Put an ATM card into the slot in the machine.

Aha! We need a use case for the customer logging in to the system.

• What information must the actor provide to the system?

Enter a Personal ID number.

Aha! We need use cases for obtaining and editing the Personal ID number.

• What information does the actor hope to get from the system?

Balances,and so on.

You can often can find additional use cases by focusing on the attributes of the objects in
the domain. The customer has a name, a PIN, and an account number; do we have use
cases to manage these objects? An account has an account number, a balance, and a
transaction history; have we captured these elements in the use cases?

Once we’ve explored the customer use cases in detail,the next step in fleshing out the
list of use cases is to develop the use cases for each of the other actors. The following list
shows a reasonable first set of usecases for the ATM example:

• Customer checks his or her balances

• Customer deposits money to his or her account

• Customer withdraws money from his or her account

• Customer transfers money between accounts

• Customer opens an account

• Customer closes an account

• Customer logs into his or her account

Object-Oriented Programming

PART I
16

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 16

• Customer checks recent transactions

• Bank clerk logs into special management account

• Bank clerk makesan adjustment to a customer’s account

• A back-office system updates a user’s account based on external activity

• Changes in a user’s account are reflected in a back-office system

• The ATM signals it is out of cash to dispense

• The bank technician fills the ATM with cash and supplies

Create the Domain Model
Once you have a first cut at your use cases,you can begin to flesh out your requirements
document with a detailed domain model. The domain modelis a document that captures
all you know about the domain (the field of business you are working in). As part of your
domain model,you create domain objects that describe all the objects mentioned in your
use cases. So far, the ATM example includes these objects:customer, bank personnel,
back-office systems,checking account,savings account,and so forth.

For each of these domain objects,we want to capture such essential data as the name of
the object (for example, customer, account,and so on),whether or not the object is an
actor, the object’s principal attributes and behavior, and so forth. Many modeling tools
support capturing this information in “class”descriptions. Figure 1.4 shows how this
information is captured with Rational Rose.

Object-Oriented Analysis and Design

CHAPTER 1
17

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.4.
Rational Rose.

It is important to realize that what we are describing here are not design objects,but
rather objects in the domain. This is documentation of how the world works,not docu-
mentation of how our system will work.

02 239-5 CH01 2/19/99 12:58 PM Page 17

We can diagram the relationship among the objects in the domain of the ATM example
usingthe UML—with exactly the same diagramming conventions we’ll use later to
describe the relationships among classes in the domain. This is one of the great strengths
of the UML:We can use the same tools at every stage of the project.

For example, we can capture the fact that checking accounts and savings accounts are
both specializations of the more general concept of a bank account by using the UML
conventions for classes and generalization relationships,as shown in Figure 1.5.

Object-Oriented Programming

PART I
18

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.5.
Specialization.

Bank Account

Checking Account Savings Account

Generalization

Domain object

In the diagram in Figure 1.5,the boxes represent the various domain objects,and the line
with an arrowhead indicates generalization. The UML specifies that this line is drawn
from the specializedclass to the more general “base”class. Thus,both Checking
Account and Savings Account point up to Bank Account,indicating that each is a spe-
cialized form of Bank Account.

NOTE

Again, it is important to note that what we are showing at this time are rela-
tionships among objects in the domain. Later, you may decide to have a
CheckingAccount object in your design, as well as a BankAccount object, and
you may implement this relationship using inheritance, but these are design-
time decisions. At analysis time, all we are doing is documenting our under-
standing of these objects in the domain.

The UML is a rich modeling language, and there are any number of relationships you
can capture. The principal relationships captured in analysis,however, are generalization
(or specialization), containment,and association.

02 239-5 CH01 2/19/99 12:58 PM Page 18

Generalization
Generalization is often equated with “inheritance,” but there is a sharp and meaningful
distinction between the two. Generalization describes the relationship; inheritance is the
programming implementation of generalization—it is how we manifest generalization in
code.

Generalization implies that the derived object is asubtype of the base object. Thus,a
checking account is abank account. The relationship is symmetrical: Bank account gen-
eralizesthe common behavior and attributes of checking and savings accounts.

During domain analysis,we seek to capture these relationships as they exist in the real
world.

Containment
Often,one object is composed of many subobjects. For example, a car is composed of a
steering wheel,tires,doors, radio,and so forth. A checking account is composed of a
balance, a transaction history, a customer ID, and so on. We say that the checking
account hasthese items; containment models the has arelationship. The UML illustrates
the containment relationship by drawing a line with a diamond from the containing
object to the contained object,as shown in Figure 1.6.

Object-Oriented Analysis and Design

CHAPTER 1
19

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.6.
Containment.

Checking Account

Balance

Aggregation

The diagram in Figure 1.6 suggests that the Checking Account “has a”Balance. You can
combine these diagrams to show a fairly complex set of relationships (see Figure 1.7).

The diagram in Figure 1.7 states that a Checking Account and a Savings Account are
both Bank Accounts,and that all Bank Accounts have both aBalance and a Transaction
History.

02 239-5 CH01 2/19/99 12:58 PM Page 19

Object-Oriented Programming

PART I
20

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.7.
Object relation-
ships.

Bank Account

Checking Account Savings Account

Balance Transaction History

Association
The third relationshipcommonly captured in the domain analysis is a simple association.
An association suggests that two objects know of one another and that the objects inter-
act in some way. This definition will become much more precise in the design stage, but
for analysis,we are suggesting only that Object A and Object B interact,but that neither
contains the other and neither is a specialization of the other. We show this association in
the UML with a simple straight line between the objects,as shown in Figure 1.8.

FIGURE 1.8.
Association.

Object A Object B

Association

The diagram in Figure 1.8 indicates that Object A associates in some way with Object B.

02 239-5 CH01 2/19/99 12:58 PM Page 20

Establish Scenarios
Now that we have a preliminary set of use cases and the tools with which to diagram the
relationship among the objects in the domain,we are ready to formalize the use cases
and give them more depth.

Each use case can be broken into a series of scenarios. A scenario is a description of a
specific set of circumstances that distinguish among the various contingent elements of
the use case. For example, the use case “Customer withdraws money from his or her
account”might have the following scenarios:

• Customer requests a $300 withdrawal from checking, puts the cash in the cash slot,
and the system prints a receipt.

• Customer requests a $300 withdrawal from checking, but his or her balance is
$200. Customer is informed that there is not enoughcash in the checking account
to accomplish the withdrawal.

• Customer requests a $300 withdrawal from checking, but he or she has already
withdrawn $100 today and the limit is $300 per day. Customer is informed of the
problem,and he or she chooses to withdraw only $200.

• Customer requests a $300 withdrawal from checking, but there is no paper in the
receipt roll. Customer is informed of the problem,and he or she chooses to pro-
ceed without a receipt.

And so forth. Each scenario explores a variation on the original use case. Often,these
variations are exception conditions (not enough money in account,not enough money in
machine, and so on). Sometimes,the variations explore nuances of decisions in the use
case itself (for example, did the customer want to transfer money before making the
withdrawal).

Not every possible scenario must be explored. We are looking for those scenarios that
tease out requirements of the system or details of the interaction with the actor.

Establish Guidelines
As part of your methodology, you will want to create guidelines for documenting each
scenario. You capture these guidelines in your requirements document. Typically, you’ll
want to ensure that each scenario includes the following:

• Preconditions—what must be true for the scenario to begin

• Triggers—what causes the scenario to begin

• What actions the actors take

• What results or changes are caused by the system

Object-Oriented Analysis and Design

CHAPTER 1
21

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 21

• What feedback the actors receive

• Whether there are repeating activities,and what causes them toconclude

• A description of the logical flow of the scenario

• What causes the scenario to end

• Postconditions—what must be true when the scenario is complete

In addition, you will want to name each use case, and each scenario. Thus,you might
have the following situation:

Use Case: Customer withdraws cash

Scenario: Successful cash withdrawal from checking

Preconditions: Customer is already logged in to system

Tr igger: Customer requests “withdrawal”

Description: Customer chooses to withdraw cash from a checking
account. There is sufficient cash in the account,there is
sufficient cash and receipt paper in the ATM, and the
network is up and running. The ATM asks the customer
to indicate the amount of the withdrawal, and the cus-
tomer asks for $300,a legal amount to withdraw at this
time. The machine dispenses $300 and prints a receipt,
and the customer takes the money and the receipt.

PostConditions: Customer account is debited $300,and customer has
$300 cash.

This use case can be shown with the incredibly simple diagram given in Figure 1.9.

Object-Oriented Programming

PART I
22

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.9.
Use case diagram.

Withdraw Cash

Association

Customer

Actor
Use Case

There is little information captured here except a high-level abstraction of an interaction
between an actor (the customer) and the system. This diagram becomes slightly more
useful when you show the interaction among use cases. I say only slightly more useful

02 239-5 CH01 2/19/99 12:58 PM Page 22

because there are only two interactions possible: «uses» and «extends» . The «uses»

stereotype indicates that one use case is a superset of another. For example, it isn’t possi-
ble to withdraw cashwithout first logging on. We can show this relationship with the
diagram shown in Figure 1.10.

Object-Oriented Analysis and Design

CHAPTER 1
23

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.10.
The «uses» stereo-
type. Withdraw Cash

Customer

Log in

<<Uses>>

Figure 1.10 indicates that the Withdraw Cash use case “uses” the Log In use case, and
thus fully implements Log In as part of Withdraw Cash.

The «extends» use case was intended to indicate conditional relationships and some-
thing akin to inheritance, but there is so much confusion in the object-modeling commu-
nity about the distinction between «uses» and «extends» that many developers have
simply set aside «extends» , feeling that its meaning is not sufficiently well understood.
Personally, I use «uses» when I would otherwise copy and paste the entire use case in
place, and I use «extends» when I only usethe use case under certain definable
conditions.

Interaction Diagrams
Although the diagram of the use case itself may be of limited value, there are diagrams
you can associate with the use case that can dramatically improve the documentation and
understanding of the interactions. For example, we know that the Withdraw Cash sce-
nario represents the interactions among the following domain objects:customer, check-
ing account,and the user interface. We can document this interaction with an interaction
diagram,as shown in Figure 1.11.

The interaction diagram in Figure 1.11 captures details of the scenario that may not be
evident by reading the text. The objects that are interacting are domainobjects,and the
entire ATM/UI is treated as a single object,with only the specific bank account called
out in any detail.

02 239-5 CH01 2/19/99 12:58 PM Page 23

This rather simple ATM example shows only a fanciful set of interactions,but nailing
down the specifics of these interactions can be a powerful tool in understanding both the
problem domain and the requirements of your new system.

Create Packages
Because you generate many use cases for any problem of significant complexity, the
UML allows you to group your use cases in packages.

A package is like a directory or a folder—it is a collection of modeling objects (classes,
actors,and so forth). To manage the complexity of use cases,you can create packages
aggregated by whatever characteristics make sense for your problem. Thus,you can
aggregate your use cases by account type (everything affecting checking or savings),by
credit or debit, by customer type, or by whatever characteristics make sense to you. More
important,a single use case can appear in a number of different packages,allowing you
great flexibility of design.

Application Analysis
In addition to creating use cases,the requirements document will capture your cus-
tomer’s assumptions,constraints,and requirements about hardware and operating

Object-Oriented Programming

PART I
24

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.11.
UML interaction
diagram.

Customer
User-Interface

(ATM)
Checking
Account

1: Request Withdrawal

2: Show options

3: Indicate amount and account

4: Check Balances, status, etc.

5: Return Authorization

6: Debit $300

7: Dispense cash

8: Request receipt

9: Print Receipt

02 239-5 CH01 2/19/99 12:58 PM Page 24

systems. Application requirements are your particular customer’s prerequisites—those
things that you would normally determine during design and implementation but that
your client has decided for you.

The application requirements are often driven by the need to interface with existing
(legacy) systems. In this case, understanding what the existing systems do and how they
work is an essential component of your analysis.

Ideally, you’ll analyze the problem,design the solution,and then decide which platform
and operating system best fits your design. That scenario is as ideal as it is rare. More
often,the client has a standing investment in a particular operating system or hardware
platform. The client’s business plan depends on your software running on the existing
system,and you must capture these requirements early and design accordingly.

Systems Analysis
Some software is written to stand alone, interacting only with the end user. Often,how-
ever, you will be called on to interface to an existing system. Systems analysisis the
process of collecting all the details of the systems with which you will interact. Will your
new system be a server, providing services to the existing system,or will it be a client?
Will y ou be able to negotiate an interface between the systems,or must you adapt to an
existing standard? Will the other system be stable, or must you continually hit a moving
target?

These and related questions must be answered in the analysis phase, before you begin to
design your new system. In addition, you will want to try to capture the constraints and
limitations implicit in interacting with the other systems. Will they slow down the
responsiveness of your system? Will they put high demands on your new system,con-
suming resources and computing time?

Planning Documents
Once you understand what your system must do and how it must behave, it is time to
take a first stab at creating a time and budget document. Often,the timeline is dictated,
top-down, by the client: “You have 18 months to get this done.” Ideally, you’ll examine
the requirements and estimate the time it will take to design and implement the solution.
That is the ideal; the practical reality is that most systems come with an imposed time
limit and cost limit,and the real trick is to figure out how much of the required function-
ality you can build in the allotted time—and at the allotted cost.

Here are a couple guidelines to keep in mind when you are creating a project budget and
timeline:

Object-Oriented Analysis and Design

CHAPTER 1
25

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 25

• If you are given a range, the outer number is probably optimistic.

• Liberty’s Law states that everything takes longer than you expect—even if you take
into account Liberty’s Law.

Given these realities,it is imperative that you prioritize your work. You will not finish—it
is that simple. It is important that, when you run out of time, what you have works and is
adequate for a first release. If you are building a bridge and run out of time, if you didn’t
get a chance to put in the bicycle path, that is too bad; but you can still open the bridge
and start collecting tolls. If you run out of time and you’re only half way across theriver,
that is not as good.

An essential thing to know about planning documents is that they are wrong. This early
in the process,it is virtually impossible to offer a reliable estimate of the duration of the
project. Once you have the requirements,you can get a good handle on how long the
design will take, a fair estimate of how long the implementation will take, and a reason-
able guesstimate of the testing time. Then you must allow yourself at least 20 to 25 per-
cent “wiggle room,” which you can tighten as you move forward and learn more.

Object-Oriented Programming

PART I
26

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

NOTE

The inclusion of “wiggle room” in your planning document is not an excuse to
avoid planning documents. It is merely a warning not to rely on them too much
early on. As the project goes forward, you’ll strengthen your understanding of
how the system works, and your estimates will become increasingly precise.

Visualizations
The final pieceof the requirements document is the visualization. The visualization is
just a fancy name for the diagrams,pictures,screen shots,prototypes,and any other visu-
al representations created to help you think through and design the graphical user inter-
face of your product.

For many large projects,you may develop a full prototype to help you (and your cus-
tomers) understand how the system will behave. On some teams,the prototype becomes
the living requirements document; the “real” system is designed to implement the func-
tionality demonstrated in the prototype.

Artifacts
At the end of each phase of analysis and design,you will create a series of documents or
“artifacts.” Table 1.1 shows some of the artifacts of the analysis phase. These documents

02 239-5 CH01 2/19/99 12:58 PM Page 26

are used by the customer to make sure that you understand what the customer needs,by
end users to give feedback and guidance to the project,and by the project team to design
and implement the code. Many of these documents also provide material crucial both to
your documentation team and to Quality Assurance to tell them how the system oughtto
behave.

TABLE 1.1. ARTIFACTS CREATED DURING THE ANALYSIS STAGE OF PROJECT DEVELOPMENT

Artifact Description

Use case report A document detailing the use cases,scenarios, stereotypes,
preconditions,postconditions,and visualizations

Domain analysis Document and diagrams describing the relationships
among the domain objects

Analysis collaboration diagrams Collaboration diagrams describing interactions among
objects in the problem domain

Analysis activity diagrams Activity diagrams describing interactions among objects in
the problem domain

Systems analysis Report and diagrams describing low-level and hardware
systems on which the project will be built

Application analysis document Report and diagrams describing the customer’s require-
ments specific to this particular project

Operational constraints report Report describing performance characteristics and con-
straints imposed by this client

Cost and planning document Report with Gantt and Pert charts indicating projected
scheduling, milestones,and costs

Design
Analysis focuseson understanding the problem domain,whereas design focuses on cre-
ating the solution. Designis the process of transforming our understanding of the
requirements into a model which can be implemented in software. The result of this
process is the production of a design document.

The design document is divided into two sections:Class Design and Architectural
Mechanisms. The Class Design section,in turn, is divided into static design (which
details the various classes and their relationships and characteristics) and dynamic design
(which details how the classes interact).

Object-Oriented Analysis and Design

CHAPTER 1
27

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 27

The Architectural Mechanisms section of the design document provides details about
how you will implement object persistence, concurrency, a distributed object system,and
so forth. The rest of this chapter focuses on the class design aspect of the design docu-
ment; other chapters in the rest of this book explain how to implement various
architecture mechanisms.

What Are the Classes?
As a C++ programmer, you are used to creating classes. Formal design methodology
requires you to separate the C++ class from the design class,though they will be inti-
mately related. The C++ class you write in code is the implementation of the class you
designed. These are isomorphic: each class in your design will correspond to a class in
your code, but don’t confuse one for the other. It is certainly possible to implement your
design classes in another language, and the syntaxof the class definitions might be
changed.

That said, most of the time we talk about these classes without distinguishing them,
because the differences are highly abstract. When you say that in your model your Cat

class will have a Meow() method, understand that this means that you will put a Meow()

method into your C++ class as well.

You capture the model’s classes in UML diagrams and you capture the C++ classes in
code which can be compiled. The distinction is meaningful yet subtle.

In any case, the biggest stumbling block for many novices is finding the initial set of
classes and understanding what makes a well-designed class. One simplistic technique
suggests writing out the use-case scenarios and then creating a class for every noun.
Consider thefollowing use-case scenario:

Customer chooses to withdraw cashfrom checking. There is sufficient cash in the
account, sufficient cash and receiptsin the ATM , and the network is up and run-
ning. The ATM asks the customer to indicate an amount for the withdr awal, and
the customer asks for $300,a legal amount to withdraw at this time. The machine
dispenses $300 and prints a receipt,and the customer takes the money and the
receipt.

You might pull out of this scenario the following classes:

• Customer

• Cash

• Checking

• Account

• Receipts

Object-Oriented Programming

PART I
28

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 28

• ATM

• Network

• Amount

• Withdrawal

• Machine

• Money

You might thenaggregate the synonyms to create this list,and then create classes for
each of these nouns:

• Customer

• Cash (money, amount,withdrawal)

• Checking

• Account

• Receipts

• ATM (machine)

• Network

This is not a bad way to start as far as it goes. You might then go on to diagram the obvi-
ous relationships among some of these classes as shown in Figure 1.12.

Object-Oriented Analysis and Design

CHAPTER 1
29

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.12.
Preliminary
classes.

Checking Account

Account

ATM

Cash Receipt

Customer

Network

Dispenses
Dispenses

02 239-5 CH01 2/19/99 12:58 PM Page 29

Transformations
What you began to do in the preceding section was not so much to extract the nouns
from the scenario as to begin transforming objects from the domain analysis into objects
in the design. That is a fine first step. Often,many of the objects in the domain will have
surrogatesin the design. An object is called a surrogate to distinguish between the actual
physical receipt dispensed by an ATM and the object in your design that is merely an
intellectual abstraction implemented in code.

You will likely find that mostof the domain objects have an isomorphic representation in
the design—that is, there is a one-to-one correspondence between the domain object and
the design object. Other times,however, a single domain object is represented in the
design by an entire series of design objects. And at times,a series of domain objects may
be represented by a single design object.

In Figure 1.11,note that we have already captured the fact that CheckingAccount is a
specialization of Account . We didn’t set out to find the generalization relationship,but
this one was self-evident,so we captured it. Similarly, we knew, from the domain analy-
sis,that the ATMdispenses both Cash and Receipts , so we captured that information
immediately in the design.

The relationship between Customer and CheckingAccount is less obvious. We know that
there is such a relationship,but the details are not obvious,so we hold off.

Other Transformations
Once you have transformed the domain objects,you can begin to look for other useful
design-time objects. A good starting place is with interfaces. Each interface between your
new system and any existing (legacy) systems should be encapsulated in an interface
class. If you will interact with a database of any type, this is also a good candidate for an
interface class.

These interface classes offer encapsulation of the interface protocol and thus shield your
code from changes in the other system. Interface classes allow you to change your own
design,or to accommodate changes in the design of other systems,without breaking the
rest of the code. As long as the two systems continue to support the agreed-on interface,
they can move independently of one another.

Data Manipulation
Similarly, you will create classes for data manipulation. If you have to transform data
from one format into another format (for example, from Fahrenheit to Celsius,or from
English to Metric), you may want to encapsulate these manipulations behind a data
manipulation class. You can use this technique when messaging data into required

Object-Oriented Programming

PART I
30

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 30

formats for other systems or for transmission over the Internet—in short, any time you
must manipulate data into a specified format, you will encapsulate theprotocol behind a
data manipulation class.

Views
Every “view” or “report” your system generates (or, if you generate many reports,every
set of reports) is a candidate for a class. The rules behind the report—both how the infor-
mation is gathered and how it is to be displayed—can be productively encapsulated
inside a view class.

Devices
If your systeminteracts with or manipulates devices (such as printers,modems,scanners,
and so forth), the specifics of the device protocol ought to be encapsulated in a class.
Again,by creating classes for the interface to the device, you can plug in new devices
with new protocols and not break any of the rest of your code; just create a new interface
class that supports the same interface (or a derived interface),and off you go.

Static Model
Once you have established your preliminary set of classes,it is time to begin modeling
their relationships and interactions. For purposes of clarity, this chapter first explains the
static model and then explains the dynamic model. In the actual design process,you will
move freely between the static and dynamic model,filling in details of both—and, in
fact,adding new classes and sketching them in as you go.

The static model focuses on three areas of concern: responsibilities,attributes,and rela-
tionships. The most important of these—and the one you focus on first—is the set of
responsibilities for each class. The most important guiding principal is this:Each class
should be responsible for one thing.

That is not to say that each class has only one method. Far from it; many classes will
have dozens of methods. But all these methods must be coherent and cohesive; that is,
they must all relate to one another and contribute to the class’s ability to accomplish a
single area of responsibility.

In a well-designed system,each object is an instance of a well-defined and well-under-
stood class that is responsible for one area of concern. Classes typically delegate extrane-
ous responsibilities to other, related classes. By creating classes that have only a single
area of concern, you promote the creation of highly maintainable code.

To get a handle on the responsibilities of your classes,you may find it beneficial to begin
your design work with the use of CRC cards.

Object-Oriented Analysis and Design

CHAPTER 1
31

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 31

CRC Cards
CRC standsfor Class,Responsibility, and Collaboration. A CRC card is nothing more
than a 4x6 index card. This simple, low-tech device allows you to work with other peo-
ple in understanding the primary responsibilities of your initial set of classes. You assem-
ble a stack of blank 4x6 index cards and meet around a conference table for a series of
CRC card sessions.

How to Conduct a CRC Session
Each CRC session should be attended, ideally, by a group of three to six people; any
more becomes unwieldy. You should have a facilitator, whose job it is to keep the ses-
sion on track and to help the participants capture what they learn. There should be at
leastone senior software architect,ideally someone with significant experience in object-
oriented analysis and design. In addition, you will want to include at least one or two
“domain experts” who understand the system requirements and who can provide expert
advice in how things ought to work.

The most essential ingredient in a CRC session is the conspicuous absence of managers.
This is a creative, free-wheeling session that must be unencumbered by the need to
impress one’s boss. The goal here is to explore, to take risks,to tease out the responsibil-
ities of the classes and to understand how they might interact with one another.

You begin the CRC session by assembling your group around a conference table, with a
small stack of 4x6 index cards. At the top of each CRC card you will write the name of a
single class. Draw a line down the center of the card and write Responsibilitieson the
left and Collaborationson the right.

Begin by filling out cards for the most important classes you’ve identified. For each card,
write a one-sentence or two-sentence definition on the back. You may also capture what
other class this class specializes if that is obvious at the time you’re working with the
CRC card. Just write Superclass:below the class name and fill in the name of the class
this class derives from.

Focus on Responsibilities
The point of theCRC session is to identify the responsibilitiesof each class. Pay little
attention to the attributes,capturing only the most essential and obvious attributes as you
go. The important work is to identify the responsibilities. If, in fulfilling a responsibility,
the class must delegate work to another class,you capture that information under collab-
orations.

As you progress,keep an eye on your list of responsibilities. If you run out of room on
your 4x6 card, it may make sense to wonder whether you’re asking this class to do too
much. Remember, each class should be responsible for one general area of work, and the

Object-Oriented Programming

PART I
32

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 32

various responsibilities listed should be cohesive and coherent—that is, they should work
together to accomplish the overall responsibility of the class.

At this point,you do not want to focus on relationships,nor do you want to worry about
the class interface or which methods will be public and which will be private. The focus
is only on understanding what each class does.

Anthropomorphic and Use-Case Driven
The key feature ofCRC cards is to make them anthropomorphic—that is, you attribute
human-like qualities to each class. Here’s how it works:After you have a preliminary set
of classes,return to your CRC scenarios. Divide the cards around the table arbitrarily,
and walk through the scenario together. For example, let’s return to the following sce-
nario:

Customer choosesto withdraw cash from checking. There is sufficient cash in the
account,sufficient cash and receipts in the ATM, and the network is up and run-
ning. The ATM asks the customer to indicate an amount for the withdrawal, and
the customer asks for $300,a legal amount to withdraw at this time. The machine
dispenses $300 and prints a receipt,and the customer takes the money and the
receipt.

Assume we have five participants in our CRC session:Amy, the facilitator and object-
oriented designer; Barry, the lead programmer; Charlie, the client; Dorris, the domain
expert; and Ed, a programmer.

Amy holds up a CRC card representing CheckingAccount and says “I tell the customer
how much money is available. He asks me to give him $300. I send a message to the dis-
penser telling him to give out $300 cash.” Barry holds up his card and says “I’m the dis-
penser; I spit out $300 and send Amy a message telling her to decrement her balance by
$300. Who do I tell that the machine now has $300 less? Do I keep track of that?”
Charlie says, “I think we need an object to keep track of cash in the machine.” Ed says,
“No, the dispenser should know how much cash it has; that’s part of being a dispenser.”
Amy disagrees:“No, someone has to coordinate the dispensing of cash. The dispenser
needs to know if there is cash available and if the customer has enough in the account,
and it has to count out the money and know when to close the drawer. It should delegate
responsibility for keeping track of cash on hand; some kind of internal account. Whoever
knows about cash on hand can also notify the back office when it is time to be refilled.
Otherwise, that’s asking the dispenser to do too much.”

The discussion continues. By holding up cards and interacting with one another, the
requirements and opportunities to delegate are teased out; each class comes alive, and its
responsibilities are clarif ied. When the group becomes bogged down in design questions,
the facilitator can make a decision and help the group move on.

Object-Oriented Analysis and Design

CHAPTER 1
33

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 33

Limitations of CRC Cards
Although CRC cards canbe a powerful tool for getting started with design,they have
inherent limitations. The first problem is that they don’t scale well. In a very complex
project,you can be overwhelmed with CRC cards; just keeping track of them all can be
difficult.

CRC cards also don’t capture the interrelationship among classes. Although it is true that
collaborations are noted, the nature of the collaboration is not modeled well. Looking at
the CRC cards,you can’t tell whether classes aggregate one another, who creates whom,
and so forth. CRC cards also don’t capture attributes,so it is difficult to go from CRC
cards to code. Most important,CRC cards are static; although you can act out the inter-
actions among the classes,the CRC cards themselves do not capture this information.

In short, CRC cards are a good start, but you need to move the classes into the UML if
you are to build a robust and complete model of your design. Although the transition into
the UML is not terribly difficult, it is a one-way street. Once you move your classes into
UML diagrams,there is no turning back; you set aside the CRC cards and don’t come
back to them. It is simply too difficult to keep the two models synchronized with one
another.

Transforming CRC Cards to UML
Each CRC card can be translated directly into a class modeled with the UML.
Responsibilities are translated into class methods,and whatever attributes you have cap-
tured are added as well. The class definition from the back of the card is put into the
class documentation. Figure 1.13 shows the relationship between the CheckingAccount

CRC card and the UML class created from that card.

Class: CheckingAccount

SuperClass:Account

Responsibilities:

Track current balance

Accept deposits and transfers in

Write checks

Transfer cash out

Keep current day’s ATM withdrawal balance

Collaborations:

Other accounts

Back-office systems

Cash dispenser

Object-Oriented Programming

PART I
34

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

02 239-5 CH01 2/19/99 12:58 PM Page 34

Class Relationships
After the classesare in the UML,you can begin to turn your attention to the relation-
ships among the various classes. The principal relationships you’ll model are these:

• Generalization

• Association

• Aggregation

• Composition

The Generalization relationship is implemented in C++ through public inheritance. From
a design perspective, however, we focus less on the mechanism and more on the seman-
tics:What implies.

We examined the Generalization relationship in the analysis phase, but now we turn our
attention not just to the objects in the domain,but also to the objects in our design. Our
efforts now are to “f actor out”common functionality in related classes into baseclasses
that can encapsulate the shared responsibilities.

When you “f actor out”common functionality, you move that functionality out of the spe-
cialized classes and up into the more general class. Thus,if I notice that both my check-
ing and my savings account need methods for transferring money in and out,I’ ll move
the TransferFunds() method up into the account base class. The more you factor out of
the derived classes,the more polymorphic your design will be.

One of the capabilities available in C++,which is not available in Java, is multiple inher-
itance(although Java has a similar, if limited, capability with its multiple interfaces).

Object-Oriented Analysis and Design

CHAPTER 1
35

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.13.
CRC card.

<<Abstract>>
 Account

Checking Account

Balance : int
DaysATMWithdrawal : int

GetBalance() : int
Deposit(int amount)() : void
TransferIn(int amount)() :bool
TransferOut() : int
WriteChecks(int amount)() : bool

02 239-5 CH01 2/19/99 12:58 PM Page 35

Multiple inheritance allows a class to inherit from more than one base class,bringing in
the members and methods of two or more classes.

Experience has shown that you should use multiple inheritance judiciously because it can
complicate both your design and the implementation. Many problems initially solved
with multiple inheritance are today solved using aggregation. That said, multiple inheri-
tance is a powerful tool,and your design may require that a single class specializes the
behavior of two or more other classes.

Multiple Inheritance Versus Containment
Is an object the sumof its parts? Does it make sense to model a Car object as a special-
ization of SteeringWheel , Door , and Tire , as shown in Figure 1.14?

Object-Oriented Programming

PART I
36

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.14.
False inheritance.

Car

Steering Wheel TireDoor

It is important to comeback to the fundamentals:Public inheritance should always
model generalization. The common expression for this is that inheritance should model
is-a relationships. If you want to model thehas-a relationship (for example, a car has-a
steering wheel),you do so with aggregation, as shown in Figure 1.15.

The diagram in Figure 1.15 indicates that a car has a steering wheel,four wheels,and
2–5 doors. This is a more accurate model of the relationship between a car and its parts.
Notice that the diamond in the diagram is not filled in; this is so because we are model-
ing this relationship as an aggregation, not as a composition. Compositionimplies con-
trol for the lifetime of the object. Although the car hastires and a door, the tires and door
can exist before they are part of the car and can continue to exist after they are no longer
part of the car.

Figure 1.16 models composition. This model says that the body is not only an aggrega-
tion of a head, two arms,and two legs,but that these objects (head, arms,legs) are

02 239-5 CH01 2/19/99 12:58 PM Page 36

created when the body is created and disappear when the body disappears. That is, they
have no independent existence; the body is composed of these things and their lif etimes
are intertwined.

Object-Oriented Analysis and Design

CHAPTER 1
37

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.15.
Aggregation.

Car

Steering Wheel TireDoor

1
2..5

4

Discriminators and Powertypes
How might you design the classes required to reflect the various model lines of a typical
car manufacturer? Suppose that you’ve been hired to design a system for Acme Motors,
which currently manufactures five cars: the Pluto (a slow, compact car with a small
engine), the Venus (a four-door sedan with a middle-sized engine), the Mars (a sport
coupe with the company’s biggest engine, engineered for maximum performance),the
Jupiter (a minivan with the same engine as the sports coupe but designed to shift at a
lower RPM and to use its power to move its greater weight),and the Earth (a station
wagon with a small engine but high RPM).

FIGURE 1.16.
Composition.

Body

Head LegsArms

1
2

2

02 239-5 CH01 2/19/99 12:58 PM Page 37

You might start by creating subtypes of Car that reflect the various models,and then cre-
ate instances of each model as they roll off the assembly line, as shown in Figure 1.17.

Object-Oriented Programming

PART I
38

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.17.
Modeling sub-
types.

Car

Earth Jupiter Mars Venus Pluto

How are these models differentiated? As we saw, they are differentiated by the engine
size, body type, and performance characteristics. These various discriminating character-
istics can be mixed and matched to create various models. We can model this in the
UML with the discriminator stereotype, as shown in Figure 1.18.

FIGURE 1.18.
Modeling the
discriminator.

Car

High Power Sedan Coupe Family Car

Low Power Sports Car

engine performance

body

The diagram in Figure 1.18indicates that classes can be derived from Car based on mix-
ing and matching three discriminating attributes. The size of the engine dictates how
powerful the car is,and the performance characteristics indicate how sporty the car is.
Thus,you can have a powerful and sporty station wagon,a low-power family sedan,and
so forth.

Each attribute can be implemented with a simple enumerator. Thus,the body type might
beimplemented with the following statement in code:

enum BodyType = { sedan, coupe, minivan, stationwagon };

02 239-5 CH01 2/19/99 12:58 PM Page 38

It may turn out,however, that a simple value is insufficient to model a particular discrim-
inator. For example, the performance characteristic may be rather complex. In this case,
the discriminator can be modeled as a class,and the discrimination can be encapsulated
in an instance of that type.

Thus,the car might model the performance characteristics in a performancetype, which
contains information about where the engine shifts and how fast it can turn. The UML
stereotype for a class that encapsulates a discriminator, and that can be used to create
instancesof a class (Car) that are logically of different types (for example, SportsCar

versus LuxuryCar) is «powertype» . In thiscase, the Performance class is a powertype

for car. When you instantiate Car , you also instantiate a Performance object,and you
associate a given Performance object with a given Car , as shown in Figure 1.19.

Object-Oriented Analysis and Design

CHAPTER 1
39

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.19.
A discriminator as
a powertype.

Car

High Power Sedan Coupe Family Car

Low Power Sports Car

engine performance:PerformanceCharacteristics

body <<powertype>>
Performance Characteristics

shift Point
max RPM

accelerate

Family:PerformanceCharacteristics

Sport:PerformanceCharacteristics

Powertypes let you create a variety of logical types without using inheritance. You can
thus manage a large and complex set of types without the combinatorial explosion you
might encounter with inheritance.

Typically, you implementthe powertype in C++ with pointers. In this case, the Car class
holds a pointer to an instance of PerformanceCharacteristics class (see Figure 1.20).
I’ ll leave it as an exercise to the ambitious reader to convert the body and engine discrim-
inators into powertypes.

Class Car : public Vehicle
{
public:

Car();
~Car();
// other public methods elided

private:
PerformanceCharacteristics * pPerformance;

};

As a final note, powertypes allow you to create new types(not just instances) at runtime.
Because each logical type is differentiated only by the attributes of the associated

02 239-5 CH01 2/19/99 12:58 PM Page 39

powertype, these attributes can be parameters to the powertype’s constructor. This means
that you can,at runtime, create new typesof cars on-the-fly. That is, by passing different
engine sizes and shift points to the powertype, you can effectively create new perfor-
mance characteristics. By assigning those characteristics to various cars, you can effec-
tively enlarge the set of types of cars at runtime.

Object-Oriented Programming

PART I
40

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

FIGURE 1.20.
The relationship
between aCar

object and its
powertype.

Car

High Power Sedan Coupe

Low Power

engine

body

Performance Characteristics

shift Point
max RPM

accelerate

Dynamic Model
In addition to modeling the relationships among the classes,it is critical to model how
they interact. For example, the CheckingAccount , ATM, and Receipt classes may interact
with the Customer in fulfilling the “Withdraw Cash”use case. We return to the kinds of
sequence diagrams first used in analysis,but now flesh out the details based on the meth-
ods we’ve developed in the classes,as shown in Figure 1.21.

This simple interaction diagram shows the interaction among a number of design classes
over time. It suggests that the ATMclass will delegate to the CheckingAccount class all
responsibility for managing the balance, while the CheckingAccount will call on the ATM

to manage display to the user.

Interaction diagrams comes in two flavors. The one in Figure 1.20 is called a sequence
diagram. Another view on the same information is provided by the collaboration dia-
gram. The sequence diagram emphasizes the sequence of events over time; the collabo-
ration diagram emphasizes the interactions among the classes. You can generate a collab-
oration diagram directly from a sequence diagram; tools like Rational Rose automate this
task at the press of a button (see Figure 1.22).

02 239-5 CH01 2/19/99 12:58 PM Page 40

Object-Oriented Analysis and Design

CHAPTER 1
41

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

State Transition Diagrams
As we come to understand the interactions among the objects,we have to understand the
various possible statesof each individual object. We can model the transitions among the
various states in a state diagram (or state transition diagram). Figure 1.23 shows the vari-
ous states of the CustomerAccount class as the customer logs into the system.

FIGURE 1.21.
Sequence
diagram.

Customer ATM
Checking
Account

1: Check Balances

2: Get Balance

3: Display Balance

6: Print

4 : Withdraw cash

5 : Dispense

Receipt

FIGURE 1.22.
Collaboration
diagram.

Customer
ATM

Checking
Account

1: Check Balances

2: Get Balance

3: Display Balance

6: Print

4 : Withdraw cash

5 : Dispense

Receipt

02 239-5 CH01 2/19/99 12:58 PM Page 41

Object-Oriented Programming

PART I
42

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

Every state diagram begins with a single start state and ends with zero or more end states.
The individual states are named, and the transitions may be labeled. The guard indicates a
condition that must be satisfied for an object to move from one state toanother.

Super States
The customer can change his mind at any time and decide not to log in. He can do this
after he swipes his card to identify his account or after he enters his password. In either
case, the system must accept his request to cancel and return to the “not logged in state”
(see Figure 1.24).

As you can see, in a more complicated diagram,the Canceled state quickly becomes a
distraction. This is particularly annoying because canceling is an exceptional condition
that should not be given prominence in the diagram. We can simplify this diagram by
using a super state, asshown in Figure 1.25.

The diagram in Figure 1.24 provides the same information in Figure 1.23 but is much
cleaner and easier to read. From the time you start logging in until the system finalizes
your login, you can cancel the process. If you do cancel,you return to the state “not
loggedin.”

FIGURE 1.23.
Customer account
state.

Getting Account Info

Getting Password

Not Logged In

Logged In

Solid bullet = start

State transition

State

Guard

Bullseye = end

[Valid Account ID]

Start

02 239-5 CH01 2/19/99 12:58 PM Page 42

Object-Oriented Analysis and Design

CHAPTER 1
43

1

O
B

JEC
T-O

R
IEN

TED
A

N
A

LY
SIS

A
N

D
D

ESIG
N

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

Summary
This chapter provided an introduction to the issues involved in object-oriented analysis
and design. The essence of this approach is to analyze how your system will be used (use
cases) and how it must perform, and then to design the classes and model their relation-
ships and interactions.

FIGURE 1.24.
User may cancel.

Getting Account Info

Getting Password

Not Logged In

Logged In

Start

Canceled

Canceled

FIGURE 1.25.
Super state.

Not Logged In

Logged In

Start

Getting Password

Getting Account InfoCanceled

Cancelable

02 239-5 CH01 2/19/99 12:58 PM Page 43

Object-Oriented Programming

PART I
44

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH01 Lp#1

In the old days,we sketched out a quick idea of what we wanted to accomplish and
began writing code. The problem is that complex projects are never finished; and if they
are finished, they are unreliable and brittle. By investing up front in understanding the
requirements and modeling the design,we ensure a finished product that is correct (that
is, it meets the design) and that is robust,reliable, and extensible.

Much of the rest of this book focuses on the details of Implementation. Issues relating to
Testing and Rollout are beyond the scope of this book,except to mention that you want
to plan your unit testing as you implement,and that you will use your requirements doc-
ument as the foundation of your test plan prior to rollout.

02 239-5 CH01 2/19/99 12:58 PM Page 44

IN THIS CHAPTER

• Translating Class Diagrams
into C++ 42

• Translating Interaction Diagrams
into C++ 61

• Translating State Transition Diagrams
into C++ 68

• Translating Activity Diagrams
into C++ 72

2
C

H
A

PT
ER

Implementing
Class Design in
C++

04 239-5 CH02 2/19/99 1:00 PM Page 45

Now you have read Chapter 1,“Object-Oriented Analysis and Design,” and learned how
to represent your ideas,problems,and solutions in a well-organized and understandable
manner by using the Unified Modeling Language (UML). You can now show your object
designs to anyone in the industry, and that person will understand exactly what you mean.

The next step is toimplement your designs and turn them into a workable solution. That
is the focus of this chapter: transforming the various models you have developed during
analysis and design into C++ code. Specifically, this chapter discusses the transformation
of the following UML diagrams into C++ code:

• Class diagrams

• Interaction diagrams (collaboration diagrams and sequence diagrams)

• State transaction diagrams

• Activity diagrams

Translating Class Diagrams
into C++
Class diagramsserve two purposes:to represent the static state of classes and to exploit
the relationships between those classes. In the early stages of the software development
lif e cycle, it is important to note that the class diagram model attempts not only to define
the public interface for each class but to define the associations,aggregations,and
generalizations defined between the individual classes. Although defining a strong set of
classes is important in building a foundation of tools to use in the final application, it is
equally important to understand how each class interacts with other classes so that you
can work toward providing a complete solution.

In the following sections,you learn how to transform the most common elementsof a
class diagram into C++ code.

Standard Classes
As described inChapter 1,classes are represented by three partitioned rectangles,with
the class’s unique name specified in the top portion, attributes in the middle, and opera-
tions in the bottom. Figure 2.1 shows a class diagram.

The transformation from the class diagram in Figure 2.1 to a C++ class is a three-step
process:

Object-Oriented Programming

PART I
46

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 46

1. Give the class a name based on the name in the top rectangle of the class diagram:
CheckingAccount . Remember to add a constructor and destructor for the class.

2. Add the attributes (from the middle rectangle of the diagram) to the class as private
member variables. Although the variables do not necessarily have to be private,
making them private promotes encapsulation. In the case of Figure 2.1,those
attributes become Balance and DaysATMWithdrawal .

3. Transform the operations (in the bottom rectangle of the diagram) to public mem-
ber functions. The functions become the public interface to the class. In the case of
Figure 2.1,those operations become GetBalance() , Deposit() , TransferIn() ,
TransferOut() , and WriteChecks() .

Listing 2.1 shows the complete class declaration for CheckingAccount .

LISTING 2.1. A C++ REPRESENTATION OF A UML CLASS

class CheckingAccount
{
public:

// Construction / Destruction
CheckingAccount ();
~CheckingAccount ();

// Public operations
int GetBalance ();
void Deposit (int amount);
BOOL TransferIn (int amount);
int TransferOut ();
BOOL WriteChecks (int amount);

private:
// Private attributes
int Balance;
int DaysATMWithdrawal;

};

Implementing Class Design in C++

CHAPTER 2
47

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.1.
A checking
account class
diagram.

CheckingAccount

Balance: int

DaysA TMWithdrawal: int

GetBalance(): int: int

Deposit (amount: int): void

TransferIn (amount: int): bool

TransferOut(): int

WriteChecks (amount: int): bool

04 239-5 CH02 2/19/99 1:00 PM Page 47

Template Classes
Template classes, which are also referred to as parameterized classes, are generic classes
that cannot be used until they are instantiated. Because the data types used in a template
class are not determined until the class is instantiated, you can write a generic Stack

class once; the items pushed on the stack and popped off the stack can vary from one
instantiation of the class to another. That single Stack class can be used for a stack of
integers, floats,or any other predefined or user-defined types.

Class diagrams represent template classes in the same way as normal classes,but they
have a dotted rectangle in the upper-right corner that specifies the arguments to be used
in the class (see Figure 2.2).

Object-Oriented Programming

PART I
48

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.2.
A stack template
class diagram.

Stack

Pop(): <StackType>

Push (item: <StackType>): void

StackType

The C++ implementation of a template class corresponds to the C++ template class type.
You transform Figure 2.2 into a C++ class in the same way you do a standard class—
with the exception of the template class specifics:

1. Preface the class declaration with the keyword template and define a substitution
type for the class:<class StackType> .

2. For each instance in which you use the variable type in question,substitute the
variable type with the class name followed by the substitute type enclosed in angle
brackets:Stack<StackType> .

Listing 2.2 shows the C++ implementation of the class diagram shown in Figure 2.2.

LISTING 2.2. A C++ TEMPLATE CLASS

template <class StackType>
class Stack
{
public:

// Construction / Destruction
Stack ();
Stack (const Stack<StackType>& right);
~Stack ();

// Assignment operator
const Stack<StackType>& operator = (const Stack<StackType>& right);

04 239-5 CH02 2/19/99 1:00 PM Page 48

// Comparison operators
int operator==(const Stack<StackType> &right) const;
int operator!=(const Stack<StackType> &right) const;

// Public Interface
Stack<StackType>& Pop ();
void Push (const Stack<StackType> &right);

};

Utility Classes
A utility classis aclass that contains grouped functionality but no persistent data mem-
bers (attributes). Although utility classes are not part of standard C++,some program-
mers like to create them; the UML therefore offers support for them. The purpose of a
utility class is to take a set of functionality (such as trigonometric math functions) and
group them together in a common class. There is no need to create an instance of this
class because each function in the class is declared static : You simply use the functions
contained in the class by fully qualifying the desired function name. For example, the
trigonometric class may contain the Cosine() , Sine() , and Tangent() functions that can
be called at any time by any class. The class diagram notation supports utility classes by
prefacing the class name with <<Utility>> . The class diagram for the
TrigMathFunctions class is shown in Figure 2.3.

Implementing Class Design in C++

CHAPTER 2
49

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.3.
The
TrigMathFunctions

utility class
diagram.

<<Utility>>
TrigMathFunctions

Cosine (angle: float): float

Sine (angle: float): float

Tangent (angle: float): float

To represent a utility class in C++,each operation must be declared as static —there
will only be one instance of each function for all objects of this class. Furthermore, utili -
ty classes have no constructor or destructor because there is no data to initialize or pre-
serve. Listing 2.3 shows the C++ implementation of the TrigMathFunctions class.

LISTING 2.3. THE CLASS DECLARATION FOR A UTILITY CLASS

class TrigMathFunctions
{

static float Cosine (float angle);
static float Sine (float angle);
static float Tangent (float angle);

};

04 239-5 CH02 2/19/99 1:00 PM Page 49

Associations
Associations representa relationship between classes. An association can be as simple as
a 1:1 relationship between two classes and as complex as an N:N relationship between
three or more classes. An association can be represented by a named or unnamed line
between classes or by an entire association class. The following sections address each
type of association and provide examples that should qualify the definitions.

1:1 Associations
An unnamed 1:1 association is a relationship between two classes (see Figure 2.4).

Object-Oriented Programming

PART I
50

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.4.
An unnamed class
association.

Class One Class Two

Although an unnamed association tells us that there is a relationship between two class-
es,it does not tell us the nature of the relationship. To define this relationship,we can
place a named label above the line (see Figure 2.5).

FIGURE 2.5.
A named class
association.

Person Reads Book

You map a 1:1 association into C++ code by defining an instance of each associated
class inside the other class and providing an interface for accessing that information.
Listing 2.4 contains excerpts from the class declaration for the Person class; Listing 2.5
contains excerpts from the declaration for the Book class.

LISTING 2.4. THE Person CLASS DECLARATION

#include “Book.h”

class Person
{
public:

Person();
~Person();
. . .

//## Association: Reads
//## Role: Person::<the_Book>
const Book get_the_Book() const;
void set_the_Book(const Book value);

04 239-5 CH02 2/19/99 1:00 PM Page 50

private:
Book the_Book;

};

inline const Book Person::get_the_Book() const
{

return the_Book;
}

inline void Person::set_the_Book(const Book value)
{

the_Book = value;
}

LISTING 2.5. THE Book CLASS DECLARATION

#include “Person.h”

class Book
{
public:

Book ();
~Book ();
. . .

//## Association: Reads
//## Role: Book::<the_Person>
const Person get_the_Person() const;
void set_the_Person(const Person value);

private:
Person the_Person;

};

inline const Person Book::get_the_Person() const
{

return the_Person;
}

inline void Book::set_the_Person(const Person value)
{

the_Person = value;
}

As you can see, the Person class has declared an instance of the Book class with the
name the_Book and provided the member functions get_the_Book() and
set_the_Book() to access the book object. Similarly, the Book class declares an instance
of the Person class with the name the_Person and provides the member functions

Implementing Class Design in C++

CHAPTER 2
51

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 51

get_the_Person() and set_the_Person() to access the Person object. Note that the
named association Reads is used only in the class diagram and is not definedin the C++
code other than as a comment.

The other type of 1:1 association involves naming the roles of the association at each
end. In this way, the C++ class naming convention can easily identify the relationship
between the two classes. Take an example of a Renter to an Apartment association: The
Renter views the Apartment as his or her dwelling; the Apartment views the Renter as
its tenant. So thenamed roles for the association are Tenant and Dwelling (see Fig-
ure 2.6).

Object-Oriented Programming

PART I
52

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.6.
A named role
class association.

Renter Tenant Dwelling Apartment

To create a C++ class from a 1:1 named role association, the two classes in question
must both have a variable of the other class’s type. In Listing 2.6,the Renter class has a
private member variable Dwelling of type Apartment . This variable represents,to the
renter, the apartment in which he or she lives (that is, his or her dwelling). Furthermore,
the Renter class provides a public interface to modify its Dwelling through the two pub-
lic member functions get_Dwelling() and set_Dwelling() . Similarly, the Apartment

class has a private member variable Tenant of type Renter and two member functions
that access the Apartment ’s Renter : get_Renter() and set_Renter() . Listing 2.6 shows
the class declaration for the Renter class. Listing 2.7 shows the class declaration for the
Apartment class.

LISTING 2.6. THE Renter CLASS DECLARATION

#include “Apartment.h”

class Renter
{
public:

Renter ();
~Renter ();
. . .

//## Association: Unnamed
//## Role: Renter::Dwelling
const Apartment get_Dwelling() const;
void set_Dwelling(const Apartment value);

private:
Apartment Dwelling;

};

04 239-5 CH02 2/19/99 1:00 PM Page 52

LISTING 2.7. THE Apartment CLASS DECLARATION

#include “Renter.h”

class Apartment
{
public:

Apartment ();
~Apartment ();
. . .

//## Association: Unnamed
//## Role: Apartment::Tenant
const Renter get_Tenant() const;
void set_Tenant(const Renter value);

private:
Renter Tenant;

};

N:1 and 1:N Associations
An N:1 or 1:N association—also referred to as a one-to-many relationship,existswhen
one object can exist for multiple instances of the another object,but the other object can
exist only once for the original object. An example of this type of association exists
between a tenant and an apartment building: A tenant can have only one apartment build-
ing, but an apartment building can house multiple tenants. The class diagram notation for
a one-to-many association is to place the name of the role of the association above the
association line and to list the type of association below the line. Table 2.1 shows the
notation for association multiplicity.

TABLE 2.1. ASSOCIATION MULTIPLICITY

Notation Association

1 Only one

0..1 Either zero or one

0..* Zero or more

1..* One or more

* Zero or more

M..N Many to many

Figure 2.7 shows a class diagram of the association between a Tenant and an
ApartmentBuilding .

Implementing Class Design in C++

CHAPTER 2
53

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 53

The Tenant to ApartmentBuilding association is represented in C++ in the same way as
a 1:1 association: The Tenant class has a private attribute Lives_at that is of type
ApartmentBuilding . The ApartmentBuilding to Tenant relationship,however, is more
complicated. Recall that an ApartmentBuilding can house zero or more Tenants . To
facilitate this type of association, a collection of Tenants is maintained inside the
ApartmentBuilding class. (The class declaration in Listing 2.9 uses a template class of
type UnboundedSetByValue to hold all its residents.) Listing 2.8 shows the class declara-
tion for the Tenant class. Listing 2.9 shows the classdeclaration for the
ApartmentBuilding class.

LISTING 2.8. THE Tenant CLASS DECLARATION

// ApartmentBuilding
#include “AprtmntB.h”

class Tenant
{
public:

Tenant ();
~Tenant ();
. . .

//## Association: Unnamed
//## Role: Tenant::Lives at
const ApartmentBuilding get_Lives_at() const;
void set_Lives_at(const ApartmentBuilding value);

private:
ApartmentBuilding Lives_at;

};

LISTING 2.9. THE ApartmentBuilding CLASS DECLARATION

// Tenant
#include “Tenant.h”

class ApartmentBuilding
{
public:

ApartmentBuilding();
~ApartmentBuilding();
. . .

//## Association: Unnamed

Object-Oriented Programming

PART I
54

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.7.
A one-to-many
classassociation.

Tenant Houses

0..*

Lives at

1

ApartmentBuilding

04 239-5 CH02 2/19/99 1:00 PM Page 54

//## Role: ApartmentBuilding::Houses
const UnboundedSetByValue<Tenant> get_Houses() const;
void set_Houses(const UnboundedSetByValue<Tenant> value);

private:
UnboundedSetByValue<Tenant> Houses;

};

N:N Associations
An N:N association is a relationship that exists between two classes where zero or more
instances of one class are associated with zero or more instances of another class. An
example of this type of association is the relationship between a contractor and a compa-
ny: A company can employ many contractors,and a contractor can simultaneously work
for many companies (see Figure 2.8).

Implementing Class Design in C++

CHAPTER 2
55

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.8.
A many-to-many
class association.

Contractor CompanyEmployees

0..*

Works for

0..*

The C++ implementation of this association is similar to the apartment building example
in the previous section:The Company maintains a private set of Contractor s named
Employees , and the Contractor maintains a set of Companys he works for named
Works_for . The following listings manage these collections using the template class
UnboundedSetByValue . Listing 2.10 shows the class declaration for the Contractor

class. Listing 2.11 shows the class declaration for the Company class.

LISTING 2.10. THE Contractor CLASS DECLARATION

// Company
#include “Company.h”

class Contractor
{
public:

Contractor ();
~Contractor ();
. . .

//## Association: Unnamed
//## Role: Contractor::Works for
const UnboundedSetByValue<Company> get_Works_for() const;
void set_Works_for(const UnboundedSetByValue<Company> value);

private:
UnboundedSetByValue<Company> Works_for;

};

04 239-5 CH02 2/19/99 1:00 PM Page 55

LISTING 2.11. THE Company CLASS DECLARATION

// Contractor
#include “Cntrctor.h”

class Company
{
public:

Company ();
~Company ();
. . .

//## Association: Unnamed
//## Role: Company::Employees
const UnboundedSetByValue<Contractor> get_Employees() const;
void set_Employees(const UnboundedSetByValue<Contractor> value);

private:
UnboundedSetByValue<Contractor> Employees;

};

Aggregations
An aggregation implies arelationship between two classes in which one class has a more
important role in the relationship than the other. The most common form of aggregation
is the relationship ofcomposition. In this relationship,one class actually contains the
other class. An example of this relationship was presented in Chapter 1,“Object-Oriented
Analysis and Design,” where a BankAccount contained a Balance and a
TransactionHistory .

Containmentis represented in a class diagram by drawing a line between the two
classes with a solid diamond on the side of the class that contains the other class (see
Figure 2.9).

Object-Oriented Programming

PART I
56

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.9.
A composition
class diagram.

BankAccount

Balance TransactionHistory

The Balance and TransactionHistory classes maintain a reference to their
BankAccount s,but are contained within the BankAccount class itself; the BankAccount

class creates private instances of the Balance and TransactionHistory classes.

04 239-5 CH02 2/19/99 1:00 PM Page 56

Listing 2.12 shows the class declaration for the BankAccount class. The BankAccount

class has a private member variable the_Balance of type Balance and a private member
variable the_TransactionHistory of type TransactionHistory . Listing 2.13 shows the
class declaration for the Balance class. Listing 2.14 shows the class declaration for the
TransactionHistory class.

LISTING 2.12. THE BankAccount CLASS DECLARATION

// TransactionHistory
#include “TrnsctnH.h”
// Balance
#include “Balance.h”

class BankAccount
{
public:

BankAccount ();
~BankAccount ();
. . .

//## Association: Unnamed
//## Role: BankAccount::<the_Balance>
const Balance get_the_Balance() const;
void set_the_Balance(const Balance value);

//## Association: Unnamed
//## Role: BankAccount::<the_TransactionHistory>
const TransactionHistory get_the_TransactionHistory() const;
void set_the_TransactionHistory(const TransactionHistory value);

private:
Balance the_Balance;
TransactionHistory the_TransactionHistory;

};

LISTING 2.13. THE Balance CLASS DECLARATION

// BankAccount
#include “Bnkccunt.h”

class Balance
{
public:

Balance ();
~Balance ();
. . .

Implementing Class Design in C++

CHAPTER 2
57

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

continues

04 239-5 CH02 2/19/99 1:00 PM Page 57

//## Association: Unnamed
//## Role: Balance::<the_BankAccount>
const BankAccount get_the_BankAccount() const;
void set_the_BankAccount(const BankAccount value);

private:
BankAccount the_BankAccount;

};

LISTING 2.14. THE TransactionHistory CLASS DECLARATION

// BankAccount
#include “Bnkccunt.h”

class TransactionHistory
{
public:

TransactionHistory ();
~TransactionHistory ();
. . .

//## Association: Unnamed
//## Role: TransactionHistory::<the_BankAccount>
const BankAccount get_the_BankAccount() const;
void set_the_BankAccount(const BankAccount value);

private:
BankAccount the_BankAccount;

};

Generalization
Generalization is used to represent a general-to-specific relationship between two class-
es. In C++ terms,this relationship is referred to as inheritance. For example, a checking
account and a savings account are both more specific types of bank accounts.
Generalization is represented in a class diagram by drawing an arrow from the specific
class to the general class (see Figure 2.10).

Object-Oriented Programming

PART I
58

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

LISTING 2.13. CONTINUED

04 239-5 CH02 2/19/99 1:00 PM Page 58

In C++,generalization is represented by suffixing the class declaration of the specific
class with a colon followed by the name of the general class. In Listing 2.15,the
Checking class is inherited from the Account class in the statement class Checking :

public Account . The Savings class is inherited from the Account class in the statement
class Savings : public Account . Because the Account class has no knowledge of
either the Checking or Savings class,its class declaration has been omitted. Listing 2.15
shows the class declaration for the Checking class. Listing 2.16 shows the class declara-
tion for the Savings class.

Implementing Class Design in C++

CHAPTER 2
59

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

LISTING 2.15. THE Checking CLASS DECLARATION

// Account
#include “Account.h”

class Checking : public Account
{

. . .
};

LISTING 2.16. THE Savings CLASS DECLARATION

// Account
#include “Account.h”

class Savings : public Account
{

. . .
};

FIGURE 2.10.
A generalization
class diagram.

Account

Checking Savings

04 239-5 CH02 2/19/99 1:00 PM Page 59

Class diagrams also support the concept of multiple generalization—in C++ terms,mul-
tiple inheritance. Multiple inheritance is represented in a class diagram by drawing
arrows from the specialized class to each of its general classes. Consider the class
Derived that takes the attributes of both the base class BaseA and the base class BaseB

(see Figure 2.11).

Object-Oriented Programming

PART I
60

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.11.
A multiple gener-
alization class
diagram.

BaseA BaseB

Derived

In the class diagram in Figure 2.11,the generalization arrows are drawn to both base
classes. To represent multiple generalization or multiple inheritance in C++,both base
classes are placed in the class declaration statement,comma delimited, after the colon of
the derived class’s declaration. The Derived class inherits from both BaseA and BaseB in
the statement class Derived : public BaseA, public BaseB . Listing 2.17 shows the
class declaration header for the Derived class. Because BaseA and BaseB do not have any
knowledge of the Derived class,their listings have been omitted.

LISTING 2.17. THE Derived CLASS DECLARATION

// BaseB
#include “BaseB.h”

// BaseA
#include “BaseA.h”

class Derived : public BaseA, public BaseB
{

. . .

04 239-5 CH02 2/19/99 1:00 PM Page 60

Translating Interaction Diagrams
into C++
There are two types ofinteraction diagrams:collaboration diagrams and sequence dia-
grams. Collaboration diagrams display the interaction between objects from a logistical
perspective—they show how objects are arranged with respect to one another. Sequence
diagrams,on the other hand, display only the interaction without caring about the
arrangement of the objects.

Both collaboration and sequence diagrams have their benefits and drawbacks. A collabo-
ration diagram allows you to visualize the arrangement of objects as they interact,but as
the number of interactions increases,the more complex and unreadable the diagram
becomes. Furthermore, the model does not naturally show you the order in which inter-
actions occur, so interactions must be numbered.

Sequence diagrams represent object interaction in a very organized fashion and note the
relative order of interactions,but they eliminate the understanding that accompanies visu-
alization.

Chapter 1 discusses the design of interaction diagrams based on the analysis of a system.
After the design is complete, and the objects in an interaction diagram have been associ-
ated with classes defined in class diagrams,the implementation in C++ is fairly straight-
forward. There are four primary goals of a collaboration diagram:

• Identify system user interfaces

• Refine each class’s public interface

• Determine which objects will interact with one another

• Understand the sequence of events that occurs given certain stimuli

First, you must incorporate into the system’s user interface all allowable user interac-
tions. Actors represent user interactions. The messages the actors send to system objects
must be gathered from the user interface and dispatched to the system objects; actors do
not typically interact directly with the systemobjects.

Second, you must make each message generated by an interaction diagram object corre-
spond to the resultant object’s public interface. If object A requests service X from object
B, object B must have a service X operation publicly available to object A.

Third, you must allow objects that interact with one another to access each other. If
object C sends a message to object D, object D must be visible to object C. This is par-
ticularly important when considering the system implementation.

Implementing Class Design in C++

CHAPTER 2
61

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 61

Finally, you must make each message sequence that arrives at an object and is dispatched
by that object represent an event that occurs within that object. If object E receives mes-
sage I and dispatches message J, then the service in object E that receives message I
must dispatch message J before it terminates.

Implementing Collaboration Diagrams and
Sequence Diagrams in C++
Collaboration diagrams and sequence diagrams are interchangeable. As a matter of refer-
ence, modeling tools such as Rational Rose support the direct conversion from one to the
other. Recall from Chapter 1 the example of a checking account ATM withdrawal trans-
action. The particulars of the design of both the collaboration diagram and sequence dia-
gram have already been discussed, but they are displayed in Figures 2.12 and 2.13,
respectively.

Object-Oriented Programming

PART I
62

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.12.
The collaboration
diagram for an
ATM withdrawal
transaction.

ATM: ATM

Checking Account: Checking Account Receipt: Receipt

6. Print

5. Dispense

4. Withdrawal Cash

1. Check Balance

3. Display Balance
2. Get Balance

Person

Before we start implementing classes for these diagrams,let’s define the objects present
in the diagrams. The objects in these diagrams are listed here:

• ATM

• CheckingAccount

• Receipt

• UserInterface

The UserInterface object is going to represent the Person ’s actions because the Person

never directly interacts with any of the other objects.

First, let’s address the system user interface. The Person in Figures 2.12 and 2.13 has
three interactions with system objects:

04 239-5 CH02 2/19/99 1:00 PM Page 62

• The Person object can CheckBalances from the ATMobject.

• The Person object can WithdrawCash from the CheckingAccount object.

• The Person object receives cash as the CheckingAccount object Dispense s cash to
the Person .

The UserInterface object must provide the Person object with the CheckBalance and
WithdrawCash options,and must provide a way to give the Person cash dispensed from
the CheckingAccount . We have all been to an ATM, so the user interface to withdraw
cashis familiar.

The UserInterface object can be represented by a class declaration similar to the one in
Listing 2.18. This class will be expanded in the following discussion,but let’s add the
public interface now.

Implementing Class Design in C++

CHAPTER 2
63

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.13.
The sequence
diagram for an
ATM withdrawal
transaction.

ATM: ATM Checking Account:
Checking Account

Receipt:
ReceiptPerson

Check Balance

Get Balance

Print

Display Balance

Withdrawal Cash

Dispense

04 239-5 CH02 2/19/99 1:00 PM Page 63

LISTING 2.18. THE UserInterface CLASS DECLARATION

class UserInterface
{
public:

// Public Interface
char * CheckBalance ();
BOOL WithdrawCash ();

};

Object-Oriented Programming

PART I
64

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

NOTE

All balances in these examples are represented as character strings. This is an
implementation preference and has been done to eliminate integer limitations
and floating-point rounding.

To refine each class’s public interface, a corresponding member function must be added
to each class that receives a message in the interaction diagram. In this example, the ATM

class receives the CheckBalance and DisplayBalance messages,the CheckingAccount

class receives the GetBalance and WithdrawCash messages,and the Receipt class
receives the Print message.

Listing 2.19 shows the public interface for the ATMclass,Listing 2.20 shows the public
interface for the CheckingAccount class,andListing 2.21 shows the public interface for
the Receipt class.

LISTING 2.19. THE PUBLIC INTERFACE FOR THE ATMCLASS

class ATM
{
public:

// Public Interface
char * CheckBalance ();
char * DisplayBalance ();

};

LISTING 2.20. THE PUBLIC INTERFACE FOR THE CheckingAccount CLASS

class CheckingAccount
{
public:

char * GetBalance ();
BOOL WithdrawCash ();

};

04 239-5 CH02 2/19/99 1:00 PM Page 64

LISTING 2.21. THE PUBLIC INTERFACE FOR THE Receipt CLASS

class Receipt
{
public:

BOOL Print ();
};

Now that the public interface has been extracted from the interaction diagrams and
entered into the class declarations,the next step is to implement the visibility of the indi-
vidual classes. In this example, the UserInterface class communicates directly with the
ATMand the CheckingAccount classes. The implementation at this point is application
dependent; you have several options:

• An instance of both the ATMclass and the CheckingAccount class can be instantiat-
ed within the UserInterface class. Do this if the UserInterface class needs
direct access to both the ATMclass and the CheckingAccount class.

• Each classcan be instantiated in the global system space, and a pointer to each can
be passed to the UserInterface class. Do this if the class instances of the ATM

class and CheckingAccount class require persistence beyond that of the
UserInterface class.

• Looking ahead to the classes that must be visible from the ATMclass,the
CheckingAccount class object can be instantiated within the ATMclass and an inter-
face to the CheckingAccount can be provided.

There is no correct implementation decision here; it depends on the other interaction dia-
grams and other design constraints such as the storage mechanism for the
CheckingAccount (for example, the CheckingAccount s may be stored in a database and
only one instance may be visible and available inside the ATMobject).

For this example, the CheckingAccount will be an object instantiated within the ATM

object,and the ATMobject will be instantiated within the UserInterface object. Listing
2.22 shows the UserInterface class declaration with the ATMattribute added as the pri-
vate member variable the_ATM .

LISTING 2.22. THE UserInterface CLASS DECLARATION WITH THE CONTAINED ATMOBJECT

class UserInterface
{
public:

// Public Interface
char * CheckBalance ();
BOOL WithdrawCash ();

Implementing Class Design in C++

CHAPTER 2
65

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

continues

04 239-5 CH02 2/19/99 1:00 PM Page 65

private:
// Private Attributes
ATM the_ATM;

};

Next, the ATMobject interacts with only the CheckingAccount object and, as mentioned
in the previous discussion,will contain an instance of the CheckingAccount object.
Because it contains the CheckingAccount object,it is responsible for communicating
with the CheckingAccount on behalf of the UserInterface . Listing 2.23 shows the
updated ATMclass declaration with the contained CheckingAccount object:
the_CheckingAccount . It also has a public member function
WithdrawCashFromCheckingAccount() that interacts with the CheckingAccount object
for the UserInterface class.

LISTING 2.23. THE ATMCLASS DECLARATION WITH CONTAINED CheckingAccount

class ATM
{
public:

// Public Interface
char * CheckBalance ();
char * DisplayBalance ();

// CheckingAccount interface
BOOL WithdrawCashFromCheckingAccount ();

private:
// Private Attributes
CheckingAccount the_CheckingAccount;

};

The CheckingAccount class does not contain any classes of its own. The Receipt class
could be contained within the CheckingAccount class because there is communication
with it, but it will not be because creating a Receipt object within the CheckingAccount

does not follow logically. This is another implementation decision and was made because
a Receipt object is not specific to a CheckingAccount object and therefore does not war-
rant making it part of the CheckingAccount object.

The Receipt class does not have to communicate with any class in the interaction
diagram,so it has no classes visible to it.

The final step is to find each operation that receives a message and dispatches a message
and implement the dispatch. The easy way to accomplish this is to follow the arrows in
the interaction diagram.

Object-Oriented Programming

PART I
66

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

LISTING 2.22. CONTINUED

04 239-5 CH02 2/19/99 1:00 PM Page 66

The first message sent,CheckBalance , is from the UserInterface object to the ATM

object. The next message sent,GetBalance , is from the ATMto the CheckingAccount

object. This adds the restriction that the ATM::CheckBalace() function must call the
CheckingAccount::GetBalance() function before it terminates. The implementation of
the ATM::CheckBalance() function is shown in Listing 2.24.

LISTING 2.24. THE ATMCLASS IMPLEMENTATION OF CheckBalance()

char * ATM::CheckBalance
{

// Perform other check balance functionality

// Call the CheckingAccount::GetBalance function
szBalance = the_CheckingAccount.GetBalance ();

// Return the balance
return szBalance;

}

The next message, DisplayBalance , is from the CheckingAccount object to the ATM

object. The CheckingAccount object must therefore call the ATM::DisplayBalance()

member function inside its GetBalance() member function. Listing 2.25 shows the
implementation of the CheckingAccount::GetBalance() member function.

LISTING 2.25. THE CheckingAccount CLASS IMPLEMENTATION OF GetBalance()

char * CheckingAccount::GetBalance()
{

// Look up the Balance from the database

// Call ATM::DisplayBalance() to fire the next message
// GetParent() returns a pointer to our parent ATM class
GetParent()->DisplayBalance ();

// Return the balance to the caller
return szBalance;

}

The UserInterface::WithdrawCash() function is derived in a similar manner, and its
implementation is displayed in Listing 2.26.

Implementing Class Design in C++

CHAPTER 2
67

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 67

LISTING 2.26. THE UserInterface::WithdrawCash() FUNCTION

BOOL UserInterface::WithdrawCash()
{

// Return the value that ATM::WithdrawCashFromCheckingAccount returns
return the_ATM.WithdrawCashFromCheckingAccount();

}

Listing 2.27 shows theimplementation of CheckingAccount::WithdrawCash() .
Examination of the interaction diagrams shows that this function generates two events:
UserInterface::Dispense() and Receipt::Print() . UserInterface::Dispense() dis-
penses cash from the ATM machine to the customer, and Receipt::Print() prints a
receipt for the customer. The assumption made in this listing is that GetParent() is a
function that exists in each class and that it returns a pointer to its parent. Furthermore,
the assumption is made that there is a function,GetReceipt() , that exists in the
UserInterface object that returns the system Receipt object. This functionality is all
developer dependent and can be implemented in any desirable (yet functional) way.

LISTING 2.27. THE CheckingAccount::WithdrawCash() FUNCTION

BOOL CheckingAccount::WithdrawCash()
{

// Perform cash withdrawal functionality

// Fire Dispense message to the UserInterface object
GetParent()->GetParent()->Dispense

// Fire the Print message to the receipt object
GetParent()->GetParent()->GetReceipt()->Print();

// Return result
if (fSuccess)

return TRUE;
else

return FALSE;
}

Translating State Transition
Diagrams into C++
Interaction diagrams display the interaction between varying objects but state transition
diagrams display the changes that occur within a single object. A state transition diagram
shows all states defined inside an object and the transitions that exist between states.

Object-Oriented Programming

PART I
68

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 68

State transition diagrams should be created for all objects that have the following charac-
teristics:

• Multiple states that the object changes between

• Specific actions that must be accomplished between the states

If certain events must happen between states,state transition diagrams greatly aid the
proper implementation of your designs. In a state transition diagram,the Start state rep-
resents the beginning of the transition,usually represented by the start of a member func-
tion that contains the transition. The End state represents the completion of the state tran-
sition and may or may not correspond to the end of this function. The states intermixed
within the object are represented by application-dependent variables. For example, a traf-
fic light object has three states (green,yellow, and red) that can be represented by a state
integer. Although the implementation of the actual transition is application dependent,
once the Start state has been initiated, the actions that must be accomplished are clearly
defined and the implementation should be straightforward.

Recall the CustomerAccount class example presented in Chapter 1. Figure 2.14 shows
the state transition diagram for this class.

Implementing Class Design in C++

CHAPTER 2
69

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.14.
The
CustomerAccount

state transition
diagram.

Logged In

Canceled

Getting Account Info

Cancelable

Not Logged In

Getting Password

04 239-5 CH02 2/19/99 1:00 PM Page 69

What this diagram translates to in programming terms is that the object (or, in the case of
C++, the class) must provide an interface to allow a user to log in. More specifically, the
class must somehow prompt the user for his or her account information
(GettingAccountInfo()), prompt for his or her password (GettingPassword()), and
change the state of the object from NotLoggedIn to LoggedIn —all the while allowing the
user to cancel the operation at any point (Cancelable). These steps can be implemented
in one member function or in a set of functions; the implementation is application and
developer dependent. This example uses the member function LogIn to accomplish this
goal.

The CustomerAccount class maintains a Boolean private member variable m_fLoggedIn

that holds the customer’s login status. This variable is checked by all member functions
that perform any action that requires the customer to be connected (for example,
GetBalance() or WithdrawCash()). The CustomerAccount class declaration is shown in
Listing 2.28.

LISTING 2.28. THE CustomerAccount CLASS DECLARATION

class CustomerAccount
{
public:

// Construction / Destruction
CustomerAccount();
~CustomerAccount();

// Public Interface
BOOL LogIn();
BOOL LogOut();
char *GetBalance();

private:
// Private State Data
BOOL m_fLoggedIn=FALSE;

// Private Data
char *m_szBalance;

};

The CustomerAccount class constructor initializes the m_fLoggedIn member variable to
false so that no function will try to perform an online action while offline. The destruc-
tor checks the logged-in status and logs the customer off before terminating if necessary.
The LogOut() function simply sets m_fLoggedIn to false .

The LogIn function performs the actions specified in the state transition diagram:It
first prompts the customer for an account number and stores it in szAccountNumber .

Object-Oriented Programming

PART I
70

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 70

A real-world implementation of this object would involve more sophisticated cancella-
tion methodologies,but to impress on you the notion that this action can be canceled, the
account number is compared to Cancel before continuing. The customer is then prompt-
ed for his or her password. Again, this response is compared to Cancel . If the customer
has entered both an account number and a password, the values are compared by another
function ValidPassword() that probably does some database lookups and comparisons.
After all of this,the state of m_fLoggedIn is changed to true . If any event is canceled,
the state of m_fLoggedIn remains false and the transition does not occur. Listing 2.29
shows the implementation of the CustomerAccount class.

LISTING 2.29. THE CustomerAccount CLASS IMPLEMENTATION

#include “CustomerAccount.h”

CustomerAccount::CustomerAccount()
{

m_fLoggedIn = FALSE;
}

CustomerAccount::~CustomerAccount()
{

if (m_fLoggedIn)
LogOut();

}

BOOL CustomerAccount::LogIn()
{

char szAccountNumber[32];
char szPassword[32];

// Getting Account Info
printf (“Enter Account Number:”);
scanf (“%s”,szAccountNumber);

// Event is cancelable
if (!strcmp (szAccountNumber, “Cancel”))

return FALSE;

// Getting Password
printf (“Enter Password:”);
scanf (“%s”, szPassword);

// Event is cancelable
if (!strcmp (szPassword, “Cancel”))

return FALSE;

Implementing Class Design in C++

CHAPTER 2
71

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

continues

04 239-5 CH02 2/19/99 1:00 PM Page 71

// Some auxiliary function to validate the password
if (!ValidPassword (szAccountNumber, szPassword))

return FALSE;
else

// Valid password – Log the customer in
m_fLoggedIn = TRUE;

// Success
return TRUE;

}

BOOL CustomerAccount::LogOut()
{

m_fLoggedIn = FALSE;
}

char *CustomerAccount::GetBalance()
{

// Check logged in status
if(!m_fLoggedIn)

return NULL;

// Return the balance
return m_szBalance;

}

Translating Activity Diagrams
into C++
An activity diagram is a special type of state transition diagram that represents action
states and transitions that occur at the completion of operations. Activity diagrams can be
used to represent synchronous state transition diagrams in which all or most of the events
in the diagram represent the completion of internally generated operations. When asyn-
chronous events occur, use state transition diagrams to describe the model.

The implementation of activity diagrams is very similar to the implementation of state
transition diagrams:The Start state represents the beginning of an operation, and the
End state represents the conclusion. Because activity diagrams are synchronous,once the
operation starts, all actions are clearly defined.

Consider the activity diagram in Figure 2.15.

Object-Oriented Programming

PART I
72

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

LISTING 2.29. CONTINUED

04 239-5 CH02 2/19/99 1:00 PM Page 72

The diagram in Figure 2.15 shows three objects interacting with each other:Customer ,
ATM, and CheckingAccount . The diagram starts when the Customer tries to
WithdrawCash . The WithdrawCash activity triggers two simultaneous activities:
AuthorizeTransaction and ProcessRequest (owned by the ATM object).
ProcessRequest transitions to CheckingAccount ’s FundsAvailable activity. Both
AuthorizeTransaction and FundsAvailable transition to the ATMobject’s
DebitAccount —the DebitAccount activity cannot occur until both preceding activities
have completed. When DebitAccount completes,it transitions to ReceiveCash , and the
activity diagramterminates.

When creating or reviewing an activity diagram,focus your attention on the overall
procedure being implemented. Although the activity diagram in Figure 2.15 contains

Implementing Class Design in C++

CHAPTER 2
73

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

FIGURE 2.15.
An ATM cash
withdrawal activi-
ty diagram.

Withdraw Cash

Authorize Transaction

Receive Cash

Process Request

Debit Account

Funds Available

Customer ATM Checking Account

04 239-5 CH02 2/19/99 1:00 PM Page 73

information that could be implemented as object interactions,the boundary of an activity
diagram is limited to modeling a procedure. In this example, the procedure being mod-
eled is a cash withdrawal transaction; the actual implementation of the object operations
are superfluous to the implementation of the cash withdrawal transaction procedure.

Listings 2.30,2.31,and 2.32 show the class declarations for the Customer , ATM, and
CheckingAccount classes,respectively. The heart of the activity diagram is implement-
ed in the two functions WithdrawCashTransaction() and ProcessRequest() in
Listing 2.33.

The WithdrawCashTransaction() function first calls the operation
Customer::WithdrawCash() . After this activity has completed, it calls both the
Customer::AuthorizeTransaction() operation and the ProcessRequest() function.
The ProcessRequest() function calls the ATM::ProcessRequest() operation, followed
by the CheckingAccount::FundsAvailable() operation. The necessity of placing these
operation calls in a separate function is substantiated by the dual dependency on the
ATM::DebitAccount() operation. ATM::DebitAccount() function cannot start until both
Customer::AuthorizeTransaction() and CheckingAccount::FundsAvailable() have
completed. At this point,the last remaining steps are to call Customer::ReceiveCash()

and to terminate the function.

LISTING 2.30. THE Customer CLASS DECLARATION

class Customer
{
public:

// Construction / Destruction
Customer();
~Customer();

// Public Interface
BOOL WithdrawCash();
BOOL AuthorizeTransaction();
void ReceiveCash();

};

LISTING 2.31. THE ATMCLASS DECLARATION

class ATM
{
public:

// Construction / Destruction
ATM();
~ATM();

Object-Oriented Programming

PART I
74

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 74

// Public Interface
BOOL ProcessRequest();
void DebitAccount();

};

LISTING 2.32. THE CheckingAccount CLASS DECLARATION

class CheckingAccount
{
public:

// Construction / Destruction
CheckingAccount();
~CheckingAccount();

// Public Interface
BOOL FundsAvailable();

}

LISTING 2.33. THE WithdrawCashTransaction() AND ProcessRequest() FUNCTION

IMPLEMENTATIONS

void WithdrawCashTransaction
{

// Active Classes
Customer myCustomer;
ATM myATM;
CheckingAccount myCheckingAccount;

// * Start State

// Start First Activity
myCustomer.WithdrawCash();

// Now that the first transaction is complete, start the next two
if (myCustomer.AuthorizeTransaction() && ProcessRequest())
{

// Now that both actions have completed, continue processing
myATM.DebitAccount();
myCustomer.ReceiveCash();

}

// * End State
}

BOOL ProcessRequest ()
{

myATM.ProcessRequest();
return myCheckingAccount.FundsAvailable();

}

Implementing Class Design in C++

CHAPTER 2
75

2

IM
PLEM

EN
TIN

G
C

LA
SS

D
ESIG

N
IN

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 75

Summary
This chapter has discussed the implementation of some of the more popular UML design
models in C++. You learned more about class diagrams,interaction diagrams (collabora-
tion diagrams and sequence diagrams),state transaction diagrams,and activity diagrams.

The Unified Modeling Language (UML) provides some powerful tools to aid software
engineers in both analysis and design. In some cases,the realization of these designs into
C++ code is systematic; in other cases,it will be application dependent—but in any case,
a solid foundation of the techniques used to realize these designs is imperative to the suc-
cess of the project. Several tools exist to aid developers in the modeling process. The
Rational Rose tool,which was used throughout this chapter, can generate C++ code for
some of the diagrams and can even convert diagrams from one form to another. After
reading this chapter, you should experiment with some of these automated tools to see
whether they generate the C++ code you would expect them to.

Object-Oriented Programming

PART I
76

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH02 Lp#1

04 239-5 CH02 2/19/99 1:00 PM Page 76

C
H

A
PT

ER

IN THIS CHAPTER

• Benefits of Inheritance 78

• Object-Oriented Linked Lists 79

• Abstract Classes 87

• Virtual Destructors 94

• Polymorphism Through Method
Overloading 94

• Memory Management 98

• Issues in Overloading Other
Operators 103

• Multiple Inheritance 112

3
Inheritance,
Polymorphism,
and Code Reuse

05 239-5 CH03 2/19/99 1:06 PM Page 77

The ability to discover patterns and relationships among things in our environment is not
just something humans are good at—it is something we are impelled to do. We inherited
it from our ancient ancestors who used it to predict the behavior of otherwise dangerous
animals. If they discovered that animals with short hair, long claws,and big teeth were
known to eat the neighbors, they treated big cats with deference.

The smarter ones avoided being eaten for long enough to reproduce, and natural selec-
tion weeded out those who weren’t any good at discovering patterns.

One of the principal relationships we discover at about three years of age is theis-a rela-
tionship. “Look Mommy, that is a fruit. That is acar.” We do this long before we have
the language to express it; my three-year-old pointed to a fire engine and said “big red
car.”

One of the great contributions of object-oriented analysis is to have found a practical use
for phenomenology. Like Hegel and Kant,we must ask “What is a car? What makes a
car different from a truck, from a person,from a rock?”

From one perspective, a car is the sum of its parts: steering wheel,brakes,seats,head-
lights. From a second perspective, equally true, a Car is a type of Vehicle. By saying that
a Car is a type of Vehicle, we are using a shorthand rich in meaning.

Because a Car is aVehicle, it moves and it carries things. That is the essence of being a
Vehicle. Cars inherit the characteristics movesand carries thingsfrom their “parent”
type:Vehicle. We also know that Cars specializeVehicles. They are a special kind of
Vehicle, one that meets the legal specifications for automobiles.

We model this relationship with generalization, and we implement it in C++ withinheri-
tance.

Benefits of Inheritance
There are two great benefits to inheritance. First,we can specialize existing classes
(types) and write only the code that is changed. In this way, we can reuse our existing
classes (as base classes) and capitalize on the work already done. We no longer have to
“copy and paste”code. Copying and pasting is particularly problematic because changes
in one section of the code must be replicated in another—a dangerous and failure-prone
model. Instead, by using specialization, we can make changes in the base class that auto-
matically update all the derived classes.

The second significant benefit of inheritance is that it allows us to treat the derived
objects polymorphically. Poly meansmany, morph means form; polymorphismmeans the
ability to take many forms.

Object-Oriented Programming

PART I
78

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 78

Perhaps the most common use of polymorphism is in windowing applications. The
Microsoft Foundation Classes are a good example. Virtually all the onscreen “widgets”
derive directly or indirectly from CWindow, which encapsulates a common interface of
functionality for all onscreen objects. CWindow offers methods such as UpdateWindow() ,
BeginPaint() , GetWindowText() , and so forth.

Each of these methods can be overridden in any of the classes that derive from CWindow.
These derived classes include CButton , CRadioButton , CListBox , and so forth. When
you call UpdateWindow() on CButton , it redraws itself. When you call UpdateWindow()

on CListBox , the list box also redraws itself. The details of what CButton and CListBox

do when they update themselves are very different,but these details are encapsulated
behind the UpdateWindow() interface presentedby CWindow.

Object-Oriented Linked Lists
To illustrate the power of polymorphism,let’s examine an object-oriented linked list. As
you probably know, a linked list is a data structure designed to store an indeterminate
number of objects. You can,of course, just store objects in an array, but arrays are of
fixed size. If you don’t know in advance how many objects you’ll need, arrays are not a
great choice. If you make the array too large, you waste memory; if you make it too
small,you run out of room. What you want is an array that can expand; a linked list is a
good starting point.

Designing the Linked List
A linked list istypically implemented as a string of nodes. Each node points to one
object (your data) and also,potentially, to the next node in the list. If there is no next
node in the list,the node points to NULL (see Figure 3.1).

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
79

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.1.
Linkedlist. Node Node Node

Null

Data Data Data

We want each node to have a specific and detailed function,so we will create three spe-
cialized types:LinkedList , TailNode , and InternalNode . The LinkedList provides the
client with an entry point into the list. The TailNode acts as a sentry and marks the end
of the list. Finally, the InternalNode s holds the actual data.

05 239-5 CH03 2/19/99 1:06 PM Page 79

We’ll f actor out the common behavior of these three types into a base Node class,which
supports two methods:Insert() and Show() . Insert() takes a data object and puts it in
the list,and Show() displays the value of the data objects in the list. The relationship
among these objects is shown in Figure 3.2.

Object-Oriented Programming

PART I
80

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.2.
Node inheritance
hierarchy.

Node

+Insert() : Node*
+Show() : void

InternalNode

-myNext : Node
-myData : Data*

LinkedList

-myNext : Node

TailNode

The LinkedList node and the InternalNode each has a Node * member variable named
myNext . This pointer is used to find the next node in the list. This is,as you can see, a
singly linked list,which means that while each node points to the next node in the list,it
does not point back to the previous node.

Now all we need is something to put in the list; let’s create a Data class. The only func-
tionality we require of Data is that it have some value (we’ll use an integer) and a
method allowing two Data objects to compare themselves and decide which is “greater”
so that we can put them in order. We’d also like the Data object to be able to display
itself so that we can examineits value.

NOTE

In this design, we are saying that the LinkedList is really just a special kind of
node, one responsible for presenting an interface to clients of the linked list.
Does this violate the mandate that inheritance represents the is-a relationship?
Not at all; a LinkedList is a node, a special node that marks the beginning of a
list. The list itself is a virtual construct, an abstraction. The LinkedList object
represents, essentially, a handle to the list.

05 239-5 CH03 2/19/99 1:06 PM Page 80

Implementing the Linked List
When the LinkedList nodeis created, it immediately creates a TailNode :

LinkedList::LinkedList()
{

nextNode = new TailNode;
}

Thus,an empty list consists of just these two objects:the LinkedList and the
TailNode —there are no InternalNode s holding Data (see Figure 3.3).

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
81

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.3.
An empty list.

LinkedList

TailNode

When you insert data into LinkedList , the LinkedList node hands the data to whatever
its own nextNode pointer points to. Initially, this will be TailNode :

Node * LinkedList::Insert(Data * theData)
{

nextNode = nextNode->Insert(theData);
return this;

}

When Insert() is called on TailNode , TailNode knows that the object passed in is the
smallest object in the list,and so TailNode inserts the new node into the list right before
itself.

If the new object is the first object inserted, it is by definition the smallest object in the
list, but any object arriving at the tail mustbe the smallest,or it would already have been
inserted by another node, higher up in the list.

How does the TailNode insert the new data object? It just instantiates a new
InternalNode . The constructor to the new InternalNode takes two arguments:a pointer
to the data,and a pointer to whatever node created it (in this case, the TailNode). The
new node then assigns its own data pointer to the data,and its own nextNode pointer to
the node it was given,like this:

05 239-5 CH03 2/19/99 1:06 PM Page 81

Node * TailNode::Insert(Data * theData)
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

The new InternalNode points to the data and also to the TailNode . The TailNode

returns to the calling object a pointer to the new node it created. In this first case, the
TailNode returns a pointer to the new InternalNode to the LinkedList .

LinkedList assigns its own nextNode pointer to the return value from nextNode-

>Insert() . Thus,LinkedList is now pointing to the new InternalNode , as shown in
Figure 3.4.

Object-Oriented Programming

PART I
82

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.4.
After adding a
node.

LinkedList

TailNodeInternalNode

Data

The next time through,LinkedList again passes the data to whatever its nextNode point-
er is pointing to,but in this case, the pointer is pointing not to the TailNode but to an
InternalNode .

When an InternalNode gets a Data object,it compares its own data with the data from
the new node, like this:

Node * InternalNode::Insert(Data * theData)
{

int result = myData->Compare(*theData);

Either the new object is smaller than the existing node or it isn’t. If it is smaller, the
InternalNode just passes the Data object along to whatever node its own NextNode data
member points to. That is, the new Data object is passed along to the next node in the
list:

case kIsSmaller:
nextNode = nextNode->Insert(theData);
return this;

05 239-5 CH03 2/19/99 1:06 PM Page 82

Each InternalNode in turn examines the data. If the new data is the smallest in the list,
it will eventually run into the TailNode and be inserted as the last node in the list. On the
other hand, if the new Data object runs into an InternalNode with data that is smaller
than the new data, then that InternalNode inserts the new data into the list.

In this case, the InternalNode does just what the TailNode did: It creates a new
InternalNode and tells the new InternalNode to point to it (that is, the new
InternalNode points to the InternalNode that created it). This effectively inserts the
new object into the list just before the current InternalNode . The current node then
returns a pointer to the new node so that whoever called Insert() can now link to the
new InternalNode .

case kIsSame: // fall through
case kIsLarger: // new data comes before me
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
83

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

NOTE

This sample code implements the design decision that objects of the same size
as the current object are treated as if they were larger. You can easily rewrite
this code to reject duplicates or to handle them in another way.

After the data is in the list,we ask the user for the next object. The program continues
until the user signifies that he or she is done entering data. At that point,we tell the
LinkedList to show the data. The LinkedList node passes this command to whatever its
NextNode data member points to:

virtual void Show() { nextNode->Show(); }

If the list is empty, LinkedList points to TailNode . TailNode ’s Show() method does
nothing, so nothing is displayed. Much more common is that LinkedList points to an
InternalNode . InternalNode ’s Show() method is where the action is

virtual void Show() { myData->Show(); nextNode->Show(); }

Each InternalNode instructs its data object to print its value, and then passes the Show()

command along to whatever node is next in the linked list. Thus,each Data object’s
Show() method is called in turn. Eventually, the TailNode ’s Show() method is reached,
and the display is completed.

05 239-5 CH03 2/19/99 1:06 PM Page 83

When it is time to delete the list,the client has to delete only the LinkedList node. In
the LinkedList destructor, we delete the next node in the list,like this:

~LinkedList() { delete nextNode; }

Each node in turn deletes the next node in the list until the TailNode is reached, at which
point the deletions stop. Note that no oneneed keep track of how many nodes are in the
list. Deleting LinkedList is like tipping over the first domino:Each knocks over the next
as it falls until the entire list has been torn down.

Listing 3.1 shows how the whole program hangs together. I’ve stripped the code down to
reveal just the essentials.

LISTING 3.1. OBJECT-ORIENTED LINKED LIST

#include <iostream.h>

enum { kSmaller, kLarger, kSame};

class Data
{
public:

Data(int val):dataValue(val){}
virtual ~Data(){}
virtual int Compare(const Data &);
virtual void Show() { cout << dataValue << endl; }

private:
int dataValue;

};

int Data::Compare(const Data & theOtherData)
{

if (dataValue < theOtherData.dataValue)
return kSmaller;

if (dataValue > theOtherData.dataValue)
return kLarger;

else
return kSame;

}

class Node // abstract data type
{
public:

Node(){}
virtual ~Node(){}
virtual Node * Insert(Data * theData) = 0;
virtual void Show() = 0;

private:
};

Object-Oriented Programming

PART I
84

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 84

class InternalNode: public Node
{
public:

InternalNode(Data * theData, Node * next);
~InternalNode(){ delete nextNode; delete myData; }
virtual Node * Insert(Data * theData);
virtual void Show() { myData->Show(); nextNode->Show(); }

private:
Data * myData;
Node * nextNode;

};

InternalNode::InternalNode(Data * theData, Node * next):
myData(theData),nextNode(next)
{
}

Node * InternalNode::Insert(Data * theData)
{

int result = myData->Compare(*theData);

switch(result)
{

case kSame: // fall through
case kLarger: // new data comes before me
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

case kSmaller:
nextNode = nextNode->Insert(theData);
return this;

}
return this;

}

class TailNode : public Node
{
public:

TailNode(){}
~TailNode(){}
virtual Node * Insert(Data * theData);
virtual void Show() { }

private:

};

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
85

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:06 PM Page 85

Node * TailNode::Insert(Data * theData)
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

class LinkedList : public Node
{
public:

LinkedList();
~LinkedList() { delete nextNode; }
virtual Node * Insert(Data * theData);
virtual void Show() { nextNode->Show(); }

private:
Node * nextNode;

};

LinkedList::LinkedList()
{

nextNode = new TailNode;
}

Node * LinkedList::Insert(Data * theData)
{

nextNode = nextNode->Insert(theData);
return this;

}

int main()
{

Data * pData;
int val;
LinkedList ll;

for (;;)
{

cout << “What value do you want to add to the list? (0 when done):
➥“;

cin >> val;
if (!val)
break;
pData = new Data(val);
ll.Insert(pData);

}

cout << “\n\n”;
ll.Show();
cout << “\n\n”;
return 0;

}

Object-Oriented Programming

PART I
86

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.1. CONTINUED

05 239-5 CH03 2/19/99 1:06 PM Page 86

Each object has a single area of responsibility, and each object treats all nodes polymor-
phically. Yet,we can take advantage of the specialization of LinkedList , InternalNode s,
and TailNode to create a very decentralized application, which enhances encapsulation
and thus makes the code easier to maintain.

The most important part of this code, from the perspective of understanding polymor-
phism,is the point at which each Node calls nextNode->Insert() . Every node other than
the TailNode knows only that it has a pointer to the next node in the list; it does not
know whether that node is an InternalNode or a TailNode , but the static type makes all
the difference. Examine InternalNode::Insert() and TailNode::Insert() —these
functions are significantly different. The object making the call doesn’t know which is
being called, but the right thing happens.

In the same way, when you tell the nodes to show themselves,the right thing happens.
That is, the LinkedList tells the next node to show itself, each InternalNode shows its
data and then passes the command along to its next node; the TailNode acts as thesen-
try, stopping the chain.

Abstract Classes
The Data class we have been working with in the first part of this chapter is quite simple.
It may be that in your application, you anticipate needing a few different,but related,
data classes. It would be useful to be able to treat these objects polymorphically, allow-
ing the linked list to manipulate Data classes without knowing or caring about the
specifics of the individual derived types.

In anticipation of this,you might decide to change the Data class to be anAbstract Data
Type (ADT). To do so,you would give it one or more pure virtual functions,as shown in
Listing 3.2.

LISTING 3.2. DATA CLASS AS AN ABSTRACT DATA TYPE

class Data
{
public:

Data(int val):myVal(val){}
virtual ~Data(){}
int Compare(const Data &);
virtual void Show() = 0;

protected:
int myVal;

};

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
87

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 87

The semantics of thisdeclaration are that Data is an ADT, and that to create a concrete
Data class,you must override the Show() method and provide a non-pure virtual (impure
virtual?) method. The important idea is that the designer of Data is requiring derived
classes to override the Show() method, and to provide a concrete implementation. You
would do this to enforce the semantics of this object—that it is abstract and that all con-
crete objects derived from it will show themselves in whatever way is appropriate. You
are, in essence, saying “every Data object canshow itself, but there is no common
implementation for doing so.”

At this point,you can create derived classes that specialize how they display the value.
For this contrived example, let’s create two such classes:IntegerData , which displays
the data as an integer, and GraphicData , which displays the value as a simple graph.
Listing 3.3 shows these classes.

LISTING 3.3. CONCRETE DATA TYPES

class IntegerData : public Data
{
public:

IntegerData(int val) : Data(val) {}
virtual ~IntegerData() {}
virtual void Show();

private:
};

class GraphicData : public Data
{
public:

GraphicData(int val) : Data(val) {}
virtual ~GraphicData() {}
virtual void Show();

private:
};

Each of these classes overrides the Show() method. Here’s how IntegerData doesit:

void IntegerData::Show()
{

cout << “The value of the integer is “ << myVal << endl;
}

Here’s how the GraphicData classoverrides the Show() method:

void GraphicData::Show()
{

cout << “(“ << myVal << “): “;;

Object-Oriented Programming

PART I
88

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 88

for (int i = 0; i < myVal; i++)
cout << “*”;

cout << endl;
}

You can now use these classes in your source code, and decide at runtimewhich derived
type to instantiate. The calling code need not know which Show() method will be called;
by the power of polymorphism,the correct method is invoked, as demonstrated by
Listing 3.4.

LISTING 3.4. POLYMORPHIC DATA TYPES

#include <iostream.h>

enum { kSmaller, kLarger, kSame};

class Data
{
public:

Data(int val):myVal(val){}
virtual ~Data(){}
int Compare(const Data &);
virtual void Show() = 0;

protected:
int myVal;

};

class IntegerData : public Data
{
public:

IntegerData(int val) : Data(val) {}
virtual ~IntegerData() {}
virtual void Show();

private:
};

void IntegerData::Show()
{

cout << “The value of the integer is “ << myVal << endl;
}

class GraphicData : public Data
{
public:

GraphicData(int val) : Data(val) {}
virtual ~GraphicData() {}
virtual void Show();

private:

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
89

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:06 PM Page 89

};

void GraphicData::Show()
{

cout << “(“ << myVal << “): “;;
for (int i = 0; i < myVal; i++)

cout << “*”;
cout << endl;

}

int Data::Compare(const Data & theOtherData)
{

if (myVal < theOtherData.myVal)
return kSmaller;

if (myVal > theOtherData.myVal)
return kLarger;

else
return kSame;

}

class Node // abstract data type
{
public:

Node(){}
virtual ~Node(){}
virtual Node * Insert(Data * theData) = 0;
virtual void Show() = 0;

private:
};

class InternalNode: public Node
{
public:

InternalNode(Data * theData, Node * next);
~InternalNode(){ delete nextNode; delete myData; }
virtual Node * Insert(Data * theData);
virtual void Show() { myData->Show(); nextNode->Show(); }

private:
Data * myData;
Node * nextNode;

};

InternalNode::InternalNode(Data * theData, Node * next):
myData(theData),nextNode(next)
{

Object-Oriented Programming

PART I
90

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.4. CONTINUED

05 239-5 CH03 2/19/99 1:06 PM Page 90

}

Node * InternalNode::Insert(Data * theData)
{

int result = myData->Compare(*theData);

switch(result)
{

case kSame: // fall through
case kLarger: // new data comes before me
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

case kSmaller:
nextNode = nextNode->Insert(theData);
return this;

}
return this;

}

class TailNode : public Node
{
public:

TailNode(){}
~TailNode(){}
virtual Node * Insert(Data * theData);
virtual void Show() { }

private:

};

Node * TailNode::Insert(Data * theData)
{

InternalNode * dataNode = new InternalNode(theData, this);
return dataNode;

}

class LinkedList : public Node
{
public:

LinkedList();
~LinkedList() { delete nextNode; }
virtual Node * Insert(Data * theData);
virtual void Show() { nextNode->Show(); }

private:
Node * nextNode;

};

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
91

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:06 PM Page 91

LinkedList::LinkedList()
{

nextNode = new TailNode;
}

Node * LinkedList::Insert(Data * theData)
{

nextNode = nextNode->Insert(theData);
return this;

}

int main()
{

Data * pData;
int val;
int whichData;
LinkedList ll;

for (;;)
{

cout << “[1] Integer, [2] Written, [0] Quit: “;
cin >> whichData;
if (!whichData)
break;
cout << “What value do you want to add to the list? “;
cin >> val;
if (whichData == 1)

pData = new IntegerData(val);
else

pData = new GraphicData(val);
ll.Insert(pData);

}

cout << “\n\n”;
ll.Show();
cout << “\n\n”;
return 0;

}

The linked list is unchanged from the earlier version in this chapter, but this time main()

asks the user which type of object he or she wants to use to store the value. Once the
user has entered the data, the call to Show() invokes the correct method. The node knows
only that it has some sort of Data object; it does not know or care whether it is an
IntegerData or a GraphicData object. Each node can have a different object,and yet the
correct method is called.

Object-Oriented Programming

PART I
92

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.4. CONTINUED

05 239-5 CH03 2/19/99 1:06 PM Page 92

Overriding Pure Virtual Methods
Although concreteclasses mustprovide an implementation to all the pure virtual func-
tions,the abstract data type may provide one as well. Data is free to provide an imple-
mentation of Show() , and if it does,derived classes can invoke it by using the scope
operator.

The ability to provide an implementation to pure virtual methods allows abstract data
types to provide core functionality while still requiring derived classes to provide a spe-
cialized implementation. Note that the class remains abstract if the function is declared
as pure virtual (=0),even if you provide an implementation. Thus,the Data class might
look like this:

class Data
{
public:

Data(int val):myVal(val){}
virtual ~Data(){}
int Compare(const Data &);
virtual void Show() = 0;

protected:
int myVal;

};

void Data::Show()
{

cout << “\nThis is your data. Any questions?\n”;
}

Even though the Data class provides an implementation of Show() , the method is still
pure virtual, and the class is still abstract. Derived classes that want to have instantiated
objects must still override Show() and provide their own implementation. If the derived
classes want to make use of Data ’s Show() method, they must explicitly access it with
the scope operator (::)

void GraphicData::Show()
{

Data::Show(); // invoked using the scoping operator
cout << “(“ << myVal << “): “;;
for (int i = 0; i < myVal; i++)

cout << “*”;
cout << endl;

}

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
93

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 93

Virtual Destructors
Not only is it common for the destructor to be virtual, it is imperative if you are going to
use the class polymorphically. If, in Listing 3.4,we had not made the destructor virtual,
then when the objects in the linked list were destroyed, we’d have had memory leaks in
the Data objects. Remember that the Nodes do not know what kind of data object they’re
dealing with; they just delete the object as part of their own destructor:

~InternalNode(){ delete nextNode; delete myData; }

Note that myData is declared in the InternalNode class as follows:

Data * myData;

If the Data object’s destructor is not virtual, then the Data part of the IntegerData is
deleted, but the remainder of the derived object is not. Because IntegerData does not
add any member variables in this simplified example, this won’t matter much; but if
IntegerData had member variables,there would be a memory leak.

Polymorphism Through Method
Overloading
A second form of polymorphism does not rely on inheritance:It is accomplished by
overloading a class’s methods. The most common method to overload is,of course, the
constructor. The constructor, like any method other than the destructor, can be over-
loaded by changing either the number of parameters or their types.

Let’s examine a simple class to explore the various methods you might decide to over-
load. Listing 3.5 shows a simple set of classes to get us started.

LISTING 3.5. MEMBER OVERLOADING

#include <iostream.h>

class MyPoint
{
public:

MyPoint (int x, int y):myX(x), myY(y) {}
~MyPoint(){}
int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;

Object-Oriented Programming

PART I
94

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 94

int myY;
};

class MyRectangle
{
public:

MyRectangle(MyPoint upperLeft, MyPoint lowerRight):
myUpperLeft(upperLeft),
myLowerRight(lowerRight)
{}
~MyRectangle(){}

int GetWidth() { return myLowerRight.GetX() - myUpperLeft.GetX(); }
int GetHeight() { return myLowerRight.GetY() - myUpperLeft.GetY(); }

private:
MyPoint myUpperLeft;
MyPoint myLowerRight;

};

int main()
{

MyPoint ul(0,0);
MyPoint lw(20,30);
MyRectangle myRect(ul,lw);
cout << “This rectangle measures “;
cout << myRect.GetWidth();
cout << “ by “;
cout << myRect.GetHeight() << endl;
return 0;

}

As you can see, a Rectangle class consists of a pair of points,each of which marks an
opposite corner of the rectangle. The point,in turn, consists of an x and a y coordinate,
as if on a grid. You create a Rectangle by passing in a pair of points. It is a trivial matter
to overload the constructor so that you can create a Rectangle not by passing in a pair of
points,but by passing in the x and y coordinates of the upper-left and lower-right corners
of the rectangle, asshown in Listing 3.6.

LISTING 3.6. OVERLOADED CONSTRUCTOR

#include <iostream.h>

class Point
{
public:

Point (int x, int y):myX(x), myY(y) {}
~Point(){}

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
95

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:06 PM Page 95

int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;
int myY;

};

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft(upperLeft),
myLowerRight(lowerRight)
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
➥lowerRightY):

myUpperLeft(upperLeftX,upperLeftY),
myLowerRight(lowerRightX,lowerRightY)
{}

~Rectangle(){}
int GetWidth() { return myLowerRight.GetX() - myUpperLeft.GetX(); }
int GetHeight() { return myLowerRight.GetY() - myUpperLeft.GetY(); }

private:
Point myUpperLeft;
Point myLowerRight;

};

int main()
{

Point ul(0,0);
Point lw(20,30);
Rectangle myRect(ul,lw);
Rectangle otherRect(0,5,20,30);

cout << “myRect measures “;
cout << myRect.GetWidth();
cout << “ by “ << myRect.GetHeight() << endl;

cout << “otherRect measures “;
cout << otherRect.GetWidth();
cout << “ by “ << otherRect.GetHeight() << endl;

return 0;
}

Object-Oriented Programming

PART I
96

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.6. CONTINUED

05 239-5 CH03 2/19/99 1:06 PM Page 96

It is important to note that thedefault constructor is not the constructor provided by
default, but rather is any constructor that takes no parameters. It turns out that the com-
piler provides a default constructor for you if you have declared no other constructors.
Because we have, in fact,explicitly declared constructors for this class,we currently
have no default constructor and must provide one.

There are three other methods that the compiler provides for you if you don’t declare
one:the destructor, the copy constructor, and the assignment operator.

These three methods,along with the default constructor, are called the canonical meth-
odsof any class. It is good programming practice to explicitly declare these methods for
any nontrivial class. You will find that I’ ll leave these out in some simple example pro-
grams in the book,but I never leave them out of commercial software.

The need for these methods becomes much clearer when the class managesmemory.
Let’s rewrite the Rectangle class to keep its points on the heap, as shown in Listing 3.7.

LISTING 3.7. MEMBERS ON THE HEAP

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

~Rectangle(){ delete myUpperLeft; delete myLowerRight;}
int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

private:
Point * myUpperLeft;
Point * myLowerRight;

};

I’m happy to report that nothingelse in the program has to change; the storage mecha-
nism of the Point member is entirely encapsulated within the Rectangle class. Note that
the destructor must now delete the Point s,and the constructor must initialize them on
the heap. Also, although I normally set pointers to NULL after deleting them,I don’t do so

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
97

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 97

in the destructor because there is no chance of the pointer being used again (the object is
about to wink out of existence).

Object-Oriented Programming

PART I
98

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

NOTE

I normally eschew inline methods, especially inline methods with more than one
line of instruction, but for the purposes of this book, inline instructions make
tighter, smaller examples that are perhaps more easily understood.

Memory Management
Once your class is managing memory, you must ensure that your copy constructor and
assignment operator are making deep, not shallow, copies. The copy constructor and
assignment operators provided by the compiler make bitwise, that is shallow, copies.
That means they copy the pointer but not the object pointed to.

When you pass an object by value, either into a function or as a function’s return value, a
temporary copy of that object is made. If the object is a user-defined object (such as a
Rectangle object from the example in the last discussion),that class’s copy constructor
is called to create the temporary object.

All copy constructors take one parameter:a constant reference to an object of the same
class. The default copy constructor, provided by the compiler, copies each member bit by
bit. Thus,if you passed a Rectangle into a function by value, a copy is made whose
pointers point to the same memory as the original. Listing 3.8 shows a hand-written copy
constructor that acts like the constructor provided by the compiler. Do not attempt to run
this code—it may crash. The point of this exercise is to make explicit the problems with
a shallow copy constructor.

LISTING 3.8. EXPLICIT SHALLOW COPY CONSTRUCTOR

#include <iostream.h>

class Point
{
public:

Point (int x, int y):myX(x), myY(y) {}
~Point(){}
int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

05 239-5 CH03 2/19/99 1:06 PM Page 98

private:
int myX;
int myY;

};

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
➥lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):
myUpperLeft(rhs.myUpperLeft),
myLowerRight(rhs.myLowerRight)
{

cout << “In Rectangle’s copy constructor...\n”;
}

~Rectangle()
{

cout << “\nIn destructor...” << endl;
delete myUpperLeft;
delete myLowerRight;

}
int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

// private:
Point * myUpperLeft;
Point * myLowerRight;

};

void SomeFunction(Rectangle);

int main()
{

Point ul(0,0);
Point lw(20,30);
Rectangle myRect(ul,lw);

cout << “myRect measures “;

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
99

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:06 PM Page 99

cout << myRect.GetWidth();
cout << “ by “ << myRect.GetHeight() << endl;

cout << “myRect address: “ << &myRect << endl;
cout << “myRect->myUpperLeft: “ << myRect.myUpperLeft << endl;
cout << “&myRect.myUpperLeft: “ << &myRect.myUpperLeft << endl;

SomeFunction(myRect);

cout << “Back from SomeFunction”;

return 0;
}

void SomeFunction (Rectangle r)
{

cout << “r measures “;
cout << r.GetWidth();
cout << “ by “ << r.GetHeight() << endl;

cout << “r address: “ << &r << endl;
cout << “r->myUpperLeft: “ << r.myUpperLeft << endl;
cout << “&r.myUpperLeft: “ << &r.myUpperLeft << endl;

cout << “Returning from SomeFunction!”;
}

Here’s the output from the program in Listing 3.8:

myRect measures 20 by 30
myRect address: 0x0012FF6C
myRect->myUpperLeft: 0x00421180
&myRect.myUpperLeft: 0x0012FF6C
In Rectangle’s copy constructor…
r measures 20 by 30
r address: 0x0012FF48
r->myUpperLeft: 0x00421180
&r.myUpperLeft: 0x0012FF48
Returning from SomeFunction!
In destructor…
Back from SomeFunction
In destructor…

This program provides a copy constructor that mimics the simple bitwise (shallow) copy
constructor provided by the compiler. Note that I have made the member variables public
so that we can examine them from main() . Here’s how it works: In main() , we declare a
rectangle named myRect . We initialize the rectangle and report its size. We then report

Object-Oriented Programming

PART I
100

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.8. CONTINUED

05 239-5 CH03 2/19/99 1:06 PM Page 100

the address of the rectangle itself, followed by the address of the object held by
myUpperLeft and then the address of that pointer.

We then pass the rectangleby value to SomeFunction() . Note that a message is printed
indicating that we’re passing through the copy constructor as expected. We then print out
the same information for the rectangle from within SomeFunction() . The critical thing to
note is that the address of the myUpperLeft Point member of r (the rectangle in
SomeFunction()) is the same as the address of the myUpperLeft Point member of
myRect .

When we return from SomeFunction() , the destructor is invoked as you would expect.
When we then exit main() , the destructor for myRect is also called. Unfortunately,
because myRect ’s myUpperLeft pointer points to the same object as r ’s,we now have a
problem—r was destroyed and the Point is no longer there. Oops.

Figure 3.5 illustrates what has happened.

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
101

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.5.
Two objects shar-
ing memory due to
shallow copy.

Rectangle

A Point
Object

-myUpperLeft : Point *
-myLowerRight : Point *

Free Store

Rectangle

-myUpperLeft : Point *
-myLowerRight : Point *

0x00421180

When the copy is deleted, the memory is marked as free. When the original object is
deleted, you are deleting an already deleted pointer. If you are lucky, you will crash right
away. Not good.

The solution to thisugly and embarrassing situation is to write a copy constructor that
does not just copy the pointer, but copies the object pointed to. Figure 3.6 shows what
we hope to accomplish,and Listing 3.9 demonstrates one implementation of the new
copy constructor.

LISTING 3.9. DEEP COPY

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),

continues

05 239-5 CH03 2/19/99 1:06 PM Page 101

myLowerRight(new Point(lowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):
myUpperLeft(new Point(*myUpperLeft)),
myLowerRight(new Point(*myLowerRight))
{

cout << “\nIn Rectangle’s copy constructor...\n”;
}

~Rectangle()
{

cout << “\nIn destructor...” << endl;
delete myUpperLeft; delete myLowerRight;

}

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

// private:
Point * myUpperLeft;
Point * myLowerRight;

};

Object-Oriented Programming

PART I
102

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.6.
Result of deep
copy.

Rectangle

A Point
Object

-myUpperLeft : Point *
-myLowerRight : Point *

Free Store

0x00421180

Rectangle

Another Point
Object

-myUpperLeft : Point *
-myLowerRight : Point *

Some other address

LISTING 3.9. CONTINUED

Here’s the output from the revised program in Listing 3.9:

In Point’s copy constructor
In Point’s copy constructor
In Point’s copy constructor
In Point’s copy constructor
myRect measures 20 by 30

05 239-5 CH03 2/19/99 1:06 PM Page 102

myRect address: 00x0012FF6C
myRect->myUpperLeft: 0x00421180
&myRect.myUpperLeft: 0x0012FF6C

In Point’s copy constructor
In Point’s copy constructor
In Rectangle’s copy constructor…
r measures 1962613862 by 881745716
r address: 0x0012FF34
r->myUpperLeft: 0x004211E0
&r.myUpperLeft: 0x0012FF34
Returning from SomeFunction!
In destructor…
Back from SomeFunction!
In destructor…

We have modified the Rectangle ’s copy constructor to create a new Point object. This
change allocates memory for the new copy, and the output reflects this. The address of
myRect->myUpperLeft is now different from the address of r->myUpperLeft , and this
code does not crash.

Issues in Overloading Other
Operators
Although you can overload any method, overloading operators causes the most confu-
sion—even for experienced programmers. The trick in understanding operator overload-
ing is that the compiler translates an operator (such as +, =, ++) into a method (such as
myClass::operator=()).

Operators come in three flavors: unary (++, --), binary (+, -) andternary (?). The arity of
the operator is determined by how many terms or expressions are involved. With a unary
operator, only one term is involved (for example, x++ , y--). With abinary operator, two
terms are involved (for example, a = b , x+y). There is only one ternary operator: the
conditional operator ? (for example, x ? true : false).

You are free to overload virtually any of the built-in operators,but you cannot create new
operators of your own. Therefore, although you can give your class an increment opera-
tor (++), you cannot create a squared operator. Although you can overload these operators
to do anything you want,it is good programming practice for them to make sense. You
canhave the ++ operator decrement,but it would be dopey to do so.

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
103

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:06 PM Page 103

Assignment Operator
The single mostimportant operator to overload is the assignment operator. The same
issue of deep versus shallow copies applies to the assignment operator as it does to the
copy constructor. The assignment operator is a binary operator -- . Two terms participate:
the left side and the right side. Suppose that you write the following statement:

myRect = otherRect;

You know that the compilerturns this code into the following:

myRect.operator=(otherRect);

That is, the compiler turns the assignment into a method call on the object on the left
side of the assignment operator, and passes in the object on the right side as a parameter.

Note that this assignment will invoke the compiler-created default assignment operator if
you have not written your own. Again, the default assignment operator does a simple bit-
wise copy, and the result is a crash when the copy is destroyed. You can solve this prob-
lem by writing your own assignment operator that provides a deep copy—but watch out!
There is a subtlerisk!

Here is a reasonable first attempt at creating an assignment operator. It has a bug in it;
see whether you can find it before reading the analysis:

Rectangle & Rectangle::operator=(const Rectangle & rhs)
{

delete myUpperLeft;
delete myLowerRight;
myUpperLeft = new Point(*rhs.myUpperLeft);
myLowerRight= new Point(*rhs.myLowerRight);
return *this;

}

Note that this assignmentoperator carefully deletes the original member variables before
creating new values,avoiding the obvious potential for a memory leak. There is still a
problem,however. If, in your code, you write your assignment so that the object is
assigned to itself, you will have a bit of a problem.

If you are passing references around, it is possible that you will end up writing some-
thing like this:

myFirstRect = myOtherRect;

In fact,under some conditions,the two names myFirstRect and myOtherRect will r eally
point to the same object. When that happens,the member variables myUpperLeft and
myLowerRight will be destroyed, and when it is time to do the copy, there will be no
valid data to assign!

Object-Oriented Programming

PART I
104

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 104

You protect yourself from this admittedly unlikely scenario by first checking to make
sure that you’ve not assigned to yourself. Listing 3.10 demonstrates a working model.
Again, I’ve temporarily provided public access to the member variables so that main()

can prove that the addresses of the two objects are distinct.

LISTING 3.10. CHECK FOR ASSIGNMENT TO SELF

#include <iostream.h>

class Point
{
public:

Point (int x, int y):myX(x), myY(y) {}
Point (const Point & rhs):

myX(rhs.myX),
myY(rhs.myY)
{

cout << “In Point’s copy constructor\n”;
}

~Point(){}

int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;
int myY;

};

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
➥lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):
myUpperLeft(new Point(*myUpperLeft)),
myLowerRight(new Point(*myLowerRight))
{

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
105

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:07 PM Page 105

cout << “\nIn Rectangle’s copy constructor...\n”;
}

~Rectangle()
{

cout << “\nIn destructor...” << endl;
delete myUpperLeft; delete myLowerRight;

}

Rectangle & operator=(const Rectangle & rhs);

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

//private:
Point * myUpperLeft;
Point * myLowerRight;

};

Rectangle & Rectangle::operator=(const Rectangle & rhs)
{

if (this == &rhs) // protect against a = a
return *this;

delete myUpperLeft;
delete myLowerRight;
myUpperLeft = new Point(*rhs.myUpperLeft);
myLowerRight= new Point(*rhs.myLowerRight);
return *this;

}

int main()
{

Point ul(0,0);
Point lw(20,30);
Rectangle myRect(ul,lw);
Rectangle otherRect(0,30,50,50);

cout << “\nmyRect measures “;
cout << myRect.GetWidth();
cout << “ by “ << myRect.GetHeight() << endl;

cout << “myRect address: “ << &myRect << endl;
cout << “myRect->myUpperLeft: “ << myRect.myUpperLeft << endl;
cout << “&myRect.myUpperLeft: “ << &myRect.myUpperLeft << endl;

cout << “\notherRect measures “;
cout << otherRect.GetWidth();

Object-Oriented Programming

PART I
106

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.10. CONTINUED

05 239-5 CH03 2/19/99 1:07 PM Page 106

cout << “ by “ << otherRect.GetHeight() << endl;

cout << “otherRect address: “ << &otherRect << endl;
cout << “otherRect->myUpperLeft: “ << otherRect.myUpperLeft << endl;
cout << “&otherRect.myUpperLeft: “ << &otherRect.myUpperLeft << endl;

cout << “\nAssigning myRect = otherRect...\n”;
myRect = otherRect;

cout << “\notherRect measures “;
cout << otherRect.GetWidth();
cout << “ by “ << otherRect.GetHeight() << endl;

cout << “otherRect address: “ << &otherRect << endl;
cout << “otherRect->myUpperLeft: “ << otherRect.myUpperLeft << endl;
cout << “&otherRect.myUpperLeft: “ << &otherRect.myUpperLeft << endl;

return 0;
}

Overloading the Increment Operators
The increment prefix and postfix operators have caused enormous confusion over the
years,even though the implementation is straightforward when you consider the seman-
tics of the two variants. The prefix operator’s semantics are “increment,and then fetch.”
The postfix operator’s semantics are “f etch, and then increment.”

Consider the following statements:

int a=0, b=5;
a = b++;

After these statements are executed, a is 5 and b is 6. That is, a was assigned the value in
b (5) and then the value in b was incremented. To support this, the increment operator
must be prepared to return the value that was originally in b, but must also set b’s value
to 1 greater.

This is most easily seen with an example. First,we must decide whether the increment
operator has meaning to our class. What might it mean to increment a Rectangle ? We
can,of course, assign any meaning we want—we’re free to use the increment operator to
return the position of the upper-left corner’s coordinates:

Point upperLeft = myRect++; // return the current upper left via

➥operator++

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
107

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 107

That is legal C++,but if you worked for me, it would be the last line of C++ you wrote
in my employ. The old line about this language is true:C++ makes it harder to shoot
yourself in the foot, but when you do,you blow your whole leg off.

Clearly, the increment operator (++) should be used to increment. However, it isn’t obvi-
ous what it means to “increment a rectangle,” and I wouldn’t use the increment operator
in this way. Is it meaningful to increment a Point ? I’d say this is a borderline condition;
you coulddecide that incrementing a Point increases both the x and y coordinate by 1,
but that is (pardon me) stretching the Point . Listing 3.11 illustrates how you might pro-
vide such an increment operator.

LISTING 3.11. INCREMENT OPERATOR

#include <iostream.h>

class Point
{
public:

Point (int x, int y):myX(x), myY(y) {}
Point (const Point & rhs):

myX(rhs.myX),
myY(rhs.myY)
{

cout << “In Point’s copy constructor\n”;
}

~Point(){}

int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

const Point & operator++();
Point operator++(int);
const Point & operator--();
Point operator--(int);

private:
int myX;
int myY;

};

const Point & Point::operator++()
{

++myX;
++myY;
return *this;

}

Object-Oriented Programming

PART I
108

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 108

Point Point::operator++(int)
{

Point temp(*this); // hold the current value
++myX;
++myY;
return temp;

}

const Point & Point::operator--()
{

--myX;
--myY;
return *this;

}

Point Point::operator--(int)
{

Point temp(*this); // hold the current value
--myX;
--myY;
return temp;

}

class Shape
{
public:

Shape(){}
~Shape(){}
virtual Shape * Clone() const { return new Shape(*this); }

};

class Rectangle : public Shape
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
109

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:07 PM Page 109

myUpperLeft(new Point(*myUpperLeft)),
myLowerRight(new Point(*myLowerRight))
{

cout << “\nIn Rectangle’s copy constructor...\n”;
}

Shape * Clone() const { return new Rectangle(*this); }

~Rectangle()
{

cout << “\nIn destructor...” << endl;
delete myUpperLeft;
delete myLowerRight;

}

Rectangle & operator=(const Rectangle & rhs);
void Expand() { —(*myUpperLeft); ++(*myLowerRight); }

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

private:
Point * myUpperLeft;
Point * myLowerRight;

};

Rectangle & Rectangle::operator=(const Rectangle & rhs)
{

if (this == &rhs) // protect against a = a
return *this;

delete myUpperLeft;
delete myLowerRight;
myUpperLeft = new Point(*rhs.myUpperLeft);
myLowerRight= new Point(*rhs.myLowerRight);
return *this;

}

int main()
{

Point ul(10,10);
Point lw(20,30);
Rectangle myRect(ul,lw);

cout << “\nmyRect measures “;
cout << myRect.GetWidth();
cout << “ by “ << myRect.GetHeight() << endl;

myRect.Expand();

Object-Oriented Programming

PART I
110

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.11. CONTINUED

05 239-5 CH03 2/19/99 1:07 PM Page 110

cout << “\nmyRect measures “;
cout << myRect.GetWidth();
cout << “ by “ << myRect.GetHeight() << endl;

return 0;
}

Note that the postfix operators capture the current state of the object in a temporary
before updating their internal member variables. In this way, they can return the original
state while still updating themselves.

The operators which create a temporary must,of course, return by values because you
can’t return a reference to an object which is going out of scope. Even when we’re
returning a reference to *this , however, we return a constantreference. This is so that
you cannot write something like the following:

Point a=7;
a++++;

Because this syntax is not allowed in the built-in classes,we don’t allow it here.

Virtual Copy Constructors
In addition to the constructors,destructor, copy constructors,and assignment operator,
consider creating a “vir tual copy constructor” for your class. Although C++ does not sup-
port the idea of virtual constructors, you often need to be able to return a copy of an
object that is an exact duplicate, even when treating the object polymorphically.

The common answer to this situation is to create a clonemethod that simply returns a
pointer to an object of the same type. Imagine that Rectangle derives from Shape . The
Shape class might include this declaration:

virtual Shape * Shape::Clone() const { return new Shape(*this); }

Rectangle , in turn, might override this method as follows:

virtual Shape * Rectangle::Clone() const { return new

➥Rectangle(*this); }

Note that I return a Shape * in both cases. The new ANSI standard says that I can,in
fact,return a different type in each override; so Rectangle would be free to return a
Rectangle pointer. Unfortunately, few compilers have caught up with the standard as of
this writing.

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
111

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 111

Multiple Inheritance
One of the capabilities available in C++,which is not available in Java, is multiple
inheritance (although Java has a similar if limited capability with multiple interfaces).
Multiple inheritance allows a class to inherit from more than one base class,bringing in
the members and methods of two or more classes.

Experience has shown that multiple inheritance should be used judiciously. Often,the
problem solved with multiple inheritance can be better solved with aggregation or with
the use of templates. Many development systems have a hard time debugging methods of
multiply inherited objects,and the entire program becomes more complex as classes
become intertwined.

That said, multiple inheritance is a powerful tool,and there is no reason to set it aside.
What is important is to use it when it is needed, but not as an end in itself. From the
design perspective, it is important to understand what multiple inheritance models:the
idea of a class sharing the characteristics and behavior of two, perhaps unrelated, other
classes.

In simple multiple inheritance, the two base classes are unrelated (see Figure 3.7).

Object-Oriented Programming

PART I
112

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.7.
Simple multiple
inheritance.

Lion

EatMeat()
Roar()

Griffin

Eagle

Squawk()
Fly()

In this simple illustration, the Griffin class inherits from both Lion and Eagle . Thus,a
Griffin can EatMeat() , Roar() , Squawk() , and Fly() . You implement this in C++ by
listing the base classes,separated by commas. Listing 3.12 demonstrates the implementa-
tion of the classes modeled in Figure 3.7.

05 239-5 CH03 2/19/99 1:07 PM Page 112

LISTING 3.12. IMPLEMENTING MULTIPLE INHERITANCE

#include <iostream.h>

class Lion
{
public:

void EatMeat();
void Roar();

protected:
private:
};

class Eagle
{
public:

void Squawk();
void Fly();

};

class Griffin : public Lion, public Eagle
{
};

This code is intentionally sparse—I’ve left out constructors,destructors,and so on to
simplify the presentation and make the point. The Griffin class derives publicly both
from Lion and from Eagle , therefore it specializes both these classes and implements our
model that a Griffin is a Lion and also is an Eagle .

Problems in Multiple Inheritance
A problem arises when both Lion and Eagle share a common base class,for example
Animal . Suppose that Animal has a member variable age of type int , and an accessor,
GetAge() , that returns the value of the Animal ’s age . Figure 3.8 shows what the model
looks like in UML.

Listing 3.13 shows how this model is implemented in C++. Again, I’ve left out all but the
essential methods to illustrate the points covered in this discussion. In a real program,of
course, you’d want to add constructors,destructors,and soforth.

LISTING 3.13. TWO CLASSES WITH A COMMON BASE CLASS

#include <iostream.h>

class Animal
{
public:

Animal():age(1){}
void Sleep(){}
int GetAge() const { return age; }

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
113

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:07 PM Page 113

private:
int age;

};

class Lion : public Animal
{
public:

void EatMeat(){}
void Roar(){}

protected:
private:
};

class Eagle : public Animal
{
public:

void Squawk(){}
void Fly(){}

};

class Griffin : public Lion, public Eagle
{

};

int main()
{

Griffin g;
cout << g.GetAge(); // ambiguous! Won’t link!
return 0;

}

This common base class,Animal , now has a member variable that Griffin will inherit
twice. When you ask for the age member variable, the compiler does not necessarily
know which object’s age you mean and will issue an error along these lines:

‘Griffin::GetAge’ is ambiguous, could be the ‘GetAge’ in base ‘Animal’ of
base ‘Lion’of class ‘Griffin’ or the ‘GetAge’ in base ‘Animal’ of base
‘Eagle’ of class ‘Griffin’.

Your compiler is trying to tell you that it doesn’t know which Animal ’s age to get: the
one Griffin inherits through Lion or the one Griffin inherits through Eagle . As the
designer of the Griffin class,you must remain aware of these relationships and be pre-
pared to solve the ambiguities they create. C++ facilitates your task by providing virtual
inheritance, asdemonstrated in Listing 3.14.

Object-Oriented Programming

PART I
114

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.13. CONTINUED

05 239-5 CH03 2/19/99 1:07 PM Page 114

LISTING 3.14. VIRTUAL INHERITANCE

#include <iostream.h>

class Animal
{
public:

Animal():age(1){}
void Sleep(){}
int GetAge() const { return age; }

private:
int age;

};

class Lion : virtual public Animal
{
public:

void EatMeat(){}
void Roar(){}

protected:
private:
};

class Eagle : virtual public Animal

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
115

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.8.
Two classes shar-
ing a common
base class.

Lion

EatMeat()
Roar()

Griffin

Eagle

Squawk()
Fly()

Animal

Sleep()
GetAge()

Animal

Sleep()
GetAge()

age : int age : int

continues

05 239-5 CH03 2/19/99 1:07 PM Page 115

{
public:

void Squawk(){}
void Fly(){}

};

class Griffin : public Lion, public Eagle
{

};

int main()
{

Griffin g;
cout << g.GetAge();
return 0;

}

The change here is that when the baseclasses of Griffin (that is, Lion and Eagle)
derive from Animal , they do so with the key word virtual . Figure 3.9 shows this new
model.

Object-Oriented Programming

PART I
116

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.14. CONTINUED

FIGURE 3.9.
Modeling virtual
inheritance.

Lion

EatMeat()
Roar()

Griffin

Eagle

Squawk()
Fly()

Animal

Sleep()
GetAge()

Age : int

{Virtual}

05 239-5 CH03 2/19/99 1:07 PM Page 116

With virtual inheritance, Griffin inherits just one copy of the members of Animal , and
the ambiguity is resolved. The problem with this solution is that both Lion and Eagle

must know that they may be involved in a multiple inheritance relationship; the virtual

keyword must be on their declaration of inheritance, not that of Griffin .

Note also that if Animal needs initialization (for example, if the age variable is passed as
a parameter),then Lion and Eagle must initialize it (as usual) but Griffin also initial-
izes Animal . This is very unusual,but it is the only way to resolve the ambiguity of Lion

initializing to one value and Eagle initializing to another.

Listing 3.15 illustrates how you might initialize the base class in each of the virtually
derived classes.

LISTING 3.15. INITIALIZING BASE CLASSES WITH VIRTUAL INHERITANCE

#include <iostream.h>

class Animal
{
public:

Animal(int theAge):age(theAge){}
void Sleep(){}
int GetAge() const { return age; }

private:
int age;

};

class Lion : virtual public Animal
{
public:

Lion(int theAge, int howManyCubs):Animal(theAge),
numCubs(howManyCubs){}

void EatMeat(){}
void Roar(){}

protected:
private:

int numCubs;
};

class Eagle : virtual public Animal
{
public:

Eagle(int theAge, int theWeight):Animal(theAge), weight(theWeight){}
void Squawk(){}
void Fly(){}

private:
int weight;

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
117

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

continues

05 239-5 CH03 2/19/99 1:07 PM Page 117

};

class Griffin : public Lion, public Eagle
{
public:

Griffin(int theAge, int theWeight, int howManyCubs):
Lion(theAge, theWeight), // initialize base class Lion
Eagle(theAge, howManyCubs), // initilize base class Eagle
Animal(theAge){} // initilize virtual base class

Animal!

};

int main()
{

int hisAge = 5;
int hisWeight = 7;
int litterSize = 4;
Griffin g(hisAge, hisWeight, litterSize);
cout << g.GetAge();
return 0;

}

Multiple Inheritance Versus Containment
How do you know when touse multiple inheritance and when to avoid it? Should a car
inherit from steering wheel,tire, and doors?

You could implement Car as shown here:

class SteeringWheel
{
};

class Door
{
};

class Tire
{
};

class Car : public SteeringWheel, public Door, public Tire
{
};

Although this code compiles,the model it implements is badly broken,asshown in
Figure 3.10.

Object-Oriented Programming

PART I
118

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

LISTING 3.15. CONTINUED

05 239-5 CH03 2/19/99 1:07 PM Page 118

It is important to come back to the fundamentals:Public inheritance should always
model specialization. The common expression for this is that inheritance should model
is-a relationships.If you want to model the has-arelationship (for example, a car has-a
steering wheel),you do so with aggregation. In C++,aggregation is implemented with
member variables. That is, you give your Car class a member variable SteeringWheel :

class SteeringWheel
{
};

class Door
{
};

class Tire
{
};

class Car
{
public:

private:
SteeringWheel s;
Door d[2];
Tire t[4];

};

So,is a car a steering wheel,or does it have a steering wheel? You might argue that a car
is a combination of a steering wheel,a tire, and a set of doors,but this is not modeled in
inheritance. However, a car is not a specialization of these things—it is an aggregation of
these things. A car hasa steering wheel,it hasdoors,and it hastires. You diagram these
relationships in the UML using the aggregation symbol shown in Figure 3.11.

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
119

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

FIGURE 3.10.
The wrong way to
model with inheri-
tance.

Car

SteeringWheel Door Tire

05 239-5 CH03 2/19/99 1:07 PM Page 119

Object-Oriented Programming

PART I
120

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

The open diamond on the Car class indicates that the Car object haswhatever is on the
other side of the connecting line. In this case, the Car hasat least one steering wheel,
door, and tire. We can make this drawing more precise by adding multiplicity—that is, by
indicating how many of each object the Car might have (see Figure 3.12).

FIGURE 3.11.
Modeling with
aggregation.

SteeringWheel Door Tire

Car

FIGURE 3.12.
The UML desig-
nation of multi-
plicity.

SteeringWheel Door Tire

Car

2..5 4
1

The diagram in Figure 3.12 indicates that a Car has exactly one SteeringWheel and four
tires (Vehicle s with a different number of tires are not Car s), and from two to five doors
(coupes have two doors,hatchbacks have three, sedans have four, and minivans have five
doors).

Summary
Polymorphism is a powerful tool for C++ programmers. It can be accomplished through
method and operator overloading—allowing the client great flexibility in its interaction
with the server object. An even more powerful implementation of polymorphism can be
accomplished by overriding virtual methods in derived classes. Entire hierarchies of
classes can be built, each specializing the implementation of virtual methods.

05 239-5 CH03 2/19/99 1:07 PM Page 120

Multiple inheritance and containment provide tools for creating powerful polymorphic
objects,but is important to focus less on the implementation and more on the design and
semantics of your model. If you understand the design of your class,the implementation
follows naturally.

Inheritance, Polymorphism,and Code Reuse

CHAPTER 3
121

3

IN
H

ER
ITA

N
C

E,
P

O
LY

M
O

R
PH

ISM
,

A
N

D
C

O
D

E
R

EU
SE

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 121

122

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH03 Lp#1

05 239-5 CH03 2/19/99 1:07 PM Page 122

P/V Unleashed generic ISBN# Name Date Part Lp#1

Implementation
Issues PART

II
IN THIS PART

• Memory Management 125

• How To Use Frameworks 169

• Standard Template Library Container Classes 217

• STL Iterators and Algorithms 285

• Avoiding Name Clashes by
Using Namespaces 361

• Manipulating Object Types at Runtime 381

• Tuning Application Performance 405

06 239-5 Part 2 2/19/99 1:28 PM Page 123

P/V Unleashed generic ISBN# Name Date Part Lp#1

06 239-5 Part 2 2/19/99 1:28 PM Page 124

IN THIS CHAPTER

• Memory Management
and Pointers 127

• Pointers and Exceptions 140

4
C

H
A

PT
ER

Memory
Management

07 239-5 CH04 2/19/99 1:09 PM Page 125

In my experience of teaching C++ to literally more than 10,000 students,both in person
and online, I’ve found that the single hardest conceptual area is memory management.
Even experienced C++ programmers become confused in their understanding of pointers
and references. I believe that one of the principal causes of this confusion is that so many
primers teach pointers mechanically (“here is how you use them”) rather than conceptu-
ally (“here is what they are”).

Once you understand, fully and in your core, that a pointer isnothing more than a vari-
able that holds an address,the rest becomes much easier. The implications of this under-
standing are listed here:

• The pointer itself is a variable, and thus has an address of its own.

• The pointer contains the address of the object you care about.

• You get to the object you care about by dereferencing the pointer.

• The new operator returns an address; a pointer is a good place to keep that address.

All of this becomes somewhat more complicated when you add references, because they
are, essentially, automatically dereferenced pointers. The tricky thing with references is
that they always refer to the object they reference and never to themselves. Here’s a good
quick test of your understanding of references:

#include <iostream.h>

int main()
{

int x = 7;
int & ref = x;
ref = 8;
int y = 10;
ref = y;
cout << “x = “ << x;
cout << “ y = “ << y;
cout << “ ref = “ << ref << endl;
return 0;

}

The question is,what will this print? Stop reading here until you know theanswer. Did
you answer this way:

x = 8, y = 10, ref = 10

If so, you made the most common mistake (don’t feel bad, it’s a trick question). Refer
again to this statement:

ref = y;

This statement did not point ref to y—instead, it was exactly as if I had written this:

Implementation Issues

PART II
126

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 126

x = y;

Thus,here is the correct answer:

x = 10, y = 10, ref = 10

Finally, pointers and references present a specific and difficult challenge in the face of
exceptions. When an exception is thrown, the stack is unwound and local variables are
destroyed, but pointers are not.

This chapter discusses how to manage pointers and references to ensure that your pro-
gram has no memory leaks—even in the presence of unpredictable exceptions.

Memory Management and
Pointers
There are two ways to allocate memory for variables in C++:on the stack and on the
heap. When variables are allocated on the stack, their constructor is called at allocation
and their destructor is called when the object goes out of scope. The most common way
for an object to go out of scope is for the function to return as shown in Listing 4.1.

LISTING 4.1. ALLOCATING MEMORY ON THE STACK

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val)
{

cout << “In myClass constructor\n”;
}
myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }

private:
int myValue;

};

int someFunction(myClass c);

int main()

Memory Management

CHAPTER 4
127

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 127

{
cout << “In main, ready to create object(3)...\n”<< endl;
myClass object(3);
cout << “In main, object’s value is: “ << object.GetValue() << endl;
cout << “In main, passing object (by value) to someFunction...\n” <<

➥endl;
someFunction(object);
cout << “In main, returned from someFunction. Exiting...\n” << endl;
return 0;

}

int someFunction(myClass c)
{

cout << “In someFunction, c’s value is: “ << c.GetValue() << endl;
cout << “Exiting someFunction...\n” << endl;
return c.GetValue();

}

Here is the outputfrom the program in Listing 4.1:

In main, ready to create object(3)…

In myClass constructor
In main, object’s value is: 3
In main, passing object (by value)to someFunction…

In myClass copy constructor
In someFunction, c’s value is: 3
Exiting someFunction…

In myClass Destructor
In main, returned from someFunction. Exiting…

In myClass Destructor

In this simpleexample, we create an object on the stack in main() and then pass it by
value to someFunction() . Passing by value creates a copy in the scope of the
someFunction() function. When that copy goes out of scope, the destructor is called.
When the object in main() goes out of scope, the destructor for the original object is
called.

The second way to create an object is on the heap, using the new operator, as shown in
Listing 4.2. The new operator allocates an (unnamed) object on the heap and returns the
address of that object,which can then be stored in a pointer.

Implementation Issues

PART II
128

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.1. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 128

LISTING 4.2. ALLOCATING MEMORY ON THE HEAP

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }

private:
int myValue;

};

int someFunction(myClass c);
int someFunction(myClass *pc);

int main()
{

cout << “In main, ready to create object(3)...”<< endl;
myClass * pObject = new myClass(3);
cout << “In main, pObject’s value is: “ << pObject->GetValue() <<

➥endl;
cout << “In main, passing pObject (by value) to someFunction...” <<

➥endl;
someFunction(*pObject);
cout << “In main, returned from someFunction(*object).”;
cout << “Calling someFunction(object)...” << endl;
someFunction(pObject);
cout << “In main, returned from someFunction(object). “
cout << “Deleting pObject...” << endl;
delete pObject;
return 0;

}

int someFunction(myClass c)
{

cout << “In someFunction, c’s value is: “ << c.GetValue() << endl;
cout << “Exiting someFunction...” << endl;
return c.GetValue();

}

int someFunction(myClass * c)
{

Memory Management

CHAPTER 4
129

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 129

cout << “In someFunction(myClass *), c’s value is: “;
cout << c->GetValue() << endl;
cout << “Exiting someFunction...” << endl;
return c->GetValue();

}

Here is the output from the program in Listing 4.2:

In main, ready to create object(3)…
In myClass constructor
In main, pObject’s value is: 3
In main, passing pObject (by value) to someFunction…
In myClass copy constructor
In someFunction, c’s value is: 3
Exiting someFunction…
In myClass Destructor
In main, returned from someFunction(*object). Calling
someFunction(object)…
In someFunction(myClass *), c’s value is: 3
Exiting someFunction…
In main, returned from someFunction(object). Deleting pObject…
In myClass Destructor

This time, we allocate the object on the heap with this call:

myClass * pObject = new myClass(3);

The constructor is called as a result. We pass the object by value (dereferencing the
pointer) to SomeFunction() with this statement:

someFunction(*pObject);

The copy constructor is then called. An object is now created on the stack, which is
destroyed when the function returns (note the call to the destructor).

We then pass theobject to the overloaded someFunction() by reference, like this:

someFunction(pObject);

This time, the copy constructor is not called because no copy is created. The object refer-
enced in this function is the same object as referenced in main() . When this method
returns,the destructor is not called. At this point,we are ready to exit main() but must
remember explicitly to call delete . Every call to new must be matched by a call to
delete or we’ll create a memory leak.

Implementation Issues

PART II
130

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.2. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 130

Memory Leaks
The term memory leakis quite popular in the industry, but it isn’t often explained. Here’s
the idea:If you allocate memory using new and fail to reclaim that memory using
delete , the memory is irretrievably lost until your program ends. It is as if the memory
“leaked out”of your program.

If you make this mistake in a function that allocates a lot of memory (a few big objects
or lots of small objects),and you call this function repeatedly, it is entirely possible to
crash your program (or slow it down tremendously) because you will run out of available
memory. C++ has no automatic memory retrieval (“garbage collection”) as does Java.
You must reclaim the memory yourself.

Allocating Arrays
If you allocate an array of memory, you must remember to use the special delete[]

operator. If you forget to use the delete[] operator and instead call delete (with no
brackets),you will deallocate only the first object,and the rest of the memory will be
lost. Listing 4.3 illustrates how the delete[] operator is used.

LISTING 4.3. USING delete[]

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
➥}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }
void SetValue(int theVal) { myValue = theVal; }

private:
int myValue;

};

void someFunction();

int main()
{

cout << “In main, ready to call someFunction...” << endl;

Memory Management

CHAPTER 4
131

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 131

someFunction();
cout << “In main, returned from someFunction.” << endl;
return 0;

}

void someFunction()
{

const int arraySize = 5;
myClass * pArray = new myClass[arraySize];
for (int i = 0; i < arraySize; i++)

pArray[i].SetValue(i);

for (int j = 0; j < arraySize; j++)
cout << “pArray[“ << j << “]: “ << pArray[j].GetValue() << endl;

delete [] pArray;

}

Here is the output from the preceding listing:

In main, ready to call someFunction…
In myClass constructor
In myClass constructor
In myClass constructor
In myClass constructor
In myClass constructor
pArray[0]: 0
pArray[1]: 1
pArray[2]: 2
pArray[3]: 3
pArray[4]: 4
In myClass Destructor
In myClass Destructor
In myClass Destructor
In myClass Destructor
In myClass Destructor
In main, returned from someFunction.

This is another simple example that explains how memory allocation works with an array
of objects on the heap. The call to new allocates five objects on the heap, which are then
assigned values. This call causes each of the objects to be destroyed in turn:

delete [] pArray

For efficiency, the delete operator (without square braces) assumes that you want to
delete only a single object. The delete [] operator (with square braces) tells the

Implementation Issues

PART II
132

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.3. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 132

compiler to use the count of objects recorded when you allocate the array. The correct
number of objects are then destroyed, preventing a memory leak.

Stray, Dangling, and Wild Pointers
If you delete a pointer that has already been deleted, you risk crashing your program. To
ensure that this does not happen,make it a practice to set all deleted pointers to NULL. It
is safe and legal to delete a null pointer, as shown in Listing 4.4.

LISTING 4.4. DELETING A NULL POINTER

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
➥}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }
void SetValue(int theVal) { myValue = theVal; }

private:
int myValue;

};

int main()
{

myClass * pc = new myClass(5);
cout << “The value of the object is “ << pc->GetValue() << endl;
delete pc;
pc = 0;
cout << “Here is other work, passing pointers around willy nilly.\n”;
cout << “Now ready to delete again...” << endl;
delete pc;
cout << “No harm done” << endl;
return 0;

}

The following is the output from Listing 4.4:

In myClass constructor
The value of the object is 5
In myClass Destructor

Memory Management

CHAPTER 4
133

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 133

Here is other work, passing pointers around willy nilly.
Now ready to delete again...
No harm done

Of course, this example is absurd because you would never delete the same pointer twice
in a single method. The problem,of course, is that you often pass pointers intoand out
of methods,making copies as you go. In a complicated program,it is easy to lose track
and accidentally delete an already deleted pointer. Making sure that you set deleted
pointers to NULL (0) protects you from this error. It also ensures that if you try to use that
pointer, you get an immediate crash rather than a subtle and difficult-to-find bug. If you
are going to fail, you want to fail with a bang, not a whimper—that is, you want to fail
predictably (so that you can find the bug) and you want tofail where the bug is, not later
in the program.

const Pointers
You can use thekeyword const for pointers before the type, after the type, or in both
places,depending on what you are trying to accomplish.

In the following statement,pOne is a pointer to a constant integer. The value being point-
ed to can’t be changed:

const int * pOne; // pointer to a constant integer

In this next statement,pTwo is a constant pointer to an integer. The integer can be
changed, but pTwo can’t point to anything else:

int * const pTwo; // constant pointer to an integer

In this third statement,pThree is a constant pointer to a constant integer. The value being
pointed to can’t be changed, andpThree can’t be changed to point to anything else:

const int * const pThree; // constant pointer to a constant integer

The trick to keeping this straight is to look to the right of the keyword const to find out
what is being declared constant. If the typeis to the right of the keyword, the value is
constant:

const int * p1; // the int pointed to is constant

If the variable is to the right of the keyword const , the pointer variable itself is constant:

int * const p2; // p2 is constant, it can’t point to anything else

const Pointers and const Member Functions
When a member function is declared const , the compiler flags as an error any attempt
by that function to change data in the object to which it belongs.

Implementation Issues

PART II
134

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 134

When you declare an object to be const , you are in effect declaring that the this pointer
is a pointer to a const object. A const this pointer can be used only with const mem-
berfunctions.

Passing By Reference
Each time you pass an object into a function by value, a copy of the object is made. Each
time you return an object from a function by value, another copy is made.

These objects are created on the stack; copying them consumes processing time and sys-
tem memory. For small objects,such as the built-in integer values,this is a trivial cost.

However, with larger user-created objects,the cost is greater. The size of a user-created
object on the stack is the sum of each of its member variables. These, in turn, can each
be user-created objects,and passing such a massive structure by copying it onto the stack
can be very expensive in performance and memory consumption.

When the temporary object is destroyed, which happens when the function returns,the
object’s destructor is called. If an object is returned by value, a copy of that object will
be created anddestroyed as well.

Passing a const Pointer
Although passing a pointer is more efficient than passing an object by value, it is also
more dangerous because it exposes the object to change and defeats the protection
offered in passing by value.

Passing by value is like giving a museum a photograph of your masterpiece instead of
the real thing. If vandals mark it up,no harm is done to the original. Passing by reference
is like sending your home address to the museum and inviting guests to come over and
look at the real thing.

The solution is to pass a const pointer. Doing so prevents calling any non-const method
and thus affords you the protection of passing by value while preserving the efficiency of
passing by reference. Once again the guests are invited to your home, but the art is
behind bulletproof glass.

Passing a constant reference can give you the same efficiency without forcing you to use
the rather cumbersome syntax of dereferencing pointers. A constant reference is really a
reference to a constant object (references themselves are always constant). By passing a
reference to a constant object,the object cannot be changed but no copy constructor is
called.

Memory Management

CHAPTER 4
135

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 135

You can pass a constant reference only when you know the object will not be NULL.
Remember that although it is possible to create a reference to a NULL object,doing so
renders your program invalid. It may crash,it may work just fine, but it isn’t legal C++
and the results are unpredictable.

Don’t Return a Reference to an Object That
Isn’t in Scope
After C++ programmers learn to pass by reference, they have a tendency to go hog-wild.
It is possible, however, to overdo it. Remember that a reference is always an alias to
some other object. If you pass a reference into or out of a function,be sure to ask your-
self, “What is the object I’m aliasing, and will it still exist every time it’s used?”

Listing 4.5 illustrates returning a reference to a temporary object. Please note that some
compilers won’t let this pass,others will. In any case, this program will almost certainly
crash on execution. This program is not valid.

LISTING 4.5. RETURNING A REFERENCE TO A TEMPORARY OBJECT

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
➥}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass destructor\n”; }
int GetValue() const { return myValue; }
void SetValue(int theVal) { myValue = theVal; }

private:
int myValue;

};

void SomeFunction();
myClass &WorkFunction();

int main()
{

SomeFunction();
return 0;

}

myClass & WorkFunction()

Implementation Issues

PART II
136

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 136

{
myClass mc(5);
return mc;

}

void SomeFunction()
{

myClass &rC = WorkFunction();
int value = rC.GetValue();
cout << “rC’s value: “ << value << endl;

}

Here is the output from Listing 4.5:

In myClass constructor
In myClass destructor
rC’s value: 1245036

WorkFunction() createsan object on the stack and returns a reference to it,which is
assigned to a local reference (rc) in SomeFunction() . Unfortunately, rc now refers to an
object that has gone out of scope. Thus,the reference is invalid, and the program itself is
invalid.

You might be tempted to solve this problem by having WorkFunction() create the object
on the heap. Thus,when the function returns,the object will continue to exist:

#include <iostream.h>
class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
➥}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }
void SetValue(int theVal) { myValue = theVal; }

private:
int myValue;

};

void SomeFunction();
myClass &WorkFunction();

int main()
{

SomeFunction();

Memory Management

CHAPTER 4
137

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 137

return 0;
}

myClass & WorkFunction()
{

myClass * pC = new myClass(5);
return *pC;

}

void SomeFunction()
{

myClass &rC = WorkFunction();
int value = rC.GetValue();
cout << “rC’s value: “ << value << endl;

}

The following is the output:

In myClass constructor
rC’s value: 5

This revised code solves the problem introduced in Listing 4.5,but at the cost of intro-
ducing amemory leak. How is the memory allocated in WorkFunction() to be recov-
ered? You can,of course, delete it in SomeFunction() , like this:

#include <iostream.h>

class myClass
{
public:

myClass(int val=0):myValue(val) { cout << “In myClass constructor\n”;
➥}

myClass(const myClass & rhs):myValue(rhs.myValue)
{

cout << “In myClass copy constructor\n”;
}
~myClass() { cout << “In myClass Destructor\n”; }
int GetValue() const { return myValue; }
void SetValue(int theVal) { myValue = theVal; }

private:
int myValue;

};

void SomeFunction();
myClass &WorkFunction();

int main()
{

SomeFunction();
return 0;

}

Implementation Issues

PART II
138

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 138

myClass &WorkFunction()
{

myClass * pC = new myClass(5);
return *pC;

}

void SomeFunction()
{

myClass &rC = WorkFunction();
int value = rC.GetValue();
cout << “rC’s value: “ << value << endl;
myClass * pC = &rC; // get a pointer to the memory
delete pC; // oops, now rC is a reference to a null object!

}

The output is as follows:

In myClass constructor
rC’s value: 5
In myClass Destructor

In this example, you create a pointer to the memory on the heap (by taking the address of
the reference) and then you delete that object. This works; the object is deleted. The
problem is that rC is now a reference to a NULL object and that is not legal. On many
compilers, this program will compile, link, and work. Do not be deceived; your program
is not valid, and it is certainly not portable.

Pointer, Pointer, Who Has the Pointer?
When your program allocates memory on the free store (the heap), a pointer is returned.
It is imperative that you keep a pointer to that memory, because once the pointer is lost,
the memory cannot be deleted and becomes a memory leak.

As you pass this block of memory between functions,someone will “own” the pointer.
Typically, the value in the block is passed using references,and the function that created
the memory is the one that deletes it. But this is a general rule, not an iron-clad one.

It is dangerous for one function to create memory and another to free it,however.
Ambiguity about who owns the pointer can lead to one of two problems:forgetting to
delete a pointer or deleting it twice. Either error can cause serious problems in your pro-
gram. It is safer to build your functions so that they delete the memory they create.

Memory Management

CHAPTER 4
139

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 139

Pointers and Exceptions
Memory management of objects on the heap becomes especially problematic in the pres-
ence of exceptions. Consider the example shown in Listing 4.6.

LISTING 4.6. HEAP OBJECTS AND EXCEPTIONS

#include <iostream.h>

class myException
{
public:

char * errorMsg() { return “Oops.”; }
};

class Point
{
public:

Point (int x, int y):myX(x), myY(y)
{

cout << “Point constructor called”<< endl;
}
Point (const Point & rhs):

myX(rhs.myX),
myY(rhs.myY){ cout << “Point copy constructor called” <<

➥endl;}
~Point(){ cout << “Point destructor called” << endl;}

int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;
int myY;

};

class Rectangle

Implementation Issues

PART II
140

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

TIP

If you are writing a function that has to create memory and then pass it back to
the calling function, consider changing your interface. Have the calling function
allocate the memory and then pass it into your function by reference. This
moves all memory management out of your program and back to the function
that is prepared to delete it.

07 239-5 CH04 2/19/99 1:09 PM Page 140

{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft (new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(Point * pUpperLeft, Point * pLowerRight):
myUpperLeft (new Point(*pUpperLeft)),
myLowerRight(new Point(*pLowerRight))
{}

Rectangle(int upperLeftX, int upperLeftY, int lowerRightX, int
➥lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):
myUpperLeft(new Point(*myUpperLeft)),
myLowerRight(new Point(*myLowerRight))
{}

~Rectangle()
{

cout << “In Rectangle’s destructor” << endl;
delete myUpperLeft;
delete myLowerRight;

}

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

void DangerousMethod() { throw myException(); }

private:
Point * myUpperLeft;
Point * myLowerRight;

};

int main()
{

try
{

cout << “Begin round 1...” << endl;

Memory Management

CHAPTER 4
141

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 141

Point * pUL = new Point(0,0);
Point * pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);
int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
delete pUL;
delete pLR;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

try
{

cout << “Begin round 2...” << endl;
Point * pUL = new Point(0,0);
Point * pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);
int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
myRectangle.DangerousMethod();
delete pUL;
delete pLR;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

return 0;
}

Here is the outputproduced by this code:

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
the Rectangle is 20 by 30
Point destructor called
Point destructor called
In Rectangle’s destructor

Implementation Issues

PART II
142

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.6. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 142

Point destructor called
Point destructor called
Begin round 2…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
the Rectangle is 20 by 30
In Rectangle’s destructor
Point destructor called
Point destructor called
caught exception: Oops.

In this simple example, you create a pair of Point objects and then use them (creating a
copy) to create a rectangle. You then delete the Point objects. The second time through,
you call DangerousMethod() , which throws an exception.

Count the constructors and destructors. In round 1,there is an off-setting destructor for
every call to a constructor. This is not true in round 2. Because the exception is thrown,
the delete statements are never reached, and we have created a memory leak.

Notice that in both rounds,the Rectangle ’s destructor is called. Local objects (on the
stack) are destroyed when exiting anexception,but pointers are not deleted.

We can fix this buggy program by adding the delete statement to the catch block. Note
that we have to pull the pointers out of the scope of the try block so that catch can see
them,as shown in Listing 4.7.

LISTING 4.7. DELETING POINTERS IN catch BLOCKS

int main()
{

Point * pUL = 0;
Point * pLR = 0;
try
{

cout << “Begin round 1...” << endl;
pUL = new Point(0,0);
pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);

int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
delete pUL;

Memory Management

CHAPTER 4
143

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 143

delete pLR;
}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

try
{

cout << “Begin round 2...” << endl;
pUL = new Point(0,0);
pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);

int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
myRectangle.DangerousMethod();
delete pUL;
delete pLR;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
delete pUL;
delete pLR;

}

return 0;
}

int main()
{

Point * pUL = 0;
Point * pLR = 0;
try
{

cout << “Begin round 1...” << endl;
pUL = new Point(0,0);
pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);

int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();

Implementation Issues

PART II
144

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.7. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 144

cout << “the Rectangle is “ << w << “ by “ << h << endl;
delete pUL;
delete pLR;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

try
{

cout << “Begin round 2...” << endl;
pUL = new Point(0,0);
pLR = new Point(20,30);
Rectangle myRectangle(pUL, pLR);

int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
myRectangle.DangerousMethod();
delete pUL;
delete pLR;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
delete pUL;
delete pLR;

}

return 0;
}

Here’s the output from this revised program:

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
the Rectangle is 20 by 30
Point destructor called
Point destructor called
In Rectangle’s destructor
Point destructor called
Point destructor called
Begin round 2…
Point constructor called

Memory Management

CHAPTER 4
145

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 145

Point constructor called
Point copy constructor called
Point copy constructor called
the Rectangle is 20 by 30
In Rectangle’s destructor
Point destructor called
Point destructor called
caught exception: Oops.

Point destructor called
Point destructor called

Although this revised code works, it is ugly and doesn’t scale well. Copying the delete s
into all the catch blocks is not a good long-term solution; it makes for code that is hard
to maintain and prone to error. To really solve this problem,we need an object that sits
on the stack but that acts like a pointer. We need a smart pointer, and the Standard
Template Library offers exactly what we need:auto_ptr .

Using Auto Pointers
The Standard Template Library offers the auto_ptr class. An object of this class is
intended to act like a pointer but to sit on the stack so that it is destroyed when an excep-
tion is thrown. The class works by stashing away the real pointer and deleting that point-
er in its own destructor.

Listing 4.8 shows how you would rewrite the example from Listing 4.7 using auto_ptr .

LISTING 4.8. USING auto_ptr

#include <iostream>
#include <memory>

using namespace std;

class myException
{
public:

char * errorMsg() { return “Oops.”; }
};

class Point
{
public:

Point (int x, int y):myX(x), myY(y)
{

cout << “Point constructor called”<< endl;
}

Implementation Issues

PART II
146

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 146

Point (const Point & rhs):
myX(rhs.myX),

myY(rhs.myY){ cout << “Point copy constructor called” <<
➥endl;}

~Point(){ cout << “Point destructor called” << endl;}
int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;
int myY;

};

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
myUpperLeft(new Point(upperLeft)),
myLowerRight(new Point(lowerRight))
{}

Rectangle(auto_ptr<Point> pUpperLeft, auto_ptr<Point> pLowerRight):
myUpperLeft (new Point(*pUpperLeft)),
myLowerRight(new Point(*pLowerRight))
{}

Rectangle(
int upperLeftX,
int upperLeftY,
int lowerRightX,
int lowerRightY):

myUpperLeft(new Point(upperLeftX,upperLeftY)),
myLowerRight(new Point(lowerRightX,lowerRightY))
{}

Rectangle(const Rectangle & rhs):
myUpperLeft(new Point(*myUpperLeft)),
myLowerRight(new Point(*myLowerRight))
{}

~Rectangle(){ cout << “In Rectangle’s destructor” << endl; }

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }
int GetHeight() { return myLowerRight->GetY() - myUpperLeft->GetY(); }

void DangerousMethod() { throw myException(); }

Memory Management

CHAPTER 4
147

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 147

private:
auto_ptr<Point> myUpperLeft;
auto_ptr<Point> myLowerRight;

};

int main()
{

try
{

cout << “Begin round 1...” << endl;
auto_ptr<Point> pUL(new Point(0,0));
auto_ptr<Point> pLR(new Point(20,30));
Rectangle myRectangle(pUL, pLR);
int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

try
{

cout << “Begin round 2...” << endl;
auto_ptr<Point> pUL(new Point(0,0));
auto_ptr<Point> pLR(new Point(20,30));
Rectangle myRectangle(pUL, pLR);

int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
myRectangle.DangerousMethod();

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

return 0;
}

Here’s the output from the program in Listing 4.8:

Implementation Issues

PART II
148

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.8. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 148

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
Point destructor called
Point destructor called
the Rectangle is 20 by 30
In Rectangle’s destructor
Point destructor called
Point destructor called
Begin round 2…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
Point destructor called
Point destructor called
the Rectangle is 20 by 30
In Rectangle’s destructor
Point destructor called
Point destructor calledcaught exception: Oops.

This time, thedestructors are called properly withoutyour having to call them at all from
within main() , either in the catch statement or not! The auto_ptr manages the memory
for you; you just pass in a pointer to the object and the auto_ptr does the rest.

Note that there is a subtle bug in this program; I will discuss it in a moment.

As you can see, auto_ptr s simplify memory management,and they can be used more or
less like normal pointers. Consider this example:

int GetWidth() { return myLowerRight->GetX() - myUpperLeft->GetX(); }

There is no change in how we call the GetX() method:You use the points-to operator on
the auto_ptr just as you would with a regular pointer.

Copying auto_ptr s
What happens whenwe make a copy of an auto_ptr ?

There are two ways to cause a pointer to be copied. The first approach is to invoke the
copy constructor:

Point * ptrOne = ptrTwo;

The second way to copy a pointer is to call the assignment operator:

Point * ptrOne;
ptrOne = ptrTwo;

Memory Management

CHAPTER 4
149

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 149

In either case, the author of the auto_ptr template class has threechoices:

• Make a shallow copy

• Make a deep copy

• Transfer ownership

If a shallow copy is made, we have the usual problem: If the copy goes out of scope, it
deletes the object pointed to and the other pointer would be a wild pointer. If we make a
deep copy, we bring the overhead of constructing and destroying every copy—a pretty
expensive operation and inappropriate for a template class for a general library. Although
this limitation caused the STL authors to choose the third path, it doesn’t mean that mak-
ing a deep copy is the wrong solution for you. You may want to create your own
auto_ptr class that does a deep copy.

In any case, the Standard Template Library implementation of auto_ptr transfers owner-
shipwhen a pointer is assigned. Suppose that you write the following statement:

auto_ptr<Point> newAutoPtr = pUL;

In this example, pUL no longer owns the Point object,and the Point object’s destructor
is not called when pUL goes out of scope. In fact,you should treat pUL as a pointer to
NULL. For this reason,you must be very careful when passing auto_ptr s to functions by
value.

This discussion brings us back to the program in Listing 4.8 and its subtle bug. Let’s add
some code to examine the Point s we createdafter creating the Rectangle :

int main()
{

try
{

cout << “Begin round 1...” << endl;
auto_ptr<Point> pUL(new Point(0,0));
auto_ptr<Point> pLR(new Point(20,30));
Rectangle myRectangle(pUL, pLR);
int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
cout << “the upper left point x is “ << pUL->GetX() << endl;
cout << “the lower right point x is “ << pLR->GetX() << endl;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}

Implementation Issues

PART II
150

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 150

return 0;
}

The output from this revised portion of the program in Listing 4.8 is shown here:

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
Point destructor called
Point destructor called
the Rectangle is 20 by 30
the upper left point x is –572662307
the lower right point x is –572662307
In Rectangle’s destructor
Point destructor called
Point destructor called

We’ve simplified main() by removing the second try /catch block, and we’ve added two
lines to print out the contents of the Point s. They are garbage: -572662307 (your
mileage may vary). This is because we’ve passed the auto_ptr s into the Rectangle ’s
constructor by value; ownership was transferred to the internal copy made by the copy
constructor. When we continue to try to use the original auto_ptr s, they have whatever
garbage happens to be in memory.

The fix is frighteningly simple. Just pass the auto_ptr s by reference. All that has to
change is the single member method of Rectangle :

Rectangle(auto_ptr<Point>& pUpperLeft, auto_ptr<Point>& pLowerRight):
myUpperLeft (new Point(*pUpperLeft)),
myLowerRight(new Point(*pLowerRight))
{}

By making this small change—the addition of two ampersands—no copy is made of the
auto_ptr s and thus ownership is not transferred. This time the Point objects have valid
values:

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
the Rectangle is 20 by 30
the upper left point x is 0
the lower right point x is 20
In Rectangle’s destructor
Point destructor called
Point destructor called

Memory Management

CHAPTER 4
151

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 151

Point destructor called
Point destructor called

Wait a minute! It sure lookslike the copy constructor is being called in the following
statement:

myUpperLeft (new Point(*pUpperLeft)),

Isn’t that an explicit call to the copy constructor of the auto_ptr ? No. Here’s what hap-
pens:The auto_ptr is passed in by reference. In the initialization, it is dereferenced,
returning the pointed-to object (the Point) which is then used to initialize a new
auto_ptr —calling not the copy constructor but the constructor that takes a pointer to a
Point object.

Reference Counting
In Chapter 3,“Inheritance, Polymorphism,and Code Reuse,” we reviewed why it is
important to write your own copy constructor and assignment operator. The goal is to
ensure that you are creating deep copies rather than bitwise, or shallow, copies. Creating
deep copies protects you from creating wild pointers,but it comes at a price.

After your deep copy is completed, you now have two objects taking up memory to hold
the same information. If you are writing a String class,and you are passing strings
among functions,you can end up with many copies of the same string. This is wasteful
and also prone to error. It is easy to lose track of who owns the memory and thus who
must delete each copy.

Reference-counted objects overcome these limitations. A reference-counted class keeps
only one object in memory, but it keeps track of how many pointers are referring to it.
When no one has a reference, the object deletes itself. This approach is clean,elegant,
and efficient.

Writing a reference-counted object is not terribly difficult, but generalizing the class to
act as a base class for all objects that might want to be reference counted does take a bit
of thought. Rather than making our String class inherit from a base class
ReferenceCounted , we will have the String class contain a private class declaration for
a CountedString . Thus,the interface to String does not expose the reference counting;
after all,the clients don’t care how String manages its memory.

The internal class CountedString derives from ReferenceCounted and thus inherits all
the details of managing the reference count. The CountedString class simply specializes
this, adding the ability to manage a (hidden) C-style string that is the actual memory
whose references are counted!

Implementation Issues

PART II
152

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 152

The following statementcreates a string:

String s1(“hello world”);

When you create a string, the string’s constructor initializes its internal countedString

pointer, initializing a new countedString object on the heap. The internal
countedString pointer is a smart pointer so that the string doesn’t have to know any-
thing about incrementing or decrementing the references.

Thus,the string is responsible for string-like methods such as providing an index into the
string. The countedString class is responsible for managing the string’s memory. It
inherits its reference-counting ability fr om its base class ReferenceCounted .

The String keeps a smart pointer to countedString , delegating responsibility for calling
AddRef() and ReleaseRef() to the smart pointer:

class String
{
public:

String(const char * cString = “”);
char operator[](int index) const;
char& operator[](int index);
// …

private:
struct countedString : public ReferenceCounted
{

char * cString;

countedString(const char * initialCString);
countedString(const countedString & rhs);
~countedString();
void initialize(const char * initialCString);

//…

friend class RCSmartPointer<countedString>;
};

RCSmartPointer<countedString> rcString;
};

The base class for countedString is ReferenceCounted , which is responsible for man-
aging the reference counts and deleting the memory when it is no longer referenced:

class ReferenceCounted
{
public:

void addRef();

Memory Management

CHAPTER 4
153

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 153

void removeRef();

void markNotShareable();
bool isShareable();
bool isShared();

protected:
ReferenceCounted();
ReferenceCounted(const ReferenceCounted& rhs);
ReferenceCounted& operator=(const ReferenceCounted& rhs);
virtual ~ReferenceCounted();

private:
int referenceCount;
bool shareable;

};

This class keeps areference count and a Boolean value about whether the memory can
be shared. The protocol is that the object starts out shareable and can be set to nonshare-
able by the owning class according to its own rules.

String marks its memory nonshareable whenever it returns a nonconstant reference
through the index operator. This process is known as “copy on write,” in that we make
a copy of the string the first time there is any chance that the memory will be overwrit-
ten. The client, of course, is oblivious to the fact that we are sharing the memory, and
may want to write into only one of the copies,not all of them. Because we can’t tell
when the memory is overwritten, we just make a copy any time we’re going to make
writing possible:

char & String::operator[](int index)
{

if (rcString->isShared())
{

rcString->removeRef();
rcString = new countedString(rcString->cString);

}
rcString->markNotShareable();
return rcString->cString[index];

}

If the string is marked not shareable, it can never again be marked shareable; there is no
offsetting the MarkShareable() method. We can never again know it is safe to share this
memory, so we don’t.

The key methods are AddRef() and RemoveRef() . Someone must call these methods
each time a copy is made. We’d rather not bother String with this duty, so we create a
smart pointer for reference counted objects (RCSmartPointer) which owns thisresponsi-
bility:

Implementation Issues

PART II
154

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 154

template<class T>
class RCSmartPointer
{
public:

RCSmartPointer(T* ptrToRC = 0);
RCSmartPointer(const RCSmartPointer& rhs);
~RCSmartPointer();

RCSmartPointer& operator=(const RCSmartPointer& rhs);

T* operator->() const;
T& operator*() const;

private:
T * pRC;
void initialize();

};

The smart pointer is initialized with a pointer to any reference-counted object—in our
case, String . It is the smart pointer’s job to increment the reference count when a new
reference is added and to decrement the reference count when the pointer is deleted.
Because the smart pointer must increment the pointer for both of its constructors, it does
so throughthe initialize() method:

template<class T>
void RCSmartPointer<T>::initialize()
{

if (pRC == 0)
return;

if (pRC->isShareable() == false)
{

pRC = new T(*pRC);
}
pRC->addRef();

}

This is the essence of object-oriented design:delegation of responsibility and reuse.
Listing 4.9 shows the entire program.

LISTING 4.9. DELEGATION OF RESPONSIBILITY

#include <iostream.h>
#include <string.h>

template<class T>
class RCSmartPointer
{

Memory Management

CHAPTER 4
155

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 155

public:
RCSmartPointer(T* ptrToRC = 0);
RCSmartPointer(const RCSmartPointer& rhs);
~RCSmartPointer();

RCSmartPointer& operator=(const RCSmartPointer& rhs);

T* operator->() const;
T& operator*() const;

private:
T * pRC;
void initialize();

};

template<class T>
void RCSmartPointer<T>::initialize()
{

if (pRC == 0)
return;

if (pRC->isShareable() == false)
{

pRC = new T(*pRC);
}
pRC->addRef();

}

template<class T>
RCSmartPointer<T>::RCSmartPointer(T* ptrToRC):
pRC(ptrToRC)
{

initialize();
}

template<class T>
RCSmartPointer<T>::RCSmartPointer(const RCSmartPointer& rhs):
pRC(rhs.pRC)
{

initialize();
}

template<class T>
RCSmartPointer<T>::~RCSmartPointer()
{

if (pRC)
pRC->removeRef();

}

Implementation Issues

PART II
156

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.9. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 156

template<class T>
RCSmartPointer<T>& RCSmartPointer<T>::operator=(const RCSmartPointer& rhs)
{

if (pRC == rhs.pRC)
return *this;

if (pRC)
pRC->removeRef();

pRC = rhs.pRC;

return *this;
}

template<class T>
T* RCSmartPointer<T>::operator->() const
{

return pRC;
}

template<class T>
T& RCSmartPointer<T>::operator*() const
{

return *pRC;
}

class ReferenceCounted
{
public:

void addRef() { ++referenceCount; }
void removeRef() {

if (--referenceCount == 0)
delete this;

}

void markNotShareable() { shareable = false; }
bool isShareable() { return shareable; }
bool isShared() { return referenceCount > 1; }

protected:
ReferenceCounted():referenceCount(0), shareable(true) {}
ReferenceCounted(const ReferenceCounted& rhs):

referenceCount(0),
shareable(true)
{}

ReferenceCounted& operator=(const ReferenceCounted& rhs) { return
➥*this; }

virtual ~ReferenceCounted(){}

Memory Management

CHAPTER 4
157

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 157

private:
int referenceCount;
bool shareable;

};

class String
{
public:

String(const char * cString = “”):rcString(new
➥countedString(cString)){}

char operator[](int index) const { return rcString->cString[index]; }
char& operator[](int index);
operator char*() const { return rcString->cString; }

void ShowCountedStringAddress() const { rcString->ShowAddress(); }

private:
struct countedString : public ReferenceCounted
{

char * cString;

countedString(const char * initialCString)
{

initialize(initialCString);
}
countedString(const countedString & rhs) {

➥initialize(rhs.cString); }
~countedString()
{

delete [] cString;
}
void initialize(const char * initialCString)
{

cString = new char[strlen(initialCString) +1];
strcpy(cString,initialCString);

}

void ShowAddress() const { cout << &cString; }

friend class RCSmartPointer<countedString>;
};

RCSmartPointer<countedString> rcString;
};

char & String::operator[](int index)

Implementation Issues

PART II
158

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.9. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 158

{
if (rcString->isShared())
{

rcString->removeRef();
rcString = new countedString(rcString->cString);

}
rcString->markNotShareable();
return rcString->cString[index];

}

int main()
{

String s1(“hello world”);
String s2 = s1; // copy constructor
String s3(“bye”);
s3 = s2; // assignment

cout << “s1: “ << s1 << “ “;
s1.ShowCountedStringAddress();
cout << “\ns2: “ << s2 << “ “;
s2.ShowCountedStringAddress();
cout << “\ns3: “ << s3 << “ “;
s3.ShowCountedStringAddress();

cout << endl;
return 0;

}

I added the ShowAddress() method to prove that the reference counting is working.
Here’s the output from running the program in Listing 4.9:

s1: hello world 0x0042118C
s2: hello world 0x0042118C
s3: hello world 0x0042118C

As you can see, all three strings have the same address in memory. Perfect.

Here’s how it works. On the first line of main() , we create a String object. Put this in
your debugger. You’ll f ind that this innocuous line will bring you into the heart of all of
these classes. Most interestingly, you’ll see the reference counters invoked automatically.
Here are the steps:

String s1(“hello world”);

We create a String object on the stack. Stepping in brings us to the String constructor:

String(const char * cString = “”):rcString(new countedString(cString)){}

Memory Management

CHAPTER 4
159

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 159

In the initialization of the member variable rcString , we enter the new operator and
then the constructor for countedString :

countedString(const char * initialCString) { initialize(initialCString); }

Before we enter the body of the constructor, we enter the (implicit) initialization of the
base class,in which the member variable ReferenceCount is initialized to zero:

ReferenceCounted():referenceCount(0), shareable(true) {}

Why zero and not 1? It turns out to be easier and safer to let the derived class set this to
1. While we’re here, we initialize the ReferenceCounted object to be shareable—the
default. We then enter the body of countedString ’s constructor, which brings us to the
initialize member method of countedString (passing in the original cString as a
parameter):

void initialize(const char * initialCString)

In the body of this initialization, a new character array is created on the heap, and its
address is stored in the membervariable cString :

cString = new char[strlen(initialCString) +1];
strcpy(cString,initialCString);

Remember that we are still initializing the String class’s member rcString , which is an
RCSmartPointer , so we enter the constructor for RCSmartPointer , where the internal
pointer is set to point to the ReferenceCounted object allocated on the heap and
RCSmartPointer ’s initialize() method is invoked:

template<class T>
RCSmartPointer<T>::RCSmartPointer(T* ptrToRC):
pRC(ptrToRC)
{

initialize();
}

The initialize() method checks to see whether the pointer was NULL, in which case,
no action is needed. Otherwise, it checks whether the ReferenceCounted object is share-
able. If not, new memory is allocated; otherwise, the reference counter isincremented:

if (pRC->isShareable() == false)
{

pRC = new T(*pRC);
}
pRC->addRef();

This causes the base class addRef() method to be invoked:

void addRef() { ++referenceCount; }

Implementation Issues

PART II
160

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 160

At the conclusion of this string of events,memory has been allocated on the heap, and
this memory is managed by a reference-counted object after the reference count has been
initialized. What looks like a stack-based object actually manages reference-counted
memory on the heap—the best of both worlds.

Memory Management

CHAPTER 4
161

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

WHERE’S THE COPY CONSTRUCTOR AND ASSIGNMENT OPERATOR?

In the preceding discussion, we are copying String objects, and String objects
have pointers. Don’t we need a copy constructor and an assignment operator?
Well, we have one—the compiler-generated default. Although the default copy
constructor does produce a bitwise copy, that is okay; when it copies the mem-
ber rcString , the RCSmartPointer ’s copy constructor or assignment operator is
invoked, and it will ensure that a deep copy is made—one that uses reference
counting. String has fully delegated responsibility to its rcString member.

Counted Rectangles
After you have a ReferenceCounted base class,and you have the smart pointer working,
you can carry this design just about anywhere. We can easily transform our Rectangle

class to be a reference-counted class—and the interface doesn’t change at all, as shown
in Listing 4.10.

LISTING 4.10. REFERENCE COUNTING THE Rectangle CLASS

Counted Rectangles

#include <iostream>
#include <memory>
#include <string>

using namespace std;

class myException
{
public:

char * errorMsg() { return “Oops.”; }
};

template<class T>
class RCSmartPointer
{
public:

RCSmartPointer(T* ptrToRC = 0);

continues

07 239-5 CH04 2/19/99 1:09 PM Page 161

RCSmartPointer(const RCSmartPointer& rhs);
~RCSmartPointer();

RCSmartPointer& operator=(const RCSmartPointer& rhs);

T* operator->() const;
T& operator*() const;

private:
T * pRC;
void initialize();

};

template<class T>
void RCSmartPointer<T>::initialize()
{

if (pRC == 0)
return;

if (pRC->isShareable() == false)
{

pRC = new T(*pRC);
}
pRC->addRef();

}

template<class T>
RCSmartPointer<T>::RCSmartPointer(T* ptrToRC):
pRC(ptrToRC)
{

initialize();
}

template<class T>
RCSmartPointer<T>::RCSmartPointer(const RCSmartPointer& rhs):
pRC(rhs.pRC)
{

initialize();
}

template<class T>
RCSmartPointer<T>::~RCSmartPointer()
{

if (pRC)
pRC->removeRef();

}

template<class T>
RCSmartPointer<T>& RCSmartPointer<T>::operator=(const RCSmartPointer& rhs)

Implementation Issues

PART II
162

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.10. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 162

{
if (pRC == rhs.pRC)

return *this;

if (pRC)
pRC->removeRef();

pRC = rhs.pRC;

return *this;
}

template<class T>
T* RCSmartPointer<T>::operator->() const
{

return pRC;
}

template<class T>
T& RCSmartPointer<T>::operator*() const
{

return *pRC;
}

class ReferenceCounted
{
public:

void addRef() { ++referenceCount; }
void removeRef() {

if (—referenceCount == 0)
delete this;

}

void markNotShareable() { shareable = false; }
bool isShareable() { return shareable; }
bool isShared() { return referenceCount > 1; }

protected:
ReferenceCounted():referenceCount(0), shareable(true) {}
ReferenceCounted(const ReferenceCounted& rhs):

referenceCount(0),
shareable(true)
{}

ReferenceCounted& operator=(const ReferenceCounted& rhs) { return
➥*this; }

virtual ~ReferenceCounted(){}

private:

Memory Management

CHAPTER 4
163

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 163

int referenceCount;
bool shareable;

};

class Point
{
public:

Point (int x, int y):myX(x), myY(y)
{

cout << “Point constructor called”<< endl;
}
Point (const Point & rhs):

myX(rhs.myX),
myY(rhs.myY){ cout << “Point copy constructor called” <<

➥endl;}
~Point(){ cout << “Point destructor called” << endl;}

int GetX() const { return myX; }
void SetX(int x) { myX = x; }
int GetY() const { return myY; }
void SetY(int y) { myY = y; }

private:
int myX;
int myY;

};

class Rectangle
{
public:

Rectangle(Point upperLeft, Point lowerRight):
rcRect(new countedRect(upperLeft, lowerRight))
{}

Rectangle(Point * pUpperLeft, Point * pLowerRight):
rcRect(new countedRect(*pUpperLeft, *pLowerRight))
{}

Rectangle(
int upperLeftX,
int upperLeftY,
int lowerRightX,
int lowerRightY):

rcRect(new countedRect(new Point(upperLeftX,upperLeftY),
new Point(lowerRightX,lowerRightY)))

{}

~Rectangle(){ cout << “In Rectangle’s destructor” << endl; }

Implementation Issues

PART II
164

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.10. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 164

int GetWidth()
{

return rcRect->myLowerRight->GetX() - rcRect->myUpperLeft->GetX();
}
int GetHeight()
{

return rcRect->myLowerRight->GetY() - rcRect->myUpperLeft->GetY();
}

void DangerousMethod() { throw myException(); }

private:

struct countedRect : public ReferenceCounted
{

char * cString;
Point * myUpperLeft;
Point * myLowerRight;

countedRect(const Point * ul, const Point * lr) {
➥initialize(ul,lr); }

countedRect(Point ul, Point lr) { initialize(&ul, &lr); }
countedRect(const countedRect & rhs)
{

initialize(rhs.myUpperLeft, rhs.myLowerRight);
}
~countedRect()
{

delete myUpperLeft;
delete myLowerRight;

}
void initialize(const Point * ul, const Point * lr)
{

myUpperLeft = new Point(*ul);
myLowerRight = new Point(*lr);

}

friend class RCSmartPointer<countedRect>;
};

RCSmartPointer<countedRect> rcRect;

};

int main()
{

Memory Management

CHAPTER 4
165

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

continues

07 239-5 CH04 2/19/99 1:09 PM Page 165

try
{

cout << “Begin round 1...” << endl;
Point pUL(0,0);
Point pLR(20,30);
Rectangle myRectangle(pUL, pLR);
int w = myRectangle.GetWidth();
int h = myRectangle.GetHeight();
cout << “the Rectangle is “ << w << “ by “ << h << endl;
myRectangle.DangerousMethod();
cout << “You never get here.\n” << endl;

}
catch (myException & e)
{

cout << “caught exception: “ << e.errorMsg() << “\n\n” << endl;
}
return 0;

}

Here’s theoutput from the program in Listing 4.10:

Begin round 1…
Point constructor called
Point constructor called
Point copy constructor called
Point copy constructor called
Point copy constructor called
Point copy constructor called
Point copy constructor called
Point copy constructor called
Point destructor called
Point destructor called
Point destructor called
Point destructor called
the Rectangle is 20 by 30
In Rectangle’s destructor
Point destructor called
Point destructor called
Point destructor called
Point destructor called
caught exception: Oops.

This is a portable solution that can be used in any number of circumstances. It offers the
twin benefits of using less memory and preventing memory leaks. Notice that even when
the exception is thrown from DangerousMethod() , the stack is unwound and no memory
is lost—the smart pointers decrement,and theallocated memory is destroyed.

Implementation Issues

PART II
166

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

LISTING 4.10. CONTINUED

07 239-5 CH04 2/19/99 1:09 PM Page 166

Summary
The trick with memory management is to understand explicitly what memory you are
allocating, and where you have a pointer to that memory. Either you must keep track of
those pointers and ensure that the memory is returned when you are done with it,or you
must introduce garbage collection in the form of smart pointers.

Although smart pointers have their limitations,they do help protect your code from
memory leaks and are especially important in the face of exceptions. If your program is
to be robust,it must be scrupulous in its efforts to manage resources and not allow mem-
ory to be lost.

Memory Management

CHAPTER 4
167

4

M
EM

O
RY

M
A

N
A

G
EM

EN
T

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 167

168

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH04 Lp#1

07 239-5 CH04 2/19/99 1:09 PM Page 168

IN THIS CHAPTER

• The Microsoft Foundation
Classes 170

• Gaining Perspective 175

• Issues in Preemptive
Multithreading 177

• A Brief Case Study 178

• Utility Classes 199

• Documents and Views 201

5
C

H
A

PT
ER

How To Use
Frameworks

08 239-5 CH05 2/19/99 1:10 PM Page 169

The great, unrealized promise of object-oriented programming is code reuse. The idea of
OOP was to create classes that could serve as the foundation on which new programs
could be built. Components could be plugged into a new architecture like electronics are
plugged into a circuit board. By and large, however, things haven’t worked out that
way—with one significant exception: application framework libraries.

The vast majority of successful application framework libraries are those that facilitate
the creation of applications in a windowing environment such as Windows NT or X
Window. By far the most successful such library is the Microsoft Foundation Classes
(MFC); this chapter focuses on the MFC as an example of what such an Application
Frameworks library can provide.

Implementation Issues

PART II
170

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

NOTE

The MFC is large and powerful and necessarily complex. No single chapter can
fully introduce all its functionality—let alone provide a comprehensive tutorial.
The intent of this chapter is not to teach you how to use the MFC, but rather to
dip into the MFC here and there to examine some of the universal issues com-
mon to all such application frameworks. For a detailed and comprehensive
introduction of the MFC, take a look at Professional MFC Programming, by Mike
Blaszczak (published by Wrox Press).

The Microsoft Foundation Classes
The MicrosoftFoundation Class library (called the MFC) is an application framework
that provides a structure and a set of classes with which you can build an application for
Windows. The MFC provides standard user-interface implementations of windowing
classes,as well as a set of utility classes to assist you in the manipulation of certain kinds
of objects such as String and Time .

Getting Started
The MFC goes beyond providing a set of application-level classes and actually provides
a framework within which you can use these classes. You can see the power of this
approach when you use the wizards that facilitate the creation of Windows applications.
Figure 5.1 shows how a new project can be created using theApplication Wizard.

08 239-5 CH05 2/19/99 1:10 PM Page 170

After you start the Application Wizard, it asks a series of questions to help you design
your application within the Document/View architecture. Figure 5.2 shows the first ques-
tion: Are you building a Single Document Interface (SDI) or Multi-Document Interface
(MDI) application, or do you just need a simple dialog-based interface?

How To Use Frameworks

CHAPTER 5
171

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

FIGURE 5.1.
The Application
Wizard.

FIGURE 5.2.
What kind of
view?

Subsequent screens of the wizard ask you to choose among various options:database
support, COM support, support for Internet access,and so forth. After the Application
Wizard has run,a number of classes are created that constitute the initial framework for
your application (see Figure 5.3).

08 239-5 CH05 2/19/99 1:10 PM Page 171

Implementation Issues

PART II
172

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

FIGURE 5.3.
Classes produced
by the wizard.

OnEndPrinting(CDC*pDC, CPrintInfo

OnDraw(CDC*pDC)

OnBeginPrinting(CDC*pDC, CPrintInfo

CUnleashedDoc()

Unleashed classes

CAboutDlg

CAboutDlg()

DoDataExchange(CDataExhange*p

CChildFrame

AssertValid()

CChildFrame
~CChildFrame

Dump(CDumpContext & dc)

PreCreateWindow(CREATESTRUCT

CUnleashedApp

InitInstance()

OnAppAbout()

CMainFrame

AssertValid()

CMainFrame
~CMainFrame

Dump(CDumpContext & dc)

PreCreateWindow(CREATESTRUCT

OnCreate(LPCREATESTRUCT ipCrea

m_wndStatusBar

m_wndToolBar

AssertValid()

~CUnleashedDoc()

Dump(CDumpContext & dc)

Serialize(CArchive & ar)

OnNewDocument()

CUnleashedApp

CUnleashedDoc

CUnleashedView()

AssertValid()

~CUnleashedView()

Dump(CDumpContext & dc)

GetDocument()

PreCreateWindow(CREATESTRUCT

OnPreparePrinting(CPrintInfo*pInfo)

CUnleashedView

08 239-5 CH05 2/19/99 1:10 PM Page 172

How To Use Frameworks

CHAPTER 5
173

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Note that each class contains a number of standard methods. Often,these methhods pro-
vide simple boilerplate code and then indicate where your customizing code should be
added, as shown in this sample output from the Application Wizard:

BOOL CUnleashedDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

// TODO: add reinitialization code here
// (SDI documents will reuse this document)

return TRUE;
}

At times,the code provided by the wizard is extensive; it can save you significant devel-
opment time and simplify your interaction with the more complex aspects of Windows
programming such as setting up COM for interprocess communication. Listing 5.1
shows the InitInstance method generated by thewizard.

LISTING 5.1. WIZARD GENERATED CODE

BOOL CUnleashedApp::InitInstance()
{

AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef _AFXDLL
Enable3dControls(); // Call this when using MFC in a shared

➥DLL
#else

Enable3dControlsStatic(); // Call this when linking to MFC
➥statically
#endif

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T(“Local AppWizard-Generated Applications”));

LoadStdProfileSettings(); // Load standard INI file options
➥(including MRU)

// Register the application’s document templates. Document templates
// serve as the connection between documents, frame windows and

➥views.

08 239-5 CH05 2/19/99 1:10 PM Page 173

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_UNLEASTYPE,
RUNTIME_CLASS(CUnleashedDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CUnleashedView));

AddDocTemplate(pDocTemplate);

// create main MDI Frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;
m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo))

return FALSE;

// The main window has been initialized, so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;
}

The program in Listing 5.1 is ready to run,without your adding a line of custom code. It
compiles,links, and executes. The code generated by the Application Wizard provides
you with the ability to create and close windows and creates a standard button bar and
menu right out of the box. This framework then becomes the base to which you add your
own custom behavior and user interface.

Other Wizards
In addition to the Application Wizard, the MFC provides wizards that create and manipu-
late classes and the methods and members of those classes,as well as wizards that hook
up methods for responding to user actions such as button clicks. The MFC also provides
wizards that interact with databases and that use COM. A host of new wizards is being
developed even as this is written.

Implementation Issues

PART II
174

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:10 PM Page 174

How To Use Frameworks

CHAPTER 5
175

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Gaining Perspective
The best way to approach the MFC is to distinguish between the application architecture
(that is, the application, threads,managing commands,and so forth) and the
document/view architecture (for example, CWnd, CView , and so forth).

Application Architecture
MFC applications consist of a single CWinApp class and one or more CWinThread s. As
you might guess,CWinApp represents the application (or process) and the various
CWinThread s implementmultithreading. When the application starts, there is only one
thread:the primary thread. New threads are created and destroyed, but when the applica-
tion ends,it is the primary thread that ends.

Message processing—that is, responding to events—is managed by the CCmdTarget

classes,the most important of which is CWnd. Window classes are and must be
CCmdTarget derivatives because windows are the primary objects that respond to user
actions such as clicks and menu choices. Threads also derive from CCmdTarget so that
messages can be sent to the threads and the threads can respondto requests asynchro-
nously.

The architecture of the MFC is large and complex, and this chapter does not attempt to
explain it all in detail. Instead, this chapter focuses on a few mechanisms that are of
value because the knowledge extends beyond the specifics of the MFC. For example, we
will f ocus on how the MFC implements multithreading and thread safety because these
issues apply when you write C++ code in any environment. The details may vary, but the
tasks and requirements are invariable.

Multithreading
The MFC providesa set of classes for managing multithreading. Although the specifics
of how the MFC implements these classes may differ from how, for example, the XOpen
libraries handle multithreading, the essential tasks and objectives are universal.

The term threadis shorthand for thread of execution. The Windows operating system
(and most modern operating systems) allows your application to have more than one
thread of execution in a single program. It appears as though your program were running
two or more tasks at one time, although most often what is really happening is that the
computer is switching among the threads,offering the illusion of simultaneity. As a mat-
ter of fact,this is exactly how the illusion of multiprocessing is accomplished. When you
run your word processing program,your Internet browser, and your spreadsheet program,
the processor just switches among them.

08 239-5 CH05 2/19/99 1:10 PM Page 175

Implementation Issues

PART II
176

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

A program represents a process,and each process may have more than one thread. The
principal difference between a process and a thread is the “overhead”of each—it takes
more time to switch among processes than it does to switch among threads. This is why
threads are sometimes referred to as lightweightprocesses.

The thread context is the information the computer needs to make the switch among
threads. The thread context consists of a stack (for temporary variables and the return
addresses of subroutines),a kernal stack (to hold addresses for interrupt service returns),
and a set of registers. In the registers, there are, among other things,the instruction point-
er and the stack pointer. The instruction pointer tells the CPU where to find its next
instruction (as it works its way through your source code),and the stack pointer tells the
CPU where it canstore or retrieve the next local variable.

The CPU is rather dumb; it just works its way through the code. The operating system
(in this case, Windows) tells the CPU when to effect a thread or process switch. The
operating system is said to manage time slicing—affording each thread its own little
“slice of time” in which to execute.

NOTE

Multitasking indicates doing more than one thing at a time. An operating sys-
tem can be said to be a multitasking system if it can manage more than one
process (running program) at a time. A single process is multithreaded when
there is more than one thread of control within the same process.

Cooperative Versus Preemptive Multithreading
Programmers familiar with Windows 3.x or with the Mac may have been exposed to a
form of multithreading called cooperative multithreading. This primitive form of multi-
threading allows for more than one thread, but each thread must voluntarily release con-
trol of the processor periodically to allow other threads to run.

The problem with cooperative multithreading is that a single thread can “hog” the
processor, causing all other threads to run very slowly. Worse, the thread can “hang,”
causing the entire application togrind to a halt.

Preemptive multithreadingtakesadvantage of the CPU’s ability to signal when it is time
to switch among threads. This more sophisticated mechanism involves cooperation
between the operating system (for example, Windows NT) and the CPU chip (for exam-
ple, the Pentium) to ensure that each thread is allocated a preset amount of processor

08 239-5 CH05 2/19/99 1:10 PM Page 176

time (typically measured in milliseconds). The operating system rapidly switches among
threads,allocating a “slice” of time based on the thread’s priority.

The advantage of preemptive multithreading is that no thread can consume a dispropor-
tionate share of the system processing time—and if a thread hangs,the remaining threads
can continue working.

Issues in Preemptive
Multithreading
Creating programs that run in a multiprocessingenvironment such as Windows is fairly
straightforward:You write your program as if you had uncontested access to the CPU,
the disk,the database, and so forth. You leave it to the operating system to keep every-
thing straight—you just plow ahead as though yours was the only program running.

Writing a multithreadedapplication is somewhat more complicated. Actually, it is a lot
more complicated because suddenly your code can be interrupted at any time (which is
always true). More important,more than one thread can reenteryour code so that the
same code can be running in two different threads. This can happen if functions in two
different threads each call into your code.

Multithreaded applications can get dicey; if your code isn’t threadsafe, one thread may
be carefully setting up values for your database while another thread is trampling over
the same values,rendering them meaningless. This is not a good thing—and can be one
of the most difficult bugs to find.

For example, assume you have a function which takes a record out of a database, updates
it, and writes it back. Here is the pseudocode:

int Updater()
{

getARecord();
updateIt();
writeItBack();

}

Assume you also have a function,func1 , in thread 1 and anotherfunction, func2 , in
thread 2,each of which calls Updater() .

func1() is running and it calls Updater() . Updater() now begins to run in the context
of thread 1 and it gets a record; but before it updates it,the thread is interrupted and
thread 2 runs.

How To Use Frameworks

CHAPTER 5
177

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:10 PM Page 177

Implementation Issues

PART II
178

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

func2() now calls Updater() which runs again, this time in the context of thread 2. It
gets the same record (coincidentally), updates it,and writes it back before being inter-
rupted.

Now, thread 1 resumes,and Updater() resumes where it was,with the record it original-
ly got out of the database. It will now update that record and write it back, corrupting the
update achieved in thread 2.

This is one example among many where multithreading can corrupt data if your methods
are not thread safe.

The short advice on multithreading is this:If you can avoid writing multithreaded code,
do so. Don’t use multithreading unless and until you have no choice. It makes your code
more complex and far harder to maintain. It dramatically increases the likelihood of
bugs—and most of the time, it decreases performance. After all, it takes time to stash
away the thread context and to switch threads. Add enough threads,and the CPU spends
a significant portion of its time just switching among them—and proportionally less time
getting any useful work done!

Suppose that you have a program that takes a lot of data in,calculates the sum of the
data,and then uses that sum in a second equation. “Aha!” you say, “Two tasks! I’ll create
two threads.” The problem is that the second thread can’t begin until the first thread is
done working. Even if you could calculate them “at the same time,” if you can’t use the
data until both are done, why not let them run in series rather than in parallel? Running
the tasks together buys you nothing, and the cost of switching between the tasks may be
high.

So when do you use multithreading? The classic scenario is one in which one task will
take a long time and the second task does not depend on the first. Suppose that you must
save data to disk and also display it onscreen. You’d hate to wait for the data to be saved
before you can put it on the screen—after all,writing to disk can take a while. Why not
put the “wr ite it to disk” task into a separate thread and get on with the more important
job of interacting with the user? Why not, indeed.

A Brief Case Study
I wrote anapplication that makes phone calls—not unlike those annoying telemarketing
calls you get just as you are sitting down to dinner. The difference was that my program
made calls only to people who wanted to receive them (honest!),was fully automated,
and tried not to call at dinner time.

A given computer could call 72 different people at one time. After each call, the program
would stash away the results of the call and, periodically, would update the database with

08 239-5 CH05 2/19/99 1:10 PM Page 178

How To Use Frameworks

CHAPTER 5
179

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

these results. At the same time, it kept a cache of numbers to call so that it was never
idle. This project cried out for multithreading.

The design of this project was somewhat complex, but for our purposes it came down to
this: I ran one thread for each calling line (CCaller) for a total of 72 threads if all 72
lines were active. I also created one thread to manage the reporting functionality
(CReporter) and another thread for managing the cache of calls waiting for an open line
(CLocalCallQueue). Finally, there was the main thread that managed all the others and
that owned the user interface (a control panel for watching the progress of the calls).
Thus,this application ran 75 threads!

That’s a lot of threads,but on a reasonably sophisticated machine (a Windows NT
Workstation running on a Pentium PC with 128MB of RAM) it ran quite quickly and
gave the illusion of all the threads running simultaneously. In addition, the application
itself was not only multithreaded, it was multiprocessedbecause there were additional
calling machines and there were additional components in other processes (and on other
machines!) responsible for scheduling jobs and managing the database.

Let’s focus on some of the kinds of issues that arise in such an environment.

Creating Threads
The first task,of course, is to create a thread. There are, in fact,two distinct ways of cre-
ating and managing threads. The first is appropriate for use with widgets (typically win-
dows) that have to run as a thread. Imagine an object that has methods but that operates
independently from all other threads. This is the first type of thread, and it derives from
CWinThread .

The second type of thread is more appropriate to use when you want a function to run in
its own thread. This type of thread is referred to as aworker thread.

Using CWinThread Objects
You create a CWinThread object just as you create any other object:You derive from
CWinThread itself or from some class that in turn derives from CWinThread . When you
instantiate your CWinThread -derived object,you do not spawn a thread; to spawn a
thread, you must callCreateThread() on that object.

Creating your CWinThread object is fairly straightforward. You declare a class derived
(directly or indirectly) from CWinThread and you instantiate an object of that type on the
heap. You then invoke CreateThread() on that object and ensure that the method returns
true (meaning that the thread was created). The code might look like this:

CMyClass * pThread;
pThread = new CMyClass;

08 239-5 CH05 2/19/99 1:10 PM Page 179

Implementation Issues

PART II
180

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

if (! pThread->CreateThread())
{

MessageBox(“Thread Creation Failed!\n”);
Delete pThread;

}

NOTE

There is some confusion about terminology. Is pThread (or more accurately, the
object pointed to by pThread) a thread or is it running in a thread? Technically,
it is a CWinThread object running in its own thread. It is convenient, however, to
say that it is a thread—a shorthand way to say “this is a CWinThread object that
runs in its own thread and that manages that thread.”

Managing Messages
One significant advantage of using messages is that the new object (pointed to by
pThread) not only operates in its own thread, it can also receive messages by using
::PostThreadMessage() . In fact,the thread can receive messages even if it is not associ-
ated with any onscreen widget or window!

Given a pointer to a CWinThread object on the heap, you can send that thread a message
from any other thread, as shown here:

pThread-PostThreadMessage(MY_MESSAGE_CONSTANT, wParam, lParam);

wParam and lParam are vestigial names left over from 16-bit programming. In 16-bit
Windows, lParam is 32 bits but wParam is only 16 bits (w indicates a word—16 bits on a
16-bit operating system). Today, Windows is a true 32-bit system,and these parameters
are both 32 bits (as is the int).

The first parameter is either a system-defined or a user-defined constant. The mapping
between this message ID and the method that is invoked is handled by
OnThreadMessage() , which in turn is defined in the message map for your CWinThread

Object.

In the multithreaded application discussed earlier, each calling thread derived from
CWinThread :

class CCaller : public CWinThread
{
public:

bool CallCompleted(bool isConnected = true);
bool RestoreRoute();

08 239-5 CH05 2/19/99 1:10 PM Page 180

How To Use Frameworks

CHAPTER 5
181

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

// …

// board manipulation
int Call ();
void HangUp ();
// …

// lifetime
virtual BOOL ExitInstance ();
virtual BOOL InitInstance ();
//…

void MakeCalls ();
void ReceiveCalls ();

protected:
DECLARE_MESSAGE_MAP()
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()
IVoice* m_pVoice1;
//…

private:
//…

};

I’ ve left out most of this class’declaration to show only the most relevant methods. The
DECLARE_MESSAGE_MAPmacro sets up the message mapping for message dispatch. In the
implementation file, we use a few more macros to tie messages to methods:

BEGIN_MESSAGE_MAP(CCaller, CWinThread)
//{{AFX_MSG_MAP(CCallClientApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG_MAP
// Standard print setup command
ON_THREAD_MESSAGE(WM_PLACE_CALLS,CCaller::MakeCalls)
ON_THREAD_MESSAGE(WM_RECEIVE_CALLS,CCaller::ReceiveCalls)
//…

END_MESSAGE_MAP()

Note that CCaller is shown as a class immediately derived from CWinThread in thefirst
line, and that two messages are being mapped. WM_PLACE_CALLSis mapped to the method
MakeCalls() , andWM_RECEIVE_CALLSis mapped to ReceiveCalls() .

The declaration for these constants is in a global header file:

const int WM_PLACE_CALLS = WM_USER + 1;
const int WM_RECEIVE_CALLS = WM_USER + 2;

08 239-5 CH05 2/19/99 1:10 PM Page 181

The details of the message-mapping macros are beyond the scope of this discussion,but
you can see that it is fairly straightforward to create the CWinThread object,to set it spin-
ning in its own thread, and then to use that object’s methods either directly (from within
its own thread) or indirectly (by posting messages to it).

Now other objects that have a pointer to your object can send it messagesand have those
messages handled in the background.

Managing Windows
The CWinThread objectis designed, among other things,to manage windows (and other
derived widgets) that require their own threads. Associating a window with your
CWinThread object is straightforward: simply have initInstance() create the window
(or widget) and retain a pointer to it. Your CWinThread object then becomes a wrapper
for the window.

To facilitate this,MFC allows you to assign that window to the CWinThread object’s
m_pMainWnd member. This causes the message dispatch code in CWinThread to manage
that window exclusively.

Note that you now have three objects to keep straight:

• The CWinThread object

• The thread itself

• The window your CWinThread object manages

Remember that creating the CWinThread object does not create the thread. You do that by
calling CreateThread() . Similarly, when you destroy the thread, the CWinThread object
lives on. You can change this by setting the member variable m_bAutoDelete to true (it
is false by default). This setting tells Windows to destroy your CWinThread object when
its thread is destroyed.

The Alternative: Worker Threads
If you simply want a method of one of your classes to operate “in the background”—that
is, in its own thread—you can create a worker thread. To do this,you use
AfxBeginThread() . AfxBeginThread() is actually overloaded so that you can use it for
this purpose; you can also use it to manage threads with classes derived from
CWinThread . Here we are concerned only with the first overload of AfxBeginThread() :

CWinThread * AfxBeginThread()
(

AFX_THREADPROC pSomeThreadFunction,
LPVOID pParamter,
int nPriority = THREAD_PRIORITY_NORMAL,

Implementation Issues

PART II
182

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:10 PM Page 182

UINT nStackSize = 0,
DWORD dwCreateFlags = 0,
LPSECURITY_ATTRIBUTES lpSecurityAttributes = NULL

)

Because the first two parameters are the most significant,I’ ll discuss them last.
nPriority is an integer value that defines the initial priority of the thread; you can set it
to THREAD_PRIORITY_HIGHEST, THREAD_PRIORITY_BELOW_NORMAL, and so forth to control
the relative priority of each of your threads. As shown, the default is
THREAD_PRIORITY_NORMAL.

The fourth parameter, nStackSize is a UINT. A UINT is an unsigned integer; this parame-
ter sets the initial size of the thread’s stack (each thread has its own stack). The default
value, zero, causes Windows to allocate the same stack size for thenew thread as did the
thread that spawned it.

The fifth parameter, dwCreateFlags , is a DWORD(a double word). Again, this size is vesti-
gial; it indicates a 32-bit unsigned integer. The creation flags can be set to zero (the
default) or to CREATE_SUSPENDED. These flags allow you to create the thread but not have
it run until you call ::ResumeThread() .

The sixth parameter is the security attributes structure. You can safely ignore this para-
meter and leave it at its default NULL setting. If you need Windows NT security, you can
create and initialize your own security structure and then insert it using this parameter.

Not let’s return to the first two parameters: The first parameter is the function you want
to run in its own thread (we call this the thread-controlling function). The second para-
meter is a structure containing all the parameters you want to send to thecontrolling
function.

Here’s what the MFC help file has to say about the thread-controlling function:

The controlling function defines the thread. When this function is entered, the
thread starts; when it exits, the thread terminates. This function should have the
following prototype:

UINT MyControllingFunction(LPVOID pParam);

Let’s be clear about terminology. Your new controlling function will be invoked by some
other function,which we’ll refer to as the invoking function. The invoking function com-
municates with the controlling function by the single LPVOID parameter. Whatever must
be passed to the controlling function must be packed into that single parameter. This is
not as hard as it sounds:You simply create a structure, load it with the values you want
to pass in,cast it to LPVOID, and pass the entire structure into the controlling function
using AfxBeginThread() .

How To Use Frameworks

CHAPTER 5
183

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:10 PM Page 183

Implementation Issues

PART II
184

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Some books suggest making the controlling function a global function; I disagree. You’ll
achieve better encapsulation (and thus have easier-to-maintain code) if you make the
function a static member function of a particular class.

Note that you have no this pointer in your static member function,so you must pass in
the this pointer as a parameter to the function. For example, you might declare your
member methodlike this:

class myClass
{
public:

static UINT myThreadFunc(LPVOID pMe);
// …

};

And you would write the implementation like this:

UINT myClass:: myThreadFunc (LPVOID ptheThisPointer)
{

myClass * pmyThis = (CClientManager *) pMyThisPointer;
ASSERT (pmyThis);
pmyThis->SomeClassMethod();
return 0;

}

You then invoke using AfxBeginThread() , passing in the class’s this pointer as the sec-
ond parameter:

AfxBeginThread(myClass:: myThreadFunc,(LPVOID) this);

An alternative is to make the function a friendof the class.

Synchronization
Now that your thread is up and running, you confront the issue of thread synchroniza-
tion. The MFC provides a number of objects to help with this task:critical sections,sem-
aphores,mutexes,and events.

Your thread can check the status of each of these objects (other than critical sections) to
see whether the object is signaled or unsignaled (often called cleared). When a synchro-
nization object is signaled, it indicates that your thread may have access. Until the object
is signaled, your thread “waits.” When a thread is waiting, it is doing nothing and is
blocked.

Critical Sections
Critical sections are the simplest,easiest to use, and most limited of the synchronization
objects. Your thread obeys a simple rule:When it wants to touch an area of code to be
synchronized, it first asks for a lock on its CriticalSection object. It then blocks

08 239-5 CH05 2/19/99 1:10 PM Page 184

execution of its thread until the CriticalSection object can be locked. If another thread
has already locked the object,your thread waits until the other thread unlocks the
CriticalSection . The CriticalSection thus synchronizes access to the specified area
of code. Here is how a critical section might be usedto bracket code which changes a
value:

m_CS.Lock();
s.Format(“Current value: %d”, m_Value);
m_Value++;
m_CS.Unlock();

Here the object has two variables:m_Value (an integer) and m_CS(a CCriticalSection).
The critical section is locked, the value is incremented, and the critical section is
unlocked.

Mutexes
Critical sectionsare great. For many purposes,they are all you need. They are fast,light-
weight,and easy to use. They are, unfortunately, also limited. Their biggest limitations
are that they are visible only in one process,and that you cannot wait a specified amount
of time for them to unlock.

A more sophisticated synchronization device is the mutex. The word mutex is derived
from the words mutually exclusive, with the implication that if two (or more) objects
share a mutex, they have mutually exclusive access to whatever that mutex controls.

A mutex is very similar to a critical section:Either you own it (and can access the area
of code it protects) or you do not (and you must wait). Unlike a critical section,however,
a mutex can be shared across processes; your code can also specify how long to wait for
the mutex to become available before you “time out.” Here is how you might use a
mutex to control access to code that changes a value:

CSingleLock theLock (&m_myMutex);
if (theLock.Lock(WAIT_TIME))
{

s.Format(“Current value: %d”, m_Value);
m_Value++;
theLock.Unlock();

}
else
{

AfxMessageBox(“Lock on Mutex failed. No increment!”);
}
break;

Here’s how a mutex works. You start by initializing a Lock object. If you are waiting
only for one object (for example, the mutex) you can use CSingleLock . To wait for more

How To Use Frameworks

CHAPTER 5
185

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:10 PM Page 185

Implementation Issues

PART II
186

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

than one object to become available, you use CMultiLock . You initialize the lock with the
object you want to wait for.

When you are ready to access the protected code, you lock the Lock object and pass in
how long you want to wait, measured in milliseconds. The default value is INFINITE —
meaning that you want to wait until the sun goes nova and the Earth is destroyed.

Events
Event objects are useful for waiting for an event to occur. Event objects are unsignaled
until some other object sets them to be signaled. Threads can wait for an event to become
signaled, allowing you to say to a thread “start running when this event occurs.”

Typically, you create an event in the unsignaled state and then tell one or more threads to
wait for that event to become signaled. You might set such an event to notify threads
when printing is complete, when a file has been downloaded, when there is a message in
the queue, and so forth.

Events have a membervariable, bManualReset , which determines what happens when
you call SetEvent() on the Event object. If bManualReset is false , then all waiting
threads are released when you call SetEvent() . If you want the event to be reset
(returned to unsignaled),you must call ResetEvent() .

If , on the other hand, bManualReset is true , then only one waiting thread is released,
and the Event is once again automatically reset to unsignaled.

If you have a manual reset event (bManualReset is true), you can release all the waiting
threads by calling PulseEvent() . Doing so also automatically resets the event. Thus,
PulseEvent() allows you to treat your manual reset event as if it were anauto-reset
event.

An Example
Listing 5.1 uses a number of the synchronization devices described in the preceding sec-
tions. It is intentionally simplistic to allow you to focus on how the synchronization
objects interact. This MFC application draws a simple dialog box as shown in Figure 5.4.

When you click the Start Thread 1 button in the dialog box, a worker thread is spawned.
This worker thread increments and displays a value stored in the dialog box. (Normally,
you would store these values in the document,but in the MFC’s dialog application, there
is no Document object.) This thread then waits a variable amount of time up to one sec-
ond and repeats. Documents and views are explained in detail later in this chapter.

When you click the Start Thread 2 button in the dialog box, a second worker thread is
spawned. This thread also increments and displays the samevalue stored in the dialog

08 239-5 CH05 2/19/99 1:10 PM Page 186

How To Use Frameworks

CHAPTER 5
187

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

box. If you let these two threads run for a while, you’ll see that the numbers are added to
the list box out of order because the threads are competing for the same resource.

When you click the Start Thread 3 button in the dialog box, a new CWinThread -derived
object is created. The dialog box then sends that new thread object a message to start
work, and that thread also begins incrementing the value held in the dialog box. Now all
three threads are incrementing the same value (see Figure 5.5).

FIGURE 5.4.
A simple dialog
box.

FIGURE 5.5.
Adding values
without synchro-
nization.

Note that the values are out of order:

Current value: 10
Current value: 12
Current value: 11
T3 Current value: 9
Current value: 14
Current value: 13

This is a direct result of three threads competing for a single value that is not under syn-
chronization control.

08 239-5 CH05 2/19/99 1:10 PM Page 187

Implementation Issues

PART II
188

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

If you click the Critical Section radio button in the dialog box, the application accesses
that value under control of a CCriticalSection . As you might expect,the critical sec-
tion causes the numbers to be listed in order. Clicking the Mutex radio button causes
these values to be accessed under the control of the CMutex object and sets a timeout
period for access to the value. Once again, this causes the values to be listed in the cor-
rect order.

The Pause button is included to allow you to easily examine the order of thevalues dis-
played; otherwise, they scroll by very quickly.

I added a CEvent object that starts out unsignaled. When the dialog box is initialized, this
object creates a thread that displays a message to the user, but that thread waits for the
event to be signaled. As each of the three user-controlled threads is created, a counter is
incremented. When all the threads are running, the event is signaled and the message is
displayed, as shown in Figure 5.6.

FIGURE 5.6.
The event is sig-
naled.

This is a silly use of the CEvent , but it does illustrate how it is used. The worker thread
that displays this message exits when you click OK, thus terminating the thread.

A detailed examination of the code shows how these synchronization objects are used.
When I created this application, I told MFC (by way of the wizard dialogs) that I wanted
a dialog-based application rather than a single-document or a multi-document interface,
as shown in Figure 5.7. The complete application is included on the CD-ROM that
accompaniesthis book.

Building a dialog-based application means that I have a simpler application, but that I do
not have a CDocument class in which I can store my state variables. The dialog example
uses the CDialog class as a quick-and-dirty solution to the creation of the application.
The constructor for CDocument serves toinitialize these state variables:

08 239-5 CH05 2/19/99 1:10 PM Page 188

How To Use Frameworks

CHAPTER 5
189

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

CThreadsUnleashedDlg::CThreadsUnleashedDlg(CWnd* pParent /*=NULL*/)
: m_Value(0),
m_Paused(false),
m_MTC(0),
m_numThreads(0),
m_AllRunningEvent(false,true,NULL,NULL),
CDialog(CThreadsUnleashedDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CThreadsUnleashedDlg)
m_RadioButtonValue = 0;
//}}AFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in

➥Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

In this code, m_Value is thevalue I’ll be incrementing. m_Paused is a flag indicating that
the user has clicked the Pause button; it is initialized to false . m_MTCis a pointer to a
MyThreadClass object,which is created when the user clicks the Start Thread 3 button.
m_NumThreads keeps count of how many user-requested threads are running, and
m_AllRunningEvent is the Event object that is signaled when all three user-requested
threads are running.

FIGURE 5.7.
Wizard dialog.

NOTE

Some code is called out in bold to draw your attention to a particularly interest-
ing aspect or to show what we’ve added or changed.

The rest of this method was created by the Application Wizard.

08 239-5 CH05 2/19/99 1:10 PM Page 189

Implementation Issues

PART II
190

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

I create my new thread in OnInitDialog() , as shown here:

BOOL CThreadsUnleashedDlg::OnInitDialog()
{

CDialog::OnInitDialog();

// … unimportant details elided…

AfxBeginThread(ThreadsNotification,(LPVOID)this);

return TRUE; // return TRUE unless you set the focus to a control
}

The call to AfxBeginThread(ThreadsNotification,(LPVOID)this) spawns the worker
thread that is implemented in the method ThreadsNotification() . The rest of the
Application Wizard code has been left out because it is boilerplate.

The ThreadsNotification() method looks like this:

UINT CThreadsUnleashedDlg::ThreadsNotification(LPVOID pParam)
{

CThreadsUnleashedDlg * pThis = (CThreadsUnleashedDlg*) pParam;
WaitForSingleObject(pThis->m_AllRunningEvent,INFINITE);

AfxMessageBox(“All three threads are now running”);

return 0;
}

This very simple method unpacks the parameter and casts it into a pointer to the
CThreadsUnleasedDlg object that invoked this method. This approach is necessary
because the worker thread function must be static; it cannot have a this pointer. We then
use the this pointer to access the CEvent object passed to WaitForSingleObject() , and
we tell the code to wait forever. This instruction blocks the thread and releases its time
slice. When the event is signaled, this thread is released and displays its message box.
The final line, return 0 , causes the function to return and the thread to exit.

The dialog box is now displayed and is quiescent until a button is clicked. When the user
clicks Start Thread 1,a message is sent to the dialog box which is captured in the mes-
sage map:

ON_BN_CLICKED(IDC_BUTTON_START_T1, OnButtonStartT1)

This invokes the method OnButtonStart1() :

void CThreadsUnleashedDlg::OnButtonStartT1()
{

CButton * pB = (CButton*)GetDlgItem(IDC_BUTTON_START_T1);
pB->EnableWindow(false);

08 239-5 CH05 2/19/99 1:10 PM Page 190

How To Use Frameworks

CHAPTER 5
191

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

m_Thread1 = AfxBeginThread(ThreadFunction,(LPVOID)this);
CStatic * pStatic = ((CStatic *) (GetDlgItem(IDC_STATIC_STATUS)));
pStatic->SetWindowText(“Thread 1 running”);
CountThreads();

}

We create a pointer to the button returned from GetDlgItem() and use that pointer to dis-
able the button (rendering it gray, showing that it can’t be pressed again).

We then create a new thread by invoking AfxBeginThread() , passing in the address of a
static function that returns a UINT, and a single parameter. This is the required syntax for
AfxBeginThread() . Because we want to pass in the this pointer, we just cast it to
LPVOID (which translates to void **).

This action spawns a new thread and returns immediately. We then get a pointer to the
CStatic object on the dialog box and update that to display Thread 1 running . Finally,
we call CountThreads() .

We’ll explore what happens in the body of the new thread in a moment. First, let’s take a
quick look at CountThreads() :

void CThreadsUnleashedDlg::CountThreads()
{

if (InterlockedIncrement(&m_numThreads) >= 3)
m_AllRunningEvent.SetEvent();

}

The goal of this method is to increment the count of running threads; when it hits 3, it
sets the AllRunningEvent event so that the notification thread can be released. Because
we want to ensure that the variable m_numThreads is under synchronization control, we
can take advantage of the InterlockedIncrement() method. This method takes a pointer
to a long integer (4 bytes) and increments it under thread control.

NOTE

Under Windows NT, this approach reliably returns the newly incremented value;
under Windows 95, however, it does not. Thus, the code as shown is specific to
Windows NT. If you must run this code under Windows 95, increment the value
and then test it separately.

The worker threads do a simple job of incrementing the m_Value member of the
dialog box:

08 239-5 CH05 2/19/99 1:10 PM Page 191

Implementation Issues

PART II
192

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

UINT CThreadsUnleashedDlg::ThreadFunction(LPVOID pParam)
{

CListBox * pLB = ((CListBox*)(pThis->GetDlgItem(IDC_LIST_OUTPUT)));
CString s;
int offset;

srand((unsigned)time(NULL));

for (;;)
{

if (pThis->m_Paused)
{

Sleep(500);
continue;

}

switch (pThis->m_RadioButtonValue)
{

case sNONE: // None
s.Format(“Current value: %d”,pThis->m_Value);
Sleep(rand() % 1000);
pThis->m_Value++;
break;

case sCRITICAL_SECTION: // Critical Section
pThis->m_CS.Lock(); // no timeout possible
s.Format(“Current value: %d”,pThis->m_Value);
Sleep(rand() % 1000);
pThis->m_Value++;
pThis->m_CS.Unlock();
break;

case sMUTEX: // Mutex
CSingleLock theLock (&(pThis->m_myMutex));

if (theLock.Lock(WAIT_TIME))
{

s.Format(“Current value: %d”,pThis->m_Value);
Sleep(rand() % 1000);
pThis->m_Value++;
theLock.Unlock();

}
else
{

AfxMessageBox(“Lock on Mutex failed. No increment!”);
}
break;

}

offset = pLB->AddString(s);

08 239-5 CH05 2/19/99 1:10 PM Page 192

How To Use Frameworks

CHAPTER 5
193

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

pLB->SetTopIndex(offset);

}
return 0;

}

The first job of this section of code is to cast the this pointer:

CThreadsUnleashedDlg * pThis = (CThreadsUnleashedDlg*) pParam;

Because the thread is implemented in a static member function,you must pass in a copy
of the this pointer, which must be used (explicitly) to access the members. Because,
however, this is a member method, it does have access to the private member variables of
the class.

We immediately enter a forever loop,grabbing the value and incrementing it until the
thread is destroyed. Each time through the loop,we check the value of the dialog’s
m_Paused Boolean member to see whether we should pause long enough to let the user
review the progress so far:

if (pThis->m_Paused)
{

Sleep(500);
continue;

}

We then look at the radio buttons. Note that we don’t examine the control, but rather the
member variable m_RadioButtonValue :

switch (pThis->m_RadioButtonValue)

This member variable was created by the Class Wizard and is associated with the radio
buttons. All the radio buttons contained in the group box are recognized as a single,
mutually exclusive set of choices. To create a series of radio buttons,you mark only the
first button as having the style “group” (do not mark any of the others in this way). You
can then find that radio button in the Class Wizard’s Member Variable tab and can create
an integer “value” member variable to correspond to that button. The integer is set to the
zero-based offset of the button selected; in this example, None has the value 0, Critical
Section has the value 1, and Mutex has the value 2. The code to map these buttons to
these valuesis generated by the wizard:

DDX_Radio(pDX, IDC_RADIO_NONE, m_RadioButtonValue);

While the wizard was running, I also mapped each radio button to a method, so that
when the user clicks one of the radio buttons,the associated method is called:

ON_BN_CLICKED(IDC_RADIO_NONE, OnRadioNone)
ON_BN_CLICKED(IDC_RADIO_MUTEX, OnRadioMutex)
ON_BN_CLICKED(IDC_RADIO_CRITICAL_SECTION, OnRadioCriticalSection)

08 239-5 CH05 2/19/99 1:10 PM Page 193

Implementation Issues

PART II
194

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

For example, when the user clicks the Mutex radio button (IDC_RADIO_MUTEX), the
method OnRadioMutex() is invoked, as shown here:

void CThreadsUnleashedDlg::OnRadioMutex()
{

UpdateData();
CStatic * pStatic = ((CStatic *) (GetDlgItem(IDC_STATIC_STATUS)));
pStatic->SetWindowText(“Using Mutex”);

}

The first thing this method does is update the associated variable (m_RadioButtonNone)
and then print a status message to the status line.

Let’s return to ThreadFunction() ; after we determine we are not paused, we switch on
the value of the m_RadioButtonValue member, which as you now know corresponds to
the radio button chosen by the user. To test the switch statement,I use an enumerated
constant:

enum synch { sNONE, sCRITICAL_SECTION, sMUTEX, sEVENT};

This makes the intent of the code a bit easier to decipher. If the value is sNone (zero), the
first button None was chosen,and I simply print the value of m_Value and increment it.
If either the Critical Section or Mutex radio button was selected, then I bracket the call to
the increment function with code to manage the synchronization device.

In the case of the Critical Section radio button being selected, I lock the dialog box’s
critical section variable m_CS, print and update the value, and then unlock it:

case sCRITICAL_SECTION: // Critical Section
pThis->m_CS.Lock(); // no timeout possible
s.Format(“Current value: %d”,pThis->m_Value);
Sleep(rand() % 1000);
pThis->m_Value++;
pThis->m_CS.Unlock();
break;

In the case of the Mutex radio button being selected, I have a bit more control. I create a
CSingleLock object,passing in the address of the mutex. I then request a lock, specify-
ing a timeout value. If the mutex is locked within the allotted time, I go ahead and print
and update the value. If the mutex is not available within the allotted time, then I fail,
print a warning message, and take no other action. This prevents the thread from hanging
indefinitely, waiting for a mutex that may never become available.

When the user clicks Start Thread 3,a somewhat different sequence of events is initiated:

void CThreadsUnleashedDlg::OnButtonStartT3()
{

CButton * pB = (CButton*)GetDlgItem(IDC_BUTTON_START_T3);

08 239-5 CH05 2/19/99 1:10 PM Page 194

How To Use Frameworks

CHAPTER 5
195

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

pB->EnableWindow(false);
if (! m_MTC)
{

m_MTC = new CMyThreadClass(this);
BOOL bRc = m_MTC->CreateThread();
if (! bRc)
{

CString msg(“Unable to start thread!\n”);
AfxMessageBox(msg);
// JLTODO: post quit message

}
m_MTC->PostThreadMessage(WM_START_WORK, 0, 0);
CountThreads();

}

}

Once again,we dim the button,but this time we check to see whether the member vari-
able that points to our CWinThread -derived object is NULL. Assuming that it is, we are
ready to create a new instance of the thread class.

While it is normally important to check whether the pointer is NULL, in this code we
know it is not,and so the if statement can be rewritten using ASSERT.

ASSERT (! m_MTC);

Because we dim the button,it isn’t possible for this thread to already exist. I wrote it this
way to allow for a time in the immediate future when we can create and then destroy
these thread objects willy-nilly.

The goal is to instantiate an object of type CMyThreadClass . This class is derived from
CWinThread and thus is able to manage a Windows thread:

class CMyThreadClass : public CWinThread

Creating the thread is a two-step process. In the first step, thethread objectis instantiated:

m_MTC = new CMyThreadClass(this);

In the second step, the thread itself is created:

BOOL bRc = m_MTC->CreateThread();

Note the difference. When we create an instance using new, we create the object but we
do not create the Windows thread. The thread is created with the call to CreateThread() .
We talk about the object and the thread as if they were the same, but they are distinct.

After the thread is running, we want it to start work, but we do not want to call its
StartWork() method directly. If we did, we would hang until that method returns (which

08 239-5 CH05 2/19/99 1:11 PM Page 195

Implementation Issues

PART II
196

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

it never does). Instead, we want to send a message asynchronously to that thread and tell
it to start work. We do that using its PostThreadMessage() method—which returns
immediately:

m_MTC->PostThreadMessage(WM_START_WORK, 0, 0);

This statement posts a user-defined message with the value WM_START_WORK, to the
thread. This value is also defined in our constants.h file as shown here:

const int WM_START_WORK = WM_USER + 1;

When the thread detects that message, it maps it to a member method of the class by the
dispatch map:

BEGIN_MESSAGE_MAP(CMyThreadClass, CWinThread)
//{{AFX_MSG_MAP(CMyThreadClass)

// NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_MSG_MAP
ON_THREAD_MESSAGE(WM_START_WORK,OnStartWork)

END_MESSAGE_MAP()

Note that I add my own ON_THREAD_MESSAGEline after the AFX_MSG_MAPprotected code,
but before the END_MESSAGE_MAP()macro. Anything between these two lines can be
overwritten by the wizards,but the code I’ve added is safe:

//{{AFX_MSG_MAP(CMyThreadClass)

//}}AFX_MSG_MAP

This map simply dictates that when the WM_START_WORKmessage is received, themethod
OnStartWork() is to be invoked:

void CMyThreadClass::OnStartWork()
{

CStatic * pStatic = ((CStatic *) (m_pDlg->GetDlgItem
➥(IDC_STATIC_STATUS)));

pStatic->SetWindowText(“Thread 3 running”);

CListBox * pLB = ((CListBox*)(m_pDlg->GetDlgItem(IDC_LIST_OUTPUT)));

srand((unsigned)time(NULL));
CString s;
CString status;
for (;;)
{

if (m_pDlg->IsPaused())
{

08 239-5 CH05 2/19/99 1:11 PM Page 196

How To Use Frameworks

CHAPTER 5
197

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Sleep(500);
continue;

}
int val;

switch (m_pDlg->m_RadioButtonValue)
{

case sNONE: // None
val = m_pDlg->GetValue();
s.Format(“T3 Current value: %d”,val);
Sleep(rand() % 1000);
m_pDlg->SetValue(++val);
break;

case sCRITICAL_SECTION: // Critical Section
m_pDlg->m_CS.Lock(); // no timeout possible
val = m_pDlg->GetValue();
s.Format(“T3 Current value: %d”,val);
Sleep(rand() % 1000);
m_pDlg->SetValue(++val);
m_pDlg->m_CS.Unlock();

break;

case sMUTEX: // Mutex
CSingleLock theLock (&(m_pDlg->m_myMutex));

if (theLock.Lock(WAIT_TIME))
{

val = m_pDlg->GetValue();
s.Format(“T3 Current value: %d”,val);
Sleep(rand() % 1000);
m_pDlg->SetValue(++val);
theLock.Unlock();

}
else
{

AfxMessageBox(“Lock on Mutex failed. No increment!”);
}
break;

}

int offset = pLB->AddString(s);
pLB->SetTopIndex(offset);

}

}

08 239-5 CH05 2/19/99 1:11 PM Page 197

Implementation Issues

PART II
198

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Not surprisingly, this method is quite similar to the ThreadFunction() methodwe just
examined. The significant difference is that this is not a static method of the dialog class,
but is a simple member method of the thread class. The thread class can maintain its own
state and can respond to thread messages.

To ensure proper synchronization, this thread must use the same mutex as is used by the
dialog class’threads. Remember, however, that the CMutex can be named. To do this,we
initialize the mutex in the constructor to the dialog:

CThreadsUnleashedDlg::CThreadsUnleashedDlg(CWnd* pParent /*=NULL*/)
: m_Value(0),
m_Paused(false),
m_MTC(0),
m_numThreads(0),
m_AllRunningEvent(false,true,NULL,NULL),
m_myMutex(false,”m1”),
CDialog(CThreadsUnleashedDlg::IDD, pParent)

We then create another mutex as a member of the thread:

class CMyThreadClass : public CWinThread
{
/…
private:

CThreadsUnleashedDlg * m_pDlg;
CMutex m_Mutex;

};

Then we initialize this mutex with the same name:

CMyThreadClass::CMyThreadClass(CThreadsUnleashedDlg * pDlg):
m_pDlg(pDlg),
m_Mutex(false,”m1”)
{

}

We can now modify the code in the thread object to refer to its own mutex, which is a
reference to the mutex object held by the dialog:

CSingleLock theLock (&m_Mutex);
if (theLock.Lock(WAIT_TIME))
{

//…
}

08 239-5 CH05 2/19/99 1:11 PM Page 198

How To Use Frameworks

CHAPTER 5
199

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Utility Classes
The MFC provides aseries of utility classes,some of which we’ve seen in action already.
These classes are added by Microsoft to the foundation classes to make programming
easier—which frees you from having to do so yourself. With the advent of the Standard
Template Library, many of these classes are now somewhat redundant,but to date
Microsoft has simply folded the STL back into its own library.

The most important and useful utility classes are the CString class(for manipulating
character strings) and the CTime classesfor manipulating dates,times,and timespans.

String Manipulation Classes
Perhaps the utility class which you will use most frequently is CString . This simple
string class facilitates using text strings:creating, formatting, copying, passing as para-
meters,and so forth.

The constructor for CString is overloaded to take no parameters (the default constructor)
or to take an existing CString object (the copy constructor) or to take a number of alter-
natives,perhaps the most useful of which simply takes a C-style NULL-terminatedstring.

After your CString object exists,you can concatenate it with another CString . This code
initializes s3 with the string “Hello world” :

CString s1(“Hello”);
CString s2 (“ world”);
CString s3 = s1+s2;

You can use CString for sophisticated string manipulation, such as searching for sub-
strings and the like. One of the most powerful methods is Format() , which takes a string
not unlike that used by printf() and which uses the same specifiers as printf() .
You’ve seen CString.Format() in action throughout this and other chapters.

Time Classes
Another popular setof utility classes provided by the MFC assist with manipulating
time. The ANSI standard provides for a time_t data type that the MFC wraps with the
CTime class. This class represents an absolute time and date within the range January 1,
1970 to January 18,2038,inclusive. The CTime class includes utility functions to convert
to and from Gregorian dates and between 12-hour and 24-hour clocks. Additional meth-
ods assist you in extracting the year, month,day, hours,minutes,and so forth from a
given time value.

08 239-5 CH05 2/19/99 1:11 PM Page 199

Implementation Issues

PART II
200

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

The CTimeSpan classprovides relative time values,that is time spans. When one CTime

object is subtracted from another, the result is a CTimeSpan object. You can add and sub-
tract CTimeSpan objects from CTime objects to create new CTimeSpan objects. The range
of dates you can thus manipulate is about 68 years.

We can put this class to use to measure the interval between two events. Let’s modify the
CMyThreadClass shown earlier, so that when it is not under synchronization control, it
pauses a random interval between 1 and 5,000 milliseconds (5 seconds). We can measure
the duration (in seconds) by taking the current time at the start of the work and again at
the end of the work, and thenmeasuring the difference between them:

CTime start, end;
CTimeSpan len;

start = CTime::GetCurrentTime();
rightNow = start.Format(“T3 Start: %b %d %Y %I:%M%p”);
offset = pLB->AddString(rightNow);
pLB->SetTopIndex(offset);

val = m_pDlg->GetValue();
s.Format(“T3 Current value: %d”,val);
Sleep(rand() % 5000);
m_pDlg->SetValue(++val);

end = CTime::GetCurrentTime();
rightNow = end.Format(“T3 End: %b %d %Y %I:%M%p”);
offset = pLB->AddString(rightNow);
pLB->SetTopIndex(offset);

len = end - start;
duration.Format(“T3 - Duration %d seconds”,len.GetSeconds());
offset = pLB->AddString(duration);
pLB->SetTopIndex(offset);

The CTime variable start is set to the current time before we begin working. The CTime

variable end is set to the current time when we are done. The timespan len is set to the
difference.

We can extract and print the current time by calling Format() on the CTime objects; we
can print the duration by using the CTimeSpan member method GetSeconds() .

The output from the preceding code looks like this:

T3Start Jul 28 1998 05:02:39PM
T3End Jul 28 1998 05:02:44PM
T3 Duration 5 seconds
T3Current value: 10
T3Start Jul 28 1998 05:02:44PM

08 239-5 CH05 2/19/99 1:11 PM Page 200

How To Use Frameworks

CHAPTER 5
201

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

T3End Jul 28 1998 05:02:48PM
T3 Duration 4 seconds
T3Current value: 11
T3Start:Jul 28 1998 05:02:48PM
T3End Jul 28 1998 05:02:51 PM
T3 Duration 3 seconds
T3Current value: 12
T3Start: Jul 28 1998 05:02:51PM
T3End: Jul 28 1998 05:02:55 PM
T3 Duration 4 seconds

Documents and Views
Of course, dialog boxes and threads are not the heart and soul of the MFC. The real rea-
son for the existence of the MFC is to help you manage the creation and manipulation of
windows—onscreen views of your data. To do this,the MFC uses documents (to manage
data) and views (to manage windows and controls).

The MFC’s document/view design pattern is a simplification of the
Model/View/Controller (MVC) design pattern originally used to build user interfaces in
Smalltalk-80. In MVC,you create an object that represents your data; this object is
called the model. You then assign responsibility for viewing that data to various views,
and decouple viewing from the responsibility for controlling or manipulating the data,
which is assigned to the controllers.

Microsoft’s variant on theMVC design pattern is the somewhat simpler Document/View
pattern. In Microsoft’s approach, the data (document) is still separated from the view, but
the view and the controller are merged. Document/View is so intrinsic to the Microsoft
Foundation Classes that it is sometimes a challenge to write programs that ignore this
pattern.

It is important to note that in both the MVC and the Document/View patterns,the model,
or document, is any data your program uses. Documents need not be word processing
documents—they can be collections of records,tables,or amorphous data structures.

Views
The views in the MFC are represented as windows and widgets, or controls. The class
CWndis the base class for all the views, including dialog boxes,CFrameWnd(which man-
ages the frame of a window), and CMDIChildWnd (which manages multidocument-
interface windows—that is, multiple subwindows within a single frame as you might see
by opening more than one document in Microsoft Word). CWndis also the base class to
CView , as well as the base to all the controls such as CButton , CListbox , and so on.

08 239-5 CH05 2/19/99 1:11 PM Page 201

Implementation Issues

PART II
202

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

The CDocument and CView classes encapsulate the Document/View design pattern and
work with the CWnd-derived classes to display the contents of the CDocument . The CView

class can be extended in many powerful ways,and the MFC provides you with a family
of derived classes including CScrollView (for scrolling through large documents),
CEditView (for building text documents),CRichEditView (for creating documents with
rich text such as FORMATTING, bold, italic, and so on),CFormView (for creating onscreen
forms),CRecordView (for working with databases),and CTreeView (for creating struc-
tured views of hierarchical data).

CView is the parent class of all these derived views,and it provides a number of virtual
functions for your derived class to override. The most important CView functions are
probably OnInitialUpdate() , OnUpdate() , and OnDraw() .

OnInitialUpdate() is called the first time the view updates itself. Every time a docu-
ment changes,it notifies all the views currently attached to it. MFC calls
OnInitialUpdate() the first time and calls OnUpdate() on all subsequent calls.

The default behavior for the update methods is to invalidate the window and then to
invoke OnDraw() . This approach gives you tremendous flexibility in how you render your
view, but also provides boilerplate code that can be used to implement default drawing
functionality.

Form Views
One very popularuse of the MFC is to create complex forms for gathering information
from a user. There are two common methods for implementing such an application: as a
simple dialog box and with the new CFormView . The CFormView combines the
Document/View architecture with the ease of use of a dialog box. We’ll explore the form
view in some depth here, to provide a more general lesson in how such applications can
be built using virtually any application framework library.

The sample program we’ll implement looks like what is shown in Figure 5.8.

This application presents a form for use by a credit agency. It gathers information from
the user by way of a number of flexible controls. Among the controls we’ll explore are
edit controls (for example, Last Name),radio buttons (for example, Spending),drop-
down lists (for example, Salary Range), slider controls (for example, Credit Limit), and
spin controls (for example, Member Since). We’ll also explore property sheets,invoked
here by selecting Profile, but which are often seen in applications as a device for gather-
ing user preferences. As an example of a property sheet,Figure 5.9 shows the property
sheet from Microsoft Word.

08 239-5 CH05 2/19/99 1:11 PM Page 202

How To Use Frameworks

CHAPTER 5
203

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

As you can see, a property sheet is a way to manage a series of dialog-based forms,giv-
ing the user freedom to move among the pages as needed. The propery sheet we’ll imple-
ment in this example looks like the one in Figure 5.10. This is a somewhat simpler exam-
ple than the Microsoft Word property sheet,but it affords us an opportunity to examine,
in detail,how property sheets are implemented.

Getting Started with Form Views
To get started, fire up a new SDI project and proceed through the wizards in the usual
way. Just before we confirm the filenames,we highlight the view

FIGURE 5.8.
Sample form view
application.

FIGURE 5.9.
Property sheet
from Word.

08 239-5 CH05 2/19/99 1:11 PM Page 203

Implementation Issues

PART II
204

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

(CControlsUnleashedView) and change its type (base class) from CView to CFormView ,
as shown in Figure 5.11.

FIGURE 5.10.
Our example
property sheet.

After the application is built, we open the resource editor and begin to build the initial
form. Each of the controls should be afforded a meaningful name, and then we invoke
the Class Wizard to assign variables corresponding to the value of each of thecontrols,
as shown in Figure 5.12.

For some of the controls such as IDC_COMBOSalaryRange , we create two variables:one
holds the value (m_SalaryRangeValue) and one represents the control itself
(m_ComboSalaryRange).

By having a variable that holds the control itself, we can write this simple statement:

m_ComboSalaryRange.GetCount();

If we didn’t have such a variable, we’d have to write this:

CComboBox * pBox = (CComboBox *) GetDlgItem(IDC_COMBOSalaryRange);
pBox->GetCount();

FIGURE 5.11.
Changing the view
to FormView .

08 239-5 CH05 2/19/99 1:11 PM Page 204

How To Use Frameworks

CHAPTER 5
205

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

When you expect to access the control itself, using a Class Wizard–generated member
variable is simpler and easier to maintain.

When all the form controls have corresponding values,the Class Wizard generates the
code to ensure that these variables are updated with the values in the controls. We’ll
explore how this works,but note that these variables are members of the CFormView , not
of the document. If you want to ensure that the data is stored in a central location (which
is what you will want if more than one view will display or interact with this data), you
will have to create corresponding variables in the document and manage the transfer
between the view and the document manually.

Managing Data
To get the data into and out of the variables of the view, you invoke UpdateData() . If
you pass in the parameter false , you initialize the controls with the data in the view. If
you pass no parameter, the default value of true indicates that you want to update the
variables with the contents of the controls.

UpdateData() will, eventually, invoke DoDataExchange() (do not invoke this method
directly!), which was created by the Class Wizard (although you can create it by hand if
you want). DoDataExchange() lookslike this:

void CControlsUnleashedView::DoDataExchange(CDataExchange* pDX)
{

CFormView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CControlsUnleashedView)
DDX_Control(pDX, IDC_COMBOSalaryRange, m_ComboSalaryRange);
DDX_Control(pDX, IDC_SPIN_MEMBER_SINCE, m_MemberSinceControl);
DDX_Control(pDX, IDC_STATICVISAPic, m_VisaPic);
DDX_Control(pDX, IDC_STATICMCPic, m_MasterCardPic);
DDX_Control(pDX, IDC_SLIDERCredit, m_CreditSlider);
DDX_Control(pDX, IDC_RADIOVisa, m_VisaButton);

FIGURE 5.12.
Assigning vari-
ables for each
control.

08 239-5 CH05 2/19/99 1:11 PM Page 205

Implementation Issues

PART II
206

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

DDX_Control(pDX, IDC_BUTTONProfile, m_ButtonProfile);
DDX_Control(pDX, IDC_EDITCreditLimit, m_CreditLimitControl);
DDX_Control(pDX, IDC_COMBOOptions, m_CCOptions);
DDX_Control(pDX, IDC_CHECKVisaClub, m_CheckVisaClub);
DDX_CBIndex(pDX, IDC_COMBOOptions, m_CCOptionValue);
DDX_CBString(pDX, IDC_COMBOState, m_State);
DDX_Text(pDX, IDC_EDITAddress, m_Address);
DDX_Text(pDX, IDC_EDITCity, m_City);
DDX_Text(pDX, IDC_EDITFirstName, m_FirstName);
DDX_Text(pDX, IDC_EDITLastName, m_LastName);
DDX_Radio(pDX, IDC_RADIONoProfile, m_RadioProfile);
DDX_Radio(pDX, IDC_RADIOVisa, m_VisaButtonValue);
DDX_Text(pDX, IDC_Zip, m_Zip);
DDX_Check(pDX, IDC_CHECKAdv, m_CheckAdvValue);
DDX_Check(pDX, IDC_CHECKCheckWriting, m_CheckWritingValue);
DDX_Text(pDX, IDC_EDIT_MEMBER_SINCE, m_EditSince);
DDV_MinMaxInt(pDX, m_EditSince, 1990, 2005);
DDX_Text(pDX, IDC_EDITCreditLimit, m_EditCreditLimitValue);
DDX_CBIndex(pDX, IDC_COMBOSalaryRange, m_SalaryRangeValue);
//}}AFX_DATA_MAP

}

Each of these DDX_macrosensures that the data will be taken from the control and
inserted into the variable in the right format (for example, converting from strings to
int s as necessary). In addition, the macros provide an opportunity for automated range
checking. For example, the m_EditSince variable is set to check the integer value entered
to ensure that it is a value between 1990 and 2005 . When you examine this variable in
the Class Wizard, you have the opportunity to set these limits (see Figure 5.13).

FIGURE 5.13.
The Class Wizard.

When the user attempts to leave the dialog box, if the value selected is not within the
limits, the user is informed of this error and is returned to the field to make the necessary
update (see Figure 5.14).

08 239-5 CH05 2/19/99 1:11 PM Page 206

How To Use Frameworks

CHAPTER 5
207

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Normally, this check is done when the user clicks the OK button,but I’ve modifed the
code to ensure that the check is done after the user leaves the field. I did this by asking
the Class Wizard to create a method for the EN_KILL_FOCUSmessage—which is called
when you tab out of the field (see Figure 5.15).

FIGURE 5.14.
Checking values.

FIGURE 5.15.
Checking values
when leaving
fields.

In the implementation of this method, I simply call UpdateData() , which forces the data
validation:

void CControlsUnleashedView::OnKillfocusEditMemberSince()
{

UpdateData();
}

Event-Driven Programming
The most commonmessages to respond to,of course, are button-push messages,which
are managed in much the same way as messages generated by other controls. For exam-
ple, when the Visa or Master Card buttons are clicked, we want to change the bitmap dis-
played and alter the check box choices available. We create an OnRADIOVisa() method to
be invoked when the button is clicked:

void CControlsUnleashedView::OnRADIOVisa()
{

UpdateData();

if(m_VisaButtonValue==0)

08 239-5 CH05 2/19/99 1:11 PM Page 207

Implementation Issues

PART II
208

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

{
m_CCOptions.ResetContent();
m_CCOptions.AddString(“Visa Card”);
m_CCOptions.AddString(“Visa Card Gold”);
m_CCOptions.AddString(“Visa Card Platinum”);
m_CCOptions.SetCurSel(0);

m_CheckVisaClub.EnableWindow(true);
m_VisaPic.ShowWindow(SW_SHOW);
m_MasterCardPic.ShowWindow(SW_HIDE);

}
else
{

m_CCOptions.ResetContent();
m_CCOptions.AddString(“Master Card Gold”);
m_CCOptions.AddString(“Master Card Platinum”);
m_CCOptions.AddString(“Master Card Premium”);
m_CCOptions.SetCurSel(0);
m_CheckVisaClub.EnableWindow(false);
m_VisaPic.ShowWindow(SW_HIDE);
m_MasterCardPic.ShowWindow(SW_SHOW);

}

}

As you can see, this method checks the value of the radio button selected and then sets
the contents of the drop-down list appropriately. The method also hides the picture of
Master Card and shows the picture of Visa (or vice versa).

The OnRADIOMasterCard() method simply invokes OnRADIOVisa :

void CControlsUnleashedView::OnRADIOMasterCard()
{

OnRADIOVisa();
}

Users find it quite impressive when they select a radio button and other parts of the form
respond—even though implementing this response is straightforward. We can tie other
controls together as well. For example, the Credit Limit field is tied to the slider control
beneath it. Moving the slider updatesthe credit limit field and vice versa.

We update the slider from the Credit Limit field by catching the kill focus message and
setting the position of the slider based on the current contents of the edit field:

void CControlsUnleashedView::OnKillfocusEDITCreditLimit()
{

UpdateData();
m_CreditSlider.SetPos(m_EditCreditLimitValue / 1000);
UpdateData(false);

}

08 239-5 CH05 2/19/99 1:11 PM Page 208

How To Use Frameworks

CHAPTER 5
209

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

When the slider is moved, we can capture the horizontal scroll notification and update
the edit field:

void CControlsUnleashedView::OnHScroll(UINT nSBCode, UINT nPos,
➥CScrollBar* pScrollBar)
{

CSliderCtrl* p_Slider= dynamic_cast<CSliderCtrl*> (pScrollBar);
if (!p_Slider)

TRACE(“Not really a CSliderCtrl\n”);
else
{

int value=p_Slider->GetPos();
CString temp;
temp.Format(“%ld”,value * 1000);
(GetDlgItem(IDC_EDITCreditLimit))->SetWindowText(temp);

}

CFormView::OnHScroll(nSBCode, nPos, pScrollBar);

}

Notice that we must first ensure that the view is receiving this horizontal scroll notifica-
tion from the slider itself. What is passed in is just a pointer to a CScrollBar . Because
the CSliderCtrl class derives from CScrollBar , we can use the new ANSI
dynamic_cast operator to ensure that we have a valid CSliderCtrl objectbefore imple-
menting the update.

Finally, we tie in the Salary combo box. Changing the salary should set a default Credit
Limit, and this in turn should update the slider:

void CControlsUnleashedView::OnCloseupCOMBOSalaryRange()
{

UpdateData();
m_EditCreditLimitValue =

➥m_ComboSalaryRange.GetItemData(m_SalaryRangeValue);
m_CreditSlider.SetPos(m_EditCreditLimitValue / 1000);
UpdateData(false);

}

This code is slightly tricky. We are setting the m_EditCreditLimitValue to the item data
associated with the combo box. Windows did not provide this association; we did in the
dialog box initialization:

// associate an initial credit limit with each salary range
for(int offset=0; offset<=m_ComboSalaryRange.GetCount(); offset++)
{

switch(offset)
{

08 239-5 CH05 2/19/99 1:11 PM Page 209

Implementation Issues

PART II
210

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

case 0:
crLimit=5000;
break;

case 1:
crLimit=15000;
break;

case 2:
crLimit=40000;
break;

case 3:
crLimit=80000;
break;

case 4:
crLimit=100000;
break;

default:
crLimit=0;

}
m_ComboSalaryRange.SetItemData(offset,crLimit);

}

This code associatesthe value 5000 with the first entry in the box, the value 15000 with
the second entry, and so forth. Returning to OnCloseupCOMBOSalaryRange() , when the
user chooses a Salary, we pick up the choice, use it to extract the associated item data,
and then place that value in the edit box. Finally, we use the edit box’s value to set the
slider. This makes for a dynamic and integrated user-interface:Setting the salary sets the
default credit limit.

Radio Buttons
The radio buttons within the group box are recognized by Windows as a related group.
You must help Windows by ensuring that the tab order is correct. The key is that the but-
tons are all in sequential tab order, and that the first button has the Group style set. In
addition, the first control that is not in the group box must also have its Group style set to
let Windows know it has reached the end of the radio button group (see Figure 5.16).

NOTE

The tab order controls the order in which the user will move among the con-
trols. You set the tab order in the resource editor by pressing Ctrl+D and then
clicking each control in the order you want them invoked.

08 239-5 CH05 2/19/99 1:11 PM Page 210

How To Use Frameworks

CHAPTER 5
211

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

Notice that the buttons in the Credit Card Type group are sequential. Visa has its Group
attribute set,and the Visa bitmap picture (IDC_STATICMCPic)—which is next in the tab
order—has its group attribute set to signal that it marks the end of the radiobutton group.

FIGURE 5.16.
Setting the Group
style.

Spin Controls
The MFC allows you to marry an edit box to a spin control, as you can see with the
Member Since control in Figure 5.17.

FIGURE 5.17.
Spin control. Member since: 1997

If you examine the dialog controls in the resource editor, you’ll f ind they are quite dis-
tinct (see Figure 5.18).

By setting the Auto-Buddy style, you associate the spin control with the edit control
immediately before it in the tab order. (Another reason to check your tab order!) You
must also set Set-Buddy-Integer if you want the edit control to be manipulated by the
spin control, as shown in Figure 5.19.

08 239-5 CH05 2/19/99 1:11 PM Page 211

Implementation Issues

PART II
212

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

This single property sheet actually consists of the container (class CProfile : public

CPropertySheet) which contains three CPropertyPage derived classes:CWorkPage,

FIGURE 5.18.
The Resource
Editor.

Member since: Edit

FIGURE 5.19.
Setting buddy
integer.

Finally, you must set the range of the spin control, which is done in the view’s
OnInitialUpdate() method:

m_MemberSinceControl.SetRange(1990,2005);

Property Sheets
At this point,just about all the controls for the sample application are in place. The final
step is to create the property sheet that appears when the user clicks Profile. A property
sheet contains a series of related dialog boxes,each of which represents a tabSheet in
the property sheet (see Figure 5.20).

FIGURE 5.20.
Property sheets.

08 239-5 CH05 2/19/99 1:11 PM Page 212

How To Use Frameworks

CHAPTER 5
213

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

CIncomePage , and CCreditHistoryPage . To create these pages,you first create threesep-
arate dialog boxes.

The property pages will be sized to the largest of the pages; ideally, then,you want them
to be pretty close in size to one another. The Resource editor helps the sizing problem by
offering template forms. If you choose Insert Resource from the Resource menu and
expand Dialog, you can choose from three templates:IDD_PROPAGE_LARGE,
IDD_PROPAGE_MEDIUM, and IDD_PROPAGE_SMALL. I chose IDD_PROPAGE_MEDIUMthree
times to create each of the pages in the property sheet,as shown in Figure 5.21.

FIGURE 5.21.
Choosing a tem-
plate.

The next step is to add all the controls to each property page, as shown in Figure 5.22.
You do so in the normal way, using the Resource Editor.

FIGURE 5.22.
Adding the con-
trols to the prop-
erty page.

After you have positioned the controls, invoke the Class Wizard, which prompts you to
create a class for your new dialog box. As an aside, I recommend that you change the
filename for each of these classes to put them all in a single file. (I used CProperty.h

and Cproperty.cpp .)

When all the pages are complete, it is time to create the CPropertySheet , which you do
by right-clicking the project and invoking New Class. Name your class and have it derive
from CPropertySheet .

08 239-5 CH05 2/19/99 1:11 PM Page 213

Implementation Issues

PART II
214

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

The property sheet is created dynamically on demand. When the user clicks the Profile
button,the OnBUTTONProfile method (which I mapped using the Class Wizard) is
invoked.

The first thing we do is to create a CProfile object (remember that CProfile derives
from CPropertySheet). Next we create local instances of CCreditPage , CIncomePage ,
and CWorkPage and pass these as parameters to the AddPage() method of
CPropertySheet . Just before adding these pages,we initialize the m_SalaryComboValue

control in CIncomePage to match that of the salary combo inthe controlling dialog box:

void CControlsUnleashedView::OnBUTTONProfile()
{

CProfile theProfile(_T(“Profile”),this);

UpdateData();

CCreditPage creditHistoryPage;
CIncomePage incomePage;
CWorkPage workPage;

incomePage.m_SalaryComboValue = m_SalaryRangeValue;

theProfile.AddPage(&workPage);
theProfile.AddPage(&incomePage);
theProfile.AddPage(&creditHistoryPage);

// initialize dialog values here

if (theProfile.DoModal() == IDOK)
{

m_SalaryRangeValue = incomePage.m_SalaryComboValue;
m_EditCreditLimitValue =

➥m_ComboSalaryRange.GetItemData(m_SalaryRangeValue);
m_CreditSlider.SetPos(m_EditCreditLimitValue / 1000);

}

UpdateData(false);
}

The property sheet is then invoked as a modal dialog box by calling theDoModal()

method. If we get back IDOK (the user clicked OK),we can then take whatever action is
appropriate. What is shown in the preceding code is the updating of a single control (the
Salary); in a commercial application, you would probably update the document with the
new data and then update all the views to reflect that new data.

08 239-5 CH05 2/19/99 1:11 PM Page 214

Summary
You’ve seen that the Microsoft Foundation Class Library provides a powerful set of utili-
ties and supporting classes to assist in building Windows applications. Each vendor may
supply its own application frameworks,but the vendors share a common quality. They do
the hard grunt-work of building the boiler-plate code, allowing you to focus on the
semantics of your particular problem rather than the details of the particular operating
system.

Because each application frameworks library is different,programmers become quite
protective and defensive about their own choice. Thus,it is important you choose wisely.
An ideal application framework will be a well-written,highly encapsulated, object-
oriented, robust,extensible, and reliable set of classes. It will also be well supported and
will evolve as the underlying operating system evolves.

How To Use Frameworks

CHAPTER 5
215

5

H
O

W
T

O
U

SE
F

R
A

M
EW

O
R

K
S

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:11 PM Page 215

216

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH05 Lp#1

08 239-5 CH05 2/19/99 1:11 PM Page 216

IN THIS CHAPTER

• Defining and Instantiating
Templates 218

• Understanding Sequence
Containers 221

• Understanding Stacks 255

• Understanding Queues 259

• Understanding Associative
Containers 263

• Considering Performance Issues 280

• Using the Standard C++ Library 282

• Designing Element Types 283

6
C

H
A

PT
ER

Standard Template
Library Container
Classes

09 239-5 CH06 2/19/99 1:12 PM Page 217

A containeris anobject that holds other objects. The Standard C++ Library provides a
series of container classes that are powerful tools that help C++ developers handle com-
mon programming tasks. There are two types of Standard Template Library (STL) con-
tainer classes:sequence and associative. Sequencecontainers are designed to provide
sequential and random access to their members,or elements. Associative containers are
optimized to access their elements by key values. As with other components of the
Standard C++ Library, the STL is portable between various operating systems. All STL
container classes are defined in namespace std .

Defining and Instantiating
Templates
Before getting deep into the discussion of STL container classes,let’s briefly review the
concept of templates. C++ templatesallow data types to be passed as parameters to func-
tion and class definitions. The same function or class can then be used for a variety of
object types.

Defining and Instantiating Function Templates
A function template allows us to design a function that can be used to process different
types of objects. For instance, you can specify that an argument can be an object of dif-
ferent types. The types of the return value can also vary depending on template parame-
ters.

The following code snippet shows the definition of a function template:

template<class ClassX, class ClassY>void Square2(ClassX& x, ClassY& y)
{

x *= x;
y *= y;

}

The Square2() function can be used to process different types of objects,as long as
those objects implement the overloading operator *= . For example, you can call the fol-
lowing function to calculate the squares of aInt and aFloat , two objects of different
types:

Square2(int aInt, float aFloat);

You instantiate a function template by generating a function from the template function
and parameters. For example, for the function template Square2() , consider this state-
ment:

Implementation Issues

PART II
218

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 218

Square2(int aInt, float aFloat);

The preceding statement instantiates the following function:

Square2(int, float);

from

template<class ClassX, class ClassY>void Square2(ClassX& x, ClassY& y)

and the template parameters ClassX and ClassY .

The actual instantiation is done by the compiler based on the template you define.

Defining and Instantiating Class Templates
A class template providesthe foundation for designing and implementing classes with
different member types. You define a class template in a way similar to the way you
design and implement a normal, nontemplate class. The difference is that members of a
class template can be parameterized. Here is an example of atemplate class definition:

template<class T>
class MyClass
{
public:

// constructors and destructor
MyClass(); // default constructor
MyClass(T& newVal); // copy constructor
~MyClass(); // destructor

// accessors
void SetVar(T& newVal);
T& GetVar() const;

// friend functions
ostream& operator<<(ostream& os, const MyClass<T>& c);

private:
T mVar;

};

template<class T>MyClass<T>::MyClass()
{}

template<class T>MyClass<T>::MyClass(T& newVal): mVar(newVal)
{}

template<class T>MyClass<T>::~MyClass()
{}

Standard Template Library Container Classes

CHAPTER 6
219

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 219

template<class T> void MyClass<T>::SetVar(T& newVal)
{

mVar = newVal;
}

template<class T> T& MyClass<T>::GetVal() const
{

return mVar;
}

template<class T> ostream& MyClass<T>::operator<<(ostream& os, const
MyClass<T>& c)
{

os << “member variable mVar = “ << c.mVar << “\n”;
return os;

}

Compare this to a normal class definition; the notable difference is that class members
are now type parameterized. When a member is defined outside the class definition, you
must add the following prefix to the function definition:

template<class T>

You must also parameterize MyClass as follows:

MyClass<T>

You instantiate a class template by generating a class definition from the template class
and parameters. The following example shows the instantiation of two classes,
MyClass<int> and MyClass<string> :

int main()
{

MyClass<int> intObj;
intObj.SetVar(5);
cout << “intObj.GetVar = “ << intObj.GetVar() << “\n”;
cout << intObj;

MyClass<string> strObj(“This is a string”);
cout << “strObj.GetVar = “ << strObj.GetVar() << “\n”;
cout << strObj;

return 0;
}

Implementation Issues

PART II
220

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 220

Understanding Sequence
Containers
The Standard Template Library sequence containers provide efficient sequential access to
a list of objects. The Standard C++ Library provides three sequence containers: vector ,
list , and deque .

The Vector Container
You often use arrays to store and access a number of elements. Elements in an array are
of the same type and are accessed with an index. The STL provides a container class
vector that behaves just like an array but that is more powerful and safer to use than the
standard C++ array.

A vector is a container optimized to provide fast access to its elements by an index. The
container class vector is defined in the headerfile <vector> in namespace std (see
Chapter 8,“Avoiding Name Clashes by Using Namespaces,” for more information on the
use of namespaces). A vector can grow itself as necessary. Suppose that you have created
a vector to contain 10 elements. After you have filled the vector with 10 objects,the vec-
tor is full. If you then add another object to the vector, the vector automatically increases
its capacity so that it can accommodate the 11th object. Here is how the vector class is
defined:

template <class T, class A = allocator<T>> class vector
{

// class members
};

The first argument (class T) is the type of the elements in the vector. The second argu-
ment (class A) is an allocator class. Allocators are memory managers responsible for
memory allocation and deallocation of elements for the containers. By default, elements
are created using the operator new() and are freed using the operator delete() . That is,
the default constructor of class T is called to create a new element. You can define vec-
tors that hold integers and floats as follows:

vector<int> vInts; // vector holding int elements
vector<float> vFloats; // vector holding float elements

Constructors
To use a vector, you must first create it. When a vector object is created, a block of
memory is acquired from the operating system. The size of the block is at least large
enough to hold the whole vector object. The exact size (called the capacity) of the

Standard Template Library Container Classes

CHAPTER 6
221

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 221

memory block, however, may be larger than the size required to contain the vector. It is
up to the implementation to decide what is the best strategy to allocate memory for vec-
tors so that the optimal performance can be achieved.

The vector container provides several constructors,as shown here:

template <class T, class A = allocator<T>> class vector
{
public:

// types
typedef typename A::size_type size_type; // see note

// constructors
explicit vector(const A& = A());
explicit vector(size_type n, const T& val = T(), const A& = A());
vector(const vector& v);

};

Implementation Issues

PART II
222

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

NOTE

The keyword typename is used to state that the name that follows is a type.
Although A is a type parameter, at compile time, the compiler does not know
what A is. The exact meaning of A::size_type will not be clarified until the
template class is instantiated. Therefore, the compiler does not know whether
A::size_type is a type or a member variable. By qualifying a type name with
the keyword typename , you indicate that the name is a type.

A::size_type is just a fancy name for unsigned integer. It is used to index the elements
of a container. You can create vectors in different ways. For instance, the following state-
ment creates a vector of integers with no elements:

vector<int> vInt1;

This next statement creates a vector of 100 integers,each of which is initialized using
int() :

vector<int> vInt2(100);

You can also initialize a vector with the contents of another vector, like this:

vector<int> vInt3(vInt2);

The copy constructor of vector copies all elements from vInt2 to vInt3 . The preceding
statement could be a potential performance killer if you are working with very large vec-
tors.

09 239-5 CH06 2/19/99 1:12 PM Page 222

Size and Capacity
A vector has a finite number of elements. The vector class provides member functions
that take care of memory acquisition so that vectors can grow when required to do so.
These memory acquisition functions are declared as follows:

template <class T, class A = allocator<T>> class vector
{
public:

// size and capacity
size_type max_size() const; // maximum number of elements
size_type size() const; // number of elements in a vector
bool empty() const; // size() == 0;

size_type capacity() const; // size of memory allocated
void reserve(size_type n); // reserve memory space for n

elements

// increase vector size and add an element
void resize(size_type n, T element = T());

}

The member function max_size() returns the number of elements for the largest possible
vector. This information is useful when you have to make sure that you can create a large
vector.

Recall that a vector is allocated a block of memory that may be larger than the actual
size requested when the vector is created. The capacity() function indicates the total
number of elements a vector can hold within the allocated memory. If capacity() is
greater thansize() , you can add up to capacity() –size() elements to the vectorwith-
out acquiring more memory.

You can call the member function reserve(n) to request memory space for n elements.
The reserve() operation allocates a block of memory large enough to hold n elements.
If the requested memory size (n) is less than or equal to the current capacity of the vec-
tor, no memory reallocation will take place, and the vector’s capacity does not change.
Otherwise, a new block of memory is allocated to accommodate the increased size, and
the capacity of the vector isset to n.

When a vector is created, you can specify the number of elements. This number is called
the size of the vector, which you can query by using the size() memberfunction. The
size value for the vector can be changed during the vector’s life; theresize(n) function
changes the size of the vector to n elements. When n is greater thancapacity() , the
compiler must allocate more memory to accommodate the vector. Listing 6.1 shows how
vectors are created and resized.

Standard Template Library Container Classes

CHAPTER 6
223

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 223

LISTING 6.1. CREATING AND RESIZING VECTORS

#include <iostream>
#include <vector>
using namespace std;

typedef vector<int> intVector;

template<class T, class A>
void ShowVector(const vector<T, A>& v); // display vector properties

int main()
{

intVector vInt1; // define a vector of integers with no
element

cout << “vInt1” << “\n”;
ShowVector(vInt1);

intVector vInt2(3); // define a vector of integers with 3
elements

cout << “vInt2(3)” << “\n”;
ShowVector(vInt2);

vInt2.resize(5, 100); // increase vInt2’s size to 5
// and add value 100 to the end

cout << “vInt2 after resize(5, 100)\n”;
ShowVector(vInt2);

vInt2.reserve(10); // reserve memory for 10 elements
cout << “vInt2 after reserve(10)\n”;
ShowVector(vInt2);

return 0;
}

//
// Display vector properties
//
template<class T, class A>
void ShowVector(const vector<T, A>& v)
{

cout << “max_size() = “ << v.max_size();
cout << “\tsize() = “ << v.size();
cout << “\t” << (v.empty()? “empty”: “not empty”);
cout << “\tcapacity() = “ << v.capacity();
cout << “\n\n”;

}

The output from Listing 6.1 is given here:

Implementation Issues

PART II
224

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 224

vInt1
max_size() = 1073741823 size() = 0 empty capacity() = 0

vInt(3)
max_size() = 1073741823 size() = 3 not empty capacity() = 3

vInt after resize(5, 100)
max_size() = 1073741823 size() = 5 not empty capacity() = 6

vInt after reserve(10)
max_size() = 1073741823 size() = 5 not empty capacity() = 10

When an empty vector vInt1 is defined, no memory space is reserved for its potential
elements by its default constructor. When vector vInt2 is defined to contain three inte-
gers, the constructor allocates just enough memory for those three elements. vInt2 is
then resized to have five elements. Look at the output and notice that the compiler has
increased the capacity of the vector to 6; you may have a different value for capacity()

if your compiler has a different memory allocation strategy. The reserve() functionis
later called to allocate more memory for vInt2 . This call increases vInt2 ’s capacity to
10, but its size remains 5. The extra space for those five elements is just literally reserved
for future use.

Standard Template Library Container Classes

CHAPTER 6
225

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

NOTE

The ShowVector() function is defined as a template function so that it can be
used to display any type of vector. In general, if a function is to be used for dif-
ferent types of objects, it should be defined as a template function.

When you call the function reserve(n) or resize(n) (where n > capacity()) to
acquire more memory for the vector, a new block of memory must be allocated. The fact
that the memory allocated to a vector must be continuous implies that the newly acquired
block must be right next to the previously allocated block. This may not always be possi-
ble because the memory following the initially allocated block may have already been
allocated to other objects. When this situation arises,a new block of memory that is at
least as big as the combined size of the original and the additional memory blocks must
be allocated somewhere else. Elements of the vector, including the new element,are
copied into the new memory location. And finally, the original memory block is released.

You can also use theresize() function to reduce the size of a vector. The resize()

function,however, does not affect the capacity of the vector.

09 239-5 CH06 2/19/99 1:12 PM Page 225

Element Access
A container isn’t much use if you can’t access its elements. The vector containers are
designed to provide fast access to their elements by using an index. The following code
shows the element access functions available in the vector class:

template <class T, class A = allocator<T>> class vector
{
public:

// types
typedef typename A::reference reference;
typedef typename A::const_reference const_reference;

// element access
reference operator[](size_type n); // the nth

element
const_reference operator[](size_type n) const;

reference at(size_type n); // the nth element
with

const_reference at(size_type n) const; // range checking

reference front(); // first element
const_reference front() const;
reference back(); // last element
const_reference back() const;

}

Note that thefirst lines create two typedef s: reference and const_reference . By
default, reference is a reference to an object of class T, and a const_reference is
const T& .

The overloaded subscripting operator [] provides access to elements by using sub-
scripts—in the same way you access elements in arrays. The operator does not perform
boundary checking, so programmers are responsible for making sure that the index is
valid. Attempting to access elements using out-of-range subscripts yields unpredictable
results. However, you can use the at() functions to check whether the index is within
range and to throw an out_of_range exception so that you can use a try /catch pair to
catch the exception. The out_of_range exception is defined in <stdexcept> , which is
#include d in <vector> . Listing 6.2 demonstrates the use of the subscripting operator
and the at() member function for accessing vector elements.

LISTING 6.2. ACCESSING VECTOR MEMBERS

#include <iostream>
#include <vector>
using namespace std;

Implementation Issues

PART II
226

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 226

typedef vector<int> intVector;

template<class T, class A>
void ShowVector(const vector<T, A>& v);

int main()
{

intVector vInt(3); // define a vector of integers with 3
elements

cout << “vInt(3)” << “\n”;

// assign a value to each element in vInt using subscripts
for (vector<int>::size_type i = 0; i < vInt.size(); ++i)

vInt[i] = 5 * i;

// assign a value to an element using at() function
try
{

vInt.at((intVector::size_type)4) = 50; // out of range!
}
catch(out_of_range)
{

cout << “Index out of range” << endl;
}
ShowVector(vInt);

vInt.resize(5, 100); // increase vInt’s size to 5 and
// add value 100 to the end

cout << “vInt after resize(5, 100)\n”;
// now try to access the 4th element using the at() function again
try
{

vInt.at((intVector::size_type)4) = 50; // in range now
}
catch(out_of_range)
{

cout << “Index out of range” << endl;
}
ShowVector(vInt);

return 0;
}

//
// Display vector properties
//
template<class T, class A>
void ShowVector(const vector<T, A>& v)
{

Standard Template Library Container Classes

CHAPTER 6
227

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 227

// traverse through the vector using subscripts
cout << “\nelements:\n”;
for (vector<T, A>::size_type i = 0; i < v.size(); ++i)

cout << v[i] << “, “;

cout << “\nfront() = “ << v.front();
cout << “\tback() = “ << v.back();

cout << “\n\n”;
}

The output for Listing 6.2 is shown here:

vInt(3)
Index out of range

elements:
0, 5, 10,
front() = 0 back() = 10

vInt after resize(5, 100)

elements:
0, 5, 10, 100, 50,
front() = 0 back() = 50

You first create a vector vInt with three integer elements. Its elements can be assigned
values by using the subscripting operator. When you try to use the at() function to
assign a value to a nonexisting element,the try block does the range checking and
throws an out_of_range exception if the position is not valid. A try /catch block is used
to catch this exception twice in the listing. The exception occurs during the illegal access
of a nonexisting element. After you resize the vector to five elements,the second call to
the at() function works fine. The ShowVector() template function has been modified to
display all elements in a vectorusing the subscripting operator [] .

Iterators
In the preceding section,you accessed vector elements using the subscripting operator.
The subscripting operator, however, may not be relevant in certain containers such as
list , when accessing elements with subscripts is not efficient. The STL provides another
access method:iterators. Iterators provide a standard data access model so that containers
don’t have to provide extensive element access operations. Each STL container uses the
iterator class that is most suitable for the optimized element access operations. For exam-
ple, the container class <vector> defines several member functions for facilitating the
use of iterators:

Implementation Issues

PART II
228

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.2. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 228

template <class T, class A = allocator<T>> class vector
{
public:

// types
typedef (implementation defined) iterator;
typedef (implementation defined) const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator>

const_reverse_iterator;

// iterators
iterator begin(); // points to the first element
const_iterator begin() const;
iterator end(); // points to the (last + 1) element
const_iterator end() const;

// points to the first element of reverse sequence
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

// points to the (last + 1) element of reverse sequence
reverse_iterator rend();
const_reverse_iterator rend() const;

};

In general, iterators are not pointers. They are implemented to act like pointers. An itera-
tor works like a pointer to an element (for example, T*) in the vector. Like other pointers,
an iterator can be incremented, decremented, and dereferenced. The C++ standard
requires that iterators have the increment and/or decrement operators (both prefix and
postfix) that can be used to traverse through the containers. When an iterator is incre-
mented, it points to the next element in the vector. When an iterator is decremented, it
points to the previous element in the vector. An iterator can also be dereferenced to
return the element it is pointing to. The dereference operator * always returns the ele-
ment pointed to by the iterator.

A normal iterator allows us to traverse elements in a vector from the beginning to the
end. You can also access elements in reverse order by using areverse_iterator .
Elements pointed to by an iterator can be modified. If you do not want to modify any
elements in a vector, you should use a const_iterator or aconst_reverse_iterator .
All f our of these variations are defined for the vector class in the STL. Two iterators are
said to be equal if they point to the same element in the same vector. More details about
iterators are provided in Chapter 7,“STL Iterators and Algorithms.”

Listing 6.3 uses iterators to assign values to vector elements. The ShowVector() template
function used in Listing 6.2 has been rewritten inListing 6.3 to display vector elements
using iterators.

Standard Template Library Container Classes

CHAPTER 6
229

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 229

LISTING 6.3. ACCESSING ELEMENTS WITH ITERATORS

#include <iostream>
#include <vector>
using namespace std;

typedef vector<int> intVector;

template<class T, class A>
void ShowVector(const vector<T, A>& v);

int main()
{

intVector vInt(3); // define a vector of integers with 3
elements

cout << “vInt(3)” << “\n”;

// assign a value to each element in vInt using an iterator
int i = 0;
for (intVector::iterator itor = vInt.begin(); itor != vInt.end();

++itor)
*itor = 5 * i++;

cout << *++itor;
ShowVector(vInt);

return 0;
}

//
// Display vector properties
//
template<class T, class A>
void ShowVector(const vector<T, A>& v)
{

// traverse through the vector using an iterator
cout << “elements displayed using an iterator:\n”;
for (vector<T, A>::const_iterator itor = v.begin(); itor != v.end();

++itor)
cout << *itor << “, “;

cout << “\n”;

// traverse through the vector using a reverse iterator
cout << “elements displayed using a reverse iterator:\n”;
for (vector<T, A>::const_reverse_iterator r_itor = v.rbegin();

r_itor < v.rend(); ++r_itor)
cout << *r_itor << “, “;

cout << “\n\n”;
}

Implementation Issues

PART II
230

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 230

The output from Listing 6.3 is given here:

vInt(3)
elements displayed using an iterator:
0, 5, 10,
elements displayed using a reverse iterator:
10, 5, 0,

This listing demonstrates the use of iterators for element access. A nonconstant iterator is
used to assign a value to each element in vector vInt . You dereference the iterator using
the dereferencing operator * . The ShowVector() template function displays vector ele-
ments by using both the forward and reverse iterators. Because you do not intend to
modify any elements from within the ShowVector() method, you use the const iterator
on both occasions. This iterator is defined as vector<T, A>::const_iterator (or
const_reverse_iterator) so that it can be used for any typeof vector.

You have probably noticed the rather inconsistent styles used to traverse the vector by
using forward iterators and reverse iterators. You test the forward iterator against vec -

tor::end() by using the != operator:

for (vector<T, A>::const_iterator itor = v.begin(); itor != v.end();

++itor)

However, you use the more conventional less-than (<) operator for reverseiterators:

for (vector<T, A>::const_reverse_iterator r_itor = v.rbegin();
r_itor < v.rend(); ++r_itor)

This inconsistency points out a difference between forward and reverse iterators. The
implementation of the < operator is not required for the forward iterators by the C++
standard, but it is required for reverse iterators,although STL vendors are free to imple-
ment it for both types of iterators. Although your compiler may support this operator for
the forward iterator, using it will render your code less portable because the operator is
not part of the C++ standard.

Modifiers
Elements can beinserted or deleted at any position in a vector. The insertion and deletion
functions are called modifiers because they change the contents of the vector. The follow-
ing modifiers are provided in the container class <vector> :

template <class T, class A = allocator<T>> class vector
{
public:

// insertion and deletion

// insert t before pos and returns an iterator pointing to the
// newly inserted element
iterator insert(iterator pos, const T& t);

Standard Template Library Container Classes

CHAPTER 6
231

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 231

// insert n copies of t before pos
void insert(iterator pos, size_type n, const T& t)

// insert a range of elements before pos
void insert(iterator pos, const_iterator i, const_iterator j);

void push_back(const T& t); // add t to the end
void pop_back(); // remove last element

// remove element at position pos
iterator erase(iterator pos);

// remove from the first element to the last – 1 element
iterator erase(iterator first, iterator last);

// remove all elements
void clear();

}

When a new elementis added to the end of the vector, one of two things may happen. If
the vector’s capacity is larger than its size, no memory allocation occurs; the new ele-
ment is just appended to the end of the vector. If the capacity of the vector is the same as
its size, a new block of memory is acquired to accommodate this new element. As was
discussed with the reserve() function,acquiring a new memory block might invoke
three time-consuming processes:

• Allocating a new memory block large enough to accommodate the whole vector
including the newly added element

• Copying all elements to the new memory locations

• Freeing up the old memory block

On a large vector, these operations can consume a lot of CPU time and memory—a
potentially expensive exercise.

The other expensive operation of the vector container is the insertion into and the dele-
tion from the middle of a vector. When a new element is inserted in the middle of a vec-
tor, all elements after that must be moved back to give room for the new element.
Similarly, when an element in the middle of a vector is removed, all the following ele-
ments must be moved up to fill in the hole. If frequent middle insertions and deletions
are expected, consider using another container class,such as list (described later in this
chapter). Listing 6.4 shows the insertion and deletion of elements in vectors.

Implementation Issues

PART II
232

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 232

LISTING 6.4. ADDING AND REMOVING ELEMENTS

#include <iostream>
#include <vector>
using namespace std;

typedef vector<int> intVector;
typedef vector<int>::iterator ivItor;

template<class T, class A>
void ShowVector(const vector<T, A>& v);

int main()
{

intVector vInt(5); // define a vector of integers with 5
elements

cout << “vInt(5)” << “\n”;

// assign a value to each element in vInt using subscripts
for (vector<int>::size_type i = 0; i < vInt.size(); ++i)

vInt[i] = 5 * i;

ShowVector(vInt);

// insert an element
cout << “vInt after insert(vInt.begin() + 1, 50)\n”;
ivItor itor = vInt.insert(vInt.begin() + 1, 50);
ShowVector(vInt);
cout << “Current element is “ << *itor << “\n\n”;

// insert 5 elements
cout << “vInt after insert(vInt.end(), 5, 30)\n”;
vInt.insert(vInt.end(), 5, 30);
ShowVector(vInt);

// erase one element from vInt
cout << “vInt after erase one element\n”;
vInt.erase(vInt.begin() + 3);
ShowVector(vInt);

// erase three elements from vInt
cout << “vInt after erase three element\n”;
vInt.erase(vInt.begin() + 3, vInt.begin() + 6);
ShowVector(vInt);

// insert several elements from another vector
intVector vInt2(2, 0);
cout << “vInt2” << “\n”;
ShowVector(vInt2);

Standard Template Library Container Classes

CHAPTER 6
233

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 233

cout << “vInt2 after insert from vInt\n”;
vInt2.insert(vInt2.begin() + 1, vInt.begin() + 1, vInt.begin() + 3);
ShowVector(vInt2);

// add an element at the end of vInt2
cout << “vInt2 after push_back()\n”;
vInt2.push_back(100);
ShowVector(vInt2);

// remove an element from the end of vInt2
cout << “vInt2 after pop_back()\n”;
vInt2.pop_back();
ShowVector(vInt2);

// clear vInt2
cout << “vInt2 cleared\n”;
vInt2.clear();
ShowVector(vInt2);

return 0;
}

//
// Display vector properties
//
template<class T, class A>
void ShowVector(const vector<T, A>& v)
{

cout << “size() = “ << v.size() << “\tcapacity() = “ << v.capacity()
<< “\n”;

// traverse through the vector using subscripts
cout << “elements:\t”;
for (vector<T, A>::size_type i = 0; i < v.size(); ++i)

cout << v[i] << “, “;

cout << “\n\n”;
}

The output from this program is as follows:

vInt(5)
size() = 5 capacity() = 5
elements: 0, 5, 10, 15, 20,

vInt after insert(vInt.begin() + 1, 50)
size() = 6 capacity() = 10
elements: 0, 50, 5, 10, 15, 20,

Implementation Issues

PART II
234

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.4. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 234

Current element is 50

vInt after insert(vInt.end(), 5, 30)
size() = 11 capacity() = 12
elements: 0, 50, 5, 10, 15, 20, 30, 30, 30, 30, 30,

vInt after erase one element
size() = 10 capacity() = 12
elements: 0, 50, 5, 15, 20, 30, 30, 30, 30, 30,

vInt after erase three element
size() = 7 capacity() = 12
elements: 0, 50, 5, 30, 30, 30, 30,

vInt2
size() = 2 capacity() = 2
elements: 0, 0,

vInt2 after insert from vInt
size() = 4 capacity() = 4
elements: 0, 50, 5, 0,

vInt2 after push_back()
size() = 5 capacity() = 8
elements: 0, 50, 5, 0, 100,

vInt2 after pop_back()
size() = 4 capacity() = 8
elements: 0, 50, 5, 0,

vInt2 cleared
size() = 0 capacity() = 8
elements:

You first insert an element before the second element in the vector, a potentially expen-
sive exercise. The insert() function returns an iterator pointing to the newly added ele-
ment. This resulting iterator can be dereferenced to display the new element. You then
append five elements,each of which has a value of 30, to the end of vector. The end()

function returns the last element plus 1,so that inserting elements before end() effective-
ly appends them after the last element. The erase() function is then called twice; the
first call removes one element (the fourth element with a value of 10) from the vector,
and the second removes three elements (from the fourth to the sixth) from the vector.
Then another integer vector vInt2 with two elements is defined. Two elements from
vInt are inserted before the second element in vInt2 . You can also add and remove ele-
ments using the push_back() and the pop_back() function,as you do with vInt2 . When
the entire vInt2 is cleared, the size of the vector is reduced as well. This,however, does
not actually shrink the vector. Its capacity remains unchanged.

Standard Template Library Container Classes

CHAPTER 6
235

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 235

Vector Operations
The STL defines overloaded comparison operators so that two vectors of the same type
can be compared with each other. Overloaded comparison operators are often used in
standard algorithms. The comparison operators are also used by an additional vector
operation: Swap() . Swap() is used to exchange the values of each element in two vectors.
The following comparison operators are provided in the container class <vector> :

template <class T, class A = allocator<T>> class vector
{
public:

// vector operations
void swap(vector& v); // swap elements between current vector and v

template <class T, class A>
void swap(const vector<T, A>&v1, const vector <T, A>&v2) {

v1.swap(v2);
}

// comparison operators
template<class T, class A>
bool operator==(const vector<T, A>& v1, const vector<T, A>& v2);

template<class T, class A>
bool operator!=(const vector<T, A>& v1, const vector<T, A>& v2);

template<class T, class A>
bool operator<(const vector<T, A>& v1, const vector<T, A>& v2);

template<class T, class A>
bool operator<=(const vector<T, A>& v1, const vector<T, A>& v2);

template<class T, class A>
bool operator>(const vector<T, A>& v1, const vector<T, A>& v2);

template<class T, class A>
bool operator>=(const vector<T, A>& v1, const vector<T, A>& v2);

}

Two vectors v1 and v2 are equal (==) if v1.size() == v2.size() and v1[n] == v2[n]

where n has a value of between 0 and v1.size() – 1 . A pseudo implementation for the
== operator is shown here:

template<class T, class A>
bool operator==(const vector<T, A>& v1, const vector<T, A>& v2)
{

bool isEqual = false;

if (v1.size() == v2.size()) {

Implementation Issues

PART II
236

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 236

isEqual = true;
for (vector<T, A>::size_type n = 0; n < v1.size(); ++n) {

if (v1[n] != v2[n]) {
isEqual = false;
break;

}
}

}

return isEqual;
}

Vector v1 is less than vector v2 if v1 is lexicographically less than v2 . The phrase “v1 is
lexicographically less than v2 ” means that one of the following statements is true:

• The first v1[n] that is not equal to v2[n] is less than v2[n]

• All v1[n] = v2[n] , where n = 0 , 1, …, v1.size – 1 , but v1.size() < v2.size()

The < operator can be demonstrated in the following code fragment:

template<class T, class A>
bool operator<(const vector<T, A>& v1, const vector<T, A>& v2)
{

bool isLess = false;

for (vector<T, A>::size_type n = 0; n < v2.size(); ++n) {
if ((n > v1.size()) || (v1[n] < v2[n])) {

isLess = true;
break;

}
}

return isLess;
}

Other operators are implemented based on == and <, as shown here:

template<class T, class A>
bool operator!=(const vector<T, A>& v1, const vector<T, A>& v2)
{

return !(v1 == v2);
}

template<class T, class A>
bool operator<=(const vector<T, A>& v1, const vector<T, A>& v2)
{

return ((v1 < v2) || (v1 == v2));
}

template<class T, class A>
bool operator>(const vector<T, A>& v1, const vector<T, A>& v2)

Standard Template Library Container Classes

CHAPTER 6
237

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 237

{
return !(v1 <= v2);

}

template<class T, class A>
bool operator>=(const vector<T, A>& v1, const vector<T, A>& v2)
{

return !(v1 < v2);
}

Now it is time to see the overloaded comparison operators in action. Listing 6.5 uses sev-
eral approaches to compare vectors.

LISTING 6.5. COMPARING VECTORS

#include <iostream>
#include <vector>
using namespace std;

typedef vector<int> intVector;

template<class T, class A>
void ShowVector(const vector<T, A>& v);
template<class T, class A>
void compareVectors(const vector<T, A>& v1, const vector<T, A>& v2);

int main()
{

intVector vInt1(5); // define a vector of integers with 5
elements

cout << “vInt1(5)” << “\n”;

// assign a value to each element in vInt using subscripts
for (vector<int>::size_type i = 0; i < vInt1.size(); ++i) {

vInt1[i] = 5 * i;
}
ShowVector(vInt1);

intVector vInt2 = vInt1; // define a vector vInt2 and
// copy elements from vInt1

cout << “vInt2(5)” << “\n”;
ShowVector(vInt2);

// compare vInt and vInt2
compareVectors(vInt1, vInt2);

// add an element at the end of vInt2
cout << “vInt2 after push_back()\n”;
vInt2.push_back(100);
ShowVector(vInt2);

Implementation Issues

PART II
238

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 238

// compare vInt and vInt2 again
compareVectors(vInt1, vInt2);

// now swap vInt and vInt2
vInt1.swap(vInt2);
cout << “vInt1 after swap\n”;
ShowVector(vInt1);
cout << “vInt2 after swap\n”;
ShowVector(vInt2);
compareVectors(vInt1, vInt2);

return 0;
}

//
// Display vector properties
//
template<class T, class A>
void ShowVector(const vector<T, A>& v)
{

cout << “size() = “ << v.size() << “\tcapacity() = “ << v.capacity()
<< “\n”;

// display vector elements using subscripts
cout << “elements:\t”;
for (vector<T, A>::size_type i = 0; i < v.size(); ++i)

cout << v[i] << “, “;
cout << “\n\n”;

}

//
// Compare two vectors
//
template<class T, class A>
void compareVectors(const vector<T, A>& v1, const vector<T, A>& v2)
{

if (v1 == v2) {
cout << “v1 == v2”;

}
else if (v1 < v2)
{

cout << “v1 < v2”;
}
else
{

cout << “v1 > v2”;
}
cout << “\n\n”;

}

Standard Template Library Container Classes

CHAPTER 6
239

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 239

The output from thisprogram is as follows:

vInt1(5)
size() = 5 capacity() = 5
elements: 0, 5, 10, 15, 20,

vInt(5)
size() = 5 capacity() = 5
elements: 0, 5, 10, 15, 20,

v1 == v2

vInt2 after push_back()
size() = 6 capacity() = 10
elements: 0, 5, 10, 15, 20, 100,

v1 < v2

vInt1 after swap
size() = 6 capacity() = 10
elements: 0, 5, 10, 15, 20, 100,

vInt2 after swap
size() = 5 capacity() = 5
elements: 0, 5, 10, 15, 20,

v1 > v2

You first create two integer vectors vInt1 and vInt2 with identical elements by copying
them from one to another. When you compare them,you find that they are equivalent—
as expected. Adding a new element vInt2 makes vInt2 greater than vInt1 . At last,
vInt1 andvInt2 are swapped, and vInt1 becomes greater than vInt2 .

One of the limitations of the vector container class is the cost of adding and removing
elements in the middle of the vector. This “drawback” is largely by design because vec-
tors occupy a continuously allocated memory block to allow fast sequential access to
their elements. When frequent additions and deletions are expected, a list container is
the better choice. The next section looks into the list container class.

The List Container
A list is a container designed to provide optimal frequent insertions and deletions of
elements.

The list STL container class is defined in the header file <list> in the namespace std .
The list class is typically implemented as a doubly-linked list,where each node has
links to both the previous node and the next node in the list. The list class provides all

Implementation Issues

PART II
240

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 240

the member types and operations of the vector class,with the exceptions of subscripting
capacity() and reserve() .

The following codelisting recaps the container members provided in the list class:

template <class T, class A = allocator<T>> class list
{
public:

// types
typedef typename A::size_type size_type; // size

type

// iterators and references types
typedef (implementation defined) iterator;
typedef (implementation defined) const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator>

const_reverse_iterator;
typedef typename A::reference reference;
typedef typename A::const_reference const_reference;

// constructors
explicit list(const A& = A());
explicit list(size_type n, const T& val = T(), const A& = A());
vector(const list& v);

// size functions
size_type max_size() const; // maximum number of elements
size_type size() const; // number of elements in a list
bool empty() const; // size() == 0;

// increase list size and add an element
void resize(size_type n, T element = T());

// element access
reference at(size_type n); // the nth element with
const_reference at(size_type n) const; // range checking

reference front(); // first element
const_reference front() const;
reference back(); // last element
const_reference back() const;

// iterators
iterator begin(); // points to the first element
const_iterator begin() const;
iterator end(); // points to the (last + 1) element
const_iterator end() const;

// points to the first element of reverse sequence
reverse_iterator rbegin();

Standard Template Library Container Classes

CHAPTER 6
241

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 241

const_reverse_iterator rbegin() const;

// points to the (last + 1) element of reverse sequence
reverse_iterator rend();
const_reverse_iterator rend() const;

// insertion and deletion

// insert t before pos and returns an iterator pointing to the
// newly inserted element
iterator insert(iterator pos, const T& t);

// insert n copies of t before pos
void insert(iterator pos, size_type n, const T& t)

// insert a range of elements before pos
void insert(iterator pos, const_iterator i, const_iterator j);

// back operations
void push_back(const T& t); // add t to the end
void pop_back(); // remove the last element

// remove element at position pos
iterator erase(iterator pos);

// remove from the first to the last – 1 elements
iterator erase(iterator first, iterator last);

// remove all elements
void clear();

// list operations
void swap(list & l); // swap elements between current list and l

bool operator==(const list<T, A>& list1, const list<T, A>& list2);
bool operator!=(const list<T, A>& list1, const list<T, A>& list2);
bool operator<(const list<T, A>& list1, const list<T, A>& list2);
bool operator<=(const list<T, A>& list1, const list<T, A>& list2);
bool operator>(const list<T, A>& list1, const list<T, A>& list2);
bool operator>=(const list<T, A>& list1, const list<T, A>& list2);

};

Memory allocation for the list container class is more dynamic than it is for the vector

container class. Remember that a vector uses a continuous memory block to accommo-
date its elements; if an element is inserted or deleted from the middle of the vector, all
the remaining memory is affected. This is less of a problem with the list container.

Because of its enhanced flexibility of memory management,the list class can provide
several additional operations:splice, front operations,sort, and merge. The following
sections examine these operations in detail.

Implementation Issues

PART II
242

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 242

Splice Operations
Splice operations reallocate elements from one list to another. The list container class
provides three splice operations:

template<class T, class A = allocator<T>> class list
{
public:

// insert all elements of x before *pos in the current list
void splice(iterator pos, list& x);

// insert the element *i from list x before *pos in the current list
void splice(iterator pos, list& x, iterator i);

// insert elements from *first to *(last – 1) from list x before *pos
// in the current list
void splice(iterator pos, list& x, iterator first, iterator last);

}

The splice() functionremoves the specified elements from list x and inserts them into
the current list in the given position. This process merely performs pointer operations.
The elements are not copied. Let’s look at what happens behind the scenes.

Suppose that you have created two lists,ListA and ListB , as shown in Figure 6.1. After
executing the c.splice(pos, x, first, last) operation, these two lists are allocated
as shown in Figure 6.2.

Standard Template Library Container Classes

CHAPTER 6
243

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

FIGURE 6.1.
Two lists before a
splice operation.

list c *begin() *(pos - 1) *pos *(end() - 1

list x *begin() *(first-1) *first *(last-1) *last *(end() - 1

The order of the existing elements is guaranteed to be unchanged by the splice operation,
and there are no memory allocations or reallocations as a result of the splice. Listing 6.6
shows the use of a splice.

FIGURE 6.2.
Two lists after a
splice operation.

list c *begin() *(pos - 1) *pos *(end() - 1

list x *begin() *(first-1) *first *(last-1) *last *(end() - 1

09 239-5 CH06 2/19/99 1:12 PM Page 243

LISTING 6.6. A SPLICE OPERATION EXAMPLE

#include <iostream>
#include <list>
using namespace std;

typedef list<int> intList;
typedef list<int>::iterator intListItor;

template<class T, class A>
void showList(const list<T, A>& aList);

int main()
{

// define a list of integers with 5 elements
intList ListA(5);
int j = 0;
for (intListItor ia = ListA.begin(); ia != ListA.end(); ++ia)

*ia = 5 * j++;
cout << “ListA” << “\n”;
showList(ListA);

// define a list of integers with 6 elements
intList ListB(6);
j = 0;
for (intListItor ib = ListB.begin(); ib != ListB.end(); ++ib)

*ib = 100 * j++;
cout << “ListB” << “\n”;
showList(ListB);

// splice!
cout << “Splice:\n”;
ListA.splice(++ListA.begin(), ListB, ++(++ListB.begin()), —

ListB.end());
cout << “ListA” << “\n”;
showList(ListA);
cout << “ListB” << “\n”;
showList(ListB);

return 0;
}

//
// Display list elements
//
template<class T, class A>
void showList(const list<T, A>& aList)
{

cout << “size() = “ << aList.size() << “:\t”;
for (list<T, A>::const_iterator i = aList.begin(); i != aList.end();

++i)

Implementation Issues

PART II
244

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 244

cout << *i << “, “;
cout << “\n\n”;

}

The output from this code is shown as follows:

ListA
size() = 5: 0, 5, 10, 15, 20,

ListB
size() = 6: 0, 100, 200, 300, 400, 500,

Splice:
ListA
size() = 7: 0, 200, 300, 400, 5, 10, 15, 20,

ListB
size() = 4: 0, 100, 500,

Elements in ListA and ListB are assigned values using an iterator. You then move the
third and fourth elements of ListB into ListA .

The splice() functionitself is straightforward, but there is one subtle point that is worth
mentioning. Examine the following statement:

ListA.splice(++ListA.begin(), ListB, ++(++ListB.begin()), —ListB.end());

This statement says that you will splice into ListA part of ListB , beginning at the third
element in ListB and ending at the second-to-last element of ListB . You have used two
increment operators on ListB.begin() to reach the third element of ListB . Why can’t
you just use ListB.begin + 2 instead? Because, unfortunately, the C++ standard does
not require that operator + be implemented by iterator classes.

Front Operations
Unlike vectors, lists can perform the insertion and deletion of the first element efficiently.
Front operations allow us to add elements to a list more efficiently because you do not
have to traverse the list. This fact leads to the inclusion of two front operations—one that
adds the first element and another that removes the first element:

template(class T, class A = allocator<T>> class list
{
public:

void push_front(const T& t); // add t to the beginning
void pop_front(); // remove the first element

};

The use of both front operations is shown in Listing 6.7.

Standard Template Library Container Classes

CHAPTER 6
245

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 245

LISTING 6.7. FRONT OPERATIONS IN A LIST

#include <iostream>
#include <list>
using namespace std;

typedef list<int> intList;
typedef list<int>::iterator intListItor;

template<class T, class A>
void showList(const list<T, A>& aList);

int main()
{

// define a list of integers with 5 elements
intList ListA(5);
int j = 0;
for (intListItor ia = ListA.begin(); ia != ListA.end(); ++ia)

*ia = 5 * j++;
cout << “ListA” << “\n”;
showList(ListA);

// remove the first element
ListA.pop_front();
cout << “First element removed:\n”;
showList(ListA);

// insert a new element at the beginning
ListA.push_front(100);
cout << “Insert 100 at the beginning:\n”;
showList(ListA);

return 0;
}

//
// Display list elements
//
template<class T, class A>
void showList(const list<T, A>& aList)
{

cout << “size() = “ << aList.size() << “:\t”;
for (list<T, A>::const_iterator i = aList.begin(); i != aList.end();

++i)
cout << *i << “, “;

cout << “\n\n”;
}

The output from the Listing 6.7 is shown here:

Implementation Issues

PART II
246

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 246

ListA
size() = 5: 0, 5, 10, 15, 20,

First element removed:
size() = 4: 5, 10, 15, 20,

Insert 100 at the beginning:
size() = 5: 100, 5, 10, 15, 20,

The first element of ListA is removed using thepop_front() function. After a new ele-
ment is inserted at the front with the push_front() function,that new element becomes
the first element in the list.

The front operations are stable; that is, the order and the memory locations of the exist-
ing elements in the list are not affected. The push_front() operation has to allocate
memory for the new element,and the pop_front() operation must release the memory
occupied by the removed element.

The sort() and merge() Operations
There are times when a list must be sorted. The list container class provides the
following two sort() operations:

template<class T, class A = allocator<T>> class list
{
public:

// sort algorithms
void sort();
template<class Compare>
void sort(Compare);

// reverse element order
void reverse();

// merge two sorted list
void merge(list& x);
template<class Compare>
void merge(list& x, Compare);

};

The normal sort() function uses class T’s comparison mechanism to sort the elements;
the template sort() function uses the Compare class’s comparisonfunctions.

The reverse() functionreverses the order of elements in a list,but it does not attempt to
sort the list in any way.

The merge() function works rather like the following splice() operation:

void splice(iterator pos, list& x, iterator x.begin(), iterator x.end());

Standard Template Library Container Classes

CHAPTER 6
247

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 247

However, the merge() function sorts the resulting list using either the built-in or an exter-
nal comparison mechanism. The two original lists must themselves be sorted before the
merge() function is called. Otherwise, the resulting list may not be sorted. Listing 6.8
shows how lists can be sorted. It also demonstrates the different results of merging sorted
and unsorted lists.

LISTING 6.8. MERGING AND SORTING LISTS

#include <iostream>
#include <list>
using namespace std;

typedef list<int> intList;
typedef list<int>::iterator intListItor;

template<class T, class A>
void showList(const list<T, A>& aList);

int main()
{

// define a list of integers with 5 elements
intList ListA(5);
int j = 0;
for (intListItor ia = ListA.begin(); ia != ListA.end(); ++ia)

*ia = 5 * j++;
cout << “ListA” << “\n”;
showList(ListA);

// define a list of integers with 6 elements
intList ListB(6);
j = 10;
for (intListItor ib = ListB.begin(); ib != ListB.end(); ++ib)

*ib = 2 * j—;
cout << “ListB” << “\n”;
showList(ListB);

intList ListC = ListA;
intList ListD = ListB;

// merge without sorting first
cout << “Merge unsorted lists:\n”;
ListA.merge(ListB);

cout << “ListA” << “\n”;
showList(ListA);
cout << “ListB” << “\n”;
showList(ListB);

// reverse elements in ListA

Implementation Issues

PART II
248

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 248

cout << “Reverse ListA\n”;
ListA.reverse();
showList(ListA);

// sort and merge
cout << “Sort and Merge:\n”;
ListC.sort();
ListD.sort();
ListC.merge(ListD);

cout << “ListC” << “\n”;
showList(ListC);
cout << “ListD” << “\n”;
showList(ListD);

return 0;
}

//
// Display list elements
//
template<class T, class A>
void showList(const list<T, A>& aList)
{

cout << “size() = “ << aList.size() << “:\t”;
for (list<T, A>::const_iterator i = aList.begin(); i != aList.end();

++i)
cout << *i << “, “;

cout << “\n\n”;
}

The output from Listing 6.8 is shown as follows:

ListA
size() = 5: 0, 5, 10, 15, 20,

ListB
size() = 6: 20, 18, 16, 14, 12, 10,

Merge unsorted lists:
ListA
size() = 11: 0, 5, 10, 15, 20, 20, 18, 16, 14, 12, 10,

ListB
size() = 0:

Reverse ListA
size() = 11: 10, 12, 14, 16, 18, 20, 20, 15, 10, 5, 0,

Sort and Merge:
ListC

Standard Template Library Container Classes

CHAPTER 6
249

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 249

size() = 11: 0, 5, 10, 10, 12, 14, 15, 16, 18, 20, 20,

ListD
size() = 0:

When two unsorted lists—ListA and ListB —are merged, the elements from ListB are
simply appended to ListA , and the resulting ListA is unsorted. When ListA is reversed,
you can see that the result is still not sorted. You then sort ListC and ListD . When you
merge two sorted lists—ListC and ListD —the resulting list ListC is also sorted.

Operations to Remove Elements
Elements can be removedfrom lists. For instance, an Internet news-serving application
may want to display a list of news items based on user profiles. When a user changes her
profile, certain items may be removed from the list. The list container class provides
the following four operations that remove elements from lists:

template<class T, class A = allocator<T>> class list
{
public:

// remove an element from the list
void remove(const T& t);

template<class Predicate>
void remove_if(Predicate p);

// remove duplicate elements
void unique();

template<class Predicate>
void unique(Predicate p);

};

The normal remove() function removes elements that are equal to t using the overload-
ing T::operator== . The template remove_if() function removes elements that make the
predicate p evaluate to true . The normal unique() function removes all duplicate ele-
ments from the list. Elements em, em+1, …, en, where ei denotes the i th element in the
list, are said to be duplicated if they are in a consecutive group in the list and if em ==

em+1 ==…== e n. The template unique() function does the same thing, except that it
uses predicate p instead of operator ==. Listing 6.9 shows various remove operations on
lists.

LISTING 6.9. REMOVING ELEMENTS FROM LISTS

#include <iostream>
#include <list>
using namespace std;

Implementation Issues

PART II
250

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 250

typedef list<int> intList;
typedef list<int>::iterator intListItor;

template<class T, class A>
void showList(const list<T, A>& aList);

int main()
{

// define a list of integers with 5 elements
intList ListA(5);
int j = 0;
for (intListItor ia = ListA.begin(); ia != ListA.end(); ++ia)

*ia = 5 * j++;
cout << “ListA” << “\n”;
showList(ListA);

// remove an element from ListA
ListA.remove(5);
cout << “5 removed from ListA:\n”;
showList(ListA);

// define a list of integers with 6 elements
intList ListB(6);
j = 10;
for (intListItor ib = ListB.begin(); ib != ListB.end(); ++ib)

*ib = 2 * j—;
cout << “ListB” << “\n”;
showList(ListB);

// splice ListA & ListB and add an element 10 at the beginning of
ListA

cout << “splice ListA & ListB and add 10 to the beginning:\n”;
ListA.splice(++(++ListA.begin()), ListB);
ListA.push_front(10);

cout << “ListA” << “\n”;
showList(ListA);

// sort ListA first
ListA.sort(); // so that elements with same value will group

together
cout << “ListA sorted:\n”;
showList(ListA);

// remove duplicates from ListA
ListA.unique();
cout << “Duplicates in ListA removed:\n”;
showList(ListA);

Standard Template Library Container Classes

CHAPTER 6
251

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 251

return 0;
}

//
// Display list elements
//
template<class T, class A>
void showList(const list<T, A>& aList)
{

cout << “size() = “ << aList.size() << “:\t”;
for (list<T, A>::const_iterator i = aList.begin(); i != aList.end();

++i)
cout << *i << “, “;

cout << “\n\n”;
}

The output from Listing 6.9 is shown here:

ListA
size() = 5: 0, 5, 10, 15, 20,

5 removed from ListA:
size() = 4: 0, 10, 15, 20,

ListB
size() = 6: 20, 18, 16, 14, 12, 10,

splice ListA & ListB and add 10 to the beginning:
ListA
size() = 11: 10, 0, 10, 20, 18, 16, 14, 12, 10, 15, 20,

ListA sorted:
size() = 11: 0, 10, 10, 10, 12, 14, 15, 16, 18, 20, 20,

Duplicates in ListA removed:
size() = 8: 0, 10, 12, 14, 15, 16, 18, 20,

When you attempt to remove any element with value 5 from integer list ListA , you
remove the second element. You then insert all elements from ListB before the second
element in ListA . The splice() function does not sort the resulting list. After ListA is
sorted, you see that you have three elements with the value of 10 and two elements with
the value of 20. The duplicate values are removed by theunique() function.

Implementation Issues

PART II
252

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.9. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 252

The Deque Container
A deque is like a double-ended vector—it inherits the vector container class’s efficiency
in sequential read and write operations. But in addition, the deque container class pro-
vides optimized front-end and back-end operations. These operations are implemented
similar to the way they are in the list container class,where memory allocations are
engaged only for new elements. This feature of the deque class eliminates the need to
reallocate the whole container to a new memory location, as the vector class has to do.
Therefore, deques are ideally suited for applications in which insertions and deletions
take place at either one or both ends,and for which sequential access of elements is
important. An example of such an application is a train-assembly simulator, where car-
riages can join the train at both ends.

The deque container class is defined in the header file <deque> in the namespace std .
The deque class has all the vector member functions,plus the front operations,as shown
in the following codelisting:

template <class T, class A = allocator<T>> class deque
{
public:

// types
typedef typename A::size_type size_type; // size

type

// iterators and references types
typedef (implementation defined, may be T*) iterator;
typedef (implementation defined, may be const T*) const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator>

const_reverse_iterator;
typedef typename A::reference reference;
typedef typename A::const_reference const_reference;

// constructors
explicit deque(const A& = A());
explicit deque(size_type n, const T& val = T(), const A& = A());
vector(const deque& dq);

// size functions
size_type max_size() const; // maximum number of elements
size_type size() const; // number of elements in a deque
bool empty() const; // size() == 0;

// increase deque size and add an element
void resize(size_type n, T element = T());

// element access
reference at(size_type n); // the nth element

Standard Template Library Container Classes

CHAPTER 6
253

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 253

with
const_reference at(size_type n) const; // range checking

reference front(); // first element
const_reference front() const;
reference back(); // last element
const_reference back() const;

// iterators
iterator begin(); // points to the first element
const_iterator begin() const;
iterator end(); // points to the (last + 1) element
const_iterator end() const;

// points to the first element of reverse sequence
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

// points to the (last + 1) element of reverse sequence
reverse_iterator rend();
const_reverse_iterator rend() const;

// insertion and deletion

// insert t before pos and returns an iterator pointing to the
// newly inserted element
iterator insert(iterator pos, const T& t);

// insert n copies of t before pos
void insert(iterator pos, size_type n, const T& t)

// insert a range of elements before pos
void insert(iterator pos, const_iterator i, const_iterator j);

// front and back operations
void push_front(const T& t); // add t the beginning
void pop_front(); // remove the first element
void push_back(const T& t); // add t to the end
void pop_back(); // remove the last element

// remove element at position pos
iterator erase(iterator pos);

// remove from the first element to the last – 1 element
iterator erase(iterator first, iterator last);

// remove all elements
void clear();

// deque operations
void swap(deque & dq); // swap elements between current deque and

Implementation Issues

PART II
254

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 254

dq

bool operator==(const deque<T, A>& dq1, const deque<T, A>& dq2);
bool operator!=(const deque<T, A>& dq1, const deque<T, A>& dq2);
bool operator<(const deque<T, A>& dq1, const deque<T, A>& dq2);
bool operator<=(const deque<T, A>& dq1, const deque<T, A>& dq2);
bool operator>(const deque<T, A>& dq1, const deque<T, A>& dq2);
bool operator>=(const deque<T, A>& dq1, const deque<T, A>& dq2);

};

Understanding Stacks
One of the most commonly used data structures in computer programming is the stack.
The stack, however, is not implemented as an independent container class. Instead, it is
implemented as a wrapper of a container. The template class stack is defined in the
header file <stack> in the namespace std .

A stack is acontinuously allocated block that can grow or shrink at the back end.
Elements in a stack can only be accessed or removed from the back. You have seen simi-
lar characteristics in the sequence containers,notably vector and deque . In fact,any
sequence container that supports the back() , push_back() , and pop_back() operations
can be used to implement a stack. Most of the other container methods are not required
for the stack and are therefore not exposed by the stack.

The STL stack template class is designed to contain any type of objects. The only
restriction is that all elements must be of the same type.

A stack is a LIFO (last in, first out) structure. It’s like an overcrowded elevator: The first
person who walks in is pushed toward the wall and the last person stands right next to
the door. When the elevator reaches the destination floor, the last person is the first to go
out. If someone wants leave the elevator earlier, all those who stand between her and the
door must make way for her, probably by going out of the elevator and then coming back
in.

By convention,the open end of a stack is often called the top of the stack, and operations
carried out to a stack are often calledpushand pop. The stack class inherits these con-
ventional terms.

Standard Template Library Container Classes

CHAPTER 6
255

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

NOTE

The STL stack class is not the same as the stack mechanism used by compilers
and operating systems, in which stacks can contain different types of objects.
The underlying functionality, however, is very similar.

09 239-5 CH06 2/19/99 1:12 PM Page 255

The stack’s interfaceis simple:

template <class T, class Container = deque<T>>
class stack
{
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef typename Container container_type;

protected:
Container c;

public:
explicit stack(const Container& = Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }
const value_type& top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

};

T is the type of elements the stack contains. The container class can be any container that
supports the back operations. The STL container class deque is used by default. The term
back operation is carried over from the STL container classes.

As you cansee, the top() functionis just an interface to the container’s back() function.
Likewise, the push() and pop() functions are really the push_back() and pop_back() of
the container. The empty() function indicates whether a stack contains no element at all.
The size() function returns the number of elements a stack contains. Listing 6.10 shows
some basic stack operations.

LISTING 6.10. STACK OPERATIONS

#include <iostream>
#include <stack>
using namespace std;

template<class T, class C>
void ShowStack(stack<T, C>& aStack);

int main()
{

// create an integer stack
stack<int> sInt;
cout << “Stack sInt created:\n”;
ShowStack(sInt);

// push elements into the stack
for (unsigned int i = 0; i < 5; ++i)

Implementation Issues

PART II
256

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 256

sInt.push(i * 2);
cout << “sInt:\n”;
ShowStack(sInt);

// modify the top element
sInt.top() = 100;
cout << “top element modified:\n”;
ShowStack(sInt);

// get all elements
cout << “Show all elements:\n”;
while (!sInt.empty())
{

cout << sInt.top() << “, “;
sInt.pop();

}
cout << “\n\n”;

return 0;
}

//
// Display stack properties
//
template<class T, class C>
void ShowStack(stack<T, C>& aStack)
{

cout << “size = “ << aStack.size();
if (!aStack.empty())

cout << “\ttop = “ << aStack.top();
cout << “\n\n”;

}

The output from Listing 6.10 is shown here:

Stack sInt created:
size = 0

sInt:
size = 5 top = 8

top element modified:
size = 5 top = 100

Show all elements:
100, 6, 4, 2, 0,

An emptystack sInt is created, and five elements are pushed onto it. The stack sInt

automatically acquires more memory as its size increases. The last element can be
accessed using thetop() function. You can only modify the last element in a stack, using

Standard Template Library Container Classes

CHAPTER 6
257

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 257

the top() function. To access an element other than the one at the top,you must remove
all elements on top of that element by using the pop() function—in much the same way
as what happens when you need to get out of a crowded elevator. You must also make
sure that the stack is not empty before you access the top element,otherwise you may
have a problem of stack underflow. The stack underflow effect is undefined, that is, it is
implementation dependent. For example, some compilers may throw an exception,while
others may ignore it silently.

We have all seen the infamous“stack overflow” error. What does it mean? In theory, a
stack cannot overflow because it simply acquires more memory as required. Practically,
however, available memory is always limited. When you run out of memory, you get a
stack overflow or othermemory-related error.

You may have noticed the rather strange stack constructor declaration: It can take a con-
tainer as a parameter. For example, you can define and initialize a stack using the follow-
ing statement:

stack<int> intStack(intVector); // where intVector is defined as
// vector<int> intVector;

This statement initializes intStack from intVector . That is, the code creates intStack

and copies all elements from intVector to it.

As usual,several overloaded template comparison operators are defined for the stack

class. These operators are generally wrappers for the correspondingcontainer compari-
son operators:

template <class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>&
➥y);
template <class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>&
➥y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>&
➥y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>&
➥y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>&
➥y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>&
➥y);

Implementation Issues

PART II
258

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 258

Understanding Queues
A queueis another commonly used data structure in computer programming. Elements
are added to the queue at one end and taken out at the other. The classic analogy is this:
A stack is like a stack of dishes at a salad bar. You add to the stack by placing a dish on
top (pushing the stack down), and you take from the stack by “popping” the top dish (the
one most recently added to the stack) off the top.

A queue is like a line at the theater. You enter the queue at the back, and you leave the
queue at the front. This is known as a FIFO (first in, first out) structure; a stack is a
LIFO (last in,first out) structure. Of course, every once in a while, you’re second-to-last
in a long line at the supermarket,when someone opens a new register and grabs the last
person in line—turning what should be a FIFO queue into a LIFO stack, and making you
grind your teeth in frustration.

Like the stack , the queue is implemented as a wrapper class to a container. The contain-
er must support front() , back() , push_back() , and pop_front() operations. Note that
the characteristics of a queue rule out the vector class because there is no pop_front()

operation for the vector class. The template class queue is defined in the header file
<queue> in the namespace std . The interface for the template class queue looks rather
familiar, as shown by the following code:

template <class T, class Container = deque<T> >
class queue
{
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef typename Container container_type;

protected:
Container c;

public:
explicit queue(const Container& = Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& front() { return c.front(); }
const value_type& front() const { return c.front(); }
value_type& back() { return c.back(); }
const value_type& back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};

This code shows the similarity between the queue class and the stack template class.
The more conventional push() and pop() operations are used to wrap up the container’s
push_back() and pop_front() operations. Listing 6.11 demonstrates basic queue opera-
tions.

Standard Template Library Container Classes

CHAPTER 6
259

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 259

LISTING 6.11. BASIC QUEUE OPERATIONS

#include <iostream>
#include <queue>
using namespace std;

template<class T, class C>
void ShowQueue(const queue<T, C>& aQueue);

int main()
{

// create a integer queue
queue<int> qInt;
cout << “Queue qInt created:\n”;
ShowQueue(qInt);

// push elements into the queue
for (unsigned int i = 1; i < 5; ++i)

qInt.push(i * 2);
cout << “qInt:\n”;
ShowQueue(qInt);

// modify the first and last elements
qInt.front() = 20;
qInt.back() = 30;
cout << “The first and last elements modified:\n”;
ShowQueue(qInt);

// remove first element from the queue
qInt.pop();
cout << “After one pop() operation\n”;
ShowQueue(qInt);

return 0;
}

//
// Display queue elements
//
template<class T, class C>
void ShowQueue(const queue<T, C>& aQueue)
{

cout << “size() = “ << aQueue.size();
if (!aQueue.empty())
{

cout << “\tfront() = “ << aQueue.front();
cout << “\tback() = “ << aQueue.back();

}
cout << “\n\n”;

}

Implementation Issues

PART II
260

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 260

The output from Listing 6.11 is shown as follows:

Queue qInt created:
size() = 0

qInt:
size() = 4 front() = 2 back() = 8

The first and last elements modified:
size() = 4 front() = 20 back() = 30

After one pop() operation
size() = 3 front() = 4 back() = 30

Elements are pushed into the queue. As can a stack, a queue can also acquire memory
when its size increases. You can access the first and last elements in the queue using the
front() and back() operations. After the first (top) element is removed from the queue
using thepop() function,the next element becomes the new front element.

Again,overloaded comparisonoperators are defined to compare two queues:

template <class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>&
➥y);
template <class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>&
➥y);
template <class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>&
➥y);
template <class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>&
➥y);
template <class T, class Container>
bool operator>=(const queue<T, Container>& x, const queue<T, Container>&
➥y);
template <class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>&
➥y);

Standard Template Library Container Classes

CHAPTER 6
261

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

NOTE

As is the STL stack class, the STL queue class is not the same as the queue mech-
anism used by compilers and operating systems, where queues can contain dif-
ferent types of objects. The underlying functionality, however, is very similar.

09 239-5 CH06 2/19/99 1:12 PM Page 261

Priority Queues
A priority queueis a queue whose elements are assigned a priority. The template class
priority_queue is also defined in the header file <queue> in the namespace std . The
element with the highest priority is the top of the queue. The interface for the template
class priority_queue looks like this:

template <class T, class Container = vector<T>,
class Compare = less<Container::value_type> >

class priority_queue
{
public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef typename Container container_type;
protected:
Container c;
Compare comp;
public:
explicit priority_queue(const Compare& x = Compare(),

const Container& = Container())
: c(Container), comp(Compare) {};
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(), const Container& =
➥Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const value_type& top() const { return c.front(); }
void push(const value_type& x);
void pop();
};

Elements of apriority queue are pushed in and popped out at one end. Any sequence that
supports the front() , push_back() and pop_back() can be used as the container for pri-
ority queues. By default, the vector is used.

A priority queue must provide a way of comparing the priorities of its elements. By
default, the less-than (<) operator is used. The pop() operation returns the element that
has the highest priority. For elements that have equal priority, they become the top in the
order in which they were initially inserted—hence a queue. For instance, assume that you
have two elements A and B in a priority queue and A was inserted before B. If both A
and B have a priority of five, A will become the top when there is no element that has a
higher priority. When A is popped out of the queue, B becomes the top.

When an element is pushed into a priority queue, it is placed behind all elements with
higher or equal priority and in front of all elements with lower priorities. How this
process of placement is achieved is implementation defined.

No comparison operator is defined for priority queues.

Implementation Issues

PART II
262

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 262

Understanding Associative
Containers
While sequence containers are designed for sequential and random access of elements
using the index or an iterator, the associative containers are designed for fast random
access of elements using keys. The Standard C++ Library provides four associative con-
tainers: map, multimap, set,and multiset.

You have seen that a vector is like an enhanced version of an array. It has all the charac-
teristics of an array plus some additional features. Unfortunately, the vector also suffers
from one of the significant weaknesses of arrays: It has no provision for the random
access of elements using key values other than the index or iterator. Associative contain-
ers,on the other hand, provide fast random access based on key values.

The Map Container
The first associative container class is the map class. It is defined in the header file <map>

in the namespace std . Before you get into the details of maps,let’s recap how an array
is organized and accessed. Listing 6.12 shows an array of Product objects.

LISTING 6.12. A Product LISTING

#include <iostream>
#include <string>
using namespace std;

class Product
{
public:

Product(string newName = “”, double newPrice = 0, int newStockLevel
➥= 0):

mName(newName), mPrice(newPrice), mStockLevel(newStockLevel)
➥{}

void SetName(string newName) {mName = newName;
}

void SetName(int newStockLevel) {mStockLevel = newStockLevel;}
void SetPrice(double newPrice) {mPrice = newPrice; }

string GetName() const {return mName;}
int GetStockLevel() const {return mStockLevel;}

Standard Template Library Container Classes

CHAPTER 6
263

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 263

double GetPrice() const {return mPrice; }

friend ostream& operator<<(ostream& os, Product& p)
{

os << “Product: “ << p.mName
<< “\tPrice: “ << p.mPrice
<< “\tStock on hand: “ << p.mStockLevel;

return os;
}

private:
string mName;
int mStockLevel;
double mPrice;

};

int main()
{

Product Pen(“Pen”, 5.99, 58);
Product TableLamp(“Table Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);
Product productArray[3] = {Pen, TableLamp, Speaker};

cout << “Price list:\n”;
for (int i = 0; i < 3; ++i) cout << productArray[i] << “\n”;

for (int j = 0; j < 3; ++j)
{

if (productArray[j].GetName() == “Speaker”)
cout << “\nSpeaker’s price is “ << productArray[j].GetPrice()

➥<< “\n”;
}

return 0;
}

The output from Listing 6.12 is shown here:

Price list:
Product: Pen Price: 5.99 Stock on hand: 58
Product: Table Lamp Price: 28.49 Stock on hand: 24
Product: Speaker Price: 24.95 Stock on hand: 40

Speaker’s price is 24.95

You can print out a nice-looking price list for all your stock using this program. But what
if you want to know the price of speakers? To get this information, you will have to write
some code like this:

Implementation Issues

PART II
264

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.12. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 264

for (int j = 0; j < 3; ++j)
{

if (productArray[j].GetName() == “Speaker”)
cout << “Speaker’s price is “ << productArray[j].GetPrice() <<

➥“\n”;
}

This process is rather inefficient and messy. Wouldn’t it be nice if you could do this:

cout << “Speaker’s price is “ << productArray[“Speaker”].GetPrice() <<

➥“\n”;

Obviously, you can’t do this with normal arrays. Fortunately, you canachieve this using
the STL container class map. Let’s modify Listing 6.12 so that it stores product listings in
a map and can get the price of speakers. Listing 6.13 accomplishes this goal.

LISTING 6.13. USING map TO STORE THE Product LISTING

#include <iostream>
#include <string>
#include <map>
using namespace std;

class Product
{
public:

Product():mName(“New Product”), mStockLevel(0), mPrice(0) {}
Product(string newName, double newPrice = 0, int newStockLevel = 0):

mName(newName), mPrice(newPrice), mStockLevel(newStockLevel)
➥{}

void SetName(string newName) {mName = newName; }
void SetName(int newStockLevel) {mStockLevel = newStockLevel;}
void SetPrice(double newPrice) {mPrice = newPrice; }

string GetName() const {return mName;}
int GetStockLevel() const {return mStockLevel;}
double GetPrice() const {return mPrice; }

friend ostream& operator<<(ostream& os, Product& p)
{

os << “Product: “ << p.mName
<< “\tPrice: “ << p.mPrice
<< “\tStock on hand: “ << p.mStockLevel;

return os;
}

private:

Standard Template Library Container Classes

CHAPTER 6
265

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 265

string mName;
int mStockLevel;
double mPrice;

};

int main()
{

Product Pen(“Pen”, 5.99, 58);
Product TableLamp(“Table Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);

map<string, Product> productMap;
productMap[Pen.GetName()] = Pen;
productMap[TableLamp.GetName()] = TableLamp;
productMap[Speaker.GetName()] = Speaker;

cout << “Speaker’s price is “ << productMap[“Speaker”].GetPrice() <<
➥“\n”;

return 0;
}

The output from Listing 6.13 is simply this:

Speaker’s price is 24.95

Listing 6.13 shows an important feature of the container class map: Elements in a map
can be accessed using a key value. This implies that the container map must have a Key

class. The map container must also be able to compare key values by using either the Key

class’s built-in comparison operator or an external comparison object. As anticipated, you
find that the map container does indeed have a Key class that provides these features:

template<class Key, class T, class Compare = less<Key>, class A =
➥Allocator<T>>
class map
{

// types
typedef Compare key_compare;
typedef A allocator_type;

typedef typename A::deference_type difference_type;

typedef typename A::reference reference;
typedef typename A::const_reference const_reference;

};

The first argument Key is the type of keys for the map; the second argument T is the type
of element value. In your Product map example, the key is the product ID of type
string , and the element value is of type Product . The third argument is a Compare class

Implementation Issues

PART II
266

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.13. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 266

that can be used to compare two key values. The fourth element A is an allocator that
takes care of memory management of containers. In most cases,the default
Allocator<T> should be adequate.

A map contains a sequence of key/value pairs,where each key is unique. This allows for
the accurate locating of elements in a map. In addition, you must be able to sort the ele-
ments in a map according to their key values. If you don’t specify a Compare class,the <
comparison function will be used. You can overload the comparison operator < to com-
pare two objects of your class. In the Product map example, the operator<(string,

string) is used to compare product IDs. If you decide to order your product list by
name, you can define a Compare class and provide it with the Product map. You will see
more about defining a customized comparison class inChapter 7,“STL Iterators and
Algorithms.”

Constructors and Destructor
The following code fragment shows the constructors and the destructor for the map con-
tainer class:

template<class Key, class T, class Compare = less<Key>, class A =
➥Allocator<T>>
class map
{

// constructors and destructor
// create an empty map
explicit map(const Compare& cmp = Compare(), const A& = A());

// create a map and copy the first to (last – 1) elements from an
➥InputIterator

template<class InputIterator>
map(InputIterator first, InputIterator last,

const Compare& cmp = Compare(), const A& = A());

// copy constructor
map(const map& m);

// destructor
~map();

// assignment operator
map& operator=(const map&);

};

The member constructor creates a map object with an optional Compare class and/or an
allocator class. (We will leave the template constructor alone for now because it involves
an input iterator class; iterators are covered a little later in this chapter.) The copy con-
structor, destructor, and the assignment operator are standard.

Standard Template Library Container Classes

CHAPTER 6
267

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 267

Sizes
As do sequencecontainers, the map class provides several member functions related to
the size of the map:

template<class Key, class T, class Compare = less<Key>, class A =
➥Allocator<T>>
class map
{
public:

// types
typedef typename A::size_type size_type;

// sizes
size_type size() const; // number of elements
size_type max_size() const; // size of the largest

➥map
bool empty() const { return (size() == 0); }

};

All these operations are the same as their counterparts in the vector class.

Iterators
As with other standard containers, you can traverse through a map using iterators:

template<class Key, class T, class Compare = less<Key>, class A =
Allocator<T>>
class map
{
public:

// types
typedef Key key_type;
typedef T mapped_type;

typedef (implementation defined) iterator;
typedef (implementation defined) const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator>

➥const_reverse_iterator;

// iterators
iterator begin(); // points to the first element
const_iterator begin() const;
iterator end(); // points to the (last + 1) element
const_iterator end() const;

// points to the first element of reverse sequence
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Implementation Issues

PART II
268

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 268

// points to the (last + 1) element of reverse sequence
reverse_iterator rend();
const_reverse_iterator rend() const;

};

Each element in a map is a struct pair defined in namespace std asfollows:

template<class First, class Second> struct pair
{

// Other struct members

First first;
Second second;

};

In your Product map example, you can change the price for any product and print a
price list,as shown in Listing 6.14.

LISTING 6.14. ACCESSING MAP ELEMENTS

#include <iostream>
#include <string>
#include <map>
using namespace std;

class Product
{
public:

Product():mName(“New Product”), mStockLevel(0), mPrice(0) {}
Product(string newName, double newPrice = 0, int newStockLevel = 0):

mName(newName), mPrice(newPrice), mStockLevel(newStockLevel)
➥{}

void SetName(string newName) { mName = newName;
➥}

void SetName(int newStockLevel) { mStockLevel = newStockLevel; }
void SetPrice(double newPrice) { mPrice = newPrice; }

string GetName() const { return mName; }
int GetStockLevel() const { return mStockLevel; }
double GetPrice() const { return mPrice; }

friend ostream& operator<<(ostream& os, const Product& p)
{

os << “Product: “ << p.mName
<< “\tPrice: “ << p.mPrice
<< “\tStock on hand: “ << p.mStockLevel;

return os;
}

Standard Template Library Container Classes

CHAPTER 6
269

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

continues

09 239-5 CH06 2/19/99 1:12 PM Page 269

private:
string mName;
int mStockLevel;
double mPrice;

};

// template function to show all elements in a map
template<class T, class A>
void ShowMap(const map<T, A>& m);

int main()
{

Product Pen(“Pen”, 5.99, 58);
Product Lamp(“Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);

map<string, Product> productMap;
productMap[Pen.GetName()] = Pen;
productMap[Lamp.GetName()] = Lamp;
productMap[Speaker.GetName()] = Speaker;

ShowMap(productMap);
return 0;

}

//
// Show map elements
//
template<class T, class A>
void ShowMap(const map<T, A>& m)
{

cout << “Map elements:\n”;
for (map<T, A>::const_iterator ci = m.begin(); ci != m.end(); ++ci)

cout << ci->first << “\t” << ci->second << “\n”;

cout << “\n\n”;
}

The output from Listing 6.14 is shown as follows:

Map elements:
Lamp Product: Lamp Price: 28.49 Stock on hand: 24
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40

You have defined a default constructor for the Product class. This is not strictly neces-
sary. However, it is required to construct a productMap , because productMap uses the
Product ’s default constructor to allocate memory for its elements. Three key/value pairs

Implementation Issues

PART II
270

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

LISTING 6.14. CONTINUED

09 239-5 CH06 2/19/99 1:12 PM Page 270

are assigned for elements in productMap . The ShowMap() function template is a general-
purpose function that can be used to display all elements for any map. It uses an iterator
to access a map’s elements. Because elements in a map are a pair, you use first and
second to return their key/value pair.

Element Access
The container class map provides several functions you can use to find elements by their
key values. You can use the subscripting operator [] to get an element directly, or the
find() member function to get a pointer (an iterator) to the desired element. The follow-
ing code shows the access functions provided by the map container class:

template<class Key, class T, class Compare = less<Key>, class A =
➥Allocator<T>>
class map
{
public:

// subscripting
mapped_type& operator[](const key_type& k);

// other operations
// number of elements with key k, returns 0 if not found
size_type count(const key_type& k);

// find element with key k, returns map::end() if not found
iterator find(const key_type& k);
const_iterator find(const key_type& k);

// find first element with key value greater than or equal to key k
iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k) const;

// find first element with key greater than k
iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;

// find all elements with key k
pair(iterator, iterator) equal_range(const key_type& k);
pair(const_iterator, const_iterator) equal_range(const key_type& k)

➥ const;
};

You have already seen that you can access an element by its key. What happens when
you specify a key value that does not exist? Consider this example:

Product Pen(“Pen”, 5.99, 58);
Product TableLamp(“Table Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);

Standard Template Library Container Classes

CHAPTER 6
271

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 271

map<string, Product> productMap;
productMap[Pen.GetName()] = Pen;
productMap[TableLamp.GetName()] = TableLamp;
productMap[Speaker.GetName()] = Speaker;

cout << productMap[“Speaker”] << “\n”; // no problem here
cout << productMap[“Cup”] << “\n”; // what happens here???

The last statement creates a new product using the default constructor of class T—
Product in this example—and inserts it into the map. If no default constructor is defined,
you get a compile error.

The find() function,on the other hand, returns map::end() when the key is not found.
It does not create an element.

Listing 6.15 changes the Product map example again to test the element access opera-
tions. Replace the main() function in Listing 6.14 with the code in Listing 6.15.

LISTING 6.15. ACCESSING ELEMENTS USING SUBSCRIPTS AND ITERATORS

int main()
{

Product Pen(“Pen”, 5.99, 58);
Product TableLamp(“Table Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);

map<string, Product> productMap;
productMap[Pen.GetName()] = Pen;
productMap[TableLamp.GetName()] = TableLamp;
productMap[Speaker.GetName()] = Speaker;
ShowMap(productMap);

// show Speaker’s price
cout << “Speaker’s price is “ << productMap[“Speaker”].GetPrice() <<

➥“\n”;

// change Pen’s price
productMap[“Pen”].SetPrice(productMap[“Pen”].GetPrice() * 1.10);
cout << “Pen’s price has been changed to “ <<

➥productMap[“Pen”].GetPrice()
➥ << “\n”;

// show various access functions related to Pen
cout << “Number of Pens is “ << productMap.count(“Pen”) << “\n”;

map<string, Product>::iterator ci = productMap.lower_bound(“Pen”);
cout << “First Pen is “ << ci->second << “\n”;

ci = productMap.upper_bound(“Pen”);
cout << “Next to Pen is “ << ci->second << “\n”;

Implementation Issues

PART II
272

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 272

// try to access a non-existing element
cout << “Try Rubber: “ << productMap[“Rubber”] << “\n”;
ShowMap(productMap);

// show access functions for a non-existing element
cout << “Number of Red Pens is “ << productMap.count(“Red Pen”) <<

➥“\n”;

ci = productMap.lower_bound(“Red Pen”);
cout << “First Red Pen is “ << ci->second << “\n”;

ci = productMap.upper_bound(“Red Pen”);
cout << “Next to Red Pen is “ << ci->second << “\n”;

return 0;
}

The output from this modified code is as follows:

Map elements:
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40
Table Lamp Product: Table Lamp Price: 28.49 Stock on hand: 24

Speaker’s price is 24.95
Pen’s price has been changed to 6.589
Number of Pens is 1
First Pen is Product: Pen Price: 6.589 Stock on hand: 58
Next to Pen is Product: Speaker Price: 24.95 Stock on hand: 40
Try Rubber: Product: New Product Price: 0 Stock on hand: 0
Number of Red Pens is 0
First Red Pen is Product: Speaker Price: 24.95 Stock on hand: 40
Next to Red Pen is Product: Speaker Price: 24.95 Stock on hand: 40

You can change map elements by using the subscripting operator [] . For instance, the
price of pens is increased by 10 percent using the Product class’s SetPrice() function.
You show the number of elements with key value of “Pen” by using the count() func-
tion. There is only one element here, and you know that you will never have more than
one element with the same key value. The lower_bound() function finds the product
pen,and the upper_bound() function gives us the element with a key value greater than
“Pen” . It is the speaker.

Then you try to find a product with a key value of “Rubber” . It does not exist, so a new
product is created using the Product class’s default constructor. The count() function on
a nonexisting key value returns 0, indicating that there is no product with such a key
value. Note that the count() function here does not create a new element in the map.
The lower_bound() function on this nonexisting key returns the element that has the

Standard Template Library Container Classes

CHAPTER 6
273

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 273

next key value (in this case, the speaker). The upper_bound() function works the
same way.

You may feel that the lower_bound() , upper_bound() , and equal_range() functions
have rather limited use here. Remember that the container class map does not allow dupli-
cate key values. You will learn more about this when you are introduced to the multimap

class,where duplicate keys are allowed.

Insertions and Deletions
Elements can be added to or removed from a map. The map class provides several inser-
tion and deletion functions:

template<class Key, class T, class Compare = less<Key>, class A =
➥Allocator<T>>
class map
{
public:

// types
typedef pair<const Key, T> value_type;

// insertions and deletions
pair<iterator, bool> insert(const value_type& val);

➥ // insert <Key, T> pair
iterator insert(iterator pos, const value_type& val);
template<class InputIterator>
void insert(InputIterator first, InputIterator last);

void erase(iterator pos);
size_type erase(const key_value* k);
void erase(iterator first, iterator last);
void clear();

};

Insertion and deletion operations work the same way as they do in vectors. Consider the
following function:

iterator insert(iterator pos, const value_type& val);

The iterator pos has no effect on where val is inserted because the element position is
determined only after the <Key, T> pair is inserted.

Listing 6.16 shows how to add and remove elements from a map container class. Replace
the main() function in Listing 6.14 with the code in Listing 6.16 to get the entire pro-
gram.

Implementation Issues

PART II
274

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 274

LISTING 6.16. ADDING AND REMOVING ELEMENTS

typedef map<string, Product> PRODUCT_MAP;

int main()
{

Product Pen(“Pen”, 5.99, 58);
Product Lamp(“Lamp”, 28.49, 24);
Product Speaker(“Speaker”, 24.95, 40);

PRODUCT_MAP productMap;
productMap[Pen.GetName()] = Pen;
productMap[Lamp.GetName()] = Lamp;
productMap[Speaker.GetName()] = Speaker;
ShowMap(productMap);

// add a new element
cout << “Add a new element:\n”;
Product Staple(“Staple”, 2.99, 20);
pair<string, Product> staplePair(“Staple”, Staple);
pair<PRODUCT_MAP::iterator, bool> p = productMap.insert(staplePair);
if (p.second) cout << “New element added!\n”;
else cout << “Insertion failed!\n”;
ShowMap(productMap);

// add a new element with duplicate key Pen
cout << “Add a new element with duplicate key Pen:\n”;
Product RedPen(“Red Pen”, 3.29, 12);
pair<string, Product> RedPenPair(“Pen”, RedPen);
p = productMap.insert(RedPenPair);
if (p.second) cout << “New element added!\n”;
else cout << “Insertion failed!\n”;
ShowMap(productMap);

// remove element with key “Lamp” from productMap
cout << “remove element with key \”Lamp\” from productMap:\n”;
productMap.erase(“Lamp”);
ShowMap(productMap);

return 0;
}

The output from the modified code in Listing 6.16 is shown here:

Map elements:
Lamp Product: Lamp Price: 28.49 Stock on hand: 24
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40

Add a new element:
New element added!

Standard Template Library Container Classes

CHAPTER 6
275

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 275

Map elements:
Lamp Product: Lamp Price: 28.49 Stock on hand: 24
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40
Staple Product: Staple Price: 2.99 Stock on hand: 20

Add a new element with duplicate key Pen:
Insertion failed!
Map elements:
Lamp Product: Lamp Price: 28.49 Stock on hand: 24
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40
Staple Product: Staple Price: 2.99 Stock on hand: 20

remove element with key “Lamp” from productMap:
Map elements:
Pen Product: Pen Price: 5.99 Stock on hand: 58
Speaker Product: Speaker Price: 24.95 Stock on hand: 40
Staple Product: Staple Price: 2.99 Stock on hand: 20

The second value of the pair object returned by the insert() function is set to true if
the insertion is successful,as you see with the staplePair . If the key value to be added
already exists in the map, that value is set to false , indicating that the insertion has
failed, as you see with the RedPenPair .

Map Operations
The STL also provides overloaded comparison operators for comparing maps. You can
also swap the elements of two maps by using the overloadedswap() function. The fol-
lowing code fragment shows these operations,as defined by the map class:

template<class Key, class T, class Compare = less<Key>, class A =
Allocator<T>>
class map
{
public:

// map operations
void swap(map& m); // swap elements between current map and m

template<class Key, class T, class Compare, class A>
bool operator==(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

template<class Key, class T, class Compare, class A>
bool operator!=(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

template<class Key, class T, class Compare, class A>
bool operator<(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

Implementation Issues

PART II
276

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 276

template<class Key, class T, class Compare, class A>
bool operator<=(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

template<class Key, class T, class Compare, class A>
bool operator>(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

template<class Key, class T, class Compare, class A>
bool operator>=(const map<Key, T, Compare, A>& m1,

const map<Key, T, Compare, A>& m2);

};

The Multimap Container
A multimap is similarto a map except that its elements can have duplicate keys.
Consequently, the multimap class has a similar class definition to the map container class,
with some exceptions. It has no subscripting operators because there may be more than
one element that has the same key value. The insertion operation is always okay because
duplicate keys are allowed. The template class multimap is defined in the header file
<map> in thenamespace std .

Recall the syntax for the insert() function in class map:

pair<iterator, bool>insert(const value_type& val);

In the map class,the second element in the returning pair is used to indicate whether the
insertion was successful. That second element is redundant to the multimap class because
it is always true . Therefore, the insert() function is implemented in the multimap class
as follows:

iterator insert(const value_type& val);

The three functionslower_bound() , upper_bound() , and range_check() are the primary
means of accessing multimap elements with given key values. These three functions are
defined by the multimap class as follows:

template<class Key, class T, class Compare = less<Key>, class A =
allocator<T>>
class multimap
{
public:

// other class members

// find first element with key value greater than or equal to key k
iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k) const;

Standard Template Library Container Classes

CHAPTER 6
277

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 277

// find first element with key greater than k
iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;

// find all elements with key k
pair(iterator, iterator) equal_range(const key_type& k);
pair(const_iterator, const_iterator) equal_range(const key_type& k)

const;
};

The lower_bound() and upper_bound() functions were briefly discussed in the introduc-
tion to the map class. Now let’s look at the equal_range() functions.

The equal_range() function returns a pair of iterators containing the first element with
key k and the first element with a key value greater than k. The equal_range() function
acts like a combination of the lower_bound() and upper_bound() functions in one func-
tion call. This speeds up execution time and simplifies the program to access a range of
elements. Listing 6.17 shows an example using themultimap class.

LISTING 6.17. USING THE multimap CLASS

#include <iostream>
#include <string>
#include <map>
using namespace std;

template<class Key, class T>
void ShowMultimap(const multimap<Key, T>& m);

template<class Key, class T>
void ShowMultimapRange(const multimap<Key, T>& m, const Key& k);

int main()
{

multimap<string, string> stateMap;
stateMap.insert(make_pair((string)”USA”, (string)”California”));
stateMap.insert(make_pair((string)”USA”, (string)”New York”));
stateMap.insert(make_pair((string)”USA”, (string)”Washington”));
stateMap.insert(make_pair((string)”Australia”, (string)”New South

➥Wales”));
stateMap.insert(make_pair((string)”Vatican City”, (string)”Vatican

➥City”));

ShowMultimap(stateMap);
ShowMultimapRange(stateMap, (string)”USA”);

return 0;
}

Implementation Issues

PART II
278

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 278

template<class Key, class T>
void ShowMultimap(const multimap<Key, T>& m)
{

typedef multimap<Key, T>::const_iterator Itor;

for (Itor i = m.begin(); i != m.end(); ++i)
cout << i->first << “\t” << i->second << “\n”;

cout << “\n”;
}

template<class Key, class T>
void ShowMultimapRange(const multimap<Key, T>& m, const Key& k)
{

typedef multimap<Key, T>::const_iterator Itor;

pair<Itor, Itor> p = m.equal_range(k);
for (Itor i = p.first; i != p.second; ++i)

cout << i->first << “\t” << i->second << “\n”;
cout << “\n”;

}

The output from Listing 6.17 is shown here:

Australia New South Wales
USA California
USA New York
USA Washington
Vatican City Vatican City

USA California
USA New York
USA Washington

In this program,you create a multimap that holds the country/state pair. The
country/state pairs are added to the multimap using theinsert() function. The
ShowMultimap() function is the same as theShowMap() function you used earlier. The
ShowMultimapRange() function uses theequal_range() function to obtain the first and
last elements that have the same key value. All qualified elements are displayedusing an
iterator.

The Set Container
A setis also similar to a map. The difference is that elements in a set are not key/value
pairs. Instead, an element in a set contains only a key. The template class set is defined
in the header file <set> in the namespace std . The subscript operator [] is irrelevant
here; if you know the key, you also know the value. The class set has member functions
almost identical to those of the map class except that set contains no subscript operator

Standard Template Library Container Classes

CHAPTER 6
279

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 279

[] , the value type is simply the key itself, and the value compare is just the Compare

class. The following code introduces the functions available in the set container class:

template<class Key, class Compare = less<Key>, class A = Allocator<Key>>
class set
{
public:

// other member functions

typedef Key value_type; // as oppose to pair<const Key, T>
typedef Compare value_compare;

};

The Multiset Container
A multiset is a set that allows duplicate keys. It is also defined in the header file <set> in
the namespace std . It has all the set member functions with one exception: The
insert() function of themultiset class returns an iterator, not a pair<iterator,

bool> ; the insertion will never fail because of duplicate keys. The following code intro-
duces the functions available in the multiset container class:

template<class Key, class Compare = less<Key>, class A = Allocator<Key>>
class multiset
{
public:

// other member functions

iterator insert(const value_type& v);
};

Considering Performance Issues
STL containers are designed to satisfy different requirements of application development.
Sequence containers are best suited for the sequential and random access of elements
using the subscripting operator [] and/or iterators. Associative containers,on the other
hand, are optimized to provide random access of their elements by key values. In this
section,you take a quick look at the performance complexity of some of the standard
container operations. Table 6.1 shows some common container operations and theircom-
plexities.

Implementation Issues

PART II
280

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 280

TABLE 6.1. STANDARD CONTAINER OPERATION COMPLEXITY

Operation vector list deque map multimap set multiset

Constructors O(1)

Empty container O(n)

with elements

Destructor O(n)

begin() , end() , O(1)

rbegin() , rend()

Front operation O(1) O(1)

Back operation O(1) O(1) O(1)

Modifiers O(n) O(1) O(n) O(log(n)) O(log(n)) O(log(n)) O(log(n))

[] O(1) O(1) O(log(n))

at() O(1) O(1)

Comparison O(n)

Performance of operations is often measured by the complexity of the operation; that is,
the execution time compared to the number of elements involved in the operation. A con-
stant complexity, denoted in Table 6.1 as O(1) , means that the execution time does not
depend on the number of elements involved. A logarithmic complexity, denoted as
O(log(n)) , means that the execution time is proportional to the logarithm value of the
number of elements involved. A linear complexity, denoted as O(n) , means that the exe-
cution time is proportional to the number of elements involved.

When the need for a standard container class arises,you must make a decision about
which of the available containers is best suited for your application. You should ask two
questions:

• Which containers provide the functionality required?

For instance, if elements must be accessed by a key, any of the associative contain-
ers can be used.

• From the containers that meet the first requirement,which one is more efficient?

If elements are always to be accessed sequentially, sequence containers have the advan-
tage over their associative counterparts. Furthermore, if fr equent insertion in the middle
of the element sequence is expected, the list container is the better choice.

Standard Template Library Container Classes

CHAPTER 6
281

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 281

Using the Standard C++ Library
STL containerclasses are part of the Standard C++ Library. They are defined in the
namespace std . Your program must reference these classes in one of two ways.

The first way to reference the STL container classes is to use the using namespace

directive to indicate your intention to use the Standard C++ Library. You must have the
following statement in your program:

using namespace std;

This statement directs the compiler to resolve the class names and methods by looking at
the std namespace. All your sample programs use this method.

The second method of referencing the STL classes is to explicitly qualify the class with
thestd keyword, as in this example:

std::vector<int> vInt;

You must also use #include to include the relevant header file in your program. For
example, to use the vector container class,you must use the following statement:

#include <vector>

Table 6.2 summarizes the header files for each STL container class.

TABLE 6.2. STL CONTAINER CLASS HEADER FILES

Class Header

vector <vector>

list <list>

deque <deque>

stack <stack>

queue <queue>

priority_queue <queue>

map <map>

multimap <map>

set <set>

multiset <set>

Implementation Issues

PART II
282

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 282

Designing Element Types
The STL containerclasses are designed to hold any objects. You have seen that many
STL container class methods require the elements to be able to perform certain opera-
tions:

• The element class must have a default constructor.

The default constructor is called when a container object is created in the following
form:

vector<MyClass> v(100);

This statement creates a vector holding 100 MyClass objects created using
MyClass::MyClass() .

• The element class must have a copy constructor.

The copy constructor is called when new elements are added to thecontainer, as in
this example:
MyClass myObject;
vector<MyClass> v(100, myObject); // MyClass’ copy constructor is
called
vector<MyClass> v;
v.push_back(myObject); // MyClass’ copy constructor is called

• The element class must have an assignment operator (=).

The assignment operator is called when a new value is assigned to an element,as
in this example:

MyClass myObject;
vector<MyClass> v(100);
v[1] = myObject // MyClass’ assignment operator is called

When using container classes that require the comparison of their elements,you should
define the overloading comparison operators. If you do not define them,you must use a
specialized comparison class and explicitly specify the comparison class in the container
definition. The essential comparison operators are the == and < operators. You can use
these operators to implement others, including <=, >, >=, and != , as you saw in the dis-
cussion of the container class vector .

After you have defined the overloaded == and < operators, you can take a free ride to
derive the rest of them using the Standard C++ Library header file <utility> that pro-
vides template comparison operator implementations based on the operators == and <.

Standard Template Library Container Classes

CHAPTER 6
283

6

STL C
O

N
TA

IN
ER

C
LA

SSES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

09 239-5 CH06 2/19/99 1:12 PM Page 283

Summary
The Standard Template Library provides several standard container classes that help pro-
grammers perform common data structure management functions. Standard containers are
guaranteed to be implemented by compilers that conform to the C++ standard. Standard
containers ensure the portability of your applications and increase your ability to reach the
greatest possible number of users. For many applications,STL container classes provide
sufficient functionality and reduce your coding and debugging efforts. To maximize this
advantage, you must use them correctly. You must choose the container that best suits
your application’s requirements. In general, sequence containers provide optimized
sequential and random element access with subscripts and iterators. Associative contain-
ers,on the other hand, allow for the direct access of elements by key values.

You will find that you often need to use standard containers to store customized objects.
Those objects must meet a set of requirements and restrictions imposed by the chosen con-
tainer. Member functions,such as the == and < comparison operators,can have a big
impact on the performance of the container you choose and, ultimately, on your applica-
tion. Make certain that you implement containers in the most efficient and reliable manner.

Implementation Issues

PART II
284

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH06 Lp#1

NOTE

Check your compiler documentation for details on how the compiler imple-
ments the STL.

09 239-5 CH06 2/19/99 1:12 PM Page 284

IN THIS CHAPTER

• Iterator Classes 286

• Function Objects 296

• Algorithm Classes 299

7
C

H
A

PT
ER

STL Iterators and
Algorithms

10 239-5 CH07 2/19/99 1:13 PM Page 285

Iterator Classes
When we discussed STL container classes in the last chapter, we used iterators as if they
were pointers to the STL container class elements,and we noted that an iterator could be
dereferenced to evaluate to an element. In this chapter, we take a closer look at the itera-
tor classes.

Iterator classes are defined in the header file <iterator> in namespace std . Iterators are
an abstraction,or generalization, of pointers—that is, they implement all pointer opera-
tions. All iterator operations have the same effect as the corresponding pointer
operations.

Position Within a Container
A container storesa collection of objects of the same type. How elements are stored
varies among different containers. For example, elements in a vector are stored in con-
secutive memory blocks. A list container, on the other hand, stores its elements in any
available memory space. Each standard container organizes its elements in such a way
that the elements can be accessed in a specified order from the beginning of the element
collection to the end of the collection. Figure 7.1 shows the element positions in a con-
tainer.

Implementation Issues

PART II
286

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

FIGURE 7.1.
Elements in acon-
tainer.

begin() end()

Element 0 Element 1 Element 2
Element

size_of_sequence - 1 pass_the_word

Typically, elements are accessed with an iterator. If an iterator points to the nth element,
we can dereference it to get element n. An iterator can be incremented to point to ele-
ment n + 1; an iterator can also be decremented to point to element n – 1. When an itera-
tor evaluates to end() , it does not point to any element. There is no such thing as a NULL

iterator. An iterator is said to be valid if it points to an element or if it points to the end
of sequence (end()). An iterator is invalid if it is not initialized or if the sequence is
resized.

Types of Iterators In and Out of Containers
There are five iterator categories,represented in the hierarchy shown in Figure 7.2.

Figure 7.2 does not show a class inheritance diagram. It represents the level of function-
ality provided by different categories of iterators. The input iterator and output iterator

10 239-5 CH07 2/19/99 1:13 PM Page 286

provide the most limited functionality. They can be used only to traverse sequences in a
single pass in a forward direction. The pass is not repeatable. That is, stepping through a
sequence a second time using either an input iterator or an output iterator is likely to pro-
duce a different result.

STL Iterators and Algorithms

CHAPTER 7
287

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

FIGURE 7.2.
Iterator hierarchy. RandomAccessBidirectionalForward

Input

Output

A forward iterator providesall the operations of input and output iterators and relaxes
some of the restrictions imposed on input and output iterators. The most notable differ-
ence is that repeatedly stepping through the same sequence using a forward iterator pro-
duces the same results. Likewise, a bidirectional iterator providesall forward iterator
operations. It also allows for the traversal of a sequence in reverse order.

And finally, a random access iterator providesall bidirectional iterator operations plus
other random access-specific methods.

Table 7.1 summarizes the operations provided by iterators.

TABLE 7.1. ITERATOR OPERATIONS

Category Input Output Forward Bidirectional Random Access

Element -> -> -> -> , []

Access

Read = *i = *i = *i = *i

Write *i = *i = *i = *i =

Iteration ++ ++ ++ ++, -- ,-- , +, - , +=, -=

Comparison ==, != ==, != ==, != ==, != , <, <=, >, >=

Base Iterator Class
The Standard C++ Library provides a base type you can use to create your own iterator
classes:

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&>

struct iterator {
typedef Category iterator_category;
typedef T value_type;
typedef Distance diferrence_type;

10 239-5 CH07 2/19/99 1:13 PM Page 287

typedef Pointer pointer;
typedef Reference reference;

};

The Category class must be one of the five iterator categories,which are represented
with the following empty classes:

struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag : public input_iterator_tag
{};
struct bidirectional_iterator_tag {} : public forward_iterator_tag
{};
struct random_access_iterator_tag {} : public
bidirectional_iterator_tag {};

All these empty classes have neither member variables nor member functions—except
for the default constructors and destructors,of course. They are named as iterator tag s
because they are only used as tags to represent the iterator categories; they are not actual-
ly used in any standard iterator member functions.

We can use iterator tag inheritance, on the other hand, to write generic algorithms of iter-
ators. For example, if a function expects an input iterator, we can pass it a forward itera-
tor; the function should execute without problem because a forward iterator mustper-
form all input iterator operations.

Given this important use of iterator tag inheritance, you might expect that the
forward_iterator_tag would be derived from both the input_iterator_tag and the
output_iterator_tag as shown in the iterator hierarchy in Figure 7.2. The STL,howev-
er, derives the forward_iterator_tag only from the input_iterator_tag . The reason
for this is that output iterators and forward iterators are used towrite outputs to different
types of containers.

Output iterators are often used to write values to unbounded containers such as the stan-
dard output. When we write to the standard output,we are free to output any value that
has to be written. There is no need to check whether the standard output will accept our
output. Although a forward iterator provides all output iterator operations,it works only
on bounded containers. The forward iterator must write to an element in the container.
Any attempt to step over the boundary generates either a compile-time or a runtime error.
We usually cannot use a forward iterator where an output iterator is expected.
Consequently, the forward_iterator_tag is not derived from the
output_iterator_tag .

Practically, there is little need to write algorithms that use output iterators anyway.
Output iterators do not have a value type because it is impossible to obtain a value from
an output iterator; you can only write a value through it. Output iterators also do not have

Implementation Issues

PART II
288

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:13 PM Page 288

a distance type because it is impossible to find the distance from one output iterator to
another. Finding a distance requires a comparison for equality, and output iterators do not
support the operator ==. Consequently, there are few algorithms that work on output iter-
ators. In fact,the STL iterator operations distance() and advance() are not designed to
work with output iterators at all.

The next type in the iterator template class,T, is the type of object pointed to by the iter-
ator. Distance is a signed integral type representing the distance between two iterators.
By default, it is the ptrdiff_t type defined in <cstddef> . The pointer is the type of
pointer that points to the iterator’s value_type . This type is a generalized pointer type
returned by the overloaded operator -> . The reference is a reference to the iterator’s
value_type . It is returned by the overloaded dereference operator * .

You can derive a forward iterator from the template class iterator:

template <class T, class Distance = ptrdiff_t>
class forward_iterator : public iterator<forward_iterator_tag, T,
➥Distance> {
public:

const T& operator*() const;
const T* operator->() const;
iterator& operator++(); // prefix-increment
iterator operator++(int); // postfix-increment

// other members
};

All iterators derived from the base iterator template class have a common set of attribut-
es,including iterator_category , value_type , andso on. The STL provides a template
class iterator_traits that characterizes iterators:

template<class Itor>struct iterator_traits {
typedef typename Itor::iterator_category iterator_category;
typedef typename Itor::value_type value_type;
typedef typename Itor::difference_type difference_type;
typedef typename Itor::pointer pointer;
typedef typename Itor::reference reference;

};

The use of iterator traits is demonstrated in the iterator operation examples later in this
chapter.

Input Iterators
An input iterator is an iterator that must satisfy the following set of requirements:

• Default Constructible: The iterator must have a default constructor so that it can
be created without initializing it to any particular value. When an input iterator is

STL Iterators and Algorithms

CHAPTER 7
289

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:13 PM Page 289

created using its default destructor, it is an invalid iterator. It remains invalid until it
is assigned a value.

• Assignable: The iterator must have a copy constructor and an overloaded assign-
ment operator. These features allow for copying and assigning values to iterators.

• Equality Comparable: The iterator must have an overloaded equality operator ==

and an inequality operator != . These operators allow for the comparison of two
iterators.

An input iterator is an iterator that can be dereferenced when it points to an element
within a sequence. The iterator can also point to the end of a sequence. When it points to
the end of a sequence, the iterator actually points just past the final element in the
sequence and is said to bepast the end. A past-the-end iterator cannot be dereferenced.

An input iterator is valid if it can be dereferenced to a valid object or it is past the end.
An input iterator guarantees read access to the object pointed to. For example, if ii is an
input iterator whose value_type is T, we can access the object it points to by dereferenc-
ing it:

T t = *ii; // ok

Because input iterators do not allow write access to the elements pointed to,thefollow-
ing statements contain an error:

T t;
*ii = t; // error!

An input iterator can also be incremented to point to the next element. Both the prefix
increment operator (++ii) and the postfix increment operator (ii++) must be defined. An
input iterator ii can be incremented if ++ii is valid. Past-the-end iterators cannotbe
incremented.

Output Iterators
An output iterator must be default constructible and assignable. An output iterator guar-
antees write access—but not read access—to the object pointed to. Consider these state-
ments:

T t;
*oi = t; // ok
t = *oi; // error!

An output iterator also defines both the prefix and the postfix incrementoperators.

Implementation Issues

PART II
290

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:13 PM Page 290

Forward Iterators
A forward iterator is like a video tape—it can be played only in one direction,but it can
be played again and again. It has all the characteristics of an input iterator. That is, a for-
ward iterator is default constructible, assignable, and equality comparable. A forward
iterator can also be dereferenced and incremented. Both read and write access to the
object pointed to are provided withforward iterators.

Bidirectional Iterators
A bidirectional iterator is similar to a forward iterator except that it can also be decre-
mented.

Random Access Iterators
The random accessiterator implements all the iterator operations of the bidirectional iter-
ator, and adds methods to move from one element to another in constant time (O(1)).
The distance between the original element and the destination element is not important.
That is, the random access iterator is as quick to go from element 1 to element 37 as it is
to go from element 1 to element 2.

Because random access iterators can move more than one step at a time, the addition (+
and +=) and subtraction (- and -=) operators are defined. Random access iterators also
define the subscripting operator [] . If ri is a random access iterator, ri[n] returns the
nth element in the sequence.

In addition to being equality comparable, a random access iterator is also magnitude
comparable. Therefore, it defines less-than (<), greater-than (>), less-than-or-equal-to
(<=), and greater-than-or-equal-to (>=) operators. Only the less-than (<) operator is funda-
mental. All other operators can be derived from it.

Iterator Operations
In addition to the overloaded operators, the STL provides two functions that return the
number of elements between two elements and that jump from one element to any other
element in the container.

The distance() Function
The distance() functionfinds the distance between the current position of two iterators.
That is, if the first iterator points to element 12 in a sequence, and the second iterator
points to element 47 in the same sequence, the distance is 35.

template<class InputIterator>

STL Iterators and Algorithms

CHAPTER 7
291

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:13 PM Page 291

iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

How do we calculate the distance between two iterators? It is an easy calculation for ran-
dom access iterators because they provide subtraction operators. We can simply subtract
the first iterator from the last iterator to calculate the distance:

template<class RandomAccessIterator>
iterator_traits<RandomAccessIterator>::difference_type
distance(RandomAccessIterator first, RandomAccessIterator last) {

return last – first;
}

Things work slightly differently for other iterators because they have no subtraction itera-
tor defined. We must step through the sequencefrom the first to the last and record the
number of steps:

template<class InputIterator>
iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last) {

iterator_traits<InputIterator>::difference_type n = 0;
while (first++ != last) ++n;
return n;

}

Thanks to iterator tag inheritance, the second version of the distance() function works
for input iterators, forward iterators,and bidirectional iterators. Because output iterators
do not have a comparison operator != , it is not possible to test whether two output itera-
tors are equal. Consequently, there is no distance() function defined for output itera-
tors.

The complexity—the execution time compared to the number of elements involved in the
operation—of the distance() function depends on the category of the iterator. For ran-
dom access iterators, it is constant time (O(1)) because the subtraction operation on ran-
dom access iterators has the constant time complexity. For other iterators, the complexity
is linear (O(n)).

The advance() Function
So far, we have seen how we can move iterators forward and backward by using the
increment and decrement operators, respectively. We can also move random access itera-
tors several steps at a time using the addition and subtraction functions. Other types of
iterators,however, do not have the addition and subtraction functions. The STL provides
the advance() function to move any iterator—except the output iterators—several steps
at a time:

template<class InputIterator, class Distance>
void advance(InputIterator& ii, Distance& n);

Implementation Issues

PART II
292

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:13 PM Page 292

In this syntax,Distance is a signed integral type. The distance to move, n, may evaluate
to either positive or negative. If n is positive, the iterator moves forward; otherwise, the
iterator moves backward. If n is zero, this function has no effect and there is no move-
ment. n can be negative only if the iterator is either a bidirectional ora random access
iterator.

There is one significant difference between different iterator categories:Only the random
access iterator provides addition and subtraction operations. So the advance() function
can be overloaded for different iterator categories:

template<class InputIterator, class Distance>
void advance(InputIterator& ii, Distance& n) {

while (n--) ++ii;
}

template<class BidirectionalIterator, class Distance>
void advance(BidirectionalIterator & bi, Distance& n) {

if (n >= 0) while (n--) ++bi;
else while (n++) --bi;

}

template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& ri, Distance& n) {

ri += n;
}

Because output iterators allow for only write access to their value types,they should
move only one step at a time. The increment operator is provided for this very purpose.
There is no need for an advance() function for output iterators.

Similar to the distance() function,the complexity of the advance() function depends
on the category of the iterator. The advance() function has constant time complexity for
random access iterators and linearcomplexity for other iterators.

Standard Iterator Classes
STL defines a setof iterator classes that perform some common iterating operations.
These classes are described in the following sections.

The istream_iterator Class
The template class istream_iterator is defined in <iterator> . An istream iterator

is an input iterator that performs formatted input of a given type of objects from an
istream . An istream_iterator class can be defined as follows:

template <class T, class Distance = ptrdiff_t>
class istream_iterator : public input_iterator<T, Distance> {
public:

STL Iterators and Algorithms

CHAPTER 7
293

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 293

typedef input_iterator_tag iterator_category;
typedef T value_type;
typedef Distance difference_type;
typedef const T* pointer;
typedef const T& reference;

const T& operator*() const;
const T* operator->() const;
istream_iterator& operator++(); // pre-increment
istream_iterator operator++(int); // post-increment

// other members
};

Implementation Issues

PART II
294

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

NOTE

The preceding definition is not the standard istream_iterator template class
definition. This example serves only to illustrate important characteristics of
istream iterators.

Listing 7.1 shows the use of an istream iterator to read from standard input cin .

LISTING 7.1. READING INPUT USING AN istream ITERATOR

#include <iostream>
#include <iterator>
using namespace std;

int main()
{

cout << “Enter an integer: “;
istream_iterator<int, char> ii(cin);
int i1 = *ii;
cout << “i1 = “ << i1 << “\n”;

cout << “Ready for another integer: “;
int i2 = *++ii;
cout << “i2 = “ << i2 << “\n”;

return 0;
}

The following is the output generated by Listing 7.1:

Enter an integer: 6
i1 = 6

10 239-5 CH07 2/19/99 1:14 PM Page 294

Ready for another integer: 2
i2 = 2

The istream iterator ii is created to accept input from standard input cin . The second
template parameter is the base type of the istream . The first integer entered is assigned
to i1 using the dereference operator * . The iterator should be incremented if it is to
accept thenext input.

The ostream_iterator Class
The template class ostream_iterator is also defined in <iterator> . An ostream
iterator is an output iterator that performs formatted output of a given type of objects to
an ostream . An ostream_iterator class may be defined as follows:

template <class T>
class ostream_iterator : public output_iterator {
public:

typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;

ostream_iterator& operator*();
ostream_iterator& operator++();
ostream_iterator& operator++(int);
ostream_iterator& operator=(const T&);

};

Listing 7.2 demonstrates the use of an ostream iterator to write integers to standard out-
put cout .

LISTING 7.2. WRITING OUTPUT USING AN ostream ITERATOR

#include <iostream>
#include <iterator>
using namespace std;

int main()
{

ostream_iterator<int, char> oi(cout);
*oi = 6;
*++oi = 88;

return 0;
}

The following is the output generated by Listing 7.2:

STL Iterators and Algorithms

CHAPTER 7
295

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 295

688

First we create an output iterator oi to output integers to standard output cout . In a man-
ner similar to the way istream_iterator works, the second template parameter specifies
the base type of ostream . When we assign a value 6 to its value_type object,it is print-
ed to cout . As with istream iterators,an ostream iterator should be incremented before
we attempt to output another value. In Listing 7.2,the integer 88 is printed through oi to
the position next to 6.

Function Objects
Containers anditerators make it possible to create, search, and modify a sequence of
elements. A standard container typically defines a set of operations that can be used to
manage the container and its elements. Because we often need to design specialized con-
tainers to solve problems in situations for which standard containers may not be quite
suitable, we need to implement container operations. Many such operations use functions
that perform generic operations such as object comparison,validation, and calculations.
This section introduces some of the function objects defined in the Standard Library.

Standard function objects are defined in <functional> in namespace std . A function
objectis an object that can be called as a function. It can be any class that defines opera -

tor() , as shown in Listing 7.3.

LISTING 7.3. A FUNCTION OBJECT

#include <iostream>
using namespace std;

template<class T>
class Print {
public:

void operator()(T& t) { cout << t << “\n”; }
};

int main()
{

Print<int> DoPrint;
for (int i = 0; i < 5; ++i) DoPrint(i);
return 0;

}

Here is the output generated by Listing 7.3:

0
1
2
3
4

Implementation Issues

PART II
296

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 296

A template classPrint is defined with only one member function—operator() —that
simply prints a value to cout . As a normal class,Print must be instantiated so that its
overloaded operator() can be called. In Listing 7.3,DoPrint is created to print integers.
Listing 7.3 shows a very simple function object.

Function objects can be used by STL algorithms to perform various actions on contain-
ers. There are three different types of functionobjects:

• Generators: Function objects that take no argument. A classic example is a ran-
dom number generator.

• Unary Functions: Function objects that take one argument. These objects may or
may not return a value. The DoPrint function object is an example of a unary func-
tion.

• Binary Functions: Functionobjects that take two arguments. These objects may
or may not return a value.

The Standard C++ Library provides two base classes to simplify the creation of function
objects:

template<class Arg, class Result>
struct unary_function {

typedef Arg argument_type;
typedef Result result_type;

};

template<class Arg1, class Arg2, class Result>
struct binary_function {

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

Now we can redefine the Print class as follows:

template<class T>
class Print: public unary_function<T, void> {

. . .
};

Predicates
When the type ofthe return value of a unary function object is bool , the function is
called a unary predicate. A binary function object that returns a bool value is called a
binary predicate. The Standard C++ Library defines several common predicates in
<functional> . These predicates are listed in Table 7.2.

STL Iterators and Algorithms

CHAPTER 7
297

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 297

TABLE 7.2. PREDICATES DEFINED IN <functional>

Function Type Description

equal_to binary arg1 == arg2

not_equal_to binary arg1 != arg2

greater binary arg1 > arg2

greater_equal binary arg1 >= arg2

less binary arg1 < arg2

less_equal binary arg1 <= arg2

logical_and binary arg1 && arg2

logical_or binary arg1 || arg2

logical_not unary !arg1

The equal_to predicate is defined as follows:

template<class T>
struct equal_to : binary_function<T, T, bool> {

bool operator()(T& arg1, T& arg2) const { return arg1 == arg2; }
};

To compare two values of type T using the equal_to predicate, you must define the over-
loaded comparison operator ==. You can define the == operator as either a unary member
function of class T or as an overloaded binary operator function,as shown here:

bool T::operator==()(T& t) // member function of class T

template<class T> // generic comparison operator
bool operator==(T& arg1, T& arg2);

All other predicates are defined in a similar way and have similarrequirements.

Arithmetic Functions
Arithmetic functions perform arithmetic operations on objects. Table 7.3 lists the func-
tions defined by the Standard C++ Library in <functional> .

Implementation Issues

PART II
298

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 298

TABLE 7.3. ARITHMETIC FUNCTIONS DEFINED IN <functional>

Function Type Description

plus binary arg1 + arg2

minus binary arg1 - arg2

multiplies binary arg1 * arg2

divides binary arg1 / arg2

modulus binary arg1 % arg2

negate unary -arg1

Binary arithmetic functions take two arguments of one type and return a value of the
same type. For instance, the plus() function is defined as follows:

template <class T>
struct plus : binary_function<T,T,T>
{

T operator()(const T& x, const T& y) const;
};

The negate() functionis defined as a unary function:

template <class T>
struct negate : unary_function<T,T>
{

T operator()(const T& x) const;
};

Algorithm Classes
A container isa useful place to store a sequence of elements. All standard containers
define operations that manipulate the containers and their elements. Implementing all
these operations in your own sequences,however, can be laborious and prone to error.
Because most of those operations are likely to be the same in most sequences,a set of
generic algorithms can reduce the need to write your own operations for each new con-
tainer. The Standard Library provides approximately 60 standard algorithms that perform
the most basic and commonly used operations of containers.

Standard algorithms are defined in <algorithm> in namespace std .

Non-Mutating Sequence Operations
Non-mutating sequence operations are used to retrieve the values or positions of ele-
ments in a sequence container. A sequence is identified by a pair of iterators

STL Iterators and Algorithms

CHAPTER 7
299

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 299

[first, last) ; first points to the first element in the sequence and last is the past-
the-end iterator.

The for_each() Operation
The for_each() operation performs a unary operation on each element in a sequence.

template<class InputIterator, class UnaryFunction>
FunctionObject for_each(InputIterator first, InputIterator last,
➥UnaryFunction f);

The function f must be a unary function and perform read-only access to elements.

The find() Operation
The find() operation searches a sequence to find the first element in a sequence that is
equal to a given value.

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last, const T&
➥value);

If an element is found, find() returns the iterator that points to this element. Otherwise,
theiterator last is returned.

The find_if() Operation
The find_if() operation searches a sequence to find the first element that, when passed
to a predicate, evaluates the predicate to true .

template<class InputIterator, class UnaryPredicate>
InputIterator find_if(InputIterator first, InputIterator last,
UnaryPredicate pred);

Like find() , find_if() returns the iterator pointing to the found element; it returns the
iterator last if no element is found.

The count() Operation
The count() operation counts the number of elements in a sequence that are equal to a
given value.

template<class InputIterator, class T>
iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value);

Elements in the sequence are compared against the given value using the overloaded
comparison operator ==. The number of qualified elements is returned.

Implementation Issues

PART II
300

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 300

The count_if() Operation
The count_if() operation counts the number of elements in a sequence that are equal to
a given value. It tests the equality using an external binary predicate.

template<class InputIterator, class BinaryPredicate>
iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, BinaryPredicate pred);

Like count() , count_if() returns the number of qualified elements.

Listing 7.4 demonstrates the find() and count() operations.

LISTING 7.4. USING THE find () AND count () OPERATIONS

#include <iostream>
#include <vector>
#include <iterator>
#include <functional>
#include <algorithm>
using namespace std;

const int VectorSize = 5;

template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

template<class T>
class GreaterThanTwo: public unary_function<T, bool>
{
public:

bool operator()(T& arg1)
{

return (arg1 > 2);
}

};

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor);

int main()
{

STL Iterators and Algorithms

CHAPTER 7
301

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 301

Print<int> DoPrint;
vector<int> vInt(VectorSize);
typedef vector<int>::iterator Itor;

for (int i = 0; i < VectorSize; ++i)
vInt[i] = i;

Itor first = vInt.begin();
Itor last = vInt.end();

cout << “for_each()\n”;
for_each(first, last, DoPrint);
cout << “\n”;

Itor retItor = find(first, last, 2);
cout << “find(first, last, 2) = “;
ShowElement(vInt, retItor);
cout << “\n”;

retItor = find(first, last, 10);
cout << “find(first, last, 10) = “;
ShowElement(vInt, retItor);
cout << “\n”;

GreaterThanTwo<int> IsGreaterThanTwo;
retItor = find_if(first, last, IsGreaterThanTwo);
cout << “find(first, last, IsGreaterThanTwo) = “;
ShowElement(vInt, retItor);
cout << “\n”;

int retSize = count(first, last, 3);
cout << “count(first, last, 3) = “ << retSize << “\n”;

retSize = count_if(first, last, IsGreaterThanTwo);
cout << “count_if(first, last, IsGreaterThanTwo) = “ << retSize <<

➥“\n”;

return 0;
}

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor)
{

if (itor != c.end())
cout << *itor;

else
cout << “last”;

}

Implementation Issues

PART II
302

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.4. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 302

Here is the output generated by the code in Listing 7.4:

for_each()
0 1 2 3 4
find(first, last, 2) = 2
find(first, last, 10) = last
find(first, last, IsGreaterThanTwo) = 3
count(first, last, 3) = 1
count_if(first, last, IsGreaterThanTwo) = 2

A unary function object Print is defined to simply print its argument to standard output
cout . We define another unary function class GreaterThanTwo to compare its argument
against an arbitrary number 2. The type of its argument,T, must be able to compare with
an integral type so that we can compare it to an integer.

The ShowElement() function template is defined to print the element pointed to by the
iterator itor in a sequence c. If the iterator is a past-the-end iterator, it displays the string
last .

In the main() function,a Print class object DoPrint() is defined so that we can call
DoPrint(var) to print the value of var . A sequence [first, last) is created from the
vector vInt that contains five integers 0, 1, 2, 3, and 4. The for_each() operation is
performed to apply the DoPrint() function to each element of the sequence.

We can call the find() function to locate the first element that has a given value, as we
do here to find the element with value 2. The element pointed to by the resulting iterator
can be accessed by dereferencing it. We can see that element has the value of 2, as
expected. Next, another call to the find() function finds an element with value 10.
Because it cannot find such a value, it returns the pass-the-last iterator.

A GreaterThanTwo class object IsGreaterThanTwo returns true if its argument is greater
than 2. This predicate is used by the find_if() operation to find the first element with a
value greater than 2. This search returns the element with the value 3.

We then use the count() operation to find the number of elements with the value 3. The
count_if() operation uses the predicate IsGreaterThanTwo() to count the number of
elements with a value greater than 2; it finds two elements.

The adjacent_find() Operation
The adjacent_find() operation searches the sequence to find two adjacent elements that
are equal. The Standard Library defines two overloaded adjacent_find() operators. The
first version compares elements using the overloaded == operator:

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator
➥last);

STL Iterators and Algorithms

CHAPTER 7
303

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 303

The second version of adjacent_find() compares elements using an external binary
predicate. If the predicate evaluates to true on two adjacent elements,they are consid-
ered to be equal:

template <class ForwardIterator , class…BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,

BinaryPredicate binary_pred);

Both versions return the iterator pointing to the first element in the pair if such a pair of
elements is found. Otherwise, the iterator last is returned.

The search_n() Operation
The search_n() operation finds a given number of consecutive elements in a sequence.
All those elements must be equal to a given value. The operation has two versions that
differ in how they test the equality of elements:

template<class ForwardIterator, class Size, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value);

template<class ForwardIterator, class Size, class T, class
BinaryPredicate>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value, BinaryPredicate
➥pred);

If search_n() finds a number of count consecutive elements in sequence [first,

last) , it returns the iterator pointing to the first element. Otherwise, it returns the iterator
last .

Listing 7.5 shows the use of the adjacent_find() and the search_n() operations.

LISTING 7.5. USING THE adjacent _find () AND search _n() OPERATIONS

#include <iostream>
#include <vector>
#include <iterator>
#include <functional>
#include <algorithm>
using namespace std;

const int VectorSize = 10;

template<class T>
class EqualToThree: public binary_function<T, T, bool>
{
public:

bool operator()(T& arg1, T& arg2)

Implementation Issues

PART II
304

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 304

{
return (arg1 == arg2) && (arg1 == 3);

}
};

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor);

int main()
{

vector<int> vInt(VectorSize);
typedef vector<int>::iterator Itor;

vInt[0] = 0;
vInt[1] = 2;
vInt[2] = 2;
vInt[3] = 4;
vInt[4] = 4;
vInt[5] = 3;
vInt[6] = 3;
vInt[7] = 4;
vInt[8] = 4;
vInt[9] = 4;

Itor first = vInt.begin();
Itor last = vInt.end();
Itor retItor = adjacent_find(first, last);
cout << “adjacent_find(first, last) = “;
ShowElement(vInt, retItor);
cout << “\n”;

EqualToThree<int> IsEqualToThree;
retItor = adjacent_find(first, last, IsEqualToThree);
cout << “adjacent_find(first, last, IsEqualToThree) = “;
ShowElement(vInt, retItor);
cout << “\n”;

retItor = search_n(first, last, 3, 4);
cout << “search_n(first, last, 3, 4) = “;
ShowElement(vInt, retItor);
cout << “\tprevious element is “;
ShowElement(vInt, --retItor);
cout << “\n”;

return 0;
}

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor)

STL Iterators and Algorithms

CHAPTER 7
305

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 305

{
if (itor != c.end())

cout << *itor;
else

cout << “last”;
}

Here is the output from the program in Listing 7.5:

adjacent_find(first, last) = 2
adjacent_find(first, last, IsEqualToThree) = 3
search_n(first, last, 3, 4) = 4 previous element is 3

The binary predicate EqualToThree() is defined to compare its arguments. It returns
true only if both arguments are equal to 3. We define an integer vector vInt and assign
its elements with test data. The element with the value 2 is returned by the
adjacent_find() operation. An EqualToThree object IsEqualToThree is used by the
predicate version of adjacent_find() to find consecutive elements with the value 3.

The search_n() operation is performed to find the first element of the second group of
four; the previous element is also displayed to verify the return value.

The find_first_of() Operation
The find_first_of() operation searches a sequence to find the first occurrence of an
element that is identical to any one of the elements in another sequence. There are two
versions of find_first_of() ; one uses the overloaded == operator and the other uses an
external binary predicate to test the equality of the elements:

template <class InputIterator, class ForwardIterator>
InputIterator find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator
➥last2);

template <class InputIterator, class ForwardIterator, class
BinaryPredicate>
InputIterator find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator
➥last2,

BinaryPredicate comp);

If such a subsequence is found, the iterator pointing to the first element in the subse-
quence is returned. If the find_first_of() operation cannot find such a subsequence, it
returns the iterator last1 .

Implementation Issues

PART II
306

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.5. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 306

The search() Operation
There are two overloaded search() functions that search a sequence [first1, last1)

to find the first occurrence of a subsequence that is identical to another sequence
[first2, last2) . As do the two versions of find_first_of() , the two versions of
search() use either the overloaded == operator or an external binary predicate to test
whether elements are equal.

template <class InputIterator, class ForwardIterator>
InputIterator search(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2);

template <class InputIterator, class ForwardIterator, class
BinaryPredicate>
InputIterator search(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate comp);

If such a subsequence is found, the iterator pointing to the first element in the subse-
quence is returned. If the find_first_of() operation cannot find such a subsequence, it
returns theiterator last1 .

The find_end() Operation
The find_end() operation is perhaps misnamed. It is more like the search() operations
than a find() operation. Like search() , find_end() searches a sequence [first1,

last1) for a subsequence that is identical to another sequence [first2, last2) . The
difference is that find_end() finds the last occurrence of the subsequence.

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2
➥last2);

template<class ForwardIterator1, class ForwardIterator2, class
BinaryPredicate>
ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2
➥last2,

BinaryPredicate pred);

As with the versions of search() , the two versions of find_end() differ in how they
compare elements in the sequences. Listing 7.6 shows how search functions work.

STL Iterators and Algorithms

CHAPTER 7
307

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 307

LISTING 7.6. USING OTHER SEARCH FUNCTIONS

#include <iostream>
#include <vector>
#include <iterator>
#include <functional>
#include <algorithm>
using namespace std;

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor);

int main()
{

typedef vector<int>::iterator Itor;
vector<int> vInt1(10);
vInt1[0] = 0;
vInt1[1] = 1;
vInt1[2] = 1;
vInt1[3] = 2;
vInt1[4] = 3;
vInt1[5] = 4;
vInt1[6] = 1;
vInt1[7] = 2;
vInt1[8] = 3;
vInt1[9] = 5;

vector<int> vInt2(3);
vInt2[0] = 1;
vInt2[1] = 2;
vInt2[2] = 3;

Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
Itor first2 = vInt2.begin();
Itor last2 = vInt2.end();

Itor retItor = find_first_of(first1, last1, first2, last2);
cout << “find_first_of(first1, last1, first2, last2) = “;
ShowElement(vInt1, retItor);
cout << “\n”;

retItor = search(first1, last1, first2, last2);
cout << “search(first1, last1, first2, last2) = “;
ShowElement(vInt1, retItor);
cout << “\n”;

retItor = find_end(first1, last1, first2, last2);
cout << “find_end(first1, last1, first2, last2) = “;
ShowElement(vInt1, retItor);
cout << “\n”;

Implementation Issues

PART II
308

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 308

return 0;
}

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor)
{

if (itor != c.end())
{

if (itor != c.begin())
cout << *itor << “\tthe previous element is “ << *(itor - 1);

else
cout << “first”;

}
else

cout << “last”;
}

The following is the output generated by the code in Listing 7.6:

find_first_of(first1, last1, first2, last2) = 1 the previous element is 0
search(first1, last1, first2, last2) = 1 the previous element is 1
find_end(first1, last1, first2, last2) = 1 the previous element is 4

The ShowElement() function template is modified slightly to show not only the current
element,but also the previous element so that we can see the position of the element in
the sequence. The find_first_of() operation finds the second element in vector vInt1 .
The search() operation finds the third element as it is the first element of the first subse-
quence (1, 2, 3) in vInt1 . The find_end() operation finds the seventh element that is the
first of the lastsubsequence (1, 2, 3) in vInt1 .

The equal() Operation
The equal() operation compares two sequences of equal size to see whether they match.
The operation uses either the overloaded == operator or the binary predicate to test
whether the elements are equal.

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2
➥first2);

template<class InputIterator1, class InputIterator2, class
BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2
➥first2,

BinaryPredicate pred);

The second sequence starts at first2 and ends at first2 + (last1 – first1) . If its
size is the same as the size of the first sequence, and if every corresponding pair of ele-
ments are equal,equal() returns true . Otherwise, theoperation returns false .

STL Iterators and Algorithms

CHAPTER 7
309

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 309

The mismatch() Operation
The mismatch() operation compares two sequences to find any mismatched elements. It
compares each corresponding pair of elements and returns the first pair that does not
match.

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2
➥first2);

template<class InputIterator1, class InputIterator2, class
BinaryPredicate>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2
➥first2,

BinaryPredicate pred);

Like many of the other algorithms already discussed, the two versions of mismatch() use
different methods to test the equality of elements.

Listing 7.7 demonstrates the equal() and mismatch() operations.

LISTING 7.7. MATCHING ELEMENTS USING THE equal () AND mismatch () OPERATIONS

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor);

int main()
{

typedef vector<int>::iterator Itor;
vector<int> vInt1(4);
vInt1[0] = 1;
vInt1[1] = 2;
vInt1[2] = 3;
vInt1[3] = 4;

vector<int> vInt2(3);
vInt2[0] = 1;
vInt2[1] = 2;
vInt2[2] = 3;

Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
Itor first2 = vInt2.begin();

Implementation Issues

PART II
310

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 310

if (equal(first1, last1, first2))
cout << “vInt1 == vInt2\n”;

else
cout << “vInt1 != vInt2\n”;

pair<Itor, Itor> pi = mismatch(first1, last1, first2);
cout << “First mismatch element in vInt1 = “;
ShowElement(vInt1, pi.first);
cout << “\n”;
cout << “First mismatch element in vInt2 = “;
ShowElement(vInt2, pi.second);
cout << “\n”;

return 0;
}

template<class Container, class Iterator>
void ShowElement(Container& c, Iterator& itor)
{

if (itor != c.end())
{

if (itor != c.begin())
cout << *itor << “\tthe previous element is “ << *(itor - 1);

else
cout << “first”;

}
else

cout << “last”;
}

The following is the output generated by the program in Listing 7.7:

vInt1 != vInt2
First mismatch element in vInt1 = 4 the previous element is 3
First mismatch element in vInt2 = last

The integer vector vInt1 has four elements; vInt2 has three elements. Because their
sizes are different,the equal() operation returns false . The mismatch() operation
returns a pair of the first mismatched elements in both vectors.

Mutating Sequence Algorithms
Mutating sequenceoperations perform operations that change the elements in a
sequence.

The fill() Operation
The fill() operation assigns a value to each element in a sequence:

STL Iterators and Algorithms

CHAPTER 7
311

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 311

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

The fill() function can be defined as follows:

for (ForwardIterator fi = first; fi != last; ++fi)
{

*fi = value;
}

Therefore, class T must be convertible to class ForwardIterator ’s value type so that the
assignment statement is valid.

The fill_n() Operation
The fill_n() operation is similar to fill() except that it assigns the value only to the
first n elements in sequence [first, last) :

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T& value);

Because the fill() operation performs exactly n assignments,[first, first + n)

must be a valid sequence.

The generate() Operation
The generate() operation is like the fill() operation but it assigns the result of a gen-
erator instead of a value to each element in a sequence.

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last, Generator f);

The return value of function f must be convertible to the element type.

The generate_n() Operation
The generate_n() operation is like the fill_n() operation, but it assigns the result of a
generator instead of a value to the first n elements in a sequence.

template<class OutputIterator, class Size, class Generator>
void generate(OutputIterator first, Size n, Generator f);

As is true with the fill() operation, in the Generate() operation the return value of
function f must be convertible to the element type.

Listing 7.8 shows how sequences can be filled and generated.

LISTING 7.8. POPULATING SEQUENCES USING THE fill () AND generate () OPERATIONS

#include <iostream>
#include <vector>

Implementation Issues

PART II
312

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 312

#include <functional>
#include <algorithm>
using namespace std;

template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

int main()
{

Print<int> DoPrint;

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

VectorInt vInt1(10);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();

fill(first1, last1, 5);
cout << “vInt1 after fill(first1, last1, 5):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

generate(first1, last1, rand);
cout << “vInt1 after generate(first1, last1, rand):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

fill_n(first1, 7, 8);
cout << “vInt1 after fill_n(first1, 3, 8):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

generate_n(first1, 5, rand);
cout << “vInt1 after generate_n(first1, 5, rand):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

return 0;
}

The following is the output generated by the program in Listing 7.8:

STL Iterators and Algorithms

CHAPTER 7
313

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 313

vInt1 after fill(first1, last1, 5):
5 5 5 5 5 5 5 5 5 5

vInt1 after generate(first1, last1, rand):
41 18467 6334 26500 19169 15724 11478 29358 26962 24464

vInt1 after fill_n(first1, 3, 8):
8 8 8 8 8 8 8 29358 26962 24464

vInt1 after generate_n(first1, 5, rand):
5705 28145 23281 16827 9961 8 8 29358 26962 24464

In Listing 7.8,we use the for_each() operation with a simple unary function DoPrint to
display elements in a sequence. All elements in vector vInt1 are assigned the value 5.
The generate() operation uses the standard function int rand() to generate random
integers for vInt1 elements. The fill_n() and generate_n() operations are called to
assign values to an arbitrary number of elements in vInt1 .

The partition() Operation
The partition() operation rearranges the order of elements in a sequence so that ele-
ments that satisfy a unary predicate are placed before elements that do not.

template<class BidirectionalIterator, class UnaryPredicate>
BidirectionalIterator partition(BidirectionalIterator first,

BidirectionalIterator last,
UnaryPredicate pred);

The partition() operation returns an iterator pointing to the first element that does not
satisfy the predicate.

The stable_partition() Operation
The stable_partition() operation partitions a sequence into two groups:one that satis-
fies the predicate and the other that does not. The relative order of elements in each
group is preserved.

template<class BidirectionalIterator, class UnaryPredicate >
BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last,
UnaryPredicate pred);

Like partition() , the stable_partition() operation returns an iterator pointingto the
first element that does not satisfy the predicate.

The random_shuffle() Operation
The random_shuffle() operation randomly rearranges the order of elements in a
sequence:

Implementation Issues

PART II
314

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 314

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator
➥last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator& rand);

The first version of the operation uses an internal random number generator to create
indices for the elements. The second version uses an external random number generator
that is passed as an argument.

Listing 7.9 shows the random_shuffle() and partition() operations.

LISTING 7.9. REARRANGING SEQUENCES USING THE partition () AND

random _shuffle () OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

template<class T>
class PartitionPredicate: public unary_function<T, bool>
{
public:

bool operator()(T& arg1)
{

return (arg1 < 8);
}

};

int main()
{

Print<int> DoPrint;

typedef vector<int> VectorInt;

STL Iterators and Algorithms

CHAPTER 7
315

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 315

typedef VectorInt::iterator Itor;

VectorInt vInt1(10);
for (int i = 0; i < 10; i++)

vInt1[i] = i;

Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();

random_shuffle(first1, last1);
cout << “vInt1 after random_shuffle(first1, last1):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

VectorInt vInt2 = vInt1;
Itor first2 = vInt2.begin();
Itor last2 = vInt2.end();
PartitionPredicate<int> pred;

partition(first1, last1, pred);
cout << “vInt1 after partition(first1, last1, pred):\n”;
for_each(first1, last1, DoPrint);
cout << “\n\n”;

stable_partition(first2, last2, pred);
cout << “vInt2 after stable_partition(first2, last2, pred):\n”;
for_each(first2, last2, DoPrint);
cout << “\n\n”;

return 0;
}

The following is the output generated by the code in Listing 7.9:

vInt1 after random_shuffle(first1, last1):
4 3 0 2 6 7 8 9 5 1

vInt1 after partition(first1, last1, pred):
4 3 0 2 6 7 1 5 9 8

vInt2 after stable_partition(first2, last2, pred):
4 3 0 2 6 7 5 1 8 9

The unary predicate function object class PartitionPredicate is defined to test whether
its argument is less than 8. This function object is used by partition() operations to
arrange vector elements. The random_shuffle() function is called to reorder elements in
the integer vector. The resulting vector is copied to vInt2 so that we can compare the
results of the partition() and stable_partition() operations. When the partition()

Implementation Issues

PART II
316

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.9. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 316

operation is performed on vInt1 , the original order of its elements is not preserved in the
partitioned sequence. On the other hand, the stable_partition() operation does not
alter the element ordering in each group.

The transform() Operation
The transform() operation performs an operation on each element in a sequence and
copies the result to another sequence. There are two overloaded transform() functions.
The first version performs a unary operation:

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperation f);

The second version of the function performs a binary operation on two sequences and
copies the result to a third sequence:

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator

➥result,
BinaryOperation binary_op);

In both versions,elementsin the original sequence(s) are not changed.

The copy() Operation
The copy() operation copies elements from one sequence to another.

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator dest);

Elements in sequence [first, last) are copied to the sequence starting at dest . The
element *first is copied to *dest , *(first + 1) to *(dest + 1) , and so on. The
copy() operation returns iterator dest + (last – first) , and dest must not be in the
range [first, last) .

The copy_backward() Operation
The copy_backward() operation copies elements from one sequence to another in
reverse order:

template<class BidirectionalIterator, class BidirectionalIterator >
BidirectionalIterator copy_backward(BidirectionalIterator first,

BidirectionalIterator last,
BidirectionalIterator dest);

STL Iterators and Algorithms

CHAPTER 7
317

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 317

The copy_backward() operation copies elements *(last – 1) to *(dest – 1) , *(last

– 2) to *(dest – 2) , and so on. It returns iterator dest – (last – first) . Because
copy() copies elements backwards from last – 1 and stores the result from dest – 1 ,
we must use bidirectional iterators in both sequences.

The reverse() Operation
The reverse() operation reverses the order of elements in a sequence:

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

The reverse() operation swaps the first + i and the last – 1 – i elements,where
0 <= i <= (last – first) / 2 .

The reverse_copy() Operation
The reverse_copy() operation copies all elements in one sequence in reverse order to a
new sequence:

template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last, OutputIterator result);

The original sequenceis unchanged after the operation.

The rotate() Operation
The rotate() operation rotates elements in a sequence.

template<class ForwardIterator>
void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator
➥last);

After the operation, all elements are pulled towards the start of the sequence by middle

– first positions. Elements moved past the first element inthe sequence are pushed to
the back of the sequence.

The rotate_copy() Operation
The rotate_copy() operation rotates the elements in one sequence and copies the result
to a new sequence.

template<class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle,

ForwardIterator last, OutputIterator
➥result);

The original sequence isunchanged after the operation.

Listing 7.10 demonstrates some of the copy operations.

Implementation Issues

PART II
318

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 318

LISTING 7.10. COPYING SEQUENCE ELEMENTS USING THE COPY OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

template<class T>
class Square: public unary_function<T, T>
{
public:

T operator()(T& arg1)
{

return arg1 * arg1;
}

};

template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

Square<int> Sqr;

// create an integer vector
VectorInt vInt1(5);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
for (int i = 0; i < 5; ++i) vInt1[i] = 3 * i;
ShowElements(vInt1, “vInt1 created”);

// create a vector for storing results
VectorInt vInt2(7);
Itor first2 = vInt2.begin();
Itor last2 = vInt2.end();
fill(first2, last2, -1);

STL Iterators and Algorithms

CHAPTER 7
319

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 319

ShowElements(vInt2, “vInt2 created”);

// transform vInt1 to vInt2
transform(first1, last1, first2 + 1, Sqr);
ShowElements(vInt2, “Transformed vInt1 to vInt2”);

// copy vInt1 backwards to vInt2
fill(first2, last2, -1);
copy_backward(first1, last1, last2 - 1);
ShowElements(vInt2, “vInt1 copied backwards to vInt2”);

// rotate vInt1 to vInt2
fill(first2, last2, -1);
rotate_copy(first1, first1 + 1, last1, first2 + 1);
ShowElements(vInt2, “rotate_copy vInt1 to vInt2”);

// reverse vInt2
reverse(first2, last2);
ShowElements(vInt2, “reversed vInt2”);

return 0;
}

template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

Here is the output generated by the code in Listing 7.10:

vInt1 created:
0 3 6 9 12

vInt2 created:
-1 -1 -1 -1 -1 -1 -1

Transformed vInt1 to vInt2:
-1 0 9 36 81 144 -1

vInt1 copied backwards to vInt2:
-1 0 3 6 9 12 -1

rotate_copy vInt1 to vInt2:
-1 3 6 9 12 0 -1

reversed vInt2:
-1 0 12 9 6 3 -1

Implementation Issues

PART II
320

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.10. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 320

The unary function object class Square is defined to calculate the square of itsargument
value. We call the transform() function to calculate the square value of each element in
vInt1 . The results are copied to vInt2 , starting from the second element. We then per-
form a backward copy of elements from vInt1 to vInt2 . Elements are copied into vInt2

from the second last element.

Next, elements in vInt1 are rotated and copied to vInt2 from the second element. The
break point is set to the second element with the value 3. It becomes the first element in
the sequence, and all the following elements are moved left by one place. The initial
first element 0 now becomes the last element.

At last, the order of elements in vInt2 is reversed.

The replace() Operation
The replace() operation replaces with a new value all the elements in a sequence that
are equal to a specific value.

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);

The replace() operation can be implemented as follows:

for (ForwardIterator fi = first; fi != last; ++fi)
{

if (*fi == old_value) *fi = new_value;
}

The replace_if() Operation
The replace_if() operation is similar to the replace() operation. Instead of testing
each element against a value, it tests whether an element causes a unary predicate to
return true .

template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_ value);

The replace_if() operation can be implemented as shown here:

for (ForwardIterator fi = first; fi != last; ++fi)
{

if (pred(*fi) == true) *fi = new_value;
}

STL Iterators and Algorithms

CHAPTER 7
321

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 321

The replace_copy() Operation
The replace_copy() operation copies all elements from one sequence to another
sequence and performs the replace() operation on the resulting sequence.

template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T&

➥new_value);

The replace_copy_if() Operation
The replace_copy_if() operation copies all elements from one sequence to another
sequence and performs the replace_if() operation on the resulting sequence.

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first, Iterator last,
OutputIterator result,
Predicate pred, const T& new_value);

The remove() Operation
The remove() operation removes elements from a sequence that are equal to a specific
value.

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last, const
T& value);

If n elements are removed, remove() returns the iterator last - n . The size of the
sequence is unchanged. The last n elements can still bedereferenced, but they all have
undefined values.

The remove_if() Operation
The remove_if() operation removes all elements in a sequence that make a unary predi-
cate return true .

template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);

Like remove() , remove_if() returns the iterator last – n ; the last n elements in the
sequence contain undefined values.

The remove_copy() Operation
The remove_copy() operation copies all elements from one sequence to another
sequence and performs the remove() operation on the resulting sequence.

Implementation Issues

PART II
322

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 322

template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);

The remove_copy_if() Operation
The remove_copy_if() operation copies all elements from one sequence to another
sequence and performs the remove_if() operation on the resulting sequence.

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate
➥pred);

The unique() Operation
The unique() operation searches a sequence for consecutive elements that have the same
value and removes all but the first element. There are two versions of the unique() func-
tions:One tests the elements against a value and the other checks to see whether ele-
ments cause a binary predicate to return true .

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

Both versions return an iterator pointing to the past-the-end element in the resulting
sequence. Like the remove() operations,the unique() operation does not change the size
of the sequence. If n elements are removed, the last n elements in the sequence have
undefinedvalues.

The unique_copy() Operation
The unique_copy() operation copies elements in a sequence to a new sequence and per-
forms the unique() operation on the new sequence.

template<class InputIterator, class OutputIterator>
OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate
➥pred);

Both versions return an iterator pointing to the past-the-end element in the resulting
sequence. If n elements are removed from the resulting sequence, the last n elements
have undefined values.

STL Iterators and Algorithms

CHAPTER 7
323

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 323

The swap() Operation
The swap() operation swaps two values.

template<class T> void swap(T& a, T& b);

The iter_swap() Operation
The iter_swap() operation swaps two elements pointed to by two iterators.

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 i1, ForwardIterator2 i2);

The iter_swap() operation can be implemented as follows:

swap(*i1, *i2)

The swap_ranges() Operation
The swap_ranges() operation swaps elements in two sequences.

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1
➥last1,

ForwardIterator2 first2);

The swap_ranges() operation swaps elements in the sequence [first1, last1) and the
sequence [first2, first2 + (last1 – first1)) . It returns the iterator first2 +

(last1 – first1) . Elements in thetwo sequences must be convertible.

Listing 7.11 demonstrates the use of the replace() , remove() , and swap() operations.

LISTING 7.11. MANIPULATING ELEMENTS USING THE replace () , remove () , AND

swap() OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;

Implementation Issues

PART II
324

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 324

}
};

//
// Unary function to test if an integer is a even number.
//
bool IsEven(int var);

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(7);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
for (int i = 0; i < 7; ++i) vInt1[i] = 3 * i;
ShowElements(vInt1, “vInt1 created”);

// create a second integer vector to store the results
VectorInt vInt2(7);
Itor first2 = vInt2.begin();
Itor last2 = vInt2.end();
fill(first2, last2, -1);

// replace all even numbers with value 10 in vInt1 and copy the result
➥to vInt2

replace_copy_if(first1, last1, first2, IsEven, 10);
ShowElements(vInt2, “replaced all even numbers with value 10”);

// remove all but the first duplicate value in vInt2
vInt2[3] = 10; // this creates three consecutive 10.
ShowElements(vInt2, “vInt2 with 3 consecutive 10s”);

unique(first2, last2);
ShowElements(vInt2, “removed duplicate values from vInt2”);

// remove all even numbers in vInt1 and copy the result to vInt2
fill(first2, last2, -1);
remove_copy_if(first1, last1, first2, IsEven);
ShowElements(vInt2, “removed all even numbers”);

STL Iterators and Algorithms

CHAPTER 7
325

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 325

// swap the second and third elements in vInt1 and
// the third and fourth elements in vInt2
ShowElements(vInt1, “Before the swap_ranges, vInt1 is”);
ShowElements(vInt2, “and vInt2 is”);
swap_ranges(first1 + 1, first1 + 3, first2 + 2);
ShowElements(vInt1, “After the swap_ranges, vInt1 is”);
ShowElements(vInt2, “and vInt2 is”);

return 0;
}

//
// Unary function to test if an integer is an even number.
//
bool IsEven(int var)
{

return ((var % 2) == 0);
}

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

The following is the output generated by the program in Listing 7.11:

vInt1 created:
0 3 6 9 12 15 18

replaced all even numbers with value 10:
10 3 10 9 10 15 10

vInt2 with 3 consecutive 10s:
10 3 10 10 10 15 10

removed duplicate values from vInt2:
10 3 10 15 10 15 10

removed all even numbers:
3 9 15 -1 -1 -1 -1

Implementation Issues

PART II
326

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.11. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 326

Before the swap_ranges, vInt1 is:
0 3 6 9 12 15 18

and vInt2 is:
3 9 15 -1 -1 -1 -1

After the swap_ranges, vInt1 is:
0 15 -1 9 12 15 18

and vInt2 is:
3 9 3 6 -1 -1 -1

We call the replace_copy_if() function to replace all even values in vInt1 with the
value 10 and to copy the result to vInt2 . We then assign value 10 to the fourth element in
vInt2 to create a sequence of three consecutive 10s. The unique() operation removes
the second and third value 10 from that minisequence. This operation should move the
last two elements forward and leave the memory space originally occupied by them with
undefined values. When we display vInt2 , we can see that the fourth and the fifth ele-
ments are now 15 and 10, just as expected. The last two elements still have the values 15

and 10 because the compiler keeps the same memory block for vInt1 —their initial val-
ues have not been overwritten. This behavior, however, is not guaranteed, and you should
never attempt to retrieve their values before they are assigned some values.

The remove_copy_if() operation shows that only the three valid elements—3, 9, and
15—in vInt1 are copied to vInt2 . Other elements in vInt2 are not affected.

Sorting and Related Sequence Operations
All sorting and related operations have two versions. One version uses the overloaded
operator < to compare elements,and the other version uses an external comparison
object. This implies that all sorted sequences are ordered in ascending order. It is possi-
ble to sort a sequence in reverse order by using an external predicate, as we will see in
Listing 7.12.

Sorting Operations
The STL provides a set of sorting functions that order sequences of elements according
to different requirements. The following sections look at these operations.

The sort() Operation
The sort() operation sorts elements in a sequence.

template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

STL Iterators and Algorithms

CHAPTER 7
327

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 327

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last, Compare
➥comp);

After the sort() operation, elements in the sequence are ordered in ascending order. You
can sort a sequence in descending order by defining a customized compare object.
Listing 7.12 shows how.

LISTING 7.12. SORTING A SEQUENCE USING THE sort () OPERATION

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

//
// Compare function
//
bool ReverseCompare(int arg1, int arg2);

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(7);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
generate(first1, last1, rand);

Implementation Issues

PART II
328

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 328

ShowElements(vInt1, “Random number sequence”);

// sort the sequence in descending order
sort(first1, last1, ReverseCompare);
ShowElements(vInt1, “Sorted in descending order”);

return 0;
}

//
// Compare function
//
bool ReverseCompare(int arg1, int arg2)
{

return (arg1 > arg2);
}

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

The following is the output generated by the program in Listing 7.12:

Random number sequence:
41 18467 6334 26500 19169 15724 11478

Sorted in descending order:
26500 19169 18467 15724 11478 6334 41

The sort() operation uses a binary predicate that compares two arguments and returns
true if the first argument is less than the second. We define a ReverseCompare() func-
tion that returns true if the first argument is greater than the second. When the sort()

operation is performed using the ReverseCompare() function,it sorts the sequence in
descending order.

In this particular example, we could simply use the greater() predicate. The use of
ReverseCompare() , however, demonstrates a helpful generic technique in using any cus-
tomized functions in standard algorithms.

STL Iterators and Algorithms

CHAPTER 7
329

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 329

The stable_sort() Operation
The stable_sort() operation also sorts elements in a sequence. If two or more elements
are equal,their relative order is preserved.

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
➥Compare comp);

The partial_sort() Operation
The partial_sort() operation sorts a subset of elements with the smallest values in a
sequence.

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last, Compare comp);

This operation sorts the smallest middle – first elements and places them in [first,

middle) . The order of the rest of the elements is undefined. Listing 7.13 demonstrates a
partial_sort() operation using a reversed compare function.

LISTING 7.13. SORTING SEQUENCES USING THE stable () AND partial_sort ()

OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

//

Implementation Issues

PART II
330

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 330

// Compare function
//
bool ReverseCompare(int arg1, int arg2);

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(7);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
generate(first1, last1, rand);
ShowElements(vInt1, “Random number sequence”);

// sort the sequence in descending order
partial_sort(first1, first1 + 3, last1, ReverseCompare);
ShowElements(vInt1, “Partially sorted three elements in descending

➥order”);

return 0;
}

//
// Compare function
//
bool ReverseCompare(int arg1, int arg2)
{

return (arg1 > arg2);
}

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

STL Iterators and Algorithms

CHAPTER 7
331

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 331

The following is the output generated by the code in Listing 7.13:

Random number sequence:
41 18467 6334 26500 19169 15724 11478

Partially sorted three elements in descending order:
26500 19169 18467 41 6334 15724 11478

This listing is very similar to Listing 7.12. The only difference is that Listing 7.13 sorts
only the three largest elements instead of the wholesequence.

The partial_sort_copy() Operation
The partial_sort_copy() operation partially sorts a sequence and copies the resulting
sequence to a new sequence.

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator
➥last,

RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator
➥last,

RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

This operation sorts the smallest n elements,where n = min(last – first,

result_last – result_first) , in the sequence [first, last) and copies the result to
[result_first, result_first + n) . It returnsmin(result_first + n,

result_last) .

The nth_element() Operation
The nth_element() operation rearranges the order of elements in a sequence so that ele-
ments that are less than or equal to the nth element are placed before the nth element.
Elements in this group are sorted. Other elements are placed after the nth element and
are not guaranteed to be sorted.

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);

Listing 7.14 shows an nth_element() operation.

Implementation Issues

PART II
332

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 332

LISTING 7.14. ORDERING A SEQUENCE USING THE nth_element () OPERATION

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

//
// Compare function
//
bool ReverseCompare(int arg1, int arg2);

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(7);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
generate(first1, last1, rand);
ShowElements(vInt1, “Random number sequence”);

// sort the sequence in descending order
nth_element(first1, first1 + 1, last1, ReverseCompare);
ShowElements(vInt1, “After nth_element()”);

return 0;
}

STL Iterators and Algorithms

CHAPTER 7
333

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 333

//
// Compare function
//
bool ReverseCompare(int arg1, int arg2)
{

return (arg1 > arg2);
}

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

The following is the output from the code in Listing 7.14:

Random number sequence:
41 18467 6334 26500 19169 15724 11478

After nth_element():
26500 19169 18467 15724 11478 6334 41

Again,we use a reversed compare function to sort the elements in descending order. All
elements that are larger than 18467 (elements 26500 and 19169) are placed in front of it
and are sorted in descending order. Interestingly, elements smaller than 18467 also
appear to be sorted. However, this behavior is implementation dependent.

Binary Search Operations
For all binary search operations,the sequences to be searched must be sorted before the
search operations take place. The results of searching unsorted sequences are undefined.

The lower_bound() Operation
The lower_bound() operation searches a sorted sequence to find the first position in
which it can insert a value without violating the sort order of the sequence.

template<class ForwardIterator, class T>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const T& value);

Implementation Issues

PART II
334

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.14. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 334

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

The operation returns the iterator last if it cannot find a valid insertion position.

The upper_bound() Operation
The upper_bound() operation searches a sorted sequence to find the last position from
the beginning in which it can insert a value without violating the sort order of the
sequence.

template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

Like the lower_bound() operation, the upper_bound() operation also returns the iterator
last if it cannot find a valid insertion position.

The equal_range() Operation
The equal_range() operation finds a range in which a value can be inserted without vio-
lating the sort order of a sequence.

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& value,

Compare comp);

This operation returns a pair of iterators pointing to the first and last positions inwhich
the value can be inserted.

The binary_search() Operation
The binary_search() operation performs a binary search in a sorted sequence for a
value.

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last, const T&
➥value);

STL Iterators and Algorithms

CHAPTER 7
335

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 335

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last, const T&
value,

Compare comp);

This operation returns true if the value is found; it returns false if the value isnot
found.

The merge() Operation
The merge() operation merges two sorted sequences.

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

If the input sequences contain equal elements,the element from the first sequence is
placed in front. The operation returns the past-the-end iterator in the resulting sequence.
The resulting sequence must not overlap with the input sequences. Otherwise, the result
is undefined.

The inplace_merge() Operation
The inplace_merge() operation merges two consecutive sequences and puts the result
back in the original sequence.

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first, BidirectionalIterator
middle,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first, BidirectionalIterator
middle,

BidirectionalIterator last, Compare comp);

This operation merges two sequences—[first, middle) and [middle, last) —and
puts theresult back in [first, last) .

Listing 7.15 demonstrates several binary search operations.

Implementation Issues

PART II
336

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 336

LISTING 7.15. SEARCHING SEQUENCES USING BINARY SEARCH OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(5);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
vInt1[0] = 1;
vInt1[1] = 2;
vInt1[2] = 2;
vInt1[3] = 4;
vInt1[4] = 5;
ShowElements(vInt1, “vInt1”);

// find first and last position to insert integer 2
Itor lb = lower_bound(first1, last1, 2);
Itor ub = upper_bound(first1, last1, 2);
cout << “The first position to insert 2 is between “ << *(lb - 1)

<< “ and “ << * lb << “\n”;
cout << “The last position to insert 2 is between “ << *(ub - 1)

<< “ and “ << * ub << “\n\n”;

// find first and last position to insert integer 2 using equal_range
pair<Itor, Itor> pi = equal_range(first1, last1, 2);

STL Iterators and Algorithms

CHAPTER 7
337

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 337

lb = pi.first;
ub = pi.second;

cout << “Results of equal_range:\n”;
cout << “The first position to insert 2 is between “ << *(lb - 1)

<< “ and “ << * lb << “\n”;
cout << “The last position to insert 2 is between “ << *(ub - 1)

<< “ and “ << * ub << “\n\n”;

// find integer 4 in vInt1
if (binary_search(first1, last1, 4)) cout << “Found 4.\n\n”;
else cout << “Can’t find 4.\n\n”;

// reassign vInt1 elements
vInt1[0] = 1;
vInt1[1] = 4;
vInt1[2] = 2;
vInt1[3] = 2;
vInt1[4] = 5;
ShowElements(vInt1, “vInt1 reassigned”);

// inplace merge
inplace_merge(first1, first1 + 2, last1);
ShowElements(vInt1, “After inplace merge”);

// reassign vInt1 elements
vInt1[0] = 1;
vInt1[1] = 4;
vInt1[2] = 2;
vInt1[3] = 2;
vInt1[4] = 5;
ShowElements(vInt1, “vInt1 reassigned”);

// inplace merging two unsorted sequences
inplace_merge(first1, first1 + 3, last1);
ShowElements(vInt1, “After inplace merge on unsorted sequences”);

return 0;
}

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;

Implementation Issues

PART II
338

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.15. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 338

for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

Here is the output from the program in Listing 7.15:

vInt1:
1 2 2 4 5

The first position to insert 2 is between 1 and 2
The last position to insert 2 is between 2 and 4

Results of equal_range:
The first position to insert 2 is between 1 and 2
The last position to insert 2 is between 2 and 4

Found 4.

vInt1 reassigned:
1 4 2 2 5

After inplace merge:
1 2 2 4 5

vInt1 reassigned:
1 4 2 2 5

After inplace merge on unsorted sequences:
1 4 2 2 5

The equal_range() operation finds both the first and the last places in which it can
insert a value in one function call. This is the preferred operation to use when you need
to find both places. The inplace_merge() operation requires that the two sequences be
sorted before it is called. The second call to the operation shows that inplace_merge()

has no effect on two unsorted sequences.

Set Operations
A setis a collection of objects. A sequenceis a set in which the elements can be
accessed by iterators. The Standard Library defines several set operations for sequences,
as described in the following sections.

The includes() Operation
The includes() operation checks whether all elements in one sequence are also in other
sequences.

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

STL Iterators and Algorithms

CHAPTER 7
339

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 339

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

If every element of sequence [first2, last2) is also a member of sequence [first1,

last1) , the includes() operation returns true . Otherwise, the operation returns false .

The set_union() Operation
The set_union() operation combines two sorted sequences into a third sequence.

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

The set_union() operation sorts the resulting sequence and returns the past-the-end
iterator of the resulting sequence.

The set_intersection() Operation
The set_intersection() operation copies elements common in two sequences to a third
sequence.

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection(InputIterator1 first1, InputIterator1
➥last1,

InputIterator2 first2,
➥InputIterator2 last2,

OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_intersection(InputIterator1 first1, InputIterator1
➥last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

The set_intersection() operation sorts the resulting sequence and returns the past-the-
end iterator of the resulting sequence.

The set_difference() Operation
The set_difference() operation copies elements in one sequence but not in another
sequence to a third sequence.

Implementation Issues

PART II
340

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 340

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

The set_difference() operation copies elements in [first1, last1) but not in
[first2, last2) . The resulting sequence is a sorted sequence. Thepast-the-end iterator
of the resulting sequence is returned.

The set_symmetric_difference() Operation
The set_symmetric_difference() operation creates a new sequence containing ele-
ments that are not members of both of two input sequences.

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_symmetric_difference(InputIterator1 first1,
➥InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_symmetric_difference(InputIterator1 first1,
➥InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

The set_difference() operation copies elements in [first1, last1) but not in
[first2, last2), and elements in [first2, last2) but not in [first1, last1) . The
resulting sequence is a sorted sequence. The past-the-end iterator of the resulting
sequence is returned.

Listing 7.16 demonstrates Standard Library set operations.

LISTING 7.16. HANDLING SEQUENCES USING SET OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

STL Iterators and Algorithms

CHAPTER 7
341

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 341

// unary function object printing its argument
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

Print<int> DoPrint;
int i = 0;

// create first integer vector
VectorInt vInt1(10);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
for (i = 0; i < 10; ++i) vInt1[i] = 2 * i;

// create second integer vector
VectorInt vInt2(8);
Itor first2 = vInt2.begin();
Itor last2 = vInt2.end();
for (i = 0; i < 8; ++i) vInt2[i] = 3 * i;

// create third integer vector used to store set operations
VectorInt vInt3(20, -1);
Itor first3 = vInt3.begin();
Itor last3 = vInt3.end();

// copy the union of vInt1 and vInt2 to vInt3
set_union(first1, last1, first2, last2, first3);
cout << “Union: elements in either vInt1 or vInt2:\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

// randomly rearrange elements in vInt3
random_shuffle(first3, last3);
cout << “Random Shuffle: elements in vInt3 reordered:\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

Implementation Issues

PART II
342

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.16. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 342

// sort vInt3
sort(first3, last3);
cout << “Sorted:\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

// copy the intersection of vInt1 and vInt2 to vInt3
fill(first3, last3, -1);
set_intersection(first1, last1, first2, last2, first3);
cout << “Intersection: elements in both vInt1 and vInt2\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

// copy elements of vInt1 that are not in vInt2 to vInt3
fill(first3, last3, -1);
set_difference(first1, last1, first2, last2, first3);
cout << “Difference: elements in vInt1 but not in vInt2\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

// copy elements that are in vInt1 only or in vInt2 only to vInt3
fill(first3, last3, -1);
set_symmetric_difference(first1, last1, first2, last2, first3);
cout << “Symmetric Difference: elements not in both vInt1 and

➥vInt2\n”;
for_each(first3, last3, DoPrint);
cout << “\n\n”;

return 0;
}

The following is the output from the code in Listing 7.16:

Union: elements in either vInt1 or vInt2:
0 2 3 4 6 8 9 10 12 14 15 16 18 21 -1 -1 -1 -1 -1 -1

Random Shuffle: elements in vInt3 reordered:
6 -1 0 -1 15 18 12 16 -1 2 9 -1 10 -1 14 4 21 3 8 -1

Sorted:
-1 -1 -1 -1 -1 -1 0 2 3 4 6 8 9 10 12 14 15 16 18 21

Intersection: elements in both vInt1 and vInt2
0 6 12 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Difference: elements in vInt1 but not in vInt2
2 4 8 10 14 16 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Symmetric Difference: elements not in both vInt1 and vInt2
2 3 4 8 9 10 14 15 16 21 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

STL Iterators and Algorithms

CHAPTER 7
343

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 343

First,we create two integer vectors vInt1 and vInt2 and assign different values to their
elements. Next, we create the third integer array that is large enough to store all the ele-
ments in vInt1 and vInt2 . A set_union() operation is then performed to generate a
union of vInt1 and vInt2 . The result contains all elements in vInt1 and vInt2 .

Heap Operations
A heap is a sequence in which the element with the largest value is always the first ele-
ment in the sequence. Elements are pushed into and popped out of the heap only at the
front of the sequence. The STL priority queue is usually implemented as a heap. The
Standard Library provides two heap-to-sequence conversion operations andtwo heap ele-
ment access operations.

The make_heap() Operation
The make_heap() operation converts a sequence to a heap.

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

This operation converts the sequence [first, last) to the heap [first, last) .

The sort_heap() Operation
The sort_heap() operation converts a heap to a sequence by sorting its elements.

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

The resulting sequenceis sorted.

The push_heap() Operation
The push_heap() operation adds a new element to a heap.

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

Implementation Issues

PART II
344

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 344

The push_heap() operation takes a sequence [first, last) . It assumes that the range
[first, last – 1) is a heap and pushes the *(last – 1) element into the heap. After
the operation, [first, last) becomes aheap.

The pop_heap() Operation
The pop_heap() operation removes the top element from a heap.

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

The pop_heap() operation swaps the first and the last – 1 elements in the heap
[first, last) . The resulting sequence [first, last) is no longer a heap because the
largest element is now pointed to by iterator last - 1 . The pop_heap() operation then
converts the sequence [first, last – 1) back to a heap. The formerly largest element
can now be accessed using *(last – 1) .

Listing 7.17 demonstrates heap operations.

LISTING 7.17. HEAP OPERATIONS

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
using namespace std;

//
// Unary function to output its argument to cout
//
template<class T>
class Print: public unary_function<T, void>
{
public:

void operator()(T& arg1)
{

cout << arg1 << “ “;
}

};

//
// Display all elements in a container
//
template<class Container>

STL Iterators and Algorithms

CHAPTER 7
345

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 345

void ShowElements(Container& c, char* text);

int main()
{

typedef vector<int> VectorInt;
typedef VectorInt::iterator Itor;

// create an integer vector
VectorInt vInt1(5);
Itor first1 = vInt1.begin();
Itor last1 = vInt1.end();
generate(first1, last1, rand);
ShowElements(vInt1, “vInt1”);

// make vInt1 a heap
make_heap(first1, last1);
ShowElements(vInt1, “vInt1 is now a heap”);

// convert vInt1 to a sorted sequence
first1 = vInt1.begin();
last1 = vInt1.end();
sort_heap(first1, last1);
ShowElements(vInt1, “vInt1 is now a sorted sequence”);

// make vInt1 to a heap again so that we can test pop and push
➥operations

first1 = vInt1.begin();
last1 = vInt1.end();
make_heap(first1, last1);
ShowElements(vInt1, “vInt1 is now a heap again”);

// pop
first1 = vInt1.begin();
last1 = vInt1.end();
pop_heap(first1, last1);
cout << *(last1 - 1) << “ popped, “;
ShowElements(vInt1, “vInt1 is no longer a heap”);

// push
first1 = vInt1.begin();
last1 = vInt1.end();
*(last1 - 1) = 32000;
ShowElements(vInt1, “vInt1 is ready for a push”);
push_heap(first1, last1);
ShowElements(vInt1, “New value pushed into vInt1”);

return 0;
}

Implementation Issues

PART II
346

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.17. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 346

//
// Display all elements in a container
//
template<class Container>
void ShowElements(Container& c, char* text)
{

Print<Container::value_type> DoPrint;

cout << text << “:\n”;
for_each(c.begin(), c.end(), DoPrint);
cout << “\n\n”;

}

Here is the output from the code in Listing 7.17:

vInt1:
41 18467 6334 26500 19169

vInt1 is now a heap:
26500 19169 6334 18467 41

vInt1 is now a sorted sequence:
41 6334 18467 19169 26500

vInt1 is now a heap again:
26500 19169 18467 41 6334

26500 popped, vInt1 is no longer a heap:
19169 6334 18467 41 26500

vInt1 is ready for a push:
19169 6334 18467 41 32000

New value pushed into vInt1:
32000 19169 18467 41 6334

We convert a random sequence of numbers vInt1 to a heap using the make_heap() oper-
ation. We then convert the heap to a sorted sequence and back to a heap. The pop_heap()

operation removes the first element that has the highest value from the heap and places it
at the end of the sequence. Now the whole sequence [vInt1.begin(), vInt1.end()) is
no longer a heap; however, the first four elements [vInt1.begin(), vInt1.end() - 1)

still form a heap. When we push a large value into the heap, it becomes the new top of
the heap. Note that because heap operations typically reorder the elements in a sequence,
iterators previously obtained may become invalid after such operations. In this listing,
therefore, we reassign the first1 and last1 iterators with the new begin() andend()

values before we use them to specify a new sequence.

STL Iterators and Algorithms

CHAPTER 7
347

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 347

Minimum and Maximum Operations
The Standard Library providesfunctions that can be used to find the maximum or mini-
mum value of objects.

The min() Operation
The min() operation returns the smaller of two values.

template<class T> const T& min(const T& a, const T& b);

template<class T, class Compare>
const T& min(const T& a, const T& b, Compare comp);

The max() Operation
The max() operation returns the larger of two values.

template<class T> const T& max(const T& a, const T& b);

template<class T, class Compare>
const T& max(const T& a, const T& b, Compare comp);

The min_element() Operation
The min_element() operation returns an iterator pointing to the smallest element in a
sequence.

template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);

The max_element() Operation
The max_element() operation returns an iterator pointing to the largest element in a
sequence.

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);

The lexicographical_compare() Operation
The lexicographical_compare() operation compares two sequences in lexicographical
order.

Implementation Issues

PART II
348

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 348

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2
➥last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2
➥last2,

Compare comp);

This operation is better explained using the following pseudocode:

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2
➥last2)
{

// traverse two sequences until one of them is exhausted
while ((first1 != last1) && (first2 != last2))
{

// compare each pair of elements
if (*first1 < *first2) return true;
if (*first1 > *first2) return false;

// *first1 == *first2, go to the next pair of elements
++first1;
++first2;

}

if ((first1 == last1) && (first2 != last2))
{

// the 1 st sequence is shorter than the 2 nd

return true;
}
else
{

return false;
}

}

Listing 7.18 demonstrates the lexicographical_compare() operation.

LISTING 7.18. COMPARING SEQUENCES USING THE lexicographical_compare ()

OPERATION

#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

STL Iterators and Algorithms

CHAPTER 7
349

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 349

int main()
{

string s1 = “abcd”;
string s2 = “abd”;

if (lexicographical_compare(s1.begin(), s1.end(), s2.begin(),
➥s2.end()))

cout << “[“ << s1 << “] < [“ << s2 << “]\n”;
else

cout << “[“ << s1 << “] >= [“ << s2 << “]\n”;

s1 = “abcd”;
s2 = “abc”;
if (lexicographical_compare(s1.begin(), s1.end(), s2.begin(),

➥s2.end()))
cout << “[“ << s1 << “] < [“ << s2 << “]\n”;

else
cout << “[“ << s1 << “] >= [“ << s2 << “]\n”;

s1 = “abcd”;
s2 = “abcd”;
if (lexicographical_compare(s1.begin(), s1.end(), s2.begin(),

➥s2.end()))
cout << “[“ << s1 << “] < [“ << s2 << “]\n”;

else
cout << “[“ << s1 << “] >= [“ << s2 << “]\n”;

return 0;
}

The following output is generated by the program in Listing 7.18:

[abcd] < [abd]
[abcd] >= [abc]
[abcd] >= [abcd]

C++ standard strings are sequences. In Listing 7.18,we use the lexicographical

_compare() function to compare two strings with different values.

Permutation Generators
A sequence of n elements can be ordered in n! = n * (n – 1) * (n – 2) * . . . *

2 * 1 ways. Each of these orderings is a permutation of the sequence. It is often useful
to know the next or the previous permutation from the current ordering of the sequence.
The Standard Library provides two permutation generators,which are described in the
following sections.

Implementation Issues

PART II
350

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.18. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 350

The next_permutation() Operation
The next_permutation() operation generates the next permutation of a sequence.

template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first, BidirectionalIterator
➥last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first, BidirectionalIterator
➥last,

Compare comp);

If this operation finds the next permutation, it rearranges the sequence to the found per-
mutation and returns true . Otherwise, it orders the sequenceto the first permutation and
returns false .

The prev_permutation() Operation
The prev_permutation() operation generates the previous permutation of a sequence.

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first, BidirectionalIterator
➥last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first, BidirectionalIterator
➥last,

Compare comp);

If this operation finds the previous permutation, it rearranges the sequence to the found
permutation and returns true . Otherwise, it orders the sequence to the last permutation
and returns false .

Listing 7.19 demonstrates the use of the permutation operations.

LISTING 7.19. USING PERMUTATION OPERATIONS

#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

int main()
{

string s = “abdc”;

if (prev_permutation(s.begin(), s.end()))
cout << “s = “ << s << “\n”;

STL Iterators and Algorithms

CHAPTER 7
351

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 351

else
cout << “no previous permutation: s = “ << s << “\n”;

if (prev_permutation(s.begin(), s.end()))
cout << “s = “ << s << “\n”;

else
cout << “no previous permutation: s = “ << s << “\n”;

if (next_permutation(s.begin(), s.end()))
cout << “s = “ << s << “\n”;

else
cout << “no next permutation: s = “ << s << “\n”;

if (next_permutation(s.begin(), s.end()))
cout << “s = “ << s << “\n”;

else
cout << “no next permutation: s = “ << s << “\n”;

return 0;
}

The following is the output generated by the code in Listing 7.19:

s = abcd
no previous permutation: s = dcba
no next permutation: s = abcd
s = abdc

The first prev_permutation() operation finds the previous permutation of sequence
abdc . It happens to be the first permutation of a sequence of four letters a, b, c, and d.
Because this is the first permutation of the sequence, there is no previous permutation.
The next prev_permutation() operation rearranges the string to dcba , which is the last
permutation of the sequence. This causes the first next_permutation() operation to fail
to find its next permutation and rearranges the string to abcd , the first permutation of the
sequence. The last next_permutation() operation finds the next permutation and
reorders the string to the found permutation.

Standard Function Compositions
Function objects are often used by standard algorithms as an argument. For example, the
standard algorithm for_each() takes a unary function object as its third argument:

for_each(Iterator first, Iterator last, FunctionObject f)

We might want to compare each element with a given value and count how many ele-
ments are greater than that value. The predicate greater seems to be a good candidate

Implementation Issues

PART II
352

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.19. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 352

for the function object f . The only problem is that the for_each() algorithm needs a
unary function,but the greater predicate is a binary function. What can we do?

We can write our own for_each() algorithm, or we can write our own unary greater

predicate to compare the argument against a set value. Either approach requires us to
reinvent the wheel. The Standard C++ Library provides a set of functions derived from
standard functions with minor variations. They are the binder, adapter, and negater func-
tions.

Binder Functions
A binder function can bind one of the arguments of a binary function to a constant and
result in a unary function. The Standard Library provides two binder functions:
bind1st() and bind2nd() . Let’s look at how the bind1st() function is defined. The
Standard Library defines a base class for the bind1st() function:

template<class BinaryOperation>
class binder1st :
public unary_function<BinaryOperation::second_argument_type,

BinaryOperation::result_type>
{
public:

binder1st(const BinaryOperation & x,
const BinaryOperation::first_argument_type& const_arg1)

: op(x), value(const_arg1) {}

result_type operator()(const second_argument_type& arg2) const
{

return BinaryOperation(value, arg2);
}

protected:
BinaryOperation op;
BinaryOperation::first_argument_type value;

};

The binder1st class constructor takes two arguments:an operation class object and a
constant value for the first argument. This arrangement effectively binds the new
binder1st object to the operation class and the first argument. We can use this base class
to create a binder function that compares an object to a value:

template<class BinaryOperation, class T>
binder1st<BinaryOperation> bind1st(const BinaryOperation& op, const T&
➥arg1);

The overloaded operator () of the binder1st class can be used to perform a binary
operation:

BinaryFunction<T>::result_type bind1st(T& arg2)

STL Iterators and Algorithms

CHAPTER 7
353

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 353

Listing 7.20 demonstrates the use of the bind1st() function to separate lowercase and
uppercase characters in a string.

LISTING 7.20. USING THE bind1st () FUNCTION

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;

int main()
{

string s = “aBCdefGH”;
partition(s.begin(), s.end(), bind1st(greater<char>(), ‘a’));
cout << “s = “ << s << “\n”;

return 0;
}

Here is the output from the code in Listing 7.20:

s = HBCGefda

We use the bind1st() function to bind the first argument of function greater() to the
letter a. Because lowercase a is greater than all uppercase letters, the
bind1st(greater<char>(), ‘a’) function returns true on letters in the string in upper-
case. The partition() operation then moves all capital letters to the front and moves all
lowercase letters to the back of the string.

The bind2nd() function isdefined similarly to the bind1st() function.

Adapter Functions
Most standard algorithms use a normal function to perform certain operations on ele-
ments. However, most C++ programmers are used to defining member functions to
manipulate objects. Assume that you define a list of pointers to window objects and use
the Show() member function to display the windows:

class MyWindow
{
public:

void Show();
};

list<MyWindow*> windowPtrList;
// add pointers to window objects to the list
// . . .

Implementation Issues

PART II
354

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 354

for_each(windowPtrList.begin(), windowPtrList.end(),MyWindow::Show); //
➥error!

The trouble is that the for_each() function expects the third argument to be function

f() . MyWindow::Show , however, must be called through WindowObject.Show() . The
Standard Library provides a set of member function adapters that facilitate the use of
member functions in algorithms.

Member function adapter mem_fun() converts a member function with no arguments to
a unary function with the this pointer. It is defined using the base class mem_fun_t :

template <class S, class T>
class mem_fun_t : public unary_function<T*, S> {
public:

explicit mem_fun_t(S (T::*p)());
S operator()(T* p);

};

template<class S, class T>
mem_fun_t<S, T> mem_fun(S (T::*f)())
{

return mem_fun_t<S, T>(f);
}

Listing 7.21 shows the use of member function adapters to allow algorithms to call mem-
ber functions.

LISTING 7.21. PASSING MEMBER FUNCTIONS TO ALGORITHMS USING MEMBER FUNCTION

ADAPTERS

#include <iostream>
#include <list>
#include <functional>
#include <algorithm>
using namespace std;

typedef unsigned int UINT;

class MyWindow
{
public:

MyWindow(UINT newID = 0): mID(newID) {}

void Show() const
{

cout << “Showing window “ << mID << “\n”;
}

STL Iterators and Algorithms

CHAPTER 7
355

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

continues

10 239-5 CH07 2/19/99 1:14 PM Page 355

//
// MSVC++ 5 version
//
// int Show()
// {
// cout << “Showing window “ << mID << “\n”;
// return 0;
// }

private:
UINT mID;

};

int main()
{

// create and add elements to a list of pointers to Window objects
MyWindow* pWin;
list<MyWindow*> winPtrList;

for (UINT winID = 0; winID < 5; ++winID)
{

pWin = new MyWindow(winID);
winPtrList.push_back(pWin);

}
pWin = 0;

// show each window in the list
for_each(winPtrList.begin(), winPtrList.end(),

➥mem_fun(&MyWindow::Show));

return 0;
}

Here is theoutput from the code in Listing 7.21:

Showing window 0
Showing window 1
Showing window 2
Showing window 3
Showing window 4

A member function Show() of class MyWindow is defined to print the MyWindow object’s
ID. In the main() function,a list of five pointers to the MyWindow objects is created. The
for_each() function is invoked to print the ID for every MyWindow object. The member
function adapter mem_fun() is used to call the Show() member function. Because
mem_fun() requires a member function pointer, we must pass the address of the Show()

function.

Implementation Issues

PART II
356

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.21. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 356

Pointer-to-Function Adapter Functions
A standard algorithm can use a function or a pointer to a function to manipulate elements
in sequences. Listing 7.22 shows the use of a function and a pointer to a function by the
for_each() algorithm.

LISTING 7.22. USING FUNCTIONS AND POINTERS TO FUNCTIONS IN ALGORITHMS

#include <iostream>
#include <list>
#include <functional>
#include <algorithm>
using namespace std;

typedef unsigned int UINT;

class MyWindow
{
public:

MyWindow(UINT newID = 0): mID(newID) {}
UINT GetID() const { return mID; }

private:
UINT mID;

};

void ShowWindowUnary(const MyWindow& win);

int main()
{

// create and add elements to a list of pointers to Window objects
MyWindow* pWin;
list<MyWindow> winList;
UINT winID;

for (winID = 0; winID < 5; ++winID)
{

pWin = new MyWindow(winID);
winList.push_back(*pWin);

}
pWin = 0;

STL Iterators and Algorithms

CHAPTER 7
357

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

NOTE

Because of a bug in Microsoft Visual C++ Version 5, you should use the second
version of the Show() member function when compiling it using Visual C++ 5.

continues

10 239-5 CH07 2/19/99 1:14 PM Page 357

// Show each window in the list - these are ok.
cout << “ShowWindowUnary():\n”;
for_each(winList.begin(), winList.end(), ShowWindowUnary);
cout << “\nPointer to ShowWindowUnary()\n”;
for_each(winList.begin(), winList.end(), &ShowWindowUnary);

return 0;
}

void ShowWindowUnary(const MyWindow& win)
{

cout << “Showing window “ << win.GetID() << “.\n”;
}

Here is the output generated by the code in Listing 7.22:

ShowWindowUnary():
Showing window 0.
Showing window 1.
Showing window 2.
Showing window 3.
Showing window 4.

Pointer to ShowWindowUnary():
Showing window 0.
Showing window 1.
Showing window 2.
Showing window 3.
Showing window 4.

We define a unary function to print the MyWindow object’s mID member variable. This
function is called by for_each() to print themID for each MyWindow object in winList . A
pointer to this function can also be used by for_each() to perform the same operation,
asdemonstrated here.

Things are not quite the same for the binder functions. They cannot be used to bind a
pointer to a function because they require a copy of the function. Consequently, the
Standard Library provides two adapters to allow function pointers to be used. The first
adapter is used for unary functions:

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{
public:

explicit pointer_to_unary_function(Result (* f)(Arg));
Result operator()(Arg x) const;

};

Implementation Issues

PART II
358

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

LISTING 7.22. CONTINUED

10 239-5 CH07 2/19/99 1:14 PM Page 358

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (* f)(Arg));

The second adapter isused for binary functions:

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public
binary_function<Arg1,Arg2,Result>
{
public:

explicit pointer_to_binary_function(Result (* f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;

};

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (* f)(Arg1,
➥Arg2));

We can then use a pointer to a function in the binder operations.

Negater Functions
In Listing 7.12,you used the ReverseCompare() function to sort a sequence in reverse
order. This is a convenient but not very intuitive approach to sorting. In that example, we
wanted to sort the elements in a not-less-than-or-equal-to order. The Standard Library
provides two predicate negaters: one for the unary predicates and another for the binary
predicates.

template <class Predicate>
class unary_negate : public unary_function<Predicate::argument_type,bool>
{
public:

explicit unary_negate(const Predicate& pred);
bool operator()(const argument_type& x) const;

};

template <class Predicate>
class binary_negate : public
binary_function<Predicate::first_argument_type,

Predicate::second_argument_type, bool>
{
public:

explicit binary_negate(const Predicate& pred);
bool operator()(const first_argument_type& x,

const second_argument_type& y) const;
};

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);

STL Iterators and Algorithms

CHAPTER 7
359

7

STL ITER
A

TO
R

S
A

N
D

A
LG

O
R

ITH
M

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 359

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);

In Listing 7.12,replace the sort(first1, last1, ReverseCompare) statement with
sort(first1, last1, not2(less_equal<int>())) , which does the same as the cus-
tom-made ReverseCompare() predicate.

Summary
The Standard Library provides a hierarchy of iterators that can be used to access
sequences. A set of standard algorithms is defined in the Standard Library to perform
common operations such as sorting and sequence traversal.

Compiler vendors often implement standard algorithms in the most efficient and reliable
manner on a given operating system. The use of standard algorithms is generally pre-
ferred to handwritten functions that perform similar operations.

Implementation Issues

PART II
360

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH07 Lp#1

10 239-5 CH07 2/19/99 1:14 PM Page 360

IN THIS CHAPTER

• Functions and Classes Are Resolved by
Name 362

• Creating a Namespace 366

• Using a Namespace 369

• The using Keyword 373

• The Namespace Alias 376

• The Unnamed Namespace 377

• The Standard Namespace std 378

8
C

H
A

PT
ER

Avoiding Name
Clashes by Using
Namespaces

11 239-5 CH08 2/19/99 1:15 PM Page 361

Name conflicts have been a source of aggravation to both C and C++ developers for
years. Oddly enough,the C++ standards committee has only recently addressed this
problem with the introduction of the namespacefeature. In my opinion,the subject of
name conflicts should have been addressed a long time ago.

Because the committee didn’t address namespaces until recently, some vendors do not
include support for namespaces in current releases of their compilers. Regardless,I rec-
ommend that you learn about namespaces now, even if your compiler does not include
support for the namespace feature.

A name clash happenswhen a duplicate name with matching scope is found in two dif-
ferent translation units. The most common occurrence can be found in two different
library packages. For example, a container class library will most certainly declare and
implement a List class. It is not a surprise to find a List class also being used in a win-
dowing library. Suppose that you want to maintain a list of windows for your application.
Further assume that you are using the talents of the List class found in the container
class library. So you declare an instance of List to hold your bevy of windows. To your
dismay, you discover that the member functions you want to call are not available. What
happened? Obviously—although it may not be immediately apparent—the compiler has
matched your List declaration to the List container, but what you really wanted is the
List found in the window library.

Namespaces are used to partition the global namespace and to eliminate, or at least
reduce, name conflicts. Namespaces are similar to classes and structs. The syntax is very
similar; items declared within the namespace are owned by the namespace. All items
within a namespace have public visibility. Namespaces can be nested within other name-
spaces. Functions can be defined within the body of the namespace or defined outside of
the body of the namespace. If a function is defined outside the body of the namespace, it
must be qualified by thenamespace’s name.

This chapter discusses these items and more in greater detail. First, I want to cover some
basic rules concerning name resolution,required unique names,and other precursors to
namespaces.

Functions and Classes Are
Resolved by Name
As it parses source code and builds a list of function and variable names,the compiler
checks for name conflicts. Of course, the compiler cannot resolve all name conflicts;
when the compiler cannot resolve conflicts, the linker comes into play. The compiler
cannot check for name clashes across translation units; if it could, the compiler could

Implementation Issues

PART II
362

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 362

(potentially) assume the responsibility of the linker. I am sure you have seen a variation
of the following error message from your linker: Identifier multiply defined (iden -

tifier , of course, being some named type). You see this linker message if you have
defined the same name with the same scope in different translation units. You get a com-
piler error if you redefine a name within a single file having the same scope. The follow-
ing example, when compiled and linked, will produce an error message by the linker:

// file first.cpp
int integerValue = 0 ;
int main() {

int integerValue = 0 ;
// . . .
return 0 ;

} ;

// file second.cpp
int integerValue = 0 ;
// end of second.cpp

My linker announces the following diagnostic:in second.obj: integerValue already

defined in first.obj . I suspect that your linker will give you a similar message.
However, if these names are in a different scope, the compiler and linker will not com-
plain. It is also possible to receive a warning from the compiler concerning identifier hid-
ing. Oddly enough,my compiler, even at the maximum warning level, will not tell me
about the hidden name in the previous example. A warning I enjoy giving to people is,
“Don’t trust your compiler!”Because I don’t necessarily trust my compiler, I routinely
use a lint program as a precursor to the compiler. If you do not own (or use) a lint pro-
gram,I highly recommend that you go get one. A good lint program will warn you about
many things,not just name conflicts.

In the previous example, the integer declared within main() does not conflict with the
integer outside main() . I mentioned that my compiler, even at the maximum warning
level, does not tell me about the potential conflict. I guess my compiler assumes that I
have my own symbol table tucked away in my head! The reason the names do not clash
is because they each have different scope. The integerValue defined within main()

hides the integerValue defined outside main() . If you want to use the integerValue

declared in the global namespace, you must prefix the scope resolution operator to the
name. Consider this example, which assigns the value 10 to the integerValue outside
main() and not to the integerValue declared within main() :

// file first.cpp
int integerValue = 0 ;
int main()
{

int integerValue = 0 ;

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
363

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 363

::integerValue = 10 ; //assign to global “integerValue”
// . . .
return 0 ;

} ;

// file second.cpp
int integerValue = 0 ;

// end of second.cpp

The problem with thetwo global integers defined outside of any functions is that they
have the same name and visibility.

I use theterm visibility to designate the scope of a defined object,whether it is a vari-
able, a class,or a function. For example, a variable declared and defined outside any
function has file, or global, scope. The visibility of this variable is from the point of its
definition through the end of the file. A variable having a block, or local, scope is found
within a block structure. The most common examples are variables defined within func-
tions. The following example shows the scope of variables:

int globalScopeInt = 5 ;
void f()
{

int localScopeInt = 10 ;
}
int main()
{

int localScopeInt = 15 ;
{

int anotherLocal = 20 ;
int localScopeInt = 30 ;

}
return 0 ;

}

The first int definition, globalScopeInt , is visible within the functions f() and main() .
The next definition is found within the function f() and is named localScopeInt . This
variable has local scope, meaning that it is visible only within the block defining it. The
main() function cannot access f() ’s localScopeInt . When the function returns,
localScopeInt goes out of scope. The third definition, also named localScopeInt , is
found in the main() function. This variable has block scope. Note that main() ’s
localScopeInt does not conflict with f() ’s localScopeInt . The next two definitions,
anotherLocal and localScopeInt , both have block scope. As soon as we reach the clos-
ing brace, these two variables lose their visibility. Notice that this localScopeInt is hid-
ing the localScopeInt defined just before the opening brace (the second localScopeInt

defined in the program). When the program moves past the closing brace, the second
localScopeInt defined resumes visibility. Any changes made to the localScopeInt

defined within the braces does not affect the contents of theouter localScopeInt .

Implementation Issues

PART II
364

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 364

Names can have internal and external linkage. These two terms refer to the use or avail-
ability of a name across multiple translation units or within a single translation unit. Any
name having internal linkage can only be referred to within the translation unit in which
it is defined. For example, a variable defined to have internal linkage can be shared by
functions within the same translation unit. Names having external linkage are available
to other translation units. The following example demonstrates internal andexternal link-
age:

// file: first.cpp
int externalInt = 5 ;
const int j = 10 ;
int main()
{

return 0 ;
}

// file: second.cpp
extern int externalInt ;
int anExternalInt = 10 ;
const int j = 10 ;

The externalInt variable defined in first.cpp has external linkage. Although it is
defined in first.cpp , second.cpp can also access it. The two j s found in both files are
const , which, by default, have internal linkage. You can override the const default by
providing an explicit declaration, as shown here:

// file: first.cpp
extern const int j = 10 ;

// file: second.cpp
extern const int j ;
#include <iostream>
int main()
{

std::cout << “j is “ << j << std::endl ;
return 0 ;

}

When built, this example displays the following:

j is 10

The standards committee deprecates the following type of usage:

static int staticInt = 10 ;
int main()
{

//…
}

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
365

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 365

There is not much I can say about this example except that using static to limit the
scope of an external variable to a specific translation unit is deprecated. If you are a Java
programmer, you are very familiar with this terminology. Deprecation meansthat at
some future (and unknown) date, the named feature will cease to exist. You should use
namespaces instead of static .

I know; you want to be able to hide a variable from other translation units but the current
translation unit requires full visibility. My recommendation is the subject of this chapter:
namespaces. Simply get rid of the static keyword and wrap the definition within a des-
ignated namespace. This is the intent of the standards committee:Deprecate this use of
static and replace it with a namespace. You should continue to use the static keyword
within functions and class declarations as usual.

Implementation Issues

PART II
366

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

NOTE

Do not apply the static keyword to a variable defined at file scope. The stan-
dards committee has deprecated this type of usage. Use namespaces instead.

Creating a Namespace
If you have ever created a struct or class,creating a namespace will be a piece of cake.
The syntax for a namespace declaration is similar to the syntax for a struct or class dec-
laration: First, apply the keyword namespace followed by an optional namespace name,
and then an opening curly brace. The namespace is concluded with a closing brace and
no terminating semicolon. This is one difference between a namespace declaration and a
class declaration: A class declaration concludes with a semicolon. The following code
snippet is an example of a namespace declaration:

namespace Window {
void move(int x, int y) ;

}

The name Window uniquely identifies the namespace. You can have many occurrences of
a named namespace. These multiple occurrences can occur within a single file or across
multiple translation units. The C++ standard library namespace, std , is a prime example
of this feature. This makes sense because the standard library is a logical grouping of
functionality. I discuss the namespace std later in this chapter.

The main concept behind namespaces is to group related items into a specified (named)
area. The following is a brief example of a namespace that spans multiple header files:

// header1.h

11 239-5 CH08 2/19/99 1:15 PM Page 366

namespace Window {
void move(int x, int y) ;

}

// header2.h
namespace Window {

void resize(int x, int y) ;
}

Declaring and Defining Types
You can declare and define types and functions within namespaces. Of course, this is a
design and maintenance issue. Good design dictates that you should separate interface
from implementation. You should follow this principle not just with classes but also with
namespaces. The following example demonstrates a cluttered and poorly defined name-
space:

namespace Window {
// . . . other declarations and variable definitions.
void move(int x, int y) ; // declarations
void resize(int x, int y) ;
// . . . other declarations and variable definitions.

void move(int x, int y)
{

if(x < MAX_SCREEN_X && x > 0)
if(y < MAX_SCREEN_Y && y > 0)

platform.move(x, y) ; // specific routine
}

void resize(int x, int y)
{

if(x < MAX_SIZE_X && x > 0)
if(y < MAX_SIZE_Y && y > 0)

platform.resize(x, y) ; // specific routine
}
// . . . definitions continue

}

You can see how quickly the namespace becomes cluttered! The previous example is
approximately 20 lines in length; imagine if this namespace were four times longer. The
next section describes how to define functions outside a namespace; doing so helps
reduce clutter in a namespace.

Defining Functions Outside a Namespace
You should define namespace functions outside the namespace body. Doing so illustrates
a clear separation of the declaration of the function and its definition—and also keeps the

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
367

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 367

namespace body uncluttered. Separating the function definition from the namespace also
allows you to put the namespace and its embodied declarations within a header file; the
definitions can be placed into an implementation file. A terse example follows:

// file header.h
namespace Window {

void move(int x, int y) ;
// other declarations …

}

// file impl.cpp
void Window::move(int x, int y)
{

// code to move the window
}

Adding New Members
New members can be added to a namespace only within its body. You cannot define new
members using qualifier syntax. The most you can expect from this style of definition is
a complaint from your compiler. The following example demonstrates this error:

namespace Window {
// lots of declarations

}
//…some code
int Window::newIntegerInNamespace ; // sorry, can’t do this

The preceding line of code is illegal. Your (conforming) compiler will issue a diagnostic
reflecting the error. To correct the error—or avoid it altogether—simply move the decla-
ration within the namespace body.

I want to point out another difference between a namespace and a class. If you define a
member function within the declaration of a class,that function is implicitly inline. The
compiler, of course, will have a clear conscience if it doesn’t inline the function.
Remember that a compiler does not have to inline a function,even if you apply the
inline keyword. The namespacerule for inlining is different; if you define a function
inside a namespace, that function will not be inlined. You may think that you can get
around this limitation by applying theinline keyword. Unfortunately, this approach
does not work.

You cannot apply anaccess specifier within a namespace. This is another area where
namespaceand class declarations diverge. All members encased within a namespace are
public. The following code does not compile:

namespace Window {
private:

void move(int x, int y) ;
}

Implementation Issues

PART II
368

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 368

Nesting Namespaces
A namespace canbe nested within another namespace. The reason they can be nested is
because the definition of a namespace is also declaration. As with any other namespace,
you must qualify a name using the enclosing namespace. If you have nested namespaces,
you must qualify each namespace in turn. For example, the following shows a named
namespace nested within another named namespace:

namespace Window {
namespace Pane {

void size(int x, int y) ;
}

}

To access the function size() outside of Window, you must qualify the function with
both enclosing namespace names. The following demonstratesthe qualification:

int main()
{

Window::Pane::size(10, 20) ;
return 0 ;

}

Now that you know how to create a namespace, let’s move on and explore namespace
usage.

Using a Namespace
Let’s take a lookat an example of using a namespace and the associated use of the scope
resolution operator. The syntax should be familiar to you,especially if you’ve been using
classes. I will first declare all types and functions for use within the namespace Window.
After I define everything required, I then define any member functions declared. These
member functions are defined outside of the namespace; the names are explicitly identi-
fied using the scope resolution operator. With all that said, consider the examplein
Listing 8.1.

LISTING 8.1. USING A NAMESPACE

#include <iostream>
namespace Window {

const int MAX_X = 30 ;
const int MAX_Y = 40 ;
class Pane {

public:

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
369

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

continues

11 239-5 CH08 2/19/99 1:15 PM Page 369

Pane() ;
~Pane() ;
void size(int x, int y) ;
void move(int x, int y) ;
void show() ;

private:
static int cnt ;
int x ;
int y ;

} ;
}
int Window::Pane::cnt = 0 ;
Window::Pane::Pane() : x(0), y(0) { }
Window::Pane::~Pane() { }
void Window::Pane::size(int x, int y)
{

if(x < Window::MAX_X && x > 0)
Pane::x = x ;

if(y < Window::MAX_Y && y > 0)
Pane::y = y ;

}
void Window::Pane::move(int x, int y)
{

if(x < Window::MAX_X && x > 0)
Pane::x = x ;

if(y < Window::MAX_Y && y > 0)
Pane::y = y ;

}
void Window::Pane::show()
{

std::cout << “x “ << Pane::x ;
std::cout << “ y “ << Pane::y << std::endl ;

}

int main()
{

Window::Pane pane ;

pane.move(20, 20) ;
pane.show() ;

return 0 ;
}

If you build and run this application, the following output appears on your screen:

x 20 y 20

Implementation Issues

PART II
370

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

LISTING 8.1. CONTINUED

11 239-5 CH08 2/19/99 1:15 PM Page 370

Take note that class Pane is nested inside the namespace Window. This is the reason you
have to qualify the name Pane with the Window:: qualifier.

The static variable cnt , which is declared in Pane, is defined as usual. Within the func-
tion Pane::size() , notice that MAX_Xand MAX_Yare fully qualified. This is because Pane

is in scope; otherwise, the compiler would issue an error diagnostic. This alsoholds true
for the function Pane::move() .

Also interesting is the qualification of Pane::x and Pane::y inside both function defini-
tions. Why is this? Well, if the function Pane::move() were written like this,you would
have a problem:

void Window::Pane::move(int x, int y)
{

if(x < Window::MAX_X && x > 0)
x = x ;

if(y < Window::MAX_Y && y > 0)
y = y ;

Platform::move(x, y) ;
}

Can you spot the issue? You probably won’t get much of an answer from your compiler;
some won’t issue any kind of diagnostic message at all. Even the trusty old lint program
will let this one slide. I take that back, lint does tell us that we have a problem,but it’s
not at the two assignment statements:

x = x ;
y = y ;

The source of the problem is the function’s arguments. Arguments x and y hide the pri-
vate x and y instance variables declared within class Pane. Effectively, the statements
assign both x and y to itself:

x = x ;
y = y ;

Go ahead, try it out yourself. Modify the Window::Pane::move() so that it is the same as
the previous example. Simply remove the text Pane:: from the two assignment state-
ments. Rebuild the application and run it. Your output should be as follows:

x 10 y 10

This output reflects the fact that assignment statements are simply assigning to them-
selves:

x = x ;
y = y ;

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
371

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 371

The instance variables within Pane are not affected.

Let’s rewrite the application and enhance it to support the using directive. The using

directive pulls all the names from a named namespace and applies them to the current
scope. This helps to cut down on excessive typing. The example is shown in Listing 8.2,
rewritten with the using directive.

LISTING 8.2. THE using DIRECTIVE

#include <iostream>

namespace Window {
const int MAX_X = 40 ;
const int MAX_Y = 80 ;
class Pane {

public:
Pane() ;
~Pane() ;
void size(int x, int y) ;
void move(int x, int y) ;
void show() ;

private:
static int cnt ;
int x ;
int y ;

} ;
}
using namespace Window ;

int Pane::cnt = 0 ;
Pane::Pane() : x(10), y(10) { }
Pane::~Pane() { }
void Pane::size(int x, int y)
{

if(x < MAX_X && x > 0)
Pane::x = x ;

if(y < MAX_Y && y > 0)
Pane::y = y ;

}
void Pane::move(int x, int y)
{

if(x < MAX_X && x > 0)
x = x ;

if(y < MAX_Y && y > 0)
y = y ;

}
void Pane::show()
{

std::cout << “x “ << Pane::x << “ y “ << Pane::y << std::endl ;
}

Implementation Issues

PART II
372

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 372

int main()
{

Pane pane ;

pane.move(20, 20) ;
pane.show() ;

return 0 ;
}

The output from this program is shown here:

x 10 y 10

The using directive appears after the namespace declaration:

using namespace Window ;

This statement brings all the names found in the namespace Window into the current
scope. The application operates as it did before and there is less typing in this newer ver-
sion. The using directive and the using declaration are discussed in the next section.

The using Keyword
The using keyword is used for both the using directive and the using declaration. The
syntax of the using keyword determines whether the context is a directive or a declara-
tion.

The using Directive
The using directive effectively exposes all names declared in a namespace to be in the
current scope. You can refer to the names without qualifying them with their respective
namespace names. The following example shows the using directive:

namespace Window {
int value1 = 20 ;
int value2 = 40 ;

}
. . .
Window::value1 = 10 ;

using namespace Window ;
value2 = 30 ;

The scope ofthe using directive begins at its declaration and continues on to the end of
the current scope. Notice that value1 must be qualified in order to reference it. The vari-
able value2 does not require the qualification because the directive introduces all names
in a namespace into the current scope.

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
373

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 373

The using directive can be used at any level of scope. This allows you to use the directive
within block scope; when that block goes out of scope, so do all the names within the
namespace. Thefollowing sample shows this behavior:

namespace Window {
int value1 = 20 ;
int value2 = 40 ;

}
//. . .
void f()
{

{
using namespace Window ;
value2 = 30 ;

}
value2 = 20 ; //error!

}

The last line ofcode in f() , value2 = 30 ; is an error because value2 is not defined.
The name is accessible in the previous block because the directive pulls the name into
that block. Once that block goes out of scope, so do the names in namespace Window.

Variable names declared within a local scope hide any namespace names introduced in
that scope. This behavior is similar to how a local variable hides a global variable. Even
if you introduce a namespace after a local variable, that local variable will hide the
namespace name. The following example shows this:

namespace Window {
int value1 = 20 ;
int value2 = 40 ;

}
//. . .
void f()
{

int value2 = 10 ;
using namespace Window ;
std::cout << value2 << std::endl ;

}

The output of this function is 10, not 40. This output confirms the fact that the value2 in
namespace Window is hidden by the value2 in f() . If you need to use a name within a
namespace, you must qualify the name with the namespace name.

An ambiguity can arise using a name that is both globally defined and defined within a
namespace. The ambiguity surfaces only if the name is used, not just when a namespace
is introduced. This is demonstrated with the following code fragment:

namespace Window {
int value1 = 20 ;

Implementation Issues

PART II
374

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 374

}
//. . .
using namespace Window ;
int value1 = 10 ;
void f()
{

value1 = 10 ;
}

The ambiguity occurs within function f() . The directive effectively brings
Window::value1 into the global namespace; because there is a value1 already globally
defined, the use of value1 in f() is an error. Note that if the line of code in f() were
removed, there would not be an error.

The using Declaration
The using declaration issimilar to the using directive, except that the declaration pro-
vides a finer level of control. More specifically, the using declaration is used to declare a
specific name (from a namespace) to be in the current scope. You can then refer to the
specified object by its name only. The following example demonstrates the use of the
using declaration:

namespace Window {
int value1 = 20 ;
int value2 = 40 ;
int value3 = 60 ;

}
//. . .
using Window::value2 ; //bring value2 into current scope
Window::value1 = 10 ; //value1 must be qualified
value2 = 30 ;
Window::value3 = 10 ; //value3 must be qualified

The using declaration adds the specified name to the current scope. The declaration does
not affect the other names within the namespace. In the previous example, value2 is ref-
erenced without qualification, but value1 and value3 require qualification. The using

declaration provides more control over namespace names that you bring into scope. This
is in contrast with the directive which brings all names in a namespace into scope.

Once a name is brought into a scope, it is visible until the end of that scope. This behav-
ior is just like any other declaration. A using declaration may be used in the global
namespace or within any local scope.

It is an error to introduce a name into a local scope where a namespace name has been
declared. The reverse is also true. The following example shows this:

namespace Window {
int value1 = 20 ;

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
375

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 375

int value2 = 40 ;
}
//. . .
void f()
{

int value2 = 10 ;
using Window::value2 ; // multiple declaration
std::cout << value2 << std::endl ;

}

The second linein function f() will produce a compiler error because the name value2

is already defined. The same error occurs if the using declaration is introduced before
the definition of the local value2 .

Any name introduced at local scope with a using declaration hides any name outside
that scope. The following code snippet demonstrates this behavior:

namespace Window {
int value1 = 20 ;
int value2 = 40 ;

}
int value2 = 10 ;
//. . .
void f()
{

using Window::value2 ;
std::cout << value2 << std::endl ;

}

The using declaration in f() hides the value2 defined in the global namespace.

As mentioned before, a using declaration gives you finer control over the names intro-
duced from a namespace. A using directive brings all names from a namespace into the
current scope. It is preferable to use a declaration over a directive because a directive
effectively defeats the purpose of the namespace mechanism. A declaration is more
definitive because you are explicitly identifying the names you want to introduce into a
scope. A using declaration will not pollute the global namespace, as is the case with a
using directive (unless,of course, you declare all names found in the namespace). Name
hiding, global namespace pollution,and ambiguity is reduced to a more manageable
level by using the using declaration.

The Namespace Alias
A namespace alias is designed to provide another name for a named namespace. An alias
provides a shorthand term for you to use to refer to a namespace. This is especially true
if a namespace name is very long; creating an alias can help cut down on lengthy, repeti-
tive typing. Let’s look at an example:

Implementation Issues

PART II
376

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 376

namespace the_software_company {
int value ;
// . . .

}
the_software_company::value = 10 ;
. . .
namespace TSC = the_software_company ;
TSC::value = 20 ;

A drawback, of course, is that your alias may collide with an existing name. If this is the
case, the compiler will catch the conflict andyou can resolve it by renaming the alias.

The Unnamed Namespace
An unnamed namespace is simply that, a namespace that does not have a name. A com-
mon use of unnamed spaces is to shield global data from potential name clashes between
translation units. Every translation unit has its own, unique unnamed namespace. All
names defined within the unnamed namespace (within each translation unit) can be
referred to without explicit qualification. The following is an example of two unnamed
namespaces found in two separate files:

// file: one.cpp
namespace {

int value ;
char p(char *p) ;
//. . .

}

// file: two.cpp
namespace {

int value ;
char p(char *p) ;
//. . .

}
int main()
{

char c = p(ptr) ;
}

Each of the names,value and function p() , is distinct to its respective file. To refer to an
(unnamed namespace) name within a translation unit,simply use the name without quali-
fication. This usage is demonstrated in the previous example with the call to function
p() . This use implies a using directive for objects referred to from an unnamed name-
space. Because of this,you cannot access members of an unnamed namespace in another
translation unit. The behavior of an unnamed namespace is the same as a static object
having external linkage. Consider this example:

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
377

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 377

static int value = 10 ;

Remember that this use of thestatic keyword is deprecated by the standards commit-
tee. Namespaces now exist to replace code as previously shown. Another way to think of
unnamed namespaces is that they are global variables with internal linkage.

The Standard Namespace std
The best example of namespaces is found in the C++ Standard Library. The standard
library is completely encased within the namespace named std . All functions,classes,
objects,and templates are declared within the namespace std .

You will, no doubt,see code such as the following:

#include <iostream>
using namespace std ;

Remember that the using directive pulls everything in from the named namespace. It is
bad form to employ the using directive when using the standard library. Why? Because
doing so defeats the purpose of using a namespace; the global namespace will be pollut-
ed with all the names found in the header. Keep in mind that all header files use the
namespace feature, so if you include multiple standard header files,and specify the
using directive, then everything declared in the headers will be in the global namespace.
Please note that most of the examples in this book violate this rule; this action is not an
intent to advocate violating the rule, but is used for brevity of the examples. You should
use the using declaration instead, as in the following example:

#include <iostream>
using std::cin ;
using std::cout ;
using std::endl ;
int main()
{

int value = 0 ;
cout << “So, how many eggs did you say you wanted?” << endl ;
cin >> value ;
cout << value << “ eggs, sunny-side up!” << endl ;
return(0) ;

}

The following shows a sample run of the program:

So, how many eggs did you say you wanted?
4
4 eggs, sunny-side up!

As an alternative, you could fully qualify the names that you use, as in the following
code sample:

Implementation Issues

PART II
378

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 378

#include <iostream>
int main()
{

int value = 0 ;
std::cout << “How many eggs did you want?” << std::endl ;
std::cin >> value ;
std::cout << value << “ eggs, sunny-side up!” << std::endl ;
return(0) ;

}

Sample output from this program is shown here:

How many eggs did you want?
4
4 eggs, sunny-side up!

This might be appropriate for shorter programs,but can become quite cumbersome for
any significant amount of code. Imagine having to prefix std:: for every name you use
that is found in the standard library!

Summary
Global name clashes have been a problem for many years. This is no surprise because
there is only one global namespace. The namespace feature is a welcome addition to the
C++ standard.

Creating a namespace is a simple exercise. It is very similar to a class declaration. There
are a couple of differences to note. First, a semicolon does not follow a namespace’s
closing brace. Second, a namespace is open,whereas a class is closed. This means that
you can continue to define the namespace in other files or in separate sections of a single
file.

Anything that can be declared can be inserted into a namespace. If you are designing
classes for a reusable library, you should be using the namespace feature. Functions
declared within a namespace should be defined outside of that namespace’s body. This
promotes a separation of interface from implementation and also keeps the namespace
from becoming cluttered.

Namespaces can be nested. A namespace is a declaration; this fact allows you to nest
namespaces. Don’t forget that you must fully qualify names that are nested.

The using directive is used to expose all names in a namespace into the current scope.
This effectively pollutes the global namespace with all names found in the named name-
space. It is generally bad practice to use the using directive, especially with respect to
the standard library. Use using declarations instead.

Avoiding Name Clashes by Using Namespaces

CHAPTER 8
379

8

A
V

O
ID

IN
G

N
A

M
E

C
LA

SH
ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 379

The using declaration is used to expose a specific namespace name into the current
scope. This allows you to refer to the object by its name only.

A namespace alias is similar in nature to a typedef . A namespace alias allows you to
create another name for a named namespace. This can be quite useful if you are using a
namespace with a long name.

Every file can contain an unnamed namespace. An unnamed namespace, as its name
implies,is a namespace without a name. An unnamed namespace allows you to use the
names within the namespace without qualification. It keeps the namespace names local
to the translation unit. Unnamed namespaces are the same as declaring a global variable
with the static keyword.

The C++ Standard Library is enclosed in a namespace named std . Avoid using the using

directive when using the standard library; instead, use the using declaration.

Implementation Issues

PART II
380

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH08 Lp#1

11 239-5 CH08 2/19/99 1:15 PM Page 380

IN THIS CHAPTER

• The typeid() Operator 382

• The type_info Class 383

• Dynamic Typecasting of Objects 392

• Other Cast Operators 398

• New Versus Old Typecasting 403

9
C

H
A

PT
ER

Manipulating
Object Types at
Runtime

12 239-5 CH09 2/19/99 1:16 PM Page 381

Runtime Type Information, oftenreferred to as RTTI, is a special mechanism to get the
runtime identification of types and expressions. Although dynamic binding is the key to
manipulating object types at runtime, it is advantageous to know the exact type of an
object for which you only have a pointer or reference. Often,this information allows you
to perform a special-case operation more efficiently and can also prevent a base-class
interface from becoming clumsy. A program can determine at runtime which of the sev-
eral known derived types a base-class reference or pointer refers to. RTTI solves many
special programming problems that are easier to solve if the exact type of a generic
pointer is known. The RTTI mechanism consistsof three elements:

• A typeid() operator to identify the exact type of an object type given its pointer or
reference.

• A type_info class tofind out additional type information of an object type given
its pointer or reference.

• A dynamic_cast() operator to typecast a base-class pointer (reference) to its
derived-class pointer (reference).

The typeid() Operator
The typeid() operator is a built-in C++ operator. You can use it to obtain an object’s
information at runtime in two ways:

• If a typeid() operand is a dereferenced pointer or a reference to a polymorphic
type, typeid() returns the dynamic type of the actual object pointed or referred to.
If the operand is a pointer or a nonpolymorphic type, typeid() returns an object
that represents the static type. When typeid() fails to identify the type of its
operand, it throws a bad_typeid exception. This exception is thrown when
typeid() cannot dereference a pointer.

• The typeid() operator can find out whether two objects are of the same type. A
call to typeid() returns a reference to a const type_info . The returned object
represents additional type information of the typeid() operand. The returned
object isused in the type comparison.

The <typeinfo.h> header file contains the declarations and prototypes for the following
runtime-type information classes:

• type_info

• bad_typeid

Implementation Issues

PART II
382

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 382

The type_info Class
The type_info class provides runtime-type information about an object. Its exact defini-
tion is implementation dependent,but its declaration lookslike this:

class type_info
{
private:

// assigning type_info is not supported. made private.
type_info& operator= (const type_info&);
type_info (const type_info&);

protected:
type_info (const char *n): _name (n) { }

const char *_name;
public:

// destructor
virtual ~type_info ();

bool operator== (const type_info& arg) const;
bool operator!= (const type_info& arg) const;

const char* name () const
{ return _name; }

bool before (const type_info& arg) const;
};

The Constructor for the type_info Class
The type_info class does not provide public constructors. Hence, you cannot directly
instantiate type_info objects in a program. type_info references are generated by the
typeid() operator. For example, given an expression expr , the following call generates
const type_info& for expr :

typeid(expr)

Because the copy constructor and assignment operator for type_info are private to the
class,objects of this type cannot be copied.

The operator typeid() works like the sizeof() operator—it can either take an expres-
sion or a type itself. For example, given a type T and an object t of type T, the following
applications of typeid() are valid:

typeid(T);

typeid(t);

The Comparison Operators
The following member operator functions provide comparisons of type_info references:

Manipulating Objects Types at Runtime

CHAPTER 9
383

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 383

bool operator== (const type_info& arg) const;
bool operator!= (const type_info& arg) const;

To understand how typeid() and the class type_info are used, let’s develop an exam-
ple. Consider an example of the typical GUI hierarchy classes in which a class Window

serves as the base class of the entire GUI hierarchy. Assume that DialogBox is a derived
class that provides a function repaintControls() . The repaintControls() function is a
special service that is not provided by the base class. Hence, given a Window pointer at
runtime, it is necessary to find out whether the pointer actually points to a DialogBox

object. We can do this by applying the typeid() operator to a dereferenced Window

pointer to determine the type of the object to which the Window pointer is pointing.
Listing 9.1 shows the code for this example.

LISTING 9.1. USING THE COMPARISON OPERATOR OF THE CLASS TYPE_INFO

#include <iostream.h>
#include <typeinfo.h>

class Window //polymorphic class type.
{
public:

virtual void show() //to make Window polymorphic
{/*...*/}
//...

};
class DialogBox:public Window
{
public:

virtual void show()
{/*...*/}

virtual void repaintControls()
{

//…
}

};

void paint(Window* pw)
{

if (typeid(*pw)==typeid(DialogBox))
{

cout<<”DialogBox”<<endl;
DialogBox* pd=(DialogBox*)pw;
pd->repaintControls();

}
else
cout<<”Non-Dialog Object Type”<<endl;

}

Implementation Issues

PART II
384

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 384

int main()
{

paint(new Window);
paint(new DialogBox);
return 0;

}

The program produces the following output:

Non-Dialog Object Type
DialogBox

The resultant pointer of the expression new Window does not point to a DialogBox , so the
following comparison fails, and the program does not call a function unique to
DialogBox :

if (typeid(*pw)==typeid(DialogBox))
{

//…
}

Ideally, virtual functions are better choices for hierarchical types; the use of typeid() to
replace virtual functions is certainly not an effective mechanism. This point is discussed
later in this chapter.

Note that the program in Listing 9.1 uses this downcasting expression in the function
paint() :

DialogBox* pd=(DialogBox*)pw;

Such downcasting expressions are not considered good practice in C++. C++ provides a
better way to perform downcasting, as discussed later in this chapter in “The
dynamic_cast() Operator” section.

The name() Member Function
The member function name() returns a string that identifies the type name of the operand
to typeid . The output of typeid().name() is implementation dependent.

Listing 9.2 demonstrates the use of the name() function.

LISTING 9.2. THE NAME() FUNCTION

#include <typeinfo.h>
#include <iostream.h>

class Window //polymorphic class type

Manipulating Objects Types at Runtime

CHAPTER 9
385

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

continues

12 239-5 CH09 2/19/99 1:16 PM Page 385

{
public:
virtual void show() {};
//...
};

class Button : public Window
{/*...*/};

int f()
{
Button b;
Button* pb;
pb=&b;

if (typeid(*pb)==typeid(Button))
cout<<”Name is “ <<typeid(*pb).name()<<endl;

if (typeid(*pb)!=typeid(Window))
cout<<typeid(*pb).name()<<” is not same as “<<typeid(Window).name()<<endl;

typedef int (*PF)();

PF pf=f;

cout<<”Type of PF=”<<typeid(PF).name()<<endl;
cout<<”Type of pf=”<<typeid(pf).name()<<endl;

int v;
int& rv=v;

cout<<”Type of v=”<<typeid(v).name()<<endl;
cout<<”Type of rv=”<<typeid(rv).name()<<endl;

cout<<”Type of result of typeid()=”<<
typeid(typeid(rv)).name()<<endl;

return 0;
}
int main()
{

f();
}

When I ran this program on Microsoft Visual C++ 5,it produced the following output:

Name is class Button
class Button is not same as class Window
Type of PF=int (__cdecl*)(void)

Implementation Issues

PART II
386

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

LISTING 9.2. CONTINUED

12 239-5 CH09 2/19/99 1:16 PM Page 386

Type of pf=int (__cdecl*)(void)
Type of v=int
Type of rv=int
Type of result of typeid()=class type_info

Apart from showing the use of name() , this program also shows the use of the compari-
son operators to compare the types of two objects (*pb and Button). Here is another way
the comparison could have beenmade:

if (!strcmp(typeid(*pb).name(),”class Button”))
//...

However, this approach may not work on all compilers because the output of
typeid().name() is implementation dependent. When this example was compiled on a
GNU C++ compiler, it produced the following output:

Name is 6Button
6Button is not same as 6Window
Type of PF=PFv_i
Type of pf=PFv_i
Type of v=i
Type of rv=i
Type of result of typeid()=19__builtin_type_info

As mentioned earlier, typeid() provides runtime type information only if the typeid()

operand is a dereferenced pointerto a polymorphic type. Here is an example:

#include <iostream.h>
#include <typeinfo.h>

class Window
{
public:
virtual void show() //to make base polymorphic
{

return;
}
};

class DialogBox:public Window
{
public:
};

Window* f()
{

cout<<”in f()”<<endl;
return (new DialogBox);

}

int main()

Manipulating Objects Types at Runtime

CHAPTER 9
387

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 387

{
cout<<typeid(f()).name()<<endl;
cout<<typeid(*f()).name()<<endl;
return 0;

}

This example produces the following output in Visual C++ 5:

class Window *
in f()
class DialogBox

Notice the output produced by this statement:

cout<<typeid(f()).name()<<endl;

This statement produces the static type information about the pointer that is returned by
f() because the output of f() is not dereferenced here. As a result,the function f() does
not run.

Now notice the output from this statement:

cout<<typeid(*f()).name()<<endl;

This statement produces the dynamic type information about the returned pointer f()
because of dereferencing; it also runs the function f() . The function f() must run,or the
dynamic type of the returned value from f() cannot be determined.

The before() Member Function
The member function before() is used to compare thecollation order (not to be con-
fused with the declaration order or the hierarchical order) of types. The output of the
function is implementation dependent. Listing 9.3 uses the before() function.

LISTING 9.3. THE BEFORE() MEMBER FUNCTION

#include <iostream.h>
#include <typeinfo.h>
class Window //polymorphic class type
{
public:
virtual void show(){};
//...
};
class DialogBox:public Window
{
public:
virtual void show(){};
//...
};

Implementation Issues

PART II
388

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 388

template <class T,class U>
void f(T t,U u)
{
cout<<typeid(t).name()<<” before “<<
typeid(u).name()<<” : “<<
typeid(t).before(typeid(u))<<endl;
return;
}

void g(const Window& w1,const Window& w2)
{
cout<<typeid(w1).name()<<” before “<<
typeid(w2).name()<<” : “<<
typeid(w1).before(typeid(w2))<<endl;
return;
}

int main()
{
int i;
double d;
char* pc=”C++”;
f(d,i); //performed at compile-time
f(pc[0],pc); //performed at compile-time
Window* pw=new Window;
Window* pd=new DialogBox;
g(*pw,*pd); //performed at run-time
return 0;
}

This example produced the following output in Visual C++ 5:

double before int : 1
char before char * : 1
Window before DialogBox : 0

Although the identifier i is declared before the identifier d, and the class Window appears
before the class DialogBox in the class hierarchy, the output of before() is different
because this is how the implementation of Visual C++ 5 has defined the collation order
of types. The before() function may not be very useful in day-to-day programming or
the development of banking applications. However, it canbe used as a comparison mech-
anism to define a map or hash table of types.

The typeid() Operator in Constructors and
Destructors
You can invoke the typeid() operator during the construction or destructionof an
object. If the operand of typeid() refers to the object under construction or destruction,

Manipulating Objects Types at Runtime

CHAPTER 9
389

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 389

typeid() always yields the type_info that represents the class of the constructor or
destructor. Consider this example:

#include <iostream.h>
#include <typeinfo.h>

class Window
{
public:
Window()
{
cout<<typeid(*this).name()<<endl; //always yields Window
}
virtual void f()
{
cout<<typeid(*this).name()<<endl; //yields Window or

//DialogBox
}
};

class DialogBox : public Window
{
public:
DialogBox(){}
};

int main()
{
DialogBox d;
d.f();
}

This code producesthe following output in Visual C++ 5:

class Window
class DialogBox

Here, the function f() yields the dynamic type of the this pointer, whereas the construc-
tor Window() yields the static type of the this pointer.

Misuses of typeid()
Although the typeid() operator is a useful feature, you should use it only when neces-
sary. You should use compile-time–type checking when runtime-type checking is not
really necessary because compile-time–type checking is more efficient. For example,
when you are not dealing with polymorphic types,the application of typeid() is
absolutely not required. Also, just because the language provides this feature, don’t start
overusing this feature to solve design problems related to virtual functions.

Implementation Issues

PART II
390

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 390

Listing 9.4 shows an example of one misuse of typeid() . The example shows how
to implementvirtual functions using typeid() ; then we’ll discuss why this is not a
good design.

LISTING 9.4. MISUSING THE TYPEID() OPERATOR

#include <iostream.h>
#include <typeinfo.h>

class Window
{
public:
Window(){};
virtual ~Window(){};

void show(){}; //non-virtual
//...
};

class DialogBox:public Window
{
public:
DialogBox(){};
~DialogBox(){};

void show(){};
//...
};

void f(Window& w)
{
typedef DialogBox& RDIALOG;
if (typeid(w)==typeid(Window))
w.show();
else
if (typeid(w)==typeid(DialogBox))
RDIALOG(w).show();
}

int main()
{
Window* pw=new Window;
Window* pd=new DialogBox;

f(*pw); //invokes Window::show()
f(*pd); //invokes DialogBox::show()

delete pw;
delete pd;

return 0;
}

Manipulating Objects Types at Runtime

CHAPTER 9
391

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 391

Listing 9.4 makes the function show() a virtual function through the use of typeid() .
The global function f() takes a reference to the base type Window. At runtime, the refer-
ence w can refer to either a Window object or a DialogBox object. Within the function f() ,
the actual type of w is explicitly determined using the typeid() operator and then the
correct function show() is invoked. Although this code works, it is against the very basic
objective of object-oriented programming:that a message can be dispatched to whatever
instance happens to be pointed at by a reference (or pointer). In true object-oriented pro-
gramming, you do not have to resolve the type of an instance that is referred to by a ref-
erence (or a pointer). Another problem with this approach is that, as you add new classes
in the Window hierarchy, the function f() starts growing—it not only introduces many
maintenance problems,it also makes the program very difficult to understand.

Dynamic Typecasting of Objects
Nearly all safe typeconversions are implicit in C++,and no explicit cast has to be writ-
ten. However, you sometimes have to convert a value from one type to another; you may
have to do this when the compiler will not do it automatically because you are doing
something potentially dangerous or nonportable. Type conversions that you specify are
referred to as castsor typecasts. One example of an unsafe type conversion is the type-
casting of a base object’s pointer to a derived pointer. Such a cast is unsafe and unpre-
dictable. Using such a pointer to invoke derived class methods produces catastrophic
results at runtime if the base pointer is actually not pointing to a derived object.
Therefore, C++ has a requirement for a mechanism that can perform runtime-type con-
versions between objects.

The dynamic_cast() Operator
C++ provides a specialoperator, dynamic_cast() , which is intended to remove some of
the problems and dangers inherent in typecasting between objects in a class hierarchy.
This operator navigates in a class hierarchy at runtime and can be safely used when other
kinds of typecasting are not appropriate. The dynamic_cast() operator provides a way to
determine at runtime whether a base-class reference (or pointer) refers to an object of a
specified derived class. It can be applied only when the base class is polymorphic (that
is, the base class must containat least one virtual function).

The dynamic_cast() operator uses the following syntax:

dynamic_cast <Type>(Object)

The Type argument is the type being cast to; the Object argument is the object beingcast
from.

Implementation Issues

PART II
392

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 392

Type must be a pointer or a reference to a defined class type. The argument Object must
be an expression that resolves to a pointer or reference. If successful,dynamic_cast()

converts Object to the desired type. If a pointer cast fails, the returned pointer is valued
0. If a reference cast fails, the bad_cast exception is thrown. Because it can throw an
exception, the dynamic_cast() operator is much safer than the traditional cast; when a
normal cast fails, it gives no indication of a failure—until, of course, you run your pro-
gram and it manifests many faults.

The use of the operator dynamic_cast() is also calleda type-safe downcast.

The conversion from a derived class pointer or reference to a base-class pointer or refer-
ence is resolved at compile time and results in a pointer or reference to the subobject of
the base class. Such a conversion is called an upcast.

Listing 9.5 shows an example of applications that use dynamic_cast() to perform a
downcast. The listing also shows a cross-hierarchical typecast using dynamic_cast() .

LISTING 9.5. A TYPE-SAFE DOWNCAST USING DYNAMIC_CAST()

#include <typeinfo.h>
#include <iostream.h>

class Control //polymorphic class type.
{
public:
virtual void show() {};
//...
};

class Picture
{/*...*/};

class BitMap:public Control, public Picture
{/*...*/};

int f()
{
try
{
Control* pc=new BitMap;

//attempt downcasting
BitMap& rb=dynamic_cast<BitMap&>(*pc);
cout<< “The resulting reference’s type:”<<typeid(rb).name()<<endl;

//attempt across-hierarchy casting
Picture& rp=dynamic_cast<Picture&>(*pc);

Manipulating Objects Types at Runtime

CHAPTER 9
393

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

continues

12 239-5 CH09 2/19/99 1:16 PM Page 393

cout<< “The resulting pointer’s type:”<<typeid(rp).name()<<endl;
}

catch (const bad_cast&)
{
cout<<”dynamic_cast() failed”<<endl;
return 1;
}
return 0;
}

int main()
{

f();
}

This program produces the following output in Visual C++ 5:

The resulting reference’s type:class BitMap
The resulting pointer’s type:class Picture

Here, pc pointer does,in fact,point to an object of type BitMap , and so the conversion
from *pc to BitMap& is successful. The resultant reference rb refers to a complete object
of type BitMap . Similarly, the conversion from *pc to Picture& is safe because Picture

is a base class of BitMap . The resultant reference rp refers to a subobjectof type
Picture .

Using dynamic_cast()

With the dynamic_cast() operator, a program can determine at runtime which of the
several known derived types a base-class reference or pointer refers to. This feature is
very often used to make some runtime decisions during program execution. This feature
can also be used to implement virtual functions in a hierarchy. For example, in a Window

hierarchy, it is quite possible that a derived DialogBox object has the unique requirement
of repainting its controls. Such a requirement is not shared by all derived Window objects.
Therefore, it seems to be a good idea to avoid the virtual function repaintControls() in
the base Window class. Instead, by applying dynamic_cast() , a Window pointer can be
cast to a DialogBox pointer, and the function repaintControls() can be invoked. If the
object is not a DialogBox or of a class derived from DialogBox , the cast returns a 0
value, and the program can decide not to call the function repaintControls() .

Listing 9.6 shows an example of how the dynamic_cast() operator can determine at run-
time which of the several known derived types a base-class reference or pointer refers to.

Implementation Issues

PART II
394

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

LISTING 9.5. CONTINUED

12 239-5 CH09 2/19/99 1:16 PM Page 394

LISTING 9.6. USING DYNAMIC_CAST() TO DETERMINE THE ACTUAL TYPE OF A BASE-CLASS

POINTER

#include <iostream.h>
#include <typeinfo.h>

class Window //polymorphic class type.
{
public:
virtual void show()
{/*...*/}
//...
};

class DialogBox:public Window
{
public:
virtual void repaintControls()
{
cout<<typeid(*this).name()<<endl;
}
};

class PrintDialog:public DialogBox
{/*...*/};

void f(Window* pw)
{
DialogBox* pd=dynamic_cast<DialogBox*>(pw);

if (pd)
pd->repaintControls();
else
cout<<”unwanted object type”<<endl;
}

int main()
{

f(new Window);
f(new DialogBox);
f(new PrintDialog);

return 0;
}

This program produces the following output:

unwanted object type
DialogBox
PrintDialog

Manipulating Objects Types at Runtime

CHAPTER 9
395

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 395

In this example, the function f() is invoked three times. In the first invocation, the point-
er pw points to an object of type Window. In this case, because pw does not actually point
to a DialogBox or a class derived from DialogBox , dynamic_cast() fails and returns 0.
In the second and the third invocations of f() , however, pw actually points to a
DialogBox and a PrintDialog (respectively). In these cases,dynamic_cast() succeeds,
and the program invokes the virtual function repaintControls() .

Using dynamic_cast() with Virtual Base Classes
An object of avirtual base class cannot be converted into its derived class object—if you
try to do this,you get a compile-time error because the compiler does not have all the
necessary information to perform the conversion. The dynamic_cast() operator, howev-
er, solves this problem because it performs the conversion at runtime. Consider this
example:

class Control //polymorphic class type.
{
virtual void show();
//...
};
class BitMap:public virtual Control
{/*...*/};
int main()
{
Control* pc=new BitMap;
BitMap* pb1=(BitMap*)pc; //error
BitMap* pb2=dynamic_cast<BitMap*>(pc); //ok
//...
}

In this example, dynamic_cast() is applied on the Control pointer pc to typecast it to
the BitMap pointer. Of course, this works only if an unambiguous conversion exists from
Control to BitMap .

The following statement fails to compile because Control is a virtual base class of the
class BitMap :

BitMap* pb1=(BitMap*)pc; //error

Using dynamic_cast() in Constructors and Destructors
The dynamic_cast() operator can be used during construction or destruction. If the
operand of the dynamic_cast() is the object under construction or destruction,
dynamic_cast() cannot perform downcasting. Listing 9.7 shows an example of using
dynamic_cast() in a constructor.

Implementation Issues

PART II
396

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 396

LISTING 9.7. USING DYNAMIC_CAST() IN A CONSTRUCTOR

#include <iostream.h>
#include <typeinfo.h>

class base
{
public:

base();
virtual void f();

};

class derived : public base
{
public:

derived(){}
};

base::base()
{

try
{

dynamic_cast<derived&>(*this); //fails
}
catch(const bad_cast&)
{

cout<<”bad_cast in base::base()”<<endl;
}

}

void base::f()
{

try
{

dynamic_cast<derived&>(*this);
cout<<”successful dynamic_cast in base::f()”<<endl;

}
catch(const bad_cast&)
{

cout<<”bad_cast in base::f()”<<endl;
}

}

int main()
{

derived d;
d.f();

}

This program produces the following output:

Manipulating Objects Types at Runtime

CHAPTER 9
397

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 397

bad_cast in base::base()
successful dynamic_cast in base::f()

During the construction of the object d in main() , the base subobject is first constructed
using the default constructor base::base() . Therefore, during the construction of base ,
the information about the derived object is not available within base::base() at runtime.
As a result,the call dynamic_cast() fails in the constructor. On the other hand, within
the function base::f() , the dynamic_cast() call succeeds because the derived object d
is completely constructedat that point.

The typeid() Versus the dynamic_cast
Operator
The dynamic_cast() and typeid() operators are quite similar and are used in many
similar situations. Together, they provide runtime object manipulation. Still, they have a
few differences:

• The dynamic_cast() operator does not work with nonclass types; typeid() does
work with nonclass types.

• To use the dynamic_cast() operator, the specified class must be polymorphic—
that is, it must have at least one virtual member function. With the typeid() opera-
tor, the operand does not have to be a polymorphic type.

• The typeid() operator can only tell you the type of an object. The
dynamic_cast() operator can tell you that an object is of a specified class or of a
class derived from the specified class.

Other Cast Operators
The following sections describe three typecast operators that make no runtime check and
are not restricted to base and derived classes in the same polymorphic class hierarchy.
Although the focus of this chapter is the runtime manipulation of objects,the following dis-
cussion is important if you are to have a complete view of typecasting operators in C++.

The static_cast() Operator
The static_cast() operator is used for user-defined, standard, or implicit type conver-
sions. Unlike dynamic_cast() , the static_cast() operator is used in the context of the
compile-time type of an object. Its syntax is similar to that of dynamic_cast :

static_cast<Type>(Object);

Implementation Issues

PART II
398

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 398

In this expression,both Type and Object must be fully known at compile time. If a type
can be converted to another type by some conversion method already provided by the
language, making such a conversion by using static_cast() achieves exactly the same
thing.

Here is a self-explanatory example:

void f()
{

char ch;
int i=8;
float f=8.16;
double d;
ch=static_cast<char>(i); //int to char
d=static_cast<double>(f); /float to double
i=static_cast<unsigned char>(ch); //char to unsigned char
return;

}

Here is another example that uses classes instead of C++ built-in types:

class Base1
{/*...*/};
class Base2
{/*...*/};
class DerivedClass:public Base1, public Base2
{/*...*/};
int h()
{

Base1* pb1=new DerivedClass;
DerivedClass* pd=static_cast<DerivedClass*>(pb1);
if (pd)
{

cout <<”The resulting pointer’s type:[“<<
typeid(pd).name()<<”]”endl;

}
return 0;

}

The preceding example produces this output:

The resulting pointer’s type:[DerivedClass *]

Please note these four important points about the previous example:

• Because the pb1 pointer actually points to an object of type DerivedClass , the cast
works correctly.

• Because the base class Base1 is not a virtual base class for DerivedClass , the
operator static_cast() is successfully applied.

Manipulating Objects Types at Runtime

CHAPTER 9
399

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 399

• Because the base class Base1 is not a polymorphic base class,the operator
static_cast() can be safely applied.

• Unambiguous conversionexists from Base1 to DerivedClass .

The reinterpret_cast() Operator
The reinterpret_cast() operator provides an alternative to nonportable and potentially
unsafe uses of the old-style casts. The operator provides a conversion between pointers to
other pointer types and numbers to pointers and vice versa. Here is its syntax:

reinterpret_cast<Type>(Object);

In this expression,Type can be a pointer, reference, arithmetic type, pointer to function,
or pointer to member. The operator reinterpret_cast() works if an implicit conversion
from Object to Type exists; otherwise, it generates a compile-time error. The operator
does not change the scattered-bit pattern at the machine level. It may stretch out or trun-
cate the size of the pattern, and of course, the meaning will change. The result of
reinterpret_cast () is unpredictable, and it is often implementation dependent. For
example, using reinterpret_cast() , a pointer can be explicitly converted to any
integral type large enough to hold it. The mapping function is implementation defined.
You should know what you are doing when you use reinterpret_cast() —just as you
should when you use old-style casts.

The following exampleexplains how to use the reinterpret_cast() operator:

#include <iostream.h>

void func(void* pv)
{

//cast back from pointer type to integral type
int value3=reinterpret_cast<int>(pv); //works well
cout<<”Value of value3:”<<value3<<endl;
//...

}
int main()
{

//cast from an integral type to pointer type

int value1=8;
double value2=13.169;

func(reinterpret_cast<void*>(value1));
func(reinterpret_cast<void*>(&value2));

}

Implementation Issues

PART II
400

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 400

When compiled using Visual C++ 5,this program produces the following results:

Value of value3:8
Value of value3:1245044

In the previous example, to use the converted value (value1), you must first convert it
back to the original type (int) in the function func() . The second line of the output
shows the unpredictable result as aresult of invoking reinterpret_cast() .

When to Use the dynamic_cast() ,
static_cast() , or reinterpret_cast()
Operator
When castingbetween polymorphic classes of the same hierarchy, always use the
dynamic_cast() operator.

In other cases,you must use static_cast() or reinterpret_cast() . As long as the
compiler does not give any error, use static_cast() ; otherwise, it may be necessary to
apply reinterpret_cast() to change the bit interpretation. Do not overuse
reinterpret_cast() and static_cast() —use them only when you really need them.
Remember:Simply because these operations are supported by your C++ compiler does
not mean that their applicationswill always produce safe and predictable results.

The const_cast() Operator
The three cast operators discussed in the previous sections maintain and respect the
const -ness of the object being converted to. In other words,these operators are not
intended for casting away the const -ness of an object. The const_cast() operator is
used to add or remove the const (and volatile) modifier from a type. Here is the syntax
of the const_cast() operator:

const_cast<Type>(Object);

In this expression,Type and Object must be of the same type except for their const and
volatile modifiers. The cast is resolved at compile time. The result is of type Type .

A pointer (or reference) to const can be converted to a non-const pointer (or reference)
using const_cast() . If the operation is successful,the resulting pointer refers to a non-
const object that is identical to the operand in all other respects. The const_cast()

operator performs similar typecasts on the volatile modifier: It casts a pointer (or refer-
ence) to a volatile object into a non-volatile object without otherwise changing the
type of the object. Listing 9.8 shows an example of this.

Manipulating Objects Types at Runtime

CHAPTER 9
401

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 401

LISTING 9.8. CASTING AWAY THE CONST-NESS OF AN OBJECT USING CONST_CAST()

#include <iostream.h>
#include <typeinfo.h>

class myClass
{
public:
myClass(int v):_val(v),_count(0){};
~myClass()
{
cout<<”_val=”<<_val<<endl;
cout<<”_count=”<<_count<<endl;
}
void f() const;
private:
int _val,_count;
};
void myClass::f() const
{
//_count++; //error: hence commented
const_cast<myClass*>(this)->_count++; //ok
}
int main()
{
myClass m(8);
m.f();
m.f();
m.f();
return 0;
}

This code produces the following output:

_val=8
_count=3

Remember that when a member function is declared as const , the compiler flags as an
error any attempt to change data in the parent object from within that function. Hence,
within the member function f() , you cannot directly modify the member count . In the
example, within this function,the operator const_cast() was applied on the const

object this to cast it to a non-const object of the same type (myType*). It allowed the
const function f() to modify the data member _count * .

New Versus Old Typecasting
Certainly, the new typecast operators—dynamic_cast() , static_cast() ,
reinterpret_cast() , and const_cast() —need more text to write and read, but this was

* Such a thing is also possible using the mutable keyword with _count .

Implementation Issues

PART II
402

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 402

intentional. You must replace the old-style C++ typecasts with the new operators. Recall
that C++ provides two types of old-style typecasts:

(Type)expression; //C style of type-cast
Type(expression); //functional notation type-cast

Although C++ still supports (and will continue to support) the old-style casts,you are
encouraged to use typecast operators in your new programs. It is easy to make a mistake
in an old-style cast—such as accidentally casting away const , or casting to an unrelated
pointer type instead of within a hierarchy. Furthermore, an old-style cast may originally
work but may become faulty (but still compile without error) when types are modified.
The compiler won’t help you find these errors. And old-style typecasts are painful to
review and locate in a program. Here is an example to show why new-style casts are bet-
ter and safer than the old-style casts:

class A
{};

class B
{
public:

virtual void f(){}
};

class C : private B
{};

int main()
{

A* pa=new A;

B* pb1=(B*)pa; //no compile-time error
B* pb2=static_cast<B*>(pa); //compile-time error

C* pc=new C;

B* pb3=(B*)pc; //no compile-time error

B& pb4=dynamic_cast<B&>(*pc); //compile-time error
}

In this example, the following statement will successfully compile, even though it has a
typecast from class A to an unrelated class B:

B* pb1=(B*)pa; //no compile-time error

Such a typecast can be really unsafe at runtime. Such a mistake is also not easy to spot
when you read the code.

Manipulating Objects Types at Runtime

CHAPTER 9
403

9

M
A

N
IPU

LA
TIN

G
O

B
JEC

T
T

Y
PES

A
T

R
U

N
TIM

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 403

Similarly, this line does not fail even though the program is trying to gain access to the
private base B of the class C:

B* pb3=(B*)pc; //no compile-time error

As you can see, such wrong casts are caught at compile time when you apply the new-
style typecast operators.

Summary
The implicit application of upcasting a derived pointer to a base class is one of the most-
used features of C++. However, you may sometimes find yourself in a situation in which
you feel that you could have written an effective program if (at runtime) you knew the
exact type of the object pointed to by the base pointer. RTTI provides this information.
RTTI has proved to be a very favorable feature for many programmers. In fact,most of
the commercial libraries have implemented some form of virtual function-based RTTI.
Although RTTI is a big utility, it can be easily misused by both novice and expert pro-
grammers. Replacing virtual functions with either the typeid() or dynamic_cast()

operator is one of the most general and fashionable misuses of RTTI. Like most features
in C++,RTTI does not have any mechanism to safeguard itself from misuse, and if you
want to determinedly misuse it,you can.

Implementation Issues

PART II
404

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH09 Lp#1

12 239-5 CH09 2/19/99 1:16 PM Page 404

IN THIS CHAPTER

• Inline Functions Outside Class
Definitions 406

• Avoid Revealing Implementation Code
in Distributed Header Files 412

• Analyzing the Cost of Virtual Functions
and Virtual Base Classes 413

• RTTI Trade-Offs 422

• Managing Memory for Temporary
Objects 425

10
C

H
A

PT
ER

Tuning Application
Performance

13 239-5 CH10 2/19/99 1:17 PM Page 405

There is a difference of opinion among developers concerning application tuning. Some
believe that tuning is not necessary given the power of today’s machines. This group also
believes that the compiler should be performing all obvious optimizations. The rest of us
believe in designing for performance. When we implement a design,we choose optimal
algorithms and use the performance features of the language because we can’t predict the
configuration of all our potential users and because the compiler can’t always know
when it’s appropriate to optimize.

This chapter discusses inline functions,implementation code in header files, virtual func-
tions and virtual base classes,runtime type information, and temporary objects. The
chapter especially focuses on the runtime cost associated with each of these elements.

Inline Functions Outside Class
Definitions
The inline keyword suggests that the compiler should expand a function body whenever
it encounters a call to that function. This expansion reduces the overhead of a function
call because there is no call to a function. Notice that I say “suggests”; it may not be fea-
sible or practical for the compiler to inline a function. I discuss some of the reasons why
a compiler might not inline a function later in this chapter.

Accepted style dictates that you should provide inline member function definitions out-
side the class declaration. Doing so keeps the class declaration uncluttered and easier to
read. It is not necessary to apply the inline keyword to the member function’s declara-
tion; however, be sure to apply the keyword to the member function’s definition. Thefol-
lowing code snippet demonstrates the style:

class Object {
public:

inline void f() ; // not in the class declaration!
} ;

This example brings up a point concerning the placement of inline member function defi-
nitions. Where do you put them? Well, a compiler can inline a function only if it has seen
its definition. The most logical place to put the definition is within the header file that
contains the class definition. I put inline function definitions in (separate) inline header
files. They are not actually header files per se; they are really implementation files given
a .cpp , .icc , or .i extension. You can use any extension you want; just be sure that you
use a standard extension name. These inline header files are then included at the end of
the header file containing the class declaration. This is good style; following this practice
separates interface from implementation. Doing so also eases maintenance. If you choose

Implementation Issues

PART II
406

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 406

not to use inline header files,put the inline member functions after the class declaration.
Again, this approach provides a clean separation of the class declaration from its imple-
mentation. A simple example follows:

// in file: Object.h
class Object {

public:
void f() ;

} ;
...
#include “object.i”

// in file: Object.i
inline void Object::f()
{

....
}

To expand on this example, I also use macros to turn inlining on and off. In my header
file, I insert the following:

// in file: Object.h
class Object {

public:
void f() ;

} ;
...
#ifdef DO_INLINE
#include “object.i”
#endif

Then all I have to do is throw a -d DO_INLINE switch to my compiler to get the features
of the inline functions. Of course, the drawback is that I have to recompile all the code
that needs the inline member functions. Unfortunately, there is no way around a recom-
pile. If you build your application with inlining enabled and later decide to remove inlin-
ing (or vice versa),you have to recompile.

Developers have told me that inlining is just a fancy method of macro substitution. This
is incorrect because an inline function follows the same rules concerning scope and type
checking that noninline functions follow. Be aware that inline functions have internal
linkage wherever the function call occurs.

There are some disadvantages to inlining. First of all, inlining may increase the size of an
application. If the compiler decides to inline a function,the function body is expanded
wherever the function is called. If the function is called 200 times,there are 200 occur-
rences of the function’s body scattered throughout the application. This may actually
cause your program to run slower than if you hadnot inlined the function.

Tuning Application Performance

CHAPTER 10
407

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 407

Another drawback concerns application maintenance. Whenever the body of a function is
modified, any translation units that call the function must be recompiled.

How do you decide whether a function should be inlined? Here are some general rules of
thumb:

• When the function body is small.

• When the function is called numerous times.

• When the performance cost of the statements within the function’s body
is minimal.

You might argue the second bulleted point; I can empathize with you. In some instances,
a compiler will inline a function that has a large body of code. If this function is called
many times,your program may become rather bloated. In this scenario, the rule of thumb
does not apply. So why did I include this bulleted point? As explained later in this chap-
ter, it is possible that the total amount of inline code will be less than the amount of code
for a function call. If you are unsure whether an inline function contributes to code bloat,
see the following Note.

Implementation Issues

PART II
408

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

NOTE

To determine the effect of the resultant code size, build your application with
inline functions enabled. Record the size of the application. Then rebuild the
application with inline functions disabled. Compare the results to determine the
effect of inlining.

Accessor and mutator member functions are prime candidates for inlining: they are
small,normally called numerous times within an application’s run,and consist of one to
two simple statements. An accessoris used to return the value of an internal attribute
within a class; these attributes should be declared with private visibility. A mutator func-
tion is used to set a value (passed as an argument) for a specific attribute within a class,
as shown in the following code:

long Object::getID() const // accessor
{

return(idNumber) ;
}
void Object::setID(const long valueIn) // mutator
{

idNumber = valueIn ;
}

To inline these member functions,you specify theinline keyword:

13 239-5 CH10 2/19/99 1:17 PM Page 408

inline long Object::getID() const
{

return(idNumber) ;
}
inline void Object::setID(const long valueIn)
{

idNumber = valueIn ;
}

Some functions,when inlined, may produce less code. To call a function,the compiler
must produce code to prepare for the function call,set up the stack frame, make the call
to the function,perform stack cleanup,and then return. For functions that implement
simple functionality, such as returning the value of a variable, the actual function code
can be considerably less than the code required to call the function.

When the inline keyword is applied to the member function’s declaration, it is only an
announcement to the compiler. If a body does not exist for the function,the compiler
cannot determine whether the member function can be inlined. So applying the inline

keyword to the declaration is useless information to the compiler. Also, applying the
inline keyword to the declaration implies a specific implementation to users of the
class. Again, the inline keyword should be applied only to the member function’s defin-
ition. The following example shows that you should not apply the inline keyword to the
declaration but to the definition.

// object.h
class Object {

public: // compiler doesn’t know what to do yet.
inline void setID(const long valueIn) ;

} ;

Apply the inline keyword to the definition; now the compiler can see the body and
decide whether to inline or not. And if the compiler does decide to inline, it now has the
function body to use for insertion:

inline void setID(const long valueIn)
{

idNumber = valueIn ;
}

Defining a member function at its declaration implies inlining. The inline keyword is
not required when you are defining a member function within a class.

Tuning Application Performance

CHAPTER 10
409

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

NOTE

Do not define a member function within the class declaration. Doing so clutters
the class and makes maintenance more difficult.

13 239-5 CH10 2/19/99 1:17 PM Page 409

The following example demonstrates how a class might appear if you were to define the
member functions within the class declaration. Just imagine that you have been elected
to maintain this source code! The following is the example:

// object.h
class Object {

public:
Object() :

idNumber(0L),
name(new char[100] ;
{ /* empty */ }

Object(const Object &rhs) :
IdNumber(0L),
name(new char[strlen(rhs.name)+1])
{

strcpy(name, rhs.name) ;
} const Object& operator=(const Object &rhs)
{ if(this != &rhs)

{
delete [] name ;
name = new char[strlen(rhs.name)+1] ;
strcpy(name, rhs.name) ;
id = rhs.id ;

}
return *this ;

}
~Object()
{ if(name)

delete [] name ;
}

void setID(const long valIn)
{idNumber = valueIn;};

long Object::getID() const
{ return(idNumber) ; };

long Object::name(const char *name)
{ if(this.name)

delete [] this.name ;
this.name = new char[strlen(name)+1];
strcpy(this.name, name };

}
long Object::name() const

{ return(idNumber) ; };
private:

long idNumber;
char *name ;

} ;

I mentioned earlier that a compiler might not honor the inline hint. The reasons a com-
piler would not inline a function are not always clear cut. Here are a number of situations
in which a compiler will not honor the inline request:

Implementation Issues

PART II
410

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 410

• Functions that contain looping constructs such as for , while , and do...while .

• Functions that are recursive.

• If the compiler has not yet seen the function’s definition.

• If the compiler hasdeemed the function too complex.

A note concerning the last item:Each compiler vendor implements complexity measure-
ments in different ways, so it’s difficult to know when a compiler will decide when a
function is too complex to inline. In addition, it is in bad taste to inline virtual member
functions because virtual functions are dynamically bound. In other words,their address-
es must be known. There are also vendor-specific reasons not to inline; refer to your ven-
dor’s compiler documentation.

You should be aware of an interesting side effect of inlining. Suppose that you have a
member function that the compiler has decided not to inline because of its size. Some
compilers can create an outline inline function. These are also referred to as static inline
functions. What in the world are these, you ask? Well, in every file that has a call to the
function,the compiler creates the function’s body with static linkage. This produces a
version of the function in every translation unit. Be careful—your executable could, and
probably will, become painfully large if the compiler chooses to outline inline. The situa-
tion can really become unbearable if the compiler decides to outline inline more than one
function! Unfortunately, there is no rule of thumb to determine whether a member func-
tion is too large to inline; the compiler makesthis decision.

Tuning Application Performance

CHAPTER 10
411

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

NOTE

If you suspect that a function to be inlined is too large, check to see what the
compiler is producing. Isolate the function in a separate file, if possible, and
check the assembly code the compiler creates. By examining the assembly code,
you can discover whether or not the compiler has inlined the function. If exam-
ining the assembly code is not possible, build the application with the function
inlined. Then create a version of the application that does not inline the func-
tion and compare the sizes of the resultant applications.

HOW ABOUT USING MACROS INSTEAD OF INLINING?

Macros have disadvantages. One thing to note about macros is that they per-
form text substitution and nothing more. A macro does not evaluate the

continues

13 239-5 CH10 2/19/99 1:17 PM Page 411

Avoid Revealing Implementation
Code in Distributed Header Files
One of the basic }philosophies concerning (proper) object-oriented programming is hid-
ing the implementation. You should never reveal how you implement the functionality of
your classes. Class declarations should only reside within header files,not implementa-
tion files. Class declarations should reveal only member function declarations. You
should hide the definition of your member functions in implementation files (.cpp , .cxx ,
or whatever extension is required); you should never expose implementation code in your
header files.

Another reason you should not implement code in header files relates to code mainte-
nance. It is much more difficult to maintain application source code when some of the
code is found in header files. This problem is compounded when multiple developers are
working on an application. Some developers may implement code in header files at every

Implementation Issues

PART II
412

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

arguments provided to it; the arguments are merely “plugged in” at the point
of insertion. More important, macros are not type safe and can be invisible
within a debugger. Consider this example:
#define DOUBLE_IT(a) (a * a)

//If we do this:

int i = 5 ;

int j = DOUBLE_IT(i) ;

//the preprocessor will expand it to this:

int j = (5 * 5);

No surprises here. Now, consider this example:
int j = DOUBLE_IT(10 + 10) ;

//the preprocessor will expand the macro to this:

int j = (10+10 * 10+10) ;

This is not what we want. Here’s another statement that can provide interest-
ing results:

int j = DOUBLE_IT(++i) ;

This statement expands into this:

int j = (++i * ++i) ;

Again, this is not what we want. If we use an inline function in these two situa-
tions, the results would have been what we expected.

Use macros only for simple substitution. Better yet, use const instead of
#define .

13 239-5 CH10 2/19/99 1:17 PM Page 412

opportunity, other developers may never put code in header files,and others may do it
“when it feels right.” Hopefully, your team has a codingstandards document to prevent
this type of inconsistency. If you don’t have one, you and your team members should sit
down and draft one.

Tuning Application Performance

CHAPTER 10
413

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

NOTE

Never reveal implementation code in distributed header files.

Implementation code}in header files can introduce a performance penalty. If you put
implementation code in header files, you will experience extended compile times and
may discover that multiple versions of classes and functions exist across multiple transla-
tion units. Keeping the implementation separate from the interface allows you to change
the implementation without having to recompile the whole system.

Avoid declaring static variables and composite types in header files. If you have a header
file that declares some integer as static, then any translation unit that includes that header
file will contain its own copy of that int . If there are many translation units and many
static variable definitions within a header file, the size of your application can grow larg-
er than you anticipate. The linker, of course, allows this to happen because the definitions
are unique to each translation unit. If you removed the static keyword from those same
data definitions, you would receive errors for} multiply defined variables.

In the previous paragraph, I use the term static variables. In C++,there are static global
(or external) variables and static class members. A static global variable is declared out-
side any class or function and has visibility to all functions from its definition within the
translation unit. A static class memberis a member of a class that has static linkage.
There exists only one copy of a static class member for all instances of a class. All
instances of the class share this single static copy. This is in contrast to aclass instance
member; there exists an instance member for every instance of aclass.

Analyzing the Cost of Virtual
Functions and Virtual Base Classes
I get into many discussions concerning the “cost” of virtual functions and virtual base
classes. One question I usually hear is this:“How much will I pay for calling virtual
functions and using virtual base classes?”This is a good question and deserves an
answer. But first, I want to review with you some of the basics of virtual functions and
virtual base classes.

13 239-5 CH10 2/19/99 1:17 PM Page 413

Virtual Functions
Let’s define what a virtual functionis so that we’re on the same page. A virtual function
is a member function that has the virtual keyword applied to it. Notice that I say mem-
ber functionbecause we can’t apply the virtual keyword to nonclass functions. We
apply the virtual keyword to the member function’s declaration, not to the definition.
With that said, here’s an example:

class Object {
public:

virtual void f() ;
} ;

The corresponding definition is this:

void Object::f() { ... } ;

That’s all we have to do to declare a virtual function. You do not have to do anything
special todefine a virtual function. Simply code the functionality required as you would
any other function. It is important to think about the default functionality a base class
virtual function provides to derived classes. A surprise to many developers is that the
virtual keyword does not have to be applied to any derived class function’s declaration.
The compiler knows that the member function in a derived class is virtual if it is virtual
in the base class, because the signature is the same as it is in the base class. This holds
true all the way down the inheritance hierarchy. The following code snippet demonstrates
the truth that virtualness is inherited by derived classes:

class Object {
public:

virtual void f() ;
} ;
class Derived : public Object {

public:
void f() ;

} ;

In this example, Derived::f() is automatically virtual. As far as coding style goes,I
always show thevirtual keyword; it is important to be explicit about every member
function’s use so that clients of the derived class understand its use.

You use the virtual keyword when you anticipate overriding member functions in a
derived class. However, it is not always clear whether you will override a member func-
tion in a derived class. This is something that has to be hashed out when designing your
classes. With enough forethought,you will know when any member functions have to be
virtual. I will discuss the cost of using virtual methods later in this section.

Implementation Issues

PART II
414

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 414

By the way, this brings up a point concerning the declaration of a virtual destructor. You
apply the virtual keyword to a destructor when you will be deriving from that base
class or if the class has at least one virtual function. If you’re unsure of what your class
will be derived from,declare the destructor virtual . If you do not declare a destructor
virtual when there is inheritance, the wrong destructor may be called. The following
example shows that only Object ’s destructor is called—which is not what you want:

class Object {
public:

~Object() ;
} ;
class Derived : public Object {

public:
~Derived() ;

} ;
//…
Object *thing = new Derived ;
delete thing ;
//…

This example demonstrates polymorphic (dynamic binding) behavior at runtime. The
term dynamic binding, or late binding, is used because the function to be called is not
resolved until runtime. Early binding, on the other hand, refers to the fact that the com-
piler can resolve the proper function to be called at compile time. With early binding, the
compiler generates the proper code to perform a function call directly.

How does the runtime mechanism determine the correct virtual function to invoke? The
determination is made based on the type of the object,not the reference to it. On the
other hand, if a derived class contains a member function that overrides a base class
function,and they are not virtual, then the reference determines the function called. The
code in Listing 10.1 demonstrates this behavior.

LISTING 10.1. VIRTUAL AND NONVIRTUAL FUNCTION CALLS

#include <iostream>
class Base {

public:
virtual void vf() { std::cout << “Base::vf” << std::endl ; }
void nvf() { std::cout << “Base::nvf” << std::endl ; }

} ;
class Derived : public Base {

public:
void vf() { std::cout << “Derived::vf” << std::endl ; }
void nvf() { std::cout << “Derived::nvf” << std::endl ; }

} ;
int main()

Tuning Application Performance

CHAPTER 10
415

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

continues

13 239-5 CH10 2/19/99 1:17 PM Page 415

{
Base aBase ;
Derived aDerived ;

Base *basePtrToDerived = &aDerived ;
basePtrToDerived->vf() ;
basePtrToDerived->nvf() ;

return 0 ;
}

When you run the program in Listing 10.1,the following is the generatedoutput:

Derived::vf
Base::nvf

Even though we are using a pointer of type Base , the actual object we are pointing to is
of type Derived . So,how does the virtual mechanismwork? Answering this question
leads us back to the original question at the beginning of this section:“How much do I
pay for calling virtual functions?”

The virtual mechanism is implemented using a virtual function table, abbreviatedas
VTBL, and a virtual function pointer, abbreviated as VPTR. There’s nothing magic about
these two elements. I’m sure you have implemented similar constructs. For every class
that contains a virtual function,a single VTBL is created and maintained. The VTBL is
an array of pointers,each pointer pointing to the implementation of each virtual function
declared in the class. Although I say that the VTBL is an array, it may in fact be imple-
mented as a linked list or some other specialized algorithm. The important thing to real-
ize is that a pointer exists in the VTBL for every virtual function. Keep in mind that the
pointer can point to a virtual function definition for the current class,if it exists,or to a
virtual function definition of a base class. We will discuss this in more detail later in this
chapter.

The VPTR is a hidden pointer found in every class. The VPTR’s sole job is to point to
the VTBL; specifically, it points to the first pointer entry in the VTBL. Most implementa-
tions use the first entry to hold a pointer to the type_info object of the class. For more
information about the type_info class and runtime type information, refer to “RTTI
Trade-Offs,” later in this chapter. Whenever the compiler discovers a class with a virtual
function declaration, it creates this hidden pointer along with the rest of the class’s struc-
ture. There is only one VPTR no matter how many virtual functions exist for the class.
The VTBL and VPTR do not exist for a class that does not have any virtual functions.

Implementation Issues

PART II
416

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

LISTING 10.1. CONTINUED

13 239-5 CH10 2/19/99 1:17 PM Page 416

Let’s think about the space and time cost associated with virtual functions. For every
class that declares a virtual function,a VTBL exists. For every derived class containing
virtual functions,a VTBL exists. This process continues as you add more levels of inher-
itance. Remember, too, that each instantiated object contains a VPTR that points to the
VTBL. In the VTBL, a pointer exists for every virtual function of the class. The more
virtual functions you declare in a class,the larger the VTBL. If the pointers are, say, four
bytes,the size of the VTBL can add up quickly. And don’t forget about the VPTR; it
adds four bytes to every instance of the class. A concrete example follows:

class Base
{

public:
virtual void vfuncOne() { } ;
virtual void vfuncTwo() { } ;
virtual void vfuncThree() { } ;

private:
int value ;

} ;
class Derived : public Base
{

public:
virtual void vfuncOne() { } ;
virtual void vfuncTwo() { } ;
// vfuncThree is not overridden

private:
int value ;

} ;

In this example, there is a VTBL for Base and one for Derived , for a total of two
VTBLs. The VTBLs for Base and Derived allocate space to hold three pointers each, or
12 additional bytes. You might be saying, “Yes,but vfuncThree was not overridden in
Derived .” That’s true, but the pointer is still there and it points to Base ’s vfuncThree .
Notice that each class has only one attribute declared and that each function body is
empty. Assume that you instantiate one object for each class at runtime; this adds eight
additional bytes (for the VPTRs) for the two objects. The space penalty here could be
significant if, for example, you are building an embedded system or other space-critical
application. In the end, the benefits of using the virtual mechanism should outweigh the
space penalty. Figure 10.1 shows a graphical representation of these two classes.

Keep in mind that pointer entries do not exist in the VTBL for nonvirtual functions.
Constructors do not have an entry in the VTBL either. Remember, if a virtual function is
not overridden in the derived class,then the function pointer will point to the virtual
function in the base class.

Tuning Application Performance

CHAPTER 10
417

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 417

Virtual Base Classes
Let’s explore the world of virtual base classes. When dealing with multiple inheritance,
virtual base classes become an important part of the programming landscape. You should
have a basic understanding of how they work if you are to implement them properly. You
also need an understanding of some of the side effects of virtual base classes.

Virtual base classesare declared using the virtual keyword. The keyword is applied to
the derived class declaration, just before the base class name. The benefit of using virtual
base classes shines only if you create a class that inherits from two base classes that
share a common base class. Following is an example that demonstrates the declaration:

class Base {
public:
...

} ;
class Derived : public virtual Base {

public:
...

} ;

Implementation Issues

PART II
418

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

FIGURE 10.1.
A graphical depic-
tion of the virtual
table and pointer.

pointer to type_info object

pointers to virtual

member functions

Object’s vtbl

vptr

Objects of type Object

Data

vptr

Data

pointer to type_info object

pointers to virtual

member functions

Derived’s vtbl

vptr

Objects of type Derived

Data

vptr

Data

13 239-5 CH10 2/19/99 1:17 PM Page 418

This example implies that we are using singly rooted inheritance; it doesn’t make any
sense to use virtual base classes with this type of inheritance. The main reason you don’t
want to implement virtual inheritance for singly rooted inheritance is because of the run-
time penalty associated with virtual inheritance. I am only demonstrating a declaration,
not implying an implementation.

One reason for using virtual base classes is to alleviate the extraneous copies ofa base
class found when using multiple inheritance (and not using virtual base classes). In other
words,if you are using multiple inheritance and don’t use virtual base classes,you will
get extra copies of the base class in your derived classes. As mentioned earlier, this
applies only if you create a class that inherits from more than one derived class that have
a common base class. Conversely, if you use virtual base classes,the derived classes will
share a copy of the base class. Here is an example:

class Base {
...
protected:

int value ;
} ;
class OneDerived : public Base {

...
} ;
class TwoDerived : public Base {

...
} ;
class UltimatelyDerived : public OneDerived, public TwoDerived {

public:
int getValue() { return(value) ; }

} ;

The class UltimatelyDerived publicly derives from both OneDerived and TwoDerived .
What this means is that there will be a copy of class Base in both OneDerived and
TwoDerived because class Base is not declared as a virtual base class.

Ambiguity sets in at class UltimatelyDerived with respect to the attribute value found
in class Base . The member function in UltimatelyDerived named getValue returns the
contents of value . Which copy of value will it use? The copy found in OneDerived or
the one found in TwoDerived ? The compiler will become confused and issue an error.
You can resolve the ambiguity by explicitly specifying the copy of value you want by
using thescope resolution operator:

int getValue() const { return(OneDerived::value) ; }

This explicit qualification solves the ambiguity problem and quiets your compiler, but
does not solve the problem of multiple copies of a base class. You must continually
engage the scope resolution operator to resolve the ambiguity. Excessive use of the scope

Tuning Application Performance

CHAPTER 10
419

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 419

resolution operator can be unappealing to the eyes and can also confuse developers who
inherit your code.

If you employ virtual inheritance, the compiler guarantees that there is only one copy of
the base class. This exclusive base class copy is shared by any derived classes. Let’s take
a look at an example that demonstrates virtual inheritance:

class Base {
...
protected:

int value ;
} ;
class OneDerived : public virtual Base {

public:
void callMe() ;

} ;
class TwoDerived : public virtual Base {

public:
void callMe() ;

} ;
class UltimatelyDerived : public OneDerived, public TwoDerived {

public:
int getValue() { return(value) ; }

} ;

The compiler creates a single copy of class Base to be shared by both OneDerived and
TwoDerived . Doing this solves the ambiguity issue relating to value , but a new issue sur-
faces. Notice that the public member function callMe() is found in both OneDerived and
TwoDerived . Again, the compiler is unable to determine the correct version of callMe()

to invoke. You have to use the scope resolution operator todisambiguate the function
call.

A basic design issue isinvolved in declaring callMe() in both OneDerived and
TwoDerived . If the functionality provided by callMe() could be shared, then the declara-
tion and implementation should be moved to Base . The other way to solve this issue is to
declare and define callMe() in the UltimatelyDerived class. This approach hides the
versions of callMe() in both OneDerived and TwoDerived . As you have seen,virtual
base classes do not solve all your multiple inheritance problems.

Let’s investigate some of the penalties experienced using virtual inheritance. First, let’s
take a look at the size cost for the following classes. Note that we are not using virtual
inheritance.

class Base
{

public:
long value[100] ;

} ;

Implementation Issues

PART II
420

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 420

class OneDerived : public Base { /* nothing */ } ;
class TwoDerived : public Base { /* nothing */ } ;
class UltimatelyDerived :

public OneDerived, public TwoDerived { /* nothing */ } ;

#include <iostream>
int main()
{

Base b ;
OneDerived one ;
TwoDerived two ;
UltimatelyDerived ultimate ;

std::cout << “value =” << sizeof(b.value) << std::endl
<< “pointer =” << sizeof(Base*) << std::endl
<< “Base =” << sizeof(b) << std::endl
<< “One =” << sizeof(one) << std::endl
<< “Two =” << sizeof(two) << std::endl
<< “Ultimate =” << sizeof(ultimate) << std::endl ;

return 0 ;
}

The output of thisprogram is as follows:

value =400
pointer =4
Base =400
One =400
Two =400
Ultimate =800

This output should not be a surprise. The size of Base is four bytes; because OneDerived

and TwoDerived inherit from Base , their size is also four bytes. UltimatelyDerived is
eight bytes because it gets two copies of Base . Let’s add virtual inheritance to the picture
and see what happens. The code stays the same except for the following two linesof
code:

class OneDerived : public virtual Base { /* nothing */ } ;
class TwoDerived : public virtual Base { /* nothing */ } ;

Look at the output from the revised program:

value=400
pointer =4
Base =400
One =404
Two =404
Ultimate =408

You can see that there are four extra bytes in both OneDerived and TwoDerived . What
are these extra bytes for? The extra bytes are there because OneDerived and TwoDerived

Tuning Application Performance

CHAPTER 10
421

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 421

contain a pointer that points to the single copy of Base . Remember that classes which
virtually inherit from a base class are expressing a willingness to share the base class’s
data. The real eye-opener is the reduction in size for the object UltimatelyDerived !
Using virtual inheritance has effectively trimmed the size of the object in half because
we have eliminated an extra object. Although the cost of using the virtual inheritance
mechanism is trivial (considering the extra pointers), the size of objects at runtime can be
a significantburden.

One thing that I have not discussed is the mixing of virtual and nonvirtual inheritance.
Let’s modify our two lines of code again to reflect this consideration:

class OneDerived : public Base { /* nothing */ } ;
class TwoDerived : public virtual Base { /* nothing */ } ;

What is happening here is that OneDerived will have its own copy of Base , and
TwoDerived will point to a shared copy of Base . When we run this program,the output is
as follows:

value=4
pointer =4
Base =4
One =4
Two =8
Ultimate =12

Notice that OneDerived is now only four bytes in size. This confirms the fact that any
class that virtually inherits contains a pointer.

Armed with this knowledge of virtual functions and virtual base classes,you can proper-
ly analyze the costs of using these facilities. Similarly, you should understand what the
compiler is doing behind the scenes to properly implement these features.

RTTI Trade-Offs
Runtime Type Identification (RTTI) canbe useful for specific programming situations,
but RTTI can also lead to inefficient runtime behavior. More importantly, RTTI under-
mines polymorphism and reflects (potentially) poor design. The name itself declares the
runtime nature of the RTTI facilities. Developers coming from other languages such as
Smalltalk or Pascal (among others) may be tempted to use RTTI extensively. I urge you
to keep RTTI coding activity to a minimum. If at all possible, eliminate the use of RTTI
completely; use virtual functionsinstead of RTTI.

As the name suggests,RTTI is used to retrieve information about an object at runtime.
The runtime identification mechanism is implemented with respect to polymorphic types.
This implies that a class must contain at least one virtual function. For a discussion of

Implementation Issues

PART II
422

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 422

virtual functions,virtual tables,and virtual base classes,refer to the preceding section,
“Analyzing the Cost of Virtual Functions and Virtual Base Classes.”

Information about a class is stored in an object of type type_info . A pointer to the
type_info object is stored as an entry in the virtual table. The pointer entry is usually
found in the first slot of the table. Because the type_info object exists as a separate enti-
ty, the size of the virtual table is increased by the size of a pointer.

The type_info object can reveal information about an object’s name, its equality or
inequality compared to other objects,and the collating sequence of an object. The
type_info class has the following structure:

class type_info {
public:

virtual ~type_info();
bool operator==(const type_info&) const;
bool operator!=(const type_info&) const;
bool before(const type_info&) const;
const char* name() const;

private:
type_info(const type_info&); // prevent copying
type_info & operator=(const type_info&) ; // prevent assignment
...

};

The before memberfunction is used to reveal a collating sequence for an object. This
collating sequence does not reveal information about the inheritance hierarchy, so you
should not use it to explore relationships among objects. The collating sequence is also
implementation defined, so don’t count on the results being the same between vendor
products.

Obtaining the name of an object might be useful for debugging activities. The name

attribute is stored as a NULL-terminated string and is returned by the name member func-
tion.

You can use the operator== and operator!= member functions to determine equality or
inequality of two type_info objects.

The typeid operator is used to return a const reference to a type_info object. The argu-
ment to typeid is either a type name or an expression. An expression can be a reference
or a pointer of some type. If the expression is a reference or pointer, the type_info refer-
ence reveals the actual type referred to,not the type of the reference (or pointer). The
typeid operator throws a bad_typeid exception if the value of the expression is zero.
Please note that you must dereference the pointer to reveal the actual object pointed to.
Here’s an example of how RTTI might be used:

Tuning Application Performance

CHAPTER 10
423

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 423

void walk(const Animal &animal)
{

if(typeid(animal) == typeid(Tiger))
// walk like a Tiger

else if(typeid(animal) == typeid(Monkey))
// walk like a Monkey

else if(typeid(animal) == typeid(Elephant))
// walk like an Elephant

...
}

As mentioned earlier, this code will look familiar to people who use Smalltalk or Pascal.
I frown on this use of RTTI—and you should, too. Virtual functions are a more elegant
solution to this type of runtime logic.

I can name another compelling reason why you should avoid the RTTI mechanism:code
maintenance. Consider what would be required if you added another Animal type to your
hierarchy. You would have to visit all your RTTI logic, make the appropriate enhance-
ments,and then recompile the whole affair. The performance and readability penalty is
also high with all the if..else statements to step through. It is my belief that you and
your users will get tired of this kind of maintenance.

RTTI provides for type-safe downcasting for polymorphic types. The behavior is unde-
fined for downcasting nonpolymorphic objects. Actually, you will most likely get the sta-
tic type information for the object passed to typeid . Here is an example of code that
uses a nonpolymorphic class hierarchy:

Animal *pa = new Tiger ;
const typeid &theType = typeid(*pa) ;
if(theType == typeid(Animal)) // line 3

cout << “It’s only an Animal!” ;
else if(theType == typeid(Tiger))

cout << “It’s a Tiger, run!” ; // never executes!

The if statement in thethird line always resolves to true .

The typeid operator works for built-in types of the language. I have not seen a real ben-
efit for its use, but you can do it,nonetheless. In the following example, all the if state-
ments will execute their respective statements:

char aChar = ‘c’ ;
if(typeid(aChar) == typeid(char))

cout << “It’s a char!” ;
if(typeid(&aChar) == typeid(char *))

cout << “It’s a char pointer!” ;
if(typeid(‘c’) == typeid(char))

cout << “Guess what, another char!” ;

Implementation Issues

PART II
424

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 424

You may be familiar with the dynamic_cast operator. The dynamic_cast operator deter-
mines whether or not a downcast is safe. Consider the following example; assume that
class Animal and its derived classesare polymorphic:

Animal *pa = new Tiger ;
Tiger *pt = dynamic_cast< Tiger *>(pa) ;
if(pt) // pt will be cast to a Tiger

cout << “There’s a Tiger in the house!”;
else

cout << “Whew, no Tigers in here”;

The argument provided to dynamic_cast within the angle brackets is the type to which
you are trying to cast. The argument within the parentheses is the object from which you
are trying to cast. If the cast is successful,you get the type requested. If the cast is
unsuccessful,the NULL pointer is returned. Again, I prefer the use of virtual functions to
downcasting with dynamic_cast . With virtual functions,you don’t need to test whether a
downcast is safe or not—the call always resolves to some virtual function in the
hierarchy.

Use the RTTI mechanism sparingly. It is important for you to know the features of RTTI
so that you can employ them properly. Understand the trade-offs of RTTI and know
when it’s proper to use virtual functions,virtual base classes,and RTTI. Realize the costs
associated with each feature and use each when it makes sense.

Managing Memory for Temporary
Objects
The compiler cansurprise you in many ways. A surprise that every programmer experi-
ences is that compilers tend to create temporaries. You may not even be aware that the
compiler has created a temporary. Two of the most common situations are when a func-
tion has to return an object and when an object is passed to a function. We will explore
some of the other reasons why a compiler creates temporaries.

One characteristic of a temporary is that it cannot be seen by the naked eye. You can’t
always see the temporary by looking at your code. You can,however, conceptually see a
temporary if you understand how a compiler creates one. A temporary is never visible in
code. Temporaries are considered unnamed objects; in other words,you never explicitly
give them a name. The compiler generates a name for a temporary behind the scenes.
You,of course, do not have to worry about them because the compiler takes care of
everything. Temporary objects are not created on the heap—unless,of course, you have
coded a constructor that dynamically allocates memory. You must also watch out for
allocating memory within operator functions. One final thing I want to clear up before

Tuning Application Performance

CHAPTER 10
425

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 425

moving on is that I’m not talking about temporary variablesyou create within a function
or code block. With all this said, let’s create an Integer class and some working code:

class Integer {
public:

Integer() ;
Integer(const Integer &) ;
Integer(int valueIn) ;
Integer(int valueIn, int addedValue) ;
Integer operator+(const Integer &lhs, const Integer &rhs) ;
void operator=(const Integer &) ;
...

} ;
...
Integer value = 2 ; // first line (working code)
for(int i = 0; i < 100; i++)

value = value + 2 ;

The last three lines of code look harmless,wouldn’t you say? The first line constructs an
Integer and uses the assignment operator to place the value 2 into the object. First, how-
ever, the compiler must convert the constant ‘2’ to an Integer object. The compiler
does this by using the constructor that takes an integer argument. You can reduce the
compiler’s workload by doing this instead:

Integer value(2) ;

With that outof the way, let’s take a look at the loop. The loop’s expression is where the
real bottleneck is. Let’s take this expression apart, piece by piece, to see what is
happening. First of all,there is a constant expression on the right side of operator+ . The
compiler has to construct a temporary and initialize it with the constant value ‘2’ . The
compiler has to do this because operator+ requires an Integer object for its argument.
The compiler uses the constructor that takes an integer argument,just as it did in the first
line of code. Next, the compiler generates code to return an Integer object and uses the
copy constructor to put the result into the object value . Finally, operator= is used to
assign the result to the object value . You must realize that the compiler not only creates
temporaries,it also has to destroy them. This continual construction and destruction can
rob your application of valuable time and space.

I mentioned that a compiler would create a temporary if a member function returns by
value. Integer’s operator+ demonstrates this effect. Because the temporary is an
unnamed object,the compiler can create and destroy an Integer object. The compiler
does this even if you ignore the function’s return value. Let’s take a look at an example:

Integer calculate(int valueOne, int valueTwo) ;
...
calculate(5, 10) ;

Implementation Issues

PART II
426

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 426

The compiler will still create a temporary even though the return is ignored. There’s not
much you can do to get around this problem. Designing for efficiency is the key to
reducing the occurrence of temporaries. I said reduce, not eliminate. There will be situa-
tions that are just out of your control. Let’s look at one way you can battle the creation of
temporaries. I will use Integer ’s operator+ to demonstrate the named return value opti-
mization. Let’s look at a potential implementation:

Integer Integer::operator+(const Integer &lhs, const Integer &rhs)
{

Integer temp = lhs.value() + rhs.value() ;
return temp ;

}

This code can be viewed as a very typical implementation. A local Integer object is
instantiated to hold the result of the addition and then it is used in the return statement.
If the Integer were replaced with,say, a native int type, the resultant source code
would indeed look very natural. Of course, the code generated by the compiler would be
insignificant. Unfortunately, the code generated for Integer::operator+ is quite differ-
ent. You need a way to reduce the runtime expense of creating the temporary. The way
you do this is to use an explicit constructor of the class. The operator+ member will
then look like this:

Integer Integer::operator+(const Integer &lhs, const Integer &rhs)
{

return Integer(lhs.value(), rhs.value()) ;
}

I’m sure you are thinking that this code will still generate a temporary object for the
return. The difference in using the named constructor is that the compiler is free to per-
form some magic. It is allowed the freedom to optimize the temporary out of existence—
something you definitely want the compiler to do. Having this knowledge gives you
more control over the creation of temporaries. (In this case, I should be saying the elimi-
nation, rather than creation, of a temporary.) In a nutshell,the compiler actually builds
the object to be returned in place. Your compiler vendor may or may not implement the
named return value optimization; refer to the documentation for details.

Now that you have an understanding about temporary objects,you should keep a watch-
ful eye on code that passes data to functions. You should also reexamine code that returns
objects; the compiler will most likely create a temporary unless you have employed the
named return value optimization technique. Consider this point:If you can provide a
more efficient implementation, your compiler will thank you and, in turn, will produce
code that is more efficient.

Tuning Application Performance

CHAPTER 10
427

10

T
U

N
IN

G
A

PPLIC
A

TIO
N

P
ER

FO
R

M
A

N
C

E

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 427

Summary
This chapter has examined inline functions,virtual functions,virtual base classes,RTTI,
and temporary objects. You should come away knowing the costs associated with each of
these constructs. It is also important to know what the compiler is doing behind the scenes.

The inline keyword is only a hint to the compiler. You know some of the reasons why a
compiler might not inline a function. You have also uncovered some side effects of inlining.

You have discovered the effects of revealing implementation code in header files. Think
about the way your implementation code is organized and how you can improve on it.

In this chapter, you have seen the effects of using (and not using) virtual functions and
virtual base classes. You have seen the effects of virtual functions on the VTBL. You also
know how virtual base classes can eliminate multiple copies of a base class when using
multiple inheritance.

RTTI is a feature available for specific programming situations,but you should not used
it to replace the virtual mechanism. Remember that RTTI undermines polymorphism and
reflects poor design.

Temporary objects can reach up and bite you if you are unfamiliar with these hidden
beasts. Know when the compiler silently creates temporaries and what you can do to pre-
vent their creation. Find out whether your compiler supports the named return value opti-
mization feature; if this feature is supported, use it whenever you can.

Implementation Issues

PART II
428

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH10 Lp#1

13 239-5 CH10 2/19/99 1:17 PM Page 428

P/V Unleashed generic ISBN# Name Date Part Lp#1

Manipulating Data
PART

III
IN THIS PART

• Recursion and Recursive Data Structures 431

• Designing Efficient Sorting Methods 451

• Search Algorithms in C++ 483

• Hashing and Parsing Techniques 513

14 239-5 Part 3 2/19/99 1:20 PM Page 429

P/V Unleashed generic ISBN# Name Date Part Lp#1

14 239-5 Part 3 2/19/99 1:20 PM Page 430

IN THIS CHAPTER

• What Is Recursion? 432

• Recursive Structures 435

• Traversing a Recursive Structure with a
Recursive Function 437

• Recursion Versus Iteration and Tail
Recursion 441

• Indirect Recursion 446

• Recursion and the Stack 447

• Debugging Recursive Functions 449

11
C

H
A

PT
ER

Recursion and
Recursive Data
Structures

15 239-5 CH11 2/19/99 1:21 PM Page 431

Recursion is a subject that seems to strike fear in the hearts of many software developers.
It refers to things that are defined in terms of themselves,to code calling itself, and to
objects pointing to images of themselves—these definitions seem frightening. They
smack of infinity and paradox. But you need not fear, because we will slay this deadly
beast with one simple phrase—Forget about it!

You won’t, of course, forget about recursion altogether, you just won’t think about the
code as recursive while you are writing it. This is the big secret to recursion:Don’t think
about it as some infinite paradox and get wrapped up in the layers of self-reference; just
think about one layer at a time. Then,when the time is appropriate, you’ll look at the
recursive aspects of your structure or function. We will apply this principle to a set of
examples,from recursion in a function to recursive structures,and we will see that we
can simplify the recursion process if we don’t think about it—well, if we don’t think
about it too much. We will also talk about some different issues in recursion,such as tail
and indirect recursion. Finally, we will discuss some of the special problems that come
up when you try to debug recursive functions.

What Is Recursion?
Recursion is whena thing refers to itself or to an image just like itself. For a function,
recursionmeans that the function calls itself. For an object,recursion is when the object
refers to things like itself by means of a pointer or a reference. Often,recursive structures
and recursive functions go hand in hand:The best way to do many of the common opera-
tions on recursive structures is to use a recursive function. We will look at some of these
operationslater in this chapter.

Fibonacci Numbers: A Recursive Definition
The classic example of recursion is the definition of Fibonacci numbers. The Nth
Fibonacci number is defined as the sum of the (N-1)th Fibonacci number plus the (N-
2)th Fibonacci number. The exception is that if N is less than or equal to 2,the Nth
Fibonacci number is defined to be 1. In a mathematical notation, it looks like this:

Fibonacci (N) =
if (N <= 2) : 1
Otherwise : Fibonacci (N-1) + Fibonacci (N-2)

This seems very tricky, because for any value of N greater than 2,you don’t know what
the Fibonacci number is,except in terms of two other numbers. These other numbers you
have to calculate using this same process,and when you try to do one of those, you are
back where you were, and then you lose your place, andso on.

Manipulating Data

PART III
432

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 432

But, fortunately, we have computers! They are great at this sort of thing, and they don’t
mind the tedium of doing the same calculation steps over and over again. Let’s look at
this definition converted into C++ code, as shown in Listing 11.1.

LISTING 11.1. RECURSIVE FIBONACCI CALCULATION

#include “iostream.h”

long fib(long n)
{

if (n <= 2)
return 1;

else
return fib(n-1) + fib(n-2);

}

int main()
{

long N;
cout << “Which Fibonacci number do you want?” << endl;
cin >> N;
cout << “Fibonacci (“ << N << “) is “ << fib(N) << “\n\n”;

return 0;
}

The following shows a sample execution,where the text in bold was typed by the user:

Which Fibonacci number do you want?
14
Fibonacci (14) is 377

Which Fibonacci number do you want?
40
Fibonacci (40) is 102334155

Recursion and Recursive Data Structures

CHAPTER 11
433

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

NOTE

For the program in Listing 11.1, it is not recommended that you enter any num-
ber larger than 40 because the required processing time grows exponentially.
Calculating Fibonacci number 40 takes my computer 10 seconds. Calculating
Fibonacci number 41 takes almost twice as long—and you continue to (almost)
double the processing time with each increment.

15 239-5 CH11 2/19/99 1:21 PM Page 433

As we look at the function fib() , we see that it is just like themathematical definition of
the operation. It seems a little scary, though,that the function is calling itself. How will it
know what to return? The computer takes care of this by making a new copy of the para-
meter n for each call into the function.

Instead of the function calling itself, just imagine that you had been assigned the task of
writing the following function:It should accept a single parameter—call it n. If n is less
than or equal to 2, return 1. If n is greater than 2, return the sum sqrt(n-1) + sqrt(n-

2) , where sqrt() is the square root function. You wouldn’t have any problem with this—
it wouldn’t even occur to you to worry about what is going on inside that sqrt function.
It is just a function provided by the math library, and you trust that it does itsthing.

Writing a recursive function is exactly the same. When you have to make a recursive
call, forget about it! Don’t concern yourself with the fact that you are making a call into
this same, half-written function that you are working on. Just trust that the function will
do its thing. When you are done, and the function is fully debugged, your trust will be
rewarded.

Stopping the Recursion
There isone extra requirement when writing a recursive function. At some point,it had
better stop recursing or it will have the same effect as an infinite loop—at least,until you
run out of stack space. (The stack is a special memory area where the computer keeps
track of its position in each level of the recursion. More on the stack later in this chap-
ter.) To make sure that the recursion always stops,you must fulfill two requirements.
First, there must be some path through the function that returns without making any
recursive call. The conditions that invoke this path are called thetermination conditions.
The second requirement for guaranteeing that the recursion will stop is that you should
be getting closer, somehow, to the termination conditions on each recursion. As long as
there is some way that the function stops recursing and that every recursion moves you
closer to the termination conditions,then there is no risk that recursion will go on infi-
nitely.

In the Fibonacci example, when the parameter is less than or equal to 2, the function
simply returns 1 without making any more calls. Therefore, (n <= 2) is the termination
condition. If n is greater than 2, then every recursive call that we make passes in a para-
meter that is smaller than the current n. In other words,each recursion moves us closer to
the termination condition. Because we have met the two requirements,we can be confi-
dent that the Fibonacci recursion will eventually terminate.

Manipulating Data

PART III
434

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 434

Recursive Structures
A recursive structure is one that points to a thing just like itself. The directory hierarchy
on your computer is a good example:Every directory contains a list of files,and one spe-
cial type of file is a directory entry. A class diagram would look something like the one
in Figure 11.1.

Recursion and Recursive Data Structures

CHAPTER 11
435

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

FIGURE 11.1.
A file and directo-
ry class diagram.

File 0…*

1
Directory

This is Universal Modeling Language notation for two classes,File and Directory . The
arrow shows that Directory is a child class of File , an is-a relationship. The line with
the diamond shows a one-to-many relationship between Directory and File (the dia-
mond signifies aggregation or ownership). In other words,each Directory owns zero or
more File s and every File is owned by exactly one Directory . Because a Directory is-
a File , Directory s can also own other Directory s without any special work. It is this
recursive nature that allows us to build up a hierarchy of directories based on two very
simple classes.

Listing 11.2 shows us these two classes in C++. This listing is not a complete program—
yet. First, let’s look at the minimum we need to show these classes,and then we will put
a complete program aroundthe classes.

LISTING 11.2. FILE AND DIRECTORY CLASSES

#include <iostream>
#include <list>
#include <string>
using namespace std;

class File
{
public:

File(const string & name) : m_name(name) {}
~File() {}

const string & getName() const { return m_name; }
void setName(const string & name) { m_name = name; }

15 239-5 CH11 2/19/99 1:21 PM Page 435

private:
string m_name;

};

class Directory : public File
{
public:

Directory(const string & name) : File(name) {}
~Directory();
void AddFile(File * fp) {m_FileList.push_back(fp);}

private:
list<File *> m_FileList;
typedef list<File *>::iterator FileIter;

};

Directory::~Directory()
{

while (!m_FileList.empty())
{

delete m_FileList.front();
m_FileList.pop_front();

}
}

The first four lines set us up to use the standard template library versions of iostream ,
list , and string .

The class File is declared. Its only salient feature is its name, which isa string.

The class Directory is declared to inherit publicly from File —an is-a relationship. Its
responsibilityis to contain a list of files. Of course, a real directory would have a number
of methods for inserting, removing, searching, and other operations that have to do with
managing its responsibility. For brevity, we are only offering an Add() operation that
addsnew files to the end of its list.

Because the Directory ownsthe list of files, it is required to delete them when it is
done. This is done explicitly in the Directory destructor.

We could now write a bit of code to put together an entire hierarchy of these objects,
with directories that contain lots of files, including other directories. You could read in
the file hierarchy off of your disk and put all that in these structures,giving yourself a
map of your directory hierarchy in an interconnected set of these File and Directory

objects.

Manipulating Data

PART III
436

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 436

Traversing a Recursive Structure
with a Recursive Function
In this section,we will continue the Directory and File example and write a recursive
function that traverses the entire directory tree and displays the name of every file. We
will also talk about passing information through the levels of recursion.

Sometimes,when you are working with a recursive function,you want to know what
level of recursion you are on. There are several reasons you might want this information:
The termination condition may be that you simply go ten levels deep and no further.
Perhaps you are displaying information and want to indent each level of recursion anoth-
er tab stop. The simple way to obtain this information is to pass it along as a parameter
to the function,increasing it by 1 each time you recurse. For the Directory and File

example, we will just print out the level on each line.

Another issue that often arises with recursion is that you have some information that you
want to accumulate through the different levels of recursion. If you are writing a function
to evaluate the moves in a chess game, for example, you want to keep track of the moves
you have made to get to your current position. In the directory/file hierarchy, we will
accumulate the full pathname for a file by concatenating the names of the directories as
we move, recursively, through the directory hierarchy. Listing 11.3 shows how to do this.

LISTING 11.3. A RECURSIVE WALK THROUGH A DIRECTORY TREE

#include <iostream>
#include <list>
#include <string>
using namespace std;

class File
{
public:

File(const string & name) : m_name(name) {}
~File() {}

const string & getName() const { return m_name; }
void setName(const string & name) { m_name = name; }
virtual void Display(ostream & os,

int level = 1,
const string & prefix = “”);

private:
string m_name;

};

Recursion and Recursive Data Structures

CHAPTER 11
437

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

continues

15 239-5 CH11 2/19/99 1:21 PM Page 437

class Directory : public File
{
public:

Directory(const string & name) : File(name) {}
~Directory();

virtual void Display(ostream & os,
int level = 1,
const string & prefix = “”);

void AddFile(File * fp) {m_FileList.push_back(fp);}
private:

list<File *> m_FileList;
typedef list<File *>::iterator FileIter;

};

// To display a File, output prefix & name and newline
void File::Display(ostream & os, int level, const string & prefix)
{

os << level << “. “ << prefix << m_name << endl;
}

// To display a Directory, output name and newline, then
// Display all of my contained Files using recursive call
void Directory::Display(ostream & os, int level, const string & prefix)
{

File::Display(os, level, prefix);
string newPrefix = prefix + getName() + “:”;
for (FileIter iter = m_FileList.begin();

iter != m_FileList.end();
iter++)

(*iter)->Display(os, level + 1, newPrefix);
}

Directory::~Directory()
{

while (!m_FileList.empty())
{

delete m_FileList.front();
m_FileList.pop_front();

}
}

int main()
{

Directory * dir = new Directory(“TheDir”);
dir->AddFile(new File(“File 1”));
dir->AddFile(new File(“File 2”));

Directory *subdir = new Directory(“SubDir 1”);

Manipulating Data

PART III
438

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

LISTING 11.3. CONTINUED

15 239-5 CH11 2/19/99 1:21 PM Page 438

dir->AddFile(subdir);
subdir->AddFile(new File(“Sub File 1”));
subdir->AddFile(new File(“Sub File 2”));

Directory *subdir2 = new Directory(“SubDir 2”);
dir->AddFile(subdir2);
subdir2->AddFile(new File(“Sub File 4”));
subdir2->AddFile(new File(“Sub File 5”));
subdir2->AddFile(new File(“Sub File 6”));

Directory *subsubdir = new Directory(“SubSubDir 1”);
subdir->AddFile(subsubdir);
subsubdir->AddFile(new File(“Sub Sub File 1”));
subsubdir->AddFile(new File(“Sub Sub File 2”));
subsubdir->AddFile(new File(“Sub Sub File 3”));

subdir->AddFile(new File(“Sub File 3”));

dir->AddFile(new File(“File 3”));
dir->AddFile(new File(“File 4”));

dir->Display(cout);
delete dir;
return 0;

}

Here is the output for Listing 11.3:

1. TheDir
2. TheDir:File 1
2. TheDir:File 2
2. TheDir:SubDir 1
3. TheDir:SubDir 1:Sub File 1
3. TheDir:SubDir 1:Sub File 2
3. TheDir:SubDir 1:SubSubDir 1
4. TheDir:SubDir 1:SubSubDir 1:Sub Sub File 1
4. TheDir:SubDir 1:SubSubDir 1:Sub Sub File 2
4. TheDir:SubDir 1:SubSubDir 1:Sub Sub File 3
3. TheDir:SubDir 1:Sub File 3
2. TheDir:SubDir 2
3. TheDir:SubDir 2:Sub File 4
3. TheDir:SubDir 2:Sub File 5
3. TheDir:SubDir 2:Sub File 6
2. TheDir:File 3
2. TheDir:File 4

Here you have the two classes you are familiar with from earlier in the chapter, with a
Display() method added. Because it is a virtual method, we can walk through a list of
File pointers, calling Display() on each one, and know that the correct Display()

function will be called. We have declared the Display() function to accept three

Recursion and Recursive Data Structures

CHAPTER 11
439

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 439

parameters: the output stream,the recursion level, and a filename prefix. As we will see,
this prefix is the accumulated set of names of the directories through which we
“recursed”on our way to this function call. Do not think about these names recursively,
however. Just assume that the function you are writing gets the proper value passed in
and is expected topass along the proper value when the time comes.

In the function File::Display() , all that is necessary to display a normal file is to out-
put the recursion number, the prefix, and the filename.

On the other hand, the function Directory::Display() is more complicated. Displaying
a directory means to display it as if it were a file, and then to call Display() on all the
files that this directory contains. It is true that, for the contained files that are really
directories,this function calls itself. But remember our first principle of writing recursive
functions:Do not think about this task in multiple levels at once; this is just a simple
Directory() function that does some operation on all its contained files,and we are just
going to trust that the operation works.

Look at the one-line body of the for loop inside Directory::Display() . (The expres-
sion (*iter) here returns the current item in the list,according to the position defined
by the iterator. It returns a File * because the list is defined to be a list<File *> .) The
for loop is the recursion step. The first parameter is simple enough:It is just passing on
the proper ostream to which the output should go. The second parameter is the recursion
level, which we increase by 1 as we pass it to the next level down. When the function we
are calling recurses,it increments the value for level again,but we don’t need to worry
about that. All we have to think about is that the next recursion level will be 1 more than
the current level.

The last parameter is the prefix. We know that what was passed in to us was our prefix—
the accumulated list of directory names that it took to get here. Again,don’t worry about
how that was built, just trust that it is correct. Now, to pass a correct prefix to all our con-
tained files,we have to construct a new prefix that will have all the directories so far,
plus the current name. This is how the prefixes were accumulated correctly: Each level
received a correct prefix and passed on another that also was correct.

The only step that is missing is to make sure that the very first level of recursion starts
with the correct value. We do this by including default values for the function parameters
that contain the correct values for the first level. In this case, correct values for the first
level are level = 1 and prefix is a blank string, as we can see in the declaration of the
Display() function in both the File class and the Directory class.

One last test before we run this program. Have we fulfilled the requirements for recur-
sion to terminate? The first requirement is that there is a path through the recursive func-
tion that does not recurse. This is a little tricky because if we look at

Manipulating Data

PART III
440

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 440

Directory::Display() , there does not appear to be such a path. However, there are
actually two ways we can sidestep the recursive call. First, if the Directory does not
contain any files, the body of the for loop is skipped because the test portion of the for

statement fails right away. The second way recursion can be avoided is by remembering
that this is really only one instance of a virtual function; if all the contained files are real-
ly files and none of them are directories,then no additional recursionwill occur.

The second requirement for recursion to terminate is that we always get closer to the ter-
mination conditions. We can assume that the directory hierarchy has a finite depth,and
we can make sure that there are no instances of a directory containing itself, either
directly or indirectly. With these two caveats,we know that, with each recursion step, we
are always moving closer to a directory that contains only files and not other directories.

Finally, we are ready to build a little directory structure—which is done in main() —and
to call Display() on the top level. The output follows the program.

This takes a bit of studying to really see what has happened, but the bottom line is that
every Directory displayed all its File s in order. Whenever a Directory was the thing
being displayed, the process for its parent was kept on hold until the Directory had fin-
ished displaying all its children. You can see the recursion level as it increments up to 4
and then returns to 3 and then to 2. It is not decremented anywhere in the code. When
the level drops,this means that one level of the recursion has finished and has executed
the return() statement. The version of level that held the larger value was thrown away
when the function returned. It might be valuable to trace through this code with a debug-
ger to see each function as it is called and how the calling function resumes when the
called function returns.

Recursion Versus Iteration and Tail
Recursion
It is generally true that any recursive function can be rewritten as aniterative operation.
In some cases,this is quite easy, but in other cases,rewriting the function is difficult.
When the very last operation of a recursive function is the recursive call,this is called
tail recursion. It is always very easy to replace tail recursion withiteration—compilers
often do so without our knowledge! In this section,we will look at a recursive way to
think about a linked list and see how that kind of recursion is easily replaced with itera-
tion.

A linked listis generally thought of as a collection of Nodes,where each Node contains
one element and a pointer to the next Node. However, there is a recursive way to think
about a linked list. Think instead that a linked list consists of a Node that contains a

Recursion and Recursive Data Structures

CHAPTER 11
441

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 441

single element and a pointer to another linked list. (Readers familiar with LISP and its
car /cdr functions should see a parallel here.)

This recursive way of thinking about a linked list considers each list to contain another
list. Although the first model has Nodes pointing to other Nodes, you might,at first, be
inclined to consider it recursive. It is not,however, because the Nodes are not considered
to containthe other Nodes, they just refer to them.

This different way of thinking of linked lists means that you do not bother to make a sep-
arate class that represents the entire list. Every Node represents an entire list,which is
made up of the Node’s datum plus all the data contained in the Node’s sublist. None of
the operations involve any sort of looping or walking the list because we always think of
a list as only two entities:the Node we are working with and its contained sublist. The
only variation within any process is deciding whether the Node we are on has a sublist or
just a NULL.

To simplify the code in this example, Listing 11.3 creates a linked list for which the
datum for each Node is just a string.

LISTING 11.4. SIMPLIFYING THE CODE WITH A LINKED LIST

#include <iostream>
#include <list>
#include <string>
using namespace std;

class LLNode
{
public:

LLNode(const string & data = “”, LLNode * subList = NULL)
: myData(data), mySubList(subList) {}

~LLNode() {delete mySubList;}

const string & GetFirstData() const {return myData;}

void SortedInsert(const string & data);
bool isInList(const string & data) const;
int Count() const;
void Display(ostream & os) const;
void ReverseDisplay(ostream & os) const;

private:
string myData;
LLNode * mySubList;

};

void LLNode::SortedInsert(const string & data)
{

if (NULL == mySubList || data <= mySubList->GetFirstData())

Manipulating Data

PART III
442

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 442

mySubList = new LLNode(data, mySubList);
else

mySubList->SortedInsert(data);
}

bool LLNode::isInList(const string & data) const
{

if (data == myData)
return true;

else if (NULL == mySubList)
return false;

else
return mySubList->isInList(data);

}

int LLNode::Count() const
{

if (NULL == mySubList)
return 0;

else
return 1 + mySubList->Count();

}

void LLNode::Display(ostream & os) const
{

if (“” != myData)
os << myData << endl;

if (NULL != mySubList)
mySubList->Display(os);

}

void LLNode::ReverseDisplay(ostream & os) const
{

if (NULL != mySubList)
mySubList->ReverseDisplay(os);

if (“” != myData)
os << myData << endl;

}

typedef LLNode SortedStringList;
int main()
{

SortedStringList theList;
theList.SortedInsert(“Fred”);
theList.SortedInsert(“Barney”);
theList.SortedInsert(“Wilma”);
theList.SortedInsert(“Betty”);

cout << “Display! Count is “ << theList.Count() << endl;

Recursion and Recursive Data Structures

CHAPTER 11
443

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

continues

15 239-5 CH11 2/19/99 1:21 PM Page 443

theList.Display(cout);

cout << “\nReverse Display! Count is “ << theList.Count() << endl;
theList.ReverseDisplay(cout);

return 0;
}

The following is the output from the code in Listing 11.4:

Display! Count is 4
Barney
Betty
Fred
Wilma

Reverse Display! Count is 4
Wilma
Fred
Betty
Barney

Let’s look at the function SortedInsert() . As we write this function,we don’t want to
think about recursion at all. The purpose of the function is to accept a string and insert it
somewhere within the list that the Node represents. Because we are actively forgetting
about recursion,we have only one decision to make about where to insert this new data:
Either it belongs between the Node and its sublist, or it should be inserted somewhere
deep in the sublist, and we don’t care where. The first line in this function says, “If the
Node doesn’t have a sublist or this data belongs before the sublist it does have, insert the
data immediately after the Node.” If the data does not belong before the sublist, then it
must belong somewhere inside the sublist. At this point,we just let the sublist deal with
it, and we trust that the sublist will do the right thing.

Now that the function is written,we have to think about recursion a bit. First, are we sat-
isfied that there is a path through this function where no recursion occurs? Yes—if the
test is true . Second, do we always get closer to this termination condition? Yes—
because we know that we will always reach a Node that has no sublist. Finally, does the
recursion start off properly? Hmmm,there is an issue if the insertion should take place
before the first Node. So let’s assume that the first Node in every complete list is a blank
Node that does not contain any data. This guarantees that there is never a chance that new
data should be inserted before the first Node. When a client wants to create one of these
linked lists,the client creates a single Node without data,and that Node will play this role.

Manipulating Data

PART III
444

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

LISTING 11.4. CONTINUED

15 239-5 CH11 2/19/99 1:21 PM Page 444

Note that when we do insert a new Node, we are actually creating an entirely new sublist.
The new Node has data and a sublist (our old one),which makes it a complete list,fully
qualified to participate as a sublist.

Now look at the two Display() functions and the simple difference between them. The
first tests are just to skip the false Node, which we added to simplify the insert process.
Study these functions and remember to think of them not as displaying a list of Node

data,but instead as displaying the Node’s data and then telling the Node’s sublist to dis-
play itself.

Tail Recursion
Listing 11.3 containsa good example of tail recursion in the LLNode::Display() func-
tion (although not the ReverseDisplay() function). In this function,the recursive call is
the very last operation before the function returns. This is an example of tail recursion.
Tail recursion is important to people who develop compilers because all tail recursion
can be trivially replaced by iteration. This substitution is generally a noticeable optimiza-
tion because you save the processing time of putting arguments on the stack and making
the function call. The reason compilers can confidently make this optimization is because
there is no chance that the function will need its variables anymore. There is no need to
make new copies of all thelocal variables if you are sure that they won’t be needed.

Here is the C++ equivalent of the code an optimizing compiler would make for the
LLNode::Display() function:

void LLNode::Display(ostream & os) const
{

const LLNode * p = this;
TailRecursionLabel1:

if (“” != p->myData)
os << p->myData << endl;

if (NULL != p->mySubList)
{
p = p->mySubList;
goto TailRecursionLabel1;
}

}

Recursion and Recursive Data Structures

CHAPTER 11
445

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

NOTE

Please don’t send me email messages about the goto statement. I originally had
a do..while loop with a break , but the preceding example is much closer to
what the compiler would really create. The compiled version of any significant
piece of code has what amounts to hundreds of goto s.

15 239-5 CH11 2/19/99 1:21 PM Page 445

When should you think about tail recursion? Probably never—unless you work for a
company that makes compilers. When I wrote the Count() function,I purposely wrote
the function the way I did so that the compiler would optimize it for me. But it probably
would have done so anyway. However, if you casually drop the phrase tail recursion into
conversation at work, you will really come off as a mega-geek,which is probably the
most use to which you can put this knowledge.

Indirect Recursion
Indirect recursionis where a function does not actually call itself, but it calls a different
function that may then call the first function. In the File /Directory example from earli -
er in this chapter, we could create a DisplayChildren() method for the Directory class.
Then we could change Directory::Display() to a call to File::Display() and a call
to DisplayChildren() . This would now be an example of indirect recursion.

Listing 11.4 shows the new class declaration and its two methods. You can see that
Display() does not call itself, but it does call DisplayChildren() . DisplayChildren()

does not call itself, but it does call Display() . This is an example of indirect recursion.
Note that this is not a complete listing; itshows just the classes.

LISTING 11.5. THE FILE AND DIRECTORYCLASSES USING INDIRECT RECURSION

class Directory : public File
{
public:

Directory(const string & name) : File(name) {}
~Directory();

virtual void Display(ostream & os,
int level = 1,
const string & prefix = “”);

void DisplayChildren(ostream & os, int level,
const string & prefix);

void AddFile(File * fp) {m_FileList.push_back(fp);}
private:

list<File *> m_FileList;
typedef list<File *>::iterator FileIter;

};

// To display a Directory, output name and newline, then
// Display all of my contained Files using recursive call
void Directory::Display(ostream & os, int level, const string & prefix)
{

File::Display(os, level, prefix);
string newPrefix = prefix + getName() + “:”;
DisplayChildren(os, level, newPrefix);

Manipulating Data

PART III
446

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 446

}

void Directory::DisplayChildren(ostream & os,
int level, const string & prefix)

{
for (FileIter iter = m_FileList.begin();

iter != m_FileList.end();
iter++)

(*iter)->Display(os, level + 1, prefix);
}

Recursion and the Stack
In the discussionof the Fibonacci function,it was noted that the computer has no trouble
keeping track of where it is with each level of recursion,and that it makes new copies of
all of the variables for each recursive level. The way the computer does this is by using
the stack. The stack is a block of memory allocated by the compiler for exactly the pur-
pose of keeping its place in a function when the function makes a call to any other func-
tion. Much like a stack of plates,you can add a new plate only to the top of the stack;
you can take only the top plate off the top of the stack. There is no way to insert or
remove from anywhere else in the stack.

When you make a function call,the computer saves on the stack (on the top,of course)
four things,which are listed here. Note that this process is true for all function calls,not
just those that are recursive:

1. (still in your function)The parameters you are passing to the function.

2. (as it travels to the other function)The code location to return to when the called
function is completed.

3. (inside the called function)Your “base pointer”so that it will be able to restore it
when it is done. It then sets the base pointer to the current stack location, for its
own use. The base pointer is how it finds both the parameters you passed in and
the local variables for which it is about to allocate space on the stack.

4. (inside the called function)Space for any local variables the function needs.

Of course, your function went through these same steps when it was called. In your func-
tion, every time you access one of the parameters you passed in or one of the automatic
variables you declared as local to your function,the function pulls these values out of
memory at a location defined by the base pointer—plus or minus some known amount.
When a function returns,it undoes all these steps,in reverse order:The function deallo-
cates the space for local variables,restores the base pointer of the caller, and returns to

Recursion and Recursive Data Structures

CHAPTER 11
447

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 447

the code address saved (popping that address off the stack at the same time). Finally, the
function deallocates the space for the parameters that were passedin.

When a function calls itself, this process doesn’t change. In fact,the compiler does not
even know the difference. But we can see that this process supports the effect we want.
Each time our recursive function calls itself, new copies of the parameters are saved on
the stack, the return address is saved if we are in the middle of evaluating an expression
(as in the Fibonacci function),and the new recursion allocates its own space for all the
local variables. In the function Directory::Display() , for example, the variable
newPrefix is allocated fresh each time the function is called. This arrangement does not
interfere with other versions of that variable that are still alive inside earlier recursions of
the function.

Now we can consider the effects of infinite recursion—that is, recursion for which the
author did not properly confirm the termination requirements. Every time you recurse,
some amount of stack space is used. Even if you created a recursive function with no
parameters and no local variables,you cannot get around the need to save the base point-
er and the return address. If your function never stops recursing, it will grow the stack
until the memory allocated for the stack is used up. Typically, the stack space is adjacent
to the global memory that will be tromped on in the computer’s desperate attempt to save
base pointers and return addresses. Eventually, your computer will write over something
critical or it will have a memory fault. In either case, your program will halt (or maybe
your whole computer will halt). Because this is rarely the desired result,you should
check your termination requirements carefully.

It is possible to have a similar result even with the termination requirements carefully
implemented. You can halt the program or the computer if the proper recursion requires
more stack space than you have allocated. If you have large variables that have to be
allocated inside each level of recursion,you might consider doing so on the heap and just
storing a pointer as a local variable. If you do want to calculate your memory require-
ments,remember that you only have to worry about the maximum depth of recursion,
not the total number of times the recursive function is called. For example, consider the
Directory /File example, with the recursive function Directory::Display() . Although
this function is called for every Directory that exists,we never have both SubDir 1 and
SubDir 3 stored on the stack at the same time. We are completely done with SubDir 1

and all its children—and we have freed up all the stack space that they used—long
before we have anything to do with SubDir 3 .

Manipulating Data

PART III
448

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 448

Debugging Recursive Functions
We have now become adept at forgetting about the recursion when we are writing recur-
sive functions and structures. Unfortunately, when we are debugging, we become all too
aware of recursion because it is tricky to set a breakpoint inside the function without set-
ting one inside the function that it calls. You cannot even single-step over the function
call because the debugger secretly sets a temporary breakpoint when you step over a call.
This breakpoint will be triggered somewhere deep inside the recursion,and you will be
totally confused.

There are a couple of techniques for getting around these problems. The first is to tack
on an extra parameter in your recursive function so that you always know where you are.
You can even make conditional breakpoints (if your debugger supports them) that require
you to be at a certain line and require the value of level to be some known quantity.

Another technique for getting around problems with breakpoints is to create a complete
clone of your recursive function,which is the function the outside world calls. This func-
tion is safe to trace through,as you safely hop over the not-really-recursive calls. Of
course, if you try this approach, you have to be careful to keep the two functions true
clones,and you have to get rid of the extra function when you are done debugging.

Summary
Recursion has long been a source of fear and wonder for many aspiring software devel-
opers. However, if you start by forgettingabout the recursion while you are writing the
class or function,development is easier. Although you do have to go back and check the
requirements that the recursion will terminate, and you have to take a little care in debug-
ging, overall, recursion is nothing to fear.

Recursion and Recursive Data Structures

CHAPTER 11
449

11

R
EC

U
R

SIO
N

A
N

D
R

EC
U

R
SIV

E
D

A
TA

S
TR

U
C

TU
R

ES

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 449

450

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH11 Lp#1

15 239-5 CH11 2/19/99 1:21 PM Page 450

IN THIS CHAPTER

• Analyzing the Performance of
Algorithms 452

• The Bubble Sort 455

• The Insertion Sort 457

• The Selection Sort 460

• The Quick Sort 463

• The Merge Sort 466

• The Shell Sort 471

• The Heap Sort 473

• Choosing a Sort Method 476

• Generating Test Data 478

12
C

H
A

PT
ER

Designing Efficient
Sorting Methods

16 239-5 CH12 2/19/99 1:22 PM Page 451

Sorting is one of the most important functions performed in many applications. This
chapter considers several strategies you can use for the purpose of sorting data and also
compares the amount of work involved in each of these methods. As you read through
the chapter, you will realize that the efficiency of the particular method depends on sev-
eral factors such as implementation of the code and the actual data being sorted. Before
you decide to use any sort method, you should test it against various types of input—and
especially against some sample of the data that you will be sorting.

When you sort a given set of data (records),you do so with a key valuecontained in each
record. This key value can be just one item of the record or it can be built using several
items of the record. As far as the sorting process is concerned, however, the entire record
is represented by the key value for that record. A sort eventually reorders the records
based on their key values. Sorts can therefore be used to improve the performance of
searching methods.

The dependence of the sort’s efficiency on the input data will become clear as we look at
different implementations. For a particular implementation of a sort method, the worst
case and the best case are determined by the nature of the input data. For example, for
some sort methods the amount of work done for forward-sorted records is linear, but the
same method does work on the order of n2 for reverse-sorted records.

Analyzing the Performance of
Algorithms
Unlike benchmarks, the performance of algorithms such as those for sorting and search-
ing are not measured in terms of execution time because these algorithms are data depen-
dent. Such data-driven algorithms are expressed in terms of the size of the input using
the symbol O. This notation is referred to as theBig-O notation. Depending on the type
of algorithm, the work done (and therefore the algorithm’s performance) is determined
by different characteristics. For example, for sorting algorithms such as a bubble sort, the
number of comparisons done to place elements in their proper places is very important.
As the algorithm attempts to sort the set of N elements,it performs a number of compar-
isons and swaps the elements if they are not in the desired order. For a bubble sort, the
performance is given as O((n 2 - n)/2) . While sorting the list of N elements,the sort
traverses the list once for each element in the list; at the end of each traversal,one ele-
ment is placed in its correct location and is not considered for future traversals.

The search for a better-performing algorithm equates to the search for an algorithm that
has a better equation represented by Big-O. Algorithms that perform worse than n2 are
considered to be unusable; you should strive for O(n) . It should be understood that the
degree of n (the data input size) is more important than the constant that precedes n.

Manipulating Data

PART III
452

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 452

In other words,you can say that O(n) is not much better than O(3n) but is much better
than O(n 2) . You can easily see this truth by using specific values for n. A computer that
performs an operation in 1 nanosecond can take over 90 years to complete an algorithm
with a Big-O equation of O(n 3) , but that same computer can take only a couple hours to
complete an algorithm with a Big-O equation of O(15,000,000n) . As a result,Big-O
notation does not consider the constants; it considers only the degree. Therefore, the per-
formance of O(n) is comparable to the performance of O(4n) .

Comparing the Average, Worst, and Best Cases
You should be very careful not to get caught up with the Big-O notation. Keep in mind
that the performance is data dependent and not just data-size dependent. This means that
your algorithm may have one order with certain types of data input and a different order
with other types of data input. You should always understand the algorithm by looking at
how it behaves on an average—under the best-case and also under the worst-case sce-
nario. These various scenarios are based on the type of data that causes it to perform
more or less work to get the desired result. Do not be surprised if you encounter an algo-
rithm that performs very well on average but has a worst-case behavior so bad that you
choose another algorithm that performs poorly on average simply because its worst-case
behavior is not so bad. Table 12.1 shows how two algorithms compare for different val-
ues for n.

TABLE 12.1. COMPARING NLOGNWITH N2

Data Items (N) Average Case:nlogn Worse Case:n2

8 24 64

64 384 4096

2048 22528 4194304

Designing Efficient Sorting Methods

CHAPTER 12
453

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

NOTE

Best-case performance is generally not analyzed because it does not forecast
potential dangers in an algorithm. However, you should still look at the best-
case scenario because the best case can give you insight into the algorithm that
enables you to manipulate the implementation to your advantage. For exam-
ple, in the bubble sort method, if the data input is presorted (the best case), the
bubble sort performs in O(n) ; however, on average, the bubble sort performs in
O(n 2) . It is quite possible that the data is known in advance; if you know the
data that the algorithm will process, you can choose the algorithm for which
that data represents the best case.

16 239-5 CH12 2/19/99 1:22 PM Page 453

Optimizing algorithms means that you should try to reduce the time it takes to perform
the algorithm’s most frequent operations. For sorting algorithms,optimization means
minimizing the time it takes to perform comparisons and swapping. You can do this by
performing these operations in memory and not on disk. You can see that the implemen-
tation of the code plays a major part in the optimization of the algorithm. However, the
overall behavior of the algorithm does not change with implementation. In other words,
no matter how you code the performance of a bubble sort, on average the algorithm per-
formsin O(n 2) .

The Big-O notation gives us a way to compare algorithms,provided that all aspects are
equal. It must be understood that Big-O is significant for sufficiently large values of n
because, for small values of n, the constants (that Big-O ignores) can become an impor-
tant part of the sort method’s efficiency. For example, if A1(n) = 20n and A2(n) =

3000n , they are both O(n) —but in reality, A2 is 150 times faster than A1. It can therefore
be concluded that, all things being equal,an O(n) algorithm always outperforms an O(n 2)

algorithm.

The Stability of Sorts
A sort is considered to be stable if it maintains any preexisting ordering of the records it
is sorting. Suppose that you want to sort all the employees in a company by their
department_code . The employees are already sorted by their employee_no . A stable sort
by department_code would maintain the preexisting sort by employee_no . Stability of
sort methods is possible in simple techniques,but as you look at more sophisticated sort
methods,you will realize that it is very difficult to maintain stability. For this example,
you can convert an unstable sort into a stable sort by using a composite key that contains
both the employee_no and the department_code . However, this composite key may not
be desired under certain circumstances.

Using Additional Storage During Sorting
Another factorthat becomes significant when deciding among sort methods is the space
requirement. Some sort methods require a trivial amount of temporary space; others
require twice as much space as the size of the input. Recursive methods make use of
stack space; you should implement the code carefully to minimize the use of additional
space.

In addition to the temporary space requirement,the size of the input can sometimes force
you to choose an external sorting method. Internal sorting occurs when the input can be
loaded in main memory all at the same time. In contrast,if the input is too large for the
main memory, you end up using the mass storage media for a portion of the input. In
external sorts, the input is split into chunks that can be loaded into the main memory.

Manipulating Data

PART III
454

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 454

The chunks are sorted individually and then merged together. It is beyond the scope of
this chapter to discuss external sorts in detail. However, we will discuss the merge sort
method, which will give you some idea of how and when external sorts are used.

The Bubble Sort
The bubble sort is one of the simplest sort methods you can use. This method works well
for simple data structures or if the data set to be sorted is more or less already sorted.
The bubble sort is very inefficient for a general data set. In the bubble sort algorithm,
successive sweeps are made through the records to be sorted. During each sweep, the
algorithm compares the key to the data elements and swaps the elements if they are not
in the desired order. Swapping occurs only among consecutive elements of the data struc-
ture. As a result,only one element is placed in its sorted place after each sweep. The
sorted elements are not needed for comparison in successive sweeps. Here is the
pseudocode for bubble sorting an array of n elements in ascending order:

For iteration = 0 to (n-1)
Begin

For I = 0 to (n -1 - iteration)
Begin

if array[i] > array[i+1] then
swap array[i] and array[i+1]

end
end

A C++ implementation of this algorithm is shown in Listing 12.1.

LISTING 12.1. BUBBLE SORT IMPLEMENTATION

// Program: bubble_sort.cpp
// Author: Megh Thakkar
// Purpose: Sort an array of n elements in ascending order
// using the bubble sort method

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class sort {
private:

int *X; //List of data elements
int n; //Number of elements in the list

public:
sort (int size) { X = new int[n=size]; }

Designing Efficient Sorting Methods

CHAPTER 12
455

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 455

~sort() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
void bubble_sort(int input[]);

};

void sort::load_list(int input[])
{

for (int i = 0; i < n; i++)
X[i] = input[i];

}

void sort::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

}

void sort::bubble_sort(int input[])
{

int swapped = 1;
char *title;
load_list(input);
show_list(“List to be sorted in ascending order using bubble sort”);

// The FOR loop is executed once for each element in the array.
// At the end of each iteration, one element will be “bubbled” to
// its correct position and is not considered for further iterations
// of the loop.

for (int i = 0; i < n && swapped == 1; i++)
{

// If at the end of an iteration there was no swapping done
// then it indicates that the list is sorted as desired and
// there is no need to do more iterations.

swapped = 0;
for (int j = 0; j < n-(i+1) ; j++)

// if X[j] > X[j+1] then it indicates that they are out of order.
// Therefore swap them.

if (X[j] > X[j+1])
{

int temp;
temp = X[j];
X[j] = X[j+1];
X[j+1] = temp;
swapped = 1;

}

Manipulating Data

PART III
456

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.1. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 456

}
show_list(“List sorted in ascending order using bubble sort”);

}

//main() : Test driver for bubble sort
void main(void)
{
// Create a new object which has the method “bubble_sort”

sort sort_obj(5);
static int unsorted_list[] = {54,6,26,73,1};

sort_obj.bubble_sort(unsorted_list);
}

As Listing 12.1 shows, the maximum number of swaps occurs when thelist is sorted in
the reverse order of the desired sorting order. In other words,maximum swaps occur if
you want to sort the list in ascending order but the list is currently sorted in descending
order.

Analysis of the Bubble Sort
The bubble sort has several characteristics:

• After each iteration, only one data element is placed in its proper sorted position.

• The bubble sort depends on the comparing and swapping of consecutive data ele-
ments.

• In each execution of the inner loop,there are at most (n-iteration-1) number of
swaps.

• The worst-case scenario is when the data elements are reverse ordered.

• The best-case scenario is when the data elements are almostsorted in the correct
order.

• The bubble sort has a simple implementation.

The Insertion Sort
The insertion sort is a very simple sorting method that uses the data elements as keys for
comparison. The algorithm first orders A[0] and A[1] by inserting A[1] in front of A[0]

if A[0] > A[1] . Using this ordered list,the rest of the data elements are iteratively
inserted in the ordered list,one at a time. After the kth iteration, A[k] is inserted in its
correct sorted position and A[0] through A[k] are sorted. The pseudocode for this
method is asfollows:

For done = 0 to n-1
begin

Designing Efficient Sorting Methods

CHAPTER 12
457

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 457

temp = array[done]
for I = done - 1 to 0
begin

while (array[i] > temp) {
array[i+1] = array[i]
I++;

}
end
array[i+1] = temp

end

A C++ implementation of the insertion sort algorithm is shown in Listing 12.2.

LISTING 12.2. INSERTION SORT IMPLEMENTATION

// Program: insertion_sort.cpp
// Author: Megh Thakkar
// Purpose: Sort an array of n elements in ascending order
// using the insertion sort method
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class sort {
private:

int *X; //List of data elements
int n; //Number of data elements
int scan_no;

public:
sort (int size) { X = new int[n=size]; }
~sort() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
void insertion_sort(int input[]);

};

void sort::load_list(int input[])
{

for (int i = 0; i < n; i++){
X[i] = input[i];

}
}

void sort::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

Manipulating Data

PART III
458

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 458

}

void sort::insertion_sort(int input[])
{

char *title;
// The array S is used for storing the elements as they get sorted.

int S[100];
load_list(input);

show_list(“List to be sorted in the ascending order using insertion
➥sort”);

S[0] = X[0];

//Each iteration of the FOR loop compares X[i] with the elements
//in the sorted list S, in order to find its place in the array S.

for (int i = 1; i < n ; i++)
{

int temp = X[i];
int j = i-1;

while ((S[j] > temp) && (j >= 0))
{

S[j+1] = S[j];
j — ;

}

S[j+1] = temp;

}

//The method “show_list” uses the private array X. Therefore, we copy the
// sorted array S to X , so that it can be printed.

for (int m = 0; m < n; m++)
X[m] = S[m];

show_list(“List sorted in ascending order using insertion sort”);
}

void main(void)
{

sort sort_obj(5);
static int unsorted_list[] = {54,6,26,73,1};
sort_obj.insertion_sort(unsorted_list);

}

Notice how a “hole” is created in the sorted portion of the list. The “hole” is created by
copying the data to the temp location and by copying S[j] to S[j+1] if S[j] > temp .
This hole moves backward through the sorted data elements until the correct spot for the

Designing Efficient Sorting Methods

CHAPTER 12
459

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 459

new element is found. At this point,the while loop ends and inserts the element from the
temporary space into the correct position.

Analysis of the Insertion Sort
The insertion sort has several characteristics:

• After each iteration, only one data element is placed in its proper sorted position.

• The insertion sort uses fewer swaps than the bubble sort. This can easily be seen
because the bubble sort method always “bubbles” the largest element to the top;
the insertion sort moves the “hole” through already sorted elements and can gener-
ally traverse only half of the sorted elements before it finds the spot for the new
insertion.

• The worst-case scenario is when the data elements are reverse ordered.

• The best-case scenario is when the data elements are almostsorted in the correct
order.

• The insertion sort has a simple implementation.

A very important design consideration for an insertion sort is the choice of scan direction
through the sorted records. In other words,do you scan first-to-last or vice-versa through
the sorted records? This decision is very important; the correct answer depends on the
actual data you want to sort. To understand the importance of the scan direction,suppose
that the list is sorted in reverse order {5,4,3,2,1} . If you decide to scan last-to-first
through the sorted records,you can see that, with every iteration, the next element to
insert is lower than the already sorted elements,and the sort takes fewer comparisons
than if you had scanned in the first-to-last direction. On the other hand, if the list was
almost sorted, a first-to-last scan direction would be faster and would require fewer com-
parisons than a last-to-first scan direction.

The Selection Sort
The selection sort algorithm is based on using the data elements as keys for comparison
such that, at the end of each scan,only one data element is placed in its desired sorted
position. This algorithm is simple but very inefficient because it does not consider partial
or fully sorted lists. In other words,if you have a partially or fully presorted list,the
selection sort does the same number of comparisons as it would on a completely random
list and does not use any intelligence (unlike the bubble sort) to improve the perfor-
mance. As a result,the selection sort method does not really lend itself to a best-case
scenario. For a list of n data elements,the selection sort always does (n-1) iterations.

Manipulating Data

PART III
460

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 460

The pseudocode for the selection sort algorithm is shown here:

For j = 0 to (n-1) , do the following steps:

1. For the elements X[j+1] through X[n-1] , perform key comparisons and find the
lowest element; we’ll call that element X[lower] .

2. Swap X[lower] with X[j] . X[lower] is now in its sorted position.

At the end of the loop,the list is sorted.

A C++ implementation of the selection sort is shown in Listing 12.3.

LISTING 12.3. SELECTION SORT IMPLEMENTATION

// Program: selection_sort.cpp
// Author: Megh Thakkar
// Purpose: Sort an array of n elements in ascending order
// using the selection sort method
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class sort {
private:

int *X; //List of data elements
int n; //Number of elements in the list

public:
sort (int size) { X = new int[n=size]; }
~sort() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
void selection_sort(int input[]);

};

void sort::load_list(int input[])
{

for (int i = 0; i < n; i++)
X[i] = input[i];

}

void sort::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

}

Designing Efficient Sorting Methods

CHAPTER 12
461

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 461

void sort::selection_sort(int input[])
{

char *title;
load_list(input);
show_list(“List to be sorted in the ascending order using selection

sort”);

// Using the FOR loop, iteratively find the lowest element in the list
// and then move it to its correct position.

for (int j = 0; j < (n-1); j++)
{

// For each iteration, start with the lowest element as the element
// at index j.

int lowest = j;
for (int k = j+1; k < n ; k++)

{
if (X[k] < X[lowest])

lowest = k;
}

//Once an element lower than the lowest known thus far is found, swap
them.

int temp;
temp = X[j];
X[j] = X[lowest];
X[lowest] = temp;

}

show_list(“List sorted in the ascending order using selection sort”);
}

//main() : Test driver for selection sort
void main(void)
{

sort sort_obj (5);
static int unsorted_list[] = {54,6,26,73,1};
sort_obj.selection_sort(unsorted_list);

}

Analysis of the Selection Sort
From Listing 12.3,you can see that for the outer loop iteration j , the inner loop does at
most (n-j) number of comparisons and the outer loop is executed (n-1) times. The total
number of comparisons for the selection sort can be calculated like this:

(n-1) + (n-2) + (n-3) +...+ [n-(n-1)] = n(n-1)/2 = n 2/2 – n/2 = O(n 2).

Manipulating Data

PART III
462

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.3. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 462

Thus,this is the worst-case scenario. In fact,the best-case scenario also takes the same
number of comparisons because it does not consider any partial sorting that might exist
in the input.

The Quick Sort
The quick sort is the most efficient internal sort algorithm. Its performance is largely
influenced by the choice of the pivot. The quick sort makes use of three strategies:

1. Split the array into small subarrays

2. Sort the subarrays

3. Merge the sorted subarrays

A quick sort can be implemented in several ways,but the goal of each approach is to
select a data element and place it in its proper position (which is referred to as the pivot)
so that all the elements on the left side of the pivot are less than (or come before) the
pivot and all the elements on the right side of the pivot are greater than (or come after)
the pivot. The choice of the pivot and the method used to split the array has a big influ-
ence on the overall performance of the implementation. We will focus on a recursive
implementation of the quick sort. The pseudocode for this implementation is as follows:

1. Select a data element and position it as a pivot so that it divides the array into a left
subarray and a right subarray as just described.

2. Apply a quick sort to the left subarray.

3. Apply a quick sort to the right subarray.

The choice of the pivot is crucial. The following strategy can be used as an efficient split
method:

1. Choose the first data element’s key as the pivot. In other words,Pivot =

X[first] .

2. Initialize two search pointers, I and j , such that I = first (the lowermost index
of the subarray) and j = last (the uppermost index of the subarray).

3. Using the search pointer I , search from the left for a data element greater than or
equal to the pivot. This can be done by using the following pseudocode:

While A[i] <= Pivot and I < last,
continue incrementing I by 1
otherwise stop incrementing I

4. Using the search pointer j , search from the right for a data element less than or
equal to the pivot. This can be done by using the following pseudocode:

Designing Efficient Sorting Methods

CHAPTER 12
463

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 463

While A[j] >= Pivot and j > first
continue decrementing j by 1
Otherwise stop incrementing j

5. If I < j , swap A[i] and A[j] .

6. Repeat steps 2 through 4 until I > j .

7. Swap the pivot with A[j] .

At the end of step 7, the pivot will be positioned as desired. This process is implemented
in C++ using the code shown in Listing 12.4.

LISTING 12.4. QUICK SORT IMPLEMENTATION

// Program: quick_sort.cpp
// Author: Megh Thakkar
// Purpose: Sort an array of n elements in ascending order
// using the quick sort method
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class sort {
private:

int *X; //List of data elements
int n; //Number of elements in the list

public:
sort (int size) { X = new int[n=size]; }
~sort() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
void quick_sort(int first, int last);

};

void sort::load_list(int input[])
{

for (int i = 0; i < n; i++)
X[i] = input[i];

}

void sort::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

}

void sort::quick_sort(int first, int last)
{

Manipulating Data

PART III
464

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 464

//”temp” variable is temporary space used during swapping
int temp;

if (first < last)
{

//Start with the pivot as the first element in the list
int pivot = X[first];

//The variable “i” is used for scanning from the left.
int i = first;

//The variable “j” is used for scanning from the right.
int j = last;
while (i < j)
{

// Search the list for a data element that is greater than or equal to
// the chosen pivot element. Search from the left.

while (X[i] <= pivot && i < last)
i += 1;

// Search the list for a data element that is less than or equal to
// the chosen pivot element. Search from the right.

while (X[j] >= pivot && j > first)
j -= 1;

if (i < j) //swap(X[i],X[j])
{

temp = X[i];
X[i] = X[j];
X[j] = temp;

}

}
//swap(X[j],X[first])
temp = X[first];
X[first] = X[j];
X[j] = temp;

//Recursively apply quick sort on the two splits
quick_sort(first, j-1);
quick_sort(j+1, last);

}
}

//main() : Test driver for quick sort
void main(void)
{

sort sort_obj (5);
static int unsorted_list[] = {54,6,26,73,1};

sort_obj.load_list(unsorted_list);
sort_obj.show_list(“List to be sorted in ascending order using

➥quick sort”);
sort_obj.quick_sort(0,4);

sort_obj.show_list(“List sorted in ascending order using quick
➥sort”);
}

Designing Efficient Sorting Methods

CHAPTER 12
465

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 465

Analysis of the Quick Sort
The quick sort method should be one of the first you consider for internal sorts. With this
algorithm, the split phase is complex and the merge phase is simple. In the best case, the
work done is on the order of nlog2n ; in the worst case, the work is equivalent to a selec-
tion sort, resulting in O(n 2) . The choice of the pivot is very important for the
performance of the quick sort.

The Merge Sort
The merge sort is a very efficient method for external sorting when the data elements to
be sorted do not fit in the available memory and you have to use a disk to perform the
sort. The merge sort uses the same strategy as the quick sort:

1. Split the file into smaller files.

2. Sort the smaller files.

3. Merge the sorted files.

In the quick sort, the split is the complicated step and the merge is the simple step; in the
merge sort, the split step is simple and the merge step is more involved. There are several
versions of the merge sort, based on the strategy used for the split and merge phases. We
will f ocus on the merge sort using the iterative method. Here are the steps involved in
this method:

1. Open the file to be sorted (to_sort) in read/write mode; also open two temporary
files for writing.

2. Split Phase:Copy elements of the to_sort file one at a time alternately to the tem-
porary files.

3. Merge Phase:Compare each element from the two temporary files and write the
lesser of the two elements first, followed by the greater, back to the to_sort file.

4. Split Phase:Copy the elements from to_sort two at a time alternately to the tem-
porary files.

5. Merge Phase:Compare each group of two elements from the temporary files and
write the lesser of the two element groups first, followed by the greater group,back
to the to_sort file.

6. Repeat the split and merge phases with the group size 2I for I = 2,3,4,...log2n .
The result is a sorted to_sort file.

Figure 12.1 shows how the merge sort works.

Manipulating Data

PART III
466

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 466

A C++ implementation of a merge sort is shown in Listing 12.5.

LISTING 12.5. MERGE SORT IMPLEMENTATION

//Program: merge_sort.cpp
//Author: Megh Thakkar
//Purpose: Sort a file containing data elements using merge sort
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

#define MIN(x,y) ((x <= y) ? x : y)

enum STATUS {UNSORTED, SORTED, DATA_AVAILABLE,
END_OF_FILE};

void open_for_split(FILE *sorted_file, FILE *sub_file1,FILE *sub_file2){

rewind (sorted_file);
fclose (sub_file1);
fclose (sub_file2);

remove (“subfile1.fil”);
remove (“subfile2.fil”);

sub_file1 = fopen (“subfile1.fil”, “w+”);
sub_file2 = fopen (“subfile2.fil”, “w+”);

}

void open_for_merge(FILE *sorted_file, FILE *sub_file1,FILE *sub_file2){

fclose (sorted_file);

Designing Efficient Sorting Methods

CHAPTER 12
467

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

FIGURE 12.1.
The merge sort.

9File_to_sort 7 2 6 1 4 5

9Sub_file1 2 1 5

7Sub_file2 6 4

497 162

97

62

41

File_to_sort 5

Sub_file1

Sub_file2 5

File_to_sort 2 6 7 9

2 6 7 9

1 4 5

1 4 5

Sub_file1

Sub_file2

1File_sorted 2 4 5 6 7 9

continues

16 239-5 CH12 2/19/99 1:22 PM Page 467

remove (“result.fil”);

sorted_file = fopen (“result.fil”, “w+”);
rewind (sub_file1);
rewind (sub_file2);

}

void close_files(FILE *sorted_file, FILE *sub_file1,FILE *sub_file2){

fclose (sorted_file);
fclose (sub_file1);
fclose (sub_file2);

remove (“subfile1.fil”);
remove (“subfile2.fil”);

}

void Merge_Sort (char *sorted_file_name)
{

FILE *sorted_file, *sub_file1, *sub_file2;
enum STATUS status = UNSORTED, status_file1, status_file2;
int data_read, read_from_file1, read_from_file2, last_considered = 0;
int curr_file = 1;

sorted_file = fopen (sorted_file_name, “r+”);
sub_file1 = fopen (“subfile1.fil”, “w+”);
sub_file2 = fopen (“subfile2.fil”, “w+”);

if (sorted_file == NULL || sub_file1 == NULL || sub_file2 == NULL){
cout<< “\nSorry. Files cannot be opened\n”;
exit (-1);

}

while (status == UNSORTED) {
open_for_split(sorted_file, sub_file1, sub_file2);

//Split the file into sub_file1 and sub_file2.
//The if statement checks for any preexisting ordering
//of data elements and tries to use it to speed up
//the sort process.

while (fscanf (sorted_file, “%d”, &data_read) != EOF) {
if (data_read < last_considered) {

if (curr_file == 1)
fprintf (sub_file2, “%d “, data_read);

else
fprintf (sub_file1, “%d “, data_read);

}
else{

if (curr_file == 1)

Manipulating Data

PART III
468

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.5. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 468

fprintf (sub_file1, “%d “, data_read);
else

fprintf (sub_file2, “%d “, data_read);
}

last_considered = data_read;

}

open_for_merge(sorted_file, sub_file1, sub_file2);

status_file1 = DATA_AVAILABLE;
status_file2 = DATA_AVAILABLE;

if (fscanf (sub_file1, “%d”, &read_from_file1) == EOF) {
status = SORTED;
status_file1 = END_OF_FILE;

}

if (fscanf (sub_file2, “%d”, &read_from_file2) == EOF) {
status = SORTED;
status_file2 = END_OF_FILE;

}

last_considered = MIN (read_from_file1, read_from_file2);

while (status_file1 != END_OF_FILE &&
status_file2 != END_OF_FILE) {

if (read_from_file1 <= read_from_file2 && read_from_file1 >=
➥last_considered) {

// Write values from sub_file1
fprintf (sorted_file, “%d “, read_from_file1);
last_considered = read_from_file1;
if (fscanf (sub_file1, “%d”, &read_from_file1) == EOF)

status_file1 = END_OF_FILE;
}
else if (read_from_file2 <= read_from_file1 && read_from_file2 >=

➥last_considered) {
// Write values from sub_file2
fprintf (sorted_file, “%d “, read_from_file2);
last_considered = read_from_file2;
if (fscanf (sub_file2, “%d”, &read_from_file2) == EOF)

status_file2 = END_OF_FILE;
}
else if (read_from_file1 >= last_considered) {

// Write values from sub_file1
fprintf (sorted_file, “%d “, read_from_file1);
last_considered = read_from_file1;
if (fscanf (sub_file1, “%d”, &read_from_file1) == EOF)

status_file1 = END_OF_FILE;
}

Designing Efficient Sorting Methods

CHAPTER 12
469

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 469

else if (read_from_file2 >= last_considered) {
// Write values from sub_file2
fprintf (sorted_file, “%d “, read_from_file2);
last_considered = read_from_file2;
if (fscanf (sub_file2, “%d”, &read_from_file2) == EOF)

status_file2 = END_OF_FILE;
}
else

last_considered = MIN (read_from_file1, read_from_file2);
}

while (status_file1 != END_OF_FILE) {
//Now the rest of sub_file1 can be written

fprintf (sorted_file, “%d “, read_from_file1);
if (fscanf (sub_file1, “%d”, &read_from_file1) == EOF)

status_file1 = END_OF_FILE;
}
while (status_file2 != END_OF_FILE) {

//Now the rest of sub_file2 can be written
fprintf (sorted_file, “%d “, read_from_file2);
if (fscanf (sub_file2, “%d”, &read_from_file2) == EOF)

status_file2 = END_OF_FILE;
}

}

close_files(sorted_file, sub_file1, sub_file2);
}

void main(void)
{

cout << “Sorting filename : tosort.fil” << “\n\n\n”;
Merge_Sort (“result.fil”);
cout << “File has been sorted. Please see filename: result.fil” <<

➥ “\n\n\n”;
}

Analysis of the Merge Sort
The merge sort is an example of the divide-and-conquer strategy. In this method, the split
phase is simple:it simply halves the list. The merge phase is more complex. In each
scan,the merge sort passes over the entire file and thus performs O(n) comparisons. In
the first scan,the merge sort considers only one list. In the second scan,the algorithm
splits the list into halves and then sorts and merges them. In the kth scan,the algorithm
splits the list into sublists,which are 2k-1 in number. You can easily see that because
we are basically halving the list,we have at the most log 2n sublists for a list with n

Manipulating Data

PART III
470

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.5. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 470

elements. In the worst case, the merge sort has a performance on the order of nlog 2n—
much better than most of the other methods.

The Shell Sort
The shell sort is a variation of the insertion sort. The insertion sort has the limitation that
it compares consecutive data elements only—and as a result,a swap moves an element
only one space. Elements far away from their correct location require many passes
through the sort to properly place them. The shell sort allows “jumps” in sorting order to
occur. To permit this, the records are subdivided into interleaved groups,and each group
is sorted using an insertion sort. The subdivision is performed using an increment value
(say h) to begin with; the increment value divides the original array into h subarrays.
These subarrays are then sorted using an insertion or bubble sort. This step is referred to
as an h-sort. The h-sort process is repeated using diminishing values for h until the last
value of h is 1. During the last scan,the list is almost sorted, and the insertion sort during
the final scan can complete the process in linear time, resulting in a sorted list. The shell
sort is therefore also referred to as thediminishing increment sort.

The selection of an appropriate sequence of values for h is very important. A lot of
research has been done regarding the choice of values for h without a clear mandate
about how to make this choice. In the C++ implementation in Listing 12.6,we use the
following strategy to choose the values for h. The following is a strategy that has been
found to work well:

1. Let h1 = 1 and n equal the number or elements to sort.

2. Let hs+1 = 3 * h s + 1 , stoppingwhen h > n/9 .

LISTING 12.6. SHELL SORT IMPLEMENTATION

// Program: shell_sort.cpp
// Author: Megh Thakkar
// Purpose: Sort an array of n elements in ascending order
// using the shell sort method
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class sort {
private:

int *X; //List of data elements
int n; //Number of data elements in the list

public:

Designing Efficient Sorting Methods

CHAPTER 12
471

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 471

sort (int size) { X = new int[n=size]; }
~sort() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
void shell_sort(int input[]);

};

void sort::load_list(int input[])
{

for (int i = 0; i < n; i++)
X[i] = input[i];

}

void sort::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

}

void sort::shell_sort(int input[])
{

int i,h;
int temp;

//Load the input list in the private array
load_list(input);
show_list(“List to be sorted: “);

//Implementing the shell_sort algorithm
for (h = 1; h <= n/9; h = 3*h + 1)

;
//Use diminishing values for “h”--the step.

for (; h > 0; h /=3)
{

for (i = h ; i < n ; i++)
{

int j;
temp = X[i];
for (j = i-h ; j >=0 ; j -= h)
{

if (temp < X[j])
{

X[j+h] = X[j];
}
else

break;
}

X[j+h] = temp;

Manipulating Data

PART III
472

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.6. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 472

}
}

show_list(“List sorted using shell sort: “);
}

//main() : Test driver for shell sort
void main(void)
{
// Create a new object of the class “sort”

sort sort_obj(10);
// List to be sorted

static int unsorted_list[] = {54,6,26,73,1,43,51,83,5,28};
//Call the method shell_sort

sort_obj.shell_sort(unsorted_list);

}

Analysis of the Shell Sort
A lot of research has been done about the shell sort, and it has shown that the worst-case
performance is in the range of n1.25 to 1.6n 1.25 . The efficiency of this method is largely
influenced by the choice of the sequence of values for h. As mentioned earlier, there is
no ideal formula for choosing this sequence, but well-chosen sequences have shown the
performance of the shell sort to be on the order of n(log 2n) 2. The shell sort is pretty
much insensitive to the input data,and so it performs worse than the bubble sort and
insertion sort when the input data is almost sorted. However, for random data sets,the
shell sort should be among your topconsiderations.

The Heap Sort
The heap sort does its job by looking at the array as a binary tree with certain character-
istics. It basically rearranges the data elements in a tree so that the value at each node is
greater than or equal to the values of its children. Keep in mind that the nodes in the
heap are not sorted. However, the condition that any given parent node has a larger data
element than all its child nodes ensures that the largest data element is at the top of the
heap. If you then remove this top data element and swap it with the end of the array, the
element is in its proper sorted position. The heap condition can now be reinforced:search
through the remaining data elements to find the largest element among them. By repeat-
ing this procedure, you eventually sort the array.

A C++ implementation of a heap sort is shown in Listing 12.7.

Designing Efficient Sorting Methods

CHAPTER 12
473

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 473

LISTING 12.7. HEAP SORT IMPLEMENTATION

//Program: heap_sort.cpp
//Author: Megh Thakkar
//Purpose: Sort an Array of data elements using heap sort method.

#include <iostream.h>

class Heap {
private:

int *X;
int heap_size;

public:
Heap (int n);
~Heap () { delete [] X; }
void establish_heap_property (int root, int limit);
void construct_heap (void);
void heap_sort (int input[]);
void show_list (char *title);

void load_list(int input[]);
};

Heap::Heap (int n)
{

X = new int [n + 1];
heap_size = n;

}

void Heap::load_list(int input[])
{

for (int i = 1; i <= 10; i++)
X[i] = input[i-1];

}

void Heap::establish_heap_property (int root, int limit)
{

int done = 0;
int biggest = X[root];
int j = 2 * root;
while ((j <= limit) && (done == 0)) {

//Find which is the maximum among the left and right children
if ((j < limit) && (X[j] < X[j + 1]))

j++;
//Compare the maximum child found with biggest.
//If biggest is the maximum then we have established the heap property and
➥exit.

if (biggest >= X[j])
done= 1;

else {
X[j/2] = X[j];

Manipulating Data

PART III
474

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 474

j = 2 * j;
}

}
X[j/2] = biggest;

}

void Heap::construct_heap (void)
{

for (int i = heap_size/2; i > 0; i--)
establish_heap_property (i, heap_size);

}

void Heap::heap_sort (int input[])
{

construct_heap ();

for (int i = (heap_size - 1); i > 0; i--) {
//Swap X[i+1] and X[1]

int temp = X[i + 1];
X[i + 1] = X[1];
X[1] = temp;
// Place the root in the sorted position
input[i] = X[i + 1];
establish_heap_property (1, i);

}
input[0] = X[1];

}

void Heap::show_list (char *title)
{
//Based on whether the sorting is complete or not, different parts of
//the array are shown.

cout << “\n” << title;
for (int i = 1; i <= heap_size; i++)

cout << “ “ << X[i];
cout << “\n”;

}

void main (void)
{

Heap heap_obj(10);
// Array of data elements to be sorted
static int input[] = {1,9,24,2,59,31,99,74,3,66};

int sz = 10;

cout << “List to be sorted: “;

Designing Efficient Sorting Methods

CHAPTER 12
475

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 475

for (int k = 0; k < sz; k++)
cout << input[k] << “ “;

cout <<”\n\n\n”;
heap_obj.load_list(input);

heap_obj.heap_sort (input);
heap_obj.show_list (“List sorted using Heap sort: “);

}

Analysis of the Heap Sort
The heap sort method relies quite heavily on the build_max_heap() function. This func-
tion is used to build the heap and place the maximum value at the top so that it can be
removed from consideration. The work done by this function is O(n) . An efficient imple-
mentation of this method can result in work that is O(nlog 2n) .

Choosing a Sort Method
This chapterhas discussed several algorithms for implementing a sort. Each of these
algorithms represents a compromise of some kind because the best-case and worst-case
scenarios for each depends on the actual data to be sorted. However, some algorithms are
generally better than others because they minimize the number of comparisons,the num-
ber of swaps,or the number of scans. In general, if you have a small number of records
to sort (say, less than a thousand),you can choose any of the advanced sort methods
(such as the quick sort, heap sort, or shell sort) because, as shown in Table 12.2,the Big-
O performance equation for the heap sort and quick sort are O(nlog 2n) and the shell sort
is O(n 1.25) . There is no significant difference between these performance statistics for
small values of n.

You should also keep in mind that the actual implementation of a particular sort method
determines the efficiency of that method. Table 12.3 compares the characteristics of dif-
ferent sort techniques. For example, for an insertion sort, the best-case scenario (presort-
ed records) can easily become the worst-case scenario if you have a poor implementation
(you scan last-to-first instead of first-to-last). The heap sort and shell sort have the advan-
tage that they do not really depend on the input and are not affected by a true worst-case
scenario. A clever implementation of the quick sort can often be much faster than any of
the other advanced sort methods.

Manipulating Data

PART III
476

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.7. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 476

TABLE 12.2. COMPARING SORT METHODS

Sort Method Worst Case Best Case

Bubble sort O(n 2) O(n)

Insertion sort O(n 2) O(n)

Selection sort O(n 2) O(n 2)

Heap sort O(nlog 2n) O(nlog 2n)

Merge sort O(nlog 2n) O(nlog 2n)

Quick sort O(n 2) O(nlog 2n)

Shell sort O(n(log 2n) 2)

From Table 12.2,we can conclude that for a large number of data elements (a large n),
the growth of log 2n is smaller than n2. As a result,sorting methods such as the heap
sort, merge sort, and quick sort are very efficient. On the other hand, for a small number
of data elements (a small n), sort methods such as the bubble sort, insertion sort, and
selection sorts are efficient, as Table 12.3 shows.

TABLE 12.3. COMPARING THE CHARACTERISTICS OF SORT METHODS

Sort Method Advantage Disadvantage

Insertion sort Code is simple Comparisons are O(n 2) on average

Stable sort

In-place sorting of arrays

Comparisons are
O(n) in the best case

Heap sort In-place sorting of arrays Unstable sort

Always O(nlogn) Complex sort
and relatively fast

Quick sort On anaverage, this Complex code
is the fastest

Worst-case performance is
very bad

Additional stack space required is
O(logn)

Unstable sort

Designing Efficient Sorting Methods

CHAPTER 12
477

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 477

Selection sort Code is simple Comparisons are O(n 2) on average

Stable sort

In-place sorting of arrays

Swapping is O(n)

Shell sort Simple code Unstable sort

In-place sorting of arrays Heap sort and quick sort are better than
the shell sort in most cases

Worst-case behavior is better
than others O(n 1.5)

Generating Test Data
Before you decide to use a particular sort implementation, you should check it against a
variety of inputs to make sure that your implementation functions optimally under all
conditions. You should at least check the implementation against forward-ordered,
reverse-ordered, increasing-decreasing, and duplicate data records. In addition, you
should also use a sample of the data you are expecting to sort.

The code in Listing 12.8 can be used to generate different types of test data.

LISTING 12.8. GENERATING TEST DATA FOR THE SORT METHODS

// Program: test_data.cpp
// Author: Megh Thakkar
// Purpose: Generate data in forward, reverse, random and duplicate order
// This data can be used for testing the various sort methods.
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <iostream.h>

class test_data {
private:

int *X; //List of data elements
int n; //Number of elements in the list

public:
test_data (int size) { X = new int[n=size]; }
~test_data() { delete []X; }

// Display the results using the method “show_list”

Manipulating Data

PART III
478

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

TABLE 12.3. COMPARING THE CHARACTERISTICS OF SORT METHODS

Sort Method Advantage Disadvantage

16 239-5 CH12 2/19/99 1:22 PM Page 478

void show_list (char *title);
// Generate data in the forward order using the method “forward_ord”

void forward_ord(int n);
// Generate data in the reverse order using the method “reverse_ord”

void reverse_ord(int n);
// Generate data in the duplicate order using the method “duplicate_ord”

void duplicate_ord(int n);
// Generate data in the random order using the method “random_ord”

void random_ord(int n);
};

void test_data::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < n; i++)

cout << “ “ << X[i];
cout << “\n”;

}

void test_data::forward_ord(int n)
{

int i, step, first, last;

first = 0;
last = n;
step = 1;
for (i = first; i < last; i +=step)

X[i] = i;

show_list(“Test data generated in the forward order: “);
}

void test_data::reverse_ord(int n)
{

int i, step, first, last;

first = n;
last = 0;
step = 1;
for (i = first; i > last; i -=step)

X[n-i] = i;

show_list(“Test data generated in the reverse order: “);
}

void test_data::duplicate_ord(int n)
{

int i, step, first, last;

first = 0;

Designing Efficient Sorting Methods

CHAPTER 12
479

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

continues

16 239-5 CH12 2/19/99 1:22 PM Page 479

last = n;
step = 1;
for (i = first; i < last; i +=step)

X[i] = abs(rand()) % 2;

show_list(“Test data generated in the forward order: “);
}

void test_data::random_ord(int n)
{

int i, step, first, last;

first = 0;
last = n;
step = 1;
for (i = first; i < last; i +=step)

X[i] = abs(rand()) ;

show_list(“Test data generated in the forward order: “);
}

//main() : Test driver for generating test data
void main(void)
{

int n;

cout << “\n Enter the number of data elements you want to generate:
➥“;

cin >> n;

cout << “\n We will generate numbers in the following orders: \n”
<< “ (1) Forward-ordered\n”
<< “ (2) Reverse-ordered\n”
<< “ (3) Duplicate records\n”
<< “ (4) Random ordered records\n”;

// Create an object to store the generated data
test_data test_obj(n);

test_obj.forward_ord(n);

test_obj.reverse_ord(n);

test_obj.duplicate_ord(n);

test_obj.random_ord(n);

}

Manipulating Data

PART III
480

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

LISTING 12.8. CONTINUED

16 239-5 CH12 2/19/99 1:22 PM Page 480

Summary
This chapter enables you to choose the best sorting method for your needs. The key point
to remember is that the efficiency of any sorting method strongly depends on the imple-
mentation of the method and the actual data the method is sorting. The best way to
choose the right sorting method for your needs is to test each method against various
types of input—in particular, against a sample of the kind of data you intend to sort.

Designing Efficient Sorting Methods

CHAPTER 12
481

12

D
ESIG

N
IN

G
E

FFIC
IEN

T
S

O
R

TIN
G

M
ETH

O
D

S

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 481

482

P/V C++ Unleashed ISBN 72312395 Freelance 9.30.98 CH12 Lp#1

16 239-5 CH12 2/19/99 1:22 PM Page 482

IN THIS CHAPTER

• Linear Searches 484

• Pattern Matching 489

• Graph Algorithms 494

• External Searching 508

13
C

H
A

PT
ER

Search Algorithms
in C++

17 239-5 CH13 2/19/99 1:23 PM Page 483

Searching is the process of finding data in a set of data elements that fits a certain crite-
ria. For various applications,efficient search techniques are the key to whether or not an
application’s performance is acceptable.

The ultimate goal of any technique you use for searching is the same:find the informa-
tion requested. However, several factors, such as the implementation and the logic that
the technique relies on,determine whether or not a particular search technique can be
used for a given situation. You should consider several criteria when comparing search
techniques:

• Time to set up:Several techniques require a substantial amount of time to set up
the search environment before they can begin to really search for information. If
you are planning to search through a small amount of data, the setup time becomes
a big factor in which technique you choose.

• Time to search: The search time is basically the time it takes to run the search
algorithm. Most of the search algorithms are of the order of O(n) where n is the
number of data elements through which you are trying to search. This linear time is
generally comprised of the setup time (x) and the search time (y). In other words,
total time = x + y ; the goal should be to minimize the x and y. In the preceding
equation, the setup time is equivalent to x, and the search time y is equivalent to
O(n) . As n increases,the setup time generally becomes insignificant in the calcula-
tion of the total time.

• Need to backtr ack: Some search algorithms do a simple linear scan through the
data elements; others go back and forth through the data. You must consider this
criteria when selecting a search algorithm.

Linear Searches
Linear searches are the simplest type of searches because they simply scan through the
set of data elements and compare the elements to the data it is searching for until a
match is obtained. Linear searches are therefore simple to implement but are not neces-
sarily efficient. There is no time needed to set up and they may backtrack. Suppose that
you want to search an unsorted array X consisting of N integers for a particular data item
specified by search_item (S) . The pseudocode toachieve this can be as follows:

Set i = 0
Compare X[i] with S. If there is a match return i otherwise increment i by
➥1.
Repeat step 2 and scan the array until either there is a match or
you have scanned the entire array and there is no match.

A C++ implementation of this algorithm is shown in Listing 13.1.

Manipulating Data

PART III
484

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 484

LISTING 13.1. C++ IMPLEMENTATION OF A LINEAR SEARCH METHOD

//Program: linear_search.cpp
//Author: Megh Thakkar
//Purpose: Search an unsorted array of N integers
//for an integer S.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class Search {
private:

int *X; //List of data elements
int N; //Number of data elements

public:
Search (int size) { X = new int[N=size]; }
~Search() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
int linear_search(int S);

};

void Search::load_list(int input[])
{

for (int i = 0; i < N; i++)
X[i] = input[i];

}

void Search::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < N; i++)

cout << “ “ << X[i];
cout << “\n”;

}

int Search::linear_search(int S)
{

for (int j = 0; j < N; j++)
{ if (X[j] == S)

// Match found.
//Return j

return(j);
}
return(-1);

}

//main() : Test driver for linear search
void main(void)

Search Algorithms in C++

CHAPTER 13
485

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

continues

17 239-5 CH13 2/19/99 1:23 PM Page 485

{
int search_key;
Search search_obj (10);
static int list_to_search[] = {54, 6,26,73,1,100,36,41,2,83};

cout << “\n”
<< “C++ Implementation of Linear search”
<< “ \n”;

search_obj.load_list(list_to_search);

cout << “\n” << “Enter the key to search: “;
cin >> search_key;

search_obj.show_list(“Searching the following list: “);
cout << “\n\n\n”;

int result = search_obj.linear_search(search_key);
if (result != -1)

cout << “\n” << “Search Result: “
<< “X[“ << result << “] = “
<< search_key;

else
cout << “\n” << “Search Result: “

<< search_key
<< “ is not found in the list \n”;

cout << “\n\n\n”;

}

Analysis of the Linear Search
The algorithm presented in Listing 13.1 is linear because, in the worst case, it will do n
comparisons; therefore, the work done is on the order of O(n) . In addition, the best case
is when the first comparison gives you the match. The average case is O(n/2) = O(n) .

Searching a Sorted Array
If the array that you are trying to search is already sorted, you can improve the perfor-
mance of the search by using a divide-and-conquer strategy called a binary search (see
Listing 13.2).

The pseudocode for thebinary search is as follows:

Split the array into two halves. The split is done at the middle.
Compare the search_key with the X[middle].

Manipulating Data

PART III
486

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

LISTING 13.1. CONTINUED

17 239-5 CH13 2/19/99 1:23 PM Page 486

If they match then the search is over.
If search_key > X[middle] then the search_key is in the upper half of the
➥array;
Therefore repeat the above steps to the upper half;
Otherwise, the search key is in the lower half of the array
And you should repeat the above steps to the lower half of the array.

LISTING 13.2. C++ IMPLEMENTATION OF A BINARY SEARCH FOR A SORTED ARRAY

//Program: binary_search.cpp
//Author: Megh Thakkar
//Purpose: Search a sorted array of N element
//for a given search_key
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class Search {
private:

int *X; //List of data elements
int N; //Number of elements

public:
Search (int size) { X = new int[N=size]; }
~Search() { delete []X; }
void load_list (int input[]);
void show_list (char *title);
int binary_search(int S);

};

void Search::load_list(int input[])
{

for (int i = 0; i < N; i++)
X[i] = input[i];

}

void Search::show_list(char *title)
{

cout << “\n” << title;
for (int i = 0; i < N; i++)

cout << “ “ << X[i];
cout << “\n”;

}

int Search::binary_search(int S)
{

int head;
int tail;

Search Algorithms in C++

CHAPTER 13
487

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

continues

17 239-5 CH13 2/19/99 1:23 PM Page 487

int middle;
int bmiddle; //The element before the middle element
int amiddle; //The element after the middle element

head = 0;
tail = N;

if ((S < X[0]) || S > X[N-1])
//search_key is out of bounds,

//therefore there is no need to search the list.
return(-1);

while (head < tail)
{

middle = ((head + tail)/2) + 1;
bmiddle = middle - 1;
amiddle = middle + 1;
if (S == X[middle] || S == X[bmiddle] || S == X[amiddle])
//This comparison with not just

//the middle element but also the
//elements before and after it is

//found to be more efficient
//than a simple comparison with middle element.
{

if (S == X[middle]) return(middle);
if (S == X[bmiddle]) return(bmiddle);
if (S == X[amiddle]) return(amiddle);

}
else if (S > X[middle])

//Search key (if exists) should be
//in the upper half of the list,

//therefore eliminate the lower half.
head = middle + 1;

else
//Search key (if exists) should be

//in the lower half of the list,
//therefore eliminate the upper half.
tail = middle - 1;

}
return (-1);

}

//main() : Test driver for binary search
void main(void)
{

int search_key;

Manipulating Data

PART III
488

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

LISTING 13.2. CONTINUED

17 239-5 CH13 2/19/99 1:23 PM Page 488

Search search_obj (10);
static int sorted_list[] = {2,5,10,31,45,48,52,58,66,82};

cout << “\n”
<< “C++ Implementation of Binary search” << “ \n”;

search_obj.load_list(sorted_list);

cout << “\n” << “Enter the key to search: “;
cin >> search_key;

search_obj.show_list(“Searching the following sorted list: “);
cout << “\n\n\n”;

int result = search_obj.binary_search(search_key);

if (result != -1)
cout << “\n” << “Search Result: “

<< “X[“ << result << “] = “ << search_key;
else

cout << “\n” << “Search Result: “
<< search_key
<< “ is not found in the list \n”;

cout << “\n\n\n”;

}

The binary search is different from a regular linear search because it uses the divide-and-
conquer strategy to eliminate portions of the sorted array that do not have to be searched.
The binary search uses the knowledge that the array is presorted; with every comparison,
the algorithm divides the array into two parts: one that can be eliminated from future
scans and the other that must be searched further.

Pattern Matching
Pattern matching is a commonoperation performed on strings. Pattern matching can be
defined as finding an occurrence of pattern of length B in a text of length A. Algorithms
used for pattern matching can be easily extended to finding all the occurrences of a given
pattern in the text because once a match is found, you can continue scanning the text to
find the next match starting from the position directly after the beginning of the match.
In such pattern matching problems,the pattern basically acts asthe search key.

Search Algorithms in C++

CHAPTER 13
489

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 489

The Brute-Force Algorithm
When I think ofpattern matching, the first algorithm that comes to mind is the brute-
force method. This is the simplest search algorithm; it is not necessarily the most effi-
cient,and it is also not very creative. The brute-force method scans the entire text to see
whether the specified string exists. The following pseudocode describes this technique
and finds the first occurrence of the string s in the text t :

int brutesearch(char *s, char *t)
{

int i, j, m, n;
i = 0;
j = 0;
m = strlen(s);
n = strlen(t);

while (j < m && i < n)
{

if (t[i] != s[j])
{

i -= j-1;
j = -1;

}
i++;
j++;

}
if (j == m)

return (i - m);
else

return i;
}

Explanation of the Brute-Force Algorithm
In the pseudocode justpresented, the pointer i points to the characters in the text; the
pointer j points to the characters in the pattern to be searched. These pointers are initial-
ized to point to the beginning of the text and the pattern. The variables mand n are used
to store the length of the two strings. The two pointers are incremented as long as they
point to characters that match and as long as the ends of the strings have not been
reached. If the algorithm encounters mismatching characters, the pointers are reset such
that j points to the beginning of the pattern and the pointer i is reset back to one position
to the right of what was the first character matched in the text. This is so that it can con-
sider the rest of the text again for a possible match. If the end of the pattern is reached—
indicated by (j == m) —the match is obtained and the pattern starts at t[i-m] . On the
other hand, if the end of the text is reached without the pattern being matched—indicated
by (j < m && i = n) —the result is that there is no match.

Manipulating Data

PART III
490

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 490

Analysis of the Brute-Force Algorithm
In the worst-case scenario, all the characters in the pattern (m) are checked against the
text for all the possible match positions (n-m+1) . This results in work of the order of
O(m(n-m+1)) = O(mn) .

Pattern Representations
Patterns can be represented as symbols tied together with the following fundamental
operations:

• Concatenation: Two symbols are considered to be concatenated if they are adja-
cent to each other. A match exists if and only if the two symbols are also adjacent
in the text. For example, AB means A followed by B in the pattern.

• OR: An ORis represented by a plus sign (+). If two symbols have an ORbetween
them,they are treated as alternatives—in other words A+B means either A or B can
exist at that position.

• Closure: A closure isrepresented by an asterisk (*); if a character is followed by a
closure, it means that there are zero or more occurrencesof that character.

The following are someexamples:

• (ABC)* means that there are alternating patterns of ABC. In other words,the pattern
can be ABCABCABCABC. This is seen from the closure representation, which indicates
that the pattern ABCkeeps recurring.

• A(B+C)D means that the valid patterns are ABDor ACD. This is seen from the usage
of the ORnotation, which indicates that the pattern is A followed by B ORC and then
followed by D.

Pattern matching searches can be simplified by algorithms that implement the construc-
tion of a finite-state machine that can locate the keywords (keywords are used to refer to
the possible patterns being searched).

Constructing Finite-State Machines
The pattern to be searched can be used to construct a finite-state machine. Such finite-
state machines are graphically represented as a network of nodes in which each node rep-
resents a particular state. The nodes are connected to other nodes as determined by the
pattern. The input character that causes the transition is indicated on the link between the
nodes. The construction and use of finite-state machines can be understood through the
following examples. We will first consider how the fundamental operations can be repre-
sented, and then we will see how the entire pattern can be constructed by building partial
machines,which can be combined to form larger machines:

Search Algorithms in C++

CHAPTER 13
491

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 491

• Recognize one character—A. This can be represented by a two-state machine.
There is an initial state and the final state, which is derived when the character A is
encountered (see Figure 13.1).

Manipulating Data

PART III
492

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.1.
A two-state
machine.

(A)
.

[]

• Concatenate two machines—M1 and M2. This can be done by merging the final
state of the first with the initial state of the second (see Figure 13.2).

FIGURE 13.2.
A finite-state
machine repre-
senting concate-
nation.

{M1}{M1} and {M2} = > {M2}

• Perform an ORoperation between two machines—M1 and M2. The ORoperation is
depicted by introducing a new null state as the initial state of both machines and
the final state of one machine is also the final state of the second machine (see
Figure 13.3).

FIGURE 13.3.
A finite-state
machine repre-
senting an OR

operation.

(). []{M1}

{M2}

• Perform a closure operation. This is represented by having the final state loop back
to the initial state (see Figure 13.4).

FIGURE 13.4.
A finite-state
machine repre-
senting a closure
operation.

(). (){M1} []

NOTE

In Figures 13.1 through 13.4, the following are true:

• () represents the initial state.

17 239-5 CH13 2/19/99 1:23 PM Page 492

Let us construct a finite-state machine for the following pattern: A(BC+DE)F (see Figure
13.5).

Search Algorithms in C++

CHAPTER 13
493

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

• [] represents the final state.

• (X) represents a transition when the character X is encountered.

• {M} represents a finite-state machine.

By successively applying these rules, you should be able to construct finite-state
machines for any pattern.

FIGURE 13.5.
A finite-state
machine
representing
A(BC+DE)F.

(C) (F)(3)(2)(B)(1)

(E)(4)(D)

(A)() (5)

Transitions not defined by the diagram in Figure 13.5 go to a state known as
FAIL_STATE . You can also create a transition table based on this diagram as shown in
Table 13.1

Table 13.1. Transition State Table for A(BC+DE)F

State 0 1 2 3 4 5

Character A C F E
read

Next1_state 1 2 3 5 3 0

Next2_state 1 4 3 5 3 0

The way to interpret the transition table is such that if the machine is in state X and you
read character Y, the machine goes into the state specified by Next1_state or
Next2_state .

From the transition table, you can see that this is a nondeterministic machine because
when it is in state 1,it can go to state 2 or to state 4 based on the character read. In other
words,it has more than one FAIL_STATE for state 1.

There can be a result function that looks up successful matches determined by reaching
the final state in the finite-state machine.

17 239-5 CH13 2/19/99 1:23 PM Page 493

Finite-state machinescan be deterministic or they can be nondeterministic. Deterministic
machines are those in which the transition from a given state can be determined easily
simply based on the next input character. On the other hand, nondeterministicmachines
are generally represented with the ORor closure operations because a simple comparison
with one character cannot determine if the pattern matching fails at that step or not.

The pseudocode toimplement such finite-state machines can be as described here:

State = 0;
While ((c = getchar()) != EOF)
{

if (transition(state,c) IS NOT NULL)
state = transition(state,c);

if (result(state) IS NOT NULL)
//Match found
printf(“Match found.”);

}

This pseudocode usesseveral functions:The transition(state,c) function looks up
the transition table to see whether a transition is possible based on the current state and
the next character read. The result(state) function looks to see whether the current
state indicates that there is a match. The function result(state) checks to see whether
the current state indicates a pattern match and the consequent end of the algorithm. This
code is very generic; the actual implementation determines the performance of the
search.

Graph Algorithms
A graph can be used to represent several situations you may face in day-to-day lif e. For
example, you may be planning to travel from Orlando to San Francisco. The question
can be What is the airline route that will take you from Orlando to San Francisco in the
shortest amount of time?You can also ask which is the cheapest route?Another example
is job scheduling when you have a number of tasks to perform and there are dependen-
cies between the tasks such that one or more must be completed before another task can
be started. The finite-state machines discussed earlier can also be considered examples of
graphs.

Let us look at some simple definitions that can be used in association with graphs:

• Graph: A graph is a collection of nodes and connections between nodes.

• Nodes:Nodesare objects that can have names and other properties associated with
them.

Manipulating Data

PART III
494

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 494

• Link (or edge): A link (also referred to as an edge) is a connection between two
nodes.

• Path: A path from node A to node B is the list of nodes traversed when you move
from node A to node B. For example, in Figure 13.6,ABCDand ACDare two paths
from node A to node D.

Search Algorithms in C++

CHAPTER 13
495

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.6.
A graphical
representation of
the problem to
determine paths
between nodes.

(B)(A)

(C)(D)

• Connected graph: A graph issaid to be connectedif there is a path from one node
to any other node in the graph.

• Simple path: A path between two nodes is simpleif there is no node that is repeat-
ed. In other words,no node is visited more than once.

• Cycle: A cycle is a simple path with the additional characteristic that the first and
the last node are the same.

• Tree:A graph that has no cycles is called a tree.

• Binary tree:A binary treeis a tree in which each node is connected to only three
other nodes. One of these nodes is the parent of that node and the other two are the
child nodes.

A tree can be easily converted to a cycle by adding just one more connection to it (the
connection you add completes the loop). The following are known facts for a graph:

• A tree with N nodes has exactly N-1 connections.

• A graph with N nodes but fewer than N-1 connections cannot be connected.

• A graph with N nodes and more than N-1 connections must have a cycle.

• A graph with N nodes and N-1 connections is not necessarily a tree.

• A graph with N nodes can have connections that can range from 0 to N(N-1)/2 .

• Sparse graphsare graphswith very few connections.

• Dense graphsare graphs with lots of connections.

• Complete graphsare those that have N(N-1)/2 connections.

• Undirected graphsare those in which the connections between nodes are bidirec-
tional.

• Directed graphsare those in which the connections between nodes are one way.

17 239-5 CH13 2/19/99 1:23 PM Page 495

• Weighted graphsare thosein which weights are assigned to the connections
between nodes. These weights can represent the cost to go from node A to node B.

• Two nodes are said to be adjacent, or neighbors, if there exists a connection (link)
between them. The link or edge is said to be incidentwith the nodes A and B.

• The degreeof a node A is the number of nodes incident with it.

• A node is considered to be isolated if its degree is zero.

Algorithms that operate on graphs have to be careful not to visit the same node more
than once because this will improve their efficiency. Two methods that are widely used to
perform graph traversals are the depth-first and the breadth-first searches.

Depth-First Search
The depth-first search is also referred to as backtracking, which will become clear from
the manner in which the method works. Consider an undirected graph that starts its tra-
versal from node A. Suppose that the degree of node A is d. This means that the nodes
adjacent to node A are Ai , where i = 1,2,3,...,d. The key to this technique is to mark the
nodes that have been visited. The depth-first search starts by visiting node A and then vis-
its any unvisited adjacent node of node A, say A1. The rest of the adjacent nodes are
stored in a stack so that they can be visited later. All the adjacent nodes of each of the
adjacent nodes of node A1 are visited, and then the depth-first search backs up and visits
the remaining unvisited adjacent nodes of Ai (where i = 2,3,...,d). This process continues
until all the nodes in the graph are visited. The depth-first search is an example of an
exhaustive search because it searches each and every node in the graph todetermine the
best answer to the problem.

The depth-first search can be implemented recursively as well as nonrecursively. Keep in
mind that the depth-first search basically goes down the graph until it reaches a dead end
or a leaf that has no more unvisited adjacent nodes; then it backtracks to visit the other
child nodes (adjacent nodes) of the parent.

The following C++ code excerpt shows the recursive depth-first search:

void Depth_first_search(int n)
{

int i;
const int TRUE = 1;
const int FALSE = 0;
int *checked;
struct node

{int nodeid; struct node *adj; };

for (i = 0; i <= n; i++) checked[i] = FALSE;
for (i = 0; i <= n; i++)

Manipulating Data

PART III
496

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 496

if (checked[i] == FALSE) check(i);
}

void check (int A)
{

checked[A] = TRUE;

For all adjacent vertices Ai (i = 1,2,3,.....,d) of node A
{

if (A i is not yet checked)
check(A i);

}
}

The depth-first search method can also be shown graphically (see Figure 13.7).

Search Algorithms in C++

CHAPTER 13
497

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.7.
An illustration of
a depth-first
search.

(B)(A)

(E)(D)

(C)

(F)

In Figure 13.7,the depth-first search starts with node A. Node A is checked and printed.
Node A has nodes B and D as its adjacent nodes,so either of these nodes can then be
checked. Suppose that node B is chosen; node B is then checked and printed. The depth-
first search leavesthe other adjacent nodes of node A (in this case, node D) for later
checking. Node B has nodes A, C, D, E, and F as its adjacent nodes. Node A has already
been checked, so let’s say that the search chooses node C. Node C is checked and printed.
Node C has nodes B and F as adjacent nodes. Because node B has already been checked,
the depth-first search next checks node F. Node E will then be checked and finally node D
will be checked. Thus the order in which the nodes are checked will be ABCFED.

The path produced by a depth-first search is not unique. A totally different path would be
obtained if the search chooses a different adjacent node.

Breadth-First Search
The breadth-first search is an alternative method of traversing graphs. It is also an
exhaustive search method, meaning that it also checks all the nodes. Unlike the depth-
first search, the breadth-first search method checks all the adjacent nodes Ai (where i =
1,2,3,...,d) of a given node A before it checks the adjacent nodes of any of the nodes Ai .
This method also marks the nodes already checked so that they are not rechecked.

This is the pseudocode for a breadth-first search:

Create an object “Queue_obj” that can act as a queue.
Initialize this queue object to be empty

17 239-5 CH13 2/19/99 1:23 PM Page 497

Initialize the array checked[] such that all the elements are FALSE.
Suppose that you start with nodeid A. Set checked[A] = TRUE.
Add the nodeid A to the start of the queue.
Do the following steps while the queue object is not empty:

Set current_node = head(queue_obj).
Check all the nodes adjacent to the current_node that have not

already been checked.
Add all the nodes adjacent to the current_node to the queue so

that their adjacent nodes can be checked later.
Deallocate the queue_obj

This method can be shown using the same diagram used to understand the depth-first
search method (refer to Figure 13.7). Again, let’s start with node A. Once node A is
checked, we will check all its adjacent nodes (in this case, nodes B and D). Then we can
check the nodes adjacent to node B or node D. Let’s choose node D. Nodes adjacent to
node D (in this case, node E) are checked; finally, the nodes adjacent to node B are
checked and the resultant search path can be shown as ADBEFC.

As both the pseudocode and the figure show, even in this case, the search is not unique;
it depends on the next node chosen during thetraversal.

Comparing Depth-First and Breadth-First
Searches
Depth-first search methods are easy to implement and can arrive at a good solution very
quickly. The disadvantage of these methods is that you may spend a lot of time going on
paths that may be a waste. The simplest alternative to the depth-first search is the
breadth-first search strategy. The breadth-first search is guaranteed to find a solution (if
one exists) with the best path, provided that the number of branches is finite. In order to
understand this,assume that there is a path with a length p from the source to the desti-
nation. The breadth-first search searches all the nodes at level 1, then it searches all the
nodes at level 2,and so on. Eventually, it checks all the nodes at level p. Thus the path it
finds is not just a path, it is also the bestpath.

The breadth-first search has two disadvantages:

• It requires a lot of memory because the number of nodes increases exponentially as
it checks each level.

• If the shortest path is very long, the search will involve checking a lot of levels,
which will take more time than the depth-first search because the breadth-first
search will check all the nodes at a given level before going to the next level.

The depth-first search is better than the breadth-first search for situations in which there
are a lot of paths that lead from the source to the destination, but each of these paths is
very long.

Manipulating Data

PART III
498

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 498

Best-First Search
The best-first search method is a clever algorithm that combines the depth-first search
and the breadth-first search techniques into one method. The best-first search uses the
best of both algorithms and is known as the best-first method because it attempts to
explore the path that looks the most promising. Thealgorithm can be explained with the
following steps:

1. Find the next nodes possible from the current node.

2. Apply a heuristic function to each of these next nodes. A heuristic functionis basi-
cally a user-defined function that performs a calculation on the input to produce an
output value that indicates the importance of that node. For example, “What are the
chances of finding a solution if you are at that node?”

3. Choose the next node that has the best chance (per the heuristic function) to reach
the solution faster.

4. If a solution is reached, you can quit; otherwise, you store the rest of the nodes for
consideration later.

5. Set current_node = best_next_node and repeat steps 1 through 4 until a solution
is found.

Search Algorithms in C++

CHAPTER 13
499

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

NOTE

A heuristic function is basically a user-defined function that performs a calcula-
tion on the input to produce an output value that indicates the importance of
that node. For example, “What are the chances of winning if you are at that
node?” or “What are the chances of finding a solution from that node?”

The best-first algorithm does a little bit of depth-first searching until it reaches a node
that is not very promising and then it looks at the rest of the nodes and performs a
breadth-first search. It chooses the best-chance node and then performs a depth-first
search using that node until it reaches a solution or until the path is no longer better than
the remaining nodes. This approach eventually leads to a solution with less effort than
what is expended with either the depth-first or the breadth-first search.

Consider the graph in Figure 13.8. Initially, there is only one node (node A) but it is
expanded to give four possibilities. Expanding a nodesimply means looking at the possi-
ble next nodes that can be visited from this node. The heuristic function is applied to
these nodes; node C is selected as the best-chance node. Node C is expanded to give two
possibilities,and the heuristic function is applied to them. It is seen that node E is not

17 239-5 CH13 2/19/99 1:23 PM Page 499

promising compared to node B. Therefore, node B is expanded and the heuristic function
is applied to its successors. This process continues until we reach a solution.

Manipulating Data

PART III
500

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.8.
An example to
illustrate the best-
first search.

A
A

B

V=7
C

V=1

D

V=9

E

V=10

A

B

V=7
C D

V=9

F

V=8

G

V=12

E

V=10

Implementing Graph Objects
We have already seen that the graph consists of a set of nodes,links between those
nodes,and the cost associated with the links. There are several ways to implement such
structures:

• An adjacency matrix

• An array of pointers to singly or doubly linked lists of adjacent nodes

• A linked list of pointers to singly or doubly linked lists of adjacent nodes

• An array of pointers to singly or doubly linked lists of links

• A linked list of pointers to singly or doubly linked lists of links

Of these implementations,the adjacency matrix is the most commonly used structure; it
is generally represented as a two-dimensional array. Dijkstra (1960) proposed a method
that can be used to find the shortest path between a start node and all other nodes.
Dijkstra’s algorithm provides a general method to solve the shortest path problem. It is
an example of a greedy algorithm. Greedy algorithmssolve a problem in stages; at each
stage, the algorithm tries to do what seems to be the best action at that stage. At each
stage, Dijkstra’s algorithm selects a node that hasthe smallest distance among the nodes
not yet visited and declares that the shortest path from the starting node to that node is
known. The remainder of a stage consists of updating the values of the shortest path
known so far. Refer to Listing 13.3 for an example of a C++ implementation of

17 239-5 CH13 2/19/99 1:23 PM Page 500

Dijkstra’s shortest path algorithm. The adjacency matrix can be used to represent all
kinds of graphs:undirected, directed, weighted, unweighted, sparse, dense, and so on.

For a connected graph, the adjacency matrix adj_mtx[][] can be such that the following
is true:

adj_mtx[i][j] = cij if node Ai is adjacent to node Aj
= 0 if node Ai is not adjacent to node Aj

The following should be noted:

• For unweighted graphs,cij = 1 , but for weighted graphs,cij represents the cost
to traverse from node Ai to node Aj .

• For undirectedgraphs,the adjacency matrix is symmetric; for directed graphs,the
adjacency matrix may or may not be symmetric.

LISTING 13.3. DIJKSTRA’S SHORTEST PATH ALGORITHM

//Program: dsp.cpp
//Author: Megh Thakkar

//Purpose: C++ implementation of a weighted digraph object
// and Dijkstra’s shortest path algorithm.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>

class graph {
private:

int adj_matrix[100][100];
//stores the cost input by the users

int shortest_path_matrix[100][100];
//stores the shortest path between nodes

public:
graph (int size) { }
~graph() { }
void setup_matrix(int num_nodes);

int find_cost_of_shortest_path(int source, int destination);
void init_adj_matrix(int num_nodes);
void init_shortest_path_matrix(int num_nodes);
void load_adj_matrix(int num_nodes);
void load_shortest_path_matrix(int num_nodes);

};

int graph::find_cost_of_shortest_path(int source, int destination)
{

Search Algorithms in C++

CHAPTER 13
501

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

continues

17 239-5 CH13 2/19/99 1:23 PM Page 501

int result;

//shortest_path_matrix already contains the computed
//shortest_path between the various nodes.

result = shortest_path_matrix[source][destination];

return(result);
}

void graph::setup_matrix(int num_nodes)
{

init_adj_matrix(num_nodes);
//initialize the adjacency matrix to zero

load_adj_matrix(num_nodes);
init_shortest_path_matrix(num_nodes);
load_shortest_path_matrix(num_nodes);

}

void graph::init_adj_matrix(int num_nodes)
{

int i, j;
for (i = 1; i <= num_nodes; i++)

for (j = 1; j <= num_nodes; j++)
adj_matrix[i][j] = 0;

}

void graph::init_shortest_path_matrix(int num_nodes)
{
//The shortest path matrix is initialized
//to the adjacency matrix

int i, j;
for (i = 1; i <= num_nodes; i++)

for (j = 1; j <= num_nodes; j++)
shortest_path_matrix[i][j] = adj_matrix[i][j];

}

void graph::load_adj_matrix(int num_nodes)
{

int i, j;
int cost;
char direct[1];
const int LARGE_COST = 999999;

for (i = 1; i <= num_nodes; i++)
{

for (j = 1; j <= num_nodes; j++)
{

Manipulating Data

PART III
502

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

LISTING 13.3. CONTINUED

17 239-5 CH13 2/19/99 1:23 PM Page 502

//The adjacency matrix is loaded by input from the users
cout << “Is there a direct path from Node “

<< i << “ to Node “ << j << “? : “;
cin >> direct;

if ((direct[0] == ‘y’) || (direct[0] == ‘Y’))
{

cout << “Enter the cost of the path from Node “
<< i << “ to Node “ << j << “ : “;

cin >> cost;

cout << “\n”;

adj_matrix[i][j] = cost;
}

else
adj_matrix[i][j] = LARGE_COST;

// very large cost
}

}

}

void graph::load_shortest_path_matrix(int num_nodes)
{

int i, j, k;
const int LARGE_COST = 999999;

for (j = 1; j <= num_nodes; j++)
{

for (i = 1; i <= num_nodes; i++)
{

for (k = 1; k <= num_nodes; k++)
{
if ((shortest_path_matrix[j, k] > 0))
{

//If there is an indirect path between two nodes that is
//shorter than the path found so far then
//the indirect path becomes
//the shortest path between the two nodes.

if ((shortest_path_matrix[j][k] == LARGE_COST) ||
(shortest_path_matrix[i][j] +

shortest_path_matrix[j][k]
< shortest_path_matrix[i][k]))

shortest_path_matrix[i][k] = shortest_path_matrix[i][j]
+ shortest_path_matrix[j][k];

}

}

Search Algorithms in C++

CHAPTER 13
503

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

continues

17 239-5 CH13 2/19/99 1:23 PM Page 503

}
}

}

void main(void)
{

int num_nodes;
int source;
int destination;
int scost;

cout << “Enter the number of nodes in the graph (less than 100): “;
cin >> num_nodes;

if (num_nodes > 100)
{

cout << “ Sorry. This program has a limitation of only 100 nodes
➥“;

cout << “\n\n\n”;
exit (-1);

}

graph graph_obj(num_nodes);
graph_obj.setup_matrix(num_nodes);

cout << “ Enter the node id of the source node: “;
cin >> source;
if (source > num_nodes)
{

cout << “ Invalid source! “;

cout << “\n\n\n”;

}

cout << “ Enter the node id of the destination node: “;
cin >> destination;
if (destination > num_nodes)
{

cout << “ Invalid destination! “;

cout << “\n\n\n”;

}

scost = graph_obj.find_cost_of_shortest_path(source, destination);

cout << “Shortest path between Node “ << source
<< “ and Node “ << destination

Manipulating Data

PART III
504

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

LISTING 13.3. CONTINUED

17 239-5 CH13 2/19/99 1:23 PM Page 504

<< “ has a cost of “ << scost;

cout << “\n\n\n”;

}

Representation of Tic-Tac-Toe
The game of tic-tac-toe can be represented as a structure containing a nine-element vec-
tor that represents the board positions. Also, we should store a list of board positions that
are possible from a given board position and an evaluation value that shows the likeli-
hood of an eventual win.

The algorithm basically consists of looking at the possible next moves and deciding
which of these is the best position to be in. The next best move is determined as follows:

1. If the next move results in a win,then it is the best move.

2. If none of the next moves results in a win,then for each of your next moves,con-
sider all the possible moves that the opponent can make. Keep in mind that the
goal of the opponent is to make a move such that it minimizes your likelihood of
winning. Thus the rating of our next move is as good as the worst rating of all its
child nodes.

3. The best node (that is, the best next move) for us is thus the node with the highest
rating.

This procedure is called theminimax procedure because at alternative levels of the tree,
the goal is to maximize and then minimize the chance ofwinning.

Applying Alpha-Beta Cutoffs
The minimax procedure is an example of a depth-first search because itexplores one
path as deep as possible and then the evaluation function is applied to the last node in the
path. This is then passed up one level at a time. Depth-first procedures such as these can
be improved on by using techniques such as branch-and-bound described earlier. The
efficiency of depth-first searches are possible because you can abandon the search of
paths that are clearly worse than the best-known path so far. At the same time, it is very
important to understand that the order in which paths are analyzed can have a big impact
on the overall performance of such techniques. This is because if you start with the worst
path first, it defeats the purpose of these techniques.

This search technique can best be described by examples that use minimax procedures
such as the tic-tac-toe game.

Search Algorithms in C++

CHAPTER 13
505

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 505

Alpha-beta pruning requires the maintenance of two threshold values:alpha and beta.
The alpha value is the lower bound on the value that a maximizing node may be
assigned. The beta value is the upper bound on the value that a minimizing node may be
assigned.

Look at the example in Figure 13.9. To search the tree, suppose that we apply a depth-
first search: The entire subtree headed by node B is searched and the result of applying
the evaluation function indicates that at node D we have a value of 6, and at node E we
have a value of 9. Thus we are guaranteed that at node A the score is at least 6. This
becomes the alpha value at node A and it can be used to eliminate certain portions of the
entire tree from being searched. After examining node K, we realize that its evaluation is
a value of 0. Thus node I will have a maximum value of 0. We do not need to explore
any more subtrees of node I because we won’t go to node I from node C; moving to
node B can give us a value of 6. Now suppose that the node J gives a value of 10. Thus,
node C will have a maximum value of 10. This becomes its beta value.

Let’s see how the beta value is used. Keep in mind that the beta value is the upper bound
for minimizing nodes. Suppose that the value at node M is 15, which is greater than the
beta value of node C. In simple language, if we choose node G from node C, then we will
have a value of 15, which is greater than 10 (the value at node F). However, the purpose
of node C is to minimize, and so there is no point in choosing node G (which will at least
have node M’s value because the purpose of node G is to maximize). The overall result is
that we can abandon searching all the subtrees of node G. In very large tree structures,
this kind of elimination using alpha-beta cutoffs can lead to significant reductions in
search paths and improve overall performance.

Manipulating Data

PART III
506

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.9.
An example illus-
trating alpha-beta
cutoffs.

A

B C

F G HD

V=6

E

V=9

J

V=10

I

K

V=0

M

V=15L

N

When using alpha-beta pruning, at maximizing levels,a path is abandoned if it becomes
clear that its value is less than the alpha value of the parent node; at minimizing levels,a
path is abandoned if it becomes clear that its value is more than the beta value of the
parent node.

17 239-5 CH13 2/19/99 1:23 PM Page 506

As already mentioned, the effectiveness of alpha-beta pruning depends on the order in
which the paths are traversed. It can be proven that if a perfect ordering of nodes exists,
the number of terminal nodes visited when using alpha-beta pruning and searching depth
d is approximately twice the number of terminal nodes visited without using alpha-beta
pruning and searching to a depth of d/2 .

A further modification to the alpha-beta pruning called futility cutoff canprovide signifi-
cant improvement in performance. The idea behind futility cutoff is that we can abandon
additional paths if the expected improvement is minimal compared to the best path
obtained from the paths already explored. The logic is that we can spend more time
exploring other parts of the tree in the hopes of getting a betterpath.

The Traveling Salesman Problem
Search techniques are not complete without mentioning the traveling salesman problem.
This kind of problem involves searching through an extremely large number of potential
solutions to find the answer to the question. Such search problems pretty much blow
away the linear search we use for other types of problems because problems such as the
traveling salesman would require an enormous amount of time to complete with linear
search methods.

Definition of the problem: Given a set of N cities,find the shortest route that con-
nects them all without visiting any city more than once.

A lot of research has been done on problems of this nature; currently, there is no efficient
way to solve these problems using exhaustive searches because you have to search
through a large number of tours,each of which can be very long based on the value of N.

If you assume that the salesman can travel only between certain pairs of cities,the prob-
lem can be represented by a graph. The problem is then to find a cycle. There are several
ways to tackle this problem,but none are very efficient. The first method is to apply an
exhaustive search. This can be achieved by applying a modification of the depth-first
search method such that instead of simply marking the nodes visited, we must unmark
them if we realize that the path ends with a dead end. In other words,a depth-first search
is performed, and the nodes that are checked are marked (so that they are not checked
again) for the current path. If the current path leads to a dead end, we know that we have
to backtrack and try another route. This backtracking requires that we unmark the nodes
previously visited in our path. We then try another branch. This exhaustive search can
take a very long time, particularly if the graph is complete.

A variety of techniques can be used to reduce the number of paths followed. These tech-
niques rely on applying some tests at the nodes with the goal of eliminating certain
branches because they are not worth pursuing. Backtracking is applied in various forms
in such techniques.

Search Algorithms in C++

CHAPTER 13
507

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:23 PM Page 507

When trying to find a simple cycle in such problems,you can eliminate certain alterna-
tives by realizing that cycles are symmetric, meaning that there will be two paths that
represent the same route. This can be detected by enforcing a restriction that three nodes
should appear in a particular order. In other words,nodes A, B, and C should be such that
node B comes after node A but before node C. By doing this,you check node C only if
node B has been checked already.

Problems that involve finding the path with the least cost can be made more efficient by
realizing that you do not have to continue on a path if the cost of the partial path found
so far is greater than the lowest-cost path already known. It would be more efficient if we
check the child nodes for a given node in increasing order of cost so that we can find the
low-cost solutions first. By applying backtracking and sophisticated pruning techniques,
we can get very efficient search results.

External Searching
Searching is a very important and frequently used operation in relation to disk drives.
Files are stored on the disks,and you need a very efficient way to get to them. In most of
the applications that require disk I/O, disk speed is the component that is the slowest,and
we therefore have to minimize this time as much as possible.

Indexed Sequential Access
The basic methodsof searching can be extended to disks. However, the sequential access
methods we have discussed in this chapter are not very efficient. Linear search tech-
niques simply scan through the keys until a match is found or the end of the list is
reached. Improvements can be made by using an index to keep track of which keys
belong to which pages on the disk. The first page of each disk can be its index page. You
can further improve this approach by using a master index such that the master index
page contains information about which keys are placed on which disks. For example, the
master key can indicate that the keys on disk 1 are less than D, keys on disk 2 are
between E and K, and so on. This master index can be small enough to be placed in mem-
ory, making it very fast to get to the record by using just two searches—once through the
master index to find the disk that contains the key, and once through the index page on
the disk to find where on the disk the record is kept. This method combines indexing
techniques with sequential access of keys and is therefore known as the indexed sequen-
tial access. This method has the disadvantage that if there are a lot of updates to the
index (by means of adding and removing records),then index maintenancecan take up a
lot of time.

Manipulating Data

PART III
508

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:24 PM Page 508

Binary Trees
Binary trees canbe used to improve the index scans by placing the keys in a tree struc-
ture such that keys in the left subtree of any node come before the node; keys in the right
subtree of any node come after the node. There are three traversal methods that can be
used with the binary_tree object:preorder, in-order, and postorder. Although the scans
can be improved by following any traversal method, the in-order traversal is particularly
efficient. The pseudocode for each of these methods follows. The main difference
between these methods is in the order in which the nodes are checked with the search
key. The following pseudocodes show how the preorder, in-order, and post-order
traversals work.

Preorder tr aversal method:

preorder_traversal(node parent)
{

check parent node;
preorder_traversal(parent →left child);
preorder_traversal(parent →right child);

}

In-or der tr aversal method:

inorder_traversal(node parent)
{

inorder_traversal(parent →left child);
check parent node;
inorder_traversal(parent →right child);

}

Postorder tr aversal method:

postorder_traversal(node parent)
{

postorder_traversal(parent →left child);
postorder_traversal(parent →right child);
check parent node;

}

The binary tree search method is more flexible than the indexed sequential search
because new nodes can easily find a spot in the tree. Likewise, nodes can be easily
removed while maintaining the treestructure.

2-3-4 Trees
2-3-4 trees are referred to by several names such as 2-4 treesand symmetric binary
B-trees. In a B-tree, the nodes (which are the memory structures) are usually large enough

Search Algorithms in C++

CHAPTER 13
509

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:24 PM Page 509

to at least store one block read from the disk. 2-4 trees, on the other hand, can be used to
store one, two, or at the most three elements per node. 2-4 trees are basically B-trees of a
smaller order; they can be used to provide a more efficient search technique than is avail-
able with a binary tree. In 2-4 trees,there are three locations in which you can store the
elements and four locations in which you can store the pointers. On an average, it has
been shown that only two-thirds of the space is used in these nodes. Keep in mind that
the main reason for using 2-4 trees is to improve the search performance in main memo-
ry—and it is very important to save space in main memory. The solution tothis dilemma
is to transform 2-4 trees to binary trees (refer to Figure 13.10) such that each node can
store only one data element. By doing this,you save space and at the same time achieve
good performance because you can still use the same search techniques you would have
used with a 2-4 tree. Another important characteristic in such transformations is the use
of two types of links:

• A type of link to represent the normal parent-child associations between nodes

• A type of link that associates keys that belong to the same node in the 2-4 tree

These types of links are referred to by several names such as horizontal/vertical pointers
and red-and-black pointers.

From Figure 13.10,several distinctions between horizontal/vertical and the red-black
trees become clear:

• Red-black trees are better for representing the binary tree form; horizontal/vertical
trees are better at retaining the 2-4 tree structure.

• Horizontal/vertical trees are better suited for representing B-trees of any order.

No matter which representation you choose, you will have to somehow distinguish
between the two types of links. You can do this easily by using a flag in the representa-
tion of the link.

The implementation of the horizontal/vertical trees and red-black trees are much different
compared to a binary tree. However, the search technique used by them is the same:If
the search key matches the current node, then stop. Otherwise, go to the left subtree if
the search key is greater than the node element; go to the right subtree if the search tree
is smaller than the node element.

The biggest factor when using implementations such as red-black trees is the mainte-
nance involved in keeping the tree intact. For example, for horizontal/vertical tree imple-
mentation, the following things are true at all times:

• The path from the root to any leaf should contain the same number of vertical
links.

• Two consecutive horizontal links are not allowed on any path from the root.

Manipulating Data

PART III
510

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:24 PM Page 510

These facts lead to the difficulty in the maintenance of these trees because inserting a key
inserts a node and a link; you must decide whether the link is to be a horizontal or a ver-
tical link. Likewise, deleting a key result in a node merging. Usually, node splitting is
found to be agood technique when working with these trees.

Summary
Searching is a fundamental task involved in many applications. Normally, information is
divided into records that are identified by means of keys. Searching generally involves
not only finding the key but also accessing the information in the records. Several algo-
rithms that can be used to solve problems require searching; the particular algorithm that
will be effective depends on the representation of the data. The Big-O notation can be
used to determine the amount of work involved in search algorithms.

Search Algorithms in C++

CHAPTER 13
511

13

S
EA

R
C

H
A

LG
O

R
ITH

M
S

IN
C

+
+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

FIGURE 13.10.
Transforming 2-3-
4 trees to horizon-
tal/vertical and
red-black trees.

2 64

1 5 8 10

3 9 1412

11

7 13

Red-Black Tree

1412

11

73 13

Horizontal-Vertical Tree

2-3-4 Tree

8 1054 61 2

9

11

3 7 9

1 2 4 5 6 8 10 12 14

13

17 239-5 CH13 2/19/99 1:24 PM Page 511

In general, search algorithms involve scanning through the data set. This process can be
improved by using some knowledge of the manner in which the data is represented. This is
done in the binary search technique, which uses the knowledge that the data is presorted.

Pattern matching problems can be represented as finite-state machines. This chapter dis-
cussed the construction of such machines using the pattern to be searched.

A lot of real-world problems are represented naturally using a graph; several classical
algorithms such as Dijkstra’s algorithm have been developed to solve problems that can
be represented by graphs. An ideal search technique is yet to be developed, so we can
always be creative with our implementation of a search technique to minimize the com-
plexity of the problem at hand.

Manipulating Data

PART III
512

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH13 Lp#1

17 239-5 CH13 2/19/99 1:24 PM Page 512

IN THIS CHAPTER

• Searching Versus Hashing 514

• Hash Functions 515

• Collision Resolution 516

• Parsing 533

14
C

H
A

PT
ER

Hashing and
Parsing
Techniques

18 239-5 CH14 2/19/99 1:24 PM Page 513

Searching Versus Hashing
The different search techniquesdiscussed in Chapter 13,“Search Algorithms in C++,”
made use of key comparison as the main approach to finding a desired element. In a
sequential search, the table that contains the data elements is searched using key compar-
ison to determine whether the search key is contained in the table. In a binary search, key
comparison is used to split the table into halves and to determine whether the search key
is found in either half of the table. In addition, the search direction is determined by the
result of the key comparison.

On the other hand, hashingis a technique that uses the value of the search key to identify
its position in the table without key comparisons. Hashing uses an arbitrary mapping
function to determine the storage location of any given data element and to provide a
roughly uniform distribution of data elements in the storage space allocated for perform-
ing the hash.

In an ideal scenario, the position is determined by applying a hashing function on the
search key; the work done is 0(1) regardless of the actual number of data elements. In
reality, however, the hash techniques are an approximation of this calculation and lead to
“conflicts” such that the same hash function applied to two or more different search keys
can lead to the same position. Therefore, it is very important to be able to perform con-
flict resolution.

Hash techniques greatly depend on the choice of the hash function. Thepurpose is to
find a hash function h which, when applied to a search key K, will tr ansform the key into
an index in the table that contains the set of data elements. The goal is to create a perfect
hash function that will not create conflicts. You can create a perfect hash function if the
table contains at least as many positions as the number of data elements. However, we do
not always know the number of data elements ahead of time, and we may also not have
enough space to store all the data elements. Sophisticated hash functions can avoid colli-
sions but can also take a lot of time to complete; therefore, we need to use a space-time
tradeoff when using hashing.

For many applications,hashing is a preferred technique compared to the binary tree
searches described in Chapter 13. Hashing is relatively cheap to implement (in terms of
runtime speed and the space used) and it also provides very fast search times—especially
if enough space is available to store a large hash table. On the other hand, binary search-
es have several advantages:

• Binary searchesare dynamic and do not depend on previous knowledge of the
number of data elements.

Manipulating Data

PART III
514

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:24 PM Page 514

• The worst-case performance of a binary search is tolerable. When hashing, the
worst case occurs when all the keys hash to the same slot; conflict resolution then
becomes a nightmare.

• Binary searches can make use of advanced operations such as sorting.

Hash Functions
The hash function is an important part of the hashing technique. This function is used to
transform the keys into table addresses. The hash function we choose should be easy to
compute and should be able to transform the keys (usually integers or strings) into inte-
gers in the range 0 to TR-1 (where TR is the number of records that can fit in the table).

Because most of the commonly used hash functions are based on arithmetic operations,
we should convert the keys to numbers on which arithmetic operations can be performed.
Let’s look at some hash functions that can be easily computed:

• Division: If you don’t know much about the characteristics of the key, the division
method is the best hash function. Suppose that TR represents the number of records
in the table and that K is the search key; then h(K) = K mod TR . This function
works best if TR is a prime number. If TR is not a prime number, you can use h(K)

= (K mod p) mod TR , where p is a prime number greater than TR. It is important
that the hash function returns a value that is less than TR; the modulo ensures that
this is true. For keys that represent strings,the number K is obtained by looking at
the binary representations of the string characters and converting them to decimal.
Keep in mind that this method can still result incollisions.

• Folding: All of the several variations of the folding method rely on some manner
of splitting the key into subkeys and then performing some arithmetic operation on
the subkeys. Suppose that the phone numbers of people are the keys to be hashed.
Each phone number can be split into five parts, the parts can be added, and the
modulo applied to the result. For example, phone number (407) 555-1212 can be
split into these five parts: 40,75,55,12,12. The result of adding these numbers is
194. The hash result is 194 mod TR . The different variations in the “f olding” tech-
nique just described vary based on the manner in which the key is split and the
type of operations performed on the subkeys. For a string, you can split it into sub-
strings and then apply the XORoperation on the substrings,as inthis example:
h(“xyzw”) = “xy” XOR “zw” .

• Mid-Square: In several instances,the mid-square technique is found to be very
efficient. First,we use some folding technique and then square the result. The mid-
part of the result is then extracted to form the table address. In the previous phone
number example, we have a folding result of 194. We then square that result:

Hashing and Parsing Techniques

CHAPTER 14
515

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 515

(194) 2 = 37636 . For a table with 1,000 records,we can use 763 as the table
address. Thus,h(407-555-1212) = 763 .

Now you are familiar with the basic methods for creating a hash function. As you might
guess,collision resolution is going to take a lot of effort during the implementation of
these methods.

Collision Resolution
Perfect hashfunctions are difficult to implement under practical circumstances. Hash
tables must be able to handle collisions that occur when the hash function is applied to
two different data elements and the same result is returned. Several alternatives to resolv-
ing this problem are discussed in the following sections.

Linear Rehashing
Linear rehashing is the simplest form of conflict resolution. When a conflict is detected,
the algorithm traverses the table until an empty slot is detected and then places the ele-
ment in that slot. When the element is to be searched, the hash function points it to a
location in the table and a conflict is detected (indicated by a no_match). The table is
then traversed until one of the following happens:

• The element is found.

• The entire table is scanned.

• An empty slot is found in the table, indicating that the element is not found.

When you are stepping through the table, it is not necessary to single step—in fact,it is
better if you step through multiple records. The choice of the step size should be a prime
number and not a divisor of the table size to ensure that all the records will be traversed.
The idea behind not using single stepping is to avoid any congestion caused by conflicts
in the same general area of thetable.

Linear rehashing has the following disadvantages:

• Elements cannot be deleted from the table. If you start deleting elements from the
table, you should make the slots invalid, otherwise you may reach an empty slot
and assume that the element to be searched is absent. Suppose that you have the
following elements that all hash to the same position in the table: Mike , Michael ,
and Mikhael . If you delete Michael and do not invalidate the slot,you will have an
empty slot. If you then search for Mikhael , the search may end at the slot,assum-
ing that Mikhael does not exist. When the search encounters invalid slots,the
search should continue.

Manipulating Data

PART III
516

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 516

• Performance is bad at times because the technique scans the rest of the table from
the point of collision and hence encounters records that are definitely not a match.

Nonlinear Rehashing
Linear rehashingdoes a sequential scan from the point of collision to an empty slot.
Nonlinear rehashing, on the other hand, rehashes the search key to determine a new
value. If another conflict is detected, the method rehashes and keeps going until an
empty slot is found. If the table is almost full,you may have to perform the hashing exer-
cise several times—which can quickly make this an expensive hashing technique. A vari-
ation of this approach is called double hashing. This technique specifically addresses the
problem of clustering. Using this technique, we apply a fixed “step” to the scan sequence
instead of scanning every record. The “step” is obtained by applying a second hash func-
tion. The choice of the second hash function is important because an inappropriate value
may prevent the program from running properly. The following restrictions on the second
hash function can lead to a good implementation. Assume that h2 = hash2(K) and that
there are TR slots in the table.

• h2 should not be zero, otherwise we will have a program that runs indefinitely.

• h2 and TR should be prime numbers so that all the records will be scanned and we
will avoid clustering.

• The hash functions used should be different.

An example of a simple secondary hashing function is h2(K)= 16 ñ (K mod 16) .

It is important to keep in mind that double hashing can sometimes make more compar-
isons than linear rehashing, but double hashing gives you a smaller cluster size. In gener-
al, however, on sparse tables,double rehashing uses fewer probes compared to the linear
method.

Now consider the example of a simple hash function that reads a string of the form
“mmddyyyy” and converts it into a position in a table with 360 slots. Listing 14.1 presents
an implementation of a hash function that can result in collision.

LISTING 14.1. A SIMPLE HASH FUNCTION THAT CAN RESULT IN COLLISION

// hash_date.cpp
// This program accepts the string “mmddyyyy”. The hash
// function uses only the “mm” and “dd”
// component of the string to compute the slot location.
// Note that the year is not considered at all.
// In other words, leap year etc. is not treated in any

Hashing and Parsing Techniques

CHAPTER 14
517

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 517

// special way. Also, this simple hash function considers each
// month to be 30 days long.
// Note: This function can result in conflicts.

int hash_date(char *datestring)
{

int mm, dd;

datestring[4] = ‘\0’;
dd = atoi (datestring + 2);
datestring[2] = ‘\0’;
mm = atoi (datestring);

if (mm < 1 || mm > 12 || dd > 30)
{

cout << “Error in input string. “;
return(-1);

}

return(mm*30 + dd);
}

The output of the function in Listing 14.1 should be taken with modulo TR to get values
in the range 0 through TR-1 . This function presents you a simple technique that shows
how hashing can be done, but it does not resolve the problem of conflicts.

Load Factor (Alpha)
Load factor is a concept that greatly affects the performance of a hashing technique. The
load factor is calculated by taking the number of elements (n) inserted into the table
divided by the number of slots available in the hash table:

Alpha = n / TR

A load factor of 1.0 indicates that the number of elements inserted is equal to the number
of available slots. Both the linear and nonlinear rehashing techniques discussed earlier in
this chapter perform well under the following situations:

• If the load factor is low

• If deletions are not common

As the load factor increases,the cost of rehashing increases,and the cost of scanning the
hash table quickly becomes very large. A real test of a hashing technique is its perfor-
mance under high load factors. The chaining technique discussed in the next sectionper-
forms very well under high load factors.

Manipulating Data

PART III
518

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.1. CONTINUED

18 239-5 CH14 2/19/99 1:25 PM Page 518

Chaining
The chaining technique basically looks at the hash table as an array of pointers to linked
lists. Each slot in the hash table is either empty or simply consists of a pointer to a linked
list. You resolve collisions by adding the elements that hash to the same slot to the linked
list to which that slot points. At the same time, deletions are easy:You simply delete ele-
ments from the linked list. Use Table 14.1 to compare the chaining and rehashing tech-
niques.

TABLE 14.1. COMPARING REHASHING AND CHAINING

Feature Rehashing Chaining

Number of entries Limited to the number Limited to the
in the hash table of available slots available memory

Deletions are easy No Yes

Easy to code or implement Yes No

Uses linked lists No Yes

Collisions are possible Yes Yes (But resolves
them very efficiently)

Performance under Poor Good
high load factors

Uses extra space No Yes

Ordering the linked lists can further reduce the search time. Ordering prevents the
exhaustive searching of the entire list. Chaining has several drawbacks:

• It requires additional space for the pointers.

• The cost to search can sometimes be high because of the need to dereference point-
ers instead of directly accessing the data used in the rehashing techniques.

But because memory is currently cheap and CPUs are fast,these drawbacks of chaining
are not very significant.

A variation of chaining, called coalesced chaining, combines the bestof both techniques.
In this method, when a collision is encountered, the first available position is found for
the new key and the slot position of this new key is stored along with the key that is
already in the table. In other words,a pointer is created to point to another slot in the
table. In C++,this technique can be implemented such that each position is a structure
with two fields:one containing the key and the other field containing the next key posi-
tion. You can use -2 to indicate that the next position is available for a given slot and use

Hashing and Parsing Techniques

CHAPTER 14
519

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 519

-1 to indicate that you have reached the end of the chain. This method suffers from the
limitation that you may get an overflow condition when the table is filled. However, you
can make use of an overflow area to take care of additional space as needed.

Bucket Addressing
The bucket addressing technique is similar to chaining in that collision resolution is per-
formed by using additional space. However, instead of using linked lists,we make use of
buckets. A bucket can be defined as a block of space that can be used to store multiple
elements that hash to the same position. In this method, you must give the buckets a
fixed size; the choice of this size can sometimes be tricky. Collisions are still possible
because you may fill a bucket completely—in which case the key must be stored some-
where. This storage location can be an available bucket or an overflow area. A variation
can be used to eliminate the need for buckets with fixed size:You can allow each bucket
to contain a pointer to a dynamically allocated array.

There are several things to keep in mind to obtain the best from a hashingtechnique:

• Try to keep the load factor between 0.2 and 0.7. This means that, if necessary, you
should use large hash tables. Under certain types of input data conditions,large
hash tables may not be easy to manipulate.

• The number of slots (TR) in the hash table should be a prime number. This allows
you to be creative with the hash functions.

• Limit the hash function to only one division operation (which is preferably a mod-
ulo with the table size).

• Test the hash algorithm against some sample data and also against an extreme set
of data. This approach tends to break the uniform distribution of data that hashing
techniques strive to achieve.

• Accept collisions as a fact of life and prepare to resolve them,preferably using
chaining. Note that using very large tables does not avoid collisions if rehashing is
used.

Table 14.2 shows the prime numbers you can choose based on some common table sizes
you might encounter.

TABLE 14.2. PRIME NUMBERS FOR USE WITH COMMON TABLE SIZES

Table Size Prime Numbers That Can Be Used

100 97

250 241

500 499

Manipulating Data

PART III
520

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 520

1000 997

1500 1499

2000 1999

5000 4999

8000 7999

10000 9973

Hashing Character Strings
Although you may encounter applications for which the keys are numeric, it is also very
common to have keys that are character strings (such as names,addresses,and keywords
in a text). One approach to hashing with strings is to add up the ASCII values of the
characters and apply modulo TR (where TR is the number of slots in the hash table). The
following code snippet shows a simple and inefficient hash function that takes the key
and the number of slots TR as input values and returns the bucket address as the result:

int smpl_hash(char * key, int TR)
{

int bucket = 0;
while (*key) bucket += *key++;
bucket = bucket % TR;
return bucket;

}

It is very difficult to find a general-purpose hash function that performs well for all types
of character strings,but the following ElfHash() functionis very efficient. This function
is part of the UNIX System V Release 4 and is used to hash character strings for ELF
(Executable and Linking Format) files.

unsigned long ElfHash(const unsigned char *key)
{

unsigned long h = 0;
while (*key){

h = (h << 4) + *key++;
unsigned long g = h & 0xF0000000L;
if (g) h ^= g >> 24;
h &= ~g;

}
return h;

}

You should perform modulo TR on the result of this function. This function works very
well for general cases and can be used to uniformly distributethe keys among the buckets.

Hashing and Parsing Techniques

CHAPTER 14
521

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

Table Size Prime Numbers That Can Be Used

18 239-5 CH14 2/19/99 1:25 PM Page 521

Table 14.3 compares the hashing performance for the various techniques. Hashing uses
the same performance measure as searching: the Big-O notation. The numbers in Table
14.3 represent the key comparisons

TABLE 14.3. COMPARING COLLISION RESOLUTION TECHNIQUES

Number of Linear Rehashing Simple Coalesced
Key Entries Hashing Chaining Chaining

100 43 35 15 24

250 51 44 32 36

500 842 186 134 182

750 1983 641 299 504

1000 531 962 4971 64,594

Open Addressing
The technique ofopen addressing works best if you have a fairly good idea of the num-
ber of entries you are going to expect. Each bucket stores only one entry, and a hash
function is applied on a key to determine its position in the table. If the bucket is empty,
the key is copied to that bucket; otherwise, there is a collision and one of several strate-
gies (discussed later in this chapter) is used to determine the location. Each of the strate-
gies basically makes use of a predetermined sequence in which the table is probed until
an empty bucket is found; then the entry is inserted. If you do not find an empty bucket,
the table is full. This description implies that the probe sequence should eventually scan
the entire table. Keep in mind that the same probe sequence is used when searching
(instead of inserting) for a key. The search continues until either a match is found or an
empty bucket isfound, in which case the key does not exist in the table.

The open addressing method has two main problems:

• It is difficult to determine when you have encountered an empty bucket. In general,
each bucket uses some kind of a flag to show whether or not it is empty.

• It is difficult to choose the best probe sequence. This is probably the most impor-
tant decision because you need to make sure that the sequence can scan the entire
table, if needed, and can also minimize clustering and collisions.

Suppose that the probe sequence is p0, p 1, p 2, ... p s-1 . We can have p0 as the
result of the hash function,and the sequence can be a permutation of the numbers from 0
to s-1 .

Manipulating Data

PART III
522

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 522

Linear Probing
The linear probing techniqueuses the following probe sequence:p0, p 0 + 1, p 0 + 2,

... p 0 + TR-1 , taken modulo TR. The use of the modulo causes a wraparound to the
beginning of the table when the end of the table is reached. The following equations can
be used to easily represent this sequence:

p0 = hash(key) and
pi = (p 0 + i) modulo TR

In these equations,pi is the i th probe.

Example: Let’s use linear probing to insert the following phone numbers into a hash
table: 8881234,8882345,8883456,8884321,8885432,and 8886543. We will use the
hash function hash(key) = key modulo 11 and insert the keys in a hash table of size
11. Here are the steps you follow in this hashing exercise:

1. hash(8881234) = 8881234 modulo 11 = 10

2. hash(8882345) = 8882345 modulo 11 = 10 (conflict)

This conflict is resolved using the following probe sequence:

p1 = (p 0 + 1) mod 11

= 11 mod 11

= 0

3. hash(8883456) = 8883456 modulo 11 = 10 (conflict)

This conflict is resolved using the following probe sequence:

p1 = (p 0 + 1) mod 11

= 11 mod 11

= 0 (conflict)

This conflict is resolved using the following probe sequence:

p2 = (p 0 + 2) mod 11

= 12 mod 11

= 1

4. hash(8884321) = 8884321 modulo 11 = 6

5. hash(8885432) = 8885432 modulo 11 = 6 (conflict)

This conflict is resolved using the following probe sequence:

p1 = (p 0 + 1) mod 11

= 7 mod 11

= 7

Hashing and Parsing Techniques

CHAPTER 14
523

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 523

6. hash(8886543) = 8886543 modulo 11 = 6 (conflict)

This conflict is resolved using the following probe sequence:

p1 = (p 0 + 1) mod 11

= 7 mod 11

= 7

This conflict is resolved using the following probe sequence:

p2 = (p 0 + 2) mod 11

= 8 mod 11

= 8

Here is the resulting hash table with the phone numbers inserted:

Index Value

0 8882345

1 8883456

2

3

4

5

6 8884321

7 8885432

8 8886543

9

10 8881234

Any kind of probing causes further collisions,but the situation is worse for linear prob-
ing. In linear probing, the entries tend to be clustered, and the larger the cluster, the
greater the chance of a collision. Clustering caused by linear probing is called primary
clustering.

The average number of probes needed for a successful search (a match is found) and an
unsuccessful search (an empty slot is found during insertion of the data element in the
hash table) is given by the following equations:

S(alpha) = 1/2 + 1/2(1/(1-alpha)),

U(alpha) = 1/2 + 1/2(1/(1-alpha))2

In these equations,alpha is the load factor.

Manipulating Data

PART III
524

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 524

These formulas approximate the average number of trials for successful and unsuccessful
searches. The formulas were developed by Donald Knuth and are described in detail in
his book,The Art of Computer Programming.

As the table fills up, both the types of searches—S(alpha) and U(alpha) —take longer.
When the table is almost full,the number of probes is on the order of O(TR) . The search-
ing done by hashing depends on the load factor and not necessarily on the number of
entries.

Quadratic Probing
The performance problem encountered by linear probing is caused by the cluster buildup
that occurs as a result of the probing sequence. Quadratic probinguses a different
sequence to avoid primary clustering. The probes used can be represented as follows:

p0 = hash(key) and
pi = (p 0 + i 2) mod TR

In these equations,pi is the i th probe and TR is the number of entries in the table.

Quadratic probing skips more buckets compared to linear probing and thereby causes
less clustering. However, all the keys that map to the same bucket end up using the same
probe sequence. This results in a condition calledsecondary clustering. The biggest
drawback of quadratic probing is that after about half the number of buckets are scanned,
the sequence starts repeating. As a result,you may miss empty buckets. A variation of
quadratic probing can be used to improve the situation:

p0 = hash(key) and
pi = (p 0 + i 2) mod TR

Uniform probing is a theoretical probe sequence that is basically random and in which
each bucket has an equal probability of being selected. In this form of probing, there is
no clustering, neither primary or secondary. The average number of probes for such a
sequence can be given by the following equations:

S(alpha) = 1/alpha*l n(1/(1-alpha)) and

U(alpha) = 1/(1-alpha)

In these equations,alpha is the load factor.

These formulas approximate the average number of trials for successful and unsuccessful
searches. The formulas are developed by Donald Knuth and are described in detail in his
book,The Art of Computer Programming.

There is no practical method to simulate such a sequence. However, double-hash probing
comes very close to achieving this result.

Hashing and Parsing Techniques

CHAPTER 14
525

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 525

Double-Hash Probing
Double hashing uses two hash functions such that the first hash function is applied to the
key; if there is a collision,the second hash function is applied and its result is used as an
offset to find the new bucket. The following equations can be used:

p0 = hash1(key),

offset = hash2(key) and

pi = (p i -1 + c) mod TR

In these equations,TR is the number of buckets.

A full table scan can be guaranteed by making c relatively prime to TR.

It is very important to make sure that hash1 and hash2 are independent of each other. If a
collision results from hash1 , hash2 should not result in another collision.

In his book,Mathematics for the Analysis of Algorithms, Donald Knuth suggests a set of
functions that do an excellent job in avoiding collisions:

hash1(key) = key mod TR,

hash2(key) = key mod (TR-2)

The randomization can further be increased by choosing TR such that TR and TR-x are
both prime.

Example: Let’s use the double-hashing technique on the same set of phone numbers
described earlier:

8881234,8882345,8883456,8884321,8885432,8886543

We will use these hash functions and insert the keys in a hash table of size 11:

hash1(key) = key modulo 11,

hash2(key) = key modulo 7

Here are the steps to perform this technique:

1. hash1(8881234) = 8881234 modulo 11 = 10

2. hash1(8882345) = 8882345 modulo 11 = 10 (conflict)

This conflict is resolved using the following sequence:

hash2(8882345) = 8882345 modulo 7 = 3

3. hash1(8883456) = 8883456 modulo 11 = 10 (conflict)

This conflict is resolved using the following sequence:

hash2(8883456) = 8883456 modulo 7 = 1

Manipulating Data

PART III
526

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 526

4. hash1(8884321) = 8884321 modulo 11 = 6

5. hash1(8885432) = 8885432 modulo 11 = 6 (conflict)

This conflict is resolved using the following sequence:

hash2(8885432) = 8885432 modulo 7 = 3 (conflict)

We can now use linear probing to step further; the next empty bucket equals 4.

6. hash1(8886543) = 8886543 modulo 11 = 6 (conflict)

This conflict is resolved using the following sequence:

hash2(8886543) = 8886543 modulo 7 = 1 (conflict)

Using linear probing, we get the next empty bucket equals 2.

Here is the resulting hash table with the phone numbers inserted:

Index Value

0

1 8883456

2 8886543

3 8882345

4 8885432

5

6 8884321

7

8

9

10 8881234

Thus you can see that the double-hashing technique does not eliminate collisions or clus-
tering, but it does minimize them.

Listing 14.2 through Listing 14.6 show an implementation of a linked list and its rou-
tines:previous_node() , current_node() , insert(), and remove() .

LISTING 14.2. LINKED LIST CLASS DEFINITION

==

//The linked_list class can be defined as follows.
template <class Etype>
class linked_list

Hashing and Parsing Techniques

CHAPTER 14
527

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 527

{
protected:

struct node
{

Etype data;
node *next;

//Node constructor
node(Etype D = 0, node *n = NULL):

data(D), next(n) { }
};

node *list_head;
void delete_list();

linked_lists(linked_list & value);

public:
linked_list() : list_head (new node) { }
virtual ~linked_list() {delete_list(); }

virtual Etype * find_previous_node(const Etype & key);
virtual int remove(const Etype & key);
virtual Etype * find_node(const Etype & key);
virtual int insert(const Etype & key);

};

LISTING 14.3. ROUTINE TO FIND THE NODE THAT COMES BEFORE THE NODE CONTAINING key

==
//This routine searches the linked list for the element
//”key” and returns the pointer to the node that comes
//just before the node that contains the “key”. A header
//node is assumed for the linked list.

template <class Etype>
Etype *
linked_list<Etype>::
find_previous_node(const Etype & key)
{

node *p;
p = list_head;

while (p->next != NULL) {
if (p->next->data == key)
{

Manipulating Data

PART III
528

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.2. CONTINUED

18 239-5 CH14 2/19/99 1:25 PM Page 528

return p;
}

p = p->next;
}
return p->next;

};

LISTING 14.4. ROUTINE TO DELETE THE NODE CONTAINING key

==

//This routine searches the linked list for the element
//”key” and then deletes the node that contains it.
//It makes use of the routine “find_previous_node”.
//A header node is assumed for the linked list.

template <class Etype>
int
linked_list<Etype>::
remove(const Etype & key)
{

node *to_delete, *previous_node;

previous_node = find_previous_node(key) ;
if (previous_node != NULL)
{

to_delete = previous_node->next;
previous_node->next = to_delete->next;
delete to_delete;
return 1;

}
return 0;

};

LISTING 14.5. ROUTINE TO FIND THE NODE CONTAINING key

==
//This routine searches the linked list for the element
//”key” and returns the pointer to the node that contains
// the “key”. A header node is assumed for the linked list.

template <class Etype>
node *
linked_list<Etype>::
find_node(const Etype & key)
{

node *p;

Hashing and Parsing Techniques

CHAPTER 14
529

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 529

p = list_head;

while (p->next != NULL) {
if (p->next->data == key)
{

return p->next;
}

p = p->next;
}
return p->next;

};

LISTING 14.6. ROUTINE TO INSERT key IN A LINKED LIST

==
//This routine inserts the “key” at the head of the linked list.
//A header node is assumed for the linked list.

template <class Etype>
int
linked_list<Etype>::
insert(const Etype & key)
{

node *p;
node *i = new node(key, list_head->next);

if (i == NULL){
cout << “Error. Out of space”;
return 0;

}

p = list_head;
p->next = i;
return 1;

};

Listing 14.7 through Listing 14.11 provide the definition of an open_hash table and the
implementation of its routines to insert, search, and remove keys.

LISTING 14.7. THE open_hash TABLE CLASS DEFINITION

==
//The class “open_hash_table” can be defined as follows.
template <class Element_Type>
class open_hash_table
{

Manipulating Data

PART III
530

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.5. CONTINUED

18 239-5 CH14 2/19/99 1:25 PM Page 530

private:
unsigned int table_size;
linked_list<Element_Type> *lists;

open_hash_table(open_hash_table & value);

public:
open_hash_table(unsigned int sz = 11);
~open_hash_table() { delete [] lists; }

int search_key(const Element_Type * key);
void remove(const Element_Type & key);
void insert(const Element_Type & key);

};

LISTING 14.8. ROUTINE TO INITIALIZE THE open_hash CLASS

==
//This routine initializes the open_hash_table.
template <class Element_Type>
open_hash_table<Element_Type>::
open_hash_table(unsigned int sz)
{

table_size = sz;
lists = new linked_lists<Element_Type> [table_size];
if (lists == NULL)

cout << “Error. Out of space”;
};

LISTING 14.9. ROUTINE TO SEARCH FOR key IN THE open_hash TABLE

==
//This routine can be used to search for a key in the open
//hash table.
//It returns the “bucket” that contains the key.
//It makes use of the linked_list class and its public routines.

template <class Element_Type>
int
open_hash_table<Element_Type>::
search_key(const Element_Type * key)
{

unsigned int hash_value = hash(key, table_size);

if (lists[hash_value].find_node(key))
{

bucket = hash_value;

Hashing and Parsing Techniques

CHAPTER 14
531

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 531

return bucket;
}
return 0;

};

LISTING 14.10. ROUTINE TO REMOVE THE SPECIFIED key FROM THE open_hash TABLE

==
//This routine can be used to remove the specified key from
//the open hash table.
//It makes use of the linked_list class and its public
//routines.
template <class Element_Type>
void
open_hash_table<Element_Type>::
remove(const Element_Type & key)
{

unsigned int hash_value = hash(key, table_size);

lists[hash_value].remove(key);

};

LISTING 14.11. ROUTINE TO INSERT THE SPECIFIED key INTO THE open_hash TABLE

==
//This routine can be used to insert the specified key into
//the open hash table.
//It makes use of the linked_list class and its public
//routines.
template <class Element_Type>
void
open_hash_table<Element_Type>::
insert(const Element_Type & key)
{

node *p;
unsigned int hash_value = hash(key, table_size);

//Duplicates are not allowed.
p = lists[hash_value].find_node(key);
if (p == NULL)

lists[hash_value].insert(key);
else

cout << “Sorry. Key already exists”;

};

Manipulating Data

PART III
532

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.9. CONTINUED

18 239-5 CH14 2/19/99 1:25 PM Page 532

Parsing
Parsing is a generic operation that identifies legal expressions and breaks them up into a
form suitable for further processing. Parsing has applications in many different fields
such as computer science (where it can be used by compilers to convert a high-level lan-
guage to a lower-level language), interpreting human language, and so on. The main goal
of parsing is to check the validity of an expression and make more sense out of it. The
term “grammar”is commonly used in programming languages to identify legal expres-
sions.

There are two approaches commonly used during parsing (see Table 14.4 for a compari-
sonof these two methods):

• Top-down approach: This method looks at the program first, and recursively iden-
tif ies parts that are eventually matched to the input expression.

• Bottom-up approach: This method looks at the input expression and combines the
pieces of the expression to make a legal program from it.

TABLE 14.4. COMPARING PARSING APPROACHES

Feature Top-Down Approach Bottom-Up Approach

Approach Break the bigger components Combines the small parts to
into more manageable form a bigger component.
smaller parts.

Implementation Easy Difficult

Efficiency Poor Good

Implementation Recursive Iterative
technique

Let’s use a data structure called stack to understand parsing in more detail. This data
structure will contain only two operations:push() (place an element at the top of the
stack) and pop() (remove an element from the top of the stack). The C++ implementa-
tion of the stack class is shown in Listing 14.12.

LISTING 14.12. IMPLEMENTATION OF THE stack CLASS AND ITS ROUTINES

class stack
{

private:
char *stack_store;

Hashing and Parsing Techniques

CHAPTER 14
533

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 533

//”top” is a pointer to the top of the stack
int top;

public:
stack(int max_size=1000);
~stack() (delete stack_store;);

void push(char data);
char pop();

}

stack::stack(int max_size)
{

stack_store = new char[max];
top = 0;

}

stack::push(char data)
{

stack[top++] = data;
}
char stack::pop()
{

return stack[--top];
}

Parsing Numeric Expressions
Numeric expressions are generally represented by the infix notation, in which the opera-
tor is placed between the operands and parentheses are used where necessary to indicate
the order in which the operators are applied to the expressions. Numeric expressions are
best computed using apostfix notation (also called reverse polish notation), in which the
operator is placed after its two operands and parentheses are not required. The stack
implementation shown in Listing 14.12 is ideal for calculating such numeric expressions.
Table 14.5 gives some examples of numeric expression inthe infix format and their post-
fix equivalents.

TABLE 14.5. CONVERTING INFIX EXPRESSIONS TO POSTFIX EQUIVALENTS

Infix Representation Postfix Representation

5 + 4 5 4 +

6 * (7 + 4) 6 7 4 + *

(7 + 8) * (2 - 9) + 1 7 8 + 2 9 - * 1 +

2 * ((3 + 1) * 6) 2 3 1 + 6 * *

Manipulating Data

PART III
534

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.12. CONTINUED

18 239-5 CH14 2/19/99 1:25 PM Page 534

The algorithm used with stacks and postfix expressions is given here:

1. Scan the expression left to right.

2. If you encounter an operand, push it to the top of the stack.

3. If you encounter an operator, pop the top two stack elements and perform the oper-
ation on them; push the result back on topof the stack.

Listing 14.13 provides an implementation of numeric parsing using the stack class.

LISTING 14.13. IMPLEMENTATION OF NUMERIC PARSING

char c;
stack num_stack(100);
int sum;
int oper1, oper2;

while (cin.get(c))
{

sum = 0;
while (c == ‘ ‘) cin.get(c);

if (c == ‘+’)
{

oper1 = num_stack.pop();
oper2 = num_stack.pop();
sum = oper1 + oper2;

};

if (c == ‘*’)
{

oper1 = num_stack.pop();
oper2 = num_stack.pop();
sum = oper1 * oper2;

};

if (c == ‘-’)
{

oper1 = num_stack.pop();
oper2 = num_stack.pop();
sum = oper2 - oper1;

};

if (c == ‘/’)
{

oper1 = num_stack.pop();
oper2 = num_stack.pop();
sum = oper2 / oper1;

};

Hashing and Parsing Techniques

CHAPTER 14
535

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

continues

18 239-5 CH14 2/19/99 1:25 PM Page 535

while (c >=’0’ && c<= ‘9’)
{

sum = 10*sum + (c-’0’);
cin.get(c);

};

num_stack.push(sum);
};

cout << “The result of the expression is “ & sum ;

Parsing String Expressions
String parsingcan be more involved than numeric parsing and can be represented by
using a parse tree. You can construct a parse treefor an expression by using the follow-
ing simple recursive rule: Make the operator the root; the tree corresponding to the left
operand (expression) is the left child, and the tree corresponding to the right operand
(expression) is the right child. This simple rule results in a binary parse tree. Figure 14.1
shows the parsetree for the expression A*((B+C) + D) .

Manipulating Data

PART III
536

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

LISTING 14.13. CONTINUED

FIGURE 14.1.
Parse tree for the
expression
A*((B+C) + D) . A+

D+

CB

Parse trees can also be created for more complicated expressions,such as the expression
of the English language. Such string parsing requires sophisticated techniques,the details
of which are beyond the scope of this book. The stack object we used for numeric pars-
ing can also be used for string parsing; the difference is that instead of pushing the inter-
mediate results on the stack, we save the intermediate expression trees on the stack.
Listing 14.14 shows the implementation for A*((B+C) + D) . First,we convert this
expression to its postfix equivalent:A B C + D + * . The reason we use postfix equiva-
lent expressions is so that they can beeasily implemented with the stack object.

LISTING 14.14. IMPLEMENTATION FOR A*((B+C) + D) USING THE stack CLASS

struct node
{

18 239-5 CH14 2/19/99 1:25 PM Page 536

char data;
struct node *left, *right;

};
stack string_stack(100);
char c;
struct node *x, *dummy;

dummy = new node;
dummy->left = dummy;
dummy->right = dummy;

while (cin.get(c))
{

while (c==’ ‘) cin.get(c);
x = new node;
x->data = c;
x->left = dummy;
x->right = dummy;
if (c == ‘+’ || c== ‘*’)
{

x->right = stack.pop();
x->left = stack.pop();

}
stack.push(x);

}

Context-Free Grammar and Parsing
A context-free grammaris often used to define legal constructs. It can be used to deter-
mine whether a given string of characters is valid in a language. The language can be a
programming language or a natural language (such as English). For example, the follow-
ing can be used as the context-free grammar that defines the set of all legal regular
expressions:

<expression> ::= <term> | <term> + <expression>
<term> ::= <factor> | <factor> <term>
<factor> ::= (<expression>) | c | (<expression>)* | c*

Each line in the grammar description is called a production rule, or a replacement rule.
The production or replacement rule contains the following:

• Terminal symbols such as (,) , +, and * , which are used in the language.

• Non-terminal symbols such as <expression> , <term> , and <factor> , which are
used in the grammar.

• The special symbol “c” that represents a letter or a digit.

• Meta-symbols such as ::= (which stands for “is a”) and | (which stands for “or”),
which are used in the grammar.

Hashing and Parsing Techniques

CHAPTER 14
537

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 537

You can use a parse tree to describe a string expression using these production rules. You
can use parsing to determine whether or not a given string can be derived using the pro-
duction rules. If the string cannot be derived, then the string is illegal in the language
being represented by the grammar.

An example of such a parse tree for the expression A*B+AC is shown in Figure 14.2.

Manipulating Data

PART III
538

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

FIGURE 14.2.
The parse tree for
the expression
A*B+AC.

expression

+ expression

term

term

factor term factor term

factor

C

A
factor

B

term

A

Using Top-Down Parsing to Validate Regular
Expressions
The top-down parsingtechnique uses recursion to recognize strings. This technique uses
a procedure to represent each of the production rules specified in the grammar such that
nonterminal symbols on the left side of the rule becomes the name of the procedure, and
nonterminal symbols on the right side of the rule become recursive calls. Terminal sym-
bols are used to scan the string in the process of deriving a parse tree. Refer to
Sedgewick’s book,An Introduction to the Analysis of Algorithms, for details about how
compilers can be generated for such regular expressions.

The regular expression being parsed can be represented in the array p; the index i can
represent the character currently being analyzed. The idea is to start with i = 0 ; if , after
going through the code that implements the parser, we reach i = strlen(p) , the string
is legal in the language. The code should be able to perform error handling as well as
prevent infinite loops caused by improper recursion.

The following pseudocode shows how this can be implemented:

for(i=0;i<strlen(p);i++){
//Code to implement the parser goes here.
}

18 239-5 CH14 2/19/99 1:25 PM Page 538

Summary
Choosing the best hashing technique for a particular application can be a very difficult
decision. However, when memory is not an issue, you will find that all the various hash-
ing techniques discussed in this chapter work with relatively similar performance. As a
general rule, I suggest that if you are aware of the size of the key set,you should use the
double-hashing technique. On the other hand, if you do not know the size of the key set,
you should use the chaining method. Keep in mind that you should also consider the load
factor, which is an important part of the hashing technique. For large load factors, the
technique you use is really tested; you should also carefully consider the size of the links
that are involved in the open addressing method.

In general, hashing is better than a binary search because hashing is simpler to imple-
ment and can usually provide a fast and almost constant search time (assuming that you
have enough memory to store a large hash table). Binary searches can be useful if memo-
ry is an issue or the size of the key set is not known because they can give you pre-
dictable worst-case performance.

Parsing techniques are commonly used by compilers to interpret a given input and con-
vert it into another form that can be interpreted by the machine. Parsing can make use of
top-down or bottom-up approaches; the choice of parsing approach usually depends on
the grammar being parsed. Numeric expressions are usually parsed using their postfix
representation; string parsing is usually performed by using a parse tree to represent the
expression being parsed. Parsing is widely used in artif icial intelligence for language
interpretation. By using the production rules and the grammar for a particular language,
you can create parse trees for expressions.

Hashing and Parsing Techniques

CHAPTER 14
539

14

H
A

SH
IN

G
A

N
D

P
A

R
SIN

G
T

EC
H

N
IQ

U
ES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 539

540

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH14 Lp#1

18 239-5 CH14 2/19/99 1:25 PM Page 540

P/V Unleashed generic ISBN# Name Date Part Lp#1

Object Persistence
and Encryption PART

IV
IN THIS PART

• Object Persistence 543

• Relational Databases and Persistence 621

• Object Persistence Using Relational
Databases 651

• Object-Oriented Databases 677

• Protecting Applications Using Encryption 737

19 239-5 Part 4 2/19/99 1:26 PM Page 541

P/V Unleashed generic ISBN# Name Date Part Lp#1

19 239-5 Part 4 2/19/99 1:26 PM Page 542

IN THIS CHAPTER

• Creating Storable Objects 545

• Caching 559

• Swapping to Disk 560

15
C

H
A

PT
ER

Object Persistence

20 239-5 CH 15 2/19/99 1:31 PM Page 543

C++ is in the business of manipulating objects in memory. At times,however, you will
want these objects to be stored to disk and then restored to memory at a later time.
Storing objects to disk allows you to manipulate a larger number of objects than can be
housed in memory at any one time; it also enables you to shut down your program and
resume its operation later.

Your compiler vendor provides ofstream objects that implement basic file manipulation.
Your program can create an fstream object and then use it to open your files and to read
data in and out. However, fstream objects know nothing about your data. They are terrif ic
for reading in a stream of characters,but your objects are often more complex than that.

As you can imagine, it is your job to teach your classes how to stream to disk. There are
a number of ways to do this.

The first question you must answer is whether your files will store mixed types of
objects. If it is possible that you will have to read a record without knowing what type of
object it is,then you will have to store more information in the file than you would if
every record in that file were known to be of the same type.

The second question is whether you are storing data of a fixed length. If you know that the
next object to be read is 20 bytes,for example, you have an easier task than if you don’t
know how big the object is. In the latter case, the length must be storedwith the object.

Listing 15.1 demonstrates a very simple program that opens a file, stores sometext to it,
closes the file, and then reopens it and reads the text.

LISTING 15.1. A SIMPLE READ/WRITE PROGRAM

#include <fstream.h>
void main()
{

char fileName[80];
char buffer[255];
cout << “File name: “;
cin >> fileName;

ofstream fout(fileName); // open for writing

fout << “This line written directly to the file...\n”;

cout << “Enter text for the file: “;

cin.ignore(1,’\n’); // eat the new line after the file name
cin.getline(buffer,255); // get the user’s input

fout << buffer << “\n”; // and write it to the file

Object Persistence and Encryption

PART IV
544

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 544

fout.close(); // close the file, ready for reopen

ifstream fin(fileName); // reopen for reading
cout << “Here’s the contents of the file:\n”;

char ch;
while (fin.get(ch))
cout << ch;

cout << “\n***End of file contents.***\n”;

fin.close(); // always pays to be tidy
}

This smallprogram neatly shows the fundamentals of writing text out to a file. You cre-
ate a filename, open an ofstream object with that name, and write to it usingfout . This
is very similar to writing to standard output using cout . You can also read from this file
usingfin , in a way that is directly analogous to cin .

Creating Storable Objects
Writing objects, rather than built-in types such as characters, is a bit more complicated
than writing text. The object-oriented solution to this dilemma is to teach the objects to
write themselves to disk and to read themselves fromdisk. To do this,you must
designate your class as storable, a task we’ll accomplish through inheritance.

Note that storable is not a built-in C++ construct; it is a capability you will add to your
program by creating an abstract base type Storable and then implementing the neces-
sary methods in your storable subclasses. Because the storable base class is fairly simple,
you may often choose to make your storable objects multiply inherit—both from their
“natural” base class and from the storable base class.

Storable is an abstraction,and so we’ll designate one of its methods aspure virtual:

class Storable // Abstract Data type
{
public:

Storable() {}
Storable(Reader&){}
virtual void Write(Writer&)=0;

private:
};

Classes derived from Storable must implement the Write() method, which takes a
Writer as a parameter. Storable objects can be created from disk by passing in a
Reader . Here are thedeclarations of Reader and Writer :

Object Persistence

CHAPTER 15
545

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 545

class Writer
{
public:

Writer(char *fileName):fout(fileName,ios::binary){};
~Writer() {fout.close();}
virtual Writer& operator<<(int&);
virtual Writer& operator<<(char*);

private:
ofstream fout;

};

class Reader
{
public:

virtual Reader& operator>>(int&);
virtual Reader& operator>>(char*&);

Reader(char *fileName):fin(fileName,ios::binary){}
~Reader(){fin.close();}

private:
ifstream fin;

};

The job of Reader and Writer is to encapsulate the responsibility of reading and writing
primitive data (such as integers, character strings,and so on) to permanent storage. Here
we’ve implemented only the int and char* storage mechanisms. You can imagine
adding double , float , and others.

To see how these classes are used, we need some objects to store to disk and read back
from disk. We’ll start by creating a Note class,which will derive from class Storable , as
shown in Listing 15.2. The Note class stores some text, the length of that text, and a cou-
ple other pieces of information. For now, we’ll just have it store two integers (reserved1

and reserved2) to represent these additional values. In a commercial application, these
variables might store the creation date or other relevant data.

LISTING 15.2. NOTE. H

class Note : public Storable
{

public:
Note(const String& text):
itsText(text), reserved1(0L), reserved2(0L)

{}

Note(const char* text):
itsText(text), reserved1(0L), reserved2(0L)

Object Persistence and Encryption

PART IV
546

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 546

{}

Note::Note(Reader& rdr) :itsText(rdr)
{

rdr >> reserved1;
rdr >> reserved2;

}

~Note(){}

const String& GetText()const { return itsText; }

//…

void Write(Writer& wrtr)
{

itsText.Write(wrtr);
wrtr << reserved1;
wrtr << reserved2;

}

private:
String itsText;
int reserved1;
int reserved2;

};

The text that Note stores (itsText) is of type String . This is a user-defined type that
manages character strings. The Note class delegates responsibility for the creation of
reserved1 and reserved2 to the Reader , which we will pass into the constructor. The
Reader is responsible for reserved1 and reserved2 because they are primitive data
types (integers). The Note class asks the String object to construct itself, however,
because it is a user-defined type. To do so,the Note class passes the Reader object to the
String ’s constructor in the Note ’s initialization:

Note::Note(Reader& rdr) :itsText(rdr)

Because Note is derived from class Storable , it has a constructor that takes a Reader

object,and it must override the Write() method. Here again, the Note class delegates to
itsText the responsibility to write the String (passing in the Writer object) but it dele-
gates to the Writer object the responsibility to write out the two integers.

Once again, the rule is that primitive (built-in) types such as integers and characters are
managed by the Reader and the Writer , but user-defined types such as String must read
and write their own data.

Object Persistence

CHAPTER 15
547

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 547

To see how String accomplishes this,we must examine it in a bit more detail. String is
a flexible utility class you would write yourself if the STL or your favorite library didn’t
provide one. The implementation shown in Listing 15.3 isrudimentary, but is sufficient
for the following examples.

LISTING 15.3. STRING. H

class String : public Storable
{
public:

// constructors
String();
String(const char *);
String (const char *, int length);
String (const String&);
String(istream& iff);
String(Reader&);
~String();

// helpers and manipulators
int GetLength() const { return itsLen; }
bool IsEmpty() const { return (bool) (itsLen == 0); }
void Clear(); // set string to 0 length

// accessors
char operator[](int offset) const;
char& operator[](int offset);
const char * GetString()const { return itsCString; }

// casting operators
operator const char* () const { return itsCString; }
operator char* () { return itsCString;}

// operators
const String& operator=(const String&);
const String& operator=(const char *);

void operator+=(const String&);
void operator+=(char);
void operator+=(const char*);

bool operator<(const String& rhs)const;
bool operator>(const String& rhs)const;
bool operator<=(const String& rhs)const;
bool operator>=(const String& rhs)const;
bool operator==(const String& rhs)const;
bool operator!=(const String& rhs)const;

Object Persistence and Encryption

PART IV
548

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 548

// friend functions
String operator+(const String&);
String operator+(const char*);
String operator+(char);

void Display()const { cout << itsCString << “ “; }
friend ostream& operator<< (ostream&, const String&);
ostream& operator() (ostream&);

void Write(Writer&);

private:
// returns 0 if same, -1 if this is less than argument,
// 1 if this is greater than argument
int StringCompare(const String&) const;
char * itsCString;
int itsLen;

};

The implementation of this class includes the constructor taking a Reader , and also an
override of the Write() method taking a Writer :

String::String(Reader& rdr)
{

rdr>>itsLen;
rdr>>itsCString;

}

void String::Write(Writer& wrtr)
{

wrtr<<itsLen;
wrtr<<itsCString;

}

Note how String manages its own reading and writing. It delegates its primitive data to
the Reader and the Writer . Had String contained other user-defined objects,it would
have asked themto read and write themselves; and they in turn would have passed their
primitive types to Reader and Writer .

This makes sense; all user-defined types consist of some mix of other user-defined types
and primitive data. Sooner or later, it all comes down to the built-in types,and Reader

and Writer are equipped to deal with that. Each user-defined type has to know only its
own composition; its responsibility consists only of proper delegation to other user-
defined types or to the Reader and Writer objects.

Equipped with these methods,we’re ready to walk our way through a driver test pro-
gram,as shown in Listing 15.4.

Object Persistence

CHAPTER 15
549

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 549

LISTING 15.4. DRIVER PROGRAM FOR READER AND WRITER

#include “note.h” // see listing 15.2
#include <fstream.h>

// NOT a member function!
void operator<<(Writer& wrtr, Note& note)
{

note.Write(wrtr);
}

const int howMany = 5;

int main()
{

char fileName[80];
char buffer[255]; // for user input
cout << “File name: “;
cin >> fileName;
cin.ignore(1,’\n’); // eat the new line after the file name
Writer * writer = new Writer(fileName);
Note* theNote;

for (long i = 0; i<howMany; i++)
{

cout << “Please enter a word: “ ;
cin.getline(buffer,255);
theNote = new Note(buffer);
(*writer) << *theNote; // write it to the file
delete theNote;

}
delete writer;

Reader * reader = new Reader(fileName);

cout << “Here are the contents of the file:\n”;

for (i = 0; i<howMany; i++)
{

theNote = new Note(*reader); // Create from the file
cout << theNote->GetText()<< endl;
delete theNote;

}

cout << “\n***End of file contents.***\n”;
delete reader;
return 0;

}

Object Persistence and Encryption

PART IV
550

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 550

The first thing we see is a globally defined operator<< that takes a Writer object and a
Note . This allows us to mimic the cout format (you need the parentheses because of
operator precedence):

(*writer) << *theNote; // and write it to the file

This simple driver program begins by prompting the user for a filename. A Writer object
is then created using that filename. The constructor of Writer uses the filename to ini-
tialize an fout object,passing in the filename it was given:

Writer(char *fileName):fout(fileName,ios::binary){};

We enter a loop and prompt the user for words. Each word is used to create a new Note

object:

Note(const char* text):
itsText(text), reserved1(0L), reserved2(0L)

{}

The text is initialized with the word supplied by the user, and the integer variables
reserved1 and reserved2 are initialized to zero. The Writer is then handed the Note to
write to the file:

(*writer) << *theNote;

Stepping into this function takes you into the global function we defined earlier:

void operator<<(Writer& wrtr, Note& note)
{

note.Write(wrtr);
}

This code invokes Note ’s Write() method. Stepping into Note ’s Write() method, we
find that the Note is in fact delegating the task of writing out its text to the String class,
and the Note class is delegating to the Writer object the responsibility to write out the
integers. No one writes out the text length because we have no need to store this infor-
mation for the Note ; we’ll simply call strlen() when the note is rebuilt—as we’ll see in
a moment.

void Write(Writer& wrtr)
{

itsText.Write(wrtr);
wrtr << reserved1;
wrtr << reserved2;

}

Stepping into itsText.Write(wrtr) shows that the String delegates to the Writer the
responsibility of writing out the length and contents of the text. This is a critical point:
The string knows what to write, and the Writer knows how to write it:

Object Persistence

CHAPTER 15
551

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 551

void String::Write(Writer& wrtr)
{

wrtr<<itsLen;
wrtr<<itsCString;

}

The reason Note didn’t do this itself is that it should not know what to write: that is an
internal detail of the String class. All Note needed to know was that String was user-
defined and that, therefore, String would know what to do to write itself.

Continuing with the Note ’s Write() method, after telling the String to write itself, the
method tells the Writer object to write out the value of reserved1 :

void Write(Writer& wrtr)
{

itsText.Write(wrtr);
wrtr << reserved1;
wrtr << reserved2;

}

This call invokes Writer:: operator<<(int&) :

Writer& Writer::operator<<(int& data)
{

fout.write((char*)&data,szInt);
return *this;

}

After the text and the two reserved fields are written, the Note has been stored. After all
the words are written,we no longer need the Writer object,so it is deleted. Time passes,
and we now want to read the Note s stored on disk. A Reader object is created and we
enter a loop in which we re-create the five Note s from storage—at least for long enough
for themto tell us their contents.

The Reader is initialized with the same filename as the Writer , and the Note ’s construc-
tor is called, taking the Reader as a parameter:

theNote = new Note(*reader);

The constructor of the Note reverses the process by which the Note was written. Note the
initialization of itsText ; this takes place before the body of the constructor runs:

Note::Note(Reader& rdr) :itsText(rdr)
{

rdr >> reserved1;
rdr >> reserved2;

}

Object Persistence and Encryption

PART IV
552

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 552

This initialization invokes the String ’s constructor, which takes a Reader as a parameter:

String::String(Reader& rdr)
{

rdr>>itsLen;
rdr>>itsCString;

}

The string reads its length first:

rdr>>itsLen;

This action invokes Reader ’s operator >> , passing in itsLen by reference. Thevalue is
filled with the value stored on disk:

Reader& Reader::operator>>(int& data)
{

fin.read((char*)&data,szInt);
return *this;

}

It then does the same thing to get the string:

Reader& Reader::operator>>(char *& data)
{

int len;
fin.read((char*) &len,szInt);
data = new char[len+1];
fin.read(data,len);
data[len]=’\0’;
return *this;

}

Note that the Reader does not use the length stored by the String object. The length of
the stored string is actually on the disk. When this string was written out by Writer , the
length was recorded in the first four bytes; the String keeps this information redundantly
as an optimization for use in other methods:

Writer& Writer::operator<<(char * data)
{

int len = strlen(data);
fout.write((char*)&len,szInt); // write the length
fout.write(data,len); // now write the data
return *this;

}

The Note ’s constructor continues by asking the Reader to restore the reserved1 field:

rdr >> reserved1;

Object Persistence

CHAPTER 15
553

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 553

This again invokes operator>> , which simply reads four bytes into this variable:

Reader& Reader::operator>>(int& data)
{

fin.read((char*)&data,szInt);
return *this;

}

The same is done for reserved2 . Finally, the Note is displayed, and the Reader is
destroyed.

After Reader and Writer are fully developed to support all the built-in types,it becomes
a simple matter to implement serialization for your classes. Just do the following:

1. Derive from Storable .

2. Implement a constructor that takes a Reader and a Write() method.

3. Delegate to the Reader or Writer responsibilities for primitive types.

4. Delegate to contained Storable objects responsibility for reading and writing
themselves.

Manipulation of Files
Although reading and writing to disk works quite well for many tasks,you sometimes
need finer control of your files. To examine these issues,I’ ll create a B-tree which I’ll
use to keep Note s in order and to store them to disk both in a data file and in an index.

What Is a B-Tree?
The B-tree was invented in 1972 by R. Bayer and E. McCreight,andwas designed from
the start to create shallow trees for fast disk access.

Shallow treeshave few “levels”; you have to seek through them fewer times,and there-
fore they run quickly. Because seeks often require going to disk for the information you
need, the performance increase with a shallow tree rather than a deeper tree can be sub-
stantial. B-trees are a powerful solution to the problem of disk-based storage; virtually
every commercial database system has used variations on a B-tree for years.

A B-tree consistsof pages. Each page has a set of indices. Each index consists of a key
value and a pointer. The pointer in an index can point either to another page or to the
data you are storing in the tree.

Thus,every page has indices that point to other pages or to data. If the index points to
another page, the page is called a node page; if the index points to data, the page is
called a leaf page. The maximum number of indiceson a page is the page’s order.

Object Persistence and Encryption

PART IV
554

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 554

Every page, therefore, has a maximum of order child pages. It is a rule of B-trees that no
pages,other than the top page and theleaf pages,ever have fewer than order/2 indices.
A leaf page can have one fewer than that (order/2-1).

New indices are always added toleaf pages. This fact is critical: You never add an index
to a node page. Nodepages are created by the B-tree when an existing page “splits.”

Here’s how it works:Assume that you are creating a B-tree of order 4 (to pick a num-
ber),to store words. To simplify the example, the index’s key will be the word itself (that
is, we won’t distinguish between keys and data).

For this example, I’ ll build up a tree with the words “Four score and seven years ago, our
fathers brought forth on this continent...” When the tree is created, its root pointer,
myRoot , points to nothing, as shown in Figure 15.1.

Object Persistence

CHAPTER 15
555

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

Root 0

FIGURE 15.1.
An empty B-tree.

The first word, Four , is added to a new page, as shown in Figure 15.2. This new page is a
leaf page, and the index, Four , points tothe actual data.

Root
four

(Data)

page 1FIGURE 15.2.
A leaf page.

Words are added to the page until order words,in this case four words,at which time the
page is full (see Figure 15.3).

Root
and four score seven

(data)

page 1FIGURE 15.3.
A full-leaf page.

When it is time to enter the word years , the page must split to make room. The algo-
rithm follows:

1. Split the page in half.

2. Add the new word in its appropriate position (in this case, alphabetical).

3. If the new word is smaller than the first word, and thus will be added in the first
position,adjust the pointer.

20 239-5 CH 15 2/19/99 1:31 PM Page 555

4. Return a pointer to the new page.

5. If the root detects that a new top page is required, create it.

6. Add an entry in the new top page to point to what theroot points to.

7. Add an entry in the new top page for the return value from step 4.

8. Point the root to the new top page.

In the case shown in Figure 15.4,the word years is to be added. To do this,the page
must split. The new page is returned, and the root pointer recognizes that a new top page
is needed. The new page is populated with an index pointing tothe entry that myRoot

used to point to (and), and a second entry is made pointing to the new page. myRoot then
is pointed to this new node page.

Object Persistence and Encryption

PART IV
556

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

Root
and score

and four

(data)

score seven years

(data)

FIGURE 15.4.
Splitting thepage.

The next word to be added is ago . Because this is earlier than and , it is added before and

on the leaf page, and the node page is “f ixed up”to point to this earlier index, as shown
in Figure 15.5.

Root
ago score

ago and four score seven years

FIGURE 15.5.
Fixing up the
node.

When a page nodeis filled, as shown in Figure 15.6,it splits,as shown in Figure 15.7,
and the new pointer is added to the node pointer. This continues until the node page is
full, as shown in Figure 15.8.

20 239-5 CH 15 2/19/99 1:31 PM Page 556

Adding the next word, new, to this tree presents a problem. The first page will have to
split, and when it does,it will pass an entry to its parent node. That node, however, is
full, so it too will have to split. When it does,the root pointer must recognize that a new
node is required (see Figure 15.9).

Object Persistence

CHAPTER 15
557

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

Root
ago score

ago and four our score seven years

FIGURE 15.6.
Getting ready to
split a page.

Root
ago four score

ago and fathers score seven years

four our

(data)

(data) (data)

FIGURE 15.7.
After the page
splits.

score
Root

a brought forth

a ago and

forth for on our

brought continent fathers

score seven this years

FIGURE 15.8.
The tree when the
node page is full.

forth

on our

Root
a forth

a brought on score

(data)

a ago and brought continent fathers forth four new score seven this years

(data)

(data) (data)(data)

FIGURE 15.9.
A third tier.

20 239-5 CH 15 2/19/99 1:31 PM Page 557

Writing It To Disk
The entire purpose of a B-tree is to store data on a disk. Somehow, the B-tree has to store
the pages,the indices,and the data on disk. One task is to cache the pages; they’ ll be big,
and you don’t want them all in memory at the same time.

Let’s take a short digression to talk about building a databasein the real world. In all likeli-
hood, here’s how you will program your next database:You will pick up the phone, dial an
800 number to a mail-order house with a name like Programmer Credit-Card Heaven,and
ask for the fastest,most reliable database system they have that meets your specifications.

You’ll write the front end in MFC or ASP or some other whiz-bang technology, and
you’ll wir e your application to your database using COM,perhaps wrapped under
ODBC,ADO, or another technology.

Only in the rarest of circumstances will you actually “roll your own” database from
scratch. Understanding how such a beast works,however, will deepen your understand-
ing of how to use itwell.

For our purposes,we’ll build a small Personal Information Manager (PIM) that will let
you create Notes (strings of characters) and store them in the database. Days later, you
can query the database for a string and find every Note that contains that string. These
Note s will be of variable length. We’ll store each Note with a date, a length,and a set of
characters representing the data.

The Note s will be stored sequentially, with each Note beginning right after the preceding
Note in the file.

Object Persistence and Encryption

PART IV
558

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

For this simplified version, the Note s are just character strings. In a more com-
plex implementation, you may want to use a class Note to store these strings
and other state information.

The word index file (WORD.IDX) will consist of pages of indexes,leading ultimately to a
leaf page with the index for the word found. This record still won’t point to the data.
After all, a single word may be in many Note s. We’ll create an index file that will con-
tain a linked list of pointers to records in the database itself.

All of this is based on a PIM I created for a now out-of-print book Teach Yourself More
C++ in 21 Days. I’ve brought that code up to date and modified it for this book to keep
the focus on persistence. That PIM was called ROBIN (after my first daughter); I’ll name
this one RACHEL(after my second).

20 239-5 CH 15 2/19/99 1:31 PM Page 558

Here’s how it works: The user requests a search on the word THE. The WORD.IDXfile,
which is a disk-based B-tree, is searched. Node-page index entries lead to other node-
page entries until a leaf page is found. The number recorded there is an offset into
RACHEL.IDX. Each record in RACHEL.IDX points to a record in RACHEL.DB, and also points
to the next entry in RACHEL.IDX (or to NULL when there are no more entries).

Caching
Rather thanreading each page into memory each time it is needed and then tossing it
away, it is far faster and more efficient if you can keep a few pages cached in memory.
The index, however, doesn’t want to keep track of whether the page it is pointing to is in
memory (in which case, a pointer is needed) or is on disk.

Keeping track of where the pages are located (in memory or on disk) would require the
index to understand far too much about how pages are stored to disk. All the index
should know is that it points to page number 5,for example.

We need a diskmanager. The node-page index hands the disk manager an offset and gets
back a pointer to the requested page. It is the disk manager’s job to decide whether the
page is already in memory or must be picked up off the disk.

In the simplest case, the disk manager would keep an array of pages. When the array was
full, it would toss out a page and bring in another. But which page should be tossed? It is
far more efficient to toss out a page that is rarely used than to toss out a page that is used
all the time. After all, tossing out a page that is used all the time just means that the page
will be loaded back in soon,defeating your purpose oftrying to minimize disk reads.

The answer is a least recently used(LRU) queue. A recently used queueis the queue that
was used most recently; a least recently used queuecontains the pages you have gone the
longest without needing. The idea is that if you haven’t needed it for a while, you proba-
bly will not need it any time soon.

Determining How Big Each Page Should Be
The goal is quick reads and writes. It turns out that most personal computers are fastest if
they can read a block of data that is a multiple of 2 (no surprise!). The ideal size is deter-
mined by the sector size of your disk. Because this size varies,you will want the program
to get this size from a configuration file, but for now I’ ll use 512,a reasonable guess.

Each index record has to be a divisor of the order so that an even number fits on each
page. The index will be 16 bytes:4 bytes of pointer (now offset) and 11 bytes of data,
with a final NULL byte terminating the string. There are 32 sets of 16 bytes in a 512-byte

Object Persistence

CHAPTER 15
559

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 559

page, so each page will hold 32 index objects. The order of the B-tree is therefore 32. A
32-order tree can hold 1,024 words in two levels,32,768 words in three levels,and
33,554,432 words in five levels. Most searches probably can be accomplished in just a
few disk reads,which is ideal.

Determining How Many Pages Can Be in
Memory at Once
The algorithm you use to determine how many pages can be in memory at once is recur-
sive, starting at the top node and working its way down through the tree. Because each
page has room for 32indexes,the average case is that at any time, half of these will be in
use:16 indexes per page.

10 levels of pages with 16 indexes per page provide access to a trillion keys. 10 pages,
however, takes up only 2KB of memory. (16 bytes per index times 16 indices per page,
times 10 pages,equals 2,560 bytes,or 2KB.)

This is the power of B-trees in a nutshell:By holding 2KB of pages in memory at any
time, B-trees give you access to a trillion keys!

Swapping to Disk
The fastest way to swap to disk is to do a singlememcpy() . C++ gains from its lineage in
C the capability to hack memory when required so that all the indexes on a page can be
loaded from disk in a single memory move.

When the Page object is in memory, you want to deal with it as if it consisted of four int

objects and an array of Index objects. When getting the Page object off the disk,you
want to deal with it as a block of 512 bytes. To do this,you make a union between a
character array of 512 bytes and the other variables.

Because you cannot put an array of objects that have constructors into a union,you
instead create an array of characters of the size of your array of Index objects. We’ll then
use a pointer to that array, casting it to the types needed. This is an effective hack to
move objects into and out of memory. It sacrif ices type safety for speed. Giving up type-
safety puts you at risk of writing unreliable code, so be careful and make sure you know
what you are doing.

Implementing the B-Tree
That’s thetheory. But implementation is sometimes a bit more complicated. In this case,
we bring to bear a lot of solid object-oriented technique and one wicked hack.

Object Persistence and Encryption

PART IV
560

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 560

With a program this complex, you really need two things:the complete source code and,
after you’ve had a chance to get acquainted with the code’s layout, you need to walk
through the code in the debugger.

Rather than making this code “industrial strength,” I’ve stripped it down to the bare
bones required to show how the code works—andmore important,how object persis-
tence works.

The principal object is the BTree , as shown in Listing 15.5.

LISTING 15.5. BTree DECLARATION

class BTree
{
public:

// constructors and destructor
BTree();
~BTree();

// utility functions
void AddKey(char* data, int offset);
bool Insert(char*);
void PrintTree();
int Find(char* data);

// page methods
Page* GetPage(int page)
{ return theDiskManager.GetPage(page); }
int NewPage(Index& pIndex, bool IsLeaf)
{ return theDiskManager.NewPage(pIndex,false); }

static int myAlNum(char ch);
// public static member!
static IDXManager theDiskManager;
static WNJFile theWNJFile;
static DataFile theDataFile;
static bool GetWord(char*, char*, int&);
static void GetStats();
static int NodeIndexCtr;
static int LeafIndexCtr;
static int NodePageCtr;
static int LeafPageCtr;
static int NodeIndexPerPage[Order+1];
static int LeafIndexPerPage[Order+1];

private:
int myRoot;

};

The BTree ’s job is to act as an entry point into the tree and to keep some treestatistics.
The work is done by the page and the index, as shown in Listing 15.6.

Object Persistence

CHAPTER 15
561

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 561

LISTING 15.6 PAGE DECLARATION

class Page
{
public:

// constructors and destructor
Page();
Page(char*);
Page(Index&,bool);
Page(Index*, int, bool, int);
~Page(){}

// insertion and search operations
int Insert(Index&, bool findOnly = false);
int Find(Index& idx) { return Insert(idx,true); }
int InsertLeaf(Index&);
int FindLeaf(Index&,bool findOnly);
int InsertNode(Index&,bool findOnly = false);
void Push(Index&,int offset=0, bool=true);

// accessors
Index GetFirstIndex() { return myKeys[0]; }
bool GetIsLeaf() const { return myVars.IsLeaf; }
int GetCount() const { return myVars.myCount; }
void SetCount(int cnt) { myVars.myCount=cnt; }
time_t GetTime() { return myTime; }
bool GetLocked() { return myVars.IsLocked; }
void SetLocked (bool state) { myVars.IsLocked = state; }

// page manipulation
int GetPageNumber() const { return myVars.myPageNumber; }
Page* GetPage(int page)
{ return BTree::theDiskManager.GetPage(page); }
int NewPage(Index& rIndex, bool IsLeaf)
{ return BTree::theDiskManager.NewPage(rIndex,false); }

int NewPage(Index* arr, int off,bool isL, int cnt)
{ return BTree::theDiskManager.NewPage(arr,off,isL, cnt); }

// utility functions
void Nullify(int offset);
void Print();
fstream& Write(fstream&);
void ReCount();

static int GetgPageNumber(){ return gPage; }
static void SetgPageNumber(int pg) { gPage = pg; }

private:
Index * const myKeys; // will point to myVars.mk
union

Object Persistence and Encryption

PART IV
562

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 562

{
char myBlock[PageSize]; // a page from disk
struct
{

int myCount;
bool IsLeaf;
int myPageNumber;
bool IsLocked;
char mk[Order*sizeof(Index)]; // array of indexes

}myVars;
};

// memory only
static int gPage;
time_t myTime; // for lifo queue

};

There are a few constructors for Page; we’ll see these at work as we step through the
example. Insert() , Find() , and so forth are used for putting indices into pages and find-
ing them later. Note that GetPage() is inline; it simply delegates to DiskManager . This
makes for fast reads and good clean encapsulation of the work of caching pages in mem-
ory and retrieving them from disk.

Examine the private section closely. We have a union between a character array and the
myVars structure. myVars consists of a count variable, a flag (indicating whether this is a
leaf), a page number, a locked flag, and an array of indices. Indices are user-defined
objects whose constructors take a parameter. When you create an array of user-defined
objects,however, each object must be created using the default constructor.

What are we to do? We want to read these indices into the page all at one go, and we
can’t use the default constructor. We must trick the compiler into believing that we are
not loading an array of indices at all—that we are just loading a character array. Note
that mk is thus declared to be an array of characters. The array size is Order (32) times
the size of an Index (16). No indices here, honest.

We also declare a pointer to an index: myKeys. No problem,a pointer is just fine; no con-
structor is called for the pointer.

The wicked hack comes in the Page’s constructor. We initialize that pointer (myKeys) to
point to the first byte of mk. To do that, we must cast myVars.mk to a pointer to Index :

Page::Page(Index& index, bool bLeaf):
myKeys((Index*)myVars.mk)

{

Hey, presto! we have a pointer to an array of indices,and as you know, a pointercan be
used exactly like an array. This allows us to write this later:

myKeys[i].PrintKey();

Object Persistence

CHAPTER 15
563

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 563

This is a classic example of trading away type safety for performance. You don’t do it
often,but it is nice when you needit. Try that in Java!

Listing 15.7 shows the declaration of the Index class.

LISTING 15.7. THE DECLARATION OF THE Index CLASS

class Index
{
public:

// constructors & destructor
Index();
Index(char *);
Index (char*, int);
Index(Index&);
~Index(){}

// accessors
const char * GetData() const { return myData; }
void SetData(const Index& rhs)
{ strcpy(myData,rhs.GetData()); }
void SetData(const char * rhs)
{ strcpy(myData,rhs); }
int GetPointer()const { return myPointer; }
void SetPointer (int pg) { myPointer = pg; }

// utility functions
void PrintKey();
void PrintPage();
int Insert(Index& ref,bool findOnly = false);

// overloaded operators
int operator==(const Index& rhs);

int operator < (const Index& rhs)
{return strcmp(myData,rhs.GetData())<0;}

int operator <= (const Index& rhs)
{return strcmp(myData,rhs.GetData())<=0;}

int operator > (const Index& rhs)
{return strcmp(myData,rhs.GetData())>0;}

int operator >= (const Index& rhs)
{return strcmp(myData,rhs.GetData())>=0;}

public:
int myPointer;
char myData[SizeItem - SizePointer];

};

Object Persistence and Encryption

PART IV
564

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 564

Note that you can compare two indices,and what you get is a comparison of the data to
which they correspond. This allows us to keep the objects in order. A more generalized
approach is to keep not an array of characters as the data,but rather a paramaterized
type. Further, it would be better to delegate the responsibility of the comparison to the
data object itself. I’ve not done that here to keep this example a bit simpler.

Note also};that SizeItem is a constant set to 16. (Refer to the section “Determining
How Big Each Page Should Be”to review why each item is 16 bytes.) We subtract from
that the size of the pointer (allowing for the size of the member variable myPointer) so
that the Index remains at the size of SizeItem . That is, with the two member variables,
myPointer and myData , the}; Index is the size of SizeItem : 16.

There are three additional classes in this program:DataFile , DiskManager , and WNJFile .
The DataFile class representsthe actual database of Note s. Each Note is added sequen-
tially to a disk file and its offset is recorded:

class DataFile
{
public:

// constructors & destructor
DataFile();
~DataFile(){}

// management of files
void Close();
void Create();
void GetRecord(int, char*, int&, time_t&);

int Insert(char *);

private:
fstream myFile;

};

The DiskManager class is responsible for managing the pages in memory: caching the
most recently used, storing the remaining pages to disk,and retrieving them as needed:

class DiskManager
{
public:

// constructors & destructor
DiskManager();
~DiskManager(){}

// management of files
void Close(int);
int Create();

Object Persistence

CHAPTER 15
565

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 565

// Page manipulation
Page* GetPage(int);
void SetPage(Page*);
void Insert(Page * newPage);
void Save(Page* pg);
int NewPage(Index&, bool);
int NewPage(Index *array, int offset, bool leaf, int count);

private:
Page* myPages[MaxPages];
fstream myFile;
int myCount;

};

Finally, the WNJFile (Word Node Join) class is responsible for mapping Words (keys) to
Note s (data). This allows us to find every note with a given word in it rather than just the
first Note that contains the given word:

class WNJFile
{
public:

// constructors & destructor
WNJFile();
~WNJFile(){}

// management of files
void Close();
void Create();
int* Find(int NextWNJ);
int Insert(int, int);
int Append(int);

private:
static int myCount;
fstream myFile;
union
{

int myints[5];
char myArray[5*szInt];

};
};

Here you see the array of five integers as discussed earlier. The first four represent off-
sets into the data file, the fifth (if used) is an offset back into WNJFile for the next array.

The following listings show the complete code for this example, which we’ll walk
through in some detail. Listing 15.8 shows BTree.hpp , the only header file for the entire
program. It contains the declaration of all the classes as well as the constant values used
in the program.

Object Persistence and Encryption

PART IV
566

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 566

LISTING 15.8. FROM THE HEADER FILE BTree.hpp

#ifndef BTREE_HPP // inclusion guards
#define BTREE_HPP

#include <time.h>
#include <string.h>
#include <fstream.h>

const int SIZE_TIME = 4;
const int SIZE_INT = 4;
const int Order = 31; // 31 indexes and 1 header
const int dataLen = 11; // length of a key
const int MaxPages = 20; // more than we need
const int SizeItem = 16; //dataLen, plus the null, plus the
SizePointer
const int SizePointer = SIZE_INT; // size of offset
const int PageSize = (Order+1) * SizeItem;
const int N_DATA_SETS = 5;
const int DATA_SET_POINTER_OFFSET = N_DATA_SETS-1;
const int N_ITEMS_IN_HEADER = 2;
const int MAX_ARRAY_SIZE = 256;

// forward declarations
class Page;
class Index;

class DataFile
{
public:

// constructors & destructor
DataFile();
~DataFile(){}

// management of files
void Close();
void Create();
void GetRecord(int, char*, int&, time_t&);

int Insert(char *);

private:
fstream myFile;

};

class WNJFile
{
public:

Object Persistence

CHAPTER 15
567

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 567

// constructors & destructor
WNJFile();
~WNJFile(){}

// management of files
void Close();
void Create();
int* Find(int NextWNJ);
int Insert(int, int);
int Append(int);

private:
static int myCount;
fstream myFile;
union
{

int myints[5];
char myArray[5*SIZE_INT];

};
};

// DiskManager - in memory keeps track of what pages are
// already in memory and swaps to disk as required
class DiskManager
{
public:

// constructors & destructor
DiskManager();
~DiskManager(){}

// management of files
void Close(int);
int Create();

// Page manipulation
Page* GetPage(int);
void SetPage(Page*);
void Insert(Page * newPage);
void Save(Page* pg);
int NewPage(Index&, bool);
int NewPage(Index *array, int offset, bool leaf, int count);

private:
Page* myPages[MaxPages];
fstream myFile;
int myCount;

};

Object Persistence and Encryption

PART IV
568

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.8. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 568

// the BTree itself - has a pointer to first page
class BTree
{
public:

// constructors and destructor
BTree();
~BTree();

// utility functions
void AddKey(char* data, int offset);
bool Insert(char*);
void PrintTree();
int Find(char* data);

// page methods
Page* GetPage(int page)
{ return theDiskManager.GetPage(page); }
int NewPage(Index& pIndex, bool IsLeaf)
{ return theDiskManager.NewPage(pIndex,false); }

static int myAlNum(char ch);
// public static member!
static DiskManager theDiskManager;
static WNJFile theWNJFile;
static DataFile theDataFile;
static bool GetWord(char*, char*, int&);
static void GetStats();
static int NodeIndexCtr;
static int LeafIndexCtr;
static int NodePageCtr;
static int LeafPageCtr;
static int NodeIndexPerPage[Order+1];
static int LeafIndexPerPage[Order+1];

private:
int myRoot;

};

// index objects point to pages or real data
class Index
{
public:

// constructors & destructor
Index();
Index(char *);
Index (char*, int);
Index(Index&);
~Index(){}

Object Persistence

CHAPTER 15
569

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 569

// accessors
const char * GetData() const { return myData; }
void SetData(const Index& rhs)
{ strcpy(myData,rhs.GetData()); }
void SetData(const char * rhs)
{ strcpy(myData,rhs); }
int GetPointer()const { return myPointer; }
void SetPointer (int pg) { myPointer = pg; }

// utility functions
void PrintKey();
void PrintPage();
int Insert(Index& ref,bool findOnly = false);

// overloaded operators
int operator==(const Index& rhs);

int operator < (const Index& rhs)
{return strcmp(myData,rhs.GetData())<0;}

int operator <= (const Index& rhs)
{return strcmp(myData,rhs.GetData())<=0;}

int operator > (const Index& rhs)
{return strcmp(myData,rhs.GetData())>0;}

int operator >= (const Index& rhs)
{return strcmp(myData,rhs.GetData())>=0;}

public:
int myPointer;
char myData[SizeItem - SizePointer];

};

// pages - consist of header and array of indexes
class Page
{
public:

// constructors and destructor
Page();
Page(char*);
Page(Index&,bool);
Page(Index*, int, bool, int);
~Page(){}

// insertion and search operations
int Insert(Index&, bool findOnly = false);
int Find(Index& idx) { return Insert(idx,true); }
int InsertLeaf(Index&);
int FindLeaf(Index&,bool findOnly);

Object Persistence and Encryption

PART IV
570

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.8. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 570

int InsertNode(Index&,bool findOnly = false);
void Push(Index&,int offset=0, bool=true);

// accessors
Index GetFirstIndex() { return myKeys[0]; }
bool GetIsLeaf() const { return myVars.IsLeaf; }
int GetCount() const { return myVars.myCount; }
void SetCount(int cnt) { myVars.myCount=cnt; }
time_t GetTime() { return myTime; }
bool GetLocked() { return myVars.IsLocked; }
void SetLocked (bool state) { myVars.IsLocked = state; }

// page manipulation
int GetPageNumber() const { return myVars.myPageNumber; }
Page* GetPage(int page)
{ return BTree::theDiskManager.GetPage(page); }
int NewPage(Index& rIndex, bool IsLeaf)
{ return BTree::theDiskManager.NewPage(rIndex,false); }

int NewPage(Index* arr, int off,bool isL, int cnt)
{ return BTree::theDiskManager.NewPage(arr,off,isL, cnt); }

// utility functions
void Nullify(int offset);
void Print();
fstream& Write(fstream&);
void ReCount();

static int GetgPageNumber(){ return gPage; }
static void SetgPageNumber(int pg) { gPage = pg; }

private:
Index * const myKeys; // will point to myVars.mk
union
{
char myBlock[PageSize]; // a page from disk
struct
{

int myCount;
bool IsLeaf;
int myPageNumber;
bool IsLocked;
char mk[Order*sizeof(Index)]; // array of indexes

}myVars;
};

// memory only
static int gPage;
time_t myTime; // for lifo queue

};

#endif

Object Persistence

CHAPTER 15
571

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 571

The driver program and ancillary global functions are in Persist.cpp , as shown in
Listing 15.9.

LISTING 15.9. Persist.cpp

#include “btree.hpp”
#include <Windows.h>
#include <iostream.h>
#include <stdlib.h>

// static definitions
DiskManager BTree::theDiskManager;
DataFile BTree::theDataFile;
WNJFile BTree::theWNJFile;

int WNJFile::myCount = 0L;
int Page::gPage = 1;
int BTree::NodeIndexCtr = 0;
int BTree::LeafIndexCtr = 0;
int BTree::NodePageCtr = 0;
int BTree::LeafPageCtr = 0;
int BTree::NodeIndexPerPage[Order+1];
int BTree::LeafIndexPerPage[Order+1];

// prototypes
void parseCommandLines(char *buffer,int argc,char **argv);
void ShowMenu(long*);
void DoFind(char*, BTree&);
void ParseFile(BTree&);

// driver program
int main()
{

BTree myTree;

for (int i = 0; i < Order +1; i++)
{

BTree::NodeIndexPerPage[i] = 0;
BTree::LeafIndexPerPage[i] = 0;

}

char buffer[PageSize+1];

bool fQuit = false;

while (!fQuit)
{

cout << “?: “;
cin.getline(buffer,PageSize);

Object Persistence and Encryption

PART IV
572

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 572

if (buffer[0] == ‘-’)
{

switch (buffer[1])
{

case ‘?’:
DoFind(buffer+2,myTree);
break;

case ‘!’:
myTree.PrintTree();
break;

case ‘F’:
case ‘f’:

ParseFile(myTree);
break;

case ‘0’:
fQuit = true;
break;

}
}
else
{

if (myTree.Insert(buffer))
cout << “Inserted.\n”;

buffer[0] = ‘\0’;
}

}
return 0;

}

// having found matches, show the menu of choices
// each entry is numbered and dated
void ShowMenu(int *list)
{

int j=0;
char buffer[PageSize+1];
time_t theTime;
int len;
char listBuff[256];
struct tm * ts;
int dispSize;

while (list[j] && j < 20)
{

BTree::theDataFile.GetRecord(list[j],buffer,len, theTime);
dispSize = __min(len,32);

strncpy(listBuff,buffer,dispSize);
if (dispSize == 32)

{
listBuff[29] = ‘.’;

Object Persistence

CHAPTER 15
573

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 573

listBuff[30] = ‘.’;
listBuff[31] = ‘.’;
}

listBuff[dispSize]=’\0’;
ts = localtime(&theTime);
cout << “[“ << (j+1) << “] “;
cout << ts->tm_mon << “/”;
cout << ts->tm_mday << “/”;
cout << ts->tm_year << “ “;
cout << listBuff << endl;
j++;

}
}

// handle -? command
// find matches, show the menu, request choice
// display record and redisplay menu
void DoFind(char * searchString, BTree& myTree)
{

// create an array of total set of WNJ
// offsets. This will be used to display
// choices and to find actual text
int list[PageSize];

// initialize the array to all zeros
for (int i = 0; i<PageSize; i++)
list[i] = 0;

int k = 0;

char * p1 = searchString;
while (p1[0] == ‘ ‘)

p1++;

int offset = myTree.Find(p1);
if (offset)
{

// get the array of offsets from WNJFile
int *found = BTree::theWNJFile.Find(offset);
int j = 0;

// add any you don’t already have
for (;k < PageSize && found[j];j++,k++)
{

for (int l = 0; l < k; l++)
{

if (list[l] == found[j])

Object Persistence and Encryption

PART IV
574

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.9. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 574

continue;
}
list[k] = found [j];

}
delete [] found;

}

cout << “\n”;

if (!list[0])
{

cout << “Nothing found.\n”;
return;

}

ShowMenu(list);

int choice;
char buffer[PageSize];
int len;
time_t theTime;

for (;;)
{

cout << “Choice (0 to stop): “ ;
cin >> choice;
cin.ignore(PageSize,’\n’);
if (choice < 1)

break;

BTree::theDataFile.GetRecord(list[choice-1],buffer,len, theTime);
cout << “\n>> “;
cout << buffer;
cout << “\n\n”;
ShowMenu(list);

}
}

// open a file and create a new note for each line
// index every word in the line
void ParseFile(BTree& myTree)
{

char fileName[256];
cout << “FileName: “;
cin.getline(fileName,PageSize);

char buffer[PageSize];
char theString[PageSize];

Object Persistence

CHAPTER 15
575

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 575

ifstream theFile(fileName,ios::in);
if (!theFile)
{

cout << “Error opening input file “ << fileName << endl;
return;

}

int offset = 0;
for (;;)
{

theFile.read(theString,PageSize);
int len = theFile.gcount();
if (!len)

break;
theString[len]=’\0’;
char *p1, *p2, *p0;
p0 = p1 = p2 = theString;

while (p1[0] && (p1[0] == ‘\n’ || p1[0] == ‘\r’))
p1++;

p2 = p1;

while (p2[0] && p2[0] != ‘\n’ && p2[0] != ‘\r’)
p2++;

int bufferLen = p2 - p1;
int totalLen = p2 - p0;

if (!bufferLen)
continue;

// lstrcpyn(buffer,p1,bufferLen);
strncpy(buffer,p1,bufferLen);
buffer[bufferLen]=’\0’;

// for (int i = 0; i< PageSize; i++)
cout << “\r”;

cout << “Parsing “ << buffer;
myTree.Insert(buffer);
offset += totalLen;
theFile.clear();
theFile.seekg(offset,ios::beg);

}
cout << “\n\nCompleted parsing “ << fileName << endl;

}

Listings 15.10 through 15.15 give the implementation files for the various classes.

Object Persistence and Encryption

PART IV
576

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.9. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 576

LISTING 15.10. BTree.cpp

#include “btree.hpp”
#include <ctype.h>
#include <stdlib.h>

// construct the tree
// initialize myRoot pointer to nothing
// either create or read the index file
BTree::BTree():myRoot(0)
{

myRoot = theDiskManager.Create();
theDataFile.Create();
theWNJFile.Create();

}

// write out the index file
BTree::~BTree()
{

theDiskManager.Close(myRoot);
theDataFile.Close();
theWNJFile.Close();

}

// find an existing record
int BTree::Find(char * str)
{

Index index(str);
if (!myRoot)

return 0L;
else

return GetPage(myRoot)->Find(index);
}
bool BTree::Insert(char* buffer)
{

if (strlen(buffer) < 3)
return false;

char *buff = buffer;
char word[PageSize];
int wordOffset = 0;
int offset;

if (GetWord(buff,word,wordOffset))
{

offset = theDataFile.Insert(buffer);
AddKey(word,offset);

}

Object Persistence

CHAPTER 15
577

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 577

while (GetWord(buff,word,wordOffset))
{

AddKey(word,offset);
}

return true;

}

void BTree::AddKey(char * str, int offset)
{

if (strlen(str) < 3)
return;

int retVal =0;

// create an index where the str is in upper case
// and the offset is recorded in Index.myPointer

Index index(str,offset);
if (!myRoot)
{

myRoot = theDiskManager.NewPage (index,true);
}
else
{

Page * pPage = GetPage(myRoot);
retVal = pPage->Insert(index);
if (retVal) // our root split
{

// create a pointer to the old top
pPage = GetPage(myRoot);
Index index(pPage->GetFirstIndex());
index.SetPointer(myRoot);

// make the new page & insert the index
int PageNumber = NewPage(index,false);

pPage = GetPage(PageNumber);

//get a pointer to the new (sibling) page
Page * pRetValPage = GetPage(retVal);
Index Sib(pRetValPage->GetFirstIndex());
Sib.SetPointer(retVal);

// put it into the page
pPage->InsertLeaf(Sib);

Object Persistence and Encryption

PART IV
578

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.10. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 578

// reset myRoot to point to the new top
myRoot = PageNumber;

}
}

}

void BTree::PrintTree()
{

NodePageCtr = 0;
LeafPageCtr = 0;
NodeIndexCtr = 0;
LeafIndexCtr = 0;
for (int i = 0; i < Order + 1; i++)
{

NodeIndexPerPage[i] = 0;
LeafIndexPerPage[i] = 0;

}

GetPage(myRoot)->Print();

cout << “\n\nStats:” << endl;
cout << “Node pages: “ << NodePageCtr << endl;
cout << “Leaf pages: “ << LeafPageCtr << endl;
cout << “Node indexes: “ << NodeIndexCtr << endl;
cout << “Total leaves: “ << LeafIndexCtr << endl;
for (i = 0; i < Order + 1; i++)
{

if (NodeIndexPerPage[i])
{

cout << “Pages with “ << i << “ nodes: “;
cout << NodeIndexPerPage[i] << endl;

}
if (LeafIndexPerPage[i])
{

cout << “Pages with “ << i << “ leaves: “;
cout << LeafIndexPerPage[i] << endl;

}
}

}

bool BTree::GetWord(char* string, char* word, int& wordOffset)
{

int i;
if (!string[wordOffset])

return false;

char *p1, *p2;
p1 = p2 = string+wordOffset;

Object Persistence

CHAPTER 15
579

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 579

// eat leading spaces
for (i = 0; i<(int)strlen(p1) && !BTree::myAlNum(p1[0]); i++)

p1++;

// see if you have a word
if (!BTree::myAlNum(p1[0]))

return false;

p2 = p1; // point to start of word

// march p2 to end of word
while (BTree::myAlNum(p2[0]))

p2++;

int len = int (p2 - p1);
int pgSize = PageSize;
#if defined(_MSVC_16BIT) || defined(_MSVC_32BIT)
{

len = __min(len,(int)PageSize);
}
#else
{

len = __min(len,(int)PageSize);
}
#endif

strncpy (word,p1,len);
word[len]=’\0’;

for (i = int(p2-string);
i<(int)strlen(string) && !BTree::myAlNum(p2[0]);
i++)

p2++;

wordOffset = int(p2-string);

return true;
}

int BTree::myAlNum(char ch)
{

return isalnum(ch) ||
ch == ‘-’ ||
ch == ‘\’’ ||
ch == ‘(‘ ||
ch == ‘)’;

}

Object Persistence and Encryption

PART IV
580

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.10. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 580

LISTING 15.11. Index.cpp

#include “btree.hpp”
#include <ctype.h>

Index::Index(char* str):myPointer(1)
{

strncpy(myData,str,dataLen);
myData[dataLen]=’\0’;
for (size_t i = 0; i < strlen(myData); i++)

myData[i] = toupper(myData[i]);
}

Index::Index(char* str, int ptr):myPointer(ptr)
{

strncpy(myData,str,dataLen);
myData[dataLen]=’\0’;
for (size_t i = 0; i< strlen(myData); i++)

myData[i] = toupper(myData[i]);

}

Index::Index(Index& rhs):
myPointer(rhs.GetPointer())

{
strcpy(myData, rhs.GetData());
for (size_t i = 0; i< strlen(myData); i++)

myData[i] = toupper(myData[i]);

}

Index::Index():myPointer(0)
{

myData[0]=’\0’;
}

void Index::PrintKey()
{

cout << “ “ << myData;
}

void Index::PrintPage()
{

cout << myData << “: “ ;
BTree::theDiskManager.GetPage(myPointer)->Print();

}

int Index::Insert(Index& ref, bool findOnly)
{

Object Persistence

CHAPTER 15
581

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 581

return BTree::theDiskManager.GetPage(myPointer)->Insert(ref,findOnly);
}

int Index::operator==(const Index& rhs)
{

return (strcmp(myData,rhs.GetData()) == 0); // case insensitive
}

LISTING 15.12. Datafile.cpp

#include “btree.hpp”
#include <assert.h>

// on construction, try to open the file if it exists
DataFile::DataFile():

myFile(“RACHEL.DAT”,
ios::binary | ios::in | ios::out | ios::nocreate | ios::app)

{
}

void DataFile::Create()
{

if (!myFile) // nocreate failed, first creation
{

// open the file, create it this time
myFile.clear();

myFile.open
(“RACHEL.DAT”,ios::binary | ios::in | ios::out | ios::app);

char Header[SIZE_INT];
int MagicNumber = 1234; // a number we can check for
memcpy(Header,&MagicNumber,SIZE_INT);
myFile.clear();
myFile.flush();
myFile.seekp(0);
myFile.write(Header,SIZE_INT);
return;

}

// we did open the file, it already existed
// get the numbers we need
int MagicNumber;
myFile.seekg(0);
myFile.read((char *) &MagicNumber,SIZE_INT);

// check the magic number. If it is wrong the file is

Object Persistence and Encryption

PART IV
582

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.11. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 582

// corrupt or this isn’t the index file
if (MagicNumber != 1234)
{

// change to an exception!!
cout << “DataFile Magic number failed!”;

}
return;

}

// write out the numbers we’ll need next time
void DataFile::Close()
{

myFile.close();
}

int DataFile::Insert(char * newNote)
{

int len = strlen(newNote);
int fullLen = len + SIZE_INT + SIZE_TIME;

time_t theTime;
theTime = time(NULL);

char buffer[PageSize];
memcpy(buffer,&len,SIZE_INT);
memcpy(buffer+SIZE_INT,&theTime,SIZE_TIME);
memcpy(buffer+SIZE_INT+SIZE_TIME,newNote,len);

myFile.clear();
myFile.flush();
myFile.seekp(0,ios::end);
int offset = (int) myFile.tellp();
myFile.write(buffer,fullLen);
myFile.flush();
return offset;

}

void DataFile::GetRecord(int offset, char* buffer, int& len, time_t&
theTime)

{
char tmpBuff[PageSize];
myFile.flush();
myFile.clear();
myFile.seekg(offset);
myFile.read(tmpBuff,PageSize);
memcpy(&len,tmpBuff,SIZE_INT);
memcpy(&theTime,tmpBuff+SIZE_INT,SIZE_TIME);
strncpy(buffer,tmpBuff+SIZE_INT+SIZE_TIME,len);
buffer[len] = ‘\0’;

}

Object Persistence

CHAPTER 15
583

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 583

LISTING 15.13. Page.cpp

#include “btree.hpp”
#include <assert.h>

// constructors

// default constructor
Page::Page()
{
}

// create a page from a buffer read in from disk
Page::Page(char *buffer):

myKeys((Index*)myVars.mk)
{

assert(sizeof(myBlock) == PageSize);
assert(sizeof(myVars) == PageSize);
memcpy(&myBlock,buffer,PageSize);
SetLocked(false);
myTime = time(NULL);

}

// create a Page from the first index
Page::Page(Index& index, bool bLeaf):

myKeys((Index*)myVars.mk)
{

myVars.myCount=1;
myVars.IsLeaf = bLeaf;
SetLocked(false);
// if this is a leaf, this is the first
// index on the first page, set its pointer
// based on creating a new wnj. otherwise
// you are here creating a new node, do not
// set the pointer, it is already set.
if (bLeaf)
{

int indexPointer = index.GetPointer();
int appendResult = BTree::theWNJFile.Append(indexPointer);
index.SetPointer(appendResult);

}
myKeys[0]=index;
myVars.myPageNumber = gPage++;
myTime = time(NULL);

}

// create a page by splitting another page
Page::Page(Index *array, int offset, bool bLeaf,int count):

myKeys((Index*)myVars.mk)
{

myVars.IsLeaf = bLeaf;

Object Persistence and Encryption

PART IV
584

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 584

myVars.myCount = 0;
for (int i=0, j = offset; j<Order && i < count; i++, j++)
{

myKeys[i]= array[j];
myVars.myCount++;

}
myVars.myPageNumber = gPage++;
SetLocked(false);
myTime = time(NULL);

}

void Page::Nullify(int offset)
{

for (int i = offset; i<Order; i++)
{

myKeys[i].SetPointer(0);
myVars.myCount—;

}
}

// decide whether I’m a leaf or a node
// and pass this index to the right
// function. If findOnly is true, don’t insert
// just return the page number (for now)
int Page::Insert(Index& rIndex, bool findOnly)
{

int result;
if (myVars.IsLeaf)
{

SetLocked(true);
result = FindLeaf(rIndex,findOnly);
SetLocked(false);
return result;

}
else
{

SetLocked(true);
result = InsertNode(rIndex,findOnly);
SetLocked(false);
return result;

}
}

// find the right page for this index
int Page::InsertNode(Index& rIndex, bool findOnly)
{

int retVal =0;
bool inserted = false;
int i,j;

Object Persistence

CHAPTER 15
585

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 585

assert(myVars.myCount>0); // nodes have at least 1
assert(myKeys[0].GetPointer()); // must be valid

// does it go before my first entry?
if (rIndex < myKeys[0])
{

if (findOnly)
return 0L; // not found

myKeys[0].SetData(rIndex);
retVal=myKeys[0].Insert(rIndex);
inserted = true;

}

// does it go after my last?
if (!inserted)
for (i = myVars.myCount-1; i>=0; i—)
{

assert(myKeys[i].GetPointer());
if (rIndex >= myKeys[i])
{

retVal=myKeys[i].Insert(rIndex,findOnly);
inserted = true;
break;

}
}

// find where it does go
if (!inserted)
for (j = 0; j<i && j+1 < myVars.myCount; j++)
{

assert(myKeys[j+1].GetPointer());
if (rIndex < myKeys[j+1])
{

retVal=myKeys[j].Insert(rIndex,findOnly);
inserted = true;
break;

}
}

assert(inserted); // change to exception if not!

// if you had to split
if (retVal && !findOnly) // got back a pointer to a new page
{

Index * pIndex = new Index(GetPage(retVal)->GetFirstIndex());
pIndex->SetPointer(retVal);
retVal = InsertLeaf(*pIndex);

Object Persistence and Encryption

PART IV
586

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.13. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 586

}
return retVal;

}

// called if current page is a leaf
int Page::FindLeaf(Index& rIndex, bool findOnly)
{

int result = 0;

// no duplicates!
for (int i=0; i < myVars.myCount; i++)

if (rIndex == myKeys[i])
{

if (findOnly) // return first WNJ
//return BTree::theWNJFile.Find(myKeys[i].GetPointer());
return myKeys[i].GetPointer();

else
return BTree::theWNJFile.Insert(

rIndex.GetPointer(),
myKeys[i].GetPointer());

}

if (findOnly) // not found
return result;

// this index item does not yet exist
// before you push it into the index
// push an entry into the wnj.idx
// and set the index to point to that entry
rIndex.SetPointer(BTree::theWNJFile.Append(rIndex.GetPointer()));
return InsertLeaf(rIndex);

}

int Page::InsertLeaf(Index& rIndex)
{

int result = 0;
if (myVars.myCount < Order)

Push(rIndex);
else // overflow the page
{

// make sibling
int NewPg =

NewPage(myKeys,Order/2,myVars.IsLeaf,myVars.myCount);
Page* Sibling = GetPage(NewPg);
Nullify(Order/2); // nullify my right half

// does it fit in this side?
if (myVars.myCount>Order/2-1 && rIndex <= myKeys[Order/2-1])

Push(rIndex);

Object Persistence

CHAPTER 15
587

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 587

else // push it into the new sibling
Sibling->Push(rIndex);

result = NewPg; // we split, pass it up
}
return result;

}

// put the new index into this page (in order)
void Page::Push(Index& rIndex,int offset,bool first)
{

bool inserted = false;
assert(myVars.myCount < Order);
for (int i=offset; i<Order && i<myVars.myCount; i++)
{

assert(myKeys[i].GetPointer());
if (rIndex <= myKeys[i])
{

Push(myKeys[i],offset+1,false);
myKeys[i]=rIndex;
inserted = true;
break;

}
}
if (!inserted)

myKeys[myVars.myCount] = rIndex;

if (first)
myVars.myCount++;

}

void Page::Print()
{

if (!myVars.IsLeaf)
{

BTree::NodePageCtr++;
BTree::NodeIndexPerPage[myVars.myCount]++;
BTree::NodeIndexCtr+=myVars.myCount;

}
else
{

BTree::LeafPageCtr++;
BTree::LeafIndexPerPage[myVars.myCount]++;
BTree::LeafIndexCtr+=myVars.myCount;

}

for (int i = 0; i<Order && i < myVars.myCount; i++)
{

Object Persistence and Encryption

PART IV
588

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.13. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 588

assert(myKeys[i].GetPointer());
if (myVars.IsLeaf)
{

cout << “\nPage “ << myVars.myPageNumber << “: “;
myKeys[i].PrintKey();

}
else
{

cout << “\nPage “ << myVars.myPageNumber << “: “;
myKeys[i].PrintPage();

}
}

}

// write out the entire page as a block
fstream& Page::Write(fstream& file)
{

char buffer[PageSize];
memcpy(buffer,&myBlock,PageSize);
file.flush();
file.clear();
file.seekp(myVars.myPageNumber*PageSize);
file.write(buffer,PageSize);
return file;

}

LISTING 15.14. WNJ.cpp

#include “btree.hpp”
#include <assert.h>

// on construction, try to open the file if it exists
WNJFile::WNJFile():
myFile(“RACHELWNJ.IDX”,
ios::binary | ios::in | ios::out | ios::nocreate)

{
for (int i = 0; i<5; i++)

myints[i]=0L;
}

void WNJFile::Create()
{

char Header[2*SIZE_INT];
int MagicNumber=0; // a number we can check for
int zero = 0;

if (!myFile) // nocreate failed, first creation
{

Object Persistence

CHAPTER 15
589

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 589

// open the file, create it this time
myFile.clear();
myFile.open(“RACHELWNJ.IDX”,

ios::binary | ios::in | ios::out);

MagicNumber = 1234;
memcpy(Header,&MagicNumber,SIZE_INT);
memcpy(Header+SIZE_INT,&zero,SIZE_INT);
myFile.seekp(0);
myFile.write(Header,2*SIZE_INT);
myFile.flush();
return;

}

// we did open the file, it already existed
// get the numbers we need

myFile.seekg(0);
myFile.read(Header,2*SIZE_INT);
memcpy(&MagicNumber,Header,SIZE_INT);
memcpy(&myCount,Header+SIZE_INT,SIZE_INT);

// check the magic number. If it is wrong the file is
// corrupt or this isn’t the index file
if (MagicNumber != 1234)
{

// change to an exception!!
cout << “WNJ Magic number failed!”;
cout << “Magic number: “ << MagicNumber;
cout << “\nmyCount: “ << myCount << endl;

}
return;

}

// write out the numbers we’ll need next time
void WNJFile::Close()
{

myFile.seekg(SIZE_INT);
myFile.write((char*)&myCount,SIZE_INT);
myFile.close();

}

int WNJFile::Append(int DataOffset)
{

int newPos = (N_ITEMS_IN_HEADER*SIZE_INT) // initial header
+ myCount++ * (N_DATA_SETS*SIZE_INT); // how many sets

int offsets[N_DATA_SETS];

Object Persistence and Encryption

PART IV
590

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.14. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 590

offsets[0] = DataOffset;
for (int i = 1; i<N_DATA_SETS; i++)

offsets[i]=0;
myFile.seekg(newPos);
myFile.write((char*)offsets,N_DATA_SETS*SIZE_INT);

return newPos;
}

int WNJFile::Insert(int DataOffset,int WNJOffset)
{

int ints[5];
myFile.seekg(WNJOffset);
myFile.read((char*)ints,5*SIZE_INT);

int offset=WNJOffset;

while (ints[4])
{

offset = ints[4];
myFile.clear();
myFile.flush();
myFile.seekg(ints[4]);
myFile.read((char*)ints,5*SIZE_INT);

}
if (ints[3]) // full!
{

ints[4] = Append(DataOffset);
myFile.clear();
myFile.flush();
myFile.seekg(offset);
myFile.write((char*)ints,5*SIZE_INT);

}
else
{

for (int i = 0; i<4; i++)
{

if (ints[i] == 0)
{

ints[i] = DataOffset;
myFile.clear();
myFile.flush();
myFile.seekg(offset);
myFile.write((char*)ints,5*SIZE_INT);
break;

}
}

}
return 0;

Object Persistence

CHAPTER 15
591

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 591

}

int* WNJFile::Find(int NextWNJ)
{

int ints[N_DATA_SETS];
int * results = new int[MAX_ARRAY_SIZE];

int i = 0, j=0;

while (j<256)
results[j++] = 0;

j = 0;

myFile.seekg(NextWNJ);
myFile.read((char*)ints,N_DATA_SETS*SIZE_INT);

while (j < MAX_ARRAY_SIZE)
{

if (ints[i])
{

if (i == N_DATA_SETS-1)
{

myFile.seekg(ints[DATA_SET_POINTER_OFFSET]);
myFile.read((char*)ints,N_DATA_SETS*SIZE_INT);
i = 0;
continue;

}
results[j++] = ints[i++];
}
else

break;
}
return results;

}

LISTING 15.15. DiskManager.cpp

#include “btree.hpp”
#include <assert.h>

// on construction, try to open the file if it exists
DiskManager::DiskManager():

myFile(“RACHEL.IDX”,ios::binary | ios::in | ios::out | ios::nocreate)
{

// initialize the pointers to null
for (int i = 0; i< MaxPages; i++)
myPages[i] = 0;
myCount = 0;

Object Persistence and Encryption

PART IV
592

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.14. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 592

}

// called by btree constructor
// if we opened the file, read in the numbers we need
// otherwise create the file
int DiskManager::Create()
{

if (!myFile) // nocreate failed, first creation
{

// open the file, create it this time
myFile.open(“RACHEL.IDX”,ios::binary | ios::in | ios::out);

char Header[PageSize];
int MagicNumber = 1234; // a number we can check for
memcpy(Header,&MagicNumber,SIZE_INT);
int NextPage = 1;
memcpy(Header+SIZE_INT,&NextPage,SIZE_INT);
memcpy(Header+(2*SIZE_INT),&NextPage,SIZE_INT);
Page::SetgPageNumber(NextPage);
char title[]=”RACHEL.IDX. Ver 1.01”;
memcpy(Header+(3*SIZE_INT),title,strlen(title));
myFile.flush();
myFile.clear();
myFile.seekp(0);
myFile.write(Header,PageSize);
return 0;

}

// we did open the file, it already existed
// get the numbers we need
int MagicNumber;
myFile.seekg(0);
myFile.read((char *) &MagicNumber,SIZE_INT);

// check the magic number. If it is wrong the file is
// corrupt or this isn’t the index file
if (MagicNumber != 1234)
{

// change to an exception!!
cout << “Index Magic number failed!”;
return 0;

}

int NextPage;
myFile.seekg(SIZE_INT);
myFile.read((char*) &NextPage,SIZE_INT);
Page::SetgPageNumber(NextPage);
int FirstPage;
myFile.seekg(2*SIZE_INT);

Object Persistence

CHAPTER 15
593

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 593

myFile.read((char*) &FirstPage,SIZE_INT);
const int room = PageSize - (3*SIZE_INT);
char buffer[room];
myFile.read(buffer,room);
buffer[20]=’\0’;
// cout << buffer << endl;
// read in all the pages
for (int i = 1; i < NextPage; i++)
{

myFile.seekg(i * PageSize);
char buffer[PageSize];
myFile.read(buffer, PageSize);
Page * pg = new Page(buffer);
Insert(pg);

}

return FirstPage;
}

// write out the numbers we’ll need next time
void DiskManager::Close(int theRoot)
{

for (int i = 0; i< MaxPages; i++)
if (myPages[i])

Save(myPages[i]);
int NextPage = Page::GetgPageNumber();
if (!myFile)

cout << “Error opening myFile!” << endl;
myFile.flush();
myFile.clear();
myFile.seekp(SIZE_INT);
myFile.write ((char *) &NextPage,SIZE_INT);
myFile.seekp(2*SIZE_INT);
myFile.write((char*) &theRoot,SIZE_INT);
myFile.close();

}

// wrapper function
int DiskManager::NewPage(Index& index, bool bLeaf)
{

Page * newPage = new Page(index, bLeaf);
Insert(newPage);
Save(newPage);
return newPage->GetPageNumber();

}

int DiskManager::NewPage(
Index *array,

Object Persistence and Encryption

PART IV
594

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.15. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 594

int offset,
bool leaf,
int count)
{

Page * newPage = new Page(array, offset, leaf,count);
Insert(newPage);
Save(newPage);
return newPage->GetPageNumber();

}

void DiskManager::Insert(Page * newPage)
{

// add new page into array of page managers
if (myCount < MaxPages)
{

assert(!myPages[myCount]);
myPages[myCount++] = newPage;

}
else // no room, time to page out to disk
{

int lowest = -1;

for (int i = 0; i< MaxPages; i++)
{

if (myPages[i]->GetLocked() == false)
lowest = i;

}
if (lowest == -1)

assert(lowest != -1);

for (i = 0; i< MaxPages; i++)
if (myPages[i]->GetTime() < myPages[lowest]->GetTime() &&
myPages[i]->GetLocked() == false)

lowest = i;
assert(myPages[lowest]);
Save(myPages[lowest]);
delete myPages[lowest];
myPages[lowest] = newPage;

}
}

// tell the page to write itself out
void DiskManager::Save(Page* pg)
{

pg->Write(myFile);
}

// see if the page is in memory, if so return it
// otherwise get it from disk

Object Persistence

CHAPTER 15
595

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

20 239-5 CH 15 2/19/99 1:31 PM Page 595

// note: this won’t scale, with lots of page managers
// you’d need a more efficient search. 10 levels of page
// managers, with 31 indexes per page gives you room for
// 800 trillion words. Even if each page is only 1/2 full
// on average, 10 levels of depth would represent 64 million
// keys alone, not to mention the actual records.

Page * DiskManager::GetPage(int target)
{

for (int i = 0; i< MaxPages; i++)
{

if (myPages[i]->GetPageNumber() == target)
return myPages[i];

}
myFile.seekg(target * PageSize);
char buffer[PageSize];
myFile.read(buffer, PageSize);
Page * pg = new Page(buffer);
Insert(pg);
return pg;

}

How It Works
The best way to see how this program works is to walk through an example of using it.
First,we’ll create a text file with the previous three paragraphs,called test.txt . Next,
we run the program.

At the ? prompt,we enter We hold these truths to be self-evident that all

men are created equal. After this is accepted, enter I regret that I have but one

life to give to my country.

Now it is time to give the program the test file we created. At the prompt,enter -f and,
when prompted for the filename, enter test.txt :

?: We hold these truths to be self-evident that all men are created equal
Inserted.
?: I regret that I have but one life to give for my country
Inserted.
?: -f
FileName: test.txt
Parsing Here you see the array of 5 integers as discussed earlier. The
first fou
Parsing the fifth <if used> is an offset back into the WNJFile for the
next arra
Parsing For demonstration purposes I’ve created a simple driver program
which di

Object Persistence and Encryption

PART IV
596

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 15.15. CONTINUED

20 239-5 CH 15 2/19/99 1:31 PM Page 596

Parsing and accepts input. Any text added is turned into a Note and stored
in th
Parsing characters or greater is indexed. If the user types a dash as the
first
Parsing <?>, bang <!> or the letter “f” the system treats it as a flag and
takes
Parsing a search, a bang forces a report of the structure of the tree and
the le
Parsing read into the system. When a file is read in, each line is treated
as a
Parsing extending this so that the user has the option that a file is
considered
Parsing imagine any number of improvements, starting with a more
reasonable user
Parsing _e_

Completed parsing test.txt
?:

It is time to see if it worked. Are the strings captured? Was the index built? One way to
test this is to search for the word that:

?: -? that
[1] 7/6/98 We hold these truths to be se…
[2] 7/6/98 I regret that I have but one …
[3] 7/6/98 a search, a bang forces a rep…
[4] 7/6/98 extending this so that the us…
[5] 7/6/98 extending this so that the us…
Choice <0 to stop>: 1

>> We hold these truths to be self-evident that all men are created equal

[1] 7/6/98 We hold these truths to be se…
[2] 7/6/98 I regret that I have but one …
[3] 7/6/98 a search, a bang forces a rep…
[4] 7/6/98 extending this so that the us…
[5] 7/6/98 extending this so that the us…
Choice <0 to stop>: 2
>> I regret that I have but one life to give for my country
[1] 7/6/98 We hold these truths to be se…
[2] 7/6/98 I regret that I have but one …
[3] 7/6/98 a search, a bang forces a rep…
[4] 7/6/98 extending this so that the us…
[5] 7/6/98 extending this so that the us…
Choice <0 to stop>:

Clearly, the program worked quite well. We found five Note s with the word that , and we
can examine them one by one. Let’s take a look at the structure of the database itself:

Page 2: PROGRAM
Page 2: PURPOSES

Object Persistence

CHAPTER 15
597

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 597

Page 2: QUESTION
Page 2: READ
Page 2: REASONABLE
Page 3: REGRET
Page 4: REGRET
Page 4: REPORT
Page 4: REPRESENT
Page 4: SEARCH
Page 4: SEE
Page 4: SELF-EVIDENT
Page 4: SIMPLE
Page 4: SINGLE
Page 4: SPECIAL
Page 4: STARTING
Page 4: STORED
Page 4: STRUCTURE
Page 4: SYSTEM
Page 4: TAKES
Page 4: TEXT
Page 4: THAT
Page 4: THE
Page 3: THESE:
Page 6: THESE
Page 6: THIS
Page 6: THREE
Page 6: TREATED
Page 6: TREATS
Page 6: TREE
Page 6: TRUTHS
Page 6: TURNED
Page 6: TYPES
Page 6: USED>
Page 6: USER
Page 6: WANTS
Page 6: WHEN
Page 6: WITH
Page 6: WNJFILE
Page 6: WORD
Page 6: YOU

Stats:
Node pages: 1
Leaf pages: 5
Node indexes: 5
Total leaves: 109
Pages with 5 nodes: 1
Pages with 17 leaves: 1
Pages with 18 leaves: 1
Pages with 21 leaves: 1
Pages with 22 leaves: 1
Pages with 31 leaves: 1
?:

Object Persistence and Encryption

PART IV
598

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 598

Much of the structure scrolls off the screen,but we can see that page 2 has a number of
indexed words and page 3 has a node entry with REGRET, which points to page 4. Page 4
has 17 entries beginning (as we should expect) with the word Regret . Page 3 also points
to page 6 with the word These , and page 6 has 18 entries beginning with THESE.

The statistics that follow are interesting. There is only one node page (must be page 3)
and there are five leaf pages (thus,the final page is page 6,which is what we see indicat-
ed). There are five node indices,which is consistent. Together, those five nodes hold 109
leaves distributed as follows: one page has 17 leaves,one has 18,one has 21,anotherhas
22,and the last has 31.

Thus we have only two levels. The top level (page 3) is a node pointing to five leaf pages
(pages 1,2, 4, 5, and 6). Those five leaf pages contain all 109 keys. Remember the rule:
The pages must have order/2 or more entries. This is order 31,so can expect to see 15
or more entries on each page—and we do. The one exception is the top node, and that
makes sense because it is created as soon as the first page splits.

Let’s walk through the code to see how this all works.

Walking the Code
For demonstration purposes,I’ve created a simple driver program that displays a question
mark to the user and accepts input. Any text added is turned into a Note and stored in the
database. Each word of three characters or greater is indexed. Not indexing one- and
two-letter words avoids storing such ubiquitous words as of, or, and, and so forth. You
can imagine a more sophisticated mechanism whereby the user can establish “stop
words” which the system will ignore.

If the user types a dash (-) as the first character followed by a question mark (?),bang
(!), or the letter f , the system treats the entry as a flag and takes special action. A ques-
tion mark initiates a search, a bang forces a report of the structure of the tree, and the let-
ter f indicates that the user wants a file read into the system. When a file is read in,each
line is treated as an individual Note . You can imagine extending this functionality so that
the user has the option that a file is considered a single, large Note . In fact,you can
imagine any number of improvements,starting with a more reasonable user interface.

Again, this program is for demonstration purposes and is not intended as a full-fledged
Personal Information Manager.

The program begins with main() :

int main()
{

BTree myTree;

for (int i = 0; i < Order +1; i++)

Object Persistence

CHAPTER 15
599

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 599

{
BTree::NodeIndexPerPage[i] = 0;
BTree::LeafIndexPerPage[i] = 0;

}

char buffer[PageSize+1];

bool fQuit = false;

while (!fQuit)
{

cout << “?: “;
cin.getline(buffer,PageSize);

if (buffer[0] == ‘-’)
{

switch (buffer[1])
{

case ‘?’:
DoFind(buffer+2,myTree);
break;

case ‘!’:
myTree.PrintTree();
break;

case ‘F’:
case ‘f’:

ParseFile(myTree);
break;

case ‘0’:
fQuit = true;
break;

}
}
else
{

if (myTree.Insert(buffer))
cout << “Inserted.\n”;

buffer[0] = ‘\0’;
}

}
return 0;

}

The main() function creates the tree and then prompts the user for input. If the user
inputs a flag, the appropriate (global) method is called (doFind() or ParseTree()). If the
flag is -! , the tree is told to print itself (thus printing the statistics).

Object Persistence and Encryption

PART IV
600

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 600

The first line to execute is this one:

BTree myTree;

This of course invokes the BTree constructor:

BTree::BTree():myRoot(0)
{

myRoot = theDiskManager.Create();
theDataFile.Create();
theWNJFile.Create();

}

The myRoot member (an integer) isinitialized to zero and is then assigned the value
returned from calling Create() on theDiskManager . Remember that theDiskManager ,
theWNJFile , and theDataFile are all static. This is a simple (although not robust) imple-
mentation of the Singleton design pattern. If I were creating this program for commercial
use, I’d actually make these variables private and control their lifetime creation and
destruction a bit more carefully. Again, to keep this simple, I just expose them as public
members.

Stepping into theDiskManager.Create() , we see that the first test is whether or not the
DiskManager ’s file is open. Because this is the first time we’re in the code, the file is not
yet open,and so we open the file and ready it for use. The first PageSize characters are
of a specific format that we now set up:

• A four-byte “magic number”used to verify that the file is correct

• Four bytes for the “next page” (which we’ll initialize to 1)

• Four bytes for the “f irst page” (which, again,we’ll initialize to 1)

• An identifying string (which we’ll initialize to RACHEL.IDX. Ver 1.01)

This is written out and the function returns with the value zero, which is assigned to
BTree::myRoot :

int DiskManager::Create()
{

if (!myFile) // nocreate failed, first creation
{

// open the file, create it this time
myFile.open(“RACHEL.IDX”,ios::binary | ios::in | ios::out);

char Header[PageSize];
int MagicNumber = 1234; // a number we can check for
memcpy(Header,&MagicNumber,SIZE_INT);
int NextPage = 1;
memcpy(Header+SIZE_INT,&NextPage,SIZE_INT);
memcpy(Header+(2*SIZE_INT),&NextPage,SIZE_INT);

Object Persistence

CHAPTER 15
601

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 601

Page::SetgPageNumber(NextPage);
char title[]=”RACHEL.IDX. Ver 1.01”;
memcpy(Header+(3*SIZE_INT),title,strlen(title));
myFile.flush();
myFile.clear();
myFile.seekp(0);
myFile.write(Header,PageSize);
return 0;

}
//…

}

We then enter theDataFile ’s Create() method. Again,because this is the first time
through the code, we prep the file—this time by creating only a magic number (no other
header information) and writing it out:

void DataFile::Create()
{

if (!myFile) // nocreate failed, first creation
{

// open the file, create it this time
myFile.clear();

myFile.open
(“RACHEL.DAT”,ios::binary | ios::in | ios::out | ios::app);

char Header[SIZE_INT];
int MagicNumber = 1234; // a number we can check for
memcpy(Header,&MagicNumber,SIZE_INT);
myFile.clear();
myFile.flush();
myFile.seekp(0);
myFile.write(Header,SIZE_INT);
return;

}
// …

}

We then do the same thing with WNJFile .

Returning to main() , we initialize all of BTree ’s counters to zero and set up a few local
variables:

for (int i = 0; i < Order +1; i++)
{

BTree::NodeIndexPerPage[i] = 0;
BTree::LeafIndexPerPage[i] = 0;

}
char buffer[PageSize+1];
bool fQuit = false;

Object Persistence and Encryption

PART IV
602

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 602

We are now ready to enter the prompt loop. Remember, the first time through the code,
the user enters text, so the flags are skipped; we jump to the following bit of code:

if (myTree.Insert(buffer))
cout << “Inserted.\n”;

Stepping into Insert() , we first check to ensure that the buffer we’re inserting is at least
three characters. We then iterate through the buffer extracting words. The entire buffer is
inserted into the data file, and each word is added to the index as a key:

bool BTree::Insert(char* buffer)
{

if (strlen(buffer) < 3)
return false;

char *buff = buffer;
char word[PageSize];
int wordOffset = 0;
int offset;

if (GetWord(buff,word,wordOffset))
{

offset = theDataFile.Insert(buffer);
AddKey(word,offset);

}

while (GetWord(buff,word,wordOffset))
{

AddKey(word,offset);
}

return true;

}

GetWord() is a private (utility) method that takes a character array (buffer) and the offset
into that buffer and fills the character array word with the next word.

Let’s step into theDataFile.Insert(buffer) to see how the text is addedto the data
file:

int DataFile::Insert(char * newNote)
{

int len = strlen(newNote);
int fullLen = len + SIZE_INT + SIZE_TIME;

time_t theTime;
theTime = time(NULL);

Object Persistence

CHAPTER 15
603

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 603

char buffer[PageSize];
memcpy(buffer,&len,SIZE_INT);
memcpy(buffer+SIZE_INT,&theTime,SIZE_TIME);
memcpy(buffer+SIZE_INT+SIZE_TIME,newNote,len);

myFile.clear();
myFile.flush();
myFile.seekp(0,ios::end);
int offset = (int) myFile.tellp();
myFile.write(buffer,fullLen);
myFile.flush();
return offset;

}

This code is quite straightforward. The length is set as the length of the Note itself plus
enough room to hold the length and the current time. A buffer is created, prepended with
the length and the time, and then the Note is added. The Note is written to the end of the
file, and the offset is returned.

Let’s return to BTree::Insert() and follow the addition of the key:

void BTree::AddKey(char * str, int offset)
{

if (strlen(str) < 3)
return;

int retVal =0;

Once again,we ensure that the key is at least three letters.

The return value is initialized to zero. Continuing on,the string (the contents of the Note)
and the offset are passed to the constructor of Index to create a new Index object:

Index index(str,offset);

This takes us intothe constructor of Index , where the string is stashed away as the
Index ’s data,and the offset is used to initialize the Index ’s myPointer member.
Remember that this is the offset into the Data file. Ultimately, this is not what we want to
store, but it gets us started.

Let’s review: What we want to store is the index into the WNJFile , which in turn will
point to the offset into the data file. We’ll see how that works in a moment. Note also
that the key is converted into all uppercase, which allows us to implement acase-insensi-
tive search.

Object Persistence and Encryption

PART IV
604

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 604

Returning to BTree::AddKey() , the next step is to examine myRoot :

if (!myRoot)
{

myRoot = theDiskManager.NewPage (index,true);
}

We initialized myRoot to zero, and so we enter the if statement:

myRoot = theDiskManager.NewPage (index,true);

This statement invokes the NewPage() method of DiskManager , passing in the Index we
just created and the flag true . The flag indicates that this new page will indeed be a leaf
(this method is also called when creating a node). Here is the NewPage() methodat
work:

int DiskManager::NewPage(Index& index, bool bLeaf)
{

Page * newPage = new Page(index, bLeaf);
Insert(newPage);
Save(newPage);
return newPage->GetPageNumber();

}

A new page is created, marked as a leaf, inserted into the DiskManager ’s array of pages,
and saved to disk. The new page’s page number is returned to the BTree , and the member
variable BTree::myRoot is assigned that value.

Object Persistence

CHAPTER 15
605

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

An alternative, and perhaps more flexible, approach to storing keys is to store
the keys in their original format and just compare keys against user input in all
uppercase if we are asking for a case-insensitive search:

Index::Index(char* str, int ptr):myPointer(ptr)
{

strncpy(myData,str,dataLen);
myData[dataLen]=’\0’;
for (size_t i = 0; i< strlen(myData); i++)

myData[i] = toupper(myData[i]);

}

20 239-5 CH 15 2/19/99 1:31 PM Page 605

Let’s examine the three steps of creating a new page, inserting it, and saving it. The first
step is creating a new page:

Page::Page(Index& index, bool bLeaf):
myKeys((Index*)myVars.mk)

{
myVars.myCount=1;
myVars.IsLeaf = bLeaf;
SetLocked(false);
// if this is a leaf, this is the first
// index on the first page, set its pointer
// based on creating a new wnj. otherwise
// you are here creating a new node, do not
// set the pointer, it is already set.
if (bLeaf)
{

int indexPointer = index.GetPointer();
int appendResult = BTree::theWNJFile.Append(indexPointer);
index.SetPointer(appendResult);

}
myKeys[0]=index;
myVars.myPageNumber = gPage++;
myTime = time(NULL);

}

The page constructor begins with the initialization of the myKeys variable as discussed
earlier. A few member variables are initialized (for example, the page is set as a leaf or as
a node, depending on the value of bLeaf) and the page is unlocked.

Remember that this is the constructor. We know there are no indices in this page yet. If
this is a leaf, then we want to insert a record into the WNJFile , but if this is not a leaf, we
need not do so. Assuming that it is a leaf, we first extract from this index the pointer it is
holding (you will remember that the index is the offset into the data file). We then pass
that pointer into the WNJFile::Append() method, and we take the result of that action
and stash it back in the Index ’s pointer. Thus,the Index no longer points to the data file
(the WNJFile record does); instead, the Index points to the appropriate entry in the WNJ
(which you remember is the Word-Node-Join).

Let’s step into the WNJFile::Append() method briefly to see how it does its magic:

int WNJFile::Append(int DataOffset)
{

int newPos = (N_ITEMS_IN_HEADER*SIZE_INT) // initial header
+ myCount++ * (N_DATA_SETS*SIZE_INT); // how many sets

int offsets[N_DATA_SETS];
offsets[0] = DataOffset;
for (int i = 1; i<N_DATA_SETS; i++)

offsets[i]=0;

Object Persistence and Encryption

PART IV
606

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 606

myFile.seekg(newPos);
myFile.write((char*)offsets,N_DATA_SETS*SIZE_INT);

return newPos;
}

The variable newPos is initialized to point to the new offset into WNJFile . First, room for
two integers is set aside for the header. Then room for data sets is also set aside. (A data
set is five integers.) The first four integers point to records in the data file, the fifth points
to a new data set in the WNJFile . Because myCount is initially zero, this equates to 8
bytes (just enough for the header).

A variable, offsets , is created to hold a new data set and is initialized with the data off-
set for this Index . The rest of the data set is set to all zeros. Finally, the data set is writ-
ten to disk,and the newPos value is returned to Page’s constructor, in which it is assigned
to the Index .

Returning to DiskManager::NewPage() , the next step is inserting the newly created page
into the DiskManager ’s array of pages:

void DiskManager::Insert(Page * newPage)
{

// add new page into array of page managers
if (myCount < MaxPages)
{

assert(!myPages[myCount]);
myPages[myCount++] = newPage;

}
else // no room, time to page out to disk
{

int lowest = -1;

for (int i = 0; i< MaxPages; i++)
{

if (myPages[i]->GetLocked() == false)
lowest = i;

}
if (lowest == -1)

assert(lowest != -1);

for (i = 0; i< MaxPages; i++)
if (myPages[i]->GetTime() < myPages[lowest]->GetTime() &&

myPages[i]->GetLocked() == false)

lowest = i;

assert(myPages[lowest]);
Save(myPages[lowest]);

Object Persistence

CHAPTER 15
607

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 607

delete myPages[lowest];
myPages[lowest] = newPage;

}
}

The new page is inserted into the DiskManager ’s array of pages if there is room in mem-
ory. Otherwise, the least recently used page is removed if it is not locked.

Finally, step three:The page is saved to disk:

void DiskManager::Save(Page* pg)
{

pg->Write(myFile);
}

When the next key is added, BTree::AddKey() will not find its root value at zero—it will
be pointing to the page already created:

if (!myRoot)
{

myRoot = theDiskManager.NewPage (index,true);
}
else
{

Page * pPage = GetPage(myRoot);
retVal = pPage->Insert(index);
if (retVal) // our root split
{

// …
}

}

The root page is extracted by calling GetPage() , and that page is instructed to insert the
new index. BTree::GetPage() delegates responsibility for obtaining the page to the
DiskManager :

{ return theDiskManager.GetPage(page); }

The DiskManager probably has the page in memory; if it does not,it brings it off the disk
and stashes it away in its array of pages.

Object Persistence and Encryption

PART IV
608

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

A word on nomenclature. The object we’re calling an Index should, by all
rights, be called a key—the files that hold the keys and associates them with
data should be called the Index . However, pages call the keys indices, and that
creates endless naming confusion.

20 239-5 CH 15 2/19/99 1:31 PM Page 608

Continuing with the BTree::AddKey() method, the Index is added to the page by calling
Page::Insert() and passing in the new Index . Page::Insert() takes two parameters,
the second defaults to false , which indicates that we are not searching for records with
the key passed in,but rather we are adding the key to the index:

int Page::Insert(Index& rIndex, bool findOnly)
{

int result;
if (myVars.IsLeaf)
{

SetLocked(true);
result = FindLeaf(rIndex,findOnly);
SetLocked(false);
return result;

}
else
{

SetLocked(true);
result = InsertNode(rIndex,findOnly);
SetLocked(false);
return result;

}
}

The page determines whether it is a leaf or a node by examining its myVars variable. If
the page is a leaf, the index being added points to data. The page is locked (so that it
won’t page out of memory!), and FindLeaf() is invoked, passing in the index and the
flag indicating that this is not a query but an insert:

int Page::FindLeaf(Index& rIndex, bool findOnly)
{

int result = 0;

// no duplicates!
for (int i=0; i < myVars.myCount; i++)

if (rIndex == myKeys[i])
{

if (findOnly) // return first WNJ
//return BTree::theWNJFile.Find(myKeys[i].

➥GetPointer());
return myKeys[i].GetPointer();

else
return BTree::theWNJFile.Insert(

rIndex.GetPointer(),
myKeys[i].GetPointer());

}

if (findOnly) // not found
return result;

Object Persistence

CHAPTER 15
609

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 609

// this index item does not yet exist
// before you push it into the index
// push an entry into the wnj.idx
// and set the index to point to that entry
rIndex.SetPointer(BTree::theWNJFile.Append(rIndex.GetPointer()));
return InsertLeaf(rIndex);

}

We check through the indices already in the page to see whether this key already exists.
If so, we return the result of adding this offset into the WNJFile , making another connec-
tion between this key and the data file.

Having proven that this key is not yet in the Index , we insert it:

rIndex.SetPointer(BTree::theWNJFile.Append(rIndex.GetPointer()));

This is the same mechanism we reviewed earlier: Get the Index ’s pointer (which points
to the data) and pass it into WNJFile::Append() . Take the return value and set the
Index ’s pointer to that value. This time, we’ve combined all three steps into a single line
of code.

We need now only add the modified index (with the new pointer into the WNJFile) into
this page by calling InsertLeaf() , passing in the Index and returning the resulting
value:

int Page::InsertLeaf(Index& rIndex)
{

In Page::InsertLeaf() , we begin by checking to see whether the page is full. If not,we
push this Index into the page:

if (myVars.myCount < Order)
Push(rIndex);

If the page is full, we must split the page:

else // overflow the page
{

int NewPg =
NewPage(myKeys,Order/2,myVars.IsLeaf,myVars.myCount);

Page* Sibling = GetPage(NewPg);
Nullify(Order/2);
if (myVars.myCount>Order/2-1 && rIndex <= myKeys[Order/2-1])

Push(rIndex);
else

Sibling->Push(rIndex);
result = NewPg;

}

Object Persistence and Encryption

PART IV
610

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 610

Briefly, if we must split the page, we take the right half of the page and put it into a new
page and return the result,which is the page number of the new page. Otherwise, we
return zero, indicating no split.

In this particular case, we have not yet filled the page, so we’ll push the new index:

void Page::Push(Index& rIndex,int offset,bool first)
{

bool inserted = false;
assert(myVars.myCount < Order);
for (int i=offset; i<Order && i<myVars.myCount; i++)
{

assert(myKeys[i].GetPointer());
if (rIndex <= myKeys[i])
{

Push(myKeys[i],offset+1,false);
myKeys[i]=rIndex;
inserted = true;
break;

}
}
if (!inserted)

myKeys[myVars.myCount] = rIndex;

if (first)
myVars.myCount++;

}

We step through the keys, finding the right position for the new one. If we must insert it,
we push the one next to it, iterating through what amounts to an insertion sort. Note the
recursion in this routine:As we insert, we may have to pushthe next item in the index.
When it all sorts itself out,the new Index is inserted, and the other items in the page
have been shifted over.

Because we made sure that we had room before beginning (or we split the page if we did
not have room),the amount of recursion is limited to,at most,order-1 iterations.

Because we did not split the page, zero is passed up the chain to the BTree , indicating
that no page was split and no adjustment must be made. Let’s see what happens,later,
when we do split the page. Back in BTree::AddKey() , the return value from
Page::Insert() will be nonzero. This nonzero result indicates that the root page has
split, creating our first node page:

if (retVal) // our root split
{

pPage = GetPage(myRoot);
Index index(pPage->GetFirstIndex());
index.SetPointer(myRoot);

Object Persistence

CHAPTER 15
611

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 611

int PageNumber = NewPage(index,false);
pPage = GetPage(PageNumber);

Page * pRetValPage = GetPage(retVal);
Index Sib(pRetValPage->GetFirstIndex());
Sib.SetPointer(retVal);
pPage->InsertLeaf(Sib);

myRoot = PageNumber;
}

The first task is to create a new Index object and point it to the oldroot page:

pPage = GetPage(myRoot);
Index index(pPage->GetFirstIndex());
index.SetPointer(myRoot);

This is a bit tricky. Step one is to get the page pointed to by the current root. Step two is
to ask that page for its firstIndex :

Index GetFirstIndex() { return myKeys[0]; }

Step three is to invoke the copy constructor on Index , passing in that Index just
obtained:

Index::Index(Index& rhs):
myPointer(rhs.GetPointer())

{
strcpy(myData, rhs.GetData());
for (size_t i = 0; i< strlen(myData); i++)

myData[i] = toupper(myData[i]);

}

The new index is initialized with the same data and pointer, but we then set its pointer to
point to the old root page. Thus,we now have turned the root page into a node page and
we have an index pointing to it.

Next, we create a new page, and pass in that index and get back the page number for the
new page. We use that page number to get a pointer to the new page:

int PageNumber = NewPage(index,false);
pPage = GetPage(PageNumber);

We then get a pointer to the page indicated by the return value (that is, the newly split
page). We create an index to point to that newly created page, which we call Sib , and we
set our newly created index to point to the newly created page:

Page * pRetValPage = GetPage(retVal);
Index Sib(pRetValPage->GetFirstIndex());
Sib.SetPointer(retVal);

Object Persistence and Encryption

PART IV
612

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 612

This new index (Sib) is now inserted into the new (root) page we created:

pPage->InsertLeaf(Sib);

We then assign myRoot to the PageNumber of the new root.

Let’s review: Before we split the page, our B-tree looked as shown in Figure 15.10.

Object Persistence

CHAPTER 15
613

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

Root
and four score seven

(data)

page 1FIGURE 15.10.
Before splitting
the page.

The root page was a leaf, and all the indices pointed to data. After thesplit, our tree
looked as shown in Figure 15.11.

Root
and score page 2

andpage 1

page 3

four

(data)

score seven years

(data)

FIGURE 15.11.
After splitting the
page.

A new page (page 2) has been created, and it has two new indices. The first points to the
old page 1,and the second points to the newly created page 3. How is data added now?

The call to BTree::AddKey() proceeds in the usual way, and it in turn calls
Page::Insert() on the root. The root page, now recognizing that it is a node (rather
than a leaf) page, calls InsertNode() passing in the new Index :

int Page::InsertNode(Index& rIndex, bool findOnly)
{

Once again, the retVal (return value) is set to zero, and a local flag, inserted , is initial-
ized to false . The first test is whether the new index ought to go before the very first
entry in the node. If so,we set the data of the first key (myKeys[0]) to point to the new
data from the Index , and we insert the Index into the page pointed to by myKeys[0] :

if (rIndex < myKeys[0])
{

if (findOnly)
return 0L; // not found

20 239-5 CH 15 2/19/99 1:31 PM Page 613

myKeys[0].SetData(rIndex);
retVal=myKeys[0].Insert(rIndex);
inserted = true;

}

If the new index isn’t inserted before the first key, we look for where in the array to
insert it, and insert it into the correct page:

if (!inserted)
for (i = myVars.myCount-1; i>=0; i--)
{

assert(myKeys[i].GetPointer());
if (rIndex >= myKeys[i])
{

retVal=myKeys[i].Insert(rIndex,findOnly);
inserted = true;
break;

}
}

In each case, we get back a return value from the Insert request,so that we can tell
whether a page split. If that value is nonzero, the insertion caused a split and we must
create an index to manage the new page and insert it into this page. Again, this may
cause this page to split,so the return value from this insertion is passed back to the
BTree :

if (retVal && !findOnly) // got back a pointer to a new page
{

Index * pIndex = new Index(GetPage(retVal)->GetFirstIndex());
pIndex->SetPointer(retVal);
retVal = InsertLeaf(*pIndex);

}

Here is the entire InsertNode() method:

int Page::InsertNode(Index& rIndex, bool findOnly)
{

int retVal =0;
bool inserted = false;
int i,j;

assert(myVars.myCount>0); // nodes have at least 1
assert(myKeys[0].GetPointer()); // must be valid

// does it go before my first entry?
if (rIndex < myKeys[0])
{

if (findOnly)
return 0L; // not found

myKeys[0].SetData(rIndex);

Object Persistence and Encryption

PART IV
614

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 614

retVal=myKeys[0].Insert(rIndex);
inserted = true;

}

// does it go after my last?
if (!inserted)
for (i = myVars.myCount-1; i>=0; i--)
{

assert(myKeys[i].GetPointer());
if (rIndex >= myKeys[i])
{

retVal=myKeys[i].Insert(rIndex,findOnly);
inserted = true;
break;

}
}

// find where it does go
if (!inserted)
for (j = 0; j<i && j+1 < myVars.myCount; j++)
{

assert(myKeys[j+1].GetPointer());
if (rIndex < myKeys[j+1])
{

retVal=myKeys[j].Insert(rIndex,findOnly);
inserted = true;
break;

}
}

assert(inserted); // change to exception if not!

// if you had to split
if (retVal && !findOnly) // got back a pointer to a new page
{

Index * pIndex = new Index(GetPage(retVal)->GetFirstIndex());
pIndex->SetPointer(retVal);
retVal = InsertLeaf(*pIndex);

}
return retVal;

}

Searching
The entire pointof putting the Note s into the database is to be able to find them later.
The goal,with this pseudo-application, is to be able to search by any of the keywords
and find every Note that contains that word.

Object Persistence

CHAPTER 15
615

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 615

Suppose that you entered these phrases:

We hold these truths to be self-evident that all men are created equal

If we can send one man to the moon why can’t we send all of them

Now is the time for all good men to come to the aid of their country

Ask not what your country can do for you ask what you can do for your country

Now suppose that you search for manby entering –? man . You will receive the following
output:

?: -?man

[1] 7/7/98 If we can send one man to the...
Choice <0 to stop>: 1

>> If we can send one man to the moon why can’t we send all of them

Only one of these phrases has the word man. If we search for the word men, we find that
two notes have the word men:

?: -?men

[1] 7/7/98 We hold these truths to be se…
[2] 7/7/98 Now is the time for all good …
Choice <0 to stop>: 2

>> Now is the time for all good mean to come to the aid of their country

[1] 7/7/98 We hold these truths to be se…
[2] 7/7/98 Now is the time for all good …
Choice <0 to stop>: 1

>> We hold these truths to be self-evident that all men are created equal

[1] 7/7/98 We hold these truths to be se…
[2] 7/7/98 Now is the time for all good …
Choice <0 to stop>:

The menu displays the first 32 characters of each note; if you choose one of them,you
will see the entire note. Let’s walk through this second search step by step.

When main() detects the dash (–) as the first character and the ? as the second character,
it invokes DoFind() , passing in the buffer containing the search string (in this case, men)
and the BTree itself. The string is parsed to remove leading spaces and then is passed to
myTree::Find() :

void DoFind(char * searchString, BTree& myTree)
{

Object Persistence and Encryption

PART IV
616

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 616

int list[PageSize];
for (int i = 0; i<PageSize; i++)
list[i] = 0;
int k = 0;
char * p1 = searchString;
while (p1[0] == ‘ ‘)

p1++;

int offset = myTree.Find(p1);

BTree::Find() is very simple. If a page is assigned to the root (and thus if we are stor-
ing any keys at all), it creates an index from the buffer and calls Find() on the root page,
passing along the newly created index:

int BTree::Find(char * str)
{

Index index(str);
if (!myRoot)

return 0L;
else

return GetPage(myRoot)->Find(index);
}

GetPage() , of course, just returns the page. Page::Find() is an inline function that calls
Insert() , passing in the Boolean flag true , indicating that it isn’t a true insert, but
rather a find:

int Find(Index& idx) { return Insert(idx,true); }

This code reuse is elegant,but the naming convention is perhaps poor. When you call
Insert() with the second parameter set to true , you are not inserting at all, you are sim-
ply finding.

Page::Insert() is as it ever was:It determines whether the page is a leaf or a node and
calls either InsertLeaf() or InsertNode() , respectively. In any case, it also passes
along the flag indicating that we are finding, not inserting. The same logic used previous-
ly to detect “duplicate” keys is used here to find the offset into the WNJFile for this key.

As you would expect,what is returned, ultimately, is an offset into the WNJFile . This
value is passed all the way up the stack back to DoFind() . The value is then used to call
into WNJFile::Find() :

int offset = myTree.Find(p1);
if (offset)
{

int *found = BTree::theWNJFile.Find(offset);

WNJFile::Find() chases through its arrays of offsets into the data file. For each data set,

Object Persistence

CHAPTER 15
617

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 617

it builds up an array of results. When and if it hits the fifth element in its data set,it uses
that as an offset back into its own file to get more:

int* WNJFile::Find(int NextWNJ)
{

int ints[N_DATA_SETS];
int * results = new int[MAX_ARRAY_SIZE];

int i = 0, j=0;

while (j<256)
results[j++] = 0;

j = 0;

myFile.seekg(NextWNJ);
myFile.read((char*)ints,N_DATA_SETS*SIZE_INT);

while (j < MAX_ARRAY_SIZE)
{

if (ints[i])
{

if (i == N_DATA_SETS-1)
{

myFile.seekg(ints[DATA_SET_POINTER_OFFSET]);
myFile.read((char*)ints,N_DATA_SETS*SIZE_INT);
i = 0;
continue;

}
results[j++] = ints[i++];
}
else

break;
}
return results;

}

The list of matching Note s is then displayed and the user can read the entire note by
choosing the appropriate entry from the list.

There are more details,but you’ve seen the essential code. Persistence, in this case, is
more detailed than in the simpler “wr ite the object to disk”example, but the fundamental
principal of delegation of responsibility remains constant.

Fortunately, for commercial applications,most of these details would remain hidden.
First, if you were going to use a data structure such as a B-tree, you would almost cer-
tainly look first to the Standard Template Library. Why reinvent your own when you can
use readily available, fully tested code that has been generalized for virtually any data?

Object Persistence and Encryption

PART IV
618

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 618

More important,if you were going to write software using a database, you would almost
certainly use one of the many highly optimized commercial packages available. The
point of this exercise was less to prepare you to write complex data structures than to
examine some of the details of manipulating large objects onto and off of the disk and
translating objects on the heap into objects on disk,and back again.

Summary
This chapter reviewed a few object-oriented approaches to storing data on disk. What is
consistent among these disparate approaches is that storage is encapsulated in the respon-
sible objects and that we are careful to make the details of object location (in memory or
on disk) invisible to the clients of our objects.

In a well-designed object storage system,it is possible to work with the objects as if they
are guaranteed to be in memory. With advanced component systems such as CORBA and
COM, not only is it invisible whether the object is in memory or on disk,but the actual
storage location is invisible as well. This is known as location transparency, and is cov-
ered in coming chapters.

Object Persistence

CHAPTER 15
619

15

O
B

JEC
T

P
ER

SISTEN
C

E

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 619

620

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

20 239-5 CH 15 2/19/99 1:31 PM Page 620

IN THIS CHAPTER

• Basic Concepts of Relational
Databases 622

• Architecture of a Relational
Database 624

• SQL: Defining and Querying the
Database 625

• Persisting to a Relational
Database 628

• Hiding the Details 630

• SQL Statements 648

16
C

H
A

PT
ER

Relational
Databases and
Persistence

21 239-5 CH16 2/19/99 1:33 PM Page 621

The overwhelming majority of commercial software applications use relational databases
(RDBs) for object persistence. RDBs are a robust and mature technology, while object
databases are still in their infancy. Further, the majority of business applications contain
legacy code and design; the company already has its data in an RDB, and other company
systems must continue to use that data.

These truths present us with a challenge because mapping objects to relations is not
always straightforward. Although there are a number of solutions to this problem,most
of the time, you will simply allow your application frameworks to do the mapping
for you.

This chapter begins with a review of the fundamentals of relational database manage-
ment and goes on to discuss how your C++ program can interact with relational databas-
es. The chapter examines the Microsoft Foundation Classes support for databases.

Basic Concepts of Relational
Databases
The essenceof a relational database is quite simple:Your data is organized in tables.
Each table consists of records (rows) and fields (columns),as shown in Figure 16.1.

Object Persistence and Encryption

PART IV
622

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.1.
Relational data-
base tables are
organized into
records and fields. Author

Fields

Records

Address City State Zip
John Doe 100 Main Street Anytown AnyState 01320
Jane Writer 50 Apple Way SomeCity ST 09939

Jack Sprat 100 Candlestick HotTown XY 99939

The power of relational databases comes when you create two tables and “relate” them
one to the other. You create that relationship by ensuring that there is a shared, unique
identifier in each record. For example, if one table contains a list of every author who
writes for your publishing company, and a second table contains a list of every book your
company publishes,you can relate these two tables by author. One very powerful way to
do so is to give each author a unique authorID and to add that authorID field to the
Titles table.

In Figure 16.2,we see that each author has a unique ID. This ID also appears in the
Titles table, relating the two tables and allowing us to see that both What A Wonderful
Programand Another Wonderful Programwere written by author 102. Author 102 is
Jane Writer, who lives at 50 Apple Way in SomeCity, ST.

21 239-5 CH16 2/19/99 1:33 PM Page 622

The AuthorID field uniquely identifies each author in the Author table and so is that
table’s primary key. When that key appears in the Titles table, it creates a relationship
between the tables and is thus a foreignkey in the Titles table. A foreign key is just a key
that serves as aprimary key in some other table.

This is a powerful idea to which we will return shortly. These tables,as you can imagine,
can get pretty large. Searching for a particular author or title can be time consuming. To
speed searching, columns can be indexed. When you create an index, the system creates
a second file, sorted by whatever value you are indexing. This second file provides a
pointer back into the original file. Typically, this pointer is just the offset of the record
into the file, measured in the number of records or bytes.

A table is always indexed on its primary key. You can also index on any other field to
speed up searching for a record based on information in that field. For example, in addi-
tion to indexing on AuthorID (the primary key), you may want to index on the author’s
name. If you Laos index on the author’s name, you can zip through the Author Name
index, find the record you are looking for, and then use the offset to jump tothat record
in your data file:

AuthorID
(Primary
Key) Author Address City State Zip

101 John Doe 100 Main Street Anytown AnyState 01320

102 Jane Writer 50 Apple Way SomeCity ST 09939

103 Jack Sprat 100 Candlestick HotTown XY 99939

104 Jesse Liberty 1 Fake Street Boston MA 01297

105 Ernest Hemming 50 Famous Dr. NY NY 11209

Relational Databases and Persistence

CHAPTER 16
623

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.2.
Each author has a
unique ID.

Author Author ID

Primary key

Address City State Zip
John Doe 100 Main Street Anytown AnyState 01320
Jane Writer 50 Apple Way SomeCity ST 09939

Jack Sprat

101
102

103 100 Candlestick HotTown XY 99939

Title ID

Primary key Foreign key

Join

Title Description AuthorID
1001 Teach Yourself C++ In 21 Days Primer on C++ 101
1002 What A Wonderful Program Intro to programming 102

1003 Another Wonderful Program Sequel to What A Wonderful... 102

1004 You Gotta’ Be Quick Nursery rhymes for programmers 103

21 239-5 CH16 2/19/99 1:33 PM Page 623

Author Offset

John Doe 0

Ernest Hemming 4

Jesse Liberty 3

Jack Sprat 2

Jane Writer 1

The use of indices works well because the index itself can be searched very quickly
using a binary search (as described in Chapter 13,“Search Algorithms in C++”). As your
data file grows, the number of required searches grows very slowly. For a file containing
n records,you need, on average, to search only log 2(n) records. If, on the other hand,
you looked at every record in the original database, you’d have to examine an average of
n/2 records.

With a database of 65,536 (n) records,brute-force searching would average 32,768
searches (n/2), but a binary search would average only 16 searches (log 2(n))! Also con-
sider that the 32,768 searches must each read in the entire data block, while the 16
searches read in the much smaller index records. There is no comparison in performance;
indices are very efficient.

Of course, nothing is free. The cost of using indices is felt at the time you add records to
the database. Each record must be indexed, and that takes time. In addition, each index
takes up disk space and memory. In this,as in everything, this is true:TANSTAAFL
(There Ain’ t No Such Thing As A Free Lunch).

After the data is found in the index file, the pointer is used. The pointer is just an offset
into the data file. The operating system provides very fast access when you seekdirectly
to an offset into a file.

Architecture of a Relational
Database
Databases canbe understood at three levels. First is the application’s view of the data,
including application-specific semantics and constraints. At this level, we are not talking
about data modeling at all. We are talking about objects,entities,business rules,and so
forth.

The next level is the level of entity-relationship modeling. It is only from this perspective
that we think about tables,rows,columns,and indexes. At this level, we are concerned
with understanding how the relationships among the various objects in the domain trans-
late to tables and their interrelationships.

Object Persistence and Encryption

PART IV
624

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 624

The most fundamental level, of course, is the physical, or internal, level, which maps to
files on the disk. You almost never worry about databases at this level unless you are, in
fact,creating your own database technology. It is at this level that you consider the size
of the records in the file, data accessblocks,disk access methods,and so forth.

Any given database has three users:

• The end user, who thinks only about objects and business rules.

• The programmer, who is responsible for developing the applications used by the
end users and who thinks about objects and business rules,but also thinks about
entity-relationship modeling.

• The database administrator (DBA), who defines the physical components and must
also understand the entity relationships. The DBA also knows how to optimize for
maximum performance.

Restrictions and Considerations
Relational databaseswork best when a few simple rules are followed:

• Duplicate rows are not allowed.

• Primary keys must be unique within any given table.

• The value of each field is atomic—that is, each field represents a single, indivisible
bit of information. (The implications of this rule are that, in a relational database,
you cannot store a list within asingle field.)

Within any given relational database, there are three types oftables:

• Entity table: This table contains application-specific data meaningful to the end
user.

• Relationship table: This table represents relationships betweentables and is of no
interest to (and is invisible to) the end user.

• Vir tual table: This table is used to present a “view” of the database to an applica-
tion.

SQL: Defining and Querying
the Database
The industry standard for querying relational databases is the Structured Query Language
(SQL). Unfortunately, as often happens,there are a number of extensions to SQL which,
although they make SQL more powerful for individual database products,also under-
mine this lingua-franca of database access.

Relational Databases and Persistence

CHAPTER 16
625

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 625

SQL is also a data definition language (DDL) and can be used to create databases and to
define the structure of tables. SQL also provides the data manipulation language (DML)
used to query the data. DDL statements are used to create the tables,views,keys,and
constraints that define the database. DML statements are used to query the database,
select records,and sort the results.

Data definition includes the name of the table and each of the fields,the contents and
rules and restrictions for each field such as its type, length,whether it can be NULL and so
forth. The DDL is also used to define keys and to establish referential integrity.
(Referential integrity means that each of the various tables in a database are consistent
with one anotherin their representation of the state of objects.)

When you query the database, what you get back is a set of rows in a table or a view. This
is called your answer set. The view is a virtual database, which looks to the user like a
standalone database, but actually represents a subset of the real database based on the
results of the query. An iterator, called a cursor, is used to iterate through the answer set.

The normal way to search the database is with a SELECTstatement:

SELECT AuthorID, Author, City FROM Author WHERE AuthorID > 101 AND Zip
➥AuthorID < 104

This SQL statement requests that the database return the AuthorID , the Author , and the
City from the Author table for every record where the AuthorID is greater than 101 and
also less than 104. Presumably, this would return two records:AuthorID 102 and 103
(assuming that no two records can have duplicate AuthorID values).

Normalization
One of the goalsof the database designer is to eliminate duplication among the tables in
a database. Duplication is expensive: It takes more disk space to store information twice,
and it takes longer to search larger records. Duplication is also a risk to referential
integrity: If you keep data twice, it is possible for the copies of the data to be out of
synch with each other.

The process of eliminating duplication is called normalization.

Database theorists have defined several normal formsfor relational databases. A normal
form defines how much duplication has been eliminated; each successive normal form is
more restrictive than the previous one. For example, the third normal form is more
restrictive (that is, it allows less duplication) than the second form.

Object Persistence and Encryption

PART IV
626

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 626

The first normal form (1NF) dictates that each field (often called an attribute) stores only
one value (as opposed to a list of values). The second normal form (2NF) adds the
requirement that each row (record) in the database must be unique. This criteria is usual-
ly achieved by creating a unique ID for each row called an identity column, or an identity
field. If you have no other value on which to index, you may make the identity column
the primary key, but that is not required. The identity column is created only to ensure
uniqueness.

The third normal form (3NF) is the most popular compromise between too little normal-
ization and too much normalization. In 3NF, you remove all redundant information in
your tables except for the fields used as foreign keys.

There are a fourth and fifth normal form, but they are not commonly used because they
are too difficult to implement and they impose significant performance penalties. In fact,
some databases are intentionally denormalized, that is, some redundancy is added to the
tables to enhance performance. Kids,don’t try this at home; these people are trained pro-
fessionals.

Joins
Normalizing a database limits what you can find in a simple query unless you join two or
more tables together. Joining multiple tables creates a single “vir tual table.” It is as if the
two tables were one larger table with duplicate values. This gives you the best of both
worlds:You can search efficiently and still store the data efficiently.

There are various ways to join tables. The first and most common is thenatural join, also
called the equi-join. You perform an equi-join on two tables that have a common column.
The join is accomplished using the SQL WHEREclause:

SELECT TableA.Title, TableB.Author FROM TableA, TableB
WHERE TableA.AuthorID = TableB.AuthorID

The WHEREclause creates the equi-join. Note that the FROMclause lists the two tables to
be joined. If you leave out the equi-join clause and join the tables by listing two or more
in the FROMclause, you are creating a cross-join.

A variant on anequi-join is a theta-join. A theta-join is like an equi-join except that
rather than equating the two columns,you use another relational operator.

You can generalize these statements into inner-join statements by explicitly naming the
table columns to match. Note that with an inner-join, you do not have to compare the
same columns in the two tables. Thus you can write the following query:

Relational Databases and Persistence

CHAPTER 16
627

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 627

SELECT TableA.Title
FROM TableA inner join TableB ON TableA.AuthorID = TableB.AuthorID
AND TableB.State = ST

If there is an inner-join, you can guess that there is also anouter-join. An outer-join
examines two tables and returns the records of one table where there is a matching
record in the second table. This is a way to say, “Show me all the records in Table A;
also show me all the records in Table B that have matches in Table A.”

Outer-joins are “handed”—that is, they can be either left-handed or right-handed. A left-
handed outer-join looks like this:

SELECT * FROM TableA left outer join TableB ON TableA.AuthorID =

TableB.AuthorID

This statement returns every record from Table A (the left table) and all the records in
Table B that match the criteria.

Persisting to a Relational
Database
A classic dilemma when creating an object-oriented program is how to map your objects
to the columns and tables of a relational database. Typically, each member variable in the
object corresponds to a field (column) in the database.

After you design this map, you have a few choices:You can teach your classes how to
write themselves to the RDB (either by hand or using a tool that creates the persistence
code),or you can use an application framework to get the work done.

Before examining what a framework can do for you, it is helpful to understand the task.
Let’s discuss what it would take to write the code yourself if you didn’t use an applica-
tion framework.

Assume that you are going to write your attributes (member variables) into fields. You
start by deciding how to map the object’s state to a row in one or more tables. You must
decide how to represent an object’s primitive data,and thus you must map the C++ data
types such as int and char to the data types intrinsic to your chosen database. Note that
the code you write will not necessarily be portable among databases. You may want to
add an abstraction layer so that you can choose a new database without breaking the
design of the objects. Tools are available that can read your header files and produce the
necessary DDL.

You must then define the methods that create the database tables and keep them up to
date. You then create the queries needed to manipulate the data,and you must create the

Object Persistence and Encryption

PART IV
628

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 628

API to the database itself (the API is typically provided by the database manufacturer,
but it does not support the concept of objects).

Each object and all its data members must be transformed to and from tables. The data
members include not only primitive data (such as int and char) but also aggregated
objects and base objects. In addition, objects on the heap must be swizzled out of and
back into memory.

Swizzling with Object Identifiers
One of the difficult tasks in mapping objects to a relational database is what to do about
objects stored on the heap. To understand how to solve this problem,we must examine
how an object names another object in memory. For example, if I create a book order,
how do I tell that book order about an author? Typically, I do so using pointers; one of
the book order’s member variables will be a pointer to an author:

class BookOrder
{
public:

// . . .
private:

Author * pAuthor;
};

When we map this to an RDB, we map the pointer to an Object Identifier (OID). The
OID uniquely identifies an object and can be used to “swizzle” that object to and from
disk. Swizzlingis theprocess of chasing the pointer, getting the object,writing it to a
table or reading it from a table, and calling the new operator to create the object in mem-
ory.

OIDs are often stored as numbers or short character arrays. Ideally, each OID is
unique—if it is not unique across the world, it must be unique within one instance of the
program. With a client/server application, the OID must be unique across the network; if
that network is the Internet,the OID must be globally unique. Microsoft offers globally
unique identifiers (GUIDS),which are covered in Chapter 21,“COM.”

Using Blobs
The processof reading and writing data can be unacceptably slow, especially because
each data member must be transformed to match the requirements of the database.

The alternative is to store the entire object as a binary stream of bytes. Key values can be
stored as attributes in columns,but the bulk of the data is treated as a blob—that is, it has
no semantic meaning. When you need the data, you use the key to access it and then you
reconstitute the object in memory.

Relational Databases and Persistence

CHAPTER 16
629

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 629

The advantage of storing much of the object as a stream of bytes is that you do less map-
ping between objects and tables. The disadvantage is that the semantics of the object
(and even the identity of many of the attributes) are lost in the database.

If you are going to use a blob, the important decision to make is what data to throw in
the blob and what data to use as keys. Remember that once the data is in the blob, it is
invisible until it is brought out—and that can be done only by using the key values you
explicitly hold out. Using blobs rather than mapping each attribute can enhance perfor-
mance, but it can also dramatically increase the cost of designchanges.

Hiding the Details
Unless you are developing a general application framework for resale, you typically
avoid these issues by using a standard interface to the database provided by your vendor.
It is important to understand the various levels of abstraction so that you can make the
appropriate choices:

• Storing your objects directly

• Using your database’s API

• Using ODBC (or something like it)

• Using MFC (or something like it)

Which is to say, you can write your own code to get your objects into or out of the data-
base, or you can take advantage of the vendor-specific API to help you with the task.
Going up a level of abstraction,you can use Microsoft’s Open Database Connectivity
(ODBC) technology, which is designed to create a uniform API to all databases that sup-
port SQL. Up an additional level of abstraction is Microsoft’s Data Object (DAO) model,
which provides an object-oriented front end to ODBC. Finally, we come to the Microsoft
Foundation Class (MFC) library, which provides a high-level object abstraction of either
ODBC or DAO.

Storing Objects Directly
Storing objects directly is the true programmer’s favorite option. In this approach, we
eschew wimpy commercial databases and the hundreds of developer-years they’ve spent
getting it right: We write our own. We create our own indices and our own data files,and
we write directly to the disk. Great fun—and totally insane for any reasonable commer-
cial application.

If this option intrigues you,be sure to read Chapter 15,“Object Persistence.”

Object Persistence and Encryption

PART IV
630

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 630

Using Your Database’s API
Using your database’s API is a somewhat more realistic approach. In this method, you
write directly to the API provided by the database vendor. The problem with this
approach is that it is not the least bit encapsulated. We lock ourselves into a single data-
base API, and if we want to change databases,we have to redo all that work. In addition,
these APIs are most often C interfaces,not C++ interfaces,and we spend a fair amount
of time writing C++ wrappers for the code.

Accessing ODBC Data Sources
Open Database Connectivity (ODBC) is aprocedural C-style API that allows applica-
tions to access data in any database for which the end user has an ODBC driver. As a
result,ODBC allows Windows applications to connect to different environments on mul-
tiple platforms.

ODBC has the following components:

• ODBC API. A library of function calls,error codes,and standard Structured Query
Language (SQL) that can be used to access databases.

• ODBC Driver Manager. A dynamic link library (ODBC32.DLL) that loads ODBC
database drivers that provide an API to the database.

• ODBC Database Drivers.One or more DLLs that process ODBC function calls to
specific DBMSs.

• ODBC Cursor Libr ary. A dynamic link library (ODBCCR32.DLL) that provides
support for cursors (virtual views into the database). The cursor library sits
between the ODBC driver manager and the drivers.

• ODBC Administr ator. A tool that can be used to configure data sources. These
data sources are used by the application to connect to the database.

You can write C++ applications to connect to any data source for which there is an
ODBC driver. These data sources can include the following:

• Relational databases such as Oracle and Microsoft SQL Server

• Indexed Sequential Access Method (ISAM) databases

• Microsoft Excel spreadsheets

• Text files

A data source consists of several components that completely describe the data being
accessed. These components include the following items:

• A specific set of data

Relational Databases and Persistence

CHAPTER 16
631

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 631

• Connection information required to access the data

• Location of the data source

Data sources must be configured using the ODBC administrator. The complete set of
functionality available depends on the ODBC driver installed and its capabilities.

The ODBC administrator tool is used to manage the data sources. It keeps the informa-
tion about the data sources and their connection in the Windows Registry. Using the
ODBC administrator, you can do the following:

• Add and delete ODBC drivers

• Add, modify, and delete data sources

The ODBC Cursor Model
Most DBMSes provide a simple method for retrieving data from a query. Rows are
returned to the application one at a time until the last row in the set is returned. There is
no provision to go back to a row without reexecuting the query. On the other hand, inter-
active applications usually allow the user to go back and forth through the set of data
using the arrow keys or the Page Up and Page down keys. A cursor is a mechanism that
allows individual rows returned from a query to be processed one at a time; the cursor
points to the current row in the recordset. A cursor that provides the ability to scroll back
and forth through the result set is called a scrollable cursor. A cursor that allows the
modification and deletion of the fetched data is called a scrollable, updateable cursor.
Concurrency control is important when using cursors (just like it is when working with
transactions).

ODBC provides three types of cursors:

• Static cursors: In a static cursor, the membership,ordering, and values of the
result set are fixed when the cursor is opened. These items remain fixed until the
cursor is closed. This type of cursor is most useful for read-only applications. The
static cursor provides a very consistent view of the data. The biggest disadvantage
of this model is that the changes made by other transactions after the cursor is
opened are not visible to this cursor.

• Keyset-driven cursors: In a keyset-driven cursor, the membership and ordering of
the result set is fixed when the cursor is opened but the values can change.

• Dynamic cursors: In a dynamic cursor, all the committed changes made by any-
one—as well as the uncommitted changes made by the cursor owner—are visible
to the cursor owner. The membership and ordering of the result set can be affected
by updates made by anyone:

Object Persistence and Encryption

PART IV
632

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 632

Cursor Type Accuracy Consistency Concurrency

Static Low High Medium

Keyset-driven Medium Medium Medium

Dynamic High Low High

Concurrency Control Using ODBC
Locking (or pessimistic concurrency control) and optimistic concurrency control are the
two primary methods for managing concurrency. The optimistic approach is used when
the application is optimistic that no other transaction will update the data before the data
is committed. On the other hand, locking is used to ensure that other transactions cannot
make changes while the current transaction is holding the records in exclusive mode.

In ODBC,the application can specify the type of concurrency control by passing one of
the following options to SQLSetStmtOption :

• SQL_CONCUR_READ_ONLY: This option indicates read-only access and that no updates
will be attempted.

• SQL_CONCUR_LOCK: This option indicates that locking has to be used to prevent
other transactions from modifying the records.

• SQL_CONCUR_ROWVERand SQL_CONCUR_VALUES: These options indicate that opti-
mistic concurrency control is to be used.

Scrolling
Using ODBC,you can fetch rows from the recordset using SQLFetch (retrieve rows from
forward-only cursors one at a time) or SQLExtendedFetch (retrieve rows from scrollable
cursors; a multiple-row fetch is possible). The following operations are available with
SQLExtendedFetch for scrolling operations:

• SQL_FETCH_NEXT: Fetch the next rowset

• SQL_FETCH_PRIOR: Fetch the previous rowset

• SQL_FETCH_FIRST: Fetch the first rowset

• SQL_FETCH_LAST: Fetch the last rowset

• SQL_FETCH_RELATIVE: Fetch the rowset that is n rows from the current rowset (n
can be positive or negative)

• SQL_FETCH_ABSOLUTE: Fetch the rowset beginning with the nth row in the result set

Application programmers can make use of scrollable cursors without writing their own
cursor code by using the ODBC cursor library. The driver manager calls the cursor
library, and the cursor library calls the driver. The cursor library is enabled when the

Relational Databases and Persistence

CHAPTER 16
633

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 633

application calls SQLSetConnectOption with the SQL_ODBC_CURSORSoption. This option
allows the applications to make use of the scrollable cursor functions defined in ODBC
Conformance Level 2 (SQLExtendedFetch , SQLSetPos , and thecursor options in
SQLSetStmtOption).

Using MFC
All the details of ODBC are managed for you when you use an application framework.
In a framework, you get an object-oriented wrapper around not only the database API but
also around the ODBC layer. Your application can focus on its own internal business
logic. The best way to see how this works is to study an example. Although you may
never use the MFC,the lessons learned here should apply—at least at the highest level of
abstraction—to whatever framework library you do use.

The dilemma,as always, is how complex to make the example. Too simple and it is a toy
that doesn’t relate to reality; too complex and it is too difficult to follow. I tend to believe
in fairly simple examples,which can then be built on and generalized after the principles
are understood.

We’ll start with the analysis:What are we trying to model? I want a program to help me
keep track of books I read. I want to know who wrote the book,when I read it,what
topic it falls under, and so forth.

Because this example exists to demonstrate the database, I’ ll f ocus only on the tables for
now. (Generally, I try to avoid data-driven design,preferring to use case-driven design as
described in Chapter 1,“Object-Oriented Analysis and Design.”)

The Book table tracks information about a particular book; its preliminary fields are
shown in Figure 16.3.

Object Persistence and Encryption

PART IV
634

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.3.
The Book table.

Book Table: Table

Field Name Data Type
BookID AutoNumber
Book Title Text
Category Text
Rating Number
Notes Text

Description

21 239-5 CH16 2/19/99 1:33 PM Page 634

Next, I’ ll add some sample data to get us started (see Figure 16.5).

Relational Databases and Persistence

CHAPTER 16
635

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.4.
The
AuthorBookJoin
table.

AuthorTable: Table

Field Name Data Type
AuthorID AutoNumber
Author Name Text
Author Notes Text

AuthorBookJoin: Table

Field Name Data Type
ID AutoNumber
AuthorID Number
BookID Number

Description

I’ ll also need an Author table, and I’ll create a many-to-many relationship between book
and author by creating a AuthorBookJoin table, as shown in Figure 16.4.

FIGURE 16.5.
Sample data.

21 239-5 CH16 2/19/99 1:33 PM Page 635

Note that each of these tables was created in a single Access database I’ve named
BookCollectionUnleashed.mdb . I’ ll also have to create a data source that points to that
collection,which I can do using the ODBC32 utility in the Windows NT Control Panel.

ODBC32 offers a variety of DataSource (DSN) connections. A User DSN is available to
a single user, and a System DSN is available to everyone on your system. If you need to
share a DSN among more than one computer, you can use a File DSN. I’ ll create a
System DSN pointing to my newly created .mdb file, and I’ll name it
BookCollectionUnleashed .

It is now time to fire up Microsoft Visual C++ and create a new project. When we do so,
we are immediately asked whether we want this application to be a Single Document
Interface (SDI),a Multi-Document Interface (MDI),or dialog based. If we select either
SDI or MDI, we have the option of asking for database support—and if so,we can add a
database view.

If we ask for a database view, we are asked to point to the ODBC source and are then
asked which tables we want to include in thisview, as shown in Figure 16.6.

Object Persistence and Encryption

PART IV
636

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.6.
Choosing a table.

The wizard can create only a single view, but you are free to add additional record views
as you develop the application. We’ll create our primary view on the Book table because
this is a good way to demonstrate what the wizard-generated record view can do. In a
commercial application, you may choose the Header Files Only option if you want more
control over all your views and would rather create them yourself.

21 239-5 CH16 2/19/99 1:33 PM Page 636

After the wizard has gathered the information it needs,you are presented witha review
of your classes,as shown in Figure 16.7.

Relational Databases and Persistence

CHAPTER 16
637

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.7.
The wizard-
generated review
of classes.

Note that the view class is aCRecordView , as we expected. Building this application pro-
vides you with the fundamentals,but the MFC expects you to create a dialog object for
this view that will display the contents of the table. Thus,the preliminary dialog box,
shown in Figure 16.8,is rather spartan.

FIGURE 16.8.
The preliminary
dialog box for the
sample applica-
tion.

We’ll add a few controls to display the contents of the fields we care about,as shown in
Figure 16.9.

FIGURE 16.9.
Displaying fields.

21 239-5 CH16 2/19/99 1:33 PM Page 637

Next, we need to hook these controls up to the contents of the database. To do this,we
turn to the DoDataExchange code for our RecordView . The Application Wizard-supplied
code looks like this:

void CBookCollectionUnleashedView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBookCollectionUnleashedView)

// NOTE: the ClassWizard will add DDX and DDV calls here
//}}AFX_DATA_MAP

}

First,we’ll ask the Class Wizard to create member variables for each of the dialog con-
trols,as shown in Figure 16.10.

Object Persistence and Encryption

PART IV
638

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.10.
Creating member
variables.

This causes the ClassWizard to create the following data exchange code:

void CBookCollectionUnleashedView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBookCollectionUnleashedView)
DDX_Text(pDX, IDC_CATEGORY, m_Category);
DDX_Text(pDX, IDC_NOTES, m_Notes);
DDX_Text(pDX, IDC_RATING, m_Rating);
DDX_Text(pDX, IDC_TITLE, m_Title);
//}}AFX_DATA_MAP

}

Unfortunately, this is still not quite what we want. Rather than putting the contents of the
controls into the local variables,we want to talk directly to the database. We can fix this

21 239-5 CH16 2/19/99 1:33 PM Page 638

glitch by changing the DDX_Text calls to calls to DDX_FieldText . We make this change
by hand, editing the code generated by the wizard. The DDX_FieldText macro takes four
parameters: The first two are the same parameters used by DDX_Text and are followed by
the member variable of the CRecordSet attached to the view, and theCRecordSet itself.
First, I’ ll show you what it looks like, and then we’ll discuss the mysterious CRecordSet :

void CBookCollectionUnleashedView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBookCollectionUnleashedView)
DDX_FieldText(pDX, IDC_CATEGORY, m_pSet->m_Category, m_pSet);
DDX_FieldText(pDX, IDC_NOTES, m_pSet->m_Notes, m_pSet);
DDX_FieldText(pDX, IDC_RATING, m_pSet->m_Rating, m_pSet);
DDX_FieldText(pDX, IDC_TITLE, m_pSet->m_Book_Title, m_pSet);
//}}AFX_DATA_MAP

}

Rebuilding and running this code creates an application that does,in fact,read directly
from the database, as shown in Figure 16.11.

Relational Databases and Persistence

CHAPTER 16
639

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.11.
The application
reads from the
database.

Clearly, the application works,but how? The magic is in the data member of your
CRecordView class:m_pSet . This member is a pointer to a
CBookCollectionUnleashedSet object. Both the type and the member variable were cre-
ated and added by the Application Wizard.

So what is a CBookCollectionUnleashedSet ? This type was created by the Application
Wizard, and it derives from CRecordSet :

class CBookCollectionUnleashedSet : public CRecordset
{
public:

CBookCollectionUnleashedSet(CDatabase* pDatabase = NULL);

21 239-5 CH16 2/19/99 1:33 PM Page 639

DECLARE_DYNAMIC(CBookCollectionUnleashedSet)

// Field/Param Data
//{{AFX_FIELD(CBookCollectionUnleashedSet, CRecordset)
long m_Book_ID;
CString m_Book_Title;
CString m_Category;
long m_Rating;
CString m_Notes;
//}}AFX_FIELD

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CBookCollectionUnleashedSet)
public:
virtual CString GetDefaultConnect(); // Default connection string
virtual CString GetDefaultSQL(); // default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX); // RFX support
//}}AFX_VIRTUAL

// Implementation
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

};

A CRecordSet is, essentially, an iterator over your table. It has one member variable for
each column in your selected table, and you can use the recordset to interact with that
data. We’ll examine CRecordSet objectsin some detail as we go forward, but for the
moment we’re just accepting the magic provided by the wizards:As we ask for each
record, the RecordSet fetches it from the database.

This is fine as far as it goes. We would, however, like to be able to see the author (or
authors!) for our books. This request is a bit tricky to implement,however, because we
don’t keep the name of the author (or even the author’s ID) in the Book table.
(Remember that we tie the Book table to the Author table with entries in the
BookAuthorJoin table.)

Here’s what we want to do:Each time we read a book record, we want to use the
m_book_ID to find every matching record in the BookAuthorJoin table. For each record
found, we want to look up the author name in the Author table, and then we want to dis-
play that name.

This is easier to code than you might think. The first thing to do is tocreate a
CRecordSet classfor each of the two tables:

Object Persistence and Encryption

PART IV
640

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 640

class AuthorRecordSet : public CRecordSet
{
public:

AuthorRecordSet(CDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(AuthorRecordSet)

// Field/Param Data
//{{AFX_FIELD(AuthorRecordSet, CRecordSet)
long m_AuthorID;
CString m_Author__Name;
CString m_Author_Notes;
//}}AFX_FIELD

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(AuthorRecordSet)
public:
virtual CString GetDefaultConnect(); // Default connection string
virtual CString GetDefaultSQL(); // Default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX); // RFX support
//}}AFX_VIRTUAL

// Implementation
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

class BookAuthorRecordSet : public CRecordset
{
public:

BookAuthorRecordSet(CDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(BookAuthorRecordSet)

// Field/Param Data
//{{AFX_FIELD(BookAuthorRecordSet, CRecordset)
long m_ID;
long m_AuthorID;
long m_BookID;
//}}AFX_FIELD

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(BookAuthorRecordSet)
public:
virtual CString GetDefaultConnect(); // Default connection string
virtual CString GetDefaultSQL(); // Default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX); // RFX support
//}}AFX_VIRTUAL

Relational Databases and Persistence

CHAPTER 16
641

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 641

// Implementation
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

What I show here is the code generated by the Class Wizard. Note that each class has a
member variable which corresponds to a column in one of the tables.

The next step is to create a control that displays the author names. For simplicity, we’ll
use a list box. I’ ll ask the Class Wizard to create a member variable for that control so
that I can call AddString directly on the control. Finally, I’ ll create a member method of
the view to update the author list,and I’ll call that method each time I update the other
controls:

void CBookCollectionUnleashedView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBookCollectionUnleashedView)
DDX_Control(pDX, IDC_Authors, m_Author_Control);
DDX_FieldText(pDX, IDC_CATEGORY, m_pSet->m_Category, m_pSet);
DDX_FieldText(pDX, IDC_NOTES, m_pSet->m_Notes, m_pSet);
DDX_FieldText(pDX, IDC_RATING, m_pSet->m_Rating, m_pSet);
DDX_FieldText(pDX, IDC_TITLE, m_pSet->m_Book_Title, m_pSet);
//}}AFX_DATA_MAP

UpdateAuthor(m_pSet->m_Book_ID);
}

bool CBookCollectionUnleashedView::UpdateAuthor(int id)
{

AuthorRecordSet ars;
BookAuthorRecordSet bars;
CString bookAuthorSQL;
CString authorSQL;
CString display;
int pos;

m_Author_Control.ResetContent();

bookAuthorSQL.Format(“BookID = %d”,id);
bars.m_strFilter = bookAuthorSQL;
bars.Open();

while (! bars.IsEOF())
{

authorSQL.Format(“AuthorID = %d”,bars.m_AuthorID);
ars.m_strFilter = authorSQL;
if (ars.IsOpen())

Object Persistence and Encryption

PART IV
642

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 642

ars.Requery();
else

ars.Open();
display = ars.m_Author__Name;
pos = m_Author_Control.AddString(display);

bars.MoveNext();
}
return true;

}

The essence of UpdateAuthor is that we pass in the ID of the currently selected book,
which we get from the CBookCollectionUnleashedSet attached to our RecordView .
After we’re in UpdateAuthor , we tell the list box to reset itself
(m_Author_Control.ResetContent();) and set up to query the database for records in
the AuthorBookJoin table that match this BookID .

Let’s walk through this code step by step:

1. Set up a search string that will become the WHEREclause in the SQL SELECTstate-
ment:
bookAuthorSQL.Format(“BookID = %d”,id);
bars.m_strFilter = bookAuthorSQL;

I do this in two stages. First, I create the Cstring , and then I assign that string to
the member variable m_strFilter of the CRecordSet object. This causes the
CRecordSet object to return a recordset of matching records each time I open or
requery that object. (Note how this is accomplished:The CRecordSet adds a WHERE

clause to its query and inserts whatever string is in m_strFilter .)

2. Open the recordset:

bars.Open();

3. Iterate through the records:

while (! bars.IsEOF())
{

//. . .
bars.MoveNext();

}

The idiom here is to keep iterating until you hit the end of the RecordSet (signified by
IsEOF returning true).

Each time through the iteration, I must extract the authorID from the AuthorBookJoin
record and use that ID to find the matching record in the Author table. Again, I create a
CString with the WHEREclause for my search, and then assign that string to the
m_strFilter variable of the author recordset. I then query against the recordset,which

Relational Databases and Persistence

CHAPTER 16
643

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 643

returns the single record that matches that author, and I extract that string andadd it to
the list box. Here’s what it looks like:

authorSQL.Format(“AuthorID = %d”,bars.m_AuthorID);
ars.m_strFilter = authorSQL;
if (ars.IsOpen())

ars.Requery();
else

ars.Open();
display = ars.m_Author__Name;
pos = m_Author_Control.AddString(display);

When this is done, we can display the author names in context in each record, as shown
in Figure 16.12.

Object Persistence and Encryption

PART IV
644

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.12.
Displaying author
names.

Editing
Try changing therating or category of one of the books. Hey! Presto! The database is
updated when you switch from one record to the next. This bit of magic is accomplished
for you in the DoDataExchange() method of the view, which is automatically called
when you switch records.

DoDataExchange() is invoked by CWnd::UpdateData , which takes a parameter
bSaveAndValidate , a Boolean that defaults to true . When you move from one record to
the next, the old record is updated, and the values in the dialog controls are written back
into the database using the DDX_FieldText mechanism.

Immediate Updates
But what if you want the update to take effect immediately? Let’s add an Update button
that updates the current record in place. The code is fairly simple:Have Class Wizard

21 239-5 CH16 2/19/99 1:33 PM Page 644

create a handler, and then all we have do is get the data from the control into the
CRecordSet variables and update the database:

void CBookCollectionUnleashedView::OnBookUpdate()
{

m_pSet->Edit();
UpdateData();
m_pSet->Update();
AfxMessageBox(“Updated”,MB_ICONEXCLAMATION | MB_OK);

}

In this example, I prepare the RecordSet by calling Edit() . Then I update the
CRecordSet variables from the dialog box by calling UpdateData() ; finally, I update the
actual databasefrom the CRecordSet by calling Update() .

Updating the Authors
Unfortunately, the editing approach just outlined will not work for the author field
because it is a collection. For that field, you must do a bit of work yourself. When
UpdateData() calls DoDataExchange() , it passes in a CDataExchange object. One mem-
ber of the CDataExchange object is m_bSaveAndValidate , the flag that indicates the
“direction” of the update (if the flag is false , we initialize controls from the database; if
the flag is true , we write from the controls to the database).

We can pass this information to the UpdateAuthor() method, but it won’t help very
much in this particular application because the list box itself is read-only. To accomplish
an edit of the list of authors,we have to update the BookAuthorJoin table, a nontrivial
edit.

What might we want to do? We might want to add an author, in which case we can add
an author already in the Author table, or we might want to update that table. Further, we
might want to edit the list of authors in this list from the BookAuthorJoin table.

Setting aside the tricky user-interface considerations,we must keep clear what we are
trying to accomplish and write the code accordingly. This is,as they say, left as an exer-
cise for thereader.

Adding Records
If I want to add anew book to our system,I have to create a new record. To begin, let’s
add an Add Book button and have the Class Wizard wire up a handler method. Then let’s
create a new dialog box to manage the input,as shown in Figure 16.13.

The user fills in the fields and clicks OK (to ensure I don’t have empty fields,I dim the
OK button until the fields are populated). I then extract the data from the fields,create a
new record, and insert it into the database, as shown in Listing 16.1.

Relational Databases and Persistence

CHAPTER 16
645

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 645

LISTING 16.1. OnBookAdd

void CBookCollectionUnleashedView::OnBookAdd()
{

CAddBookDialog dlg;
if (dlg.DoModal() == IDOK)
{

CBookCollectionUnleashedSet book;
ASSERT (! book.IsOpen());

try
{

book.Open();
ASSERT (book.CanAppend());
book.AddNew();
book.m_Book_Title = dlg.m_Title;
book.m_Category = dlg.m_Category;
book.m_Notes = dlg.m_Notes;
book.m_Rating = dlg.m_Rating;
book.Update();
book.Close();

}

catch(CDBException * e)
{

CString s;
s.Format(“DB Error in OnBookAdd: %d”,e->m_nRetCode);
AfxMessageBox(“s”,MB_ICONSTOP | MB_OK);

}

catch(...)
{

CString s2;
s2.Format(“Unknown Error in OnBookAdd!”);
AfxMessageBox(“s2”,MB_ICONSTOP | MB_OK);

}
}

Object Persistence and Encryption

PART IV
646

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

FIGURE 16.13.
Handling input.

21 239-5 CH16 2/19/99 1:33 PM Page 646

else
AfxMessageBox(“No Record Added”,MB_ICONEXCLAMATION | MB_OK);

}

A local instance of CAddBookDialog is created on the stack:

CAddBookDialog dlg;

I then launch it in modal mode and test the return value. If the user clicks Cancel,the if
statement fails and the AfxMessageBox is displayed by the else clause:

if (dlg.DoModal() == IDOK)

If , on the other hand, the user clicks OK, it is time to add the new record. I create an
instance of CBookCollectionUnleashedSet andopen it:

CBookCollectionUnleashedSet book;
//. . .

book.Open();

I then ready it for the new record with a call to AddNew() , which sets the RecordSet to a
new, blank record:

book.AddNew();

I populate this new record’s fields from the controls in the dialog box:

book.m_Book_Title = dlg.m_Title;
book.m_Category = dlg.m_Category;
book.m_Notes = dlg.m_Notes;
book.m_Rating = dlg.m_Rating;

Then I update the new recordset,thereby adding the record to the database:

book.Update();

Finally, I close the RecordSet because I’m done with it:

book.Close();

Note that I do all of this inside a try block so that I can catch any CDBExceptions

thrown by the ODBC system. This approach aids indebugging.

Next Steps
There are any number of improvements to be made to this application. Most are, again,
left as exercises for the reader because they build on the skills already demonstrated. You
might start by allowing the user to add new authors and to assign authors to your new
books. You have all the tools you need to whip this sample application into shape, but
there are a few issues remaining.

Relational Databases and Persistence

CHAPTER 16
647

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 647

SQL Statements
At times,you’ll want to issue direct SQL statements,without mediation by a CRecordSet

object. You can do so by calling ExecuteSQL() on any CDatabase object.

A typical use of this technique is to call a paramaterized stored procedure:

CString sqlCmd;
sqlCmd.Format(“exec usp_SomeProcedure \’%s\’, \’%s\’, %ld, \’%s\’,

➥\’%s\’”,
String1,
String2,
String3,
String4,
String5);

try
{

CDatabase * pDB = new CDatabase;
pDB->OpenEx(“DSN=MySystemDSN”);
pDB->ExecuteSQL(sqlCmd);

// …

In this code, we create a CString , which invokes a stored procedure. Then we create a
CDatabase object,use it to open the database by passing in the name of the DSN, and
then we invoke ExecuteSQL() , passing in the CString .

Setting Database Characteristics
While we have that CDatabase object,we can in fact set the LoginTimeout and the
QueryTimeout to regulate how quickly we must get a response from the database before
failing:

pDB->SetLoginTimeout(loginTimeOut);
pDB->SetQueryTimeout(queryTimeOut);

Summary
This chapter reviewed the fundamentals of relational database technology and showed
how relational databases can be used to store objects. The mapping between a relational
database and your objects can be handled at various levels of abstraction. Many vendors
provide standardized technology (for example, ODBC) to help you create an interface
layer between your object model and the relational database itself.

Object Persistence and Encryption

PART IV
648

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 648

Creating iterators on tables within a database and mapping fields in a database to mem-
ber variables in your objects can be much simpler if your Application Frameworks
Library provides supporting classes. MFC,by far the most popular library of this kind,
provides two critical classes for working with databases by way of ODBC:CDatabase

and CRecordSet . This chapter reviewed the use of these classes when working with rela-
tional databases.

Relational Databases and Persistence

CHAPTER 16
649

16

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

A
N

D
P

ER
SISTEN

C
E

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 649

650

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH16 Lp#1

21 239-5 CH16 2/19/99 1:33 PM Page 650

IN THIS CHAPTER

• Objects in Oracle8 653

• Using External Procedures Developed
in C++ 658

• Mapping UML Diagrams to an Object-
Relational Database 662

• Case Study: Purchase
Order System 672

17
C

H
A

PT
ER

Object Persistence
Using Relational
Databases

22 239-5 CH17 2/19/99 1:34 PM Page 651

Since their advent more than a decade ago, relational databaseshave been the database of
choice for most corporations. Applications were written in some third-generation lan-
guage (3GL) such as C++ to access the data stored in the RDBMS through SQL or some
other application development tool. Relational databases are very good for storing appli-
cation data,but they fail to capture the application logic. As a result,the front-end appli-
cation has to contain the logic—which often leads to problems when one tries to match
the application model with the data model. An object relational DBMSstoresnot only
the data but also the logic. It achieves this by using objects to capture the attributes and
the functionality associated with particular entities.

As market conditions become more and more competitive, corporations are under con-
stant pressure to build efficient applications that are easy to maintain as well as cost
effective. There is also a need for the applications to closely match particular business
models and processes. Applications can be written to simulate the status and procedures
of different stages of a real-world situation such as an assembly line in a manufacturing
business. It is very common to build such applications and use objects to represent differ-
ent entities of the assembly line. Such systems demand a lot from the applications they
use. The cost of design,development,deployment,and support of these applications
should be minimized.

Another factor that has to be given serious consideration is the type of data being used in
the database. The explosion of the Internet and the World Wide Web has increased the
complexity of the data in use. Hypertext, image, and audio data is used commonly in
addition to the traditional scalar data.

Object-based technology can meet most of these demands. Databases should also be able
to handle such objects—and at the same time, retain the scalability, robustness,and ease
of use of relational database technology. Such object-relational databases must be able to
store and manipulate complex structured data using object types as well as unstructured
data such as images,audio,and video. And because most of the current application base
consists of relational database applications,you should be able to smoothly mix the
object technology with the existing relational technology.

Oracle8 is an example of a popular object-relational database. It provides an objects
option that allows you to create and manipulate object types,in addition to the built-in
types provided by Oracle. The object types give you the flexibility to model real-world
entities along with the operations that can be performed on those entities. The Objects
option also allows the data stored to be accessible from 3GL environments. Oracle8 has
features such as client-side caching of objects and single-round-trip retrieval of related
objects,which improves the performance of object-based applications. Other object-
relational databases include IBM’S DB2 and Sybase System 10.

Object Persistence and Encryption

PART IV
652

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 652

Traditional relational database applications can benefit from the object modeling and the
multimedia capabilities provided by object-relational databases. You can write applica-
tions in C++ that can benefit from such object-relational databases.

Objects in Oracle8
In Oracle8, the typesystem has been extended to support not only objects but also col-
lections of objects. Several key features are available in Oracle8 that can be used for the
object-relational paradigm:

• The OBJECTtypesupports the definition of a structured object.

• The REF type supports object referenceability.

• The LOB type supports the definition of large and unstructured objects.

• The TABLE type supports unordered collections of objects.

• The VARRAYtype supports ordered collections of objects. VARRAYis short for
variable-size array.

• Extensions have been provided toSQL,DDL, and DMLto facilitate the creation,
retrieval, and modification of objectsand collections.

Object Types
An objecttypeis a user-defined type that can be used to model a real-world entity.
Object types have the following features:

• One or more attributes. An attribute is basically a characteristic of the entity being
defined. The attribute can be scalar (number, char, and so on),object type, collec-
tion (nested table or variable-size array), REF (reference to an instance of object
type) or a LOB (large object) type.

• Zero or more methods. Methodsare used to specify the application logic associat-
ed with the actions that can be performed on the entity. The methods can be written
in PL/SQL,in a 3GL such as C++,or in Oracle8 using Java. Several methods are
associated with objects,such as the constructor (used to instantiate and create
object instances) and the destructor (used to clean out the object when it is
removed from the system). These methods are generated by Oracle for you.

• Object types can be used as the data type of a column.

• It is possible to create tables of object types in which the rows of the table are pop-
ulated using the objecttype.

• Instances of user-defined types are stored natively in the database and can be
manipulated using SQL and DML extensions.

Object Persistence Using Relational Databases

CHAPTER 17
653

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 653

• The database features available to relational data (such as indexes and triggers) are
also available to the object types.

The following examples show how to create a simple object type using SQL (for details
on the syntax of the CREATE TYPEcommand, please refer to the Oracle SQL Language
manual).

The following SQL command from SQL*PLUS creates the object type header:

create type complex as object (
real_part real,
im_part real,
member function addcomplex (x complex) return complex
);

/

The following SQL command from SQL*PLUS creates the object type body:

create type body complex as
member function addcomplex (x complex) return complex is
begin
return complex (real_part + x.real_part, im_part+ x.im_part);
end addcomplex;

end;
/

Object References
Object references are used to uniquely identify and locate objects. For every object
stored in a reference table, a unique identifier is generated by the system for that object.

REFs in Columns
You can declare a column of a table or an attribute of an object type to be declared as a
REF type. This column can contain references to objects of the declared object type
regardless of the object table in which the object is stored. However, it is possible to
scope a REF type column such that it contains references only to objects from a specified
object table.

There are a few differences between REFs and foreign key columns:

• REFs provide navigational access to the referenced object.

• You can have “dangling” references,which means that the reference value stored in
the columns can be a reference to nonexistent objects.

The following example creates the ACCOUNTStable with a reference to the CUSTOMERS

table:

Object Persistence and Encryption

PART IV
654

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 654

/* Create an object type */

CREATE TYPE customer_type AS OBJECT
(cust_no CHAR(5),
accounts account_array);

/

/* Create a table using the object type */

CREATE TABLE customers OF customer_type;

Create type ACCOUNTS as object
(

ACCTNO number,
ACCTYPE char(4),
BALANCE number,
CUST ref CUSTOMERS

);

Object Persistence Using Relational Databases

CHAPTER 17
655

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

NOTE

References can be generated only for objects stored in an object table.

The REF Operator
By using the REFoperator, you can obtain a reference to an object in an object table. The
following statement shows how to insert an object into an object table and also obtain a
reference to the object. In the following example, assume that Person is an object table:

/* Declare a variable as a reference to an object table*/
DECLARE reftojane REF Person;

/* The REF operator returns a reference to the ‘pref’ table */
/* and this reference is stored in the variable ‘reftojane’ */

BEGIN
INSERT INTO people pref
VALUES (Person(‘Jane’,’Doe’,’02-FEB-1965’))
RETURNING REF(pref) INTO reftojane;

END;

Once the reference to an object is obtained, you can use it in several ways:

• To pin the object in the cache.

• To operate on the object using the Oracle Call Interface (OCI).

• In the predicate of a SELECTor UPDATEstatement.

22 239-5 CH17 2/19/99 1:34 PM Page 655

The DEREFOperator
The DEREFoperator can be used to obtain the object from the object reference. The fol-
lowing statement shows how the DEREFoperator can be used to obtain an operator and
assign it to a column:

UPDATE employees
SET personal = DEREF(reftojane)
WHERE empid = 21145;

Collections
A collectionis an ordered group of elements of the same data type. A collection has the
following characteristics:

• A unique subscript is used to determine the position of elements in the collection.

• Collections are similar to arrays; however, collections can have only one dimension
and must be integer indexed. The integer values can be up to 4GB.

• Object types can make use of collections as their attributes.

• Oracle8 provides two types of collections:nested tables (which are unbounded and
do not retain the order in which elements are added to the collection) and variable-
size arrays (which are bounded and preserve theordering of elements).

The following example uses SQL commands to show how nested tables can be used:

/* Create an object type for “projects” */

CREATE OR REPLACE TYPE project_type as OBJECT
(projno NUMBER(5),
projname CHAR(30),
projlocation CHAR(30));

/

/* Create a table of projects using the object type */

CREATE TABLE orl_projects OF project_type;

/* Insert records into the object table */

INSERT INTO orl_projects
VALUES (111, ‘venus’,’orlando’);
INSERT INTO orl_projects
VALUES (112, ‘saturn’,’miami’);

/* Create type for use as nested table */

CREATE TYPE project_table AS TABLE OF project_type;
/

Object Persistence and Encryption

PART IV
656

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 656

/* Create a table that uses the nested table */

CREATE TABLE employees
(empno NUMBER(5),
empname CHAR(20),
empprojs project_table)

NESTED TABLE empprojs STORE AS nested_proj_table;

/* Insert into the object table */

INSERT INTO employees
VALUES (12345, ‘MIKE’,

project_table(project_type(55555,’honda’,’orlando’),
project_type(66666,’toyota’,’miami’)));

The following exampleshows how to create a VARRAYusing SQL commands:

/* Create an object type */

CREATE TYPE account_type as OBJECT
(account_no INT,
account_type CHAR(2),
balance DEC(10,2));

/

/* Create a VARRAY using the object type */

CREATE TYPE account_array AS VARRAY(10) OF account_type;
/

/* Create an object type */

CREATE TYPE customer_type AS OBJECT
(cust_no CHAR(5),
accounts account_array);

/

/* Create a table using the object type */

CREATE TABLE customers OF customer_type;

/* Insert into the object table */

INSERT INTO customers
VALUES (55555, account_array(account_type(11,’C’,1000.00),

account_type(22,’S’, 2000.00)));

Object Persistence Using Relational Databases

CHAPTER 17
657

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 657

Using External Procedures
Developed in C++
Because Oracle8 allows you to call DLL functions and procedures from PL/SQL code,
you can have objects with methods that are implemented as external C++ routines. Using
external procedures developed in C++ allows you to benefit from the efficiency of a 3GL
language; you can also make use of Win32 APIs.

You must perform the following two steps before calling external procedures from
PL/SQL:

1. Register the DLL’s location with Oracle8’s data dictionary.
Create or replace library external_lib as ‘e:/datacartridge/debug/

cartridge.dll’;

2. Declare the prototype of the C++ routine in the Oracle8 data dictionary.

Let’s look at an example that makes use of an object type having methods implemented
as external C++ procedures:

Create or replace package data_package as
function ext_func (data CLOB) return binary_integer;

end;
/
create or replace package body data_package as

function ext_func (data CLOB) return binary_integer is external
name “c_func”
library external_lib
language C
with context
parameters (

context,
data OCILOBLOCATOR

);
end;
/
create or replace type ext_objtype as object (

data CLOB,
member function ext_objtype_func return binary_integer

);
/
Create or replace type body ext_objtype is

member function ext_objtype_func return binary_integer is
begin

return data_package.ext_func(data);
end;

end;
/

Object Persistence and Encryption

PART IV
658

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 658

The function prototypeof the external function can be as follows:

#Include <oci.h>
#define DLLEXPORT __declspec(dllexport) __cdecl
int DLLEXPORT c_func (OCIExtProcContext *ctx, OCILobLocator *lobl);
int c_func (OCIExtProcContext *ctx, OCILobLocator *lobl)
{

/*Place function code here */
return 0;

}

The external callout can be tested using PL/SQL:

declare
i binary_integer;
x ext_objtype;

begin
x := ext_objtype(EMPTY_CLOB());
i := x.ext_objtype_func();
DBMS_OUTPUT.PUT_LINE(‘ext_objtype_func() returned ‘ || i);

end;

If a process loads a DLLwithout symbolic debugging information, you can generally use
Visual C++’s symbolic debugger to set breakpoints and troubleshoot the problem. When
you implement object methods as external procedures using C++,the listener spawns the
procedure on demand; therefore, you cannot debug the procedure using traditional tech-
niques. The DebugBreak() Win32 API call can be placed at the beginning of an external
procedure to debug it in such situations.

Consider an object called DataStore . This object can store a set of data in an Oracle8
character LOB (called a CLOB). You can perform several manipulations on the stored data,
such as minimum,maximum,data regression,and so on. These are the major steps
involved in such an implementation:

1. Create an object type to represent the DataStore . The attributes and methods of
this object should represent the data stored and the functionality of the object. We
will declare the methods as external because the kind of processing required is
best performed using a 3GL such as C++:
create or replace type DataStore as object (

pid integer,
name varchar2(10),
date_created date,
value clob,
member function DataMinimum return integer,
member function DataMaximum return integer,
map member function DataToInt return integer,
pragma restrict_references(DataMinimum, WNDS, WNPS),
pragma restrict_references(DataMaximum, WNDS, WNPS));

Object Persistence Using Relational Databases

CHAPTER 17
659

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 659

2. Declare a package that will be used to hold all the external procedures:
create or replace package DataStore_package as

function datastore_findmin (data IN clob) return integer;
function datastore_findmax (data IN clob) return integer;
pragma restrict_references (datastore_findmin, WNDS,
➥WNPS);
pragma restrict_references (datastore_findmax, WNDS,
➥WNPS);

end;

To call a packaged function from SQL expressions,you must code the pragma
RESTRICT_REFERENCESin the package specification (not in the package body
because the body of the packaged function is hidden). The pragma tells the
PL/SQL compiler to deny the packaged function read/write access to database
tables,packaged variables,or both. In the preceding example, the following are
true:

• WNDSmeans “Wr ites no database state” (that is, it does not change database
tables).

• WNPSmeans “Wr ites not packaged state” (that is, it does not change packaged
variables).

3. Implement the body of object type DataStore (note that the following package
body is for illustration purposes and depends on the implementation of the func-
tions findmin and findmax ; it will not compile as shown:)
create or replace type body DataStore is

member function DataMinimum return integer is
x integer := DataStore_package.datastore_findmin(data);
begin return x ; end;

member function DataMaximum return integer is
y integer := DataStore_package.datastore_findmax(data);
begin return y ; end;

map member function DataToInt return integer is
z integer := id;
begin return z; end;

end;
/

4. Provide a PL/SQL name to the library that contains the implementation of the
external procedure:
create or replace library datastore_lib as ‘<directory_of_library> /

libdatastore.so’

5. Declare the body of the package and define the associations between the package
functions and the 3GL functions in thelibrary:
Create or replace package body DataStore_package as

function datastore_findmin(data clob) return integer is
external name “c_minimum” library datastore_lib language

Object Persistence and Encryption

PART IV
660

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 660

c with context; function datastore_findmax(data clob)
return integer is external name “c_maximum” library
datastore_lib language c with context;

end;

6. Use C++ to implement the external procedures. The external procedure reads the
CLOBargument passed to it and uses its as a LOB locator while calling the database:

#Include <oci.h>
int c_minimum (OCIExtProcContext *ctx, OCILobLocator *lobl) {

ub1 bufp[MAXBUFLEN];
sword retval;
init_handles (ctx);
retval = OCILobRead(...., lobl, bufp,);
return (process_min(bufp));

}

#Include <oci.h>
int c_maximum (OCIExtProcContext *ctx, OCILobLocator *lobl) {

ub1 bufp[MAXBUFLEN];
sword retval;
init_handles (ctx);
retval = OCILobRead(...., lobl, bufp,);
return (process_max(bufp));

}

To test the developed DataStore object,follow these steps:

1. Create a database table that can be used to store instances of the object DataStore :

create table DataStore_table of DataStore;

2. Populate DataStore_table with a row:
Insert into DataStore_table values (1, ‘test1’, to_date(‘03-28-1998’,
‘MM-DD-YYYY’), EMPTY_CLOB());

commit;

3. Use an OCI program that uses the OCI routine OCILobWrite() to load the CLOB

attribute of the DataStore object.

4. Compile the external procedures (the c_minimum and c_maximum routines) and put
them into the library.

5. Invoke the object methods using PL/SQL routines:

Select d.DataMimimum(), d.DataMaximum() from DataStore_table d;

Object Persistence Using Relational Databases

CHAPTER 17
661

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 661

Mapping UML Diagrams to an
Object-Relational Database
To understand how UML diagrams can be mapped to an object-relational database, let’s
use a sample application, shown in Figure 17.1,that represents a simple banking system
containing the entities CUSTOMERS, ACCOUNTS, and ADDRESS. The relationship between the
entities can be described as follows:

CUSTOMERS: ACCOUNTS= one :many

ACCOUNTS: ADDRESS= one :one

CUSTOMERS: ADDRESS= one :one

Object Persistence and Encryption

PART IV
662

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

FIGURE 17.1.
A simple banking
application
design.

Customers

Custno
Custname

AddCustomer ()
DeleteCustomer ()
GetID ()
SetID ()
GetName ()
SetName ()
GetAddress ()
GetAccount ()

Accounts

Account_no
Account_spec
Balance

UpdateBalance ()
AddAccount ()
RemoveAccount ()

Address

Address1
Address2
City
State
Zip

1

1

1

1
1

m

The UML specification for this scenario goes through the following stages:

• Database design.This stage is used to define how the UML specification will be
represented using the object types.

• C++ generation. This stage is used to generate the header and source files for the
set of types specified during database design.

22 239-5 CH17 2/19/99 1:34 PM Page 662

• Server generation. This stage is used to generate the DDL that will be used to
implement the database design on the server.

We will use Oracle8 to illustrate the procedure for the sample application.

Database Design
Each type defined in the UML is mapped to an Oracle8 data type. This type can then be
used in defining the tables; the associations betweenthe types are implemented in
Oracle8 using the REF type. However, because ADDRESSis modeled by strong aggrega-
tion, its type is embedded. You identify the mapping of a type to multiple table imple-
mentations by using a zone identifier (anObject Database Designer—ODD—specific
type used during C++ class generation):

create type address_type as object (
address1 varchar2(100),
address2 varchar2(100),
city varchar2(40),
state char(2),
zip varchar2(10));

/

create type account_type as object
(

account_no NUMBER(10),
account_spec CHAR(5),
balance DECIMAL(10,2),
customer REF customer_type,
address address_type

) ;
/

C++ Generation
Object Database Designer (ODD) is a new product derived from the Designer/2000 prod-
uct set. It allows C++ programs to efficiently access Oracle8 databases. This product can
be used in all the stages of object-relational database design,creation, and access. ODD
has several key features:

• ODD implements abstract type modeling using UML.

• ODD transforms the abstract type model to database design.

• Oracle8 database schema modeling can be used to define physical Oracle8 objects.

• SQL generation can be used to translate the object-relational database designs to
SQL DDL.

Object Persistence Using Relational Databases

CHAPTER 17
663

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 663

• The C++ generator creates C++ class definitions and implements the UML objects.
The complexities and details of accessing the database are hidden from the user. As
a result,the generated C++ classes can be treated as usual without worrying about
the details of accessing thedatabase.

The Development Process
The Designer/2000 C++ object layer generator allows C++ programmers to use Oracle as
a persistent store. In addition, it provides a transparent way to use the store. The follow-
ing definitions must be created:

• An entity relationship model to represent the persistent classes

• A relational schema that represents the persistent store

• Mapping between the preceding two components

Using these definitions, the server generator and the C++ object layer generator compo-
nents of Designer/2000 create the following client and server components:

• C++ native classes with public methods for persistency

• C++ object layer library code to process the client/server transparently

• Oracle database definitions to store the object instances

Figure 17.2 shows the object database designer components that can be used for C++
generation. The programmer can control the C++ generation process by partitioning the
source code between the source files on a class-by-class basis.

Object Persistence and Encryption

PART IV
664

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

FIGURE 17.2.
Object Database
Designer
components. Abstract Types

C++ Class Definitions

generate

Oracle 8 Schema

Oracle 8 DDL

generate

transform

runtime

22 239-5 CH17 2/19/99 1:34 PM Page 664

C++ Generation
The following steps describe how to generate C++ classes using the C++ generator:

1. Start the C++ Object Layer Generator.

2. Load a class set.

3. Correct any errors in the model.

4. Select the generation target.

5. Identify the classes to be generated.

6. Ensure that the source files into which the generated classes and global code will
be placed have been specified.

7. Change any of the default generation options,if necessary, on the Options tab.

8. Select the Generate tab.

9. If code is to be generated to the application model class definition or implementa-
tion files, select the appropriate check boxes.

10. If new code sections are to be generated, select the Generate Classes check box.

11. If existing code sections are to be updated, select the Regenerate Classes check
box.

12. Select the Generate button.

The C++ API consists of the generated classes and the runtime C++ class library. The
C++ runtime library provides C++ class encapsulation for the database functions such as
database connection,transaction,and statement classes. This API maps Oracle8 object
references as “smart” pointers; the C++ class mapping is provided for different Oracle8
data types such asthese:

• Strings

• Numbers

• Dates

• Collections

• LOBs

• Object references

The following class definitions are generated for a single UML type:

• A class for the actual type

• A smart pointer class

• A collection class

• An iterator class

Object Persistence Using Relational Databases

CHAPTER 17
665

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 665

Following is an example of a class that would be generated for a UML typeCustomers :

Class COLCustomers : public OLDBObject
{
public:
COLCustomers();
~COLCustomers();

static COLCustomersRef Create(COLLIFETIME life = COLLIFETIME ::
Persistent,

OLZONEID id = OLZONEID:;Default);
static void Query(OLZONEID id, COLCustomersRefSet &Set, OLString
&Predicate);

// Attribute Access
OLNumber &GetID() const;
void SetID(const OLNumber &ID);

OLString &GetName() const;
void SetName(const OLString &Name);

COLAccountsRefSet &GetAccount() const;
COLAddressRef &GetAddress() const;

// Methods
bool AddAccount (COLAccountsRef &Accounts);
bool RemoveAccount(COLAccountsRef &Accounts);
private:

// Attributes
OLNumber m_ID;
OLString m_Name;

// Associations
COLAccountsRefSet m_Accounts;
COLAddressRef m_Address;
};

Server Generation
The sever-generation stage consists of the SQL DDL generation that is used to imple-
ment the database design on a server.

Initialization
Before any interaction with C++ objects can occur, the application must initialize the
C++ runtime library and provide a database connection that is identified by a generated
zone ID. The C++ runtime library contains several important components:

Object Persistence and Encryption

PART IV
666

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 666

• A context manager to manage connections

• Meta-data to configure the runtime settings such as memory usage, locking policy,
and so on.

• A cache for managing persistent C++ object instances.

The following code segment shows how the C++ runtime context can be initialized and a
database connection created for a particular zone:

COLContext::Initialize();
COLDatabaseConnection *db = new COLDatabaseConnection(OLZONEID::Default);
if (db->Connect(OLZONEID::Default, “scott/tiger@ORCL”) != true)
{

// Error! Connection was not successful.
}

Querying an Object
A C++ object can be instantiated from persistent storage by a user application that per-
forms a query with a predicate to identify the required object. In the following example,
the predicate is part of a SQL WHEREclause that selects the set of REFs to customers with
an ID of 25. The user application gets a root object by using the Query() method. The
following codesegment illustrates this:

COLCustomersRefSet Custrs;
COLCustomers::Query(OLZONEID::Default, custrs, “ID = 25”);

Iterating Collections
It is necessary to construct iterators for the collections so that the individual objects that
belong to the collections can be manipulated. Dereferencing an iterator provides a C++
REF to the generated object. The following code segment shows how iterators can be cre-
ated for a collection of customers that are retrieved using the Query() method on
Customers :

for (COLCustomersIter iter(custrs); iter; iter++)
{

COLCustomersRef Customers = *iter;
OLString name = customers->GetName();

}

Navigating Through Associations
Associations between the generated C++ classes are represented by using a REFor by
embedding a SET, depending on the cardinality of the association. These REFs and SETs
can be used to navigate the associations between the classes. The C++ runtime library
must make sure that the Accounts object has already been instantiated from persistent
storage; otherwise, the REF is not valid. Similarly, the SET of objects is instantiated only

Object Persistence Using Relational Databases

CHAPTER 17
667

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:34 PM Page 667

from persistent storage when the SET is iterated and dereferenced. The following code
segment shows how the associations are navigated. It gets a REF to a Customer from an
Account object:

COLAccountsRef Accounts = *iter;
COLCustomersRef Customers = Accounts->GetCustomer();

Modifying Persistent Objects
Three types of modifications can be performed on persistent objects:

• Create

• Update

• Delete

After modification, the user application must make sure that it marks the C++ object as
modified. C++ classes can be generated with or without get or set methods for each
attribute; therefore, it is not possible for the C++ runtime library to determine whether an
object is modified unless the application informs the library of the modifications made.
The following code segment shows how an address can be modified and the object
marked as modified:

COLAddressRef address = Customers->GetAddress();
address->SetStreet1(“Wisconsin Avenue.”);
address->MarkModified();

After the current transaction is complete, the object is written to persistent storage.

Object Persistence and Encryption

PART IV
668

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

NOTE

When objects are created, they are automatically marked as created.

Deleting a persistent object also requires special considerations. Although you can use
the C++ delete operator to remove the object from memory, this operator does not
destroy the object from persistent storage. Again, the user application must specifically
mark the object as destroyed so that it can bedeleted from persistent storage.

The following code segment shows how an Account can be marked as destroyed:

COLAccountsRef Accounts = *iter;
Accounts->Destroy();

The following code segment shows how a new Customer object can be created using the
default zone:

22 239-5 CH17 2/19/99 1:34 PM Page 668

COLCustomersRef Customer = new COLCustomers(COLLIFETIME::Persistent,
OLZONEID::Default);

Working with Transactions
The set of changesmade to the C++ objects are grouped together into a transaction.
These changes associated with the current transaction are processed when the transaction
commits. The C++ runtime library supports nested transactions: You can have an outer
transaction that opens inner transactions to perform specific tasks. Synchronization
between the transactions is achieved by using persistent storage. In other words,when an
inner transaction is opened, all the changes made up to that point are placed in persistent
storage; in case the inner transaction aborts, the changes can be undone by using the
information in the persistent storage. The user application can make use of the transac-
tion object to begin, commit,or roll back a transaction. The following code segment
shows how a transaction can be created and a save point created to usepersistent storage:

COLTransaction trans(OLZONEID::Default);
trans.Begin();

When the transaction commits,all the changes in that transaction are committed:

trans.Commit();

Object Persistence Using Relational Databases

CHAPTER 17
669

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

NOTE

If the preceding sample transaction represents an outer transaction, any
changes in the inner transactions become persistent.

Locking
In a multiuser environment,theapplication being used must be able to provide concur-
rency control. Concurrency control is achieved by using locking. Object locking can be
done at several levels:

• In the scope of the C++ runtime context as follows:

COLContext::SetLockMode(COLLockMode::Default);

• On demand (for example, by refreshing the object). The following code segment
gets the current value of the object from persistent storage and then locks it:

COLCustomersRef Customers = *iter;
Customers->Refresh(true);

When finished with the object,the application should release the lock. The lock
can be released by committing the transaction.

22 239-5 CH17 2/19/99 1:35 PM Page 669

It is important to realize that the Refresh() method protects the integrity and consistency
of the database. If the object is not locked, any in-memory object can become out of
synch with persistent storage.

The SQL Interface
SQL operations can be performed against the database connection using the SQL inter-
face provided by the C++ runtime library. The following code segment shows how the
interface can be used to provide a C++ encapsulation of the Oracle Call Interface (OCI):

Unsigned long rows = 0;
CCRDBCursor statement;
CCRDBVariable var(EVType:: CT_REF);
statement.SetConnection(db->GetConnection());
statement.SetStatement(“select ref(cust_tab) from cust_tab”);
statement.AddVariable(&var);
statement.Bind(true);
statement.Execute(&rows);

This code creates an Oracle cursor object,sets a SQL SELECTstatement,binds avariable,
and then executes the statement.

The CURSORInterface for Nested Tables
Oracle8 provides a new construct CURSOR(SELECT ...) that can be used to construct a
result set from a nested table. Using this feature, you can fetch and manipulate data from
a nested table into client-side host variables. Listing 17.1 shows how to use result-set
cursors to print the information of all the accounts for a particular customer.

LISTING 17.1. USING CURSORS TO MANIPULATE NESTED TABLES

Select_customer_accounts() {
account_type *account_p;
account_type_ref *account_ref_p;
sql_cursor account_cur;
char accountname[20];
int custid;

EXEC SQL DECLARE custaccount_cur CURSOR FOR
SELECT c.id, CURSOR(SELECT * FROM TABLE(c.accounts))
FROM customers c;

EXEC SQL OPEN custaccount_cur;

EXEC SQL ALLOCATE :account_cur;
EXEC SQL ALLOCATE :account_ref_p;

Object Persistence and Encryption

PART IV
670

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:35 PM Page 670

while(1){

EXEC SQL FETCH custaccount_cur INTO :custid, :account_cur;
cout << “Customer ID : “ << custid << “ has the following accounts :

\n \n”;

while(1){
EXEC SQL FETCH :account_cur INTO :account_ref_p;
EXEC SQL OBJECT DEREF :account_ref_p INTO :account_p;
EXEC SQL OBJECT GET name FROM :account_p INTO :accountname;
cout << accountname << “\n”;

}
}
EXEC SQL CLOSE custaccount_cur;
EXEC SQL CLOSE :account_cur;
EXEC SQL FREE :account_cur;
EXEC SQL FREE :account_ref_p;

}

The function select_customer_accounts() is used to print the accounts for all the cus-
tomers using the nested table attribute accounts in the object customers . Listing 17.1
also uses two loops:one to open the cursor custaccount_cur and retrieve each customer
object and another to loop through the accounts for this particular customer. The con-
struct CURSOR (SELECT * FROM TABLE(c.accounts)) defines a result-set cursor for the
accounts; the cursor custaccount_cur is used to retrieve the result-set cursor.

Accessing the Attributes of Objects
The object attributes cannot be manipulated by using native C++ functions and assign-
ments because they are represented using opaque OCI8 types. Pro C/C++ provides a
mechanism to convert OCIString to C char and OCINumber to C int , float , and double

types. For example, the following statement can be used to set the balance of an account
to a new value:

EXEC SQL OBJECT SET balance OF :account_p TO :new_balance;

Object Persistence Using Relational Databases

CHAPTER 17
671

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

NOTE

Pro C/C++ is an application development environment provided by Oracle. It
uses the C/C++ and Oracle Call-Level Interface (OCI) to connect to Oracle data-
bases.

22 239-5 CH17 2/19/99 1:35 PM Page 671

Transaction Control Statements
Several statementscan be used to control transactions. Committing and rolling back
transactions can be handled by using the EXEC SQL COMMITand the EXEC SQL ROLLBACK

statements:

• EXEC SQL COMMIT

This statement makes the changes caused by associative INSERT, UPDATE, and
DELETEstatements persistent in the database. In addition, the changes to objects
that were navigationally created, updated, and deleted are flushed to the server.
This statement notifies the object cache that its objects are not used anymore and
releases them by unmarking them.

• EXEC SQL ROLLBACK

This statement cancels the changes caused by associative INSERT, UPDATE, and
DELETEstatements. It notifies the object cache that its objects are not used anymore
and releases them by unmarking them.

Case Study: Purchase Order
System
Let’s consider an example of a Purchase Order System that converts an entity-
relationship model to an object-relational design.

System Description
The Purchase Order System contains several important entities. Customers can place
orders and the purchase order for each customer is a collection of such orders.

Relational Model
The relational model can be used to represent such a system using four tables:

• customers : This table contains information specific to customers such as their
address.

• purchase_order : This table contains information about particular purchase orders.

• line_items : This table contains details about a particular purchase order.

• stock : This table contains details about specific stock items that can be purchased
by customers by placing purchase orders.

Object Persistence and Encryption

PART IV
672

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:35 PM Page 672

Relationship Between Tables
A customer can place many orders; this is indicated by placing a foreign key attribute in
the purchase_order table that references the customers table. Each purchase order can
have many line items that describe specific orders; this is indicated by placing a foreign
key attribute in the line_items table that references the purchase_order table. The
line_items table also refers to the stock table for information of the stocked items:

Create table customers (
custno number,
custname varchar2(50),
address1 varchar2(100),
address2 varchar2(100),
city varchar2(40),
state char(2),
zip varchar2(10),
phone1 varchar2(20),
phone2 varchar2(20),
primary key (custno));

create table purchase_order (
pono number,
custno number references customers(custno),
orderdate date,
shiptoaddress1 varchar2(100),
shiptoaddress2 varchar2(100),
shiptocity varchar2(40),
shiptostate char(2),
shiptozip varchar2(10),
primary key (pono));

create table stocks (
stockno number,
stockname varchar2(100),
price number,
primary key (stockno));

create table line_items (
lineitemno number,
pono number references purchase_order(pono),
stockno number references stocks(stockno),
quantity number,
primary key (pono,lineitemno));

custno custname address1 address2 city state zip phone1 phone2

1 John Doe 2 Foothill Dr. NULL Orlando FL 32817 407-555-1296 NULL

2 Mike 36 College NULL R. Shores CA 95054 415-555-7620 NULL

Jordan Park Avenue

Object Persistence Using Relational Databases

CHAPTER 17
673

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:35 PM Page 673

pono custno orderdate shiptoaddress1 shiptoaddress2 shipcity shipstate shipzip

101 1 sysdate 18 Madison St. NULL NY NY 92312

102 2 sysdate 5 Church St. NULL Miami FL 39815

stockno stockname price

1001 Intel Pentium 2100.00

1002 NC-workstation 220.50

1003 Sun Ultra 6900.00

lineitemno pono stockno quantity

01 101 1001 25

02 101 1002 50

01 102 1002 20

02 102 1003 5

Although you canwrite applications using a 3GL like C++,the preceding model would
require performing several complex joins to obtain the desired result. However, this sys-
tem can be simplified using an object-based approach, as shown in the following code:

Object Persistence and Encryption

PART IV
674

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

NOTE

This case study shows how to convert an entity-relationship model into an
object-relational design. The actual objects are created using SQL. Although
applications can be written using C++ in either the relational or object-
relational approach, the object-relational approach simplifies the writing of
such applications.

create type stocks_t as object (
stockno number,
stockname varchar2(100),
price number);

/
create type address_t as object (

address1 varchar2(100),
address2 varchar2(100),
city varchar2(40),
state char(2),
zip varchar2(10));

/

create type phone_t as varray(10) of varchar2(20);
/

22 239-5 CH17 2/19/99 1:35 PM Page 674

create or replace type customer_t as object (
custno number,
custname varchar2(50),
address address_t,
phone_list phone_t,
po_list po_reflist_t,
member function add_po(poref REF purchase_order_t) return

➥po_reflist_t);
/

create type line_item_t as object (
lineitemno number,
stockref ref stocks_t,
quantity number);

/

create type line_item_list_t as table of line_item_t;
/

create or replace type purchase_order_t as object (
pono number,
custref ref customers_t,
orderdate date,
line_item_list line_item_list_t,
shipto_addr address_t);

/

create type po_ref_list as table of REF purchase_order_t;
/

Object Persistence Using Relational Databases

CHAPTER 17
675

17

P
ER

SISTEN
C

E
U

SIN
G

R
ELA

TIO
N

A
L

D
A

TA
B

A
SES

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:35 PM Page 675

676

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH17 Lp#1

22 239-5 CH17 2/19/99 1:35 PM Page 676

IN THIS CHAPTER

• Overview of ODBMS 678

• The ODMG Standard 680

• A C++ Invoicing Application 680

• Data Persistence 700

• Databases and Transactions 715

• ODBMS Technical Issues 732

18
C

H
A

PT
ER

Object-Oriented
Databases

23 239-5 CH18 2/19/99 1:36 PM Page 677

For most corporate developers,a large portion of our daily lif e is dedicated to providing
our customers with the best tools to gather, retrieve, and analyze their data. Data man-
agement is usually the center of IT strategic planning and development. It is almost
impossible to find a business that does not have some form of database system.

This chapter starts with an introduction to Object-Oriented Databasesand the Object
Database Management System (ODBMS). In this chapter, we develop a simple applica-
tion using the Object Data Management Group (ODMG, formerly Object Database
Management Group) standard C++ interface to object databases. This chapter concludes
with discussions about some of the ODBMS design and implementation issues.

Overview of ODBMS
An Object DatabaseManagement System (ODBMS) provides several key features:

• Persistence:Data isstored in a nonvolatile medium and is consistent among dif-
ferent applications and sessions.

• Transaction:Data integrity is maintained because a set of operations in a
transaction is executed as an atomic unit.

• Concurrency: Data can be accessed by multiple applications simultaneously.
Locking mechanisms are employed to ensure that data does not become corrupt or
inconsistent as it is accessed by different applications at the same time.

• Query: Data can be queried using one or more query languages. The mostpopular
query language for relational databases is the Structured Query Language (SQL).

• Others: Other features include recovery, fault tolerance, and data replication.

Relational Database Management Systems (RDBMS) currently dominate the database
marketplace because of their reliability and maturity. In an RDBMS, data is organized
into tables that model the entities of an application. Each table contains a set of records,
or rows, that represent the instances of the entity. Columns in a table correspond to the
attributes of the entity. Each column has a type defined by the RDBMS.

A table has a primary key that uniquely identifies each record. For instance, an invoice
can be identified by an invoice number such that no two invoices have the same invoice
number. Therefore, invoice numbers are the primary key of an invoice table. A primary
key does not have to be contained in a single column. For example, if no student has the
same surname and first name as any other student in the same school, the combination of
a student’s surname and first name uniquely identifies the student.

Relationships among entities are represented with the concept of foreign keys. If each
invoice must be issued to a customer, we can define the customer number column of the
invoice table as a foreign key to the customer table.

Object Persistence and Encryption

PART IV
678

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 678

Data in an RDBMS is usually accessed using SQL queries or other vendor-defined meth-
ods. Applications are often written in programming languages that are independent of the
RDBMS. This approach allows a single RDBMS to be accessed by applications written
in different programming languages such as C++ and COBOL. Applications must pro-
vide the mapping between their language data types and the database data types. For
example, to map a C++ class Person to a table, the application may map each member
variable to a column in the table:

class Person
{

string mSurname;
string mFirstName;
int mAge;

}

Although it is still in its early development stage, the ODBMS provides thefollowing
advantages over the RDBMS:

• Tight integration to object-oriented programming languages.An ODBMS pro-
vides an interface between the database and the programming language. This rela-
tionship enables application developers to create and access objects in a database
from within the native programming language.

• Flexible data type definitions. An ODBMS supports the creation and manipula-
tion of user-defined data types. The ODBMS is capable of directly storing
instances of application object types (classes) defined in a native programming
language.

• Automatic networks of objects maintenance. An ODBMS supports the storage,
retrieval, and navigation of networks of objects. Each object in a network is related
to one or more other objects. A relationship can be one-to-one, one-to-many, or
many-to-many using database-assigned object identifiers.

Each ODBMS vendorprovides an ODBMS implementation that serves its target market
best. This arrangement provides close modeling of application domains to the database
implementation; it also enables the customers to design better applications that can take
full advantage of an ODBMS. A side effect of having different implementations is,of
course, that a user is tied to a particular vendor. Porting applications from one ODBMS
implementation to another is extremely difficult, if possible at all. Customers worry
about being locked into a proprietary implementation of a particular product. Because
ODBMS vendors are relatively small and consequently vulnerable to market changes,
relying on a particular product is obviously not the best investment. Clearly, without a
standard, the market acceptance ofODBMS would remain poor.

Object-Oriented Databases

CHAPTER 18
679

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 679

The ODMG Standard
In recognition of the need for an ODBMS standard, the Object Database Management
Group (ODMG) was formed in 1991 to define and promote a standard for object storage.
Its members currently include many major object database vendors and other interested
parties. The ODMG standard defines database bindings for three of the most popular
object-oriented programming languages:C++, Java,and Smalltalk. Using the ODMG
language bindings,developers can incorporate into applications the ability to manipulate
persistent objects in native language syntax.

In the following sections,we implement a very simple invoicing program that allows us
to manage a stock of inventory and create invoices. We start with a normal C++ applica-
tion without any data persistence; then we improve it by adding the ability to store and
retrieve data from an object database using the ODMG standard C++ binding.

A C++ Invoicing Application
Listings 18.1 through 18.6 show the complete code for a trivial invoicing application. In
this application, I make three variations in the conventional coding practice. First, all
members of classes in this example are declared public so that the code is easier to fol-
low. In real-world applications,member variables are usually declared private , and a set
of functions are implemented to access them. Second, the application uses compiler-
generated copy constructors and assignment operators because there is no need to pro-
vide our own in this sample application. It is also always a good practice to define those
functions explicitly. The last deviation from standard coding practice is that there is very
little error-handling code. The sample application is admittedly less than robust without
comprehensive error-handling capabilities. The only reason I used these less conventional
coding methods in this example is to reduce the amount of code to better demonstrate the
core functionality of the program.

The application is divided into six listings so that we can keep the discussion of each
component close to the code. To compile the application, we must add all the files into a
project. Let’s take a look at the Product class shown in Listing 18.1.

LISTING 18.1. A TRIVIAL INVOICING APPLICATION: THE PRODUCTCLASS

//==
// Product.h - Product class definition
//==

#ifndef __Product_H
#define __Product_H

Object Persistence and Encryption

PART IV
680

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 680

#include <iostream>
#include <string>
using namespace std;

class Product
{
public:

// Constructors and destructor
Product();
Product(const string& newID, const string& newName, const int

➥newPrice);
virtual ~Product();

// Member variables
string mID;
string mName;
int mPrice;

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const Product* const

➥aProduct);
};

#endif

//==
// Product.cpp - Product class implementation
//==

#include “Product.h”

// Constructors and destructor
Product::Product()
: mID(“”), mName(“”), mPrice(0)
{}

Product::Product(const string& newID, const string& newName, const int
➥newPrice)
: mID(newID), mName(newName), mPrice(newPrice)
{}

Product::~Product()
{}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const Product* const aProduct)
{

os << aProduct->mID << “\t” << aProduct->mName << “\t” << aProduct-
➥>mPrice;

return os;
}

Object-Oriented Databases

CHAPTER 18
681

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 681

The Product class is relatively simple. The string class defined in the standard library is
used to store product ID and name values. Compared to the C-style null-terminated char-
acter strings,the C++ string class is much easier to use and is more powerful. The string
class is defined in header file <string> in namespace std and provides a set of func-
tions to manipulate characterstrings.

Two constructors are defined. A default constructor simply initializes all member vari-
ables to blank or 0. The second constructor is used to create a product with its member
variables initialized to values passed as function parameters. The default constructor is
not explicitly used in our application. It is provided so that we can create a list of prod-
ucts; the C++ standard containers require the element type to have a default constructor.
You learn more about this when we look at the product map class.

An overloaded insertion operator is defined to take a pointer to a product object as a
parameter and to print member variables of the product object. I decided to pass product
objects using pointers because this will help in the discussion of some of the ODMG fea-
tureslater.

An invoice typically consists of a header and a list of items. Each item specifies the
product sold and the quantity ordered. The InvoiceItem class is shown in Listing 18.2.

LISTING 18.2. A TRIVIAL INVOICING APPLICATION: THE I NVOICEI TEMCLASS

//==
// InvoiceItem.h - Invoice item class definition
//==

#ifndef __InvoiceItem_H
#define __InvoiceItem_H

#include <iostream>
using namespace std;

#include “Product.h”

class Invoice;
class InvoiceItem
{
public:

// Constructors and destructor
InvoiceItem();
InvoiceItem(Product* pProduct, const int newQuantity);
virtual ~InvoiceItem();

// Member variables
Invoice* mpInvoice; // Pointer to the associated invoice object

Object Persistence and Encryption

PART IV
682

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 682

Product* mpProduct; // Pointer to the product object
int mQuantity; // Quantity sold

// Other member functions
// Get the total amount of the item
int GetTotal() const;

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const InvoiceItem&

➥anInvoiceItem);
};

#endif

//==
// InvoiceItem.cpp - Invoice item class implementation
//==

#include “InvoiceItem.h”

// Constructors and destructor
InvoiceItem::InvoiceItem()
: mpProduct(0), mQuantity(0)
{}

InvoiceItem::InvoiceItem(Product* pProduct, const int newQuantity)
: mpProduct(pProduct), mQuantity(newQuantity)
{}

// Destructor
// Do not delete the product object
InvoiceItem::~InvoiceItem()
{}

// Get item total amount
int InvoiceItem::GetTotal() const
{

return mpProduct->mPrice * mQuantity;
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const InvoiceItem& anInvoiceItem)
{

os << anInvoiceItem.mpProduct << “\t” << anInvoiceItem.mQuantity <<
➥“\t”

<< anInvoiceItem.GetTotal();
return os;

}

Object-Oriented Databases

CHAPTER 18
683

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 683

The InvoiceItem class has three member variables. The first is a pointer to its parent
Invoice object,which we will discuss later. The second is a pointer to a product,and the
third is the sale quantity. We could actually store the product object instead of a point-
er—both methods are valid. The advantage of storing a pointer is that it allows us to ref-
erence a product in a product list,and it establishes a relationship between an invoice
item and a product. If we decide to change the product’s name, the invoice item will
automatically have the updated product name. This helps us maintain data integrity.

Storing the object,on the other hand, does not maintain the relationship between the
product sold and a list of available products. Therefore, any changes to the product do
not affect the invoiceitem.

Object Persistence and Encryption

PART IV
684

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

NOTE

It is often desirable to create a snapshot of product information at the time the
invoice is created and to store this snapshot with the invoice. If we later reprint the
invoice, we will have exactly the same product information as at the time of sale.
In this example, however, we are more interested in maintaining the relationship
between an invoice item and a product.

A default constructor is also defined explicitly (although it is not used in the project).
This constructor becomes useful if we need to create a list of empty invoice items (the
C++ standard container list calls its member’s default constructor to allocate memory).
The destructor does nothing more than the standard cleanup; we do not want to delete
the related product object when the invoice item is deleted.

A member function GetTotal() is provided to calculate the total value of the item. We
could create a member variable to store this value, but doing so would be redundant. It
could also cause data inconsistency when the price of a product changes.

An invoice item can be printed using the overloaded insertion operator. This operator
prints information about the sold product,thesale quantity, and the total value.

With the InvoiceItem class fully defined, we can turn our attention to the Invoice class.
Listing 18.3 shows the Invoice class definition and implementation.

LISTING 18.3. A TRIVIAL INVOICING APPLICATION: THE I NVOICE CLASS

//==
// Invoice.h - Invoice class definition
//==

#ifndef __Invoice_H

23 239-5 CH18 2/19/99 1:36 PM Page 684

#define __Invoice_H

#include <iostream>
#include <string>
#include <list>
using namespace std;

#include “InvoiceItem.h”

typedef list<InvoiceItem *> InvoiceItemList;
typedef InvoiceItemList::const_iterator IIL_CItor;
typedef InvoiceItemList::iterator IIL_Itor;

class Invoice
{
public:

// Constructors and destructor
Invoice();
Invoice(const long mID, const string& newDate);
virtual ~Invoice();

// Member variables
long mID; // Invoice ID
string mDate; // Invoice date
InvoiceItemList mItems; // A list of pointers to invoice items

void AddItem(InvoiceItem* pItem); // Add an item to item list
int GetTotal() const; // Invoice total amount

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const Invoice& anInvoice);

};

#endif

//==
// Invoice.cpp - Invoice class implementation
//==

#include “Invoice.h”

// Constructors and destructor
Invoice::Invoice()
: mID(0), mDate(“”)
{}

Invoice::Invoice(const long newID, const string& newDate)
: mID(newID), mDate(newDate)
{}

Invoice::~Invoice()

Object-Oriented Databases

CHAPTER 18
685

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 685

{
// Delete all invoiced items
for (IIL_Itor i = mItems.begin(); i != mItems.end(); ++i)

delete *i;
}

// Add an item to item list
void Invoice::AddItem(InvoiceItem* pItem)
{

mItems.push_back(pItem); // Use standard list push_back() function
pItem->mpInvoice = this; // Associate the item to the current

➥invoice
}

// Get total invoice amount
int Invoice::GetTotal() const
{

int intTotal = 0;

// Iterate through the item list and calculate the total
for (IIL_CItor i = mItems.begin(); i != mItems.end(); ++i)

intTotal += (*i)->GetTotal();

return intTotal;
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const Invoice& anInvoice)
{

// Print invoice header
os << “Invoice: “ << anInvoice.mID << “\n”

<< “Date : “ << anInvoice.mDate << “\n”;

// Print all invoice items
for (IIL_CItor ci = anInvoice.mItems.begin();

ci != anInvoice.mItems.end(); ++ci)
os << **ci << “\n”;

// And the total amount
os << “Total: “ << anInvoice.GetTotal() << “\n”;

return os;
}

An invoice has an invoice number, or an ID, that uniquely identifies the invoice. Other
member variables are the date when the invoice is created and a list of items. There are
two possible ways to associate items to invoices:We could store the actual item objects,
or we could store pointers to externally stored item objects. In terms of class relationship,

Object Persistence and Encryption

PART IV
686

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.3. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 686

there is not much difference between these options because invoice items cannot exist
without an associated invoice. In practice, storing items externally makes it easy to con-
struct queries. For example, if we want a stock movement report, we can search all
invoice items to get a list of all invoice items related to a particular product. In this
example, we store a list of pointers to items in an invoice and let the item objects reside
externally.

When an invoiceis created, an empty invoice item list is constructed using the default
constructor of the standard list class. When an invoice is deleted, all items are destroyed
by the invoice’s destructor because items cannot exist without an invoice.

The AddItem() member function simply adds a pointer to an invoice item to the item list.
This action associates an item to an invoice. It also sets the mpInvoice member variable
of an item to point to the invoice. The GetTotal() member function simply adds up the
sale amount of all items and returns the result. The overloadedinsertion operator prints
the invoice ID, date, and all items.

Now all thefundamental classes for our invoicing application are defined. Our applica-
tion, however, is more than just a collection of unrelated products and invoices. It must
organize them in such a way that those objects are easily accessible. For example, when
we create an invoice, we need to know whether a product exists and where to find it.
This can be achieved by creating a list of all available products. It is also desirable that a
product can be accessed by its ID. Listing 18.4 defines a product list.

LISTING 18.4. A TRIVIAL INVOICING APPLICATION: THE PRODUCTMAP

//==
// ProductMap.h - Product map class definition
// This class encapsulates the product list and associated
// functions.
//==

#ifndef __ProductMap_H
#define __ProductMap_H

#include <iostream>
#include <string>
#include <map>
using namespace std;

#include “Product.h”

typedef map<string, Product *> ProductPtrMap;
typedef ProductPtrMap::const_iterator PPM_CItor;
typedef ProductPtrMap::iterator PPM_Itor;

Object-Oriented Databases

CHAPTER 18
687

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 687

class ProductMap
{
public:

// Constructor and Destructor
ProductMap();
virtual ~ProductMap();

// Member functions
void Add(); // Add products to the list

➥interactively
void Edit(); // Edit products
void Delete(); // Delete products
Product* Find(const string& id); // Find a product with a given ID
bool IsEmpty() const; // Check if the map is empty

ProductPtrMap mProducts; // A map of pointers to products

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const ProductMap&

➥aProductMap);
};

#endif

//==
// ProductMap.cpp - Product map class implementation
//==

#include <iostream>
using namespace std;

#include “ProductMap.h”

// Constructor
ProductMap::ProductMap()
{

// Fill list with products
mProducts[“OS-WinNT4”] = new Product(“OS-WinNT4”, “Windows NT 4.0”,

➥500);
mProducts[“OS-Linux”] = new Product(“OS-Linux”, “Linux”, 20);
mProducts[“OS-MacOS8”] = new Product(“OS-MacOS8”, “MacOS 8.0”, 300);
mProducts[“OS-Win98”] = new Product(“OS-Win98”, “Windows 98”, 89);

}

// Destructor
ProductMap::~ProductMap()
{

// Delete all products pointed to by the map elements
for (PPM_Itor i = mProducts.begin(); i != mProducts.end(); ++i)

Object Persistence and Encryption

PART IV
688

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.4. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 688

delete i->second;
}

// Add products to the list interactively
void ProductMap::Add()
{

string strID;
string strName;
int intPrice;

cout << “Add Products:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
getline(cin, strID);
if (strID == “0”) break;

cout << “Name : “;
getline(cin, strName);
cout << “Price : “;
cin >> intPrice;
cin.ignore();

mProducts[strID] = new Product(strID, strName, intPrice);
cout << “Product added to the list\n\n”;

}
}

// Edit Products
void ProductMap::Edit()
{

PPM_Itor i;
string strID;
string strName;
int intPrice;

// Use the standard map class find() function to find a product
// and edit it if found
cout << “Edit Products:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
getline(cin, strID);
if (strID == “0”) break;
i = mProducts.find(strID);

if (i != mProducts.end())
{

cout << “Editing product: “ << i->second << “\n”;
cout << “New name : “;
getline(cin, strName);

Object-Oriented Databases

CHAPTER 18
689

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 689

cout << “New price: “;
cin >> intPrice;
cin.ignore();

i->second->mName = strName;
i->second->mPrice = intPrice;

cout << “Product modified: “ << i->second << “\n”;
}
else

cout << “Product not found!\n”;
}

}

// Delete Products
void ProductMap::Delete()
{

string strID;

// Use the standard map class find() function to find a product
// and edit it if found
cout << “Delete Products:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
getline(cin, strID);
if (strID == “0”) break;

if (mProducts.find(strID) != mProducts.end())
{

mProducts.erase(strID);
cout << “Product deleted\n”;

}
else

cout << “Product not found!\n”;
}

}

// Find a product with a given ID
// Input : Product ID
// Output: if found, a pointer to the product
// otherwise 0
Product* ProductMap::Find(const string& id)
{

// Use the standard map class find() function to find a product
// and return a pointer to it
PPM_CItor ci = mProducts.find(id);
if (ci != mProducts.end())

return ci->second;

Object Persistence and Encryption

PART IV
690

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.4. CONTINUED

//

23 239-5 CH18 2/19/99 1:36 PM Page 690

else
return 0;

}

// Check if the map is empty
bool ProductMap::IsEmpty() const
{

return mProducts.empty();
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const ProductMap& aProductMap)
{

// Iterate through the map and print all products pointed to by
// the elements in the map
os << “Product Listing:\n”;
for (PPM_CItor ci = aProductMap.mProducts.begin();

ci != aProductMap.mProducts.end(); ++ci)
os << ci->second << “\n”;

return os;
}

The C++ standard container map allows for the direct access of objects by their key val-
ues and is perfect for our product list. So we use it to hold pointers to available products.
A pointer to a product can be accessed using the ID of the product. When the map is
destroyed, all product objects are deleted. Our product map extends the standard map by
providing a set of functions required inour application to maintain products.

The default constructor populates the product map with four products. The Add() func-
tion allows us to add products to the map interactively. The Edit() and Delete() func-
tions can be used to modify product objects in the map and to remove product objects
from the map, respectively. We can use the Find() function to get a pointer to a product
with a given ID. The IsEmpty() function simply returns a Boolean value indicating
whether or not there is a product in the map. At last, the overloaded insertion operator
prints all products in the map.

Now let’s define an invoice list so that invoices can be accessed. Listing 18.5 shows the
invoice list for our application.

LISTING 18.5. A TRIVIAL INVOICING APPLICATION: THE I NVOICELIST CLASS

//==
// InvoiceList.h - Invoice list class definition
// This class encapsulates the invoice list and associated
// functions.
//==

Object-Oriented Databases

CHAPTER 18
691

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 691

#ifndef __InvoiceList_H
#define __InvoiceList_H

#include <iostream>
#include <list>
using namespace std;

#include “Invoice.h”
#include “ProductMap.h”

typedef list<Invoice *> InvoicePtrList;
typedef InvoicePtrList::const_iterator IPL_CItor;
typedef InvoicePtrList::iterator IPL_Itor;

class InvoiceList
{
public:

// Destructor
virtual ~InvoiceList();

// Enter invoices interactively. A reference to a product map
// is passed to link the invoice items with products.
void Add(ProductMap& PMap);

// Invoice list implemented with a standard list
InvoicePtrList mInvoices;

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const InvoiceList&

anInvoiceList);

private:
// Enter items to an invoice interactively, a reference to a product

➥map
// is passed to verify the invoice items.
void AddItems(ProductMap& PMap, Invoice* pInvoice);

};

#endif

//==
// InvoiceList.cpp - Invoice list class implementation
//==

#include <iostream>
using namespace std;

#include “InvoiceList.h”

Object Persistence and Encryption

PART IV
692

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.5. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 692

// Destructor
InvoiceList::~InvoiceList()
{

// Delete all invoices pointed to by elements in the list
for (IPL_Itor i = mInvoices.begin(); i != mInvoices.end(); ++i)

delete *i;
}

// Enter invoices interactively
void InvoiceList::Add(ProductMap& PMap)
{

if (PMap.IsEmpty())
{

cerr << “No product available, “
<< “please enter products and try again!” << endl;

return;
}

Invoice* pInvoice;
Long lngID;
string strDate;

cout << “Add Invoices:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
cin >> lngID;
cin.ignore();
if (lngID == 0) break;

cout << “Date : “;
getline(cin, strDate);

pInvoice = new Invoice(lngID, strDate);
mInvoices.push_back(pInvoice);

AddItems(PMap, pInvoice);
cout << “Invoice added to the list\n\n”;

}
}

// Enter items to an invoice interactively
// Input : PMap - A list (implemented as a map) of available products
// pInvoice - Pointer to the invoice
void InvoiceList::AddItems(ProductMap& PMap, Invoice* pInvoice)
{

InvoiceItem* pItem;
Product* pProduct;
string strProductID;
int intQty;

Object-Oriented Databases

CHAPTER 18
693

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 693

cout << “Add Invoice Items:\n”;
while(1)
{

do
{

cout << “Product ID (Type 0 to finish): “;
getline(cin, strProductID);
if (strProductID == “0”) return;

} while ((pProduct = PMap.Find(strProductID)) == 0);

cout << “Quantity : “;
cin >> intQty;
cin.ignore();

pItem = new InvoiceItem(pProduct, intQty);
pInvoice->AddItem(pItem);
cout << “Item added\n”;

}
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const InvoiceList& anInvoiceList)
{

// Print all invoices pointed to by the elements in the list
os << “Invoice Listing:\n”;
for (IPL_CItor ci = anInvoiceList.mInvoices.begin();

ci != anInvoiceList.mInvoices.end(); ++ci)
os << **ci << “\n”;

return os;
}

Normally, we want to be able to enter new invoices,modify existing ones,and search for
invoices by their IDs. They are almost identical to the corresponding functions in the
Product map. To simplify this example, I will only implement the invoice creation func-
tion. The C++ standard container list is therefore chosen to store the invoice list.

The Add() function allows us to enter invoices and add them to the invoice list. It takes a
reference to the Product map so that we can link invoice items to product objects. The
overloaded insertion operator prints all invoices in the list. The destructor takes care of
the deletion of all invoice objects.

So far, we have implemented almost all the features of our fairly small application. The
last task is to create a driver program to link them together. Listing 18.6 shows the main
function of our application.

Object Persistence and Encryption

PART IV
694

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.5. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 694

LISTING 18.6. A TRIVIAL INVOICING APPLICATION: THE MAIN PROGRAM

//==
// main.cpp - The driver program for the application
//==

#include <iostream>
using namespace std;

#include “ProductMap.h”
#include “InvoiceList.h”

int main()
{

int intChoice = 0;
ProductMap Products; // Construct an empty product map
InvoiceList Invoices; // Construct an empty invoice list

do
{

cout << “\nA Trival Invoice Entry Program\n\n”;
cout << “ 1. Enter invoices\n”;
cout << “ 2. Print invoice list\n”;
cout << “ 3. Add products\n”;
cout << “ 4. Edit product\n”;
cout << “ 5. Delete products\n”;
cout << “ 6. Print product list\n”;
cout << “ 9. Exit\n\n”;
cout << “Enter your choice: “;
cin >> intChoice;
cin.ignore();
cout << endl;

switch(intChoice)
{
case 1: Invoices.Add(Products); break;
case 2: cout << Invoices << endl; break;
case 3: Products.Add(); break;
case 4: Products.Edit(); break;
case 5: Products.Delete(); break;
case 6: cout << Products << endl; break;
case 9: cout << “Bye!\n\n”; break;
default: cout << “Please select 1, 2, 3, 4, 5, 6 or 9.\n”;
}

} while (intChoice != 9);

return 0;
}

Object-Oriented Databases

CHAPTER 18
695

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 695

The main() function simply presents a menu so that we can perform various operations.
Let’s take a test drive.

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 3

Add Products:
ID (Type 0 to finish): Compiler-MSVC5
Name : Microsoft Visual C++ 5.0
Price : 500
Product added to the list

ID (Type 0 to finish): Compiler-BCB
Name : Borland C++ Builder
Price : 520
Product added to the list

ID (Type 0 to finish): 0

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 6

Product Listing:
Compiler-BCB Borland C++ Builder 520
Compiler-MSVC5 Microsoft Visual C++ 5.0 500
OS-Linux Linux 20
OS-MacOS8 MacOS 8.0 300
OS-Win98 Windows 98 89
OS-WinNT4 Windows NT 4.0 500

A Trival Invoice Entry Program

1. Enter invoices

Object Persistence and Encryption

PART IV
696

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 696

2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 4

Edit Products:
ID (Type 0 to finish): Compiler-BCB
Editing product: Compiler-BCB Borland C++ Builder 520
New name : Borland C++ Builder 3.0
New price: 550
Product modified: Compiler-BCB Borland C++ Builder 3.0 550
ID (Type 0 to finish): 0

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 5

Delete Products:
ID (Type 0 to finish): Compiler-BCB
Product deleted
ID (Type 0 to finish): 0

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 6

Product Listing:
Compiler-MSVC5 Microsoft Visual C++ 5.0 500
OS-Linux Linux 20
OS-MacOS8 MacOS 8.0 300
OS-Win98 Windows 98 89

Object-Oriented Databases

CHAPTER 18
697

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 697

OS-WinNT4 Windows NT 4.0 500

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 1

Add Invoices:
ID (Type 0 to finish): 1
Date : 07/24/98
Add Invoice Items:
Product ID (Type 0 to finish): OS-Linux
Quantity : 1
Item added
Product ID (Type 0 to finish): OS-MacOS8
Quantity : 10
Item added
Product ID (Type 0 to finish): OS-Win98
Quantity : 6
Item added
Product ID (Type 0 to finish): 0
Invoice added to the list

ID (Type 0 to finish): 2
Date : 07/25/98
Add Invoice Items:
Product ID (Type 0 to finish): OS-WinNT4
Quantity : 2
Item added
Product ID (Type 0 to finish): OS-Win98
Quantity : 50
Item added
Product ID (Type 0 to finish): Compiler-MSVC5
Quantity : 5
Item added
Product ID (Type 0 to finish): OS-MacOS8
Quantity : 3
Item added
Product ID (Type 0 to finish): 0
Invoice added to the list

ID (Type 0 to finish): 0

Object Persistence and Encryption

PART IV
698

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 698

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 2

Invoice Listing:
Invoice: 1
Date : 07/24/98
OS-Linux Linux 20 1 20
OS-MacOS8 MacOS 8.0 300 10 3000
OS-Win98 Windows 98 89 6 534
Total: 3554

Invoice: 2
Date : 07/25/98
OS-WinNT4 Windows NT 4.0 500 2 1000
OS-Win98 Windows 98 89 50 4450
Compiler-MSVC5 Microsoft Visual C++ 5.0 500 5 2500
OS-MacOS8 MacOS 8.0 300 3 900
Total: 8850

A Trival Invoice Entry Program

1. Enter invoices
2. Print invoice list
3. Add products
4. Edit product
5. Delete products
6. Print product list
9. Exit

Enter your choice: 9

Bye!

First,we added two compilers to our product map. Next, we modified a product and then
deleted it. After checking our product map, we created two invoices and displayed our
invoice list.

Our little application does all we want except one thing:All products and invoices are
destroyed when the program exits. It would be of little use if that is all our application
can do. We need to add the ability to store data persistently to this application.

Object-Oriented Databases

CHAPTER 18
699

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 699

Data Persistence
To make an object persistent,we need to derive it from the d_Object class:

class MyClass : public d_Object
{}

ODMG provides asubset of C++ primitive types,as shown in Table 18.1.

TABLE 18.1. ODMG PRIMITIVE TYPES

ODMG Type Size Description

d_Char 8 bits ASCII character

d_Boolean Implementation Either d_True or d_False

defined

d_Short 16 bits Signed short integer

d_UShort 16 bits Unsigned short integer

d_Long 32 bits Signed long integer

d_ULong 32 bits Unsigned long integer

d_Float 32 bit IEEE Standard 754-1985;
single-precision floating-point number

d_Double 32 bit IEEE Standard 754-1985;
double-precision floating-point number

Notice that the C++ int and unsigned int types are not mapped to ODMG because the
C++ integer sizes vary among different operating systems and machines.

Let’s start by modifying our Product class to make it persistent. Listing 18.7 shows a
persistent Product class.

Object Persistence and Encryption

PART IV
700

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

NOTE

The remaining listings in this chapter show an application using the ODMG
standard C++ binding. They cannot be compiled with only a C++ compiler. If you
want to test this application, you must obtain an ODBMS that supports the
ODMG standard; you must also make implementation-specific modifications to
the listings.

23 239-5 CH18 2/19/99 1:36 PM Page 700

LISTING 18.7. PERSISTENT PRODUCTCLASS DEFINITION

//==
// Product.h - Persistent Product class definition
//==

#ifndef __Product_H
#define __Product_H

#include <iostream.h>
#include <odmg.h> // ODMG header file
#include <d_String.h> // ODMG d_String header file

class Product : public d_Object
{
public:

// Constructors and destructor
Product();
Product(const d_String& newID,

const d_String& newName,
const d_Long newPrice);

virtual ~Product();

// Member variables
d_String mID; // product ID
d_String mName; // product name
d_UShort mPrice; // product price

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const Product* const

➥aProduct);
};

#endif

First,we no longer use the namespace std because ODMG does not yet support thecon-
cept of the C++ namespace. The Product class is now derived from the ODMG
d_Object class. To use the ODMG-specific features,we must include an odmg.h file sup-
plied by vendors.

Object-Oriented Databases

CHAPTER 18
701

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

NOTE

The names of the ODMG header files are not specified in the standard and vary
among ODBMS implementations.

23 239-5 CH18 2/19/99 1:36 PM Page 701

In the original Product class (refer to Listing 18.1),the mID and mNamemember variables
were defined as C++ standard strings. ODMG does not yet directly support the use of
C++ strings. Instead, it defines a d_String class that serves the purpose of storing vari-
able-length character strings in a database. The reason for this is historical: When the
ODMG standard was first defined, there was no standard C++ library. We will define
those member variables as d_String s. To use the d_String class,we must include the
d_String.h header. The mPrice member variable is also changed tobe the ODMG
d_UShort type.

Database Schemas and Schema Capture Tools
To store objects in a database, we must create a description of the persistent classes so
that the database knows how to store those objects. This description is called aschema. A
database creates a data dictionary from a schema. Various data access tools—such as
form generators,query optimizers,and report writers—communicate with the database
using the schema.

A normal C++ compiler does not know anything about object databases. It cannot create
a database schema,nor can it generate code for accessing objects in a database. In the
ODMG standard, the C++ header file for a persistent-capable class must be processed
by a schema capture tool. Figure 18.1 shows a complete application compilation and
linking procedure.

A schema caption tool parses the C++ class definitions and generates a schema for the
database. In addition, the tool also generates enhanced C++ header and source files
that help C++ compilers understand database operations. These files can be compiled
by a normal C++ compiler. Class implementation source files must include (using
#include) the enhanced C++ header files instead of the original header files. A linker
then links all object files and database vendor-supplied libraries to create an applica-
tion executable file.

Object Persistence and Encryption

PART IV
702

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 702

Object-Oriented Databases

CHAPTER 18
703

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

C++ header files
for

persistent classes

Schema
Capture

Tool

C++
Compiler

C++
Linker

Data
Dictionary

C++ source files
supporting

persistent data
manipulation

Enhanced C++
header files

for persistent
classes

C++ header files
for

non-persistent
classes

Database vendor
supplied libraries

Application
object files

Application
executable

C++ Libraries

C++ Source Files

Create Schema

FIGURE 18.1.
The application
generation proce-
dure.

23 239-5 CH18 2/19/99 1:36 PM Page 703

The Product class implementation is modified as shown in Listing 18.8.

LISTING 18.8. THE PERSISTENT PRODUCTCLASS IMPLEMENTATION

//==
// ProductSrc.cpp - Persistent Product class implementation
//==

#include <odmg.h> // ODMG header file
#include “Product.hxx”

// Constructors and destructor
Product::Product()
: mID(“”), mName(“”), mPrice(0)
{}

Product::Product(const d_String& newID,
const d_String& newName,
const d_Long newPrice)

: mID(newID), mName(newName), mPrice(newPrice)
{}

Product::~Product()
{}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const Product* const aProduct)
{

os << (const char *)aProduct->mID << “\t”
<< (const char *)aProduct->mName << “\t” << aProduct->mPrice;

return os;
}

Recall that the schema processor is likely to generate implementation-dependent new
Product header and implementation files. We rename our Product class implementation
source file from Product.cpp to ProductSrc.cpp because the schema processor may
generate a Product.cpp file that defines various support functions for the Product class.
We also include a generated class header file that might be named Product.hxx by the
schema processor. The default constructor and destructor remain unchanged. Because
d_String variables can be initialized with a C++ character array, we can initialize mID

and mNameto an empty string “” . Although the default constructor for d_String also ini-
tializes aninstance to NULL, I would rather do it explicitly. This is mainly a matter of per-
sonal preference; in my experience with RDBMS, NULL is not the same as an empty
string. The user-defined constructor now takes d_String and d_UShort parameters and
calls the d_String ’s copy constructor to initialize mID and mName.

Object Persistence and Encryption

PART IV
704

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 704

The overloaded insertion operator << is changed to cast mID and mNameto const char *

before printing them. We do this because the d_String class does not support the C++
standard iostream interface.

Before turning our attention to the Invoice and InvoiceItem classes,let’s first look at
three concepts:collections,iterators,and relationships.

Collections
A collectionis a set of objects of the same type. The C++ Standard Library provides sev-
eral container classes to manage collections. The ODMG standard also defines a set of
collection classes. ODMG does not use the C++ standard containers for two reasons:
First, the C++ standard containers are C++ specific; ODMG is designed to also support
Java and Smalltalk. Second, when ODMG released its ODMG-93 specification, the C++
standard committee had not yet approved the STL specification.

Since the adoption of the STL and the Standard C++ Library specification, the ODMG
C++ interface has been enhanced to provide support for the Standard C++ Library. The
ODMG iterator class implements the C++ standard constant bidirectional iterator. The
ODMG collection classes now support the C++ standard container begin() and end()

operations. The C++ standard algorithms can also be used with the ODMG collections.

The ODMG collections are derived from an abstract base class d_Collection<T> . This
base class defines a set of common collection operations,as summarized in Table 18.2.

TABLE 18.2. THE ODMG D_COLLECTION CLASS OPERATIONS

Function Descriptions

Collection Operations

d_Collection(); Creates a collection with no elements.

d_Collection(const d_Collection<T>& c); Creates a collection and copies all
elements from collection c using T’s
copy constructor.

d_Collection<T>&operator= Removes all existing elements
(const d_Collection<T>& c); using T’s destructor and copies all
d_Collection<T>&assign_from elements from collection c using T’s
(const d_Collection<T>& c); copy constructor. The assign_from()

function is usually used to copy
elements from a collection of a
different type, such as copying
elements from a list to a set.

~d_Collection(); Removes all existing elements using
T’s destructor.

Object-Oriented Databases

CHAPTER 18
705

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 705

Element Operations

unsigned long cardinality() const; Returns the number of elements in a
collection.

d_Boolean is_empty() const; Returns whether or not the collection is
empty.

d_Boolean is_ordered() const; Returns whether or not the collection is
ordered.

d_Boolean allow_duplicates() const; Returns whether or not the elements
can have the same values.

d_Boolean contains_element Returns whether or not one or more
(const T& v) const; elements have the value v .

d_Boolean insert_element Inserts an element. Returns d_True if
(const T& v) const; the insertion is successful and d_False

otherwise. Use this operation to insert
an element in a set that already con-
tains the value v .

void remove_element(const T& v); Removes the first or all elements of
void remove_all(const T& v); value v .

void remove_all(); Removes all elements.

Iteration

d_Iterator<T> create_iterator() Returns an iterator pointing to the first
const;d_Iterator<T> begin() const; element. The begin() function is

compatible to the C++ standard const

bidirectional iterators.

d_Iterator<T> end() const; Returns an iterator pointing to the last
element.

Equality

friend d_Booleanoperator== c1 and c2 are equal if they
(const d_Collection<T>& c1, have the same cardinality and each

const d_Collection element in c1 is equal to an element in
<T>& c2); c2 . c1 and c2 can be different types of

collections.

friend d_Boolean operator!= Returns !(c1 == c2) .
(const d_Collection<T>& c1,

const d_Collection

<T>& c2);

Object Persistence and Encryption

PART IV
706

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

TABLE 18.2. CONTINUED

Function Descriptions

23 239-5 CH18 2/19/99 1:36 PM Page 706

ODMG provides five collections,as shown in Table 18.3.

TABLE 18.3. ODMG COLLECTIONS

Collection Description

d_Varray<T> A variable-length array (similar to the
C++ standard container vector).

d_List<T> An ordered collection of elements that
may have duplicate values (similar to
the C++ standard container list —but
d_List<T> also sorted).

d_Set<T> An unordered collection of elements
that have no duplicate values (similar to
the C++ standard container set).

d_Bag<T> An unordered collection of elements
that may have duplicate values (similar
to the C++ standard container
multiset).

d_Dictionary<Key, Value > An unordered collection of key , value

pairs. Values can be accessed through
key values (similar to the C++ standard
container multimap).

In addition, ODMG supports a subset of C++ standard containers as shown in Table 18.4.

TABLE 18.4. ODMG-SUPPORTED C++ STANDARD CONTAINERS

C++ Name ODMG Name

vector<T> d_vector<T>

list<T> d_list<T>

map<Key, Value> d_map<Key, Value>

multimap<Key, Value> d_multimap<Key, Value>

set<T> d_set<T>

multiset<T> d_multiset<T>

The C++ allocator template argument is not supported because the database is responsible
for memory management. In fact,applications must never attempt to allocate memory for
the containers.

Object-Oriented Databases

CHAPTER 18
707

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 707

The Invoice class in our application contains an unordered collection of items. If we
assume that no two items in an invoice can be identical,we can define the item collec-
tion as a d_Set :

d_Set<InvoiceItem> mItems;

Iterators
The ODMG standard provides a d_Iterator classthat can be used to iterate over collec-
tions. As mentioned earlier in this chapter, the d_Iterator class implements a C++ stan-
dard constant bidirectional iterator. The overloaded dereference operator * is defined to
return a copy of the referenced element. We can use a d_Iterator to access elements in
a collection in the same way as we use a C++ iterator:

d_Set<T> aSet;
for (d_Iterator<T> i = aSet.begin(); i != aSet.end(); ++i)
{

cout << *i; // *i returns a copy of the referenced element
*i = someValue;

}

Relationships
Another importantconcept in ODBMS is relationship. A relationship represents associa-
tions among objects. The number of classes in a relationship is called its degree. The
most common type of relationship is the binary relationship that models the association
between two classes.

Unidirectional Relationships
A binary relationship canbe either unidirectional or bidirectional. A unidirectionalrela-
tionship models a one-way traversal between two objects. In the invoicing application,
for example, an invoice item must relate to a product,but a product does not have to
relate to an invoice item. We can traverse from an invoice item to a product,but we do
not have to find an invoice item from a product.

The ODMG standard defines a d_Ref<T> template class that stores a reference to a per-
sistent object of type T. Each persistent object is assigned an immutable object identifier
that cannot be changed by an application. When a d_Ref<T> instance is stored in the
database, it contains the object identifier of the referenced object. When it is loaded
again, it references the same object again if the referenced object is already loaded in
memory. If the referenced object is not in memory, the object is retrieved from the
database. An ODMG implementation handles this process automatically.

Object Persistence and Encryption

PART IV
708

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 708

The overloaded operator ->() of the d_Ref class behaves exactly the same as its counter-
part for a normal pointer. Suppose that we define a variable like this:

d_Ref<Product> rProduct;

We can access the mPrice member of a product referenced by rProduct usingthe fol-
lowing statement:

rProduct->mPrice.

The d_Ref class also overloads the operator *() to dereference a reference, just as we do
with pointers. So *rProduct evaluates to the product object referenced by rProduct . A
member function ptr() of the d_Ref class returns the referenced object’s address,or a
C++ pointer to the object,in the application’s memory.

The copy constructor of the d_Ref class performs a shallow copy: It copies only the ref-
erence, not the referenced object. We can use this fact to work around the limitation of
the d_Iterator class. Because a d_Iterator is a constant iterator, we cannot directly
modify its elements. A workaround is to store a set of references to objects in a collec-
tion:

d_Set<d_Ref<T> > aRefSet;
for (d_Iterator<d_Ref<T> > i = aRefSet.begin(); i != aRefSet.end(); ++i)
{

cout << *i; // *i returns a copy of reference to an object of
➥type T

*i->aMember = someValue;
}

Bidirectional Relationships
A bidirectionalrelationship,on the other hand, models a two-way traversal between two
objects. For instance, we have to be able to access all items of an invoice and vice versa.

The ODMG standard defines template classes that represent bidirectional relationships:

d_Rel_Ref<T, const char * Member>

This class represents a one-to-one relation to an object of type T. That is, there is only
one object of type T in this relationship between the current class and class T. The second

Object-Oriented Databases

CHAPTER 18
709

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

NOTE

The ODMG standard also defines a d_Ref_Any class. It is a reference to any per-
sistent object. The d_Ref_Any class may be vaguely considered as the C++ void

* and d_Ref<T> is like the C++ T *.

23 239-5 CH18 2/19/99 1:36 PM Page 709

parameter, Member, is a character string containing the name of the member variable in
type T that stores a reference to the current object. From the current object’s perspective,
the member variable Member in T is called the inverse relationship. A simple one-to-one
bidirectional relationshipis demonstrated in Listing 18.9.

LISTING 18.9. A SIMPLE ONE-TO-ONE BIDIRECTIONAL RELATIONSHIP

// A.h
class B;
extern const char _mRelVarB [];

class A : public d_Object
{

d_Rel_Ref<B, _mRelVarB> mA;
};

// B.h
class A;
extern const char _mRelVarA [];

class B : public d_Object
{

d_Rel_Ref<A, _mRelVarA> mB;
};

// C.cpp ñ some source file
const char _mRelVarA [] = “mA”;
const char _mRelVarA [] = “mB”;

You can also have one-to-many bidirectional relationships. For instance, an invoice item
can have only one associated invoice but an invoice can have many items. ODMG
defines two one-to-many relationship classes:d_Rel_Set andd_Rel_List . The
d_Rel_Set class represents an unordered relationship and the d_Rel_List class repre-
sents an ordered relationship. The ODMG bidirectional relationship classes are shown in
Table 18.4.

TABLE 18.4. ODMG BIDIRECTIONAL RELATIONSHIP CLASSES

Class Base Class

d_Rel_Ref<T, const char* Member> d_Ref<T>

d_Rel_Set<T, const char* Member> d_Set<d_Ref<T>>

d_Rel_List<T, const char* Member> d_List<d_Ref<T>>

Object Persistence and Encryption

PART IV
710

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 710

As an example, the relationship between the Invoice and InvoiceItem classesin the
invoicing application can be defined as in Listing 18.10.

LISTING 18.10. THE RELATIONSHIP BETWEEN THE I NVOICE AND I NVOICEI TEMCLASSES

extern const char _mInvoice[], _mItems[];

class Invoice : public d_Object
{

d_Rel_Set<InvoiceItem, _mInvoice> mItems;
};

class InvoiceItem : public d_Object
{

d_Rel_Ref<Invoice, _mItems> mpInvoice;
};

// In some source file
const char _mInvoice[] = “mpInvoice”;
const char _mItems[] = “mItems”;

Now we take a look at the changes to be made to the Invoice and InvoiceItem classes.
The two header files are merged and shown in one listing so that we can easily discuss
the relationships between them. Listing 18.11 demonstrates the definition of the persis-
tent Invoice and InvoiceItem classes.

LISTING 18.11. DEFINITION OF THE PERSISTENT I NVOICE AND I NVOICEI TEMCLASSES

//==
// Invoice.h - Invoice class definition
//==

#ifndef __Invoice_H
#define __Invoice_H

#include <iostream.h>

// ODMG header files
#include <odmg.h>
#include <d_Date.h>
#include <d_Ref.h>
#include <d_RelRef.h>
#include <d_RelSet.h>
#include <d_Iterat.h>

class Product;
class InvoiceItem;

Object-Oriented Databases

CHAPTER 18
711

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 711

extern const char _mInvoice[], _mItems[]; // defined in source files

typedef d_Rel_Set<InvoiceItem, _mInvoice> InvoiceItemList;
typedef d_Iterator<d_Ref<InvoiceItem> > IIL_CItor;

class Invoice : public d_Object
{
public:

// Constructors and destructor
Invoice();
Invoice(const d_ULong mID);
virtual ~Invoice();

// Member variables
d_ULong mID; // Invoice ID
d_Date mDate; // Invoice date
InvoiceItemList mItems; // A list of references to invoice

items

void AddItem(d_Ref<InvoiceItem> pItem); // Add an item to item
list

d_ULong GetTotal() const; // Invoice total amount

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const Invoice& anInvoice);

};

class InvoiceItem : public d_Object
{
public:

// Constructors and destructor
InvoiceItem();
InvoiceItem(d_Ref<Product> pProduct, const d_UShort newQuantity);
virtual ~InvoiceItem();

// Member variables
// Reference to the associated invoice object
d_Rel_Ref<Invoice, _mItems> mpInvoice;
d_Ref<Product> mpProduct; // Reference to the product object
d_UShort mQuantity; // Quantity sold

// Other member functions
// Get the total amount of the item
d_UShort GetTotal() const;

// Overloaded insertion operator
friend ostream& operator<<(ostream& os, const InvoiceItem&

➥anInvoiceItem);
};

#endif

Object Persistence and Encryption

PART IV
712

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.11. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 712

First, let’s look at the InvoiceItem class. The sale quantity variable mQuantity is defined
as a d_UShort so that it can be stored in the database. The mpProduct variable was origi-
nally defined as a pointer to a Product object Product* . In C++,a pointer stores the
memory address of an object—which is fine as long as the current application remains in
the memory. When the application is terminated and reloaded, however, the memory
address of the object will be different. After the invoice item is stored in the database, the
memory address becomes irrelevant. Storing such an address in a database is rather use-
less. The mpProduct variable is thus defined as follows:

d_Ref<Product> mpProduct;

Similarly, the one-to-many relationship between the Invoice class and the InvoiceItem

class is represented with the d_Rel_Ref<Invoice, _mInvoice> mpInvoice; member in
the InvoiceItem class and the d_Rel_Set<InvoiceItem, _mInvoice> mItems; member
in the Invoice class.

The member variable mID in the Invoice class is now defined as a d_ULong so that it can
be stored in the database. The member variable mDate is designed to store the invoice
date. ODMG defines a d_Date class that represents a date with year, month,and day. It
has a static member function current() that returns a d_Date object with the current
system date. The default constructor of the d_Date class initializes an instance with the
current system date. This is ideal for our Invoice class because it stores thedate when
the invoice is created.

Object-Oriented Databases

CHAPTER 18
713

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

NOTE

ODMG also provides a d_Time class that represents a specific time of day. It con-
tains the hour, minute, and seconds. The default constructor sets an instance to
the current time. Another class, d_TimeStamp , represents both the date and
time. Last, a d_Interval class is provided to represent a duration of time.

The implementation of the Invoice class and the InvoiceItem class must also be
changed. Listing 18.12 shows the modified InvoiceItem implementation file.

LISTING 18.12. THE PERSISTENT I NVOICEI TEMCLASS IMPLEMENTATION

//==
// InvoiceItemSrc.cpp - Invoice item class implementation
//==

#include <odmg.h>
#include “Product.hxx”

continues

23 239-5 CH18 2/19/99 1:36 PM Page 713

#include “Invoice.hxx”

// Member variable represents the relationship with Invoice
const char _mInvoice[] = “mpInvoice”;

// Constructors and destructor
InvoiceItem::InvoiceItem()
: mpProduct(0), mQuantity(0)
{}

InvoiceItem::InvoiceItem(d_Ref<Product> pProduct, const d_UShort
➥newQuantity)
: mpProduct(pProduct), mQuantity(newQuantity)
{}

// Destructor
// Do not delete the product object
InvoiceItem::~InvoiceItem()
{}

// Get item total amount
d_UShort InvoiceItem::GetTotal() const
{

return mpProduct->mPrice * mQuantity;
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const InvoiceItem& anInvoiceItem)
{

os << anInvoiceItem.mpProduct.ptr() << “\t” << anInvoiceItem.mQuantity
➥<< “\t”

<< anInvoiceItem.GetTotal();
return os;

}

Here we initialize _mInvoice with the name of the member variable mpInvoice . The
overloaded constructor now initializes the mpProduct member variable with a reference
to a product. The overloaded operator ->() of d_Ref class is used in the GetTotal()

function to access the mPrice member of a product pointed to by mpProduct using
mpProduct->mPrice . The overloaded insertion operator << uses the d_Ref<T>::ptr()

function to obtain a pointer to aproduct.

Object Persistence and Encryption

PART IV
714

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.12. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 714

Databases and Transactions
So far, we have been dealing with objects loaded in the application’s memory. To access
objects in a database, we must open a database. We can use the ODMG d_Database class
to create a databaseobject. A database can be opened as shown here:

d_Database db;
db.open(“DB_Name”);
// Database operations
db.close();

The open() function is defined as follows:

enum access_status { not_open, read_write, read_only, exclusive };
void open(const char* db_name, access_status access = read_write);

Opening a database in the exclusive mode prevents other processes from accessing that
database. You use the exclusive mode when you have to perform certain database mainte-
nance operations. The read-only mode does not allow any modification to objects in a
database.

In database systems,a transactionis a set of operations performed to a database. All
operations in a transaction must be performed for the transaction to be complete. If any
of the operations within a single transaction fails, all other operations must not be exe-
cuted. Operations that have been executed before the failure must be rolled back to
ensure that data integrity is maintained. A classic example of this integrity requirement is
a bank fund transfer system in which both the withdrawal from one account and the
deposit to another must be successful if the transaction is to be successful. If the applica-
tion fails to withdraw funds from one account,it must not make the deposit,and vice
versa.

ODMG providesa d_Transaction class that performs a set of transaction operations
such as starting a transaction and committinga transaction(finishing a successful trans-
action). A typical transaction in ODMG is demonstrated in the following code fragment:

d_Transaction tx; // create a transaction
tx.begin(); // start a transaction
DeleteObjects(); // operations on database objects
AddObjects();
tx.commit(); // commit a transaction

Operations in a transaction must be enclosed within the begin() and commit() state-
ments. The commit() function performs both DeleteObjects() and AddObjects() oper-
ations. If one of these operations fails, the other must not be performed; if one of these
operations has been performed, it must be rolled back. The application can also issue an
abort() command for certain conditions:

Object-Oriented Databases

CHAPTER 18
715

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 715

d_Transaction tx; // create a transaction
try
{

tx.begin(); // start a transaction
DeleteObjects(); // operations on database objects
AddObjects();
tx.commit(); // commit a transaction

}
catch (SomeException) // There is an error!
{

tx.abort(); // abort the transaction.
}

In the preceding example, we use the C++ exception handling method, which is support-
ed by the ODMG standard. The ODMG d_Error classis derived from the C++ exception
class. The get_kind() member function of the d_Error class returns the error code, and
the what() member function gives the description of the error.

It is time to get back to our invoicing application. Listing 18.13 shows the revised
Invoice class implementation.

LISTING 18.13. PERSISTENT I NVOICE CLASS IMPLEMENTATION

//==
// InvoiceSrc.cpp - Invoice class implementation
//==

#include <odmg.h> // ODMG header file
#include “Product.hxx”
#include “Invoice.hxx”

// Member variable represents the relationship with InvoiceItem
const char _mItems[] = “mItems”;

// Constructors and destructor
Invoice::Invoice()
: mID(0)
{}

Invoice::Invoice(const d_ULong newID)
: mID(newID)
{}

Invoice::~Invoice()
{

// Delete all invoiced items
for (IIL_CItor i = mItems.begin(); i != mItems.end(); ++i)

delete (*i).ptr();
}

Object Persistence and Encryption

PART IV
716

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 716

// Add an item to item list
void Invoice::AddItem(d_Ref<InvoiceItem> pItem)
{

d_Transaction tx;

try
{

tx.begin();
mItems.insert_element(pItem);
tx.commit();

}
catch (d_Error derr)
{

tx.abort();
cerr << “ODMG Error [“ << derr.get_kind() << “] “ << derr.what()

➥<< endl;
}

}

// Get total invoice amount
d_ULong Invoice::GetTotal() const
{

int intTotal = 0;

// Iterate through the item list and calculate the total
for (IIL_CItor i = mItems.begin(); i != mItems.end(); ++i)

intTotal += (*i)->GetTotal();

return intTotal;
}

// Overloaded insertion operator
ostream& operator<<(ostream& os, const Invoice& anInvoice)
{

// Print invoice header
os << “Invoice: “ << anInvoice.mID << “\n”

<< anInvoice.mDate.month() << “/”
<< anInvoice.mDate.day() << “/”
<< anInvoice.mDate.year() << “\n”;

// Print all invoice items
for (IIL_CItor ci = anInvoice.mItems.begin();

ci != anInvoice.mItems.end(); ++ci)
os << **ci << “\n”;

// And the total amount
os << “Total: “ << anInvoice.GetTotal() << “\n”;

return os;
}

Object-Oriented Databases

CHAPTER 18
717

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 717

The mItems constant is initialized with the name of the member variable mItems . The
default constructor no longer has to initialize the mDate member variable because that
variable will be initiated with the current date by the dDate ’s default destructor. The
destructor is modified to use a d_Iterator to iterate through the item collection and
delete each item. We use thed_Ref<T>::ptr() function to obtain a pointer to an item
and delete the referenced item.

The AddItem() function demonstrates a way of accessing objects in a database. If we
attempt to add an item to an invoice that contains an identical item,a
d_Error_NameNotUnique exception is thrown. If that happens,we abort the transaction
and display an error message.

The GetTotal() function also uses a d_Iterator to go through the item list and calcu-
late the total sale amount. This is almost identical to the original GetTotal() function,in
which we used a C++ standard iterator to access each element in the list.

The overloaded insertion operator << implementation is also similar to the original ver-
sion. The notable difference is in the way we print the mDate member. Because the
d_Date class does not directly support the C++ iostream , we end up printing the year,
month,and day value of mDate.

In the original version of our application, we created a Product map to hold pointers to
available product objects. Because all products will now be stored in a database, such a
map becomes redundant. Instead, we will create a class that encapsulates all operations
on the product objects in a database. Listing 18.14 shows the product operation class.

LISTING 18.14. THE PRODUCT OPERATION CLASS

//==
// ProductOps.h - Product Operations class definition
// This class encapsulates the operations on Product
// objects in a database
//==

#ifndef __ProductOps_H
#define __ProductOps_H

#include “Product.hxx”

class ProductOps
{
public:

// Constructor and Destructor
ProductOps(d_Database* pDatabase);
virtual ~ProductOps();

Object Persistence and Encryption

PART IV
718

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 718

// Member functions
void Add(); // Add products to the database
void Edit(); // Edit products in the database
void Delete(); // Delete products from the database
int IsEmpty() const; // Check if there are products in the

database
void List(); // List all products in the database

// Member Variables
d_Database* pDB; // A pointer to the database

};

#endif

//==
// ProductOps.cpp - Product Operation class implementation
//==

#include <iostream.h>
#include <algorithm>
#include <odmg.h>
#include <d_Extent.h>

#include “InvApp.h”
#include “Product.hxx”
#include “ProductOps.h”

// Constructor
ProductOps::ProductOps(d_Database* pDatabase)
: pDB(pDatabase)
{}

// Destructor
ProductOps::~ProductOps()
{}

// Add products to the database
void ProductOps::Add()
{

d_Transaction tx;
Product* pProduct;
char strID[MAXLEN + 1];
char strName[MAXLEN + 1];
unsigned short ushortPrice;

cout << “Add Products:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
cin.getline(strID, MAXLEN);
if (strID[0] == ‘0’) break;

Object-Oriented Databases

CHAPTER 18
719

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 719

cout << “Name : “;
cin.getline(strName, MAXLEN);
cout << “Price : “;
cin >> ushortPrice;
cin.ignore();

try
{

tx.begin();
pProduct = new(pDB) Product(strID, strName, ushortPrice);
pDB->set_object_name(pProduct, strID);
tx.commit();
cout << “Product “ << pProduct << “ added\n”;

}
catch (d_Error derr)
{

tx.abort();
if (derr.get_kind() == d_Error_NameNotUnique)
{

cerr << “Product already exists!” << endl;
continue;

}
else
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “
<< derr.what() << endl;

return;
}

}
}

}

// Edit Products
void ProductOps::Edit()
{

d_Transaction tx;
d_Ref<Product> pProduct;
char strID[MAXLEN + 1];
char strNewID[MAXLEN + 1];
char strName[MAXLEN + 1];
unsigned short ushortPrice;

// Use the d_Database lookup_object() function to find a product
// and edit it if found
cout << “Edit Products:\n”;
while(1)
{

do

Object Persistence and Encryption

PART IV
720

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.14. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 720

{
cout << “ID (Type 0 to finish): “;
cin.getline(strID, MAXLEN);
if (strID[0] == ‘0’) break;

tx.begin();
pProduct = pDB->lookup_object(strID);
tx.commit();

if (pProduct.is_null() == d_True)
cerr << “Invalid product ID, please try again.” << endl;

} while (pProduct.is_null() == d_True)

cout << “Editing product: “ << pProduct.ptr() << “\n”;
cout << “New ID : “;
cin.getline(strNewID, MAXLEN);
cout << “New name : “;
cin.getline(strName, MAXLEN);
cout << “New price: “;
cin >> ushortPrice;
cin.ignore();

try
{

tx.begin();
pProduct->mID = strNewID;
pProduct->mName = strName;
pProduct->mPrice = ushortPrice;
pDB->rename_object(strID, strNewID);
tx.commit();

cout << “Product modified: “ << pProduct.ptr() << “\n”;
}
catch (d_Error derr)
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “ << derr.what()
➥<< endl;

}
}

}

// Delete Products
void ProductOps::Delete()
{

d_Transaction tx;
d_Ref<Product> pProduct;
char strID[MAXLEN + 1];

// Use the d_Database lookup_object() function to find a product
// and delete it if found
cout << “Delete Products:\n”;

Object-Oriented Databases

CHAPTER 18
721

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 721

while(1)
{

cout << “ID (Type 0 to finish): “;
cin.getline(strID, MAXLEN);
if (strID[0] == ‘0’) break;

tx.begin();
pProduct = pDB->lookup_object(strID);
tx.commit();

if (pProduct.is_null() == d_False)
{

try
{

tx.begin();
pProduct.delete_object();
tx.commit();
cout << “Product deleted\n”;

}
catch (d_Error derr)
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “
<< derr.what() << endl;

return;
}

}
else

cerr << “Invalid product ID, please try again.” << endl;
}

}

// Check if there are any product objects in the database
int ProductOps::IsEmpty() const
{

d_Extent<Product> ProductExtent(pDB);
return ProductExtent.is_empty();

}

void ProductOps::List()
{

d_Extent<Product> ProductExtent(pDB);
d_Bag<d_Ref<Product> > ProductBag;

ProductExtent.query(ProductBag, “this->mID != \”\””);

cout << “Product Listing:\n”;

// Method 1
for (d_Iterator< d_Ref<Product> > i2 = ProductBag.begin();

Object Persistence and Encryption

PART IV
722

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.14. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 722

i2 != ProductBag.end(); ++i2)
cout << (*i2).ptr() << “\n”;

// Method 2
PrintPtr<d_Ref<Product> > DoPrintPtr;
std::for_each(ProductBag.begin(),ProductBag.end(), DoPrintPtr);

}

The Find() function is removed from the Product map class because the d_Database

class provides a member function lookup_object() to find an object using its object
name. All other functions are implemented. The only member variable is now a pointer
to a database. It is initialized to point to a currently opened database object. We do not
delete the database object in the destructor because it may be in use by other objects.

In the Add() function,we use a fixed-length character array to accept user input because
ODMG does not support the C++ standard string class. An arbitrary MAXLENconstant is
defined to specify the maximum string length. The following statement demonstrates
how a persistent object is created:

pProduct = new(pDB) Product(strID, strName, ushortPrice);

ODMG defines the overloaded operator new(d_Database *) that takes a pointer to a
database. Objects created using this new() operator are stored in the database automati-
cally. We also call the set_object_name() member function of d_Database to specify a
unique key value—the product ID in this case—for the product. This key value can be
used to access the product in the database, as we do in the Edit() function. The key
value must be unique among all objects,not just the Product objects,in the database. We
wrap these two operations in a transaction.

Because the key value, or the object name, must be unique, we must check whether that
object name already exists in a database. If it does,we throw an exception with an error
code d_Error_NameNotUnique . This exception is caught in the catch block that follows.
A database implementation can automatically abort the transaction in this situation, but it
is always a good idea to explicitly abort it. The catch block simply prints an error mes-
sage if another exception is caught.

The Edit() function shows two useful d_Database functions. The first is the
lookup_object() function. It accepts a string containing the object name and returns a
d_Ref_Any reference to the found object. If there is no object with the name, a NULL

reference is returned. We can test the result using the is_null() function of the
d_Ref_Any class.

If a product’s ID is modified, we must update the object name for that product. The
d_Database::rename_object() function is used to achieve this. The function takes two

Object-Oriented Databases

CHAPTER 18
723

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 723

arguments:the old name and the new name. Again,all operations that change the
Product object are enclosed in a transaction.

As does the Edit() function,the Delete() function calls the lookup_object() function
to retrieve a product from the database. It then calls the d_Ref<T>::delete_object()

function to remove the object from the database and from the application memory.

The List() function queries all Product objects in a database. In ODMG, a set of all
persistent instances of a class is said to be its extent. A d_Extent<T> template class is
defined to provide access to all objects of type T in a database. It is essentially an
unordered collection of references to those objects,similar to a d_Set<d_Ref<T>> . It is
instantiated with the following syntax:

d_Extent<T> TExtent(pDB);

In this syntax,pDB is a pointer to a database and TExtent is an instance of T’s extent. The
extent is updated automatically by the database so that new elements are added to or
removed from the extent when they are added to or removed from the database. The syn-
chronization process may have a certain impact on the performance of applications.
Consequently, you should avoid keeping an instance of an extent for a long period of
time.

Extents can be queried by invoking the query() member function. The first argument is
a reference to a collection that will store the result of the query; the second argument is a
string containing a predicate. In the List() function,we get all products with a predi-
cate:

this->mID != “”;

The ProductExtent.query() statement looks rather strange:

ProductExtent.query(ProductBag, “this->mID != \”\””);

Here, the escape character \ is used to prevent the compiler from interpretingthe double
quotation marks embedded in the predicate string.

The resulting collection can be iterated over as we see in method 1. Because the ODMG
collections work with C++ standard algorithms,we can use the for_each algorithm to
simplify the code. The function object PrintPtr<d_Ref<Product>> is defined in a head-
er file InvApp.h , as shown in Listing 18.15.

Object Persistence and Encryption

PART IV
724

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 724

LISTING 18.15. MISCELLANEOUS FUNCTIONS

//==
// InvApp.h - Misc function objects and other declarations
//==

#include <iostream.h>
#include <functional>

// Print an object referenced by a d_Ref<T> or pointed to by a pointer T*
➥argument
// The overloaded insertion operator<<(ostream&, T&) is used
template<class Ref >
class PrintRef : public std::unary_function<Ref, void>
{
public:

void operator()(Ref& r)
{

cout << *r << “\n”;
}

};

// Print an object referenced by a d_Ref<T> argument
// The overloaded insertion operator<<(ostream&, T*) is used
template<class Ref>
class PrintPtr : public std::unary_function<Ref, void>
{
public:

void operator()(Ref& r)
{

cout << r.ptr() << “\n”;
}

};

// Arbitrary string length
const unsigned MAXLEN = 30;

The PrintPtr function object takes a d_Ref<T> argument and prints the value using
T::operator<<(ostream&, T*) . The PrintRef function object takes a d_Ref<T> or T*

argument and prints the value using T::operator<<(ostream&, T) . It is used to list all
invoices in Listing 18.16. This file also defines a MAXLENconstant that is used to accept
the string inputs in Listings 18.14 and18.16.

The original InvoiceList class has been renamed InvoiceOps and has been modified to
take advantage of object persistence. Listing 18.16 shows the InvoiceOps class.

Object-Oriented Databases

CHAPTER 18
725

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 725

LISTING 18.16. THE INVOICE OPERATION CLASS

//==
// InvoiceOps.h - Invoice Operations class definition
// This class encapsulates the operations on Invoice
// objects in a database
//==

#ifndef __InvoiceOps_H
#define __InvoiceOps_H

#include <iostream.h>
#include <odmg.h>
#include “ProductOps.h”
#include “Invoice.hxx”

class InvoiceOps
{
public:

// Constructor & Destructor
InvoiceOps(d_Database* pDatabase);
virtual ~InvoiceOps();

void Add(ProductOps& POps); // Create invoices
void Delete(); // Delete invoices
void List(); // Print invoice listing

d_Database* pDB;

private:
// Enter items to an invoice interactively, a reference to a product

➥map
// is passed to verify the product in invoice items.
void AddItems(ProductOps& POps, Invoice* pInvoice);

};

#endif

//==
// InvoiceOps.cpp - Invoice Operations class implementation
//==

#include <iostream.h>
#include <algorithm>
#include <odmg.h>
#include <d_Extent.h>

#include “InvApp.h”
#include “Product.hxx”
#include “InvoiceOps.h”
#include “Invoice.hxx”

Object Persistence and Encryption

PART IV
726

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 726

// Constructor
InvoiceOps::InvoiceOps(d_Database* pDatabase)
: pDB(pDatabase)
{}

// Destructor
InvoiceOps::~InvoiceOps()
{}

// Enter invoices
void InvoiceOps::Add(ProductOps& POps)
{

if (POps.IsEmpty())
{

cerr << “No product available, “
<< “please enter products and try again!” << endl;

return;
}

d_Transaction tx;
Invoice* pInvoice;
long lngID;
char strID[MAXLEN + 1];

cout << “Add Invoices:\n”;
while(1)
{

cout << “Invoice ID (Type 0 to finish): “;
cin >> lngID;
cin.ignore();
if (lngID == 0) break;

_ltoa(lngID, strID, 10);

try
{

tx.begin();
pInvoice = new(pDB) Invoice(lngID);
pDB->set_object_name(pInvoice, strID);
tx.commit();
cout << “Invoice added to the list\n\n”;
AddItems(POps, pInvoice);

}
catch (d_Error derr)
{

tx.abort();
if (derr.get_kind() == d_Error_NameNotUnique)
{

cerr << “Invoice already exists!” << endl;
continue;

Object-Oriented Databases

CHAPTER 18
727

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 727

}
else
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “
<< derr.what() << endl;

return;
}

}
}

}

// Delete invoices from the database
void InvoiceOps::Delete()
{

d_Transaction tx;
d_Ref<Invoice> pInvoice;
long lngID;
char strID[MAXLEN + 1];

// Use the d_Database lookup_object() function to find an invoice
// and delete it if found
cout << “Delete Invoices:\n”;
while(1)
{

cout << “ID (Type 0 to finish): “;
cin >> lngID;
if (lngID == 0) break;

_ltoa(lngID, strID, 10);

tx.begin();
pInvoice = pDB->lookup_object(strID);
tx.commit();

if (pInvoice.is_null() == d_False)
{

try
{

tx.begin();
pInvoice.delete_object();
tx.commit();
cout << “Invoice deleted\n”;

}
catch (d_Error derr)
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “
<< derr.what() << endl;

return;
}

Object Persistence and Encryption

PART IV
728

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.16. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 728

}
else

cerr << “Invalid invoice ID, please try again.” << endl;
}

}

// Enter items to an invoice interactively
// Input : POps - A reference to a ProductOps object
// pInvoice - Pointer to the invoice
void InvoiceOps::AddItems(ProductOps& POps, Invoice* pInvoice)
{

d_Transaction tx;
InvoiceItem* pItem;
d_Ref<Product> pProduct;
char strProductID[MAXLEN + 1];
int intQty;

cout << “Add Invoice Items:\n”;
while(1)
{

do
{

cout << “Product ID (Type 0 to finish): “;
cin.getline(strProductID, MAXLEN);
if (strProductID[0] == ‘0’) return;

tx.begin();
pProduct = pDB->lookup_object(strProductID);
tx.commit();

if (pProduct.is_null() == d_True)
cerr << “Sorry, wrong product ID. Please try again.” <<

➥endl;
} while (pProduct.is_null() == d_True);

cout << “Quantity : “;
cin >> intQty;
cin.ignore();

try
{

tx.begin();
pItem = new(pDB) InvoiceItem(pProduct, intQty);
pItem->mpInvoice = pInvoice;
pInvoice->mItems.insert_element_last(pItem);
tx.commit();
cout << “Item added\n”;

}
catch (d_Error derr)
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “

Object-Oriented Databases

CHAPTER 18
729

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 729

<< derr.what() << endl;
return;

}
}

}

// List all invoices in the database
void InvoiceOps::List()
{

d_Extent<Invoice> InvoiceExtent(pDB);
d_Bag<d_Ref<Invoice> > Invoices;
InvoiceExtent.query(Invoices, “this->mID > 0”);

cout << “Invoice Listing:\n”;

PrintRef<d_Ref<Invoice> > DoPrintRef;
std::for_each(Invoices.begin(), Invoices.end(), DoPrintRef);

}

Most of the InvoiceOps functions are similar to their ProductOps counterparts. The con-
structor initializes the member variable pDB with a pointer to a database. The Add() func-
tion first checks to see whether there are any products in the database before adding
invoices. The object name of an invoice is set to its ID. Because an object name must be
a character string, we convert the ID from a long to a string using the _ltoa() function.
Although it is not a C or C++ standard library function,almost all vendors provide a
conversion function such as _ltoa() . (You can always write your own version if your
compiler does not provide one.)

The AddItem() function demonstrates an important feature of ODMG databases. Recall
that there is a bidirectional relationship between an invoice and an item. This relationship
is automatically maintained by the database. All we have to do is specify the objects to
be related. We can assign a reference to an Invoice object pInvoice to
pItem->mpInvoice like this:

pItem->mpInvoice = pInvoice;

In this statement,we tell the database that this item relates to the invoice pointed to by
pInvoice . The database automatically adds this item to the pInvoice->mItems set.

We can use the d_Set<T>::insert_element_last() function to add pItem to
pInvoice->mItems set,as in this example:

pInvoice->mItems.insert_element_last(pItem);

In this statement,the database automatically assigns pInvoice to the pItem->mpInvoice

member variable. This ensures that we will not have a broken relationship between
invoices and items.

Object Persistence and Encryption

PART IV
730

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.16. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 730

The Delete() function is almost identical to the ProductOps::Delete() function,except
that we must first convert the invoice ID from a long to a character string. The List()

function also uses the C++ standard algorithm for_each and the PrintRef function
object defined in Listing 18.15 to print invoices in thedatabase.

Now there is only one missing piece left:the main() function. It is shown in Listing
18.17.

LISTING 18.17. THE MAIN PROGRAM

//==
// main.cpp - The driver program for the application
//==

#include <iostream.h>
#include <odmg.h>

#include “ProductOps.h”
#include “InvoiceOps.h”

const char dbName[] = “InvApp”;

int main()
{

d_Database* db = new d_Database;
try
{

db->open(dbName);
}
catch (d_Error derr)
{

cerr << “ODMG Error [“ << derr.get_kind() << “] “ << derr.what()
➥<< endl;

return 1;
}

int intChoice = 0;
ProductOps Products(db);
InvoiceOps Invoices(db);

do
{

cout << “\nA Trival Invoice Entry Program\n\n”;
cout << “ 1. Enter invoices\n”;
cout << “ 2. Delete invoices\n”;
cout << “ 3. Print invoice list\n”;
cout << “ 4. Add products\n”;
cout << “ 5. Edit product\n”;
cout << “ 6. Delete products\n”;

Object-Oriented Databases

CHAPTER 18
731

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

continues

23 239-5 CH18 2/19/99 1:36 PM Page 731

cout << “ 7. Print product list\n”;
cout << “ 9. Exit\n\n”;
cout << “Enter your choice: “;
cin >> intChoice;
cin.ignore();
cout << endl;

switch(intChoice)
{
case 1: Invoices.Add(Products); break;
case 2: Invoices.Delete(); break;
case 3: Invoices.List(); break;
case 4: Products.Add(); break;
case 5: Products.Edit(); break;
case 6: Products.Delete(); break;
case 7: Products.List(); break;
case 9: cout << “Bye!\n\n”; break;
default: cout << “Please select 1, 2, 3, 4, 5, 6, 7 or 9.\n”;
}

} while (intChoice != 9);

db->close();
delete db;

return 0;
}

The major change from the original version of the main program is that a database must
be open before any operations can be performed. After finishing all operations,we close
the database and delete thedatabase object.

We have seen how a database application can be developed using the ODMG standard.
Now let’s consider some of the background issues related to ODBMS.

ODBMS Technical Issues
Several technical issues in the ODBMS design can affect the performance of certain
databases. Vendors must investigate how their customers will be using the product and
decide the best strategy for tackling these technical issues.

Client/Server Architecture
In a client/server environment,database server processes are responsible for data transfer
between the data storage and the server cache. These processes also manage transaction

Object Persistence and Encryption

PART IV
732

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

LISTING 18.17. CONTINUED

23 239-5 CH18 2/19/99 1:36 PM Page 732

processing and concurrent access to database objects. Depending on the ODBMS imple-
mentations,there may be one or more server processes. A server process can have multi-
ple threads,and each can perform operations for one client process. This arrangement
allows concurrent database access from many clients. Object representation in a server
cache is generally identical to object representation when stored in a database:It is inde-
pendent to the client application, which may be a C++ application running on a UNIX
box or a Java application on a Windows NT workstation.

A client cache serves as a view to a database. Objects are represented in native client
application format. For instance, a C++ application will see all objects—persistent or
not—as native C++ objects. Object mapping between server cache and client cache is
performed by an ODBMS automatically, transparent to the application software.

When a client application requires an object that is not in the client cache, it sends out a
request to a server process. The server process may return the requested object along
with others,depending on the data transfer granularity.

Data Storage and Object Clustering
Data is stored on pages in the storage media,usually hard disks. Each page is typically
2KB to 16KB in size. Disk managers usually read a block of pages of data at a time from
the disk. When a page is loaded in memory or the application cache, subsequent reads
and writes to objects on the same page are performed in the cache. If a group of objects
is likely to be accessed together, storing them on the same page can save a large amount
of disk access time and can greatly improve the application’s performance. The technique
for object grouping is calledobject clustering.

An ODBMS supports the storage and retrieval of networks of objects. In our simple
invoicing application, an Invoice object,a set of Item objects,and related Product

objects form a network of objects and are likely to be accessed at the same time. Thus,it
makes sense to store them on the same page. There are two common models for object
clustering.

The first is the a priori model. In this model,application developers decide what objects
should be grouped. This decision is based on a developer’s knowledge about the most
likely object access patterns. The ODMG standard provides a method to specify the
object grouping. When a new persistent object is created, we use an overloadedoperator
new() :

pProduct = new(pDB) Product(strID, strName, ushortPrice);

Another version of the overloaded operator new() accepts a reference to an object
(pProduct) and places the new object next to pProduct :

Object-Oriented Databases

CHAPTER 18
733

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 733

pProduct1 = new(pProduct) Product(strID, strName, ushortPrice);

This approach requires only that the new object be placed next to the referenced object,
not necessarily on the same page. It is up to the implementation to decide whether the
objects should be on the same page.

A drawback of this approach is that the object access patterns are not constant; they may
change over time. The access patterns may overlap as well. For example, a stock level
analyzer may want to access invoices and related products,but a customer report may
want to access invoices and customers. If we cannot place all objects related to an
invoice on one page, which objects should be on the samepage?

To overcome this weakness,the ODBMS can use another model:the ex postmodel. In
this model,the database or the administrator makes the decision after carefully analyzing
the access patterns statistics in real time. Objects can be reorganized according to the
best clustering strategy. This model,however, has the drawback of having to reorganize
objects in real time, which has significant impact ondatabase performance.

Data Transfer Granularity
Objects in a databaseare loaded in the server cache. When the objects are processed by a
client-side application, they must be transferred to the client cache. Technically, we can
just transfer the object to be processed to the client because network throughput is limit-
ed. Unfortunately, applications often have to access a group of objects at a time. For
example, to display an invoice, we need one Invoice object,several InvoiceItem

objects,and several Product objects. If we transfer one object at a time, we invoke a
number of network requests and responses. That transfer time will become slower as the
number of involved objects increases.

A natural solution for this is that, in combination with object clustering, we can transfer
a page at the time. After all, the entire page is already loaded in the server cache. A
pleasant side effect is that the page may also hold the next object to be accessed. This
approach can be very efficient when we need to perform an operation on a sequence of
objects. For example, when printing product lists,we have a very good chance of getting
the next product in thelist on the same page.

Transferring objects by page, however, is not very efficient when we have to access only
a small number of objects. For instance, if an application process is interested in only
two objects—an invoice and a customer—transferring a page that contains 100 objects
wastes alarge chunk of network bandwidth.

Object Persistence and Encryption

PART IV
734

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 734

A more clever approach is to transfer only required objects between the server cache and
the client cache. This eliminates the unnecessary network round trips incurred with
object transfer, and also reduces the use of the network bandwidth. This approach
requires a more sophisticated negotiation process between the client and the server. The
client must indicate the required objects and the server must be able to respond correctly.
This approach, however, adds workload to the server process and can slow down the
server access time.

Data Locking Granularity
Databases support concurrent access of the same objects by different applications. To
prevent data corruption caused by two or more processes modifying the same objects,
one process that wants to modify a particular object must lock it so that others cannot
modify it. When the modification is done, the object is unlocked, and other processes can
proceed to change it. There may be situations in which deadlocks arise. Assume that
process A locks object X,and process B locks object Y. If A requests a lock on object Y
before it releases the lock on object X,it must wait until B releases the lock. If, in the
meantime, process B tries to lock object X,it must wait for process A to release the lock.
Now processes A and B are in a deadlock: Neither of them can apply the second lock or
releasethe first lock.

An ODBMS can lock a particular object,or it can lock the entire page that contains the
object. Locking by object reduces the chance of deadlocks because fewer objects are
being locked. Locking individual objects is more efficient when only a small number of
objects are involved. When the number of objects to be updated increases,the application
must apply for dozens or even hundreds of locks. Such a lock-application process can
become lengthy. Locking individual objects does not take advantage of object clustering.

Locking by page, on the other hand, works well with good object clustering. If objects to
be locked are located on the same page or pages,a few page locks can replace hundreds
of object locks. However, locking by page has a higher chance of causing false deadlocks
because it locks objects that do not have to be locked. This weakness,however, becomes
less relevant when object clustering is implemented correctly; in a well-designed cluster-
ing situation, the unrelated objects will occupy only a small portion of the locked page.

Object-Oriented Databases

CHAPTER 18
735

18

O
B

JEC
T-O

R
IEN

TED
D

A
TA

B
A

SES

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 735

Summary
This chapter introduced the concept of ODBMS and some of its technical issues. In the
chapter, we demonstrated the ODMG standar d C++ binding features with a simple
invoicing application. Compared to traditional DBMS, ODBMS has yet to live up to the
high expectations put on the technology. Its market acceptance is moderate because MIS
managers are generally reluctant to move mission-critical corporate data to a relatively
young and evolving technology.

As the technology has matured, however, ODBMS vendors have greatly improved their
products to offer almost all the features provided by traditional DBMS. In addition, cur-
rent ODBMS products offer the ability to store complex object structure, the ease of
development,and object-oriented programming language support. Many vendors have
also started to comply with the ODMG standard, which will help encourage the industry
adoption of ODBMS in the near future.

Object Persistence and Encryption

PART IV
736

P2/V3 C++Unleashed 239-5 heather 10.13.98 Chapter 18 Lp#1

23 239-5 CH18 2/19/99 1:36 PM Page 736

IN THIS CHAPTER

• A Brief History of Encryption 738

• Understanding Encryption 740

• Private Key Cryptography 747

• Public Key Cryptography 753

• Using Pretty Good Privacy (PGP) 757

• Limitations of Cryptography 762

• Legal Restrictions on
Cryptography 764

• Cryptographic Attacks 765

• Digital Signatures 767

• Commercial Cryptographic
Products 769

19
C

H
A

PT
ER

Protecting
Applications Using
Encryption

24 239-5 CH19 2/19/99 1:38 PM Page 737

A Brief History of Encryption
Encryption is away of protecting data against unauthorized use. Several techniques have
been used throughout the years to protect data against enemies who would misuse the
information. Thousands of years ago, the main use of using encryption was to protect
data during war. David Kahn,in his impressive work, The Codebreakers: The
Comprehensive History of Secret Communication from Ancient Times to the Internet, has
traced the history of cryptography as far back as ancient Egypt, progressing through
India,Mesopotamia,Babylon, World War I,World War II, and into modern times,where
encryption has taken on new meaning.

The extensive use of telegraph and radio waves in modern times has increased the need
to encrypt information because sophisticated techniques are available to intercept the
information that flows in today’s global environment. Military communication without
the use of encryption is worthless. The biggest achievements in cryptography can be
attributedto the work done by Alan Turing during World War II. Using the help of Alan
Turing in Britain, the allies were able to use computers to break the Enigma code used
by Germany during the war.

Since World War II, the National Security Agency (a branch of the Department of
Defense) has become the center for cryptographic research and activity. The existence of
this highly secret organization within the government was denied until recently and is
jokingly referred to as “No Such Agency.” The budget and activities of this agency are
highly classified. It has been rumored that the NSA employs the largest number of math-
ematicians in the world and actively eavesdrops on phone conversations.

For years, the use of codes and ciphers was reserved to the NSA and military operations.
Civilians had to be content with using envelopes and couriers to protect data. With the
computer revolution and the explosion of the information age—and especially the
Internet—the need for encryption in civilian use was recognized. The manner in which
data was disseminated through electronic mail and the Internet,and the financial value
attached to the information, fueledenough research for civilians to use encryption.

In the late 1960s,a cryptographic research group was set up by IBM chairman Thomas
Watson,Jr. This group,led by Horst Feistel,developed a private key encryption method
calledLucifer, which was used by Lloyd’s of London to protect a cash-dispensing sys-
tem. The success of Lucifer promptedIBM to make it available for commercial use. The
team formed for this purpose was headed by Dr. Walter Tuchmanand Dr. Carl Meyer,
who tested the cipher and fixed the flaws they found in the method. By 1974,the cipher
was ready andavailable on a silicon chip.

Object Persistence and Encryption

PART IV
738

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 738

However, IBM was not the only company to make ciphers available commercially. Other
companies made other codes available, but there were some problems associated with all
these ciphers:

• They could not communicate with each other

• There was no way to determine their strength

The Role of the National Bureau of Standards
In 1968,the National Bureauof Standards (NBS)—which has since been renamed to the
National Institute of Standards and Technology (NIST)—took on the task of researching
the needs of civilians and the government in terms of computer security. It was deter-
mined that the United States needed a single and interoperable standard for encrypting
data for the purposes of storing and transmitting unclassified information. It was decided
that classified data was still in the jurisdiction of the NSA.

A request for proposals was published in the Federal Register by the NBS on May 15,
1973. There were several requirements for thealgorithm, which included the following:

• The algorithm should provide a high level of security

• The algorithm should be public and peer reviewed

• The algorithm should be easy to understand

• The security of the algorithm should lie with the key and not with the algorithm

• The algorithm should be flexible enough to be easily adapted to a variety of appli-
cations

• The implementation of the algorithm should be cost effective

• The algorithm and the devices implementing it should be exportable

• The algorithm should be easy to validate

• The algorithm should perform efficiently in a reasonable amountof time

The initial submissions to this request were not encouraging because none of them satis-
fied all the requirements. Another request was made on August 27,1974,in the Federal
Register and there was one response:a version of the Lucifer algorithm that was weak-
ened in some ways and strengthened in other ways by the NSA. This algorithm became
theU.S. Data Encryption Standard (DES)

DES was created by the cooperative efforts of IBM and the NSA. Instead of the 128-bit
keys used in the Lucifer algorithm, DES used 56-bit keys. Several changes were made to
the algorithm as recommended by NSA, and finally the NBS published it on March 17,
1975,in the Federal Register. The algorithm was formally adopted for widespread use on

Protecting Applications Using Encryption

CHAPTER 19
739

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 739

November 23,1976. Federal Information Processing Standard (FIPS PUB 46) describes
the algorithm.

On the surface, it appears that the security of DES is less than that of Lucifer. According
to cryptography historian David Kahn,DES resulted from a compromise between two
separate sides in the NSA:One side of the codemaking group wanted to make sure that
any code they made public should be good; the other side of the codebreaking group
wanted to make sure that any code made public should be such that the NSA should be
able to break it when the code is used by foreign governments. The resultant algorithm
was a weaker version that used 56-bit keys but strengthened the “S-boxes” that perform
substitution.

At the 1993 Crypto Conference held at the University of California at Santa Barbara,a
paper was presented by Michael Wiener of Bell Northern Research that described how a
machine can be created to break the DES code. This machine makes use of a chip that
tries 50 million DES keys per second. Using the brute-force approach, the average time it
took to break a DES-encrypted message was 3.5 hours; the machine would cost $1 mil-
lion.

Alternatives to DES were sought because of the weaknesses identified in DES. Still,
DES remained in wide use until recently. Other variations of DES used longer keys, larg-
er block sizes,and increased rounds of encryption (such as that approach used in Triple-
DES). The government has recently proposedClipper as an alternative toDES; however,
this alternative is already under fire from several sides. Clipper is described later in this
chapter.

Understanding Encryption
Encryption relies on a branch of mathematics called cryptography to protect information.
The principles behind cryptography are simple. A practical encryption system consists of
four parts:

• Plaintext: The message to be encrypted.

• Ciphertext: The message after it has been encrypted.

• Encryption algorithm: Themathematical function or algorithm used to encrypt
the message.

• Encryption key: Thenumber(s) or word(s) or phrase(s) used by the encryption
algorithm.

The main goal of performing encryption is to create a ciphertext from plaintext such that
it is impossible to convert the ciphertext back to the plaintext without using theencryp-
tion key.

Object Persistence and Encryption

PART IV
740

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 740

Codes
Codesare the simplest encryption technique because they use a code table to encrypt
information. Suppose that you want to send a secret message to a friend; you do not want
the message to be intercepted or understood by someone eavesdropping. Also suppose
that the message you want to convey to your friend could be one of four possibilities:

• Go out for dinner and movie

• Go out for dinner only

• Go out for movie only

• Stay home

You can use codes for these messages as shown in Table 19.1.

TABLE 19.1. USING CODES TO PERFORM ENCRYPTION

Code Word Message

Mercury Go out for dinner and movie

Venus Go out for dinner only

Earth Go out for movie only

Mars Stay home

You can create two copies of this table and give one to your friend. Now, when you say
the word Earth, your friend knows exactly what you mean. This method works well for a
few occasions,but if used repeatedly, it becomes less effective: Someone eavesdropping
won’t take long to figure out the meaning of those words. (One variation of the code
approach is to use multiple code tables and use different code tables on different occa-
sions.) Another disadvantage of this method is that the number of messages you can send
is limited to thesize of the table.

Ciphers
Ciphers are analternative to codes. Ciphers use a scrambling technique to scramble the
letters in the message; the message can be deciphered by the receiver using the descram-
bling key. Ciphers eliminate the problem of having limited messages. The simplest tech-
nique for ciphering is touse substitution ciphers: In a substitution cipher, each letter of a
message is substituted with a different letter. TheCaesar Cipheris a very common sub-
stitution cipher technique; it simply shifts the alphabet three places to the right.
Variations of this method can be done by shifting n places to the right. Suppose that we
decide to shift the letters in a message five places,as shown in Figure 19.1.

Protecting Applications Using Encryption

CHAPTER 19
741

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 741

The messages are now coded as follows:

MOVIES => HJQD9N
DINNER => 8DII9M
HOME => CJH9

The biggest problem with ciphers is that they are easy for an experienced cryptanalyst to
crack. Given a few words,it can be easy to find some regularities in them. An implemen-
tation of the substitution cipher is shown in Listing 19.1.

LISTING 19.1. AN IMPLEMENTATION OF THE SUBSTITUTION CIPHER

//Author: Megh Thakkar
// A Simple implementation of a substitution cipher
// Purpose: This cipher prompts the user
// for the number of
// places to shift and then shifts the characters
// by that many
// places.

#include <stdio.h>
#include <iostream.h>

int main()
{

int c;

int sf_places;

cout << “\n Enter the number of places to “
<< “shift characters: “;

cin >> sf_places;

while ((c = getchar()) !=EOF) {
if (‘a’ <= c && c <= ‘l’)

c += sf_places;
else if (‘A’ <= c && c <= ‘L’)

c += sf_places;
else if (‘m’ <= c && c <= ‘z’)

c -= sf_places;
else if (‘M’ <= c && c <= ‘Z’)

Object Persistence and Encryption

PART IV
742

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

FIGURE 19.1.
Using a five-place
shift cipher.

A B C D E F G H I J K L M N O P Q

5 6 7 8 9 A B C D E F G H I J K L

S T U V W X Y Z 0 1 2 3 4 5 6 7 8

N O P Q R S T U V W X Y Z 0 1 2 3

24 239-5 CH19 2/19/99 1:38 PM Page 742

c -= sf_places;
putchar(c);

}
return 0;

}

Listing 19.2 shows an implementation of the Caesar Cipher.

LISTING 19.2. AN IMPLEMENTATION OF THE CAESAR CIPHER

// Author: Megh Thakkar
// A Simple implementation of the Caesar Cipher
// Usage: caesar input_file output_file key
// Purpose: This program takes a plaintext file
// and encrypts it using the
// Caesar Cipher.
// It can also be used to decipher a file that
// been encrypted using the Caesar Cipher.

#include <iostream.h>
#include <stdio.h>
#include <ctype.h>
#define l2n(X) (toupper(X) - ‘A’)
#define n2l(X) ((X) + ‘A’)
#define ALPHABET_LEN 26

int main(int argc,char *argv[])
{

char c;
char *key;
int z;
int decrypt = 0;
FILE *infile;
FILE *outfile;

infile = fopen(argv[1], “rb”);
outfile = fopen(argv[2], “wb”);
key = argv[3];

if (infile == NULL || outfile == NULL)
{
cout<< “\nSorry. Files cannot be opened\n”;
return -1;
}

cout << “\n Do you want to encrypt[0] or decrypt[1]: “;
cin >> decrypt;

Protecting Applications Using Encryption

CHAPTER 19
743

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

continues

24 239-5 CH19 2/19/99 1:38 PM Page 743

while ((z = getc(infile)) != EOF) {
c = (char)z;

if (isalpha(c)) {
c = l2n(c);
if (! decrypt) {
c = (c + l2n(*key)) % ALPHABET_LEN;
}
else
{
c = (c + ALPHABET_LEN - l2n(*key)) % ALPHABET_LEN;
}
c = n2l(c);
}

putc(c,outfile);
}
return(0);

}

Vernam Cipher
Vernam ciphers are also calledone-time pads. You can use them to get the flexibility of
ciphers and also retain the security of a code. Basically, this technique uses a set of code
tables such that each table represents one particular part of the message. Essentially, it
uses the words in one table to create a part of the message and then shuffles the words in
the table to create a new table, which is then used to write another part of the message;
the words in that second table are then shuffled again to write a third part of the message.
The process continues in this way until the message is done. The only way to break this
ciphertext is to use the exact same shuffle and the exact same number of words. Figure
19.2 shows a one-time pad.

Object Persistence and Encryption

PART IV
744

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

LISTING 19.2. CONTINUED

FIGURE 19.2.
An example of a
one-time pad.

1. Yes

2. No

3. Take

4. Give

5. Car

1. Give

2. Take

3. No

4. Car

5. Yes

1. Car

2. Take

3. No

4. Yes

5. Give

1. No

2. Take

3. Give

4. Yes

5. Car

You can make use of a random number generator to determine how to shuffle the letters;
shuffling is done for each letter. The one-time use of the code table before it is reshuffled

24 239-5 CH19 2/19/99 1:38 PM Page 744

gives it the necessary security. Each table can represent a paper in the one-time pad. In
other words,only the one-time pad used to encrypt the message can be used to convert
the ciphertext back to the plaintext.

Each page in the pad consists of a different set of codes. You can create part of the mes-
sage using one page, create another part of the message using the second page, and so
on. In other words,parts of the message are constructed using different “code tables”; to
decrypt this message, you must use the code tables in the exact same sequence they were
used to encrypt the message.

Listing 19.3 shows an implementation of a one-time pad.

LISTING 19.3. AN IMPLEMENTATION OF A ONE-TIME PAD

//Author: Megh Thakkar
//Implementation of one-time pad
//Usage: onetime input_file key_file output_file offset
//Description: It accepts three files as parameters.
// It performs exclusive OR on the first two files and
// places the result in the third file.
//

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

#define BUF_SZ 32768U

long offset = 0; // Offset into key file.
FILE *infile = 0;
FILE *keyfile = 0;
FILE *outfile = 0;

size_t amt_read = BUF_SZ;
size_t amt_write = BUF_SZ;
size_t amt_key;

//amt_read, amt_write and amt_key are used during encryption
//to find the number of characters in use.

// Allocate disk buffers.
// b1 is used for input and output files
//while b2 is used for the key file

char * iobuf;
char * kbuf;

int i; //Used for looping.

Protecting Applications Using Encryption

CHAPTER 19
745

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

continues

24 239-5 CH19 2/19/99 1:38 PM Page 745

int main(int argc, char * argv[])
{

if (argc != 5)
{

cout <<”\nUsage: onetime input_file “
<< “key_file output_file offset.”;

return -1;
}

offset = strtol(argv[4], NULL, 0);
if (offset < 0)
{

cout << “\n “ << argv[4]
<< “ is not a valid value.”

<< “\nOnly positive offset values”
<< “are allowed.\n”;

return -1;
}

// Open files.

infile = fopen(argv[1], “rb”);

keyfile = fopen(argv[2], “rb”);

outfile= fopen(argv[3], “wb”);

if ((infile == NULL) || (keyfile == NULL)
|| (outfile == NULL))

{
cout << “\n Sorry. Unable to open files”;

}

// Go to the specified offset position in the key file

if (offset != 0)
{

if (fseek(keyfile, offset, SEEK_SET))
{

cout << “\nError: Unable to seek to “
<< “the offset value” << “\n”;

}
}

iobuf = new char[BUF_SZ];
kbuf = new char[BUF_SZ];

Object Persistence and Encryption

PART IV
746

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

LISTING 19.3. CONTINUED

24 239-5 CH19 2/19/99 1:38 PM Page 746

if ((iobuf == NULL) || (kbuf == NULL))
{
cout << “Error.Insufficient memory\n”;
return -1;
}

//Perform the encryption.

while (amt_write > 0)
{

amt_write = fread(iobuf, 1, amt_read, infile);
amt_key = fread(kbuf, 1, amt_write, keyfile);
if (amt_key < amt_write)

{
cout << “\nERROR: Key length after “

<< “offset is too short”;
amt_write = amt_key;

}

for (i = 0; i < BUF_SZ; i++)
iobuf[i] ^= kbuf[i];

amt_key = fwrite(iobuf, 1, amt_write, outfile);
}

// Close files

fclose(infile);
fclose(keyfile);
fclose(outfile);

return 0;
}

Private Key Cryptography
The kind of cryptography used in earlier days and in the code and cipher techniques such
as the Caesar Cipher and Vernam Cipher is called private key or secret key cryptography.
The term private key is used because this technique implies that both the sender and the
receiver of the message have a key that must be kept private. Private key cryptography
makes use of the same key on both the sending and the receiving end and is therefore
also referred to assymmetric cryptography.

Whenever you want to communicate with someone using these methods,you must give
the cryptographic key to the person with whom you want to communicate. The process
of exchanging thecryptographic key is referred to as key distribution and can be very

Protecting Applications Using Encryption

CHAPTER 19
747

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 747

difficult: The key is the secret to breaking the ciphertext; if there exists a really secure
method of communicating the key, why isn’t that method used to communicate the mes-
sage in the first place? For many years, the key distribution method used by the United
States government was to place the keys in a locked briefcase which was handcuffed to a
courier. The courier would board an airplane and would be met at the destination country
by an official from the U.S. embassy and taken to the embassy. The cuffs would be
removed at the embassy, and the keys were then available to decipher diplomatic mes-
sages. The courier did not have a way to remove the cuffs or open the briefcase. If the
bad guys caught the courier, the diplomats in the United States would know about it and
would not use those particular keys to encrypt messages.

Private Key Algorithms
There are several popular private key algorithms. We will briefly describe just a few of
them:

• DES: The Data Encryption Standard was adopted by the U.S. government in 1977
and as an ANSI standard in 1981. It makes use of 56-bit keys to encrypt the infor-
mation.

• Tr iple-DES: This algorithm is a variation of DES; it uses the DES encryption
algorithm three times with two different keys. This technique is currently used by
financial institutions.

• RC codes:Rivest codes are named after MIT professor Ronald Rivest who is also
the coinventor of the RSA public key encryption algorithm. These methods are
proprietary algorithms that are distributed by RSA Data Security. The two most
popular codes are RC2 (which is a block cipher method like DES) and RC4 (which
is a stream cipher that produces a stream of pseudo-random numbers that are XORed
with the information).

These codes can be used with keys from 1 to 1,024 bits in length. There is no esti-
mate of how secure these codes really are becausethey are proprietary.

• IDEA: In 1990,James L. Massey and Xuejia Lai developed and publishedthe
International Data Encryption Algorithm in Zurich, Switzerland. This technique
uses a 128-bit key and seems to be very strong (although the exact nature of the
security it provides is not known).

• Skipjack: This secret algorithm was developed by the National Security Agency
for civilian purposes. It uses an 80-bit key. It is at the heart of the Clipper chip
used by law enforcement agencies to perform legal wiretaps. The Clipperchip is
not as secure as Skipjack.

Object Persistence and Encryption

PART IV
748

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 748

There are several problems associated with private key encryption:

• As mentioned earlier, the biggest problem with private key encryption is the
method of key distribution. Figure 19.3 shows that for secure communication
among three people, you need three keys. Figure 19.4 shows that for similarly
secure communication among four people, you need twice as many keys. If two
more people join the secure loop,you need 15 keys. In general, for a secure loop
involving n people, you need n(n-1)/2keys. This can be quite a large number of
keys to manage for real-world situations such as those in financial institutions. The
reason for such a large number of keys is that each pair of individuals involved in
private key encryption shares a key.

• The second problem with private key encryption is the security involved indistrib-
uting the key itself.

Protecting Applications Using Encryption

CHAPTER 19
749

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

FIGURE 19.3.
Private encryption
with three people.

User1

User2 User3

Key2 Key1

Key3

FIGURE 19.4.
Private encryption
with four people. User1 User2

Key1

Key2 Key6 Key5 Key3

User3 User4

Key4

Mechanics of Secret Key Encryption
Most successful secret key encryption techniques use a simple set of functions and pro-
cedures to convert the plaintext into ciphertext. The concept of block encryption is very
commonly used for this purpose; it involves the use of a block or a group of bytes for

24 239-5 CH19 2/19/99 1:38 PM Page 749

encryption purposes instead of a single byte or character. Each block can be operated on
by any combination of several processes. The final ciphertext can be generated by apply-
ing the following processes during several iterations or rounds of encryption:

• Substitution techniques: Substitution techniques are very commonly used in
encryption algorithms. As we have seen earlier, a knowledge of the language and
the context of the message gives a hacker a lot of information about how to deci-
pher the code. Therefore, block encryption is used instead of bit or character sub-
stitution. Security is obtained by having a one-to-one mapping between blocks of
characters of plaintext and blocks of ciphertext of the same size—but the relation-
ship between them is not easy to figure out. Substitution techniques usually use
some simple strategy such as a lookup table or the XORfunction.

• Permutation: You canrearrange the characters of a plaintext message to convert
the message into an anagram that looks like a message with random characters. For
example, most messages consist of 7-bit ASCII characters. By scrambling the bits
to create a random set of bits,you can get the desired encryption. Permutation
techniques are usually used in conjunction with other techniques such as substitu-
tion.

• Encryption functions: Exclusive ORis an example of an encryption function (as
described in the following section). Other functions such as binary addition, multi-
plication, and modular arithmetic functions are also common.

Using Exclusive OR(XOR) to Perform Block Encryption
A very popular method for performing simple encryption is the XORfunction. The
Exclusive ORfunction is used to indicate that if there are two conditions (say conditionA
and conditionB),then either conditionA is true or conditionB is true—but not both. The
complete set of possibilities for two values being XORed and their result is as follows:

XOR(0,0) = 0
XOR(0,1) = 1
XOR(1,0) = 1
XOR(1,1) = 0

The best thing about the XORfunction is that it can be used to reverse itself and can there-
fore be used for encryption purposes.

Suppose that we take the values A = 10101000 and B = 00111001 . Therefore,
C = XOR(A,B) = 10010001 .

Now if we take B and XORit with C, we will obtain A:

XOR(B,C) = XOR(00111001, 10010001) = 10101000 = A

Listing 19.4 shows how the XORfunction can be implemented.

Object Persistence and Encryption

PART IV
750

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 750

LISTING 19.4. AN IMPLEMENTATION OF THE XORFUNCTION

//Author: Megh Thakkar
// A Simple implementation of XOR function
// Usage: xor key input_file output_file
// Purpose: This program takes a plaintext file
// and performs XOR
// between each character of the file and the supplied key
// and places the encrypted result in the “cipher” file.

#include <stdio.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

FILE *plain, *cipher;
char *cp;
int c;

if ((cp = argv[1]) && *cp!=’\0’)
{

plain = fopen(argv[2], “rb”);
cipher = fopen(argv[3], “wb”);

if (plain == NULL || cipher == NULL)
{
cout<< “\nSorry. Files cannot be opened\n”;
return -1;
}

while ((c = getc(plain)) != EOF)
{

if (*cp == ‘\0’)
cp = argv[1];

c ^= *cp++;
putc(c, cipher);

}
fclose(cipher);
fclose(plain);

}
return 0;

}

Using Substitution Boxes
A popular method of implementing a substitution function is to use a construct referred
to as a substitution box, or an S-box. The S-box function takes some bit or set of bits as
input and provides some other bit or set of bits as output. It makes use of a replacement
table to perform the conversion.

Protecting Applications Using Encryption

CHAPTER 19
751

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 751

Object Persistence and Encryption

PART IV
752

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

NOTE

These reference tables can map more than one input to the same output. As a
result of this truth, a hacker cannot take the output from an S-box and figure
out which of the many inputs may have been used to generate the output.

Using Expansion Permutation
The expansion permutation takes a block of data and expands it into a set of overlapping
groups; each group may be small compared to the original block. Suppose that we have a
block of 24 bits; we can perform expansion permutation to convert it into a block of 36
bits as follows:

1. Break the 24 bits into six groups of four bits each.

2. To each group,add the bit that precedes it and the bit that follows it.

Now we have six groups with six bits each for a total of 36 bits.

The techniques in this and the preceding sections are just some of the commonly used
methods in encryption algorithms. You can mix and match them to obtain an encryption
algorithm. However, the security of encryption algorithms is not related to the usage of
specific techniques or at least a certain number of these methods. The security of encryp-
tion algorithms is discussed in the section “Strong Algorithms” later in this chapter.

Using Encryption Rounds
Encryption algorithmsbecome more complex and secure at the same time by using dif-
ferent encryption techniques one after the other. However, it is important to use different
techniques in different rounds. For example, if you use substitution (or iteration) during
the first round of encrypting plaintext, and use substitution again on the ciphertext in the
second round (even if the substitution characters are different in the two rounds),the
resultant ciphertext is no more secure than using just one round of substitution. In fact,
even if you use a thousand rounds of substitution,the security is the same as using one
round because there is always a one-to-one mapping between the plaintext and the final
ciphertext. A much more secure encryption can be obtained by using one round of substi-
tution followed by a second round of permutation. Popular encryption algorithms make
use of 8 or 16 different rounds of encryption techniques.

24 239-5 CH19 2/19/99 1:38 PM Page 752

Using Key Distribution Centers
One commonly usedtechnique with private key encryptions is the Key Distribution
Centers (KDC). Whenever userA wants to communicate with userB, userA calls the
KDC, which generates a random and one-time usage session key. The generated key is
encrypted and sent to the appropriate users who can then communicate with each other.
The problem with this method is that the key used to encrypt the session keys is on file at
the KDC. So anyone who has access to the files at the KDC can get the encryption keys.
A recent Secret Service spy case involved an NSA agent,Ronald Pelton,who was selling
cryptographic keys to the communists.

From the preceding discussion,it should be clear that private keys can become hard to
manage for communication between civilians. The solution to this problem is the use of
public encryption keys.

Public Key Cryptography
Public key cryptography is also referred to as asymmetric cryptography and is the result
of a mathematical breakthrough that occurred in 1970. Unlike symmetric key methods
that use a single key for encryption and decryption,asymmetric methods make use of
two keys: a secret key and a public key. The public key is used to encrypt the message
and the secret key is used to decrypt the message. The receiver has the secret key that
should be protected. A mathematical process can be used to generate the two keys that
are mathematically related. Refer to Figure 19.5 to understand how the different keys are
used in public cryptography.

Protecting Applications Using Encryption

CHAPTER 19
753

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

FIGURE 19.5.
Understanding
public key cryp-
tography and the
use of public and
secret keys.

Recipient’s
Public Key

Encryption
Program

Recipient’s
Secret Key

Decryption
Program

Original
Message

Original
Message

Encrypted
Message

24 239-5 CH19 2/19/99 1:38 PM Page 753

The goal of public key cryptography was to eliminate the biggest problem of private key
cryptography of key distribution. Several techniques have been identified in the domain
of public key cryptography over the years. These techniquesare described in the follow-
ing sections.

Ralph Merkle’s Puzzle Technique
Ralph Merkle has published his work in Communications of the ACM, a premier
computer science journal. He said that his work was “secure communication over inse-
cure channels.” The basis of his communication approach involves the use of puzzles. To
understand this method, assume that John and Jane want to communicate with each other
over a channel that is known to be insecure. John first creates a large number of encryp-
tion keys—say a million keys. John then places the keys in puzzles—one key per puzzle.
Each puzzle takes a couple minutes to solve. John sends the puzzles to Jane, who choos-
es any one of the puzzlesand its associated key. Using this key, Jane encrypts a message
and sends it to John. John now figures out the key Jane chose based on his list of keys.
Future communications between John and Jane occur using this key. An eavesdropper
will be aware of the puzzles going back and forth but will take an extremely long time to
figure out the exact key.

In simple words,John creates a very large number of keys and “envelopes”or hides the
keys in some “cover”—one key in one envelope—and sends these envelopes to Jane.
Jane randomly picks any envelope and therefore one key, encrypts a message using that
key, and sends the message to John. John can figure out which key was chosen because
John has all the keys. This key then becomes the key for future conversations.

Diffie-Hellman Multiuser Cryptographic
Techniques
A paper called “Multiuser Cryptographic Techniques”was published in 1975 by
Whitfield Diffie and Martin Hellman. Their cryptographic techniques used the concept
commonly used now in public key cryptography. The basic idea of this strategy was that
it should be possible to encrypt a message using one key and decrypt the message using
another key. Several suggestions were made to Diffie and Hellman about how this could
be achieved, including the following:

• Multiplying prime numbers,which can be done easily; but it is difficult to factor
the corresponding result.

• Using a discrete exponentiation of numbers; the corresponding task of discrete log-
arithms is difficult.

Object Persistence and Encryption

PART IV
754

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 754

Diffie and Hellman chose the second approach to conduct further research. The Diffie-
Hellman exponential key exchange approach was published in their paper “New
Directions in Cryptography” in IEEE Transactions on Information Theory.

The Diffie-Hellman approach is based on the following suggestion by John Gill, another
Stanford colleague:Take the exponents of numbers and calculate the results modulo
some prime number.

The method works as follows:

1. Both the active participants must first agree on two numbers, p and q. Numbers p
and q can be publicly known.

2. Each participant must now choose a number, perform a mathematical operation
that involves p, q, and the chosen number, andtransmit the result to the other par-
ticipant.

Suppose that the first participant chooses M1and the other participant chooses M2.
The result of their separate mathematical operations are N1 and N2.

3. Using a second mathematical formula,both participants can now compute another
number, K, such that K can be computed as a function of the numbers M1and N2 or
the numbers M2and N1—but not the numbers N1 and N2. Future communications
occur using the session key K.

The eavesdropper canhave access to p, q, N1, and N2 but neither M1nor M2. As a result,
the eavesdropper cannot calculate K. Thus K can be used as a session key for a private
key encryption algorithm such as DES.

This method is used for communication between two people and makes use of three
keys: two secret keys (one for each person) and a session key determined by the two peo-
ple during the course of the conversation. In other words,the conversation starts with the
two people using their own keys; they exchange information to determine a session key
which is then used for all future messages.

The RSA Technique
The RSA techniqueis one of the most powerful encryption methods known. It is used as
the public key system in PGP(Pretty Good Privacy, a popular encryption method
described later in this chapter). RSA makes use of any publicly available key to encrypt
the information, but the decryption can be done only by the person who holds the match-
ing secret key. RSA can also be used as a digital signature system.

The biggest problem with the Diffie-Hellman method is that the two participants must
communicate actively. This may not be possible in email communication between two
people who are not necessarily actively conversing.

Protecting Applications Using Encryption

CHAPTER 19
755

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 755

In 1976,three professors in the computer science lab at MIT—Ronald Rivest,Adi
Shamir, andLen Adelman—started working on the proposition made in the Diffie-
Hellman paper, “New Directions in Cryptography,” to find a practical multiuser cryptog-
raphy system. After several months of research, they were about to conclude that such a
public system was not possible. Then,in 1977,they realized a basic fact: It is very easy
to multiply two prime numbers to get a large composite number, but it is difficult to take
that composite number and find its prime number components. The outcome of this
research is the technique simply referred to by the initials of its three inventors: RSA.
This method is better than the Diffie-Hellman key exchange method because it does not
rely on active participation between the person performing the encryption and the person
performing the decryption.

To understand how RSA works,here’s an example described in Bruce Schneier’s book,
Applied Cryptography. The steps to effectively use RSA are as follows:

1. Choose two very large prime numbers at random,say Mand N.

2. Obtain Z (the encryption modulo) by multiplying Mand N. In other words,Z = M*N .

3. Choose E (the encryption key), which is relatively prime to (M-1)*(N-1) .

4. Publish Z and E as the RSA keys that others can use to encrypt the information.

Suppose that you choose M = 47 and N = 71 . Therefore, Z = 47*71 = 3337 . Now you
have to choose E such that it is relatively prime to (M-1)*(N-1) = 46*70 = 3220 .
Suppose that you pick E = 79 . The decryption key is now calculated using the extended
Euclid algorithm and the prime numbers as follows:

D = 79-1 (mod 3220) = 1019

Object Persistence and Encryption

PART IV
756

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

NOTE

This algorithm is in the PGP source code; it is not described here because it is
beyond the scope of this book.

Now a user who wants to encrypt and send some information to us can use Z and E to
encrypt the data. Suppose that someone wants to send us the number 688 . To do so,
they’d perform the following calculation:

688 79 mod 3337 = 1570

We would receive the number 1570 and decrypt it as follows:

1570 1019 mod 3337 = 688

24 239-5 CH19 2/19/99 1:38 PM Page 756

The security of RSA depends on the following:

• The numbers Mand N must be kept secret. This is obvious: If Z and E are already
public and you also know Mand N, it is not very difficult to figure out the decryp-
tion key D.

• It should be extremely difficult to factor Z. If Z can be easily factored, you can
derive Mand N from it, and then you can easily find out the decryption key.

• There should be no other mathematical techniques to derive thedecryption key
using Z and E.

Using Pretty Good Privacy (PGP)
Pretty Good Privacy (PGP) is a very popular encryption method that makes use of both
public and private key cryptography. The latest version—PGP 3.x—uses the following
steps to create a secure message-passing environment:

1. Create a random session key for each message.

2. Encrypt the message with the session key using the private key IDEA algorithm.

3. Encrypt the session key with the recipient’s public key using the public key RSA
algorithm.

4. Mail the encrypted message and the session key.

Table 19.2 presentsa comparison between public and private key systems.

TABLE 19.2. COMPARING PRIVATE AND PUBLIC KEY ENCRYPTION METHODS

Public Key Systems Private Key Systems

Can make the encryption key public Cannot make th encryption key public

Only the recipient possesses the The secret key is with the sender and the
secret key recipient

Asymmetric encryption Symmetric encryption

Can be used for digital signatures Cannot be used for digital signatures

No need to exchange key before Need to exchange key before
communication communication

Protecting Applications Using Encryption

CHAPTER 19
757

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 757

Choosing Prime Numbers in PGP
PGP uses thefollowing technique to generate a prime number of n bits:

1. PGP first generates a random binary number that consists of two 1s followed by
(n-2) random binary digits.

2. PGP uses a very efficient algorithm (referred to as a fast sieving algorithm) to
determine whether the random number generated is a prime number.

3. If the algorithm determines that the random number generated is not a prime num-
ber, PGP tries the next odd number.

4. If the algorithm determines that the number might be prime, PGP prints a period (.)
and uses Fermat’s Little Theorem to check for primality. A minimum of 50 percent
of all primes are ruled out in each pass through Fermat’s algorithm. Each time this
test succeeds,PGP prints an asterisk (*).

This information can be used to understand the output from PGP when you are trying to
find a key pair. Suppose that you are trying to generate a 512-bit prime number and get
the following printed output from PGP:

....................****............****

This output indicates that PGP found 20 different prime number candidates that passed
through the sieve but were rejected by Fermat’s algorithm. The four asterisks indicate
that the first number to pass the first Fermat test passed all four tests. The next set of
periods (.) indicates that the second prime number choice involved 12 different numbers
that were rejected by Fermat’s algorithm before a choice was finally derived.

The following code segment shows a simple implementation of the sieve algorithm that
can be used to check whether or not a particular number r is a prime number:

int primes[100]; // ‘primes’ is an array used to store
// the prime numbers generated.

int total_primes = 0; // ‘total_primes’ is used to store
// the number of primes generated thus far

check_for_prime(int r)
{

int i;
int p = sqrt((double)r);

for(i=0;i<total_primes;i++)
{

if (r % primes[i] == 0) return 0;
if (primes[i] > p) return 1;

}
return 1;

}

Object Persistence and Encryption

PART IV
758

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 758

Using Random Numbers in Cryptography
Random numbers are commonly used in cryptographic algorithms to increase the securi-
ty of the algorithms. PGP uses random numbers for different purposes:

• To determine the secret key

• To determine the session key used to encrypt each message

• To determine the key used in conventional cryptographic algorithms

Random numbers can be generated using a truly random natural process such as radioac-
tive decay. Computers are equipped with random number functions that generate a
sequence of numbers that are random in the sense that they are easy to predict. An expert
hacker can have knowledge of the internal state of the machine and the starting number,
and break such pseudo-random functions. PGP generates a random number by asking the
user to type on the keyboard. It determines the time between successive keystrokes and
builds a random number. Once a random number with a sufficient number of bits is gen-
erated, PGP asks the user to stop typing. This random number is used as a seed for the
random number generator. A new seed is generated for each new public key being gener-
ated. The seed generation using keyboard speed is not really random; in fact,a flaw was
discovered in the seed-generation routine of PGP 2.6. This flaw prevented the seed gen-
eration from being really random and became predictable to an experienced hacker. This
flaw was fixed in PGP 2.6.1.

File Encryption Using PGP
The simplest use of PGP is to encrypt files and protect information on the computer
against hackers. There are several reasons to encrypt files on your computer:

• If you are sharing your computer and the computer contains private information
you do not want others to know.

• If you are storing confidential information on your computer that you may not
want to be revealed publicly should your computer be lost or stolen.

• If you do not want sensitive information to be available to the public should your
computer be sold or donated before you eliminated all the data.

Encryption of a file can be done by using the -c option with PGP. Suppose that you want
to encrypt the file called secret . You canenter the following:

c:> pgp -c secret

PGP responds to this command by prompting you for a pass phrase. It then encrypts the
file to generate file secret.pgp .

Protecting Applications Using Encryption

CHAPTER 19
759

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 759

The security of the file protected by PGP now depends entirely on the pass phrase and its
safeguard. You can take several simplesteps to secure this pass phrase:

• Do not write down the pass phrase.

• Do not store the pass phrase in a file that is stored on the computer.

• Do not choose a pass phrase that is easy to guess by others.

• Choose a pass phrase that you can remember easily.

The following kinds of information are easily guessed; you should not choosepass
phrases that consist solely of these items:

• Your name

• Your spouse’s name

• Your parent’s name

• Your pet’s name

• Your kid’s name

• Your favorite cartoon character

• The nameof the operating system you are using

• Your phone number

• Your license plate number

• Anyone’s Social Security number

• Anyone’s birthdate

• Your favorite movie

• Your favorite vacation spot

• Any of the preceding items spelled backwards

• Any of the preceding items followed by or preceded by a digit

After the file is encrypted, the next step you should take is to erase the original unen-
crypted file from the system. The standard delete commands available on most operating
systems do not really eliminate the file; they simply remove the file link from the direc-
tory. As a result,the file can beundeleted. The -w option of PGP can be used to obtain a
secure delete. The wiping process used by PGP overwrites the file with random data.
Using random data instead of all 1s or all 0s makes it harder for hackers to retrieve plain-
text. However, there are some cases in which simply wiping the file is not enough. For
example, if you are using write-once media,wiping does not erase the old sectors. Also
make sure that any backups of the plaintext (including program caches and automatic
and user backups) are also somehow being wiped.

Object Persistence and Encryption

PART IV
760

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 760

A file that is encrypted using PGP can be decrypted by using PGP with the nameof the
encrypted file as the only parameter:

C:> pgp secret.pgp

PGP reads the file, determines the encryption,and prompts for the pass phrase. When the
pass phrase is provided. PGP decrypts the file and writes the decrypted information into
a separate file.

The pass phrase used in PGP generates a 128-bit code using a hash function. PGP uses
the IDEA algorithm with a 128-bit key to perform encryption.

Table 19.3 lists the standard file extensions used by PGP and their interpretations.

TABLE 19.3. FILE EXTENSIONS USED BY PGP

File Extension Use

.txt The plaintext file created using a text editor or a word processor.

.pgp An encrypted file; it is a binary PGP file.

.asc An ASCII-armored file. A file encrypted using the -a option of PGP
has this extension.

.bin The file created when the -kg (key generate) option of PGP is used.
The file stores the seed for PGP’s random number generator.

The DOS and UNIX versions of PGP make use of certain environmentvariables,which
are described in Table 19.4

TABLE 19.4. ENVIRONMENT VARIABLES USED IN PGP

PGP Environment
Variables Use

PGPPASS Stores the pass phrase. It is recommended that this variable not be used
because storing the pass phrase in memory is probably the easiest way
for a hacker to find it.

PGPPASSFD Specifies a file descriptor from which your pass phrase should be read.

PGPPATH Specifies the directory that contains the standard PGP files.

TMP Specifies the directory in which PGP stores its temporary files. Be
extra careful that others cannot access this directory or you open up an
opportunity to break the pass phrase.

TZ Indicates the time zone you are in.

Protecting Applications Using Encryption

CHAPTER 19
761

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 761

With a DOS-based computer, you can set the environment variables usingthe SET com-
mand as follows:

c:> SET PGPPATH=c:\pgptemp

On a UNIX system,the setting of environment variables is determined by the shell being
used. If you are using the Bourne or Korn shell,you set the environment variables as fol-
lows:

$ PGPPATH=/usr/temp; export PGPPATH

If you are using the C shell,you set the environment variables as follows:

% setenv PGPPATH /usr/temp

Limitations of Cryptography
You should understand several things in terms of the limitations involved in using cryp-
tography to encrypt your messages:

• Unencrypted information cannot be protected. You may have access to the best
encryption technique available, but if the data is still unencrypted on your machine,
your data is at risk. A hacker who somehow gains physical access to your machine
can get the information. Even if you delete the information, you should be aware
that there are utilities to “unerase”and retrieve data that has not been properly
removed.

• Encryption keys must be protected. The encryption keys are the solution to
decrypting the ciphertext. If the keys are not secured properly, people can obtain
the keys,and the whole point of encryption is moot.

• Protect data against destructive attacks. If the main purpose of a hacker is not to
obtain the encryption keys but to prevent you from looking at the data, the hacker
can destroy the encrypted file itself.

• Beware of encryption programs with undesired hidden featur es. Unless you
write the encryption program yourself, there is no way to be completely sure of
what else the encryption program may do in addition to performing the obvious
task of encrypting the information. For example, it may place the secret key in the
header of every file that is encrypted and also mail the encrypted file to the hacker.

• Be careful of traitors.You should make sure that the human beings involved in
the key distribution process are completely trustworthy.

The effectiveness of an encryption method is determined by how well it defends against
attacks. Good cryptographic methods are those that are resistant to brute-force attacks on

Object Persistence and Encryption

PART IV
762

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 762

thealgorithm or the keys. In other words,a good cryptographic method makes use of
very long keys and complicated algorithms that are extremely difficult to break. Even if a
brute-force attack was applied, it would take millions of years before the code could be
broken. On the other hand, bogus cryptography refers to the use of techniques that are
easy to break. Bogus cryptography makes use of small keys or algorithms that are easy
to crack. Crypt is a popular UNIX encryption utility that falls in the category of bogus
cryptography. Another common technique used by bogus methods is the use of a pass-
word that is stored in a file; the file is not opened until the user types the particular pass-
word.

It is not easy to differentiate between good and bogus algorithms. A good hacker can
usually find flaws in bogus methods in a reasonable amount of time. Until recently, the
use of encryption was limited to government and major corporations,but at the present
time, the use of personal computers, the Internet,e-commerce, and email to transfer
information is so widespread that encryption techniques are very common in day-to-day
use. Currently, a large number of systems for personal computers,mainframes,and even
standalone systems such as telephones and fax machines are available—but they are not
necessarily secure. Table 19.5 shows a comparison for a quick determination whether an
algorithm is good or bogus.

TABLE 19.5. COMPARING STRONG AND BOGUS ALGORITHMS

Strong Algorithm Bogus Algorithm

Uses long keys and a complex algorithm Uses short keys and a simple algorithm

Difficult to break Easy to break

Patented Freely available

Based on encryption schemes that are Based on unknown encryption schemes
published, analyzed, and thoroughly
tested by experts

Example:DES and IDEA Example:CRYPT

Companies that provide these algorithms Companies that provide these algorithms are
do not shy away from explaining not comfortable explaining their encryption
what scheme they use techniques

In the entire encryption system,the weakest entity is the person holding the encryption
key. This person must take every precaution to protect the key from getting into the
wrong hands. Using a weak or bogus encryption algorithm is similar to using a cheap
lock on a file cabinet. It depends how important the data is to you and how much some-
one can benefit from having the information. If you are trying to protect the data from

Protecting Applications Using Encryption

CHAPTER 19
763

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 763

people who do not possess much technical skill or who do not have any interest in your
information, a weak algorithm may suffice. Otherwise, you should use the strongest
algorithm you canafford.

Legal Restrictions on
Cryptography
The U.S. government has placed two major restrictions on the use of cryptography in the
United States of America:

• U.S Patents: The U.S. Patentand Trademark Office is increasingly being attacked
for granting patents for products that are apparently not new. All the public key
cryptography patents are now exclusively licensed to Public Key Partners (PKP).
The penalties for patent infringement are the jurisdiction of civil courts.

Most software programssuch as Lotus Notes and many other Microsoft Windows
programs come with a license for the RSA and Stanford public key encryption
patents. The RSA algorithm was published even before its inventors filed for a
patent; as a result,Japan and countries in Europe have been able to use most kinds of
encryption without the trouble of negotiating licenses for patents from RSA or PKP.

• Export controls:You should not think about sending a copy of PGP to your friends
who live outside the United States so that you can communicate with them without
interception by the authorities. Doing so can make you subject to a heavy fine, or
jail, or both. Export of cryptographic material is governed by Defense Trade
Regulations (formerly known as InternationalTraffic in Arms Regulation or ITAR).

A program that implements encryption can be exported only after obtaining a
license from the office of Defense Trade Controls (DTC). Before providing such a
license, DTC—together with National Security Agency (NSA)—will evaluate the
program. Part of the evaluation includes the determination of the encryption
scheme. Generally, if a weak encryption is implemented, the export is allowed;
otherwise, the request is denied.

In 1992,an agreement was reached between the State Department and the Software
Publishers Association (SPA) to allow the export of programs that implement RSA
Data Security’s RC2 and RC4 algorithm with a key size of 40 bits or less. Canada
is a special case in the laws of exportation for cryptographic material. Canada has a
liberal policy and allows any cryptographic software made in Canada to be export-
ed without licensing. Current U.S. policy allows any cryptographic software to be
exported to Canada without any license. However, as per Canada’s Rule #500,soft-
ware cannot be further exported to a third country.

Object Persistence and Encryption

PART IV
764

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 764

Because of these strict requirements in U.S. policy, many companies are developing their
software overseas and then importing it into the United States. An alternative to obtain-
ing the privacy you need and avoiding the hassles of getting a license is to use PGP ver-
sion 2.6,which is available easily in the United States,to communicate with PCP 2.6ui,
which is available easily outside the United States.

Cryptographic Attacks
A hacker can use several techniques to “break the code”or decrypt a message you have
encrypted without your authorization. Let’s look at some of these methods.

Brute-Force Attack
A brute-force attack is also referred to as a key search attack because it involves trying
every possible key until the code is broken. This method assumes that the hacker some-
how knows when to detect that a key search is successful. The strategy is simple:Apply
keys one after the other until you have success.

The brute-force method is inefficient and impractical because of the number of keys
that may be possible. For example, if you consider an algorithm that uses 64-bit keys,
the number of possible keys is 264. If you make use of a computer that tries a billion
keys per second, it would still take that computer an exorbitant amount of time to
break thecode.

Cryptanalysis
The importanceof cryptanalysis can be understood by realizing that key length is not the
only consideration in determining the strength of an encryption method. You should also
understand that knowledge of the key is not the only way to break the code. An expert
hacker can make use of mathematics and computer skills to break most of the algorithms
that claim to be unbreakable. There are two possible goals in making an attack:

• To decipher the ciphertext and find the plaintext.

• To find the encryption key.

The most basic types of cryptanalysis attacks rely on the knowledge of the language of
the plaintext. In other words,the following information can help an attacker easily break
the code:

Protecting Applications Using Encryption

CHAPTER 19
765

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 765

• Frequency of letters.Common knowledge of the language used for plaintext can
allow the attacker to make certain guesses in the deciphering process. For example,
knowledge about the letters commonly used in the language (in English,the letters
a, e, s, o, and t are used most commonly) and those not so commonly used (such as
x, q, and z) can aid the attacker.

• Letter affinity. Some letters commonly occur next to each other (such as io and
ing) while others rarely occur next to each other (such as tp and iy). This knowl-
edge can be used for guessing the letters.

• Length of the word. In English,one-letter words are usually I or A. Also, there are
a limited number of two-letter words.

• Message context. It can help the attacker to know the context of the message in
terms of the sender, the recipient,the general content of the message, and the
nature of the message.

The following attacks are quite commonly used:

• Attack to find the encryption key after the plaintext is known. This type of
attack is quite common when breaking into encrypted email or a protected hard
disk. Electronic mail has a standard header that the hacker can use as a basis for
deciphering. Also, hard disks are used to store information at specific locations. In
other words,the hacker can use common knowledge tofigure out the rest of the
encrypted information.

• Attack to find the encryption key on a predetermined plaintext. In this
approach, the hacker can have the victim unknowingly encrypt certain information
and then work on the ciphertext generated from the known data to find the encryp-
tion key. The hacker can then use the key to decrypt all messages that use the same
encryption key.

• Dif ferential cryptanalysis.This attack compares the results of encrypting several
plaintexts that are very similar except for some minor variations.

Hacking a PGP-Encrypted File
Hackers can useseveral strategies to find the plaintext from a PGP-encrypted file.
Several of these methods are based on the fact that PGP uses the IDEA algorithm:

• Brute-force attacks against the IDEA key. IDEA used by PGP makes use of a
128-bit key that leads to the possibility of several billion keys (specifically, 2128

keys). The hacker can try each of these keys one after the other (this approach can
take a very long time before it is successful). As can be easily seen,this method is
not the ideal method for breaking code.

Object Persistence and Encryption

PART IV
766

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 766

• Brute-force attacks against the pass phrase of PGP. Instead of trying to figure
out the encryption key, a hacker can attack the pass phrase that has been chosen to
encrypt the file. The length of the pass phrase chosen becomes very important in
determining the security of the pass phrase. I recommend using at least 12 charac-
ters and mixing uppercase, lowercase, digits, and special characters in the pass
phrase.

• Scanning the hard disk for an unencrypted copy of the encrypted file. You can
safeguard against this by wiping the plaintext file using PGP.

• Booby-tr apped PGP. An experienced hacker may be able to booby-trap PGP so
that it places a copy of each key or the unencrypted file in a hidden directory,
encrypts the files with a pass phrase different than the one you have chosen,or
does not encrypt the files at all and simply gives you the impression that the files
are encrypted.

• Kidnapping or thr eats. The hacker may even decide to kidnap you and threaten
you if the information is really critical. This kind of attack is something you really
have to be careful about.

Digital Signatures
We have seenthat public key encryption algorithms use a one-way function such that we
can get encrypted data by passing the data through the function that uses the public key.
We can get plaintext by running the encrypted data through the function that uses the pri-
vate key. The entire process works in the reverse direction also:We can pass the plaintext
through the function with the private key and create ciphertext; we can decrypt the
ciphertext by passing it through the function that uses the public key.

A digital signature is a powerful feature provided by PGP that allows you to authenticate
messages. There are several situations in which you may not want to encrypt the message
but you do want to prevent the message from being changed. In other words,you want to
assure others that you are the original author of a message short of them calling you up
to verify the authenticity of a message they suspect someone else may have changed.

It should be understood that although the public key encrypts data in such a way that it
cannot be interpreted by someone who does not have the proper key, digital signatures
add data to the messages without adding any encryption to the message itself and with-
out changing the message in any way. In other words,even if you do not verify the digi-
tal signature, you can still read the message. The only way to make sure that a digital
signature actually certif ies that the accompanying message is valid is to use the appropri-
ate software and run through the process of verifying the message with the public key of
the sender.

Protecting Applications Using Encryption

CHAPTER 19
767

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 767

PGP creates a digital signature by processing the message with a message digest function
to produce a 128-bit number. The message digest function is basically a mathematical
function that converts all the information in a file into one large number. A PGP signa-
ture block is then created by signing this message with your private key. The PGP signa-
ture block is then placed at the end of the message. When a digitally signed message is
received, PGP verif ies the signature by extracting the message and running the same
message digest function that was run on the original message. The public key of the
sender is then used to decrypt the signature block. The two message digests are then
compared to make sure that they match, thereby indicating that the message was not
modified since the signature was placed in the message.

The only problem with digital signatures is that they can only tell you that a change was
made. They cannot tell you the nature of the change or the amount data that was
changed.

Two popular standards are currently in use for digital signatures:thePublic Key
Cryptography Standard (PKCS) and theDigital Signature Standard (DSS). These stan-
dards are described in the following sections.

The Public Key Cryptography Standard (PKCS)
RSA DSI developeda standard for digital signatures that uses the same public key
encryption algorithm used for RSA public key encryption. The standard referred to as
Public Key Cryptography Standard (PKCS) represents a set of standards for a variety of
functions and a variety of data types. It standardizes the method of exchanging public
keys and formatting encrypted data. The RSA digital signature standard is part of PKCS
#1 and defines the manner in which encrypted data can be represented. The following
steps are used to generate the digital signature:

1. A cryptographic hash function is applied to the data to be digitally signed.

2. The RSA public key encryption algorithm is used to encrypt the result of the cryp-
tographic hash function.

3. The digital signature is obtained by placing the result of the hash function and the
type of cryptographic hash that is used in the PKCS format.

The Digital Signature Standard (DSS)
In 1991,the NIST, in cooperation with the NSA,proposed the Digital Signature
Algorithm (DSA) to be used with the Digital Signature Standard (DSS). This proposal
was immediately followed by criticism that the NSA was involved in this process.

Object Persistence and Encryption

PART IV
768

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 768

The NSA is against the wide use of strong cryptography because its functions would
be seriously affected by strong algorithms. DSA has several drawbacks when compared
to RSA:

• DSA is more complex than RSA.

• Public keys for DSA must be chosen with more care than those chosen for RSA.

• DSA is slower than RSA because it involves significant processing by both the
signer and the verif ier.

The DSA public key includes the following four values:

• A prime number p which is more than 512 bits but less than 1,024 bits in length.

• A 160-bit prime number q which is a factor of (p-1) .

• A value v calculated such that vq = 1 mod p . Note that v cannot equal 1.

• A value n calculated using the private key K such that gk = 1 mod p and K < q .

Of these four values,p, q, and v can be made public; n cannot be public because it is
based on the private key K.

The actual process of signing and verifying the message using DSA is much more com-
plicated and involves the generation of another public/private key pair to be used one
time only with the message. The actual process is beyond the scope of this book.

Nonrepudiation
Nonrepudiation is aterm that refers to the quality of a digital signature. It provides a
guarantee to the recipient that the digital signature is authentic, provided that the sender
has safeguarded the private key and that the digital signature algorithm is reliable.
Suppose that John ordered 1,000 shares of Company XYZ by sending a digitally signed
message to his broker just before the market closed. The next day, the company
announces that it will post a significant loss for the current quarter, and its stock opens
lower by 20 percent. John cannot argue that he sent the order the previous day because
he is the only one who holds the private key.

Commercial Cryptographic
Products
Several commercially available products make use of a variety of encryption technolo-
gies. The following sections explore the different categories of such products to help you
understand how they use encryption.

Protecting Applications Using Encryption

CHAPTER 19
769

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 769

Secure Web Clients
For quite sometime now, the two popular Web clients or browsers in the market have
been Microsoft Internet Explorer and Netscape Communicator/Navigator. Cryptographic
security has been an important component of Web browsers since Netscape used Secure
Sockets Layer (SSL) in its first version of Navigator in 1994. SSL provides secure
encrypted communication channels between the browser and the server. In early 1997,
Netscape included support for S/MIME (Secure MIME), which allows users to generate
their own public key pairs, get certif icates for that key pair from a certif icate authority,
and store the certif icates in a browser. This key can then be used to digitally sign email
or encrypt data using public key encryption. In September 1997,Microsoft followed suit
by including support for S/MIME in its Internet Explorer 4.0 and its Outlook and
Outlook Express email clients. S/MIME requires triple-DES encryption,which makes it
a pretty secure environment. The explosion in the use of the Internet has made it impor-
tant to consider otherfeatures in Web clients,including the following:

• Verif ication of users on each end of the Web communication channel

• Handling of cookies(user-specific information stored on the browser)

• Safety of downloaded software including ActiveX controls and Java applets

Microsoft Internet Explorer
Microsoft InternetExplorer is probably one of the best pieces of free software around. It
can be downloaded from the Microsoft Web site at www.microsoft.com . It implements
the following security features:

• Content protection options that allow users to put restrictions on the material
accessed over the Internet. Inappropriate material can be prevented from being
accessed by children.

• Certif icate management tools can be used to keep track of user and site certif icates.

• Allows access to security information for any Web page being browsed.

• Provides options to allow you to determine how the browser will interact with data
coming from a variety of sources.

Certif icate management options are also available in the Outlook and the Outlook
Express email clients.

Netscape Communicator/Navigator
In early 1998,Netscapemade a surprising announcement:It made its standard client
available free to the public and also made its code freely available for other developers to
improve on and add to. The Communicator Professional edition,which adds enterprise

Object Persistence and Encryption

PART IV
770

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 770

clients for calendaring, terminal emulation, and autoconfiguration is still sold for $29 per
client. You can download the free client software from www.netscape.com . It implements
the following security features:

• Allows access to security information for any Web page being browsed.

• Provides protection for browser certif icates.

• Provides options for configuring encryption and other settings for SSL channels.

• Provides email security settings,including the option to choose the message to be
encrypted and/or signed, to choose the certif icate to use for digital signatures,and
to configure S/MIME encryption options.

• Includes Java and JavaScript applets.

• Allows viewing and management of cryptographic modules used by the browser.

• Provides certif icate management functions to manage user and sitecertif icates.

Secure Email Clients
An email client is considered to be secure if it can handle the following tasks:

• Encrypt messages as well as attachments

• Digitally sign messages as well as attachments

• Decrypt encrypted messages with a private key

• Verify messages using the sender’s public key

These functions require that the email client be able to manage the public and the private
keys of the sender, as well as the public keys belonging to the recipient of the email mes-
sage. Several secure email clients are commercially available, but the following three are
the most popular.

Netscape Messenger
The Netscape Messenger bundled with the Communicator is a full-featured email and
news client. The Communicator is a communications suite that includes email,a browser,
a news reader, and conferencing—with other options to provide calendaring and legacy
system terminal emulation. It is available for a variety of platforms including Windows
3.x,Windows 95,Windows NT, Linux, and others. It supports SNMP and POP, and is
capable of sending and receiving S/MIME securedemail.

Microsoft Outlook and Outlook Express
Microsoft provides Outlook 97 and Outlook Express,a pair of Internet-capable email
clients bundled with the Internet Explorer. Outlook and Outlook Express are available for

Protecting Applications Using Encryption

CHAPTER 19
771

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 771

Windows 95 and Windows NT, and there are plans to make them available for Windows
3.x and Macintosh clients. Outlook and Outlook Express support SNMP and POP and
are capable of sending and receiving S/MIME secured email. Outlook 97 provides sever-
al advanced email features as well as functions for enterprise network users, including
scheduling and task management features.

Qualcomm Eudora and Eudora Light
Eudora was the pioneer in email clients. It was introduced in 1990 when it supported the
Post Office Protocol (POP). Eudora is now sold by Qualcomm,Inc., and a freeware ver-
sion called Eudora Light is available at www.eudora.com/eudoralight . Eudora clients
are available for Windows 3.x,Windows 95,Windows NT, Macintosh OS, and
Macintosh Newton. In 1997,Qualcomm began shipping Eudora with a fully functional
plug-in version of PGP for Personal Privacy 5.0,which allows the sending and receiving
of PGP securedemail.

Secure Desktop Products
The main focus of desktop security is to protect the information stored on the desktop.
These products allow stored information to be accessed only by the person who owns it
and by others who are given permission by the owner. Following are some of the most
common features expected from secure desktop products:

• File encryption and decryption. Selected files can be encrypted or decrypted in
place, allowing only authorized users to access the files after providing a pass
phrase to decrypt the file. The product may require verif ication of the user at the
time of system boot or every time the file is accessed.

• Dir ectory encryption and decryption. Some desktop products allow certain
directories to be designated as encrypted so that any file created or moved in that
directory is automatically encrypted and can be accessed by a user only after
authentication.

• Pass phrase protection at boot time. Some desktop products allow you to protect
data by requiring a pass phrase before the boot can be completed successfully.

• System lock. Some desktop products allow locking of the system to protect against
unauthorized use. This system lock can be implemented as a keyboard lock or as a
pass phrase-protected screen saver.

• Secure delete. Files or directories deleted under the DOS or Windows operating
systems are not really eliminated; their directory entries are simply removed.
Various software commercially available allows the re-creation and salvage of
deleted information. Although this can be good if you really want to recover lost

Object Persistence and Encryption

PART IV
772

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 772

data, it can be a problem if you really want to eliminate confidential information.
Several desktop products allow the removal of data in such a way that not only are
the directory entries removed, but the bits of each byte are set to a random value or
to all 0s or 1s.

• Support for public key cryptography and digital signatur es is desirable.

• Access to data by a master entity. Some desktop products protect data in such a
way that some specified entity with a pass phrase and an ID can decrypt any data
encrypted by any user of the product on a particular system or a set of systems.

RSA SecurPC v2.0
RSA Data Security, Inc. owns some of the most important cryptographic algorithm
implementations currently in use. It publishes a personal desktop encryption product
called SecurPC,which uses public key cryptography minimally. Although it does not use
digital signatures,it provides the following important features:

• Secret key encryption of files and directories

• Ability to encrypt the file and store it as an executable such that it can be opened
only by running the program and supplying a pass phrase

• Autoencrypt directories

• Bootup authentication

• Secure delete

• Access to data by a master entity

• Integration with Windows 95

• Hot-key system protection

Pretty Good Privacy (PGP) for Personal Privacy 5.0
PGP provides several important features in Personal Privacy version 5.0:

• Ability to encrypt and/or digitally sign data,email messages,and files

• Ability to decrypt and/or verify the digital signature of data,email messages,and
files

• Support for Windows users

• Support for Macintosh users

• Use of PGPtray in applications (PGPtray allows users to perform cryptographic
functions on data that resides in the system Clipboard; PGPtray can be used to pre-
vent unencrypted data from being written to disk and to prevent decryption and
verif ication of data in theClipboard)

Protecting Applications Using Encryption

CHAPTER 19
773

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 773

Several important features that are not provided by PGP for Personal Privacy include:

• System lock

• Autoencrypting directories

• Secure delete

Symantec’s Norton Your Eyes Only
Symantec’s Norton Your Eyes Only is available for Windows 95 and provides personal
desktop encryption. You can make use of an administrative add-on to allow the manage-
ment of certif icates. It makes use of public key encryption and digital signatures,provid-
ed that all the participants are using the product. Some of the key features of this product
include:

• File and directory encryption

• Optional use of digital signatures

• Autoencryption of directories

• Secure delete

• Screen lock capabilities

• Boot lock capabilities

• Choice of various strong encryption algorithms

NSA’s Clipper Chip
On April 16, 1993,theWhite House unveiled the super-secret encryption algorithm
developed by NSA called the Clipper chip. The intention was to make this algorithm the
public standard and to replace the aging DES algorithm. Clipper chip uses a classified
algorithm called Skipjack and can be used to encode voice communications over digital
telephones and fax machines. Data and email are handled by a PCMCIA card called a
Fortezza card, which plugs into most laptop computers. Skipjack is an 80-bit encryption
algorithm that is considered to be extremely secure. The only problem with Clipper chip
is that the government has the keys to this algorithm. Therefore, it can crack any message
encrypted using Clipper. Each Clipper chip uses two unique codes:a serial number and a
master encryption key. These keys are tamper-proof and are destroyed when any attempt
is made to reveal the code.

Clipper uses the Diffie-Hellman key exchange algorithm to exchange keys. Whenever
you encrypt a message, Clipper takes a copy of the session key (used to decrypt the mes-
sage) and encrypts it with the master encryption key. It sends the encrypted session key
and the serial number along with the encryptedmessage.

Object Persistence and Encryption

PART IV
774

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 774

The government has a plan called Escrowed Encryption Standard (EES),which has the
purpose of creating two databases so that each holds the serial number of each Clipper
chip and half of each master encryption key. Each half key is held by a different “escrow
key”—specifically, one half is held by the National Institute for Standards and
Technology (NIST) and the other half is held by the Automated Systems Division of the
Department of the Treasury.

The Clipper code is very secure. When a law enforcement agency wants to perform a
legal and authorized wiretap of a conversation encrypted with Clipper, the agency applies
to each of the escrow agents. If the request is approved, the escrow agents send their
respective keys to a black box that accepts the encrypted input and spits out the decrypt-
ed message. The keys have an associated expiration date after which the black box can-
not use them to decrypt.

In 1994,Matthew Blaze of AT&T Bell Labs discovered a design flaw in Clipper’s “back
door” called theLaw Enforcement Access Field (LEAF). Using LEAF, law enforcement
agencies can obtain copies of the Clipper keys that can be used to read the encrypted
data. LEAF is protected by a 16-bit checksum,and Blaze realized that if you can corrupt
the key, the governmentagencies cannot unscramble the encrypted data.

Summary
Cryptography and encryption has long been the domain of government organizations and
big businesses. The explosion in the use of computers, the Internet,and public key cryp-
tography has made it possible for individuals to protect their data using a variety of
encryption techniques. This chapter discussed the various strategies used by encryption
algorithms and the most common methods an experienced hacker may use to break into
the code and decipher the message. Several commercially available products (such as
PGP for Personal Privacy and the Norton Your Eyes Only) can be used to encrypt your
messages. Various types of security are provided in Internet browsers such as Netscape
Navigator and Microsoft Internet Explorer.

We analyzed some commonly used techniques such as substitution; permutation, XOR,
and other cryptographic functions were also discussed. No matter which technique you
use, keep in mind that a desperate hacker can always decipher the message. You should
take necessary precautions to protect your data. Those precautions range from proper
choice of pass phrases to physically protecting your assets and yourself.

Protecting Applications Using Encryption

CHAPTER 19
775

19

U
SIN

G
E

N
C

RY
PTIO

N

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 775

776

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH19 Lp#1

24 239-5 CH19 2/19/99 1:38 PM Page 776

P/V Unleashed generic ISBN# Name Date Part Lp#1

Distributed
Computing Topics PART

V
IN THIS PART

• CORBA 779

• COM 809

• Java and C++ 851

25 239-5 Part 5 2/19/99 1:39 PM Page 777

P/V Unleashed generic ISBN# Name Date Part Lp#1

25 239-5 Part 5 2/19/99 1:39 PM Page 778

IN THIS CHAPTER

• Theory and Justification 781

• IDL: The Binding Contract 785

• The Object Request Broker 788

• Comparing CORBA Environments 791

• Creating the C++ Client 792

• Creating the C++ Server 795

• A Java Client 800

• Testing Strategies 802

• The Naming Service and
Interoperability 804

• Performance 807

20
C

H
A

PT
ER

CORBA

26 239-5 CH20 2/19/99 1:41 PM Page 779

In traditional network programming, the developer is responsible for message structure,
error recovery, and runtime server management—not to mention scalability and failure
recovery mechanisms. Managing software changes across languages and platforms can
use up development resources,raise development costs,and extend project schedules.
Over 800 of the software industry’s top organizations came together to form the Object
Management Group (OMG at www.omg.org) with the goal of defining an infrastructure
for object computing.

The most prominent accomplishment of the OMG was the Common Object Request
Broker Architecture (CORBA) specification. CORBA defines an object bus,enabling the
integration and management of objects defined by C++,Java,Smalltalk,and “most”
other object-oriented languages. Most of all,CORBA environments provide a robust net-
work computing model.

This chapter presents a fast-paced examination of CORBA development. For the C++
programmer, CORBA enables objects to operate in a distributed manner. Calls made to a
local C++ object are transparently routed to a remote object. The calling mechanism is
virtually transparent,leaving the code clean and straightforward. The coding examples in
this chapter bear out these benefits.

There are several roles for the CORBA developer:

• Client developer: The client developer works at the API level, making method
calls to a local object. These objects are proxy objects that communicate to the
server object to perform the necessary functionality.

• Server developer: The server developer is much like the C++ class developer, cre-
ating an interface for the object and packaging it correctly.

• System architect: The CORBA architect is the developer who creates the frame-
work in which the objects exist and interoperate.

The following are some common CORBA terms that are used in this chapter:

• Stub. Theproxy code generated by an IDL compiler that sends requests to an
ORB. This is the C++ class that makes it appear as though the methods are execut-
ing locally.

• Skeleton.The server classes generated by the IDL compiler. You extend the skele-
ton through inheritance to provide the functionality needed onthe server object.

• BOA (Basic Object Adapter). Theinterface your server object uses to connect the
ORB.

• ORB (Object Request Broker). A pseudo object,assumed to be always available
in both the client and server runtime environments. The ORB is typically a server

Distributing Computing Topics

PART V
780

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 780

application listening at a specific port, waiting to accept a TCP/IP socket connec-
tion. Client applications connect to the ORB, send request messages,and receive
reply messages from the ORB.

• Request.A method call from the client stub to the server object,the request is a
package of the method’s arguments and return values.

• Object. The instance of an object,defined by an interface; resides under the con-
trol of an ORB.

• IDL (Interf ace Definition Language).A modified subset of C++ type and class
definitions. The IDL typically has the same goals as a C++ utility class.

• Mar shaling. The process of changing data from a language-dependent format to a
language-independent format.

• Service. An interface defined by the CORBA specification, such as the naming ser-
vice, Interface Repository, or ORB. A service is equivalent to an operating system
API, providing access to a particular system service of CORBA.

Theory and Justification
It is helpful to thinkof CORBA as an integration toolkit: It eases the intricate details of
network programming. There is no need to be intimidated by CORBA; as a C++ pro-
grammer, you already have the skills to use iteffectively.

The skills needed for CORBA development are a subset of those you have gained in
dealing with compilers,operating systems,and Internet server applications (HTTPD,
daemons,mail servers,and so on). You can apply your object-oriented programming and
design pattern skills to understanding and using the CORBA environment.

The following sections explain what constitutes a CORBA environment and how
CORBA relates to your C++ programming.

The Minimal CORBA Environment
To execute methods on a remote object,you need the following elements:

• An ORB

• A server application

• A client application

CORBA

CHAPTER 20
781

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 781

CORBA environmentsdiffer greatly depending on how the vendor decided to implement
the ORB. The client and server may both have access to their own ORB interfaces.
Whether these interfaces are several ORBs or are libraries compiled into each executable
module depends on the vendor. It is only important that the environment have an ORB
interface available. Figure 20.1 displays the interaction of the client, server, and ORB.

Distributing Computing Topics

PART V
782

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

Many ORB vendors use the _bind() method to attach a client object to the serv-
er object. The _bind() method is a proprietary method that is not interoperable
between different ORB vendors.

For a discussion of ORB interoperability, see “The Naming Service and
Interoperability,” near the end of this chapter.

FIGURE 20.1.
The relationship
betweenthe
CORBA client,
server, and ORB. Client App

Server
Application

ORB

2 1

3

method ()

_bind("Workflow") obj_is_ready ()
impl_is_ready ()

For interaction in CORBA, a client and server connect to each other through the CORBA
environment. What constitutes the environment may be vendor specific, but the following
three steps are necessary:

1. The server object registers itself with the CORBA environment.

2. The client asks the CORBA environment to bind a server object to the client
object.

3. The client begins making method invocations on the client object; these invoca-
tions are redirected to the server object.

26 239-5 CH20 2/19/99 1:41 PM Page 782

A Framework for Object Technology
Fully understandingobject-oriented programming and design is important for the
advanced developer. Because the OMG has already defined a framework definition, it is
as if all CORBA developers are following the same coding and design standards. Many
organizations have embraced CORBA for enterprise development. Part of the reason is
because the framework of interfaces and services is defined by the CORBA specification.
The overall distributed computing architecture is already there for the developer. The
developer can reuse predefined interfaces to create new components.

CORBA allows developers to deliver object technology as a more complete package than
was previously possible. The object interfaces missing from networks and operating sys-
tems are defined by CORBA. The awkward shoe-horning of objects typically required to
integrate objects with procedural interfaces is therefore eliminated.

Migration to the object model is most prevalent in languages,operating systems,and
databases. Objects have been retrofitted to Visual Basic, Lisp, Rexx, and even COBOL.
Most operating systems have proprietary object frameworks attached to them. Object
databases have attempted to bridge the object-relational gap with little success. CORBA
allows the completion of this migration, object interaction.

The OMG acts as a mediator between vendors,defining the responsibilities of each,
keeping constant vigil over the larger architectural issues such as portability and interop-
erability. To this end, the OMG has assigned committees to standardize interfaces to ver-
tical domains such as finance and health care.

CORBA

CHAPTER 20
783

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

As this book goes to press, the Open Group (www.opengroup.org) has devised a
certification for CORBA implementations. Vendors who want to make interoper-
ability claims now have an independent body to back up their claims.

IIOP: The Object Glue
TheInternet Inter-ORB Protocol (IIOP) provides the network glue for objects. IIOP adds
the layer for moving aggregate data types across TCP/IP. Data is sent and type checked
across the socket connection. The IIOP also defines message structures for method call
requests and error handling. As a transport protocol,IIOP is not only used by CORBA,
but also by Java’s RMI.

26 239-5 CH20 2/19/99 1:41 PM Page 783

How IIOP Moves Data
On the lowestlevel, IIOP makes socket calls. IIOP sends streams of encoded bytes
across TCP/IP. The bytes are encoded, or marshaled, from their language-specific data
structures into streams of raw bytes.

The data structures are comprised of arguments,return values,and message structures
that make up the IDL definition for CORBA objects. If data from the socket isn’t an
IIOP data type, exceptions are thrown. Type safety has been instrumental in the success
of C++; CORBA has reaped the same rewards.

Each message is a predefined structure, and both the client and server know the message
format. There is also a dynamic invocation mechanism for CORBA, but this chapter is
concerned with the static mechanism.

Figure 20.2 shows a layered diagram of how the different elements of CORBA relate to
IIOP.

Distributing Computing Topics

PART V
784

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

FIGURE 20.2.
CORBA’s rela-
tionship to IIOP.

Sockets - TCP/IP

IIOP IIOP

Client Stub ORB

Object Adapter

Server
Skeleton

Client
Application

Server Object

return value
inout parameters
out parameters

method ()
in parameters

inout parameters

IIOP defines eight different message types:

• Request

• Reply

• Cancel Request

• Locate Request

• Locate Reply

• Close Connection

• Message Error

• Fragment

26 239-5 CH20 2/19/99 1:41 PM Page 784

Most of these messages have a header and a body. Some of the message types have addi-
tional data appended to the end of the body.

Among the data in the message header are the message type and size of the message
body that will f ollow. The header also indicates whether integers are encoded for Intel or
Motorola. The encoding allows machine architectures to switch the bytes that make up
the integers. If two machines use the same integer types,the machines do not translate
the integers.

Only the client is allowed to send and cancel requests. Only the server is allowed to send
responses and exceptions. The request message is a method invocation on an object. The
body of the message has the method’s input arguments appended. The response has the
return value and any argumentscontaining output data appended to the message body.

The mechanism of IIOP is actually quite simple and quite versatile. Each individual type
is encoded in a specific manner. If data is moving between a client and stub by the same
vendor, it may not be using IIOP. Many vendors optimize communication when the client
and server reside on the same machine, sending the data using interprocess communica-
tion.

A Component Model
Developers canuse CORBA to build software components without being tied to a certain
language, platform, or network. Other developers can use CORBA to integrate their
applications with those same software components using the IDL for the component.

By implementing additional interfaces for an object,you create components that can be
managed and manipulated. For example, if your object implements a transactional
resource interface, transaction monitors, fault tolerant systems,and other services could
interoperate with your object. An object that implements a transaction resource interface
makes transactions with your object highly reliable; that object can be trusted to work
within complex transactional systems.

IDL: The Binding Contract
In CORBA, the IDL represents the contract between the client and the server. The IDL is
the agreement of functionality that a component should provide. Equivalent of the class
declaration in C++,the IDL is the primary integration mechanism of CORBA.

The design pattern closest to a CORBA IDL is the Façade. In Design Patterns, the Façade
pattern is described as providing “a unified user interface to a set of interfaces in a subsys-
tem. Façade defines a higher-level interface that makes the subsystem easier to use.”

CORBA

CHAPTER 20
785

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 785

(Gamma:185) The instantiation of a Façade interface object is typically a Singleton
(Gamma:127). Interfaces defined in the IDL have no such limitation.

Interface definition offers flexibility , reuse, and replacement of software components.
Other benefits of the IDL include the following:

• A language-independent mechanism for defining methods and arguments.

• Exception handling in a consistent manner across different languages with the IDL.

Listing 20.1 is a real IDL sample used in a workflow application. We will use this exam-
ple through the rest of thechapter.

LISTING 20.1. THE IDL FOR A WORKFLOW SYSTEM: Workflow.IDL

/* Workflow.IDL */
module Workflow
{

typedef string TaskId;
typedef string PersonId;

enum TaskStatusCode // TSC
{

TSC_NOT_STARTED,
TSC_IN_PROGRESS,
TSC_ON_HOLD,
TSC_FINSHED

};

struct Task
{

TaskId id;
TaskStatusCode status;
string description;

};

typedef sequence<Task> TaskList;

interface Workflow
{

void createNewTask(in Task aTask);
void updateTask(inout Task aTask);
void updateTaskList(inout TaskList aList);

void assignTask(in TaskId aTaskId,
in PersonId aPersonId);

void getTask(in TaskId aTaskId, out Task aTask);
void getTasksForPerson(in PersonId aPersonId,

Distributing Computing Topics

PART V
786

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 786

out TaskList aList);

void taskStarted(in TaskId aTaskId);
void taskOnHold(in TaskId aTaskId);
void taskFinished(in TaskId aTaskId);

};// end of interface definition
};// end of module definition

The listing declares a Workflow interface, allowing the client developer to interact with a
Workflow system. Details of the system are hidden from the client developer. This inter-
face is almost self-documenting and allows the server developer to explicitly define the
access to the underlying Workflow system.

Following are the elements of the IDL:

• Structural: module , interface

• Simple Types:void , boolean , char , octet , string , unsigned short , short ,
unsigned long , long , float , double , enum

• Aggregate Types: typedef , struct , union

• Collections: sequence , array

• Ar gument Modifiers: in , out , inout

• Special Constructs: exception , attribute

• Dir ectives:#include , #pragma

The IDL Compared to a C++ Class Definition
The CORBA specification defines the mapping between IDL types and the types in vari-
ous languages. C++ and Java developers have the most direct language mappings. Data
types and definitions of IDL closely match the target language. The IDL should read like
a C++ header file. The IDL even has the #include and #pragma directives.

The IDL defines types such as integers,decimal numbers,Boolean,and strings. There is
only one type of container:the sequence. Many of the simple C++ types have CORBA
equivalents. For example, typedef s, enums,and struct s are equivalent to the C++ con-
structs of the same names. The class keyword is replaced by the interface keyword.

Method arguments have additional qualifiers,not familiar to C++ developers: in , out ,
and inout . These qualifiers indicate the intended direction of data: into or out of the
method. The in qualifier is similar in meaning to const . The value of the argument is not
expected to be modified by the method.

CORBA

CHAPTER 20
787

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 787

For most interfaces,typedef s, struct s, enums,and interface s can be combined to
implement many design patterns. However, for those who need additional features,the
IDL provides attributes and exceptions.

Although object implementation data is not directly accessible from a client, the lan-
guage mapping requires that the IDL compiler generate accessor methods for setting
(_set) and retrieving (_get) the values for each attribute. The readonly attribute
instructs the IDL compiler not to generate the _set method.

You may define a structure to hold exception data and then specify that a particular
method will throw the specific exception. The client developer can catch the exception
and handle the error condition using the predefined exception data. Structured exception
handling simplifies source code and helps express what failures the client can expect.

Inheritance
For reuse and extension,few language constructs provide the flexibility of inheritance.
Inheritance in the CORBA IDL is very similar to inheritance in C++,but without an
access qualifier: Interface inheritance in the CORBA IDL is always public.

Inheritance can be used to enhance an existing interface. For example, if client applica-
tions are dependent on Workflow and need additional methods,you can inherit from
Workflow and add the methods to the derived class. In this way, clients dependent on
Workflow ’s interface do not have to be changed; only the new client interfaces need to
have their stubs regenerated. This approach allows runtime enhancement of aCORBA
interface.

The Object Request Broker
The Object Request Broker (ORB) isa defined set of methods that has a vendor-specific
implementation. The actual location of the ORB is not defined; it is assumed to be acces-
sible to any object in the CORBA environment—both client and server objects.
Brokering requests for method invocation is the ORB’s main job. The ORB performs this
task transparently and can encrypt, compress,or validate access rights of the calling
ORB’s request data.

Distributing Computing Topics

PART V
788

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

CAUTION

Some ORBs are built from scratch; others may have been a full-blown applica-
tion server or a Web server. ORB vendors sometimes get a little too much reuse

26 239-5 CH20 2/19/99 1:41 PM Page 788

The architecture of an ORB is similar to that of a socket server. The ORB listens to a
port, waiting for a socket connection. When a client connects to the socket, the ORB
takes the request and routesit to the server object.

CORBA

CHAPTER 20
789

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

from their past development efforts. These ORBs may be very nonstandard or
lack interoperability.

If the salesman starts pushing the application server end of the ORB, start ask-
ing about interoperability with other ORBs and conformance to IIOP.

CAUTION

The Portable Object Adapter (POA) is part of the CORBA 2.2 specification and
ensures server-side portability. With the POA, you can be very specific about
how you want your server objects treated. Specifically, the server object defines
the options for instantiation and persistence it supports.

Object Lifetime
Objects in CORBA are persistent:It is assumed that an object will exist for all time. In
C++, most objects are transient:They are created at runtime and destroyed when the
application ends.

One method for handling objects is to create a server object factory to construct the
object type you need. Creating a factory interface is useful in some circumstances,but
doing so for every interface is tedious. ORB vendors may use a pseudo object to fake
server object persistence. The pseudo object simplifies the client’s view of the distributed
environment,making it appear as though there is a single object,when in fact,there may
be many objects.

To accomplish this effect,a single pseudo object is registered on the naming service or
using the ORB’s location mechanism. When a client wants an implementation of the
object,it attempts to connect to the ORB containing the object. The ORB then creates
the object and redirects the client to the new object.

To the client, it looks as though the object has always been there. For the server, howev-
er, the object is created and destroyed basedon the connection of the client.

26 239-5 CH20 2/19/99 1:41 PM Page 789

Development Environments
Because CORBA is an open standard, implemented by several vendors, you have the
opportunity to mix and match your development and runtime environment. This can
work if you avoid the proprietary extensions provided by some vendors. However, as
with any multiple-vendor situation, you should make certain that you get significant ben-
efit from mixing vendors to justify the potential problems.

For example, you may generate your Java client stubs using VisiBroker and use Orbix for
C++ client stubs and server skeletons. Your reason for using VisiBroker on the client side
may be motivated by the existence of a VisiBroker ORB in every Netscape 4.x/5.x
browser. This logic expedites the distribution of Java CORBA clients for your runtime
environment.

In the runtime environment,you may use Netscape’s Web server for HTTP, naming ser-
vices,and LDAP Directory services,while using an Orbix runtime environment to bridge
over to a MicrosoftActiveX control.

Distributing Computing Topics

PART V
790

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

If your organization has not standardized on a CORBA development environ-
ment, several vendors offer evaluation periods on their development tools (for
example, Inprise and Iona). Others offer evaluation periods on only their ORB,
minus the development environment (for example, ObjectSpace).

Having just an ORB isn’t necessarily useful unless you are testing for interoper-
ability.

The two leading C++ CORBA development environments are Inprise’s VisiBroker and
Iona’s Orbix. Both of these products are state of the art, providing all the tools you need
to create solutions for even the most complex problems. These vendors are highly moti-
vated to make your development successful. Many companies use these ORBs as the
engine for application servers and more sophisticated development environments.

CAUTION

Watch out for public domain ORBs. CORBA development is not the best time to
be without vendor support. If you are a veteran of the free stuff, look over the
ORBs described at research.iphil.net/Corba . Don’t forget to check licensing
limitations for commercial development when using free ORBs.

26 239-5 CH20 2/19/99 1:41 PM Page 790

Comparing CORBA Environments
Every development environment has problems,quirks,and a host of underdeveloped fea-
tures. When going for feature-rich environments,it can be hard to tell which features are
proprietary extensions to the CORBA specification. Lack of research may leave you mar-
ried to a single proprietary solution.

ORB Interoperability
Interoperability has been a big problem with ORB vendors. Although the standardization
on IIOP has helped, the ambiguity in the specification means that incompatibilities still
exist. Most ORB vendors don’t put a high priority on testing their ORBs against compet-
ing ORBs. If you have dealt with incompatibilities between C++ compilers’ implementa-
tions of the C++ standard, you will understand that CORBA implementations have many
of the same difficulties.

Following are some questions you should answer before you choose a specific ORB:

• Ar e the language mappings all at the same CORBA specification level?
Vendors may be more interested in Java than C++,focusing their marketing and
development on Java. This can often lead to the impression that the vendor has a
CORBA 2.1 environment for C++ when,in fact,its Java environment is 2.1–
compliant but its C++ environment is compatible with some earlier version.

• Does your ORB interoperate with JavaIDL/V isigenics/Orbix? If they don’t
interoperate (or haven’t been tested for interoperability), the ORB may have some
real issues. Demand proof of interoperability and know whether it will be main-
tained in the future.

• What language compilers and versions of those compilers are required for
your development envir onment?C++ library linkage is still a problem,and as
long as compiler vendors keep breaking their own code, you have to be careful to
specify the details of your target development environment. Vendors should supply
you with a list of compiler versions that are compatible.

• What operating system version is required?As with compiler vendor/versions,
make sure that the ORB has been tested on the latest version of your OS. If it
hasn’t, you’ll know that the vendor isn’t interested in supporting the platform.

• Do you have a proxy mechanism for fir ewalls and browsers?Security mecha-
nisms in firewalls and Web servers are rarely designed to handle IIOP. Make sure
that the vendor has a solution for operating its ORBs in sophisticated, real-world
networks. It’s not so important that it produces the proxy, but that it has tested its
product with one.

CORBA

CHAPTER 20
791

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 791

• What level of IIOP do you support? Most vendors should support IIOP 1.0 or
1.1. If they don’t say or don’t know, consider this a negative. Make sure that the
vendor isn’t using a proprietary interORB protocol. Some vendors who have con-
verted their application servers to ORBs have this problem. If so,you may
encounter sever interoperability problems down the road if you are snared by IIOP
incompatibilities.

• When will you support the CORBA 2.2/3.0 specification? Make sure that your
ORB vendor is still working on improving its ORBs and maintaining compatibility
with the newer specifications. Vendors can overcommit resources to proprietary
extensions,to the point that they neglect interoperability.

Distributing Computing Topics

PART V
792

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

The applications presented in this chapter are compatible with Inprise’s
VisiBroker for C++ and Borland’s C++ compiler. If you use Iona’s Orbix, the gen-
erated files will have different names, but the sample code should be fairly
compatible.

The details of CORBA and C++ development environments are not our concern
at the moment: Our goal is a detailed conceptual understanding.

Compile the applications in this chapter and refer to the vendor’s documenta-
tion for setting up and running the CORBA environment.

Creating the C++ Client
The client application consists of ORB connection code and method invocations on a
client proxy. The client proxy is a C++ class; it appears to the client developer as if the
class is local,not remote.

The challenges in client development usually have to do with connecting to the naming
service or the server ORB hosting the object. “Testing Strategies,” later in this chapter,
describes some of the methods for debugging connection problems.

Follow these steps to create the client application:

1. Obtain the IDL for the interface you will be accessing.

2. Generate the client stub code from the IDL.

3. Write the code to connect the client object to the ORB.

4. Using the label Workflow , create an instantiation of the client stub. The instantiated
stub is your client object.

26 239-5 CH20 2/19/99 1:41 PM Page 792

5. Now write the code to call methods against the client object.

Now that we have an overview, let’s work through the details.

Generating the Stub
We will be using the workflow.idl shown in Listing 20.1,earlier in this chapter. In the
VisiBroker environment,the command to generate the CORBA classes from an IDL tem-
plate is as follows:

dos> idl2cpp –src_suffix cpp –no_tie workflow.idl

When this command is executed, four files are created:

• workflow_c.hh

• workflow_c.cpp

• workflow_s.hh

• workflow_s.cpp

The header and source files with the appended _c are for the client application; the files
with the appended _s are for the server application. Concern yourself right now with the
files generated for the client. The classes defined in these files make up the client stub.
Be warned:The code is generated for performance, not readability.

To obtain the details of the C++ class interface, read the workflow_c.hh file. Open the
file and search for the bind() method. Look for the methods directly after this method.
For convenience, you can copy the following method declarations and move them intoa
comment in your client code:

/*
Methods:
virtual void taskStarted(const char* _aTaskId);
virtual void updateTask(Task& _aTask);
virtual void taskOnHold(const char* _aTaskId);
virtual void createNewTask(const Task& _aTask);

virtual void assignTask(const char* _aTaskId,
const char* _aPersonId);

virtual void taskFinished(const char* _aTaskId);
virtual void getTasksForPerson(

const char* _aPersonId,
TaskList*& _aList);

virtual void getTask(const char* _aTaskId,
Task*& _aTask);

virtual void updateTaskList(TaskList& _aList);

*/

CORBA

CHAPTER 20
793

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 793

These are the methods you will use to access the functionality of the server. The idl2cpp

utility generates C++-specific mappingsfor each method, type, and argument.

Connecting to the ORB
Follow these steps to connect with the server object:

1. Initialize the local ORB.

2. Bind to the object.

Hope that wasn’t too complicated. You do need an object name specified by the server
developer. In this case, the server developer gave usthe name Workflow Server . Here’s
what the code looks like:

CORBA::ORB_ptr broker = CORBA::ORB_init(argc, argv);
Workflow::Workflow_var workflow =

Workflow::Workflow::_bind(“Workflow Server”);

The argc and argv are sent to the ORB to define options for the ORB. Don’t worry
about these; the server developer will tell you if you need any options specified.

Invoking Methods
Calls made on the client object workflow are redirected for execution by the server
object. For example, to create a new workflow task you would use the following code:

Task task;
task.id = “TASK123”;
task.status = TSC_NOT_STARTED;
task.description = “Create the server application”;

workflow->createNewTask(task);
workflow->getTask(“TASK123”, &task);

cout << “TASK123: “ << task.description() << endl;

The description() method is called against the client object workflow . The functionali-
ty for adding a new task resides on the server objectand is on the remote object.

In this code block, the distributed functionality is completely hidden. The server object
can be running on the same computer as the client object,or the server object can be run-
ning on the local network or even across the Internet. The people who created the ORB
have taken care of the network programming.

The Completed C++ Client Application
Listing 20.2 shows the complete client application.

Distributing Computing Topics

PART V
794

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 794

LISTING 20.2. COMPLETED CLIENT APPLICATION: client.cpp

/* client.cpp */
#include “workflow_c.hh”

#include <iostream.h>

int main(int argc, char* argv[])
{

try
{

CORBA::ORB_ptr broker =
CORBA::ORB_init(argc, argv);

Workflow::Workflow_var workflow =
Workflow::Workflow::_bind(“Workflow Server”);

Task task;
task.id = “TASK123”;
task.status = TSC_NOT_STARTED;
task.description = “Create the server application”;

workflow->createNewTask(task);
workflow->getTask(“TASK123”, &task);

cout << task.id() << “: “
<< task.description() << endl;

}
catch (CORBA::SystemException& anException)
{

cout << “CORBA Exception: “ << anException << endl;
return 1;

}

return 0;
}

The client application builds up a Task structure and asks the server to create a task
based on that structure. The client application then asks for the same task from the serv-
er. The expectation is that the Task returned from getTask() is the result of processing
performed by the createNewTask() method. The server may have added or changed the
data according to its needs. The task status may even have been modified, setting the task
into a startedstate.

Creating the C++ Server
Now let’s create the server side of our CORBA application. There eight steps involved in
constructing the C++ server object:

CORBA

CHAPTER 20
795

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 795

1. Create the IDL.

2. Generate the server skeleton.

3. Inherit your server class from the skeleton.

4. Initialize the connection to the ORB.

5. Create an instance of the server class and specify a label in the constructor.

6. Initialize a BOA.

7. Attach the server object to the BOA/ORB.

8. The server is now ready to accept method invocations from the client object.

Generating the Skeleton
We will be using the workflow.idl in Listing 20.1. In the VisiBroker environment,the
command to generate the CORBA classes from an IDL template is as follows:

dos> idl2cpp –src_suffix cpp –no_tie workflow.idl

When this command is executed, four files are created:

• workflow_c.hh

• workflow_c.xpp

• workflow_s.hh

• workflow_s.xpp

The header and source file with the appended _c are for the client stub. The files with the
appended _s are for the server skeleton.

The -no_tie option suppresses the generation of the TIE classes. TIE classes provide an
alternative implementation model for server objects. TIE can be used in situations in
which your server object has to inherit from a class other than the skeleton.

We will be using inheritance to implement the server object. The IDL compiler created a
pure virtual method for each method specified in the interface for Workflow . Each of
these methods must beimplemented in the derived class.

Implementing the Server Methods
The IDL generator created the skeleton class _sk_Workflow with pure virtual methods
for each method defined in the IDL interface.

We will now derive Workflow from _sk_Workflow , implementing the server objectmeth-
ods,as shown in Listings 20.3 and 20.4.

Distributing Computing Topics

PART V
796

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 796

LISTING 20.3. SERVER CLASS DECLARATION: Workflow.hpp

// Workflow.hpp
class Workflow : public _sk_Workflow
{

void taskStarted (const char* aTaskId);
void updateTask (Workflow::Task& aTask);
void taskOnHold (const char* aTaskId);
void createNewTask (const Workflow::Task& aTask);
void assignTask (const char* aTaskId,

const char* aPersonId);
void taskFinished (const char* aTaskId);
void getTasksForPerson (const char* aPersonId,

Workflow::TaskList*& aList);
void getTask (const char* aTaskId,

Workflow::Task*& aTask);
void updateTaskList (Workflow::TaskList& aList);

};

LISTING 20.4. SERVER METHOD DEFINITIONS: Workflow.cpp// Workflow.cpp

void Workflow::createNewTask(const Workflow::Task& aTask)
{
// writeTaskToDatabase(aTask);
}

Workflow::getTask(const char* aTaskId,
Workflow::Task*& aTask)

{
// readTaskFromDatabase(aTaskId, aTask);

// Set value for testing
aTask->setId(aTaskId);
aTask->setDescription(“The method was called!”);

}

Connecting the Server Class
Connecting to theORB is the same for the server object as it was for the client object.
Think of the ORB as an ever-present interface:

CORBA::ORB_ptr broker = CORBA::ORB_init(argc, argv);

Loading the BOA into the ORB
The Basic Object Adapter (BOA) is a poorly defined interface that server objects use to
connect to their ORBs. The CORBA 2.2 specification provides Portable Object Adapter

CORBA

CHAPTER 20
797

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 797

(POA), an interface that is far superior to the BOA, and it should be portable between
different ORB vendors.

For now, we will continue our implementation using the BOA defined by the CORBA
2.1 specification, and as implemented by VisiBroker.

Now we instantiate our server object with a label. This is the label the client will use to
reference this server object:

Workflow::Workflow_ptr workflow =
new WorkflowImpl(“Workflow Server”);
Now connect the server object to the ORB:

CORBA::BOA_ptr adapter = broker->BOA_init(argc, argv);
adapter->obj_is_ready(workflow);

All that’s left is to start receiving requests:

adapter->impl_is_ready();

The server application will now receive requests until it is shut down by the ORB (see
Listings 20.5 and 20.6).

LISTING 20.5. THE COMPLETE C++ SERVER HEADER: Workflow.hpp

// Workflow.hpp
#include “workflow_s.hh”

class Workflow : public _sk_Workflow
{

void taskStarted (const char* aTaskId);
void updateTask (Workflow::Task& aTask);
void taskOnHold (const char* aTaskId);
void createNewTask (const Workflow::Task& aTask);
void assignTask (const char* aTaskId,

const char* aPersonId);
void taskFinished (const char* aTaskId);
void getTasksForPerson (const char* aPersonId,

Workflow::TaskList*& aList);
void getTask (const char* aTaskId,

Workflow::Task*& aTask);
void updateTaskList (Workflow::TaskList& aList);

};

LISTING 20.6. THE COMPLETE C++ SERVER BODY: Workflow.cpp

// Workflow.cpp
#include “workflow.hpp”

void Workflow::taskStarted(const char* aTaskId)

Distributing Computing Topics

PART V
798

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 798

{
}

void Workflow::updateTask(Workflow::Task& aTask)
{
}

void Workflow::taskOnHold(const char* aTaskId)
{
}

void Workflow::createNewTask(const Workflow::Task& aTask)
{
// writeTaskToDatabase(aTask);
}

void Workflow::assignTask(const char* aTaskId,
const char* aPersonId)

{
}

void Workflow::taskFinished(const char* aTaskId)
{
}

void Workflow::getTasksForPerson(const char* aPersonId,
Workflow::TaskList*& aList)

{
}

Workflow::getTask(const char* aTaskId,
Workflow::Task*& aTask)

{
// readTaskFromDatabase(aTaskId, aTask);

// Set value for testing
aTask->setId(aTaskId);
aTask->setDescription(“The method was called!”);

}

void Workflow::updateTaskList(Workflow::TaskList& aList)
{
}

/* server.cpp */
#include “workflow.hpp”

#include <iostream.h>

CORBA

CHAPTER 20
799

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

continues

26 239-5 CH20 2/19/99 1:41 PM Page 799

int main(int argc, char* argv[])
{

try
{

CORBA::ORB_ptr broker =
CORBA::ORB_init(argc, argv);

Workflow::Workflow_ptr workflow =
new WorkflowImpl(“Workflow Server”);

CORBA::BOA_ptr adapter =
broker->BOA_init(argc, argv);

adapter->obj_is_ready(workflow);

adapter->impl_is_ready();

}
catch (CORBA::SystemException& anException)
{

cout << “CORBA Exception: “ << anException << endl;
return 1;

}

return 0;
}

A Java Client
The ability to integrate with other languages is one of the outstanding features of
CORBA. With only an IDL definition, you can create a client application that will inter-
face seamlessly to your server object.

The following sections show the Java equivalent of the C++ client presented in the pre-
ceding section. We will show only the differences in code generation, startup,and
method invocation. Our goal is to familiarize you with alternative language bindings for
CORBA.

Distributing Computing Topics

PART V
800

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

LISTING 20.6. CONTINUED

26 239-5 CH20 2/19/99 1:41 PM Page 800

Generating the Stub
We’ll use workflow.idl to generate the client stubs in Java. Executethe following line:

dos> idl2java –no_tie workflow.idl

VisiBroker creates a Workflow directory with the following files:

• PersonIdHelper.java

• PersonIdHolder.java

• Task.java

• TaskHelper.java

• TaskHolder.java

• TaskIdHelper.java

• TaskIdHolder.java

• TaskListHelper.java

• TaskListHolder.java

• TaskStatusCode.java

• TaskStatusCodeHelper.java

• TaskStatusCodeHolder.java

• Workflow.java

• WorkflowHelper.java

• WorkflowHolder.java

• WorkflowOperations.java

• _example_Workflow.java

• _sk_Workflow.java

• _st_Workflow.java

• _WorkflowImplBase.java

CORBA

CHAPTER 20
801

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

For the Java client, we are using VisiBroker for Java.

JavaSoft has included a free Java ORB in the JDK 1.2. For this ORB to work with
the VisiBroker ORB, a stringified IOR must be used. See “The Naming Service
and Interoperability,” near the end of this chapter for more information.

26 239-5 CH20 2/19/99 1:41 PM Page 801

These are the Java classes for both the client stub and the server skeleton. The server-
specific files are _example_Workflow.java and _sk_Workflow.java . All other files are
needed for the client application.

Startup and Method Invocation Code
Here is the Java equivalent of the C++ client startup and method invocation code for the
Workflow client:

org.omg.CORBA.ORB broker =
org.omg.CORBA.ORB.init(args, null);

Workflow.Workflow workflow =
Workflow.WorkflowHelper.bind(“Workflow Server”);

Task task;
task.id = “TASK123”;
task.status = TaskStatusCode._TSC_NOT_STARTED;
task.description = “Create the server application”;

workflow.createNewTask(task);

TaskHolder taskHolder;
TaskIdHolder taskId(“TASK123”);
workflow.getTask(taskId, &taskHolder);

Aside from language-specific syntactical differences,the Java code is very similar to the
C++ client code. Additional code is generated because Java lacks user-definable conver-
sion operators and enums.

Testing Strategies
With objects executing method calls remotely, what could go wrong? Well, maybe less
than you think. Because ORBs are used in mission-critical applications,they must be
bulletproof. You may find that the added layer of CORBA objects lowers failure rates.

It may be impossible to simulate the environment in which an error occurred. In these
cases,more traditional network programming tools can be used.

The following sections describe techniques that can help you debug your CORBA appli-
cations.

Tracing
Almost every ORB has a trace facility. Use it. Some tracing facilities use the
Implementation Repository to store information; others use management consoles or flat
files.

Distributing Computing Topics

PART V
802

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 802

Get used to what tracing looks like when things are going fine. Then,when there’s trou-
ble, you can spot it quickly.

Monitor and Logging Services
Event logging is runtime tracing. Send events to logging interfaces and give your objects
a heartbeat.

When things go wrong, users can supply you with the log and maybe even fix their own
problems.

Exception Handling
IDL allows you todefine structured, detailed exceptions. By using dynamic type discov-
ery, logging tools can display data thrown in an exception.

For example, the following exception could be added to the Workflow example:

// Add to Workflow.IDL:
exception TaskAlreadyAssigned
{

TaskId assignedToId;
}
. . .
// Change the method in the Workflow.IDL
void assignTask(in TaskId aTaskId, in PersonId aPersonId) raises

(TaskAlreadyAssigned);
. . .
// Add to Workflow.cpp
try
{

workflow->assignTask(“TASK123”, “CHUCKPACE”);
}
catch (TaskAlreadyAssigned& anException)
{

cout << “TASK123 already assigned to: “ << anException.assignedToId()
<< endl;

}

This method provides details for the exception,and the IDL specifies the exception that
the method might throw.

Remote Debugging
Some C++ compilers allow limited remote debugging of applications. In the past,these
debuggers worked over serial connections. With the prominence of the Internet,these
debuggers now run over TCP/IP.

CORBA

CHAPTER 20
803

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 803

In the absence of remote debugging, you can use remote-control software under
Windows,and, of course, Telnet or X Window under UNIX.

The Naming Service and
Interoperability
CORBAServices is a specification of more than 13 services that you may need in creat-
ing CORBA applications. An IDL is defined for each of these services. The closest anal-
ogy is system services for an operating system. The naming service (NS) is the most
commonly used service.

For most applications,a naming service is not needed. As application dependencies
between different systems grow, however, the need for an organization tool also grows.
The NS provides a way to assign names to objects and to organize those objects into fed-
erated hierarchies. This idea is similar to the file system directories defined across net-
works.

The naming service has a defined interface. The server object registers itself with the NS.
The registration is the association of an object reference (IOR) and a name. The name is
a sequence of naming contexts, similar to a directory’s name in a file system.

The client object gives the NS a name, and the NS returns an IOR. The client then makes
a connection to the ORB specified by the IOR. Method invocations on the server object
are requested through the ORB.

Without the NS, the client needs the specific location of the server, which is similar to a
URL. Moreover, when the location of the server object changes,the link is lost. The
client can then no longer connect to the ORB.

As you can see, the NS is much like a directory of objects. The sequences naming an
object are hierarchical, as they are in a directory structure. For simple environments,all
the objects are identified by names on a single root level. As the architecture becomes
more complex, the hierarchical element differentiates interfaces by breaking them down
categorically.

Interoperable Object Reference (IOR)
Think of the IOR asequivalent to a reference in C++. The IOR contains the host IP
address,port number, and an implementation-specific object key. The client uses this
information to find and connect to the ORB listening on the host and the port specified in
the IOR. After the client is connected to the ORB, it can start issuing requests across the
connection,referencing the object key to target the request to the specific object.

Distributing Computing Topics

PART V
804

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 804

An object reference can be turned into an ASCII string by calling the
object_to_string() method for any object. The CORBA specification defines the
structure of this string explicitly. The string can then be passed outside the CORBA envi-
ronment,and an IOR can be re-created on a different machine using the object method
string_to_object() . This process is how ORBs from different vendors can interoperate.

IORs don’t necessarily last forever. Because of the inadequacies and ambiguity in the
CORBA specification, the IOR isoverworked.

CORBA

CHAPTER 20
805

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

CAUTION

IORs are used in nonstandard ways by different ORB vendors. Safeguard your-
self by always asking the NS for the IOR, and use the IOR in a reasonable
amount of time.

After you make your connection to your target ORB, you shouldn’t have any
problems. At that point, a socket connection has been made, and the object
should stay around until you destroy the client proxy stub class.

Finding the NS for the first time can be problematic. As of the CORBA 2.1 speci-
fication, there is no boot-strapping protocol for a client to find the first ORB.

Naming Contexts
In CORBA, naming contextssolve the name-clashing problems namespaces solve in
C++. Naming contexts are arranged in a hierarchy similar to file system directory struc-
tures or class hierarchies. A name context is a sequence of naming contexts that uniquely
identify a single object.

Figure 20.3 shows how names are constructed from the naming contexts. The semicolon-
separated name represents the name of the object. Where C++ namespaces safeguard
variables and class names,the CORBA naming contexts ensure the uniqueness of object
names.

Interoperability Issues
The _bind() methodis VisiBroker’s bootstrap mechanism that enables name resolution.
The _bind() method makes the client code nonportable, but very readable.

Universal bootstrapping should be included in the CORBA 3.0 specification. For differ-
ent ORBs,you may have to replace _bind() with the vendor-specific mechanism for
name resolution.

26 239-5 CH20 2/19/99 1:41 PM Page 805

It is important to understand the three layers of possible boot-strapping:

• Using a proprietary method in a client object,such as _bind() . This method is
used for small to mid-sized applications,where the client and server are on the
same machine or LAN.

• Proprietary connection to the naming service, where the naming service and the
ORB have a proprietary connection initiation mechanism. Here, the application is
more complex and needs the Naming Service to find the server objects,which may
be on the LAN or across the Internet.

• When the naming service is from a different vendor than the client object,stringif ica-
tion is needed. This is when the naming service writes out its stringified IOR(a string
that can be reconstituted into an IOR) to a file system. The client then reads the
string from the file system,reconstituting the IOR,and connecting tothe first ORB.

Distributing Computing Topics

PART V
806

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

FIGURE 20.3.
Hierarchical nest-
ing to prevent
object-naming
conflicts.

workflow.idl

1

workflow_s.hh

workflow_s.cpp

workflow_c.hh

workflow_c.cpp

server.cpp

2

implementation

ORB

client.cpp

#include "workflow_c.hh"

 ORB_init ()

 _bind("Workflow")

 method ()

3

4

5

26 239-5 CH20 2/19/99 1:41 PM Page 806

Performance
Performance in a CORBA environment is unexpectedly fast. When I started CORBA
development,I expected the slow speeds experienced under OLE/COM development.

The following sections describe areas in which you can make your applications more
robust. Many of these areas are similar to those in C++ development—with a distributed
computing twist.

ORB Memory Leaks
If an application runs in a spawned process,it is very difficult to spot a memory leak.
The operating system acts as the garbage collector for the application. But when a mem-
ory leak occurs within a single process space, the application must perform its own
garbage collection. Most C++ applications do not incorporate a garbage collection
scheme. Therefore, C++ programmers must be highly sensitive to leaks in server applica-
tions in most CORBA environments. A simple leak that may be hidden in a CGI-
spawned process can become a huge problem in an ORB. The cost on the CGI side typi-
cally shows up in process startup time and awkward architectures.

Granularity of Interface
Because the linkage mechanism of IIOP is sockets,data transfer tends to be much slower
than it is in IPC or direct memory transfer. To offset this,you can consolidate the acces-
sor methods into single method calls that set or get values from a passed structure.

CORBA

CHAPTER 20
807

20

C
O

R
B

A

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

NOTE

ORB vendors may optimize their ORBs using IPC or direct memory access when
the client and server are on the same machine. Some ORBs even use faster
transports than IIOP when their product is used on the client and the server.

When the client and the server are different, a proxy ORB can be inserted over
the slowest connection to speed up the ORB requests.

Some implementations of TCP/IP use IPC when the client and server are on the
same machine.

You can provide additional methods that perform batch processing for frequently called
methods. To do this,create a structure with the arguments,return value, and exception
information. Create a sequence of these structures and use the sequenceas the argument
to the batch version of the function.

26 239-5 CH20 2/19/99 1:41 PM Page 807

Avoid passing too much data around. If the server supplies the client with a list of data
from a database table, and the user marks the rows for deletion,insertion, or update,
transfer back only the rows you need to change.

Hardware efficiencies eliminate many granularity issues when the client and server are
running on the same box.

Passing Object References
An IOR in CORBA is the equivalent of a reference in C++. The IOR can be passed as an
argument into a method. The server object can then access that object to perform whatever
operations it requires. This indirection involves overhead; don’t overuse IORs in this way.

Summary
The CORBA specification and implementations are a major step in the evolution of soft-
ware development. The developer can now focus on solving the architectural issues,not
the integration issues.

Intermediate and novice developers can use the flexibility and ubiquity of CORBA to
create the next generation of software systems. These systems will allow distributed
computing environments to have the control and maintainability of older mainframe sys-
tems,as well as the flexibility of yesterday’s client/server applications.

Distributing Computing Topics

PART V
808

P/V C++ Unleashed 72312395 Freelance 10.14.98 CH20 Lp#1

26 239-5 CH20 2/19/99 1:41 PM Page 808

IN THIS CHAPTER

• COM Fundamentals 811

• Using COM Objects in C++ 830

• Writing COM Objects in C++ 841

21
C

H
A

PT
ER

COM

27 239-5 CH21 2/19/99 1:43 PM Page 809

Object-oriented languages represent a significant step in the evolution of the software
industry. This whole book focuses on the philosophy of building object-oriented projects
with C++. As the software industry evolves,new requirements on the software tools are
being imposed. It has come to the point at which individual languages do not suffice
because of their nature—binary and interlanguage standards become necessary.

The problem with C++(as well as any other object-oriented language) is that it provides
an object paradigm on the source code level. The program is built using reusable classes
in source form. It is possible to package classes in reusable binaries—dynamic link
libraries (DLLs)—and publish only class headers. Unfortunately, this approach intro-
duces more problems than it solves. Because there is no standard for how different C++
compilers implement many language features,the binary DLL becomes tightly coupled
with the compiler used to generate it. Theheader should present all the implementation
details (data and hidden methods) because the compiler needs to generate proper memo-
ry allocation of the class,including virtual tables. Another problem is the versioning of
the code. Although the new version can allow older clients to use it,the newer clients are
doomed to fail with the older version of the library. These problems force the vendors of
software class libraries to use inefficient workarounds (for example, Microsoft’s
Foundation Classes library shipped with a different DLL name in every subsequent ver-
sion),or toship the library in source code.

To solve these problems,as well as to provide language independence, Microsoft created
theComponent Object Model (COM) specification—a binary standard for the deploy-
ment and use of binary software components.

Historically, COM wascreated to solve the needs of another Microsoft technology:
Object Linking and Embedding (OLE). Later, its creators realized that they had created a
very simple, powerful, and easily extensible architecture. Microsoft employed the COM
technology in virtually all their products,even turning their operating systems into sets
of components. This does not mean that COM benefits only Microsoft. In the standard
versioning scheme, many source component vendors saw the perfect solution to their
need to distribute binary libraries. A new concept was introduced:componentware.

The key to the evolutionary versioning presented by COM is the delayed runtime cou-
pling between the components’binaries and their clients (don’t confuse runtime coupling
with definition coupling; the client still needs the definition header for the component at
compile time for C++; other programming languages may need another definition).
When a newer component is deployed, the older clients can still use it through its legacy
functionality. The newer clients can use the newer functionality, too. If a newer client
encounters the older version of the component,the client recognizes it in a standard way
and can choose to degrade and work only through the older functionality.

Distributed Computing Topics

PART V
810

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 810

The advent of COM inno way diminishes the usefulness of C++ as a programming lan-
guage. In fact,because COM was developed with C++ concepts as a base, it is natural to
write COM programs in C++. This chapter focuses on using and writing COM objects. It
is divided into three sections:COM fundamentals,using COM objects,and writing COM
objects. The COM fundamentals section describes the foundation of COM. Readers who
have some familiarity with COM may want to skip this introduction. The other sections
describe C++ techniques for using and writing COM objects. COM is too large a subject
to be covered in just one chapter, however, so a “Further Reading”section has been pro-
vided at the end of the chapter.

COM Fundamentals
This part of the chapter provides a brief introduction to the concepts of COM. Readers
who have basic familiarity with COM may want to skip to the section “Other COM
Technologies” or to “Using COM Objects.”

COM Architecture
The Component Object Model (COM) defines the following main entities:

• Object: This element relates most closely to a C++ class. Objects implement the
functionality and contain the flesh of COM.

• Interf ace:This elementprovides a definition of some functionality common to
many objects. Interfaces define the rules for interaction with the objects.

• COM r untime: This element contains a small set of routines for maintaining
object services.

Every object implements one or more interfaces through which that object is accessible
to the world. The interfaces that the object implements represent its functionality. The
choice of implemented interfaces is the responsibility of the objectdesigner.

Every object can choose to create another object as an output of a method call in one of
its interfaces (the implementation of an interface method creates an object and returns a
pointer to one of its interfaces through an output parameter). This process is part of the
interface semantics. It is rarely useful to have one object manufacture another and then to
have the second object produce another object of the first object’s class. Most often,there
is one directly createable object that, in turn, creates other objects. Those objects create
other objects,and so on. The result is a tree of object classes,in which each parent class
can produce objects of its descendants. The hierarchy of objects created by one root object
and its descendants is called a component. Component is a vague term: It sometimes
refers to a group of object hierarchies implemented in a single module (an executable or

COM

CHAPTER 21
811

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 811

DLL) that together encapsulate the necessary functionality to perform some task. The
objects from different hierarchies are usually strongly interdependent (for example, one
object is usedextensively by another to accomplish its task).

One particular class of COM objects that can be created directly through the COM run-
time is of special interest. It is the COM class,or coclass. As you’ll see later in this
chapter, this class is associated with another class of COM objects—class factories—that
manufacture them. The class factory object has a method in one of its interfaces that pro-
duces an instance of the coclass and thus can be considered a language-independent con-
struct analogous to the C++ new operator.

COM objects can be used by their clients in two distinct modes (which are transparent to
the object and its client): director marshaled. When the object and its client reside in
single execution context (called an apartment), the client uses direct pointers on the
object interfaces. When the object and the client reside in different apartments,COM
interposes itself between them and provides the necessary support for calling the inter-
face methods and returning the results. Two objects provide the necessary support. The
proxy resides in the client context and acts as the object for that particular interface (the
client cannot differentiate between an object and its proxy). The stub resides in the con-
text of the object and acts as the client of the object’s interface. The connection between
the objects uses protocols appropriate for the particular connection (Windows messages,
RPC,or something else).

Interfaces
In COM, interfaces define the functionality that objects implement. They most closely
relate to C++ classes that contain no data members and only pure virtual methods. This
is the way COM interfaces are implemented in C++. The keyword interface used in
code to describe an interface is replaced by struct in a C++ header:#define

interface struct . All interface methods are declared as pure virtual methods in a C++
struct. Consider the following C++ definition of the interface ICar :

interface ICar
{

void SetSpeed(long nSpeed);
};

This definition translates to this in COM:

struct ICar
{

virtual void SetSpeed(long nSpeed) = 0;
};

Distributed Computing Topics

PART V
812

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 812

Because C++ structures make all their methods and members public, a simple preproces-
sor command suffices. If a class is used, theaddition of the public keyword is necessary.
The similarity between interfaces and C++ classes is intentional:It stems from the fact
that virtually all C++ compilers generate the same virtual method table (VTBL)—in this
particular case, the class containing only pure virtual methods—and the VTBL is the
binary definition of the interface. To complete the picture, all methods should conform to
the stdcall calling convention to achieve binary compatibility with other languages such
as Pascal and Fortran (the preceding translation needs __stdcall after void —or some
similar keyword, depending on thecompiler).

Interfaces as C++ classes are subject to the following restrictions:

• They don’t provide an implementation, only pure virtual methods.

• They cannot contain data members.

• They can be derived from other interfaces,but derivatives can add only new, pure
virtual methods; only single inheritance is allowed.

The restriction about data members is crucial to the COM architecture. Data cannot be
manipulated directly; instead, the client must conform to the exposed interfaces. This is
necessary to preserve binary and language independence between the client and the object,
and provides the foundation for execution context switching independence, as we will see
later. The restriction about single inheritance is necessary because no standard exists for the
binary layout of VTBLs of base classes when multiple inheritance is involved. With this
restriction, the complications of virtual inheritance are avoided. In the discussion of
IUnknown , later in this chapter, we’ll see the COM solution to multiple inheritance.

Although VTBL is an excellent binary identity of the interface, there should be some
means for source identity (that is, some way C++ or another language can name the
interface in the source code). One approach is to use the interface’s textual name as it is
typed in the definition. Although this approach is great for C++ sources,it doesn’t stand
when looked at from the position of COM goals:It isn’t binary form, it can’t be under-
stood by other languages,and it isn’t unique (two developers can give their interfaces the
same name). Thesolution comes in the form of a binary identifier called an interface
identifier (IID). IIDs are variations of GUIDs or UUIDs—16-byte arrays that are guaran-
teed to be unique by the algorithm used for their generation. Globally Unique Identifier
(GUID) is the name Microsoft gave toUniversally Unique Identifiers (UUIDs)—entities
defined by the Open Software Foundation Distributed Computing Environment (OSF
DCE) consortium. The IID is the GUID assigned as the name of an interface. The COM
function CoCreateGuid() generates a new GUID every time it’s called. Of course, it is
rarely necessary to call this function directly. Some tools such as Microsoft’s
guidgen.exe provide a user interface for allocating GUIDs. A GUID is needed only
once—when you are designing the interface. We will see how to use the IID in the dis-
cussionabout the IUnknown interface.

COM

CHAPTER 21
813

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 813

In the previous example, an interface was voluntarily described using C++-like syntax
with a nonstandard keyword interface . In reality, interfaces are described in a language
unsurprisingly called the Interface Definition Language (IDL). The IDL is part of OSF
DCE Remote Procedure Call (RPC). The IDL is used to define the transparent definition
of RPC calls over network transports and to generate appropriate network remoting code.
Microsoft added some extensions for COM specifics. The result is that COM interfaces
can be used remotely over RPC (this means between processes as well as between
machines; this topic isn’t explored any further in this chapter).

IDL syntax is similar to the syntax of C++ declarations with some additional annota-
tions. The earlier example of the ICar interface definition written in IDL looks like this:

[object, uuid(C21D0200-2FB6-11d2-8952-444553540000)]
interface ICar
{

void SetSpeed([in] long nSpeed);
};

The keyword object indicates that this is a COM interface (as opposed toan RPC inter-
face),uuid() gives the interface IID, in denotes an argument as an input parameter.
Tools exist that take the IDL definition file describing an interface and produce a C/C++-
compatible header file that should be used when implementing or using the interface.
These tools also generate proxy/stub code for remoting the interface and a file that
defines the IID (GUIDs are represented as structures and need to be allocated). Multiple
interfaces can be defined in a single IDL file.

The way the sample interface is defined so far, it won’t compile. If we run it through a
Microsoft IDL compiler (MIDL),the result contains two errors. The first error stems
from the fact that COM interfaces should derive from IUnknown , as discussed later in this
chapter. The second error relates to the fact that all methods in COM interfaces should
return HRESULT. Let’s rewrite the sample so that MIDL accepts it:

import “unknwn.idl”

[object, uuid(C21D0200-2FB6-11d2-8952-444553540000)]
interface ICar : IUnknown
{

HRESULT SetSpeed([in] long nSpeed);
};

The resulting header file contains,among the other debris, the following C++interface
definition:

interface
DECLSPEC_UUID(“C21D0200-2FB6-11d2-8952-444553540000”)
ICar : public IUnknown

Distributed Computing Topics

PART V
814

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 814

{
public:

virtual HRESULT STDMETHODCALLTYPE
SetSpeed(/* [in] */ long nSpeed) = 0;

};

We include public just in case interface is defined as a class in the COM header.
STDMETHODCALLTYPEenforces the stdcall calling convention. DECLSPEC_UUIDcan be
safely ignored—it is a C++ extension introduced by Microsoft in Visual C++ 5.0.
IUnknown is publicly inherited because a base interface is part of VTBL and should be
visible. The resulting C++ class contains only pure virtual and publicly visible methods.

HRESULTs are 32-bit integers that describe the status of the method invocation. The name
implies that it will be read as a handle to a result—which isn’t the case. (Historically,
HRESULTwas intended to be a handle and the name was established; later it was found
that 32 bits suffice to describe the result itself.) COM enforces all methods to return
HRESULTs because it needs to report network failures to the caller in a uniform way.
HRESULTconsists of the following bit fields:

SRRFFFFFFFFFFFFFCCCCCCCCCCCCCCCC

S (1 bit) Severity code:SEVERITY_SUCCESSor SEVERITY_FAIL

R (2 bits) Reserved, should be zero

F (11 bits) Facility

C (16 bits) Statuscode

The status code itself occupies the first 16 bits of the HRESULT. Next comes facility,
which points out which subsystem returned the code. All custom codes are bound to
FACILITY_ITF (4) , which means interface specific. The most important bit is the severi-
ty bit: SEVERITY_SUCCESS (0) means that the operation succeeded, SEVERITY_FAIL (1)

means that the operation failed. The two macros FAILED(hr) and SUCCEEDED(hr) test the
returned HRESULT hr for success or failure.

The symbolic names corresponding to defined HRESULTs also contain threeparts in the
following order: facility, severity, and status code description. A few widely used
HRESULTs omit the facility part. Examples that do omit facility are
CO_E_NOTINITIALIZED , DRAGDROP_S_DROP, E_OUTOFMEMORY, E_FAIL , S_OK, and S_FALSE.
You should use standard HRESULTs where appropriate. HRESULTs shouldbe used to report
exceptions because exceptions are not allowed to pass interface boundaries (they are
implementation specific in C++ or have completely different or no implementations in
other languages). Exceptions that pass beyond interface boundaries force RPC to return
RPC_E_SERVERFAULT (0x80010105) if the interface is remoted. If the object is in process,
an exception will probably crash the client.

COM

CHAPTER 21
815

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 815

Interfaces can be inherited. It seems natural because they are just C++ classes. However,
things are quite different from C++ in this particular aspect. Because interfaces consist
solely of pure virtual methods,a derived interface contains all the methods of its base
interface. This means that the object that implements the derived interface must expose
the base interface, too (it is implemented anyway). And if two or more interfaces are
derived from some base interface and are all implemented on one object,the methods of
the base interface can possibly have different implementations (sometimes this is desired,
but mostly it is not because it confuses the object client). In short, it isn’t advised to use
interface inheritance except in special circumstances. COM offers a better way of achiev-
ing polymorphism—the QueryInterface() method of the IUnknown interface (discussed
in the next section). Interface inheritance is necessary only if an interface cannot exist
without implementing methods of its base interface. An example is IUnknown , which
must be the base interface for all COM interfaces.

Listing 21.1 shows the IDL used in the samples throughout this chapter. Some details of
this code become clear later in the chapter, in the discussion of type libraries.

LISTING 21.1. SAMPLE IDL FOR A CAR OBJECT AND ITS INTERFACES

import “unknwn.idl”

[
object,
uuid(C21D0200-2FB6-11d2-8952-444553540000),
helpstring(“Car driving”)

]
interface ICar : IUnknown
{

HRESULT SetSpeed([in] long nSpeed);
};

[
object,
uuid(C21D0200-2FB6-11d2-8952-444553540000),
helpstring(“Engine control”)

]
interface IEngine : IUnknown
{

HRESULT Start();
HRESULT Stop();

};

[
uuid(310C97F4-3ABE-11d2-915E-52544C004D83),
version(1.0),
helpstring(“Car library 1.0”)

Distributed Computing Topics

PART V
816

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 816

]
library YourLib
{

importlib “stdole2.tlb”
importlib “stdole32.tlb”

[
uuid(310C97D0-3ABE-11d2-915E-52544C004D83},
helpstring(“Car class”)

]
coclass Car
{

[default] interface ICar;
interface IEngine;

};
};

The IUnknown Interface
All COM interfaces must derive from IUnknown . Its definition is as follows:

[
local,
object,
uuid(00000000-0000-0000-C000-000000000046),
pointer_default(unique)

]
interface IUnknown
{

HRESULT QueryInterface(
[in] REFIID riid,
[out, iid_is(riid)] void **ppvObject);

ULONG AddRef(void);
ULONG Release(void);

};

The keyword local means that the interface is not remotable (that is, no marshaling code
should be generated by the IDL compiler). This seems strange because COM interfaces
are generally remotable (that is, they can be called through execution context bound-
aries). IUnknown is remotable. Its remoting scheme relies on another interface
(IRemUnknown) used internally, which allows certain call optimizations to be performed.
pointer_default(unique) instructs marshaling code that NULL pointers can be returned
on method invocations. iid_is instructs the marshaling code to treat the pointer as an
interface pointer and names it with an IID. Here, IIDs come into play for the first time.
REFIID is IID& and is the only non-C–compatible element used in interface methods. It
exploits the fact that C++ compilers pass reference arguments as pointers. Armed with
these additional considerations,let’s explore the methods of the IUnknown interface.

COM

CHAPTER 21
817

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 817

QueryInterface() is usedto ask the object whether it supports a particular interface
named with its IID. The result is returned in the second parameter. Because
QueryInterface() returns a general interface pointer, no type-safe definition is possible.
However, it could at least return IUnknown ** . The caller passes the address of the inter-
face pointer of the type named by riid parameter (it should reference the correct VTBL
for the returned interface). QueryInterface() should return S_OKwhen it succeeds or
E_NOINTERFACEif that particular interface is not implemented on the object (in which
case, the output parameter ppv should be filled with NULL). This behavior is similar to the
C++ operator dynamic_cast (which has been taken as a model). QueryInterface() pro-
vides the client with a way to query the object for its functionality at runtime. Strong
requirements are imposed on the behavior of QueryInterface() , as we’ll see shortly.

AddRef() and Release() are used to manage the interface pointer lifetime by way of ref-
erence counting. When first obtained, every interface pointer has a reference of 1 (which
is the first requirement for QueryInterface() —on success,it should call AddRef() on
the returned interface pointer). When the client finishes using the interface, it should call
Release() on the pointer. Every time an interface pointer is duplicated (stored in another
variable or structure field or whatever), AddRef() should be called to increase its refer-
ence count. Before destroying the copy (such as when releasing a heap or when a local
variable goes out of scope),Release() should be called. The implementation of
Release() should check when the reference count reaches zero to free any resources
required by theinterface.

Distributed Computing Topics

PART V
818

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

Every interface on the object manages its own reference count. The actual
implementation is free to use a single reference count for all interfaces on an
object. Nevertheless, when all interfaces on an object reach zero reference
count, the object destroys itself. (Of course, the reference count on any inter-
face shouldn’t drop below zero—or else the client is in error.)

Because all interfaces derive from IUnknown , all interfaces have QueryInterface() in
their VTBLs. The objects usually populate VTBLs of all interfaces with a single imple-
mentation of QueryInterface() —although this is not mandatory. All implementations of
QueryInterface() on an object should conform to the following rules (all referred inter-
faces are from one object):

27 239-5 CH21 2/19/99 1:43 PM Page 818

• QueryInterface() for IUnknown always succeeds and always returns the same
interface pointer, regardless of the interface on which it was called.

IUnknown is the base interface for every other interface; usually, one interface is
chosen to be returned and no special VTBL for IUnknown is designated. This rule
ensures that IUnknown is unique for the object and can be used as the object’s iden-
tity. When in doubt about whether two interfaces point to one object,you can use
QueryInterface() for IUnknown on both interfaces and compare the resulting
pointers.

• If QueryInterface() for I X succeeds once, it should succeed for the lifetime of
the object,regardless of the interface on which it is used.

This rule ensures the stability of the object’s implementation and provides clients
with a certain degree of trust so that they don’t have to keep interface pointers once
they get them:The client is guaranteed to receive the interface pointers when it
needs them in the future. Of course, the client has to hold at least one interface
pointer if it wants to keep the object alive.

• If QueryInterface() for I Y succeeds on interface I X, then QueryInterface() for
I X on I Y should succeed, too.

QueryInterface() for I X called on I X should always succeed.

If QueryInterface() for I Y succeeds on interface I X, and QueryInterface() for
I Z succeeds on interface I Y, then QueryInterface() for I X on interface I Z should
succeed, too.

The preceding three rules ensure safety when navigating through the object interfaces
and guarantee that all interfaces are reachable from everywhere.

Following is a simple implementation of QueryInterface() for an object that exposes
two interfaces:IEngine and ICar through multiple inheritance:

STDMETHODIMP CCar::QueryInterface(REFIID riid, void **ppv)
{

HRESULT hr = S_OK;

// Note that IEngine is designated for IUnknown queries
if (IsEqualIID(riid, IID_IUnknown)) {

ppv = (void)static_cast<IEngine*>(this);
} else if (IsEqualIID(riid, IID_IEngine)) {

ppv = (void)static_cast<IEngine*>(this);
} else if (IsEqualIID(riid, IID_ICar)) {

ppv = (void)static_cast<ICar*>(this);
} else {

hr = E_NOINTERFACE;
*ppv = NULL;

}

COM

CHAPTER 21
819

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 819

// Note that we call AddRef on the returned pointer
if (SUCCEEDED(hr)) {

reinterpret_cast<IUnknown*>(*ppv)->AddRef();
}

return hr;
}

Important issues are the IUnknown query handling and the final AddRef() call. The object
designates the IEngine interface as its identity and returns it when queried for IUnknown .
And before returning the interface pointer, AddRef() is called on the returned interface
pointer. This is mandated by the rule that every interface maintains its own reference count.

Distributed Computing Topics

PART V
820

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

Implementations such as those I have presented are rarely used. When there are
many interfaces exposed on the object, the code becomes large. The table-driven
approach is preferred. However, this implementation serves as a good example.

COM Objects
So far, we’ve seenall the mechanics of using and navigating through interfaces on a sin-
gle object,but not how the client gets its initial IUnknown pointer on the object.

There are four different ways of obtaining an initial interface pointer on an object:

• Through generic COM creation functions such as CoGetClassObject() ,
CoCreateInstance() , and so on.

• Through an interface method call on another object that returnsthe interface on a
new object.

• When the client of an object passes an interface pointer of another object to the
first object using an interface method call. Thus,the first object receives a pointer
on the new object for internal use—the first object is the client.

• Through another API function that manufactures a specific object and returns one
of its interfaces to the caller. An example is CreateStreamOnHGlobal() , which cre-
ates the standard OLE object representing a memory stream and returns its
IStream interface.

The last method is rarely used. It was modern in the early days of OLE (which had the
Win32 API background). The second method represents the object hierarchy navigation.
The third method presents the objects with a way to communicate proactively with their
clients and is briefly discussed in “Other COM Technologies,” later in this chapter.

27 239-5 CH21 2/19/99 1:43 PM Page 820

The first method is the most widely accepted way of distributing COM components. It
works on coclasses. Every coclass has an associated object called a class objector class
factory. Although not mandatory, this object exposes the interfaceIClassFactory :

[
object,
uuid(00000001-0000-0000-C000-000000000046),
pointer_default(unique)

]
interface IClassFactory : IUnknown
{

HRESULT CreateInstance(
[in, unique] IUnknown *pUnkOuter,
[in] REFIID riid,
[out, iid_is(riid)] void **ppvObject);

HRESULT LockServer([in] BOOL bLock);
};

The LockServer() method is used to prevent the server that implements the objects of
interest from unloading when no objects are alive. Thus creation requests issued later are
serviced considerably more quickly. All calls to LockServer(TRUE) must be matched
with the appropriate number of calls to LockServer(FALSE) (as is true with AddRef()

and Release() for interfaces). The method of importance is CreateInstance() .

CreateInstance() takesthree parameters. The last two are the ones passed to
QueryInterface() and enable the client to directly obtain a pointer for a specific inter-
face, not just IUnknown . The first parameter is the new object’s controlling IUnknown and
is used in aggregation as we’ll see shortly. For regular clients,it is always NULL. This
method has an intimate knowledge of the object it should create. The returned interface
pointer should be reference counted (AddRef() should be called).

The COM runtime hasmechanisms for locating class factories,which aren’t discussed
here. The COM function that does this isCoGetClassObject() :

STDAPI CoGetClassObject(
REFCLSID rclsid,
DWORD dwClsContext,
COSERVERINFO *pServerInfo,
REFIID riid,
void **ppv);

The last two parameters are the ones passed to the QueryInterface() method of the
class factory and represent the requested interface from the class factory itself (usually
IClassFactory). pServerInfo is used to describe the machine and security context of
the call. When on the same machine using default security, pServerInfo can be NULL.
Through dwClsContext , the caller specifies how far it wants the object to be created.

COM

CHAPTER 21
821

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 821

Most important is the first parameter:REFCLSID is CLSID& and CLSID is GUID (it shows
that we have encountered more GUIDs). Each coclass has a CLSID associated with it
(each interface is named by IID). Thus,any two coclasses can be safely distinguished.
Therefore, rclsid safely names the requested coclass. This is the CLSID of the coclass,
which the class factory manufactures (class factories have no CLSIDs). If this function
succeeds,the caller holds the pointer to the class factory of the coclass of interest and
can create as many instances as desired (the interface is usually IClassFactory). When
finished with the class factory, the client should call Release() as usual.

Distributed Computing Topics

PART V
822

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

NOTE

COM objects can be activated in three different class contexts: in-process, local,
and remote. The in-process (in-proc) context means that the object is created in
the address space of the calling process. The object server resides in a DLL. Local
and remote activations are referred to together as out-of-process (out-of-proc)
activations. The object server resides in a separate executable, and the object is
created in a different process. The two contexts differentiate whether the
object server resides on the same machine or on another machine.

If the class factory exposes IClassFactory (which is recommended),the COM runtime
provides a wrapper for creating a single instance of the coclass:

STDAPI CoCreateInstance(
REFCLSID rclsid,
IUnknown *pUnkOuter,
DWORD dwClsContext,
REFIID riid,
void **ppv);

This is a somewhat outdated function because it misses the COSERVERINFO*argument,
but for our discussion,it suffices. rclsid and dwClsContext are passed to
CoGetClassObject() to get the class factory of the object (the IID that is passed is
IID_IClassFactory). If the class factory is obtained successfully,
IClassFactory::CreateInstance() is called, passing the remaining three arguments,
and the class factory is released. The output argument contains the requested interface
pointer on success.

COM has all the characteristics necessary to be considered an object-oriented system:
encapsulation, polymorphism,and reusability. The only feature dropped is the object
implementation reuse (also called implementation reusability). To solve this problem,we
use the technique called aggregation. Through aggregation, one object can directly

27 239-5 CH21 2/19/99 1:43 PM Page 822

expose the implementation of some interfaces of another object. Everything seems quite
easy until we reach the requirements for IUnknown and they cannot be achieved. The
problem is that when we get a direct pointer to the aggregated object,it doesn’t know
that it is being aggregated. It cannot return the interfaces on the aggregating object when
the client asks through one of the interfaces of the aggregated object. The only solution is
to make the object aware that it is being aggregated. Then it can react to
QueryInterface() calls by delegating them to its controlling object IUnknown imple-
mentation. The coclass has two IUnknown implementations. The first implementation is
used when the object is not aggregated and is returned by the class factory in case of
aggregation (for example, when the aggregating pUnkOuter parameter of
IClassFactory::CreateInstance() is not NULL, the requested IID should be
IID_IUnknown). The second implementation is shared by all interfaces and delegates to
the first implementation (if no aggregation takes place) or to the controlling IUnknown . It
is very important to note that aggregation is allowed only if the client and the object
reside in the same apartment (that is, if no proxies and stubs are involved). Another tech-
nique for binary reuse, called containment, can be applied in all cases. Incontainment,
the outer object implements all desired interfaces; to do the job on certain interfaces,it
simply delegates all calls to another object. It instantiates the object during its own cre-
ation and releases it on destruction. The contained object doesn’t notice that it is being
contained (it cannot do that).

Type Libraries
For C++ programs,theIDL compiler processes ID descriptions of the interfaces and gen-
erates a header file with native C++ definitions. The compiler also generates a file that
stores the GUIDs for interfaces and coclasses. This is all well and good for C++; as far
as the readers of this book are concerned, this is all that is needed. As you know, howev-
er, other languages don’t understand native C++ headers and need another way to
describe the interfaces and coclasses. The binary analog of a C++ headeris called a type
library.

A type library contains much richer information than a regular C++ header. The IDL
contains as a subset another language (developed by Microsoft) called theObject
Description Language (ODL). A discussion of the ODL is beyond the scope of this chap-
ter. Suffice it to say that the IDL can contain a type library definition:

[
uuid(98178CD0-3467-11d2-914B-52544C004D83),
version(1.0),
helpstring(“This is type library”)

]
library YourLib

COM

CHAPTER 21
823

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 823

{
...

};

Usually, coclasses are described in the type library:

[
uuid(55712EB0-3468-11d2-914B-52544C004D83),
helpstring(“This is coclass”)

]
coclass YourClass
{

[default] interface IMain;
interface ISecond;

};

In addition to the coclass,this definition pulls in the definition of the two interfaces
IMain and ISecond . A type library can also contain type definitions,enumerators,C
structures,unions,andso on.

A type library is generated by the IDL compiler or by a separate tool. The result is a
binary file that can be distributed instead of the original IDL. The user then uses some
deciphering tool to convert the type library into a language proprietary format. We’ll
address this topic later.

COM defines two interfaces for directly reading the contents of the type library: ITypeLib

andITypeInfo . Although it is unlikely that a regular C++ program will use a type library
directly, it is possible to process it and generate the appropriate method calls for interfaces
at runtime or to generate appropriate VTBLs for an object’s outgoing interfaces(this topic
is discussed briefly in the following section,“Other COM Technologies”).

Other COM Technologies
The following sections review some technologies based on COM. The discussions are
very general because these technologies are used widely in most of the COM applica-
tions. Many complete COM-based technologies are built on them.

Memory Management
When the client and the object are in the same apartment,the client calls interface meth-
ods using a direct pointer so that it can pass pointers safely. When the proxy and stub are
involved, it is often necessary to marshal data pointed to by an argument between the
client and the object to satisfy the object’s expectation to receive real data at the location
being pointed to. COM mandates that [in] parameters are maintained by the client. When
the object has to return data in an [out] argument of an interface method, it allocates the
data,and the client frees it. To preserve binary independence, some universal mechanism
for memory management is necessary. This is the purpose of the IMalloc interface:

Distributed Computing Topics

PART V
824

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 824

[
local,
object,
uuid(00000002-0000-0000-C000-000000000046)

]
interface IMalloc : IUnknown
{

void *Alloc([in] ULONG cb);
void *Realloc ([in] void *pv, [in] ULONG cb);
void Free([in] void *pv);
ULONG GetSize([in] void *pv);
int DidAlloc(void *pv);
void HeapMinimize();

};

The first three methods directly map to the C runtime functions malloc() , realloc() ,
and free() . IMalloc is implemented on the object,provided by COM using the
CoGetMalloc() function. For the programmer’s convenience, COM provides three wrap-
per functions to access the first three methods of IMalloc : CoTaskMemAlloc() ,
CoTaskMemRealloc() , and CoTaskMemFree() . Objects are mandated to allocate all
returned data using IMalloc . This way, the data is freed by the stub; when it reaches the
proxy, it is allocated again through IMalloc by the proxy itself. Then the client processes
the returned data and frees its copy through IMalloc , too.

Connectable Objects
Objects can return results to the client on each method call. However, some objects may
have to express some situations to their clients at certain times—independent of the
client’s intent of making interface calls. One possible solution is if the client passes an
interface pointer to the object,the object holds the pointer (that is, it calls AddRef()) and
uses it to fire its events when necessary. When the client doesn’t want to listen any more,
it stops listening to the events by invoking the same method and passing a NULL pointer,
which effectively breaks the connection. The client object that implements the interface
is called a sink. The interface is called the object’s outgoing, or source, interface because
the object doesn’t implement it but uses it instead. The connection established between
the client’s sink and the object is called an advisory connection.

This approach has been used by the first event interface IAdviseSink . When using this
approach, certain inconveniences arise. Only one client can receive the notifications—an
satisfactory situation if the object is shared in multiple contexts. If the object fires several
sets of events,multiple methods should be designated for passing the client’s sinks.
Because many objects may have to fire events,many interfaces will be sharing the same
advisory method.

COM

CHAPTER 21
825

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 825

To solve these problems,two main and two helper interfaces have been defined:
IConnectionPoint serves the connections for a single outgoing interface on an object. It
isn’t implemented on the main object (QueryInterface() doesn’t see it),but instead
each connection point is implemented on a small separate object. To access the connec-
tion points,the object implementstheinterface IConnectionPointContainer :

[
object,
uuid(B196B286-BAB4-101A-B69C-00AA00341D07),
pointer_default(unique)

]
interface IConnectionPoint : IUnknown
{

HRESULT GetConnectionInterface([out] IID * piid);
HRESULT GetConnectionPointContainer(

[out] IConnectionPointContainer ** ppCPC);
HRESULT Advise(

[in] IUnknown *pUnkSink,
[out] DWORD *pdwCookie);

HRESULT Unadvise([in] DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);

}

[
object,
uuid(B196B284-BAB4-101A-B69C-00AA00341D07),
pointer_default(unique)

]
interface IConnectionPointContainer : IUnknown
{

HRESULT EnumConnectionPoints(
[out] IEnumConnectionPoints ** ppEnum);

HRESULT FindConnectionPoint(
[in] REFIID riid,
[out] IConnectionPoint ** ppCP);

}

By using themethods in the IConnectionPointContainer interface, the client can enu-
merate the supported outgoing interfaces and attach the sinks for those connection points
that it recognizes,or it can ask directly for a specific outgoing interface. In both ways,
the client finishes with a pointer to IConnectionPoint on an object that recognizes a
particular source interface. By using the IConnectionPoint::Advise() method, the
client attaches its sink and receives a handle for this advisory connection called a cookie.
The cookie is used later in a call to IConnectionPoint::Unadvise() to terminate the
connection. There is a method to enumerate the sinks attached to theconnection point.

Distributed Computing Topics

PART V
826

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 826

Enumeration
The two interfacesused to enumerate connection points and connections on a particular
connection point are part of a family of interfaces called enumerators. The common defi-
nition of an enumerator is as follows:

interface IEnumXXX
{

HRESULT Next(
[in] ULONG nCount,
[out, size_is(nCount), length_is(*pnFetched)] XXX *pXXX,
[out] ULONG *pnFetched);

HRESULT Skip([in] ULONG nCount);
HRESULT Reset();
HRESULT Clone([out] IEnumXXX **ppEnum);

};

This is not an existing interface. Instead, for every type you want to enumerate, you
define a new interface, which has these four methods for the particular enumerated enti-
ty. The Next() method is used to fetch the next portion of items,Skip() skips portions
of items,Reset() starts enumeration from the beginning, and Clone() creates a copy of
the enumerator object. In the case of connection points,enumerated entities are interface
pointers. They are received with an outstanding reference, so it’s the client’s responsibili-
ty to release every received pointer.

Structured Storage and Object Persistence
When a coclass is created by its class factory, the object is said to be in an uninitialized
state. Some objects need no further initialization and can act happily in this state. Other
objects require initialization from some previously stored state to become operational.
These objects are called persistentobjects. COM defines two ways to achieve object per-
sistence:It provides a standard storage model called structured storage, and it defines a
persistence model to be followed by those objects.

Structured storage is built on two interfaces:IStorage and IStream . The COM runtime
includes a ready-made implementation for both of these interfaces in a traditional file
and in system memory. Other implementations may be implemented too (for example, on
database records and fields). A storage is a collection of streams or other substorage sys-
tems such as a directory in a traditional file system. A streamis a binary sequence and is
analogous to a disk file. A stream is manipulated in a way nearly identical to an operat-
ing system file. The interfaces provide greater flexibility than a file system by defining
transactioned operations and some other enhancements.

COM

CHAPTER 21
827

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 827

Objects conform to the COM persistence model by implementing one or more of the per-
sistence interfaces:IPersistStorage , IPersistStream , IPersistStreamInit , or
IPersistFile (other persistence interfaces exist, but these are the most fundamental).
Every interface defines a specific persistence model. IPersistStorage defines storage-
level persistence and offers the greatest flexibility of implementation but is the hardest to
implement. The object is allowed to create streams and additional substorages.
IPersistStream defines persistence in a single stream and is the easiest to implement.
IPersistStreamInit is the same as IPersistStream but comes with an additional
method for initializing empty objects. IPersistFile is used to initialize the object from
the operating system file. All persistence interfaces derive from the interface IPersist ,
which has a single method to return the object’s CLSID tothe caller.

Automation
In the world of components,it becomes easier for the average user to perform some gen-
eral application tasks by writing macros or scripts in some high-level language to achieve
his or her specific goals. To facilitate this process,COM defines a standard for accessing
COM object servers called automation. Automation defines another type of interface
calleda dispatch interfaceor a dispinterface(they are also sometimes referred to as
automation interfaces). These interfaces are centered around objects implementing the
interface IDispatch :

[
object,
uuid(00020400-0000-0000-C000-000000000046),
pointer_default(unique)

]
interface IDidspatch : IUnknown
{

HRESULT GetTypeInfoCount([out] UINT *pctinfo);
HRESULT GetTypeInfo(

[in] UINT iTInfo,
[in] LCID lcid,
[out] ITypeInfo **ppTInfo);

HRESULT GetIDsOfNames(
[in] REFIID riid,
[in, size_is(cNames)] LPOLESTR *rgszNames,
[in] UINT cNames,
[in] LCID lcid,
[out, size_is(cNames)] DISPID *rgDispId);

HRESULT Invoke(
[in] DISPID dispIdMember,
[in] REFIID riid,
[in] LCID lcid,
[in] WORD wFlags,
[in, out] DISPPARAMS *pDispParams,

Distributed Computing Topics

PART V
828

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 828

[out] VARIANT *pVarResult,
[out] EXCEPINFO *pExcepInfo,
[out] UINT *puArgErr);

};

A dispinterface, unlike a COM interface, contains no VTBL layout representation.
Instead, all methods are marked by integer identifiers calleddispatch IDs, or dispids. In
addition to methods,dispinterfaces bring the notion of properties—an abstraction for a
C++ structure’s data members. Each property is associated with get and put methods
that retrieve and store its value, resulting in two different methods having the same dispid
value in the dispinterface. Methods (including property accessors) are called in two
stages. Given the textual names of the method and its parameters, the caller gets the cor-
responding dispid and similar IDsfor parameter positions using
IDispatch::GetIDsOfNames() . Then a call to IDispatch::Invoke() is made with all
parameters passed in the pDispParams array. The whole process is a big pain. The result
is returned in the output parameter pVarResult . The method call allows a dispatch
exception to be thrown; this exception is reported by way of pExcepInfo (this is not a
C++ exception—it is a standard mechanism to pass rich exception-like information).
Implementing IDispatch is very difficult. A few functions exist to simplify the imple-
mentation using the type library definition of the dispinterface. To access dispinterface
from C++,a wrapper class for IDispatch::Invoke() calls is necessity.

COM interfaces use the early binding scheme because the client binds to the interface
VTBL at compile time. This process is also called VTBL binding. Dispinterfaces,on the
other hand, offer a late binding scheme that has two variations. The client knows dispids
in advance by way of the type library and omits calling IDispatch::GetIDsOfNames() —
this approach is called early binding because the client binds to the dispids at compile
time. If the client uses IDispatch::GetIDsOfNames() to discover dispids at runtime, the
scheme is called late binding. Of course, VTBL binding is the most efficient scheme but
is not supported by all programming languages; in fact,it is not supported by some wide-
ly distributed scripting languages (such as the JavaScript and VBScript used in WWW
HTML pages). To make the interface both effective and widely accessible, a common
scheme is designed. The dispinterface is implemented as a regular COM interface
deriving from IDispatch . The implementation of the IDispatch portion just calls
the appropriate methods in the VTBL part of the interface. These interfaces are called
dual interfaces.

In automation, only a subset of all the types available in the IDL is supported. Most
important,composite types such as structs,arrays,and strings are not supported. Instead,
automation defines the new types BSTR, SAFEARRAY, and VARIANT. Structures are passed
using an implementation of IDispatch on aseparate object,which exposes all fields

COM

CHAPTER 21
829

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 829

using get and put properties. BSTRis a string that contains its length just before the actu-
al data pointer. SAFEARRAYis a multidimensional array that holds lower and upper bounds
for each dimension. It is a fairly complex structure. VARIANT is structure that contains a
discriminated union of all the types available in automation. All three types have special
maintenance functions in theautomation runtime.

The advantage of using automation types is that the runtime has a standard implementa-
tion of the IDispatch marshaler, which can also be used for other interfaces. The only
requirement is that these interfaces use only automation types in their methods and
include the keyword oleautomation in the interface description in the IDL file. Dual
interfaces are marked with the keyword dual in the IDL,which implies oleautomation .

Using COM Objects in C++
Using COM objects in C++ is very simple. It is almost identical to using C++ classes
through pointers. The differences come when dealing with the interface lifetime.

Using Raw Interfaces
Creating the object (which exposes the interface) comes first. There is a difference
between interfaces and C++ classes. Each interface is implemented on some object. The
object exposes other interfaces,too. To get another interface, the client makes a
QueryInterface() call on its interface pointer to obtain a pointer to another interface on
the same object. This approach is similar to the C++ operator dynamic_cast . Another
difference is the destruction mechanism. Instead of using a delete operator, the client
calls Release() to instruct the object to destroy itself (well, some C++ classes are
designed in the same way). If the object finds that this was the last outstanding reference
(on all of its interfaces),it destroys itself. Here is an example:

HRESULT hr;
ICar *pCar;
IEngine *pEngine;

hr = CoIntialize(NULL);
assert(SUCCEEDED(hr));
hr = CoCreateInstance(

CLSID_Car,
NULL,
CLSCTX_ALL,
IID_ICar,
(void**)&pCar);

if (SUCCEEDED(hr)) {
hr = pCar->QueryInterface(IID_IEngine, (void**)&pEngine);
if (SUCCEEDED(hr)) {

Distributed Computing Topics

PART V
830

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 830

pEngine->Start();
Drive(pCar);
pEngine->Stop();
pEngine->Release();

}
pCar->Release();

}
CoUnitialize();

This code fragment initializes a COM library, creates the object Car (Car is a coclass),
and obtains its ICar interface. It then asks for the IEngine interface. The code then starts
the engine, calls some function to drive the car, and then stops the engine. Finally, both
the IEngine and ICar interfaces are released, and the COM library is released. The sec-
ond release leaves the object with no outstanding references on all of its interfaces,so the
object destroys itself. All this is easy and doesn’t need further explanation. For the sake
of simplicity, the results returned by the method invocations are not checked. In real life,
you should check these results. Even if the method is guaranteed not to fail, its marshal-
ing code could fail for various reasons (including network failures).

More interesting is that the Drive() function,by the laws of COM,should call AddRef()

on the received pointer and call Release() when it finishes. Clearly, this is unnecessary
because the argument interface pointer’s lifetimeis equal to the lifetime of the function
call and is nested in the lifetime of the calling context, which holds the reference on the
interface. Therefore, for the duration of the function execution,the interface has a posi-
tive reference, and the object won’t destroy itself. Because of this,an optimization can be
made and the AddRef() /Release() pair can be omitted. In all cases in which it can be
inferred from the programming logic that the variable that gets a copy of an interface has
its lifetime nested in the lifetime of the original variable holding the interface reference
(lifetimemeans from the initialization time until the final Release() is called through it),
this optimization is allowed. If the original variable has a shorter lifetime, the copy con-
tains an invalid pointer, and the optimization cannot be made. Usually, AddRef() and
Release() have very simple implementations so that the optimization is rarely necessary
except if the speed is of extreme importance. When passing a local interface pointer to
other functions,it is safe to omit AddRef() /Release() . If the interface pointer is in a
global variable and the process has a single thread of execution that usesthat variable, it
is safe, too.

Using Smart Pointers
The lifetime of any interface pointer must begin with AddRef() —either when received
by some external function or method or when a local copy is made (then it is explicit).
Its lifetime should finish by calling Release() . It’s easy to forget to call AddRef() or

COM

CHAPTER 21
831

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 831

Release() or to call Release() more than once. The result is often disastrous and is
very hard to debug and spot. To make life easier, it is better to hide these actions in an
interface wrapper class. Such a class will automatically call AddRef() and Release() on
the contained interface pointer at the appropriate times. The wrapper class will ultimately
call Release() in its destructor.

A class in this category is the smart pointer class. A smart pointerbehaves like an ordinary
pointer for its user. About the only thing it does is to manage the lifetime of its contained
interface pointer. Any method call available through the original pointer is available
through the smart pointer. This is easily achieved by overriding the class operator -> .
Because the smart pointer cannot distinguish invocations of AddRef() and Release()

through the pointer, the programmer should follow some discipline and not call AddRef()

and Release() directly through the contained pointer. Instead, the smart pointer should
provide AddRef() and Release() methods to allow the programmer to explicitly control
the lifetime of the contained pointer. Listing 21.2 gives an example ofa smart pointer class.

LISTING 21.2. A SIMPLE SMART POINTER CLASS

template<class Itf>
class CSmartPtr
{
// Constructor and destructor
public:

CSmartPtr() : m_pItf(null)
{
}

CSmartPtr(Itf *pItf) : m_pItf(null)
{

Store(pItf);
}

~CSmartPtr()
{

// Release interface pointer if not null
Release();

}

// Extractors
public:

// Get underlying pointer for method calls
Itf* operator->()
{

assert(m_pItf != null);
return m_pItf;

}

// Get address of underlying pointer
Itf** operator&()

Distributed Computing Topics

PART V
832

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 832

{
// Ensure previous pointer is released
Release();
return &m_pItf;

}

// Assignment
public:

Itf* operator=(Itf *pItf)
{

// Ensure previous pointer is released
Release();
// Save the new pointer
Store(pItf);
return m_pItf;

}

// Content testing
public:

bool operator!()
{

return (m_pItf == null);
}

operator bool()
{

return (m_pItf != null);
}

// Implementation
protected:

void Release()
{

if (m_pItf != null) {
m_pItf->Release();
m_pItf = null;

}
}

void Store(Itf *pItf)
{

// Store new pointer
m_pItf = pItf;
// Call AddRef on the new pointer, check for null
if (m_pItf != null) {

m_pItf->AddRef();
}

}

// Implementation members
protected:

Itf *m_pItf;
};

COM

CHAPTER 21
833

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 833

This is the simplest form of a smart pointer. It covers assignment from another pointer of
the same type and getting the address of the contained pointer for assigning a raw pointer
returned by a function or method. It covers the definition of a smart pointer as it handles
AddRef() and Release() automatically. It also provides operator-> for accessing the
methods in the contained pointer. It also includes operators for testing whether the class
contains an interface pointer. Of course, it could easily contain a copy constructor, too.

The problem with the smart pointer shown in Listing 21.2 is that it always needs a
QueryInterface() or CoCreateInstance() call (or some other means) to fill its value:

CSmartPtr<IMyInterface> pMyInterace;
HRESULT hr;
...
hr = pSomeInterface->QueryInterface(

IID_IMyInterface,
(void**)&pMyInterface);

A better smart pointer should also handle QueryInterface() . The problem is that
QueryInterface() returns HRESULTin case of failure. The smart pointer should decide
how to report this situation. An obvious solution is to throw an exception,but the prob-
lem is that the semantics of the operator = don’t imply catastrophic failure. A better
approach is to silently ignore the failure and leave the programmer to check each assign-
ment using operator! or operator bool . Of course, the class should remember the last
HRESULTso that the programmer can identify the reason for the failure. Listing 21.3
shows the proposed addition.

LISTING 21.3. ENHANCEMENTS TO THE SMART POINTER CLASS

...
/* at constructors */
CSmartPtr(IUnknown *pUnk) : m_pItf(null), m_hr(E_POINTER)
{

StoreUnk(pUnk);
}
...
/* at extractors */
operator IUnknown*()
{

return m_pItf;
}
/* at assignment */
Itf* operator=(IUnknown* pUnk)
{

// Ensure previous pointer is released
Release();
// Save the new pointer
StoreUnk(pUnk);

Distributed Computing Topics

PART V
834

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 834

return m_pItf;
}
...
/* at implementation */
void StoreUnk(IUnknown *pUnk)
{

if (pUnk != null) {
m_hr = pUnk->QueryInterface(

IID_##Itf,
(void**)&m_pItf);

} else {
m_hr = E_POINTER;

}
}
...
/* at content testing */
HRESULT GetLastError()
{

return m_hr;
}
...
/* at implementation members */
HRESULT m_hr;
...

The other constructors should initialize the m_hr member; the other assignment operator
should set it. Store() finishes with this line:

m_hr = (m_pItf != null) ? S_OK : E_POINTER;

For consistency, Release() should finish the if statement with this line:

m_hr = E_POINTER;

E_POINTERis dedicated to be the error when the contained pointer is NULL.

Note that this class template has problems when instantiated for the IUnknown interface.
Two constructors and two assignment operators exist with the same parameters. To
resolve this ambiguity, their AddRef() optimization should be sacrif iced, and only the
versions with IUnknown* as the parameter should remain. If the template will never be
instantiated for IUnknown , however, this template is acceptable.

Using this improved smart pointer, the fragment presented in the discussion of raw
interface pointers now looks like this:

HRESULT hr;
CSmartPtr<ICar> pCar;
CSmartPtr<IEngine> pEngine;

hr = CoIntialize(NULL);

COM

CHAPTER 21
835

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 835

assert(SUCCEEDED(hr));
hr = CoCreateInstance(

CLSID_Car,
NULL,
CLSCTX_ALL,
IID_ICar,
(void**)&pCar);

if ((bool)pCar) {
pEngine = pCar; // QueryInterface here
if ((bool)pEngine) {

pEngine->Start();
Drive(pCar);
pEngine->Stop();

}
}
CoUninitialize();

Note that the call to CoCreateInstance() has not changed. It is potentially unsafe
because the IID can be misplaced. To avoid this problem, it’s beneficial to include a new
method—CreateInstance() , as shown in Listing 21.4.

LISTING 21.4. SMART POINTER HANDLING OBJECT CREATION

/* at assignment */
HRESULT CreateInstance(

REFCLSID rclsid,
DWORD dwClsContext = CLSCTX_ALL,
IUnknown *pUnkOuter = NULL)

{
Release();
m_hr = ::CoCreateInstance(

rclsid,
pUnkOuter,
dwClsContext,
IID_##Itf,
(void**)&m_pItf);

return m_hr;
}

Using the CreateInstance() method, the sample code fragment simplifies further:

CSmartPtr<ICar> pCar;
CSmartPtr<IEngine> pEngine;

hr = CoIntialize(NULL);
assert(SUCCEEDED(hr));
pCar.CreateInstance(CLSID_Car);
if ((bool)pCar) {

Distributed Computing Topics

PART V
836

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 836

pEngine = pCar; // QueryInterface here
if ((bool)pEngine) {

pEngine->Start();
Drive(pCar);
pEngine->Stop();

}
}
CoUninitialize();

In this fragment,the syntax of the call to Drive() has changed—we are passing a smart
pointer instead of the raw pointer it expects. Of course, the code can be rewritten to use
smart pointers, too,but this isn’t always possible (for example, if the code was written by
a third party and we don’t have the source). We could preserve the parameter by using
Drive(*&pCar) , but this looks ugly. The smart pointer can be nice enough to present a
raw interface pointer extractor:operator Itf*() . Really nice smart pointers provide
methods for dynamically attaching and detaching raw interface pointers.

Using Type Libraries
Smart pointers greatly simplify the maintenance of the lifetime of COM interface point-
ers. What they cannot solve is the necessity to continuously check the result of every
interface call to the pointer. For simplicity, the code fragment discussed with smart point-
ers does not check the results returned by the interface method calls. In real programs,
however, the results cannot be ignored.

When we discussed QueryInterface() assignment earlier, we noted that the assignment
operator semantics don’t allow exceptions. This was because the class should behave like
a pointer, hence no exceptions. But if the whole class is organized to throw exceptions
when errors occur, an exception at this place is desirable. Of course, we cannot make
exceptions through smart pointers.

To achieve exception semantics,a full wrapper class around the pointer should be
designed. Listing 21.5 defines a wrapper for the IEngine interface.

LISTING 21.5. A SIMPLE INTERFACE WRAPPER CLASS

class CEnginePtr
{
// Constructor and destructor
public:

CEnginePtr() : m_pEngine(null), m_hr(S_OK)
{
}

CEnginePtr(IUnknown* pUnk) :

COM

CHAPTER 21
837

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 837

m_pEngine(null),
m_hr(S_OK)

{
Store(pUnk);

}

~CEnginePtr()
{

Release();
}

// Extraction
operator IEngine*()
{

CheckPointer();
return m_pEngine;

}

operator IUnknown*()
{

CheckPointer();
return m_pEngine;

}

// Status information
public:

HRESULT GetLastStatus()
{

return m_hr;
}

// Assignment
public:

void CreateInstance(
REFCLSID rclsid,
DWORD dwClsContext = CLSCTX_ALL,
IUnknown *pUnkOuter = NULL)

{
Release();
CheckError(::CoCreateInstance(

rclsid,
pUnkOuter,
dwClsContext,
IID_IEngine,
(void**)&m_pEngine));

}

IEngine* operator=(IUnknown *pUnk)
{

Distributed Computing Topics

PART V
838

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 21.5. CONTINUED

27 239-5 CH21 2/19/99 1:43 PM Page 838

// Ensure previous pointer is released
Release();
// Save the new pointer
Store(pUnk);
return m_pEngine;

}

// Interface methods
public:

void Start()
{

CheckPointer();
CheckError(m_pEngine->Start());

}

void Stop()
{

CheckPointer();
CheckError(m_pEngine->Stop());

}

// Implementation
protected:

void Store(IUnknown *pUnk)
{

Release();
if (pUnk != null) {

CheckError(pUnk->QueryInterface(
IID_IEngine,
(void**)&m_pEngine));

} else {
CheckError(E_POINTER);

}
}

void Release()
{

if (!IsEmpty()) {
m_pEngine->Release();
m_pEngine = null;
m_hr = S_OK;

}
}

bool IsEmpty()
{

return (m_pEngine == null);
}

void CheckPointer()
{

COM

CHAPTER 21
839

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

27 239-5 CH21 2/19/99 1:43 PM Page 839

if (IsEmpty()) {
CheckError(E_POINTER);

}
}

void CheckError(HRESULT hr)
{

m_hr = hr;
if (FAILED(hr)) {

throw hr;
}

}

// Implementation members
protected:

IEngine *m_pEngine;
HRESULT m_hr;

};

Most of this code is similar to the implementation of a smart pointer with the semantic
difference that it throws exceptions instead of providing a way to test for success or fail-
ure. The method GetLastStatus() is necessary to distinguish between multiple success
codes because no exception is thrown. As you can see from the code, only a small part is
specific to the interface. The rest is boilerplate and can be implemented in a template.
The fragment that uses it will look as follows,assuming that a similar wrapperfor ICar

exists:

CCarPtr CarPtr;
CEnginePtr EnginePtr;
HRESULT hr;

hr = CoIntialize(NULL);
assert(SUCCEEDED(hr));
try {

CarPtr.CreateInstance(CLSID_Car);
EnginePtr = CarPtr; // QueryInterface here
EnginePtr.Start();
Drive(CarPtr);
EnginePtr.Stop();

} catch (HRESULT hr) {
...

}
CoUninitialize();

Wrappers can bemade by hand, but this is tedious work and is,of course, impractical. It
would be better if some tool gets the description of the interface and produces the wrap-
per class. Because IDL files of interfaces defined by third parties aren’t generally

Distributed Computing Topics

PART V
840

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 21.5. CONTINUED

27 239-5 CH21 2/19/99 1:43 PM Page 840

accessible, and because C++ headers don’t contain sufficient information to describe all
parameters,we should have some other way for the tool to discover the interface
specifics. Here, type libraries come into play. Type librariescontain the IDL description
of the interface in binary form so that they are smaller and better to distribute. Another
benefit of type libraries is that they describe dispinterfaces so that you can also generate
wrappers for them,which yields much greater benefit.

The following discussion is specific to the Visual C++ 5.0 compiler. It implements
Microsoft’s extension to the preprocessor, the #import directive:

#import <type_lib> no_namespace

no_namespace is used to suppress the generation of a separate namespace for the defini-
tions in the type library. Several other options control the behavior of #import . When the
preprocessor encounters #import in the source, it scans the referenced type library and
generates two files with the extensions tlh and tli (these extensions stand for type
library header and type library implementation). The former contains the header for the
generated class; the latter contains the implementation of the wrapper methods. Any
other details are beyond the scope of this discussion. Generated wrappers leverage an
existing smart pointer template with exception semantics. All wrapping methods also
generate exceptionson failure.

Writing COM Objects in C++
The following sections focus on writing COM objects. They don’t cover the boilerplate
code required to make a COM server fully operational. Several strategies for building
COM objects are presented.

Multiple Inheritance
The IDL compilergenerates interface definitions as C++ classes containing only pure
virtual methods. It is natural to implement COM objects with C++ classes that inherit the
definitions of the exposed interfaces,as shown in Listing 21.6.

LISTING 21.6. A DEFINITION OF A C++ CLASS IMPLEMENTING A COM OBJECT THROUGH

MULTIPLE INHERITANCE FROM THE IMPLEMENTED INTERFACES

class CCar : public ICar, public IEngine
{
// Constructor and destructor
public:

CCar();
~CCar();

COM

CHAPTER 21
841

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

27 239-5 CH21 2/19/99 1:43 PM Page 841

// IUnknown methods
public:

STDMETHOD(QueryInterface)(REFIID riid, void **ppv);
STDMETHOD_(ULONG, AddRef)();
STDMETHOD_(ULONG, Release)();

// ICar methods
public:

STDMETHOD(SetSpeed)(long nSpeed);

// IEngine methods
public:

STDMETHOD(Start)();
STDMETHOD(Stop)();

// Implementation specific
protected:

ULONG m_nRef;
bool m_bEngineStarted;
long m_nSpeed;

};

The macro STDMETHODexpands to the appropriate calling convention and specifies
HRESULTas the return type. The STDMETHOD_macro is similar to STDMETHODand allows
the interface designer to specify the explicit type of the return value. This is necessary
only for some old interfaces (which are always local,that is, they cannot be marshaled)
such as IUnknown , IMalloc , and so on. Similar macros exist for the method’s implemen-
tation—STDMETHODIMPand STDMETHODIMP_(<type>) . Listing 21.7 shows a sample imple-
mentation of theclass.

LISTING 21.7. AN IMPLEMENTATION OF A C++ CLASS THAT IMPLEMENTS A COM OBJECT

THROUGH MULTIPLE INHERITANCE FROM THE IMPLEMENTED INTERFACES

CCar::CCar() :
m_nRef(0),
m_bEngineStarted(false),
m_nSpeed(0)

{
}

CCar::~CCar()
{
}

Distributed Computing Topics

PART V
842

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 21.6. CONTINUED

27 239-5 CH21 2/19/99 1:43 PM Page 842

STDMETHODIMP CCar::QueryInterface(REFIID riid, void **ppv);
{

HRESULT hr = S_OK;

// Note that IEngine is designated for IUnknown queries
if (IsEqualIID(riid, IID_IUnknown)) {

ppv = (void)static_cast<IEngine*>(this);
} else if (IsEqualIID(riid, IID_IEngine)) {

ppv = (void)static_cast<IEngine*>(this);
} else if (IsEqualIID(riid, IID_ICar)) {

ppv = (void)static_cast<ICar*>(this);
} else {

hr = E_NOINTERFACE;
*ppv = NULL;

}

// Note that we call AddRef on the returned pointer
if (SUCCEEDED(hr)) {

reinterpret_cast<IUnknown*>(*ppv)->AddRef();
}

return hr;
}

STDMETHODIMP_(ULONG) CCar::AddRef()
{

m_nRef++;
return m_nRef;

}

STDMOETHODIMP_(ULONG) CCar::Release()
{

m_nRef—;
if (m_nRef == 0) {

delete this;
}
return m_nRef;

}

STDMETHODIMP CCar::SetSpeed(long nSpeed)
{

HRESULT hr = S_OK;

if (m_bEngineStarted) {
if (nSpeed >= 0) {

m_nSpeed = nSpeed;
} else {

hr = E_INVALIDARG;
}

} else {

COM

CHAPTER 21
843

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

27 239-5 CH21 2/19/99 1:43 PM Page 843

hr = CAR_E_POWER;
}
return hr;

}

STDMETHODIMP CCar::Start()
{

HRESULT hr = S_OK;

if (!m_bEngineStarted) {
m_bEngineStarted = true;
m_nSpeed = 0;

} else {
hr = CAR_E_POWER;

}
return hr;

}

STDMETHODIMP CCar::Stop()
{

HRESULT hr = S_OK;

if (m_bEngineStarted) {
if (m_nSpeed == 0) {

m_bEngineStarted = false;
} else {

hr = CAR_E_SPEED;
}

} else {
hr = CAR_E_POWER;

}
return hr;

}

When using multiple inheritance, all interfaces share a common reference count. Because
the methods of the IUnknown portion of all interfaces are implemented in the class,all
interfaces have a single implementation of these methods in their VTBLs. When all inter-
faces on the object are released, the object destroys itself. The implementation shown in
Listing 21.7 is not thread safe. If multiple threads execute the AddRef() and Release()

methods concurrently, race conditions exist and the object can be destroyed prematurely.
It is easy to modify this implementation to make it thread safe, however.

A modification of the multiple inheritance approach is to implement interface-specific
methods of all interfaces on separate classes and have the object class derive from the
implementation classes. IUnknown methods should be implemented on the object class.
This approach is necessary if two interfaces share methods with the same definition but
need different implementations. The drawback of multiple inheritance is that per-
interface reference counting is impossible. Fortunately, it is rarely needed.

Distributed Computing Topics

PART V
844

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 21.7. CONTINUED

27 239-5 CH21 2/19/99 1:43 PM Page 844

Nested Classes
Another approach is to implement every interface in a separate class. These helper class-
es are usually defined inside the object class,which has member variables for each of
them. The object class implements methods of IUnknown . The nested classes’implemen-
tation of IUnknown simply delegates to the object’s implementation of IUnknown . Each
interface is free to implement its own reference counting as well. Listing 21.8 shows the
definition of our sample object using nested classes.

LISTING 21.8. A DEFINITION OF A C++ CLASS IMPLEMENTING A COM OBJECT THROUGH

NESTED CLASSES

class CCar : public IUnknown
{
protected:

// ICar implementation
class XCar : public ICar
{
// Constructor and destructor
public:

XCar(CCar *pOwner) : m_pOwner(pOwner)
{

assert(pOwner != null);
}

~XCar()
{
}

// IUnknown methods
public:

STDMETHOD(QueryInterface)(REFIID riid, void **ppv);
STDMETHOD_(ULONG, AddRef)();
STDMETHOD_(ULONG, Release)();

// ICar methods
public:

STDMETHOD(SetSpeed)(long nSpeed);

// Implementation
protected:

CCar *m_pOwner;
};

// IEngine implementation
...

// Constructor and destructor

COM

CHAPTER 21
845

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

continues

27 239-5 CH21 2/19/99 1:43 PM Page 845

public:
CCar();
~CCar();

// IUnknown methods
public:

STDMETHOD(QueryInterface)(REFIID riid, void **ppv);
STDMETHOD_(ULONG, AddRef)();
STDMETHOD_(ULONG, Release)();

// Nested classes
protected:

XCar m_ICar;
XEngine m_IEngine;

// Implementation
protected:

ULONG m_nRef;
bool m_bEngineStarted;
long m_nSpeed;

};

Each nested class holds a pointer to the main object instance and delegates IUnknown

calls to it. Data common to multiple interfaces is located there, too. Our example is not
well suited for nested implementation; it is presented only to explain how nested classes
are managed. Implementation of ICar and IEngine methods is omitted. Listing 21.9
shows the implementation.

LISTING 21.9. IMPLEMENTATION OF A C++ CLASS IMPLEMENTING A COM OBJECT THROUGH

NESTED CLASSES

STDMETHODIMP CCar::XCar::QueryInterface(
REFIID riid,
void **ppv)

{
return m_pOwner->QueryInterface(riid, ppv);

}

STDMETHODIMP_(ULONG) CCar::XCar::AddRef()
{

return m_pOwner->AddRef();
}

STDMETHODIMP_(ULONG) CCar::XCar::Release()
{

return m_pOwner->Release();
}

Distributed Computing Topics

PART V
846

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

LISTING 21.8. CONTINUED

27 239-5 CH21 2/19/99 1:43 PM Page 846

CCar::CCar() :
m_ICar(this),
m_IEngine(this),
m_nRef(0),
m_bEngineStarted(false),
m_nSpeed(0)

{
}

CCar::~CCar()
{
}

STDMETHODIMP CCar::QueryInterface(REFIID riid, void **ppv);
{

HRESULT hr = S_OK;

// Note that IEngine is designated for IUnknown queries
if (IsEqualIID(riid, IID_IUnknown)) {

ppv = (void)static_cast<IUnknown*>(this);
} else if (IsEqualIID(riid, IID_IEngine)) {

ppv = (void)static_cast<IEngine*>(&m_IEngine);
} else if (IsEqualIID(riid, IID_ICar)) {

ppv = (void)static_cast<ICar*>(&m_ICar);
} else {

hr = E_NOINTERFACE;
*ppv = NULL;

}

// Note that we call AddRef on the returned pointer
if (SUCCEEDED(hr)) {

reinterpret_cast<IUnknown*>(*ppv)->AddRef();
}

return hr;
}

STDMETHODIMP_(ULONG) CCar::AddRef()
{

m_nRef++;
return m_nRef;

}

STDMOETHODIMP_(ULONG) CCar::Release()
{

m_nRef—;
if (m_nRef == 0) {

delete this;
}
return m_nRef;

}

COM

CHAPTER 21
847

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 847

The nested-class approach is similar to the modification of the multiple-inheritance
approach with interface implementation base classes. The main difference is that nested
classes implement IUnknown methods,while implementation classes don’t. The nested
classes’implementations of IUnknown methods delegate to the object’s implementation of
IUnknown . The object’s implementation of QueryInterface() changes to seek interface
implementations from member variables,while IUnknown has a separate implementation
in the base class.

It is possible to combine this approach with multiple inheritance and to implement sever-
al interfaces on one nested class. Each group of interfaces on a nested class has a single
implementation of IUnknown delegating to the main object,while using multiple inheri-
tance for implementing the interfaces.

Using Tear-Off Classes
There are occasions when some interface on an object is rarely used but consumes a
large amount of resources. It is preferable to avoid wasting those resources if the inter-
face is never used. The implementation approaches seen so far cannot solve the problem
of wasted resources because they allocate all the object resources when the object is cre-
ated. The solution is a so-called tear-off interface. When the interface is requested for the
first time, the implementation of QueryInterface() dynamically creates an instance of a
class,which implements the interface. IUnknown members of the class delegate to the
main object’s IUnknown just as they do with nested classes. A separate count on the tear-
off interface is maintained; when the interface is released for the last time, the tear-off
class is in turn destroyed.

The implementation of tear-off classes is almost identical to that used for nested classes
and isn’t presented here. The difference is that instead of members, the object class holds
pointers to tear-off classes and holds additional reference counts on each of them.
Changed are QueryInterface() and Release() . Another approach is to let the tear-off
class implement its own reference and to clear the object pointer as part of its deletion
within its own Release() implementation.

Summary
This chapter presents the most essential of the important topics in the Microsoft COM
technology. Many minor details are left out. The books listed in “Further Reading”can
fill the gaps in your COM education and can present a consistent coverage of a broad
range of COM technologies. This chapter focuses on the details of using and implement-
ing COM objects. Even if you have known COM in advance, I hope you found some-
thing new in these pages.

Distributed Computing Topics

PART V
848

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 848

Further Reading
For an excellent introduction from C++ to COM,as well as full coverage of details of
core COM,readEssential COM, by Don Box. Another good introduction to COM is
Inside COM, by Dale Rogerson. For those who know the basics of COM, COM/DCOM
Unleashed, published by Macmillan Publishing, will soon be available. The classic book
on the matter isInside OLE, by Kraig Brockschmidt. It details the specification of the
first implementation of COM:object linking and embedding (OLE).

COM

CHAPTER 21
849

21

C
O

M

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 849

850

P/V Unleashed generic ISBN# Name Date Chapter Lp#1

27 239-5 CH21 2/19/99 1:43 PM Page 850

IN THIS CHAPTER

• Similarities Between C++
and Java 852

• Differences Between C++
and Java 856

• Object-Oriented Features
of Java 862

22
C

H
A

PT
ER

Java and C++

28 239-5 CH22 2/19/99 1:44 PM Page 851

It may seem somewhat inappropriate to include a chapter about Java in a book about
C++, but it is actually a natural transition for the C++ programmer to learn the Java pro-
gramming language. There are many similarities between Java and C++. Each language
has its own unique advantages and limitations,and the C++ programmer who does the
work of learning Java can use Java to complement his or her programming in C++. Many
C++ programmers are interested in (and perhaps a bit afraid of) Java; this chapter shows
how remarkably similar the two languages actually are and then points out their major
differences so that C++ programmers can painlessly familiarize themselveswith the
important aspects of Java.

The Java programming language has made a significant impact on the computing indus-
try. During Java’s infancy, vendors and developers flocked to implement solutions using
Java. Now that the hype has settled, the focus is returning back to C++. After reading this
chapter, you will be well equipped to decide which tool to use in a given situation.

Similarities Between C++ and Java
We will progress throughthe similarities between the C++ and Java languages by dis-
cussing the basics and then moving on to the more advanced features of the Java lan-
guage.

Comments
The Java programminglanguage supports comment characters of C++:both the block
sequence/* */ and the single linecomment pair // characters are supported by Java.

In Java,comments have an added benefit. By using special character tokens in your
source files and thejavadoc utility program,you can produce documentation for your
source files. A documenting comment must begin with the character sequence /** and
must end with the sequence */ . Special document keywords,preceded with the @sym-
bol, are used to specify comment sections. You can also imbed HTML tags within the
document block. The following example demonstrates thedocument commenting fea-
ture:

/**
* sleepMethod - sleeps a specified number of milliseconds
* @param long millis - milliseconds to sleep
* @return void
* @exception IOException
* @author: Some Java Developer
* @version: 1.0

*/
public void sleepMethod() thows IOException
{

Distributed Computing Topics

PART V
852

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 852

//...
}

You execute the javadoc utility program,specifying one or more source files to parse.
The javadoc utility outputs HTML files containing documentation for the parsed source
files. This documentation can then be viewed using a Web browser.

Data Types
Java divides data types into two distinct categories:primitive types and reference types.
Java has no struct or union types—these are replaced by classes. More important to C++
programmers,Java has no pointers. All nonprimitive types are passed by reference; Java
takes care of the garbage collection (cleaning up memory) for you.

Primitives Data Types
The eight primitive data typessupported by Java are byte , boolean , char , short , int ,
long , float , and double . Table 22.1 lists the primitive data types and their respective
sizes.

TABLE 22.1. JAVA DATA TYPES AND THEIR SIZES

Type Size

byte 1 byte (signed 8-bit)

boolean 1 byte (signed 8-bit)

char 2 bytes Unicode (signed 16-bit Unicode)

short 2 bytes (signed 16-bit integer)

int 4 bytes (signed 32-bit integer)

long 8 bytes(signed 64-bit integer)

float 4 bytes (signed 32-bit integer)

double 8 bytes(signed 64-bit integer)

Each Java primitive data type is classified into one of two categories,either numeric or
Boolean. The numeric category consists of the integral and floating-point types byte ,
short , int , long , char , float , and double . The Boolean category, of course, consists
solely of the boolean data type. char is a special primitive type for character representa-
tion. Each Java data type maintains its size for every platform supported. This helps to
maintain Java’s platform independence. Note that Java does not support unsigned types.

The data types listed in Table 22.1 are considered native data types. Java also offers class
types,specifically Integer , Long , and Character (note the capitalization). The native

Java and C++

CHAPTER 22
853

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 853

types are smaller and more efficient than the class types,but are passed into and out of
methods by value rather than by reference.

The char Data Type
A character in Java is represented using two bytes and employs the international Unicode
scheme. Java therefore allows you to represent most of the international character sets.
Although the char data type provides support for various international character sets,you
cannot simply convert and display characters from,say, English to Japanese. The support
for Unicode must also be provided by the operating system.

The boolean Data Type
The boolean data typesupported by Java is a true Boolean,not just an integral type. The
only two values that can be stored to and retrieved from a boolean are true and false .
The result of a conditional expression mustbe Boolean and not integral. The following
code snippet shows legal and illegal uses of the boolean type:

boolean result = false ; // okay, default is false
int value = result ; // wrong! Java doesn’t allow this.
value = 1 ; // okay
result = value ; // sorry, can’t do this either!

You cannot coerce the conversion using an explicit cast,as in this example:

result = (boolean)value ; // this will not work either.

The byte Data Type
Java’s byte data type is comparable to the C++ char data type, but is not a direct
replacement. The Java byte is stored as an 8-bit signed integer and maintains a range of
values from –128 through 127. Some C++ programmers new to Java want to use an array
of byte to simulate C++ (and C) strings. Java does not support this use of byte ; the Java
library provides a String class for this purpose.

Reference Data Types
The three types ofreferences are class,interface, and array. A referencein Java is very
similar to a reference in C++:It is a variable that is bound to some object other than
itself.

Let’s look at an example in C++:

int value = 5 ;
int & rv = value ;

In this example, rv actually refers to value . You can access the contents to which rv
refers,namely the contents of value .

Distributed Computing Topics

PART V
854

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 854

Something similar occurs in Java. The following is an example of a reference in Java.
(Some Java programmers refer to referencesas handles.)

String str = new String() ;
System.out.println(“str is: “ + str.length() + “ characters long.”);

In C++, the new operator returns a pointer. In Java, the new operator returns a referenceto
the object on the heap—and this is the only access you ever have to that object. You do
not have to worry about freeing the memory—Java takes care of that for you. Also, this
is the only way to create an object in Java; all objects are dynamically allocated, and you
always use the reference to the object,rather than the object itself.

Operators
All the usual arithmetic, relational, and conditional operators are available in C++ are
also found in Java. The + operator, in addition to providing arithmetic operations,is used
for string concatenation.

You’ll be happy to discover that the bitwise operators are also available. Java adds a new
one to the mix:the (unsigned) triple-right-shift. The triple-right-shift, >>>, is a logical
operator used to shift the bits of an integral value to the right. The supplied operand
determines the number of bits to shift. When shifting the bits,zeros are inserted on the
left side. The following example shows how to divide a number by 2 using the triple-
right-shift operator:

import java.io.* ;
public class Test
{

public static void main(String args[])
{

int anInt = 10 ;
System.out.println(“anInt before is:” + anInt) ;
anInt = anInt >>> 1 ;
System.out.println(“anInt after is:” + anInt) ;

}
}

The output from this application is shown here:

anInt before is: 10
anInt after is: 5

In addition, all the C++ assignment operators are included in Java. And to be consistent,
there exists the triple-right-shift assignmentoperator, >>>=. The following sample
demonstrates its use:

Java and C++

CHAPTER 22
855

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 855

import java.io.* ;
public class Test
{

public static void main(String args[])
{

int anInt = 10 ;
System.out.println(“anInt before is:” + anInt) ;
anInt >>>= 1 ;
System.out.println(“anInt after is:” + anInt) ;

}
}

The output is as follows:

anInt before is: 10
anInt after is: 5

Overloading arithmeticoperators is not allowed in Java. Operator overloading can lead to
nonsensical code if improperly implemented. There is one exception that the Java com-
piler will allow, and that is with the String class. The String class overloads the plus +

operator for string concatenation. You do have the ability to simulate operator overload-
ing using member functions torepresent arithmetic operators.

Control Flow Statements
All the statementsused to control the flow of a C++ application are also provided for in
Java. For decision making, you have the if-else and switch-case statements; for loop-
ing, you have for , while , and do-while ; for exception handling, there is try-catch-

finally and throw ; and finally, in the miscellaneous category, you have break ,
continue , label: , and return . Exception handling is discussed later in this chapter.

The keyword goto is reserved, but is not supported by the Java language. You should
also be aware that the result of a control flow expression must be Boolean.

Differences Between C++ and Java
Now that we have briefly summarized some of the similarities between Java and C++,
let’s move on to some of the differences between the two languages.

Memory Management
The Java garbage collector automatically reclaims memory allocated for an object once
all references to that object have been released. Take note that all references to an object
must be redirected. When the garbage collector runs,it searches out all objects that are
no longer being referred to and reclaims the memory.

Distributed Computing Topics

PART V
856

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 856

No Pointers
There are no pointers in Java. Because of this,some esoteric techniques are difficult, but
programming without pointers with the built-in garbage collection of Java generally
proves to be quicker and more robust than having to handle the memory management
problems involved in using pointers in C++.

No Preprocessor
Java does not use include files, #define directives,or typedef s and so has no pre-
processor.

No Destructor
Java uses the facilities of a garbage collector to reclaim memory consumed by objects
that are no longer referenced. Although Java offers the new keyword to allocate objects at
runtime, there is no corresponding delete keyword as is found in C++. Quite simply, all
you need to do in Java is allocate an object with new; you do not have to worry about
explicitly destroying the object.

Java does offer thefinalize() method, but finalize() is not quite the same as a
destructor. The garbage collector will call the finalize() method for an object that has
been determined to be garbage (no longer required). You will never know when final -

ize() will r un; that is not under your directcontrol.

Any resources managed by an object should be released at the point that object goes out
of scope. If a class owns resources that will have to be released, you should define a
member function to act as a destructor. You could call this member function cleanup()

or some such name. This is rarely needed as the built-in garbage collection should be
sufficient in most cases.

You should alsoget in the habit of setting a reference to an object to NULL when you are
done with the object. This gives a hint to the garbage collector that you are finished with
that particular object. This,of course, does not mean that the garbage collector will run
and reclaim the object; there may be other references lingering about that refer to the
same object. The following example demonstrates our intention of releasing some object:

InterestingObject yoohoo = new InterestingObject() ;
yoohoo.yodel() ;
yoohoo.cleanup() ;
yoohoo = null ;

You should be in the habit of performing this “closure” when working with objects.
Doing so assists the garbage collector in reclaiming memory as quickly and efficiently as
possible.

Java and C++

CHAPTER 22
857

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 857

Access Specifiers
An access specifier allows you to control the visibility of member functions and attribut-
es. Java offers the same access keywords C++ does,but with a twist:They are part of the
declaration syntax. In other words,you explicitly specify the visibility of each individual
class and class member. In C++,you specify access to members with block scope. In
Java,you end up typing more, but you have finer control over the visibility (and place-
ment) of individual members. To clarify access control, the following example demon-
strates how visibility is specified inC++.

class Goofy
{

public:
Goofy () ;
~Goofy() ;
int getValue() ;

protected:
int negotiateValue(const int valueIn);

private:
bool verifyValue(const int valueIn) ;
int value ;

} ;

To contrast the preceding C++ example, here is the same declaration in Java:

public class Goofy
{

public Goofy() { /* ... */ }
public int getValue() { return value ; }
protected int negotiateValue(int valueIn) { return value ; }
private boolean verifyValue(int valueIn) { return true ; }
private int value ;
// … and so on and so forth

}

If you do not explicitly specify access,the member defaults to package. Package access
specifies that the member is accessible to otherclasses within the same package.

Distributed Computing Topics

PART V
858

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

NOTE

In version 1.0 of Java, there was a fifth access specifier: private protected . This
specifier has been dropped from versions of Java after 1.0.

In addition to specifying access to each individual member, access is also specified
for the class. There is no semicolon after the class’s closing brace. In Java,member

28 239-5 CH22 2/19/99 1:44 PM Page 858

functions are always defined in the class declaration. Take note:This does not mean that
Java will produce inline member functions.

Method Parameters
Another distinction between Java and C++ is that the const keyword is not applied to
method parameters. The const keyword (or some variation of it) is not required in Java
because Java uses pass-by-value for primitive type arguments to a method. This means
that you cannot change the value of the object argument. Within the member function,
you operate on a copy of the original object,not the actual object referred to by the argu-
ment. In Java, if you pass an object (nonprimitive),a reference is passed, not the object
itself. You cannot change the reference passed in,but you can access the actual object’s
public methods and instance variables. The examplein Listing 22.1 should clarify this
for you.

LISTING 22.1. PASSING A PRIMITIVE PARAMETER IN JAVA

import java.io.* ;
public class Goofy
{

public Goofy() { /* ... */ }
public void doubleArg(int value) { value *= 2 ; }

static public void main(String arg[])
{

int theValue = 5 ;
System.out.println(“1. theValue is: “ + theValue) ;
Goofy g = new Goofy() ;
g.doubleArg(theValue) ;
System.out.println(“2. theValue is: “ + theValue) ;

}
}

The output ofthis application is as follows:

1. theValue is: 5
2. theValue is: 5

This code demonstrates that the member function doubleArg() merely gets a copy of,
not a reference to,the original object theValue . If you pass a reference to the member
function,you actually operate on the referenced-to object. The example in Listing 22.2 is
a modification of the example in Listing 22.1 and demonstratespassingan object (non-
primitive).

Java and C++

CHAPTER 22
859

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 859

LISTING 22.2. PASSING AN OBJECT PARAMETER IN JAVA

import java.io.* ;
public class Int
{ // this class will need to be in it’s own file

public Int() { /* ... */ }
public int intValue = 5 ;

}
public class Goofy
{

public Goofy() { /* ... */ }
public void doubleArg(Int value) { value.intValue *= 2 ; }

static public void main(String arg[])
{

Int theValue = new Int() ;

System.out.println(“1. theValue is: “ + theValue.intValue) ;
Goofy g = new Goofy() ;
g.doubleArg(theValue) ;
System.out.println(“2. theValue is: “ + theValue.intValue) ;

}
}

The output from thisapplication is shown here:

1. theValue is: 5
2. theValue is: 10

One last note in closing:Arrays are first-class objects in Java. In the previous example, if
theValue was an array of int , then the member function doubleArg() would change the
actual passed-toargument.

External Functions
In Java,every function mustbe a member of a class. There are no global functions.

Enumerations
In C++, the enum keyword is available to specify an entity that contains enumerated val-
ues. Java does not offer the enum keyword, but you can simulate enum by creating a class
that only contains instance variables that are static final . By declaring the instance
variables as static final , you are, in effect,defining the variables as constant. The fol-
lowing example demonstrates a simulated enum in Java:

public class DrawingColor
{

public static final int red = 1;
public static final int yellow = 2;

Distributed Computing Topics

PART V
860

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 860

public static final int green = 3;
}
//...
pen.color(DrawingColor.red) ;
//...

There is a drawback to the C++ (and C) enum: Each member of an enum must have a
unique name with respect to other enums and variables. Consider the previous example’s
equivalent declaration in C++. If you had an additional enum named WindowColor that
contained member variables named red , yellow , and green , you would have a name
clash. This sort of problem does not happen in Java.

Strings
In Java, there isno equivalent representation of a string as there is in C++. Strings in
C++, of course, are represented as an array of char (terminated by the NULL character).
In Java, the immutable String object is available to represent strings and is considered a
first-class object. In Java,you can create quoted (literal) strings as you can in C++,but
the compiler actually converts thisrepresentation to a String object. For example:

String str = “This is a quoted string” ;

The Java compiler creates a String object for the quoted string and then assigns it to
str . String is immutable; you cannot modify the contents of a String object. If you
require a mutable string, Java offers the StringBuffer class.

Although Java does not offer operator overloading, the String class does offer the +
operator for the concatenation of String s. Remember that String objects are immutable,
so you cannot concatenate a String onto another String ; the result of the concatenation
must be a new String . The String class also offers the member function length() to
obtain the length ofa String object.

Arrays
Arrays in Java are considered first-class objects. You access the elements of a Java array
in the same way you access the elements of a C++ array: You use array indexing. Java
offers runtime array-bounds checking. Java arrays contain an instance variable named
length that holds the number of elements (depending on the context) of the named array.
The placement of the brackets can be on the left or right side of the array name.

In Java,you cannot specify the array dimension at the point of declaration as you can in
C++. Arrays in Java must be allocated using new. Let’s look at an example of declaring
and using a Java array:

Java and C++

CHAPTER 22
861

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:44 PM Page 861

#1: int array1[] ; // brackets on right
#2: int [] array2 ; // brackets on left, both are okay
#3: int array3[10] ; // ERROR, can’t specify dimension!
#4: Object [] array3 = new Object[10] ;
#5: array1 = new int[10] ;
#6: array2 = new int[10] ;
#7: array1[1] = 5 ;
#8: array1[12] = 5 ; // ERROR, beyond boundaries
#9: for(int i = 0; i < array1.length; i++)
#10: array1[i] = i ;

The first two statements merely declare a reference to an int array; we have not yet
defined the dimension of the two arrays. The third line produces a compile-time error.
Line 4 allocates an array of 10 Object s,and array3 is the named reference to those
objects. Lines 5 and 6 allocate 10 int s and bind them to the array names. An assignment
happens on line 7:The value 5 is assigned to the second element of array1 . Line 8 is
interesting because, although the compiler allows the statement,you get a runtime diag-
nostic:java.lang.ArrayIndexOutOfBoundsException . Finally, line 9 uses the length

member variable of array1 to determine the upperbound.

Object-Oriented Features of Java
Now that we have the basic similarities and differences between Java and C++ out of the
way, let us begin to examine the more advanced features of the Java language. Among
other topics,we will explore features such as inheritance, encapsulation, abstract base
classes,and memory management. Let us begin by discussing the basic object-oriented
element of Java, the class.

Classes
A class in Java maintains the same concept and functionality of a C++ class. A class in
Java contains declarations—for example, variables and member functions. Let’s begin
with asimple example:

public class Goofy
{

public Goofy() { /* ... */ }
private bool interpret() { return true ; }
public int value ;
int noAccess ;

}

Three quick observations to note in this example:An access specifier is applied to the
class and members of the class,functions are defined within the declaration of the class,
and there is no trailing semicolon following the class’s closing brace.

Distributed Computing Topics

PART V
862

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 862

As mentionedpreviously, the four access specifiers available are public , protected ,
private , and package . Actually, you do not explicitly use package , but it is the default
access if you do not specify one. A package in Java provides the same basic functionality
as namespaces provide in C++.

The static keyword can be applied to a member of a class. The effect is the same as
when static is used in C++. If the member is a class variable, there will be only one
occurrence of the variable for all instances of the class,even if the number of class
instances is zero. Member variables declared with the transient keyword applied are
not subject to serialization. That is, transient variables cannotbe stored to disk or to a
database.

Class (static) and instance variables can be declared final . You use final to obtain the
same effect as you get with const in C++. A final variable must be initialized at the
point of declaration. You cannot change the value of a final variable. If the final vari-
able is a reference to an object,you can operate on the object itself, but you cannot
change the reference to refer to another object. The same holds true for final arrays
because arrays are considered objects in Java.

Interface Classes
Java does not provide multiple inheritance, but it does provide interfaces, and a class can
implement one or more interfaces. An interface defines an abstraction that can be imple-
mented by other classes. This is similar to abstract data types in C++.

In an interface class,memberfunctions are declared but are not defined, and all the
instance variables in the interface are considered final. Like an abstract data type, you
cannot instantiate an interface; you must create a new class that implements theinterface.

The implementing class defines the methods declared in the interface. Here is a brief
example for an interface class:

public interface Silly
{

public void smile(long timeSpan) ;
public void laugh() ;
public final long HowLong = 5000 ; // constant long

}

The previous exampledeclares that Silly is an interface class. You cannot instantiate a
Silly object,as in the following example:

// ...
Silly s = new Silly() ;

You must implement the interface class as in the following example:

Java and C++

CHAPTER 22
863

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 863

public class Goofy implements Silly
{

public void smile(long timeSpan) { /* ... */ }
public void laugh() { /* ... */ }

}

You must remember toimplement the member functions found in the interface class. If
you forget to implement just one memberfunction,the derived class will also be consid-
ered abstract.

Now that Goofy has its member functions defined, you can instantiate objects of type
Goofy . In addition, objects of type Goofy can access (read-only) the constant HowLong.
Let’s examine a fully functional application.

public class Goofy implements Silly
{

public void smile(long timeSpan) { /* ... */ }
public void laugh() { /* ... */ }

public static void main(String args[])
{

Goofy g = new Goofy() ;
g.smile(g.HowLong) ;

}
}

Use the interface class when you want to express a design as a class,but notprovide
an implementation for it.

Abstract Classes
Java also offers the abstract keyword to denote a class that presents an abstract inter-
face. A class declared with the abstract keyword cannot be instantiated. To declare a
class as abstract,you apply the abstract keyword before the class keyword, as in the
following example:

abstract class Funny
{

public void smile(long timeSpan) { /* ... */ }
abstract void laugh() ;
public final long HowLong = 5000 ; // constant long

}

Within the abstract class,you can provide default implementations for the member func-
tions of the class. This is in contrast to an interface class; you cannot provide a body
for a member function declared within an interface class. If you inherit from an
abstract class,it is not necessary for you to implement the member functions that are
defined within the abstract class. You must,however, define any member functions

Distributed Computing Topics

PART V
864

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 864

declared with the abstract keyword. As with an interface class,you can define con-
stant variables within an abstract class. To subclass an abstract class,you use the
extends keyword. The following code declares Joke as a subclassof Funny :

public class Joke extends Funny
{

public void laugh() { /* ... */ }

public static void main(String args[])
{

Joke f = new Joke() ;
f.laugh() ;
f.smile(f.HowLong) ;

}
}

Notice that I did nothave to define the member function smile() . In the context of class
Joke , I feel that the implementation of smile() within Funny is adequate. You can,how-
ever, override the member function defined within the abstract class. The following
example demonstrates how to override a member function:

public class Hilarious extends Funny
{

public void laugh() { /* ... */ }
public void smile(long timeSpan) { /* ... */ } // override

public static void main(String args[])
{

Hilarious f = new Hilarious () ;
f.laugh() ;
f.smile(f.HowLong) ;

}
}

In the preceding example, I chose to override the member function smile() because I
determined that Funny does notprovide enough laughter for the Hilarious class. I know
the question you’re asking right now: “How can I call the superclass’s member func-
tion?” Well, the answer lies with the super keyword. Here is the member function
smile() (in Hilarious) redefined to call the smile() in Funny :

public void smile(long timeSpan)
{

super.smile(super.HowLong) ;
}

Notice that the keyword super is also applied to the argument HowLong. You are not
required to do this; I applied the keyword to be explicit.

Java and C++

CHAPTER 22
865

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 865

One difference between an interface class and an abstract class is that you can only
singly inherit from an abstract class,whereas you can combine more than one
implement class. To clarify this, thefollowing example is valid:

public class Goofy implements Silly, Wacky
{

//...
}

You can also take this a step further by inheriting from Funny and implementing Silly

and Wacky. The following example demonstrates this feat of magic:

public class Goofy extends Funny implements Silly, Wacky
{

//...
}

Use abstract when you want to express a design as a class (as with interface) and also
to include some default functionality. This will provide a template for potential users
looking for specific classfunctionality.

Member Initialization
In Java,member initialization is guaranteed for you. In C++,locally or dynamically allo-
cated objects are not initialized automatically. Class references,if you do not initialize
them,are defaulted to NULL. The primitive data types,if they exist for a class,are default-
ed to zero. This default initialization also applies to member variables declared as static

and final . Of course, you do have the option of explicitly initializing the instance vari-
ables.

Returning to the Goofy example, let’s see how this is applied:

public class Goofy
{

public void laugh() { /* ... */ }
static final int value = 10 ;
private boolean notLaughing ;
private String name ;

}

In the preceding example, value does not have to be initialized outside the class as is
required in C++. This follows the Java rule that everything must exist within a class. The
boolean instance variable notLaughing is defaulted to false . The member variable name

is declared as a reference to a String and isinitialized to NULL.

Distributed Computing Topics

PART V
866

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 866

The this Keyword
Java provides the keyword this , just as C++ does. In Java, this provides the same func-
tionality as it does in C++:It allows you to access a member of the class with current
scope. Note, however, that in Java, this is a referenceto the object,not a pointer—and it
does not have to be dereferenced. The following example shows a use of this :

public class Goofy
{

public void laugh(boolean notLaughing)
{

this.notLaughing = notLaughing ;
}
static final int value = 10 ;
private boolean notLaughing ;
private String name ;

}

The this keyword is primarily used to explicitly identify a class member because of a
name ambiguity. In the previous example, the argument notLaughing is the same name
as an instance variable of the class. The this keyword is applied to resolve the member
variable.

Constructors
The basic concepts of constructors in C++ also apply to Java. A constructor in Java has
the same name as the class in which the constructor is defined. You can name overloaded
constructors within a class just as you can in C++. The default constructor restriction
found in C++ also applies in Java: If you define any constructor other than the default,
you must also define the default constructor. If you do not define any constructor for a
class,the compiler will synthesize a default constructor for you.

You have the option of applying an access specifier to a constructor. If you do not speci-
fy access,the default package is applied. Applying an access specifier allows you to
determine the objects that can create instances of the specified class.

You can call a superclass constructor using the super keyword. Simply use the keyword
super and apply any arguments that may be required. This,of course, works only if the
superclass has a matching constructor. The following example demonstrates this concept:

public class Goofy extends Strange
{

public void Goofy()
{

super(“GoofBall”) ; //apply identifying name
}
//...

}

Java and C++

CHAPTER 22
867

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 867

One thing you have to remember about using super : It must be the first call within a
constructor. If you do not explicitly call a base class constructor within a derived class,
the default constructor is used to construct the base class portion.

The this keyword can be used (within a constructor) to call other constructors of a class.
The syntax is the same as using super to call a base class constructor. As with super , if
you use this to call a sibling constructor, this must be the first statement within the
constructor. The following is an example of the this constructor call:

public class Goofy
{

public Goofy(String name) { /* ... */ }
public Goofy(String name, boolean notLaughing)
{

this(name) ; // let specific constructor do work
//...

}
//...

}

Another difference between a Java and C++ constructor is that Java constructors do not
have initializer list syntax. Initialization of a class instance variable is performed in one
of three ways. You explicitly initialize the variable at the point of its declaration, you
explicitly initialize the variable within a constructor’s body, or the compiler implicitly
initializes the variable for you:

public class Strange
{

Strange()
{

ival3 = 10 ;
}
private int ival1 = 10 ; // explicit
private int ival2 ; // guaranteed initialization
private int ival3 ; // done in constructor

}

The finalize() Method
Java offers a class method named finalize() . This method roughly correlates to a C++
destructor, except that finalize() is not as predictable as a C++ destructor. In C++,
whenever the destructor is invoked, you know that the object will be destroyed and its
memory will be reclaimed. You know that that will happen when the destructor is called,
implicitly or explicitly. With Java,you never know when the finalize() method is
called. The finalize() method is invoked when the garbage collector gets around to
reclaiming the object. I said “gets around to”—that could mean “r ight now” or it could
mean “a little later.” In some programmatic instances,“a little later” is the wrong time.

Distributed Computing Topics

PART V
868

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 868

It is not a good idea to release resources within the finalize() method because you can
never be sure when finalize() will be called. If you feel that it is important to release
resources that an object owns,you should implement a cleanup function. At the point
you are finished with an object,simply call your cleanup function and then set the object
to NULL. Setting the object reference to NULL gives a hint to the garbage collector that you
are finished with this particular object. I say hint because the garbage collector is not
obliged to collect the object at that point in time. You must always remember this fact.
The following example demonstrates theidea of cleaning up an object after use.

Goofy g = new Goofy() ;
g.doSomething() ;
g.cleanup() ;
g = null ;

If you do define a finalize() method for your class,you must also be sure to call the
finalize() method of the base class. It is unfortunate that Java does not take care of this
for you,as C++ does with its destructors. What happens if you do not call the base class
finalize() method? Quite simply, it is never called.

If your application gets to the point of exiting, the garbage collector will go around and
collect any objects that have not been reclaimed.

Inheritance
At the core of Java inheritance is a singly rooted hierarchy. All classes within a Java hier-
archy inherit from the root class Object . If you do not explicitly state a base class,your
class is implicitly derived from Object .

Rather than using a colon as in C++,in Java you use the keyword extends .

There is no need to designate a specifier for inheritance in Java because there is no such
thing as private inheritance. The following example shows how you declare a class to be
derived from some other class:

public class Strange
{

public void memberF()
//...

}
public class Goofy extends Strange
{

private void memberF() // sorry, can’t change access
//...

}

In C++,member functions are dynamically invoked at runtime only if the virtual key-
word has been applied to them. In Java,all member functions are dynamically dispatched

Java and C++

CHAPTER 22
869

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 869

at runtime. The final keyword can be applied to a member function to prevent that
member function from being overridden in a subsequent derived class. In an earlier sec-
tion in this chapter, I mentioned that the Java compiler does not necessarily inline func-
tions. Applying the final keyword to a member function may be a case in which the
compiler does inline a function. If nothing else, a final member function may be stati-
cally bound. The compiler is not obligated to honor thefinal hint; it is only a sugges-
tion.

In Java,a base class reference can be used to refer to some derived class object. The
operator instanceof can then be used to check whether some reference refers to some
derived class object. The example that follows shows how to use instanceof :

Joke aJoke = new Joke() ;
Laughter funny = aJoke ;
//...
if(funny instanceof Joke)
{

Joke j = (Joke)funny ;
//...

}

An exception is generated at runtime for any illegal cast. The following shows a potential
exception waiting to happen:

Window win = new Window(…) ;
Joke j = (Joke)win ;

The rules for member inheritance are straightforward. Any instance variables declared in
a superclass that are not redefined in the subclass are accessible by the subclass. For the
subclass to access the instance variable, that instance variable must not be private in the
superclass. Any member function declared in a superclass that is not overridden in the
subclass is accessible by the subclass,provided that access for the base member function
is not private .

Declaring an instance variable with the same name in a subclass hides the instance vari-
able found in the superclass. The same applies to member functions. In a subclass,you
can only call a member function in the immediate superclass.

You use the super keyword to call a member function of the superclass. Constructors,
because they are not truly members of a class,cannot be inherited by a derived class. If a
constructor is explicitly called in a subclass,it must be called using the super keyword.
A constructor, if explicitly called within the same class as another constructor, must be
invoked using the this keyword. The following example illustrates these rules:

public class Goofy
{

Goofy() { /* ... */ }

Distributed Computing Topics

PART V
870

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 870

public void publicFunc() { /* ... */ }
private void privateFunc() { /* ... */ }
public int publicValue ;
private int privateValue ;

}
public class Silly extends Goofy
{

Silly()
{

super() ;
}
Silly(String name)
{
}
Silly(String name, int value)
{

this(name) ;
}
public void publicFunc()
{

super.publicFunc() ;
//...

}
public int publicValue ;

}

The member function publicFunc() in Goofy is overridden in the class Silly . The
instance variable publicValue in Silly hides the instance variable with the same name
in Goofy . The constructor within Silly that has two arguments (a String and an int)
calls the constructor within Silly that has a single String argument. The default con-
structor in Silly calls the default constructor in the base class Goofy . You should remem-
ber that if you use either super or this to call a constructor or a superclass member
function,it must be the first statement within the constructor or member function.

Multiple Inheritance
Java does not have multiple inheritance, but you can simulate multiple inheritance in
Java by using interfaces. The following example shows a derived class that implements
multiple interfaces:

interface Setup
{

public void delivery(String text) ;
//...

}
interface PunchLine
{

public void pause() ;

Java and C++

CHAPTER 22
871

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 871

//...
public long timeToHesitate = 2000 ;

}
public class Joke implements Setup, PunchLine
{

Joke() { /* ... */ }
public void delivery(String text) { /* ... */ }
public void pause() { /* ... */ }
//...

}

You can also extend a single base class,in addition to implementing from multiple inter-
faces,as the following example shows:

public class Joke extends Laughter implements Setup, PunchLine
{

Joke() { /* ... */ }
public void delivery(String text) { /* ... */ }
public void pause() { /* ... */ }
//...

}

Exception Handling
The Java exception handling mechanism is very similar to the one found in C++. Java
adds a new keyword to the exception-handling arsenal:finally . The finally block is
always executed after a try and all catch blocks have executed. Any object that is
thrown in Java must be inherited from Throwable . Let’s look at an example:

//...
public void func() throws IOException
{

ImportantObject iObj = new ImportantResource();
try {

iObj.method() ;
}
catch(ImportantObjectException e) {

// do any handling required
}
catch(Throwable e) {

// handle Throwable exception
}
finally {

iObj.cleanup() ; // my defined cleanup method
}

}

If an exception is thrown within the try block, control is transferred to the appropriate
catch block. After the catch statements have executed, control is then transferred to the

Distributed Computing Topics

PART V
872

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 872

finally block. This provides a mechanism to ensure a forceful cleanup; you can be
assured that control will eventually enter the finally block.

One nice feature of Java exception handling is that a check is made at compile time for
proper exception specifications. In C++,you do not discover improper exception usage
until runtime. In addition, in Java,any derived class member functions that override a
base class function must conform to the exception specifications of the base member
function.

In C++, the ellipsis is used with a catch to denote a “catch any” clause. The following
example demonstrates this concept:

try {
//...

}
catch(...) {

// handle all cases
}

In Java,you catch a Throwable object,as in the following example:

try {
//...

}
catch(Throwable e)
//...

The catch(Throwable) can be used as a “catch all” (no pun intended).

Summary
This chapter provides an overview of the similarities and differences between C++ and
Java,which are recapped here.

Java supports both the block and single-line comment style of C++. Java provides an
additional benefit using the documenting comment. Using the javadoc utility program,
you can create programmer documentation from the source code that has been docu-
mented with special tokenized keywords.

Java provides the primitive data types byte , boolean , char , short , int , long , float , and
double . The size of these data types is consistent across all platforms that support Java.
Java does not support struct or union ; the class type replaces these types. Java does
not have pointers,but does have reference types as does C++. Unlike C++,a reference in
Java can be rebound to another object.

Java and C++

CHAPTER 22
873

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 873

Java supports all the relational, arithmetic, and conditional operators as does C++,but
adds the triple-right-shift operator >>>. All the assignment operators found in C++ are
supported in Java; Java also adds the triple-right-shift assignment operator >>>=.

Member overloading in supported in Java,but operator overloading is not as it is in C++.
The exception to this rule is the Java String class; the plus + operator is overloaded to
support concatenation of String s.

All f low-control statements and loops found in C++ are equally supported in Java. The
keyword goto is reserved in Java,but is not currently supported.

Java uses the facilities of a garbage collector to automatically reclaim unused (or unrefer-
enced) memory. Java does not have destructors as does C++. Java does support the new

keyword for the creation of objects. The finalize() method is called by the garbage
collector for objects that are being reclaimed; however, you never know when the
garbage collector will call the finalize() method.

Java does not use include files, #define directives,or typedef s, so there is no pre-
processor.

The access specifiers public , protected , and private are provided in Java as they are
in C++. Java adds a default specifier, package , if no access is specified. The access spec-
if ier keywords are used when declaring a class and members of a class.

Primitive data types are passed by value in Java. Objects in Java are passed by reference.

Java does not support external (global) functions as does C++. All functions must be a
member of some class in Java.

Java does not have the concept of enum as does C++,but the logic can be simulated using
member variables as public static final .

The String object in Java is a first-class object and is immutable (that is, you cannot
alter the contents). Java offers the StringBuffer class if you need to alter the contents of
a string.

Arrays in Java are also first-class objects and include a length member that holds the
number of elements in the array. Java also offers runtime array-bounds checking. Java
supports class as does C++. A class in Java can have an access specifier applied to
limit its accessibility. The static keyword, when applied to a member variable, has the
same meaning in Java as it does in C++. The final keyword applied to a class variable
has the same effect as const in C++.

Java does not support multiple inheritance, but it does provide implementation of multi-
ple interface s; an interface defines an abstraction,similar to abstract data types in

Distributed Computing Topics

PART V
874

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 874

C++. Java also has the abstract keyword that is used to define a class that represents an
abstract interface. The difference between interface and abstract is that within an
interface class,you can provide default functionality for the member functions. Also,
you can only singly inherit from an abstract class. Java uses a singly rooted inheritance
hierarchy; the root class is called Object .

Member initialization is guaranteed in Java. Primitive data are defaulted to zero and ref-
erences are defaulted to NULL.

The this keyword is supported as it is in C++,but in Java, this is a reference, not a
pointer.

A constructor in Java has the same name as the class name and can be overloaded as it
can be in C++. You can call the superclass constructor using the super keyword (it must
be the first call). The this keyword can be used to call other constructors within a class;
it must be the first call within a constructor.

The finalize() method is called by the garbage collector when an object is being
reclaimed. The finalize() method is similar to a C++ destructor. You can never be sure
when the finalize() method will be called.

Exception handling in Java is similar to the C++ mechanism. Java adds the finally key-
word that defines a block of code that will always be executed after a try and all catch

blocks have executed.

Java and C++

CHAPTER 22
875

22

JA
V

A
A

N
D

C
+

+

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 875

876

P/V C++ Unleashed 72312395 Freelance 10.2.98 CH22 Lp#1

28 239-5 CH22 2/19/99 1:45 PM Page 876

P/V Unleashed generic ISBN# Name Date Index Lp#1

INDEX

29 239-5 Index 2/19/99 1:46 PM Page 877

()scope operator
878

SYMBOLS

() scope operator, 93
[] subscripting operator,

228
* (closure) operator, 491
1 to 1 associations

between classes, 50-53
1 to N associations

between classes, 53-55
2-3-4 trees, 509-511
2-4 trees, 509-511
< (less than) operator, 237
== (equal) operator,

236-237
? operator, 103

A
abstract classes, 87-88,

864-866
Abstract Data Type (ADT),

87-88
abstract keyword,

864-866
access specifiers

Java,858-859,863
namespaces,368

accessing elements
maps,271-274
vectors,226-228

activity diagrams, trans-
lating into C++, 72-75

adapter functions,
354-356

AddRef() method
(IUnknown interface),
818, 820

Adelman, Len, 756
adjacent find() algorithm,

303-306

ADT (Abstract Data Type),
87-88

advance() function,
292-293

AfxBeginThread() func-
tion, 182-184

aggregation, 36-37
classes,translating into

C++, 56-58
COM, 822-823

algorithms
adapter functions,354-356
Big-O notation, 452-454
binary search algorithms,

334,337-339
binary search(),

335-336
equal range(),335
inplace merge(),336
lower bound(),

334-335
merge(),336
upper bound(),335

binder functions,353-354
classes,299
encryption,740

Data Encryption
Standard (DES),
739-740,748

Diffie-Hellman,
754-755

Fermat’s algorithm,
758

IDEA, 748
Lucifer, 738-739
Merkle puzzle, 754
private key algorithms,

748
RC codes,748
RSA,755-757
Skipjack, 748
Triple-DES, 748

function objects,352-353
graph algorithms,494-496

alpha-beta cutoffs,
506-507

best-first searches,
499-500

breadth-first searches,
497-498

depth-first searches,
496-498,505

Dijkstra’s algorithm,
500-505

minimax procedure, 505
tic-tac-toe, 505
traveling salesman

problem,507-508
greedy algorithms,500
heap algorithms,344-347

make heap(), 344
pop heap(), 345
push heap(), 344-345
sort heap(), 344

lexicographical compare(),
348-350

maximum algorithms,348
max(),348
max element(),348

memory, determining max-
imum possible B-tree
pages in memory, 560

minimum algorithms,348
min(),348
min element(),348

mutating sequence algo-
rithms,311

copy(), 317,319-321
copy backward(),

317-318
fill(), 311-312
fill n(), 312-314
generate(),312-314
generate n(),312

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 878

applications
879

iter swap(), 324
partition(), 314-317
random shuffle(),

314-317
remove(),322,324-327
remove copy(),

322-323
remove copy if(), 323
remove if(), 322
replace(),321,

324-327
replace copy(), 322
replace copy if(), 322
replace if(),321
reverse(),318
reverse copy(), 318
rotate(),318
rotate copy(), 318
stable partition(), 314
swap(), 324-327
swap ranges(),324
transform(),317
unique copy(), 323
unique(),323

negater functions,359-360
non-mutating sequence

algorithms,299
adjacent find(),

303-306
count(),300-303
count if(),301
equal(),309-311
find(), 300-303
find end(),307
find first of(),306
find if(), 300
for each(), 300
mismatch(), 310-311
search(), 307-309
search n(),304-306

optimizing, 454

performance, analyzing,
452-453

permutation generators,
350-352

next permutation(), 351
prev permutation(),

351
pointer-to-function adapter

functions,357-359
search algorithms

binary searches,
486-489

brute-force algorithm,
490-491

linear searches,
484-486

pattern matching,
489-491

quick sort, 463-466
set algorithms,339,

341-344
includes(),339-340
set difference(),

340-341
set intersection(),340
set symmetric differ-

ence(),341
set union(),340

sort algorithms,327
bubble sort, 455-457
heap sort, 473-476
insertion sort, 457-460
merge sort, 466-471
nth element(),332-334
partial sort(), 330-332
partial sort copy(), 332
selecting, 476-478
selection sort, 460-463
shell sort, 471-473
sort(), 327-329
stable sort(), 330-332
testing, 478-480

aliases for namespaces,
376-377

allocating memory
arrays,131-133
heaps,128-130,138-146
stacks,127-128

allocators, 221
alpha-beta cutoffs (graph

algorithms), 506-507
analyzing algorithm per-

formance, 452-453
APIs for relational data-

bases, 631
application framework

libraries (MFC), 170
application architecture,

175
wizards,170-171,173-174

Application Wizard,
170-171, 173-174

applications
analysis,24-25
invoicing application, 680

driver program,
694-699

Invoice class,684-687
invoice list,691-694
Invoice Operation

class,726-731
InvoiceItem class,

682-684
main program,731-732
miscellaneous func-

tions,725
ODMG standard C++

binding, 701-702
Product class,680-682
product list,687-691
product operation class,

718-724
relationships,711-714
schema,704-705

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 879

applications
880

snapshots,684
transactions,716-718

requirements,24-25
tuning, 406

implementation code in
header files,412-413

inline functions,
406-410

RTTI, 422-425
temporary objects,

426-427
virtual base classes,

419-422
virtual functions,

416-418
Windows applications

dialog boxes,207-214
event-driven program-

ming, 207-210
message processing,

175,180-182
multithreading, 175-198
window management,

182
see also programs

Applied Cryptography,
756

architectures
client/server, 732-733
COM (Component Object

Model), 811-812
MFC, 175
relational databases,

624-625
arithmetic functions,

298-299
arrays, 263-264

Java,861-862
memory management,

131-133
pointers,563

sorted arrays, searching,
486-489

varrays (Oracle8),653,657
vector container, 221

capacity, 223-225
constructors,221-222
defining, 221
element access,

226-228
iterators,228-231
limitations,240
modifiers,231-235
operations,236-240
size, 223-225

The Art of Computer
Programming, 525

artifacts (software
design), 26-27

.asc filename extension,
761

assessor functions, inlin-
ing, 408

assignment operators,
overloading, 104-105

associations (classes),
20, 50

1 to 1,50-53
1 to N, 53-55
N to 1,53-55
N to N, 55-56

associative containers,
218, 263

map container, 263-266
constructors,267
deletions,274-276
destructors,267
element access,

271-274
insertions,274-276
iterators,268-271
Key class,266-267

operations,276-277
sizes,268

multimap container,
277-279

multiset container, 280
performance issues,

280-281
set container, 279-280

asymmetric cryptography,
753

AT&T Bell Labs, 775
attributes of Oracle8

objects, 653
auto pointers, 146-152
auto ptr class, 146-152
automation (COM), 828

dispinterfaces,828-829
IDL type support, 829-830

automation interfaces,
828-829

binding, 829
dispatch IDs,829

B
B-tree program

code explanation, 599-615
driver program,572-576
global functions,572-576
header file, 566-571
implementation files for

classes,577-596
using, 596-597,599

B-trees
declaration, 561
history, 554
implementation, 560-564
pages,554,584-589

caching, 558-559
declaration, 561-564

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 880

capacity() function
881

determining maximum
possible pages in
memory, 560

determining size for
quick reads and
writes,559-560

disk manager, 559,
565-566

indices,554-556,
558-560,564-565,
581-582

limitations,559
leaf pages,554-555
node pages,554-557
order, 554-555
splitting, 555-557

purpose of, 554,558
searching, 615-618

back() function
queues,261
stacks,256

backtracking (graph
searches), 496-498, 505

base classes
function objects,297
iterator classes,287-289
virtual base classes,418

declaring, 418-419
dynamic cast() opera-

tor, 396
functionality, 419
inheritance, 419-422
performance of applica-

tions,419-422
before() function,

388-389
Bell Northern Research,

740
bidirectional iterators,

287, 291
advance() function,

292-293

calculating distance
between iterators,
291-292

distance() function,
291-292

moving, 292-293
Big-O notation, 452-454
.bin filename extension,

761
binary functions, 297-298
binary operators, 103
binary search algorithms,

334, 337-339
binary search(), 335-336
equal range(),335
inplace merge(),336
lower bound(),334-335
merge(),336
upper bound(),335

binary search() algo-
rithm, 335-336

binary searches, 486-489,
514-515

binary trees
definition of, 495
external searches,509

bind() method (ORB)
782, 805-806

binder functions, 353-354
binding

dispinterfaces (COM),829
dynamic binding, 415
early binding, 415
late binding, 415,829
VTBL binding, 829

Blaze, Matthew, 775
bogus cryptography,

763-764
Booch method, 11
Booch, Grady, 11
boolean data type (Java),

853-854

Box, Don, 849
Brockschmidt, Kraig, 849
brute-force algorithm,

490-491
bubble sorts, 455-457
bucket addressing (hash

functions), 520-521
character strings,521-522
open addressing, 522

double-hash probing,
526-527

linear probing, 523-525
quadratic probing, 525
uniform probing, 525

budgets and software
design, 25-26

building databases, 558
buttons (dialog boxes),

210-211
byte data type (Java),

853-854

C
C, 8
C++

limitations,810
purpose of, 8

C++ standards committee
and namespaces, 362

caching pages (B-trees),
558-559

Caesar Cipher, 741,
743-744

calculating distance
between iterators,
291-292

canonical methods, 97
capacity of vector con-

tainers, 223-225
capacity() function,

223, 225

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 881

cast operators
882

cast operators, 398
const cast() operator,

401-402
dynamic cast() operator,

382,392-396,425
constructors,396-398
destructors,396
typeid() operator, 398
uses,401
virtual base classes,

396
reinterpret() operator,

400-401
static cast() operator,

398-401
typeid() operator, 382

constructors,389-390
destructors,389-390
dynamic cast() opera-

tor, 398
misuses,390-392
uses,382

casting
dynamic casting, 392

type-safe downcasts,
393-394

upcasts,393
new style versus old style,

402-404
CCmdTarget classes, 175
CDatabase class, 648
CDialog class, 188
CFormView class, 202-207
chaining (hash functions),

519
char data type (Java),

853-854
character strings, hashing,

521-522
choosing sort methods,

476-478
ciphers, 741

history of, 739
substitution ciphers,

741-744
Vernam ciphers,744-747

class diagrams, translat-
ing into C++, 46-49

class keyword (Java), 864
class templates, 219

defining, 219-220
instantiating, 220

Class Wizard, 204
Class, Responsibility,

Collaboration (CRC)
cards, 32

limitations,34
sessions,32-33
UML (Unif ied Modeling

Language),34-35
classes

abstract classes,87-88
Abstract Data Type (ADT),

87-88
aggregations,translating

into C++,56-58
algorithm classes,299
associations,50

1 to 1,50-53
1 to N, 53-55
N to 1,53-55
N to N, 55-56

auto ptr class,146-152
base classes

function objects,297
iterator classes,

287-289
virtual base classes,

418-422
virtual base classes and

dynamic cast() oper-
ator, 396

COM, 812,821
concrete classes,88

container classes,218
associative containers,

218,263-280
performance issues,

280-281
sequence containers,

218,221-255
DataFile class,565,

582-583
design,28-30

CRC cards,32-34
data manipulation,

30-31
devices,31
discriminators,38-39
dynamic model,40-42
powertypes,39-40
reports,31
static model,31-40
views,31

DiskManager class,
565-566,592-596

Index class
declaration, 564-565
implementation file,

581-582
inheritance

Java, 869-871
multiple inheritance,

35-37,60,112-114,
118-120

translating into C++,
58-59

virtual inheritance,
114-118

iterator classes,286,293
base class,287-289
istream iterator class,

293-295
ostream iterator class,

295-296

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 882

collections
883

Java,862-863
abstract classes,

864-866
inheritance, 869-871
interface classes,

863-864
Key class,266-267

instance class members,
413

static class members,
413

memory management,
97-98

MFC (Microsoft
Foundation Classes),170

application architec-
ture, 175

CCmdTarget, 175
CDatabase, 648
CDialog, 188
CFormView, 202-207
CRecordSet,639-642,

645,648
CRecordView, 637,639
CriticalSection object,

184-185
CString, 199
CTime, 199-201
CTimeSpan,200-201
CView, 202
CWinApp,175
CWinThread object,

179-182
CWinThreads,175
CWnd class,201
polymorphism example,

79
utility classes,199-201
wizards,170-171,

173-174
namespaces,differences

between,368

ODMG standard
d Collection class,

705-707
d Database class,715
d Error class,716
d Interval class,713
d Iterator class,

708-709
d Ref class,708-709
d Rel List class,710
d Rel Ref class,

709-710
d Rel Set class,710
d Set class,708
d Time class,713
d TimeStamp class,713
d Transaction class,

715-716
Page class

declaration, 562-563
implementation file,

584-589
parameterized classes,

translating into C++,
48-49

standard classes,translat-
ing into C++,46-47

template classes,translat-
ing into C++,48-49

type info class,382
before() member func-

tion, 388-389
comparison operators,

383-385
constructor, 383
declaring, 383
name() member func-

tion, 385-388
utility classes,translating

into C++,49
WNJFile class,566,

589-592

client/server architecture
in ODBMS, 732-733

clients (CORBA)
C++ clients,792-795
Java clients,800-802

Clipper chip, 740, 748,
774-775

closure (*) operator, 491
clustering

primary clustering, 524
secondary clustering, 525

coalesced chaining (hash
functions), 519-520

COBOL, 8
coclasses, 812, 821
CoCreateGuid() function,

813
Codebreakers: The

Comprehensive History
of Secret
Communication from
Ancient Times to the
Internet, 738

codes, as an encryption
technique, 741

coding standards docu-
ments, 413

CoGetClassObject() func-
tion, 821

collaboration diagrams
benefits, 61
goals,61-62
limitations,61
translating into C++,61-68

collation order of types,
388

collections, 705
ODMG standard, 705-708,

724
Oracle8,656-657

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 883

collision resolution (hash functions)
884

collision resolution (hash
functions), 516

bucket addressing, 520-527
chaining, 519
coalesced chaining,

519-520
comparing techniques,522
double hashing, 517
linear rehashing, 516-517
load factor, 518
nonlinear rehashing,

517-518
COM (Component Object

Model), 810
architecture, 811-812
automation, 828

dispinterfaces,828-829
IDL type support,

829-830
coclasses,812,821
documentation, 849
effect on C++,811
functions

CoCreateGuid(),813
CoGetClassObject(),

821
further reading about,849
history of, 810
HRESULTs,815
interfaces,811-813

dual interfaces,
829-830

enumerators,827
IAdviseSink interface,

825
IClassFactory interface,

821-822
IConnectionPoint inter-

face, 826
IConnectionPoint-

Container interface,
826

IDispatch interface,
828-830

IDL (Interface
Definition Language),
814-817

IID (interface identifi-
er), 813-814

IMalloc interface,
824-825

inheritance, 816
IPersist interface, 828
IRemUnknown inter-

face, 817
IStorage interface, 827
IStream interface, 827
ITypeInfo interface, 824
ITypeLib interface, 824
IUnknown interface,

817-820
raw interfaces,830-831
reference counts,818
tear-off interfaces,848
wrappers,837-840

memory management,
824-825

objects,820
aggregation, 822-823
class contexts,822
class factory, 821-822
connecting, 825-826
containment,823
implementation

reusability, 822
interface pointers,820
persistence, 827-828
structured storage,

827-828
type libraries,823-824
writing, 841-848

OLE, 810
runtime coupling, 810
smart pointers,831-837
type libraries,841
VTBL, 813

COM/DCOM Unleashed,
849

comments in Java,
852-853

Common Object Request
Broker Architecture
(CORBA), 780

as a component model,785
BOA (Basic Object

Adapter),780,797-798
C++ client, creating,

792-795
C++ server, creating,

795-800
certif ication for implemen-

tations,783
CORBAServices,804
developers,780-781
development environments,

790
environments,781-782
framework, 783
IDL (Interface Definition

Language),781,785-787
comparison to C++

class definition,
787-788

inheritance, 788
IIOP (Internet Inter-ORB

Protocol),783-785
interoperability, 805-806
IOR (Interoperable Object

Reference),804-805
Java clients,800-801

generating stub,
801-802

startup and method
invocation, 802

marshaling, 781
methods

implementing, 796-797
invoking, 794

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 884

Component Object Model (COM)
885

naming contexts,805-806
naming service, 804
objects,781,789
ORB (Object Request

Broker), 780-781,
788-789

bind() method,
805-806

connecting, 794,797
interoperability,

791-792
memory leaks,807
public domain ORBs,

790
vendors,788-789,805,

807
performance, 807

granularity of interface,
807-808

ORB memory leaks,
807

passing object refer-
ences,808

Portable Object Adapter
(POA), 789

purpose of, 781
requests,781
services,781
skeletons,780,796
stubs,780,793-794,

801-802
testing, 802

exception handling, 803
monitor and logging

services,803
remote debugging,

803-804
tracing, 802-803

Communicator (Netscape),
770-771

comparing
queues,261

sort methods,477-478
vector containers,238-240

comparison operators,
236-240

== (equal) operator,
236-237

< (less than) operator, 237
queues,261
type info class,383-385

compilers
inline keyword conflicts,

410-411
lint programs,363,371
Microsoft IDL compiler,

814-815
name conflicts, 362-364
namespace support, 362
STL container classes,284
temporary objects,425-426

Component Object Model
(COM), 810

architecture, 811-812
automation, 828

dispinterfaces,828-829
IDL type support,

829-830
dual interfaces,829-830
effect on C++,811
functions

CoCreateGuid(),813
CoGetClassObject(),

821
history of, 810
HRESULTs,815
interfaces,811-813

enumerators,827
IAdviseSink interface,

825
IClassFactory interface,

821-822
IConnectionPoint inter-

face, 826

IConnectionPoint-
Container interface,
826

IDispatch interface,
828-830

IDL (Interface
Definition Language),
814-817

IID (interface identifi-
er), 813-814

IMalloc interface,
824-825

inheritance, 816
IPersist interface, 828
IRemUnknown inter-

face, 817
IStorage interface, 827
IStream interface, 827
ITypeInfo interface, 824
ITypeLib interface, 824
IUnknown interface,

817-820
raw interfaces,830-831
reference counts,818
tear-off interfaces,848
wrappers,837-840

memory management,
824-825

objects,820
aggregation, 822-823
class contexts,822
class factory, 821-822
connecting, 825-826
containment,823
implementation

reusability, 822
interface pointers,820
persistence, 827-828
structured storage,

827-828
type libraries,

823-824
writing, 841-848

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 885

Component Object Model (COM)
886

OLE, 810
runtime coupling, 810
smart pointers,831-837
type libraries,841
VTBL, 813

componentware, 810
composition, 36-37, 56
concatenation, 491
concrete classes, 88
concrete data types, 88
concurrency

ODBC (Open Database
Connectivity), 633-634

ODBMS, 678
conflicts

hash functions,516
bucket addressing,

520-527
chaining, 519
coalesced chaining,

519-520
comparing techniques,

522
double hashing, 517
linear rehashing,

516-517
load factor, 518
nonlinear rehashing,

517-518
names,362

compiler reaction,
362-364

linker reaction,363
connecting

COM objects,825-826
ORB (Object Request

Broker), 794,797
const cast() operator,

401-402
const iterators, 229

const keyword
Java,859
pointers,134-135

const member functions,
134-135

const pointers, 134-136
const reverse iterator, 229
constant member func-

tions, 134-135
constant pointers,

134-136
constructors

copy constructors,98
deep copy constuctors,

101-103
default copy construc-

tors,161
shallow copy constuc-

tors,98-101
virtual copy construc-

tors,111
defaults,97
dynamic cast() operator,

396-398
Java,867-868
maps,267
stacks,258
type info class,383
typeid() operator, 389-390
vector containers,221-222

container classes, 218
associative containers,218,

263-280
performance issues,

280-281
sequence containers,218,

221
deque container,

253-255
list container, 240-252
vector container,

221-240

containers, 218
allocators,221
associative containers,

218,263
map, 263-277
multimap, 277-279
multiset,280
set,279-280

hierarchies,286-287
iterators,286
memory managers,221
ODMG standard, 707
performance issues,

280-281
sequence containers,

218,221
deque, 253-255
list, 240-252
vector, 221-240

containment, 19, 56
COM, 823
versus multiple inheritance,

36-37,118-120
context-free grammar and

parsing, 537-538
control flow statements

(Java), 856
conventions, 10
cooperative multithread-

ing, 176
copy backward() algo-

rithm, 317-318
copy constructors, 98

deep copy constructors,
101-103

default copy constructor,
161

shallow copy constructors,
98-101

virtual copy constructors,
111

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 886

cryptography
887

copy() algorithm, 317,
319-321

copying auto pointers,
149-152

CORBA (Common Object
Request Broker
Architecture), 780

as a component model,785
BOA (Basic Object

Adapter),780,797-798
C++ client, creating,

792-795
C++ server, creating,

795-800
certif ication for implemen-

tations,783
CORBAServices,804
developers,780-781
development environments,

790
environments,781-782
framework, 783
IDL (Interface Definition

Language),781,785-787
comparison to C++

class definition,
787-788

inheritance, 788
IIOP (Internet Inter-ORB

Protocol),783-785
interoperability, 805-806
IOR (Interoperable Object

Reference),804-805
Java clients,800-801

generating stub,
801-802

startup and method
invocation, 802

marshaling, 781
methods

implementing, 796-797
invoking, 794

naming contexts,805-806
naming service, 804
objects,781,789
ORB (Object Request

Broker), 780-781,
788-789

bind() method,
805-806

connecting, 794,797
interoperability,

791-792
memory leaks,807
public domain ORBs,

790
vendors,788-789,

805,807
performance, 807

granularity of interface,
807-808

ORB memory leaks,
807

passing object refer-
ences,808

Portable Object Adapter
(POA), 789

purpose of, 781
requests,781
services,781
skeletons,780,796
stubs,780,793-794,

801-802
testing, 802

exception handling, 803
monitor and logging

services,803
remote debugging,

803-804
tracing, 802-803

count() algorithm,
300-303

count() function, 273
count if() algorithm, 301

counting references,
152-166

crashes (programs), as a
result of deleting point-
ers, 133-134

CRC cards, 32
limitations,34
sessions,32-33
UML (Unif ied Modeling

Language),34-35
CreateInstance() method

(IClassFactory interface),
821

CreateThread() function,
179

CRecordSet class, 639-642,
645, 648

CRecordView class, 637,
639

critical sections (thread
synchronization),
184-185

CriticalSection object,
184-185

Crypt utility, 763
cryptanalysis, 765-766
cryptography, 740

bogus cryptography,
763-764

hacker attacks,765
brute-force attacks,765
cryptanalysis,765-766
key search attacks,765
PGP-encrypted files,

766-767
legal restrictions,764-765
licenses,764
limitations,762-763
private key cryptograpy,

747-748
Key Distribution Centers,

753

Lucifer, 738-739

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 887

cryptography
888

mechanics of, 749-750
permutation, 750,752
problems with,749
rounds,752

public key cryptograpy,
753-754

Diffie-Hellman multi-
user technique,
754-755

puzzle technique, 754
RSA technique, 755-757

secret key cryptograpy, see
private key cryptography

CString class, 199
CTime class, 199-201
CTimeSpan class, 200-201
cursors (Oracle8), 670-671
CView class, 202
CWinApp class, 175
CWinThread object,

179-180
messages,180-182
windows,182

CWinThreads class, 175
CWnd class, 201
cycles (graphs), 495

D
Data Encryption Standard

(DES), 739-740, 748
data locking granularity

(ODBMS), 735
data management, 678

ODBMS
advantages over

RDBMS, 679
benefits, 678
client/server architec-

ture, 732-733

concurrency, 678
data locking granulari-

ty, 735
data storage, 733-734
data transfer granulari-

ty, 734-735
error handling, 716
implementations,679
invoicing application,

680-699
object clustering,

733-734
ODMG standard, 680
opening databases,715
persistence, 678,

700-702
query languages,678
relationships,708-714
schemas,702,704-705
transactions,678,

715-716
RDBMS, 678-679

data manipulation and
class design, 30-31

data sorting, 452
algorithms,452-454
bubble sorts,455-457
heap sorts, 473-476
insertion sorts, 457-460
key values,452
merge sorts,466-471
quick sorts,463-466
selecting a method,

476-478
selection sorts,460-463
shell sorts,471-473
space requirments,

454-455
stability, 454
testing methods,478-480

data storage (ODBMS),
733-734

data transfer granularity
(ODBMS), 734-735

data types
Abstract Data Type (ADT),

87-88
concrete data types,88
Java,853

boolean,853-854
byte, 853-854
char, 853-854
double, 853
float, 853
int, 853
long, 853
primitive data types,

853-854
reference data types,

854-855
short, 853

polymorphic data types,
89-92

databases
building, 558
object-oriented databases,

678
objects,652
ODBMS, 678

advantages over
RDBMS, 679

benefits, 678
client/server architec-

ture, 732-733
concurrency, 678
data locking granulari-

ty, 735
data storage, 733-734
data transfer granulari-

ty, 734-735
error handling, 716
implementations,679
invoicing application,

680-699

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 888

diagrams
889

object clustering,
733-734

ODMG standard, 680
opening databases,715
persistence, 678,

700-702
query languages,678
relationships,708-714
schemas,702,704-705
transactions,678,

715-716
Personal Information

Manager (PIM)
creating, 558-559
see also B-tree program

RDBMS, 678-679
relational databases,622,

652
APIs,631
architecture, 624-625
denormalization, 627
indexing, 623-624
joins,627-628
keys,623
Microsoft Foundation

Classes,630,634-647
normalization, 626-627
object relational

DBMS, 652-674
Open Database

Connectivity (ODBC),
630-634

persistence, 628-630
restrictions,625
setting characteristics,

648
SQL,625-626,648
tables,622,625
users,625

DataFile class, 565,
582-583

DB2 (IBM), 652
DDLs (Oracle8), 653

debugging
CORBA applications,802

exception handling, 803
monitor and logging

services,803
remote debugging,

803-804
tracing, 802-803

recursive functions,449
declarations

B-trees,561-564
classes

Index class,564-565
Page class,562-563

functions
namespaces,367-368
virtual functions,414

namespaces,366
type info class,383
types (namespaces),367
using declaration (name-

spaces),375-376
virtual base classes,

418-419
defaults

constructors,97
copy constructors,161

defining
functions

namespaces,367-368
virtual functions,414

queues,259
stacks,255
templates

class templates,
219-220

function templates,218
types (namespaces),367
vectors,221

delete() function, 221
delete operator, 132
delete[] operator,

131-133

deleting
list elements,250-252
map elements,274-276
pointers

crashes,133-134
NULL pointers,

133-134
denormalization (relation-

al databases), 627
deprecation, 366, 378
deque container, 253-255
DEREF operator (Oracle8),

656
design

classes,28-42
element types (STL con-

tainer classes),283
linked lists,79-80
software, 27-28

desktop security products,
772-773

Norton Your Eyes Only
(Symantec),774

PGP for Personal Privacy
5.0,773-774

RSA SecurPC v2.0,773
destructors

dynamic cast() operator,
396

Java,857
maps,267
typeid() operator, 389-390
virtual destructors,94,415

development environ-
ments for CORBA, 790

devices (class design), 31
diagrams

activity diagrams,72-75
class diagrams,46-49
interaction diagrams,61-68
state transition diagrams,

68-72

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 889

diagrams
890

UML diagrams,662-672
use case scenarios,23-24

dialog boxes
creating, 207-210
property sheets,212-214
radio buttons,210-211
spin controls, 211-212

Diffie, Whitfield, 754
Diffie-Hellman encryp-

tion, 754-755
Digital Signature

Standard (DSS), 768-769
digital signatures, 767-768

Digital Signature Standard
(DSS),768-769

nonrepudiation, 769
Public Key Cryptography

Standard (PKCS),768
Dijkstra’s algorithm,

500-505
diminishing increment

sorts, see shell sorts
discriminators, 38-39
disk manager, 559,

565-566
disk storage

B-trees,554-566,615-618
shallow trees,554

DiskManager class,
565-566, 592-596

disks, swapping to, 560
dispatch interfaces,

828-829
binding, 829
dispatch IDs,829

dispinterfaces, 828-829
binding, 829
dispatch IDs,829

distance() function,
291-292

division method (hash
function), 515

DML (Oracle8), 653
documentation for soft-

ware design, 25-26
DoDataExchange()

method, 205
domain models (use

cases), 17-20
DoModal() method, 214
double data type (Java),

853
double hashing, 517
dual interfaces, 829-830
dual keyword, 830
dynamic binding, 415
dynamic cast() operator,

382, 392-394, 425
constructors,396-398
destructors,396
typeid() operator, 398
uses,394-396,401
virtual base classes,396

dynamic model (class
design), 40-42

dynamic typecasting, 392
type-safe downcasts,

393-394
upcasts,393

E
e-mail and encryption,

771
Eudora (Qualcomm),772
Messenger (Netscape),771
Outlook (Microsoft),

771-772
early binding, 415
edges of graphs, 495
editing MFC relational

databases, 644

element access
maps,271-274
vectors,226-228

ElfHash() function, 521
empty() function, 256
encryption

algorithms,740
ciphers,741

history, 739
substitution ciphers,

741-744
Vernam ciphers,

744-747
ciphertext, 740
Clipper chip, 740,774-775
codes,741
cryptography, 740,

763-764
desktop products,772-773

Norton Your Eyes Only
(Symantec),774

PGP for Personal
Privacy 5.0,773-774

RSA SecurPC v2.0,773
e-mail,771

Eudora (Qualcomm),
772

Microsoft Outlook,
771-772

Netscape Messenger,
771

goal of, 740
hacker attacks,765

brute-force attacks,765
cryptanalysis,765-766
key search attacks,765
PGP-encrypted files,

766-767
history of, 738
keys,740,747-748,754
legal restrictions,764-765
licenses,764
limitations,762-763

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 890

find end() algorithm
891

National Bureau of
Standards,739-740

PGP (Pretty Good Privacy)
encryption,755,757

digital signatures,
767-769

file encryption,
759-762,766-767

prime numbers,758
random numbers,759

plaintext, 740
private key encryption,

747-748
Data Encryption

Standard (DES),748
IDEA, 748
Key Distribution

Centers,753
Lucifer, 738-739
mechanics of, 749-750
permutation, 750,752
problems with,749
RC codes,748
rounds,752
Skipjack, 748
Triple-DES, 748

public key encryption,
753-754

Diffie-Hellman multi-
user technique,
754-755

puzzle technique, 754
RSA technique, 755-757

secret key encryption,see
private key encryption

standards,739-740
U.S. Data Encryption

Standard, 739-740
World Wide Web, 770-771

encryption functions, 750
S-box function,751-752
XOR function,750-751

enum keyword, 860-861
enumerations

Java,860-861
enumerators (COM inter-

faces), 827
environment of CORBA,

781-782
equal() algorithm,

309-311
equal (==) operator,

236-237
equal range() algorithm,

335
equal range() function

maps,274
multimaps,278-279

erase() function, 235
error handling (ODBMS),

716
errors

Identifier multiple defined
message, 363

stack overflow errors,258
Escrowed Encryption

Standard (EES), 775
Essential COM, 849
Eudora (Qualcomm) and

encryption, 772
events (thread synchro-

nization), 186
exception handling

CORBA, 803
Java,872-873

exceptions (pointers), 127,
140-146

Exclusive OR function,
750-751

Explorer (Microsoft) and
encryption, 770

extensions (filenames)
.asc, 761
.bin, 761

.pgp,761

.txt, 761
external functions (Java),

860
external linkage (names),

365
external procedures

(Oracle8), 658-661

F
Feistel, Horst, 738
Fermat’s algorithm, 758
Fibonacci numbers and

recursion, 432-434
FIFO (first in, first out)

structure of queues, 259
file management (fstream

objects), 544-545
files

encryption,759-762,
766-767

extensions
.asc, 761
.bin, 761
.pgp,761
.txt, 761

reading text from,544-545
storable objects,544-554
writing objects to,545
writing text to, 544-545

fill() algorithm, 311-312
fill n() algorithm, 312-314
fin, 545
final keyword (Java), 863
finalize() method (Java),

857, 868-869
finally keyword (Java),

872-873
find end() algorithm, 307

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 891

find first of() algorithm
892

find first of() algorithm,
306

find() algorithm, 300-303
find() function, 271-272
find if() algorithm, 300
finite-state machines,

491-494
deterministic machines,

494
nondeterministic machines,

494
first in, first out (FIFO)

structure of queues, 259
float data type (Java), 853
folding method (hash

function), 515
for each() algorithm, 300
foreign keys (RDBMS),

678
forms (MFC), 202-207
forward iterators, 229,

231, 287, 291
advance() function,

292-293
calculating distance

between iterators,
291-292

distance() function,
291-292

moving, 292-293
fout, 545
frameworks, 170

CORBA, 783
MFC, 170

application architec-
ture, 175

wizards,170-171,
173-174

front operations (lists),
245-247

front() function, 261
fstream objects, 544-545
function objects, 296-297

algorithms,352-353
arithmetic functions,

298-299
base classes,297
binary functions,297
generators,297
predicates,297-298
unary functions,297

function templates, 218
defining, 218
instantiating, 218-219

functions
adapter functions,354-356
advance() function,

292-293
AfxBeginThread() func-

tion, 182-184
assessor functions,inlin-

ing, 408
back() function

queues,261
stacks,256

binder functions,353-354
capacity() function,

223,225
COM

CoCreateGuid() func-
tion, 813

CoGetClassObject()
function,821

count() function,273
CreateThread() function,

179
delete() function,221
distance() function,

291-292
empty() function,256
encryption functions,750

S-box function,751-752
XOR function,750-751

equal range() function
maps,274
multimaps,278-279

erase() function,235

external functions (Java),
860

find() function,271-272
front() function,261
hash functions,514-515

collision resolution,
516-527

division method, 515
ElfHash() function,

521
folding method, 515
mid-square method,

515-516
heuristic functions,499
inline functions

compiler conflicts, 411
header files,406-407
macros,407,411-412
performance of applica-

tions,406-410
insert() function

maps,276-277
multimaps,277,279
multisets,280

int() function,222
Java,860
lower bound() function

maps,273-274
multimaps,277

main() function,731-732
max size() function,223
member functions

before(),388-389
const member func-

tions,134-135
name(),385-388
operator!=, 423
operator==, 423
Show(), 357

merge() function,247-250
mutator functions,inlining,

408
namespaces,362,367-368
negate() function,299

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 892

graphs
893

negater functions,359-360
new(), 221
OnDraw() function,202
OnInitialUpdate() func-

tion, 202
OnUpdate() function,202
plus() function,299
pointer-to-function adapter

functions,357-359
pop() function

priority queues,262
queues,261
stacks,256,258

pop front() function,247
push() function,256
push front() function,247
range check() function,

277
recursion,432,434

debugging, 449
indirect recursion,

446-447
stacks,447-448
stopping, 434
traversing recursive

structures with recur-
sive functions,
437-441

remove() function,250
remove if() function,250
reserve() function,223,

225
resize() function,223,225
reverse() function,247
ShowMap() function,279
ShowMultimap() function,

279
ShowMultimapRange()

function,279
ShowVector() function,

225

size() function
stacks,256
vectors,223

sort() function,247-250
splice() function,243,245
swap() function

maps,276-277
vectors,236

template functions,225
top() function,256-257
unique() function,

250,252
UpdateData() function,

205-207
upper bound() function

maps,273-274
multimaps,277

virtual functions,414
calling, 415-416
declaring, 414
defining, 414
functionality, 414
performance of applica-

tions,416-418
VPTR (virtual function

pointer),416-417
VTBL (virtual function

table), 416-417
futility cutoffs (graph

algorithms), 507

G
generalization, 19, 35-36

multiple generalization, 60
translating into C++,58-60

generate() algorithm,
312-314

generate n() algorithm,
312

generators, 297, 350-352
Gill, John, 755

Globally Unique Identifier
(GUID), 813

goto keyword, 856
granularity

data locking (ODBMS),
735

data transfer (ODBMS),
734-735

graph algorithms, 494-496
alpha-beta cutoffs, 506-507
best-first searches,499-500
breadth-first searches,

497-498
depth-first searches,

496-498,505
Dijkstra’s algorithm,

500-505
minimax procedure, 505
tic-tac-toe, 505
traveling salesman prob-

lem,507-508
graphs, 494-496

complete graphs,495
connected graphs,495,501
definition of, 494
dense graphs,495
directed graphs,495,501
implementing, 500-501
searching

best-first searches,
499-500

breadth-first searches,
497-498

depth-first searches,
496-498,505

sparse graphs,495
trees,495-495
undirected graphs,495,

501
unweighted graphs,501
weighted graphs,496

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 893

greedy algorithms
894

greedy algorithms, 500
GUID (Globally Unique

Identifier), 813
guidelines for use case

scenarios, 21-23

H
hacker attacks, 765

brute-force attacks,765
cryptanalysis,765-766
key search attacks,765
PGP-encrypted files,

766-767
handling exceptions

CORBA, 803
Java,872-873

has-a relationships, 36
hashing, 514

advantages,514
character strings,521-522
hash functions,514-515

collision resolution,
516-527

division method, 515
ElfHash() function,

521
folding method, 515
mid-square method,

515-516
header files

B-tree program,566-571
implementation code and

performance of applica-
tions,412-413

inline functions,406-407
namespaces,366-367
ODMG standard, 701
STL container classes,282

heap algorithms, 344-347
make heap(), 344
pop heap(), 345

push heap(), 344-345
sort heap(), 344

heap sorts, 473-476
heaps and memory man-

agement, 128-130,
138-139, 140-146

Hellman, Martin, 754
heuristic functions, 499
HRESULTs, 815

I
IAdviseSink interface, 825
IBM

DB2, 652
encryption,738

IClassFactory interface,
821

CreateInstance() method,
821

LockServer() method, 821
QueryInterface() method,

821-822
IConnectionPoint inter-

face, 826
IConnectionPointContainer

interface, 826
IDEA (International Data

Encryption Algorithm),
748

identifier hiding warn-
ings, 363

Identifier multiple defined
message, 363

IDispatch interface,
828-830

IDL (Interface Definition
Language) of CORBA,
781, 785-787

comparison to C++ class
definition, 787-788

inheritance, 788
IIOP (Internet Inter-ORB

Protocol), 783-785
IMalloc interface, 824-825
implementation code and

performance of applica-
tions, 412-413

implementation reusabili-
ty (COM), 822

implementing
graphs,500-501
linked lists,81-87
methods (CORBA),

796-797
includes() algorithm,

339-340
increment operators,

overloading, 107-108,
111

Index class
declaration, 564-565
implementation file,

581-582
indexes

B-tree pages,554-556,
558-560,564-565,
581-582

limitations,559
order, 554-555

relational databases,
623-624

indirect recursion, 446-447
inheritance, 78

benefits, 78
COM interfaces,816
CORBA IDL, 788
Java,869-871
multiple inheritance,

35-36,112-113

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 894

International Data Encryption Algorithm (IDEA)
895

Java, 871-872
problems,113-114
translating into C++,

60
versus containment,

36-37,118-120
polymorphism,78

examples,79
linked lists,79-87

translating into C++,58-59
virtual base classes,

419-422
virtual inheritance,

114-118
initializing vectors, 222
inline functions

compiler conflicts, 411
header files,406-407
macros,407,411-412
performance of applica-

tions,406-410
inline keyword, 368, 406,

408-411
inline methods, 98
inlining functions

assessor functions,408
compiler conflicts, 411
mutator functions,408
namespaces,368

inplace merge() algo-
rithm, 336

Inprise VisiBroker, 790,
792

input iterators, 286-287,
289-290

advance() function,
292-293

calculating distance
between iterators,
291-292

distance() function,
291-292

moving, 292-293
insert() function

maps,276-277
multimaps,277,279
multisets,280

inserting
elements into maps,

274-276
members into namespaces,

368
records into MFC relation-

al databases,645-647
insertion sorts, 457-460

characteristics,460
design considerations,460

Inside COM, 849
Inside OLE, 849
instance class members,

413
instantiating templates

class templates,220
function templates,

218-219
int data type (Java), 853
int() function, 222
interaction diagrams,

translating into C++,
61-68

interface classes (Java),
863-864

Interface Definition
Language (IDL) of
CORBA, 781, 785-787

comparison to C++ class
definition, 787-788

inheritance, 788
interface keyword

C++, 787,812
Java,863

interfaces
COM (Component Object

Model), 811-813

dual interfaces,
829-830

enumerators,827
IAdviseSink interface,

825
IClassFactory interface,

821-822
IConnectionPoint inter-

face, 826
IConnectionPoint

Container interface,
826

IDispatch interface,
828-830

IDL (Interface
Definition Language),
814-817

IID (interface identifi-
er), 813-814

IMalloc interface,
824-825

inheritance, 816
IPersist interface, 828
IRemUnknown inter-

face, 817
IStorage interface, 827
IStream interface, 827
ITypeInfo interface, 824
ITypeLib interface, 824
IUnknown interface,

817-820
raw interfaces,830-831
reference counts,818
tear-off interfaces,848
VTBL,813
wrappers,837-840

queues,259,262
stacks,256

internal linkage (names),
365

International Data
Encryption Algorithm
(IDEA), 748

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 895

Internet Explorer and encryption
896

Internet Explorer and
encryption, 770

Internet Inter-ORB
Protocol (IIOP), 783-785

interoperability
CORBA, 805-806
ORB (Object Request

Broker), 791-792
Interoperable Object

Reference (IOR), 804-805
The Introduction to the

Analysis of Algorithms,
538

invoicing application, 680
driver program,694-699
Invoice class,684-687
invoice list,691-694
Invoice Operation class,

726-731
InvoiceItem class,682-684
main program,731-732
miscellaneous functions,

725
ODMG standard C++

binding, 701-702
Product class,680-682
product list,687-691
product operation class,

718-724
relationships,711-714
schema,704-705
snapshots,684
transactions,716-718

invoking methods in
CORBA, 794

Iona Orbix, 790, 792
IOR (Interoperable Object

Reference), 804-805
IPersist interface, 828
IRemUnknown interface,

817
is-a relationships, 36, 78
IStorage interface, 827

IStream interface, 827
istream iterator class,

293-295
iter swap() algorithm,

324
iteration recursion,

441-445
iterative development of

software, 11-12
controversies,12-13
steps,12

analysis,13-27
conceptualization,

12-13
design,27-42
implementation, 46-49

iterators
advance() function,

292-293
bidirectional iterators,287,

291
calculating distance

between,291-292
classes,286,293

base class,287-289
istream iterator class,

293-295
ostream iterator class,

295-296
const iterators,229
const reverse iterator, 229
containers,228-231,286
distance() function,

291-292
forward iterators,229,231,

287,291
hierarchies,286-287
input iterators,286-287,

289-290
maps,268-271
moving, 292-293
ODMG standard, 708
operations,287

output iterators,287,290
past-the-end iterators,290
random access iterators,

287,291
reverse iterators,229,231

ITypeInfo interface, 824
ITypeLib interface, 824
IUnknown interface, 817

AddRef() method,
818,820

QueryInterface() method,
818-820

Release() method, 818

J
Jacobson, Ivar, 11
Java, 852

access specifiers,858-859,
863

arrays,861-862
classes,862-863

abstract classes,
864-866

inheritance, 869-871
interface classes,

863-864
clients (CORBA), 800-801

generating stub,
801-802

startup and method
invocation, 802

comments,852-853
constructors,867-868
control flow statements,

856
data types,853

primitive data types,
853-854

reference data types,
854-855

destructors,857

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 896

libraries
897

differences from C++,
856-862

enumerations,860-861
exception handling,

872-873
functions,860
inheritance, 869-871
member initialization, 866
memory management,856
methods

finalize() method,
868-869

parameters,859-860
object-oriented features,

862-873
operators,855-856
pointers,857
preprocessors,857
references,867
similarities to C++,

852-856
strings,861

javadoc utility, 852
joins (relational databas-

es), 627
cross-joins,627
equi-joins,627
inner-joins,627
natural joins,627
outer-joins,628
theta-joins,627

K
Kahn, David, 738, 740
Key class, 266-267
Key Distribution Centers

and private key encryp-
tion, 753

key values (records), 452
keys

encryption,740,747-748,
754

RDBMS, 623
foreign keys,678
primary keys,678

see alsoindexes
keywords

abstract keyword (Java),
864-866

class keyword (Java),864
const keyword

Java, 859
pointers,134-135

dual keyword, 830
enum keyword, 860-861
final keyword (Java),863
finally keyword (Java),

872-873
goto keyword, 856
inline keyword, 368,406,

408-411
interface keyword

C++, 787,812
Java, 863

namespace keyword, 366
new keyword (Java),857
oleautomation keyword,

830
static keyword, 366,413

deprecation, 378
Java, 863

std keyword, 282
super keyword (Java),867,

870
this keyword (Java),867
transient keyword (Java),

863
typename, 222

using keyword, 373-376
virtual keyword, 116,

414-415,418
Knuth, Donald, 525-526

L
Lai, Xuejia, 748
languages

modeling languages,9
conventions,10
methods,11
UML (Unified

Modeling Language),
10,18-20,24,34-36

programming languages
Java, 852-873
object-oriented pro-

gramming, 8-9
last in, first out (LIFO)

structure of stacks, 255
late binding, 415, 829
Law Enforcement Access

Field (LEAF), 775
leaks (memory), 807
least recently used

queues, 559
legal restrictions of cryp-

tography, 764-765
less than (<) operator, 237
lexicographical compare()

algorithm, 348-350
libraries

application framework
libraries (MFC),170-171,
173-175

Standard C++ Library, 218,
221-284

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 897

libraries
898

Standard Template Library
auto ptr class,146-152
container classes,218,

221-284
iterator classes,

293-296
type libraries,823-824,

841
licenses (cryptography),

764
LIFO (last in, first out)

structure of stacks, 255
linear rehashing, 516-517
linear searches, 484-486
linked lists

designing, 79-80
implementing, 81-87
nodes,79
polymorphism,79-87

linkers and name con-
flicts, 362-363

links (graphs), 495
lint programs, 363, 371
list containers, 240-242

deleting elements,250-252
front operations,245-247
merge() operations,

247-250
reverse() operations,247
sort() operations,247-250
splice operations,243-245

listings
Abstract Data Type (ADT),

87
aggregations (classes),

57-58
algorithms

adapter functions,
355-356

adjacent find() and
search n(),304-306

binary search algo-
rithms,337-339

copy() algorithms,
319-321

Dijkstra’s algorithm,
501-505

equal() and mismatch(),
310-311

fill() and generate(),
312-314

find() and count(),
301-303

functions and pointers,
357-359

heap algorithms,
345-347

lexicograpahical
compare(),349-350

nth element(),333-334
partition() and random

shuffle(), 315-317
permutation generators,

351-352
replace(),remove()

and swap(), 324-327
search() algorithms,

308-309
set algorithms,341-344
sort(), 328-329
stable sort() and par-

tial sort(), 330-332
arrays,263-264
assignment operators,

105-107
associations

1 to 1 associations,
50-53

many-to-many associa-
tions,55-56

one-to-many associa-
tions,54-55

B-trees
declaration, 561
driver program,572-

576
global functions,572-

576
header file, 567-571
implementation files for

classes,577-596
binder functions,354
ciphers

substitution cipher, 742-
744

Vernam cipher, 745-747
classes

C++ representation of,
47-49

two classes with com-
mon base class,113-
114

collisions (hash functions),
517-518

COM
IDL (Interface

Definition Language),
816-817

interface wrappers,
837-840

writing COM objects,
841-848

concrete data types,88
const cast() operator, 402
copy constructors

deep copy constructors,
101-103

shallow copy construc-
tors,98-101

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 898

listings
899

CORBA
C++ client application

example, 795
C++ servers,798-800
IDL (Interface

Definition Language),
786-787

implementing server
methods,797

cursors (Oracle8),670-671
delete[] operator, 131-133
dynamic cast() operator

constructors,397-398
determining type of

base-class pointers,
395-396

type-safe downcasts,
393-394

function objects,296
generalization, 59-60
increment operators,108-

111
inheritance

multiple inheritance,
113

virtual inheritance,
115-118

invoicing application
driver program,

694-699
Invoice class,684-687
Invoice Operation

class,726-731
InvoiceItem class,

682-684
InvoiceList class,

691-694
main program,731-732
miscellaneous func-

tions,725

ODMG standard C++
binding, 701-702

Product class,680-682
Product map, 687-691
product operation class,

718-724
relationships,711-714
schema,704-705
transactions,716-718

iterator classes
istream,294-295
ostream,295-296

Java methods,859-860
linked lists,84-87

class definition,
527-528

deleting elements,529
inserting elements,530
searching, 528-530

lists
front operations,

246-247
merging, 248-250
removing elements

from,250-252
sorting, 248-250
splice operations,

244-245
maps,265-266

accessing elements,
269-270,272-273

insertions and dele-
tions,275-276

memory management
arrays,131-133
auto pointers,146-149
deleting pointers in

catch blocks,143-146
heap objects and excep-

tions,140-143

heaps,129-130
members on the heap,

97
reference counting,

155-166
stacks,127-128

MFC wizards,173-174
multimaps,278-279
namespaces,369-373
ODBMS bidirectional

binary relationships,
710-714

open hash class
definition, 530-531
initialization, 531

open hash table
deleting elements,532
inserting elements,532
searching, 531-532

parsing, 533-534
numeric expressions,

535-536
string expressions,

536-537
pointers,133-134
polymorphic data types,

89-92
polymorphism,94-98
queue operations,260-261
read/write program,

544-545
recursion

Fibonacci calculation,
433

indirect recursion,
446-447

iteration, 442-444
recursive structures,

435-436

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 899

listings
900

traversing recursive
structures with
recursive functions,
437-439

references,136-137
relational databases,

646-647
search algorithms

binary searches,
487-489

linear searches,
485-486

search functions,309
sort methods

bubble sorts,455-457
heap sort, 474-476
insertion sort, 458-459
merge sort, 467-470
quick sort, 464-465
selection sort, 461-462
shell sort, 471-473
testing, 478-480

stack operations,256-257
storable objects,546-554
type info class

before() function,
388-389

comparison operators,
384-385

name() function,
385-388

typeid() operator misuse,
391-392

vectors
adding and removing

elements,233-235
comparing, 238-240
creating and resizing,

224-225
element access,

226-228
iterators,230-231

virtual and nonvirtual func-
tion calls,415-416

XOR function,751
lists

containers,240-242
deleting elements,

250-252
front operations,

245-247
merge() operations,

247-250
reverse() operations,

247
sort() operations,

247-250
splice operations,

243-245
linked lists

designing, 79-80
implementing, 81-87
polymorphism,79-87

load factor (hashing), 518
LOBs (Oracle8), 653
locking objects (ODBMS),

735
LockServer() method

(IClassFactory interface),
821

long data type (Java), 853
lower bound() algorithm,

334-335
lower bound() function

maps,273-274
multimaps,277

Lucifer, 738-739

M
Macros and inline func-

tions, 407, 411-412
main() function, 731-732

make heap() algorithm,
344

managing
files with fstream objects,

544-545
windows in Windows

applications,182
many-to-many associa-

tions of classes, 55-56
maps, 263-266

constructors,267
deletions,274-276
destructors,267
element access,271-274
insertions,274-276
iterators,268-271
Key class,266-267
operations,276-277
sizes,268

mapping UML diagrams
to object-relational data-
bases, 662-672

marshaling (CORBA), 781
Massey, James L., 748
Mathematics for the

Analysis of Algorithms,
526

max() algorithm, 348
max element() algorithm,

348
max size() function, 223
maximum algorithms, 348
McCreight, E., 554
McCreight, R. Bayer, 554
member functions

before(),388-389
const,134-135
name(),385-388
operator!=, 423
operator==, 423
Show(), 357

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 900

Microsoft Foundation Classes
901

members
initialization (Java),866
namespaces,inserting, 368

memcpy(), 560
memory

caching (B-tree pages),
558-559

disks,swapping to,560
functions,140
management,seememory

management
pointers,563
queues,261
stacks,447-448
storable objects,544-554
temporary objects,425-426

memory leaks, 131, 138,
807

memory management,
126

arrays,131-133
classes,97-98
COM, 824-825
heaps,128-130,138-146
Java,856
leaks,131,138,807
passing

const pointers,135-136
references,135-136

pointers,126-130
auto pointers,146-152
const pointers,134-136
definition of, 126
exceptions,127,

140-146
NULL pointers,

133-134
ownership,139
passing, 135-136

references,126
counting, 152-166
definition of, 126-127
passing, 135-136

stacks,127-128
vectors,221

merge sorts, 466-471
merge() algorithm, 336
merge() function,

247-250
merge() operations of

lists, 247-250
merging lists, 248-250
message processing in

Windows applications,
175, 180-182

Messenger (Netscape) and
encryption, 771

methodologists, 11
methods

bind() method, 782,
805-806

canonical methods,97
division method (hash

function),515
DoDataExchange()

method, 205
DoModal() method, 214
finalize() method, 857,

868-869
folding method (hash func-

tion), 515
IClassFactory interface

CreateInstance(),821
LockServer(), 821
QueryInterface(),

821-822
implementing in CORBA,

796-797
inline methods,98
invoking in CORBA, 794
IUnknown interface

AddRef(),818,820
QueryInterface(),

818-820
Release(),818

mid-square method (hash
function),515-516

modeling language and
process,11

Oracle8 objects,653
overloading, 94-98
parameters (Java),859-860
pure virtual methods,93

Meyer, Dr. Carl, 738
Microsoft

COM, 810
effect on C++,811
history of, 810
OLE,810
runtime coupling, 810

Foundation Classes,see
Microsoft Foundation
Classes

ODBC (Open Database
Connectivity), 630-631

administrator tool, 632
components,631
concurrency, 633-634
cursors,632-633
data sources,631-632

Microsoft Foundation
Classes, 170

application architecture,
175

CCmdTarget classes,175
CDatabase class,648
CDialog class,188
CFormView class,202-207
CRecordSet class,

639-642,645,648
CRecordView class,

637,639
CriticalSection object,

184-185
CString class,199
CTime class,199-201
CTimeSpan class,200-201

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 901

Microsoft Foundation Classes
902

CView class,202
CWinApp class,175
CWinThread object,

179-182
CWinThreads class,175
CWnd class,201
dialog boxes

creating, 207-210
property sheets,

212-214
radio buttons,210-211
spin controls, 211-212

documents,201
event-driven programming,

207-210
polymorphism example, 79
relational databases,630,

634-644
editing, 644
inserting records,

645-647
updating, 644-645

utility classes,199-201
views,201-207
wizards

Application Wizard,
170-171,173-174

Class Wizard, 204
Microsoft IDL compiler,

814-815
Microsoft Internet

Explorer and encryption,
770

Microsoft Outlook and
encryption, 771-772

mid-square method (hash
function), 515-516

min() algorithm, 348
min element() algorithm,

348
minimax procedure, 505

minimum algorithms, 348
mismatch() algorithm,

310-311
Model/View/Controller

(MVC) design pattern,
201

modeling languages, 9
conventions,10
methods,11
UML (Unif ied Modeling

Language),10,18
association, 20
class relationships,

35-36
containment,19
CRC cards,34-35
generalization, 19
packages,24

models, 8-9
class design

dynamic model,40-42
static model,31-40

CORBA as a component
model,785

domain models (use cases),
17-20

modifiers (vectors),
231-235

moving iterators, 292-293
multimaps, 277-279
multiple inheritance,

35-36, 112-113
Java,871-872
problems,113-114
translating into C++,60
versus containment,36-37,

118-120
multisets, 280
multitasking, 176
multithreading

case study/example,
178-179

cooperative multithreading,
176

messages,180-182
preemptive multithreading,

176-178
synchronization, 184

critical sections,1
84-185

events,186
example, 186-198
mutexes,185-186

threads
creating, 179-180
worker threads,

182-184
windows,182
Windows applications,

175-176
mutating sequence algo-

rithms, 311
copy(), 317,319-321
copy backward(), 317-318
fill(), 311-312
fill n(), 312-314
generate(),312-314
generate n(),312
iter swap(), 324
partition(), 314-317
random shuffle(), 314-317
remove(),322,324-327
remove copy if(), 323
remove copy(), 322-323
remove if(), 322
replace(),321,324-327
replace copy if(), 322
replace copy(), 322
replace if(),321
reverse(),318
reverse copy(), 318
rotate(),318
rotate copy(), 318
stable partition(), 314

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 902

Object Database Designer
903

swap(), 324-327
swap ranges(),324
transform(), 317
unique copy(), 323
unique(),323

mutator functions, inlin-
ing, 408

mutexes (thread synchro-
nization), 185-186

MVC design pattern, 201

N
N to 1 associations

between classes, 53-55
N to N associations

between classes, 55-56
name() member function,

385-388

names
conflicts, 362

compiler reaction,
362-364

linker reaction,363
external linkage, 365
internal linkage, 365

namespace keyword, 366
namespace.std, 218, 282
namespaces, 362

access specifiers,368
advantages,366
aliases,376-377
classes,differences

between,368
compiler support, 362
creating, 366
declaring, 366
functions,362,367-368
header files,366-367
inlining functions,368
inserting members,368

nesting, 369
ODMG standard, 701
std namespace, 366,

378-379
syntax,362
types,367
unnamed namespaces,377
use of, 369-372
using declaration, 375-376
using directive, 372-375

National Bureau of
Standards and encryp-
tion, 739-740

National Institute of
Standards and
Technology and encryp-
tion, 739-740

National Security Agency
and encryption, 738

Navigator (Netscape) and
encryption, 770-771

negate() function, 299
negater functions,

359-360
nesting namespaces, 369
Netscape

Communicator/Navigator
and encryption, 770-771

Netscape Messenger and
encryption, 771

new() function, 221
new keyword (Java), 857
next permutation() algo-

rithm, 351
nodes (graphs), 494
non-mutating sequence

algorithms, 299
adjacent find() algorithm,

303-306
count() algorithm,

300-303

count if() algorithm, 301
equal() algorithm,

309-311
find() algorithm, 300-303
find end() algorithm, 307
find first of() algorithm,

306
find if() algorithm, 300
for each() algorithm, 300
mismatch() algorithm,

310-311
search() algorithm,

307-309
search n() algorithm,

304-306
nonlinear rehashing,

517-518
nonrepudiation of digital

signatures, 769
normalization (relational

databases), 626-627
Norton Your Eyes Only

(Symantec), 774
notation (Big-O), 452-454
nth element() algorithm,

332-334
NULL pointers, deleting,

133-134
numeric expressions

infix notation, 534
parsing, 534-536
postfix notation, 534
reverse polish notation,

534

O
object clustering

(ODBMS), 733-734
Object Database Designer,

663-664

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 903

Object Database Management Group (ODMG)
904

Object Database
Management Group
(ODMG), 680

Object Database
Management System
(ODBMS), 678

advantages over RDBMS,
679

benefits, 678
client/server architecture,

732-733
concurrency, 678
data locking granularity,

735
data storage, 733-734
data transfer granularity,

734-735
error handling, 716
implementations,679
invoicing application,

680-699
object clustering, 733-734
ODMG standard, 680
opening databases,715
persistence, 678,700-702
query languages,678
relationships,708

bidirectional binary
relationships,709-714

degree, 708
unidirectional binary

relationships,708-709
schemas,702,704-705
transactions,678,715-716

Object Description
Language (ODL),
823-824

Object Linking and
Embedding (OLE) and
COM, 810

Object Management
Group (OMG), 780

Object Modeling
Technology (OMT), 11

Object Reference Broker
(ORB)

bind() method, 805-806
vendors,805

object relational DBMS,
652

IBM DB2, 652
Oracle 8,652

collections,656-657
external procedures,

658-661
object references,

654-656
object types,653-654
SQL,654

purchase order system
example, 672-674

Sybase System 10,652
UML diagrams,mapping,

662-672
Object Request Broker

(ORB), 780-781, 788-789
connecting, 794,797
interoperability, 791-792
memory leaks,807
public domain ORBs,790
vendors,788-789,807

object-oriented databas-
es, 678

object-oriented lan-
guages, 810

object-oriented program-
ming, 8

benefits, 8
Java,862-873
models,8-9

Objectory, 11
objects

collections,705-708,724
COM, 820

aggregation, 822-823
class contexts,822
class factory, 821-822
connecting, 825-826
containment,823
implementation

reusability, 822
interface pointers,820
persistence, 827-828
structured storage,

827-828
type libraries,823-824
writing, 841-848

containers,218,707
CORBA, 781,789
databases,652
definition of, 8
fstream objects,544-545
function objects,296-297

algorithms,352-353
arithmetic functions,

298-299
base classes,297
binary functions,297
generators,297
predicates,297-298
unary functions,297

ODBMS
locking, 735
transferring, 734-735

Oracle8,653-654
attributes,653
collections,656-657
LOB type, 653
methods,653
OBJECT type, 653
REF type, 653-656
TABLE type, 653
VARRAY type, 653

passing by reference,
135-136

recursion,432

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 904

operations
905

relationships,18
aggregation, 36-37
association, 20
composition,36-37,56
containment,19,56
generalization, 19,

35-36,58-60
has-a relationships,36
is-a relationships,36,

78
specialization, 19,

35-36
storable objects,544-554
String object (Java),861
subobjects,19
temporary objects

compilers,425-426
memory, 425-426
performance of applica-

tions,426-427
typecasting, 392-394
writing to files,545

ODBC (Open Database
Connectivity), 630-631

administrator tool,632
components,631
concurrency, 633-634
cursors,632-633
data sources,631-632

ODBMS (Object Database
Management System),
678

advantages over RDBMS,
679

benefits, 678
client/server architecture,

732-733
concurrency, 678
data locking granularity,

735
data storage, 733-734
data transfer granularity,

734-735

error handling, 716
implementations,679
invoicing application,

680-699
object clustering, 733-734
ODMG standard, 680
opening databases,715
persistence, 678,700-702
query languages,678
relationships,708

bidirectional binary
relationships,709-714

degree, 708
unidirectional binary

relationships,708-709
schemas,702,704-705
transactions,678,715-716

ODD (Object Database
Designer), 663-664

ODMG (Object Database
Management Group),
680

ODMG standard, 680
C++ primitive types,700
classes

d Collection class,
705-707

d Database class,715
d Error class,716
d Interval class,713
d Iterator class,

708-709
d Ref class,708-709
d Rel List class,710
d Rel Ref class,

709-710
d Rel Set class,710
d Set class,708
d Time class,713
d TimeStamp class,713
d Transaction class,

715-716

collections,705-708,724
containers,707
header files,701
iterators,708
namespaces,701
schema capture tools,702,

704-705
OLE and COM, 810
oleautomation keyword,

830
OMT (Object Modeling

Technology), 11
OnDraw() function, 202
one-time pads, 744-747
one-to-many associations

of classes, 53-55
one-to-one associations

of classes, 50-53
OnInitialUpdate() func-

tion, 202
OnUpdate() function, 202
OOP, see object-oriented

programming
Open Database

Connectivity (ODBC),
630-631

administrator tool,632
components,631
concurrency, 633-634
cursors,632-633
data sources,631-632

Open Group, 783
Open Software

Foundation Distributed
Computing
Environment, 813

operating systems and
multitasking, 176

operations
iterators,287

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 905

operations
906

lists
deleting elements,

250-252
front operations,

245-247
merge() operations,

247-250
reverse() operations,

247
sort() operations,

247-250
splice operations,

243-245
maps,276-277
priority queues,262
queues,260-261
stacks,255-258
vectors,236-240

operator!= function, 423
operator== function, 423
operators

* (closure) operator, 491
? operator, 103
assignment operators,

104-105
binary operators,103
cast operators,398

const cast() operator,
401-402

dynamic cast() opera-
tor, 382,392-398,
401,425

reinterpret() operator,
400-401

static cast() operator,
398-401

typeid() operator, 382,
389-392,423-424

typeid() versus dynam-
ic cast(),398

comparison operators,
236-240

== (equal) operator,
236-237

< (less than) operator,
237

queues,261
type info class,383-385

creating, 103
delete[] operator, 131-133
DEREF operator

(Oracle8),656
increment operators,107-

108,111
Java,855-856
OR operator, 491
overloading, 103

assignment operators,
104-105

increment operators,
107-108,111

Java, 856
REF operator (Oracle8),

655
scope operator (), 93
scope resolution operator,

419-420
subscripting operator, 228
ternary operators,103
unary operators,103

optimizing
algorithms,454
applications,406

implementation code in
header files,412-413

inline functions,
406-410

RTTI, 422-425
temporary objects,

426-427
virtual base classes,

419-422
virtual functions,

416-418

OR operator, 491
Oracle8

collections,656-657
cursors,670-671
DDLs, 653
DML, 653
external procedures,

658-661
object types,653-654

attributes,653
LOB type, 653
methods,653
OBJECT type, 653
REF type, 653-656
TABLE type, 653
VARRAY type, 653

Objects option,652
Pro C/C++,671
purchase order system

example, 672-674
SQL,653-654
UML diagrams,mapping,

662-672
ORB (Object Request

Broker), 780-781,
788-789

bind() method, 782,
805-806

connecting, 794,797
interoperability, 791-792
memory leaks,807
public domain ORBs,790
vendors,788-789,805,807

Orbix (Iona), 790, 792
ordering types, 388
ostream iterator class,

295-296
Outlook (Microsoft) and

encryption, 771-772
output iterators, 287, 290

advance() function,
292-293

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 906

persistence
907

calculating distance
between iterators,
291-292

distance() function,
291-292

moving, 292-293
overflow of stacks, 258
overloaded comparison

operators, 236-240, 261
overloading

methods,94
operators,103

assignment operators,
104-105

increment operators,
107-108,111

Java, 856
overriding methods, 93

P
packages (use cases), 24
Page class

declaration, 562-563
implementation file,

584-589
pages (B-trees), 554,

584-589
caching, 558-559
declaration, 561-564
determining maximum

possible pages in memo-
ry, 560

determining size for quick
reads and writes,
559-560

disk manager, 559,
565-566

indexes,554-556,558-560,
564-565,581-582

leaf pages,554-555
node pages,554-557
order, 554-555
splitting, 555-557

parameterized classes,
translating into C++,
48-49

parameters of Java meth-
ods, 859-860

parsing, 533-534
bottom-up approach, 533
context-free grammar,

537-538
numeric expressions,

534-536
parse trees,536-537
string expressions,536-537
top-down approach, 533,

538
partial sort() algorithm,

330-332
partial sort copy() algo-

rithm, 332
partition() algorithm,

314-317
passing

const pointers,135-136
objects by reference,

135-136
past-the-end iterators,

290
patents for cryptography

technologies, 764
paths (graphs)

cycles,495
definition of, 495
simple paths,495

pattern matching (search-
es), 489-491

finite-state machines,
491-494

representations of patterns,
491

Pelton, Ronald, 753
performance

algorithms,452-453
applications

RTTI, 422-425
temporary objects,

426-427
tuning, 406-410,

412-413
virtual base classes,

419-422
virtual functions,

416-418
CORBA, 807

granularity of interface,
807-808

ORB memory leaks,
807

passing object refer-
ences,808

STL containers,280-281
permutation

generators,350-352
next permutation(), 351
prev permutation(),

351
private key encryption,

750,752
persistence

COM objects,827-828
CORBA objects,789
ODBMS, 678,700-702
relational databases,

628-629
blobs,629-630
swizzling with object

identifiers,629

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 907

Personal Information Manager (PIM), creating
908

Personal Information
Manager (PIM), creating,
558-559

PGP (Pretty Good Privacy)
encryption, 755, 757

digital signatures,767-768
nonrepudiation, 769
standards,768-769

file encryption,759-762,
766-767

prime numbers,758
random numbers,759

.pgp filename extension,
761

PGP for Personal Privacy
5.0, 773-774

PIM (Personal Information
Manager), creating,
558-559

planning documents for
software design, 25-26

plus() function, 299
pointer-to-function

adapter functions,
357-359

pointers, 126-130
arrays,563
auto pointers,146-152
B-tree indexes,554
const pointers,134-136
definition of, 126
deleting, 133-134
exceptions,127,140-146
Java,857
NULL pointers,133-134
ownership,139
smart pointers (COM),

831-837
VPTR (virtual function

pointer),416-417

polymorphic data types,
89-92

polymorphism, 78, 415
examples,79
linked lists,79-87
method overloading, 94-98
RTTI (Runtime Type

Information), 422,
424-425

pop() function
priority queues,262
queues,261
stacks,256,258

pop front() function, 247
pop heap() algorithm,

345
Portable Object Adapter

(POA) (CORBA), 789
powertypes, 39-40
predicates (function

objects), 297-298
preemptive multithread-

ing, 176-178
preprocessors (Java), 857
Pretty Good Privacy (PGP)

encryption, 755, 757
digital signatures,767-768

nonrepudiation, 769
standards,768-769

file encryption,759-762,
766-767

prime numbers,758
random numbers,759

Pretty Good Privacy (PGP)
for Personal Privacy 5.0,
773-774

prev permutation() algo-
rithm, 351

primary clustering, 524

primary keys (RDBMS),
678

priority queues, 262
interfaces,262
operations,262

private key encryption,
747-748

algorithms,748
Data Encryption

Standard, 748
IDEA, 748
RC codes,748
Skipjack, 748
Triple-DES, 748

Key Distribution Centers,
753

Lucifer, 738-739
mechanics of, 749-750
permutation, 750,752
problems with,749
rounds,752

Pro C/C++, 671
procedures

definition of, 8
external procedures

(Oracle8),658-661
Professional MFC

Programming, 170
programming languages

Java,852
comments,852-853
control flow statements,

856
data types,853-855
differences from C++,

856-862
object-oriented fea-

tures,862-873
operators,855-856
similarities to C++,

852-856

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 908

RDBs
909

object-oriented
programming, 8

benefits, 8
models,8-9

programs
B-tree program

code explanation,
599-615

driver program,
572-576

global functions,
572-576

header file, 566-571
implementation files for

classes,577-596
using, 596-597,599

complexity of in 1990s,8
cost,8
crashes as a result of delet-

ing pointers,133-134
javadoc utility, 852
lint programs,363,371
read/write program,

544-545
state of software industry,

8
see alsoapplications

property sheets (dialog
boxes), 212-214

Public Key Cryptography
Standard (PKCS), 768

public key encryption,
753-754

Diffie-Hellman multiuser
technique, 754-755

puzzle technique, 754
RSA technique, 755-757

Public Key Partners (PKP),
764

purchase order system
database, 672-674

pure virtual methods,
overriding, 93

push() function, 256
push front() function, 247
push heap() algorithm,

344-345

Q
Qualcomm Eudora and

encryption, 772
queries

ODBMS, 678
relational databases,

625-626
QueryInterface() method

IClassFactory interface,
821-822

IUnknown interface,
818-820

queues, 259
comparing, 261
defining, 259
FIFO (first in, first out)

structure, 259
interfaces,259
least recently used queues,

559
memory, 261
operations,260-261
priority queues,262

interfaces,262
operations,262

recently used queues,559
quick sorts, 463-466

R
radio buttons (dialog

boxes), 210-211
random access iterators,

287, 291
advance() function,

292-293
calculating distance

between iterators,
291-292

distance() function,
291-292

moving, 292-293
random shuffle() algo-

rithm, 314-317
range check() function,

277
Rational Rose, 17
Rational Software, Inc.

Objectory, 11
RC codes, 748
RDBMS (Relational

Database Management
System), 678-679

RDBs (relational databas-
es), 622

APIs,631
architecture, 624-625
denormalization, 627
indexing, 623-624
Microsoft Foundation

Classes,630,634-644
editing, 644
inserting records,645-

647
updating, 644-645

normalization, 626-627
Open Database

Connectivity (ODBC),
630-631

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 909

RDBs
910

administrator tool, 632
components,631
concurrency, 633-634
cursors,632-633
data sources,631-632

persistence, 628-629
blobs,629-630
swizzling with object

identifiers,629
restrictions,625
setting characteristics,648
SQL,625-626,648
tables,622-623,625

entity tables,625
joins,627-628
relationship tables,625
virtual tables,625

users,625
read/write program,

544-545
reading text from files,

544-545
recently used queues, 559
record sorting (databases)

algorithms,452-454
bubble sorts, 455-457
heap sorts, 473-476
insertion sorts,457-460
key values,452
merge sorts, 466-471
quick sorts, 463-466
selecting a method,

476-478
selection sorts, 460-463
shell sorts, 471-473
space requirements,

454-455
stability, 454
testing methods,478-480

recursion, 432
debugging, 449
definition of, 432

Fibonacci numbers,
432-434

functions,432,434
indirect recursion,446-447
iteration, 441-445
objects,432
recursive structures,

435-441
stacks,447-448
stopping, 434
tail recursion,441,

445-446
REF operator (Oracle8),

655
references, 126

counting, 152-166
definition of, 126-127
Java,867
object references in

Oracle8,654-656
passing, 135-136

reinterpret cast() opera-
tor, 400-401

Relational Database
Management System
(RDBMS), 678-679

relational databases,
622, 652

APIs,631
architecture, 624-625
denormalization, 627
indexing, 623-624
keys,623
Microsoft Foundation

Classes,630,634-644
editing, 644
inserting records,

645-647
updating, 644-645

normalization, 626-627
object relational DBMS,

652

IBM DB2,652
Oracle8,652-661
purchase order system

example, 672-674
Sybase System 10,652
UML diagrams,map-

ping, 662-672
Open Database

Connectivity (ODBC),
630-631

administrator tool, 632
components,631
concurrency, 633-634
cursors,632-633
data sources,631-632

persistence, 628-629
blobs,629-630
swizzling with object

identifiers,629
restrictions,625
setting characteristics,648
SQL,625-626,648
tables,622,625

entity tables,625
joins,627-628
relationship tables,625
virtual tables,625

users,625
relationships

associations,seeassocia-
tions

objects,18
aggregation, 36-37
association, 20
composition,36-37,56
containment,19,56
generalization, 19,

35-36,58-60

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 910

searching
911

has-a relationships,36
is-a relationships,

36,78
specialization, 19,

35-36
ODBMS, 708

bidirectional binary
relationships,709-714

degree, 708
unidirectional binary

relationships,708-709
Release() method

(IUnknown interface),
818

remote debugging
(CORBA), 803-804

remove() algorithm, 322,
324-327

remove() function, 250
remove copy if() algo-

rithm, 323
remove copy() algorithm,

322-323
remove if() algorithm,

322
remove if() function, 250
removing

list elements,250-252
map elements,274-276
pointers

crashes,133-134
NULL pointers,

133-134
replace() algorithm, 321,

324-327
replace copy if() algo-

rithm, 322
replace copy() algorithm,

322

replace if() algorithm,
321

reserve() function, 223,
225

resize() function, 223, 225
Resource Editor, 212
reverse() algorithm, 318
reverse() function, 247
reverse iterators, 229, 231
reverse() operations of

lists, 247
reverse copy() algorithm,

318
Rivest codes, 748
Rivest, Ronald, 748, 756
Rogerson, Dale, 849
rotate() algorithm, 318
rotate copy() algorithm,

318
RSA encryption, 755-757
RSA SecurPC v2.0, 773
RTTI (Runtime Type

Information), 382
dynamic cast() operator,

382, 392-394, 425
constructors,396-398
destructors,396
typeid() operator, 398
uses,394-396
virtual base classes,

396
performance of applica-

tions,422-425
polymorphism,422,

424-425
type info class,382

before() member func-
tion, 388-389

comparison operators,
383-385

constructor, 383
declaring, 383
name() member func-

tion, 385-388
typeid() operator, 382

constructors,389-390
destructors,389-390
dynamic cast() opera-

tor, 398
misuses,390-392
uses,382

Rumbaugh, James, 11
Runtime Type

Information, see RTTI

S
S-box function, 751-752
scenarios (use cases), 21

guidelines,21-23
interaction diagrams,23-24

schemas (databases), 702,
704-705

Schneier, Bruce, 756
Scope of variables, 364
scope operator (), 93
scope resolution operator,

419-420
search() algorithm,

307-309
search n() algorithm,

304-306
searching, 484

B-trees,615-618
binary searches,486-489,

514-515
comparing techniques,484
external searching, 508

2-3-4 trees,509-511

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 911

searching
912

binary trees,509
indexed sequential

access,508
graphs

best-first searches,
499-500

breadth-first searches,
497-498

depth-first searches,
496-498,505

see graph algorithms,
507

hashing, seehashing
linear searches,484-486
pattern matching, 489-491

finite-state machines,
491-494

representations of pat-
terns,491

relational databases,626
secondary clustering, 525
secret key encryption,

747-748
Key Distribution Centers,

753
Lucifer, 738-739
mechanics of, 749-750
permutation, 750,752
problems with,749
rounds,752

security
Clipper chip, 740,774-775
desktop security products,

772-773
Norton Your Eyes Only

(Symantec),774
PGP for Personal

Privacy 5.0,773-774
RSA SecurPC v2.0,773

e-mail,771-772
World Wide Web, 770-771

SecurPC v2.0, 773
selecting sort methods,

476-478
selection sorts, 460-463
sequence containers,

218, 221
deque container, 253-255
list container, 240-242

deleting elements,
250-252

front operations,
245-247

merge() operations,
247-250

reverse() operations,
247

sort() operations,
247-250

splice operations,
243-245

performance issues,
280-281

vector container, 221
capacity, 223-225
comparing, 238-240
constructors,221-222
defining, 221
element access,

226-228
initializing, 222
iterators,228-231
limitations,240
modifiers,231-235
operations,236-240
size, 223-225

sequence diagrams
benefits, 61
limitations,61
translating into C++,61-68

servers (CORBA), 795-800
set algorithms, 339,

341-344
includes(),339-340
set difference(),340-341
set intersection(),340
set symmetric difference(),

341
set union(),340

set containers, 279-280
set difference() algo-

rithm, 340-341
set intersection() algo-

rithm, 340
set symmetric difference()

algorithm, 341
set union() algorithm,

340
sets, 279-280
Shamir, Adi, 756
shell sorts, 471-473
short data type (Java),

853
Show() member function,

357
ShowMap() function, 279
ShowMultimap() func-

tion, 279
ShowMultimapRange()

function, 279
ShowVector() function,

225
signatures (digital),

767-768
Digital Signature Standard

(DSS),768-769

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 912

Standard Template Library
913

nonrepudiation, 769
Public Key Cryptography

Standard (PKCS),768
size() function

stacks,256
vectors,223

sizes
maps,268
stacks,256
vectors,223-225

Skipjack, 748
Smalltalk-80, 201
smart pointers (COM),

831-837
software

complexity of in 1990s,8
cost,8
state of industry, 8

software design
analysis

application analysis,
24-25

artifacts,26-27
planning documents,26
requirements analysis,

13
systems analysis,25
use cases,14-24
visualizations,26

design process,27-42
modeling languages,9-10
models,8-9
planning documents,25-26
process of, 10-11

iterative development,
11-13,46-49

waterfall development,
11

vision,13
sort() algorithm, 327-329
sort() function, 247-250

sort() operations of lists,
247-250

sort heap() algorithm,
344

sorting
lists, 248-250
records,452

algorithms,452-454
bubble sorts, 455-457
heap sorts,473-476
insertion sorts, 457-460
key values,452
merge sorts, 466-471
quick sorts,463-466
selecting a method,

476-478
selection sorts, 460-463
shell sorts, 471-473
space requirements,

454-455
stability, 454
testing methods,

478-480
sorting algorithms, 327

nth element(),332-334
partial sort(), 330-332
partial sort copy(), 332
sort(), 327-329
stable sort(), 330-332

space requirements for
sorts, 454-455

specialization, 19, 35-36
spin controls (dialog

boxes), 211-212
splice() function, 243, 245
splice operations of lists,

243-245
SQL, 625-626

Oracle8,653-654
statements,648

stability of sorts, 454
stable partition() algo-

rithm, 314
stable sort() algorithm,

330-332
stacks, 255

constructors,258
defining, 255
interfaces,256
LIFO (last in,first out)

structure, 255
memory management,

127-128
operations,255-258
overflow, 258
pop,255
push,255
recursion,447-448
top,255

Standard C++ Library STL
container classes, 218

associative containers,
263-280

compilers,284
designing element types,

283
header files,282
performance issues,

280-281
queues,259-262
referencing, 282
sequence containers,

221-255
stacks,255-258

standard classes, translat-
ing into C++, 46-47

standard namespace, 366,
378-379

Standard Template Library
auto ptr class,146-152

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 913

Standard Template Library
914

container classes,218
associative containers,

263-280
compilers,284
designing element

types,283
header files,282
performance issues,

280-281
queues,259-262
sequence containers,

221-255
stacks,255-258

iterator classes,293
istream class,293-295
ostream class,295-296

standards
coding standards docu-

ments,413
digital signatures,768

Digital Signature
Standard (DSS),
768-769

Public Key
Cryptography
Standard (PKCS),768

encryption,739-740
namespaces,362
ODMG standard, 680

C++ pr imitive types,
700

classes,705-710,713,
715-716

collections,705-708,
724

containers,707
header files,701
iterators,708
namespaces,701
schema capture tools,

702,704-705

state transition diagrams,
translating into C++,
68-72

statements
control flow (Java),856
SQL,648

static cast() operator,
398-401

static class members, 413
static keyword, 366, 413

deprecation, 378
Java,863

static model (class
design), 31

class relationships,35-40
CRC cards,32-34

static variables, 413
std keyword, 282
std namespace, 366,

378-379
STL container classes, 218

associative containers,
263-280

compilers,284
designing element types,

283
header files,282
performance issues,

280-281
queues,259-262
sequence containers,221

deque container,
253-255

list container, 240-252
vector container,

221-240
stacks,255-258

stopping recursion, 434
storable objects, 544-554
storage of data in

ODBMS, 733-734

string expressions, pars-
ing, 536-537

String object (Java), 861
strings

character strings,hashing,
521-522

CString class,199
Java,861
pattern matching, 489-491

Structured Query
Language (SQL), 625-626

Oracle8,653-654
statements,648

structured storage of
COM objects, 827-828

subobjects, 19
subscripting operator

(vectors), 228
substitution box function,

751-752
super keyword (Java),

867, 870
swap() algorithm,

324-327
swap() function

maps,276-277
vectors,236

swap ranges() algorithm,
324

swapping to disk, 560
Sybase System 10, 652
Symantec Norton Your

Eyes Only, 774
symmetric binary B-trees,

509-511
symmetric cryptography,

747
synchronization of

threads, 184
critical sections,184-185
events,186

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 914

tuning
915

example, 186-198
mutexes,185-186

syntax of namespaces,
362

System 10 (Sybase), 652
systems

analysis,25
multitasking, 176

T
tables

hashing, seehashing
Oracle8,653,656-657
relational databases,622,

625
denormalization, 627
entity tables,625
joins,627-628
normalization, 626-627
relationship tables,625
virtual tables,625

VTBL (vir tual function
table), 416-417

tail recursion, 441,
445-446

template classes, translat-
ing into C++, 48-49

template functions, 225
templates, 218

class templates,219
defining, 219-220
instantiating, 220

function templates,218
defining, 218
instantiating, 218-219

temporary objects
compilers,425-426
memory, 425-426

performance of applica-
tions,426-427

termination conditions
(recursion), 434

ternary operators, 103
testing

CORBA, 802
exception handling, 803
monitor and logging

services,803
remote debugging,

803-804
tracing, 802-803

sort methods,478-480
text

reading from files,544-545
writing to files,544-545

this keyword (Java), 867
threads, 175-176

creating, 179-180
messages,180-182
pThread, 180
synchronization, 184

critical sections,
184-185

events,186
example, 186-198
mutexes,185-186

windows,182
worker threads,179,

182-184
time

CTime class,199-201
CTimeSpan class,200-201

timelines for software
design, 25-26

top() function, 256-257
transactions

object relational databases,
669

ODBMS, 678,715-716

transferring objects in
ODBMS, 734-735

transform() algorithm,
317

transient keyword (Java),
863

traveling salesman prob-
lem (graph algorithms),
507-508

trees
2-3-4 trees,509-511
B-trees

declaration, 561
history, 554
implementation,

560-564
pages,554-566,

584-589
purpose of, 554,558

binary trees,495,509
definition of, 495
parse trees,536-537
shallow trees,554

Triple-DES, 748
Tuchman, Dr. Walter, 738
tuning

algorithms,454
applications,406

implementation code in
header files,412-413

inline functions,
406-410

RTTI, 422-425
temporary objects,

426-427
virtual base classes,

419-422
virtual functions,

416-418

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 915

Turing, Alan
916

Turing, Alan, 738
.txt filename extension,

761
type info class, 382

before() member function,
388-389

comparison operators,
383-385

constructor, 383
declaring, 383
name() member function,

385-388
type libraries, 823-824,

841
typecast operators, 398

const cast() operator,
401-402

dynamic cast() operator,
382,392-396,425

constructors,396-398
destructors,396
typeid() operator, 398
uses,401
virtual base classes,

396
reinterpret cast() operator,

400-401
static cast() operator,

398-401
typeid() operator, 382

constructors,389-390
destructors,389-390
dynamic cast() opera-

tor, 398
misuses,390-392
uses,382

typecasting
dynamic typecasting, 392

type-safe downcasts,
393-394

upcasts,393

new style versus old style,
402-404

typeid() operator, 382,
423-424

constructors,389-390
destructors,389-390
dynamic cast() operator,

398
misuses,390-392
uses,382

typename keyword, 222
types

namespaces,367
ordering, 388
typecasting, 392-394

U
U.S. Data Encryption

Standard, 739-740, 748
UML (Unified Modeling

Language), 10, 18
association, 20
class relationships,35-36
containment,19
CRC cards,34-35
diagrams,662-672
generalization, 19
packages,24

unary functions, 297-298
unary operators, 103
Unified Modeling

Language (UML), see
UML

unique() algorithm, 323
unique() function, 250,

252
unique copy() algorithm,

323

Universally Unique
Identifier (UUID), 813

unnamed namespaces,
377

UpdateData() function,
205-207

updating MFC relational
databases, 644-645

upper bound() algorithm,
335

upper bound() function
maps,273-274
multimaps,277

use cases, 14
actors,14-17
domain experts,14
domain model,17-20
packages,24
scenarios,21

guidelines,21-23
interaction diagrams,

23-24
users of relational data-

bases, 625
using declaration (name-

spaces), 375-376
using directive (name-

spaces), 372-375
using keyword, 373-376
using namespace direc-

tive, 282
utilities

Crypt utility, 763
javadoc utility, 852

utility classes, 199
CString class,199
CTime class,199-201
CTimeSpan class,200-201
translating into C++,49

UUID (Universally Unique
Identifier), 813

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 916

wizards
917

V
variables

pointers,seepointers
scope, 364
static variables,413

varrays (Oracle8), 653,
657

vectors, 221
capacity, 223-225
comparing, 238-240
constructors,221-222
defining, 221
element access,226-228
initializing, 222
iterators,228-231
limitations,240
modifiers,231-235
operations,236-240
size, 223-225

vendors of ORBs, 788-789,
805, 807

Vernam ciphers, 744-747
views

class design,31
MFC, 201

CView class,202
CWnd class,201
form views,202-207

virtual base classes, 418
declaring, 418-419
dynamic cast() operator,

396
functionality, 419
inheritance, 419-422
performance of applica-

tions,419-422

virtual copy constructors,
111

virtual destructors,
94, 415

virtual function pointer
(VPTR), 416-417

virtual function table
(VTBL), 416-417

binding, 829
COM interfaces,813

virtual functions, 414
calling, 415-416
declaring, 414
defining, 414
functionality, 414
performance of applica-

tions,416-418
VPTR (virtual function

pointer),416-417
VTBL (vir tual function

table), 416-417
virtual inheritance,

114-118
virtual keyword, 116,

414-415, 418
virtual methods, 93
visibility, 364
VisiBroker (Inprise),

790, 792
visualizations (software

design), 26
VPTR (virtual pointer),

416-417
VTBL, 416-417

binding, 829
COM interfaces,813

W–Z
warnings for identifier hid-

ing, 363

waterfall development of
software, 11

Watson, Thomas Jr., 738
Wiener, Michael, 740
Windows applications

dialog boxes
creating, 207-210
property sheets,

212-214
radio buttons,210-211
spin controls, 211-212

event-driven programming,
207-210

message processing, 175,
180-182

multithreading, 175-176
case study/example,

178-179
cooperative multi-

threading, 176
creating threads,

179-180
messages,180-182
preemptive multithread-

ing, 176-178
synchronization,

184-198
windows,182
worker threads,

182-184
window management,182

wizards
Application Wizard,

170-171,173-174
Class Wizard, 204

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 917

WNJFile class
918

WNJFile class, 566,
589-592

World Wide Web and
encryption, 770-771

wrappers (COM inter-
faces), 837-840

writing
COM objects,841

multiple inheritance,
841-844

nested classes,845-848
tear-off interfaces,848

objects to files,545
text to files,544-545

XOR function, 750-751

P/V Unleashed generic ISBN# Name Date Index Lp#1

29 239-5 Index 2/19/99 1:46 PM Page 918

P/V Unleashed generic ISBN# Name Date CD Install Lp#1

What’s on the Disc
The companion CD-ROM contains all of the authors’ source code and samples from the
book and some third-party software products.

33 239-5 Install 2/19/99 1:50 PM Page 923

P/V Unleashed generic ISBN# Name Date CDInstall Lp#1

Windows NT 3.5.1 Installation Instructions
1. Insert the CD-ROM disc into your CD-ROM drive.

2. From File Manager or Program Manager, choose Run from the File menu.

3. Type <drive >\START.EXE and press Enter, where <drive > corresponds to the drive letter of
your CD-ROM. For example, if your CD-ROM is drive D:,type D:\START.EXE and press Enter.

4. Follow the onscreen instructions to finish the installation.

Windows 95, Windows 98, and Windows NT 4 Installation Instructions
1. Insert the CD-ROM disc into your CD-ROM drive.

2. From the desktop,double-click the My Computer icon.

3. Double-click the icon representing your CD-ROM drive.

4. Double-click the START.EXE icon to run the installation program.

5. Follow the onscreen instructions to finish the installation.

NOTE

If Windows 95, Windows 98, or Windows NT 4 is installed on your computer,
and you have the AutoPlay feature enabled, the START.EXE program starts
automatically whenever you insert the disc into your CD-ROM drive.

UNIX Installation Instructions
Because there are many flavors of UNIX, we will not attempt to provide specific instructions for
your version. Your UNIX administrator or the man pages will be your best source of information if
you need help on a particular command in these instructions.

NOTE

Before mounting a CD-ROM on <mountpoint> , please make sure that <mountpoint>

exists, or the mount command will fail. If your operating system is running a
volume manager, mounting will occur automatically.

To install the book’s source code, follow these steps:

1. Insert the CD-ROM disc into your CD-ROM drive.

2. Mount the CD-ROM onto your mount point. Typically, this is done by typing

mount [options] /dev/cdrom /<mountpoint>

3. Create a directory on your local file system,such as cppunl,by typing

mkdir /cppunl

4. Move into this directory by typing

cd /cppunl

5. Now you are ready to copy the source code. Copy all of the source
code from the CD-ROM to your local file system by typing

cp -r /<mountpoint>/source/* .

33 239-5 Install 2/19/99 1:50 PM Page 924

When you’re looking for computing information, consult the authority.
The Authoritative Encyclopedia of Computing at mcp.com.

The Authoritative Encyclopedia of Computing

Get the best
information and
learn about latest
developments in:

■ Design

■ Graphics and
Multimedia

■ Enterprise Computing
and DBMS

■ General Internet
Information

■ Operating Systems

■ Networking and
Hardware

■ PC and Video Gaming

■ Productivity
Applications

■ Programming

■ Web Programming
and Administration

■ Web Publishing

Resource Centers

Books & Software

Personal Bookshelf

WWW Yellow Pages

Online Learning

Special Offers

Site Search
Industry News

▼ Choose the online ebooks
that you can view from your
personal workspace on our site.

About MCP Site Map Product Support

Turn to the Authoritative
Encyclopedia of Computing

You'll find over 150 full text books online, hundreds of
shareware/freeware applications, online computing classes

and 10 computing resource centers full of expert advice
from the editors and publishers of:

• Adobe Press • Que
• BradyGAMES • Que Education & Training
• Cisco Press • Sams Publishing
• Hayden Books • Waite Group Press
• Lycos Press • Ziff-Davis Press
• New Riders

mcp.com 2/19/99 1:48 PM Page 919

p?v? Title ISBN name 4-22-98 minicatalog Lp#1

The Waite Group’s Object-Oriented
Programming in C++, Third Edition

This classic tutorial presents the sophisticated new features of the most current
ANSI/ISO C++ standard as they apply to object-oriented programming. Learn the con-
cepts of object-oriented programming, why they exist, and how to utilize them to create
sophisticated and efficient object-oriented applications. The Waite Group’s Object-Oriented
Programming in C++, Third Edition assumes no C programming experience, but does
expect the reader to be familiar with basic programming concepts. It is no longer enough
to understand the syntax and features of the language. Programmers must also be familiar
with how these features are put to use. Get up to speed quickly on the emerging new
concepts of object-oriented design patterns (ways to handle recurrent problems), CRC
modeling (deriving the necessary C++ classes starting from a real-world situation), and
the new Universal Modeling Language (UML), which provides a systematic way to dia-
gram the relationship between classes. Object-oriented programming is presented
through the use of practical task-oriented examples and figures that help conceptualize
and illustrate techniques and approaches, and questions and exercises to reinforce learn-
ing concepts. This book has been used widely in academic settings and provides special
guidance to instructors on how to present and enhance object-oriented programming in
C++ concepts and techniques.

• The third edition of The Waite Group’s Object-Oriented Programming in C++, Third
Edition will continue to build on the successful past performance of previous editions

• Go from simple programming examples straight to full-fledged object-oriented appli-
cations with quick real-world examples, conceptual illustrations, questions, and exer-
cises

$34.99 U.S./$32.49 CAN 1-57169-160-X Sams

p2v5 C++ Primer Plus 162-6 mw 7-29-98 minicatalog Lp#1

The Waite Group’s C++ How-To
The Waite Group’s C++ How-To presents a rich diversity of examples and techniques for
pushing C++ to its limits and beyond. You locate information by task or function and
then walk through a series of How-Tos to find the solution. No current C++ reference
tool on the market offers this unique step-by-step approach and organization of C++ top-
ics and categories. Receive answers to questions like “how do I use the C++ ASM key-
word,” “how do I write a simple Tee command,” and “how do I overload the Array oper-
ator”? This book provides C++ programming solutions for categories and concepts, such
as types and declarations, pointers, arrays and structures, expressions and statements,
functions, namespaces and exceptions, source files and programs, classes, operator over-
loading, derived classes, templates, exception handling, class hierarchies, the Standard
Template Library, and other programming concepts. Each How-To is graded by com-
plexity level, with information on additional uses and enhancements to fit your needs
exactly.

• The all-new definitive C++ problem-solving resource! Programmers can quickly and
efficiently find specific solutions to real-world problems in The Waite Group’s C++
How-To

• The quick, problem-answer design provides C++ programmers with all the tools they
need to solve complex and everyday problems quickly

• Because every concept and example is graded by complexity, you can easily find prac-
tical information at you level, without having to wade through hundreds of pages of
information you don’t need

$39.99 U.S./$57.95 CAN 1-57169-159-6 Sams

239-5 minicat 2/19/99 1:49 PM Page 920

p?v? Title ISBN name 4-22-98 minicatalog Lp#1

Sams Teach Yourself C++ in 21 Days, Second
Edition
Sams Teach Yourself C++ in 21 Days, Second Edition is a hands-on guide to learning object-
oriented programming design and analysis. You’ll gain a thorough understanding of all basic
concepts, including program flow, memory management, and compiling and debugging. To
better facilitate retention and promote learning, the book is structured in the form of a 21-
day self-paced workshop. This book breaks down the concepts into easy-to-understand chap-
ters, using many listings to illustrate not just code, but how to improve upon code. It’s fully
revised, updated, and ANSI-compliant.

• Teaches the basics of object-oriented programming with C++

• Completely revised to ANSI standards

• Can be used with any of the C++ compilers on the market

$29.99 U.S./ $42.95 CAN 0-672-31070-8 Sams

p2v5 C++ Primer Plus 162-6 mw 7-29-98 minicatalog Lp#1

239-5 minicat 2/19/99 1:49 PM Page 921

p?v? Title ISBN name 4-22-98 order form Lp#1

Add to Your C++ Library Today with the Best Books for
Programming, Operating Systems, and New Technologies

To order, visit our Web site at www.mcp.com or fax us at

1-800-835-3202
ISBN Quantity Description of Item Unit Cost Total Cost

0-7897-1667-4 Using C++ $29.99

0-672-31239-5 C++ Unleashed $39.99

1-57169-160-X The Waite Group’s Object-Oriented Programming
in C++, 3E $34.99

1-57169-159-6 The Waite Group’s C++ How-To $39.99

Shipping and Handling: See information below.

TOTAL

Shipping and Handling

Standard $5.00

2nd Day $10.00

Next Day $17.50

International $40.00

201 W. 103rd Street, Indianapolis, Indiana 46290 1-800-835-3202 — FAX

1Book ISBN 0-672-31239-51

p2v5 C++ Primer Plus 162-6 mw 7-29-98 order form Lp#1

29.162-6 order form 2/19/99 1:49 PM Page 922

P/V Unleashed generic ISBN# Name Date IFC.IBC Lp#1

THE UNIFIED MODELING LANGUAGE

Software Design: Pg 9
The Modeling Language

Software Design: The Process Pg 10

Requirements Analysis Pg 13
Use Cases Pg 14
Application Analysis Pg 24

Systems Analysis Pg 25

Static Model Pg 31

Dynamic Model Pg 40

TRANSLATING CLASS DESIGNS INTO

WORKING CODE

Translating Class Pg 46
Diagrams into C++

Translating Iteration Pg 61
Diagrams into C++

Translating State Pg 68
Diagrams into C++

Translating Activity Pg 72
Diagrams into C++

OBJECT-ORIENTED PROGRAMMING

Object-Oriented Linked Lists Pg 79

Abstract Classes Pg 87

Virtual Destructors Pg 94

Polymorphism Through Pg 94
Method Overloading

Multiple Inheritance Pg 112

MEMORY MANAGEMENT

Memory Management Pg 127
and Pointers

Pointers and Exceptions Pg 140

FRAMEWORKS AND MULTITHREADING

The MS Foundation Pg 170
Classes

Issues in Preemptive Pg 177
Multithreading

CONTAINERS

Defining and Pg 218
Instantiating Templates

Understanding Pg 221
Sequence Containers

Understanding Stacks Pg 255

Understanding Queues Pg 259

Understanding Pg 263
Associative Containers

ITERATORS

Iterator Classes Pg 286

Function Objects Pg 296

Algorithm Classes Pg 299

NAMESPACES

Creating a Namespace Pg 366

The Standard Namespace std Pg 378

CASTING TYPES AT RUNTIME

Dynamic Typecasting Pg 392
of Objects

OPTIMIZING PERFORMANCE

Analyzing the Cost of Pg 413
Virtual Functions and
Virtual Base Classes

RTTI Trade-Offs Pg 422

RECURSION

Recursion Versus Pg 441
Iteration and Tail Recursion

SORTING

Analyzing the Pg 452
Performance of Algorithms

The Bubble Sort Pg 455

The Insertion Sort Pg 457

The Selection Sort Pg 460

The Quick Sort Pg 463

SEARCH ALGORITHMS

Pattern Matching Pg 489

Graph Algorithms Pg 494

External Searching Pg 508

HASHING AND PARSING

Hash Functions Pg 515

Parsing Pg 533

OBJECT PERSISTENCE

Creating Storable Objects Pg 545

Swapping to Disk Pg 560

RELATIONAL DATABASES

Architecture of a Pg 624
Relational Database

SQL: Defining and Pg 625
Querying the Database

Persisting to a Pg 628
Relational Database

OBJECT-RELATIONAL DATABASES

Mapping UML Pg 662
Diagrams to an Object-
Relational Database

OBJECT-ORIENTED DATABASES

Overview of ODBMS Pg 678

Data Persistence Pg 700

Databases and Transactions Pg 715

ENCRYPTION

Private Key Cryptography Pg 747

Public Key Cryptography Pg 753

Digital Signatures Pg 767

CORBA AND C++
IDL: The Binding Contract Pg 785

The Object Request Broker Pg 788

The Naming Service and Pg 804
Interoperability

COM AND C++
COM Fundamentals Pg 811

Using COM Objects in C++ Pg 830

MIGRATING BETWEEN C++ AND JAVA

Similarities Pg 852
Between C++ and Java

Differences Pg 856
Between C++ and Java

A Quick Reference to Key Topics

239-5 IFC 2/19/99 1:54 PM Page 2

	C++ Unleashed
	Copyright © 1999 by Sams
	Contents at a Glance
	Contents

	About the Authors
	Acknowledgments
	Tell Us What You Think!
	Introduction
	Part I Object-Oriented Programming
	Ch 1 Object-Oriented Analysis and Design
	Ch 2 Implementing Class Design in C++
	Ch 3 Inheritance, Polymorphism, and Code Reuse

	Part II Implementation Issues
	Ch 4 Memory Management
	Ch 5 How to Use Frameworks
	Ch 6 Standard Template Library Container Classes
	Ch 7 STL Iterators and Algorithms
	Ch 8 Avoiding Name Clashes by Using Namespaces
	Ch 9 Manipulating Object Types at Runtime
	Ch 10 Tuning Application Performance

	Part III Manipulating Data
	Ch 11 Recursing and Recursive Data Structures
	Ch 12 Designing Efficient Sorting Methods
	Ch 13 Searching Algorithms in C++
	Ch 14 Hashing and Parsing Techniques

	Part IV Object Persistence and Encryption
	Ch 15 Object Persistence
	Ch 16 Relational Databases and Persistence
	Ch 17 Object Persistence Using Relational Databases
	Ch 18 Object-Oriented Databases
	Ch 19 Protecting Applications Using Encryption

	Part V Distributed Computing Topics
	Ch 20 CORBA
	Ch 21 COM
	Ch 22 Java and C++

	INDEX
	What’s on the Disc
	Turn to the Authoritative Encyclopedia of Computing
	Mini Catalog
	Add to Your C++ Library Today
	A Quick Reference to Key Topics

	page one:

